WorldWideScience

Sample records for time-resolved laser-induced incandescence

  1. Kalman filter approach for uncertainty quantification in time-resolved laser-induced incandescence.

    Science.gov (United States)

    Hadwin, Paul J; Sipkens, Timothy A; Thomson, Kevin A; Liu, Fengshan; Daun, Kyle J

    2018-03-01

    Time-resolved laser-induced incandescence (TiRe-LII) data can be used to infer spatially and temporally resolved volume fractions and primary particle size distributions of soot-laden aerosols, but these estimates are corrupted by measurement noise as well as uncertainties in the spectroscopic and heat transfer submodels used to interpret the data. Estimates of the temperature, concentration, and size distribution of soot primary particles within a sample aerosol are typically made by nonlinear regression of modeled spectral incandescence decay, or effective temperature decay, to experimental data. In this work, we employ nonstationary Bayesian estimation techniques to infer aerosol properties from simulated and experimental LII signals, specifically the extended Kalman filter and Schmidt-Kalman filter. These techniques exploit the time-varying nature of both the measurements and the models, and they reveal how uncertainty in the estimates computed from TiRe-LII data evolves over time. Both techniques perform better when compared with standard deterministic estimates; however, we demonstrate that the Schmidt-Kalman filter produces more realistic uncertainty estimates.

  2. Time-resolved laser-induced incandescence from multiwalled carbon nanotubes in air

    Energy Technology Data Exchange (ETDEWEB)

    Mitrani, J. M. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA; Shneider, M. N. [Department of Mechanical Engineering, Princeton University, Princeton, New Jersey 08544, USA

    2015-01-26

    We observed temporal laser-induced incandescence (LII) signals from multiwalled carbon nanotubes(MWCNTs) suspended in ambient air. Unlike previous LII experiments with soot particles, which showed that primary particles with larger diameters cool at slower timescales relative to smaller particles, we observed that thicker MWCNTs with larger outer diameters (ODs) cool at faster timescales relative to thinner MWCNTs with smaller ODs. We suggested a simple explanation of this effect, based on the solution of one-dimensional nonstationary heat conduction equation for the initial non-uniform heating of MWCNTs with ODs greater than the skin depth.

  3. Predicting the heat of vaporization of iron at high temperatures using time-resolved laser-induced incandescence and Bayesian model selection

    Science.gov (United States)

    Sipkens, Timothy A.; Hadwin, Paul J.; Grauer, Samuel J.; Daun, Kyle J.

    2018-03-01

    Competing theories have been proposed to account for how the latent heat of vaporization of liquid iron varies with temperature, but experimental confirmation remains elusive, particularly at high temperatures. We propose time-resolved laser-induced incandescence measurements on iron nanoparticles combined with Bayesian model plausibility, as a novel method for evaluating these relationships. Our approach scores the explanatory power of candidate models, accounting for parameter uncertainty, model complexity, measurement noise, and goodness-of-fit. The approach is first validated with simulated data and then applied to experimental data for iron nanoparticles in argon. Our results justify the use of Román's equation to account for the temperature dependence of the latent heat of vaporization of liquid iron.

  4. Laser-induced incandescence of titania nanoparticles synthesized in a flame

    Science.gov (United States)

    Cignoli, F.; Bellomunno, C.; Maffi, S.; Zizak, G.

    2009-09-01

    Laser induced incandescence experiments were carried out in a flame reactor during titania nanoparticle synthesis. The structure of the reactor employed allowed for a rather smooth particle growth along the flame axis, with limited mixing of different size particles. Particle incandescence was excited by the 4th harmonic of a Nd:YAG laser. The radiation emitted from the particles was recorded in time and checked by spectral analysis. Results were compared with measurements from transmission electron microscopy of samples taken at the same locations probed by incandescence. This was done covering a portion of the flame length within which a particle size growth of a factor of about four was detected . The incandescence decay time was found to increase monotonically with particle size. The attainment of a process control tool in nanoparticle flame synthesis appears to be realistic.

  5. Soot particulate size characterisation in a heavy-duty diesel engine for different engine loads by laser-induced incandescence

    NARCIS (Netherlands)

    Bougie, B.; Ganippa, L.C.; Vliet, van A.P.; Meerts, W.L.; Dam, N.J.; Meulen, ter J.J.

    2007-01-01

    Time-resolved laser-induced incandescence was used to estimate primary particle size distributions inside the combustion chamber of a heavy-duty diesel engine as a function of the crank angle, for two different engine loads at two different probe locations. Assuming a log-normal particle size

  6. Laser-induced incandescence applied to dusty plasmas

    NARCIS (Netherlands)

    van de Wetering, F.M.J.H.; Oosterbeek, W.; Beckers, J.; Nijdam, S.; Kovacevic, E.; Berndt, J.

    2016-01-01

    This paper reports on the laser heating of nanoparticles (diameters ≤1 μm) confined in a reactive plasma by short (150 ps) and intense (~63 mJ) UV (355 nm) laser pulses (laser-induced incandescence, LII). Important parameters such as the particle temperature and radius follow from analysis of the

  7. Laser-induced incandescence: Towards quantitative soot volume fraction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tzannis, A P; Wienbeucker, F; Beaud, P; Frey, H -M; Gerber, T; Mischler, B; Radi, P P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Laser-Induced Incandescence has recently emerged as a versatile tool for measuring soot volume fraction in a wide range of combustion systems. In this work we investigate the essential features of the method. LII is based on the acquisition of the incandescence of soot when heated through a high power laser pulse. Initial experiments have been performed on a model laboratory flame. The behaviour of the LII signal is studied experimentally. By applying numerical calculations we investigate the possibility to obtain two-dimensional soot volume fraction distributions. For this purpose a combination of LII with other techniques is required. This part is discussed in some extent and the future work is outlined. (author) 4 figs., 3 refs.

  8. Time-resolved laser-induced fluorescence system

    Science.gov (United States)

    Bautista, F. J.; De la Rosa, J.; Gallegos, F. J.

    2006-02-01

    Fluorescence methods are being used increasingly in the measurement of species concentrations in gases, liquids and solids. Laser induced fluorescence is spontaneous emission from atoms or molecules that have been excited by laser radiation. Here we present a time resolved fluorescence instrument that consists of a 5 μJ Nitrogen laser (337.1 nm), a sample holder, a quartz optical fiber, a spectrometer, a PMT and a PC that allows the measurement of visible fluorescence spectra (350-750 nm). Time response of the system is approximately 5 ns. The instrument has been used in the measurement of colored bond paper, antifreeze, diesel, cochineal pigment and malignant tissues. The data acquisition was achieved through computer control of a digital oscilloscope (using General Purpose Interface Bus GPIB) and the spectrometer via serial (RS232). The instrument software provides a graphic interface that lets make some data acquisition tasks like finding fluorescence spectra, and fluorescence lifetimes. The software was developed using the Lab-View 6i graphic programming package and can be easily managed in order to add more functions to it.

  9. Time-resolved resonance fluorescence spectroscopy for study of chemical reactions in laser-induced plasmas.

    Science.gov (United States)

    Liu, Lei; Deng, Leimin; Fan, Lisha; Huang, Xi; Lu, Yao; Shen, Xiaokang; Jiang, Lan; Silvain, Jean-François; Lu, Yongfeng

    2017-10-30

    Identification of chemical intermediates and study of chemical reaction pathways and mechanisms in laser-induced plasmas are important for laser-ablated applications. Laser-induced breakdown spectroscopy (LIBS), as a promising spectroscopic technique, is efficient for elemental analyses but can only provide limited information about chemical products in laser-induced plasmas. In this work, time-resolved resonance fluorescence spectroscopy was studied as a promising tool for the study of chemical reactions in laser-induced plasmas. Resonance fluorescence excitation of diatomic aluminum monoxide (AlO) and triatomic dialuminum monoxide (Al 2 O) was used to identify these chemical intermediates. Time-resolved fluorescence spectra of AlO and Al 2 O were used to observe the temporal evolution in laser-induced Al plasmas and to study their formation in the Al-O 2 chemistry in air.

  10. Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baudelet, Matthieu; Boueri, Myriam [Laboratoire de Spectrometrie Ionique et Moleculaire, Universite Claude Bernard Lyon 1, UMR CNRS 5579, 43, Bd. du 11 Novembre 1918, F-69622 Villeurbanne Cedex (France); Yu Jin [Laboratoire de Spectrometrie Ionique et Moleculaire, Universite Claude Bernard Lyon 1, UMR CNRS 5579, 43, Bd. du 11 Novembre 1918, F-69622 Villeurbanne Cedex (France)], E-mail: jin.yu@lasim.univ-lyon1.fr; Mao, Samuel S; Piscitelli, Vincent; Xianglei, Mao; Russo, Richard E [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2007-12-15

    Ultraviolet pulses (266 nm) delivered by a quadrupled Nd:YAG laser were used to analyze organic samples with laser-induced breakdown spectroscopy (LIBS). We present characteristics of the spectra obtained from organic samples with special attentions on the emissions of organic elements, O and N, and molecular bonds CN. The choice of these atomic or molecular species is justified on one hand, by the importance of these species to specify organic or biological materials; and on the other hand by the possible interferences with ambient air when laser ablation takes place in the atmosphere. Time-resolved LIBS was used to determine the time-evolution of line intensity emitted from these species. We demonstrate different kinetic behaviors corresponding to different origins of emitters: native atomic or molecular species directly vaporized from the sample or those generated through dissociation or recombination due to interaction between laser-induced plasma and air molecules. Our results show the ability of time-resolved UV-LIBS for detection and identification of native atomic or molecular species from an organic sample.

  11. Laser-induced incandescence (LII) diagnostic for in situ monitoring of nanoparticle synthesis in a high-pressure arc discharge

    Science.gov (United States)

    Yatom, Shurik; Vekselman, Vladislav; Mitrani, James; Stratton, Brentley; Raitses, Yevgeny; LaboratoryPlasma Nanosynthesis Team

    2016-10-01

    A DC arc discharge is commonly used for synthesis of carbon nanoparticles, including buckyballs, carbon nanotubes, and graphene flakes. In this work we show the first results of nanoparticles monitored during the arc discharge. The graphite electrode is vaporized by high current (60 A) in a buffer Helium gas leading to nanoparticle synthesis in a low temperature plasma. The arc was shown to oscillate, which can possibly influence the nano-synthesis. To visualize the nanoparticles in-situ we employ the LII technique. The nanoparticles with radii >50 nm, emerging from the arc area are heated with a short laser pulse and incandesce. The resulting radiation is captured with an ICCD camera, showing the location of the generated nanoparticles. The images of incandescence are studied together with temporally synchronized fast-framing imaging of C2 emission, to connect the dynamics of arc instabilities, C2 molecules concentration and nanoparticles. The time-resolved incandescence signal is analyzed with combination of ex-situ measurements of the synthesized nanoparticles and LII modeling, to provide the size distribution of produced nanoparticles. This work was supported by US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  12. Time-Resolved Emission Spectroscopic Study of Laser-Induced Steel Plasmas

    International Nuclear Information System (INIS)

    Shah, M. L.; Pulhani, A. K.; Suri, B. M.; Gupta, G. P.

    2013-01-01

    Laser-induced steel plasma is generated by focusing a Q-switched Nd:YAG visible laser (532 nm wavelength) with an irradiance of ∼ 1 × 10 9 W/cm 2 on a steel sample in air at atmospheric pressure. An Echelle spectrograph coupled with a gateable intensified charge-coupled detector is used to record the plasma emissions. Using time-resolved spectroscopic measurements of the plasma emissions, the temperature and electron number density of the steel plasma are determined for many times of the detector delay. The validity of the assumption by the spectroscopic methods that the laser-induced plasma (LIP) is optically thin and is also in local thermodynamic equilibrium (LTE) has been evaluated for many delay times. From the temporal evolution of the intensity ratio of two Fe I lines and matching it with its theoretical value, the delay times where the plasma is optically thin and is also in LTE are found to be 800 ns, 900 ns and 1000 ns.

  13. Time-resolved x-ray laser induced photoelectron spectroscopy of isochoric heated copper

    International Nuclear Information System (INIS)

    Nelson, A.J.; Dunn, J.; Hunter, J.; Widmann, K.

    2005-01-01

    Time-resolved x-ray photoelectron spectroscopy is used to probe the nonsteady-state evolution of the valence band electronic structure of laser heated ultrathin (50 nm) copper. A metastable phase is studied using a 527 nm wavelength 400 fs laser pulse containing 0.1-2.5 mJ laser energy focused in a large 500x700 μm 2 spot to create heated conditions of 0.07-1.8x10 12 W cm -2 intensity. Valence band photoemission spectra are presented showing the changing occupancy of the Cu 3d level with heating are presented. These picosecond x-ray laser induced time-resolved photoemission spectra of laser-heated ultrathin Cu foil show dynamic changes in the electronic structure. The ultrafast nature of this technique lends itself to true single-state measurements of shocked and heated materials

  14. Time-resolved spectroscopy of laser-induced breakdown in water

    Science.gov (United States)

    Thomas, Robert J.; Hammer, Daniel X.; Noojin, Gary D.; Stolarski, David J.; Rockwell, Benjamin A.; Roach, William P.

    1996-05-01

    Laser pulses of 60-ps and 80-ps at a wavelength of 532-nm and 1064-nm respectively were used to produce laser induced breakdown in triple-distilled water. The resulting luminescent flash from the plasma was captured with an imaging spectrograph coupled to a streak camera with a 5-ps time resolution. The wavelength range was 350 to 900-nm. We present the resulting experimental data which gives plasma duration and time-resolved spectral information. Plasma temperature is also computed from the data. All parameters are presented at a pulse energy of 1-mJ and are compared with time-integrated spectra at the same pulse duration and at 5 to 7-ns pulse duration in a similar energy range.

  15. Comprehensive Laser-induced Incandescence (LII) modeling for soot particle sizing

    KAUST Repository

    Lisanti, Joel

    2015-03-30

    To evaluate the current state of the art in LII particle sizing, a comprehensive model for predicting the temporal incandescent response of combustion-generated soot to absorption of a pulsed laser is presented. The model incorporates particle heating through laser absorption, thermal annealing, and oxidation at the surface as well as cooling through sublimation and photodesorption, radiation, conduction and thermionic emission. Thermodynamic properties and the thermal accommodation coefficient utilized in the model are temperature dependent. In addition, where appropriate properties are also phase dependent, thereby accounting for annealing effects during laser heating and particle cooling.

  16. Time-resolved laser-induced fluorescence in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Moulin, C.; Decambox, P.; Mauchien, P.; Petit, A.

    1995-01-01

    Time-Resolved Laser-Induced Fluorescence (TRLIF) is a very sensitive and selective method that has been used for actinides and lanthanides analysis in the nuclear fuel cycle. This technique has been used in different fields such as in geology, in the Purex process, in the environment, in the medical and in waste storage assessment. Spectroscopic data, limits of detection and results obtained in previously quoted fields are presented. (author)

  17. Laser-induced incandescence of suspended particles as a source of excitation of dye luminescence

    CERN Document Server

    Zelensky, S

    2003-01-01

    The interaction of pulsed YAG-Nd sup 3 sup + laser radiation with submicron light-absorbing particles suspended in an aqueous solution of Rhodamine 6G is investigated experimentally. The experiments demonstrate that the laser-induced incandescence of suspended particles excites the luminescence of the dissolved dye molecules. The mechanism of the luminescence excitation consists in the reabsorption of the thermal radiation within the volume of the sample cell. On the ground of this mechanism of excitation, a method of measurement of the luminescence quantum yield is proposed and realized. The method requires the knowledge of the geometrical parameters of the cell and does not require the use of reference samples.

  18. Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements

    Science.gov (United States)

    Hadwin, Paul J.; Sipkens, T. A.; Thomson, K. A.; Liu, F.; Daun, K. J.

    2016-01-01

    Auto-correlated laser-induced incandescence (AC-LII) infers the soot volume fraction (SVF) of soot particles by comparing the spectral incandescence from laser-energized particles to the pyrometrically inferred peak soot temperature. This calculation requires detailed knowledge of model parameters such as the absorption function of soot, which may vary with combustion chemistry, soot age, and the internal structure of the soot. This work presents a Bayesian methodology to quantify such uncertainties. This technique treats the additional "nuisance" model parameters, including the soot absorption function, as stochastic variables and incorporates the current state of knowledge of these parameters into the inference process through maximum entropy priors. While standard AC-LII analysis provides a point estimate of the SVF, Bayesian techniques infer the posterior probability density, which will allow scientists and engineers to better assess the reliability of AC-LII inferred SVFs in the context of environmental regulations and competing diagnostics.

  19. A mobile system for a comprehensive online-characterization of nanoparticle aggregates based on wide-angle light scattering and laser-induced incandescence

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Franz J. T.; Will, Stefan, E-mail: stefan.will@fau.de [Lehrstuhl für Technische Thermodynamik (LTT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91058 (Germany); Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91052 (Germany); Cluster of Excellence Engineering of Advanced Materials (EAM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91052 (Germany); Altenhoff, Michael [Lehrstuhl für Technische Thermodynamik (LTT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91058 (Germany); Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91052 (Germany)

    2016-05-15

    A mobile demonstrator for the comprehensive online-characterization of gas-borne nanoparticle aggregates is presented. Two optical measurement techniques are combined, both utilizing a pulsed Nd:YAG laser as light source. Aggregate size and fractal dimension are measured by Wide-Angle Light Scattering (WALS). An ellipsoidal mirror images elastically scattered light from scattering angles between 10° and 165° onto a CCD-camera chip resulting in an almost complete scattering diagram with high angular resolution. Primary particle size and volume fraction are measured by time-resolved Laser-Induced Incandescence (TiRe-LII). Here, particles are heated up to about 3000 K by the short laser pulse, the enhanced thermal radiation signal is detected with gated photomultiplier tubes. Analysis of the signal decay time and maximum LII-signal allows for the determination of primary particle diameter and volume fraction. The performance of the system is demonstrated by combined measurements on soot nanoparticle aggregates from a soot aerosol generator. Particle and aggregate sizes are varied by using different equivalence ratios of the combustion in the generator. Soot volume fraction can be adjusted by different levels of dilution with air. Online-measurements were carried out demonstrating the favorable performance of the system and the potential for industrial applications such as process control and product development. The particle properties obtained are confirmed through transmission electron microscopy analysis on representative samples.

  20. A mobile system for a comprehensive online-characterization of nanoparticle aggregates based on wide-angle light scattering and laser-induced incandescence

    International Nuclear Information System (INIS)

    Huber, Franz J. T.; Will, Stefan; Altenhoff, Michael

    2016-01-01

    A mobile demonstrator for the comprehensive online-characterization of gas-borne nanoparticle aggregates is presented. Two optical measurement techniques are combined, both utilizing a pulsed Nd:YAG laser as light source. Aggregate size and fractal dimension are measured by Wide-Angle Light Scattering (WALS). An ellipsoidal mirror images elastically scattered light from scattering angles between 10° and 165° onto a CCD-camera chip resulting in an almost complete scattering diagram with high angular resolution. Primary particle size and volume fraction are measured by time-resolved Laser-Induced Incandescence (TiRe-LII). Here, particles are heated up to about 3000 K by the short laser pulse, the enhanced thermal radiation signal is detected with gated photomultiplier tubes. Analysis of the signal decay time and maximum LII-signal allows for the determination of primary particle diameter and volume fraction. The performance of the system is demonstrated by combined measurements on soot nanoparticle aggregates from a soot aerosol generator. Particle and aggregate sizes are varied by using different equivalence ratios of the combustion in the generator. Soot volume fraction can be adjusted by different levels of dilution with air. Online-measurements were carried out demonstrating the favorable performance of the system and the potential for industrial applications such as process control and product development. The particle properties obtained are confirmed through transmission electron microscopy analysis on representative samples.

  1. Time-resolved photoluminescence for evaluating laser-induced damage during dielectric stack ablation in silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Parola, Stéphanie [Université de Lyon, Institut des Nanotechnologies de Lyon INL-UMR5270, CNRS, INSA Lyon, Villeurbanne, F-69621 (France); Blanc-Pélissier, Danièle, E-mail: daniele.blanc@insa-lyon.fr [Université de Lyon, Institut des Nanotechnologies de Lyon INL-UMR5270, CNRS, INSA Lyon, Villeurbanne, F-69621 (France); Barbos, Corina; Le Coz, Marine [Université de Lyon, Institut des Nanotechnologies de Lyon INL-UMR5270, CNRS, INSA Lyon, Villeurbanne, F-69621 (France); Poulain, Gilles [TOTAL MS—New Energies, R& D Division, La Défense (France); Lemiti, Mustapha [Université de Lyon, Institut des Nanotechnologies de Lyon INL-UMR5270, CNRS, INSA Lyon, Villeurbanne, F-69621 (France)

    2016-06-30

    Highlights: • Ablation of Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}/SiN{sub x} on Si substrates was performed with a nanosecond UV laser. • Ablation thresholds were found in good agreement with COMSOL simulation, around 0.85 and 0.95 J cm{sup −2} for Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}/SiN{sub X}, respectively. • Laser-induced damage was evaluated at room temperature by time-resolved photoluminescence decay with a single photon counting detector. • Minority carrier lifetime in silicon as a function of the ablation fluence was derived from the photoluminescence decay and related to the thickness of the heat affected zone. • Quantitative measurements of laser-induced damage can be used to evaluate laser ablation of dielectrics in photovoltaics. - Abstract: Selective laser ablation of dielectric layers on crystalline silicon wafers was investigated for solar cell fabrication. Laser processing was performed on Al{sub 2}O{sub 3}, and bi-layers Al{sub 2}O{sub 3}/SiN{sub X}:H with a nanosecond UV laser at various energy densities ranging from 0.4 to 2 J cm{sup −2}. Ablation threshold was correlated to the simulated temperature at the interface between the dielectric coatings and the silicon substrate. Laser-induced damage to the silicon substrate was evaluated by time-resolved photoluminescence. The minority carrier lifetime deduced from time-resolved photoluminescence was related to the depth of the heat affected zone in the substrate.

  2. Reaction-time-resolved measurements of laser-induced fluorescence in a shock tube with a single laser pulse

    Science.gov (United States)

    Zabeti, S.; Fikri, M.; Schulz, C.

    2017-11-01

    Shock tubes allow for the study of ultra-fast gas-phase reactions on the microsecond time scale. Because the repetition rate of the experiments is low, it is crucial to gain as much information as possible from each individual measurement. While reaction-time-resolved species concentration and temperature measurements with fast absorption methods are established, conventional laser-induced fluorescence (LIF) measurements with pulsed lasers provide data only at a single reaction time. Therefore, fluorescence methods have rarely been used in shock-tube diagnostics. In this paper, a novel experimental concept is presented that allows reaction-time-resolved LIF measurements with one single laser pulse using a test section that is equipped with several optical ports. After the passage of the shock wave, the reactive mixture is excited along the center of the tube with a 266-nm laser beam directed through a window in the end wall of the shock tube. The emitted LIF signal is collected through elongated sidewall windows and focused onto the entrance slit of an imaging spectrometer coupled to an intensified CCD camera. The one-dimensional spatial resolution of the measurement translates into a reaction-time-resolved measurement while the species information can be gained from the spectral axis of the detected two-dimensional image. Anisole pyrolysis was selected as the benchmark reaction to demonstrate the new apparatus.

  3. Speciation of actinides in aqueous solution by time-resolved laser-induced fluorescence spectroscopy (TRLFS)

    International Nuclear Information System (INIS)

    Kimura, Takaumi; Kato, Yoshiharu; Meinrath, G.; Yoshida, Zenko; Choppin, G.R.

    1995-01-01

    Time-resolved laser-induced fluorescence spectroscopy (TRLFS) as a sensitive and selective method has been applied to the speciation of actinides in aqueous solution. Studies on hydrolysis and carbonate complexation of U(VI) and on determination of hydration number of Cm(III) are reported. (author)

  4. Time-resolved emission from laser-ablated uranium

    International Nuclear Information System (INIS)

    Stoffels, E.; Mullen, J. van der; Weijer, P. van de

    1991-01-01

    Time-resolved emission spectra from the plasma, induced by laser ablation of uranium samples have been studied. The dependence of the emission intensity on time is strongly affected by the nature and pressure of the buffer gas. Air and argon have been used in the pressure range 0.002 to 5 mbar. The emission intensity as a function of time displays three maxima, indicating that three different processes within the expanding plasma plume are involved. On basis of the time-resolved spectra we propose a model that explains qualitatively the phenomena that are responsible for this time behaviour. (author)

  5. Characterization of type I, II, III, IV, and V collagens by time-resolved laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Marcu, Laura; Cohen, David; Maarek, Jean-Michel I.; Grundfest, Warren S.

    2000-04-01

    The relative proportions of genetically distinct collagen types in connective tissues vary with tissue type and change during disease progression, development, wound healing, aging. This study aims to 1) characterize the spectro- temporal fluorescence emission of fiber different types of collagen and 2) assess the ability of time-resolved laser- induced fluorescence spectroscopy to distinguish between collagen types. Fluorescence emission of commercially available purified samples was induced with nitrogen laser excitation pulses and detected with a MCP-PMT connected to a digital storage oscilloscope. The recorded time-resolved emission spectra displayed distinct fluorescence emission characteristics for each collagen type. The time domain information complemented the spectral domain intensity data for improved discrimination between different collagen types. Our results reveal that analysis of the fluorescence emission can be used to characterize different species of collagen. Also, the results suggest that time-resolved spectroscopy can be used for monitoring of connective tissue matrix composition changes due to various pathological and non-pathological conditions.

  6. On the use of time resolved laser-induced spectrofluorometry in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Moulin, C.; Decambox, P.; Mauchien, P.; Davin, T.; Pradel, B.

    1991-01-01

    Time Resolved Laser-Induced Spectrofluorometry (TRLIS) has been used for actinides trace analysis and complexation analysis in the nuclear fuel cycle. Results obtained in the different fields such as in geology, in the Purex process, in the environment, in the medical and in waste storage assessment are presented. 4 figs., 6 refs

  7. Time-Resolved Studies of Laser-Induced Phase Transitions in Gallium Arsenide

    Science.gov (United States)

    Siegal, Yakir

    This thesis describes a series of time-resolved experiments of the linear and nonlinear optical properties of GaAs during laser-induced phase transitions. The first set of experiments consists of a direct determination of the behavior of the linear dielectric constant at photon energies of 2.2 eV and 4.4 eV following excitation of the sample with 1.9-eV, 70-fs laser pulses spanning a fluence range from 0 to 2.5 kJ/m^2. The results from this set of experiments were used to extract the behavior of the second-order optical susceptibility from second-harmonic generation measurements made under identical excitation conditions. These experiments are unique because they provide explicit information on the behavior of intrinsic material properties--the linear and nonlinear optical susceptibilities--during laser-induced phase transitions in semiconductors without the ambiguities in interpretation that are generally inherent in reflectivity and second-harmonic generation measurements. The dielectric constant data indicate a drop in the average bonding-antibonding splitting of GaAs following the laser pulse excitation. This behavior leads to a collapse of the band-gap on a picosecond time scale for excitation at fluences near the damage threshold of 1.0 kJ/m ^2 and even faster at higher excitation fluences. The changes in the electronic band structure result from a combination of electronic screening by the excited free carriers and structural deformation of the lattice caused by the destabilization of the covalent bonds. The behavior of the second-order susceptibility shows that the material loses long-range order before the average bonding-antibonding splitting, which is more sensitive to short-range structure, changes significantly. Loss of long-range order and a drop of more than 2 eV in the average bonding-antibonding splitting are seen even at fluences below the damage threshold, a regime in which the laser-induced changes are reversible.

  8. Dissociation dynamics of CH3I in electric spark induced breakdown revealed by time-resolved laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Wang, Yang; Liu, Wei-long; Song, Yun-fei; Duo, Li-ping; Liu, Yu-qiang; Yang, Yan-qiang

    2015-01-01

    Highlights: • Emission of electric spark dissociation of CH 3 I is similar to its fs LIBS. • We use fs laser induced breakdown as a simulation for electric spark dissociation. • The I 2 molecule formation is directly observed in the time-resolved LIBS. • Bimolecular collision of I ∗ and CH 3 I is responsible for the formation of I 2 . - Abstract: The electric discharge spark dissociation of gas CH 3 I is found to be similar to its femtosecond laser photodissociation. The almost identical spectra of the two processes show that their initial ionization conditions are very similar. The initial ionization followed by molecular fragmentation is proposed as the dissociation mechanism, in which the characteristic emissions of I + , CH 3 , CH 2 , CH, H, and I 2 are identified as the dissociation products. The emission band of 505 nm I 2 is clearly observed in the time-resolved laser induced breakdown spectroscopy (LIBS). The dynamic curve indicates that I 2 ∗ molecules are formed after the delay time of ∼4.7 ns. The formation of I 2 ∗ molecule results from the bimolecular collision of the highly excited iodine atom I ∗ ( 4 P) and CH 3 I molecule. This dynamical information can help understand the process of electric discharge spark dissociation of CH 3 I

  9. Experimental studies of the propagation of electrostatic ion perturbations by time-resolved laser-induced fluorescence

    International Nuclear Information System (INIS)

    Bachet, G.; Skiff, F.; Doveil, F.; Stern, R.A.

    2001-01-01

    Effects induced by the propagation of several kinds of electrostatic perturbation in a low-density collisionless argon plasma are observed with space, time, and velocity-resolved laser-induced fluorescence (LIF). The propagation of strong self-organized ion structures is observed and the associated electric field is determined. Snap shots of the ion phase space with a time resolution of 2 μs can be reconstructed from the experimental data. All the terms of the kinetic equation can also be determined from the data. A one-dimensional (1D) numerical simulation reproduces qualitatively the experimentally observed ion phase space behavior

  10. Time-resolved imaging of flyer dynamics for femtosecond laser-induced backward transfer of solid polymer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Feinaeugle, M., E-mail: m.feinaeugle@utwente.nl [Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Gregorčič, P. [Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000, Ljubljana (Slovenia); Heath, D.J. [Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Mills, B., E-mail: bm602@orc.soton.ac.uk [Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Eason, R.W. [Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ (United Kingdom)

    2017-02-28

    Highlights: • Laser-induced backward transfer was investigated by time-resolved shadowgraphy. • Flyer velocity was a function of carrier, donor thickness, delay and fluence. • We investigated the fluence window for intact transfer and the role of the receiver. • Donor-crater profile variation was studied for different ejection regimes. • Conditions for intact and fragmented flyers were determined. - Abstract: We have studied the transfer regimes and dynamics of polymer flyers from laser-induced backward transfer (LIBT) via time-resolved shadowgraphy. Imaging of the flyer ejection phase of LIBT of 3.8 μm and 6.4 μm thick SU-8 polymer films on germanium and silicon carrier substrates was performed over a time delay range of 1.4–16.4 μs after arrival of the laser pulse. The experiments were carried out with 150 fs, 800 nm pulses spatially shaped using a digital micromirror device, and laser fluences of up to 3.5 J/cm{sup 2} while images were recorded via a CCD camera and a spark discharge lamp. Velocities of flyers found in the range of 6–20 m/s, and the intact and fragmented ejection regimes, were a function of donor thickness, carrier and laser fluence. The crater profile of the donor after transfer and the resulting flyer profile indicated different flyer ejection modes for Si carriers and high fluences. The results contribute to better understanding of the LIBT process, and help to determine experimental parameters for successful LIBT of intact deposits.

  11. Laser-induced incandescence measurements in a fired diesel engine at 3 kHz

    Science.gov (United States)

    Boxx, I. G.; Heinold, O.; Geigle, K. P.

    2015-01-01

    Laser-induced incandescence (LII) was performed at 3 kHz in an optically accessible cylinder of a fired diesel engine using a commercially available diode-pumped solid-state laser and an intensified CMOS camera. The resulting images, acquired every 3° of crank angle, enabled the spatiotemporal tracking of soot structures during the expansion/exhaust stroke of the engine cycle. The image sequences demonstrate that soot tends to form in thin sheets that propagate and interact with the in-cylinder flow. These sheets tend to align parallel to the central axis of the cylinder and are frequently wrapped into conical spirals by aerodynamic swirl. Most of the soot is observed well away from the cylinder walls. Quantitative soot measurements were beyond the scope of this study but the results demonstrate the practical utility of using kHz-rate LII to acquire ensemble-averaged statistical data with high crank angle resolution over a complete engine cycle. Based on semi-quantitative measures of soot distribution, it was possible to identify soot dynamics related to incomplete charge exchange. This study shows that long-duration, multi-kHz acquisition rate LII measurements are viable in a fired diesel engine with currently available laser and camera technology, albeit only in the expansion and exhaust phase of the cycle at present. Furthermore, such measurements yield useful insight into soot dynamics and therefore constitute an important new tool for the development and optimization of diesel engine technology.

  12. Time-resolved investigations of the non-thermal ablation process of graphite induced by femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kalupka, C., E-mail: christian.kalupka@llt.rwth-aachen.de; Finger, J. [Chair for Laser Technology LLT, RWTH Aachen University, Aachen 52074 (Germany); Reininghaus, M. [Chair for Laser Technology LLT, RWTH Aachen University, Aachen 52074 (Germany); Fraunhofer Institute for Laser Technology ILT, Steinbachstraße 15, Aachen 52074 (Germany)

    2016-04-21

    We report on the in-situ analysis of the ablation dynamics of the, so-called, laser induced non-thermal ablation process of graphite. A highly oriented pyrolytic graphite is excited by femtosecond laser pulses with fluences below the classic thermal ablation threshold. The ablation dynamics are investigated by axial pump-probe reflection measurements, transversal pump-probe shadowgraphy, and time-resolved transversal emission photography. The combination of the applied analysis methods allows for a continuous and detailed time-resolved observation of the non-thermal ablation dynamics from several picoseconds up to 180 ns. Formation of large, μm-sized particles takes place within the first 3.5 ns after irradiation. The following propagation of ablation products and the shock wave front are tracked by transversal shadowgraphy up to 16 ns. The comparison of ablation dynamics of different fluences by emission photography reveals thermal ablation products even for non-thermal fluences.

  13. Position- and time-resolved Stark broadening diagnostics of a non-thermal laser-induced plasma

    International Nuclear Information System (INIS)

    Liu, Hao; Truscott, Benjamin S; Ashfold, Michael N R

    2016-01-01

    We present an analysis of the Stark-broadened line shapes of silicon ions in a laser-induced plasma using a model constructed, without assuming local thermodynamic equilibrium (LTE), using a Druyvesteyn electron energy distribution function (EEDF). The method is applied to temporally and spatially resolved measurements of Si 2+ and Si 3+ emissions from a transient plasma expanding into vacuum, produced by 1064 nm, nanosecond pulsed laser ablation of a Si (1 0 0) target. The best-fitting simulated line shapes and the corresponding electron number densities and temperatures (or equivalently, Druyvesteyn average energies) are compared with those returned assuming LTE (i.e. for a Maxwellian EEDF). Non-thermal behavior is found to dominate at all but the very earliest stages of expansion close to the target surface, consistent with McWhirter’s criterion for the establishment of LTE. The Druyvesteyn EEDF always yields an equivalent or better model of the experimental measurements, and the observed increasingly strong departure from the Maxwellian case with time and distance from the ablation event highlights the essential invalidity of the LTE assumption for moderate-power, nanosecond laser-induced plasma expanding in vacuo. (paper)

  14. Pump laser-induced space-charge effects in HHG-driven time- and angle-resolved photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oloff, L.-P., E-mail: oloff@physik.uni-kiel.de; Hanff, K.; Stange, A.; Rohde, G.; Diekmann, F.; Bauer, M.; Rossnagel, K., E-mail: rossnagel@physik.uni-kiel.de [Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel (Germany)

    2016-06-14

    With the advent of ultrashort-pulsed extreme ultraviolet sources, such as free-electron lasers or high-harmonic-generation (HHG) sources, a new research field for photoelectron spectroscopy has opened up in terms of femtosecond time-resolved pump-probe experiments. The impact of the high peak brilliance of these novel sources on photoemission spectra, so-called vacuum space-charge effects caused by the Coulomb interaction among the photoemitted probe electrons, has been studied extensively. However, possible distortions of the energy and momentum distributions of the probe photoelectrons caused by the low photon energy pump pulse due to the nonlinear emission of electrons have not been studied in detail yet. Here, we systematically investigate these pump laser-induced space-charge effects in a HHG-based experiment for the test case of highly oriented pyrolytic graphite. Specifically, we determine how the key parameters of the pump pulse—the excitation density, wavelength, spot size, and emitted electron energy distribution—affect the measured time-dependent energy and momentum distributions of the probe photoelectrons. The results are well reproduced by a simple mean-field model, which could open a path for the correction of pump laser-induced space-charge effects and thus toward probing ultrafast electron dynamics in strongly excited materials.

  15. Time-Resolved Spectroscopy Diagnostic of Laser-Induced Optical Breakdown

    Directory of Open Access Journals (Sweden)

    Christian G. Parigger

    2010-01-01

    Full Text Available Transient laser plasma is generated in laser-induced optical breakdown (LIOB. Here we report experiments conducted with 10.6-micron CO2 laser radiation, and with 1.064-micron fundamental, 0.532-micron frequency-doubled, 0.355-micron frequency-tripled Nd:YAG laser radiation. Characterization of laser induced plasma utilizes laser-induced breakdown spectroscopy (LIBS techniques. Atomic hydrogen Balmer series emissions show electron number density of 1017 cm−3 measured approximately 10 μs and 1 μs after optical breakdown for CO2 and Nd:YAG laser radiation, respectively. Recorded molecular recombination emission spectra of CN and C2 Swan bands indicate an equilibrium temperature in excess of 7000 Kelvin, inferred for these diatomic molecules. Reported are also graphite ablation experiments where we use unfocused laser radiation that is favorable for observation of neutral C3 emission due to reduced C3 cation formation. Our analysis is based on computation of diatomic molecular spectra that includes accurate determination of rotational line strengths, or Hönl-London factors.

  16. Laser-induced time-resolved spectrofluorometry and thermal lensing: applications in the nuclear industry

    International Nuclear Information System (INIS)

    Decambox, P.; Delorme, N.; Mauchien, P.; Moulin, C.

    1989-01-01

    Sensitive spectroscopic methods for the determination of actinides and lanthanides in various media are required in the nuclear industry. Laser-Induced Time-Resolved Spectrofluorometry (LITRS) for several actinides and lanthanides at very low levels and thermal lensing (TL) for oxidation state characterization allow these determinations. The set-up of LITRS is presented. Spectra, limit of detections and lifetimes obtained for U, Cm, Am, Eu, Gd, Tb, Dy, Ce, Sm, Tm are shown. Detection limit as low as 5.10 -12 M can be achieved. Examples of matrices encountered for the determination of uranium are given as well as comparison with mass spectrometry and alpha counting. The set-up of TL and performances obtained on plutonium as well as future developments are presented

  17. Light scattering and extinction measurements combined with laser-induced incandescence for the real-time determination of soot mass absorption cross section.

    Science.gov (United States)

    Wei, Yiyi; Ma, Lulu; Cao, Tingting; Zhang, Qing; Wu, Jun; Buseck, Peter R; Thompson, J E

    2013-10-01

    An aerosol albedometer was combined with laser-induced incandescence (LII) to achieve simultaneous measurements of aerosol scattering, extinction coefficient, and soot mass concentration. Frequency doubling of a Nd:YAG laser line resulted in a colinear beam of both λ = 532 and 1064 nm. The green beam was used to perform cavity ring-down spectroscopy (CRDS), with simultaneous measurements of scattering coefficient made through use of a reciprocal sphere nephelometer. The 1064 nm beam was selected and directed into a second integrating sphere and used for LII of light-absorbing kerosene lamp soot. Thermal denuder experiments showed the LII signals were not affected by the particle mixing state when laser peak power was 1.5-2.5 MW. The combined measurements of optical properties and soot mass concentration allowed determination of mass absorption cross section (M.A.C., m(2)/g) with 1 min time resolution when soot concentrations were in the low microgram per cubic meter range. Fresh kerosene nanosphere soot (ns-soot) exhibited a mean M.A.C and standard deviation of 9.3 ± 2.7 m(2)/g while limited measurements on dry ambient aerosol yielded an average of 8.2 ± 5.9 m(2)/g when soot was >0.25 μg/m(3). The method also detected increases in M.A.C. values associated with enhanced light absorption when polydisperse, laboratory-generated ns-soot particles were embedded within or coated with ammonium nitrate, ammonium sulfate, and glycerol. Glycerol coatings produced the largest fractional increase in M.A.C. (1.41-fold increase), while solid coatings of ammonium sulfate and ammonium nitrate produced increases of 1.10 and 1.06, respectively. Fresh, ns-soot did not exhibit increased M.A.C. at high relative humidity (RH); however, lab-generated soot coated with ammonium nitrate and held at 85% RH exhibited M.A.C. values nearly double the low-humidity case. The hybrid instrument for simultaneously tracking soot mass concentration and aerosol optical properties in real time is a

  18. Time- and space-resolved spectroscopic characterization of laser-induced swine muscle tissue plasma

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, J.J. [Departamento de Química-Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Diaz, L., E-mail: luis.diaz@csic.es [Instituto de Estructura de la Materia, CFMAC, CSIC, Serrano 121, 28006 Madrid (Spain); Martinez-Ramirez, S. [Instituto de Estructura de la Materia, CFMAC, CSIC, Serrano 121, 28006 Madrid (Spain); Caceres, J.O. [Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense, Cuidad Universitaria, 28040 Madrid (Spain)

    2015-09-01

    The spatial-temporal evolution of muscle tissue sample plasma induced by a high-power transversely excited atmospheric (TEA) CO{sub 2} pulsed laser at vacuum conditions (0.1–0.01 Pa) has been investigated using high-resolution optical emission spectroscopy (OES) and imaging methods. The induced plasma shows mainly electronically excited neutral Na, K, C, Mg, H, Ca, N and O atoms, ionized C{sup +}, C{sup 2+}, C{sup 3+}, Mg{sup +}, Mg{sup 2+}, N{sup +}, N{sup 2+}, Ca{sup +}, O{sup +} and O{sup 2+} species and molecular band systems of CN(B{sup 2}Σ{sup +}–X{sup 2}Σ{sup +}), C{sub 2}(d{sup 3}Π{sub g}–a{sup 3}Π{sub u}), CH(B{sup 2}Σ{sup −}–X{sup 2}Π; A{sup 2}Δ–X{sup 2}Π), NH(A{sup 3}Π–X{sup 3}Σ{sup −}), OH(A{sup 2}Σ{sup +}–X{sup 2} Σ{sup +}), and CaOH(B{sup 2}Σ{sup +}–X{sup 2}Σ{sup +}; A{sup 2}Π–X{sup 2}Σ{sup +}). Time-resolved two-dimensional emission spectroscopy is used to study the expanded distribution of different species ejected during ablation. Spatial and temporal variations of different atoms and ionic excited species are reported. Plasma parameters such as electron density and temperature were measured from the spatio-temporal analysis of different species. Average velocities of some plasma species were estimated. - Highlights: • LIBS of swine muscle tissue sample generated by CO{sub 2} laser pulses has been done for the first time. • Average velocities of some plasma species have been calculated from spatial and temporally resolved 2D OES images. • Electron density (~ 9 × 10{sup 17} cm{sup -3}) has been studied with spatial and temporal resolution. • Temporal evolution of the plasma temperature has been calculated by means of Boltzmann plots.

  19. Optimization of experimental conditions in uranium trace determination using laser time-resolved fluorimetry

    International Nuclear Information System (INIS)

    Baly, L.; Garcia, M.A.

    1996-01-01

    At the present paper a new sample excitation geometry is presented for the uranium trace determination in aqueous solutions by the Time-Resolved Laser-Induced Fluorescence. This new design introduces the laser radiation through the top side of the cell allowing the use of cells with two quartz sides, less expensive than commonly used at this experimental set. Optimization of the excitation conditions, temporal discrimination and spectral selection are presented

  20. Time-resolved protein nano-crystallography using an X-ray free-electron laser

    International Nuclear Information System (INIS)

    Aquila, Andrew; Hunter, Mark S.; Fromme, Petra; Fromme, Raimund; Grotjohann, Ingo; Doak, R. Bruce; Kirian, Richard A.; Schmidt, Kevin E.; Wang, Xiaoyu; Weierstall, Uwe; Spence, John C.H.; White, Thomas A.; Caleman, Carl; DePonte, Daniel P.; Fleckenstein, Holger; Gumprecht, Lars; Liang, Mengning; Martin, Andrew V.; Schulz, Joachim; Stellato, Francesco; Stern, Stephan; Barty, Anton; Andreasson, Jakob; Davidsson, Jan; Hajdu, Janos; Maia, Filipe R.N.C.; Seibert, M. Marvin; Timneanu, Nicusor; Arnlund, David; Johansson, Linda; Malmerberg, Erik; Neutze, Richard; Bajt, Sasa; Barthelmess, Miriam; Graafsma, Heinz; Hirsemann, Helmut; Wunderer, Cornelia; Barends, Thomas R.M.; Foucar, Lutz; Krasniqi, Faton; Lomb, Lukas; Rolles, Daniel; Schlichting, Ilme; Schmidt, Carlo; Bogan, Michael J.; Hampton, Christina Y.; Sierra, Raymond; Starodub, Dmitri; Bostedt, Christoph; Bozek, John D.; Messerschmidt, Marc; Williams, Garth J.; Bottin, Herve

    2012-01-01

    We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photo-activated states of large membrane protein complexes in the form of nano-crystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 μs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems. (authors)

  1. Liquid film characterization in horizontal, annular, two-phase, gas-liquid flow using time-resolved laser-induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Farias, P.S.C.; Martins, F.J.W.A.; Azevedo, L.F.A. [PUC-Rio, Department of Mechanical Engineering, Rio de Janeiro (Brazil); Sampaio, L.E.B. [LMTA/PGMEC, UFF, Department of Mechanical Engineering, Laboratory of Theoretical and Applied Mechanics, Rio de Janeiro (Brazil); Serfaty, R. [Petrobras R and D Center, Rio de Janeiro (Brazil)

    2012-03-15

    A non-intrusive optical technique was developed to provide time-resolved longitudinal and cross-sectional images of the liquid film in horizontal annular pipe flow of air and water, revealing the interfacial wave behavior. Quantitative information on the liquid film dynamics was extracted from the time-resolved images. The planar laser-induced fluorescence technique was utilized to allow for optical separation of the light emitted by the film from that scattered by the air-water interface. The visualization test section was fabricated from a tube presenting nearly the same refractive index as water, which allowed the visualization of the liquid film at regions very close to the pipe wall. Longitudinal images of the liquid film were captured using a high-frame-rate digital video camera synchronized with a high-repetition-rate laser. An image processing algorithm was developed to automatically detect the position of the air-water interface in each image frame. The thickness of the liquid film was measured at two axial stations in each processed image frame, providing time history records of the film thickness at two different positions. Wave frequency information was obtained by analyzing the time-dependent signals of film thickness for each of the two axial positions recorded. Wave velocities were measured by cross-correlating the amplitude signals from the two axial positions. For the film cross-section observations, two high-speed digital video cameras were used in a stereoscopic arrangement. Comparisons with results from different techniques available in literature indicate that the technique developed presents equivalent accuracy in measuring the liquid film properties. Time-resolved images of longitudinal and cross-section views of the film were recorded, which constitute valuable information provided by the technique implemented. (orig.)

  2. Time-resolved explosion of intense-laser-heated clusters.

    Science.gov (United States)

    Kim, K Y; Alexeev, I; Parra, E; Milchberg, H M

    2003-01-17

    We investigate the femtosecond explosive dynamics of intense laser-heated argon clusters by measuring the cluster complex transient polarizability. The time evolution of the polarizability is characteristic of competition in the optical response between supercritical and subcritical density regions of the expanding cluster. The results are consistent with time-resolved Rayleigh scattering measurements, and bear out the predictions of a recent laser-cluster interaction model [H. M. Milchberg, S. J. McNaught, and E. Parra, Phys. Rev. E 64, 056402 (2001)

  3. Time-resolved explosion of intense-laser-heated clusters

    International Nuclear Information System (INIS)

    Kim, K.Y.; Alexeev, I.; Parra, E.; Milchberg, H.M.

    2003-01-01

    We investigate the femtosecond explosive dynamics of intense laser-heated argon clusters by measuring the cluster complex transient polarizability. The time evolution of the polarizability is characteristic of competition in the optical response between supercritical and subcritical density regions of the expanding cluster. The results are consistent with time-resolved Rayleigh scattering measurements, and bear out the predictions of a recent laser-cluster interaction model [H. M. Milchberg, S. J. McNaught, and E. Parra, Phys. Rev. E 64, 056402 (2001)

  4. Laser induced breakdown spectroscopy of the uranium including calcium. Time resolved measurement spectroscopic analysis (Contract research)

    International Nuclear Information System (INIS)

    Akaoka, Katsuaki; Maruyama, Youichiro; Oba, Masaki; Miyabe, Masabumi; Otobe, Haruyoshi; Wakaida, Ikuo

    2010-05-01

    For the remote analysis of low DF TRU (Decontamination Factor Transuranic) fuel, Laser Breakdown Spectroscopy (LIBS) was applied to uranium oxide including a small amount of calcium oxide. The characteristics, such as spectrum intensity and plasma excitation temperature, were measured using time-resolved spectroscopy. As a result, in order to obtain the stable intensity of calcium spectrum for the uranium spectrum, it was found out that the optimum observation delay time of spectrum is 4 microseconds or more after laser irradiation. (author)

  5. Time-resolved photoelectron imaging using a femtosecond UV laser and a VUV free-electron laser

    OpenAIRE

    Liu, S. Y.; Ogi, Yoshihiro; Fuji, Takao; Nishizawa, Kiyoshi; Horio, Takuya; Mizuno, Tomoya; Kohguchi, Hiroshi; Nagasono, Mitsuru; Togashi, Tadashi; Tono, Kensuke; Yabashi, Makina; Senba, Yasunori; Ohashi, Haruhiko; Kimura, Hiroaki; Ishikawa, Tetsuya

    2010-01-01

    A time-resolved photoelectron imaging using a femtosecond ultraviolet (UV) laser and a vacuum UV freeelectron laser is presented. Ultrafast internal conversion and intersystem crossing in pyrazine in a supersonic molecular beam were clearly observed in the time profiles of photoioinzation intensity and time-dependent photoelectron images.

  6. Time-resolved study of absorbing film assisted laser induced forward transfer of Trichoderma longibrachiatum conidia

    Energy Technology Data Exchange (ETDEWEB)

    Hopp, B [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary); Smausz, T [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary); Barna, N [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary); Vass, Cs [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary); Antal, Zs [Hungarian Academy of Sciences and University of Szeged, Microbiological Research Group, PO Box 533, H-6701 Szeged (Hungary); Kredics, L [Hungarian Academy of Sciences and University of Szeged, Microbiological Research Group, PO Box 533, H-6701 Szeged (Hungary); Chrisey, D [Naval Research Laboratory, Washington, DC 20375 (United States)

    2005-03-21

    We have characterized the absorbing film assisted transfer of Trichoderma longibrachiatum conidia using a synchronized laser for illumination. The transfer laser used was a KrF excimer laser ({lambda} = 248 nm, FWHM = 30 ns) and the ejected material was illuminated parallel to the quartz plate by a nitrogen laser pumped Coumarine 153 dye laser beam ({lambda} = 453 nm, FWHM 1 ns) electronically delayed relative to the transfer UV pulse. Our time-resolved investigations determined that the ejection velocity front of the conidia plume from the donor surface during the transfer procedure was 1150 m s{sup -1} at 355 mJ cm{sup -2} applied laser fluence. On the basis of the measured data, the acceleration of the emitted conidia at the plume front was approximately 10{sup 9} x g. The conidia survived the absorbing film assisted forward transfer and associated mechanical shear without significant damages suggesting that the technique might be applicable to other more fragile types of biological objects and applications.

  7. Time-resolved study of absorbing film assisted laser induced forward transfer of Trichoderma longibrachiatum conidia

    International Nuclear Information System (INIS)

    Hopp, B; Smausz, T; Barna, N; Vass, Cs; Antal, Zs; Kredics, L; Chrisey, D

    2005-01-01

    We have characterized the absorbing film assisted transfer of Trichoderma longibrachiatum conidia using a synchronized laser for illumination. The transfer laser used was a KrF excimer laser (λ = 248 nm, FWHM = 30 ns) and the ejected material was illuminated parallel to the quartz plate by a nitrogen laser pumped Coumarine 153 dye laser beam (λ = 453 nm, FWHM 1 ns) electronically delayed relative to the transfer UV pulse. Our time-resolved investigations determined that the ejection velocity front of the conidia plume from the donor surface during the transfer procedure was 1150 m s -1 at 355 mJ cm -2 applied laser fluence. On the basis of the measured data, the acceleration of the emitted conidia at the plume front was approximately 10 9 x g. The conidia survived the absorbing film assisted forward transfer and associated mechanical shear without significant damages suggesting that the technique might be applicable to other more fragile types of biological objects and applications

  8. Time-resolved pulse-counting lock-in detection of laser induced fluorescence in the presence of a strong background emission

    Science.gov (United States)

    Pelissier, B.; Sadeghi, N.

    1996-10-01

    We describe a time-resolved pulse-counting system well adapted for the detection of continuous laser induced fluorescence (LIF) signals in repetitive phenomena, when a strong background emission is present. It consists of 256 channels coupled to a first in first out memory and interfaced to a 486 DX 33 PC, for data storage. It accepts time-averaged count rates up to 450 kcount/s. Time between channels can be set from 12.5 ns to several μs and the dead time between two consecutive cycles of the physical phenomena is less than 20 ns. In phase with a chopper, which modulates the laser beam, it adds the observed photon signal to the channel memories when the beam is on and substracts it when the beam is stopped, acting like a lock-in amplifier which detect only the modulated part of the signal. The minimum detectivity on the LIF signal is only limited by the shot noise of the plasma induced emission signal. As an application, we studied the time variation of the Ar+*(2G9/2) metastable ions, detected by LIF, in two types of plasmas. Their radiative lifetime and collisional quenching frequencies were deduced from their decay rate in the afterglow of a pulsed Helicon reactor. We also observed the evolution of their density in a 455 kHz capacitively coupled argon discharge.

  9. Time-resolved and doppler-reduced laser spectroscopy on atoms

    International Nuclear Information System (INIS)

    Bergstroem, H.

    1991-10-01

    Radiative lifetimes have been studied in neutral boron, carbon, silicon and strontium, in singly ionized gadolinium and tantalum and in molecular carbon monoxide and C 2 . The time-resolved techniques were based either on pulsed lasers or pulse-modulated CW lasers. Several techniques have been utilized for the production of free atoms and ions such as evaporation into an atomic beam, sputtering in hollow cathodes and laser-produced plasmas. Hyperfine interactions in boron, copper and strontium have been examined using quantum beat spectroscopy, saturation spectroscopy and collimated atomic beam spectroscopy. Measurement techniques based on effusive hollow cathodes as well as laser produced plasmas in atomic physics have been developed. Investigations on laser produced plasmas using two colour beam deflection tomography for determination of electron densities have been performed. Finally, new possibilities for view-time-expansion in light-in-flight holography using mode-locked CW lasers have been demonstrated. (au)

  10. Time-resolved x-ray line diagnostics of laser-produced plasmas

    International Nuclear Information System (INIS)

    Kauffman, R.L.; Matthews, D.L.; Kilkenny, J.D.; Lee, R.W.

    1982-11-01

    We have examined the underdense plasma conditions of laser irradiated disks using K x-rays from highly ionized ions. A 900 ps laser pulse of 0.532 μm light is used to irradiate various Z disks which have been doped with low concentrations of tracer materials. The tracers, whose Z's range from 13 to 22, are chosen so that their K x-ray spectrum is sensitive to typical underdense plasma temperatures and densities. Spectra are measured using a time-resolved crystal spectrograph recording the time history of the x-ray spectrum. A spatially-resolved, time-integrated crystal spectrograph also monitors the x-ray lines. Large differences in Al spectra are observed when the host plasms is changed from SiO 2 to PbO or In. Spectra will be presented along with preliminary analysis of the data

  11. Time-resolved x-ray line diagnostics of laser-produced plasmas

    International Nuclear Information System (INIS)

    Kauffman, R.L.; Matthews, D.L.; Kilkenny, J.D.; Lee, R.W.

    1982-01-01

    We have examined the underdense plasma conditions of laser irradiated disks using K x-rays from highly ionized ions. A 900 ps laser pulse of 0.532 μm light is used to irradiate various Z disks which have been doped with low concentrations of tracer materials. The tracers whose Z's range from 13 to 22 are chosen so that their K x-ray spectrum is sensitive to typical underdense plasma temperatures and densities. Spectra are measured using a time-resolved crystal spectrograph recording the time history of the x-ray spectrum. A spatially-resolved, time-integrated crystal spectrograph also monitors the x-ray lines. Large differences in Al spectra are observed when the host plasma is changed from SiO 2 to PbO or In. Spectra will be presented along with preliminary analysis of the data

  12. Time-resolved pulse-counting lock-in detection of laser induced fluorescence in the presence of a strong background emission

    International Nuclear Information System (INIS)

    Pelissier, B.; Sadeghi, N.

    1996-01-01

    We describe a time-resolved pulse-counting system well adapted for the detection of continuous laser induced fluorescence (LIF) signals in repetitive phenomena, when a strong background emission is present. It consists of 256 channels coupled to a first in first out memory and interfaced to a 486 DX 33 PC, for data storage. It accepts time-averaged count rates up to 450 kcount/s. Time between channels can be set from 12.5 ns to several μs and the dead time between two consecutive cycles of the physical phenomena is less than 20 ns. In phase with a chopper, which modulates the laser beam, it adds the observed photon signal to the channel memories when the beam is on and substracts it when the beam is stopped, acting like a lock-in amplifier which detect only the modulated part of the signal. The minimum detectivity on the LIF signal is only limited by the shot noise of the plasma induced emission signal. As an application, we studied the time variation of the Ar + *( 2 G 9/2 ) metastable ions, detected by LIF, in two types of plasmas. Their radiative lifetime and collisional quenching frequencies were deduced from their decay rate in the afterglow of a pulsed Helicon reactor. We also observed the evolution of their density in a 455 kHz capacitively coupled argon discharge. copyright 1996 American Institute of Physics

  13. Time-resolved measurements of laser-induced diffusion of CO molecules on stepped Pt(111)-surfaces; Zeitaufgeloeste Untersuchung der laser-induzierten Diffusion von CO-Molekuelen auf gestuften Pt(111)-Oberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Lawrenz, M.

    2007-10-30

    In the present work the dynamics of CO-molecules on a stepped Pt(111)-surface induced by fs-laser pulses at low temperatures was studied by using laser spectroscopy. In the first part of the work, the laser-induced diffusion for the CO/Pt(111)-system could be demonstrated and modelled successfully for step diffusion. At first, the diffusion of CO-molecules from the step sites to the terrace sites on the surface was traced. The experimentally discovered energy transfer time of 500 fs for this process confirms the assumption of an electronically induced process. In the following it was explained how the experimental results were modelled. A friction coefficient which depends on the electron temperature yields a consistent model, whereas for the understanding of the fluence dependence and time-resolved measurements parallel the same set of parameters was used. Furthermore, the analysis was extended to the CO-terrace diffusion. Small coverages of CO were adsorbed to the terraces and the diffusion was detected as the temporal evolution of the occupation of the step sites acting as traps for the diffusing molecules. The additional performed two-pulse correlation measurements also indicate an electronically induced process. At the substrate temperature of 40 K the cross-correlation - where an energy transfer time of 1.8 ps was extracted - suggests also an electronically induced energy transfer mechanism. Diffusion experiments were performed for different substrate temperatures. (orig.)

  14. Time-resolved measurements with intense ultrashort laser pulses: a 'molecular movie' in real time

    International Nuclear Information System (INIS)

    Rudenko, A; Ergler, Th; Feuerstein, B; Zrost, K; Schroeter, C D; Moshammer, R; Ullrich, J

    2007-01-01

    We report on the high-resolution multidimensional real-time mapping of H 2 + and D 2 + nuclear wave packets performed employing time-resolved three-dimensional Coulomb explosion imaging with intense laser pulses. Exploiting a combination of a 'reaction microscope' spectrometer and a pump-probe setup with two intense 6-7 fs laser pulses, we simultaneously visualize both vibrational and rotational motion of the molecule, and obtain a sequence of snapshots of the squared ro-vibrational wave function with time-step resolution of ∼ 0.3 fs, allowing us to reconstruct a real-time movie of the ultrafast molecular motion. We observe fast dephasing, or 'collapse' of the vibrational wave packet and its subsequent revival, as well as signatures of rotational excitation. For D 2 + we resolve also the fractional revivals resulting from the interference between the counter-propagating parts of the wave packet

  15. Time evolution of laser-induced breakdown spectrometry of lead

    International Nuclear Information System (INIS)

    Li Zhongwen; Zhang Jianhui

    2011-01-01

    The plasma have been generated by a pulsed Nd: YAG laser at the fundamental wavelength of 1.06 μm ablating a metal lead target in air at atmospheric pressure, and the time resolved emission spectra were gotten. Time evolution of electron temperatures were measured according to the wavelength and relative intensity of spectra; then the electron densities were obtained from the Stark broadening of Pb-line; the time evolution of electron temperatures and electron densities along the direction plumbing the target surface were imaged. The analysis of results showed that electron temperature averaged to 14500 K, electron densities up to 10 17 cm -3 . The characteristics of time evolution of electron temperature and electron density were qualitatively explained from the aspect of generation mechanism of laser-induced plasmas. (authors)

  16. Time-resolved pump-probe experiments at the LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Glownia, James; /SLAC /Stanford U., Appl. Phys. Dept.; Cryan, J.; /SLAC /Stanford U., Phys. Dept.; Andreasson, J.; /Uppsala U.; Belkacem, A.; /LBNL, Berkeley; Berrah, N.; /Western Michigan U.; Blaga, C.L.; /Ohio State U.; Bostedt, C.; Bozek, J.; /SLAC; DiMauro, L.F.; /Ohio State U.; Fang, L.; /Western Michigan U.; Frisch, J.; /SLAC; Gessner, O.; /LBNL; Guhr, M.; /SLAC; Hajdu, J.; /Uppsala U.; Hertlein, M.P.; /LBNL; Hoener, M.; /Western Michigan U. /LBNL; Huang, G.; Kornilov, O.; /LBNL; Marangos, J.P.; /Imperial Coll., London; March, A.M.; /Argonne; McFarland, B.K.; /SLAC /Stanford U., Phys. Dept. /SLAC /IRAMIS, Saclay /Stanford U., Phys. Dept. /Georgia Tech /Argonne /Kansas State U. /SLAC /Stanford U., Phys. Dept. /SLAC /Stanford U., Appl. Phys. Dept. /Stanford U., Appl. Phys. Dept. /SLAC /LBNL /Argonne /SLAC /SLAC /Stanford U., Appl. Phys. Dept. /Stanford U., Phys. Dept.

    2011-08-12

    The first time-resolved x-ray/optical pump-probe experiments at the SLAC Linac Coherent Light Source (LCLS) used a combination of feedback methods and post-analysis binning techniques to synchronize an ultrafast optical laser to the linac-based x-ray laser. Transient molecular nitrogen alignment revival features were resolved in time-dependent x-ray-induced fragmentation spectra. These alignment features were used to find the temporal overlap of the pump and probe pulses. The strong-field dissociation of x-ray generated quasi-bound molecular dications was used to establish the residual timing jitter. This analysis shows that the relative arrival time of the Ti:Sapphire laser and the x-ray pulses had a distribution with a standard deviation of approximately 120 fs. The largest contribution to the jitter noise spectrum was the locking of the laser oscillator to the reference RF of the accelerator, which suggests that simple technical improvements could reduce the jitter to better than 50 fs.

  17. Time resolved optical emission spectroscopy of cross-beam pulsed laser ablation on graphite targets

    International Nuclear Information System (INIS)

    Sangines, R.; Sanchez Ake, C.; Sobral, H.; Villagran-Muniz, M.

    2007-01-01

    Cross-beam pulsed laser ablation with two delayed lasers is performed on two perpendicular graphite targets. The time delay between lasers is varied by up to 5 μs, and physical changes on the second plasma, due to the interaction with the first generated one, are determined by time resolved optical emission spectroscopy

  18. Time-resolved absorption measurements on OMEGA

    International Nuclear Information System (INIS)

    Jaanimagi, P.A.; DaSilva, L.; Delettrez, J.; Gregory, G.G.; Richardson, M.C.

    1986-01-01

    Time-resolved measurements of the incident laser light that is scattered and/or refracted from targets irradiated by the 24 uv-beam OMEGA laser at LLE, have provided some interesting features related to time-resolved absorption. The decrease in laser absorption characteristic of irradiating a target that implodes during the laser pulse has been observed. The increase in absorption expected as the critical density surface moves from a low to a high Z material in the target has also been noted. The detailed interpretation of these results is made through comparisons with simulation using the code LILAC, as well as with streak data from time-resolved x-ray imaging and spectroscopy. In addition, time and space-resolved imaging of the scattered light yields information on laser irradiation uniformity conditions on the target. The report consists of viewgraphs

  19. On the use of time-resolved laser-induced fluorescence (TRLIF) and electrospray mass spectrometry (ES-MS) for speciation studies

    International Nuclear Information System (INIS)

    Moulin, C.

    2003-01-01

    Time-resolved laser induced fluorescence (TRLIF) and electrospray mass spectrometry (ES-MS) are used for speciation studies. While the former has been used for long time, the latter is rather new in the field of speciation. These two techniques have different advantages such as sensitivity (especially for TRLIF), selectivity and multielement capabilities (in case of ES-MS). Examples obtained from studies carried out within the CEA are presented. Concerning TRLIF, emphasis is put on uranyl ion speciation in nitric acid to phosphoric acid going through hydroxo complexes. Concerning ES-MS, humic substances identification as well as speciation of cesium, zirconium, thorium and uranyl ions in various complexing media are presented. Comparisons of TRLIF and ES-MS results are made in the case of uranyl hydroxo complexes and favourably compared with OECD data. Trends for these two techniques are also discussed. (orig.)

  20. Time-resolved x-ray spectra from laser-generated high-density plasmas

    Science.gov (United States)

    Andiel, U.; Eidmann, Klaus; Witte, Klaus-Juergen

    2001-04-01

    We focused frequency doubled ultra short laser pulses on solid C, F, Na and Al targets, K-shell emission was systematically investigated by time resolved spectroscopy using a sub-ps streak camera. A large number of laser shots can be accumulated when triggering the camera with an Auston switch system at very high temporal precision. The system provides an outstanding time resolution of 1.7ps accumulating thousands of laser shots. The time duration of the He-(alpha) K-shell resonance lines was observed in the range of (2-4)ps and shows a decrease with the atomic number. The experimental results are well reproduced by hydro code simulations post processed with an atomic kinetics code.

  1. Airborne detection of oceanic turbidity cell structure using depth-resolved laser-induced water Raman backscatter

    Science.gov (United States)

    Hoge, F. E.; Swift, R. N.

    1983-01-01

    Airborne laser-induced, depth-resolved water Raman backscatter is useful in the detection and mapping of water optical transmission variations. This test, together with other field experiments, has identified the need for additional field experiments to resolve the degree of the contribution to the depth-resolved, Raman-backscattered signal waveform that is due to (1) sea surface height or elevation probability density; (2) off-nadir laser beam angle relative to the mean sea surface; and (3) the Gelbstoff fluorescence background, and the analytical techniques required to remove it. When converted to along-track profiles, the waveforms obtained reveal cells of a decreased Raman backscatter superimposed on an overall trend of monotonically decreasing water column optical transmission.

  2. Lifetime measurements of odd-parity high-excitation levels of Sn I by time-resolved laser spectroscopy

    International Nuclear Information System (INIS)

    Zhang, Wei; Feng, Yanyan; Xu, Jiaxin; Dai, Zhenwen; Palmeri, Patrick; Quinet, Pascal; Biemont, Emile

    2010-01-01

    Natural radiative lifetimes of 38 odd-parity highly excited levels in neutral tin in the energy range from 43 682.737 to 56 838.68 cm -1 have been measured by a time-resolved laser-induced fluorescence technique in an atomic beam produced by laser ablation on a solid tin sample. All the levels were excited from the metastable 3 P 1, 2 and 1 D 2 levels in the ground configuration. The second and third harmonics of a dye laser were adopted as the tunable exciting source (207-250 nm). The lifetime results obtained in this paper are in the range from 4.6 to 292 ns and will be useful in extending the set of oscillator strengths available in Sn I.

  3. Time Resolved Shadowgraph Images of Silicon during Laser Ablation: Shockwaves and Particle Generation

    International Nuclear Information System (INIS)

    Liu, C Y; Mao, X L; Greif, R; Russo, R E

    2007-01-01

    Time resolved shadowgraph images were recorded of shockwaves and particle ejection from silicon during laser ablation. Particle ejection and expansion were correlated to an internal shockwave resonating between the shockwave front and the target surface. The number of particles ablated increased with laser energy and was related to the crater volume

  4. Time Resolved Shadowgraph Images of Silicon during Laser Ablation:Shockwaves and Particle Generation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.Y.; Mao, X.L.; Greif, R.; Russo, R.E.

    2006-05-06

    Time resolved shadowgraph images were recorded of shockwaves and particle ejection from silicon during laser ablation. Particle ejection and expansion were correlated to an internal shockwave resonating between the shockwave front and the target surface. The number of particles ablated increased with laser energy and was related to the crater volume.

  5. Real-time monitoring of airborne beryllium, at OSHA limit levels, by time-resolved laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Radziemski, L.J.; Loree, T.R.; Cremers, D.A.

    1982-01-01

    Real-time detection of beryllium particulate is being investigated by the new technique of laser-induced breakdown spectroscopy. For beryllium detection we monitor the 313.1-nm feature of once ionized beryllium (Be II). Numerous publications describe the technique, our beryllium results, and other applications. Here we summarize the important points and describe our experiments with beryllium

  6. Spatially resolved analyses of uranium species using a coupled system made up of confocal laser-scanning microscopy (CLSM) and laser induced fluorescence spectroscopy (LIFS)

    International Nuclear Information System (INIS)

    Brockmann, S.; Grossmann, K.; Arnold, T.

    2014-01-01

    The fluorescent properties of uranium when excited by UV light are used increasingly for spectroscope analyses of uranium species within watery samples. Here, alongside the fluorescent properties of the hexavalent oxidation phases, the tetra and pentavalent oxidation phases also play an increasingly important role. The detection of fluorescent emission spectrums on solid and biological samples using (time-resolved) laser induced fluorescence spectroscopy (TRLFS or LIFS respectively) has, however, the disadvantage that no statements regarding the spatial localisation of the uranium can be made. However, particularly in complex, biological samples, such statements on the localisation of the uranium enrichment in the sample are desired, in order to e.g. be able to distinguish between intra and extra-cellular uranium bonds. The fluorescent properties of uranium (VI) compounds and minerals can also be used to detect their localisation within complex samples. So the application of fluorescent microscopic methods represents one possibility to localise and visualise uranium precipitates and enrichments in biological samples, such as biofilms or cells. The confocal laser-scanning microscopy (CLSM) is especially well suited to this purpose. Coupling confocal laser-scanning microscopy (CLSM) with laser induced fluorescence spectroscopy (LIFS) makes it possible to localise and visualise fluorescent signals spatially and three-dimensionally, while at the same time being able to detect spatially resolved, fluorescent-spectroscopic data. This technology is characterised by relatively low detection limits from up to 1.10 -6 M for uranium (VI) compounds within the confocal volume. (orig.)

  7. Lifetime measurements of odd-parity high-excitation levels of Sn I by time-resolved laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Feng, Yanyan; Xu, Jiaxin; Dai, Zhenwen [College of Physics, Jilin University and Key Lab of Coherent Light, Atomic and Molecular Spectroscopy, Ministry of Education, Changchun 130021 (China); Palmeri, Patrick; Quinet, Pascal; Biemont, Emile, E-mail: dai@jlu.edu.c [Astrophysique et Spectroscopie, Universite de Mons-UMONS, B-7000 Mons (Belgium)

    2010-10-28

    Natural radiative lifetimes of 38 odd-parity highly excited levels in neutral tin in the energy range from 43 682.737 to 56 838.68 cm{sup -1} have been measured by a time-resolved laser-induced fluorescence technique in an atomic beam produced by laser ablation on a solid tin sample. All the levels were excited from the metastable {sup 3}P{sub 1,} {sub 2} and {sup 1}D{sub 2} levels in the ground configuration. The second and third harmonics of a dye laser were adopted as the tunable exciting source (207-250 nm). The lifetime results obtained in this paper are in the range from 4.6 to 292 ns and will be useful in extending the set of oscillator strengths available in Sn I.

  8. Time resolved measurement of laser-ablated particles by LAPXAS (Laser Plasma Soft X-ray Absorption Spectroscopy)

    International Nuclear Information System (INIS)

    Miyashita, Atsumi; Yoda, Osamu; Murakami, Kouichi

    1999-01-01

    The time- and spatially-resolved properties of laser ablated carbon, boron and silicon particles were measured by LAPXAS (Laser Plasma Soft X-ray Absorption Spectroscopy). The maximum speed of positively charged ions is higher than those of neutral atoms and negatively charged ions. The spatial distributions of the laser-ablated particles in the localized rare gas environment were measured. In helium gas environment, by the helium cloud generated on the top of ablation plume depressed the ablation plume. There is no formation of silicon clusters till 15 μs after laser ablation in the argon gas environment. (author)

  9. Time-resolved tunable diode laser absorption spectroscopy of pulsed plasma

    Czech Academy of Sciences Publication Activity Database

    Adámek, Petr; Olejníček, Jiří; Čada, Martin; Kment, Š.; Hubička, Zdeněk

    2013-01-01

    Roč. 38, č. 14 (2013), s. 2428-2430 ISSN 0146-9592 R&D Projects: GA MŠk LH12045; GA ČR(CZ) GAP205/11/0386; GA MŠk LD12002; GA MŠk LH12043 Institutional support: RVO:68378271 Keywords : diode laser s * plasma diagnostics * absorption spectroscopy * time resolved Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.179, year: 2013

  10. Subcycle interference dynamics of time-resolved photoelectron holography with midinfrared laser pulses

    International Nuclear Information System (INIS)

    Bian Xuebin; Yuan, Kai-Jun; Bandrauk, Andre D.; Huismans, Y.; Smirnova, O.; Vrakking, M. J. J.

    2011-01-01

    Time-resolved photoelectron holography from atoms using midinfrared laser pulses is investigated by solving the corresponding time-dependent Schroedinger equation (TDSE) and a classical model, respectively. The numerical simulation of the photoelectron angular distribution of Xe irradiated with a low-frequency free-electron laser source agrees well with the experimental results. Different types of subcycle interferometric structures are predicted by the classical model. Furthermore with the TDSE model it is demonstrated that the holographic pattern is sensitive to the shape of the atomic orbitals. This is a step toward imaging by means of photoelectron holography.

  11. Direct on-strip analysis of size- and time-resolved aerosol impactor samples using laser induced fluorescence spectra excited at 263 and 351 nm

    International Nuclear Information System (INIS)

    Wang, Chuji; Pan, Yong-Le; James, Deryck; Wetmore, Alan E.; Redding, Brandon

    2014-01-01

    Highlights: • A dual wavelength UV-LIF spectra-rotating drum impactor (RDI) technique was developed. • The technique was demonstrated by direct on-strip analysis of size- and time-resolved LIF spectra of atmospheric aerosol particles. • More than 2000 LIF spectra of atmospheric aerosol particles collected over three weeks in Djibouti were obtained and assigned to various fluorescence clusters. • The LIF spectra showed size- and time-sensitivity behavior with a time resolution of 3.6 h. - Abstract: We report a novel atmospheric aerosol characterization technique, in which dual wavelength UV laser induced fluorescence (LIF) spectrometry marries an eight-stage rotating drum impactor (RDI), namely UV-LIF-RDI, to achieve size- and time-resolved analysis of aerosol particles on-strip. The UV-LIF-RDI technique measured LIF spectra via direct laser beam illumination onto the particles that were impacted on a RDI strip with a spatial resolution of 1.2 mm, equivalent to an averaged time resolution in the aerosol sampling of 3.6 h. Excited by a 263 nm or 351 nm laser, more than 2000 LIF spectra within a 3-week aerosol collection time period were obtained from the eight individual RDI strips that collected particles in eight different sizes ranging from 0.09 to 10 μm in Djibouti. Based on the known fluorescence database from atmospheric aerosols in the US, the LIF spectra obtained from the Djibouti aerosol samples were found to be dominated by fluorescence clusters 2, 5, and 8 (peaked at 330, 370, and 475 nm) when excited at 263 nm and by fluorescence clusters 1, 2, 5, and 6 (peaked at 390 and 460 nm) when excited at 351 nm. Size- and time-dependent variations of the fluorescence spectra revealed some size and time evolution behavior of organic and biological aerosols from the atmosphere in Djibouti. Moreover, this analytical technique could locate the possible sources and chemical compositions contributing to these fluorescence clusters. Advantages, limitations, and

  12. Direct on-strip analysis of size- and time-resolved aerosol impactor samples using laser induced fluorescence spectra excited at 263 and 351 nm

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chuji [U.S. Army Research Laboratory, Adelphi, MD 20783 (United States); Mississippi State University, Starkville, MS, 39759 (United States); Pan, Yong-Le, E-mail: yongle.pan.civ@mail.mil [U.S. Army Research Laboratory, Adelphi, MD 20783 (United States); James, Deryck; Wetmore, Alan E. [U.S. Army Research Laboratory, Adelphi, MD 20783 (United States); Redding, Brandon [Yale University, New Haven, CT 06510 (United States)

    2014-04-01

    Highlights: • A dual wavelength UV-LIF spectra-rotating drum impactor (RDI) technique was developed. • The technique was demonstrated by direct on-strip analysis of size- and time-resolved LIF spectra of atmospheric aerosol particles. • More than 2000 LIF spectra of atmospheric aerosol particles collected over three weeks in Djibouti were obtained and assigned to various fluorescence clusters. • The LIF spectra showed size- and time-sensitivity behavior with a time resolution of 3.6 h. - Abstract: We report a novel atmospheric aerosol characterization technique, in which dual wavelength UV laser induced fluorescence (LIF) spectrometry marries an eight-stage rotating drum impactor (RDI), namely UV-LIF-RDI, to achieve size- and time-resolved analysis of aerosol particles on-strip. The UV-LIF-RDI technique measured LIF spectra via direct laser beam illumination onto the particles that were impacted on a RDI strip with a spatial resolution of 1.2 mm, equivalent to an averaged time resolution in the aerosol sampling of 3.6 h. Excited by a 263 nm or 351 nm laser, more than 2000 LIF spectra within a 3-week aerosol collection time period were obtained from the eight individual RDI strips that collected particles in eight different sizes ranging from 0.09 to 10 μm in Djibouti. Based on the known fluorescence database from atmospheric aerosols in the US, the LIF spectra obtained from the Djibouti aerosol samples were found to be dominated by fluorescence clusters 2, 5, and 8 (peaked at 330, 370, and 475 nm) when excited at 263 nm and by fluorescence clusters 1, 2, 5, and 6 (peaked at 390 and 460 nm) when excited at 351 nm. Size- and time-dependent variations of the fluorescence spectra revealed some size and time evolution behavior of organic and biological aerosols from the atmosphere in Djibouti. Moreover, this analytical technique could locate the possible sources and chemical compositions contributing to these fluorescence clusters. Advantages, limitations, and

  13. Time resolved laser induced fluorescence on argon intermediate pressure microwave discharges: Measuring the depopulation rates of the 4p and 5p excited levels as induced by electron and atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Palomares, J.M., E-mail: j.m.palomares-linares@tue.nl; Graef, W.A.A.D.; Hübner, S.; Mullen, J.J.A.M. van der, E-mail: jjamvandermullen@gmail.com

    2013-10-01

    The reaction kinetics in the excitation space of Ar is explored by means of Laser Induced Fluorescence (LIF) experiments using the combination of high rep-rate YAG–Dye laser systems with a well defined and easily controllable surfatron induced plasma setup. The high rep-rate favors the photon statistics while the low energy per pulse avoids intrusive plasma laser interactions. An analysis shows that, despite the low energy per pulse, saturation can still be achieved even when the geometrical overlap and spectral overlap are optimal. Out of the various studies that can be performed with this setup we confine the current paper to the study of the direct responses to the laser pump action of three 4p and one 5p levels of the Ar system. By changing the plasma in a controlled way one gets for these levels the rates of electron and atom quenching and therewith the total destruction rates of electron and atom collisions. Comparison with literature shows that the classical hard sphere collision rate derived for hydrogen gives a good description for the observed electron quenching (e-quenching) in Ar whereas for heavy particle quenching (a-quenching) this agreement was only found for the 5p level. An important parameter in the study of electron excitation kinetics is the location of the boundary in the atomic system for which the number of electron collisions per radiative life time equals unity. It is observed that for the Ar system this boundary is positioned lower than what is expected on grounds of H-like formulas. - Highlights: • Time resolved laser induced fluorescence at high repetition rate • Decay times as function of pressure, electron density and temperature • Measurement of total electron atom depopulation rates • Reasonable agreement of electron total rates with hard sphere approximations.

  14. Time-resolved spectroscopy of nonequilibrium ionization in laser-produced plasmas

    International Nuclear Information System (INIS)

    Marjoribanks, R.S.

    1988-01-01

    The highly transient ionization characteristic of laser-produced plasmas at high energy densities has been investigated experimentally, using x-ray spectroscopy with time resolution of less than 20 ps. Spectroscopic diagnostics of plasma density and temperature were used, including line ratios, line profile broadening and continuum emission, to characterize the plasma conditions without relying immediately on ionization modeling. The experimentally measured plasma parameters were used as independent variables, driving an ionization code, as a test of ionization modeling, divorced from hydrodynamic calculations. Several state-of-the-art streak spectrographs, each recording a fiducial of the laser peak along with the time-resolved spectrum, characterized the laser heating of thin signature layers of different atomic numbers imbedded in plastic targets. A novel design of crystal spectrograph, with a conically curved crystal, was developed. Coupled with a streak camera, it provided high resolution (λ/ΔΛ > 1000) and a collection efficiency roughly 20-50 times that of planar crystal spectrographs, affording improved spectra for quantitative reduction and greater sensitivity for the diagnosis of weak emitters. Experimental results were compared to hydrocode and ionization code simulations, with poor agreement. The conclusions question the appropriateness of describing electron velocity distributions by a temperature parameter during the time of laser illumination and emphasis the importance of characterizing the distribution more generally

  15. Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials

    Science.gov (United States)

    Hendricks, F.; Matylitsky, V. V.; Domke, M.; Huber, Heinz P.

    2016-03-01

    Laser processing of optically transparent or semi-transparent, brittle materials is finding wide use in various manufacturing sectors. For example, in consumer electronic devices such as smartphones or tablets, cover glass needs to be cut precisely in various shapes. The unique advantage of material processing with femtosecond lasers is efficient, fast and localized energy deposition in nearly all types of solid materials. When an ultra-short laser pulse is focused inside glass, only the localized region in the neighborhood of the focal volume absorbs laser energy by nonlinear optical absorption. Therefore, the processing volume is strongly defined, while the rest of the target stays unaffected. Thus ultra-short pulse lasers allow cutting of the chemically strengthened glasses such as Corning Gorilla glass without cracking. Non-ablative cutting of transparent, brittle materials, using the newly developed femtosecond process ClearShapeTM from Spectra-Physics, is based on producing a micron-sized material modification track with well-defined geometry inside. The key point for development of the process is to understand the induced modification by a single femtosecond laser shot. In this paper, pump-probe microscopy techniques have been applied to study the defect formation inside of transparent materials, namely soda-lime glass samples, on a time scale between one nanosecond to several tens of microseconds. The observed effects include acoustic wave propagation as well as mechanical stress formation in the bulk of the glass. Besides better understanding of underlying physical mechanisms, our experimental observations have enabled us to find optimal process parameters for the glass cutting application and lead to better quality and speed for the ClearShapeTM process.

  16. Method for spectrochemical analysis using time-resolved laser-induced breakdown. [Patent application

    Energy Technology Data Exchange (ETDEWEB)

    Loree, T.R.; Radziemski, L.J.

    1982-01-26

    A method for real-time elemental analysis using laser-induced breakdown of the material under investigation and spectroscopic analysis of the light emitted from the plasma consequently formed is described. By delaying the observation of the emitted radiation, the unwanted background continuum and line spectra from excited ionic species can be rendered unimportant relative to the excited atomic line spectra, thereby producing sharp, well-defined characteristic identifying atomic spectral features. These features provide the indicia for detailed elemental analyses of substances. The method is quite general in that it applies to gases, surfaces, and particulates entrained in gases. It requires no electrodes and can excite atomic species like fluorine and chlorine which are difficult to observe by more conventional analytical procedures.

  17. Generation of pulsed far-infrared radiation and its application for far-infrared time-resolved spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Yasuhiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1996-07-01

    So-called time-resolved spectroscopy technique has been used from old time as the means for studying the dynamic optical property, light-induced reaction and so on of matters. As an example, there is the method called pump and probe, and here, the wavelength of this probe light is the problem. If the object energy region is limited to about 0.1 eV, fast time-resolved spectroscopy is feasible relatively easily. However, energy region is extended to low energy region, the light source which is available as the pulsed probe light having sufficient intensity is limited. In this paper, the attempt of time-resolved spectroscopy utilizing coherent radiation, which has ended in failure, and the laser pulse-induced far-infrared radiation which can be utilized as new far-infrared probe light are reported. The reason why far-infrared radiation is used is explained. The attempt of time-resolved spectroscopy using NaCl crystals is reported on the equipment, the method of measuring absorption spectra and the results. Laser pulse-induced far-infrared radiation and the method of generating it are described. The multi-channel detector for far-infrared radiation which was made for trial is shown. (K.I.)

  18. Rapid tomographic reconstruction based on machine learning for time-resolved combustion diagnostics

    Science.gov (United States)

    Yu, Tao; Cai, Weiwei; Liu, Yingzheng

    2018-04-01

    Optical tomography has attracted surged research efforts recently due to the progress in both the imaging concepts and the sensor and laser technologies. The high spatial and temporal resolutions achievable by these methods provide unprecedented opportunity for diagnosis of complicated turbulent combustion. However, due to the high data throughput and the inefficiency of the prevailing iterative methods, the tomographic reconstructions which are typically conducted off-line are computationally formidable. In this work, we propose an efficient inversion method based on a machine learning algorithm, which can extract useful information from the previous reconstructions and build efficient neural networks to serve as a surrogate model to rapidly predict the reconstructions. Extreme learning machine is cited here as an example for demonstrative purpose simply due to its ease of implementation, fast learning speed, and good generalization performance. Extensive numerical studies were performed, and the results show that the new method can dramatically reduce the computational time compared with the classical iterative methods. This technique is expected to be an alternative to existing methods when sufficient training data are available. Although this work is discussed under the context of tomographic absorption spectroscopy, we expect it to be useful also to other high speed tomographic modalities such as volumetric laser-induced fluorescence and tomographic laser-induced incandescence which have been demonstrated for combustion diagnostics.

  19. Ionic classification of Xe laser lines: A new approach through time resolved spectroscopy

    International Nuclear Information System (INIS)

    Schinca, D.; Duchowicz, R.; Gallardo, M.

    1992-01-01

    Visible and UV laser emission from a highly ionized pulsed Xe plasma was studied in relation to the ionic assignment of the laser lines. Time-resolved spectroscopy was used to determine the ionic origin of the studied lines. The results are in agreement with an intensity versus pressure analysis performed over the same wavelength range. From the temporal behaviour of the spontaneous emission, a probable classification can be obtained. (author). 7 refs, 7 figs, 1 tab

  20. Time-resolved analysis of nonlinear optical limiting for laser synthesized carbon nanoparticles

    Science.gov (United States)

    Chen, G. X.; Hong, M. H.

    2010-11-01

    Nonlinear optical limiting materials have attracted much research interest in recent years. Carbon nanoparticles suspended in liquids show a strong nonlinear optical limiting function. It is important to investigate the nonlinear optical limiting process of carbon nanoparticles for further improving their nonlinear optical limiting performance. In this study, carbon nanoparticles were prepared by laser ablation of a carbon target in tetrahydrofuran (THF). Optical limiting properties of the samples were studied with 532-nm laser light, which is in the most sensitive wavelength band for human eyes. The shape of the laser pulse plays an important role for initializing the nonlinear optical limiting effect. Time-resolved analysis of laser pulses discovered 3 fluence stages of optical limiting. Theoretical simulation indicates that the optical limiting is initialized by a near-field optical enhancement effect.

  1. Direct observation of ultrafast atomic motion using time-resolved X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Shymanovich, U.

    2007-11-13

    This thesis is dedicated to the study of the atomic motion in laser irradiated solids on a picosecond to subpicosecond time-scale using the time-resolved X-ray diffraction technique. In the second chapter, the laser system, the laser-plasma based X-ray source and the experimental setup for optical pump / X-ray probe measurements were presented. Chapter 3 is devoted to the characterization and comparison of different types of X-ray optics. Chapter 4 presented the time-resolved X-ray diffraction experiments performed for this thesis. The first two sections of this chapter discuss the measurements of initially unexpected strain-induced transient changes of the integrated reflectivity of the X-ray probe beam. The elimination of the strain-induced transient changes of the integrated reflectivity represented an important prerequisite to perform the study of lattice heating in Germanium after femtosecond optical excitation by measuring the transient Debye-Waller effect. The third section describes the investigations of acoustic waves upon ultrafast optical excitation and discusses the two different pressure contributions driving them: the thermal and the electronic ones. (orig.)

  2. Direct observation of ultrafast atomic motion using time-resolved X-ray diffraction

    International Nuclear Information System (INIS)

    Shymanovich, U.

    2007-01-01

    This thesis is dedicated to the study of the atomic motion in laser irradiated solids on a picosecond to subpicosecond time-scale using the time-resolved X-ray diffraction technique. In the second chapter, the laser system, the laser-plasma based X-ray source and the experimental setup for optical pump / X-ray probe measurements were presented. Chapter 3 is devoted to the characterization and comparison of different types of X-ray optics. Chapter 4 presented the time-resolved X-ray diffraction experiments performed for this thesis. The first two sections of this chapter discuss the measurements of initially unexpected strain-induced transient changes of the integrated reflectivity of the X-ray probe beam. The elimination of the strain-induced transient changes of the integrated reflectivity represented an important prerequisite to perform the study of lattice heating in Germanium after femtosecond optical excitation by measuring the transient Debye-Waller effect. The third section describes the investigations of acoustic waves upon ultrafast optical excitation and discusses the two different pressure contributions driving them: the thermal and the electronic ones. (orig.)

  3. Time-resolved imaging of filamentary damage on the exit surface of fused silica induced by 1064 nm nanosecond laser pulse

    International Nuclear Information System (INIS)

    Chao, Shen; Xiang’ai, Cheng; Tian, Jiang; Zhiwu, Zhu; Yifan, Dai

    2015-01-01

    Laser-induced damage on the exit surface of fused silica with a filament was observed. The filament has a central hollow core surrounded by molten materials and no obvious cracks could be observed. The critical intensity for the transition from pure surface damage (SD) to filamentary damage (FD) was measured. Time-resolved shadowgraphic microscopy with nanosecond time resolution was employed to compare the propagation of shock wave and material response in the SD and FD process. The main different features during the material response process include: (i) thermoelastic shock waves launched in FD were multiple and a column envelope was observed in the lateral direction; (ii) more energy is deposited in the bulk for FD resulting to a lower speed of shock wave in air; (iii) the overall time for establishing the main character of the damage site for FD was shorter because of the absence of crack expansion. Self-focusing and temperature-activated optical absorption enhancement of the bulk material are discussed to explain the morphology difference between SD and FD and the evolution of filament length under different incident intensities. (paper)

  4. Simultaneously time- and space-resolved spectroscopic characterization of laser-produced plasmas

    International Nuclear Information System (INIS)

    Charatis, G.; Young, B.K.F.; Busch, G.E.

    1988-01-01

    The CHROMA laser facility at KMS Fusion has been used to irradiate a variety of microdot targets. These include aluminum dots and mixed bromine dots doped with K-shell (magnesium) emitters. Simultaneously time- and space-resolved K-shell and L-shell spectra have been measured and compared to dynamic model predictions. The electron density profiles are measured using holographic interferometry. Temperatures, densities, and ionization distributions are determined using K-shell and L-shell spectral techniques. Time and spatial gradients are resolved simultaneously using three diagnostics: a framing crystal x-ray spectrometer, an x-ray streaked crystal spectrometer with a spatial imaging slit, and a 4-frame holographic interferometer. Significant differences have been found between the interferometric and the model-dependent spectral measurements of plasma density. Predictions by new non-stationary L-shell models currently being developed are also presented. 14 refs., 10 figs

  5. Time-resolved imaging and immobilization study of biomaterials on hydrophobic and superhydrophobic surfaces by means of laser-induced forward transfer

    International Nuclear Information System (INIS)

    Boutopoulos, Christos; Chatzipetrou, Marianneza; Zergioti, Ioanna; Papathanasiou, Athanasios G

    2014-01-01

    In this work, we present the generation of high velocity liquid jets of a photosynthetic biomaterial in buffer solution (i.e. thylakoid membranes) and a test solution, using the laser-induced forward transfer (LIFT) technique. The high impact pressure of the collision of the jets on solid substrates, ranging from 0.045 MPa–35 MPa, resulted in strong physical immobilization of the photosynthetic biomaterial on superhydrophobic (SH) poly(methyl methacrylate) (PMMA) surfaces and hydrophobic gold surfaces. The immobilization efficiency was evaluated by fluorescence microscopy, while time-resolved imaging of the LIFT process was carried out to study the corresponding LIFT dynamics. The results show that this simple, direct and chemical-linkers-free immobilization technique is valuable for several biosensors and microfluidic applications since it can be applied to a variety of hydrophobic and SH substrates, leading to the selective immobilization of the biomaterials, due to the high spatial printing resolution of the LIFT technique. (letter)

  6. Time-resolved output spectrum from a hydrogen fluoride laser using mixtures of SF6 and HI

    International Nuclear Information System (INIS)

    Greiner, N.R.

    1975-01-01

    The time-resolved spectrum from a transverse-discharge hydrogen fluoride (HF) laser using a mixture of SF 6 and HI is reported. Because this spectrum matches that from a high-pressure H 2 -F 2 laser, and because the SF 6 -HI mixture is chemically stable, this laser should be a suitable and convenient source for probing H 2 -F 2 amplifiers

  7. Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics.

    Science.gov (United States)

    Davis, Caitlin M; Reddish, Michael J; Dyer, R Brian

    2017-05-05

    Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of jump induced difference spectrum from 50ns to 0.5ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Laser ablation of an indium target: time-resolved Fourier-transform infrared spectra of In I in the 700–7700 cm−1 range

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Kubelík, Petr; Ferus, Martin; Chernov, Vladislav E.; Zanozina, Ekaterina M.; Juha, Libor

    2014-01-01

    Roč. 29, č. 12 (2014), s. 2275-2283 ISSN 0267-9477 R&D Projects: GA MŠk LD14115; GA MŠk(CZ) LG13029 Institutional support: RVO:61388955 ; RVO:68378271 Keywords : time-resolved fluorescence * Fourier transform infra reds * Laser-induced breakdown spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.466, year: 2014

  9. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer

    Science.gov (United States)

    Gotlieb, K.; Hussain, Z.; Bostwick, A.; Lanzara, A.; Jozwiak, C.

    2013-09-01

    A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-EF spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.

  10. Time-resolved diode laser infrared absorption spectroscopy of the nascent HCl in the infrared laser chemistry of 1,2-dichloro-1,1-difluoroethane

    Science.gov (United States)

    Dietrich, Peter; Quack, Martin; Seyfang, George

    1990-04-01

    The IR multiphoton excitation and the frequency, fluence and intensity dependence of the IR-laser chemical yields of CF 2ClCH 2Cl have been studied in the fluence range of 1 to 10 J cm -2 yielding a steady-state constant k(st)/ I=0.74×10 6 s -1 MW -1 cm 2 which is approximately independent of intensity. Time-resolved IR absorption spectroscopy with diode laser sources has been used to observe the nascent HCl during the first few 100 ns indicating a population inversion between the levels ν=1, J=4 and ν=2, J=5. At low reactant pressures ( p⩽10 Pa) the time-resolved measurement gives a steady-state rate constant consistent with the theoretical result adjusted to the static yield measurements. The capability of state-selective and time-resolved IR spectroscopy is thus demonstrated, giving real-time determinations of rate constants.

  11. Laser-induced shockwave propagation from ablation in a cavity

    International Nuclear Information System (INIS)

    Zeng Xianzhong; Mao Xianglei; Mao, Samuel S.; Wen, S.-B.; Greif, Ralph; Russo, Richard E.

    2006-01-01

    The propagation of laser-induced shockwaves from ablation inside of cavities was determined from time-resolved shadowgraph images. The temperature and electron number density of the laser-induced plasma was determined from spectroscopic measurements. These properties were compared to those for laser ablation on the flat surface under the same energy and background gas condition. A theoretical model was proposed to determine the amount of energy and vaporized mass stored in the vapor plume based on these measurements

  12. Laser-time resolved fluorimetric determination of trace of boron in U3O8

    International Nuclear Information System (INIS)

    Xu Yongyuan; Wang Yulong; Wang Qin

    1988-01-01

    In this work, a laser-time resolved fluorimetric determinatin of trace of boron in U 3 O 8 had been developed. The boron complex with dibenzoyl methane (DBM) in a suitable medium is excited by a small nitrogen laser and emits the delay fluorescence with lifetime of 2 ms which is much longer than that of the fluorescence of uranium. Since the fluorescence of uranium doesn't interfere with determination of boron in the time resolved fluorimetric method boron need not be separated from uranium in advance. Thus the determination is very rapid and simple. The limit of determination is 0.02 ngB/ml. When 10 mgU is taken, 0.01 ppm of boron in uranium can be determined. Several samples of U 3 O 8 with boron content from 0.04 to 0.5 ppm have been determined by using this method. The results of determination have been accordant with other methods

  13. Time resolved study of the emission enhancement mechanisms in orthogonal double-pulse laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sanginés, R., E-mail: roberto.sangines@ccadet.unam.mx; Sobral, H.

    2013-10-01

    The evolution of laser induced ablation plume on aluminum targets has been investigated in orthogonal pre-ablation double pulse scheme at atmospheric pressure from the earliest stages of plasma evolution. Time-resolved emission spectra from neutrals, singly- and doubly-ionized species obtained with the double pulse experiment have been compared with those from the single pulse configuration. Signal-to-noise enhancement reaches values of up to 15 depending on the analyzed species; and the lower the charge state the later its maximum signal-to-noise ratio is reached. Ablation plume dynamics was monitored from 10 ns after the plasma onset via shadowgraphy and fast-photography with narrow interference filters to follow the evolution of individual species. Results show that ionic species from the target are located at the plasma core while nitrogen from the background air is found at the plume peripheral. Initially both configurations exhibit similar ablation plume sizes and their expansions were successfully fitted with the strong explosion model for the first 500 ns. At later times a good agreement was obtained by using the drag model, which predicts that the plume expansion eventually stops due to interaction with the background gas particles. The emission enhancement measured in the double pulse scheme is discussed in terms of the models describing the plume dynamics. - Highlights: • Production of 2 + ions at the earliest stages of plasma evolution • The higher the charge state the inner the location within the ablation plume. • The expansion rate of the second (ablation) plume was measured. • Shock and drag models successfully fit the ablation shock front expansion.

  14. Time-resolved X-ray diffraction studies of laser-induced acoustic wave propagation in bilayer metallic thin crystals

    Energy Technology Data Exchange (ETDEWEB)

    Er, Ali Oguz [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, Kentucky 42101 (United States); Tang, Jau, E-mail: jautang@gate.sinica.edu.tw, E-mail: prentzepis@ece.tamu.edu [Research Center for Applied Sciences Academia Sinica, Taipei, Taiwan (China); Chen, Jie [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Rentzepis, Peter M., E-mail: jautang@gate.sinica.edu.tw, E-mail: prentzepis@ece.tamu.edu [Department of Electrical and Computer Engineering, Texas A and M University, College Station, Texas 77843 (United States)

    2014-09-07

    Phonon propagation across the interface of a Cu/Ag(111) bilayer and transient lattice disorder, induced by a femtosecond 267 nm pulse, in Ag(111) crystal have been measured by means of time resolved X-ray diffraction. A “blast” force due to thermal stress induced by suddenly heated electrons is formed within two picoseconds after excitation and its “blast wave” propagation through the interface and Ag (111) crystal was monitored by the shift and broadening of the rocking curve, I vs. ω, as a function of time after excitation. Lattice disorder, contraction and expansion as well as thermal strain formation and wave propagation have also been measured. The experimental data and mechanism proposed are supported by theoretical simulations.

  15. Imaging femtosecond laser-induced electronic excitation in glass

    International Nuclear Information System (INIS)

    Mao Xianglei; Mao, Samuel S.; Russo, Richard E.

    2003-01-01

    While substantial progress has been achieved in understanding laser ablation on the nanosecond and picosecond time scales, it remains a considerable challenge to elucidate the underlying mechanisms during femtosecond laser material interactions. We present experimental observations of electronic excitation inside a wide band gap glass during single femtosecond laser pulse (100 fs, 800 nm) irradiation. Using a femtosecond time-resolved imaging technique, we measured the evolution of a laser-induced electronic plasma inside the glass and calculated the electron number density to be on the order of 10 19 cm -3

  16. Laser lithotripsy with the Ho:YAG laser: fragmentation process revealed by time-resolved imaging

    Science.gov (United States)

    Schmidlin, Franz R.; Beghuin, Didier; Delacretaz, Guy P.; Venzi, Giordano; Jichlinski, Patrice; Rink, Klaus; Leisinger, Hans-Juerg; Graber, Peter

    1998-07-01

    Improvements of endoscopic techniques have renewed the interest of urologists in laser lithotripsy in recent years. Laser energy can be easily transmitted through flexible fibers thereby enabling different surgical procedures such as cutting, coagulating and lithotripsy. The Ho:YAG laser offers multiple medical applications in Urology, among them stone fragmentation. However, the present knowledge of its fragmentation mechanism is incomplete. The objective was therefore to analyze the fragmentation process and to discuss the clinical implications related to the underlying fragmentation mechanism. The stone fragmentation process during Ho:YAG laser lithotripsy was observed by time resolved flash video imaging. Possible acoustic transient occurrence was simultaneously monitored with a PVDF-needle hydrophone. Fragmentation was performed on artificial and cystine kidney stones in water. We observed that though the fragmentation process is accompanied with the formation of a cavitation bubble, cavitation has only a minimal effect on stone fragmentation. Fragment ejection is mainly due to direct laser stone heating leading to vaporization of organic stone constituents and interstitial water. The minimal effect of the cavitation bubble is confirmed by acoustic transients measurements, which reveal weak pressure transients. Stone fragmentation with the Holmium laser is the result of vaporization of interstitial (stone) water and organic stone constituents. It is not due to the acoustic effects of a cavitation bubble or plasma formation. The fragmentation process is strongly related with heat production thereby harboring the risk of undesired thermal damage. Therefore, a solid comprehension of the fragmentation process is needed when using the different clinically available laser types of lithotripsy.

  17. Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser

    DEFF Research Database (Denmark)

    Arnlund, David; Johansson, Linda C.; Wickstrand, Cecilia

    2014-01-01

    We describe a method to measure ultrafast protein structural changes using time-resolved wide-angle X-ray scattering at an X-ray free-electron laser. We demonstrated this approach using multiphoton excitation of the Blastochloris viridis photosynthetic reaction center, observing an ultrafast glob...

  18. Direct measurements of multi-photon induced nonlinear lattice dynamics in semiconductors via time-resolved x-ray scattering.

    Science.gov (United States)

    Williams, G Jackson; Lee, Sooheyong; Walko, Donald A; Watson, Michael A; Jo, Wonhuyk; Lee, Dong Ryeol; Landahl, Eric C

    2016-12-22

    Nonlinear optical phenomena in semiconductors present several fundamental problems in modern optics that are of great importance for the development of optoelectronic devices. In particular, the details of photo-induced lattice dynamics at early time-scales prior to carrier recombination remain poorly understood. We demonstrate the first integrated measurements of both optical and structural, material-dependent quantities while also inferring the bulk impulsive strain profile by using high spatial-resolution time-resolved x-ray scattering (TRXS) on bulk crystalline gallium arsenide. Our findings reveal distinctive laser-fluence dependent crystal lattice responses, which are not described by previous TRXS experiments or models. The initial linear expansion of the crystal upon laser excitation stagnates at a laser fluence corresponding to the saturation of the free carrier density before resuming expansion in a third regime at higher fluences where two-photon absorption becomes dominant. Our interpretations of the lattice dynamics as nonlinear optical effects are confirmed by numerical simulations and by additional measurements in an n-type semiconductor that allows higher-order nonlinear optical processes to be directly observed as modulations of x-ray diffraction lineshapes.

  19. Portable double-sided pulsed laser heating system for time-resolved geoscience and materials science applications.

    Science.gov (United States)

    Aprilis, G; Strohm, C; Kupenko, I; Linhardt, S; Laskin, A; Vasiukov, D M; Cerantola, V; Koemets, E G; McCammon, C; Kurnosov, A; Chumakov, A I; Rüffer, R; Dubrovinskaia, N; Dubrovinsky, L

    2017-08-01

    A portable double-sided pulsed laser heating system for diamond anvil cells has been developed that is able to stably produce laser pulses as short as a few microseconds with repetition frequencies up to 100 kHz. In situ temperature determination is possible by collecting and fitting the thermal radiation spectrum for a specific wavelength range (particularly, between 650 nm and 850 nm) to the Planck radiation function. Surface temperature information can also be time-resolved by using a gated detector that is synchronized with the laser pulse modulation and space-resolved with the implementation of a multi-point thermal radiation collection technique. The system can be easily coupled with equipment at synchrotron facilities, particularly for nuclear resonance spectroscopy experiments. Examples of applications include investigations of high-pressure high-temperature behavior of iron oxides, both in house and at the European Synchrotron Radiation Facility using the synchrotron Mössbauer source and nuclear inelastic scattering.

  20. Time-resolved studies at PETRA III with a highly repetitive synchronized laser system

    Energy Technology Data Exchange (ETDEWEB)

    Schlie, Mortiz

    2013-09-15

    Atomic and molecular processes can nowadays be directly followed in the time domain. This is a core technique for a better understanding of the involved fundamental physics, thus auguring new applications in the future as well. Usually the so-called pump-probe technique making use of two synchronized ultrashort light pulses is utilized to obtain this time-resolved data. In this work, the development and characterization of a synchronization system enabling such pump-probe studies at the storage ring PETRA III in combination with an external, then synchronized fs-laser system is described. The synchronization is based on an extended PLL approach with three interconnected feedback loops allowing to monitor short-time losses of the lock and thus prevent them. This way, the jitter between the laser PHAROS and the PETRA III reference signal is reduced to {sigma} <5 ps. Thus the system allows to conduct experiments at a repetition rate of 130 kHz with a temporal resolution limited only by the X-ray pulse length. A major emphasis in the fundamental introductory chapters is an intuitive explanation of the basic principles of phase locked loops and the different aspects of phase noise to allow a deeper understanding of the synchronization. Furthermore, first pump-probe experiments conducted at different beamlines at PETRA III are presented, demonstrating the usability of the laser system in a scientific environment as well. In first characterizing experiments the pulse duration of PETRA III X-ray pulses has been measured to be 90 ps FWHM. In particular, there have been time resolved X-ray absorption spectroscopy experiments on Gaq3 and Znq2 conducted at beamline P11. First results show dynamics of the electronic excitation on the timescale of a few hundred pico seconds up to a few nano seconds and provide a basic understanding for further research on those molecules. For Gaq3 this data is analyzed in detail and compared with visible fluorescence measurements suggesting at

  1. Time-resolved studies at PETRA III with a highly repetitive synchronized laser system

    International Nuclear Information System (INIS)

    Schlie, Mortiz

    2013-09-01

    Atomic and molecular processes can nowadays be directly followed in the time domain. This is a core technique for a better understanding of the involved fundamental physics, thus auguring new applications in the future as well. Usually the so-called pump-probe technique making use of two synchronized ultrashort light pulses is utilized to obtain this time-resolved data. In this work, the development and characterization of a synchronization system enabling such pump-probe studies at the storage ring PETRA III in combination with an external, then synchronized fs-laser system is described. The synchronization is based on an extended PLL approach with three interconnected feedback loops allowing to monitor short-time losses of the lock and thus prevent them. This way, the jitter between the laser PHAROS and the PETRA III reference signal is reduced to σ <5 ps. Thus the system allows to conduct experiments at a repetition rate of 130 kHz with a temporal resolution limited only by the X-ray pulse length. A major emphasis in the fundamental introductory chapters is an intuitive explanation of the basic principles of phase locked loops and the different aspects of phase noise to allow a deeper understanding of the synchronization. Furthermore, first pump-probe experiments conducted at different beamlines at PETRA III are presented, demonstrating the usability of the laser system in a scientific environment as well. In first characterizing experiments the pulse duration of PETRA III X-ray pulses has been measured to be 90 ps FWHM. In particular, there have been time resolved X-ray absorption spectroscopy experiments on Gaq3 and Znq2 conducted at beamline P11. First results show dynamics of the electronic excitation on the timescale of a few hundred pico seconds up to a few nano seconds and provide a basic understanding for further research on those molecules. For Gaq3 this data is analyzed in detail and compared with visible fluorescence measurements suggesting at least

  2. Time-resolved soft x-ray spectra from laser-produced Cu plasma

    International Nuclear Information System (INIS)

    Cone, K.V.; Dunn, J.; Baldis, H.A.; May, M.J.; Purvis, M.A.; Scott, H.A.; Schneider, M.B.

    2012-01-01

    The volumetric heating of a thin copper target has been studied with time resolved x-ray spectroscopy. The copper target was heated from a plasma produced using the Lawrence Livermore National Laboratory's Compact Multipulse Terrawatt (COMET) laser. A variable spaced grating spectrometer coupled to an x-ray streak camera measured soft x-ray emission (800-1550 eV) from the back of the copper target to characterize the bulk heating of the target. Radiation hydrodynamic simulations were modeled in 2-dimensions using the HYDRA code. The target conditions calculated by HYDRA were post-processed with the atomic kinetics code CRETIN to generate synthetic emission spectra. A comparison between the experimental and simulated spectra indicates the presence of specific ionization states of copper and the corresponding electron temperatures and ion densities throughout the laser-heated copper target.

  3. Multilinear analysis of Time-Resolved Laser-Induced Fluorescence Spectra of U(VI containing natural water samples

    Directory of Open Access Journals (Sweden)

    Višňák Jakub

    2017-01-01

    Full Text Available Natural waters’ uranium level monitoring is of great importance for health and environmental protection. One possible detection method is the Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS, which offers the possibility to distinguish different uranium species. The analytical identification of aqueous uranium species in natural water samples is of distinct importance since individual species differ significantly in sorption properties and mobility in the environment. Samples originate from former uranium mine sites and have been provided by Wismut GmbH, Germany. They have been characterized by total elemental concentrations and TRLFS spectra. Uranium in the samples is supposed to be in form of uranyl(VI complexes mostly with carbonate (CO32− and bicarbonate (HCO3− and to lesser extend with sulphate (SO42− , arsenate (AsO43− , hydroxo (OH− , nitrate (NO3− and other ligands. Presence of alkaline earth metal dications (M = Ca2+ , Mg2+ , Sr2+ will cause most of uranyl to prefer ternary complex species, e.g. Mn(UO2(CO332n-4 (n ∊ {1; 2}. From species quenching the luminescence, Cl− and Fe2+ should be mentioned. Measurement has been done under cryogenic conditions to increase the luminescence signal. Data analysis has been based on Singular Value Decomposition and monoexponential fit of corresponding loadings (for separate TRLFS spectra, the “Factor analysis of Time Series” (FATS method and Parallel Factor Analysis (PARAFAC, all data analysed simultaneously. From individual component spectra, excitation energies T00, uranyl symmetric mode vibrational frequencies ωgs and excitation driven U-Oyl bond elongation ΔR have been determined and compared with quasirelativistic (TDDFT/B3LYP theoretical predictions to cross -check experimental data interpretation.

  4. Multilinear analysis of Time-Resolved Laser-Induced Fluorescence Spectra of U(VI) containing natural water samples

    Science.gov (United States)

    Višňák, Jakub; Steudtner, Robin; Kassahun, Andrea; Hoth, Nils

    2017-09-01

    Natural waters' uranium level monitoring is of great importance for health and environmental protection. One possible detection method is the Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS), which offers the possibility to distinguish different uranium species. The analytical identification of aqueous uranium species in natural water samples is of distinct importance since individual species differ significantly in sorption properties and mobility in the environment. Samples originate from former uranium mine sites and have been provided by Wismut GmbH, Germany. They have been characterized by total elemental concentrations and TRLFS spectra. Uranium in the samples is supposed to be in form of uranyl(VI) complexes mostly with carbonate (CO32- ) and bicarbonate (HCO3- ) and to lesser extend with sulphate (SO42- ), arsenate (AsO43- ), hydroxo (OH- ), nitrate (NO3- ) and other ligands. Presence of alkaline earth metal dications (M = Ca2+ , Mg2+ , Sr2+ ) will cause most of uranyl to prefer ternary complex species, e.g. Mn(UO2)(CO3)32n-4 (n ɛ {1; 2}). From species quenching the luminescence, Cl- and Fe2+ should be mentioned. Measurement has been done under cryogenic conditions to increase the luminescence signal. Data analysis has been based on Singular Value Decomposition and monoexponential fit of corresponding loadings (for separate TRLFS spectra, the "Factor analysis of Time Series" (FATS) method) and Parallel Factor Analysis (PARAFAC, all data analysed simultaneously). From individual component spectra, excitation energies T00, uranyl symmetric mode vibrational frequencies ωgs and excitation driven U-Oyl bond elongation ΔR have been determined and compared with quasirelativistic (TD)DFT/B3LYP theoretical predictions to cross -check experimental data interpretation. Note to the reader: Several errors have been produced in the initial version of this article. This new version published on 23 October 2017 contains all the corrections.

  5. Spatially resolved analyses of uranium species using a coupled system made up of confocal laser-scanning microscopy (CLSM) and laser induced fluorescence spectroscopy (LIFS); Ortsaufgeloeste Analyse von Uranspezies mittels einem Gekoppelten System aus Konfokaler Laser-Scanning Mikroskopie (CLSM) und Laser Induzierter Fluoreszenzspektroskopie (LIFS)

    Energy Technology Data Exchange (ETDEWEB)

    Brockmann, S. [Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), Dresden (Germany); Grossmann, K.; Arnold, T. [Helmholtz-Zentrum Dresden-Rossendorf e.V. (Germany). Inst. fuer Ressourcenoekologie

    2014-01-15

    The fluorescent properties of uranium when excited by UV light are used increasingly for spectroscope analyses of uranium species within watery samples. Here, alongside the fluorescent properties of the hexavalent oxidation phases, the tetra and pentavalent oxidation phases also play an increasingly important role. The detection of fluorescent emission spectrums on solid and biological samples using (time-resolved) laser induced fluorescence spectroscopy (TRLFS or LIFS respectively) has, however, the disadvantage that no statements regarding the spatial localisation of the uranium can be made. However, particularly in complex, biological samples, such statements on the localisation of the uranium enrichment in the sample are desired, in order to e.g. be able to distinguish between intra and extra-cellular uranium bonds. The fluorescent properties of uranium (VI) compounds and minerals can also be used to detect their localisation within complex samples. So the application of fluorescent microscopic methods represents one possibility to localise and visualise uranium precipitates and enrichments in biological samples, such as biofilms or cells. The confocal laser-scanning microscopy (CLSM) is especially well suited to this purpose. Coupling confocal laser-scanning microscopy (CLSM) with laser induced fluorescence spectroscopy (LIFS) makes it possible to localise and visualise fluorescent signals spatially and three-dimensionally, while at the same time being able to detect spatially resolved, fluorescent-spectroscopic data. This technology is characterised by relatively low detection limits from up to 1.10{sup -6} M for uranium (VI) compounds within the confocal volume. (orig.)

  6. Reduction of Guanosyl Radical by Cysteine and Cysteine-Glycine Studied by Time-Resolved CIDNP

    NARCIS (Netherlands)

    Morozova, O.B.; Kaptein, R.; Yurkovskaya, A.V.

    2012-01-01

    As a model for chemical DNA repair, reduction of guanosyl radicals in the reaction with cysteine or the dipeptide cysteine-glycine has been studied by time-resolved chemically induced dynamic nuclear polarization (CIDNP). Radicals were generated photochemically by pulsed laser irradiation of a

  7. On particulate characterization in a heavy-duty diesel engine by time-resolved laser-induced incandescence

    NARCIS (Netherlands)

    Bougie, H.J.T.

    2007-01-01

    This dissertation describes the results of soot measurements acquired in the combustion chamber of an optically accessible heavy-duty Diesel engine. The Diesel engine is the most efficient internal combustion engine. Pollutant emissions from the engine, such as soot and NOx, however, form a

  8. A comparative study of the laser induce breakdown spectroscopy in single- and double-pulse laser geometry

    International Nuclear Information System (INIS)

    Sun Duixiong; Su Maogen; Dong Chenzhong; Wen Guanhong; Cao Xiangnian

    2013-01-01

    A time resolved laser induced breakdown spectroscopy technique (LIBS) was used for the investigation of emission signal enhancement on double-pulse LIBS. Two Q-switched Nd:YAG lasers at 1064 nm wavelength have been employed to generate laser-induced plasma on aluminium-based alloys. The plasma emission signals were recorded by spectrometer with ICCD detector. Spectral response calibration was performed by using deuterium and tungsten halogen lamps. Time evolution of the plasma temperature and electron density was investigated in SP and DP experiments. Based on the investigation of plasma parameters, the enhancements of emission line intensities were investigated, and the mechanisms of it were discussed. (author)

  9. Time-resolved fuel injector flow characterisation based on 3D laser Doppler vibrometry

    OpenAIRE

    Crua, Cyril; Heikal, Morgan R.

    2015-01-01

    In order to enable investigations of the fuel flow inside unmodified injectors, we have developed a new experimental approach to measure time-resolved vibration spectra of diesel nozzles using a three dimensional laser vibrometer. The technique we propose is based on the triangulation of the vibrometer and fuel pressure transducer signals, and enables the quantitative characterisation of quasi-cyclic internal flows without requiring modifications to the injector, the working fluid, or limitin...

  10. Time-resolved angular distributions of plume ions from silver at low and medium laser fluence

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Schou, Jørgen

    Even at moderate fluence (0.6 -2.4 J/cm2) laser impact on metals in the UV regime results in a significant number of ions emitted from the surface. The ablated particles are largely neutrals at the lowest fluence, but the fraction of ions increases strongly with fluence. We have irradiated silver...... in a vacuum chamber (~ 10-7 mbar) with a Nd:YAG laser at a wavelength of 355 nm and made detailed measurements of the time-resolved angular distribution. The ion flow in different directions has been measured with a hemispherical array of Langmuir probes, by which the time-of-flight spectra, as well...

  11. Noninvasive detection of inhomogeneities in turbid media with time-resolved log-slope analysis

    International Nuclear Information System (INIS)

    Wan, S.K.; Guo Zhixiong; Kumar, Sunil; Aber, Janice; Garetz, B.A.

    2004-01-01

    Detecting foreign objects embedded in turbid media using noninvasive optical tomography techniques is of great importance in many practical applications, such as in biomedical imaging and diagnosis, safety inspection on aircrafts and submarines, and LIDAR techniques. In this paper we develop a novel optical tomography approach based on slope analysis of time-resolved back-scattered signals collected at the medium boundaries where the light source is an ultrafast, short-pulse laser. As the optical field induced by the laser-pulse propagates, the detected temporal signals are influenced by the optical properties of the medium traversed. The detected temporal signatures therefore contain information that can indicate the presence of an inhomogeneity as well as its size and location relative to the laser source and detection systems. The log-slope analysis of the time-resolved back-scattered intensity is shown to be an effective method for extracting the information contained in the signal. The technique is validated by experimental results and by Monte Carlo simulations

  12. Frame-Transfer Gating Raman Spectroscopy for Time-Resolved Multiscalar Combustion Diagnostics

    Science.gov (United States)

    Nguyen, Quang-Viet; Fischer, David G.; Kojima, Jun

    2011-01-01

    Accurate experimental measurement of spatially and temporally resolved variations in chemical composition (species concentrations) and temperature in turbulent flames is vital for characterizing the complex phenomena occurring in most practical combustion systems. These diagnostic measurements are called multiscalar because they are capable of acquiring multiple scalar quantities simultaneously. Multiscalar diagnostics also play a critical role in the area of computational code validation. In order to improve the design of combustion devices, computational codes for modeling turbulent combustion are often used to speed up and optimize the development process. The experimental validation of these codes is a critical step in accepting their predictions for engine performance in the absence of cost-prohibitive testing. One of the most critical aspects of setting up a time-resolved stimulated Raman scattering (SRS) diagnostic system is the temporal optical gating scheme. A short optical gate is necessary in order for weak SRS signals to be detected with a good signal- to-noise ratio (SNR) in the presence of strong background optical emissions. This time-synchronized optical gating is a classical problem even to other spectroscopic techniques such as laser-induced fluorescence (LIF) or laser-induced breakdown spectroscopy (LIBS). Traditionally, experimenters have had basically two options for gating: (1) an electronic means of gating using an image intensifier before the charge-coupled-device (CCD), or (2) a mechanical optical shutter (a rotary chopper/mechanical shutter combination). A new diagnostic technology has been developed at the NASA Glenn Research Center that utilizes a frame-transfer CCD sensor, in conjunction with a pulsed laser and multiplex optical fiber collection, to realize time-resolved Raman spectroscopy of turbulent flames that is free from optical background noise (interference). The technology permits not only shorter temporal optical gating (down

  13. Time-resolved laser-excited Shpol'skii spectrometry with a fiber-optic probe and ICCD camera

    International Nuclear Information System (INIS)

    Bystol, Adam J.; Campiglia, Andres D.; Gillispie, Gregory D.

    2000-01-01

    Improved methodology for chemical analysis via laser-excited Shpol'skii spectrometry is reported. The complications of traditional methodology for measurements at liquid nitrogen temperature are avoided by freezing the distal end of a bifurcated fiber-optic probe directly into the sample matrix. Emission wavelength-time matrices were rapidly collected by automatically incrementing the gate delay of an intensified charge-coupled device (ICCD) camera relative to the laser excitation pulse. The excitation source is a compact frequency-doubled tunable dye laser whose bandwidth (<0.03 nm) is well matched for Shpol'skii spectroscopy. Data reproducibility for quantitative analysis purposes and analytical figures of merit are demonstrated for several polycyclic aromatic hydrocarbons at 77 K. Although not attempted in this study, time-resolved excitation-emission matrices could easily be collected with this instrumental system. (c) 2000 Society for Applied Spectroscopy

  14. Time-resolved studies of particle effects in laser ablation inductively coupled plasma-mass spectrometry. Part 2: Investigation of MO+ ions, effect of sample morphology, transport gas, and binding agents

    International Nuclear Information System (INIS)

    Perdian, D.; Bajic, S.; Baldwin, D.; Houk, R.

    2007-01-01

    Time resolved signals in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are studied to determine the influence of experimental parameters on ICP-induced fractionation effects. Differences in sample composition and morphology, i.e., ablating brass, glass, or dust pellets, have a profound effect on the time resolved signal. Helium transport gas significantly decreases large positive signal spikes arising from large particles in the ICP. A binder for pellets also reduces the abundance and amplitude of spikes in the signal. MO + ions also yield signal spikes, but these MO + spikes generally occur at different times from their atomic ion counterparts.

  15. NO kinetics in pulsed low-pressure nitrogen plasmas studied by time resolved quantum cascade laser absorption spectroscopy

    NARCIS (Netherlands)

    Welzel, S.; Guaitella, O.; Lazzaroni, C.; Pintassilgo, C.; Rousseau, A.; Röpcke, J.

    2011-01-01

    Time-resolved quantum cascade laser absorption spectroscopy at 1897 cm-1 (5.27 µm) has been applied to study the NO(X) kinetics on the micro- and millisecond time scale in pulsed low-pressure N2/NO dc discharges. Experiments have been performed under flowing and static gas conditions to infer the

  16. Materials for incandescent and fluorescent lamps

    DEFF Research Database (Denmark)

    Thorsen, Knud Aage

    1996-01-01

    The article gives an overview of the materials systems used for incandescent lamps as well as a brief introduction to the systems used for fluorescent lamps. The materials used for incandescent lamps are doped tungsten used for the filaments, metals and alloys used for terminal and support posts......, lead wires and internal reflectors and screens as well as glasses for the envelope. The physics of bulbs and changes in bulbs during use are elucidated. The cost and energy savings and environmental benefits by replacement of incandescent lamps by fluorescent lamps are presented....

  17. Liver Status Assessment by Spectrally and Time Resolved IR Detection of Drug Induced Breath Gas Changes

    Directory of Open Access Journals (Sweden)

    Tom Rubin

    2016-05-01

    Full Text Available The actual metabolic capacity of the liver is crucial for disease identification, liver therapy, and liver tumor resection. By combining induced drug metabolism and high sensitivity IR spectroscopy of exhaled air, we provide a method for quantitative liver assessment at bedside within 20 to 60 min. Fast administration of 13C-labelled methacetin induces a fast response of liver metabolism and is tracked in real-time by the increase of 13CO2 in exhaled air. The 13CO2 concentration increase in exhaled air allows the determination of the metabolic liver capacity (LiMAx-test. Fluctuations in CO2 concentration, pressure and temperature are minimized by special gas handling, and tracking of several spectrally resolved CO2 absorption bands with a quantum cascade laser. Absorption measurement of different 12CO2 and 13CO2 rotation-vibration transitions in the same time window allows for multiple referencing and reduction of systematic errors. This FLIP (Fast liver investigation package setup is being successfully used to plan operations and determine the liver status of patients.

  18. Time-resolved SFG study of formate on a Ni( 1 1 1 ) surface under irradiation of picosecond laser pulses

    Science.gov (United States)

    Noguchi, H.; Okada, T.; Onda, K.; Kano, S. S.; Wada, A.; Domen, K.

    2003-03-01

    Time-resolved sum-frequency generation spectroscopy was carried out on a deuterated formate (DCOO) adsorbed on Ni(1 1 1) surface to investigate the surface reaction dynamics under instantaneous surface temperature jump induced by the irradiation by picosecond laser pulses. The irradiation of pump pulse (800 nm) caused the rapid intensity decrease of both CD and OCO stretching modes of bridged formate on Ni(1 1 1). Different temporal behaviors of intensity recovery between these two vibrational modes were observed, i.e., CD stretching mode recovered faster than OCO. This is the first result to show that the dynamics of adsorbates on metals strongly depends on the observed vibrational mode. From the results of temperature and pump fluence dependence, we concluded that the observed intensity change was not due to the decomposition or desorption, but was induced by a non-thermal process.

  19. Time-resolved dynamics of nanosecond laser-induced phase explosion

    International Nuclear Information System (INIS)

    Porneala, Cristian; Willis, David A

    2009-01-01

    Visualization of Nd : YAG laser ablation of aluminium targets was performed by a shadowgraph apparatus capable of imaging the dynamics of ablation with nanosecond time resolution. Direct observations of vaporization, explosive phase change and shock waves were obtained. The influence of vaporization and phase explosion on shock wave velocity was directly measured. A significant increase in the shock wave velocity was observed at the onset of phase explosion. However, the shock wave behaviour followed the form of a Taylor-Sedov spherical shock below and above the explosive phase change threshold. The jump in the shock wave velocity above phase explosion threshold is attributed to the release of stored enthalpy in the superheated liquid surface. The energy released during phase explosion was estimated by fitting the transient shock wave position to the Taylor scaling rules. Results of temperature calculations indicate that the vapour temperature at the phase explosion threshold is slightly higher than the critical temperature at the early stages of the shock wave formation. The shock wave pressure nearly doubled when transitioning from normal vaporization to phase explosion.

  20. Time-resolved photoemission micro-spectrometer using higher-order harmonics of Ti:sapphire laser

    International Nuclear Information System (INIS)

    Azuma, J.; Kamada, M.; Kondo, Y.

    2004-01-01

    Full text: A new photoemission spectrometer is under construction for the photoemission microscopy and the time-resolved pump- probe experiment. The higher order harmonics of the Ti:sapphire laser is used as the light source of the VUV region in this system. Because the fundamental laser is focused tightly into the rare gas jet to generate the higher order harmonics, the spot size of the laser, in other words, the spot size of the VUV light source is smaller than a few tens of micrometer. This smallness of the spot size has advantage for the microscopy. In order to compensate the low flux of the laser harmonics, a multilayer-coated schwaltzshild optics was designed. The multilayers play also as the monochromatic filter. The spatial resolution of this schwaltzshild system is found to be less than 1 micrometer by the ray-tracing calculations. A main chamber of the system is equipped with a time-of-flight energy analyzer to improve the efficiency of the electron detection. The main chamber and the gas chamber are separated by a differential pumping chamber and a thin Al foil. The system is designed for the study of the clean surface. It will be capable to perform the sub-micron photoemission microscopy and the femto-second pump-probe photoemission study for the various photo-excited dynamics on clean surfaces

  1. An iterative method for unfolding time-resolved soft x-ray spectra of laser plasmas

    International Nuclear Information System (INIS)

    Tang Yongjian; Shen Kexi; Xu Hepin

    1991-01-01

    Dante-recorded temporal waveforms have been unfolded by using Fast Fourier transformation (FFT) and the inverted convolution theorem of Fourier analysis. The conversion of the signals to time-dependent soft x-ray spectra is accomplished on the IBM-PC/XT-286 microcomputer system with the code DTSP including SAND II reported by W.N.Mcelory et al.. An amplitude-limited iterative and periodic smoothing technique has been developed in the code DTSP. Time-resolved soft x-ray spectra with sixteen time-cell, and time-dependent radiation, [T R (t)], have been obtained for hohlraum targets irradiated with laser beams (λ = 1.06 μm) on LF-12 in 1989

  2. Time-resolved analysis of thickness-dependent dewetting and ablation of silver films upon nanosecond laser irradiation

    International Nuclear Information System (INIS)

    Qi, Dongfeng; Paeng, Dongwoo; Yeo, Junyeob; Kim, Eunpa; Wang, Letian; Grigoropoulos, Costas P.; Chen, Songyan

    2016-01-01

    Nanosecond pulsed laser dewetting and ablation of thin silver films is investigated by time-resolved imaging. Laser pulses of 532 nm wavelength and 5 ns temporal width are irradiated on silver films of different thicknesses (50 nm, 80 nm, and 350 nm). Below the ablation threshold, it is observed that the dewetting process does not conclude until 630 ns after the laser irradiation for all samples, forming droplet-like particles in the spot central region. At higher laser intensities, ablative material removal occurs in the spot center. Cylindrical rims are formed in the peripheral dewetting zone due to the solidification of transported matter at about 700 ns following the laser pulse exposure. In addition to these features, droplet fingers are superposed upon irradiation of 350-nm thick silver films with higher intensity.

  3. Time-resolved analysis of thickness-dependent dewetting and ablation of silver films upon nanosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Dongfeng [Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720-1740 (United States); Semiconductor Photonics Research Center, Department of Physics, Xiamen University, Xiamen 361005 (China); Paeng, Dongwoo; Yeo, Junyeob; Kim, Eunpa; Wang, Letian; Grigoropoulos, Costas P., E-mail: cgrigoro@berkeley.edu [Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720-1740 (United States); Chen, Songyan [Semiconductor Photonics Research Center, Department of Physics, Xiamen University, Xiamen 361005 (China)

    2016-05-23

    Nanosecond pulsed laser dewetting and ablation of thin silver films is investigated by time-resolved imaging. Laser pulses of 532 nm wavelength and 5 ns temporal width are irradiated on silver films of different thicknesses (50 nm, 80 nm, and 350 nm). Below the ablation threshold, it is observed that the dewetting process does not conclude until 630 ns after the laser irradiation for all samples, forming droplet-like particles in the spot central region. At higher laser intensities, ablative material removal occurs in the spot center. Cylindrical rims are formed in the peripheral dewetting zone due to the solidification of transported matter at about 700 ns following the laser pulse exposure. In addition to these features, droplet fingers are superposed upon irradiation of 350-nm thick silver films with higher intensity.

  4. In-pile Thermal Conductivity Characterization with Time Resolved Raman

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinwei [Iowa State Univ., Ames, IA (United States). Dept. of Mechanical Engineering; Hurley, David H. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2018-03-19

    The project is designed to achieve three objectives: (1) Develop a novel time resolved Raman technology for direct measurement of fuel and cladding thermal conductivity. (2) Validate and improve the technology development by measuring ceramic materials germane to the nuclear industry. (3) Conduct instrumentation development to integrate optical fiber into our sensing system for eventual in-pile measurement. We have developed three new techniques: time-domain differential Raman (TD-Raman), frequency-resolved Raman (FR-Raman), and energy transport state-resolved Raman (ET-Raman). The TD-Raman varies the laser heating time and does simultaneous Raman thermal probing, the FR-Raman probes the material’s thermal response under periodical laser heating of different frequencies, and the ET-Raman probes the thermal response under steady and pulsed laser heating. The measurement capacity of these techniques have been fully assessed and verified by measuring micro/nanoscale materials. All these techniques do not need the data of laser absorption and absolute material temperature rise, yet still be able to measure the thermal conductivity and thermal diffusivity with unprecedented accuracy. It is expected they will have broad applications for in-pile thermal characterization of nuclear materials based on pure optical heating and sensing.

  5. Time-resolved spectral investigations of laser light induced microplasma

    Science.gov (United States)

    Nánai, L.; Hevesi, I.

    1992-01-01

    The dynamical and spectral properties of an optical breakdown microplasma created by pulses of different lasers on surfaces of insulators (KCI), metals (Cu) and semiconductors (V 2O 5), have been investigated. Experiments were carried out in air and vacuum using different wavelengths (λ = 0.694μm, type OGM-20,λ = 1.06μm with a home-made laser based on neodymium glass crystal, and λ = 10.6μm, similarly home-made) and pulse durations (Q-switched and free-running regimes). To follow the integral, dynamical and spectral characteristics of the luminous spot of microplasma we have used fast cameras (SFR-2M, IMACON-HADLAND), a high speed spectral camera (AGAT-2) and a spectrograph (STE-1). It has been shown that the microplasma consists of two parts: fast front (peak) with τ≈100 ns and slow front (tail) with τ≈1μs durations. The detonation front speed is of the order of ≈10 5 cm s -1 and follows the temporal dependence of to t0.4. It depends on the composition of the surrounding gas and its pressure and could be connected with quick evaporation of the material investigated (peak) and optical breakdown of the ambient gaseous atmosphere (tail). From the delay in appearance of different characteristic spectral lines of the target material and its gaseous surrounding we have shown that the evolution of the microplasma involves evaporation and ionization of the atoms of the parent material followed by optical breakdown due to the incident and absorbed laser light, together with microplasma expansion.

  6. Development of soft x-ray time-resolved photoemission spectroscopy system with a two-dimensional angle-resolved time-of-flight analyzer at SPring-8 BL07LSU

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Manami; Yamamoto, Susumu; Nakamura, Fumitaka; Yukawa, Ryu; Fukushima, Akiko; Harasawa, Ayumi; Kakizaki, Akito; Matsuda, Iwao [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8581 (Japan); Kousa, Yuka; Kondoh, Hiroshi [Department of Chemistry, Keio University, Yokohama 223-8522 (Japan); Tanaka, Yoshihito [RIKEN/SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2012-02-15

    We have developed a soft x-ray time-resolved photoemission spectroscopy system using synchrotron radiation (SR) at SPring-8 BL07LSU and an ultrashort pulse laser system. Two-dimensional angle-resolved measurements were performed with a time-of-flight-type analyzer. The photoemission spectroscopy system is synchronized to light pulses of SR and laser using a time control unit. The performance of the instrument is demonstrated by mapping the band structure of a Si(111) crystal over the surface Brillouin zones and observing relaxation of the surface photo-voltage effect using the pump (laser) and probe (SR) method.

  7. Correlation between native bonds in a polymeric material and molecular emissions from the laser-induced plasma observed with space and time resolved imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, S. [CRITT Materiaux Alsace, 19 rue de St Junien, 67300 Schiltigheim (France); Laboratoire de Recherche des Monuments Historiques, 29 rue de Paris, 77420 Champs-sur-Marne (France); Institut Charles Sadron, CNRS and University of Strasbourg, 23 rue de Loess, 67034 Strasbourg Cedex (France); Motto-Ros, V.; Ma, Q.L.; Lei, W.Q.; Wang, X.C. [Universite de Lyon, F-69622, Lyon, France, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM (France); Pelascini, F.; Surma, F. [CRITT Materiaux Alsace, 19 rue de St Junien, 67300 Schiltigheim (France); Detalle, V., E-mail: vincent.detalle@culture.gouv.fr [Laboratoire de Recherche des Monuments Historiques, 29 rue de Paris, 77420 Champs-sur-Marne (France); Yu, J. [Universite de Lyon, F-69622, Lyon, France, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM (France)

    2012-08-15

    Emissions from C{sub 2} molecules and CN radicals in laser-induced plasmas on polymeric materials were observed with time-resolved spectroscopic imaging. More precisely, differential imaging with a pair of narrowband filters (one centered on the emission line and another out of the line) was used to extract emission images of interested molecules or radicals. The correlation between the molecular emission image of the plasma and the molecular structure of the polymer to be analyzed was studied for four different types of materials: polyamide (PA) with native CN bonds, polyethylene (PE) with simple CC bonds, polystyrene (PS) with delocalized double CC bonds, and polyoxymethylene (POM) which neither contains CC nor CN bonds. A clear correlation is demonstrated between emission and molecular structure of the material, allowing the identification of several organic compounds by differential spectroscopic imaging. - Highlights: Black-Right-Pointing-Pointer Plasma imaging method to discriminate different type of polymers. Black-Right-Pointing-Pointer Molecular emissions (CN and C{sub 2}) are spatially and temporally correlated to native bonds. Black-Right-Pointing-Pointer Several formation processes of molecular fragments are observed.

  8. Spatially-resolved measurement of optically stimulated luminescence and time-resolved luminescence

    International Nuclear Information System (INIS)

    Bailiff, I.K.; Mikhailik, V.B.

    2003-01-01

    Spatially-resolved measurements of optically stimulated luminescence (OSL) were performed using a two-dimensional scanning system designed for use with planar samples. The scanning system employs a focused laser beam to stimulate a selected area of the sample, which is moved under the beam by a motorised stage. Exposure of the sample is controlled by an electronic shutter. Mapping of the distribution of OSL using a continuous wave laser source was obtained with sub-millimeter resolution for samples of sliced brick, synthetic single crystal quartz, concrete and dental ceramic. These revealed sporadic emission in the case of brick or concrete and significant spatial variation of emission for quartz and dental ceramic slices. Determinations of absorbed dose were performed for quartz grains within a slice of modern brick. Reconfiguration of the scanner with a pulsed laser source enabled quartz and feldspathic minerals within a ceramic sample to be thinner region. about 6 nm from the extrapolation of themeasuring the time-resolved luminescence spectrum

  9. Time resolved Raman studies of laser induced damage in TiO2 optical coatings

    International Nuclear Information System (INIS)

    Exarhos, G.J.; Morse, P.L.

    1984-10-01

    Molecular information available from Raman scattering measurements of sputter deposited TiO 2 on silica substrates has been used to characterize crystalline phases, thickness, and surface homogeneity. A two laser technique is described for investigating transient molecular changes in both coating and substrate which result from pulsed 532 nm laser irradiation. Single layer and multilayer coatings of both anatase and rutile phases of TiO 2 have been probed by Raman spectroscopy immediately following the damage pulse (nanoseconds) and at longer times. Transient measurements are designed to follow surface transformation/relaxation phenomena; measurements at longer times characterize the equilibrium damage state

  10. Time-resolved x-ray spectra of laser irradiated high-Z targets

    International Nuclear Information System (INIS)

    Lee, P.H.Y.; Attwood, D.T.; Boyle, M.J.; Campbell, E.M.; Coleman, L.C.; Kornblum, H.N.

    1977-01-01

    Recent results obtained by using the Livermore 15 psec x-ray streak camera to record x-ray emission from laser-irradiated high-z targets in the 1-20 keV range are reported. Nine to eleven K-edge filter channels were used for the measurements. In the lower energy channels, a dynamic range of x-ray emission intensity of better than three orders of magnitude have been recorded. Data will be presented which describe temporally and spectrally resolved x-ray spectra of gold disk targets irradiated by laser pulses from the Argus facility, including the temporal evolution of the superthermal x-ray tail

  11. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    L. Miaja-Avila

    2015-03-01

    Full Text Available We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  12. Diagnosis of laser ablated carbon particles measured by time-resolved X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Miyashita, Atsumi; Yoda, Osamu; Ohyanagi, T.; Murakami, K.

    1995-01-01

    The time and space resolved properties of laser ablated carbon particles were measured by X-ray absorption spectroscopy using LPX as an X-ray source. The energy density of the irradiation laser on the sample was in the range of 0.5-20J/cm 2 and the time delay was varied between 0 and 120ns. The absorption spectra exhibited several peaks originated from level to level transitions and an intense broad absorption in the energy range of C-K edge. At a delay time of 120ns, the absorption peak from 1s→2p transition of neutral carbon atom (C 0 ), C - , C + and C 2+ ions were observed. The absorption peak from C 0 was stronger as the probing position was closer to the sample surface and decreased rapidly with distance from the sample surface. The absorption peak C 2+ ion was observed only at comparatively distant positions from surface. The maximum speeds of highly charged ions were faster than that of neutral atoms and negative charged ions. The neutral atom and lower charged ions were emitted from the sample even after laser irradiation. The spatial distributions of the laser ablated carbon particles in the localized helium gas environment were measured. In the helium gas environment, the ablation plume was depressed by the helium cloud generated on the top of ablation plume. (author)

  13. Time and energy resolved runaway measurements in TFR from induced radioactivity

    International Nuclear Information System (INIS)

    1983-09-01

    A time and energy resolved measurement of the radioactivity induced by runaway electrons in proper samples has been developped in TFR. The data give an information on the confinement time of these electrons, which appears to be strongly dependent on the toroidal field, suggesting the onset of a magnetic turbulence at lower fields. Observations showing that the runaway electrons deeply penetrate into the limiter shadow are also reported

  14. Space-resolved analysis of trace elements in fresh vegetables using ultraviolet nanosecond laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Juve, Vincent; Portelli, Richard; Boueri, Myriam; Baudelet, Matthieu; Yu Jin

    2008-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to analyze trace elements contained in fresh vegetables. A quadrupled Nd:YAG laser is used in the experiments for ablation. Analyzed samples come from local markets and represent frequently consumed vegetables. For a typical root vegetable, such as potato, spectral analysis of the plasma emission reveals more than 400 lines emitted by 27 elements and 2 molecules, C 2 and CN. Among these species, one can find trace as well as ultra-trace elements. A space-resolved analysis of several trace elements with strong emissions is then applied to typical root, stem and fruit vegetables. The results from this study demonstrate the potential of an interesting tool for botanical and agricultural studies as well for food quality/safety and environment pollution assessment and control

  15. Impulsive Laser Induced Alignment of Molecules Dissolved in Helium Nanodroplets

    DEFF Research Database (Denmark)

    Pentlehner, Dominik; H. Nielsen, Jens; Slenczka, Alkwin

    2013-01-01

    We show that a 450 fs nonresonant, moderately intense, linearly polarized laser pulse can induce field-free molecular axis alignment of methyliodide (CH3I) molecules dissolved in a helium nanodroplet. Time-resolved measurements reveal rotational dynamics much slower than that of isolated molecules...

  16. Quantitative characterization of steady and time-varying, sooting, laminar diffusion flames using optical techniques

    Science.gov (United States)

    Connelly, Blair C.

    In order to reduce the emission of pollutants such as soot and NO x from combustion systems, a detailed understanding of pollutant formation is required. In addition to environmental concerns, this is important for a fundamental understanding of flame behavior as significant quantities of soot lower local flame temperatures, increase overall flame length and affect the formation of such temperature-dependent species as NOx. This problem is investigated by carrying out coupled computational and experimental studies of steady and time-varying sooting, coflow diffusion flames. Optical diagnostic techniques are a powerful tool for characterizing combustion systems, as they provide a noninvasive method of probing the environment. Laser diagnostic techniques have added advantages, as systems can be probed with high spectral, temporal and spatial resolution, and with species selectivity. Experimental soot volume fractions were determined by using two-dimensional laser-induced incandescence (LII), calibrated with an on-line extinction measurement, and soot pyrometry. Measurements of soot particle size distributions are made using time-resolved LII (TR-LII). Laser-induced fluorescence measurements are made of NO and formaldehyde. These experimental measurements, and others, are compared with computational results in an effort to understand and model soot formation and to examine the coupled relationship of soot and NO x formation.

  17. Comments on advanced, time-resolved imaging techniques for free-electron laser (FEL) experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.

    1992-01-01

    An extensive set of time-resolved imaging experiments has been performed on rf-linac driven free-electron lasers (FELs) over the past few years. These experiments have addressed both micropulse and macropulse timescales on both the charged-particle beam and the wiggler/undulator outputs (spontaneous emission and lasing). A brief review of first measurements on photoinjecter micropulse elongation, submacropulse phase slew in drive lasers, submacropulse wavelength shifts in lasers, etc. is presented. This is followed by discussions of new measurements of 35-MeV electron beam micropulse bunch length (<10 ps) using optical transition radiation, some of the first single bend synchrotron radiation beam profile measurements at gamma <80, and comments on the low-jitter synchroscan streak camera tuner. These techniques will be further developed on the 200-650 MeV linac test stand at the Advanced Photon Source (APS) in the next few years. Such techniques should be adaptable to many of the present FEL designs and to some aspects of the next generation of light sources.

  18. Comments on advanced, time-resolved imaging techniques for free-electron laser (FEL) experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.

    1992-11-01

    An extensive set of time-resolved imaging experiments has been performed on rf-linac driven free-electron lasers (FELs) over the past few years. These experiments have addressed both micropulse and macropulse timescales on both the charged-particle beam and the wiggler/undulator outputs (spontaneous emission and lasing). A brief review of first measurements on photoinjecter micropulse elongation, submacropulse phase slew in drive lasers, submacropulse wavelength shifts in lasers, etc. is presented. This is followed by discussions of new measurements of 35-MeV electron beam micropulse bunch length (<10 ps) using optical transition radiation, some of the first single bend synchrotron radiation beam profile measurements at gamma <80, and comments on the low-jitter synchroscan streak camera tuner. These techniques will be further developed on the 200-650 MeV linac test stand at the Advanced Photon Source (APS) in the next few years. Such techniques should be adaptable to many of the present FEL designs and to some aspects of the next generation of light sources.

  19. A Q-switched Ho:YAG laser assisted nanosecond time-resolved T-jump transient mid-IR absorbance spectroscopy with high sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Deyong; Li, Yunliang; Li, Hao; Weng, Yuxiang, E-mail: yxweng@iphy.ac.cn [Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wu, Xianyou [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China); Yu, Qingxu [School of Physics and Optoelectronic Technology, Dalian University of Technology, No. 2, Linggong Road, Dalian 116023 (China)

    2015-05-15

    Knowledge of dynamical structure of protein is an important clue to understand its biological function in vivo. Temperature-jump (T-jump) time-resolved transient mid-IR absorbance spectroscopy is a powerful tool in elucidating the protein dynamical structures and the folding/unfolding kinetics of proteins in solution. A home-built setup of T-jump time-resolved transient mid-IR absorbance spectroscopy with high sensitivity is developed, which is composed of a Q-switched Cr, Tm, Ho:YAG laser with an output wavelength at 2.09 μm as the T-jump heating source, and a continuous working CO laser tunable from 1580 to 1980 cm{sup −1} as the IR probe. The results demonstrate that this system has a sensitivity of 1 × 10{sup −4} ΔOD for a single wavelength detection, and 2 × 10{sup −4} ΔOD for spectral detection in amide I′ region, as well as a temporal resolution of 20 ns. Moreover, the data quality coming from the CO laser is comparable to the one using the commercial quantum cascade laser.

  20. Time-resolved plasma spectroscopy of thin foils heated by a relativistic-intensity short-pulse laser

    International Nuclear Information System (INIS)

    Audebert, P.; Gauthier, J.-C.; Shepherd, R.; Fournier, K.B.; Price, D.; Lee, R.W.; Springer, P.; Peyrusse, O.; Klein, L.

    2002-01-01

    Time-resolved K-shell x-ray spectra are recorded from sub-100 nm aluminum foils irradiated by 150-fs laser pulses at relativistic intensities of Iλ 2 =2x10 18 W μm 2 /cm 2 . The thermal penetration depth is greater than the foil thickness in these targets so that uniform heating takes place at constant density before hydrodynamic motion occurs. The high-contrast, high-intensity laser pulse, broad spectral band, and short time resolution utilized in this experiment permit a simplified interpretation of the dynamical evolution of the radiating matter. The observed spectrum displays two distinct phases. At early time, ≤500 fs after detecting target emission, a broad quasicontinuous spectral feature with strong satellite emission from multiply excited levels is seen. At a later time, the He-like resonance line emission is dominant. The time-integrated data is in accord with previous studies with time resolution greater than 1 ps. The early time satellite emission is shown to be a signature of an initial large area, high density, low-temperature plasma created in the foil by fast electrons accelerated by the intense radiation field in the laser spot. We conclude that, because of this early time phenomenon and contrary to previous predictions, a short, high-intensity laser pulse incident on a thin foil does not create a uniform hot and dense plasma. The heating mechanism has been studied as a function of foil thickness, laser pulse length, and intensity. In addition, the spectra are found to be in broad agreement with a hydrodynamic expansion code postprocessed by a collisional-radiative model based on superconfiguration average rates and on the unresolved transition array formalism

  1. Time-resolved studies of ultrarapid solidification of highly undercooled molten silicon formed by pulsed laser irradiation

    International Nuclear Information System (INIS)

    Lowndes, D.H.; Jellison, G.E. Jr.; Wood, R.F.; Carpenter, R.

    1984-01-01

    This paper reports new results of nanosecond-resolution time-resolved optical reflectivity measurements, during pulsed excimer (KrF, 248 nm) laser irradiation of Si-implanted amorphous (a) silicon layers, which, together with model calculations and post-irradiation TEM measurements, have allowed us to study both the transformation of a-Si to a highly undercooled liquid (l) phase and the subsequent ultrarapid solidification process

  2. Real-time control of ultrafast laser micromachining by laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Tong Tao; Li Jinggao; Longtin, Jon P.

    2004-01-01

    Ultrafast laser micromachining provides many advantages for precision micromachining. One challenging problem, however, particularly for multilayer and heterogeneous materials, is how to prevent a given material from being ablated, as ultrafast laser micromachining is generally material insensitive. We present a real-time feedback control system for an ultrafast laser micromachining system based on laser-induced breakdown spectroscopy (LIBS). The characteristics of ultrafast LIBS are reviewed and discussed so as to demonstrate the feasibility of the technique. Comparison methods to identify the material emission patterns are developed, and several of the resulting algorithms were implemented into a real-time computer control system. LIBS-controlled micromachining is demonstrated for the fabrication of microheater structures on thermal sprayed materials. Compared with a strictly passive machining process without any such feedback control, the LIBS-based system provides several advantages including less damage to the substrate layer, reduced machining time, and more-uniform machining features

  3. Measurement of gas flow velocities by laser-induced gratings

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B; Stampanoni-Panariello, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Kozlov, A D.N. [General Physics Institute, Moscow (Russian Federation)

    1999-08-01

    Time resolved light scattering from laser-induced electrostrictive gratings was used for the determination of flow velocities in air at room temperature. By measuring the velocity profile across the width of a slit nozzle we demonstrated the high spatial resolution (about 200 mm) of this novel technique. (author) 3 figs., 1 ref.

  4. Space-time resolved measurements of spontaneous magnetic fields in laser-produced plasma

    Czech Academy of Sciences Publication Activity Database

    Pisarczyk, T.; Gus’kov, S.Yu.; Dudžák, Roman; Chodukowski, T.; Dostál, Jan; Demchenko, N. N.; Korneev, Ph.; Kalinowska, Z.; Kalal, M.; Renner, Oldřich; Šmíd, Michal; Borodziuk, S.; Krouský, Eduard; Ullschmied, Jiří; Hřebíček, Jan; Medřík, Tomáš; Golasowski, Jiří; Pfeifer, Miroslav; Skála, Jiří; Pisarczyk, P.

    2015-01-01

    Roč. 22, č. 10 (2015), č. článku 102706. ISSN 1070-664X R&D Projects: GA MŠk LM2010014; GA MŠk(CZ) LD14089; GA ČR GPP205/11/P712 Grant - others:FP7(XE) 284464 Program:FP7 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : space-time resolved spontaneous magnetic field (SMF) * Laser System Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) OBOR OECD: Fluids and plasma physics (including surface physics); Fluids and plasma physics (including surface physics) (FZU-D) Impact factor: 2.207, year: 2015 http://scitation.aip.org/content/aip/journal/pop/22/10/10.1063/1.4933364

  5. Time-resolved tunable diode laser absorption spectroscopy of excited argon and ground-state titanium atoms in pulsed magnetron discharges

    Czech Academy of Sciences Publication Activity Database

    Sushkov, V.; Do, H.T.; Čada, Martin; Hubička, Zdeněk; Hippler, R.

    2013-01-01

    Roč. 22, č. 1 (2013), 1-10 ISSN 0963-0252 R&D Projects: GA ČR(CZ) GAP205/11/0386; GA ČR GAP108/12/2104 Institutional research plan: CEZ:AV0Z10100522 Keywords : absorption spectroscopy * diode laser * magnetron * argon metastable * HiPIMS * titanium * time-resolved Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.056, year: 2013 http://iopscience.iop.org/0963-0252/22/1/015002/

  6. Time-resolved UV spectroscopy on ammonia excited by a pulsed CO2 laser

    International Nuclear Information System (INIS)

    Holbach, H.

    1980-07-01

    This work investigates the excitation of ammonia by a pulsed CO 2 laser, in particular the processes associated with collisions with argon. It was prompted by two previous observations: the previously reported infrared multiphoton dissociation of NH 3 under nearly collisionless conditions, and the ill understood excitation mechanism of apparently nonresonant low vibrational levels in the presence of Ar. Based on recent spectroscopic data, all vibrational-rotational levels were determined which are simultaneously excited by different CO 2 laser lines. Transitions between the 1 + and 2 - vibrational levels were also taken into account. The linewidth in these calculations was dominated by power broadening, which generates a half width at half maximum of 0.36 cm -1 at the typical power density of 10 MW/cm 2 . In order to reproduce published experimental absorption data, it proved necessary to take account all transitions within a distance of 20 cm -1 from the laser line. This fact implies in most cases the simultaneous population of a large number of vibrational-rotational levels. The population of levels by absorption or by subsequent collisional processes was probed by time-resolved absorption measurement of vibrational bands and their rotational envelope in the near UV. Time resolution (5...10) was sufficient to observe rotational relaxation within individual vibrational levels. Characteristic differences were found for the various excitation lines. (orig.) [de

  7. Pulsed-laser time-resolved thermal mirror technique in low-absorbance homogeneous linear elastic materials.

    Science.gov (United States)

    Lukasievicz, Gustavo V B; Astrath, Nelson G C; Malacarne, Luis C; Herculano, Leandro S; Zanuto, Vitor S; Baesso, Mauro L; Bialkowski, Stephen E

    2013-10-01

    A theoretical model for a time-resolved photothermal mirror technique using pulsed-laser excitation was developed for low absorption samples. Analytical solutions to the temperature and thermoelastic deformation equations are found for three characteristic pulse profiles and are compared to finite element analysis methods results for finite samples. An analytical expression for the intensity of the center of a continuous probe laser at the detector plane is derived using the Fresnel diffraction theory, which allows modeling of experimental results. Experiments are performed in optical glasses, and the models are fitted to the data. The parameters of the fit are in good agreement with previous literature data for absorption, thermal diffusion, and thermal expansion of the materials tested. The combined modeling and experimental techniques are shown to be useful for quantitative determination of the physical properties of low absorption homogeneous linear elastic material samples.

  8. The dynamics of the laser-induced metal-semiconductor phase transition of samarium sulfide (SmS)

    International Nuclear Information System (INIS)

    Kaempfer, Tino

    2009-01-01

    The present thesis is dedicated to the experimental study of the metal-semiconductor phase transition of samarium sulfide (SmS): Temperature- and time-resolved experiments on the characterization of the phase transition of mixed-valence SmS samples (M-SmS) are presented. The measurement of the dynamics of the laser-induced phase transition pursues via time-resolved ultrashort-time microscopy and by X-ray diffraction with sub-picosecond time resolution. The electronic and structural processes, which follow an excitation of M-SmS with infrared femtosecond laser pulses, are physically interpreted on the base of the results obtained in this thesis and model imaginations. [de

  9. Comprehensive Laser-induced Incandescence (LII) modeling for soot particle sizing

    KAUST Repository

    Lisanti, Joel; Cenker, Emre; Roberts, William L.

    2015-01-01

    utilized in the model are temperature dependent. In addition, where appropriate properties are also phase dependent, thereby accounting for annealing effects during laser heating and particle cooling.

  10. System for time-resolved laser absorption spectroscopy and its application to high-power impulse magnetron sputtering

    Czech Academy of Sciences Publication Activity Database

    Adámek, Petr; Olejníček, Jiří; Hubička, Zdeněk; Čada, Martin; Kment, Štěpán; Kohout, Michal; Do, H.T.

    2017-01-01

    Roč. 88, č. 2 (2017), 1-8, č. článku 023105. ISSN 0034-6748 R&D Projects: GA TA ČR(CZ) TF01000084; GA ČR(CZ) GA15-00863S Institutional support: RVO:68378271 Keywords : plasma diagnostics * HiPIMS * time resolved measurement * laser absorption spectroscopy Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.515, year: 2016

  11. Simultaneous time-space resolved reflectivity and interferometric measurements of dielectrics excited with femtosecond laser pulses

    Science.gov (United States)

    Garcia-Lechuga, M.; Haahr-Lillevang, L.; Siegel, J.; Balling, P.; Guizard, S.; Solis, J.

    2017-06-01

    Simultaneous time-and-space resolved reflectivity and interferometric measurements over a temporal span of 300 ps have been performed in fused silica and sapphire samples excited with 800 nm, 120 fs laser pulses at energies slightly and well above the ablation threshold. The experimental results have been simulated in the frame of a multiple-rate equation model including light propagation. The comparison of the temporal evolution of the reflectivity and the interferometric measurements at 400 nm clearly shows that the two techniques interrogate different material volumes during the course of the process. While the former is sensitive to the evolution of the plasma density in a very thin ablating layer at the surface, the second yields an averaged plasma density over a larger volume. It is shown that self-trapped excitons do not appreciably contribute to carrier relaxation in fused silica at fluences above the ablation threshold, most likely due to Coulomb screening effects at large excited carrier densities. For both materials, at fluences well above the ablation threshold, the maximum measured plasma reflectivity shows a saturation behavior consistent with a scattering rate proportional to the plasma density in this fluence regime. Moreover, for both materials and for pulse energies above the ablation threshold and delays in the few tens of picoseconds range, a simultaneous "low reflectivity" and "low transmission" behavior is observed. Although this behavior has been identified in the past as a signature of femtosecond laser-induced ablation, its origin is alternatively discussed in terms of the optical properties of a material undergoing strong isochoric heating, before having time to substantially expand or exchange energy with the surrounding media.

  12. Time-resolved spectroscopy and fluorescence resonance energy transfer in the study of excimer laser damage of chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L. [Department of Molecular Genetics and Radiobiology, Babes National Institute, Bucharest (Romania)], E-mail: lilianajradu@yahoo.fr; Mihailescu, I. [Department of Lasers, Laser, Plasma and Radiation Physics Institute, Bucharest (Romania); Radu, S. [Department of Computer Science, Polytechnics University, Bucharest (Romania); Gazdaru, D. [Department of Biophysics, Bucharest University (Romania)

    2007-09-21

    The analysis of chromatin damage produced by a 248 nm excimer laser radiation, for doses of 0.3-3 MJ/m{sup 2} was carried out by time-resolved spectroscopy and fluorescence resonance energy transfer (FRET). The chromatin was extracted from a normal and a tumoral tissue of Wistar rats. The decrease with laser dose of the relative contribution of the excited state lifetimes of ethidium bromide (EtBr) bounded to chromatin constitutes an evidence of the reduction of chromatin deoxyribonucleic acid (DNA) double-strand structure. FRET was performed from dansyl chloride to acridine orange, both coupled to chromatin. The increase of the average distance between these ligands, under the action of laser radiation, reflects a loosening of the chromatin structure. The radiosensitivity of tumor tissue chromatin is higher than that of a normal tissue. The determination of the chromatin structure modification in an excimer laser field can be of interest in laser therapy.

  13. Time-resolved spectroscopy and fluorescence resonance energy transfer in the study of excimer laser damage of chromatin

    International Nuclear Information System (INIS)

    Radu, L.; Mihailescu, I.; Radu, S.; Gazdaru, D.

    2007-01-01

    The analysis of chromatin damage produced by a 248 nm excimer laser radiation, for doses of 0.3-3 MJ/m 2 was carried out by time-resolved spectroscopy and fluorescence resonance energy transfer (FRET). The chromatin was extracted from a normal and a tumoral tissue of Wistar rats. The decrease with laser dose of the relative contribution of the excited state lifetimes of ethidium bromide (EtBr) bounded to chromatin constitutes an evidence of the reduction of chromatin deoxyribonucleic acid (DNA) double-strand structure. FRET was performed from dansyl chloride to acridine orange, both coupled to chromatin. The increase of the average distance between these ligands, under the action of laser radiation, reflects a loosening of the chromatin structure. The radiosensitivity of tumor tissue chromatin is higher than that of a normal tissue. The determination of the chromatin structure modification in an excimer laser field can be of interest in laser therapy

  14. Time-resolved ESR spectroscopy

    International Nuclear Information System (INIS)

    Beckert, D.

    1986-06-01

    The time-resolved ESR spectroscopy is one of the modern methods in radiospectroscopy and plays an important role in solving various problems in chemistry and biology. Proceeding from the basic ideas of time-resolved ESR spectroscopy the experimental equipment is described generally including the equipment developed at the Central Institute of Isotope and Radiation Research. The experimental methods applied to the investigation of effects of chemically induced magnetic polarization of electrons and to kinetic studies of free radicals in polymer systems are presented. The theory of radical pair mechanism is discussed and theoretical expressions are summarized in a computer code to compute the theoretical polarization for each pair of the radicals

  15. Introducing a standard method for experimental determination of the solvent response in laser pump, x-ray probe time-resolved wide-angle x-ray scattering experiments on systems in solution

    DEFF Research Database (Denmark)

    Kjær, Kasper Skov; Brandt van Driel, Tim; Kehres, Jan

    2013-01-01

    In time-resolved laser pump, X-ray probe wide-angle X-ray scattering experiments on systems in solution the structural response of the system is accompanied by a solvent response. The solvent response is caused by reorganization of the bulk solvent following the laser pump event, and in order...... response-the solvent term-experimentally when applying laser pump, X-ray probe time-resolved wide-angle X-ray scattering. The solvent term describes difference scattering arising from the structural response of the solvent to changes in the hydrodynamic parameters: pressure, temperature and density. We...... is demonstrated to exhibit first order behaviour with respect to the amount of energy deposited in the solution. We introduce a standardized method for recording solvent responses in laser pump, X-ray probe time-resolved X-ray wide-angle scattering experiments by using dye mediated solvent heating. Furthermore...

  16. Time-resolved soft-x-ray studies of energy transport in layered and planar laser-driven targets

    International Nuclear Information System (INIS)

    Stradling, G.L.

    1982-01-01

    New low-energy x-ray diagnostic techniques are used to explore energy-transport processes in laser heated plasmas. Streak cameras are used to provide 15-psec time-resolution measurements of subkeV x-ray emission. A very thin (50 μg/cm 2 ) carbon substrate provides a low-energy x-ray transparent window to the transmission photocathode of this soft x-ray streak camera. Active differential vacuum pumping of the instrument is required. The use of high-sensitivity, low secondary-electron energy-spread CsI photocathodes in x-ray streak cameras is also described. Significant increases in sensitivity with only a small and intermittant decrease in dynamic range were observed. These coherent, complementary advances in subkeV, time-resolved x-ray diagnostic capability are applied to energy-transport investigations of 1.06-μm laser plasmas. Both solid disk targets of a variety of Z's as well as Be-on-Al layered-disk targets were irradiated with 700-psec laser pulses of selected intensity between 3 x 10 14 W/cm 2 and 1 x 10 15 W/cm 2

  17. Time-resolved probing of electron thermal conduction in femtosecond-laser-pulse-produced plasmas

    International Nuclear Information System (INIS)

    Vue, B.T.V.

    1993-06-01

    We present time-resolved measurements of reflectivity, transmissivity and frequency shifts of probe light interacting with the rear of a disk-like plasma produced by irradiation of a transparent solid target with 0.1ps FWHM laser pulses at peak intensity 5 x 10 l4 W/CM 2 . Experimental results show a large increase in reflection, revealing rapid formation of a steep gradient and overdense surface plasma layer during the first picosecond after irradiation. Frequency shifts due to a moving ionization created by thermal conduction into the solid target are recorded. Calculations using a nonlinear thermal heat wave model show good agreement with the measured frequency shifts, further confining the strong thermal transport effect

  18. Broadband time-resolved elliptical crystal spectrometer for X-ray spectroscopic measurements in laser-produced plasmas

    International Nuclear Information System (INIS)

    Wang Rui-Rong; Jia Guo; Fang Zhi-Heng; Wang Wei; Meng Xiang-Fu; Xie Zhi-Yong; Zhang Fan

    2014-01-01

    The X-ray spectrometer used in high-energy-density plasma experiments generally requires both broad X-ray energy coverage and high temporal, spatial, and spectral resolutions for overcoming the difficulties imposed by the X-ray background, debris, and mechanical shocks. By using an elliptical crystal together with a streak camera, we resolve this issue at the SG-II laser facility. The carefully designed elliptical crystal has a broad spectral coverage with high resolution, strong rejection of the diffuse and/or fluorescent background radiation, and negligible source broadening for extended sources. The spectra that are Bragg reflected (23° < θ < 38°) from the crystal are focused onto a streak camera slit 18 mm long and about 80 μm wide, to obtain a time-resolved spectrum. With experimental measurements, we demonstrate that the quartz(1011) elliptical analyzer at the SG-II laser facility has a single-shot spectral range of (4.64–6.45) keV, a typical spectral resolution of E/ΔE = 560, and an enhanced focusing power in the spectral dimension. For titanium (Ti) data, the lines of interest show a distribution as a function of time and the temporal variations of the He-α and Li-like Ti satellite lines and their spatial profiles show intensity peak red shifts. The spectrometer sensitivity is illustrated with a temporal resolution of better than 25 ps, which satisfies the near-term requirements of high-energy-density physics experiments. (atomic and molecular physics)

  19. Local thermodynamic equilibrium considerations in powerchip laser-induced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Merten, Jonathan A., E-mail: jmerten@astate.edu; Smith, Benjamin W., E-mail: bwsmith@chem.ufl.edu; Omenetto, Nicoló, E-mail: omenetto@chem.ufl.edu

    2013-05-01

    Time-resolved emission experiments are reported in the fast-decaying transient plasma induced by a microchip laser on an aluminum target in three different cover gases, i.e., air, argon and helium. The laser operates at 532 nm, with a repetition frequency of 1 kHz and a pulse width of less than 0.5 ns. The overall persistence of plasma emission is of the order of 100 ns. We examine the existence of local thermodynamic equilibrium (LTE) by evaluating the temporal criteria required (in addition to the McWhirter criterion), as recommended by Cristoforetti et al. (Spectrochim. Acta Part B 65, 2010, 86–95). The temporal criteria examine the evolution of temperature and electron number density and compare their rate of change to the rate at which electron collisions can thermalize the change. These considerations are used to determine time windows in which LTE may be present. Our results suggest that calibration-free LIBS measurements with these lasers may be possible for some elements at early times, especially under argon. - Highlights: ► Powerchip laser-induced plasma evolution is affected by cover gas. ► Plasma often out of LTE, despite fulfilling the McWhirter criterion ► Calibration-free LIBS may be possible with powerchip laser plasmas.

  20. Local thermodynamic equilibrium considerations in powerchip laser-induced plasmas

    International Nuclear Information System (INIS)

    Merten, Jonathan A.; Smith, Benjamin W.; Omenetto, Nicoló

    2013-01-01

    Time-resolved emission experiments are reported in the fast-decaying transient plasma induced by a microchip laser on an aluminum target in three different cover gases, i.e., air, argon and helium. The laser operates at 532 nm, with a repetition frequency of 1 kHz and a pulse width of less than 0.5 ns. The overall persistence of plasma emission is of the order of 100 ns. We examine the existence of local thermodynamic equilibrium (LTE) by evaluating the temporal criteria required (in addition to the McWhirter criterion), as recommended by Cristoforetti et al. (Spectrochim. Acta Part B 65, 2010, 86–95). The temporal criteria examine the evolution of temperature and electron number density and compare their rate of change to the rate at which electron collisions can thermalize the change. These considerations are used to determine time windows in which LTE may be present. Our results suggest that calibration-free LIBS measurements with these lasers may be possible for some elements at early times, especially under argon. - Highlights: ► Powerchip laser-induced plasma evolution is affected by cover gas. ► Plasma often out of LTE, despite fulfilling the McWhirter criterion ► Calibration-free LIBS may be possible with powerchip laser plasmas

  1. Time-resolved FTIR [Fourier transform infrared] emission studies of laser photofragmentation and chain reactions

    International Nuclear Information System (INIS)

    Leone, S.R.

    1990-01-01

    Recent progress is described resulting from the past three years of DOE support for studies of combustion-related photofragmentation dynamics, energy transfer, and reaction processes using a time-resolved Fourier transform infrared (FTIR) emission technique. The FTIR is coupled to a high repetition rate excimer laser which produces radicals by photolysis to obtain novel, high resolution measurements on vibrational and rotational state dynamics. The results are important for the study of numerous radical species relevant to combustion processes. The method has been applied to the detailed study of photofragmentation dynamics in systems such as acetylene, which produces C 2 H; chlorofluoroethylene to study the HF product channel; vinyl chloride and dichloroethylene, which produce HCl; acetone, which produces CO and CH 3 ; and ammonia, which produces NH 2 . In addition, we have recently demonstrated use of the FTIR technique for preliminary studies of energy transfer events under near single collision conditions, radical-radical reactions, and laser-initiated chain reaction processes

  2. Depth-resolved sample composition analysis using laser-induced ablation-quadrupole mass spectrometry and laser-induced breakdown spectroscopy

    Science.gov (United States)

    Oelmann, J.; Gierse, N.; Li, C.; Brezinsek, S.; Zlobinski, M.; Turan, B.; Haas, S.; Linsmeier, Ch.

    2018-06-01

    Monitoring a sample's material composition became more and more important over the last years for both - industrial process control as well as for post mortem analysis in research and industrial development. Although material composition identification as well as a comparison with standard samples works fine, there is a lack of diagnostics which can provide quantitative information with depth resolution without any standard samples. We present a novel method utilizing a residual gas analysis with quadrupole mass spectrometry after picosecond laser-induced ablation and release of volatile species. In the present experiment, well characterized multilayer thin film solar cells (μc-Si:H and a-Si:D as p-i-n-junctions on ZnO:Al electrodes) are used as a set of well characterized material samples to demonstrate the capabilities of the new method. The linearity of the spectrometer signal to gas pressure simplifies its calibration and reduces its uncertainties in comparison with other analysis techniques, although high vacuum conditions (10-6 hPa to 10-7 hPa) are required to reach high sensitivity better than the percent-range. Moreover, the laser-ablation based sample analysis requires no preparation of the sample and is flexible regarding ablation rates. The application of a picosecond laser pulse ensures that the thermal penetration depth of the laser is in the same order of magnitude as the ablation rate, which enables to achieve depth resolutions in the order of 100 nm and avoids matrix mixing effects at the edge of the laser-induced crater in the sample.

  3. Time-resolved lateral spin-caloric transport of optically generated spin packets in n-GaAs

    Science.gov (United States)

    Göbbels, Stefan; Güntherodt, Gernot; Beschoten, Bernd

    2018-05-01

    We report on lateral spin-caloric transport (LSCT) of electron spin packets which are optically generated by ps laser pulses in the non-magnetic semiconductor n-GaAs at K. LSCT is driven by a local temperature gradient induced by an additional cw heating laser. The spatio-temporal evolution of the spin packets is probed using time-resolved Faraday rotation. We demonstrate that the local temperature-gradient induced spin diffusion is solely driven by a non-equilibrium hot spin distribution, i.e. without involvement of phonon drag effects. Additional electric field-driven spin drift experiments are used to verify directly the validity of the non-classical Einstein relation for moderately doped semiconductors at low temperatures for near band-gap excitation.

  4. Emerging biomedical applications of time-resolved fluorescence spectroscopy

    Science.gov (United States)

    Lakowicz, Joseph R.; Szmacinski, Henryk; Koen, Peter A.

    1994-07-01

    Time-resolved fluorescence spectroscopy is presently regarded as a research tool in biochemistry, biophysics, and chemical physics. Advances in laser technology, the development of long-wavelength probes, and the use of lifetime-based methods are resulting in the rapid migration of time-resolved fluorescence to the clinical chemistry lab, to the patient's bedside, to flow cytometers, to the doctor's office, and even to home health care. Additionally, time-resolved imaging is now a reality in fluorescence microscopy, and will provide chemical imaging of a variety of intracellular analytes and/or cellular phenomena. In this overview paper we attempt to describe some of the opportunities available using chemical sensing based on fluorescence lifetimes, and to predict those applications of lifetime-based sensing which are most likely in the near future.

  5. Time-synchronized continuous wave laser-induced fluorescence on an oscillatory xenon discharge.

    Science.gov (United States)

    MacDonald, N A; Cappelli, M A; Hargus, W A

    2012-11-01

    A novel approach to time-synchronizing laser-induced fluorescence measurements to an oscillating current in a 60 Hz xenon discharge lamp using a continuous wave laser is presented. A sample-hold circuit is implemented to separate out signals at different phases along a current cycle, and is followed by a lock-in amplifier to pull out the resulting time-synchronized fluorescence trace from the large background signal. The time evolution of lower state population is derived from the changes in intensity of the fluorescence excitation line shape resulting from laser-induced fluorescence measurements of the 6s(')[1/2](1)(0)-6p(')[3/2](2) xenon atomic transition at λ = 834.68 nm. Results show that the lower state population oscillates at twice the frequency of the discharge current, 120 Hz.

  6. Time-resolved dynamics of two-channel molecular systems in cw laser fields: Wave-packet construction in the Floquet formalism

    International Nuclear Information System (INIS)

    Nguyen-Dang, T.T.; Chateauneuf, F.; Atabek, O.; He, X.

    1995-01-01

    The description of the wave-packet time-resolved dynamics in a two-channel molecular system driven by a cw laser field is considered within the time-independent Floquet representation. It is shown that, at high field intensity, the wave-packet motions are governed solely by the pair of adiabatic dressed potential-energy surfaces (PES's) associated with a single Brillouin zone. The same expressions of the wave-packet motions in terms of the adiabatic PES's are obtained within a short-time approximation, thereby furnishing a new numerical algorithm for the wave-packet propagation in a laser-driven two-channel system at any intensity. Numerical tests of this algorithm are presented. The numerical results establish unambiguously the adiabaticity of nuclear motions at high field intensities

  7. Time-resolved X-ray photoelectron spectroscopy techniques for the study of interfacial charge dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Neppl, Stefan, E-mail: sneppl@lbl.gov; Gessner, Oliver

    2015-04-15

    Highlights: • Ultrafast interfacial charge transfer is probed with atomic site specificity. • Femtosecond X-ray photoelectron spectroscopy using a free electron laser. • Efficient and flexible picosecond X-ray photoelectron pump–probe scheme using synchrotron radiation. - Abstract: X-ray photoelectron spectroscopy (XPS) is one of the most powerful techniques to quantitatively analyze the chemical composition and electronic structure of surfaces and interfaces in a non-destructive fashion. Extending this technique into the time domain has the exciting potential to shed new light on electronic and chemical dynamics at surfaces by revealing transient charge configurations with element- and site-specificity. Here, we describe prospects and challenges that are associated with the implementation of picosecond and femtosecond time-resolved X-ray photoelectron spectroscopy at third-generation synchrotrons and X-ray free-electron lasers, respectively. In particular, we discuss a series of laser-pump/X-ray-probe photoemission experiments performed on semiconductor surfaces, molecule-semiconductor interfaces, and films of semiconductor nanoparticles that demonstrate the high sensitivity of time-resolved XPS to light-induced charge carrier generation, diffusion and recombination within the space charge layers of these materials. Employing the showcase example of photo-induced electronic dynamics in a dye-sensitized semiconductor system, we highlight the unique possibility to probe heterogeneous charge transfer dynamics from both sides of an interface, i.e., from the perspective of the molecular electron donor and the semiconductor acceptor, simultaneously. Such capabilities will be crucial to improve our microscopic understanding of interfacial charge redistribution and associated chemical dynamics, which are at the heart of emerging energy conversion, solar fuel generation, and energy storage technologies.

  8. Time-resolved resonance Raman spectroscopy of radiation-chemical processes

    International Nuclear Information System (INIS)

    Tripathi, G.N.R.

    1983-01-01

    A tunable pulsed laser Raman spectrometer for time resolved Raman studies of radiation-chemical processes is described. This apparatus utilizes the state of art optical multichannel detection and analysis techniques for data acquisition and electron pulse radiolysis for initiating the reactions. By using this technique the resonance Raman spectra of intermediates with absorption spectra in the 248-900 nm region, and mean lifetimes > 30 ns can be examined. This apparatus can be used to time resolve the vibrational spectral overlap between transients absorbing in the same region, and to follow their decay kinetics by monitoring the well resolved Raman peaks. For kinetic measurements at millisecond time scale, the Raman technique is preferable over optical absorption method where low frequency noise is quite bothersome. A time resolved Raman study of the pulse radiolytic oxidation of aqueous tetrafluorohydroquinone and p-methoxyphenol is briefly discussed. 15 references, 5 figures

  9. Time resolved ion beam induced charge collection

    International Nuclear Information System (INIS)

    Sexton W, Frederick; Walsh S, David; Doyle L, Barney; Dodd E, Paul

    2000-01-01

    Under this effort, a new method for studying the single event upset (SEU) in microelectronics has been developed and demonstrated. Called TRIBICC, for Time Resolved Ion Beam Induced Charge Collection, this technique measures the transient charge-collection waveform from a single heavy-ion strike with a -.03db bandwidth of 5 GHz. Bandwidth can be expanded up to 15 GHz (with 5 ps sampling windows) by using an FFT-based off-line waveform renormalization technique developed at Sandia. The theoretical time resolution of the digitized waveform is 24 ps with data re-normalization and 70 ps without re-normalization. To preserve the high bandwidth from IC to the digitizing oscilloscope, individual test structures are assembled in custom high-frequency fixtures. A leading-edge digitized waveform is stored with the corresponding ion beam position at each point in a two-dimensional raster scan. The resulting data cube contains a spatial charge distribution map of up to 4,096 traces of charge (Q) collected as a function of time. These two dimensional traces of Q(t) can cover a period as short as 5 ns with up to 1,024 points per trace. This tool overcomes limitations observed in previous multi-shot techniques due to the displacement damage effects of multiple ion strikes that changed the signal of interest during its measurement. This system is the first demonstration of a single-ion transient measurement capability coupled with spatial mapping of fast transients

  10. Time resolved ion beam induced charge collection

    Energy Technology Data Exchange (ETDEWEB)

    SEXTON,FREDERICK W.; WALSH,DAVID S.; DOYLE,BARNEY L.; DODD,PAUL E.

    2000-04-01

    Under this effort, a new method for studying the single event upset (SEU) in microelectronics has been developed and demonstrated. Called TRIBICC, for Time Resolved Ion Beam Induced Charge Collection, this technique measures the transient charge-collection waveform from a single heavy-ion strike with a {minus}.03db bandwidth of 5 GHz. Bandwidth can be expanded up to 15 GHz (with 5 ps sampling windows) by using an FFT-based off-line waveform renormalization technique developed at Sandia. The theoretical time resolution of the digitized waveform is 24 ps with data re-normalization and 70 ps without re-normalization. To preserve the high bandwidth from IC to the digitizing oscilloscope, individual test structures are assembled in custom high-frequency fixtures. A leading-edge digitized waveform is stored with the corresponding ion beam position at each point in a two-dimensional raster scan. The resulting data cube contains a spatial charge distribution map of up to 4,096 traces of charge (Q) collected as a function of time. These two dimensional traces of Q(t) can cover a period as short as 5 ns with up to 1,024 points per trace. This tool overcomes limitations observed in previous multi-shot techniques due to the displacement damage effects of multiple ion strikes that changed the signal of interest during its measurement. This system is the first demonstration of a single-ion transient measurement capability coupled with spatial mapping of fast transients.

  11. Time resolved IR-LIGS experiments for gas-phase trace detection and temperature measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fantoni, R.; Giorgi, M. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione; Snels, M. [CNR, Tito Scalo, Potenza (Italy). Istituto per i Materiali Speciali; Latzel, H.

    1997-01-01

    Time resolved Laser Induced Grating Spectroscopy (LIGS) has been performed to detect different gases in mixtures at atmospheric pressure or higher. The possibility of trace detection of minor species and of temperature measurements has been demonstrated for various molecular species either of environmental interest or involved in combustion processes. In view of the application of tracing unburned hydrocarbons in combustion chambers, the coupling of the IR-LIGS technique with imaging detection has been considered and preliminary results obtained in small size ethylene/air flames are shown.

  12. Visualization investigation of acoustic and flow-induced vibration in main stream lines using a high-time-resolved PIV technique

    International Nuclear Information System (INIS)

    Li, Yanrong; Someya, Satoshi; Okamoto, Koji

    2009-01-01

    Systems with closed side-branches are liable to an excitation of sound, as called cavity tone. It may occur in pipe branches leading to safety valves or to boiler relief valves. The outbreak mechanism of the cavity tone has been known by phase-averaged measurement in previous researches, while the relation between sound propagation and flow field is still unclear due to the difficulty of detecting instantaneous velocity field. High-time-resolved PIV has a possibility to analyze the velocity field and the relation mentioned above. In this study, flow-induced acoustic resonance of piping system containing closed side-branches was investigated experimentally. A high-time-resolved PIV technique was applied to measure a gas-flow in a cavity. Air flow containing oil mist as tracer particles was measured using a high frequency pulse laser and a high speed camera. The present investigation on the coaxial closed side-branches is the first rudimentary study to visualize the fluid flow two-dimensionally in the cross-section by using PIV and to measure the pressure at the downstream side opening of the cavity by microphone. The fluid flows at different points in the cavity interact with some phase differences and the relation was clarified. (author)

  13. Time-synchronized continuous wave laser-induced fluorescence on an oscillatory xenon discharge

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, N. A.; Cappelli, M. A. [Stanford Plasma Physics Laboratory, Stanford University, Stanford, California 94305 (United States); Hargus, W. A. Jr. [Air Force Research Laboratory, Edwards AFB, California 93524 (United States)

    2012-11-15

    A novel approach to time-synchronizing laser-induced fluorescence measurements to an oscillating current in a 60 Hz xenon discharge lamp using a continuous wave laser is presented. A sample-hold circuit is implemented to separate out signals at different phases along a current cycle, and is followed by a lock-in amplifier to pull out the resulting time-synchronized fluorescence trace from the large background signal. The time evolution of lower state population is derived from the changes in intensity of the fluorescence excitation line shape resulting from laser-induced fluorescence measurements of the 6s{sup Prime }[1/2]{sub 1}{sup 0}-6p{sup Prime }[3/2]{sub 2} xenon atomic transition at {lambda}= 834.68 nm. Results show that the lower state population oscillates at twice the frequency of the discharge current, 120 Hz.

  14. Improvements in brain activation detection using time-resolved diffuse optical means

    Science.gov (United States)

    Montcel, Bruno; Chabrier, Renee; Poulet, Patrick

    2005-08-01

    An experimental method based on time-resolved absorbance difference is described. The absorbance difference is calculated over each temporal step of the optical signal with the time-resolved Beer-Lambert law. Finite element simulations show that each step corresponds to a different scanned zone and that cerebral contribution increases with the arrival time of photons. Experiments are conducted at 690 and 830 nm with a time-resolved system consisting of picosecond laser diodes, micro-channel plate photo-multiplier tube and photon counting modules. The hemodynamic response to a short finger tapping stimulus is measured over the motor cortex. Time-resolved absorbance difference maps show that variations in the optical signals are not localized in superficial regions of the head, which testify for their cerebral origin. Furthermore improvements in the detection of cerebral activation is achieved through the increase of variations in absorbance by a factor of almost 5 for time-resolved measurements as compared to non-time-resolved measurements.

  15. Photoelectron spectroscopy at a free-electron laser. Investigation of space-charge effects in angle-resolved and core-level spectroscopy and realizaton of a time-resolved core-level photoemission experiment

    International Nuclear Information System (INIS)

    Marczynski-Buehlow, Martin

    2012-01-01

    The free-electron laser (FEL) in Hamburg (FLASH) is a very interesting light source with which to perform photoelectron spectroscopy (PES) experiments. Its special characteristics include highly intense photon pulses (up to 100 J/pulse), a photon energy range of 30 eV to 1500 eV, transverse coherence as well as pulse durations of some ten femtoseconds. Especially in terms of time-resolved PES (TRPES), the deeper lying core levels can be reached with photon energies up to 1500 eV with acceptable intensity now and, therefore, element-specific, time-resolved core-level PES (XPS) is feasible at FLASH. During the work of this thesis various experimental setups were constructed in order to realize angle-resolved (ARPES), core-level (XPS) as well as time-resolved PES experiments at the plane grating monochromator beamline PG2 at FLASH. Existing as well as newly developed systems for online monitoring of FEL pulse intensities and generating spatial and temporal overlap of FEL and optical laser pulses for time-resolved experiments are successfully integrated into the experimental setup for PES. In order to understand space-charge effects (SCEs) in PES and, therefore, being able to handle those effects in future experiments using highly intense and pulsed photon sources, the origin of energetic broadenings and shifts in photoelectron spectra are studied by means of a molecular dynamic N-body simulation using a modified Treecode Algorithm for sufficiently fast and accurate calculations. It turned out that the most influencing parameter is the ''linear electron density'' - the ratio of the number of photoelectrons to the diameter of the illuminated spot on the sample. Furthermore, the simulations could reproduce the observations described in the literature fairly well. Some rules of thumb for XPS and ARPES measurements could be deduced from the simulations. Experimentally, SCEs are investigated by means of ARPES as well as XPS measurements as a function of FEL pulse

  16. Photoelectron spectroscopy at a free-electron laser. Investigation of space-charge effects in angle-resolved and core-level spectroscopy and realizaton of a time-resolved core-level photoemission experiment

    Energy Technology Data Exchange (ETDEWEB)

    Marczynski-Buehlow, Martin

    2012-01-30

    The free-electron laser (FEL) in Hamburg (FLASH) is a very interesting light source with which to perform photoelectron spectroscopy (PES) experiments. Its special characteristics include highly intense photon pulses (up to 100 J/pulse), a photon energy range of 30 eV to 1500 eV, transverse coherence as well as pulse durations of some ten femtoseconds. Especially in terms of time-resolved PES (TRPES), the deeper lying core levels can be reached with photon energies up to 1500 eV with acceptable intensity now and, therefore, element-specific, time-resolved core-level PES (XPS) is feasible at FLASH. During the work of this thesis various experimental setups were constructed in order to realize angle-resolved (ARPES), core-level (XPS) as well as time-resolved PES experiments at the plane grating monochromator beamline PG2 at FLASH. Existing as well as newly developed systems for online monitoring of FEL pulse intensities and generating spatial and temporal overlap of FEL and optical laser pulses for time-resolved experiments are successfully integrated into the experimental setup for PES. In order to understand space-charge effects (SCEs) in PES and, therefore, being able to handle those effects in future experiments using highly intense and pulsed photon sources, the origin of energetic broadenings and shifts in photoelectron spectra are studied by means of a molecular dynamic N-body simulation using a modified Treecode Algorithm for sufficiently fast and accurate calculations. It turned out that the most influencing parameter is the ''linear electron density'' - the ratio of the number of photoelectrons to the diameter of the illuminated spot on the sample. Furthermore, the simulations could reproduce the observations described in the literature fairly well. Some rules of thumb for XPS and ARPES measurements could be deduced from the simulations. Experimentally, SCEs are investigated by means of ARPES as well as XPS measurements as a function of

  17. Spectroscopic analysis of femtosecond laser-induced gas breakdown

    International Nuclear Information System (INIS)

    Hermann, J.; Bruneau, S.; Sentis, M.

    2004-01-01

    The plasma generated by the interaction of a femtosecond laser pulse with gas has been analyzed using time- and space-resolved emission spectroscopy. The laser beam has been focused with a microscope objective into different gases (air, Ar, He) at pressures ranging from 10 2 to 10 5 Pa. From the analysis of spectral line emission from ions and neutral atoms, the plasma parameters and the plasma composition have been determined as a function of time and space. Furthermore, the generation of fast electrons and/or VUV radiation by the femtosecond laser interaction with the gas was brought to the fore. From the time- and space-evolution of the plasma parameters, a rough estimation of initial values of electron density and refraction index in the focal volume has been performed. These results are compared to analysis of the laser beam transmitted by the plasma. The latter show that only a small fraction of the laser energy is absorbed by the plasma while the spatial distribution of the transmitted laser beam is strongly perturbed by the plasma, which acts like a defocusing lens. However, in ambient helium, the plasma defocusing is weak due to the high ionization potential of helium. The understanding of femtosecond laser-induced gas breakdown is useful for process optimization in femtosecond laser applications like micromachining or surface microanalysis, etc

  18. 30 CFR 75.518-2 - Incandescent lamps, overload and short circuit protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Incandescent lamps, overload and short circuit...-General § 75.518-2 Incandescent lamps, overload and short circuit protection. Incandescent lamps installed... or direct current feeder circuits, need not be provided with separate short circuit or overload...

  19. Time-resolved study of formate on Ni( 1 1 1 ) by picosecond SFG spectroscopy

    Science.gov (United States)

    Kusafuka, K.; Noguchi, H.; Onda, K.; Kubota, J.; Domen, K.; Hirose, C.; Wada, A.

    2002-04-01

    Time-resolved vibrational measurements were carried out on formate (HCOO) adsorbed on Ni(1 1 1) surface by combining the sum-frequency generation method and picosecond laser system (time resolution of 6 ps). Rapid intensity decrease (within the time resolution) followed by intensity recovery (time constant of several tens of ps) of CH stretching signal was observed when picosecond 800 nm pulse was irradiated on the sample surface. From the results of temperature and pump fluence dependences of temporal behaviour of signal intensity, we concluded that the observed intensity change was induced by non-thermal process. Mechanism of the temporal intensity change was discussed.

  20. Time-resolved spectral measurements above 80 A

    International Nuclear Information System (INIS)

    Kauffman, R.L.; Ceglio, N.; Medecki, H.

    1983-01-01

    We have made time-resolved spectral measurements above 80 A from laser-produced plasmas. These are made using a transmission grating spectrograph whose primary components are a cylindrically-curved x-ray mirror for light collection, a transmission grating for spectral dispersions, and an x-ray streak camera for temporal resolution. A description of the instrument and an example of the data are given

  1. Influence of the laser parameters on the space and time characteristics of an aluminum laser-induced plasma

    International Nuclear Information System (INIS)

    Barthelemy, O.; Margot, J.; Chaker, M.; Sabsabi, M.; Vidal, F.; Johnston, T.W.; Laville, S.; Le Drogoff, B.

    2005-01-01

    In this work, an aluminum laser plasma produced in ambient air at atmospheric pressure by laser pulses at a fluence of 10 J/cm 2 is characterized by time- and space-resolved measurements of electron density and temperature. Varying the laser pulse duration from 6 ns to 80 fs and the laser wavelength from ultraviolet to infrared only slightly influences the plasma properties. The temperature exhibits a slight decrease both at the plasma edge and close to the target surface. The electron density is found to be spatially homogeneous in the ablation plume during the first microsecond. Finally, the plasma expansion is in good agreement with the Sedov's model during the first 500 ns and it becomes subsonic, with respect to the velocity of sound in air, typically 1 μs after the plasma creation. The physical interpretation of the experimental results is also discussed to the light of a one-dimensional fluid model which provides a good qualitative agreement with measurements

  2. A novel multiplex absorption spectrometer for time-resolved studies

    Science.gov (United States)

    Lewis, Thomas; Heard, Dwayne E.; Blitz, Mark A.

    2018-02-01

    A Time-Resolved Ultraviolet/Visible (UV/Vis) Absorption Spectrometer (TRUVAS) has been developed that can simultaneously monitor absorption at all wavelengths between 200 and 800 nm with millisecond time resolution. A pulsed photolysis laser (KrF 248 nm) is used to initiate chemical reactions that create the target species. The absorption signals from these species evolve as the composition of the gas in the photolysis region changes over time. The instrument can operate at pressures over the range ˜10-800 Torr and can measure time-resolved absorbances systems (in particular the Herriott cell), there are fundamental differences, most notably the ability to adjust each mirror to maximise the overlap between the probe beam and the photolysis laser. Another feature which aids the sensitivity and versatility of the system is the use of 2 high-throughput spectrographs coupled with sensitive line-array CCDs, which can measure absorbance from ˜200 to 800 nm simultaneously. The capability of the instrument is demonstrated via measurements of the absorption spectrum of the peroxy radical, HOCH2CH2O2, and its self-reaction kinetics.

  3. Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhitao [Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia 30332-0826 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States); Banishev, Alexandr A.; Christensen, James; Dlott, Dana D. [School of Chemical Sciences and Fredrick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Lee, Gyuhyon; Scripka, David A.; Breidenich, Jennifer; Summers, Christopher J.; Thadhani, Naresh N., E-mail: naresh.thadhani@mse.gatech.edu [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States); Xiao, Pan [LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States); Zhou, Min [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States)

    2016-07-28

    The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersed in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.

  4. Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy

    International Nuclear Information System (INIS)

    Kang, Zhitao; Banishev, Alexandr A.; Christensen, James; Dlott, Dana D.; Lee, Gyuhyon; Scripka, David A.; Breidenich, Jennifer; Summers, Christopher J.; Thadhani, Naresh N.; Xiao, Pan; Zhou, Min

    2016-01-01

    The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersed in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.

  5. Time resolved emission spectroscopy investigations of pulsed laser ablated plasmas of ZrO2 and Al2O3

    International Nuclear Information System (INIS)

    Hadoko, A D; Lee, P S; Lee, P; Mohanty, S R; Rawat, R S

    2006-01-01

    With the rising trend of synthesizing ultra thin films and/or quantum-confined materials using laser ablation, optimization of deposition parameters plays an essential role in obtaining desired film characteristics. This paper presents the initial step of plasma optimization study by examining temporal distribution of the plasma formation by pulsed laser ablation of materials. The emitted spectra of ZrO 2 and Al 2 O 3 are obtained ∼3mm above the ablated target to derive the ablated plasma characteristics. The plasma temperature is estimated to be at around 2.35 eV, with electron density of 1.14 x 10 16 (cm -3 ). Emission spectra with different gate delay time (40-270 ns) are captured to study the time resolved plume characteristics. Transitory elemental species are identified

  6. Signal enhancement of neutral He emission lines by fast electron bombardment of laser-induced He plasma

    Directory of Open Access Journals (Sweden)

    Hery Suyanto

    2016-08-01

    Full Text Available A time-resolved spectroscopic study is performed on the enhancement signals of He gas plasma emission using nanosecond (ns and picosecond (ps lasers in an orthogonal configuration. The ns laser is used for the He gas plasma generation and the ps laser is employed for the ejection of fast electrons from a metal target, which serves to excite subsequently the He atoms in the plasma. The study is focused on the most dominant He I 587.6 nm and He I 667.8 nm emission lines suggested to be responsible for the He-assisted excitation (HAE mechanism. The time-dependent intensity enhancements induced by the fast electrons generated with a series of delayed ps laser ablations are deduced from the intensity time profiles of both He emission lines. The results clearly lead to the conclusion that the metastable excited triplet He atoms are actually the species overwhelmingly produced during the recombination process in the ns laser-induced He gas plasma. These metastable He atoms are believed to serve as the major energy source for the delayed excitation of analyte atoms in ns laser-induced breakdown spectroscopy (LIBS using He ambient gas.

  7. Signal enhancement of neutral He emission lines by fast electron bombardment of laser-induced He plasma

    Energy Technology Data Exchange (ETDEWEB)

    Suyanto, Hery [Department of Physics, Faculty of Mathematics and Natural Sciences, Udayana University, Kampus Bukit Jimbaran, Denpasar 80361, Bali (Indonesia); Pardede, Marincan [Department of Electrical Engineering, University of Pelita Harapan, 1100 M.H. Thamrin Boulevard, Lippo Village, Tangerang 15811 (Indonesia); Hedwig, Rinda [Department of Computer Engineering, Bina Nusantara University, 9 K.H. Syahdan, Jakarta 14810 (Indonesia); Marpaung, Alion Mangasi [Department of Physics, Faculty of Mathematics and Natural Sciences, Jakarta State University, Rawamangun, Jakarta 12440 (Indonesia); Ramli, Muliadi [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, NAD (Indonesia); Lie, Tjung Jie; Kurniawan, Koo Hendrik, E-mail: kurnia18@cbn.net.id [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Abdulmadjid, Syahrun Nur [Department of Physics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, NAD (Indonesia); Tjia, May On [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Physics of Magnetism and Photonics Group, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, 10 Ganesha,Bandung 40132 (Indonesia); Kagawa, Kiichiro [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Fukui Science Education Academy, Takagi Chuo 2 chome, Fukui 910-0804 (Japan)

    2016-08-15

    A time-resolved spectroscopic study is performed on the enhancement signals of He gas plasma emission using nanosecond (ns) and picosecond (ps) lasers in an orthogonal configuration. The ns laser is used for the He gas plasma generation and the ps laser is employed for the ejection of fast electrons from a metal target, which serves to excite subsequently the He atoms in the plasma. The study is focused on the most dominant He I 587.6 nm and He I 667.8 nm emission lines suggested to be responsible for the He-assisted excitation (HAE) mechanism. The time-dependent intensity enhancements induced by the fast electrons generated with a series of delayed ps laser ablations are deduced from the intensity time profiles of both He emission lines. The results clearly lead to the conclusion that the metastable excited triplet He atoms are actually the species overwhelmingly produced during the recombination process in the ns laser-induced He gas plasma. These metastable He atoms are believed to serve as the major energy source for the delayed excitation of analyte atoms in ns laser-induced breakdown spectroscopy (LIBS) using He ambient gas.

  8. Time- and angle-resolved photoemission spectroscopy with optimized high-harmonic pulses using frequency-doubled Ti:Sapphire lasers

    International Nuclear Information System (INIS)

    Eich, S.; Stange, A.; Carr, A.V.; Urbancic, J.; Popmintchev, T.; Wiesenmayer, M.; Jansen, K.; Ruffing, A.; Jakobs, S.; Rohwer, T.; Hellmann, S.; Chen, C.; Matyba, P.; Kipp, L.; Rossnagel, K.; Bauer, M.; Murnane, M.M.; Kapteyn, H.C.; Mathias, S.; Aeschlimann, M.

    2014-01-01

    Highlights: • We present a scheme to generate high intensity XUV pulses from HHG with variable time-bandwidth product. • Shorter-wavelength driven high-harmonic XUV trARPES provides higher photon flux and increased energy resolution. • High-quality high-harmonic XUV trARPES data with sub 150 meV energy and sub 30 fs time resolution is presented. - Abstract: Time- and angle-resolved photoemission spectroscopy (trARPES) using femtosecond extreme ultraviolet high harmonics has recently emerged as a powerful tool for investigating ultrafast quasiparticle dynamics in correlated-electron materials. However, the full potential of this approach has not yet been achieved because, to date, high harmonics generated by 800 nm wavelength Ti:Sapphire lasers required a trade-off between photon flux, energy and time resolution. Photoemission spectroscopy requires a quasi-monochromatic output, but dispersive optical elements that select a single harmonic can significantly reduce the photon flux and time resolution. Here we show that 400 nm driven high harmonic extreme-ultraviolet trARPES is superior to using 800 nm laser drivers since it eliminates the need for any spectral selection, thereby increasing photon flux and energy resolution to <150 meV while preserving excellent time resolution of about 30 fs

  9. Inventing around Edison’s Incandescent Lamp Patent

    DEFF Research Database (Denmark)

    Howells, John; Katznelson, Ron D.

    ’s ‘898 patent. Third, by analysis of forward citation to these patents we show that regardless of these inventions’ commercial viability in the incandescent lamp market, some became important prior art for new technological fields and some laid the groundwork for the later successful substitute...... for Edison’s carbon filament. Fourthly, we show that the recent view that Edison’s patent gave the patent holder General Electric (GE) a dominant position in the incandescent lamp market is incorrect: we show that besides commercially-successful invention around the claims of this patent, data for GE...

  10. Inventing around Edison’s incandescent lamp patent

    DEFF Research Database (Denmark)

    Howells, John; Ron D, Katznelson

    ’s ‘898 patent. Third, by analysis of forward citation to these patents we show that regardless of these inventions’ commercial viability in the incandescent lamp market, some became important prior art for new technological fields and some laid the groundwork for the later successful substitute...... for Edison’s carbon filament. Fourthly, we show that the recent view that Edison’s patent gave the patent holder General Electric (GE) a dominant position in the incandescent lamp market is incorrect: we show that besides commercially-successful invention around the claims of this patent, data for GE...

  11. Time-resolved measurements with streaked diffraction patterns from electrons generated in laser plasma wakefield

    Science.gov (United States)

    He, Zhaohan; Nees, John; Hou, Bixue; Krushelnick, Karl; Thomas, Alec; Beaurepaire, Benoît; Malka, Victor; Faure, Jérôme

    2013-10-01

    Femtosecond bunches of electrons with relativistic to ultra-relativistic energies can be robustly produced in laser plasma wakefield accelerators (LWFA). Scaling the electron energy down to sub-relativistic and MeV level using a millijoule laser system will make such electron source a promising candidate for ultrafast electron diffraction (UED) applications due to the intrinsic short bunch duration and perfect synchronization with the optical pump. Recent results of electron diffraction from a single crystal gold foil, using LWFA electrons driven by 8-mJ, 35-fs laser pulses at 500 Hz, will be presented. The accelerated electrons were collimated with a solenoid magnetic lens. By applying a small-angle tilt to the magnetic lens, the diffraction pattern can be streaked such that the temporal evolution is separated spatially on the detector screen after propagation. The observable time window and achievable temporal resolution are studied in pump-probe measurements of photo-induced heating on the gold foil.

  12. Temporal Evolution Study of the Plasma Induced by CO2 Pulsed Laser on Targets of Titanium Oxides

    Czech Academy of Sciences Publication Activity Database

    Diaz, L.; Camacho, J.J.; Sanz, M.; Hernández, M.; Jandová, Věra; Castillejo, M.

    2013-01-01

    Roč. 86, AUG 1 (2013), s. 88-93 ISSN 0584-8547 Grant - others:DGICYT(ES) CTQ2008-05393/BQU; DGICYT(ES) CTQ2010-15680/BQU; CAM(ES) Geomateriales S2009/ Institutional support: RVO:67985858 Keywords : laser induced breakdown spectroscopy * time-resolved optical emission spectroscopy * high-power IR CO2 pulsed laser Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 3.150, year: 2013

  13. Time-resolved photoelectron spectrometry of a dephasing process in pyrazine

    International Nuclear Information System (INIS)

    Pavlov, R.L.; Pavlov, L.I.; Delchev, Ya.I.; Pavlova, S.I.

    2001-01-01

    The first femtosecond time-resolved photoelectron imaging (PEI) is presented. The method is characterized by photoionization of NO and further applied to ultrafast dephasing in pyrazine. Intermediate case behaviour in radiationless transition is clearly observed in time-resolved photoelectron kinetic energy distribution. Femtosecond PEI is with much improved efficiency than conventional photoelectron spectroscopies. It is anticipated that the unifield approach of time-resolved photoelectron and photoion imaging opens the possibility of observing photon-induced dynamics in real time

  14. Multichannel, time-resolved picosecond laser ultrasound imaging and spectroscopy with custom complementary metal-oxide-semiconductor detector

    International Nuclear Information System (INIS)

    Smith, Richard J.; Light, Roger A.; Johnston, Nicholas S.; Pitter, Mark C.; Somekh, Mike G.; Sharples, Steve D.

    2010-01-01

    This paper presents a multichannel, time-resolved picosecond laser ultrasound system that uses a custom complementary metal-oxide-semiconductor linear array detector. This novel sensor allows parallel phase-sensitive detection of very low contrast modulated signals with performance in each channel comparable to that of a discrete photodiode and a lock-in amplifier. Application of the instrument is demonstrated by parallelizing spatial measurements to produce two-dimensional thickness maps on a layered sample, and spectroscopic parallelization is demonstrated by presenting the measured Brillouin oscillations from a gallium arsenide wafer. This paper demonstrates the significant advantages of our approach to pump probe systems, especially picosecond ultrasonics.

  15. Multichannel, time-resolved picosecond laser ultrasound imaging and spectroscopy with custom complementary metal-oxide-semiconductor detector

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Richard J.; Light, Roger A.; Johnston, Nicholas S.; Pitter, Mark C.; Somekh, Mike G. [Institute of Biophysics, Imaging and Optical Science, University of Nottingham, Nottinghamshire NG7 2RD (United Kingdom); Sharples, Steve D. [Applied Optics Group, Electrical Systems and Optics Research Division, University of Nottingham, Nottinghamshire NG7 2RD (United Kingdom)

    2010-02-15

    This paper presents a multichannel, time-resolved picosecond laser ultrasound system that uses a custom complementary metal-oxide-semiconductor linear array detector. This novel sensor allows parallel phase-sensitive detection of very low contrast modulated signals with performance in each channel comparable to that of a discrete photodiode and a lock-in amplifier. Application of the instrument is demonstrated by parallelizing spatial measurements to produce two-dimensional thickness maps on a layered sample, and spectroscopic parallelization is demonstrated by presenting the measured Brillouin oscillations from a gallium arsenide wafer. This paper demonstrates the significant advantages of our approach to pump probe systems, especially picosecond ultrasonics.

  16. Time- and Space-Resolved Spectroscopic Investigation on Pi-Conjugated Nanostructures - 2

    Science.gov (United States)

    2016-01-12

    Defocused wide-field fluorescence (DWFI) microscopy suggests that molecular heterogeneities and flexibilities clearly depend on ring size and that site... Confocal   Microscopy   Setup Wild‐field  Microscopy   Setup Femtosecond Z‐scan  experiment Setup Figure 3. Instruments of Time- and space-resolved...approved for public release. 3. Space-Resolved Laser Spectroscopy - Confocal Microscopy - Wild-field Microscopy 4. Non-Linear Spectroscopy

  17. New method for measuring time-resolved spectra of lanthanide emission using square-wave excitation

    International Nuclear Information System (INIS)

    Qin, Feng; Zhao, Hua; Cai, Wei; Duan, Qianqian; Zhang, Zhiguo; Cao, Wenwu

    2013-01-01

    A method using modulated continuous wave (CW) visible laser to measure time-resolved fluorescence spectra of trivalent rare-earth ions has been developed. Electro-optic modulator was used to modulate the CW pumping laser with a rise time of 2 μs. CW Nd 3+ lasers were used as examples to present the method. Upconversion dynamic process of Ho 3+ was studied utilizing a 532 nm CW laser. Quantum cutting dynamic process from Tb 3+ to Yb 3+ was analyzed by a 473 nm CW laser. This method can be applied to any CW laser such as He-Ne laser, Ar + laser, Kr + laser, Ti:sapphire laser, etc

  18. Immobilization of trypsin on miniature incandescent bulbs for infrared-assisted proteolysis

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Huimin; Bao, Huimin; Zhang, Luyan; Chen, Gang, E-mail: gangchen@fudan.edu.cn

    2014-10-03

    Highlights: • Trypsin was immobilized on miniature incandescent bulbs via chitosan coating. • The bulbs acted as enzymatic reactors and the generators of infrared radiation. • The bulb bioreactors were successfully employed in infrared-assisted proteolysis. • The proteolysis could accomplish within 5 min with high sequence coverages. - Abstract: A novel efficient proteolysis approach was developed based on trypsin-immobilized miniature incandescent bulbs and infrared (IR) radiation. Trypsin was covalently immobilized in the chitosan coating on the outer surface of miniature incandescent bulbs with the aid of glutaraldehyde. When an illuminated enzyme-immobilized bulb was immersed in protein solution, the emitted IR radiation could trigger and accelerate heterogeneous protein digestion. The feasibility and performance of the novel proteolysis approach were demonstrated by the digestion of hemoglobin (HEM), cytochrome c (Cyt-c), lysozyme (LYS), and ovalbumin (OVA) and the digestion time was significantly reduced to 5 min. The obtained digests were identified by MALDI-TOF-MS with the sequence coverages of 91%, 77%, 80%, and 52% for HEM, Cyt-c, LYS, and OVA (200 ng μL{sup −1} each), respectively. The suitability of the prepared bulb bioreactors to complex proteins was demonstrated by digesting human serum.

  19. Laser induced photochemical and photophysical processes in fuel reprocessing: present scenario and future prospects

    International Nuclear Information System (INIS)

    Bhowmick, G.K.; Sarkar, S.K.; Ramanujam, A.

    2001-01-01

    State-of-art lasers can meet the very stringent requirements of nuclear technology and hence find application in varied areas of nuclear fuel cycle. Here, we discuss two specific applications in nuclear fuel reprocessing namely (a) add-on photochemical modifications of PUREX process where photochemical reactors replace the chemical reactors, and (b) fast, matrix independent sensitive laser analytical techniques. The photochemical modifications based on laser induced valency adjustment offers efficient separation, easy maintenance and over all reduction in the volume of radioactive waste. The analytical technique of time resolved laser induced fluorescence (TRLIF) has several attractive features like excellent sensitivity, element selective, and capability of on line remote process monitoring. For optically opaque solutions, optical excitation is detected by its conversion into thermal energy by non-radiative relaxation processes using the photo-thermal spectroscopic techniques. (author)

  20. Time-resolved investigations of the fragmentation dynamic of H2 (D2) in and with ultra-short laser pulses

    International Nuclear Information System (INIS)

    Ergler, T.

    2006-01-01

    In course of this work pump-probe experiments aimed to study ultrafast nuclear motion in H 2 (D 2 ) fragmentation by intense 6-25 fs laser pulses have been carried out. In order to perform time-resolved measurements, a Mach-Zehnder interferometer providing two identical synchronized laser pulses with the time-delay variable from 0 to 3000 fs with 300 as accuracy and long-term stability has been built. The laser pulses at the intensities of up to 10 15 W/cm 2 were focused onto a H 2 (D 2 ) molecular beam leading to the ionization or dissociation of the molecules, and the momenta of all charged reactions fragments were measured with a reaction microscope. With 6-7 fs pulses it was possible to probe the time evolution of the bound H + 2 (D + 2 ) nuclear wave packet created by the first (pump) laser pulse, fragmenting the molecule with the second (probe) pulse. A fast delocalization, or ''collapse'', and subsequent ''revival'' of the vibrational wave packet have been observed. In addition, the signatures of the ground state vibrational excitation in neutral D 2 molecule have been found, and the dominance of a new, purely quantum mechanical wave packet preparation mechanism (the so-called ''Lochfrass'') has been proved. In the experiments with 25 fs pulses the theoretically predicted enhancement of the ionization probability for the dissociating H + 2 molecular ion at large internuclear distances has been detected for the first time. (orig.)

  1. Time-resolved x-ray diagnostics

    International Nuclear Information System (INIS)

    Lyons, P.B.

    1981-01-01

    Techniques for time-resolved x-ray diagnostics will be reviewed with emphasis on systems utilizing x-ray diodes or scintillators. System design concerns for high-bandwidth (> 1 GHz) diagnostics will be emphasized. The limitations of a coaxial cable system and a technique for equalizing to improve bandwidth of such a system will be reviewed. Characteristics of new multi-GHz amplifiers will be presented. An example of a complete operational system on the Los Alamos Helios laser will be presented which has a bandwidth near 3 GHz over 38 m of coax. The system includes the cable, an amplifier, an oscilloscope, and a digital camera readout

  2. Development of an electron momentum spectrometer for time-resolved experiments employing nanosecond pulsed electron beam

    Science.gov (United States)

    Tang, Yaguo; Shan, Xu; Liu, Zhaohui; Niu, Shanshan; Wang, Enliang; Chen, Xiangjun

    2018-03-01

    The low count rate of (e, 2e) electron momentum spectroscopy (EMS) has long been a major limitation of its application to the investigation of molecular dynamics. Here we report a new EMS apparatus developed for time-resolved experiments in the nanosecond time scale, in which a double toroidal energy analyzer is utilized to improve the sensitivity of the spectrometer and a nanosecond pulsed electron gun with a repetition rate of 10 kHz is used to obtain an average beam current up to nA. Meanwhile, a picosecond ultraviolet laser with a repetition rate of 5 kHz is introduced to pump the sample target. The time zero is determined by photoionizing the target using a pump laser and monitoring the change of the electron beam current with time delay between the laser pulse and electron pulse, which is influenced by the plasma induced by the photoionization. The performance of the spectrometer is demonstrated by the EMS measurement on argon using a pulsed electron beam, illustrating the potential abilities of the apparatus for investigating the molecular dynamics in excited states when employing the pump-probe scheme.

  3. Time-resolved photoelectron spectroscopy of IR-driven electron dynamics in a charge transfer model system.

    Science.gov (United States)

    Falge, Mirjam; Fröbel, Friedrich Georg; Engel, Volker; Gräfe, Stefanie

    2017-08-02

    If the adiabatic approximation is valid, electrons smoothly adapt to molecular geometry changes. In contrast, as a characteristic of diabatic dynamics, the electron density does not follow the nuclear motion. Recently, we have shown that the asymmetry in time-resolved photoelectron spectra serves as a tool to distinguish between these dynamics [Falge et al., J. Phys. Chem. Lett., 2012, 3, 2617]. Here, we investigate the influence of an additional, moderately intense infrared (IR) laser field, as often applied in attosecond time-resolved experiments, on such asymmetries. This is done using a simple model for coupled electronic-nuclear motion. We calculate time-resolved photoelectron spectra and their asymmetries and demonstrate that the spectra directly map the bound electron-nuclear dynamics. From the asymmetries, we can trace the IR field-induced population transfer and both the field-driven and intrinsic (non-)adiabatic dynamics. This holds true when considering superposition states accompanied by electronic coherences. The latter are observable in the asymmetries for sufficiently short XUV pulses to coherently probe the coupled states. It is thus documented that the asymmetry is a measure for phases in bound electron wave packets and non-adiabatic dynamics.

  4. Watching proteins function with time-resolved x-ray crystallography

    Science.gov (United States)

    Šrajer, Vukica; Schmidt, Marius

    2017-09-01

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol. 305 115-54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201-41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol. 22 651-9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237-51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5-20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242-6, Barends et al 2015 Science 350 445-50, Pande et al 2016 Science 352 725-9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs. We also outline

  5. Axial- and radial-resolved electron density and excitation temperature of aluminum plasma induced by nanosecond laser: Effect of the ambient gas composition and pressure

    Directory of Open Access Journals (Sweden)

    Mahmoud S. Dawood

    2015-11-01

    Full Text Available The spatial variation of the characteristics of an aluminum plasma induced by a pulsed nanosecond XeCl laser is studied in this paper. The electron density and the excitation temperature are deduced from time- and space- resolved Stark broadening of an ion line and from a Boltzmann diagram, respectively. The influence of the gas pressure (from vacuum up to atmospheric pressure and compositions (argon, nitrogen and helium on these characteristics is investigated. It is observed that the highest electron density occurs near the laser spot and decreases by moving away both from the target surface and from the plume center to its edge. The electron density increases with the gas pressure, the highest values being occurred at atmospheric pressure when the ambient gas has the highest mass, i.e. in argon. The excitation temperature is determined from the Boltzmann plot of line intensities of iron impurities present in the aluminum target. The highest temperature is observed close to the laser spot location for argon at atmospheric pressure. It decreases by moving away from the target surface in the axial direction. However, no significant variation of temperature occurs along the radial direction. The differences observed between the axial and radial direction are mainly due to the different plasma kinetics in both directions.

  6. Analysis of time- and space-resolved Na-, Ne-, and F-like emission from a laser-produced bromine plasma

    International Nuclear Information System (INIS)

    Goldstein, W.H.; Young, B.K.F.; Osterheld, A.L.; Stewart, R.E.; Walling, R.S.; Bar-Shalom, A.

    1991-01-01

    Advances in the efficiency and accuracy of computational atomic physics and collisional radiative modeling promise to place the analysis and diagnostic application of L-shell emission on a par with the simpler K-shell regime. Coincident improvements in spectroscopic plasma measurements yield optically thin emission spectra from small, homogeneous regions of plasma, localized both in space and time. Together, these developments can severely test models for high-density, high-temperature plasma formation and evolution, and non-LTE atomic kinetics. In this paper we present highly resolved measurements of n=3 to n=2 X-ray line emission from a laser-produced bromine micro plasma. The emission is both space- and time-resolved, allowing us to apply simple, steady-state, 0-dimensional spectroscopic models to the analysis. These relativistic, multi-configurational, distorted wave collisional-radiative models were created using the HULLAC atomic physics package. Using these models, we have analyzed the F-like, Ne-like and Na-like (satellite) spectra with respect to temperature, density and charge-state distribution. This procedure leads to a full characterization of the plasma conditions. 9 refs., 3 figs

  7. Time-resolved pump-probe X-ray absorption fine structure spectroscopy of Gaq3

    International Nuclear Information System (INIS)

    Dicke, Benjamin

    2013-01-01

    Gallium(tris-8-hydroxyquinoline) (Gaq 3 ) belongs to a class of metal organic compounds, used as electron transport layer and emissive layer in organic light emitting diodes. Many research activities have concentrated on the optical and electronic properties, especially of the homologue molecule aluminum(tris-8-hydroxyquinoline) (Alq 3 ). Knowledge of the first excited state S 1 structure of these molecules could provide deeper insight into the processes involved into the operation of electronic devices, such as OLEDs and, hence, it could further improve their efficiency and optical properties. Until now the excited state structure could not be determined experimentally. Most of the information about this structure mainly arises from theoretical calculations. X-ray absorption fine structure (XAFS) spectroscopy is a well developed technique to determine both, the electronic and the geometric properties of a sample. The connection of ultrashort pulsed X-ray sources with a pulsed laser system offers the possibility to use XAFS as a tool for studying the transient changes of a sample induced by a laser pulse. In the framework of this thesis a new setup for time-resolved pump-probe X-ray absorption spectroscopy at PETRA III beamline P11 was developed for measuring samples in liquid form. In this setup the sample is pumped into its photo-excited state by a femtosecond laser pump pulse with 343 nm wavelength and after a certain time delay probed by an X-ray probe pulse. In this way the first excited singlet state S 1 of Gaq 3 dissolved in benzyl alcohol was analyzed. A structural model for the excited state structure of the Gaq 3 molecule based on the several times reproduced results of the XAFS experiments is proposed. According to this model it was found that the Ga-N A bond length is elongated, while the Ga-O A bond length is shortened upon photoexcitation. The dynamics of the structural changes were not the focus of this thesis. Nevertheless the excited state lifetime

  8. Imaging time-resolved electrothermal atomization laser-excited atomic fluorescence spectrometry for determination of mercury in seawater.

    Science.gov (United States)

    Le Bihan, Alain; Cabon, Jean-Yves; Deschamps, Laure; Giamarchi, Philippe

    2011-06-15

    In this study, direct determination of mercury at the nanogram per liter level in the complex seawater matrix by imaging time-resolved electrothermal atomization laser-excited atomic fluorescence spectrometry (ITR-ETA-LEAFS) is described. In the case of mercury, the use of a nonresonant line for fluorescence detection with only one laser excitation is not possible. For measurements at the 253.652 nm resonant line, scattering phenomena have been minimized by eliminating the simultaneous vaporization of salts and by using temporal resolution and the imaging mode of the camera. Electrothermal conditions (0.1 M oxalic acid as matrix modifier, low atomization temperature) have been optimized in order to suppress chemical interferences and to obtain a good separation of specific signal and seawater background signal. For ETA-LEAFS, a specific response has been obtained for Hg with the use of time resolution. Moreover, an important improvement of the detection limit has been obtained by selecting, from the furnace image, pixels collecting the lowest number of scattered photons. Using optimal experimental conditions, a detection limit of 10 ng L(-1) for 10 μL of sample, close to the lowest concentration level of total Hg in the open ocean, has been obtained.

  9. Stereoscopic Planar Laser-Induced Fluorescence Imaging at 500 kHz

    Science.gov (United States)

    Medford, Taylor L.; Danehy, Paul M.; Jones, Stephen B.; Jiang, N.; Webster, M.; Lempert, Walter; Miller, J.; Meyer, T.

    2011-01-01

    A new measurement technique for obtaining time- and spatially-resolved image sequences in hypersonic flows is developed. Nitric-oxide planar laser-induced fluorescence (NO PLIF) has previously been used to investigate transition from laminar to turbulent flow in hypersonic boundary layers using both planar and volumetric imaging capabilities. Low flow rates of NO were typically seeded into the flow, minimally perturbing the flow. The volumetric imaging was performed at a measurement rate of 10 Hz using a thick planar laser sheet that excited NO fluorescence. The fluorescence was captured by a pair of cameras having slightly different views of the flow. Subsequent stereoscopic reconstruction of these images allowed the three-dimensional flow structures to be viewed. In the current paper, this approach has been extended to 50,000 times higher repetition rates. A laser operating at 500 kHz excites the seeded NO molecules, and a camera, synchronized with the laser and fitted with a beam-splitting assembly, acquires two separate images of the flow. The resulting stereoscopic images provide three-dimensional flow visualizations at 500 kHz for the first time. The 200 ns exposure time in each frame is fast enough to freeze the flow while the 500 kHz repetition rate is fast enough to time-resolve changes in the flow being studied. This method is applied to visualize the evolving hypersonic flow structures that propagate downstream of a discrete protuberance attached to a flat plate. The technique was demonstrated in the NASA Langley Research Center s 31-Inch Mach 10 Air Tunnel facility. Different tunnel Reynolds number conditions, NO flow rates and two different cylindrical protuberance heights were investigated. The location of the onset of flow unsteadiness, an indicator of transition, was observed to move downstream during the tunnel runs, coinciding with an increase in the model temperature.

  10. Time-resolved suprathermal x-rays

    International Nuclear Information System (INIS)

    Lee, P.H.Y.; Rosen, M.D.

    1978-01-01

    Temporally resolved x-ray spectra in the range of 1 to 20 keV have been obtained from gold disk targets irradiated by 1.06 μm laser pulses from the Argus facility. The x-ray streak camera used for the measurement has been calibrated for streak speed and dynamic range by using an air-gap Fabry-Perot etalon, and the instrument response has been calibrated using a multi-range monoenergetic x-ray source. The experimental results indicate that we are able to observe the ''hot'' x-ray temperature evolve in time and that the experimentally observed values can be qualitatively predicted by LASNEX code computations when the inhibited transport model is used

  11. Investigation on the role of air in the dynamical evolution and thermodynamic state of a laser-induced aluminium plasma by spatial- and time-resolved spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cristoforetti, G., E-mail: gabriele.cristoforetti@cnr.i [National Institute of Optics, Research Area of National Research Council, Via G.Moruzzi, 1 - 56124 Pisa (Italy); Lorenzetti, G.; Legnaioli, S.; Palleschi, V. [Institute of Chemistry of Organometallic Compounds, Research Area of National Research Council, Via G.Moruzzi, 1 - 56124 Pisa (Italy)

    2010-09-15

    The amount and the spatial distribution of air atoms and ions in a laser-induced plasma in ambient air provide important information about the formation of the plasma and its successive evolution history. For this reason, in the present work, the air mixing in a laser-induced plasma in air at atmospheric pressure and its influence on its thermodynamic evolution were studied. Information about spatial distributions of atoms and ions from Al, N and O were achieved by Abel-inverted spectra in the plume. The occurrence of LTE in the plume was also assessed by the utilization of theoretical criteria, and by the analysis of experimental spectra. Aluminium atoms and ions were found to be in LTE, while nitrogen and oxygen were not because of their longer times of relaxation toward equilibrium. Nitrogen was found to be over-ionized with respect to Saha-Eggert equilibrium, indicating that the plasma is recombining. Experimental observations suggest that the concentration of air species in the plasma is larger than that of aluminium, even in the region closer to the target, where the aluminium lines are stronger. In the front part of the plume only emission lines from air species were observed. The results suggest that a Laser-Supported Detonation (LSD) regime occurs during the trailing part of the laser pulse, resulting in the strong inclusion into the plasma of air elements. In this scenario, also the thermodynamic history of the plume is affected by the predominance of air species.

  12. The time resolved SBS and SRS research in heavy water and its application in CARS

    Science.gov (United States)

    Liu, Jinbo; Gai, Baodong; Yuan, Hong; Sun, Jianfeng; Zhou, Xin; Liu, Di; Xia, Xusheng; Wang, Pengyuan; Hu, Shu; Chen, Ying; Guo, Jingwei; Jin, Yuqi; Sang, Fengting

    2018-05-01

    We present the time-resolved character of stimulated Brillouin scattering (SBS) and backward stimulated Raman scattering (BSRS) in heavy water and its application in Coherent Anti-Stokes Raman Scattering (CARS) technique. A nanosecond laser from a frequency-doubled Nd: YAG laser is introduced into a heavy water cell, to generate SBS and BSRS beams. The SBS and BSRS beams are collinear, and their time resolved characters are studied by a streak camera, experiment show that they are ideal source for an alignment-free CARS system, and the time resolved property of SBS and BSRS beams could affect the CARS efficiency significantly. By inserting a Dye cuvette to the collinear beams, the time-overlapping of SBS and BSRS could be improved, and finally the CARS efficiency is increased, even though the SBS energy is decreased. Possible methods to improve the efficiency of this CARS system are discussed too.

  13. Prospects of real-time single-particle biological aerosol analysis: A comparison between laser-induced breakdown spectroscopy and aerosol time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Beddows, D.C.S.; Telle, H.H.

    2005-01-01

    In this paper we discuss the prospects of real-time, in situ laser-induced breakdown spectroscopy applied for the identification and classification of bio-aerosols (including species of potential bio-hazard) within common urban aerosol mixtures. In particular, we address the issues associated with the picking out of bio-aerosols against common background aerosol particles, comparing laser-induced breakdown spectroscopy measurements with data from a mobile single-particle aerosol mass spectrometer (ATOFMS). The data from the latter provide statistical data over an extended period of time, highlighting the variation of the background composition. While single-particle bio-aerosols are detectable in principle, potential problems with small (∼ 1 μm size) bio-aerosols have been identified; constituents of the air mass other than background aerosols, e.g. gaseous CO 2 in conjunction with common background aerosols, may prevent unique recognition of the bio-particles. We discuss whether it is likely that laser-induced breakdown spectroscopy on its own can provide reliable, real-time identification of bio-aerosol in an urban environment, and it is suggested that more than one technique should be or would have to be used. A case for using a combination of laser-induced breakdown spectroscopy and Raman (and/or) laser-induced fluorescence spectroscopy is made

  14. Nonperturbative quantum simulation of time-resolved nonlinear spectra: Methodology and application to electron transfer reactions in the condensed phase

    International Nuclear Information System (INIS)

    Wang Haobin; Thoss, Michael

    2008-01-01

    A quantum dynamical method is presented to accurately simulate time-resolved nonlinear spectra for complex molecular systems. The method combines the nonpertubative approach to describe nonlinear optical signals with the multilayer multiconfiguration time-dependent Hartree theory to calculate the laser-induced polarization for the overall field-matter system. A specific nonlinear optical signal is obtained by Fourier decomposition of the overall polarization. The performance of the method is demonstrated by applications to photoinduced ultrafast electron transfer reactions in mixed-valence compounds and at dye-semiconductor interfaces

  15. Time resolved laser induced fluorescence on argon intermediate pressure microwave discharges : measuring the depopulation rates of the 4p and 5p excited levels as induced by electron and atom collisions

    NARCIS (Netherlands)

    Palomares Linares, J.M.; Graef, W.A.A.D.; Hubner, S.; Mullen, van der J.J.A.M.

    2013-01-01

    The reaction kinetics in the excitation space of Ar is explored by means of Laser Induced Fluorescence (LIF) experiments using the combination of high rep-rate YAG–Dye laser systems with a well defined and easily controllable surfatron induced plasma setup. The high rep-rate favors the photon

  16. Experimental and numerical investigations of shock and shear wave propagation induced by femtosecond laser irradiation in epoxy resins

    International Nuclear Information System (INIS)

    Ecault, Romain; Touchard, Fabienne; Boustie, Michel; Berthe, Laurent; Lescoute, Emilien; Sollier, Arnaud; Voillaume, Hubert

    2015-01-01

    In this work, original shock experiments are presented. Laser-induced shock and shear wave propagations have been observed in an epoxy resin, in the case of femtosecond laser irradiation. A specific time-resolved shadowgraphy setup has been developed using the photoelasticimetry principle to enhance the shear wave observation. Shear waves have been observed in epoxy resin after laser irradiation. Their propagation has been quantified in comparison with the main shock propagation. A discussion, hinging on numerical results, is finally given to improve understanding of the phenomenon. (paper)

  17. An experimental investigation on the properties of laser-induced plasma emission spectra

    International Nuclear Information System (INIS)

    Tang Xiaoshuan; Li Chunyan; Ji Xuehan; Feng Eryin; Cui Zhifeng

    2004-01-01

    The authors have measured the time-resolved emission spectra produced by Nd: YAG laser induced Al plasma with different kinds of buffer gas (He, Ar, N 2 and Air). The dependence of emission spectra line intensity and Stark broadening on the time delay, kinds and pressure of buffer gas are studied. The results show that the atomic emission line intensity reaches maximum at 3 μs time delay, the Stark broadening increases with increasing the pressure of buffer gas, and decreases with increasing time delay. The Stark broadening in Ar buffer gas is largest among the four different kinds of buffer gas. (author)

  18. Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement

    International Nuclear Information System (INIS)

    Babushok, V.I.; DeLucia, F.C.; Gottfried, J.L.; Munson, C.A.; Miziolek, A.W.

    2006-01-01

    A review of recent results of the studies of double laser pulse plasma and ablation for laser induced breakdown spectroscopy applications is presented. The double pulse laser induced breakdown spectroscopy configuration was suggested with the aim of overcoming the sensitivity shortcomings of the conventional single pulse laser induced breakdown spectroscopy technique. Several configurations have been suggested for the realization of the double pulse laser induced breakdown spectroscopy technique: collinear, orthogonal pre-spark, orthogonal pre-heating and dual pulse crossed beam modes. In addition, combinations of laser pulses with different wavelengths, different energies and durations were studied, thus providing flexibility in the choice of wavelength, pulse width, energy and pulse sequence. The double pulse laser induced breakdown spectroscopy approach provides a significant enhancement in the intensity of laser induced breakdown spectroscopy emission lines up to two orders of magnitude greater than a conventional single pulse laser induced breakdown spectroscopy. The double pulse technique leads to a better coupling of the laser beam with the plasma plume and target material, thus providing a more temporally effective energy delivery to the plasma and target. The experimental results demonstrate that the maximum effect is obtained at some optimum separation delay time between pulses. The optimum value of the interpulse delay depends on several factors, such as the target material, the energy level of excited states responsible for the emission, and the type of enhancement process considered. Depending on the specified parameter, the enhancement effects were observed on different time scales ranging from the picosecond time level (e.g., ion yield, ablation mass) up to the hundred microsecond level (e.g., increased emission intensity for laser induced breakdown spectroscopy of submerged metal target in water). Several suggestions have been proposed to explain

  19. Developments in time-resolved x-ray research at APS beamline 7ID

    Energy Technology Data Exchange (ETDEWEB)

    Walko, D. A., E-mail: d-walko@anl.gov; Adams, B. W.; Doumy, G.; Dufresne, E. M.; Li, Yuelin; March, A. M.; Sandy, A. R.; Wang, Jin; Wen, Haidan; Zhu, Yi [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2016-07-27

    The 7ID beamline of the Advanced Photon Source (APS) is dedicated to time-resolved research using x-ray imaging, scattering, and spectroscopy techniques. Time resolution is achieved via gated detectors and/or mechanical choppers in conjunction with the time structure of the x-ray beam. Three experimental hutches allow for a wide variety of experimental setups. Major areas of research include atomic, molecular, and optical physics; chemistry; condensed matter physics in the bulk, thin film, and surface regimes; and fluid-spray dynamics. Recent developments in facilities at 7ID include a high-power, high-repetition-rate picosecond laser to complement the 1 kHz ultrafast laser. For the ultrafast laser, a newly commissioned optical parametric amplifier provides pump wavelength from 0.2 to 15 µm with energy per pulse up to 200 µJ. A nanodiffraction station has also been commissioned, using Fresnel zone-plate optics to achieve a focused x-ray spot of 300 nm. This nanoprobe is not only used to spatially resolve the evolution of small features in samples after optical excitation, but also has been combined with an intense THz source to study material response under ultrafast electric fields.

  20. Frequency domain and wavelet analysis of the laser-induced plasma shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Miloš, E-mail: milosb@ff.bg.ac.rs; Nikolić, Zoran

    2015-08-01

    In addition to optical emission, another trace of interest that laser-induced plasma provides is a form of acoustic feedback. The acoustic emission (AE) signals were obtained using both microphone and piezo transducers. This kind of optoacoustic signals have some distinct features resembling the short, burst-like sounds, that may differ significantly depending mainly on the sample exposed and irradiance applied. Experiments were performed on atmospheric pressure by irradiating various metallic samples. The recorded waveforms were examined and numerically processed. Single-shot acoustical spectra have shown significant potential of providing valuable supplementary information regarding plasma propagation dynamics. Moreover, the general approach suggests the possibility of making the whole measurement system cost-effective and portable. - Highlights: • We report acoustical waveform, and acoustical spectroscopy measurements and analysis in a laser-induced plasma of a different metals in air. • Both piezo and microphone transducer were used. • The acoustical spectra of the emission were obtained when the sample (and plasma) were enclosed in experimental chamber. • The acquired acoustical spectra are time-integrated and the frequency peaks were sharp and relatively isolated. • Finally, both time and frequency resolved wavelet spectrogram present a novel method of observing laser-induced plasma behavior.

  1. Rare Earth Elements as Potential Biosignatures on Mars in SuperCam Time Resolved Laser Fluorescence Spectroscopy Data

    Science.gov (United States)

    Ollila, A.; Beyssac, O.; Sharma, S. K.; Misra, A. K.; Clegg, S. M.; Gauthier, M.; Wiens, R. C.; Maurice, S.; Gasnault, O.; Lanza, N.

    2017-12-01

    The rare earth elements (REE, La to Lu) are a group of elements with similar chemical properties that are generally present in geologic materials at trace concentrations. REEs may be concentrated via processes such as igneous fractional crystallization in accessory minerals, e.g. apatite, zircon, and titanite. Additionally, however, concentrations of REE may serve to identify regions of high astrobiological interest. For example, Fe-oxyhydroxide deposits in hydrothermal vent systems and biologically related manganese nodules may be enriched in REEs. REEs have not been measured in situ on Mars, therefore their prevalence and distribution on Mars is as yet unknown, except as observed in martian meteorites. SuperCam is a survey instrument that will analyze materials around the Mars 2020 rover using a variety of spectral techniques including laser-induced breakdown spectroscopy (LIBS), Raman, VIS-IR, and time-resolved laser fluorescence (TRLF) spectroscopy. Recently, the SuperCam Engineering Development Unit was tested at the Los Alamos National Laboratory for its capabilities to detect REEs in minerals using TRLF spectroscopy. While this instrument was not designed to precisely replicate the flight model, the spectral resolution and light transmission was sufficient to obtain TRLF spectra on a number of minerals demonstrating a variety of REE luminescent centers. These include apatite (Sm3+, Nd3+, Eu3+, Dy3+), fluorite (Ho3+, Sm3+, Dy3+, Nd3+), and zircon (Er3+, Pr3+, Nd3+). Future work includes expanding this suite to include minerals associated with biological activities, for example Mn-oxides (desert varnish and manganese nodules), hydrothermal Fe-oxides, and stromatolite-associated carbonates. In this way and in combination with its other techniques, SuperCam may direct the rover team to perform further analyses of similar samples by the in situ chemical and mineralogical suite of instruments, or aid in prioritization for sample return.

  2. Watching proteins function with time-resolved x-ray crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Šrajer, Vukica; Schmidt, Marius

    2017-08-22

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol. 305 115–54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201–41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol. 22 651–9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237–51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5–20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242–6, Barends et al 2015 Science 350 445–50, Pande et al 2016 Science 352 725–9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs. We

  3. Watching proteins function with time-resolved x-ray crystallography

    International Nuclear Information System (INIS)

    Šrajer, Vukica; Schmidt, Marius

    2017-01-01

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol . 305 115–54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201–41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol . 22 651–9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237–51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5–20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242–6, Barends et al 2015 Science 350 445–50, Pande et al 2016 Science 352 725–9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs

  4. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes

    Science.gov (United States)

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  5. Time resolved studies of H2+ dissociation with phase-stabilized laser pulses

    International Nuclear Information System (INIS)

    Fischer, Bettina

    2010-01-01

    In the course of this thesis, experimental studies on the dissociation of H 2 + (H 2 + →p+H) in ultrashort laser pulses with a stabilized carrier-envelope phase (CEP) were carried out. In single-pulse measurements, the ability to control the emission direction of low energetic protons, i.e. the localization of the bound electron at one of the nuclei after dissociation, by the CEP was demonstrated. The coincident detection of the emitted protons and electrons and the measurement of their three-dimensional momentum vectors with a reaction microscope allowed to clarify the localization mechanism. Further control was achieved by a pump-control scheme with two timedelayed CEP-stabilized laser pulses. Here the neutral H 2 molecule was ionized in the first pulse and dissociation was induced by the second pulse. Electron localization was shown to depend on the properties of the bound nuclear wave packet in H 2 + at the time the control pulse is applied, demonstrating the ability to use the shape and dynamics of the nuclear wave packet as control parameters. Wave packet simulations were performed reproducing qualitatively the experimental results of the single and the two-pulse measurements. For both control schemes, intuitive models are presented, which qualitatively explain the main features of the obtained results. (orig.)

  6. Fiber-optic laser-induced breakdown spectroscopy of zirconium metal in air: Special features of the plasma produced by a long-pulse laser

    Science.gov (United States)

    Matsumoto, Ayumu; Ohba, Hironori; Toshimitsu, Masaaki; Akaoka, Katsuaki; Ruas, Alexandre; Sakka, Tetsuo; Wakaida, Ikuo

    2018-04-01

    The decommissioning of the Tokyo Electric Power Company (TEPCO) Fukushima Daiichi Nuclear Power Plant is an essential issue in nuclear R&D. Fiber-optic laser-induced breakdown spectroscopy (Fiber-optic LIBS) could be used for in-situ elemental analysis of the inside of the damaged reactors. To improve the performances under difficult conditions, using a long-pulse laser can be an efficient alternative. In this work, the emission spectra of zirconium metal in air obtained for a normal-pulse laser (6 ns) and a long-pulse laser (100 ns) (wavelength: 1064 nm, pulse energy: 12.5 mJ, spot diameter: 0.35 mm) are compared to investigate the fundamental aspects of fiber-optic LIBS with the long-pulse laser. The spectral features are considerably different: when the long-pulse laser is used, the atomic and molecular emission is remarkably enhanced. The enhancement of the atomic emission at the near infrared (NIR) region would lead to the observation of emission lines with minimum overlapping. To understand the differences in the spectra induced respectively from the normal-pulse laser and the long-pulse laser, photodiode signals, time-resolved spectra, plasma parameters, emission from the ambient air, and emission regions are investigated, showing the particular characteristics of the plasma produced by the long-pulse laser.

  7. Resonance-enhanced laser-induced plasma spectroscopy for sensitive elemental analysis: Elucidation of enhancement mechanisms

    International Nuclear Information System (INIS)

    Lui, S.L.; Cheung, N.H.

    2002-01-01

    When performing laser-induced plasma spectroscopy for elemental analysis, the analyte signal-to-noise ratio increased from four to over fifty if the plume was reheated by a dye laser pulse tuned to resonant absorption. Time-resolved studies showed that the enhancement was not due to resonance photoionization. Rather, efficient and controlled rekindling of a larger plume volume was the key mechanism. The signal-to-noise ratio further increased to over a hundred if the atmosphere was replaced by a low-pressure heavy inert gas. The ambient gas helped confine and thermally insulate the expanding vapor

  8. Femtosecond Time-Resolved Resonance-Enhanced CARS of Gaseous Iodine at Room Temperature

    International Nuclear Information System (INIS)

    He Ping; Fan Rong-Wei; Xia Yuan-Qin; Yu Xin; Chen De-Ying; Yao Yong

    2011-01-01

    Time-resolved resonance-enhanced coherent anti-Stokes Raman scattering (CARS) is applied to investigate molecular dynamics in gaseous iodine. 40 fs laser pulses are applied to create and monitor the high vibrational states of iodine at room temperature (corresponding to a vapor pressure as low as about 35 Pa) by femtosecond time-resolved CARS. Depending on the time delay between the probe pulse and the pump/Stokes pulse pairs, the high vibrational states both on the electronically ground states and the excited states can be detected as oscillations in the CARS transient signal. It is proved that the femtosecond time-resolved CARS technique is a promising candidate for investigating the molecular dynamics of a low concentration system and can be applied to environmental and atmospheric monitoring measurements. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. A vacuum-UV laser-induced fluorescence experiment for measurement of rotationally and vibrationally excited H2

    NARCIS (Netherlands)

    Vankan, P.J.W.; Heil, S.B.S.; Mazouffre, S.; Engeln, R.A.H.; Schram, D.C.; Döbele, H.F.

    2004-01-01

    An experimental setup is built to detect spatially resolved rovibrationally excited hydrogen molecules via laser-induced fluorescence. To excite the hydrogen molecules, laser radiation is produced in the vacuum UV part of the spectrum. The laser radiation is tunable between 120 nm and 230 nm and has

  10. Time-Resolved K-shell Photoabsorption Edge Measurement in a Strongly Coupled Matter Driven by Laser-converted Radiation

    Science.gov (United States)

    Zhao, Yang; Yang, Jia-Min; Zhang, Ji-Yan; Yang, Guo-Hong; Xiong, Gang; Wei, Min-Xi; Song, Tian-Ming; Zhang, Zhi-Yu

    2013-06-01

    A time-resolved K edge absorption measurement of warm dense KCl was performed on Shenguang II laser facility. The x-ray radiation driven shocks were adopted to take colliding shocks compression. By using Dog bone hohlraum the CH/KCl/CH sample was shielded from the laser hitting point to suppress the M band preheating and enhance the compressibility. Thus, an unexplored and extreme region of the plasma state with the maximum 5 times solid density and temperature lower than 3 eV (with coupling constant Γii around 100) was first obtained. The photoabsorption spectra of chlorine near the K-shell edge have been measured with a crystal spectrometer using a short x-ray backlighter. The K edge red shift up to 11.7 eV and broadening of 15.2 eV were obtained for the maximum compression. The electron temperature, inferred by Fermi-Dirac fit of the measured K-edge broadening, was consistent with the hydrodynamic predictions. The comparison of the K edge shift with a plasma model, in which the ionization effect, continuum lowering and partial degeneracy are considered, shows that more improvements are desired to describe in details the variation of K edge shift. This work might extend future study of WDM in extreme conditions of high compression.

  11. Time-resolved temperature measurements in a rapid compression machine using quantum cascade laser absorption in the intrapulse mode

    KAUST Repository

    Nasir, Ehson Fawad

    2016-07-16

    A temperature sensor based on the intrapulse absorption spectroscopy technique has been developed to measure in situ temperature time-histories in a rapid compression machine (RCM). Two quantum-cascade lasers (QCLs) emitting near 4.55μm and 4.89μm were operated in pulsed mode, causing a frequency "down-chirp" across two ro-vibrational transitions of carbon monoxide. The down-chirp phenomenon resulted in large spectral tuning (δν ∼2.8cm-1) within a single pulse of each laser at a high pulse repetition frequency (100kHz). The wide tuning range allowed the application of the two-line thermometry technique, thus making the sensor quantitative and calibration-free. The sensor was first tested in non-reactive CO-N2 gas mixtures in the RCM and then applied to cases of n-pentane oxidation. Experiments were carried out for end of compression (EOC) pressures and temperatures ranging 9.21-15.32bar and 745-827K, respectively. Measured EOC temperatures agreed with isentropic calculations within 5%. Temperature rise measured during the first-stage ignition of n-pentane is over-predicted by zero-dimensional kinetic simulations. This work presents, for the first time, highly time-resolved temperature measurements in reactive and non-reactive rapid compression machine experiments. © 2016 Elsevier Ltd.

  12. High resolution time- and 2-dimensional space-resolved x-ray imaging of plasmas at NOVA

    International Nuclear Information System (INIS)

    Landen, O.L.

    1992-01-01

    A streaked multiple pinhole camera technique, first used by P. Choi et al. to record time- and 2-D space-resolved soft X-ray images of plasma pinches, has been implemented on laser plasmas at NOVA. The instrument is particularly useful for time-resolved imaging of small sources ( 2.5 key imaging, complementing the existing 1--3 key streaked X-ray microscope capabilities at NOVA

  13. Infrared laser-induced chemical reactions

    International Nuclear Information System (INIS)

    Katayama, Mikio

    1978-01-01

    The experimental means which clearly distinguishes between infrared ray-induced reactions and thermal reactions has been furnished for the first time when an intense monochromatic light source has been obtained by the development of infrared laser. Consequently, infrared laser-induced chemical reactions have started to develop as one field of chemical reaction researches. Researches of laser-induced chemical reactions have become new means for the researches of chemical reactions since they were highlighted as a new promising technique for isotope separation. Specifically, since the success has been reported in 235 U separation using laser in 1974, comparison of this method with conventional separation techniques from the economic point of view has been conducted, and it was estimated by some people that the laser isotope separation is cheaper. This report briefly describes on the excitation of oscillation and reaction rate, and introduces the chemical reactions induced by CW laser and TEA CO 2 laser. Dependence of reaction yield on laser power, measurement of the absorbed quantity of infrared ray and excitation mechanism are explained. Next, isomerizing reactions are reported, and finally, isotope separation is explained. It was found that infrared laser-induced chemical reactions have the selectivity for isotopes. Since it is evident that there are many examples different from thermal and photo-chemical reactions, future collection of the data is expected. (Wakatsuki, Y.)

  14. Time-resolved soft x-ray absorption setup using multi-bunch operation modes at synchrotrons

    International Nuclear Information System (INIS)

    Stebel, L.; Sigalotti, P.; Ressel, B.; Cautero, G.; Malvestuto, M.; Capogrosso, V.; Bondino, F.; Magnano, E.; Parmigiani, F.

    2011-01-01

    Here, we report on a novel experimental apparatus for performing time-resolved soft x-ray absorption spectroscopy in the sub-ns time scale using non-hybrid multi-bunch mode synchrotron radiation. The present setup is based on a variable repetition rate Ti:sapphire laser (pump pulse) synchronized with the ∼500 MHz x-ray synchrotron radiation bunches and on a detection system that discriminates and singles out the significant x-ray photon pulses by means of a custom made photon counting unit. The whole setup has been validated by measuring the time evolution of the L 3 absorption edge during the melting and the solidification of a Ge single crystal irradiated by an intense ultrafast laser pulse. These results pave the way for performing synchrotron time-resolved experiments in the sub-ns time domain with variable repetition rate exploiting the full flux of the synchrotron radiation.

  15. Theory of time-resolved inelastic x-ray diffraction

    DEFF Research Database (Denmark)

    Lorenz, Ulf; Møller, Klaus Braagaard; Henriksen, Niels Engholm

    2010-01-01

    Starting from a general theory of time-resolved x-ray scattering, we derive a convenient expression for the diffraction signal based on a careful analysis of the relevant inelastic scattering processes. We demonstrate that the resulting inelastic limit applies to a wider variety of experimental...... conditions than similar, previously derived formulas, and it directly allows the application of selection rules when interpreting diffraction signals. Furthermore, we present a simple extension to systems simultaneously illuminated by x rays and a laser beam....

  16. All-optical time-resolved measurement of laser energy modulation in a relativistic electron beam

    Directory of Open Access Journals (Sweden)

    D. Xiang

    2011-11-01

    Full Text Available We propose and demonstrate an all-optical method to measure laser energy modulation in a relativistic electron beam. In this scheme the time-dependent energy modulation generated from the electron-laser interaction in an undulator is converted into time-dependent density modulation with a chicane, which is measured to infer the laser energy modulation. The method, in principle, is capable of simultaneously providing information on femtosecond time scale and 10^{-5} energy scale not accessible with conventional methods. We anticipate that this method may have wide applications in many laser-based advanced beam manipulation techniques.

  17. Non-thermal effects on femtosecond laser ablation of polymers extracted from the oscillation of time-resolved reflectivity

    Energy Technology Data Exchange (ETDEWEB)

    Kumada, Takayuki, E-mail: kumada.takayuki@jaea.go.jp; Akagi, Hiroshi; Itakura, Ryuji; Otobe, Tomohito; Nishikino, Masaharu; Yokoyama, Atsushi [Kansai Photon Science Institute, Japan Atomic Energy Agency, Umemidai, Kizugawa, Kyoto 619-0215 (Japan)

    2015-06-01

    The dynamics of femtosecond laser ablation of transparent polymers were examined using time-resolved reflectivity. When these polymers were irradiated by a pump pulse with fluence above the ablation threshold of 0.8–2.0 J/cm{sup 2}, we observed the oscillation of the reflectivity caused by the interference between the reflected probe pulses from the sample surface and the thin layer due to the non-thermal photomechanical effects of spallation. As the fluence of the pump pulse increased, the separation velocity of the thin layer increased from 6 km/s to the asymptotic value of 11 km/s. It is suggested that the velocities are determined by shock-wave velocities of the photo-excited layer.

  18. Laser micromachining of indium tin oxide films on polymer substrates by laser-induced delamination

    International Nuclear Information System (INIS)

    Willis, David A; Dreier, Adam L

    2009-01-01

    A Q-switched neodymium : yttrium-aluminium-garnet (Nd : YAG) laser was used to ablate indium tin oxide (ITO) thin films from polyethylene terephthalate substrates. Film damage and partial removal with no evidence of a melt zone was observed above 1.7 J cm -2 . Above the film removal threshold (3.3 J cm -2 ) the entire film thickness was removed without substrate damage, suggesting that ablation was a result of delamination of the film in the solid phase. Measurements of ablated fragment velocities near the ablation threshold were consistent with calculations of velocities caused by stress-induced delamination of the ITO film, except for a high velocity component at higher fluences. Nanosecond time-resolved shadowgraph photography revealed that the high velocity component was a shock wave induced by the rapid compression of ambient air when the film delaminated.

  19. Time resolved laser induced fluorescence on argon intermediate pressure microwave discharges: Measuring the depopulation rates of the 4p and 5p excited levels as induced by electron and atom collisions

    Science.gov (United States)

    Palomares, J. M.; Graef, W. A. A. D.; Hübner, S.; van der Mullen, J. J. A. M.

    2013-10-01

    The reaction kinetics in the excitation space of Ar is explored by means of Laser Induced Fluorescence (LIF) experiments using the combination of high rep-rate YAG-Dye laser systems with a well defined and easily controllable surfatron induced plasma setup. The high rep-rate favors the photon statistics while the low energy per pulse avoids intrusive plasma laser interactions. An analysis shows that, despite the low energy per pulse, saturation can still be achieved even when the geometrical overlap and spectral overlap are optimal. Out of the various studies that can be performed with this setup we confine the current paper to the study of the direct responses to the laser pump action of three 4p and one 5p levels of the Ar system. By changing the plasma in a controlled way one gets for these levels the rates of electron and atom quenching and therewith the total destruction rates of electron and atom collisions. Comparison with literature shows that the classical hard sphere collision rate derived for hydrogen gives a good description for the observed electron quenching (e-quenching) in Ar whereas for heavy particle quenching (a-quenching) this agreement was only found for the 5p level. An important parameter in the study of electron excitation kinetics is the location of the boundary in the atomic system for which the number of electron collisions per radiative life time equals unity. It is observed that for the Ar system this boundary is positioned lower than what is expected on grounds of H-like formulas.

  20. Detecting aromatic compounds on planetary surfaces using ultraviolet time-resolved fluorescence spectroscopy

    Science.gov (United States)

    Eshelman, E.; Daly, M. G.; Slater, G.; Cloutis, E.

    2018-02-01

    Many aromatic organic molecules exhibit strong and characteristic fluorescence when excited with ultraviolet radiation. As laser excitation in the ultraviolet generates both fluorescence and resonantly enhanced Raman scattering of aromatic vibrational modes, combined Raman and fluorescence instruments have been proposed to search for organic compounds on Mars. In this work the time-resolved fluorescence of a suite of 24 compounds composed of 2-5 ringed alternant, non-alternant, and heterocyclic PAHs was measured. Fluorescence instrumentation with similar specifications to a putative flight instrument was capable of observing the fluorescence decay of these compounds with a sub-ns resolution. Incorporating time-resolved capabilities was also found to increase the ability to discriminate between individual PAHs. Incorporating time-resolved fluorescence capabilities into an ultraviolet gated Raman system intended for a rover or lander can increase the ability to detect and characterize PAHs on planetary surfaces.

  1. Enhancement and stabilization of plasma using collinear long-short double-pulse laser-induced breakdown spectroscopy

    Science.gov (United States)

    Cui, Minchao; Deguchi, Yoshihiro; Wang, Zhenzhen; Fujita, Yuki; Liu, Renwei; Shiou, Fang-Jung; Zhao, Shengdun

    2018-04-01

    A collinear long-short dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) method was employed to enhance and stabilize the laser-induced plasma from steel sample. The long-pulse-width laser beam with the pulse width of 60 μs was generated by a Nd: YAG laser which was operated at FR (free running) mode. The comparative experiments were carried out between single pulse LIBS (SP-LIBS) and long-short DP-LIBS. The recorded results showed that the emission intensities and the temperature of plasma were enhanced by long-short DP-LIBS. The plasma images showed that the plasma was bigger and had a longer lifetime in long-short DP-LIBS situation. Through the calculation of time-resolved plasma temperature and intensity ratio, it can be concluded that the plasma was stabilized by the long-pulse-width laser beam. The long-short DP-LIBS method also generated the stable plasma condition from the samples with different initial temperatures, which overcame the difficulties of LIBS in the online measurement for steel production line.

  2. Laser-induced interactions

    International Nuclear Information System (INIS)

    Green, W.R.

    1979-01-01

    This dissertation discusses some of the new ways that lasers can be used to control the energy flow in a medium. Experimental and theoretical considerations of the laser-induced collision are discussed. The laser-induced collision is a process in which a laser is used to selectively transfer energy from a state in one atomic or molecular species to another state in a different species. The first experimental demonstration of this process is described, along with later experiments in which lasers were used to create collisional cross sections as large as 10 - 13 cm 2 . Laser-induced collisions utilizing both a dipole-dipole interaction and dipole-quadrupole interaction have been experimentally demonstrated. The theoretical aspects of other related processes such as laser-induced spin-exchange, collision induced Raman emission, and laser-induced charge transfer are discussed. Experimental systems that could be used to demonstrate these various processes are presented. An experiment which produced an inversion of the resonance line of an ion by optical pumping of the neutral atom is described. This type of scheme has been proposed as a possible method for constructing VUV and x-ray lasers

  3. A Polarization-Adjustable Picosecond Deep-Ultraviolet Laser for Spin- and Angle-Resolved Photoemission Spectroscopy

    International Nuclear Information System (INIS)

    Zhang Feng-Feng; Yang Feng; Zhang Shen-Jin; Wang Zhi-Min; Xu Feng-Liang; Peng Qin-Jun; Zhang Jing-Yuan; Xu Zu-Yan; Wang Xiao-Yang; Chen Chuang-Tian

    2012-01-01

    We report on a polarization-adjustable picosecond deep-ultraviolet (DUV) laser at 177.3 nm. The DUV laser was produced by second harmonic generation from a mode-locked laser at 355 nm in nonlinear optical crystal KBBF. The laser delivered a maximum average output power of 1.1 mW at 177.3 nm. The polarization of the 177.3 nm beam was adjusted with linear and circular polarization by means of λ/4 and λ/2 wave plates. To the best of our knowledge, the laser has been employed as the circularly polarized and linearly polarized DUV light source for a spin- and angle-resolved photoemission spectroscopy with high resolution for the first time. (fundamental areas of phenomenology(including applications))

  4. TELEGRAPHS TO INCANDESCENT LAMPS: A SEQUENTIAL PROCESS OF INNOVATION

    Directory of Open Access Journals (Sweden)

    Laurence J. Malone

    2000-01-01

    Full Text Available This paper outlines a sequential process of technological innovation in the emergence of the electrical industry in the United States from 1830 to 1880. Successive inventions that realize the commercial possibilities of electricity provided the foundation for an industry where technical knowledge, invention and diffusion were ultimately consolidated within the managerial structure of new firms. The genesis of the industry is traced, sequentially, through the development of the telegraph, arc light and incandescent lamp. Exploring the origins of the telegraph and incandescent lamp reveals a process where a series of inventions and firms result from successful efforts touse scientific principles to create new commodities and markets.

  5. Characterization of Ultrafast Laser Pulses using a Low-dispersion Frequency Resolved Optical Grating Spectrometer

    Science.gov (United States)

    Whitelock, Hope; Bishop, Michael; Khosravi, Soroush; Obaid, Razib; Berrah, Nora

    2016-05-01

    A low dispersion frequency-resolved optical gating (FROG) spectrometer was designed to characterize ultrashort (non-colinear optical parametric amplifier. This instrument splits a laser pulse into two replicas with a 90:10 intensity ratio using a thin pellicle beam-splitter and then recombines the pulses in a birefringent medium. The instrument detects a wavelength-sensitive change in polarization of the weak probe pulse in the presence of the stronger pump pulse inside the birefringent medium. Scanning the time delay between the two pulses and acquiring spectra allows for characterization of the frequency and time content of ultrafast laser pulses, that is needed for interpretation of experimental results obtained from these ultrafast laser systems. Funded by the DoE-BES, Grant No. DE-SC0012376.

  6. C.A.R.S. monitor of fragmentation and secondary reactions during U.V. laser induced decomposition of benzene

    International Nuclear Information System (INIS)

    Fantoni, R.; Giorgi, M.; Moliterni, A.G.G.; Lipinska-Kalita, K.E.

    1992-01-01

    Among the different types of non-linear Raman spectroscopies, vibrational CARS (Coherent AntiStokes Raman Scattering, probing Raman active vibrational modes) has proved to be a valuable on-line technique in the study of laser induced processes involving gas phase reactants, such as the deposition of thin films or synthesis of ultrafine powders. The application of lasers in total decomposition (mineralisation) of gas-phase pollutants has been considered, and test experiments have been started on benzene as a precursor of a large family of aromatic pollutants. This paper reports on the use of a broad-band CARS to monitor, on-line, the laser induced dissociation of benzene at 266 nm. The electronically excited C 2 produced during the process was detected by RECARS (Resonantly Enhanced CARS) in the visible region. The laser induced primary decomposition and secondary reaction were studied under collisional conditions upon the addition of inert (N 2 ) and reactive (O 2 ) partners. Reaction intermediates produced in electronically excited states were detected by time resolved spontaneous emission spectroscopy performed with the same set-up in the absence of probe lasers

  7. Ultraviolet versus infrared: Effects of ablation laser wavelength on the expansion of laser-induced plasma into one-atmosphere argon gas

    International Nuclear Information System (INIS)

    Ma Qianli; Motto-Ros, Vincent; Laye, Fabrice; Yu Jin; Lei Wenqi; Bai Xueshi; Zheng Lijuan; Zeng Heping

    2012-01-01

    Laser-induced plasma from an aluminum target in one-atmosphere argon background has been investigated with ablation using nanosecond ultraviolet (UV: 355 nm) or infrared (IR: 1064 nm) laser pulses. Time- and space-resolved emission spectroscopy was used as a diagnostics tool to have access to the plasma parameters during its propagation into the background, such as optical emission intensity, electron density, and temperature. The specific feature of nanosecond laser ablation is that the pulse duration is significantly longer than the initiation time of the plasma. Laser-supported absorption wave due to post-ablation absorption of the laser radiation by the vapor plume and the shocked background gas plays a dominant role in the propagation and subsequently the behavior of the plasma. We demonstrate that the difference in absorption rate between UV and IR radiations leads to different propagation behaviors of the plasma produced with these radiations. The consequence is that higher electron density and temperature are observed for UV ablation. While for IR ablation, the plasma is found with lower electron density and temperature in a larger and more homogenous axial profile. The difference is also that for UV ablation, the background gas is principally evacuated by the expansion of the vapor plume as predicted by the standard piston model. While for IR ablation, the background gas is effectively mixed to the ejected vapor at least hundreds of nanoseconds after the initiation of the plasma. Our observations suggest a description by laser-supported combustion wave for the propagation of the plasma produced by UV laser, while that by laser-supported detonation wave for the propagation of the plasma produced by IR laser. Finally, practical consequences of specific expansion behavior for UV or IR ablation are discussed in terms of analytical performance promised by corresponding plasmas for application with laser-induced breakdown spectroscopy.

  8. Development of a method for the in situ measurement of polycyclic aromatic hydrocarbons with time resolved laser fluorescence spectroscopy. Final report

    International Nuclear Information System (INIS)

    Jaeger, E.; Weissbach, A.; Koenig, F.; Paul, T.

    1994-01-01

    A method was developed for the detection of polycyclic aromatic hydrocarbons (PAH) in water on the basis of time resolved laser fluorescence spectroscopy. The detection of the sum of PAH in ground- and surfacewater is possible with high sensitivity and selectivity. The fluorescence of other substances like chlorophyll or dissolved organic matter is suppressed by a special choice of spectral and temporal windows. The method works without any sample preparation and gives the results in a very short time. On the basis of this method a first device was built with a sensitivity of 0,1 μg/1 PAH in water. The measuring time was less than one minute. The on site use of this prototype is possible because of the use of a battery driven nitrogen laser together with a notebook computer for system control The application of fiberoptic cables up to 30 meter length makes it possible to use the system for screening and monitoring of polluted areas both in existing wells and without any well by using geological probe techniques. (orig.) [de

  9. All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bohling, Christian [Institut fuer Physik und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany); SECOPTA GmbH, Ostendstr. 25, 12459 Berlin (Germany)], E-mail: c.bohling@pe.tu-clausthal.de; Hohmann, Konrad [Institut fuer Physik und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany)], E-mail: k.hohmann@pe.tu-clausthal.de; Scheel, Dirk [Systektum GmbH, Arnold-Sommerfeld-Str. 6, 38678 Clausthal-Zellerfeld (Germany)], E-mail: d.scheel@systektum.de; Bauer, Christoph [LaserAnwendungsCentrum (LAC) Technische Universitaet Clausthal, Arnold-Sommerfeld-Strasse 6, 38678 Clausthal-Zellerfeld (Germany)], E-mail: c.bauer@pe.tu-clausthal.de; Schippers, Wolfgang [Institut fuer Physik und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany)], E-mail: w.schippers@pe.tu-clausthal.de; Burgmeier, Joerg [LaserAnwendungsCentrum (LAC) Technische Universitaet Clausthal, Arnold-Sommerfeld-Strasse 6, 38678 Clausthal-Zellerfeld (Germany)], E-mail: j.burgmeier@pe.tu-clausthal.de; Willer, Ulrike [Institut fuer Physik und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany); LaserAnwendungsCentrum (LAC) Technische Universitaet Clausthal, Arnold-Sommerfeld-Strasse 6, 38678 Clausthal-Zellerfeld (Germany)], E-mail: u.willer@pe.tu-clausthal.de; Holl, Gerhard [Wehrwissenschaftliches Institut fuer Werk-, Explosiv- und Betriebsstoffe (WIWEB), Grosses Cent, 53913, Swisttal (Germany)], E-mail: gerhardholl@bwb.orgd; Schade, Wolfgang [Institut fuer Physik und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany); LaserAnwendungsCentrum (LAC) Technische Universitaet Clausthal, Arnold-Sommerfeld-Strasse 6, 38678 Clausthal-Zellerfeld (Germany)], E-mail: w.schade@pe.tu-clausthal.de

    2007-12-15

    An all-fiber-coupled laser-induced breakdown spectroscopy (LIBS) sensor device is developed. A passively Q-switched Cr{sup 4+}Nd{sup 3+}:YAG microchip laser is amplified within an Yb fiber amplifier, thus generating high power laser pulses (pulse energy E{sub p} = 0.8 mJ, wavelength {lambda} = 1064 nm, repetition rate f{sub rep.} = 5 kHz, pulse duration t{sub p} = 1.2 ns). A passive (LMA) optical fiber is spliced to the active fiber of an Yb fiber amplifier for direct guiding of high power laser pulses to the sensor tip. In front of the sensor a plasma is generated on the surface to be analyzed. The plasma emission is collected by a set of optical fibers also integrated into the sensor tip. The spectrally resolved LIBS spectra are processed by application of principal component analysis (PCA) and analyzed together with the time-resolved spectra with neural networks. Such procedure allows accurate analysis of samples by LIBS even for materials with similar atomic composition. The system has been tested successfully during field measurements at the German Armed Forces test facility at Oberjettenberg. The LIBS sensor is not restricted to anti-personnel mine detection but has also the potential to be suitable for analysis of bulk explosives and surface contaminations with explosives, e.g. for the detection of improvised explosive devices (IEDs)

  10. Femtosecond Time-resolved Optical Polarigraphy (FTOP)

    International Nuclear Information System (INIS)

    Aoshima, S.; Fujimoto, M.; Hosoda, M.; Tsuchiya, Y.

    2000-01-01

    A novel time-resolved imaging technique named FTOP (Femtosecond Time-resolved Optical Polarigraphy) for visualizing the ultrafast propagation dynamics of intense light pulses in a medium has been proposed and demonstrated. Femtosecond snapshot images can be created with a high spatial resolution by imaging only the polarization components of the probe pulse; these polarization components change due to the instantaneous birefringence induced by the pump pulse in the medium. Ultrafast temporal changes in the two-dimensional spatial distribution of the optical pulse intensity were clearly visualized in consecutive images by changing the delay between the pump and probe. We observe that several filaments appear and then come together before the vacuum focus due to nonlinear effects in air. We also prove that filamentation dynamics such as the formation position and the propagation behavior are complex and are strongly affected by the pump energy. The results collected clearly show that this method FTOP succeeds for the first time in directly visualizing the ultrafast dynamics of the self-modulated nonlinear propagation of light. (author)

  11. Laser diagnostics of combustion phenomena related to engines/gas turbines. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Alden, Marcus [Lund Inst. of Technology (Sweden). Dept. of Combustion

    2000-05-01

    The following project has been a one year project bridging the time between the NUTEK program in 'Motorrelaterad foerbraenning' and the new STEM program in 'Energisystem i vaegfordon. The activities has included three Ph. D students and the project has been directed towards two main areas. The first area is the development and application of a new laser diagnostic technique based on laser-induced fluorescence from atomic species for measurements of two-dimensional temperatures in combustion systems. The technique has shown to have distinct advantages compared to more commonly used laser techniques and it has been applied both in engines (VOLVO PV) as well as in gas turbines (VOLVO Aero Corp.) A major advantage is the potential, recently investigated, to make measurements in sooty environments. The second area is in the area of development and application of a technique for measurements of two-dimensional soot volume fractions and particle sizes. The technique is called Laser-induced Incandescence, LII, and here a laser beam is heating the particle considerably above the flame temperature and by detecting the increased blackbody radiation, the parameters above can be inferred. During the year most work has been to develop the technique, but distinct applications in burners, engines and model fires are planned.

  12. Radially resolved simulation of a high-gain free electron laser amplifier

    International Nuclear Information System (INIS)

    Fawley, W.M.; Prosnitz, D.; Doss, S.; Gelinas, R.

    1983-01-01

    The results of a two-dimensional simulation of a high-gain free electron laser (FEL) amplifier is presented. The simulation solves the inhomogeneous paraxial wave equation. The source term is radially resolved and is obtained by tracking the interaction of the laser field with localized macroparticles

  13. Laser-induced gratings in the gas phase excited via Raman-active transitions

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, D N [General Physics Inst., Russian Academy of Sciences, Moscow (Russian Federation); Bombach, R; Hemmerling, B; Hubschmid, W [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    We report on a new time resolved coherent Raman technique that is based on the generation of thermal gratings following a population change among molecular levels induced by stimulated Raman pumping. This is achieved by spatially and temporally overlapping intensity interference patterns generated independently by two lasers. When this technique is used in carbon dioxide, employing transitions which belong to the Q-branches of the {nu}{sub 1}/2{nu}{sub 2} Fermi dyad, it is possible to investigate molecular energy transfer processes. (author) 2 figs., 10 refs.

  14. Time resolved x-ray pinhole photography of compressed laser fusion targets

    International Nuclear Information System (INIS)

    Attwood, D.T.

    1976-01-01

    Use of the Livermore x-ray streak camera to temporally record x-ray pinhole images of laser compressed targets is described. Use is made of specially fabricated composite x-ray pinholes which are near diffraction limited for 6 A x-rays, but easily aligned with a He--Ne laser of 6328 A wavelength. With a 6 μm x-ray pinhole, the overall system can be aligned to 5 μm accuracy and provides implosion characteristics with space--time resolutions of approximately 6 μm and 15 psec. Acceptable criteria for pinhole alignment, requisite x-ray flux, and filter characteristics are discussed. Implosion characteristics are presented from our present experiments with 68 μm diameter glass microshell targets and 0.45 terawatt, 70 psec Nd laser pulses. Final implosion velocities in excess of 3 x 10 7 cm/sec are evident

  15. Time-resolved Chemical Imaging of Molecules by High-order Harmonics and Ultrashort Rescattering Electrons

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chii Dong [Kansas State Univ., Manhattan, KS (United States)

    2016-03-21

    Directly monitoring atomic motion during a molecular transformation with atomic-scale spatio-temporal resolution is a frontier of ultrafast optical science and physical chemistry. Here we provide the foundation for a new imaging method, fixed-angle broadband laser-induced electron scattering, based on structural retrieval by direct one-dimensional Fourier transform of a photoelectron energy distribution observed along the polarization direction of an intense ultrafast light pulse. The approach exploits the scattering of a broadband wave packet created by strong-field tunnel ionization to self-interrogate the molecular structure with picometre spatial resolution and bond specificity. With its inherent femtosecond resolution, combining our technique with molecular alignment can, in principle, provide the basis for time-resolved tomography for multi-dimensional transient structural determination.

  16. Plasma polarization spectroscopy. Time resolved spectroscopy in soft x-ray region on recombining plasma

    International Nuclear Information System (INIS)

    Iwamae, Atsushi; Hasuo, Masahiro; Atake, Makoto; Hasegawa, Noboru; Kawachi, Tetsuya

    2007-01-01

    We present an experimental study of polarization of emission radiations from recombining plasmas generated by the interaction of 60 fs ultra-short laser pulses with a gas jet. Time-resolved spectroscopy with a temporal resolution of 5 ps with repetitive accumulation is used to follow the recombination time histories. (author)

  17. Time-resolved fuel injector flow characterisation based on 3D laser Doppler vibrometry

    Science.gov (United States)

    Crua, Cyril; Heikal, Morgan R.

    2014-12-01

    Hydrodynamic turbulence and cavitation are known to play a significant role in high-pressure atomizers, but the small geometries and extreme operating conditions hinder the understanding of the flow’s characteristics. Diesel internal flow experiments are generally conducted using x-ray techniques or on transparent, and often enlarged, nozzles with different orifice geometries and surface roughness to those found in production injectors. In order to enable investigations of the fuel flow inside unmodified injectors, we have developed a new experimental approach to measure time-resolved vibration spectra of diesel nozzles using a 3D laser vibrometer. The technique we propose is based on the triangulation of the vibrometer and fuel pressure transducer signals, and enables the quantitative characterisation of quasi-cyclic internal flows without requiring modifications to the injector, the working fluid, or limiting the fuel injection pressure. The vibrometer, which uses the Doppler effect to measure the velocity of a vibrating object, was used to scan injector nozzle tips during the injection event. The data were processed using a discrete Fourier transform to provide time-resolved spectra for valve-closed-orifice, minisac and microsac nozzle geometries, and injection pressures ranging from 60 to 160 MPa, hence offering unprecedented insight into cyclic cavitation and internal mechanical dynamic processes. A peak was consistently found in the spectrograms between 6 and 7.5 kHz for all nozzles and injection pressures. Further evidence of a similar spectral peak was obtained from the fuel pressure transducer and a needle lift sensor mounted into the injector body. Evidence of propagation of the nozzle oscillations to the liquid sprays was obtained by recording high-speed videos of the near-nozzle diesel jet, and computing the fast Fourier transform for a number of pixel locations at the interface of the jets. This 6-7.5 kHz frequency peak is proposed to be the

  18. Time-resolved fuel injector flow characterisation based on 3D laser Doppler vibrometry

    International Nuclear Information System (INIS)

    Crua, Cyril; Heikal, Morgan R

    2014-01-01

    Hydrodynamic turbulence and cavitation are known to play a significant role in high-pressure atomizers, but the small geometries and extreme operating conditions hinder the understanding of the flow’s characteristics. Diesel internal flow experiments are generally conducted using x-ray techniques or on transparent, and often enlarged, nozzles with different orifice geometries and surface roughness to those found in production injectors. In order to enable investigations of the fuel flow inside unmodified injectors, we have developed a new experimental approach to measure time-resolved vibration spectra of diesel nozzles using a 3D laser vibrometer. The technique we propose is based on the triangulation of the vibrometer and fuel pressure transducer signals, and enables the quantitative characterisation of quasi-cyclic internal flows without requiring modifications to the injector, the working fluid, or limiting the fuel injection pressure. The vibrometer, which uses the Doppler effect to measure the velocity of a vibrating object, was used to scan injector nozzle tips during the injection event. The data were processed using a discrete Fourier transform to provide time-resolved spectra for valve-closed-orifice, minisac and microsac nozzle geometries, and injection pressures ranging from 60 to 160 MPa, hence offering unprecedented insight into cyclic cavitation and internal mechanical dynamic processes. A peak was consistently found in the spectrograms between 6 and 7.5 kHz for all nozzles and injection pressures. Further evidence of a similar spectral peak was obtained from the fuel pressure transducer and a needle lift sensor mounted into the injector body. Evidence of propagation of the nozzle oscillations to the liquid sprays was obtained by recording high-speed videos of the near-nozzle diesel jet, and computing the fast Fourier transform for a number of pixel locations at the interface of the jets. This 6–7.5 kHz frequency peak is proposed to be the

  19. Research on effect of China’s energy saving policy of phase-out incandescent lamps

    Science.gov (United States)

    Ding, Qing; Zhao, Yuejin; Liang, Xiuying; Lin, Ling

    2017-11-01

    China’s energy saving policy of phase-out of incandescent lamps have been introduced and a comprehensive evaluation framework has been put forward. The impact of the implementation of the policy on manufacturing enterprises and places of sale, lighting industry and domestic and foreign markets, as well as the effect of energy conservation and emission reduction have been analyzed from micro, meso and macro layers. The research results show that, under the guidance of the policy, the orderly product mix transformation has been seen in incandescent lamp manufacturing enterprises, incandescent lamps gradually exit the Chinese mainstream lighting product market, and the energy conservation and emission reduction effect is remarkable.

  20. Time resolved techniques: An overview

    International Nuclear Information System (INIS)

    Larson, B.C.; Tischler, J.Z.

    1990-06-01

    Synchrotron sources provide exceptional opportunities for carrying out time-resolved x-ray diffraction investigations. The high intensity, high angular resolution, and continuously tunable energy spectrum of synchrotron x-ray beams lend themselves directly to carrying out sophisticated time-resolved x-ray scattering measurements on a wide range of materials and phenomena. When these attributes are coupled with the pulsed time-structure of synchrotron sources, entirely new time-resolved scattering possibilities are opened. Synchrotron beams typically consist of sub-nanosecond pulses of x-rays separated in time by a few tens of nanoseconds to a few hundred nanoseconds so that these beams appear as continuous x-ray sources for investigations of phenomena on time scales ranging from hours down to microseconds. Studies requiring time-resolution ranging from microseconds to fractions of a nanosecond can be carried out in a triggering mode by stimulating the phenomena under investigation in coincidence with the x-ray pulses. Time resolution on the picosecond scale can, in principle, be achieved through the use of streak camera techniques in which the time structure of the individual x-ray pulses are viewed as quasi-continuous sources with ∼100--200 picoseconds duration. Techniques for carrying out time-resolved scattering measurements on time scales varying from picoseconds to kiloseconds at present and proposed synchrotron sources are discussed and examples of time-resolved studies are cited. 17 refs., 8 figs

  1. Spatially and temporally resolved x-ray emission from imploding laser fusion targets

    International Nuclear Information System (INIS)

    Attwood, D.T.; Coleman, L.W.; Boyle, M.J.; Phillion, D.W.; Swain, J.E.; Manes, K.R.; Larsen, J.T.

    1976-09-01

    The Livermore 15 psec x-ray streak camera has been used in conjunction with 6 μm diameter pinholes to record well resolved implosion histories of DT filled laser fusion targets. The space-time compression data provide clearly identified implosion velocities, typically 3 x 10 7 cm/sec for two-sided clamshell irradiation of a 70 μm/sup D/, .5 μm wall DT filled glass microshell. Single-sided irradiation results show hydrodynamic convergence at the target center, followed by an asymmetric but two-sided target disassembly. These experiments were performed at the two arm Janus Laser facility, which typically delivered a total of 0.4 TW in a 70 psec pulse for these experiments

  2. The time resolved measurement of ultrashort terahertz-band electric fields without an ultrashort probe

    International Nuclear Information System (INIS)

    Walsh, D. A.; Snedden, E. W.; Jamison, S. P.

    2015-01-01

    The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG (frequency resolved optical gating) measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe, and self-referenced FROG makes the technique inherently immune to timing jitter between the optical probe and THz pulse and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators

  3. Time resolved Thomson scattering diagnostic of pulsed gas metal arc welding (GMAW) process

    International Nuclear Information System (INIS)

    Kühn-Kauffeldt, M; Schein, J; Marquès, J L

    2014-01-01

    In this work a Thomson scattering diagnostic technique was applied to obtain time resolved electron temperature and density values during a gas metal arc welding (GMAW) process. The investigated GMAW process was run with aluminum wire (AlMg 4,5 Mn) with 1.2 mm diameter as a wire electrode, argon as a shielding gas and peak currents in the range of 400 A. Time resolved measurements could be achieved by triggering the laser pulse at shifted time positions with respect to the current pulse driving the process. Time evaluation of resulting electron temperatures and densities is used to investigate the state of the plasma in different phases of the current pulse and to determine the influence of the metal vapor and droplets on the plasma properties

  4. Intra- and intercycle interference of angle-resolved electron emission in laser-assisted XUV atomic ionization

    Science.gov (United States)

    Gramajo, A. A.; Della Picca, R.; López, S. D.; Arbó, D. G.

    2018-03-01

    A theoretical study of ionization of the hydrogen atom due to an XUV pulse in the presence of an infrared (IR) laser is presented. Well-established theories are usually used to describe the laser-assisted photoelectron effect: the well-known soft-photon approximation firstly posed by Maquet et al (2007 J. Mod. Opt. 54 1847) and Kazansky’s theory in (2010 Phys. Rev. A 82, 033420). However, these theories completely fail to predict the electron emission perpendicularly to the polarization direction. Making use of a semiclassical model (SCM), we study the angle-resolved energy distribution of PEs for the case that both fields are linearly polarized in the same direction. We thoroughly analyze and characterize two different emission regions in the angle-energy domain: (i) the parallel-like region with contribution of two classical trajectories per optical cycle and (ii) the perpendicular-like region with contribution of four classical trajectories per optical cycle. We show that our SCM is able to assess the interference patterns of the angle-resolved PE spectrum in the two different mentioned regions. Electron trajectories stemming from different optical laser cycles give rise to angle-independent intercycle interferences known as sidebands. These sidebands are modulated by an angle-dependent coarse-grained structure coming from the intracycle interference of the electron trajectories born during the same optical cycle. We show the accuracy of our SCM as a function of the time delay between the IR and the XUV pulses and also as a function of the laser intensity by comparing the semiclassical predictions of the angle-resolved PE spectrum with the continuum-distorted wave strong field approximation and the ab initio solution of the time-dependent Schrödinger equation.

  5. Radiation doses from radioactivity in incandescent mantles

    International Nuclear Information System (INIS)

    1985-01-01

    Thorium nitrate is used in the production of incandescent mantles for gas lanterns. In this report dose estimates are given for internal and external exposure that result from the use of the incandescent mantles for gas lanterns. The collective, effective dose equivalent for all users of gas mantles is estimated to be about 100 Sv per annum in the Netherlands. For the population involved (ca. 700,000 persons) this is roughly equivalent to 5% to 10% of the collective dose equivalent associated with exposure to radiation from natural sources. The major contribution to dose estimates comes from inhalation of radium during burning of the mantles. A pessimistic approach results in individual dose estimates for inhalation of up to 0.2 mSv. Consideration of dose consequences in case of a fire in a storage department learns that it is necessary for emergency personnel to wear respirators. It is concluded that the uncontrolled removal of used gas mantles to the environment (soil) does not result in a significant contribution to environmental radiation exposure. (Auth.)

  6. Development of in situ time-resolved Raman spectroscopy facility for dynamic shock loading in materials

    Science.gov (United States)

    Chaurasia, S.; Rastogi, V.; Rao, U.; Sijoy, C. D.; Mishra, V.; Deo, M. N.

    2017-11-01

    The transient state of excitation and relaxation processes in materials under shock compression can be investigated by coupling the laser driven shock facility with Raman spectroscopy. For this purpose, a time resolved Raman spectroscopy setup has been developed to monitor the physical and the chemical changes such as phase transitions, chemical reactions, molecular kinetics etc., under shock compression with nanosecond time resolution. This system consist of mainly three parts, a 2 J/8 ns Nd:YAG laser system used for generation of pump and probe beams, a Raman spectrometer with temporal and spectral resolution of 1.2 ns and 3 cm-1 respectively and a target holder in confinement geometry assembly. Detailed simulation for the optimization of confinement geometry targets is performed. Time resolved measurement of polytetrafluoroethylene (PTFE) targets at focused laser intensity of 2.2 GW/cm2 has been done. The corresponding pressure in the Aluminum and PTFE are 3.6 and 1.7 GPa respectively. At 1.7 GPa in PTFE, a red shift of 5 cm-1 is observed for the CF2 twisting mode (291 cm-1). Shock velocity in PTFE is calculated by measuring rate of change of ratios of the intensity of Raman lines scattered from shocked volume to total volume of sample in the laser focal spot along the laser axis. The calculated shock velocity in PTFE is found to be 1.64 ± 0.16 km/s at shock pressure of 1.7 GPa, for present experimental conditions.

  7. Temperature and Electron Density Determination on Laser-Induced Breakdown Spectroscopy (LIBS) Plasmas: A Physical Chemistry Experiment

    Science.gov (United States)

    Najarian, Maya L.; Chinni, Rosemarie C.

    2013-01-01

    This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…

  8. Depth-resolved multilayer pigment identification in paintings: combined use of laser-induced breakdown spectroscopy (LIBS) and optical coherence tomography (OCT).

    Science.gov (United States)

    Kaszewska, Ewa A; Sylwestrzak, Marcin; Marczak, Jan; Skrzeczanowski, Wojciech; Iwanicka, Magdalena; Szmit-Naud, Elżbieta; Anglos, Demetrios; Targowski, Piotr

    2013-08-01

    A detailed feasibility study on the combined use of laser-induced breakdown spectroscopy with optical coherence tomography (LIBS/OCT), aiming at a realistic depth-resolved elemental analysis of multilayer stratigraphies in paintings, is presented. Merging a high spectral resolution LIBS system with a high spatial resolution spectral OCT instrument significantly enhances the quality and accuracy of stratigraphic analysis. First, OCT mapping is employed prior to LIBS analysis in order to assist the selection of specific areas of interest on the painting surface to be examined in detail. Then, intertwined with LIBS, the OCT instrument is used as a precise profilometer for the online determination of the depth of the ablation crater formed by individual laser pulses during LIBS depth-profile analysis. This approach is novel and enables (i) the precise in-depth scaling of elemental concentration profiles, and (ii) the recognition of layer boundaries by estimating the corresponding differences in material ablation rate. Additionally, the latter is supported, within the transparency of the object, by analysis of the OCT cross-sectional views. The potential of this method is illustrated by presenting results on the detailed analysis of the structure of an historic painting on canvas performed to aid planned restoration of the artwork.

  9. Time-resolved laser spectroscopy in the UV/VUV spectral region

    International Nuclear Information System (INIS)

    Bengtsson, J.

    1992-01-01

    Radiative lifetimes ranging from 3 to 500 ns were measured on various states of Ag, N, Se, Te and As, by recording the fluorescence light decay after excitation by a laser pulse. Ag was supplied by a collimated atomic beam while Se, Te and As were contained in quartz cells. Pulsed laser radiation, with a wavelength down to 185 nm, was generated by different set-ups, using Nd-YAG pumped dye lasers combined with non-linear crystals and Raman shifting. Short laser pulses were produced by a nitrogen laser or a distributed feedback dye laser. Two-photon processes and stepwise excitation were used to populate high-lying levels. Depletion spectroscopy, quantum-beat spectroscopy and optical double resonance spectroscopy were also performed

  10. Effect of laser induced plasma ignition timing and location on Diesel spray combustion

    International Nuclear Information System (INIS)

    Pastor, José V.; García-Oliver, José M.; García, Antonio; Pinotti, Mattia

    2017-01-01

    Highlights: • Laser plasma ignition is applied to a direct injection Diesel spray, compared with auto-ignition. • Critical local fuel/air ratio for LIP provoked ignition is obtained. • The LIP system is able to stabilize Diesel combustion compared to auto-ignition cases. • Varying LIP position along spray axis directly affects Ignition-delay. • Premixed combustion is reduced both by varying position and delay of the LIP ignition system. - Abstract: An experimental study about the influence of the local conditions at the ignition location on combustion development of a direct injection spray is carried out in an optical engine. A laser induced plasma ignition system has been used to force the spray ignition, allowing comparison of combustion’s evolution and stability with the case of conventional autoignition on the Diesel fuel in terms of ignition delay, rate of heat release, spray penetration and soot location evolution. The local equivalence ratio variation along the spray axis during the injection process was determined with a 1D spray model, previously calibrated and validated. Upper equivalence ratios limits for the ignition event of a direct injected Diesel spray, both in terms of ignition success possibilities and stability of the phenomena, could been determined thanks to application of the laser plasma ignition system. In all laser plasma induced ignition cases, heat release was found to be higher than for the autoignition reference cases, and it was found to be linked to a decrease of ignition delay, with the premixed peak in the rate of heat release curve progressively disappearing as the ignition delay time gets shorter. Ignition delay has been analyzed as a function of the laser position, too. It was found that ignition delay increases for plasma positions closer to the nozzle, indicating that the amount of energy introduced by the laser induced plasma is not the only parameter affecting combustion initiation, but local equivalence ratio

  11. Laser-induced grating in ZnO

    DEFF Research Database (Denmark)

    Ravn, Jesper N.

    1992-01-01

    A simple approach for the calculation of self-diffraction in a thin combined phase and amplitude grating is presented. The third order nonlinearity, the electron-hole recombination time, and the ambipolar diffusion coefficient in a ZnO crystal are measured by means of laser-induced self-diffracti......A simple approach for the calculation of self-diffraction in a thin combined phase and amplitude grating is presented. The third order nonlinearity, the electron-hole recombination time, and the ambipolar diffusion coefficient in a ZnO crystal are measured by means of laser-induced self...

  12. Laser-induced breakdown spectroscopy for the real-time analysis of mixed waste samples containing Sr

    International Nuclear Information System (INIS)

    Barefield, J.E. II; Koskelo, A.C.; Multari, R.A.; Cremers, D.A.; Gamble, T.K.; Han, C.Y.

    1995-01-01

    In this report, the use of Laser-induced breakdown spectroscopy to analyze mixed waste samples containing Sr is discussed. The mixed waste samples investigated include vitrified waste glass and contaminated soil. Compared to traditional analysis techniques, the laser-based method is fast (i.e., analysis times on the order of minutes) and essentially waste free since little or no sample preparation is required. Detection limits on the order of pmm Sr were determined. Detection limits obtained using a fiber optic cable to deliver laser pulses to soil samples containing Cr, Zr, Pb, Be, Cu, and Ni will also be discussed

  13. Laser-induced radiation microbeam technology and simultaneous real-time fluorescence imaging in live cells.

    Science.gov (United States)

    Botchway, Stanley W; Reynolds, Pamela; Parker, Anthony W; O'Neill, Peter

    2012-01-01

    The use of nano- and microbeam techniques to induce and identify subcellular localized energy deposition within a region of a living cell provides a means to investigate the effects of low radiation doses. Particularly within the nucleus where the propagation and processing of deoxyribonucleic acid (DNA) damage (and repair) in both targeted and nontargeted cells, the latter being able to study cell-cell (bystander) effects. We have pioneered a near infrared (NIR) femtosecond laser microbeam to mimic ionizing radiation through multiphoton absorption within a 3D femtoliter volume of a highly focused Gaussian laser beam. The novel optical microbeam mimics both complex ionizing and UV-radiation-type cell damage including double strand breaks (DSBs). Using the microbeam technology, we have been able to investigate the formation of DNA DSB and subsequent recruitment of repair proteins to the submicrometer size site of damage introduced in viable cells. The use of a phosphorylated H2AX (γ-H2AX a marker for DSBs, visualized by immunofluorescent staining) and real-time imaging of fluorescently labeling proteins, the dynamics of recruitment of repair proteins in viable mammalian cells can be observed. Here we show the recruitment of ATM, p53 binding protein 1 (53BP1), and RAD51, an integral protein of the homologous recombination process in the DNA repair pathway and Ku-80-GFP involved in the nonhomologous end joining (NHEJ) pathway as exemplar repair process to show differences in the repair kinetics of DNA DSBs. The laser NIR multiphoton microbeam technology shows persistent DSBs at later times post laser irradiation which are indicative of DSBs arising at replication presumably from UV photoproducts or clustered damage containing single strand breaks (SSBs) that are also observed. Effects of the cell cycle may also be investigated in real time. Postirradiation and fixed cells studies show that in G1 cells a fraction of multiphoton laser-induced DSBs is persistent for >6h

  14. Time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tokmakoff, Andrei [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Champion, Paul [Northeastern Univ., Boston, MA (United States); Heilweil, Edwin J. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Nelson, Keith A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ziegler, Larry [Boston Univ., MA (United States)

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  15. Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration

    International Nuclear Information System (INIS)

    Benedetti, P.A.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Pardini, L.; Salvetti, A.; Tognoni, E.

    2005-01-01

    In this paper, the effect of laser pulse energy on double-pulse laser induced breakdown spectroscopy signal is studied. In particular, the energy of the first pulse has been changed, while the second pulse energy is held fixed. A systematic study of the laser induced breakdown spectroscopy signal dependence on the interpulse delay is performed, and the results are compared with the ones obtained with a single laser pulse of energy corresponding to the sum of the two pulses. At the same time, the crater formed at the target surface is studied by video-confocal microscopy, and the variation in crater dimensions is correlated to the enhancement of the laser induced breakdown spectroscopy signal. The results obtained are consistent with the interpretation of the double-pulse laser induced breakdown spectroscopy signal enhancement in terms of the changes in ambient gas pressure produced by the shock wave induced by the first laser pulse

  16. Depth-resolved phase retardation measurements for laser-assisted non-ablative cartilage reshaping

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Jong-In [Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA 92612 (United States); Vargas, Gracie [Center for Bioengineering, University of Texas Medical Branch, Galveston, TX 77555 (United States); Wong, Brian J F [Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA 92612 (United States); Milner, Thomas E [Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712 (United States)

    2005-05-07

    Since polarization-sensitive optical coherence tomography (PS-OCT) is emerging as a new technique for determining phase retardation in biological materials, we measured phase retardation changes in cartilage during local laser heating for application to laser-assisted cartilage reshaping. Thermally-induced changes in phase retardation of nasal septal cartilage following Nd:YAG laser irradiation were investigated using a PS-OCT system. A PS-OCT system and infrared imaging radiometer were used to record, respectively, depth-resolved images of the Stokes parameters of light backscattered from ex vivo porcine nasal septal cartilage and radiometric temperature changes following laser irradiation. PS-OCT images of cartilage were recorded before (control), during and after laser irradiation. From the measured Stokes parameters (I, Q, U and V), an estimate of the relative phase retardation between two orthogonal polarizations was computed to determine birefringence in cartilage. Phase retardation images of light backscattered from cartilage show significant changes in retardation following laser irradiation. To investigate the origin of retardation changes in response to local heat generation, we differentiated two possible mechanisms: dehydration and thermal denaturation. PS-OCT images of cartilage were recorded after dehydration in glycerol and thermal denaturation in heated physiological saline. In our experiments, observed retardation changes in cartilage are primarily due to dehydration. Since dehydration is a principal source for retardation changes in cartilage over the range of heating profiles investigated, our studies suggest that the use of PS-OCT as a feedback control methodology for non-ablative cartilage reshaping requires further investigation.

  17. Depth-resolved phase retardation measurements for laser-assisted non-ablative cartilage reshaping

    International Nuclear Information System (INIS)

    Youn, Jong-In; Vargas, Gracie; Wong, Brian J F; Milner, Thomas E

    2005-01-01

    Since polarization-sensitive optical coherence tomography (PS-OCT) is emerging as a new technique for determining phase retardation in biological materials, we measured phase retardation changes in cartilage during local laser heating for application to laser-assisted cartilage reshaping. Thermally-induced changes in phase retardation of nasal septal cartilage following Nd:YAG laser irradiation were investigated using a PS-OCT system. A PS-OCT system and infrared imaging radiometer were used to record, respectively, depth-resolved images of the Stokes parameters of light backscattered from ex vivo porcine nasal septal cartilage and radiometric temperature changes following laser irradiation. PS-OCT images of cartilage were recorded before (control), during and after laser irradiation. From the measured Stokes parameters (I, Q, U and V), an estimate of the relative phase retardation between two orthogonal polarizations was computed to determine birefringence in cartilage. Phase retardation images of light backscattered from cartilage show significant changes in retardation following laser irradiation. To investigate the origin of retardation changes in response to local heat generation, we differentiated two possible mechanisms: dehydration and thermal denaturation. PS-OCT images of cartilage were recorded after dehydration in glycerol and thermal denaturation in heated physiological saline. In our experiments, observed retardation changes in cartilage are primarily due to dehydration. Since dehydration is a principal source for retardation changes in cartilage over the range of heating profiles investigated, our studies suggest that the use of PS-OCT as a feedback control methodology for non-ablative cartilage reshaping requires further investigation

  18. Compact cryogenic Kerr microscope for time-resolved studies of electron spin transport in microstructures

    NARCIS (Netherlands)

    Rizo, P. J.; Pugzlys, A.; Liu, J.; Reuter, D.; Wieck, A. D.; van der Wal, C. H.; van Loosdrecht, P. H. M.; Pugžlys, A.

    2008-01-01

    A compact cryogenic Kerr microscope for operation in the small volume of high-field magnets is described. It is suited for measurements both in Voigt and Faraday configurations. Coupled with a pulsed laser source, the microscope is used to measure the time-resolved Kerr rotation response of

  19. Comparison of the Detection Characteristics of Trace Species Using Laser-Induced Breakdown Spectroscopy and Laser Breakdown Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Zhenzhen Wang

    2015-03-01

    Full Text Available The rapid and precise element measurement of trace species, such as mercury, iodine, strontium, cesium, etc. is imperative for various applications, especially for industrial needs. The elements mercury and iodine were measured by two detection methods for comparison of the corresponding detection features. A laser beam was focused to induce plasma. Emission and ion signals were detected using laser-induced breakdown spectroscopy (LIBS and laser breakdown time-of-flight mass spectrometry (LB-TOFMS. Multi-photon ionization and electron impact ionization in the plasma generation process can be controlled by the pressure and pulse width. The effect of electron impact ionization on continuum emission, coexisting molecular and atomic emissions became weakened in low pressure condition. When the pressure was less than 1 Pa, the plasma was induced by laser dissociation and multi-photon ionization in LB-TOFMS. According to the experimental results, the detection limits of mercury and iodine in N2 were 3.5 ppb and 60 ppb using low pressure LIBS. The mercury and iodine detection limits using LB-TOFMS were 1.2 ppb and 9.0 ppb, which were enhanced due to different detection features. The detection systems of LIBS and LB-TOFMS can be selected depending on the condition of each application.

  20. Excitation mechanisms in 1 mJ picosecond laser induced low pressure He plasma and the resulting spectral quality enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Idris, Nasrullah; Lahna, Kurnia; Abdulmadjid, Syahrun Nur [Department of Physics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, NAD (Indonesia); Ramli, Muliadi [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, NAD (Indonesia); Suyanto, Hery [Department of Physics, Faculty of Mathematics and Natural Sciences, Udayana University, Kampus Bukit Jimbaran, Denpasar 80361, Bali (Indonesia); Marpaung, Alion Mangasi [Department of Physics, Faculty of Mathematics and Natural Sciences, Jakarta State University, 10 Rawamangun, Jakarta (Indonesia); Pardede, Marincan [Department of Electrical Engineering, University of Pelita Harapan, 1100 M.H. Thamrin Boulevard, Lippo Village, Tangerang 15811 (Indonesia); Jobiliong, Eric [Department of Industrial Engineering, University of Pelita Harapan, 1100 M.H. Thamrin Boulevard, Lippo Village, Tangerang 15811 (Indonesia); Hedwig, Rinda; Lie, Zener Sukra [Department of Computer Engineering, Bina Nusantara University, 9 K.H. Syahdan, Jakarta 14810 (Indonesia); Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia); Suliyanti, Maria Margaretha [Research Center for Physics, Indonesia Institute of Sciences, Kawasan PUSPIPTEK, Serpong, Tangerang Selatan 15314, Banten (Indonesia); Lie, Tjung Jie; Kurniawan, Koo Hendrik, E-mail: kurnia18@cbn.net.id [Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia); Kagawa, Kiichiro [Fukui Science Education Academy, Takagi Chuou 2 choume, Fukui 910-0804 (Japan); Tjia, May On [Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia); Physics of Magnetism and Photonics Group, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, 10 Ganesha, Bandung 40132 (Indonesia)

    2015-06-14

    We report in this paper the results of an experimental study on the spectral and dynamical characteristics of plasma emission induced by 1 mJ picoseconds (ps) Nd-YAG laser using spatially resolved imaging and time resolved measurement of the emission intensities of copper sample. This study has provided the experimental evidence concerning the dynamical characteristics of the excitation mechanisms in various stages of the plasma formation, which largely consolidate the basic scenarios of excitation processes commonly accepted so far. However, it is also clearly shown that the duration of the shock wave excitation process induced by ps laser pulses is much shorter than those observed in laser induced breakdown spectroscopy employing nanosecond laser at higher output energy. This allows the detection of atomic emission due exclusively to He assisted excitation in low pressure He plasma by proper gating of the detection time. Furthermore, the triplet excited state associated with He I 587.6 nm is shown to be the one most likely involved in the process responsible for the excellent spectral quality as evidenced by its application to spectrochemical analysis of a number of samples. The use of very low energy laser pulses also leads to minimal destructive effect marked by the resulted craters of merely about 10 μm diameter and only 10 nm deep. It is especially noteworthy that the excellent emission spectrum of deuterium detected from D-doped titanium sample is free of spectral interference from the undesirable ubiquitous water molecules without a precleaning procedure as applied previously and yielding an impressive detection limit of less than 10 μg/g. Finally, the result of this study also shows a promising application to depth profiling of impurity distribution in the sample investigated.

  1. Laser induced magnetization switching in a TbFeCo ferrimagnetic thin film: discerning the impact of dipolar fields, laser heating and laser helicity by XPEEM

    International Nuclear Information System (INIS)

    Gierster, L.; Ünal, A.A.; Pape, L.; Radu, F.; Kronast, F.

    2015-01-01

    We investigate laser induced magnetic switching in a ferrimagnetic thin film of Tb_2_2Fe_6_9Co_9 by PEEM. Using a small laser beam with a spot size of 3–5 µm in diameter in combination with high resolution magnetic soft X-ray microscopy we are able to discriminate between different effects that govern the microscopic switching process, namely the influence of the laser heating, of the helicity dependent momentum transfer, and of the dipolar coupling. Applying a sequence of femtosecond laser pulses to a previously saturated TbFeCo film leads to the formation of ring shaped magnetic structures in which all three effects can be observed. Laser helicity assisted switching is only observed in a narrow region within the Gaussian profile of the laser spot. Whereas in the center of the laser spot we find clear evidence for thermal demagnetization and in the outermost areas magnetic switching is determined by dipolar coupling with the surrounding film. Our findings demonstrate that by reducing the laser spot size the influence of dipolar coupling on laser induced switching is becoming increasingly important. - Highlights: • With a new PEEM sample holder a laser spot size of 3–5 µm in diameter is reached. • Spatial resolved imaging of laser induced magnetization reversal. • A single femtosecond laser pulse leads to a multi-domain state in TbFeCo. • A pulse sequence results in a ring-shaped magnetic pattern caused by dipolar fields. • Laser helicity dependent effects appear only in a narrow fluence region.

  2. Time Resolved Broadband Terahertz Relaxation Dynamics of Electron in Water

    DEFF Research Database (Denmark)

    Wang, Tianwu; Iwaszczuk, Krzysztof; Cooke, David G.

    We investigated the transient response of the solvated electron in water ejected by photodetachment from potassium ferrocyanide using time resolved terahertz spectroscopy (TSTS). Ultrabroadband THz transients are generated and detected by a two-color femtosecond-induced air plasma and air biased...

  3. Time-resolved spectroscopy in synchrotron radiation

    International Nuclear Information System (INIS)

    Rehn, V.; Stanford Univ., CA

    1980-01-01

    Synchrotron radiation (SR) from large-diameter storage rings has intrinsic time structure which facilitates time-resolved measurements form milliseconds to picoseconds and possibly below. The scientific importance of time-resolved measurements is steadily increasing as more and better techniques are discovered and applied to a wider variety of scientific problems. This paper presents a discussion of the importance of various parameters of the SR facility in providing for time-resolved spectroscopy experiments, including the role of beam-line optical design parameters. Special emphasis is placed on the requirements of extremely fast time-resolved experiments with which the effects of atomic vibrational or relaxation motion may be studied. Before discussing the state-of-the-art timing experiments, we review several types of time-resolved measurements which have now become routine: nanosecond-range fluorescence decay times, time-resolved emission and excitation spectroscopies, and various time-of-flight applications. These techniques all depend on a short SR pulse length and a long interpulse period, such as is provided by a large-diameter ring operating in a single-bunch mode. In most cases, the pulse shape and even the stability of the pulse shape is relatively unimportant as long as the pulse length is smaller than the risetime of the detection apparatus, typically 1 to 2 ns. For time resolution smaller than 1 ns, the requirements on the pulse shape become more stringent. (orig./FKS)

  4. An online, energy-resolving beam profile detector for laser-driven proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Metzkes, J.; Rehwald, M.; Obst, L.; Schramm, U. [Helmholtz-Zentrum Dresden–Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden (Germany); Technische Universität Dresden, 01062 Dresden (Germany); Zeil, K.; Kraft, S. D.; Sobiella, M.; Schlenvoigt, H.-P. [Helmholtz-Zentrum Dresden–Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden (Germany); Karsch, L. [OncoRay-National Center for Radiation Research in Oncology, Technische Universität Dresden, 01307 Dresden (Germany)

    2016-08-15

    In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ∼4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source.

  5. Photodissociation of aligned CH3I and C6H3F2I molecules probed with time-resolved Coulomb explosion imaging by site-selective extreme ultraviolet ionization.

    Science.gov (United States)

    Amini, Kasra; Savelyev, Evgeny; Brauße, Felix; Berrah, Nora; Bomme, Cédric; Brouard, Mark; Burt, Michael; Christensen, Lauge; Düsterer, Stefan; Erk, Benjamin; Höppner, Hauke; Kierspel, Thomas; Krecinic, Faruk; Lauer, Alexandra; Lee, Jason W L; Müller, Maria; Müller, Erland; Mullins, Terence; Redlin, Harald; Schirmel, Nora; Thøgersen, Jan; Techert, Simone; Toleikis, Sven; Treusch, Rolf; Trippel, Sebastian; Ulmer, Anatoli; Vallance, Claire; Wiese, Joss; Johnsson, Per; Küpper, Jochen; Rudenko, Artem; Rouzée, Arnaud; Stapelfeldt, Henrik; Rolles, Daniel; Boll, Rebecca

    2018-01-01

    We explore time-resolved Coulomb explosion induced by intense, extreme ultraviolet (XUV) femtosecond pulses from a free-electron laser as a method to image photo-induced molecular dynamics in two molecules, iodomethane and 2,6-difluoroiodobenzene. At an excitation wavelength of 267 nm, the dominant reaction pathway in both molecules is neutral dissociation via cleavage of the carbon-iodine bond. This allows investigating the influence of the molecular environment on the absorption of an intense, femtosecond XUV pulse and the subsequent Coulomb explosion process. We find that the XUV probe pulse induces local inner-shell ionization of atomic iodine in dissociating iodomethane, in contrast to non-selective ionization of all photofragments in difluoroiodobenzene. The results reveal evidence of electron transfer from methyl and phenyl moieties to a multiply charged iodine ion. In addition, indications for ultrafast charge rearrangement on the phenyl radical are found, suggesting that time-resolved Coulomb explosion imaging is sensitive to the localization of charge in extended molecules.

  6. Diode pumped solid state kilohertz disk laser system for time-resolved combustion diagnostics under microgravity at the drop tower Bremen

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Volker; Paa, Wolfgang; Triebel, Wolfgang [Institute of Photonic Technology, Laser Diagnostics, Albert-Einstein-Str. 9, 07745 Jena (Germany); Eigenbrod, Christian; Klinkov, Konstantin [Center of Applied Space Technology and Microgravity, University Bremen, Am Fallturm, 28359 Bremen (Germany); Larionov, Mikhail; Giesen, Adolf; Stolzenburg, Christian [Institut für Strahlwerkzeuge (IFSW), Pfaffenwaldring 43, 70569 Stuttgart (Germany)

    2014-03-15

    We describe a specially designed diode pumped solid state laser system based on the disk laser architecture for combustion diagnostics under microgravity (μg) conditions at the drop tower in Bremen. The two-stage oscillator-amplifier-system provides an excellent beam profile (TEM{sub 00}) at narrowband operation (Δλ < 1 pm) and is tunable from 1018 nm to 1052 nm. The laser repetition rate of up to 4 kHz at pulse durations of 10 ns enables the tracking of processes on a millisecond time scale. Depending on the specific issue it is possible to convert the output radiation up to the fourth harmonic around 257 nm. The very compact laser system is integrated in a slightly modified drop capsule and withstands decelerations of up to 50 g (>11 ms). At first the concept of the two-stage disk laser is briefly explained, followed by a detailed description of the disk laser adaption to the drop tower requirements with special focus on the intended use under μg conditions. In order to demonstrate the capabilities of the capsule laser as a tool for μg combustion diagnostics, we finally present an investigation of the precursor-reactions before the droplet ignition using 2D imaging of the Laser Induced Fluorescence of formaldehyde.

  7. Ultrafast Structural Dynamics in InSb Probed by Time-Resolved X-Ray Diffraction

    International Nuclear Information System (INIS)

    Chin, A.H.; Shank, C.V.; Chin, A.H.; Schoenlein, R.W.; Shank, C.V.; Glover, T.E.; Leemans, W.P.; Balling, P.

    1999-01-01

    Ultrafast structural dynamics in laser-perturbed InSb are studied using time-resolved x-ray diffraction with a novel femtosecond x-ray source. We report the first observation of a delay in the onset of lattice expansion, which we attribute to energy relaxation processes and lattice strain propagation. In addition, we observe direct indications of ultrafast disordering on a subpicosecond time scale. copyright 1999 The American Physical Society

  8. Soot formation characteristics of gasoline surrogate fuels in counterflow diffusion flames

    KAUST Repository

    Choi, Byungchul; Choi, Sangkyu; Chung, Suk-Ho

    2011-01-01

    The characteristics of polycyclic aromatic hydrocarbon (PAH) and soot for gasoline surrogate fuels have been investigated in counterflow diffusion flames by adopting laser-induced fluorescence (LIF) and laser-induced incandescence (LII) techniques

  9. Space- and time-resolved raman and breakdown spectroscopy: advanced lidar techniques

    Science.gov (United States)

    Silviu, Gurlui; Marius Mihai, Cazacu; Adrian, Timofte; Oana, Rusu; Georgiana, Bulai; Dimitriu, Dan

    2018-04-01

    DARLIOES - the advanced LIDAR is based on space- and time-resolved RAMAN and breakdown spectroscopy, to investigate chemical and toxic compounds, their kinetics and physical properties at high temporal (2 ns) and spatial (1 cm) resolution. The high spatial and temporal resolution are needed to resolve a large variety of chemical troposphere compounds, emissions from aircraft, the self-organization space charges induced light phenomena, temperature and humidity profiles, ice nucleation, etc.

  10. Studying electron distributions using the time-resolved free-bound spectra from coronal plasmas

    International Nuclear Information System (INIS)

    Matthews, D.L.; Kauffman, R.L.; Kilkenny, J.D.; Lee, R.W.

    1982-11-01

    Absorption of laser light in a plasma by inverse bremsstrahlung, I.B., can lead to a non-Maxwellian velocity distribution provided the electron-elecron collision frequency is too low to equilibrate the velocity distribution in the coronal plasma region of a laser heated aluminum disk by measuring the radiation recombination continuum. The experiments are performed using lambda/sub L/ = 0.532 μm laser light at intensities of approx. 10 16 W/cm 2 . Such parameters are predicted to produce conditions suitable for a non-thermal electron distribution. The shape of the K-shell recombination radiation has been measured using a time-resolved x-ray spectrograph. The electron distribution can be determined from deconvolution of the recombination continuum shape

  11. Shock dynamics induced by double-spot laser irradiation of layered targets

    Directory of Open Access Journals (Sweden)

    Aliverdiev Abutrab A.

    2015-06-01

    Full Text Available We studied the interaction of a double-spot laser beam with targets using the Prague Asterix Laser System (PALS iodine laser working at 0.44 μm wavelength and intensity of about 1015 W/cm2. Shock breakout signals were recorder using time-resolved self-emission from target rear side of irradiated targets. We compared the behavior of pure Al targets and of targets with a foam layer on the laser side. Results have been simulated using hydrodynamic numerical codes.

  12. Application of a high-repetition-rate laser diagnostic system for single-cycle-resolved imaging in internal combustion engines.

    Science.gov (United States)

    Hult, Johan; Richter, Mattias; Nygren, Jenny; Aldén, Marcus; Hultqvist, Anders; Christensen, Magnus; Johansson, Bengt

    2002-08-20

    High-repetition-rate laser-induced fluorescence measurements of fuel and OH concentrations in internal combustion engines are demonstrated. Series of as many as eight fluorescence images, with a temporal resolution ranging from 10 micros to 1 ms, are acquired within one engine cycle. A multiple-laser system in combination with a multiple-CCD camera is used for cycle-resolved imaging in spark-ignition, direct-injection stratified-charge, and homogeneous-charge compression-ignition engines. The recorded data reveal unique information on cycle-to-cycle variations in fuel transport and combustion. Moreover, the imaging system in combination with a scanning mirror is used to perform instantaneous three-dimensional fuel-concentration measurements.

  13. Time-resolved wave profile measurements in copper to Megabar pressures

    Energy Technology Data Exchange (ETDEWEB)

    Chhabildas, L C; Asay, J R

    1981-01-01

    Many time-resolved techniques have been developed which have greatly aided in the understanding of dynamic material behavior such as the high pressure-dynamic strength of materials. In the paper, time-resolved measurements of copper (at shock-induced high pressures and temperatures) are used to illustrate the capability of using such techniques to investigate high pressure strength. Continuous shock loading and release wave profiles have been made in copper to 93 GPa using velocity interferometric techniques. Fine structure in the release wave profiles from the shocked state indicates an increase in shear strength of copper to 1.5 GPa at 93 GPa from its ambient value of 0.08 GPa.

  14. Invited Article: High resolution angle resolved photoemission with tabletop 11 eV laser

    Energy Technology Data Exchange (ETDEWEB)

    He, Yu; Vishik, Inna M.; Yi, Ming; Yang, Shuolong; Lee, James J.; Chen, Sudi; Rebec, Slavko N.; Leuenberger, Dominik; Shen, Zhi-Xun [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Liu, Zhongkai [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Physics, Stanford University, Stanford, California 94305 (United States); Zong, Alfred [Department of Physics, Stanford University, Stanford, California 94305 (United States); Jefferson, C. Michael; Merriam, Andrew J. [Lumeras LLC, 207 McPherson St, Santa Cruz, California 95060 (United States); Moore, Robert G.; Kirchmann, Patrick S. [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-01-15

    We developed a table-top vacuum ultraviolet (VUV) laser with 113.778 nm wavelength (10.897 eV) and demonstrated its viability as a photon source for high resolution angle-resolved photoemission spectroscopy (ARPES). This sub-nanosecond pulsed VUV laser operates at a repetition rate of 10 MHz, provides a flux of 2 × 10{sup 12} photons/s, and enables photoemission with energy and momentum resolutions better than 2 meV and 0.012 Å{sup −1}, respectively. Space-charge induced energy shifts and spectral broadenings can be reduced below 2 meV. The setup reaches electron momenta up to 1.2 Å{sup −1}, granting full access to the first Brillouin zone of most materials. Control over the linear polarization, repetition rate, and photon flux of the VUV source facilitates ARPES investigations of a broad range of quantum materials, bridging the application gap between contemporary low energy laser-based ARPES and synchrotron-based ARPES. We describe the principles and operational characteristics of this source and showcase its performance for rare earth metal tritellurides, high temperature cuprate superconductors, and iron-based superconductors.

  15. Pressure Measurement in Supersonic Air Flow by Differential Absorptive Laser-Induced Thermal Acoustics

    Science.gov (United States)

    Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.

    2007-01-01

    Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  16. Shadowgraphy investigation of laser-induced forward transfer: Front side and back side ablation of the triazene polymer sacrificial layer

    International Nuclear Information System (INIS)

    Fardel, Romain; Nagel, Matthias; Nueesch, Frank; Lippert, Thomas; Wokaun, Alexander

    2009-01-01

    Thin films of a photodecomposible triazene polymer are used as sacrificial layer for the micro-deposition of sensitive materials by laser-induced forward transfer. To understand the ablation process of this sacrificial layer, the ultraviolet laser ablation of triazene films was investigated by time-resolved shadowgraphy. Irradiation from the film side shows a complete decomposition into gaseous fragments, while ablation through the substrate causes ejection of a solid flyer of polymer. The occurence of the flyer depends on the film thickness as well as on the applied fluence, and a compact flyer is obtaind when these two parameters are optimized

  17. Low-Cost Real-Time Gas Monitoring Using a Laser Plasma Induced by a Third Harmonic Q-Switched Nd-YAG Laser

    Directory of Open Access Journals (Sweden)

    Syahrun Nur Abdulmadjid

    2005-11-01

    Full Text Available A gas plasma induced by a third harmonic Nd-YAG laser with relatively low pulsed energy (about 10 mJ has favorable characteristics for gas analysis due to its low background characteristics, nevertheless a high power fundamental Nd-YAG laser (100-200 mJ is widely used for laser gas breakdown spectroscopy. The air plasma can be used as a low-cost real-time gas monitoring system such that it can be used to detect the local absolute humidity, while a helium plasma can be used for gas analysis with a high level of sensitivity. A new technique using a helium plasma to improve laser ablation emission spectroscopy is proposed. Namely, the third harmonic Nd-YAG laser is focused at a point located some distance from the target in the 1-atm helium surrounding gas. By using this method, the ablated vapor from the target is excited through helium atoms in a metastable state in the helium plasma.

  18. Laser-induced fluorescence for medical diagnostics

    International Nuclear Information System (INIS)

    Andersson Engels, S.

    1989-12-01

    Laser-induced fluorescence as a tool for tissue diagnostics is discussed. Both spectrally and time-resolved fluorescence signals are studied to optimize the demarcation of diseased lesions from normal tissue. The presentation is focused on two fields of application: the identification of malignant tumours and atherosclerotic plaques. Tissue autofluorescence as well as fluorescence from administered drugs have been utilized in diseased tissue diagnosis. The fluorescence criterion for tissue diagnosis is, as far as possible, chosen to be independent of unknown fluorescence parameters, which are not correlated to the type of tissue investigated. Both a dependence on biological parameters, such as light absorption in blood, and instrumental characteristics, such as excitation pulse fluctuations and detection geometry, can be minimized. Several chemical compounds have been studied in animal experiments after intraveneous injection to verify their capacity as malignant tumour marking drugs under laser excitation and fluorescence detection. Another objective of these studies was to improve our understanding of the mechanism and chemistry behind the retention of the various drugs in tissue. The properties of a chemical which maximize its selective retention in tumours are discussed. In order to utilize this diagnostic modality, three different clinically adapted sets of instrumentation have been developed and are presented. Two of the systems are nitrogen-laser-based fluorosensors; one is a point-monitoring system with full spectral resolution and the other one is an imaging system with up to four simultaneously recorded images in different spectral bands. The third system is a low-cost point-monitoring mercury-lamp-based fluoroscence emission as well as reflection characteristics of tissue. (author)

  19. Time resolved studies of H{sub 2}{sup +} dissociation with phase-stabilized laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Bettina

    2010-06-23

    In the course of this thesis, experimental studies on the dissociation of H{sub 2}{sup +}(H{sub 2}{sup +}{yields}p+H) in ultrashort laser pulses with a stabilized carrier-envelope phase (CEP) were carried out. In single-pulse measurements, the ability to control the emission direction of low energetic protons, i.e. the localization of the bound electron at one of the nuclei after dissociation, by the CEP was demonstrated. The coincident detection of the emitted protons and electrons and the measurement of their three-dimensional momentum vectors with a reaction microscope allowed to clarify the localization mechanism. Further control was achieved by a pump-control scheme with two timedelayed CEP-stabilized laser pulses. Here the neutral H{sub 2} molecule was ionized in the first pulse and dissociation was induced by the second pulse. Electron localization was shown to depend on the properties of the bound nuclear wave packet in H{sub 2}{sup +} at the time the control pulse is applied, demonstrating the ability to use the shape and dynamics of the nuclear wave packet as control parameters. Wave packet simulations were performed reproducing qualitatively the experimental results of the single and the two-pulse measurements. For both control schemes, intuitive models are presented, which qualitatively explain the main features of the obtained results. (orig.)

  20. A Simple LIBS (Laser-Induced Breakdown Spectroscopy) Laboratory Experiment to Introduce Undergraduates to Calibration Functions and Atomic Spectroscopy

    Science.gov (United States)

    Chinni, Rosemarie C.

    2012-01-01

    This laboratory experiment introduces students to a different type of atomic spectroscopy: laser-induced breakdown spectroscopy (LIBS). LIBS uses a laser-generated spark to excite the sample; once excited, the elemental emission is spectrally resolved and detected. The students use LIBS to analyze a series of standard synthetic silicate samples…

  1. Phase out of incandescent lamps

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Since early 2007 almost all OECD and many non-OECD governments have announced policies aimed at phasing-out incandescent lighting within their jurisdictions. This study considers the implications of these policy developments in terms of demand for regulatory compliant lamps and the capacity and motivation of the lamp industry to produce efficient lighting products in sufficient volume to meet future demand. To assess these issues, it reviews the historic international screw-based lamp market, describes the status of international phase-out policies and presents projections of anticipated market responses to regulatory requirements to determine future demand for CFLs.

  2. Atomization efficiency and photon yield in laser-induced breakdown spectroscopy analysis of single nanoparticles in an optical trap

    Science.gov (United States)

    Purohit, Pablo; Fortes, Francisco J.; Laserna, J. Javier

    2017-04-01

    Laser-induced breakdown spectroscopy (LIBS) was employed for investigating the influence of particle size on the dissociation efficiency and the absolute production of photons per mass unit of airborne solid graphite spheres under single-particle regime. Particles of average diameter of 400 nm were probed and compared with 2 μm particles. Samples were first catapulted into aerosol form and then secluded in an optical trap set by a 532 nm laser. Trap stability was quantified before subjecting particles to LIBS analysis. Fine alignment of the different lines comprising the optical catapulting-optical trapping-laser-induced breakdown spectroscopy instrument and tuning of excitation parameters conditioning the LIBS signal such as fluence and acquisition delay are described in detail with the ultimate goal of acquiring clear spectroscopic data on masses as low as 75 fg. The atomization efficiency and the photon yield increase as the particle size becomes smaller. Time-resolved plasma imaging studies were conducted to elucidate the mechanisms leading to particle disintegration and excitation.

  3. Spectral and spatial resolving of photoelectric property of femtosecond laser drilled holes of GaSb(1-x)Bi(x).

    Science.gov (United States)

    Pan, C B; Zha, F X; Song, Y X; Shao, J; Dai, Y; Chen, X R; Ye, J Y; Wang, S M

    2015-07-15

    Femtosecond laser drilled holes of GaSbBi were characterized by the joint measurements of photoconductivity (PC) spectroscopy and laser-beam-induced current (LBIC) mapping. The excitation light in PC was focused down to 60 μm presenting the spectral information of local electronic property of individual holes. A redshift of energy band edge of about 6-8 meV was observed by the PC measurement when the excitation light irradiated on the laser drilled holes. The spatial resolving of photoelectric property was achieved by the LBIC mapping which shows "pseudo-holes" with much larger dimensions than the geometric sizes of the holes. The reduced LBIC current with the pseudo-holes is associated with the redshift effect indicating that the electronic property of the rim areas of the holes is modified by the femtosecond laser drilling.

  4. Space and time resolved spectroscopy of laser-produced plasmas: A study of density-sensitive x-ray transitions in helium-like and neon-like ions

    Energy Technology Data Exchange (ETDEWEB)

    Young, Bruce Kai Fong

    1988-09-01

    The determination of level populations and detailed population mechanisms in dense plasmas has become an increasingly important problem in atomic physics. In this work, the density variation of line intensities and level populations in aluminum K-shell and molybdenum and silver L-shell emission spectra have been measured from high-powered, laser-produced plasmas. For each case, the density dependence of the observed line emission is due to the effect of high frequency electron-ion collisions on metastable levels. The density dependent line intensities vary greatly in laser-produced plasmas and can be used to extract detailed information concerning the population kinetics and level populations of the ions. The laser-plasmas had to be fully characterized in order to clearly compare the observed density dependence with atomic theory predictions. This has been achieved through the combined use of new diagnostic instruments and microdot targets which provided simultaneously space, time, and spectrally resolved data. The plasma temperatures were determined from the slope of the hydrogen-like recombination continuum. The time resolved electron density profiles were measured using multiple frame holographic interferometry. Thus, the density dependence of K-shell spectral lines could be clearly examined, independent of assumptions concerning the dynamics of the plasma. In aluminum, the electron density dependence of various helium-like line intensity ratios were measured. Standard collisional radiative equilibrium models fail to account for the observed density dependence measured for the ''He/sub ..cap alpha..//IC'' ratio. Instead, a quasi-steady state atomic model based on a purely recombining plasma is shown to accurately predict the measured density dependence. This same recombining plasma calculation successfully models the density dependence of the high-n ''He/sub ..gamma..//He/sub ..beta../'' and ''He/sub delta

  5. Space and time resolved spectroscopy of laser-produced plasmas: A study of density-sensitive x-ray transitions in helium-like and neon-like ions

    International Nuclear Information System (INIS)

    Young, Bruce Kai Fong.

    1988-09-01

    The determination of level populations and detailed population mechanisms in dense plasmas has become an increasingly important problem in atomic physics. In this work, the density variation of line intensities and level populations in aluminum K-shell and molybdenum and silver L-shell emission spectra have been measured from high-powered, laser-produced plasmas. For each case, the density dependence of the observed line emission is due to the effect of high frequency electron-ion collisions on metastable levels. The density dependent line intensities vary greatly in laser-produced plasmas and can be used to extract detailed information concerning the population kinetics and level populations of the ions. The laser-plasmas had to be fully characterized in order to clearly compare the observed density dependence with atomic theory predictions. This has been achieved through the combined use of new diagnostic instruments and microdot targets which provided simultaneously space, time, and spectrally resolved data. The plasma temperatures were determined from the slope of the hydrogen-like recombination continuum. The time resolved electron density profiles were measured using multiple frame holographic interferometry. Thus, the density dependence of K-shell spectral lines could be clearly examined, independent of assumptions concerning the dynamics of the plasma. In aluminum, the electron density dependence of various helium-like line intensity ratios were measured. Standard collisional radiative equilibrium models fail to account for the observed density dependence measured for the ''He/sub α//IC'' ratio. Instead, a quasi-steady state atomic model based on a purely recombining plasma is shown to accurately predict the measured density dependence. This same recombining plasma calculation successfully models the density dependence of the high-n ''He/sub γ//He/sub β/'' and ''He/sub δ//He/sub β/'' helium-like resonance line intensity ratios

  6. Emission Characteristics of Laser-Induced Plasma Using Collinear Long and Short Dual-Pulse Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Wang, Zhenzhen; Deguchi, Yoshihiro; Liu, Renwei; Ikutomo, Akihiro; Zhang, Zhenzhen; Chong, Daotong; Yan, Junjie; Liu, Jiping; Shiou, Fang-Jung

    2017-09-01

    Collinear long and short dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) was employed to clarify the emission characteristics from laser-induced plasma. The plasma was sustained and became stable by the long pulse-width laser with the pulse width of 60 μs under free running (FR) conditions as an external energy source. Comparing the measurement results of stainless steel in air using single-pulse LIBS (SP-LIBS) and DP-LIBS, the emission intensity was markedly enhanced using DP-LIBS. The temperature of plasma induced by DP-LIBS was maintained at a higher temperature under different gate delay time and short pulse-width laser power conditions compared with those measured using short SP-LIBS. Moreover, the variation rates of plasma temperatures measured using DP-LIBS were also lower. The superior detection ability was verified by the measurement of aluminum sample in water. The spectra were clearly detected using DP-LIBS, whereas it cannot be identified using SP-LIBS of short and long pulse widths. The effects of gate delay time and short pulse-width laser power were also discussed. These results demonstrate the feasibility and enhanced detection ability of the proposed collinear long and short DP-LIBS method.

  7. Influence of the laser pulse duration on laser-produced plasma properties

    International Nuclear Information System (INIS)

    Drogoff, B Le; Margot, J; Vidal, F; Laville, S; Chaker, M; Sabsabi, M; Johnston, T W; Barthelemy, O

    2004-01-01

    In the framework of laser-induced plasma spectroscopy (LIPS) applications, time-resolved characteristics of laser-produced aluminium plasmas in air at atmospheric pressure are investigated for laser pulse durations ranging from 100 fs to 270 ps. Measurements show that for delays after the laser pulse longer than ∼100 ns, the plasma temperature increases slightly with the laser pulse duration, while the electron density is independent of it. In addition, as the pulse duration increases, the plasma radiation emission lasts longer and the spectral lines arise later from the continuum emission. The time dependence of the continuum emission appears to be similar whatever the duration of the laser pulse is, while the temporal evolution of the line emission seems to be affected mainly by the plasma temperature. Finally, as far as spectrochemical applications (such as LIPS) of laser-produced plasmas are concerned, this study highlights the importance of the choice of appropriate temporal gating parameters for each laser pulse duration

  8. A vacuum-UV laser-induced fluorescence experiment for measurement of rotationally and vibrationally excited H2

    International Nuclear Information System (INIS)

    Vankan, P.; Heil, S.B.S.; Mazouffre, S.; Engeln, R.; Schram, D.C.; Doebele, H.F.

    2004-01-01

    An experimental setup is built to detect spatially resolved rovibrationally excited hydrogen molecules via laser-induced fluorescence. To excite the hydrogen molecules, laser radiation is produced in the vacuum UV part of the spectrum. The laser radiation is tunable between 120 nm and 230 nm and has a bandwith of 0.15 cm -1 . The wavelength of the laser radiation is calibrated by simultaneous recording of the two-photon laser induced fluorescence spectrum of nitric oxide. The excited hydrogen populations are calibrated on the basis of coherent anti-Stokes Raman scattering measurements. A population distribution is measured in the shock region of a pure hydrogen plasma expansion. The higher rotational levels (J>5) show overpopulation compared to a Boltzmann distribution determined from the lower rotational levels (J≤5)

  9. Sub-nanosecond time-resolved near-field scanning magneto-optical microscope.

    Science.gov (United States)

    Rudge, J; Xu, H; Kolthammer, J; Hong, Y K; Choi, B C

    2015-02-01

    We report on the development of a new magnetic microscope, time-resolved near-field scanning magneto-optical microscope, which combines a near-field scanning optical microscope and magneto-optical contrast. By taking advantage of the high temporal resolution of time-resolved Kerr microscope and the sub-wavelength spatial resolution of a near-field microscope, we achieved a temporal resolution of ∼50 ps and a spatial resolution of microscope, the magnetic field pulse induced gyrotropic vortex dynamics occurring in 1 μm diameter, 20 nm thick CoFeB circular disks has been investigated. The microscope provides sub-wavelength resolution magnetic images of the gyrotropic motion of the vortex core at a resonance frequency of ∼240 MHz.

  10. Influence of ablation wavelength and time on optical properties of laser ablated carbon dots

    Science.gov (United States)

    Isnaeni, Hanna, M. Yusrul; Pambudi, A. A.; Murdaka, F. H.

    2017-01-01

    Carbon dots, which are unique and applicable materials, have been produced using many techniques. In this work, we have fabricated carbon dots made of coconut fiber using laser ablation technique. The purpose of this work is to evaluate two ablation parameters, which are ablation wavelength and ablation time. We used pulsed laser from Nd:YAG laser with emit wavelength at 355 nm, 532 nm and 1064 nm. We varied ablation time one hour and two hours. Photoluminescence and time-resolved photoluminescence setup were used to study the optical properties of fabricated carbon dots. In general, fabricated carbon dots emit bluish green color emission upon excitation by blue laser. We found that carbon dots fabricated using 1064 nm laser produced the highest carbon dots emission among other samples. The peak wavelength of carbon dots emission is between 495 nm until 505 nm, which gives bluish green color emission. Two hours fabricated carbon dots gave four times higher emission than one hour fabricated carbon dot. More emission intensity of carbon dots means more carbon dots nanoparticles were fabricated during laser ablation process. In addition, we also measured electron dynamics of carbon dots using time-resolved photoluminescence. We found that sample with higher emission has longer electron decay time. Our finding gives optimum condition of carbon dots fabrication from coconut fiber using laser ablation technique. Moreover, fabricated carbon dots are non-toxic nanoparticles that can be applied for health, bio-tagging and medical applications.

  11. On the improvement of signal repeatability in laser-induced air plasmas

    Science.gov (United States)

    Zhang, Shuai; Sheta, Sahar; Hou, Zong-Yu; Wang, Zhe

    2018-04-01

    The relatively low repeatability of laser-induced breakdown spectroscopy (LIBS) severely hinders its wide commercialization. In the present work, we investigate the optimization of LIBS system for repeatability improvement for both signal generation (plasma evolution) and signal collection. Timeintegrated spectra and images were obtained under different laser energies and focal lengths to investigate the optimum configuration for stable plasmas and repeatable signals. Using our experimental setup, the optimum conditions were found to be a laser energy of 250 mJ and a focus length of 100 mm. A stable and homogeneous plasma with the largest hot core area in the optimum condition yielded the most stable LIBS signal. Time-resolved images showed that the rebounding processes through the air plasma evolution caused the relative standard deviation (RSD) to increase with laser energies of > 250 mJ. In addition, the emission collection was improved by using a concave spherical mirror. The line intensities doubled as their RSDs decreased by approximately 25%. When the signal generation and collection were optimized simultaneously, the pulse-to-pulse RSDs were reduced to approximately 3% for O(I), N(I), and H(I) lines, which are better than the RSDs reported for solid samples and showed great potential for LIBS quantitative analysis by gasifying the solid or liquid samples.

  12. Application of multi-step excitation schemes for detection of actinides and lanthanides in solutions by luminescence/chemiluminescence laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Izosimov, I. [Joint Institute for Nuclear Research, Joliot Curie 6, Dubna 141980 (Russian Federation)

    2016-07-01

    The use of laser radiation with tunable wavelength allows the selective excitation of actinide/lanthanide species with subsequent registration of luminescence/chemiluminescence for their detection. This work is devoted to applications of the time-resolved laser-induced luminescence spectroscopy and time-resolved laser-induced chemiluminescence spectroscopy for the detection of lanthanides and actinides. Results of the experiments on U, Eu, and Sm detection by TRLIF (Time Resolved Laser Induced Fluorescence) method in blood plasma and urine are presented. Data on luminol chemiluminescence in solutions containing Sm(III), U(IV), and Pu(IV) are analyzed. It is shown that appropriate selectivity of lanthanide/actinide detection can be reached when chemiluminescence is initiated by transitions within 4f- or 5f-electron shell of lanthanide/actinide ions corresponding to the visible spectral range. In this case chemiluminescence of chemiluminogen (luminol) arises when the ion of f element is excited by multi-quantum absorption of visible light. The multi-photon scheme of chemiluminescence excitation makes chemiluminescence not only a highly sensitive but also a highly selective tool for the detection of lanthanide/actinide species in solutions. (author)

  13. Induced Current Characteristics Due to Laser Induced Plasma and Its Application to Laser Processing Monitoring

    International Nuclear Information System (INIS)

    Madjid, Syahrun Nur; Idris, Nasrullah; Kurniawan, Koo Hendrik; Kagawa, Kiichiro

    2011-01-01

    In laser processing, suitable conditions for laser and gas play important role in ensuring a high quality of processing. To determine suitable conditions, we employed the electromagnetic phenomena associated with laser plasma generation. An electrode circuit was utilised to detect induced current due to the fast electrons propelled from the material during laser material processing. The characteristics of induced current were examined by changing parameters such as supplied voltage, laser pulse energy, number of laser shots, and type of ambient gas. These characteristics were compared with the optical emission characteristics. It was shown that the induced current technique proposed in this study is much more sensitive than the optical method in monitoring laser processing, that is to determine the precise focusing condition, and to accurately determine the moment of completion of laser beam penetration. In this study it was also shown that the induced current technique induced by CW CO 2 laser can be applied in industrial material processing for monitoring the penetration completion in a stainless steel plate drilling process.

  14. Time-resolved laser fluorescence spectroscopy of organic ligands by europium: Fluorescence quenching and lifetime properties

    Science.gov (United States)

    Nouhi, A.; Hajjoul, H.; Redon, R.; Gagné, J. P.; Mounier, S.

    2018-03-01

    Time-resolved Laser Fluorescence Spectroscopy (TRLFS) has proved its usefulness in the fields of biophysics, life science and geochemistry to characterize the fluorescence probe molecule with its chemical environment. The purpose of this study is to demonstrate the applicability of this powerful technique combined with Steady-State (S-S) measurements. A multi-mode factor analysis, in particular CP/PARAFAC, was used to analyze the interaction between Europium (Eu) and Humic substances (HSs) extracted from Saint Lawrence Estuary in Canada. The Saint Lawrence system is a semi-enclosed water stream with connections to the Atlantic Ocean and is an excellent natural laboratory. CP/PARAFAC applied to fluorescence S-S data allows introspecting ligands-metal interactions and the one-site 1:1 modeling gives information about the stability constants. From the spectral signatures and decay lifetimes data given by TRLFS, one can deduce the fluorescence quenching which modifies the fluorescence and discuss its mechanisms. Results indicated a relatively strong binding ability between europium and humic substances samples (Log K value varies from 3.38 to 5.08 at pH 7.00). Using the Stern-Volmer plot, it has been concluded that static and dynamic quenching takes places in the case of salicylic acid and europium interaction while for HSs interaction only a static quenching is observed.

  15. AC electric field induced vortex in laminar coflow diffusion flames

    KAUST Repository

    Xiong, Yuan

    2014-09-22

    Experiments were performed by applying sub-critical high-voltage alternating current (AC) to the nozzle of laminar propane coflow diffusion flames. Light scattering, laser-induced incandescence and laser-induced fluorescence techniques were used to identify the soot zone, and the structures of OH and polycyclic aromatic hydrocarbons (PAHs). Particle image velocimetry was adopted to quantify the velocity field. Under certain AC conditions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered, leading to the formation of toroidal vortices. Increased residence time and heat recirculation inside the vortex resulted in appreciable formation of PAHs and soot near the nozzle exit. Decreased residence time along the jet axis through flow acceleration by the vortex led to a reduction in the soot volume fraction in the downstream sooting zone. Electromagnetic force generated by AC was proposed as a viable mechanism for the formation of the toroidal vortex. The onset conditions for the vortex formation supported the role of an electromagnetic force acting on charged particles in the flame zone. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  16. AC electric field induced vortex in laminar coflow diffusion flames

    KAUST Repository

    Xiong, Yuan; Cha, Min; Chung, Suk-Ho

    2014-01-01

    Experiments were performed by applying sub-critical high-voltage alternating current (AC) to the nozzle of laminar propane coflow diffusion flames. Light scattering, laser-induced incandescence and laser-induced fluorescence techniques were used to identify the soot zone, and the structures of OH and polycyclic aromatic hydrocarbons (PAHs). Particle image velocimetry was adopted to quantify the velocity field. Under certain AC conditions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered, leading to the formation of toroidal vortices. Increased residence time and heat recirculation inside the vortex resulted in appreciable formation of PAHs and soot near the nozzle exit. Decreased residence time along the jet axis through flow acceleration by the vortex led to a reduction in the soot volume fraction in the downstream sooting zone. Electromagnetic force generated by AC was proposed as a viable mechanism for the formation of the toroidal vortex. The onset conditions for the vortex formation supported the role of an electromagnetic force acting on charged particles in the flame zone. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  17. Time-resolved magnetization dynamics of cross-tie domain walls in permalloy microstructures

    International Nuclear Information System (INIS)

    Miguel, J; Kurde, J; Piantek, M; Kuch, W; Sanchez-Barriga, J; Heitkamp, B; Kronast, F; Duerr, H A; Bayer, D; Aeschlimann, M

    2009-01-01

    We report on a picosecond time-resolved x-ray magnetic circular dichroic-photoelectron emission microscopy study of the evolution of the magnetization components of a microstructured permalloy platelet comprising three cross-tie domain walls. A laser-excited photoswitch has been used to apply a triangular 80 Oe, 160 ps magnetic pulse. Micromagnetic calculations agree well with the experimental results, both in time and frequency, illustrating the large angle precession in the magnetic domains with magnetization perpendicular to the applied pulse, and showing how the magnetic vortices revert their core magnetization while the antivortices remain unaffected.

  18. Time-resolved magnetization dynamics of cross-tie domain walls in permalloy microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, J; Kurde, J; Piantek, M; Kuch, W [Institut fuer Experimentalphysik, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin (Germany); Sanchez-Barriga, J; Heitkamp, B; Kronast, F; Duerr, H A [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Elektronenspeicherring BESSY II, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Bayer, D; Aeschlimann, M, E-mail: jorge.miguel@fu-berlin.d [Fachbereich Physik, Universitaet Kaiserslautern, Erwin-Schroedinger Strasse 46, D-67663 Kaiserslautern (Germany)

    2009-12-02

    We report on a picosecond time-resolved x-ray magnetic circular dichroic-photoelectron emission microscopy study of the evolution of the magnetization components of a microstructured permalloy platelet comprising three cross-tie domain walls. A laser-excited photoswitch has been used to apply a triangular 80 Oe, 160 ps magnetic pulse. Micromagnetic calculations agree well with the experimental results, both in time and frequency, illustrating the large angle precession in the magnetic domains with magnetization perpendicular to the applied pulse, and showing how the magnetic vortices revert their core magnetization while the antivortices remain unaffected.

  19. Time-resolved electron transport in quantum-dot systems; Zeitaufgeloester Elektronentransport in Quantendotsystemen

    Energy Technology Data Exchange (ETDEWEB)

    Croy, Alexander

    2010-06-30

    In this thesis the time-resolved electron transport in quantum dot systems was studied. For this two different formalisms were presented: The nonequilibrium Green functions and the generalized quantum master equations. For both formalisms a propagation method for the numerical calculation of time-resolved expectation values, like the occupation and the electron current, was developed. For the demonstration of the propagation method two different question formulations were considered. On the one hand the stochastically driven resonant-level model was studied. On the other hand the pulse-induced transport through a double quantum dot was considered.

  20. Dynamics of laser-induced channel formation in water and influence of pulse duration on the ablation of biotissue under water with pulsed erbium-laser radiation

    Science.gov (United States)

    Ith, M.; Pratisto, H.; Altermatt, H. J.; Frenz, M.; Weber, H. P.

    1994-12-01

    The ability to use fiber-delivered erbium-laser radiation for non-contact arthroscopic meniscectomy in a liquid environment was studied. The laser radiation is transmitted through a water-vapor channel created by the leading part of the laser pulse. The dynamics of the channel formation around a submerged fiber tip was investigated with time-resolved flash photography. Strong pressure transients with amplitudes up to a few hundreds of bars measured with a needle hydrophone were found to accompany the channel formation process. Additional pressure transients in the range of kbars were observed after the laser pulse associated with the collapse of the vapor channel. Transmission measurements revealed that the duration the laser-induced channel stays open, and therefore the energy transmittable through it, is substantially determined by the laser pulse duration. The optimum pulse duration was found to be in the range between 250 and 350 µS. This was confirmed by histological evaluations of the laser incisions in meniscus: Increasing the pulse duration from 300 to 800 µs leads to a decrease in the crater depth from 1600 to 300 µm. A comparison of the histological examination after laser treatment through air and through water gave information on the influence of the vapor channel on the ablation efficiency, the cutting quality and the induced thermal damage in the adjacent tissue. The study shows that the erbium laser combined with an adequate fiber delivery system represents an effective surgical instrument liable to become increasingly accepted in orthopedic surgery.

  1. Experimental test of depth dependence of solutions for time-resolved diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Laidevant, A.; Da Silva, A.; Moy, J.P.; Berger, M.; Dinten, J.M

    2004-07-01

    The determination of optical properties of a semi-infinite medium such as biological tissue has been widely investigated by many authors. Reflectance formulas can be derived from the diffusion equation for different boundary conditions at the medium-air interface. This quantity can be measured at the medium surface. For realistic objects, such as a mouse, tissue optical properties can realistically only be determined at the object surface. However, near the surface diffusion approximation is weak and boundary models have to be considered. In order to investigate the validity of the time resolved reflectance approach at the object boundary, we have estimated optical properties of a liquid semi-infinite medium by this method for different boundary conditions and different fiber's position beneath the surface. The time-correlated single photon counting (TCSPC) technique is used to measure the reflectance curve. Our liquid phantoms are made of water, Intra-lipid and Ink. Laser light is delivered by a pulsed laser diode. Measurements are then fitted to theoretical solutions expressed as a function of source and detector's depth and distance. By taking as reference the optical properties obtained from the infinite model for fibers deeply immersed, influence of the different boundary conditions and bias induced are established for different fibers' depth and a variety of solutions. This influence is analysed by comparing evolution of the reflectance models, as well as estimations of absorption and scattering coefficients. According to this study we propose a strategy for determining optical properties of a solid phantom where measurements can only be realized at the surface. (authors)

  2. Temporal and spatial effects of ablation plume on number density distribution of droplets in an aerosol measured by laser-induced breakdown

    International Nuclear Information System (INIS)

    Yashiro, H.; Kakehata, M.

    2013-01-01

    We proposed and experimentally demonstrated a novel method of evaluating the number density of droplets in an aerosol by laser-induced breakdown. The number density of droplets is evaluated from the volume in which the laser intensity exceeds the breakdown threshold intensity for droplets, and the number of droplets in this volume, which is evaluated by the experimentally observed breakdown probability. This measurement method requires a large number of laser shots for not only precise measurement but also highly temporally and spatially resolved density distribution in aerosol. Laser ablation plumes ejected from liquid droplets generated by breakdown disturb the density around the measurement points. Therefore, the recovery time of the density determines the maximum repetition rate of the probe laser irradiating a fixed point. The expansion range of the ablation plume determines the minimum distance at which the measurement points are unaffected by a neighboring breakdown when multiple laser beams are simultaneously irradiated. These laser irradiation procedures enable the measurement of the number density distribution of droplets in an aerosol at a large number of points within a short measurement time.

  3. Temporal and spatial effects of ablation plume on number density distribution of droplets in an aerosol measured by laser-induced breakdown

    Energy Technology Data Exchange (ETDEWEB)

    Yashiro, H.; Kakehata, M. [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2013-05-07

    We proposed and experimentally demonstrated a novel method of evaluating the number density of droplets in an aerosol by laser-induced breakdown. The number density of droplets is evaluated from the volume in which the laser intensity exceeds the breakdown threshold intensity for droplets, and the number of droplets in this volume, which is evaluated by the experimentally observed breakdown probability. This measurement method requires a large number of laser shots for not only precise measurement but also highly temporally and spatially resolved density distribution in aerosol. Laser ablation plumes ejected from liquid droplets generated by breakdown disturb the density around the measurement points. Therefore, the recovery time of the density determines the maximum repetition rate of the probe laser irradiating a fixed point. The expansion range of the ablation plume determines the minimum distance at which the measurement points are unaffected by a neighboring breakdown when multiple laser beams are simultaneously irradiated. These laser irradiation procedures enable the measurement of the number density distribution of droplets in an aerosol at a large number of points within a short measurement time.

  4. Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media.

    Science.gov (United States)

    Nomura, Y; Hazeki, O; Tamura, M

    1997-06-01

    The time-resolved Beer-Lambert law proposed for oxygen monitoring using pulsed light was extended to the non-time-resolved case in a scattered medium such as living tissues with continuous illumination. The time-resolved Beer-Lambert law was valid for the phantom model and living tissues in the visible and near-infrared regions. The absolute concentration and oxygen saturation of haemoglobin in rat brain and thigh muscle could be determined. The temporal profile of rat brain was reproduced by Monte Carlo simulation. When the temporal profiles of rat brain under different oxygenation states were integrated with time, the absorbance difference was linearly related to changes in the absorption coefficient. When the simulated profiles were integrated, there was a linear relationship within the absorption coefficient which was predicted for fractional inspiratory oxygen concentration from 10 to 100% and, in the case beyond the range of the absorption coefficient, the deviation from linearity was slight. We concluded that an optical pathlength which is independent of changes in the absorption coefficient is a good approximation for near-infrared oxygen monitoring.

  5. Laser-induced nuclear fusion

    International Nuclear Information System (INIS)

    Jablon, Claude

    1977-01-01

    Research programs on laser-induced thermonuclear fusion in the United States, in Europe and in USSR are reviewed. The principle of the fusion reactions induced is explained, together with the theoretical effects of the following phenomena: power and type of laser beams, shape and size of the solid target, shock waves, and laser-hydrodynamics coupling problems [fr

  6. Time-Resolved Tandem Faraday Cup Development for High Energy TNSA Particles

    Science.gov (United States)

    Padalino, S.; Simone, A.; Turner, E.; Ginnane, M. K.; Glisic, M.; Kousar, B.; Smith, A.; Sangster, C.; Regan, S.

    2015-11-01

    MTW and OMEGA EP Lasers at LLE utilize ultra-intense laser light to produce high-energy ion pulses through Target Normal Sheath Acceleration (TNSA). A Time Resolved Tandem Faraday Cup (TRTF) was designed and built to collect and differentiate protons from heavy ions (HI) produced during TNSA. The TRTF includes a replaceable thickness absorber capable of stopping a range of user-selectable HI emitted from TNSA plasma. HI stop within the primary cup, while less massive particles continue through and deposit their remaining charge in the secondary cup, releasing secondary electrons in the process. The time-resolved beam current generated in each cup will be measured on a fast storage scope in multiple channels. A charge-exchange foil at the TRTF entrance modifies the charge state distribution of HI to a known distribution. Using this distribution and the time of flight of the HI, the total HI current can be determined. Initial tests of the TRTF have been made using a proton beam produced by SUNY Geneseo's 1.7 MV Pelletron accelerator. A substantial reduction in secondary electron production, from 70% of the proton beam current at 2MeV down to 0.7%, was achieved by installing a pair of dipole magnet deflectors which successfully returned the electrons to the cups in the TRTF. Ultimately the TRTF will be used to normalize a variety of nuclear physics cross sections and stopping power measurements. Based in part upon work supported by a DOE NNSA Award#DE-NA0001944.

  7. Application of microfluidic devices for time resolved FTIR spectroscopy

    International Nuclear Information System (INIS)

    Wagner, C.

    2012-01-01

    Within this thesis, micro fluidic mixers, operated in continuous flow mode, were used for time resolved FTIR studies of chemical reactions in aqueous solution. Any chemical reaction, that can be started upon mixing two reagents, can be examined with this technique. The mixing channel also serves as the observation window for the IR measurements. The actual measurements take place at well defined spots along this channel, corresponding to specific reaction times: moving the measurement spot (100 × 100 μm 2 ) towards the entry yields shorter reaction times, moving it towards the channel's end gives longer reaction times. The temporal resolution of the experiment depends on the flow rate inside the mixing channel and the spacing between subsequent measurement points. Fast flow rates, limited by the back pressure of the mixer leading to leakages, allow time resolutions in the sub-millisecond time range using a standard FTIR microscope, whereas slow flow rates allow the measurement of reaction times up to 1000 ms. Evaluating the mixer using a fast chemical reaction resulted in mixing times of approximately 5 ms and a homogeneous distribution of the liquids across the width of the mixing channel. The mixer was then used for the measurement of the H/D exchange on carbohydrates, the complex formaldehyde sulfite clock reaction, and the folding of the protein ubiquitin from its native to the ''A'' state, induced by mixing it with an acidified methanol solution. For cleaning the mixer a software tool, called ATLAS, was developed in LabVIEW, which was used to automatize the necessary cleaning steps performed by a dedicated flow system. Additionally, the micro mixer technology was combined with the step scan measurement technique using a beam condenser focusing the IR beam of an FTIR spectrometer down to a spot size of 1 mm diameter and through the mixer. The laser light, initiating the chemical reaction inside the mixing channel, was coupled into the focusing unit using a

  8. Time resolved resonant inelastic X-ray scattering: A supreme tool to understand dynamics in solids and molecules

    International Nuclear Information System (INIS)

    Beye, M.; Wernet, Ph.; Schüßler-Langeheine, C.; Föhlisch, A.

    2013-01-01

    Highlights: •The high specificity of RIXS ideally suits time-resolved measurements. •Methods relating to the core hole lifetime cover the low femtosecond regime. •Pump-probe methods are used starting at sub-ps time scales. •FELs and synchrotrons are useful for pump-probe studies. •Examples from solid state dynamics and molecules are discussed. -- Abstract: Dynamics in materials typically involve different degrees of freedom, like charge, lattice, orbital and spin in a complex interplay. Time-resolved resonant inelastic X-ray scattering (RIXS) as a highly selective tool can provide unique insight and follow the details of dynamical processes while resolving symmetries, chemical and charge states, momenta, spin configurations, etc. In this paper, we review examples where the intrinsic scattering duration time is used to study femtosecond phenomena. Free-electron lasers access timescales starting in the sub-ps range through pump-probe methods and synchrotrons study the time scales longer than tens of ps. In these examples, time-resolved resonant inelastic X-ray scattering is applied to solids as well as molecular systems

  9. Time-resolved autofluorescence imaging of human donor retina tissue from donors with significant extramacular drusen.

    Science.gov (United States)

    Schweitzer, Dietrich; Gaillard, Elizabeth R; Dillon, James; Mullins, Robert F; Russell, Stephen; Hoffmann, Birgit; Peters, Sven; Hammer, Martin; Biskup, Christoph

    2012-06-08

    Time and spectrally resolved measurements of autofluorescence have the potential to monitor metabolism at the cellular level. Fluorophores that emit with the same fluorescence intensity can be discriminated from each other by decay time of fluorescence intensity after pulsed excitation. We performed time-resolved autofluorescence measurements on fundus samples from a donor with significant extramacular drusen. Tissue sections from two human donors were prepared and imaged with a laser scanning microscope. The sample was excited with a titanium-sapphire laser, which was tuned to 860 nm, and frequency doubled by a BBO crystal to 430 nm. The repetition rate was 76 MHz and the pulse width was 170 femtoseconds (fs). The time-resolved autofluorescence was recorded simultaneously in 16 spectral channels (445-605 nm) and bi-exponentially fitted. RPE can be discriminated clearly from Bruch's membrane, drusen, and choroidal connective tissue by fluorescence lifetime. In RPE, bright fluorescence of lipofuscin could be detected with a maximum at 510 nm and extending beyond 600 nm. The lifetime was 385 ps. Different types of drusen were found. Most of them did not contain lipofuscin and exhibited a weak fluorescence, with a maximum at 470 nm. The lifetime was 1785 picoseconds (ps). Also, brightly emitting lesions, presumably representing basal laminar deposits, with fluorescence lifetimes longer than those recorded in RPE could be detected. The demonstrated differentiation of fluorescent structures by their fluorescence decay time is important for interpretation of in vivo measurements by the new fluorescence lifetime imaging (FLIM) ophthalmoscopy on healthy subjects as well as on patients.

  10. Time evolution studies of laser induced chemical changes in InAs nanowire using Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Suparna; Aggarwal, R.; Kumari Gupta, Vandna; Ingale, Alka [Laser Physics Application Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, MP (India)

    2014-07-07

    We report the study of time evolution of chemical changes on the surface of an InAs nanowire (NW) on laser irradiation in different power density regime, using Raman spectroscopy for a time span of 8–16 min. Mixture of metastable oxides like InAsO{sub 4,} As{sub 2}O{sub 3} are formed upon oxidation, which are reflected as sharp Raman peaks at ∼240–254 and 180–200 cm{sup −1}. Evidence of removal of arsenic layer by layer is also observed at higher power density. Position controlled laser induced chemical modification on a nanometer scale, without changing the core of the NW, can be useful for NW based device fabrication.

  11. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Geohegan, D.B.

    1994-09-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume.

  12. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    International Nuclear Information System (INIS)

    Geohegan, D.B.

    1994-01-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume

  13. Time-resolved X-ray absorption spectroscopy for laser-ablated silicon particles in xenon gas

    International Nuclear Information System (INIS)

    Makimura, Tetsuya; Sakuramoto, Tamaki; Murakami, Kouichi

    1996-01-01

    We developed a laboratory-scale in situ apparatus for soft X-ray absorption spectroscopy with a time resolution of 10 ns and a space resolution of 100 μm. Utilizing this spectrometer, we have investigated the dynamics of silicon atoms formed by laser ablation in xenon gas. It was found that 4d-electrons in the xenon atoms are excited through collision with electrons in the laser-generated silicon plasma. (author)

  14. On the elemental analysis of different cigarette brands using laser induced breakdown spectroscopy and laser-ablation time of flight mass spectrometry

    Science.gov (United States)

    Ahmed, Nasar; Umar, Zeshan A.; Ahmed, Rizwan; Aslam Baig, M.

    2017-10-01

    We present qualitative and quantitative analysis of the trace elements present in different brands of tobacco available in Pakistan using laser induced breakdown spectroscopy (LIBS) and Laser ablation Time of Flight Mass Spectrometer (LA-TOFMS). The compositional analysis using the calibration free LIBS technique is based on the observed emission spectra of the laser produced plasma plume whereas the elemental composition analysis using LA-TOFMS is based on the mass spectra of the ions produced by laser ablation. The optical emission spectra of these samples contain spectral lines of calcium, magnesium, sodium, potassium, silicon, strontium, barium, lithium and aluminum with varying intensities. The corresponding mass spectra of the elements were detected in LA-TOF-MS with their composition concentration. The analysis of different brands of cigarettes demonstrates that LIBS coupled with a LA-TOF-MS is a powerful technique for the elemental analysis of the trace elements in any solid sample.

  15. Femtosecond time-resolved vibrational SFG spectroscopy of CO/Ru( 0 0 1 )

    Science.gov (United States)

    Hess, Ch.; Wolf, M.; Roke, S.; Bonn, M.

    2002-04-01

    Vibrational sum-frequency generation (SFG) employing femtosecond infrared (IR) laser pulses is used to study the dynamics of the C-O stretch vibration on Ru(0 0 1). Time-resolved measurements of the free induction decay (FID) of the IR-polarization for 0.33 ML CO/Ru(0 0 1) exhibit single exponential decays over three decades corresponding to dephasing times of T2=1.94 ps at 95 K and T2=1.16 ps at 340 K. This is consistent with pure homogeneous broadening due to anharmonic coupling with the thermally activated low-frequency dephasing mode together with a contribution from saturation of the IR transition. In pump-probe SFG experiments using a strong visible (VIS) pump pulse the perturbation of the FID leads to transient line shifts even at negative delay times, i.e. when the IR-VIS SFG probe pair precedes the pump pulse. Based on an analysis of the time-dependent polarization we discuss the influence of the perturbed FID on time-resolved SFG spectra. We investigate how coherent effects affect the SFG spectra and we examine the time resolution in these experiments, in particular in dependence of the dephasing time.

  16. Near-infrared laser, time domain, breast tumour detection system

    International Nuclear Information System (INIS)

    Joblin, A.J.

    1996-01-01

    Full text: The use of near-infrared laser, time domain techniques have been proposed for some time now as an alternative to X-ray mammography, as a means of mass screening for breast disease. The great driving force behind this research has been that near-infrared photons are a non-ionising radiation, which affords a greater degree of patient safety than when using X-rays. This would mean that women at risk of breast disease could be screened with a near-infrared laser imaging system, much more regularly than with an X-ray mammography system, which should allow for the earlier detection and treatment of breast disease. This paper presents a theoretical investigation of the performance of a near-infrared, time domain breast imaging system. The performance of the imaging system is characterised by the resolution and contrast parameters, which were studied using a numerical finite difference calculation method. The finite difference method is used to solve the diffusion equation for the photon transport through the inhomogeneous breast tissue medium. Optimal performance was found to be obtained with short photon times of flight. However the signal to noise ratio decreases rapidly as the photon time of flight is decreased. The system performance will therefore be limited by the noise equivalent power of the time resolved detection system, which is the signal incident on the time resolved detection system which gives a signal to noise ratio of 1:1. Photon times of flight shorter than 500 ps are not practical with current technology, which places limits on the resolution and contrast. The photon signal throughput can be increased by increasing the size of the laser beam width, by increasing the size of the aperture stop of the detector, by increasing the laser pulse duration or decreasing the detector time resolution. Best system performance is found by optimising these parameters for a given time gating and detector system characteristic (NEP). It was found that the

  17. Ablative fractional laser enhances MAL-induced PpIX accumulation

    DEFF Research Database (Denmark)

    Haak, C S; Christiansen, K; Erlendsson, Andrés M

    2016-01-01

    BACKGROUND AND OBJECTIVES: Pretreatment of skin with ablative fractional laser enhances accumulation of topical provided photosensitizer, but essential information is lacking on the interaction between laser channel densities and pharmacokinetics. Hence our objectives were to investigate how...... (range 46-133min) induced fluorescence levels similar to curettage and 180min incubation. Furthermore, MAL 80 and 160mg/g induced similar fluorescence intensities in skin exposed to laser densities of 1, 2 and 5% (p>0.0537, 30-180min). CONCLUSION: MAL-induced protoporphyrin accumulation is augmented...... protoporphyrin accumulation was affected by laser densities, incubation time and drug concentration. METHODS: We conducted the study on the back of healthy male volunteers (n=11). Test areas were pretreated with 2940nm ablative fractional Er:YAG laser, 11.2mJ per laser channel using densities of 1, 2, 5, 10...

  18. Dynamics of Al/Fe{sub 2}O{sub 3} MIC combustion from short single-pulse photothermal initiation and time-resolved spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stiegman, Albert E.; Park, Chi-Dong; Mileham, Melissa; Van de Burgt, Lambertus J. [Department of Chemistry and Biochemistry, Florida State University Tallahassee, FL (United States); Kramer, Michael P. [AFRL/MNME Eglin AFB, FL (United States)

    2009-08-15

    Time-resolved spectroscopy was used to study the dynamics of the photothermal ignition of Al/Fe{sub 2}O{sub 3} metastable intermolecular composites after single short-pulse laser initiation. The dynamics were recorded in several time domains from nanosecond to microsecond to quantify the dynamics from initial laser excitation to combustion. Time-averaged spectral data were also collected for the overall emission occurring during combustion. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  19. Comb-Resolved Dual-Comb Spectroscopy Stabilized by Free-Running Continuous-Wave Lasers

    Science.gov (United States)

    Kuse, Naoya; Ozawa, Akira; Kobayashi, Yohei

    2012-11-01

    We demonstrate dual-comb spectroscopy with relatively phase-locked two frequency combs, instead of frequency combs firmly fixed to the absolute frequency references. By stabilizing two beat frequencies between two mode-locked lasers at different wavelengths observed via free-running continuous-wave (CW) lasers, two combs are tightly phase locked to each other. The frequency noise of the CW lasers barely affects the performance of dual-comb spectroscopy because of the extremely fast common-mode noise rejection. Transform-limited comb-resolved dual-comb spectroscopy with a 6 Hz radio frequency linewidth is demonstrated by the use of Yb-fiber oscillators.

  20. Supersonic laser-induced jetting of aluminum micro-droplets

    International Nuclear Information System (INIS)

    Zenou, M.; Sa'ar, A.; Kotler, Z.

    2015-01-01

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets

  1. Supersonic laser-induced jetting of aluminum micro-droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zenou, M. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel); Sa' ar, A. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Kotler, Z. [Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel)

    2015-05-04

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  2. Sub-nanometrically resolved chemical mappings of quantum-cascade laser active regions

    International Nuclear Information System (INIS)

    Pantzas, Konstantinos; Beaudoin, Grégoire; Patriarche, Gilles; Largeau, Ludovic; Mauguin, Olivia; Sagnes, Isabelle; Pegolotti, Giulia; Vasanelli, Angela; Calvar, Ariane; Amanti, Maria; Sirtori, Carlo

    2016-01-01

    A procedure that produces sub-nanometrically resolved chemical mappings of MOCVD-grown InGaAs/InAlAs/InP quantum cascade lasers is presented. The chemical mappings reveal that, although the structure is lattice-matched to InP, the InAlAs barriers do not attain the nominal aluminum content—48%—and are, in fact, InGaAlAs quaternaries. This information is used to adjust the aluminum precursor flow and fine-tune the composition of the barriers, resulting in a significant improvement of the fabricated lasers. (paper)

  3. Laser induced energy transfer

    International Nuclear Information System (INIS)

    Falcone, R.W.

    1979-01-01

    Two related methods of rapidly transferring stored energy from one excited chemical species to another are described. The first of these, called a laser induced collision, involves a reaction in which the energy balance is met by photons from an intense laser beam. A collision cross section of ca 10 - 17 cm 2 was induced in an experiment which demonstrated the predicted dependence of the cross section on wavelength and power density of the applied laser. A second type of laser induced energy transfer involves the inelastic scattering of laser radiation from energetically excited atoms, and subsequent absorption of the scattered light by a second species. The technique of producing the light, ''anti-Stokes Raman'' scattering of visible and infrared wavelength laser photons, is shown to be an efficient source of narrow bandwidth, high brightness, tunable radiation at vacuum ultraviolet wavelengths by using it to excite a rare gas transition at 583.7 A. In addition, this light source was used to make the first measurement of the isotopic shift of the helium metastable level at 601 A. Applications in laser controlled chemistry and spectroscopy, and proposals for new types of lasers using these two energy transfer methods are discussed

  4. Type I photosensitized reactions of oxopurines. Kinetics and thermodynamics of the reaction with triplet benzophenone by time-resolved photoacoustic spectroscopy

    Science.gov (United States)

    Murgida, Daniel H.; Erra Balsells, Rosa; Crippa, Pier Raimondo; Viappiani, Cristiano

    1998-09-01

    Benzophenone photosensitized reactions of caffeine, theophylline and theobromine were investigated in acetonitrile by time-resolved laser-induced photoacoustics. In the three cases global quenching rate constants of triplet benzophenone were measured as a function of temperature and it was observed that this is a non-activated process. Besides, for theobromine and theophylline heats for NH hydrogen abstraction reactions were determined. In agreement with semiempirical calculation predictions, hydrogen abstraction is thermodynamically more favorable and faster for theophylline (Δ H=-265 kJ mol -1, kr=9.6×10 8 M -1 s -1) than for theobromine (Δ H=-168 kJ mol -1, kr=3.7×10 8 M -1 s -1).

  5. Shadowgraphic investigations into the laser-induced forward transfer of different SnO2 precursor films

    International Nuclear Information System (INIS)

    Mattle, Thomas; Shaw-Stewart, James; Hintennach, Andreas; Schneider, Christof W.; Lippert, Thomas; Wokaun, Alexander

    2013-01-01

    Laser-induced forward transfer of different SnO 2 precursor films for sensor applications were investigated using time resolved imaging, from 0 to 2 μs after the onset of the ablation process. Transfers of SnCl 2 (acac) 2 and SnO 2 nano-particles, both with and without a triazene polymer dynamic release layer (DRL), were investigated and compared to transfers of aluminum films with a triazene polymer DRL. Shockwave speed and flyer speeds at high laser fluences of Φ = 650 mJ/cm 2 and at the lower fluences, suitable for the transfer of functional and well defined pixels were analyzed. No influence of the use of a triazene polymer DRL on shockwave and flyer speed was observed. Material ejected under transfer condition showed a velocity of around 200 m/s with a weak shockwave.

  6. Shadowgraphic investigations into the laser-induced forward transfer of different SnO2 precursor films

    Science.gov (United States)

    Mattle, Thomas; Shaw-Stewart, James; Hintennach, Andreas; Schneider, Christof W.; Lippert, Thomas; Wokaun, Alexander

    2013-08-01

    Laser-induced forward transfer of different SnO2 precursor films for sensor applications were investigated using time resolved imaging, from 0 to 2 μs after the onset of the ablation process. Transfers of SnCl2(acac)2 and SnO2 nano-particles, both with and without a triazene polymer dynamic release layer (DRL), were investigated and compared to transfers of aluminum films with a triazene polymer DRL. Shockwave speed and flyer speeds at high laser fluences of Φ = 650 mJ/cm2 and at the lower fluences, suitable for the transfer of functional and well defined pixels were analyzed. No influence of the use of a triazene polymer DRL on shockwave and flyer speed was observed. Material ejected under transfer condition showed a velocity of around 200 m/s with a weak shockwave.

  7. Ultrafast molecular imaging by laser-induced electron diffraction

    International Nuclear Information System (INIS)

    Peters, M.; Nguyen-Dang, T. T.; Cornaggia, C.; Saugout, S.; Charron, E.; Keller, A.; Atabek, O.

    2011-01-01

    We address the feasibility of imaging geometric and orbital structures of a polyatomic molecule on an attosecond time scale using the laser-induced electron diffraction (LIED) technique. We present numerical results for the highest molecular orbitals of the CO 2 molecule excited by a near-infrared few-cycle laser pulse. The molecular geometry (bond lengths) is determined within 3% of accuracy from a diffraction pattern which also reflects the nodal properties of the initial molecular orbital. Robustness of the structure determination is discussed with respect to vibrational and rotational motions with a complete interpretation of the laser-induced mechanisms.

  8. Determination of nuclear spins of short-lived isotopes by laser induced fluorescence

    International Nuclear Information System (INIS)

    Buchinger, F.; Dabkiewicz, P.; Kremmling, H.; Kuehl, T.; Mueller, A.C.; Schuessler, H.A.

    1980-01-01

    The spins of several nuclear ground and isomeric states have been measured for a number of mercury isotopes. The fluorescent light from the 6s6p 3 P 1 state is observed at 2537 Angstroem after excitation with the frequency doubled output of a pulsed dye laser. Four different laser induced fluorescence techniques were tested for their applicability: double resonance, Hanle effect, time delayed integral Hanle beats, and time resolved quantum beats. The sensitivity and selectivity of these models are compared with emphasis on the determination of spins of nuclei far from beta-stability, where short half lives and low production yields restrict the number of available atoms. The experiments were carried out on-line with the ISOLDE isotope separator at CERN at densities as low as 10 6 atoms/cm 3 . Results for the very neutron deficient high spin mercury isomers with half lives of several seconds, but also for the ground states of the abundant low spin stable mercury isotopes, are given as examples. The test measurements determined the nuclear spins of the odd sup(185m-191m)Hg isomers to be I = 13/2. (orig.)

  9. Seventh international conference on time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, R.B.; Martinez, M.A.D.; Shreve, A.; Woodruff, W.H. [comps.

    1997-04-01

    The International Conference on Time-Resolved Vibrational Spectroscopy (TRVS) is widely recognized as the major international forum for the discussion of advances in this rapidly growing field. The 1995 conference was the seventh in a series that began at Lake Placid, New York, 1982. Santa Fe, New Mexico, was the site of the Seventh International Conference on Time-Resolved Vibrational Spectroscopy, held from June 11 to 16, 1995. TRVS-7 was attended by 157 participants from 16 countries and 85 institutions, and research ranging across the full breadth of the field of time-resolved vibrational spectroscopy was presented. Advances in both experimental capabilities for time-resolved vibrational measurements and in theoretical descriptions of time-resolved vibrational methods continue to occur, and several sessions of the conference were devoted to discussion of these advances and the associated new directions in TRVS. Continuing the interdisciplinary tradition of the TRVS meetings, applications of time-resolved vibrational methods to problems in physics, biology, materials science, and chemistry comprised a large portion of the papers presented at the conference.

  10. Microcontroller based resonance tracking unit for time resolved continuous wave cavity-ringdown spectroscopy measurements.

    Science.gov (United States)

    Votava, Ondrej; Mašát, Milan; Parker, Alexander E; Jain, Chaithania; Fittschen, Christa

    2012-04-01

    We present in this work a new tracking servoloop electronics for continuous wave cavity-ringdown absorption spectroscopy (cw-CRDS) and its application to time resolved cw-CRDS measurements by coupling the system with a pulsed laser photolysis set-up. The tracking unit significantly increases the repetition rate of the CRDS events and thus improves effective time resolution (and/or the signal-to-noise ratio) in kinetics studies with cw-CRDS in given data acquisition time. The tracking servoloop uses novel strategy to track the cavity resonances that result in a fast relocking (few ms) after the loss of tracking due to an external disturbance. The microcontroller based design is highly flexible and thus advanced tracking strategies are easy to implement by the firmware modification without the need to modify the hardware. We believe that the performance of many existing cw-CRDS experiments, not only time-resolved, can be improved with such tracking unit without any additional modification to the experiment. © 2012 American Institute of Physics

  11. Field enhancement induced laser ablation

    DEFF Research Database (Denmark)

    Fiutowski, Jacek; Maibohm, Christian; Kjelstrup-Hansen, Jakob

    Sub-diffraction spatially resolved, quantitative mapping of strongly localized field intensity enhancement on gold nanostructures via laser ablation of polymer thin films is reported. Illumination using a femtosecond laser scanning microscope excites surface plasmons in the nanostructures....... The accompanying field enhancement substantially lowers the ablation threshold of the polymer film and thus creates local ablation spots and corresponding topographic modifications of the polymer film. Such modifications are quantified straightforwardly via scanning electron and atomic force microscopy. Thickness...

  12. Time-resolved cathodoluminescence microscopy with sub-nanosecond beam blanking for direct evaluation of the local density of states

    NARCIS (Netherlands)

    Moerland, R.J.; Weppelman, I.G.C.; Garming, M.W.H.; Kruit, P.; Hoogenboom, J.P.

    2016-01-01

    We show cathodoluminescence-based time-resolved electron beam spectroscopy in order to directly probe the spontaneous emission decay rate that is modified by the local density of states in a nanoscale environment. In contrast to dedicated laser-triggered electron-microscopy setups, we use commercial

  13. Development of a Nomarski-type multi-frame interferometer as a time and space resolving diagnostics for the free electron density of laser-generated plasma

    International Nuclear Information System (INIS)

    Boerner, M.; Frank, A.; Pelka, A.; Schaumann, G.; Schoekel, A.; Schumacher, D.; Roth, M.; Fils, J.; Blazevic, A.; Hessling, T.; Basko, M. M.; Maruhn, J.; Tauschwitz, An.

    2012-01-01

    This article reports on the development and set-up of a Nomarski-type multi-frame interferometer as a time and space resolving diagnostics of the free electron density in laser-generated plasma. The interferometer allows the recording of a series of 4 images within 6 ns of a single laser-plasma interaction. For the setup presented here, the minimal accessible free electron density is 5 x 10 18 cm -3 , the maximal one is 2 x 10 20 cm -3 . Furthermore, it provides a resolution of the electron density in space of 50 μm and in time of 0.5 ns for one image with a customizable magnification in space for each of the 4 images. The electron density was evaluated from the interferograms using an Abel inversion algorithm. The functionality of the system was proven during first experiments and the experimental results are presented and discussed. A ray tracing procedure was realized to verify the interferometry pictures taken. In particular, the experimental results are compared to simulations and show excellent agreement, providing a conclusive picture of the evolution of the electron density distribution.

  14. Laser-induced bandgap collapse in GaAs

    Science.gov (United States)

    Siegal, Y.; Glezer, Eli N.; Huang, Li; Mazur, Eric

    1994-05-01

    We present recent time-resolved measurements of the linear dielectric constant of GaAs at 2.2 eV and 4.4 eV following femtosecond laser pulse excitation. In sharp contrast to predictions based on the widely used Drude model, the data show an interband absorption peak coming into resonance first with the 4.4 eV probe photon energy and then with the 2.2 eV probe photon energy, indicating major changes in the band structure. The time scale for these changes ranges from within 100 fs to a few picoseconds, depending on the incident pump pulse fluence.

  15. Time-space distribution of laser-induced plasma parameters and its influence on emission spectra of the laser plumes

    International Nuclear Information System (INIS)

    Ershov-Pavlov, E.A.; Katsalap, K.Yu.; Stepanov, K.L.; Stankevich, Yu.A.

    2008-01-01

    A physical model is developed accounting for dynamics and radiation of plasma plumes induced by nanosecond laser pulses on surface of solid samples. The model has been applied to simulate emission spectra of the laser erosion plasma at the elemental analysis of metals using single- and double-pulse excitation modes. Dynamics of the sample heating and expansion of the erosion products are accounted for by the thermal conductivity and gas dynamic equations, respectively, supposing axial symmetry. Using the resulting time-space distributions of the plasma parameters, emission spectra of the laser plumes are evaluated by solving the radiation transfer equation. Particle concentration in consecutive ionization stages is described by the Saha equation in the Debye approximation. The population of excited levels is determined according to Boltzmann distribution. Local characteristics determining spectral emission and absorption coefficients are obtained point-by-point along an observation line. Voigt spectral line profiles are considered with main broadening mechanisms taken into account. The plasma dynamics and plume emission spectra have been studied experimentally and by the model. A Q-switched Nd:YAG laser at 1064 nm wavelength has been used to irradiate Al sample with the pulses of 15 ns and 50 mJ duration and energy, respectively. It has resulted in maximum power density of 0.8 MW/cm 2 on the sample surface. The laser plume emission spectra have been recorded at a side-on observation. Problems of the spectra contrast and of the elemental analysis efficiency are considered relying on a comparative study of the measurement and simulation results at the both excitation modes

  16. Table-top instrumentation for time-resolved luminescence spectroscopy of solids excited by nanosecond pulse of soft X-ray source and/or UV laser

    International Nuclear Information System (INIS)

    Bruza, Petr; Fidler, Vlastimil; Nikl, Martin

    2011-01-01

    The practical applicability of the rare-earth doped scintillators in high-speed detectors is limited by the slow decay components in the temporal response of a scintillator. The study of origin and properties of material defects that induce the slow decay components is of major importance for the development of new scintillation materials. We present a table-top, time-domain UV-VIS luminescence spectrometer, featuring extended time and input sensitivity ranges and two excitation sources. The combination of both soft X-ray/XUV and UV excitation source allows the comparative measurements of luminescence spectra and decay kinetics of scintillators to be performed under the same experimental conditions. The luminescence of emission centers of a doped scintillator can be induced by conventional N 2 laser pulse, while the complete scintillation process can be initiated by a soft X-ray/XUV pulse excitation from the laser-produced plasma in gas puff target of 4 ns duration. In order to demonstrate the spectrometer, the UV-VIS luminescence spectra and decay kinetics of cerium doped Lu 3 Al 5 O 12 single crystal (LuAG:Ce) scintillator excited by XUV and UV radiation were acquired. Luminescence of the doped Ce 3+ ions was studied under 2.88 nm (430 eV) XUV excitation from the laser-produced nitrogen plasma, and compared with the luminescence under 337 nm (3.68 eV) UV excitation from nitrogen laser. In the former case the excitation energy is deposited in the LuAG host, while in the latter the 4f-5d 2 transition of Ce 3+ is directly excited. Furthermore, YAG:Ce and LuAG:Ce single crystals luminescence decay profiles are compared and discussed.

  17. Shadowgraphic investigations into the laser-induced forward transfer of different SnO{sub 2} precursor films

    Energy Technology Data Exchange (ETDEWEB)

    Mattle, Thomas [General Energy Research Department, Paul Scherrer Institut, CH-5232 Villigen-PSI (Switzerland); Shaw-Stewart, James [General Energy Research Department, Paul Scherrer Institut, CH-5232 Villigen-PSI (Switzerland); Laboratory for Functional Polymers, Empa Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Hintennach, Andreas [General Energy Research Department, Paul Scherrer Institut, CH-5232 Villigen-PSI (Switzerland); Daimler AG (Mercedes-Benz Cars), Electrochemical Layers, HPC H152, 70176 Stuttgart (Germany); Schneider, Christof W. [General Energy Research Department, Paul Scherrer Institut, CH-5232 Villigen-PSI (Switzerland); Lippert, Thomas, E-mail: thomas.lippert@psi.ch [General Energy Research Department, Paul Scherrer Institut, CH-5232 Villigen-PSI (Switzerland); Wokaun, Alexander [General Energy Research Department, Paul Scherrer Institut, CH-5232 Villigen-PSI (Switzerland)

    2013-08-01

    Laser-induced forward transfer of different SnO{sub 2} precursor films for sensor applications were investigated using time resolved imaging, from 0 to 2 μs after the onset of the ablation process. Transfers of SnCl{sub 2}(acac){sub 2} and SnO{sub 2} nano-particles, both with and without a triazene polymer dynamic release layer (DRL), were investigated and compared to transfers of aluminum films with a triazene polymer DRL. Shockwave speed and flyer speeds at high laser fluences of Φ = 650 mJ/cm{sup 2} and at the lower fluences, suitable for the transfer of functional and well defined pixels were analyzed. No influence of the use of a triazene polymer DRL on shockwave and flyer speed was observed. Material ejected under transfer condition showed a velocity of around 200 m/s with a weak shockwave.

  18. Liquids microprinting through laser-induced forward transfer

    International Nuclear Information System (INIS)

    Serra, P.; Duocastella, M.; Fernandez-Pradas, J.M.; Morenza, J.L.

    2009-01-01

    Laser-induced forward transfer (LIFT) is a direct-writing technique which allows the deposition of tiny amounts of material from a donor thin film onto a receptor substrate. When LIFT is applied to liquid donor films, the laser radiation affects only a localized fraction of the liquid, thereby impelling the unaffected portion towards the receptor substrate. Thus, transfer takes place with no melting or vaporization of the deposited fraction and, in this way, LIFT can be used to successfully print complex materials like inorganic inks and pastes, biomolecules in solution, and even living cells and microorganisms. In addition, and for a wide range of liquid rheologies, the material can be deposited in the form of circular microdroplets; this provides LIFT with a high degree of spatial resolution leading to feature sizes below 10 μm, and making it competitive in front of conventional printing techniques. In this work, a revision of the main achievements of the LIFT of liquids is carried out, correlating the morphological characteristics of the generated features with the results of the study of the transfer process. Special emphasis is put on the characterization of the dynamics of liquid ejection, which has provided valuable information for the understanding of microdroplets deposition. Thus, new time-resolved imaging analyses have shown a material release behavior which contrasts with most of the previously made assumptions, and that allows clarifying some of the questions open during the study of the LIFT technique

  19. Visualization of Two-Phase Fluid Distribution Using Laser Induced Exciplex Fluorescence

    Science.gov (United States)

    Kim, J. U.; Darrow, J.; Schock, H.; Golding, B.; Nocera, D.; Keller, P.

    1998-03-01

    Laser-induced exciplex (excited state complex) fluorescence has been used to generate two-dimensional images of dispersed liquid and vapor phases with spectrally resolved two-color emissions. In this method, the vapor phase is tagged by the monomer fluorescence while the liquid phase is tracked by the exciplex fluorescence. A new exciplex visualization system consisting of DMA and 1,4,6-TMN in an isooctane solvent was developed.(J.U. Kim et al., Chem. Phys. Lett. 267, 323-328 (1997)) The direct ca

  20. Probing Photoinduced Structural Phase Transitions by Fast or Ultra-Fast Time-Resolved X-Ray Diffraction

    Science.gov (United States)

    Cailleau, Hervé Collet, Eric; Buron-Le Cointe, Marylise; Lemée-Cailleau, Marie-Hélène Koshihara, Shin-Ya

    A new frontier in the field of structural science is the emergence of the fast and ultra-fast X-ray science. Recent developments in time-resolved X-ray diffraction promise direct access to the dynamics of electronic, atomic and molecular motions in condensed matter triggered by a pulsed laser irradiation, i.e. to record "molecular movies" during the transformation of matter initiated by light pulse. These laser pump and X-ray probe techniques now provide an outstanding opportunity for the direct observation of a photoinduced structural phase transition as it takes place. The use of X-ray short-pulse of about 100ps around third-generation synchrotron sources allows structural investigations of fast photoinduced processes. Other new X-ray sources, such as laser-produced plasma ones, generate ultra-short pulses down to 100 fs. This opens the way to femtosecond X-ray crystallography, but with rather low X-ray intensities and more limited experimental possibilities at present. However this new ultra-fast science rapidly progresses around these sources and new large-scale projects exist. It is the aim of this contribution to overview the state of art and the perspectives of fast and ultra-fast X-ray scattering techniques to study photoinduced phase transitions (here, the word ultra-fast is used for sub-picosecond time resolution). In particular we would like to largely present the contribution of crystallographic methods in comparison with optical methods, such as pump-probe reflectivity measurements, the reader being not necessary familiar with X-ray scattering. Thus we want to present which type of physical information can be obtained from the positions of the Bragg peaks, their intensity and their shape, as well as from the diffuse scattering beyond Bragg peaks. An important physical feature is to take into consideration the difference in nature between a photoinduced phase transition and conventional homogeneous photoinduced chemical or biochemical processes where

  1. Laser Induced Fluorescence Diagnostic for the Plasma Couette Experiment

    Science.gov (United States)

    Katz, Noam; Skiff, Fred; Collins, Cami; Weisberg, Dave; Wallace, John; Clark, Mike; Garot, Kristine; Forest, Cary

    2010-11-01

    The Plasma Couette Experiment (PCX) at U. Wisconsin-Madison consists of a rotating high-beta plasma and is well-suited to the study of flow-driven, astrophysically-relevant plasma phenomena. PCX confinement relies on alternating rings of 1kG permanent magnets and the rotation is driven by electrode rings, interspersed between the magnets, which provide an azimuthal ExB. I will discuss the development of a laser-induced fluorescence diagnostic (LIF) to characterize the ion distribution function of argon plasmas in PCX. The LIF system--which will be scanned radially--will be used to calibrate internal Mach probes, as well as to measure the time-resolved velocity profile, ion temperature and density non-perturbatively. These diagnostics will be applied to study the magneto-rotational instability in a plasma, as well as the buoyancy instability thought to be involved in producing the solar magnetic field. This work is supported by NSF and DOE.

  2. Quantum tunneling time of a Bose-Einstein condensate traversing through a laser-induced potential barrier

    International Nuclear Information System (INIS)

    Duan Zhenglu; Fan Bixuan; Yuan Chunhua; Zhang Weiping; Cheng Jing; Zhu Shiyao

    2010-01-01

    We theoretically study the effect of atomic nonlinearity on the tunneling time in the case of an atomic Bose-Einstein condensate (BEC) traversing the laser-induced potential barrier. The atomic nonlinearity is controlled to appear only in the region of the barrier by employing the Feshbach resonance technique to tune interatomic interaction in the tunneling process. Numerical simulation shows that the atomic nonlinear effect dramatically changes the tunneling behavior of the BEC matter wave packet and results in the violation of the Hartman effect and the occurrence of negative tunneling time.

  3. Laser-induced damage in optical materials

    CERN Document Server

    Ristau, Detlev

    2014-01-01

    Dedicated to users and developers of high-powered systems, Laser-Induced Damage in Optical Materials focuses on the research field of laser-induced damage and explores the significant and steady growth of applications for high-power lasers in the academic, industrial, and military arenas. Written by renowned experts in the field, this book concentrates on the major topics of laser-induced damage in optical materials and most specifically addresses research in laser damage that occurs in the bulk and on the surface or the coating of optical components. It considers key issues in the field of hi

  4. Time-resolved electron-beam characterizations with optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H. (Argonne National Lab., IL (United States)); Wilke, M.D. (Los Alamos National Lab., NM (United States))

    1992-01-01

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 {mu}s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatial position and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kicks are reported as a function of charge.

  5. Time-resolved electron-beam characterizations with optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H. [Argonne National Lab., IL (United States); Wilke, M.D. [Los Alamos National Lab., NM (United States)

    1992-09-01

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 {mu}s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatial position and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kicks are reported as a function of charge.

  6. Time-resolved photoluminescence of SiOx encapsulated Si

    Science.gov (United States)

    Kalem, Seref; Hannas, Amal; Österman, Tomas; Sundström, Villy

    Silicon and its oxide SiOx offer a number of exciting electrical and optical properties originating from defects and size reduction enabling engineering new electronic devices including resistive switching memories. Here we present the results of photoluminescence dynamics relevant to defects and quantum confinement effects. Time-resolved luminescence at room temperature exhibits an ultrafast decay component of less than 10 ps at around 480 nm and a slower component of around 60 ps as measured by streak camera. Red shift at the initial stages of the blue luminescence decay confirms the presence of a charge transfer to long lived states. Time-correlated single photon counting measurements revealed a life-time of about 5 ns for these states. The same quantum structures emit in near infrared close to optical communication wavelengths. Nature of the emission is described and modeling is provided for the luminescence dynamics. The electrical characteristics of metal-oxide-semiconductor devices were correlated with the optical and vibrational measurement results in order to have better insight into the switching mechanisms in such resistive devices as possible next generation RAM memory elements. ``This work was supported by ENIAC Joint Undertaking and Laser-Lab Europe''.

  7. Local Thermodynamic Equilibrium in Laser-Induced Breakdown Spectroscopy: Beyond the McWhirter criterion

    International Nuclear Information System (INIS)

    Cristoforetti, G.; De Giacomo, A.; Dell'Aglio, M.; Legnaioli, S.; Tognoni, E.; Palleschi, V.; Omenetto, N.

    2010-01-01

    In the Laser-Induced Breakdown Spectroscopy (LIBS) technique, the existence of Local Thermodynamic Equilibrium (LTE) is the essential requisite for meaningful application of theoretical Boltzmann-Maxwell and Saha-Eggert expressions that relate fundamental plasma parameters and concentration of analyte species. The most popular criterion reported in the literature dealing with plasma diagnostics, and usually invoked as a proof of the existence of LTE in the plasma, is the McWhirter criterion [R.W.P. McWhirter, in: Eds. R.H. Huddlestone, S.L. Leonard, Plasma Diagnostic Techniques, Academic Press, New York, 1965, pp. 201-264]. However, as pointed out in several papers, this criterion is known to be a necessary but not a sufficient condition to insure LTE. The considerations reported here are meant to briefly review the theoretical analysis underlying the concept of thermodynamic equilibrium and the derivation of the McWhirter criterion, and to critically discuss its application to a transient and non-homogeneous plasma, like that created by a laser pulse on solid targets. Specific examples are given of theoretical expressions involving relaxation times and diffusion coefficients, as well as a discussion of different experimental approaches involving space and time-resolved measurements that could be used to complement a positive result of the calculation of the minimum electron number density required for LTE using the McWhirter formula. It is argued that these approaches will allow a more complete assessment of the existence of LTE and therefore permit a better quantitative result. It is suggested that the mere use of the McWhirter criterion to assess the existence of LTE in laser-induced plasmas should be discontinued.

  8. Time-resolved quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Verano-Braga, Thiago; Schwämmle, Veit; Sylvester, Marc

    2012-01-01

    proteins involved in the Ang-(1-7) signaling, we performed a mass spectrometry-based time-resolved quantitative phosphoproteome study of human aortic endothelial cells (HAEC) treated with Ang-(1-7). We identified 1288 unique phosphosites on 699 different proteins with 99% certainty of correct peptide...

  9. Time- and energy resolved photoemission electron microscopy-imaging of photoelectron time-of-flight analysis by means of pulsed excitations

    International Nuclear Information System (INIS)

    Oelsner, Andreas; Rohmer, Martin; Schneider, Christian; Bayer, Daniela; Schoenhense, Gerd; Aeschlimann, Martin

    2010-01-01

    The present work enlightens the developments in time- and energy resolved photoemission electron microscopy over the past few years. We describe basic principles of the technique and demonstrate different applications. An energy- and time-filtering photoemission electron microscopy (PEEM) for real-time spectroscopic imaging can be realized either by a retarding field or hemispherical energy analyzer or by using time-of-flight optics with a delay line detector. The latter method has the advantage of no data loss at all as all randomly incoming particles are measured not only by position but also by time. This is of particular interest for pump-probe experiments in the femtosecond and attosecond time scale where space charge processes drastically limit the maximum number of photoemitted electrons per laser pulse. This work focuses particularly on time-of-flight analysis using a novel delay line detector. Time and energy resolved PEEM instruments with delay line detectors enable 4D imaging (x, y, Δt, E Kin ) on a true counting basis. This allows a broad range of applications from real-time observation of dynamic phenomena at surfaces to fs time-of-flight spectro-microscopy and even aberration correction. By now, these time-of-flight analysis instruments achieve intrinsic time resolutions of 108 ps absolute and 13.5 ps relative. Very high permanent measurement speeds of more than 4 million events per second in random detection regimes have been realized using a standard USB2.0 interface. By means of this performance, the time-resolved PEEM technique enables to display evolutions of spatially resolved (<25 nm) and temporal sliced images life on any modern computer. The method allows dynamics investigations of variable electrical, magnetic, and optical near fields at surfaces and great prospects in dynamical adaptive photoelectron optics. For dynamical processes in the ps time scale such as magnetic domain wall movements, the time resolution of the delay line detectors

  10. Electromagnetic numerical characterization of the laser-induced liquid crystal lens by finite-difference time domain method

    International Nuclear Information System (INIS)

    Morisaki, T.; Ono, H.

    2005-01-01

    A laser-induced liquid-crystal lens is formed by large optical non-linearity and anisotropic complex refractive indices in guest-host liquid crystals. We obtained light wave propagation characteristics of the laser-induced LC lens. Three analytical methods were used to obtain light wave propagation characteristics. Analysis by 3-dimensional heat conduction was applied to determine the refractive index in the liquid-crystal layer. Another method used was to determine light wave propagation characteristics in the laser-induced lens by means of the finite-difference tune domain (FDTD) method and diffraction theory. In this study, we draw a parallel between the experimental results and FDTD. Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd

  11. Numerical simulations of time-resolved quantum electronics

    International Nuclear Information System (INIS)

    Gaury, Benoit; Weston, Joseph; Santin, Matthieu; Houzet, Manuel; Groth, Christoph; Waintal, Xavier

    2014-01-01

    Numerical simulation has become a major tool in quantum electronics both for fundamental and applied purposes. While for a long time those simulations focused on stationary properties (e.g. DC currents), the recent experimental trend toward GHz frequencies and beyond has triggered a new interest for handling time-dependent perturbations. As the experimental frequencies get higher, it becomes possible to conceive experiments which are both time-resolved and fast enough to probe the internal quantum dynamics of the system. This paper discusses the technical aspects–mathematical and numerical–associated with the numerical simulations of such a setup in the time domain (i.e. beyond the single-frequency AC limit). After a short review of the state of the art, we develop a theoretical framework for the calculation of time-resolved observables in a general multiterminal system subject to an arbitrary time-dependent perturbation (oscillating electrostatic gates, voltage pulses, time-varying magnetic fields, etc.) The approach is mathematically equivalent to (i) the time-dependent scattering formalism, (ii) the time-resolved non-equilibrium Green’s function (NEGF) formalism and (iii) the partition-free approach. The central object of our theory is a wave function that obeys a simple Schrödinger equation with an additional source term that accounts for the electrons injected from the electrodes. The time-resolved observables (current, density, etc.) and the (inelastic) scattering matrix are simply expressed in terms of this wave function. We use our approach to develop a numerical technique for simulating time-resolved quantum transport. We find that the use of this wave function is advantageous for numerical simulations resulting in a speed up of many orders of magnitude with respect to the direct integration of NEGF equations. Our technique allows one to simulate realistic situations beyond simple models, a subject that was until now beyond the simulation

  12. Influence of Er:YAG and Nd:YAG wavelengths on laser-induced breakdown spectroscopy measurements under air or helium atmosphere

    International Nuclear Information System (INIS)

    Detalle, Vincent; Sabsabi, Mohamad; St-Onge, Louis; Hamel, Andre; Heon, Rene

    2003-01-01

    Laser-induced breakdown spectroscopy (LIBS) is widely dependent on the conditions of its implementation in terms of laser characteristics (wavelength, energy, and pulse duration), focusing conditions, and surrounding gas. In this study two wavelengths, 1.06 and 2.94 μm, obtained with Nd:YAG and Er:YAG lasers, respectively, were used for LIBS analysis of aluminum alloy samples in two conditions of surrounding gas. The influence of the laser wavelength on the laser-produced plasma was studied for the same irradiance by use of air or helium as a buffer gas at atmospheric pressure. We used measurements of light emission to determine the temporally resolved space-averaged electron density and plasma temperature in the laser-induced plasma. We also examined the effect of laser wavelength in two different ambient conditions in terms of spectrochemical analysis by LIBS. The results indicate that the effect of the surrounding gas depends on the laser wavelength and the use of an Er:YAG laser could increase linearity by limiting the leveling in the calibration curve for some elements in aluminum alloys. There is also a significant difference between the plasma induced by the two lasers in terms of electron density and plasma temperature

  13. Investigations of the long-term effects of LII on soot and bath gas

    KAUST Repository

    Cenker, Emre

    2017-08-24

    A combination of high-repetition rate imaging, laser extinction measurements, two-colour soot pyrometry imaging, and high-resolution transmission electron microscopy of thermophoretically sampled soot is used to investigate the long-term and permanent effects of rapid heating of in-flame soot during laser-induced incandescence (LII). Experiments are carried out on a laminar non-premixed co-annular ethylene/air flame with various laser fluences. The high-repetition rate images clearly show that the heated and the neighbouring laser-border zones undergo a permanent transformation after the laser pulse, and advect vertically with the flow while the permanent marking is preserved. The soot volume fraction at the heated zone reduces due to the sublimation of soot and the subsequent enhanced oxidation. At the laser-border zones, however, optical thickness increases that may be due to thermophoretic forces drawing hot particles towards relatively cooler zones and the rapid compression of the bath gas induced by the pressure waves created by the expansion of the desorbed carbon clusters. Additionally sublimed carbon clusters can condense onto existing particles and contribute to increase of the optical thickness. Time-resolved two-colour pyrometry imaging show that the increased temperature of soot both in the heated and neighbouring laser-border zones persists for several milliseconds. This can be associated to the increase in the bath-gas temperature, and a change in the wavelength-dependent emissivity of soot particles induced by the thermal annealing of soot. Ex-situ analysis show that the lattice structure of the soot sampled at the laser-border zones tend to change and soot becomes more graphitic. This may be attributed to thermal annealing induced by elevated temperature.

  14. Spatially and Temporally Resolved Atomic Oxygen Measurements in Short Pulse Discharges by Two Photon Laser Induced Fluorescence

    Science.gov (United States)

    Lempert, Walter; Uddi, Mruthunjaya; Mintusov, Eugene; Jiang, Naibo; Adamovich, Igor

    2007-10-01

    Two Photon Laser Induced Fluorescence (TALIF) is used to measure time-dependent absolute oxygen atom concentrations in O2/He, O2/N2, and CH4/air plasmas produced with a 20 nanosecond duration, 20 kV pulsed discharge at 10 Hz repetition rate. Xenon calibrated spectra show that a single discharge pulse creates initial oxygen dissociation fraction of ˜0.0005 for air like mixtures at 40-60 torr total pressure. Peak O atom concentration is a factor of approximately two lower in fuel lean (φ=0.5) methane/air mixtures. In helium buffer, the initially formed atomic oxygen decays monotonically, with decay time consistent with formation of ozone. In all nitrogen containing mixtures, atomic oxygen concentrations are found to initially increase, for time scales on the order of 10-100 microseconds, due presumably to additional O2 dissociation caused by collisions with electronically excited nitrogen. Further evidence of the role of metastable N2 is demonstrated from time-dependent N2 2^nd Positive and NO Gamma band emission spectroscopy. Comparisons with modeling predictions show qualitative, but not quantitative, agreement with the experimental data.

  15. Updated LPI Thresholds for the Nike Laser*

    Science.gov (United States)

    Weaver, J. L.; Oh, J.; Afeyan, B.; Phillips, L.; Seely, J.; Kehne, D.; Brown, C.; Obenschain, S. P.; Serlin, V.; Schmitt, A. J.; Feldman, U.; Holland, G.; Manka, C.; Lehmberg, R. H.; McLean, E.

    2009-11-01

    Advanced implosion designs for direct drive inertial confinement fusion use high laser intensities (10^15-10^16 W/cm^2) to achieve gain (g>100) with a reduction in total laser energy (ENike laser at NRL are an attractive choice due to their combination of short wavelength (248 nm), large bandwidth (1-2 THz), and beam smoothing by induced spatial incoherence but the potential threat from laser-plasma instabilities (LPI) needs to be assessed. The 2008 LPI campaign at Nike yielded threshold intensities above 10^15 W/cm^2 for the two-plasmon instability, a value higher than reported for 351 nm glass lasers. The experiments used a planar geometry, solid polystyrene targets, and a subset of beams (E<200 J) with a reduced focal spot (d<125 μm). The 2009 campaign extended the shot parameters to higher laser energies (E<1 kJ) and larger spot sizes (d<300 μm). Spectrally-resolved and time-resolved measurements of x-rays and emission near ^1/2φo and ^3/2φo harmonics of the laser wavelength show threshold intensities consistent with the 2008 results. *Work supported by DoE/NNSA

  16. Impurity mapping in sulphide minerals using Time-resolved Ion Beam Induced Current imaging

    International Nuclear Information System (INIS)

    Laird, Jamie S.; Johnson, Brett C.; Ganesan, Kumaravelu; Kandasamy, Sasikaran; Davidson, Garry; Borg, Stacey; Ryan, Chris G.

    2010-01-01

    The semiconducting properties and charge transport within natural minerals like pyrite are postulated to drive certain geochemical processes which can lead to precious metal ore genesis. In this paper we outline electrical measurements on mineral samples and present spatio-temporally resolved Ion Beam Induced Charge or Current studies on a Schottky pyrite junction. Au-Schottky contacts were fabricated in regions selected by thermoelectric and 4-point probe resistivity measurements. The complexity in charge transport due to impurity variations results in imaging contrast which is deemed important for fluid electrochemistry. The relevance of understanding charge collection in pyrite in the context of complex geochemical processes is briefly discussed.

  17. Gigantic 2D laser-induced photovoltaic effect in magnetically doped topological insulators for surface zero-bias spin-polarized current generation

    Science.gov (United States)

    Shikin, A. M.; Voroshin, V. Yu; Rybkin, A. G.; Kokh, K. A.; Tereshchenko, O. E.; Ishida, Y.; Kimura, A.

    2018-01-01

    A new kind of 2D photovoltaic effect (PVE) with the generation of anomalously large surface photovoltage up to 210 meV in magnetically doped topological insulators (TIs) has been studied by the laser time-resolved pump-probe angle-resolved photoelectron spectroscopy. The PVE has maximal efficiency for TIs with high occupation of the upper Dirac cone (DC) states and the Dirac point located inside the fundamental energy gap. For TIs with low occupation of the upper DC states and the Dirac point located inside the valence band the generated surface photovoltage is significantly reduced. We have shown that the observed giant PVE is related to the laser-generated electron-hole asymmetry followed by accumulation of the photoexcited electrons at the surface. It is accompanied by the 2D relaxation process with the generation of zero-bias spin-polarized currents flowing along the topological surface states (TSSs) outside the laser beam spot. As a result, the spin-polarized current generates an effective in-plane magnetic field that is experimentally confirmed by the k II-shift of the DC relative to the bottom non-spin-polarized conduction band states. The realized 2D PVE can be considered as a source for the generation of zero-bias surface spin-polarized currents and the laser-induced local surface magnetization developed in such kind 2D TSS materials.

  18. Matrix effect on emission/current correlated analysis in laser-induced breakdown spectroscopy of liquid droplets

    International Nuclear Information System (INIS)

    Huang, J.-S.; Ke, C.-B.; Lin, K.-C.

    2004-01-01

    We have investigated influence of matrix salts on the liquid droplets by laser-induced breakdown spectroscopy (LIBS). An electrospray ionization technique coupled with LIBS is employed to generate the microdroplets of the Na sample solution with various matrix salts added. A sequence of single-shot time-resolved LIB emission signals is detected. The LIB signal intensity integrated within a gate linearly correlates with the plasma-induced current response obtained simultaneously on a single-shot basis. The slopes thus obtained increase with the sample concentration, but appear to be irrespective of different matrix salts, added up to a 2000 mg/l concentration. The matrix salts involved have the same K + cation but different anions. Given a laser radiation emitting at 355 nm with the energy fixed at 23±1 mJ, a limit of detection (LOD) of 1.0 mg/l may be achieved for the Na analysis. The current normalization might have probably taken into account the ablated amount of the sample and the plasma temperature. Accordingly, the LIB/current correlated analysis becomes efficient to suppress the signal fluctuation, improve the LOD determination, and concurrently correct the matrix effect

  19. Next generation laser-based standoff spectroscopy techniques for Mars exploration.

    Science.gov (United States)

    Gasda, Patrick J; Acosta-Maeda, Tayro E; Lucey, Paul G; Misra, Anupam K; Sharma, Shiv K; Taylor, G Jeffrey

    2015-01-01

    In the recent Mars 2020 Rover Science Definition Team Report, the National Aeronautics and Space Administration (NASA) has sought the capability to detect and identify elements, minerals, and most importantly, biosignatures, at fine scales for the preparation of a retrievable cache of samples. The current Mars rover, the Mars Science Laboratory Curiosity, has a remote laser-induced breakdown spectroscopy (LIBS) instrument, a type of quantitative elemental analysis, called the Chemistry Camera (ChemCam) that has shown that laser-induced spectroscopy instruments are not only feasible for space exploration, but are reliable and complementary to traditional elemental analysis instruments such as the Alpha Particle X-Ray Spectrometer. The superb track record of ChemCam has paved the way for other laser-induced spectroscopy instruments, such as Raman and fluorescence spectroscopy. We have developed a prototype remote LIBS-Raman-fluorescence instrument, Q-switched laser-induced time-resolved spectroscopy (QuaLITy), which is approximately 70 000 times more efficient at recording signals than a commercially available LIBS instrument. The increase in detection limits and sensitivity is due to our development of a directly coupled system, the use of an intensified charge-coupled device image detector, and a pulsed laser that allows for time-resolved measurements. We compare the LIBS capabilities of our system with an Ocean Optics spectrometer instrument at 7 m and 5 m distance. An increase in signal-to-noise ratio of at least an order of magnitude allows for greater quantitative analysis of the elements in a LIBS spectrum with 200-300 μm spatial resolution at 7 m, a Raman instrument capable of 1 mm spatial resolution at 3 m, and bioorganic fluorescence detection at longer distances. Thus, the new QuaLITy instrument fulfills all of the NASA expectations for proposed instruments.

  20. Time-resolved studies. Ch. 9

    International Nuclear Information System (INIS)

    Mills, Dennis M.; Argonne National Lab., IL

    1991-01-01

    Synchrotron radiation, with its unique properties, offers a tool to extend X-ray measurements from the static to the time-resolved regime. The most straight-forward application of synchrotron radiation to the study of transient phenomena is directly through the possibility of decreased data-collection times via the enormous increase in flux over that of a laboratory X-ray system. Even further increases in intensity can be obtained through the use of novel X-ray optical devices. Wide-bandpass monochromators, e.g., that utilize the continuous spectral distribution of synchrotron radiation, can increase flux on the sample several orders of magnitude over conventional X-ray optical systems thereby allowing a further shortening of the data-collection time. Another approach that uses the continuous spectral nature of synchrotron radiation to decrease data-collection times is the 'parallel data collection' method. Using this technique, intensities as a function of X-ray energy are recorded simultaneously for all energies rather than sequentially recording data at each energy, allowing for a dramatic decrease in data-collection time. Perhaps the most exciting advances in time-resolved X-ray studies will be made by those methods that exploit the pulsed nature of the radiation emitted from storage rings. Pulsed techniques have had an enormous impact in the study of the temporal evolution of transient phenomena. The extension from continuous to modulated sources for use in time-resolved work has been carried over in a host of fields that use both pulsed particle and pulsed electro-magnetic beams. In this chapter the new experimental techniques are reviewed and illustrated with some experiments. (author). 98 refs.; 20 figs.; 5 tabs

  1. Development of a compact vertical-cavity surface-emitting laser end-pumped actively Q-switched laser for laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuo; Chen, Rongzhang; Nelsen, Bryan; Chen, Kevin, E-mail: pec9@pitt.edu [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Liu, Lei; Huang, Xi; Lu, Yongfeng [Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States)

    2016-03-15

    This paper reports the development of a compact and portable actively Q-switched Nd:YAG laser and its applications in laser-induced breakdown spectroscopy (LIBS). The laser was end-pumped by a vertical-cavity surface-emitting laser (VCSEL). The cavity lases at a wavelength of 1064 nm and produced pulses of 16 ns with a maximum pulse energy of 12.9 mJ. The laser exhibits a reliable performance in terms of pulse-to-pulse stability and timing jitter. The LIBS experiments were carried out using this laser on NIST standard alloy samples. Shot-to-shot LIBS signal stability, crater profile, time evolution of emission spectra, plasma electron density and temperature, and limits of detection were studied and reported in this paper. The test results demonstrate that the VCSEL-pumped solid-state laser is an effective and compact laser tool for laser remote sensing applications.

  2. Time-resolved absorption and hemoglobin concentration difference maps: a method to retrieve depth-related information on cerebral hemodynamics.

    Science.gov (United States)

    Montcel, Bruno; Chabrier, Renée; Poulet, Patrick

    2006-12-01

    Time-resolved diffuse optical methods have been applied to detect hemodynamic changes induced by cerebral activity. We describe a near infrared spectroscopic (NIRS) reconstruction free method which allows retrieving depth-related information on absorption variations. Variations in the absorption coefficient of tissues have been computed over the duration of the whole experiment, but also over each temporal step of the time-resolved optical signal, using the microscopic Beer-Lambert law.Finite element simulations show that time-resolved computation of the absorption difference as a function of the propagation time of detected photons is sensitive to the depth profile of optical absorption variations. Differences in deoxyhemoglobin and oxyhemoglobin concentrations can also be calculated from multi-wavelength measurements. Experimental validations of the simulated results have been obtained for resin phantoms. They confirm that time-resolved computation of the absorption differences exhibited completely different behaviours, depending on whether these variations occurred deeply or superficially. The hemodynamic response to a short finger tapping stimulus was measured over the motor cortex and compared to experiments involving Valsalva manoeuvres. Functional maps were also calculated for the hemodynamic response induced by finger tapping movements.

  3. Time-resolved spectroscopy of plasma resonances in highly excited silicon and germanium

    International Nuclear Information System (INIS)

    Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.; Kurz, H.

    1985-01-01

    The dynamics of the electron-hole plasma in silicon and germanium samples irradiated by 20 ps. 532 nm laser pulses has been investigated in the near infrared by the time-resolved picosecond optical spectroscopy. The experimental reflectivities and transmission are compared with the predictions of the thermal model for degenerate carrier distributions through the Drude formalism. Above a certain fluence, a significant deviation between measured and calculated values indicates a strong increase of the recombination rate as soon as the plasma resonances become comparable with the band gaps. These new plasmon-aided recombination channels are particularly pronounced in germanium. 15 refs., 8 figs

  4. Deflection evaluation using time-resolved radiography

    International Nuclear Information System (INIS)

    Fry, D.A.; Lucero, J.P.

    1990-01-01

    Time-resolved radiography is the creation of an x-ray image for which both the start-exposure and stop-exposure times are known with respect to the event under study. The combination of image and timing are used to derive information about the event. The authors have applied time-resolved radiography to evaluate motions of explosive-driven events. In the particular application discussed in this paper, the author's intent is to measure maximum deflections of the components involved. Exposures are made during the time just before to just after the event of interest occurs. A smear or blur of motion out to its furthest extent is recorded on the image. Comparison of the dynamic images with static images allows deflection measurements to be made

  5. Ultrasound imaging of Nd:YAG laser-induced tissue coagulation in porcine livers.

    Science.gov (United States)

    Ritzel, U; Wietzke-Braun, P; Brinck, U; Leonhardt, U; Ramadori, G

    2001-12-01

    Absorption of laser light energy induces denaturation of proteins and thermocoagulation of irradiated tissue. Recently, MRI-guided laser coagulation in combination with MR thermometry was reported as a treatment of liver tumours. In the present study ultrasonographic imaging was evaluated for its suitability in laser induced tissue thermocoagulation. Fresh porcine livers were used for ex vivo examinations. Placement of the laser catheter and tissue coagulation during laser light emission were online monitored by ultrasonography. Nd:YAG laser-induced tissue damage was evaluated by macroscopical and microscopical examinations of histological sections. During laser light emission a marked hyperdense signal enhancement was observed by ultrasonography which strongly correlated with the extent of macroscopic tissue damage. The size of laser-induced coagulation zone depended on both the power setting and total energy delivered. Carbonization of the tissue surrounding the laser tip is a limiting factor because of laser light absorption. However our data indicate that using appropriate laser energy and exposure time prevent carbonization although carbonization can not be visualized by ultrasonography. It is concluded from the present ex vivo studies that laser coagulation can be effectively performed under ultrasonographic guidance.

  6. [A new measurement method of time-resolved spectrum].

    Science.gov (United States)

    Shi, Zhi-gang; Huang, Shi-hua; Liang, Chun-jun; Lei, Quan-sheng

    2007-02-01

    A new method for measuring time-resolved spectrum (TRS) is brought forward. Programming with assemble language controlled the micro-control-processor (AT89C51), and a kind of peripheral circuit constituted the drive circuit, which drived the stepping motor to run the monochromator. So the light of different kinds of expected wavelength could be obtained. The optical signal was transformed to electrical signal by optical-to-electrical transform with the help of photomultiplier tube (Hamamatsu 1P28). The electrical signal of spectrum data was transmitted to the oscillograph. Connecting the two serial interfaces of RS232 between the oscillograph and computer, the electrical signal of spectrum data could be transmitted to computer for programming to draw the attenuation curve and time-resolved spectrum (TRS) of the swatch. The method for measuring time-resolved spectrum (TRS) features parallel measurement in time scale but serial measurement in wavelength scale. Time-resolved spectrum (TRS) and integrated emission spectrum of Tb3+ in swatch Tb(o-BBA)3 phen were measured using this method. Compared with the real time-resolved spectrum (TRS). It was validated to be feasible, credible and convenient. The 3D spectra of fluorescence intensity-wavelength-time, and the integrated spectrum of the swatch Tb(o-BBA)3 phen are given.

  7. Experimental investigation of ultraviolet laser induced plasma density and temperature evolution in air

    International Nuclear Information System (INIS)

    Thiyagarajan, Magesh; Scharer, John

    2008-01-01

    We present measurements and analysis of laser induced plasma neutral densities and temperatures in dry air by focusing 200 mJ, 10 MW high power, 193 nm ultraviolet ArF (argon fluoride) laser radiation to a 30 μm radius spot size. We examine these properties that result from multiphoton and collisional cascade processes for pressures ranging from 40 Torr to 5 atm. A laser shadowgraphy diagnostic technique is used to obtain the plasma electron temperature just after the shock front and this is compared with optical emission spectroscopic measurements of nitrogen rotational and vibrational temperatures. Two-color laser interferometry is employed to measure time resolved spatial electron and neutral density decay in initial local thermodynamic equilibrium (LTE) and non-LTE conditions. The radiating species and thermodynamic characteristics of the plasma are analyzed by means of optical emission spectroscopy (OES) supported by SPECAIR, a special OES program for air constituent plasmas. Core plasma rotational and vibrational temperatures are obtained from the emission spectra from the N 2 C-B(2+) transitions by matching the experimental spectrum results with the SPECAIR simulation results and the results are compared with the electron temperature just behind the shock wave. The plasma density decay measurements are compared with a simplified electron density decay model that illustrates the dominant three-and two-body recombination terms with good correlation

  8. Ignition parameters and early flame kernel development of laser-ignited combustible gas mixtures

    International Nuclear Information System (INIS)

    Kopecek, H.; Wintner, E.; Ruedisser, D.; Iskra, K.; Neger, T.

    2002-01-01

    Full text: Laser induced breakdown of focused pulsed laser radiation, the subsequent plasma formation and thermalization offers a possibility of ignition of combustible gas mixtures free from electrode interferences, an arbitrary choice of the location within the medium and exact timing regardless of the degree of turbulence. The development and the decreasing costs of solid state laser technologies approach the pay-off for the higher complexity of such an ignition system due to several features unique to laser ignition. The feasability of laser ignition was demonstrated in an 1.5 MW(?) natural gas engine, and several investigations were performed to determine optimal ignition energies, focus shapes and laser wavelengths. The early flame kernel development was investigated by time resolved planar laser induced fluorescence of the OH-radical which occurs predominantly in the flame front. The flame front propagation showed typical features like toroidal initial flame development, flame front return and highly increased flame speed along the laser focus axis. (author)

  9. A scintillator-based online detector for the angularly resolved measurement of laser-accelerated proton spectra

    International Nuclear Information System (INIS)

    Metzkes, J.; Kraft, S. D.; Sobiella, M.; Stiller, N.; Zeil, K.; Schramm, U.; Karsch, L.; Schürer, M.; Pawelke, J.; Richter, C.

    2012-01-01

    In recent years, a new generation of high repetition rate (∼10 Hz), high power (∼100 TW) laser systems has stimulated intense research on laser-driven sources for fast protons. Considering experimental instrumentation, this development requires online diagnostics for protons to be added to the established offline detection tools such as solid state track detectors or radiochromic films. In this article, we present the design and characterization of a scintillator-based online detector that gives access to the angularly resolved proton distribution along one spatial dimension and resolves 10 different proton energy ranges. Conceived as an online detector for key parameters in laser-proton acceleration, such as the maximum proton energy and the angular distribution, the detector features a spatial resolution of ∼1.3 mm and a spectral resolution better than 1.5 MeV for a maximum proton energy above 12 MeV in the current design. Regarding its areas of application, we consider the detector a useful complement to radiochromic films and Thomson parabola spectrometers, capable to give immediate feedback on the experimental performance. The detector was characterized at an electrostatic Van de Graaff tandetron accelerator and tested in a laser-proton acceleration experiment, proving its suitability as a diagnostic device for laser-accelerated protons.

  10. A scintillator-based online detector for the angularly resolved measurement of laser-accelerated proton spectra.

    Science.gov (United States)

    Metzkes, J; Karsch, L; Kraft, S D; Pawelke, J; Richter, C; Schürer, M; Sobiella, M; Stiller, N; Zeil, K; Schramm, U

    2012-12-01

    In recent years, a new generation of high repetition rate (~10 Hz), high power (~100 TW) laser systems has stimulated intense research on laser-driven sources for fast protons. Considering experimental instrumentation, this development requires online diagnostics for protons to be added to the established offline detection tools such as solid state track detectors or radiochromic films. In this article, we present the design and characterization of a scintillator-based online detector that gives access to the angularly resolved proton distribution along one spatial dimension and resolves 10 different proton energy ranges. Conceived as an online detector for key parameters in laser-proton acceleration, such as the maximum proton energy and the angular distribution, the detector features a spatial resolution of ~1.3 mm and a spectral resolution better than 1.5 MeV for a maximum proton energy above 12 MeV in the current design. Regarding its areas of application, we consider the detector a useful complement to radiochromic films and Thomson parabola spectrometers, capable to give immediate feedback on the experimental performance. The detector was characterized at an electrostatic Van de Graaff tandetron accelerator and tested in a laser-proton acceleration experiment, proving its suitability as a diagnostic device for laser-accelerated protons.

  11. Multivariate image analysis of laser-induced photothermal imaging used for detection of caries tooth

    Science.gov (United States)

    El-Sherif, Ashraf F.; Abdel Aziz, Wessam M.; El-Sharkawy, Yasser H.

    2010-08-01

    Time-resolved photothermal imaging has been investigated to characterize tooth for the purpose of discriminating between normal and caries areas of the hard tissue using thermal camera. Ultrasonic thermoelastic waves were generated in hard tissue by the absorption of fiber-coupled Q-switched Nd:YAG laser pulses operating at 1064 nm in conjunction with a laser-induced photothermal technique used to detect the thermal radiation waves for diagnosis of human tooth. The concepts behind the use of photo-thermal techniques for off-line detection of caries tooth features were presented by our group in earlier work. This paper illustrates the application of multivariate image analysis (MIA) techniques to detect the presence of caries tooth. MIA is used to rapidly detect the presence and quantity of common caries tooth features as they scanned by the high resolution color (RGB) thermal cameras. Multivariate principal component analysis is used to decompose the acquired three-channel tooth images into a two dimensional principal components (PC) space. Masking score point clusters in the score space and highlighting corresponding pixels in the image space of the two dominant PCs enables isolation of caries defect pixels based on contrast and color information. The technique provides a qualitative result that can be used for early stage caries tooth detection. The proposed technique can potentially be used on-line or real-time resolved to prescreen the existence of caries through vision based systems like real-time thermal camera. Experimental results on the large number of extracted teeth as well as one of the thermal image panoramas of the human teeth voltanteer are investigated and presented.

  12. Laser Induced Selective Activation For Subsequent Autocatalytic Electroless Plating

    DEFF Research Database (Denmark)

    Zhang, Yang

    . The third hypothesis is that the activation and rinsing process can be described by diffusion. This hypothesis is proved using Fick’s diffusion laws combined with the short-time-plating experiment. The influence of laser parameters on the surface structure is investigated for Nd:YAG, UV, and fiber lasers......The subject of this PhD thesis is “Laser induced selective activation for subsequent autocatalytic electroless plating.” The objective of the project is to investigate the process chains for micro structuring of polymer surfaces for selective micro metallization. Laser induced selective activation...... (LISA) is introduced and studied as a new technique for producing 3D moulded interconnect devices (3D-MIDs). This technique enables the metallization of polymer surface modified by laser and subsequently activated by a PdCl2/SnCl2 system. Various technologies exist on an industrial level...

  13. Femtosecond laser-induced herringbone patterns

    Science.gov (United States)

    Garcell, Erik M.; Lam, Billy; Guo, Chunlei

    2018-06-01

    Femtosecond laser-induced herringbone patterns are formed on copper (Cu). These novel periodic structures are created following s-polarized, large incident angle, femtosecond laser pulses. Forming as slanted and axially symmetric laser-induced periodic surface structures along the side walls of ablated channels, the result is a series of v-shaped structures that resemble a herringbone pattern. Fluence mapping, incident angle studies, as well as polarization studies have been conducted and provide a clear understanding of this new structure.

  14. Spatially resolved x-ray laser spectra and demonstration of gain in nickel-like systems

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, D.A.; Keane, C.J.; MacGowan, B.J.; Matthews, D.L.; Trebes, J.E.; Eckart, M.J.

    1987-09-25

    A recent series of experiments have provided spatially resolved near field images of several candidate x-ray lasing transition in neon-like, nickel-like, and hydrogen-like ions from laser-produced plasmas. From these time-gated, spatially, and spectrally resolved measurements the source size for the J = 0 - 1 and the J = 2 - 1 transitions in Ne-like selenium have been determined. Source regions as small as 50 ..mu..m have been observed on transitions with gain-length products >9. In addition, we have obtained the first experimental evidence for the amplification of spontaneous emission in the nickel-like ions of europium and ytterbium. Gains of order 1 cm/sup -1/ and gain-length products of up to 3.8 are observed on the J = 0 - 1, 4d-4p transitions in Eu + 35 at 65.26 and 71.00 A. Analogous transitions in Yb = +42 have been identified and some evidence for ASE has been observed. 7 refs., 11 figs.

  15. Spatially resolved X-ray laser spectra and demonstration of gain in nickel-like systems

    International Nuclear Information System (INIS)

    Whelan, D.A.; Keane, C.J.; MacGowan, B.J.; Matthews, D.L.; Trebes, J.E.; Eckart, M.J.

    1987-01-01

    A recent series of experiments have provided spatially resolved near field images of several candidate x-ray lasing transition in neon-like, nickel-like, and hydrogen-like ions from laser-produced plasmas. From these time-gated, spatially, and spectrally resolved measurements the source size for the J=0-1 and the J=2-1 transitions in Ne-like selenium have been determined. Source regions as small as 50 μm have been observed on transitions with gain-length products >9. In addition, the authors have obtained the first experimental evidence for the amplification of spontaneous emission in the nickel-like ions of europium and ytterbium. Gains of order 1 cm/sup -1/ and gain-length products of up to 3.8 are observed on the J=0-1,4d-4p transitions in Eu/sup +35/ at 65.83 and 71.00A. Analogous transitions in Yb/sup +42/ have been identified and some evidence for ASE has been observed

  16. Novel physical chemistry approaches in biophysical researches with advanced application of lasers: Detection and manipulation.

    Science.gov (United States)

    Iwata, Koichi; Terazima, Masahide; Masuhara, Hiroshi

    2018-02-01

    Novel methodologies utilizing pulsed or intense CW irradiation obtained from lasers have a major impact on biological sciences. In this article, recent development in biophysical researches fully utilizing the laser irradiation is described for three topics, time-resolved fluorescence spectroscopy, time-resolved thermodynamics, and manipulation of the biological assemblies by intense laser irradiation. First, experimental techniques for time-resolved fluorescence spectroscopy are concisely explained in Section 2. As an example of the recent application of time-resolved fluorescence spectroscopy to biological systems, evaluation of the viscosity of lipid bilayer membranes is described. The results of the spectroscopic experiments strongly suggest the presence of heterogeneous membrane structure with two different viscosity values in liposomes formed by a single phospholipid. Section 3 covers the time-resolved thermodynamics. Thermodynamical properties are important to characterize biomolecules. However, measurement of these quantities for short-lived intermediate species has been impossible by traditional thermodynamical techniques. Recently, development of a spectroscopic method based on the transient grating method enables us to measure these quantities and also to elucidate reaction kinetics which cannot be detected by other spectroscopic methods. The principle of the measurements and applications to some protein reactions are reviewed. Manipulation and fabrication of supramolecues, amino acids, proteins, and living cells by intense laser irradiation are described in Section 4. Unconventional assembly, crystallization and growth, amyloid fibril formation, and living cell manipulation are achieved by CW laser trapping and femtosecond laser-induced cavitation bubbling. Their spatio-temporal controllability is opening a new avenue in the relevant molecular and bioscience research fields. This article is part of a Special Issue entitled "Biophysical Exploration of

  17. Solid-phase nano-extraction and laser-excited time-resolved Shpol'skii spectroscopy for the analysis of polycyclic aromatic hydrocarbons in drinking water samples.

    Science.gov (United States)

    Wang, Huiyong; Yu, Shenjiang; Campiglia, Andres D

    2009-02-15

    A unique method for screening polycyclic aromatic hydrocarbons in drinking water samples is reported. Water samples (500 microl) are mixed and centrifuged with 950 microl of a commercial solution of 20 nm gold nanoparticles for pollutants extraction. The precipitate is treated with 2 microl of 1-pentanethiol and 48 microl of n-octane, and the supernatant is then analyzed via laser-excited time-resolved Shpol'skii spectroscopy. Fifteen priority pollutants are directly determined at liquid helium temperature (4.2 K) with the aid of a cryogenic fiber-optic probe. Unambiguous pollutant determination is carried out via spectral and lifetime analysis. Limits of detection are at the parts-per-trillion level. Analytical recoveries are similar to those obtained via high-performance liquid chromatography. The simplicity of the experimental procedure, use of microliters of organic solvent, short analysis time, selectivity, and excellent analytical figures of merit demonstrate the advantages of this environmentally friendly approach for routine analysis of numerous samples.

  18. Detecting Molecular Properties by Various Laser-Based Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hsin, Tse-Ming [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Four different laser-based techniques were applied to study physical and chemical characteristics of biomolecules and dye molecules. These techniques are liole burning spectroscopy, single molecule spectroscopy, time-resolved coherent anti-Stokes Raman spectroscopy and laser-induced fluorescence microscopy. Results from hole burning and single molecule spectroscopy suggested that two antenna states (C708 & C714) of photosystem I from cyanobacterium Synechocystis PCC 6803 are connected by effective energy transfer and the corresponding energy transfer time is ~6 ps. In addition, results from hole burning spectroscopy indicated that the chlorophyll dimer of the C714 state has a large distribution of the dimer geometry. Direct observation of vibrational peaks and evolution of coumarin 153 in the electronic excited state was demonstrated by using the fs/ps CARS, a variation of time-resolved coherent anti-Stokes Raman spectroscopy. In three different solvents, methanol, acetonitrile, and butanol, a vibration peak related to the stretch of the carbonyl group exhibits different relaxation dynamics. Laser-induced fluorescence microscopy, along with the biomimetic containers-liposomes, allows the measurement of the enzymatic activity of individual alkaline phosphatase from bovine intestinal mucosa without potential interferences from glass surfaces. The result showed a wide distribution of the enzyme reactivity. Protein structural variation is one of the major reasons that are responsible for this highly heterogeneous behavior.

  19. Influence of sample temperature on the expansion dynamics and the optical emission of laser-induced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Eschlböck-Fuchs, S.; Haslinger, M.J.; Hinterreiter, A.; Kolmhofer, P.; Huber, N. [Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Rössler, R. [voestalpine Stahl GmbH, A-4031 Linz (Austria); Heitz, J. [Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Pedarnig, J.D., E-mail: johannes.pedarnig@jku.at [Christian Doppler Laboratory for Laser-Assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria)

    2013-09-01

    We investigate the influence of sample temperature on the dynamics and optical emission of laser induced plasma for various solid materials. Bulk aluminum alloy, silicon wafer, and metallurgical slag samples are heated to temperature T{sub S} ≤ 500 °C and ablated in air by Nd:YAG laser pulses (wavelength 1064 nm, pulse duration approx. 7 ns). The plasma dynamics is investigated by fast time-resolved photography. For laser-induced breakdown spectroscopy (LIBS) the optical emission of plasma is measured by Echelle spectrometers in combination with intensified CCD cameras. For all sample materials the temporal evolution of plume size and broadband plasma emission vary systematically with T{sub S}. The size and brightness of expanding plumes increase at higher T{sub S} while the mean intensity remains independent of temperature. The intensity of emission lines increases with temperature for all samples. Plasma temperature and electron number density do not vary with T{sub S}. We apply the calibration-free LIBS method to determine the concentration of major oxides in slag and find good agreement to reference data up to T{sub S} = 450 °C. The LIBS analysis of multi-component materials at high temperature is of interest for technical applications, e.g. in industrial production processes. - Highlights: • Size and emission of laser-induced plasma increase with sample temperature Ts. • Mean optical intensity of plasma is independent of Ts. • Plasma temperature and electron number density do not vary with Ts. • Major oxides in steel slag are quantified up to Ts = 450 °C. • Industrial steel slags are analyzed by calibration-free LIBS method.

  20. Time-resolved methods in biophysics. 6. Time-resolved Laue crystallography as a tool to investigate photo-activated protein dynamics.

    Science.gov (United States)

    Bourgeois, Dominique; Schotte, Friedrich; Brunori, Maurizio; Vallone, Beatrice

    2007-10-01

    When polychromatic X-rays are shined onto crystalline material, they generate a Laue diffraction pattern. At third generation synchrotron radiation sources, a single X-ray pulse of approximately 100 ps duration is enough to produce interpretable Laue data from biomolecular crystals. Thus, by initiating biological turnover in a crystalline protein, structural changes along the reaction pathway may be filmed by ultra-fast Laue diffraction. Using laser-light as a trigger, transient species in photosensitive macromolecules can be captured at near atomic resolution with sub-nanosecond time-resolution. Such pump-probe Laue experiments have now reached an outstanding level of sophistication and have found a domain of excellence in the investigation of light-sensitive proteins undergoing cyclic photo-reactions and producing stiff crystals. The main theoretical concepts of Laue diffraction and the challenges associated with time-resolved experiments on biological crystals are recalled. The recent advances in the design of experiments are presented in terms of instrumental choices, data collection strategy and data processing, and some of the inherent difficulties of the method are highlighted. The discussion is based on the example of myoglobin, a protein that has traversed the whole history of pump-probe Laue diffraction, and for which a massive amount of data have provided considerable insight into the understanding of protein dynamics.

  1. Visualization of nanosecond laser-induced dewetting, ablation and crystallization processes in thin silicon films

    Science.gov (United States)

    Qi, Dongfeng; Zhang, Zifeng; Yu, Xiaohan; Zhang, Yawen

    2018-06-01

    In the present work, nanosecond pulsed laser crystallization, dewetting and ablation of thin amorphous silicon films are investigated by time-resolved imaging. Laser pulses of 532 nm wavelength and 7 ns temporal width are irradiated on silicon film. Below the dewetting threshold, crystallization process happens after 400 ns laser irradiation in the spot central region. With the increasing of laser fluence, it is observed that the dewetting process does not conclude until 300 ns after the laser irradiation, forming droplet-like particles in the spot central region. At higher laser intensities, ablative material removal occurs in the spot center. Cylindrical rims are formed in the peripheral dewetting zone due to solidification of transported matter at about 500 ns following the laser pulse exposure.

  2. An x-ray detector for time-resolved studies

    International Nuclear Information System (INIS)

    Rodricks, B.; Brizard, C.; Clarke, R.; Lowe, W.

    1992-01-01

    The development of ultrahigh-brightness x-ray sources makes time-resolved x-ray studies more and more feasible. Improvements in x-ray optics components are also critical for obtaining the appropriate beam for a particular type of experiment. Moreover, fast parallel detectors will be essential in order to exploit the combination of high intensity x-ray sources and novel optics for time-resolved experiments. A CCD detector with a time resolution of microseconds has been developed at the Advanced Photon Source (APS). This detector is fully programmable using CAMAC electronics and a Micro Vax computer. The techniques of time-resolved x-ray studies, which include scattering, microradiography, microtomography, stroboscopy, etc., can be applied to a range of phenomena (including rapid thermal annealing, surface ordering, crystallization, and the kinetics of phase transition) in order to understand these time-dependent microscopic processes. Some of these applications will be illustrated by recent results performed at synchrotrons. New powerful x-ray sources now under construction offer the opportunity to apply innovative approaches in time-resolved work

  3. The influence of PAH concentration and distribution on real-time in situ measurements of petroleum products in soils using laser induced fluorescence

    International Nuclear Information System (INIS)

    Douglas, G.S.; Lieberman, S.H.; McGinnis, W.C.; Knowles, D.; Peven, C.

    1995-01-01

    Real-time laser induced fluorescence (LIF) in situ measurements of soil samples provide a reliable and cost-effective screening tool for hydrocarbon site assessments. The site characterization and analysis penetrometer system (SCAPS), is a truck-mounted cone penetrometer probe modified with a sapphire window and connected to a laser by fiber optics. The pulsed nitrogen laser 337-nm excitation source induces fluorescence in polynuclear aromatic hydrocarbons (PAHs), which are present in petroleum products. The fluorescence response of these compounds is measured with a fluorometer. The SCAPS can provide continuous hydrocarbon screening measurements to soil depths greater than 100 feet. Discrete soil samples collected from the SCAPS boreholes were extracted and analyzed for total petroleum hydrocarbons (TPH), by gas chromatography with flame ionization detection (GC/FID), and 16 parent and over 100 alkyl substituted PAH compounds by gas chromatography with mass spectrometry detection (GC/MS). This method provides a basis for evaluating the relationship between TPH and PAH concentrations in the soil samples and laser induced fluorescence measurements from the soil borings

  4. Laser-induced diffusion decomposition in Fe–V thin-film alloys

    Energy Technology Data Exchange (ETDEWEB)

    Polushkin, N.I., E-mail: nipolushkin@fc.ul.pt [Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Instituto de Ciência e Engenharia de Materiais e Superfícies, 1049-001 Lisboa (Portugal); Duarte, A.C.; Conde, O. [Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Instituto de Ciência e Engenharia de Materiais e Superfícies, 1049-001 Lisboa (Portugal); Alves, E. [Associação Euratom/IST e Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Barradas, N.P. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS (Portugal); García-García, A.; Kakazei, G.N.; Ventura, J.O.; Araujo, J.P. [Departamento de Física, Universidade do Porto e IFIMUP, 4169-007 Porto (Portugal); Oliveira, V. [Instituto de Ciência e Engenharia de Materiais e Superfícies, 1049-001 Lisboa (Portugal); Instituto Superior de Engenharia de Lisboa, 1959-007 Lisboa (Portugal); Vilar, R. [Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Instituto de Ciência e Engenharia de Materiais e Superfícies, 1049-001 Lisboa (Portugal)

    2015-05-01

    Highlights: • Irradiation of an Fe–V alloy by femtosecond laser triggers diffusion decomposition. • The decomposition occurs with strongly enhanced (∼4 orders) atomic diffusivity. • This anomaly is associated with the metallic glassy state achievable under laser quenching. • The ultrafast diffusion decomposition is responsible for laser-induced ferromagnetism. - Abstract: We investigate the origin of ferromagnetism induced in thin-film (∼20 nm) Fe–V alloys by their irradiation with subpicosecond laser pulses. We find with Rutherford backscattering that the magnetic modifications follow a thermally stimulated process of diffusion decomposition, with formation of a-few-nm-thick Fe enriched layer inside the film. Surprisingly, similar transformations in the samples were also found after their long-time (∼10{sup 3} s) thermal annealing. However, the laser action provides much higher diffusion coefficients (∼4 orders of magnitude) than those obtained under standard heat treatments. We get a hint that this ultrafast diffusion decomposition occurs in the metallic glassy state achievable in laser-quenched samples. This vitrification is thought to be a prerequisite for the laser-induced onset of ferromagnetism that we observe.

  5. Observation of sum-frequency-generation-induced cascaded four-wave mixing using two crossing femtosecond laser pulses in a 0.1 mm beta-barium-borate crystal.

    Science.gov (United States)

    Liu, Weimin; Zhu, Liangdong; Fang, Chong

    2012-09-15

    We demonstrate the simultaneous generation of multicolor femtosecond laser pulses spanning the wavelength range from UV to near IR in a 0.1 mm Type I beta-barium borate crystal from 800 nm fundamental and weak IR super-continuum white light (SCWL) pulses. The multicolor broadband laser pulses observed are attributed to two concomitant cascaded four-wave mixing (CFWM) processes as corroborated by calculation: (1) directly from the two incident laser pulses; (2) by the sum-frequency generation (SFG) induced CFWM process (SFGFWM). The latter signal arises from the interaction between the frequency-doubled fundamental pulse (400 nm) and the SFG pulse generated in between the fundamental and IR-SCWL pulses. The versatility and simplicity of this spatially dispersed multicolor self-compressed laser pulse generation offer compact and attractive methods to conduct femtosecond stimulated Raman spectroscopy and time-resolved multicolor spectroscopy.

  6. Introduction to Time-Resolved Spectroscopy: Nanosecond Transient Absorption and Time-Resolved Fluorescence of Eosin B

    Science.gov (United States)

    Farr, Erik P.; Quintana, Jason C.; Reynoso, Vanessa; Ruberry, Josiah D.; Shin, Wook R.; Swartz, Kevin R.

    2018-01-01

    Here we present a new undergraduate laboratory that will introduce the concepts of time-resolved spectroscopy and provide insight into the natural time scales on which chemical dynamics occur through direct measurement. A quantitative treatment of the acquired data will provide a deeper understanding of the role of quantum mechanics and various…

  7. Laser-induced breakdown ignition in a gas fed two-stroke engine

    Science.gov (United States)

    Loktionov, E. Y.; Pasechnikov, N. A.; Telekh, V. D.

    2018-01-01

    Laser-induced ignition for internal combustion engines is investigated intensively after demonstration of a compact ‘laser plug’ possibility. Laser spark benefits as compared to traditional spark plugs are higher compression rate, and possibility of almost any fuel ignition, so lean mixtures burning with lower temperatures could reduce harmful exhausts (NO x , CH, etc). No need in electrode and possibility for multi-point, linear or circular ignition can make combustion even more effective. Laser induced combustion wave appears faster and is more stable in time, than electric one, so can be used for ramjets, chemical thrusters, and gas turbines. To the best of our knowledge, we have performed laser spark ignition of a gas fed two-stroke engine for the first time. Combustion temperature and pressure, exhaust composition, ignition timing were investigated at laser and compared to a regular electric spark ignition in a two-stroke model engine. Presented results show possibility for improvement of two-stroke engines performance, in terms of rotation rate increase and NO x emission reduction. Such compact engines using locally mined fuel could be highly demanded in remote Arctic areas.

  8. Further time-resolved electron-beam characterizations with optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H. [Argonne National Lab., IL (United States). Advanced Photon Source Accelerator Systems Div.; Wilke, M.D. [Los Alamos National Lab., NM (United States)

    1992-12-31

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 {mu}s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatialposition and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kick effects are reported as a function of charge.

  9. Further time-resolved electron-beam characterizations with optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H. (Argonne National Lab., IL (United States). Advanced Photon Source Accelerator Systems Div.); Wilke, M.D. (Los Alamos National Lab., NM (United States))

    1992-01-01

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 [mu]s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatialposition and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kick effects are reported as a function of charge.

  10. Time resolved high frequency spectrum of Br2 molecules using pulsed photoacoustic technique.

    Science.gov (United States)

    Yehya, Fahem; Chaudhary, A K

    2013-11-01

    The paper reports the time resolved spectral distribution of higher order acoustic modes generated in Br2 molecules using pulsed Photoacoustic (PA) technique. New time resolved vibrational spectrum of Br2 molecules are recorded using a single 532nm, pulses of 7ns duration at 10Hz repetition rate obtained from Q-switched Nd:YAG laser. Frank-Condon principle based assignments confirms the presence of 12 numbers of (ν″-ν') vibrational transitions covered by a single 532+2nm pulse profile. Inclusions of higher order zeroth modes in Bassel's function expansion series shows the probability of overlapping of different types of acoustic modes in the designed PA cells. These modes appear in the form of clusters which occupies higher frequency range. The study of decay behavior of PA signal with respect to time confirms the photolysis of Br2 at 532nm wavelength. In addition, the shifting and clustering effect of cavity eigen modes in Br2 molecules have been studied between 1 and 10ms time scale. The estimated Q-factor of PA cell (l=16cm, R=1.4cm) is 145±4 at 27kHz frequency. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Analytical formulation for modulation of time-resolved dynamical Franz-Keldysh effect by electron excitation in dielectrics

    Science.gov (United States)

    Otobe, T.

    2017-12-01

    Analytical formulation of subcycle modulation (SCM) of dielectrics including electron excitation is presented. The SCM is sensitive to not only the time-resolved dynamical Franz-Keldysh effect (Tr-DFKE) [T. Otobe et al., Phys. Rev. B 93, 045124 (2016), 10.1103/PhysRevB.93.045124], which is the nonlinear response without the electron excitation, but also the excited electrons. The excited electrons enhance the modulation with even harmonics of pump laser frequency, and generate the odd-harmonics components. The new aspect of SCM is a consequence of (i) the interference between the electrons excited by the pump laser and those excited by the probe-pulse laser and (ii) oscillation of the generated wave packed by the pump laser. When the probe- and pump-pulse polarizations are parallel, the enhancement of the even harmonics and the generation of the odd-harmonics modulation appear. However, if the polarizations are orthogonal, the effect arising from the electron excitations becomes weak. By comparing the parabolic and cosine band models, I found that the electrons under the intense laser field move as quasifree particles.

  12. Time Resolved X-Ray Scattering of molecules in Solution

    DEFF Research Database (Denmark)

    Brandt van Driel, Tim

    The dissertation describes the use of Time-Resolved X-ray Diffuse Scattering (TR-XDS) to study photo-induced structural changes in molecules in solution. The application of the technique is exemplified with experiments on two bimetallic molecules. The main focus is on the data-flow and process......)42+ obtained at European Synchrotron Radiation Facility (ESRF) are presented to exemplify TR-XDS at synchrotrons. Similarly, measurements on Ir2(dimen)42+ are used to show the XFEL data-flow and how it deviates from the prior. A method to identify and account for systematic fluctuations...

  13. Time-resolved measurements of the hot-electron population in ignition-scale experiments on the National Ignition Facility (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Hohenberger, M., E-mail: mhoh@lle.rochester.edu; Stoeckl, C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Albert, F.; Palmer, N. E.; Döppner, T.; Divol, L.; Dewald, E. L.; Bachmann, B.; MacPhee, A. G.; LaCaille, G.; Bradley, D. K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Lee, J. J. [National Security Technologies LLC, Livermore, California 94551 (United States)

    2014-11-15

    In laser-driven inertial confinement fusion, hot electrons can preheat the fuel and prevent fusion-pellet compression to ignition conditions. Measuring the hot-electron population is key to designing an optimized ignition platform. The hot electrons in these high-intensity, laser-driven experiments, created via laser-plasma interactions, can be inferred from the bremsstrahlung generated by hot electrons interacting with the target. At the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)], the filter-fluorescer x-ray (FFLEX) diagnostic–a multichannel, hard x-ray spectrometer operating in the 20–500 keV range–has been upgraded to provide fully time-resolved, absolute measurements of the bremsstrahlung spectrum with ∼300 ps resolution. Initial time-resolved data exhibited significant background and low signal-to-noise ratio, leading to a redesign of the FFLEX housing and enhanced shielding around the detector. The FFLEX x-ray sensitivity was characterized with an absolutely calibrated, energy-dispersive high-purity germanium detector using the high-energy x-ray source at NSTec Livermore Operations over a range of K-shell fluorescence energies up to 111 keV (U K{sub β}). The detectors impulse response function was measured in situ on NIF short-pulse (∼90 ps) experiments, and in off-line tests.

  14. Ultrafast photoinduced carrier dynamics in GaNAs probed using femtosecond time-resolved scanning tunnelling microscopy

    International Nuclear Information System (INIS)

    Terada, Yasuhiko; Aoyama, Masahiro; Kondo, Hiroyuki; Taninaka, Atsushi; Takeuchi, Osamu; Shigekawa, Hidemi

    2007-01-01

    The combination of scanning tunnelling microscopy (STM) with optical excitation using ultrashort laser pulses enables us, in principle, to simultaneously obtain ultimate spatial and temporal resolutions. We have developed the shaken-pulse-pair-excited STM (SPPX-STM) and succeeded in detecting a weak time-resolved tunnelling current signal from a low-temperature-grown GaNAs sample. To clarify the underlying physics in SPPX-STM measurements, we performed optical pump-probe reflectivity measurements with a wavelength-changeable ultrashort-pulse laser. By comparing the results obtained from the two methods with an analysis based on the nonlinear relationship between the photocarrier density and tunnelling current, we obtained a comprehensive explanation that the photocarrier dynamics is reflected in the SPPX-STM signal through the surface photovoltage effect

  15. Vibrational emission analysis of the CN molecules in laser-induced breakdown spectroscopy of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Bravo, Ángel; Delgado, Tomás; Lucena, Patricia; Laserna, J. Javier, E-mail: laserna@uma.es

    2013-11-01

    Laser-induced breakdown spectroscopy (LIBS) of organic materials is based on the analysis of atomic and ionic emission lines and on a few molecular bands, the most important being the CN violet system and the C{sub 2} Swan system. This paper is focused in molecular emission of LIBS plasmas based on the CN (B{sup 2}Σ–X{sup 2}Σ) band, one of the strongest emissions appearing in all carbon materials when analyzed in air atmosphere. An analysis of this band with sufficient spectral resolution provides a great deal of information on the molecule, which has revealed that valuable information can be obtained from the plume chemistry and dynamics affecting the excitation mechanisms of the molecules. The vibrational emission of this molecular band has been investigated to establish the dependence of this emission on the molecular structure of the materials. The paper shows that excitation/emission phenomena of molecular species observed in the plume depend strongly on the time interval selected and on the irradiance deposited on the sample surface. Precise time resolved LIBS measurements are needed for the observation of distinctive CN emission. For the organic compounds studied, larger differences in the behavior of the vibrational emission occur at early stages after plasma ignition. Since molecular emission is generally more complex than that involving atomic emission, local plasma conditions as well as plume chemistry may induce changes in vibrational emission of molecules. As a consequence, alterations in the distribution of the emissions occur in terms of relative intensities, being sensitive to the molecular structure of every single material. - Highlights: • Vibrational emission of CN species in laser-induced plasmas has been investigated. • Distribution of vibrational emission of CN has been found to be time dependent. • Laser irradiance affects the vibrational distribution of the CN molecules. • Plume chemistry controls the excitation mechanisms of CN

  16. Laser induced nuclear reactions

    International Nuclear Information System (INIS)

    Ledingham, Ken; McCanny, Tom; Graham, Paul; Fang Xiao; Singhal, Ravi; Magill, Joe; Creswell, Alan; Sanderson, David; Allott, Ric; Neely, David; Norreys, Peter; Santala, Marko; Zepf, Matthew; Watts, Ian; Clark, Eugene; Krushelnick, Karl; Tatarakis, Michael; Dangor, Bucker; Machecek, Antonin; Wark, Justin

    1998-01-01

    Dramatic improvements in laser technology since 1984 have revolutionised high power laser technology. Application of chirped-pulse amplification techniques has resulted in laser intensities in excess of 10 19 W/cm 2 . In the mid to late eighties, C. K. Rhodes and K. Boyer discussed the possibility of shining laser light of this intensity onto solid surfaces and to cause nuclear transitions. In particular, irradiation of a uranium target could induce electro- and photofission in the focal region of the laser. In this paper it is shown that μCi of 62 Cu can be generated via the (γ,n) reaction by a laser with an intensity of about 10 19 Wcm -2

  17. Laser-induced fluorescence imaging of bacteria

    Science.gov (United States)

    Hilton, Peter J.

    1998-12-01

    This paper outlines a method for optically detecting bacteria on various backgrounds, such as meat, by imaging their laser induced auto-fluorescence response. This method can potentially operate in real-time, which is many times faster than current bacterial detection methods, which require culturing of bacterial samples. This paper describes the imaging technique employed whereby a laser spot is scanned across an object while capturing, filtering, and digitizing the returned light. Preliminary results of the bacterial auto-fluorescence are reported and plans for future research are discussed. The results to date are encouraging with six of the eight bacterial strains investigated exhibiting auto-fluorescence when excited at 488 nm. Discrimination of these bacterial strains against red meat is shown and techniques for reducing background fluorescence discussed.

  18. Laser-induced breakdown spectroscopy fundamentals and applications

    CERN Document Server

    Noll, Reinhard

    2012-01-01

    This book is a comprehensive source of the fundamentals, process parameters, instrumental components and applications of laser-induced breakdown spectroscopy (LIBS). The effect of multiple pulses on material ablation, plasma dynamics and plasma emission is presented. A heuristic plasma modeling allows to simulate complex experimental plasma spectra. These methods and findings form the basis for a variety of applications to perform quantitative multi-element analysis with LIBS. These application potentials of LIBS have really boosted in the last years ranging from bulk analysis of metallic alloys and non-conducting materials, via spatially resolved analysis and depth profiling covering measuring objects in all physical states: gaseous, liquid and solid. Dedicated chapters present LIBS investigations for these tasks with special emphasis on the methodical and instrumental concepts as well as the optimization strategies for a quantitative analysis. Requirements, concepts, design and characteristic features of LI...

  19. Time-resolved studies of direct effects of radiation on DNA

    International Nuclear Information System (INIS)

    Fielden, E.M.; O'Neill, P.; Al-Kazwini, A.

    1987-01-01

    The biological changes induced by ionising radiation are a consequence of radiation-induced chemical events taking place at times <1s. These events are strongly influenced by the presence of chemical modifiers. Since DNA is a principle target for radiation-induced cell killing, DNA-free radicals are generated by direct ionisation of DNA moieties (direct effect) and by reaction with hydroxyl radicals formed by radiolysis of the water which is in the vicinity of the DNA (indirect effect). In order to study the 'direct' effects of radiation on DNA the following model approaches are discussed:- 1) Use of the technique of pulse radiolysis to investigate in aqueous solution the interactions of deoxynucleosides with SO/sub 4//sup .-/ whereby one-electron oxidised species of the bases are generated; and 2) time resolved, radiation-induced changes to solid DNA and related macromolecules (e.g. radiation-induced luminescence) in order to obtain an understanding of charge/energy migration as a result of ionisation of DNA. The influence of chemical modifiers and of environment is discussed in terms of the properties of the radiation-induced species produced. Since the properties of base radicals produced by SO/sub 4//sup .-/ are similar to those of the base OH-adducts oxidising properties, potential similarities between the 'direct' and 'indirect' effects of radiation are presented

  20. The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry

    International Nuclear Information System (INIS)

    Lindner, Helmut; Loper, Kristofer H.; Hahn, David W.; Niemax, Kay

    2011-01-01

    Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.

  1. The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry

    Science.gov (United States)

    Lindner, Helmut; Loper, Kristofer H.; Hahn, David W.; Niemax, Kay

    2011-02-01

    Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.

  2. Investigation on the spatial evolution of the emission spectra in laser-induced Ni plasmas

    International Nuclear Information System (INIS)

    Du Chuanmei; Xu Ying; Zhang Mingxu

    2012-01-01

    In this paper, the spatial resolved emission spectrum of Ni atom in laser induced Ni plasma is measured in the wavelength region from 350 nm to 600 nm. The spatial evolution of the relative intensities and the Stark broadening of the 385.83 nm emission spectrum lines are also obtained. It is shown that Stark broadening and intensity of the spectrum lines increases firstly to its maximum and then de- creases along the direction of laser beam when the distance from the target surface is in the range from 0 to 2.5 mm. The maximum value of Stark broadening and relative intensity of the spectrum lines appear at 1.5 mm from the target surface. (authors)

  3. [Study on physical deviation factors on laser induced breakdown spectroscopy measurement].

    Science.gov (United States)

    Wan, Xiong; Wang, Peng; Wang, Qi; Zhang, Qing; Zhang, Zhi-Min; Zhang, Hua-Ming

    2013-10-01

    In order to eliminate the deviation between the measured LIBS spectral line and the standard LIBS spectral line, and improve the accuracy of elements measurement, a research of physical deviation factors in laser induced breakdown spectroscopy technology was proposed. Under the same experimental conditions, the relationship of ablated hole effect and spectral wavelength was tested, the Stark broadening data of Mg plasma laser induced breakdown spectroscopy with sampling time-delay from 1.00 to 3.00 micros was also studied, thus the physical deviation influences such as ablated hole effect and Stark broadening could be obtained while collecting the spectrum. The results and the method of the research and analysis can also be applied to other laser induced breakdown spectroscopy experiment system, which is of great significance to improve the accuracy of LIBS elements measuring and is also important to the research on the optimum sampling time-delay of LIBS.

  4. Preliminary results on time-resolved ion beam induced luminescence applied to the provenance study of lapis lazuli

    Energy Technology Data Exchange (ETDEWEB)

    Czelusniak, C. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Palla, L. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pisa and Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Massi, M. [Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Carraresi, L.; Giuntini, L. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Re, A.; Lo Giudice, A. [Dipartimento di Fisica, Università di Torino & INFN Sezione di Torino, Via Giuria 1, 10125 Torino (Italy); Pratesi, G. [Museo di Storia Naturale, Università di Firenze, Via G. La Pira 4, 50121 Firenze (Italy); Mazzinghi, A. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Ruberto, C. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 1, 50019 Sesto Fiorentino, Firenze (Italy); Castelli, L. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); and others

    2016-03-15

    This work will present preliminary results concerning the use of time-resolved ion beam induced luminescence applied to provenance studies of lapis lazuli. Measurements were performed at the pulsed beam facility at LABEC laboratory in Florence. Lapis lazuli is a semi-precious gemstone, used as ornament since the early civilizations that can be found in few places on Earth. The importance of this work lies in understanding the origin of various samples of lapis lazuli, from which it may be possible to gain insight into trade routes from ancient times. The samples studied in this work originated from Chile, Afghanistan, Tajikistan, Myanmar, and Siberia. The stones were irradiated with 3 MeV protons and the resulting luminescence was detected by a photomultiplier tube, whose output was acquired using a sampling digitizer VME module (CAEN/V1720). Wavelength discrimination was performed at 430 nm utilizing a range of beam currents. The results showed that, by changing the beam current intensity, one can study different features of lapis lazuli, and this may aid in distinguishing lapis lazuli from different provenances.

  5. Preliminary results on time-resolved ion beam induced luminescence applied to the provenance study of lapis lazuli

    International Nuclear Information System (INIS)

    Czelusniak, C.; Palla, L.; Massi, M.; Carraresi, L.; Giuntini, L.; Re, A.; Lo Giudice, A.; Pratesi, G.; Mazzinghi, A.; Ruberto, C.; Castelli, L.

    2016-01-01

    This work will present preliminary results concerning the use of time-resolved ion beam induced luminescence applied to provenance studies of lapis lazuli. Measurements were performed at the pulsed beam facility at LABEC laboratory in Florence. Lapis lazuli is a semi-precious gemstone, used as ornament since the early civilizations that can be found in few places on Earth. The importance of this work lies in understanding the origin of various samples of lapis lazuli, from which it may be possible to gain insight into trade routes from ancient times. The samples studied in this work originated from Chile, Afghanistan, Tajikistan, Myanmar, and Siberia. The stones were irradiated with 3 MeV protons and the resulting luminescence was detected by a photomultiplier tube, whose output was acquired using a sampling digitizer VME module (CAEN/V1720). Wavelength discrimination was performed at 430 nm utilizing a range of beam currents. The results showed that, by changing the beam current intensity, one can study different features of lapis lazuli, and this may aid in distinguishing lapis lazuli from different provenances.

  6. Measurements of Electron Transport in Foils Irradiated with a Picosecond Time Scale Laser Pulse

    International Nuclear Information System (INIS)

    Brown, C. R. D.; Hoarty, D. J.; James, S. F.; Swatton, D.; Hughes, S. J.; Morton, J. W.; Guymer, T. M.; Hill, M. P.; Chapman, D. A.; Andrew, J. E.; Comley, A. J.; Shepherd, R.; Dunn, J.; Chen, H.; Schneider, M.; Brown, G.; Beiersdorfer, P.; Emig, J.

    2011-01-01

    The heating of solid foils by a picosecond time scale laser pulse has been studied by using x-ray emission spectroscopy. The target material was plastic foil with a buried layer of a spectroscopic tracer material. The laser pulse length was either 0.5 or 2 ps, which resulted in a laser irradiance that varied over the range 10 16 -10 19 W/cm 2 . Time-resolved measurements of the buried layer emission spectra using an ultrafast x-ray streak camera were used to infer the density and temperature conditions as a function of laser parameters and depth of the buried layer. Comparison of the data to different models of electron transport showed that they are consistent with a model of electron transport that predicts the bulk of the target heating is due to return currents.

  7. Ultrafast pre-breakdown dynamics in Al₂O₃SiO₂ reflector by femtosecond UV laser spectroscopy.

    Science.gov (United States)

    Du, Juan; Li, Zehan; Xue, Bing; Kobayashi, Takayoshi; Han, Dongjia; Zhao, Yuanan; Leng, Yuxin

    2015-06-29

    Ultrafast carrier dynamics in Al2O3/SiO2 high reflectors has been investigated by UV femtosecond laser. It is identified by laser spectroscopy that, the carrier dynamics contributed from the front few layers of Al2O3 play a dominating role in the initial laser-induced damage of the UV reflector. Time-resolved reflection decrease after the UV excitation is observed, and conduction electrons is found to relaxed to a mid-gap defect state locating about one photon below the conduction band . To interpret the laser induced carrier dynamics further, a theoretical model including electrons relaxation to a mid-gap state is built, and agrees very well with the experimental results.. To the best of our knowledge, this is the first study on the pre-damage dynamics in UV high reflector induced by femtosecond UV laser.

  8. Time-resolved PIV technique for high temporal resolution measurement of mechanical prosthetic aortic valve fluid dynamics.

    Science.gov (United States)

    Kaminsky, R; Morbiducci, U; Rossi, M; Scalise, L; Verdonck, P; Grigioni, M

    2007-02-01

    Prosthetic heart valves (PHVs) have been used to replace diseased native valves for more than five decades. Among these, mechanical PHVs are the most frequently implanted. Unfortunately, these devices still do not achieve ideal behavior and lead to many complications, many of which are related to fluid mechanics. The fluid dynamics of mechanical PHVs are particularly complex and the fine-scale characteristics of such flows call for very accurate experimental techniques. Adequate temporal resolution can be reached by applying time-resolved PIV, a high-resolution dynamic technique which is able to capture detailed chronological changes in the velocity field. The aim of this experimental study is to investigate the evolution of the flow field in a detailed time domain of a commercial bileaflet PHV in a mock-loop mimicking unsteady conditions, by means of time-resolved 2D Particle Image Velocimetry (PIV). The investigated flow field corresponded to the region immediately downstream of the valve plane. Spatial resolution as in "standard" PIV analysis of prosthetic valve fluid dynamics was used. The combination of a Nd:YLF high-repetition-rate double-cavity laser with a high frame rate CMOS camera allowed a detailed, highly temporally resolved acquisition (up to 10000 fps depending on the resolution) of the flow downstream of the PHV. Features that were observed include the non-homogeneity and unsteadiness of the phenomenon and the presence of large-scale vortices within the field, especially in the wake of the valve leaflets. Furthermore, we observed that highly temporally cycle-resolved analysis allowed the different behaviors exhibited by the bileaflet valve at closure to be captured in different acquired cardiac cycles. By accurately capturing hemodynamically relevant time scales of motion, time-resolved PIV characterization can realistically be expected to help designers in improving PHV performance and in furnishing comprehensive validation with experimental data

  9. The measurement of the urinary excretion of uranium by time-resolved laser-induced fluorescence (TRLIF)

    International Nuclear Information System (INIS)

    Cavadore, D.; Poirey, B.; Comba, J.B.; Minaud, G.; Ballet, D.

    1999-01-01

    Rapid direct measurements of the urinary excretion of uranium are often disturbed by metabolic uncertainties and analytical interferences. One consequence of these phenomena is detection limits or uncertainties that are too high. The technique proposed here associates rapid processing of the sample with an optimised measurement system. The objectives of the study - rapidity of response, accuracy and precision lower than 10% and ease of operation - are attained by using a solid power laser as excitation source in conjunction with a modified commercial fluorimeter. We describe the analytical stages for the two methods used (direct measurement and measurement after mineralisation of the sample). The experimental results achieved with 120 measurements are compared with the results obtained by extraction chromatography. The advantages and drawbacks of the TRLIF technique are discussed. Finally, the values of the natural urinary excretion of uranium among 80 non-exposed workers from the Marcoule region are presented as a function of the analytical technique selected. (authors)

  10. Two-photon absorption laser-induced fluorescence of atomic oxygen in the afterglow of pulsed positive corona discharge

    Science.gov (United States)

    Ono, Ryo; Takezawa, Kei; Oda, Tetsuji

    2009-08-01

    Atomic oxygen is measured in the afterglow of pulsed positive corona discharge using time-resolved two-photon absorption laser-induced fluorescence. The discharge occurs in a 14 mm point-to-plane gap in dry air. After the discharge pulse, the atomic oxygen density decreases at a rate of 5×104 s-1. Simultaneously, ozone density increases at almost the same rate, where the ozone density is measured using laser absorption method. This agreement between the increasing rate of atomic oxygen and decreasing rate of ozone proves that ozone is mainly produced by the well-known three-body reaction, O+O2+M→O3+M. No other process for ozone production such as O2(v)+O2→O3+O is observed. The spatial distribution of atomic oxygen density is in agreement with that of the secondary streamer luminous intensity. This agreement indicates that atomic oxygen is mainly produced in the secondary streamer channels, not in the primary streamer channels.

  11. Remote detection and recognition of bio-aerosols by laser-induced fluorescense lidar: practical implementation and field tests

    Science.gov (United States)

    Boreysho, Anatoly; Savin, Andrey; Morozov, Alexey; Konyaev, Maxim; Konovalov, Konstantin

    2007-06-01

    Recognition of aerosol clouds material at some significant distance is now a key requirement for the wide range of applications. The elastic backscatter lidar have demonstrated high capabilities in aerosol remote detection, cloud real-time mapping at very long distances for low-concentration natural aerosols as well as artificial ones [1]. However, recognition ability is required to make them more relevant. Laser-induced fluorescence (LIF) looks very promising with respect to the recognition problem. New approach based on mobile lidar complex [2] equipped by spectrally-and range-resolved LIF-sensor is described as well as some results of field tests. The LIF-sensor consists of four-harmonics Nd:YAG laser equipped by an output expander to provide final beam divergence camera collimated with the lidar scanning direction. The LIF-lidar is mounted on a truck-based platform (20-feet container) as a part of multi-purpose mobile lidar complex and adjusted for field conditions.

  12. Time-Resolved Microfluorescence In Biomedical Diagnosis

    Science.gov (United States)

    Schneckenburger, Herbert

    1985-02-01

    A measuring system combining subnanosecond laser-induced fluorescence with microscopic signal detection was installed and used for diverse projects in the biomedical and environmental field. These projects are ranging from tumor diagnosis and enzymatic analysis to measurements of the activity of methanogenic bacteria which effect biogas production and waste water cleaning. The advantages of this method and its practical applicability are discussed.

  13. Time Resolved Microfluorescence In Biomedical Diagnosis

    Science.gov (United States)

    Schneckenburger, Herbert

    1985-12-01

    A measuring system combining subnanosecond laser-induced fluorescence with microscopic signal detection was installed and used for diverse projects in the biomedical and environmental fields. These projects range from tumor diagnosis and enzymatic analysis to measurements of the activity of methanogenic bacteria, which affect biogas production and waste water cleaning. The advantages of this method and its practical applicability are discussed.

  14. Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique

    Energy Technology Data Exchange (ETDEWEB)

    Varela, J.A.; Amado, J.M.; Tobar, M.J.; Mateo, M.P.; Yañez, A.; Nicolas, G., E-mail: gines@udc.es

    2015-05-01

    Highlights: • Chemical mapping and profiling by laser-induced breakdown spectroscopy (LIBS) of coatings produced by laser cladding. • Production of laser clads using tungsten carbide (WC) and nickel based matrix (NiCrBSi) powders. • Calibration by LIBS of hardfacing alloys with different WC concentrations. - Abstract: Protective coatings with a high abrasive wear resistance can be obtained from powders by laser cladding technique, in order to extend the service life of some industrial components. In this work, laser clad layers of self-fluxing NiCrBSi alloy powder mixed with WC powder have been produced on stainless steel substrates of austenitic type (AISI 304) in a first step and then chemically characterized by laser-induced breakdown spectroscopy (LIBS) technique. With the suitable laser processing parameters (mainly output power, beam scan speed and flow rate) and powders mixture proportions between WC ceramics and NiCrBSi alloys, dense pore free layers have been obtained on single tracks and on large areas with overlapped tracks. The results achieved by LIBS technique and applied for the first time to the analysis of laser clads provided the chemical composition of the tungsten carbides in metal alloy matrix. Different measurement modes (multiple point analyses, depth profiles and chemical maps) have been employed, demonstrating the usefulness of LIBS technique for the characterization of laser clads based on hardfacing alloys. The behavior of hardness can be explained by LIBS maps which evidenced the partial dilution of some WC spheres in the coating.

  15. Production of aerosols by optical catapulting: Imaging, performance parameters and laser-induced plasma sampling rate

    International Nuclear Information System (INIS)

    Abdelhamid, M.; Fortes, F.J.; Fernández-Bravo, A.; Harith, M.A.; Laserna, J.J.

    2013-01-01

    Optical catapulting (OC) is a sampling and manipulation method that has been extensively studied in applications ranging from single cells in heterogeneous tissue samples to analysis of explosive residues in human fingerprints. Specifically, analysis of the catapulted material by means of laser-induced breakdown spectroscopy (LIBS) offers a promising approach for the inspection of solid particulate matter. In this work, we focus our attention in the experimental parameters to be optimized for a proper aerosol generation while increasing the particle density in the focal region sampled by LIBS. For this purpose we use shadowgraphy visualization as a diagnostic tool. Shadowgraphic images were acquired for studying the evolution and dynamics of solid aerosols produced by OC. Aluminum silicate particles (0.2–8 μm) were ejected from the substrate using a Q-switched Nd:YAG laser at 1064 nm, while time-resolved images recorded the propagation of the generated aerosol. For LIBS analysis and shadowgraphy visualization, a Q-switched Nd:YAG laser at 1064 nm and 532 nm was employed, respectively. Several parameters such as the time delay between pulses and the effect of laser fluence on the aerosol production have been also investigated. After optimization, the particle density in the sampling focal volume increases while improving the aerosol sampling rate till ca. 90%. - Highlights: • Aerosol generation by optical catapulting has been successfully optimized. • We study the evolution and dynamics of solid aerosols produced by OC. • We use shadowgraphy visualization as a diagnostic tool. • Effects of temporal conditions and laser fluence on the elevation of the aerosol cloud have been investigated. • The observed LIBS sampling rate increased from 50% reported before to approximately 90%

  16. Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation

    International Nuclear Information System (INIS)

    Rohwetter, Ph.; Stelmaszczyk, K.; Woeste, L.; Ackermann, R.; Mejean, G.; Salmon, E.; Kasparian, J.; Yu, J.; Wolf, J.-P.

    2005-01-01

    We demonstrate laser induced ablation and plasma line emission from a metallic target at distances up to 180 m from the laser, using filaments (self-guided propagation structures ∼ 100 μm in diameter and ∼ 5 x 10 13 W/cm 2 in intensity) appearing as femtosecond and terawatt laser pulses propagating in air. The remarkable property of filaments to propagate over a long distance independently of the diffraction limit opens the frontier to long range operation of the laser-induced breakdown spectroscopy technique. We call this special configuration of remote laser-induced breakdown spectroscopy 'remote filament-induced breakdown spectroscopy'. Our results show main features of filament-induced ablation on the surface of a metallic sample and associated plasma emission. Our experimental data allow us to estimate requirements for the detection system needed for kilometer-range remote filament-induced breakdown spectroscopy experiment

  17. Biological effects of laser-induced stress waves

    International Nuclear Information System (INIS)

    Doukas, A.; Lee, S.; McAuliffe, D.

    1995-01-01

    Laser-induced stress waves can be generated by one of the following mechanisms: Optical breakdown, ablation or rapid heating of an absorbing medium. These three modes of laser interaction with matter allow the investigation of cellular and tissue responses to stress waves with different characteristics and under different conditions. The most widely studied phenomena are those of the collateral damage seen in photodisruption in the eye and in 193 run ablation of cornea and skin. On the other hand, the therapeutic application of laser-induced stress waves has been limited to the disruption of noncellular material such as renal stones, atheromatous plaque and vitreous strands. The effects of stress waves to cells and tissues can be quite disparate. Stress waves can fracture tissue, damage cells, and increase the permeability of the plasma membrane. The viability of cell cultures exposed to stress waves increases with the peak stress and the number of pulses applied. The rise time of the stress wave also influences the degree of cell injury. In fact, cell viability, as measured by thymidine incorporation, correlates better with the stress gradient than peak stress. Recent studies have also established that stress waves induce a transient increase of the permeability of the plasma membrane in vitro. In addition, if the stress gradient is below the damage threshhold, the cells remain viable. Thus, stress waves can be useful as a means of drug delivery, increasing the intracellular drug concentration and allowing the use of drugs which are impermeable to the cell membrane. The present studies show that it is important to create controllable stress waves. The wavelength tunability and the micropulse structure of the free electron laser is ideal for generating stress waves with independently adjustable parameters, such as rise time, duration and peak stress

  18. Space- and time-resolved diagnostics of soft x-ray emission from laser plasmas

    International Nuclear Information System (INIS)

    Richardson, M.C.; Jaanimagi, P.A.; Chen, H.

    1988-01-01

    The analysis of soft x-ray emission from plasmas created by intense short-wavelength laser radiation can provide much useful information on the density, temperature and ionization distribution of the plasma. Until recently, limitations of sensitivity and the availability of suitable x-ray optical elements have restricted studies of soft x-ray emission from laser plasmas. In this paper, the authors describe novel instrumentation which provides high sensitivity in the soft x-ray spectrum with spatial and temporal resolution in the micron and picosecond ranges respectively. These systems exploit advances made in soft x-ray optic and electro-optic technology. Their application in current studies of laser fusion, x-ray lasers, and high density atomic physics are discussed

  19. Standoff laser-induced thermal emission of explosives

    Science.gov (United States)

    Galán-Freyle, Nataly Y.; Pacheco-Londoño, Leonardo C.; Figueroa-Navedo, Amanda; Hernandez-Rivera, Samuel P.

    2013-05-01

    A laser mediated methodology for remote thermal excitation of analytes followed by standoff IR detection is proposed. The goal of this study was to determine the feasibility of using laser induced thermal emission (LITE) from vibrationally excited explosives residues deposited on surfaces to detect explosives remotely. Telescope based FT-IR spectral measurements were carried out to examine substrates containing trace amounts of threat compounds used in explosive devices. The highly energetic materials (HEM) used were PETN, TATP, RDX, TNT, DNT and ammonium nitrate with concentrations from 5 to 200 μg/cm2. Target substrates of various thicknesses were remotely heated using a high power CO2 laser, and their mid-infrared (MIR) thermally stimulated emission spectra were recorded. The telescope was configured from reflective optical elements in order to minimize emission losses in the MIR frequencies and to provide optimum overall performance. Spectral replicas were acquired at a distance of 4 m with an FT-IR interferometer at 4 cm- 1 resolution and 10 scans. Laser power was varied from 4-36 W at radiation exposure times of 10, 20, 30 and 60 s. CO2 laser powers were adjusted to improve the detection and identification of the HEM samples. The advantages of increasing the thermal emission were easily observed in the results. Signal intensities were proportional to the thickness of the coated surface (a function of the surface concentration), as well as the laser power and laser exposure time. For samples of RDX and PETN, varying the power and time of induction of the laser, the calculated low limit of detections were 2 and 1 μg/cm2, respectively.

  20. Influence of the distance between target surface and focal point on the expansion dynamics of a laser-induced silicon plasma with spatial confinement

    Science.gov (United States)

    Zhang, Dan; Chen, Anmin; Wang, Xiaowei; Wang, Ying; Sui, Laizhi; Ke, Da; Li, Suyu; Jiang, Yuanfei; Jin, Mingxing

    2018-05-01

    Expansion dynamics of a laser-induced plasma plume, with spatial confinement, for various distances between the target surface and focal point were studied by the fast photography technique. A silicon wafer was ablated to induce the plasma with a Nd:YAG laser in an atmospheric environment. The expansion dynamics of the plasma plume depended on the distance between the target surface and focal point. In addition, spatially confined time-resolved images showed the different structures of the plasma plumes at different distances between the target surface and focal point. By analyzing the plume images, the optimal distance for emission enhancement was found to be approximately 6 mm away from the geometrical focus using a 10 cm focal length lens. This optimized distance resulted in the strongest compression ratio of the plasma plume by the reflected shock wave. Furthermore, the duration of the interaction between the reflected shock wave and the plasma plume was also prolonged.

  1. Time-resolved functional analysis of acute impairment of frataxin expression in an inducible cell model of Friedreich ataxia

    Directory of Open Access Journals (Sweden)

    Dörte Poburski

    2016-05-01

    Full Text Available Friedreich ataxia is a neurodegenerative disease caused by a GAA triplet repeat expansion in the first intron of the frataxin gene, which results in reduced expression levels of the corresponding protein. Despite numerous animal and cellular models, therapeutic options that mechanistically address impaired frataxin expression are lacking. Here, we have developed a new mammalian cell model employing the Cre/loxP recombination system to induce a homozygous or heterozygous frataxin knockout in mouse embryonic fibroblasts. Induction of Cre-mediated disruption by tamoxifen was successfully tested on RNA and protein levels. After loss of frataxin protein, cell division, aconitase activity and oxygen consumption rates were found to be decreased, while ROS production was increased in the homozygous state. By contrast, in the heterozygous state no such changes were observed. A time-resolved analysis revealed the loss of aconitase activity as an initial event after induction of complete frataxin deficiency, followed by secondarily elevated ROS production and a late increase in iron content. Initial impairments of oxygen consumption and ATP production were found to be compensated in the late state and seemed to play a minor role in Friedreich ataxia pathophysiology. In conclusion and as predicted from its proposed role in iron sulfur cluster (ISC biosynthesis, disruption of frataxin primarily causes impaired function of ISC-containing enzymes, whereas other consequences, including elevated ROS production and iron accumulation, appear secondary. These parameters and the robustness of the newly established system may additionally be used for a time-resolved study of pharmacological candidates in a HTS manner.

  2. Interaction of europium and nickel with calcite studied by Rutherford Backscattering Spectrometry and Time-Resolved Laser Fluorescence Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, A. [Agence Nationale pour la gestion des Déchets RAdioactifs, 1-7 rue J. Monnet, Parc de la Croix Blanche, 92298 Châtenay-Malabry Cedex (France); Université de Nice Sophia Antipolis, Ecosystèmes Côtiers Marins et Réponses aux Stress (ECOMERS), 28 avenue Valrose, 06108 Nice Cedex 2 (France); Pipon, Y., E-mail: pipon@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69 622 Villeurbanne Cedex (France); Institut Universitaire de Technologie (IUT) Lyon-1, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex (France); Toulhoat, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69 622 Villeurbanne Cedex (France); CEA/DEN, Saclay, 91191 Gif sur Yvette (France); Lomenech, C. [Université de Nice Sophia Antipolis, Ecosystèmes Côtiers Marins et Réponses aux Stress (ECOMERS), 28 avenue Valrose, 06108 Nice Cedex 2 (France); Jordan, N. [Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Resource Ecology (IRE) (Germany); Moncoffre, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69 622 Villeurbanne Cedex (France); Barkleit, A. [Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Resource Ecology (IRE) (Germany); and others

    2014-08-01

    This study aims at elucidating the mechanisms regulating the interaction of Eu and Ni with calcite (CaCO{sub 3}). Calcite powders or single crystals (some mm sized) were put into contact with Eu or Ni solutions at concentrations ranging from 10{sup −3} to 10{sup −5} mol L{sup −1} for Eu and 10{sup −3} mol L{sup −1} for Ni. The sorption durations ranged from 1 week to 1 month. Rutherford Backscattering Spectrometry (RBS) well adapted to discriminate incorporation processes such as: (i) adsorption or co precipitation at the mineral surfaces or, (ii) incorporation into the mineral structure (through diffusion for instance), has been carried out. Moreover, using the fluorescence properties of europium, the results have been compared to those obtained by Time-Resolved Laser Fluorescence Spectroscopy (TRLFS) on calcite powders. For the single crystals, complementary SEM observations of the mineral surfaces at low voltage were also performed. Results showed that Ni accumulates at the calcite surface whereas Eu is also incorporated at a greater depth. Eu seems therefore to be incorporated into two different states in calcite: (i) heterogeneous surface accumulation and (ii) incorporation at depth greater than 160 nm after 1 month of sorption. Ni was found to accumulate at the surface of calcite without incorporation.

  3. Enhancement of laser-induced breakdown spectroscopy (LIBS) Detection limit using a low-pressure and short-pulse laser-induced plasma process.

    Science.gov (United States)

    Wang, Zhen Zhen; Deguchi, Yoshihiro; Kuwahara, Masakazu; Yan, Jun Jie; Liu, Ji Ping

    2013-11-01

    Laser-induced breakdown spectroscopy (LIBS) technology is an appealing technique compared with many other types of elemental analysis because of the fast response, high sensitivity, real-time, and noncontact features. One of the challenging targets of LIBS is the enhancement of the detection limit. In this study, the detection limit of gas-phase LIBS analysis has been improved by controlling the pressure and laser pulse width. In order to verify this method, low-pressure gas plasma was induced using nanosecond and picosecond lasers. The method was applied to the detection of Hg. The emission intensity ratio of the Hg atom to NO (IHg/INO) was analyzed to evaluate the LIBS detection limit because the NO emission (interference signal) was formed during the plasma generation and cooling process of N2 and O2 in the air. It was demonstrated that the enhancement of IHg/INO arose by decreasing the pressure to a few kilopascals, and the IHg/INO of the picosecond breakdown was always much higher than that of the nanosecond breakdown at low buffer gas pressure. Enhancement of IHg/INO increased more than 10 times at 700 Pa using picosecond laser with 35 ps pulse width. The detection limit was enhanced to 0.03 ppm (parts per million). We also saw that the spectra from the center and edge parts of plasma showed different features. Comparing the central spectra with the edge spectra, IHg/INO of the edge spectra was higher than that of the central spectra using the picosecond laser breakdown process.

  4. Precise alignment of the collection fiber assisted by real-time plasma imaging in laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Motto-Ros, V., E-mail: vincent.motto-ros@univ-lyon1.fr [Institut Lumière Matière, UMR 5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex (France); Negre, E. [Institut Lumière Matière, UMR 5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex (France); CRITT Matériaux Alsace, 19, rue de St Junien, 67305 Schiltigheim (France); Pelascini, F. [CRITT Matériaux Alsace, 19, rue de St Junien, 67305 Schiltigheim (France); Panczer, G.; Yu, J. [Institut Lumière Matière, UMR 5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex (France)

    2014-02-01

    Improving the repeatability and the reproducibility of measurement with laser-induced breakdown spectroscopy (LIBS) is one of the actual challenging issues faced by the technique to fit the requirements of precise and accurate quantitative analysis. Among the numerous factors influencing the measurement stability in short and long terms, there are shot-to-shot and day-to-day fluctuations of the morphology of the plasma. Such fluctuations are due to the high sensitivity of laser-induced plasma to experimental conditions including properties of the sample, the laser parameters as well as properties of the ambient gas. In this paper, we demonstrate that precise alignment of the optical fiber for the collection of the plasma emission with respect to the actual morphology of the plasma assisted by real-time imaging, greatly improves the stability of LIBS measurements in short as well as in long terms. The used setup is based on a plasma imaging arrangement using a CCD camera and a real-time image processing. The obtained plasma image is displayed in a 2-dimensional frame where the position of the optical fiber is beforehand calibrated. In addition, the setup provides direct sample surface monitoring, which allows a precise control of the distance between the focusing lens and the sample surface. Test runs with a set of 8 reference samples show very high determination coefficient for calibration curves (R{sup 2} = 0.9999), and a long term repeatability and reproducibility of 4.6% (relative standard deviation) over a period of 3 months without any signal normalization. The capacity of the system to automatically correct the sample surface position for a tilted or non-regular sample surface during a surface mapping measurement is also demonstrated. - Highlights: • Automated alignment of the collection fiber by real-time plasma imaging • High level control of experimental parameters in LIBS experiments • Improvement of the short and long term stability in LIBS

  5. Precise alignment of the collection fiber assisted by real-time plasma imaging in laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Motto-Ros, V.; Negre, E.; Pelascini, F.; Panczer, G.; Yu, J.

    2014-01-01

    Improving the repeatability and the reproducibility of measurement with laser-induced breakdown spectroscopy (LIBS) is one of the actual challenging issues faced by the technique to fit the requirements of precise and accurate quantitative analysis. Among the numerous factors influencing the measurement stability in short and long terms, there are shot-to-shot and day-to-day fluctuations of the morphology of the plasma. Such fluctuations are due to the high sensitivity of laser-induced plasma to experimental conditions including properties of the sample, the laser parameters as well as properties of the ambient gas. In this paper, we demonstrate that precise alignment of the optical fiber for the collection of the plasma emission with respect to the actual morphology of the plasma assisted by real-time imaging, greatly improves the stability of LIBS measurements in short as well as in long terms. The used setup is based on a plasma imaging arrangement using a CCD camera and a real-time image processing. The obtained plasma image is displayed in a 2-dimensional frame where the position of the optical fiber is beforehand calibrated. In addition, the setup provides direct sample surface monitoring, which allows a precise control of the distance between the focusing lens and the sample surface. Test runs with a set of 8 reference samples show very high determination coefficient for calibration curves (R 2 = 0.9999), and a long term repeatability and reproducibility of 4.6% (relative standard deviation) over a period of 3 months without any signal normalization. The capacity of the system to automatically correct the sample surface position for a tilted or non-regular sample surface during a surface mapping measurement is also demonstrated. - Highlights: • Automated alignment of the collection fiber by real-time plasma imaging • High level control of experimental parameters in LIBS experiments • Improvement of the short and long term stability in LIBS measurements

  6. Comparisons of angularly and spectrally resolved Bremsstrahlung measurements to two-dimensional multi-stage simulations of short-pulse laser-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C. D.; Kemp, A. J.; Pérez, F.; Link, A.; Key, M. H.; McLean, H.; Ping, Y.; Patel, P. K. [Lawrence Livermore National Laboratory (United States); Beg, F. N.; Chawla, S.; Sorokovikova, A.; Westover, B. [University of California, San Diego (United States); Morace, A. [University of Milan (Italy); Stephens, R. B. [General Atomics (United States); Streeter, M. [Imperial College London (United Kingdom)

    2013-05-15

    A 2-D multi-stage simulation model incorporating realistic laser conditions and a fully resolved electron distribution handoff has been developed and compared to angularly and spectrally resolved Bremsstrahlung measurements from high-Z planar targets. For near-normal incidence and 0.5-1 × 10{sup 20} W/cm{sup 2} intensity, particle-in-cell (PIC) simulations predict the existence of a high energy electron component consistently directed away from the laser axis, in contrast with previous expectations for oblique irradiation. Measurements of the angular distribution are consistent with a high energy component when directed along the PIC predicted direction, as opposed to between the target normal and laser axis as previously measured.

  7. Determination of low alloying element concentrations in cast iron by laser induced breakdown spectroscopy based on TEA CO2 laser system

    Directory of Open Access Journals (Sweden)

    Savović Jelena J.

    2017-01-01

    Full Text Available The analytical capability of laser-produced plasma for the analysis of low alloying elements in cast iron samples has been investigated. The plasma was induced by irradiation of a sample in air at atmospheric pressure using an infrared CO2 laser. Emission spectra were recorded by time-integrated spatially- resolved measurement technique. A set of ten cast iron samples in a powder or particulate form were provided by BAM (Bundesanstalt für Material Forschung und Prüfung, Deutschland, seven of which were used for calibration, and three were treated as unknowns. Linear calibration curves were obtained for copper, chromium, and nickel, with correlation coefficients above 0.99. Precision and accuracy of the LIBS method was evaluated and compared to those obtained by the inductively coupled plasma (ICP analysis of the same samples. Detection limits for Cu, Cr and Ni were close to those reported in the literature for other comparable iron-based alloys obtained using different LIBS systems. Analytical figures of merit of the studied LIBS system may be considered as satisfying, especially in the light of other advantages of the method, like cost effective and fast analysis with no sample preparation, and with a possibility for real-time on-site analysis. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 172019

  8. Guest–Host Interactions Investigated by Time-Resolved X-ray Spectroscopies and Scattering at MHz Rates

    DEFF Research Database (Denmark)

    Haldrup, Martin Kristoffer; Vanko, G.; Gawelda, W.

    2012-01-01

    We have studied the photoinduced low spin (LS) to high spin (HS) conversion of [Fe(bipy)3]2+ in aqueous solution. In a laser pump/X-ray probe synchrotron setup permitting simultaneous, time-resolved X-ray diffuse scattering (XDS) and X-ray spectroscopic measurements at a 3.26 MHz repetition rate...... lifetime, allowing the detection of an ultrafast change in bulk solvent density. An analysis approach directly utilizing the spectroscopic data in the XDS analysis effectively reduces the number of free parameters, and both combined permit extraction of information about the ultrafast structural dynamics...

  9. Risks induced by laser radiation; Risques induits par le rayonnement laser

    Energy Technology Data Exchange (ETDEWEB)

    Courant, D [CEA Fontenay-aux-Roses, 92 (France). Dept. de Radiobiologie et de Radiopathologie

    2001-07-01

    The use of lasers is often dangerous because of the emitted power, the wave length, the conduction system(optical fiber, wave guide, mirrors) and the use conditions. The safety notion involves the precise knowledge of materials, the biological effects in function of laser emission parameters, the knowledge of protection standards, the observance of use rules and the personnel training. This chapter treats the risks induced by the beam. It gives the different biological effects induced by the laser beam, at the eye and skin levels that are at the origin of exposure limits and the lasers classification recommended by the protection standards. (N.C.)

  10. Highly time-resolved imaging of combustion and pyrolysis product concentrations in solid fuel combustion: NO formation in a burning cigarette.

    Science.gov (United States)

    Zimmermann, Ralf; Hertz-Schünemann, Romy; Ehlert, Sven; Liu, Chuan; McAdam, Kevin; Baker, Richard; Streibel, Thorsten

    2015-02-03

    The highly dynamic, heterogeneous combustion process within a burning cigarette was investigated by a miniaturized extractive sampling probe (microprobe) coupled to photoionization mass spectrometry using soft laser single photon ionization (SPI) for online real-time detection of molecular ions of combustion and pyrolysis products. Research cigarettes smoked by a smoking machine are used as a reproducible model system for solid-state biomass combustion, which up to now is not addressable by current combustion-diagnostic tools. By combining repetitively recorded online measurement sequences from different sampling locations in an imaging approach, highly time- and space-resolved quantitative distribution maps of, e.g., nitrogen monoxide, benzene, and oxygen concentrations were obtained at a near microscopic level. The obtained quantitative distribution maps represent a time-resolved, movie-like imaging of the respective compound's formation and destruction zones in the various combustion and pyrolysis regions of a cigarette during puffing. Furthermore, spatially resolved kinetic data were ascertainable. The here demonstrated methodology can also be applied to various heterogenic combustion/pyrolysis or reaction model systems, such as fossil- or biomass-fuel pellet combustion or to a positional resolved analysis of heterogenic catalytic reactions.

  11. Mechanisms of two-color laser-induced field-free molecular orientation.

    Science.gov (United States)

    Spanner, Michael; Patchkovskii, Serguei; Frumker, Eugene; Corkum, Paul

    2012-09-14

    Two mechanisms of two-color (ω+2ω) laser-induced field-free molecular orientation, based on the hyperpolarizability and ionization depletion, are explored and compared. The CO molecule is used as a computational example. While the hyperpolarizability mechanism generates small amounts of orientation at intensities below the ionization threshold, ionization depletion quickly becomes the dominant mechanism as soon as ionizing intensities are reached. Only the ionization mechanism leads to substantial orientation (e.g., on the order of ≳0.1). For intensities typical of laser-induced molecular alignment and orientation experiments, the two mechanisms lead to robust, characteristic timings of the field-free orientation wave-packet revivals relative to the alignment revivals and the revival time. The revival timings can be used to detect the active orientation mechanism experimentally.

  12. Electron Bunch Timing with Femtosecond Precision in a Superconducting Free-Electron Laser

    Science.gov (United States)

    Löhl, F.; Arsov, V.; Felber, M.; Hacker, K.; Jalmuzna, W.; Lorbeer, B.; Ludwig, F.; Matthiesen, K.-H.; Schlarb, H.; Schmidt, B.; Schmüser, P.; Schulz, S.; Szewinski, J.; Winter, A.; Zemella, J.

    2010-04-01

    High-gain free-electron lasers (FELs) are capable of generating femtosecond x-ray pulses with peak brilliances many orders of magnitude higher than at other existing x-ray sources. In order to fully exploit the opportunities offered by these femtosecond light pulses in time-resolved experiments, an unprecedented synchronization accuracy is required. In this Letter, we distributed the pulse train of a mode-locked fiber laser with femtosecond stability to different locations in the linear accelerator of the soft x-ray FEL FLASH. A novel electro-optic detection scheme was applied to measure the electron bunch arrival time with an as yet unrivaled precision of 6 fs (rms). With two beam-based feedback systems we succeeded in stabilizing both the arrival time and the electron bunch compression process within two magnetic chicanes, yielding a significant reduction of the FEL pulse energy jitter.

  13. Electron Bunch Timing with Femtosecond Precision in a Superconducting Free-Electron Laser

    International Nuclear Information System (INIS)

    Loehl, F.; Arsov, V.; Felber, M.; Hacker, K.; Lorbeer, B.; Ludwig, F.; Matthiesen, K.-H.; Schlarb, H.; Schmidt, B.; Winter, A.; Jalmuzna, W.; Schmueser, P.; Schulz, S.; Zemella, J.; Szewinski, J.

    2010-01-01

    High-gain free-electron lasers (FELs) are capable of generating femtosecond x-ray pulses with peak brilliances many orders of magnitude higher than at other existing x-ray sources. In order to fully exploit the opportunities offered by these femtosecond light pulses in time-resolved experiments, an unprecedented synchronization accuracy is required. In this Letter, we distributed the pulse train of a mode-locked fiber laser with femtosecond stability to different locations in the linear accelerator of the soft x-ray FEL FLASH. A novel electro-optic detection scheme was applied to measure the electron bunch arrival time with an as yet unrivaled precision of 6 fs (rms). With two beam-based feedback systems we succeeded in stabilizing both the arrival time and the electron bunch compression process within two magnetic chicanes, yielding a significant reduction of the FEL pulse energy jitter.

  14. Laser induced fluorescence spectroscopy for FTU

    International Nuclear Information System (INIS)

    Hughes, T.P.

    1995-07-01

    Laser induced fluorescence spectroscopy (LIFS) is based on the absorption of a short pulse of tuned laser light by a group of atoms and the observation of the resulting fluorescence radiation from the excited state. Because the excitation is resonant it is very efficient, and the fluorescence can be many times brighter than the normal spontaneous emission, so low number densities of the selected atoms can be detected and measured. Good spatial resolution can be achieved by using a narrow laser beam. If the laser is sufficiently monochromatic, and it can be tuned over the absorption line profile of the selected atoms, information can also be obtained about the velocities of the atoms from the Doppler effect which can broaden and shift the line. In this report two topics are examined in detail. The first is the effect of high laser irradiance, which can cause 'power broadening' of the apparent absorption line profile. The second is the effect of the high magnetic field in FTU. Detailed calculations are given for LIFS of neutral iron and molybdenum atoms, including the Zeeman effect, and the implementation of LIFS for these atoms on FTU is discussed

  15. Diesel combustion and emissions formation using multiple 2-D imaging diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Dec, J.E. [Sandia National Labs., Livermore, CA (United States)

    1997-12-31

    Understanding how emissions are formed during diesel combustion is central to developing new engines that can comply with increasingly stringent emission standards while maintaining or improving performance levels. Laser-based planar imaging diagnostics are uniquely capable of providing the temporally and spatially resolved information required for this understanding. Using an optically accessible research engine, a variety of two-dimensional (2-D) imaging diagnostics have been applied to investigators of direct-injection (DI) diesel combustion and emissions formation. These optical measurements have included the following laser-sheet imaging data: Mie scattering to determine liquid-phase fuel distributions, Rayleigh scattering for quantitative vapor-phase-fuel/air mixture images, laser induced incandescence (LII) for relative soot concentrations, simultaneous LII and Rayleigh scattering for relative soot particle-size distributions, planar laser-induced fluorescence (PLIF) to obtain early PAH (polyaromatic hydrocarbon) distributions, PLIF images of the OH radical that show the diffusion flame structure, and PLIF images of the NO radical showing the onset of NO{sub x} production. In addition, natural-emission chemiluminescence images were obtained to investigate autoignition. The experimental setup is described, and the image data showing the most relevant results are presented. Then the conceptual model of diesel combustion is summarized in a series of idealized schematics depicting the temporal and spatial evolution of a reacting diesel fuel jet during the time period investigated. Finally, recent PLIF images of the NO distribution are presented and shown to support the timing and location of NO formation hypothesized from the conceptual model.

  16. Pulse radiolysis of liquid water using picosecond electron pulses produced by a table-top terawatt laser system

    International Nuclear Information System (INIS)

    Saleh, Ned; Flippo, Kirk; Nemoto, Koshichi; Umstadter, Donald; Crowell, Robert A.; Jonah, Charles D.; Trifunac, Alexander D.

    2000-01-01

    A laser based electron generator is shown, for the first time, to produce sufficient charge to conduct time resolved investigations of radiation induced chemical events. Electron pulses generated by focussing terawatt laser pulses into a supersonic helium gas jet are used to ionize liquid water. The decay of the hydrated electrons produced by the ionizing electron pulses is monitored with 0.3 μs time resolution. Hydrated electron concentrations as high as 22 μM were generated. The results show that terawatt lasers offer both an alternative to linear accelerators and a means to achieve subpicosecond time resolution for pulse radiolysis studies. (c) 2000 American Institute of Physics

  17. Proposed ultraviolet free-electron laser at Brookhaven National Laboratory: A source for time-resolved biochemical spectroscopy

    International Nuclear Information System (INIS)

    Johnson, E.D.; Sutherland, J.C.; Laws, W.R.

    1992-01-01

    Brookhaven National Laboratory is designing an ultraviolet free- electron laser (UV-FEL) user facility that will provide pico-second and sub-picosecond pulses of coherent ultraviolet radiation for wavelengths from 300 to 75 nm. Pulse width will be variable from abut 7 ps to ∼ 200 fs, with repetition rates as high as 10 4 Hz, single pulse energies > 1 mJ and hence peak pulse power >200 MW and average beam power > 10 W. The facility will be capable of ''pump-probe'' experiments utilizing the FEL radiation with: (1) synchronized auxiliary lasers, (2) a second, independently tunable FEL beam, or (3) broad-spectrum, high-intensity x-rays from the adjacent National Synchrotron Light Source. The UV-FEL consists of a high repetition rate recirculating superconducting linear accelerator which feeds pulses of electrons to two magnetic wigglers. Within these two devices, photons from tunable ''conventional'' laser would be frequency multiplied and amplified. By synchronously tuning the seed laser and modulating the energy of the electron beam, tuning of as much as 60% in wavelength is possible between alternating pulses supplied to different experimental stations, with Fourier transform limited resolution. Thus, up to four independent experiments may operate at one time, each with independent control of the wavelength and pulse duration. The UV-FEL will make possible new avenues of inquiry in time studies of diverse field including chemical, surface, and solid state physics, biology and materials science. The experimental area is scheduled to include a station dedicated to biological research. The complement of experimental and support facilities required by the biology station will be determined by the interests of the user community. 7 refs., 5 figs

  18. Time-resolved Femtosecond Photon Echo Probes Bimodal Solvent Dynamics

    NARCIS (Netherlands)

    Pshenichnikov, M.S; Duppen, K.; Wiersma, D. A.

    1995-01-01

    We report on time-resolved femtosecond photon echo experiments of a dye molecule in a polar solution. The photon echo is time resolved by mixing the echo with a femtosecond gate pulse in a nonlinear crystal. It is shown that the temporal profile of the photon echo allows separation of the

  19. The analysis of time-resolved optically stimulated luminescence: I. Theoretical considerations

    International Nuclear Information System (INIS)

    Chithambo, M L

    2007-01-01

    This is the first of two linked papers on the analysis of time-resolved optically stimulated luminescence. This paper focusses on a theoretical basis of analytical methods and on methods for interpretation of time-resolved luminescence spectra and calculation of luminescence throughput. Using a comparative analysis of the principal features of time-resolved luminescence and relevant analogues from steady state optical stimulation, formulae for configuring a measurement system for optimum performance are presented. We also examine the possible use of stretched-exponential functions for analysis of time-resolved optically stimulated luminescence spectra

  20. Direct measurements of neutral density depletion by two-photon absorption laser-induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Aanesland, A.; Liard, L.; Leray, G.; Jolly, J.; Chabert, P.

    2007-01-01

    The ground state density of xenon atoms has been measured by spatially resolved laser-induced fluorescence spectroscopy with two-photon excitation in the diffusion chamber of a magnetized Helicon plasma. This technique allows the authors to directly measure the relative variations of the xenon atom density without any assumptions. A significant neutral gas density depletion was measured in the core of the magnetized plasma, in agreement with previous theoretical and experimental works. It was also found that the neutral gas density was depleted near the radial walls

  1. Spin-resolved photoelectron spectroscopy using femtosecond extreme ultraviolet light pulses from high-order harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Plötzing, M.; Adam, R., E-mail: r.adam@fz-juelich.de; Weier, C.; Plucinski, L.; Schneider, C. M. [Forschungszentrum Jülich GmbH, Peter Grünberg Institut (PGI-6), 52425 Jülich (Germany); Eich, S.; Emmerich, S.; Rollinger, M.; Aeschlimann, M. [University of Kaiserslautern and Research Center OPTIMAS, 67663 Kaiserslautern (Germany); Mathias, S. [Georg-August-Universität Göttingen, I. Physikalisches Institut, 37077 Göttingen (Germany)

    2016-04-15

    The fundamental mechanism responsible for optically induced magnetization dynamics in ferromagnetic thin films has been under intense debate since almost two decades. Currently, numerous competing theoretical models are in strong need for a decisive experimental confirmation such as monitoring the triggered changes in the spin-dependent band structure on ultrashort time scales. Our approach explores the possibility of observing femtosecond band structure dynamics by giving access to extended parts of the Brillouin zone in a simultaneously time-, energy- and spin-resolved photoemission experiment. For this purpose, our setup uses a state-of-the-art, highly efficient spin detector and ultrashort, extreme ultraviolet light pulses created by laser-based high-order harmonic generation. In this paper, we present the setup and first spin-resolved spectra obtained with our experiment within an acquisition time short enough to allow pump-probe studies. Further, we characterize the influence of the excitation with femtosecond extreme ultraviolet pulses by comparing the results with data acquired using a continuous wave light source with similar photon energy. In addition, changes in the spectra induced by vacuum space-charge effects due to both the extreme ultraviolet probe- and near-infrared pump-pulses are studied by analyzing the resulting spectral distortions. The combination of energy resolution and electron count rate achieved in our setup confirms its suitability for spin-resolved studies of the band structure on ultrashort time scales.

  2. Effect of laser spot size on energy balance in laser induced plasmas

    International Nuclear Information System (INIS)

    Pant, H.C.; Sharma, S.; Bhawalkar, D.D.

    1980-01-01

    The effect of the laser spot size on laser light absorption in laser induced plasmas from solid targets was studied. It was found that at a constant laser intensity on the target, reduction in the laser spot size enhances the net laser energy absorption. It was also observed that the laser light reflection from the target becomes more diffused when the focal spot size is reduced

  3. Decay time shortening of fluorescence from donor-acceptor pair proteins using ultrafast time-resolved fluorescence resonance energy transfer spectroscopy

    International Nuclear Information System (INIS)

    Baba, Motoyoshi; Suzuki, Masayuki; Ganeev, Rashid A.; Kuroda, Hiroto; Ozaki, Tsuneyuki; Hamakubo, Takao; Masuda, Kazuyuki; Hayashi, Masahiro; Sakihama, Toshiko; Kodama, Tatsuhiko; Kozasa, Tohru

    2007-01-01

    We improved an ultrafast time-resolved fluorescence resonance energy transfer (FRET) spectroscopy system and measured directly the decrease in the fluorescence decay time of the FRET signal, without any entanglement of components in the picosecond time scale from the donor-acceptor protein pairs (such as cameleon protein for calcium ion indicator, and ligand-activated GRIN-Go proteins pair). The drastic decrease in lifetime of the donor protein fluorescence under the FRET condition (e.g. a 47.8% decrease for a GRIN-Go protein pair) proves the deformation dynamics between donor and acceptor fluorescent proteins in an activated state of a mixed donor-acceptor protein pair. This study is the first clear evidence of physical contact of the GRIN-Go proteins pair using time-resolved FRET system. G protein-coupled receptors (GPCRs) are the most important protein family for the recognition of many chemical substances at the cell surface. They are the targets of many drugs. Simultaneously, we were able to observe the time-resolved spectra of luminous proteins at the initial stage under the FRET condition, within 10 ns from excitation. This new FRET system allows us to trace the dynamics of the interaction between proteins at the ligand-induced activated state, molecular structure change and combination or dissociation. It will be a key technology for the development of protein chip technology

  4. Time-resolved CT angiography in aortic dissection

    International Nuclear Information System (INIS)

    Meinel, Felix G.; Nikolaou, Konstantin; Weidenhagen, Rolf; Hellbach, Katharina; Helck, Andreas; Bamberg, Fabian; Reiser, Maximilian F.; Sommer, Wieland H.

    2012-01-01

    Objectives: We performed this study to assess feasibility and additional diagnostic value of time-resolved CT angiography of the entire aorta in patients with aortic dissection. Materials and methods: 14 consecutive patients with known or suspected aortic dissection (aged 60 ± 9 years) referred for aortic CT angiography were scanned on a dual-source CT scanner (Somatom Definition Flash; Siemens, Forchheim, Germany) using a shuttle mode for multiphasic image acquisition (range 48 cm, time resolution 6 s, 6 phases, 100 kV, 110 mAs/rot). Effective radiation doses were calculated from recorded dose length products. For all phases, CT densities were measured in the aortic lumen and renal parenchyma. From the multiphasic data, 3 phases corresponding to a triphasic standard CT protocol, served as a reference and were compared against findings from the time-resolved datasets. Results: Mean effective radiation dose was 27.7 ± 3.5 mSv. CT density of the true lumen peaked at 355 ± 53 HU. Compared to the simulated triphasic protocol, time-resolved CT angiography added diagnostic information regarding a number of important findings: the enhancement delay between true and false lumen (n = 14); the degree of membrane oscillation (n = 14); the perfusion delay in arteries originating from the false lumen (n = 9). Other additional information included true lumen collapse (n = 4), quantitative assessment of renal perfusion asymmetry (n = 2), and dynamic occlusion of aortic branches (n = 2). In 3/14 patients (21%), these additional findings of the multiphasic protocol altered patient management. Conclusions: Multiphasic, time-resolved CT angiography covering the entire aorta is feasible at a reasonable effective radiation dose and adds significant diagnostic information with therapeutic consequences in patients with aortic dissection.

  5. Atomic collisions in the presence of laser radiation - Time dependence and the asymptotic wave function

    Science.gov (United States)

    Devries, P. L.; George, T. F.

    1982-01-01

    A time-dependent, wave-packet description of atomic collisions in the presence of laser radiation is extracted from the more conventional time-independent, stationary-state description. This approach resolves certain difficulties of interpretation in the time-independent approach which arise in the case of asymptotic near resonance. In the two-state model investigated, the approach predicts the existence of three spherically scattered waves in this asymptotically near-resonant case.

  6. Fast-electron-relaxation measurement for laser-solid interaction at relativistic laser intensities

    International Nuclear Information System (INIS)

    Chen, H.; Shepherd, R.; Chung, H. K.; Kemp, A.; Hansen, S. B.; Wilks, S. C.; Ping, Y.; Widmann, K.; Fournier, K. B.; Beiersdorfer, P.; Dyer, G.; Faenov, A.; Pikuz, T.

    2007-01-01

    We present measurements of the fast-electron-relaxation time in short-pulse (0.5 ps) laser-solid interactions for laser intensities of 10 17 , 10 18 , and 10 19 W/cm 2 , using a picosecond time-resolved x-ray spectrometer and a time-integrated electron spectrometer. We find that the laser coupling to hot electrons increases as the laser intensity becomes relativistic, and that the thermalization of fast electrons occurs over time scales on the order of 10 ps at all laser intensities. The experimental data are analyzed using a combination of models that include Kα generation, collisional coupling, and plasma expansion

  7. Droplet printing through bubble contact in the laser forward transfer of liquids

    International Nuclear Information System (INIS)

    Duocastella, M.; Fernandez-Pradas, J.M.; Morenza, J.L.; Serra, P.

    2011-01-01

    The deposition process of the laser-induced forward transfer of liquids at high laser fluences is analyzed through time-resolved imaging. It has been found that, at these conditions, sessile droplets are deposited due to the contact of a generated cavitation bubble with the receptor substrate, in contrast to the jet contact mechanism observed at low and moderate laser fluences. The bubble contact results in droplets with a larger diameter, a smaller contact angle and a lower uniformity than those of the jet mechanism. Therefore, in order to attain a high degree of resolution this mechanism should be prevented.

  8. Droplet printing through bubble contact in the laser forward transfer of liquids

    Energy Technology Data Exchange (ETDEWEB)

    Duocastella, M. [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain); Fernandez-Pradas, J.M., E-mail: jmfernandez@ub.edu [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain); Morenza, J.L.; Serra, P. [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain)

    2011-01-15

    The deposition process of the laser-induced forward transfer of liquids at high laser fluences is analyzed through time-resolved imaging. It has been found that, at these conditions, sessile droplets are deposited due to the contact of a generated cavitation bubble with the receptor substrate, in contrast to the jet contact mechanism observed at low and moderate laser fluences. The bubble contact results in droplets with a larger diameter, a smaller contact angle and a lower uniformity than those of the jet mechanism. Therefore, in order to attain a high degree of resolution this mechanism should be prevented.

  9. Time-resolved experiments in the frequency domain using synchrotron radiation (invited)

    Science.gov (United States)

    De Stasio, Gelsomina; Giusti, A. M.; Parasassi, T.; Ravagnan, G.; Sapora, O.

    1992-01-01

    PLASTIQUE is the only synchrotron radiation beam line in the world that performs time-resolved fluorescence experiments in frequency domain. These experiments are extremely valuable sources of information on the structure and the dynamics of molecules. This technique measures fluorescence lifetimes with picosecond resolution in the near UV spectral range. Such accurate measurements are rendered possible by taking phase and modulation data, and by the advantages of the cross-correlation technique. A successful experiment demonstrated the radiation damage induced by low doses of radiation on rabbit blood cell membranes.

  10. Laser-induced breakdown spectroscopy analysis of asbestos

    International Nuclear Information System (INIS)

    Caneve, L.; Colao, F.; Fabbri, F.; Fantoni, R.; Spizzichino, V.; Striber, J.

    2005-01-01

    Laser-induced breakdown spectroscopy was applied to test the possibility of detecting and identifying asbestos in different samples in view of the perspective at field operation without sample preparation which is peculiar to this technique. Several like-resin materials were first investigated by laser-induced breakdown spectroscopy, in order to find an asbestos container assuring safe laboratory operation during the material characterization aimed to identify indicators suitable for a quick identification on field. Successively, spectra of asbestos samples of both in serpentine and amphibole forms were measured and the variability in elemental composition was calculated from the emission spectra. Ratios of intensities of characteristic elements were tested as indicators for asbestos recognition. Laser-induced breakdown spectroscopy results were compared with those obtained by analyzing the same asbestos samples with a scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy, a good correlation was found for Mg/Si and Fe/Si, thus showing the capability of laser-induced breakdown spectroscopy as a diagnostic tool for this category of materials. In particular, it was demonstrated that the method based on two indicators derived from laser-induced breakdown spectroscopy intensity ratios allows to discriminate between asbestos and cements in single shot measurements suitable to field operation

  11. Time-resolved analysis of DNA-protein interactions in living cells by UV laser pulses.

    Science.gov (United States)

    Nebbioso, Angela; Benedetti, Rosaria; Conte, Mariarosaria; Carafa, Vincenzo; De Bellis, Floriana; Shaik, Jani; Matarese, Filomena; Della Ventura, Bartolomeo; Gesuele, Felice; Velotta, Raffaele; Martens, Joost H A; Stunnenberg, Hendrik G; Altucci, Carlo; Altucci, Lucia

    2017-09-15

    Interactions between DNA and proteins are mainly studied through chemical procedures involving bi-functional reagents, mostly formaldehyde. Chromatin immunoprecipitation is used to identify the binding between transcription factors (TFs) and chromatin, and to evaluate the occurrence and impact of histone/DNA modifications. The current bottleneck in probing DNA-protein interactions using these approaches is caused by the fact that chemical crosslinkers do not discriminate direct and indirect bindings or short-lived chromatin occupancy. Here, we describe a novel application of UV laser-induced (L-) crosslinking and demonstrate that a combination of chemical and L-crosslinking is able to distinguish between direct and indirect DNA-protein interactions in a small number of living cells. The spatial and temporal dynamics of TF bindings to chromatin and their role in gene expression regulation may thus be assessed. The combination of chemical and L-crosslinking offers an exciting and unprecedented tool for biomedical applications.

  12. UV laser induced photochemistry of nitrobenzene and nitrotoluene isomers

    International Nuclear Information System (INIS)

    Kosmidis, C.; Clark, A.; Deas, R.M.; Ledingham, K.W.D.; Marshall, A.; Singhal, R.P.

    1995-01-01

    The photofragmentation of nitrobenzene and the isomers of nitrotoluene in the gas phase are studied in the wavelength region 210-270 nm using a pulsed UV laser in conjunction with a time of flight mass spectrometer. Laser induced mass spectra are analysed and compared with those produced by the electron impact (EI) technique. The generation of the observed fragment ions is explained by invoking different fragmentation pathways followed by these molecules. Observed differences in the mass spectra of the o-, m-, and p-nitrotoluene isomers are discussed as a possible way for a laser based method for their identification. (author)

  13. Laser-induced stresses versus mechanical stress power measurements during laser ablation of solids

    International Nuclear Information System (INIS)

    Shannon, M.A.; Russo, R.E.

    1995-01-01

    Laser-induced stresses resulting from high-power laser-material interactions have been studied extensively. However, the rate of change in mechanical energy, or stress power, due to laser-induced stresses has only recently been investigated. An unanswered question for monitoring laser-material interactions in the far-field is whether stress power differs from stresses measured, particularly with respect to laser-energy coupling to a solid target. This letter shows experimental acoustic data which demonstrate that stress power measured in the far field of the target shows changes in laser-energy coupling, whereas the stresses measured do not. For the ambient medium above the target, stress power and stress together reflect changes in laser-energy coupling. copyright 1995 American Institute of Physics

  14. Kinetics of the reaction F+NO+M->FNO+M studied by pulse radiolysis combined with time-resolved IR and UV spectroscopy

    DEFF Research Database (Denmark)

    Pagsberg, Palle Bjørn; Sillesen, A.; Jodkowski, J.T.

    1996-01-01

    The title reaction was initiated by pulse radiolysis of SF6/NO gas mixtures, and the formation of FNO was studied by time-resolved IR and UV spectroscopy. At SF6 pressures of 10-320 mbar at 298 K, the formation of FNO was studied by infrared diode laser spectroscopy at 1857.324 cm(-1). Comparative...

  15. New techniques of time-resolved infrared and Raman spectroscopy using ultrashort laser pulses

    International Nuclear Information System (INIS)

    Laubereau, A.

    1986-01-01

    Considerable progress has been made in recent years in the field of spectroscopic applications of ultrashort laser pulses. This paper examines two approaches toward studying ultrafast relaxation processes in condensed matter: an IR technique which complements coherent Raman scattering; and a Fourier Raman method with high frequency resolution. The time domain IR spectroscopy technique has been applied to various vibration-rotation transitions of pure HCl gas and in mixtures with Ar buffer gas. The advantage of the time domain measurements instead of frequency spectroscopy is readily visualized when one recalls that a frequency resolution of 10 -3 cm -1 corresponds to time observations over 10 -8 , which are readily feasible. As a first demonstration of the FT-Raman technique the author presents experimental data on the Q-branch of the v 1 -vibrational mode of methane. An example for the experimental data obtained approximately 2 mm behind the nozzle is presented; the coherent anti-Stokes Raman signal is plotted versus delay time. A complicated beating structure and the decay of the signal envelope are readily seen. The desired spectroscopic information is obtained by numerical Fourier transformation of the experimental points presented

  16. Single-Particle Soot Photometer (SP2) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, Arthur [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-02-01

    The SP2 is an instrument that measures, in situ, the time-dependent scattering and incandescence signals produced by individual BC-containing particles as they travel through a continuous-wave laser beam. Any particle traversing the laser beam will scatter light, and the BC component of a BC-containing particle will absorb some of the laser energy until its temperature is raised to the point at which it incandesces (hereafter we adopt the standard terminology of the SP2 community and denote any substance determined by the SP2 to be BC as refractory black carbon (rBC)). The amplitude of the rBC incandescence signal is related to the amount of refractory material contained in the illuminated particle. By binning the individual incandescence signals per unit sample volume, the mass concentration [ng/m3] of rBC can be derived. By binning the individual signals by volume equivalent diameter the size distribution (dN/dlogDVED) per unit time can be derived. The rBC mass loading per unit time and the rBC size distribution unit time are the core data products produced by the SP2. Additionally, the scattering channel can be used to provide information on the rBC particle population-based mixing states within ambient aerosols. However, this data product is produced on a requested-basis since additional detailed analysis and QC/QA must be conducted.

  17. Characterization of laser-induced ignition of biogas-air mixtures

    International Nuclear Information System (INIS)

    Forsich, Christian; Lackner, Maximilian; Winter, Franz; Kopecek, Herbert; Wintner, Ernst

    2004-01-01

    Fuel-rich to fuel-lean biogas-air mixtures were ignited by a Nd:YAG laser at initial pressures of up to 3 MPa and compared to the ignition of methane-air mixtures. The investigations were performed in a constant volume vessel heatable up to 473 K. An InGaAsSb/AlGaAsSb quantum well ridge diode laser operating at 2.55 μm was used to track the generation of water in the vicinity of the laser spark in a semi-quantitative manner. Additionally, the flame emissions during the ignition process were recorded and a gas inhomogeneity index was deduced. Laser-induced ignition and its accompanying effects could be characterized on a time scale spanning four orders of magnitude. The presence of CO 2 in the biogas reduces the burning velocity. The flame emissions result in a much higher intensity for methane than it was the case during biogas ignition. This knowledge concludes that engines fuelled with biogas ultimately affect the performance of the process in a different way than with methane. Methane-air mixtures can be utilized in internal combustion engines with a higher air-fuel ratio than biogas. Comparing failed laser-induced ignition of methane-air and biogas-air mixtures similar results were obtained. The three parameters water absorbance, flame emission and the gas inhomogeneity index constitute a suitable tool for judging the quality of laser-induced ignition of hydrocarbon-air mixtures at elevated pressures and temperatures as encountered in internal combustion engines

  18. Driving force behind adsorption-induced protein unfolding: a time-resolved X-ray reflectivity study on lysozyme adsorbed at an air/water interface.

    Science.gov (United States)

    Yano, Yohko F; Uruga, Tomoya; Tanida, Hajime; Toyokawa, Hidenori; Terada, Yasuko; Takagaki, Masafumi; Yamada, Hironari

    2009-01-06

    Time-resolved X-ray reflectivity measurements for lysozyme (LSZ) adsorbed at an air/water interface were performed to study the mechanism of adsorption-induced protein unfolding. The time dependence of the density profile at the air/water interface revealed that the molecular conformation changed significantly during adsorption. Taking into account previous work using Fourier transform infrared (FTIR) spectroscopy, we propose that the LSZ molecules initially adsorbed on the air/water interface have a flat unfolded structure, forming antiparallel beta-sheets as a result of hydrophobic interactions with the gas phase. In contrast, as adsorption continues, a second layer forms in which the molecules have a very loose structure having random coils as a result of hydrophilic interactions with the hydrophilic groups that protrude from the first layer.

  19. Time-resolved fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gustavsson, Thomas; Mialocq, Jean-Claude

    2007-01-01

    This article addresses the evolution in time of light emitted by a molecular system after a brief photo-excitation. The authors first describe fluorescence from a photo-physical point of view and discuss the characterization of the excited state. Then, they explain some basic notions related to fluorescence characterization (lifetime and decays, quantum efficiency, so on). They present the different experimental methods and techniques currently used to study time-resolved fluorescence. They discuss basic notions of time resolution and spectral reconstruction. They briefly present some conventional methods: intensified Ccd cameras, photo-multipliers and photodiodes associated with a fast oscilloscope, and phase modulation. Other methods and techniques are more precisely presented: time-correlated single photon counting (principle, examples, and fluorescence lifetime imagery), streak camera (principle, examples), and optical methods like the Kerr optical effect (principle and examples) and fluorescence up-conversion (principle and theoretical considerations, examples of application)

  20. Cascade generation in Al laser induced plasma

    Science.gov (United States)

    Nagli, Lev; Gaft, Michael; Raichlin, Yosef; Gornushkin, Igor

    2018-05-01

    We found cascade IR generation in Al laser induced plasma. This generation includes doublet transitions 3s 25s 2S1/2 → 3s24p 2P1/2,3/2 → 3s24s 2S1/2; corresponding to strong lines at 2110 and 2117 nm, and much weaker lines at 1312-1315 nm. The 3s25s2S 1/2 starting IR generation level is directly pumped from the 3s23p 2P3/2 ground level. The starting level for UV generation at 396.2 nm (transitions 3s24s 2S1/2 → 4p 2P3/2) is populated due to the fast collisional processes in the plasma plume. These differences led to different time and special dependences on the lasing in the IR and UV spectral range within the aluminum laser induced plasma.

  1. Photodetection-induced relative timing jitter in synchronized time-lens source for coherent Raman scattering microscopy

    Directory of Open Access Journals (Sweden)

    Jiaqi Wang

    2017-09-01

    Full Text Available Synchronized time-lens source is a novel method to generate synchronized optical pulses to mode-locked lasers, and has found widespread applications in coherent Raman scattering microscopy. Relative timing jitter between the mode-locked laser and the synchronized time-lens source is a key parameter for evaluating the synchronization performance of such synchronized laser systems. However, the origins of the relative timing jitter in such systems are not fully determined, which in turn prevents the experimental efforts to optimize the synchronization performance. Here, we demonstrate, through theoretical modeling and numerical simulation, that the photodetection could be one physical origin of the relative timing jitter. Comparison with relative timing jitter due to the intrinsic timing jitter of the mode-locked laser is also demonstrated, revealing different qualitative and quantitative behaviors. Based on the nature of this photodetection-induced timing jitter, we further propose several strategies to reduce the relative timing jitter. Our theoretical results will provide guidelines for optimizing synchronization performance in experiments.

  2. Laser-plasma interaction physics in the context of fusion

    International Nuclear Information System (INIS)

    Labaune, C.; Fuchs, J.; Depierreux, S.; Tikhonchuk, V.T.; Baldis, H.A.; Pesme, D.; Myatt, J.; Huller, S.; Laval, G.; Tikhonchuk, V.T.

    2000-01-01

    Of vital importance for Inertial Confinement Fusion (ICF) are the understanding and control of the nonlinear processes which can occur during the propagation of the laser pulses through the underdense plasma surrounding the fusion capsule. The control of parametric instabilities has been studied experimentally, using LULI six-beam laser facility, and also theoretically and numerically. New results based on the direct observation of plasma waves with Thomson scattering of a short wavelength probe beam have revealed the occurrence of the Langmuir decay instability. This secondary instability may play an important role in the saturation of stimulated Raman scattering. Another mechanism for inducing the growth of the scattering instabilities is the so-called 'plasma-induced incoherence'. Namely, recent theoretical studies have shown that the propagation of laser beams through the underdense plasma can increase their spatial and temporal incoherence. This plasma-induced beam smoothing can reduce the levels of parametric instabilities. One signature of this process is a large increase of the spectral width of the laser light after propagation through the plasma. Comparison of the experimental results with numerical propagation through the plasma. Comparison of the experimental results with numerical simulations shows an excellent agreement between the observed and calculated time-resolved spectra of the transmitted laser light at various laser intensities. (authors)

  3. Time-resolved terahertz spectroscopy of semiconductor nanostructures

    DEFF Research Database (Denmark)

    Porte, Henrik

    This thesis describes time-resolved terahertz spectroscopy measurements on various semiconductor nanostructures. The aim is to study the carrier dynamics in these nanostructures on a picosecond timescale. In a typical experiment carriers are excited with a visible or near-infrared pulse and by me......This thesis describes time-resolved terahertz spectroscopy measurements on various semiconductor nanostructures. The aim is to study the carrier dynamics in these nanostructures on a picosecond timescale. In a typical experiment carriers are excited with a visible or near-infrared pulse...... and by measuring the transmission of a terahertz probe pulse, the photoconductivity of the excited sample can be obtained. By changing the relative arrival time at the sample between the pump and the probe pulse, the photoconductivity dynamics can be studied on a picosecond timescale. The rst studied semiconductor...

  4. Evidence of liquid phase during laser-induced periodic surface structures formation induced by accumulative ultraviolet picosecond laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, T. T. D.; Petit, A.; Semmar, N., E-mail: nadjib.semmar@univ-orleans.fr [GREMI, UMR7344, CNRS/University of Orleans, 14 rue d' Issoudun, BP6744, 45067 Orleans Cedex 2 (France); Vayer, M. [ICMN, UMR 7374, CNRS/University of Orleans, 1b rue de la Ferollerie, CS 40059, 45071 Orleans Cedex (France); Sauldubois, A. [CME, UFR Sciences, University of Orleans, 1 Rue de Chartres, BP 6759, 45067 Orleans Cedex 2 (France)

    2015-11-09

    Laser-induced periodic surface structures (LIPSS) were formed on Cu/Si or Cu/glass thin films using Nd:YAG laser beam (40 ps, 10 Hz, and 30 mJ/cm{sup 2}). The study of ablation threshold is always achieved over melting when the variation of the number of pulses increases from 1 to 1000. But the incubation effect is leading to reduce the threshold of melting as increasing the number of laser pulse. Also, real time reflectivity signals exhibit typical behavior to stress the formation of a liquid phase during the laser-processing regime and helps to determine the threshold of soft ablation. Atomic Force Microscopy (AFM) analyses have shown the topology of the micro-crater containing regular spikes with different height. Transmission Electron Microscopy (TEM) allows finally to show three distinguished zones in the close region of isolated protrusions. The central zone is a typical crystallized area of few nanometers surrounded by a mixed poly-crystalline and amorphous area. Finally, in the region far from the protrusion zone, Cu film shows an amorphous structure. The real time reflectivity, AFM, and HR-TEM analyses evidence the formation of a liquid phase during the LIPSS formation in the picosecond regime.

  5. Time-resolved X-ray spectroscopies of chemical systems: New perspectives

    Directory of Open Access Journals (Sweden)

    Majed Chergui

    2016-05-01

    Full Text Available The past 3–5 years have witnessed a dramatic increase in the number of time-resolved X-ray spectroscopic studies, mainly driven by novel technical and methodological developments. The latter include (i the high repetition rate optical pump/X-ray probe studies, which have greatly boosted the signal-to-noise ratio for picosecond (ps X-ray absorption spectroscopy studies, while enabling ps X-ray emission spectroscopy (XES at synchrotrons; (ii the X-ray free electron lasers (XFELs are a game changer and have allowed the first femtosecond (fs XES and resonant inelastic X-ray scattering experiments to be carried out; (iii XFELs are also opening the road to the development of non-linear X-ray methods. In this perspective, I will mainly focus on the most recent technical developments and briefly address some examples of scientific questions that have been addressed thanks to them. I will look at the novel opportunities in the horizon.

  6. Laser-induced pressure-wave and barocaloric effect during flash diffusivity measurements

    International Nuclear Information System (INIS)

    Wang, Hsin; Porter, Wallace D.; Dinwiddie, Ralph Barton

    2017-01-01

    We report laser-induced pressure-wave and barocaloric effect captured by an infrared detector during thermal diffusivity measurements. Very fast (< 1 ms) and negative transients during laser flash measurements were captured by the infrared detector on thin, high thermal conductivity samples. Standard thermal diffusivity analysis only focuses the longer time scale thermal transient measured from the back surface due to thermal conduction. These negative spikes are filtered out and ignored as noise or anomaly from instrument. This study confirmed that the initial negative signal was indeed a temperature drop induced by the laser pulse. The laser pulse induced instantaneous volume expansion and the associated cooling in the specimen can be explained by the barocaloric effect. The initial cooling (< 100 microsecond) is also known as thermoelastic effect in which a negative temperature change is generated when the material is elastically deformed by volume expansion. A subsequent temperature oscillation in the sample was observed and only lasted about one millisecond. The pressure-wave induced thermal signal was systematically studied and analyzed. In conclusion, the underlying physics of photon-mechanical-thermal energy conversions and the potential of using this signal to study barocaloric effects in solids are discussed.

  7. Laser-induced agglomeration of gold nanoparticles dispersed in a liquid

    Energy Technology Data Exchange (ETDEWEB)

    Serkov, A.A.; Shcherbina, M.E. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); The Federal State Educational Institution of Higher Professional Education, Moscow Institute of Physics and Technology (State University), Moscow (Russian Federation); Kuzmin, P.G., E-mail: qzzzma@gmail.com [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); Kirichenko, N.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); The Federal State Educational Institution of Higher Professional Education, Moscow Institute of Physics and Technology (State University), Moscow (Russian Federation)

    2015-05-01

    Highlights: • Pulsed laser irradiation of dense gold nanoparticles colloidal solution can result in their agglomeration. • Gas bubbles in-phase pulsation induced by laser radiation accounts for nanoparticles agglomeration. • Time evolution of the size distribution function proceeds in activation mode. • The electrostatic-like model of nanoparticles agglomeration is in good correspondence with the experimental data. - Abstract: Dynamics of gold nanoparticles (NPs) ensemble in dense aqueous solution under exposure to picosecond laser radiation is studied both experimentally and theoretically. Properties of NPs are examined by means of transmission electron microscopy, optical spectroscopy, and size-measuring disk centrifuge. Theoretical investigation of NPs ensemble behavior is based on the analytical model taking into account collisions and agglomeration of particles. It is shown that in case of dense NPs colloidal solutions (above 10{sup 14} particles per milliliter) the process of laser fragmentation typical for nanosecond laser exposure turns into laser-induced agglomeration which leads to formation of the particles with larger sizes. It is shown that there is a critical concentration of NPs: at higher concentrations agglomeration rate increases tremendously. The results of mathematical simulation are in compliance with experimental data.

  8. Metal surface nitriding by laser induced plasma

    Science.gov (United States)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  9. Correlation between grade of pearlite spheroidization and laser induced spectra

    Science.gov (United States)

    Yao, Shunchun; Dong, Meirong; Lu, Jidong; Li, Jun; Dong, Xuan

    2013-12-01

    Laser induced breakdown spectroscopy (LIBS) which is used traditionally as a spectrochemical analytical technique was employed to analyze the grade of pearlite spheroidization. Three 12Cr1MoV steel specimens with different grades of pearlite spheroidization were ablated to produce plasma by pulse laser at 266 nm. In order to determine the optimal temporal condition and plasma parameters for correlating the grade of pearlite spheroidization and laser induced spectra, a set of spectra at different delays were analyzed by the principal component analysis method. Then, the relationship between plasma temperature, intensity ratios of ionic to atomic lines and grade of pearlite spheroidization was studied. The analysis results show that the laser induced spectra of different grades of pearlite spheroidization can be readily identifiable by principal component analysis in the range of 271.941-289.672 nm with 1000 ns delay time. It is also found that a good agreement exists between the Fe ionic to atomic line ratios and the tensile strength, whereas there is no obvious difference in the plasma temperature. Therefore, LIBS may be applied not only as a spectrochemical analytical technique but also as a new way to estimate the grade of pearlite spheroidization.

  10. Time-dependent H-like and He-like Al lines produced by ultra-short pulse laser

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Takako; Kato, Masatoshi [National Inst. for Fusion Science, Nagoya (Japan); Shepherd, R; Young, B; More, R; Osterheld, Al

    1998-03-01

    We have performed numerical modeling of time-resolved x-ray spectra from thin foil targets heated by the LLNL Ultra-short pulse (USP) laser. The targets were aluminum foils of thickness ranging from 250 A to 1250 A, heated with 120 fsec pulses of 400 nm light from the USP laser. The laser energy was approximately 0.2 Joules, focused to a 3 micron spot size for a peak intensity near 2 x 10{sup 19} W/cm{sup 2}. Ly{alpha} and He{alpha} lines were recorded using a 900 fsec x-ray streak camera. We calculate the effective ionization, recombination and emission rate coefficients including density effects for H-like and He-like aluminum ions using a collisional radiative model. We calculate time-dependent ion abundances using these effective ionization and recombination rate coefficients. The time-dependent electron temperature and density used in the calculation are based on an analytical model for the hydrodynamic expansion of the target foils. During the laser pulse the target is ionized. After the laser heating stops, the plasma begins to recombine. Using the calculated time dependent ion abundances and the effective emission rate coefficients, we calculate the time dependent Ly{alpha} and He{alpha} lines. The calculations reproduce the main qualitative features of the experimental spectra. (author)

  11. Reduction of Fermi level pinning and recombination at polycrystalline CdTe surfaces by laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Simonds, Brian J. [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Kheraj, Vipul [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007 (India); Palekis, Vasilios; Ferekides, Christos [Electrical Engineering, University of South Florida, Tampa, Florida 33620 (United States); Scarpulla, Michael A., E-mail: scarpulla@eng.utah.edu [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-06-14

    Laser processing of polycrystalline CdTe is a promising approach that could potentially increase module manufacturing throughput while reducing capital expenditure costs. For these benefits to be realized, the basic effects of laser irradiation on CdTe must be ascertained. In this study, we utilize surface photovoltage spectroscopy (SPS) to investigate the changes to the electronic properties of the surface of polycrystalline CdTe solar cell stacks induced by continuous-wave laser annealing. The experimental data explained within a model consisting of two space charge regions, one at the CdTe/air interface and one at the CdTe/CdS junction, are used to interpret our SPS results. The frequency dependence and phase spectra of the SPS signal are also discussed. To support the SPS findings, low-temperature spectrally-resolved photoluminescence and time-resolved photoluminescence were also measured. The data show that a modest laser treatment of 250 W/cm{sup 2} with a dwell time of 20 s is sufficient to reduce the effects of Fermi level pinning at the surface due to surface defects.

  12. Kinetics and branching ratios of the reactions NH2+NO2->N2O+H2O and NH2+NO2->H2NO+NO studied by pulse radiolysis combined with time-resolved infrared diode laser spectroscopy

    DEFF Research Database (Denmark)

    Meunier, H.; Pagsberg, Palle Bjørn; Sillesen, A.

    1996-01-01

    studied by monitoring the decay of NH2 and the simultaneous formation of N2O and NO by time-resolved infrared diode laser spectroscopy. The decay rate of NH2 was studied as a function of NO2 concentration to obtain an overall rate constant k(NH2 + NO2) = (1.35 +/- 0.15) X 10(-11) molecule(-1) cm(3) s(-1...

  13. Spatial-Resolved Measurement and Analysis of Extreme-Ultraviolet Emission Spectra from Laser-Produced Al Plasmas

    International Nuclear Information System (INIS)

    Cao Shi-Quan; Su Mao-Gen; Sun Dui-Xiong; Min Qi; Dong Chen-Zhong

    2016-01-01

    Extreme ultraviolet emission from laser-produced Al plasma is experimentally and theoretically investigated. Spatial-evolution emission spectra are measured by using the spatio-temporally resolved laser produced plasma technique. Based on the assumptions of a normalized Boltzmann distribution among the excited states and a steady-state collisional-radiative model, we succeed in reproducing the spectra at different detection positions, which are in good agreement with experiments. The decay curves about the electron temperature and electron density, as well as the fractions of individual Al ions and average ionization stage with increasing the detection distance are obtained by comparison with the experimental measurements. These parameters are critical points for deeply understanding the expanding and cooling of laser produced plasmas in vacuum. (paper)

  14. Faraday cup measurements of a laser-induced plasma for a laser-proton acceleration

    International Nuclear Information System (INIS)

    Park, Seong Hee; Jeong, Young Uk; Lee, Ki Tae

    2006-01-01

    Experiments for the generation of laser-induced protons were performed in collaboration with Advanced Photonics Research Institute (APRI). An intensity of 3 X 10 18 W/cm 2 was delivered to a 17-μm Al target, and the Faraday Cup signals of the charged particles generated by the laser-plasma interaction were measured. In this paper, we discuss the first experimental results of laser-induced proton generation using the APRI laser and report on the feasibility of current measurement for charged-particles when using a Faraday cup.

  15. Alignment of symmetric top molecules by short laser pulses

    DEFF Research Database (Denmark)

    Hamilton, Edward; Seideman, Tamar; Ejdrup, Tine

    2005-01-01

    -resolved photofragment imaging. Using methyliodide and tert-butyliodide as examples, we calculate and measure the alignment dynamics, focusing on the temporal structure and intensity of the revival patterns, including their dependence on the pulse duration, and their behavior at long times, where centrifugal distortion......Nonadiabatic alignment of symmetric top molecules induced by a linearly polarized, moderately intense picosecond laser pulse is studied theoretically and experimentally. Our studies are based on the combination of a nonperturbative solution of the Schrodinger equation with femtosecond time...

  16. Computational fluid-dynamic model of laser-induced breakdown in air

    International Nuclear Information System (INIS)

    Dors, Ivan G.; Parigger, Christian G.

    2003-01-01

    Temperature and pressure profiles are computed by the use of a two-dimensional, axially symmetric, time-accurate computational fluid-dynamic model for nominal 10-ns optical breakdown laser pulses. The computational model includes a kinetics mechanism that implements plasma equilibrium kinetics in ionized regions and nonequilibrium, multistep, finite-rate reactions in nonionized regions. Fluid-physics phenomena following laser-induced breakdown are recorded with high-speed shadowgraph techniques. The predicted fluid phenomena are shown by direct comparison with experimental records to agree with the flow patterns that are characteristic of laser spark decay

  17. Laser-induced nuclear physics and applications

    International Nuclear Information System (INIS)

    Ledingham, K.W.D.; Singhal, R.P.; McKenna, P.; Spencer, I.

    2002-01-01

    With a 1 ps pulse laser at 1 μm wavelength, He gas is ionised at about 3.10 14 W.cm -2 . As the intensity increases, the inert gases become multiple ionised and between 10 18 and 10 19 W.cm -2 photon induced nuclear reactions are energetically possible. Close to 10 21 W.cm -2 pion production can take place. At the very high intensities of 10 28 W.cm -2 , it can be shown that electron-positron pairs can be created from the vacuum. The authors review the applications of high intensity focused laser beams in particle acceleration, laser-induced fission and laser production of protons and neutrons. Exciting new phenomena are expected at intensities higher than 10 22 W.cm -2 , -) the oscillating electric field can affect directly the protons in exactly the same way as the electrons in the plasma, -) fusion reactions by direct laser acceleration of ions. (A.C.)

  18. Time and spatially resolved LIF of OH in a plasma filament in atmospheric pressure He-H2O

    International Nuclear Information System (INIS)

    Verreycken, T; Van der Horst, R M; Baede, A H F M; Van Veldhuizen, E M; Bruggeman, P J

    2012-01-01

    The production of OH in a nanosecond pulsed filamentary discharge generated in pin-pin geometry in a He-H 2 O mixture is studied by time and spatially resolved laser-induced fluorescence. Apart from the OH density the gas temperature and the electron density are also measured. Depending on the applied voltage the discharge is in a different mode. The maximum electron densities in the low- (1.3 kV) and high-density (5 kV) modes are 2 × 10 21 m -3 and 7 × 10 22 m -3 , respectively. The gas temperature in both modes does not exceed 600 K. In the low-density mode the maximum OH density is at the centre of the discharge filament, while in the high-density mode the largest OH density is observed on the edge of the discharge. A chemical model is used to obtain an estimate of the absolute OH density. The chemical model also shows that charge exchange and dissociative recombination can explain the production of OH in the case of the high-density mode. (paper)

  19. IN-SITU Optical Diagnostics Of Diesel Spray Injection And Combustion For Engine-Like Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bougie, B.; Tulej, M.; Dreier, T.; Gerber, T.

    2004-03-01

    A combination of shadowgraphy, laser elastic scattering, laser-induced incandescence and chemiluminescence imaging was conducted to characterize the propagation, vaporization and soot formation due to combustion of Diesel fuel injection into a hot (550-850 K), high pressure (4-6 MPa) gaseous environment as provided by the PSI high temperature pressure vessel (HTDZ). (author)

  20. Physical properties of hydrated tissue determined by surface interferometry of laser-induced thermoelastic deformation

    Science.gov (United States)

    Dark, Marta L.; Perelman, Lev T.; Itzkan, Irving; Schaffer, Jonathan L.; Feld, Michael S.

    2000-02-01

    Knee meniscus is a hydrated tissue; it is a fibrocartilage of the knee joint composed primarily of water. We present results of interferometric surface monitoring by which we measure physical properties of human knee meniscal cartilage. The physical response of biological tissue to a short laser pulse is primarily thermomechanical. When the pulse is shorter than characteristic times (thermal diffusion time and acoustic relaxation time) stresses build and propagate as acoustic waves in the tissue. The tissue responds to the laser-induced stress by thermoelastic expansion. Solving the thermoelastic wave equation numerically predicts the correct laser-induced expansion. By comparing theory with experimental data, we can obtain the longitudinal speed of sound, the effective optical penetration depth and the Grüneisen coefficient. This study yields information about the laser-tissue interaction and determines properties of the meniscus samples that could be used as diagnostic parameters.