WorldWideScience

Sample records for time-of-flight powder diffraction

  1. Incident spectrum determination for time-of-flight neutron powder diffraction data analysis

    International Nuclear Information System (INIS)

    Hodges, J. P.

    1998-01-01

    Accurate characterization of the incident neutron spectrum is an important requirement for precise Rietveld analysis of time-of-flight powder neutron diffraction data. Without an accurate incident spectrum the calculated model for the measured relative intensities of individual Bragg reflections will possess systematic errors. We describe a method for obtaining an accurate numerical incident spectrum using data from a transmitted beam monitor

  2. Proceedings of the 1986 workshop on advanced time-of-flight neutron powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, A.C.; Smith, K. (comps.)

    1986-09-01

    This report contains abstracts of talks and summaries of discussions from a small workshop held to discuss the future of time-of-flight neutron powder diffraction and its implementation at the Los Alamos Neutron Scattering Center. 47 refs., 3 figs.

  3. Proceedings of the 1986 workshop on advanced time-of-flight neutron powder diffraction

    International Nuclear Information System (INIS)

    Lawson, A.C.; Smith, K.

    1986-09-01

    This report contains abstracts of talks and summaries of discussions from a small workshop held to discuss the future of time-of-flight neutron powder diffraction and its implementation at the Los Alamos Neutron Scattering Center. 47 refs., 3 figs

  4. Rietveld refinement with time-of-flight powder diffraction data from pulsed neutron sources

    International Nuclear Information System (INIS)

    David, W.I.F.; Jorgensen, J.D.

    1990-10-01

    The recent development of accelerator-based pulsed neutron sources has led to the widespread use of the time-of-flight technique for neutron powder diffraction. The properties of the pulsed source make possible unusually high resolution over a wide range of d spacings, high count rates, and the ability to collect complete data at fixed scattering angles. The peak shape and other instrument characteristics can be accurately modelled, which make Rietveld refinement possible for complex structures. In this paper we briefly review the development of the Rietveld method for time-of-flight diffraction data from pulsed neutron sources and discuss the latest developments in high resolution instrumentation and advanced Rietveld analysis methods. 50 refs., 12 figs., 14 tabs

  5. The IPNS rietveld analysis software package for TOF [time-of-flight] powder diffraction data: Recent developments

    International Nuclear Information System (INIS)

    Rotella, F.J.; Richardson, J.W. Jr.

    1987-01-01

    A system of FORTRAN programs for the analysis of time-of-flight (TOF) neutron powder diffraction data via the Rietveld method at IPNS has been modified recently, making it possible to analyze data that exhibit diffraction maxima broadened due to anisotropic strain and that can be modeled by individual atomic anharmonic thermal vibrations. The observation of noncrystalline scattering in data from some powder samples has led to the development of software to fit such scattering by a function related to a radial distribution function through Fourier-filtering techniques. The ''user friendliness'' of the IPNS Rietveld package has been enhanced by the development of ''RIETVELD,'' a menu-based VAX/VMS command language routine for interactive file manipulation and program execution

  6. Crystal structure relation between tetragonal and orthorhombic CsAlD{sub 4}: DFT and time-of-flight neutron powder diffraction studies

    Energy Technology Data Exchange (ETDEWEB)

    Bernert, Thomas; Krech, Daniel; Felderhoff, Michael; Weidenthaler, Claudia [Department of Heterogeneous Catalysis, Max-Planck-Institut fuer Kohlenforschung, Muelheim/Ruhr (Germany); Kockelmann, Winfried [Rutherford Appleton Laboratory, Harwell Oxford, Didcot (United Kingdom); Frankcombe, Terry J. [Research School of Chemistry, The Australian National University, Canberra, ACT (Australia); School of Physical, Environmental and Mathematic Sciences, The University of New South Wales, Canberra, ACT (Australia)

    2015-11-15

    The crystal structures of orthorhombic and tetragonal CsAlD{sub 4} were refined from time-of-flight neutron powder diffraction data starting from atomic positions predicted from DFT calculations. The earlier proposed crystal structure of orthorhombic CsAlH{sub 4} is confirmed. For tetragonal CsAlH{sub 4}, DFT calculations predicted a crystal structure in I4{sub 1}/amd as potential minimum structure, while from neutron diffraction studies of CsAlD{sub 4} best refinement is obtained for a disordered structure in the space group I4{sub 1}/a, with a = 5.67231(9) Aa, c = 14.2823(5) Aa. While the caesium atoms are located on the Wyckoff position 4b and aluminium at Wyckoff position 4a, there are two distinct deuterium positions at the Wyckoff position 16f with occupancies of 50 % each. From this structure, the previously reported phase transition between the orthorhombic and tetragonal polymorphs could be explained. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Time of flight Laue fiber diffraction studies of perdeuterated DNA

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, V.T.; Whalley, M.A.; Mahendrasingam, A.; Fuller, W. [Keele Univ. (United Kingdom)] [and others

    1994-12-31

    The diffractometer SXD at the Rutherford Appleton Laboratory ISIS pulsed neutron source has been used to record high resolution time-of-flight Laue fiber diffraction data from DNA. These experiments, which are the first of their kind, were undertaken using fibers of DNA in the A conformation and prepared using deuterated DNA in order to minimis incoherent background scattering. These studies complement previous experiments on instrument D19 at the Institute Laue Langevin using monochromatic neutrons. Sample preparation involved drawing large numbers of these deuterated DNA fibers and mounting them in a parallel array. The strategy of data collection is discussed in terms of camera design, sample environment and data collection. The methods used to correct the recorded time-of-flight data and map it into the final reciprocal space fiber diffraction dataset are also discussed. Difference Fourier maps showing the distribution of water around A-DNA calculated on the basis of these data are compared with results obtained using data recorded from hydrogenated A-DNA on D19. Since the methods used for sample preparation, data collection and data processing are fundamentally different for the monochromatic and Laue techniques, the results of these experiments also afford a valuable opportunity to independently test the data reduction and analysis techniques used in the two methods.

  8. Ultrasonic testing using time of flight diffraction technique (TOFD)

    International Nuclear Information System (INIS)

    Khurram Shahzad; Ahmad Mirza Safeer Ahmad; Muhammad Asif Khan

    2009-04-01

    This paper describes the ultrasonic testing using Time Flight Diffraction (TOFD) Technique for welded samples having different types and sizes of defects. TOFD is a computerized ultrasonic system, able to scan, store and evaluate indications in terms of location, through thickness and length in a more easy and convenient. Time of Flight Diffraction Technique (TOFD) is more fast and easy technique for ultrasonic testing as we can examine a weld i a single scan along the length of the weld with two probes known as D-scan. It shows the image of the complete weld with the defect information. The examinations were performed on carbon steel samples used for ultrasonic testing using 70 degree probes. The images for different type of defects were obtained. (author)

  9. Diffraction. Powder, amorphous, liquid

    International Nuclear Information System (INIS)

    Sosnowska, I.M.

    1999-01-01

    Neutron powder diffraction is a unique tool to observe all possible diffraction effects appearing in crystal. High-resolution neutron diffractometers have to be used in this study. Analysis of the magnetic structure of polycrystalline materials requires the use of high-resolution neutron diffraction in the range of large interplanar distances. As distinguished from the double axis diffractometers (DAS), which show high resolution only at small interplanar distances, TOF (time-of-flight) diffractometry offers the best resolution at large interplanar distances. (K.A.)

  10. Time-of-flight diffraction at pulsed neutron sources: An introduction to the symposium

    International Nuclear Information System (INIS)

    Jorgensen, J.D.

    1994-01-01

    In the 25 years since the first low-power demonstration experiments, pulsed neutron sources have become as productive as reactor sources for many types of diffraction experiments. The pulsed neutron sources presently operating in the United States, England, and Japan offer state of the art instruments for powder and single crystal diffraction, small angle scattering, and such specialized techniques as grazing-incidence neutron reflection, as well as quasielastic and inelastic scattering. In this symposium, speakers review the latest advances in diffraction instrumentation for pulsed neutron sources and give examples of some of the important science presently being done. In this introduction to the symposium, I briefly define the basic principles of pulsed neutron sources, review their development, comment in general terms on the development of time-of-flight diffraction instrumentation for these sources, and project how this field will develop in the next ten years

  11. Time-of-flight pulsed neutron diffraction of molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Y; Misawa, M; Suzuki, K [Tohoku Univ., Sendai (Japan). Research Inst. for Iron, Steel and Other Metals

    1975-06-01

    In this work, the pulsed neutron diffraction of molten alkali metal nitrate and bismuth trihalide was measured by the time-of-flight method. An electron linear accelerator was used as the pulsed neutron source. All the measurements were carried out with the T-O-F neutron diffractometer installed on the 300 MeV electron lineac. Molten NaNO/sub 3/ and RbNO/sub 3/ were adopted as the samples for alkali metal nitrate. The measurement is in progress for KNO/sub 3/ and LiNO/sub 3/. As the first step of the study on bismuth-bismuth trihalide system, the temperature dependence of structure factors was observed for BiCl/sub 3/, BiBr/sub 3/ and BiI/sub 3/ in the liquid state. The structure factors Sm(Q) for molten NaNO/sub 3/ at 340/sup 0/C and RbNO/sub 3/ at 350/sup 0/C were obtained, and the form factor F/sub 1/(Q) for single NO/sub 3//sup -/ radical with equilateral triangle structure was calculated. In case of molten NaNO/sub 3/, the first peak of Sm(Q) is simply smooth and a small hump can be observed in the neighbourhood of the first minimum Q position. The first peak of Sm(Q) for molten RbNO/sub 3/ is divided into two peaks, whereas a hump at the first minimum becomes big, and shifts to the low Q side of the second peak. The size of the NO/sub 3//sup -/ radical in molten NaNO/sub 3/ is a little smaller than that in molten RbNO/sub 3/. The values of the bond length in the NO/sub 3//sup -/ radical are summarized for crystal state and liquid state. The temperature dependence of the structure factor S(Q) was observed for BiCl/sub 3/, BiBr/sub 3/ and BiI/sub 3/, and shown in a figure.

  12. Powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Hart, M.

    1995-12-31

    the importance of x-ray powder diffraction as an analytical tool for phase identification of materials was first pointed out by Debye and Scherrer in Germany and, quite independently, by Hull in the US. Three distinct periods of evolution lead to ubiquitous application in many fields of science and technology. In the first period, until the mid-1940`s, applications were and developed covering broad categories of materials including inorganic materials, minerals, ceramics, metals, alloys, organic materials and polymers. During this formative period, the concept of quantitative phase analysis was demonstrated. In the second period there followed the blossoming of technology and commercial instruments became widely used. The history is well summarized by Parrish and by Langford and Loueer. By 1980 there were probably 10,000 powder diffractometers in routine use, making it the most widely used of all x-ray crystallographic instruments. In the third, present, period data bases became firmly established and sophisticated pattern fitting and recognition software made many aspects of powder diffraction analysis routine. High resolution, tunable powder diffractometers were developed at sources of synchrotron radiation. The tunability of the spectrum made it possible to exploit all the subtleties of x-ray spectroscopy in diffraction experiments.

  13. Powder diffraction

    International Nuclear Information System (INIS)

    Hart, M.

    1995-01-01

    The importance of x-ray powder diffraction as an analytical tool for phase identification of materials was first pointed out by Debye and Scherrer in Germany and, quite independently, by Hull in the US. Three distinct periods of evolution lead to ubiquitous application in many fields of science and technology. In the first period, until the mid-1940's, applications were and developed covering broad categories of materials including inorganic materials, minerals, ceramics, metals, alloys, organic materials and polymers. During this formative period, the concept of quantitative phase analysis was demonstrated. In the second period there followed the blossoming of technology and commercial instruments became widely used. The history is well summarized by Parrish and by Langford and Loueer. By 1980 there were probably 10,000 powder diffractometers in routine use, making it the most widely used of all x-ray crystallographic instruments. In the third, present, period data bases became firmly established and sophisticated pattern fitting and recognition software made many aspects of powder diffraction analysis routine. High resolution, tunable powder diffractometers were developed at sources of synchrotron radiation. The tunability of the spectrum made it possible to exploit all the subtleties of x-ray spectroscopy in diffraction experiments

  14. ATLAS - analysis of time-of-flight diffraction data from liquid and amorphous samples

    International Nuclear Information System (INIS)

    Soper, A.K.; Howells, W.S.; Hannon, A.C.

    1989-05-01

    The purpose of this manual is to describe a package of data analysis routines which have been developed at the Rutherford Appleton Laboratory for the analysis of time-of-flight diffraction data from liquids, gases, and amorphous materials. There is no fundamental barrier to diffraction data being accurately analysed to structure factor or even pair correlation function within a very short time of the completion of the experiment. Section 1 describes the time-of-flight neutron diffraction experiment and looks at diffraction theory. Section 2 indicates the steps in data analysis of time-of-flight diffraction data and Section 3 gives details of how to run the procedures. (author)

  15. Visualization of time-of-flight neutron diffraction data

    International Nuclear Information System (INIS)

    Mikkelson, D.J.; Price, D.L.; Worlton, T.G.

    1995-01-01

    The glass, liquids and amorphous materials diffractometer (GLAD) is a new instrument at the intense pulsed neutron source (IPNS) at Argonne National Laboratory. The GLAD currently has 218 linear position sensitive detectors arranged in five banks. Raw data collected from the instrument are typically split into 1000-1500 angular groups each of which contains approximately 2000 time channels. In order to obtain a meaningful overview of such a large amount of data, an interactive system to view the data has been designed. The system was implemented in C using the graphical kernel system (GKS) for portability.The system treats data from each bank of detectors as a three-dimensional data set with detector number, position along detector and time of flight as the three coordinate axes. The software then slices the data parallel to any of the coordinate planes and displays the slices as images. This approach has helped with the detailed analysis of detector electronics, verification of instrument calibration and resolution determination. In addition, it has helped to identify low-level background signals and provided insight into the overall operation of the instrument. ((orig.))

  16. Time of flight diffraction technique and applications for retaining rings and turbine discs

    International Nuclear Information System (INIS)

    Ashwin, P.

    1990-01-01

    During recent times the term Time of Flight has become a popular phrase in ultrasonic terminology. It is true to say that since ultrasonic energy was first applied for NDE applications, we have used the time of flight to measure the material thickness and establish the presence of discontinuities in metals and other materials. However, as digital ultrasonic systems have evolved we have added new terminology to the field of nondestructive testing, such that phrases as Time of Flight are often misunderstood or over used. Conventional ultrasonic practice (meaning code based ultrasonic inspection) is in most reliant on the measurement of the reflected amplitude response to establish the presence and size of material discontinuities, where the time of flight is the measurement of the ultrasound as it travels to and from the reflector. This industry standard technique has on many occasions been questioned in terms of its value, especially during defect sizing applications. To address the known limitations of amplitude based sizing criteria, a new technique was developed referred to as Time Of Flight Diffraction -TOFD. Instead of using the amount of ultrasonic energy reflected by a discontinuity, TOFD relies on an aspect of ultrasonics that until more recently has been ignored or overlooked. This is the phenomena of diffracted ultrasonic energy, Using diffracted energy it is possible to more accurately measure the size of a defect. More recently the technique has been used for the detection of defects, where due to the imaging capabilities of the instrumentation used, TOFD has illustrated the presence of defects which could not be identified by other ultrasonic methods

  17. Time-of-Flight Three Dimensional Neutron Diffraction in Transmission Mode for Mapping Crystal Grain Structures

    DEFF Research Database (Denmark)

    Cereser, Alberto; Strobl, Markus; Hall, Stephen A.

    2017-01-01

    constituting the material. This article presents a new non-destructive 3D technique to study centimeter-sized bulk samples with a spatial resolution of hundred micrometers: time-of-flight three-dimensional neutron diffraction (ToF 3DND). Compared to existing analogous X-ray diffraction techniques, ToF 3DND......-of-flight neutron beamline. The technique was developed and tested with data collected at the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Complex (J-PARC) for an iron sample. We successfully reconstructed the shape of 108 grains and developed an indexing procedure...

  18. A time-of-flight spectrometer for neutron diffraction under high pressure or at high temperature

    International Nuclear Information System (INIS)

    Roult, G.; Buevoz, J.L.

    1975-01-01

    For high pressure neutron diffraction studies (40 kilobars) the sample is placed in a very thick cell. In order to allow the neutron beam to go through the cell loosing as little intensity as possible, the inner part is kept solid while the external part has some windows facing the incident and reflected beam. The window dimensions are small (a few millimeters wide and a few centimeters long). There are two alternatives: to have the window either in a perpendicular plane or in a plane parallel to the axis. In the first case a fixed wavelength spectrometer can be used but the sample is small and the contribution of the cell to the diffraction pattern is relatively great. In the second case samples can be something like ten times greater and the cell contribution can be eliminated but a fixed wavelength spectrometer cannot be used. Thus the time-of-flight method is very convenient. The second alternative was chosen

  19. Thermal diffuse scattering in time-of-flight neutron diffraction studied on SBN single crystals

    International Nuclear Information System (INIS)

    Prokert, F.; Savenko, B.N.; Balagurov, A.M.

    1994-01-01

    At time-of-flight (TOF) diffractometer D N-2, installed at the pulsed reactor IBR-2 in Dubna, Sr x Ba 1-x Nb 2 O 6 mixed single crystals (SBN-x) of different compositions (0.50 < x< 0.75) were investigated between 15 and 773 K. The diffraction patterns were found to be strongly influenced by the thermal diffuse scattering (TDS). The appearance of the TDS from the long wavelength acoustic models of vibration in single crystals is characterized by the ratio of the velocity of sound to the velocity of neutron. Due to the nature of the TOF Laue diffraction technique used on D N-2, the TDS around Bragg peaks has rather a complex profile. An understanding of the TDS close to Bragg peaks is essential in allowing the extraction of the diffuse scattering occurring at the diffuse ferroelectric phase transition in SBN crystals. 11 refs.; 9 figs.; 1 tab. (author)

  20. Measurement of residual strain in composites by means of time-of- flight neutron diffraction

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Majumdar, S.; Richardson, J.; Saigal, A.

    1993-01-01

    Neutron diffraction time-of-flight measurements using the Intense Pulsed Neutron Source at Argonne National Laboratory have been employed to study strain in various metal- and ceramic-matrix composites. For example, measurements carried out to 900 C on a composite composed of a titanium alloy matrix and silicon carbide fibers have been used to validate theoretical assumptions in the prediction of fabrication-induced residual stress. Sapphire reinforced nickel aluminide composites have also been studied. Studies of a high-temperature ceramic superconducting composite consisting of yttrium barium copper oxide and silver with various volume fractions of silver have also been carried out. The results of these studies have provided information on the effect of Ag content on interface bonding. In addition, ceramic-matrix composites with randomly dispersed ceramic whiskers with varying fiber content have been investigated

  1. Five years of testing using the simi-automated ultrasonic time of flight diffraction system

    International Nuclear Information System (INIS)

    Webber, S.A.

    2002-01-01

    This paper provides a brief description of the Time of Flight Diffraction (TOFD) test system and also describes a couple of case histories where the system has been successfully applied. The T.O.F.D. system has been contrasted with the conventional manual ultrasonic technique. Whilst the T.O.F.D. system has proven potential, and is without doubt a valuable tool that will continue to gain market share in the inspection industry, conventional manual ultrasonics still has its part to play and will survive for some time to come. One of the outstanding issues facing the T.O.F.D. systems is the question of acceptance testing which is still the predominant convention specified in most standards. Training for a T.O.F.D. system technician is particularly important and the author suggests there are more traps for the unwary than with the conventional manual ultrasonic systems. The overall judgement of the T.O.F.D. system is that it is a most welcome and powerful tool in the hands of the right operator and will do much to boost the prominence of Non-Destructive Testing

  2. Effects of gauge volume on pseudo-strain induced in strain measurement using time-of-flight neutron diffraction

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Harjo, Stefanus; Abe, Jun; Xu, Pingguang; Aizawa, Kazuya; Akita, Koichi

    2013-01-01

    Spurious or pseudo-strains observed in time-of-flight (TOF) neutron diffraction due to neutron attenuation, surface-effects and a strain distribution within the gauge volume were investigated. Experiments were carried out on annealed and bent ferritic steel bars to test these effects. The most representative position in the gauge volume corresponds to the neutron-weighted center of gravity (ncog), which takes into account variations in intensity within the gauge volume due to neutron attenuation and/or absence of material in the gauge volume. The average strain in the gauge volume was observed to be weighted towards the ncog position but following an increase in the size of the gauge volume the weighted average strain was changed because of the change in the ncog position when a strain gradient appeared within the gauge volume. On the other hand, typical pseudo-strains, which are well known, did appear in through-surface strain measurements when the gauge volume was incompletely filled by the sample. Tensile pseudo-strains due to the surface-effect increased near the sample surface and exhibited a similar trend regardless of the size of the gauge volume, while the pseudo-strains increased faster for the smaller gauge volume. Furthermore, a pseudo-strain due to a change in the ncog position was observed even when the gauge volume was perfectly filled in the sample, and it increased with an increase in the size of the gauge volume. These pseudo-strains measured were much larger than those simulated by the conventional modeling, whereas they were simulated by taking into account an incident neutron beam divergence additionally in the model. Therefore, the incident divergence of the incident neutron beam must be carefully designed to avoid pseudo-strains in time-of-flight neutron diffractometry

  3. Neutron Powder Diffraction in Sweden

    International Nuclear Information System (INIS)

    Tellgren, R.

    1986-01-01

    Neutron powder diffraction in Sweden has developed around the research reactor R2 in Studsvik. The article describes this facility and presents a historical review of research results obtained. It also gives some ideas of plans for future development

  4. The analysis of powder diffraction data

    International Nuclear Information System (INIS)

    David, W.I.F.; Harrison, W.T.A.

    1986-01-01

    The paper reviews neutron powder diffraction data analysis, with emphasis on the structural aspects of powder diffraction and the future possibilities afforded by the latest generation of very high resolution neutron and x-ray powder diffractometers. Traditional x-ray powder diffraction techniques are outlined. Structural studies by powder diffraction are discussed with respect to the Rietveld method, and a case study in the Rietveld refinement method and developments of the Rietveld method are described. Finally studies using high resolution powder diffraction at the Spallation Neutron Source, ISIS at the Rutherford Appleton Laboratory are summarized. (U.K.)

  5. Crack sizing by the time-of-flight diffraction method, in the light of recent international round-robin trials, (UKAEA, DDT and PISC II)

    International Nuclear Information System (INIS)

    Curtis, G.J.

    1987-01-01

    In 1980-81, Harwell developed a mini-computer controlled multi-probe defect detection and sizing system based on the ultrasonic time-of-flight/diffraction principle introduced by Silk. This system proved to be capable of fully automatic data collection from the PWR girth-weld simulation Plates 1 and 2 in the Defect Detection Trials of 1981-82. The speed of collection and subsequent analysis was such that a report on the defects found could be filed within 48 hours. The mode of operation adopted simulated minimum time of access to the defects, and was intended to define that dimension of a defect which has greatest significance, i.e. the through-thickness dimension. In 1984, for the PISC II Trial, the approach adopted changed to emphasize the three-dimensional location and sizing capabilities of the time-of-flight/diffraction method. Data collection and analysis became highly interactive and the mode of operation simulated NDE at the manufacturing stage of a pressure vessel. The purpose of this paper is to indicate the defect through-thickness sizing capability of TOFD achieved in the 1981-82 Defect Detection Trials and the defect mapping capability achieved in the 1984 PISC II Trial

  6. The different structural scales of the breast and their impact on time-of-flight and diffraction tomography

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lianjie [Los Alamos National Laboratory; Huthwaite, Peter [IMPERIAL COLLEGE LONDON; Simonetti, Francesco [IMPERIAL COLLEGE LONDON

    2010-02-11

    Ultrasound tomography is an attractive imaging method for the detection of breast cancer. The complex anatomy of the breast with its different spatial scales and material property contrasts make accurate reconstructions very challenging. This paper proposes a hybrid approach whereby Travel-of-Flight and Diffraction Tomography are combined together to achieve high-resolution and high-accuracy sound-speed reconstructions. The method is validated with several numerical phantoms.

  7. Profile analysis of neutron powder diffraction data at ISIS

    International Nuclear Information System (INIS)

    David, W.I.F.; Ibberson, R.M.; Matthewman, J.C.

    1992-05-01

    The aim of this manual is to document the current suite of time-of-flight neutron powder diffraction profile refinement programs available to ISIS users. Aspects of data collation and normalisation specific to the individual diffraction instruments are dealt with elsewhere. It will be assumed the user has produced a suitable data file (.DAT file) containing the profile data consisting of point by point values of the corrected diffraction profile across the pattern. The analysis of neutron powder diffraction data at ISIS by profile refinement utilises a suite of ''in-house'' written and supported programs based on the Cambridge Crystallography Subroutine Library (CCSL). A quick scan through the CCSL manual will give the user a general feel for the procedure to adopt in the use of the library and hence of the profile codes. The instructions documented in this handbook are complementary to those in the more specialist CCSL manual, and consequently go into no great detail regarding technical details of any of the CCSL routines. The programs may be run from each individual user account, for example [USER01], once the appropriate login procedure has been set-up by the instrument scientists. The programs are mostly activated by one line commands and only a basic knowledge of a VAX editor should be required; details can be found in the ''VAX primer'' available from Computer Support. (Author)

  8. Shock diffraction in alumina powder

    International Nuclear Information System (INIS)

    Venz, G.; Killen, P.D.; Page, N.W.

    1996-01-01

    In order to produce complex shaped components by dynamic compaction of ceramic powders detailed knowledge of their response under shock loading conditions is required. This work attempts to provide data on release effects and shock attenuation in 1 μm and 5 μm α-alumina powders which were compacted to between 85 % and 95 % of the solid phase density by the impact of high velocity steel projectiles. As in previous work, the powder was loaded into large cylindrical dies with horizontal marker layers of a contrasting coloured powder to provide a record of powder displacement in the recovered specimens. After recovery and infiltration with a thermosetting resin the specimens were sectioned and polished to reveal the structure formed by the passage of the projectile and shock wave. Results indicate that the shock pressures generated were of the order of 0.5 to 1.4 GPa and higher, with shock velocities and sound speeds in the ranges 650 to 800 m/s and 350 to 400 m/s respectively

  9. Uniting Electron Crystallography and Powder Diffraction

    CERN Document Server

    Shankland, Kenneth; Meshi, Louisa; Avilov, Anatoly; David, William

    2012-01-01

    The polycrystalline and nanocrystalline states play an increasingly important role in exploiting the properties of materials, encompassing applications as diverse as pharmaceuticals, catalysts, solar cells and energy storage. A knowledge of the three-dimensional atomic and molecular structure of materials is essential for understanding and controlling their properties, yet traditional single-crystal X-ray diffraction methods lose their power when only polycrystalline and nanocrystalline samples are available. It is here that powder diffraction and single-crystal electron diffraction techniques take over, substantially extending the range of applicability of the crystallographic principles of structure determination.  This volume, a collection of teaching contributions presented at the Crystallographic Course in Erice in 2011, clearly describes the fundamentals and the state-of-the-art of powder diffraction and electron diffraction methods in materials characterisation, encompassing a diverse range of discipl...

  10. Broadband and High Sensitive Time-of-Flight Diffraction Ultrasonic Transducers Based on PMNT/Epoxy 1–3 Piezoelectric Composite

    Directory of Open Access Journals (Sweden)

    Dongxu Liu

    2015-03-01

    Full Text Available 5–6 MHz PMNT/epoxy 1–3 composites were prepared by a modified dice-and-fill method. They exhibit excellent properties for ultrasonic transducer applications, such as ultrahigh thickness electromechanical coupling coefficient kt (85.7%, large piezoelectric coefficient d33 (1209 pC/N, and relatively low acoustic impedance Z (1.82 × 107 kg/(m2·s. Besides, two types of Time-of-Flight Diffraction (TOFD ultrasonic transducers have been designed, fabricated, and characterized, which have different matching layer schemes with the acoustic impedance of 4.8 and 5.7 × 106 kg/(m2·s, respectively. In the detection on a backwall of 12.7 mm polystyrene, the former exhibits higher detectivity, the relative pulse-echo sensitivity and −6 dB relative bandwidth are −21.93 dB and 102.7%, respectively, while the later exhibits broader bandwidth, the relative pulse-echo sensitivity and −6 dB relative bandwidth are −24.08 dB and 117.3%, respectively. These TOFD ultrasonic transducers based on PMNT/epoxy 1–3 composite exhibit considerably improved performance over the commercial PZT/epoxy 1–3 composite TOFD ultrasonic transducer.

  11. Advances in powder diffraction crystallography

    International Nuclear Information System (INIS)

    Magneli, A.

    1986-01-01

    This is the first conference to be arranged within the framework of an agreement on scientific exchange and co-operation between l Academie des Sciences de l Institut de France and the Royal Swedish Academy of Sciences. The responsibility for the scientific program of the conference has been shared between members of the two Academies. The contributions include glimpses of the historical background and broad reviews of the present status of development and of recent work in powder crystallography. Reports are given on a number of studies, basic as well as applied in character, currently conducted in the two countries in a large variety of fields. Prospects of further developments in the area are also presented

  12. Accurate Charge Densities from Powder Diffraction

    DEFF Research Database (Denmark)

    Bindzus, Niels; Wahlberg, Nanna; Becker, Jacob

    Synchrotron powder X-ray diffraction has in recent years advanced to a level, where it has become realistic to probe extremely subtle electronic features. Compared to single-crystal diffraction, it may be superior for simple, high-symmetry crystals owing to negligible extinction effects and minimal...... peak overlap. Additionally, it offers the opportunity for collecting data on a single scale. For charge densities studies, the critical task is to recover accurate and bias-free structure factors from the diffraction pattern. This is the focal point of the present study, scrutinizing the performance...

  13. Neutron Powder Diffraction and Constrained Refinement

    DEFF Research Database (Denmark)

    Pawley, G. S.; Mackenzie, Gordon A.; Dietrich, O. W.

    1977-01-01

    The first use of a new program, EDINP, is reported. This program allows the constrained refinement of molecules in a crystal structure with neutron diffraction powder data. The structures of p-C6F4Br2 and p-C6F4I2 are determined by packing considerations and then refined with EDINP. Refinement is...

  14. Rietveld analysis, powder diffraction and cement

    International Nuclear Information System (INIS)

    Peterson, V.

    2002-01-01

    Full text: Phase quantification of cement is essential in its industrial use, however many methods are inaccurate and/or time consuming. Powder diffraction is one of the more accurate techniques used for quantitative phase analysis of cement. There has been an increase in the use of Rietveld refinement and powder diffraction for the analysis and phase quantification of cement and its components in recent years. The complex nature of cement components, existence of solid solutions, polymorphic variation of phases and overlapping phase peaks in diffraction patterns makes phase quantification of cements by powder diffraction difficult. The main phase in cement is alite, a solid solution of tricalcium silicate. Tricalcium silicate has been found to exist in seven modifications in three crystal systems, including triclinic, monoclinic, and rhombohedral structures. Hence, phase quantification of cements using Rietveld methods usually involves the simultaneous modelling of several tricalcium silicate structures to fit the complex alite phase. An industry ordinary Portland cement, industry and standard clinker, and a synthetic tricalcium silicate were characterised using neutron, laboratory x-ray and synchrotron powder diffraction. Diffraction patterns were analysed using full-profile Rietveld refinement. This enabled comparison of x-ray, neutron and synchrotron data for phase quantification of the cement and examination of the tricalcium silicate. Excellent Rietveld fits were achieved, however the results showed that the quantitative phase analysis results differed for some phases in the same clinker sample between various data sources. This presentation will give a short introduction about cement components including polymorphism, followed by the presentation of some problems in phase quantification of cements and the role of Rietveld refinement in solving these problems. Copyright (2002) Australian X-ray Analytical Association Inc

  15. Time-resolved Neutron Powder Diffraction

    International Nuclear Information System (INIS)

    Pannetier, J.

    1986-01-01

    The use of a high-flux neutron source together with a large position sensitive detector (PSD) allows a powder diffraction pattern to be recorded at a time-scale of a few minutes so that crystalline systems under non-equilibrium conditions may now conveniently be investigated. This introduces a new dimension into powder diffraction (the time and transient phenomena like heterogeneous chemical reactions can now be easily studied. The instrumental parameters relevant for the design of such time-dependent experiments are briefly surveyed and the current limits of the method are discussed. The applications are illustrated by two kinds of experiment in the field of inorganic solid state chemistry: true kinetic studies of heterogeneous chemical reactions and thermodiffractometry experiments

  16. Powder Neutron Diffraction and Magnetic structures

    International Nuclear Information System (INIS)

    Vigneron, F.

    1986-01-01

    The determination of the magnetic structures of materials (ferromagnetic, antiferromagnetic, helimagnetic, .) can be achieved only by neutron diffraction. A general survey of the powder technique is given: 2-axis spectrometer and analysis of the magnetic data. For the REBe/sb13/ intermetallic compounds (RE = Rare Earth), commensurate and/or incommensurate magnetic structures are observed and discussed as a function of RE (Gd, Tb, Dy, Ho, Er)

  17. High Resolution Powder Diffraction and Structure Determination

    International Nuclear Information System (INIS)

    Cox, D. E.

    1999-01-01

    It is clear that high-resolution synchrotrons X-ray powder diffraction is a very powerful and convenient tool for material characterization and structure determination. Most investigations to date have been carried out under ambient conditions and have focused on structure solution and refinement. The application of high-resolution techniques to increasingly complex structures will certainly represent an important part of future studies, and it has been seen how ab initio solution of structures with perhaps 100 atoms in the asymmetric unit is within the realms of possibility. However, the ease with which temperature-dependence measurements can be made combined with improvements in the technology of position-sensitive detectors will undoubtedly stimulate precise in situ structural studies of phase transitions and related phenomena. One challenge in this area will be to develop high-resolution techniques for ultra-high pressure investigations in diamond anvil cells. This will require highly focused beams and very precise collimation in front of the cell down to dimensions of 50 (micro)m or less. Anomalous scattering offers many interesting possibilities as well. As a means of enhancing scattering contrast it has applications not only to the determination of cation distribution in mixed systems such as the superconducting oxides discussed in Section 9.5.3, but also to the location of specific cations in partially occupied sites, such as the extra-framework positions in zeolites, for example. Another possible application is to provide phasing information for ab initio structure solution. Finally, the precise determination of f as a function of energy through an absorption edge can provide useful information about cation oxidation states, particularly in conjunction with XANES data. In contrast to many experiments at a synchrotron facility, powder diffraction is a relatively simple and user-friendly technique, and most of the procedures and software for data analysis

  18. High resolution Neutron and Synchrotron Powder Diffraction

    International Nuclear Information System (INIS)

    Hewat, A.W.

    1986-01-01

    The use of high-resolution powder diffraction has grown rapidly in the past years, with the development of Rietveld (1967) methods of data analysis and new high-resolution diffractometers and multidetectors. The number of publications in this area has increased from a handful per year until 1973 to 150 per year in 1984, with a ten-year total of over 1000. These papers cover a wide area of solid state-chemistry, physics and materials science, and have been grouped under 20 subject headings, ranging from catalysts to zeolites, and from battery electrode materials to pre-stressed superconducting wires. In 1985 two new high-resolution diffractometers are being commissioned, one at the SNS laboratory near Oxford, and one at the ILL in Grenoble. In different ways these machines represent perhaps the ultimate that can be achieved with neutrons and will permit refinement of complex structures with about 250 parameters and unit cell volumes of about 2500 Angstrom/sp3/. The new European Synchotron Facility will complement the Grenoble neutron diffractometers, and extend the role of high-resolution powder diffraction to the direct solution of crystal structures, pioneered in Sweden

  19. Synchrotron powder diffraction on Aztec blue pigments

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez del Rio, M. [European Synchrotron Radiation Facility, B.P. 220, Grenoble Cedex (France); Gutierrez-Leon, A.; Castro, G.R.; Rubio-Zuazo, J. [Spanish CRG Beamline at the European Synchrotron Radiation Facility, SpLine, B.P. 220, Grenoble Cedex (France); Solis, C. [Universidad Nacional Autonoma de Mexico, Instituto de Fisica, Mexico, D.F. (Mexico); Sanchez-Hernandez, R. [INAH Subdireccion de Laboratorios y Apoyo Academico, Mexico, D.F. (Mexico); Robles-Camacho, J. [INAH Centro Regional Michoacan, Morelia, Michoacan (Mexico); Rojas-Gaytan, J. [INAH Direccion de Salvamento Arqueologico, Naucalpan de Juarez (Mexico)

    2008-01-15

    Some samples of raw blue pigments coming from an archaeological rescue mission in downtown Mexico City have been characterized using different techniques. The samples, some recovered as a part of a ritual offering, could be assigned to the late Aztec period (XVth century). The striking characteristic of these samples is that they seem to be raw pigments prior to any use in artworks, and it was possible to collect a few {mu}g of pigment after manual grain selection under a microscopy monitoring. All pigments are made of indigo, an organic colorant locally known as anil or xiuhquilitl. The colorant is always found in combination with an inorganic matrix, studied by powder diffraction. In one case the mineral base is palygorskite, a rare clay mineral featuring micro-channels in its structure, well known as the main ingredient of the Maya blue pigment. However, other samples present the minerals sepiolite (a clay mineral of the palygorskite family) and calcite. Another sample contains barite, a mineral never reported in prehispanic paints. We present the results of characterization using high resolution powder diffraction recorded at the European Synchrotron Radiation Facility (BM25A, SpLine beamline) complemented with other techniques. All of them gave consistent results on the composition. A chemical test on resistance to acids was done, showing a high resistance for the palygorskite and eventually sepiolite compounds, in good agreement with the excellent resistance of the Maya blue. (orig.)

  20. Synchrotron powder diffraction on Aztec blue pigments

    Science.gov (United States)

    Sánchez Del Río, M.; Gutiérrez-León, A.; Castro, G. R.; Rubio-Zuazo, J.; Solís, C.; Sánchez-Hernández, R.; Robles-Camacho, J.; Rojas-Gaytán, J.

    2008-01-01

    Some samples of raw blue pigments coming from an archaeological rescue mission in downtown Mexico City have been characterized using different techniques. The samples, some recovered as a part of a ritual offering, could be assigned to the late Aztec period (XVth century). The striking characteristic of these samples is that they seem to be raw pigments prior to any use in artworks, and it was possible to collect a few μg of pigment after manual grain selection under a microscopy monitoring. All pigments are made of indigo, an organic colorant locally known as añil or xiuhquilitl. The colorant is always found in combination with an inorganic matrix, studied by powder diffraction. In one case the mineral base is palygorskite, a rare clay mineral featuring micro-channels in its structure, well known as the main ingredient of the Maya blue pigment. However, other samples present the minerals sepiolite (a clay mineral of the palygorskite family) and calcite. Another sample contains barite, a mineral never reported in prehispanic paints. We present the results of characterization using high resolution powder diffraction recorded at the European Synchrotron Radiation Facility (BM25A, SpLine beamline) complemented with other techniques. All of them gave consistent results on the composition. A chemical test on resistance to acids was done, showing a high resistance for the palygorskite and eventually sepiolite compounds, in good agreement with the excellent resistance of the Maya blue.

  1. The peak in neutron powder diffraction

    International Nuclear Information System (INIS)

    Laar, B. van; Yelon, W.B.

    1984-01-01

    For the application of Rietveld profile analysis to neutron powder diffraction data a precise knowledge of the peak profile, in both shape and position, is required. The method now in use employs a Gaussian shaped profile with a semi-empirical asymmetry correction for low-angle peaks. The integrated intensity is taken to be proportional to the classical Lorentz factor calculated for the X-ray case. In this paper an exact expression is given for the peak profile based upon the geometrical dimensions of the diffractometer. It is shown that the asymmetry of observed peaks is well reproduced by this expression. The angular displacement of the experimental profile with respect to the nominal Bragg angle value is larger than expected. Values for the correction to the classical Lorentz factor for the integrated intensity are given. The exact peak profile expression has been incorporated into a Rietveld profile analysis refinement program. (Auth.)

  2. Pulsed Neutron Powder Diffraction for Materials Science

    Science.gov (United States)

    Kamiyama, T.

    2008-03-01

    The accelerator-based neutron diffraction began in the end of 60's at Tohoku University which was succeeded by the four spallation neutron facilities with proton accelerators at the High Energy Accelerator Research Organization (Japan), Argonne National Laboratory and Los Alamos Laboratory (USA), and Rutherford Appleton Laboratory (UK). Since then, the next generation source has been pursued for 20 years, and 1MW-class spallation neutron sources will be appeared in about three years at the three parts of the world: Japan, UK and USA. The joint proton accelerator project (J-PARC), a collaborative project between KEK and JAEA, is one of them. The aim of the talk is to describe about J-PARC and the neutron diffractometers being installed at the materials and life science facility of J-PARC. The materials and life science facility of J-PARC has 23 neutron beam ports and will start delivering the first neutron beam of 25 Hz from 2008 May. Until now, more than 20 proposals have been reviewed by the review committee, and accepted proposal groups have started to get fund. Those proposals include five polycrystalline diffractometers: a super high resolution powder diffractometer (SHRPD), a 0.2%-resolution powder diffractometer of Ibaraki prefecture (IPD), an engineering diffractometers (Takumi), a high intensity S(Q) diffractometer (VSD), and a high-pressure dedicated diffractometer. SHRPD, Takumi and IPD are being designed and constructed by the joint team of KEK, JAEA and Ibaraki University, whose member are originally from the KEK powder group. These three instruments are expected to start in 2008. VSD is a super high intensity diffractometer with the highest resolution of Δd/d = 0.3%. VSD can measure rapid time-dependent phenomena of crystalline materials as well as glass, liquid and amorphous materials. The pair distribution function will be routinely obtained by the Fourier transiformation of S(Q) data. Q range of VSD will be as wide as 0.01 Å-1stress mapping inside

  3. Development and directions of powder diffraction on proteins

    Energy Technology Data Exchange (ETDEWEB)

    Von Dreele, R B; Besnard, C; Basso, S; Camus, F; Pattison, P; Schiltz, M; Wright, J P; Margiolaki, R; Fitch, A N; Fox, G C; Prugoveeki, S; Beckers, D; Helliwell, J R; Helliwell, M; Jones, R H; Roberts, M A; Miura, K; Kahn, R; Giacovazzo, C; Altomare, A; Caliandro, R; Camalli, M; Cuocci, C; Moliterni, A G.G.; Rizzi, R; Hinrichsen, B; Kern, A; Coelho, A A; Degen, T; Kokkinidis, M; Fadouloglou, V; Gazi, A; Panopoulos, N; Pinotsis, N; Wilmanns, M; Norrman, M; Schluckebier, G; Prugoveeki, B; Dilovic, J; Matkovic-Calogovic, D; Bill, David; Markvardsen, A; Grosse-Kunstleve, R; Rius, J; Glykos Nicholas, M; Murshudov, G N

    2007-07-01

    X-ray diffraction is one of the most important method for obtaining information about the structure of proteins and thereby for gaining insight into fundamental biological and biochemical mechanisms. This seminar was dedicated to X-ray powder diffraction and was organized around 6 sessions: 1) what can powder diffraction do for proteins?, 2) adapting experimentally to proteins, 3) interpreting powder data, 4) the world of protein crystallography, 5) advancing methods for powder data analysis, and 6) transferable methods from single crystals. This document gathers the abstracts of the 23 papers presented. (A.C.)

  4. Development and directions of powder diffraction on proteins

    International Nuclear Information System (INIS)

    Von Dreele, R.B.; Besnard, C.; Basso, S.; Camus, F.; Pattison, P.; Schiltz, M.; Wright, J.P.; Margiolaki, R.; Fitch, A.N.; Fox, G.C.; Prugoveeki, S.; Beckers, D.; Helliwell, J.R.; Helliwell, M.; Jones, R.H.; Roberts, M.A.; Miura, K.; Kahn, R.; Giacovazzo, C.; Altomare, A.; Caliandro, R.; Camalli, M.; Cuocci, C.; Moliterni, A.G.G.; Rizzi, R.; Hinrichsen, B.; Kern, A.; Coelho, A.A.; Degen, T.; Kokkinidis, M.; Fadouloglou, V.; Gazi, A.; Panopoulos, N.; Pinotsis, N.; Wilmanns, M.; Norrman, M.; Schluckebier, G.; Prugoveeki, B.; Dilovic, J.; Matkovic-Calogovic, D.; Bill, David; Markvardsen, A.; Grosse-Kunstleve, R.; Rius, J.; Glykos Nicholas, M.; Murshudov, G.N.

    2007-01-01

    X-ray diffraction is one of the most important method for obtaining information about the structure of proteins and thereby for gaining insight into fundamental biological and biochemical mechanisms. This seminar was dedicated to X-ray powder diffraction and was organized around 6 sessions: 1) what can powder diffraction do for proteins?, 2) adapting experimentally to proteins, 3) interpreting powder data, 4) the world of protein crystallography, 5) advancing methods for powder data analysis, and 6) transferable methods from single crystals. This document gathers the abstracts of the 23 papers presented. (A.C.)

  5. Ninety Years of Powder Diffraction: from Birth to Maturity

    International Nuclear Information System (INIS)

    Paszkowicz, W.

    2006-01-01

    The expression ''powder diffraction '' denotes the phenomenon of diffraction of any electromagnetic waves or particles on polycrystalline (powdered, bulk or thin film) materials which is used in a wide variety experimental settings. The X-ray powder-diffraction method was devised and developed during the First World War (1916) by a Dutch/Swiss team, Peter Debye and Paul Scherrer, in Goettingen, Germany, and independently, marginally later, by an American, Albert W. Hull in Schenectady, USA. The birth of powder diffraction came four years after the discovery of the phenomenon of single-crystal diffraction made in 1912 by Walther Friedrich, Paul Knipping and Max Laue in Munich and developed from 1912/1913 by William Henry Bragg (father) and William Lawrence Bragg (son), and later by many others. Powder diffraction became a milestone towards an understanding of the nature of materials, especially of those which cannot be prepared in the form of suitable single crystals, and permitted rapid progress in solid state physics and chemistry. The events leading to the discovery of powder-diffraction phenomenon are briefly reviewed. The importance of synchrotron powder diffraction studies, which have developed since 1980s, is emphasised. (author)

  6. Structure determination of modulated structures by powder X-ray diffraction and electron diffraction

    Czech Academy of Sciences Publication Activity Database

    Zhou, Z.Y.; Palatinus, Lukáš; Sun, J.L.

    2016-01-01

    Roč. 3, č. 11 (2016), s. 1351-1362 ISSN 2052-1553 Institutional support: RVO:68378271 Keywords : electron diffraction * incommensurate structure * powder diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.036, year: 2016

  7. Solving Crystal Structures from Powder Diffraction Data

    DEFF Research Database (Denmark)

    Christensen, A. Nørlund; Lehmann, M. S.; Nielsen, Mogens

    1985-01-01

    High resolution powder data from both neutron and X-ray (synchrotron) sources have been used to estimate the possibility of direct structure determination from powder data. Two known structures were resolved by direct methods with neutron and X-ray data. With synchrotron X-ray data, the measured ...

  8. Powder diffraction from a continuous microjet of submicrometer protein crystals.

    Science.gov (United States)

    Shapiro, D A; Chapman, H N; Deponte, D; Doak, R B; Fromme, P; Hembree, G; Hunter, M; Marchesini, S; Schmidt, K; Spence, J; Starodub, D; Weierstall, U

    2008-11-01

    Atomic-resolution structures from small proteins have recently been determined from high-quality powder diffraction patterns using a combination of stereochemical restraints and Rietveld refinement [Von Dreele (2007), J. Appl. Cryst. 40, 133-143; Margiolaki et al. (2007), J. Am. Chem. Soc. 129, 11865-11871]. While powder diffraction data have been obtained from batch samples of small crystal-suspensions, which are exposed to X-rays for long periods of time and undergo significant radiation damage, the proof-of-concept that protein powder diffraction data from nanocrystals of a membrane protein can be obtained using a continuous microjet is shown. This flow-focusing aerojet has been developed to deliver a solution of hydrated protein nanocrystals to an X-ray beam for diffraction analysis. This method requires neither the crushing of larger polycrystalline samples nor any techniques to avoid radiation damage such as cryocooling. Apparatus to record protein powder diffraction in this manner has been commissioned, and in this paper the first powder diffraction patterns from a membrane protein, photosystem I, with crystallite sizes of less than 500 nm are presented. These preliminary patterns show the lowest-order reflections, which agree quantitatively with theoretical calculations of the powder profile. The results also serve to test our aerojet injector system, with future application to femtosecond diffraction in free-electron X-ray laser schemes, and for serial crystallography using a single-file beam of aligned hydrated molecules.

  9. Neutron powder diffraction at a pulsed neutron source: a study of resolution effects

    International Nuclear Information System (INIS)

    Faber, J. Jr.; Hitterman, R.L.

    1985-11-01

    The General Purpose Powder Diffractometer (GPPD), a high resolution (Δd/d = 0.002) time-of-flight instrument, exhibits a resolution function that is almost independent of d-spacing. Some of the special properties of time-of-flight scattering data obtained at a pulsed neutron source will be discussed. A method is described that transforms wavelength dependent data, obtained at a pulsed neutron source, so that standard structural least-squares analyses can be applied. Several criteria are given to show when these techniques are useful in time-of-flight data analysis. 14 refs., 6 figs., 1 tab

  10. High pressure neutron powder diffraction at LANSCE

    International Nuclear Information System (INIS)

    Von Dreele, R.B.

    1994-01-01

    By making use of the recently developed ''Paris-Edinburgh'' high pressure cell, the author has successfully performed neutron powder experiments to 10GPa at ambient temperature. Results for the structural compression of the high Tc 1223-Hg superconductor to 9.2 GPa, the compression and possible hydrogen bond formation in brucite, Mg(OD) 2 , to 9.3 GPa, and the molecular reorientation in nitromethane to 5.5 GPa will be presented

  11. ALICE Time Of Flight Detector

    CERN Multimedia

    Alici, A

    2013-01-01

    Charged particles in the intermediate momentum range are identified in ALICE by the Time Of Flight (TOF) detector. The time measurement with the TOF, in conjunction with the momentum and track length measured by the tracking detector, is used to calculate the particle mass.

  12. Development of materials science by Ab initio powder diffraction analysis

    International Nuclear Information System (INIS)

    Fujii, Kotaro

    2015-01-01

    Crystal structure is most important information to understand properties and behavior of target materials. Technique to analyze unknown crystal structures from powder diffraction data (ab initio powder diffraction analysis) enables us to reveal crystal structures of target materials even we cannot obtain a single crystal. In the present article, three examples are introduced to show the power of this technique in the field of materials sciences. The first example is dehydration/hydration of the pharmaceutically relevant material erythrocycin A. In this example, crystal structures of two anhydrous phases were determined from synchrotron X-ray powder diffraction data and their different dehydration/hydration properties were understood from the crystal structures. In the second example, a crystal structure of a three dimensional metal-organic-framework prepared by a mechanochemical reaction was determined from laboratory X-ray powder diffraction data and the reaction scheme has been revealed. In the third example, a crystal structure of a novel oxide-ion conductor of a new structure family was determined from synchrotron X-ray and neutron powder diffraction data which gave an important information to understand the mechanism of the oxide-ion conduction. (author)

  13. The refractive-index correction in powder diffraction

    International Nuclear Information System (INIS)

    Hart, M.; Parrish, W.; Bellotto, M.; Lim, G.S.

    1988-01-01

    Throughout the history of powder diffraction practice there has been uncertainty about whether or not a refractive-index correction should be made to Bragg's law. High-precision Bragg-angle measurements have been performed with synchrotron radiation on SRM-640 silicon powders at glancing angles; it is found that little or no correction is necessary for the usual 2θ angle range. (orig.)

  14. Applications of neutron powder diffraction in materials research

    International Nuclear Information System (INIS)

    Kennedy, S.J.

    1996-01-01

    The aim of this article is to provide an overview of the applications of neutron powder diffraction in materials science. The technique is introduced with particular attention to comparison with the X-ray powder diffraction technique to which it is complementary. The diffractometers and special environment ancillaries operating around the HIFAR research reactor at the Australian Nuclear Science and Technology Organisation (ANSTO) are described. Applications of the technique which the advantage of the unique properties of thermal neutrons have been selected from recent materials studies undertaken at ANSTO

  15. X-ray powder diffraction data on miscellaneous lanthanide compounds

    International Nuclear Information System (INIS)

    Ferguson, I.F.; Hughes, T.E.

    1978-08-01

    Recent work on neutron absorbing materials has produced various new X-ray diffraction powder patterns of compounds of the lanthanides. Various inconsistencies in previously published data have been noted, and accurate measurements have been made of the lattice parameters of the rare earth oxides Sm 2 0 3 , Eu 2 0 3 , Gd 2 0 3 which have the monoclinic rare earth type B- structure, as well as Eu0. These data are recorded for reference. The optimum conditions for obtaining X-ray powder diffraction data from europium compounds are also noted. (author)

  16. ALICE Time of Flight Module

    CERN Multimedia

    The Time-Of-Flight system of ALICE consists of 90 such modules, each containing 15 or 19 Multigap Resistive Plate Chamber (MRPC) strips. This detector is used for identification of charged particles. It measures with high precision (50 ps) the time of flight of charged particles and therefore their velocity. The curvature of the particle trajectory inside the magnetic field gives the momentum, thus the particle mass is calculated and the particle is identified The MRPC is a stack of resistive glass plates, separated from each other by nylon fishing line. The mass production of the chambers (~1600, covering a surface of 150 m2) was done at INFN Bologna, while the first prototypes were bult at CERN.

  17. Powder diffraction studies using anomalous dispersion

    International Nuclear Information System (INIS)

    Cox, D.E.; Wilkinson, A.P.

    1993-01-01

    With the increasing availability and accessibility of high resolution powder diffractometers at many synchrotron radiation sources throughout the world, there is rapidly-growing interest in the exploitation of anomalous dispersion techniques for structural studies of polycrystalline materials. In conjunction with the Rietveld profile method for structure refinement, such studies are especially useful for the determination of the site distributions of two or more atoms which are near neighbors in the periodic table, or atoms which are distributed among partially occupied sites. Additionally, it is possible to (1) determine the mean-square displacements associated with different kinds of atoms distributed over a single set of sites, (2) distinguish between different oxidation states and coordination geometries of a particular atom in a compound and (3) to determine f' for a wide range of atomic species as a function of energy in the vicinity of an absorption edge. Experimental methods for making anomalous dispersion measurements are described in some detail, including data collection strategies, data analysis and correlation problems, possible systematic errors, and the accuracy of the results. Recent work in the field is reviewed, including cation site-distribution studies (e.g. doped high T c superconductors, ternary alloys, FeCo 2 (PO 4 ) 3 , FeNi 2 BO 5 ), oxidation-state contrast (e.g. YBa 2 Cu 3 O 6+x , Eu 3 O 4 , GaCl 2 , Fe 2 PO 5 ), and the effect of coordination geometry (e.g. Y 3 Ga 5 O l2 )

  18. Frequency analysis for modulation-enhanced powder diffraction.

    Science.gov (United States)

    Chernyshov, Dmitry; Dyadkin, Vadim; van Beek, Wouter; Urakawa, Atsushi

    2016-07-01

    Periodic modulation of external conditions on a crystalline sample with a consequent analysis of periodic diffraction response has been recently proposed as a tool to enhance experimental sensitivity for minor structural changes. Here the intensity distributions for both a linear and nonlinear structural response induced by a symmetric and periodic stimulus are analysed. The analysis is further extended for powder diffraction when an external perturbation changes not only the intensity of Bragg lines but also their positions. The derived results should serve as a basis for a quantitative modelling of modulation-enhanced diffraction data measured in real conditions.

  19. American Crystallographic Association Project: numerical ratings of powder diffraction patterns

    International Nuclear Information System (INIS)

    Smith, G.S.; Snyder, R.L.

    1977-01-01

    At present, nearly 30,000 powder diffraction patterns are available as references. It is proposed that the patterns in this file as well as new patterns submitted for publication be given quantitative quality factors. A simple-to-use figure of merit, F/sub N/, covering both accuracy of d-values and completeness of a pattern was derived. This figure of merit provides the user with a means of rapid evaluation of powder patterns in much the same way that the R-factor does for single-crystal structure determinations. The present F/sub N/ ranking scheme is shown to be superior to de Wolff's M 20 ranking scheme. It is recommended that the latter be discontinued. Guidelines are given on the use and implementation of F/sub N/ rating of powder diffraction patterns

  20. Comparison between powder and slices diffraction methods in teeth samples

    Energy Technology Data Exchange (ETDEWEB)

    Colaco, Marcos V.; Barroso, Regina C. [Universidade do Estado do Rio de Janeiro (IF/UERJ), RJ (Brazil). Inst. de Fisica. Dept. de Fisica Aplicada; Porto, Isabel M. [Universidade Estadual de Campinas (FOP/UNICAMP), Piracicaba, SP (Brazil). Fac. de Odontologia. Dept. de Morfologia; Gerlach, Raquel F. [Universidade de Sao Paulo (FORP/USP), Rieirao Preto, SP (Brazil). Fac. de Odontologia. Dept. de Morfologia, Estomatologia e Fisiologia; Costa, Fanny N. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (LIN/COPPE/UFRJ), RJ (Brazil). Lab. de Instrumentacao Nuclear

    2011-07-01

    Propose different methods to obtain crystallographic information about biological materials are important since powder method is a nondestructive method. Slices are an approximation of what would be an in vivo analysis. Effects of samples preparation cause differences in scattering profiles compared with powder method. The main inorganic component of bones and teeth is a calcium phosphate mineral whose structure closely resembles hydroxyapatite (HAp). The hexagonal symmetry, however, seems to work well with the powder diffraction data, and the crystal structure of HAp is usually described in space group P63/m. Were analyzed ten third molar teeth. Five teeth were separated in enamel, detin and circumpulpal detin powder and five in slices. All the scattering profile measurements were carried out at the X-ray diffraction beamline (XRD1) at the National Synchrotron Light Laboratory - LNLS, Campinas, Brazil. The LNLS synchrotron light source is composed of a 1.37 GeV electron storage ring, delivering approximately 4x10{sup -1}0 photons/s at 8 keV. A double-crystal Si(111) pre-monochromator, upstream of the beamline, was used to select a small energy bandwidth at 11 keV . Scattering signatures were obtained at intervals of 0.04 deg for angles from 24 deg to 52 deg. The human enamel experimental crystallite size obtained in this work were 30(3)nm (112 reflection) and 30(3)nm (300 reflection). These values were obtained from measurements of powdered enamel. When comparing the slice obtained 58(8)nm (112 reflection) and 37(7)nm (300 reflection) enamel diffraction patterns with those generated by the powder specimens, a few differences emerge. This work shows differences between powder and slices methods, separating characteristics of sample of the method's influence. (author)

  1. Comparison between powder and slices diffraction methods in teeth samples

    International Nuclear Information System (INIS)

    Colaco, Marcos V.; Barroso, Regina C.; Porto, Isabel M.; Gerlach, Raquel F.; Costa, Fanny N.

    2011-01-01

    Propose different methods to obtain crystallographic information about biological materials are important since powder method is a nondestructive method. Slices are an approximation of what would be an in vivo analysis. Effects of samples preparation cause differences in scattering profiles compared with powder method. The main inorganic component of bones and teeth is a calcium phosphate mineral whose structure closely resembles hydroxyapatite (HAp). The hexagonal symmetry, however, seems to work well with the powder diffraction data, and the crystal structure of HAp is usually described in space group P63/m. Were analyzed ten third molar teeth. Five teeth were separated in enamel, detin and circumpulpal detin powder and five in slices. All the scattering profile measurements were carried out at the X-ray diffraction beamline (XRD1) at the National Synchrotron Light Laboratory - LNLS, Campinas, Brazil. The LNLS synchrotron light source is composed of a 1.37 GeV electron storage ring, delivering approximately 4x10 -1 0 photons/s at 8 keV. A double-crystal Si(111) pre-monochromator, upstream of the beamline, was used to select a small energy bandwidth at 11 keV . Scattering signatures were obtained at intervals of 0.04 deg for angles from 24 deg to 52 deg. The human enamel experimental crystallite size obtained in this work were 30(3)nm (112 reflection) and 30(3)nm (300 reflection). These values were obtained from measurements of powdered enamel. When comparing the slice obtained 58(8)nm (112 reflection) and 37(7)nm (300 reflection) enamel diffraction patterns with those generated by the powder specimens, a few differences emerge. This work shows differences between powder and slices methods, separating characteristics of sample of the method's influence. (author)

  2. Fundamentals of powder x-ray diffraction practice

    International Nuclear Information System (INIS)

    Raftery, T.

    2002-01-01

    Full text: The goal of powder Xray diffraction is to gain information about a specimen or sample. Key aspects of this goal are 1. the sample selection, preparation and presentation; 2. the data collection process and conditions; 3. the interaction between these and the interpretation of the data. The 'ideal' powder (or polycrystalline) xray diffraction sample is fine grained, randomly orientated, homogenous and representative. There exists standard sample selection and preparation techniques for powders - sometimes however, the required information must be gained by alternate sample selection and preparation techniques. While there are few variables in the data collection process, there are some significant ones such as matching diffractometer resolution and intensity to the data collection goal whether that is phase identity, quantitative analysis or structure refinement, etc. There are also options of optical arrangement (Bragg-Brintano versus parallel beam versus Debye-Scherrer). One important aspect of the collection process is the assessment of the data quality. Powder xray diffraction has many applications from the straight-forward confirmation of phase identity and purity to structural analysis. Some of these applications will be considered and the interaction between the goal of the application and aspects of sample selection. Copyright (2002) Australian X-ray Analytical Association Inc

  3. Neutron powder diffraction under high pressure at J-PARC

    International Nuclear Information System (INIS)

    Utsumi, Wataru; Kagi, Hiroyuki; Komatsu, Kazuki; Arima, Hiroshi; Nagai, Takaya; Okuchi, Takuo; Kamiyama, Takashi; Uwatoko, Yoshiya; Matsubayashi, Kazuyuki; Yagi, Takehiko

    2009-01-01

    It is expected that high-pressure material science and the investigation of the Earth's interior will progress greatly using the high-flux pulse neutrons of J-PARC. In this article, we introduce our plans for in situ neutron powder diffraction experiments under high pressure at J-PARC. The use of three different types of high-pressure devices is planned; a Paris-Edinburgh cell, a new opposed-anvil cell with a nano-polycrystalline diamond, and a cubic anvil high-pressure apparatus. These devices will be brought to the neutron powder diffraction beamlines to conduct a 'day-one' high-pressure experiment. For the next stage of research, we propose construction of a dedicated beamline for high-pressure material science. Its conceptual designs are also introduced here.

  4. Time-of-flight spectrometers

    International Nuclear Information System (INIS)

    Carrico, J.P.

    1976-01-01

    The flight time of an ion in an inhomogeneous, oscillatory electric field (IOFE) is an m/e-dependent property of this field and is independent of the initial position and velocity. The d.c. component of the equation of motion for an ion in the IOFE describes a harmonic oscillation of constant period. When ions oscillate for many periods with one species overtaking another the motion may no longer be truly periodic although the resulting period or 'quasi-period' still remains independent of the initial conditions. This period or 'quasi-period' is used in the time-of-flight mass spectrometer described. The principle of operation is also described and both analytical and experimental results are reported. (B.D.)

  5. Modern trends in x-ray powder diffraction

    International Nuclear Information System (INIS)

    Goebel, H.E.; Snyder, R.L.

    1985-01-01

    The revival of interest in X-ray powder diffraction, being quoted as a metamorphosis from the 'ugly duckling' to a 'beautiful swan', can be attributed to a number of modern developments in instrumentation and evaluation software. They result in faster data collection, improved accuracy and resolution, and better detectability of minor phases. The ease of data evaluation on small computers coupled direct to the instrument allows convenient execution of previously tedious and time-consuming off-line tasks like qualitative and quantitative analysis, characterization of microcrystalline properties, indexing, and lattice-constant refinements, as well as structure refinements or even exploration of new crystal structures. Powder diffraction has also progressed from an isolated analytical laboratory method to an in situ technique for analysing solid-state reactions or for the on-stream control of industrial processes. The paper surveys these developments and their real and potential applications, and tries to emphasize new trends that are regarded as important steps for the further progress of X-ray powder diffraction

  6. Unit-cell refinement from powder diffraction scans

    International Nuclear Information System (INIS)

    Pawley, G.S.

    1981-01-01

    A procedure for the refinement of the crystal unit cell from a powder diffraction scan is presented. In this procedure knowledge of the crystal structure is not required, and at the end of the refinement a list of indexed intensities is produced. This list may well be usable as the starting point for the application of direct methods. The problems of least-squares ill-conditioning due to overlapping reflections are overcome by constraints. An example using decafluorocyclohexene, C 6 F 10 , shows the quality of fit obtained in a case which may even be a false minimum. The method should become more relevant as powder scans of improved resolution become available, through the use of pulsed neutron sources. (Auth.)

  7. Powder X-ray diffraction study af alkali alanates

    DEFF Research Database (Denmark)

    Cao, Thao; Mosegaard Arnbjerg, Lene; Jensen, Torben René

    Powder X-ray diffraction study of alkali alanates Thao Cao, Lene Arnbjerg, Torben R. Jensen. Center for Materials Crystallography (CMC), Center for Energy Materials (CEM), iNANO and Department of Chemistry, Aarhus University, DK-8000, Denmark. Abstract: To meet the energy demand in the future...... for mobile applications, new materials with high gravimetric and volumetric storage capacity of hydrogen have to be developed. Alkali alanates are promising for hydrogen storage materials. Sodium alanate stores hydrogen reversibly at moderate conditions when catalysed with, e.g. titanium, whereas potassium...

  8. New synchrotron powder diffraction facility for long-duration experiments.

    Science.gov (United States)

    Murray, Claire A; Potter, Jonathan; Day, Sarah J; Baker, Annabelle R; Thompson, Stephen P; Kelly, Jon; Morris, Christopher G; Yang, Sihai; Tang, Chiu C

    2017-02-01

    A new synchrotron X-ray powder diffraction instrument has been built and commissioned for long-duration experiments on beamline I11 at Diamond Light Source. The concept is unique, with design features to house multiple experiments running in parallel, in particular with specific stages for sample environments to study slow kinetic systems or processes. The instrument benefits from a high-brightness X-ray beam and a large area detector. Diffraction data from the commissioning work have shown that the objectives and criteria are met. Supported by two case studies, the results from months of measurements have demonstrated the viability of this large-scale instrument, which is the world's first dedicated facility for long-term studies (weeks to years) using synchrotron radiation.

  9. Development and applications of the reverse neutron time-of-flight method with Fourier-type beam chopper

    International Nuclear Information System (INIS)

    Antson, O.

    1991-09-01

    The neutron powder diffraction method has been applied to the crystal structure analysis of high-temperature superconductors such as La 0 .8Sr 0 .2CuO 4 - y , YBa 2 Cu 3 O 7 - y and Bi 2 Sr 2 CaCu 2 O 8 + y optically active yttriumformate Y(HCOO) 3 , and β phase of deuterated acetonitrile, CD 3 CN. The structural information, containing symmetry, positional and thermal parameters, occupation factors and the order parameter, was obtained by measuring the coherent elastic scattering cross-section. The Rietveld profile refinement method was used for the extraction of structural parameters from experimental data. The diffraction spectra were obtained by measuring the time-of-flight distribution of neutrons with a Fourier-type beam chopper. The neutron diffraction spectrum is created by the on-line synthesis of the cross-correlation function between the beam modulation function and the detector intensity. Such an operational mode, called the reverse time-of-flight method, has many unique properties. The possibility of filtering out a low-frequency part of a diffraction spectrum, eg. incoherent background, by a properly selected band-pass filter has been studied. One of the practical applications of the reverse time-of-flight method, the Mini-Sfinks facility, is described with technical details, and its operational characteristics are compared with other high-resolution instruments

  10. Structure of magnesium selenate enneahydrate, MgSeO4·9H2O, from 5 to 250 K using neutron time-of-flight Laue diffraction.

    Science.gov (United States)

    Fortes, A Dominic; Alfè, Dario; Hernández, Eduardo R; Gutmann, Matthias J

    2015-06-01

    The complete structure of MgSeO4·9H2O has been refined from neutron single-crystal diffraction data obtained at 5, 100, 175 and 250 K. It is monoclinic, space group P2₁/c, Z = 4, with unit-cell parameters a = 7.222 (2), b = 10.484 (3), c = 17.327 (4) Å, β = 109.57 (2)°, and V = 1236.1 (6) Å(3) [ρ(calc) = 1770 (1) kg m(-3)] at 5 K. The structure consists of isolated [Mg(H2O)6](2+) octahedra, [SeO4](2-) tetrahedra and three interstitial lattice water molecules, all on sites of symmetry 1. The positions of the H atoms agree well with those inferred on the basis of geometrical considerations in the prior X-ray powder diffraction structure determination: no evidence of orientational disorder of the water molecules is apparent in the temperature range studied. Six of the nine water molecules are hydrogen bonded to one another to form a unique centrosymmetric dodecamer, (H2O)12. Raman spectra have been acquired in the range 170-4000 cm(-1) at 259 and 78 K; ab initio calculations, using density functional theory, have been carried out in order to aid in the analysis of the Raman spectrum as well as providing additional insights into the geometry and thermodynamics of the hydrogen bonds. Complementary information concerning the thermal expansion, crystal morphology and the solubility are also presented.

  11. The CCP14 for single crystal and powder diffraction

    International Nuclear Information System (INIS)

    Cranswick, L.M.D.

    1999-01-01

    Full text: The Collaborative Computation Project Number 14 for Single Crystal and Powder Diffraction (CCP14) is continuing in its objective to provide freely available software and resources for the powder diffraction and crystallographic community. Using the Internet and World Wide Web, we are presently compiling software and web resources, creating tutorials and help files. It also endeavours to encourage and provide resources to assist program authors with developing their software. The CCP14 presently has its web-site at and a mirror at (at CSIRO, Melbourne, Australia). Auto web-mirroring is being implemented to allow users to obtain software and access to resources in a more time effective manner. For people in countries isolated from the Internet, the CCP14 on CD-ROM can be snail mailed on request. This is in the form of a Virtual World Wide Web/Virtual Internet; in the same vein as the existing Crystallographic Nexus CD-ROM. Copyright (1999) Australian X-ray Analytical Association Inc

  12. Application of powder X-ray diffraction in studying the compaction behavior of bulk pharmaceutical powders.

    Science.gov (United States)

    Bandyopadhyay, Rebanta; Selbo, Jon; Amidon, Gregory E; Hawley, Michael

    2005-11-01

    This study investigates the effects of crystal lattice deformation on the powder X-ray diffraction (PXRD) patterns of compressed polycrystalline specimen (compacts/tablets) made from molecular, crystalline powders. The displacement of molecules and the corresponding adjustment of interplanar distances (d-spacings) between diffracting planes of PNU-288034 and PNU-177553, which have crystal habits with a high aspect ratio favoring preferred orientation during tableting, are demonstrated by shifts in the diffracted peak positions. The direction of shift in diffracted peak positions suggests a reduction of interplanar d-spacing in the crystals of PNU-288034 and PNU-177553 following compaction. There is also a general reduction of peak intensities following compression at the different compressive loads. The lattice strain representing the reduction in d-spacing is proportional to the original d-spacing of the uncompressed sample suggesting that, as with systems that obey a simple Hooke's law relationship, the further apart the planes of atoms/molecules within the lattice are, the easier it is for them to approach each other under compressive stresses. For a third model compound comprising more equant-shaped crystals of PNU-141659, the shift in diffracted peak positions are consistent with an expansion of lattice spacing after compression. This apparent anomaly is supported by the PXRD studies of the bulk powder consisting of fractured crystals where also, the shift in peak position suggests expansion of the lattice planes. Thus the crystals of PNU-141659 may be fracturing under the compressive loads used to produce the compacts. Additional studies are underway to relate the PXRD observations with the bulk tableting properties of these model compounds.

  13. Powder X-ray diffraction laboratory, Reston, Virginia

    Science.gov (United States)

    Piatak, Nadine M.; Dulong, Frank T.; Jackson, John C.; Folger, Helen W.

    2014-01-01

    The powder x-ray diffraction (XRD) laboratory is managed jointly by the Eastern Mineral and Environmental Resources and Eastern Energy Resources Science Centers. Laboratory scientists collaborate on a wide variety of research problems involving other U.S. Geological Survey (USGS) science centers and government agencies, universities, and industry. Capabilities include identification and quantification of crystalline and amorphous phases, and crystallographic and atomic structure analysis for a wide variety of sample media. Customized laboratory procedures and analyses commonly are used to characterize non-routine samples including, but not limited to, organic and inorganic components in petroleum source rocks, ore and mine waste, clay minerals, and glassy phases. Procedures can be adapted to meet a variety of research objectives.

  14. High-resolution neutron powder-diffraction in CMR manganates

    Energy Technology Data Exchange (ETDEWEB)

    Suard, E; Radaelli, P G [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Manganese-oxide materials have recently been the subject of renewed attention, due to the `colossal` magnetoresistance (CMR) displayed near the spin-ordering temperature T{sub c} by some of these compounds. CMR has been evidenced in at least three families of manganese oxides. In most cases, the CMR compounds behave as paramagnetic semiconductors at high temperatures, and as ferromagnetic metals below T{sub c}. The study of this metallization process has lead some theorists to challenge its traditional interpretation in terms of the so-called double-exchange mechanism, and to propose alternative scenarios in which the coupling of the charge carriers with the lattice plays a paramount role. Powder diffraction method, being at the forefront of CMR research is presented. (author). 4 refs.

  15. X-Ray Powder Diffraction with Guinier - Haegg Focusing Cameras

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Allan

    1970-12-15

    The Guinier - Haegg focusing camera is discussed with reference to its use as an instrument for rapid phase analysis. An actual camera and the alignment procedure employed in its setting up are described. The results obtained with the instrument are compared with those obtained with Debye - Scherrer cameras and powder diffractometers. Exposure times of 15 - 30 minutes with compounds of simple structure are roughly one-sixth of those required for Debye - Scherrer patterns. Coupled with the lower background resulting from the use of a monochromatic X-ray beam, the shorter exposure time gives a ten-fold increase in sensitivity for the detection of minor phases as compared with the Debye - Scherrer camera. Attention is paid to the precautions taken to obtain reliable Bragg angles from Guinier - Haegg film measurements, with particular reference to calibration procedures. The evaluation of unit cell parameters from Guinier - Haegg data is discussed together with the application of tests for the presence of angle-dependent systematic errors. It is concluded that with proper calibration procedures and least squares treatment of the data, accuracies of the order of 0.005% are attainable. A compilation of diffraction data for a number of compounds examined in the Active Central Laboratory at Studsvik is presented to exemplify the scope of this type of powder camera.

  16. Acemetacin cocrystal structures by powder X-ray diffraction

    Science.gov (United States)

    Bolla, Geetha

    2017-01-01

    Cocrystals of acemetacin drug (ACM) with nicotinamide (NAM), p-aminobenzoic acid (PABA), valerolactam (VLM) and 2-pyridone (2HP) were prepared by melt crystallization and their X-ray crystal structures determined by high-resolution powder X-ray diffraction. The powerful technique of structure determination from powder data (SDPD) provided details of molecular packing and hydrogen bonding in pharmaceutical cocrystals of acemetacin. ACM–NAM occurs in anhydrate and hydrate forms, whereas the other structures crystallized in a single crystalline form. The carboxylic acid group of ACM forms theacid–amide dimer three-point synthon R 3 2(9)R 2 2(8)R 3 2(9) with three different syn amides (VLM, 2HP and caprolactam). The conformations of the ACM molecule observed in the crystal structures differ mainly in the mutual orientation of chlorobenzene fragment and the neighboring methyl group, being anti (type I) or syn (type II). ACM hydrate, ACM—NAM, ACM–NAM-hydrate and the piperazine salt of ACM exhibit the type I conformation, whereas ACM polymorphs and other cocrystals adopt the ACM type II conformation. Hydrogen-bond interactions in all the crystal structures were quantified by calculating their molecular electrostatic potential (MEP) surfaces. Hirshfeld surface analysis of the cocrystal surfaces shows that about 50% of the contribution is due to a combination of strong and weak O⋯H, N⋯H, Cl⋯H and C⋯H interactions. The physicochemical properties of these cocrystals are under study. PMID:28512568

  17. Acemetacin cocrystal structures by powder X-ray diffraction

    Directory of Open Access Journals (Sweden)

    Geetha Bolla

    2017-05-01

    Full Text Available Cocrystals of acemetacin drug (ACM with nicotinamide (NAM, p-aminobenzoic acid (PABA, valerolactam (VLM and 2-pyridone (2HP were prepared by melt crystallization and their X-ray crystal structures determined by high-resolution powder X-ray diffraction. The powerful technique of structure determination from powder data (SDPD provided details of molecular packing and hydrogen bonding in pharmaceutical cocrystals of acemetacin. ACM–NAM occurs in anhydrate and hydrate forms, whereas the other structures crystallized in a single crystalline form. The carboxylic acid group of ACM forms theacid–amide dimer three-point synthon R32(9R22(8R32(9 with three different syn amides (VLM, 2HP and caprolactam. The conformations of the ACM molecule observed in the crystal structures differ mainly in the mutual orientation of chlorobenzene fragment and the neighboring methyl group, being anti (type I or syn (type II. ACM hydrate, ACM—NAM, ACM–NAM-hydrate and the piperazine salt of ACM exhibit the type I conformation, whereas ACM polymorphs and other cocrystals adopt the ACM type II conformation. Hydrogen-bond interactions in all the crystal structures were quantified by calculating their molecular electrostatic potential (MEP surfaces. Hirshfeld surface analysis of the cocrystal surfaces shows that about 50% of the contribution is due to a combination of strong and weak O...H, N...H, Cl...H and C...H interactions. The physicochemical properties of these cocrystals are under study.

  18. X-Ray Powder Diffraction with Guinier - Haegg Focusing Cameras

    International Nuclear Information System (INIS)

    Brown, Allan

    1970-12-01

    The Guinier - Haegg focusing camera is discussed with reference to its use as an instrument for rapid phase analysis. An actual camera and the alignment procedure employed in its setting up are described. The results obtained with the instrument are compared with those obtained with Debye - Scherrer cameras and powder diffractometers. Exposure times of 15 - 30 minutes with compounds of simple structure are roughly one-sixth of those required for Debye - Scherrer patterns. Coupled with the lower background resulting from the use of a monochromatic X-ray beam, the shorter exposure time gives a ten-fold increase in sensitivity for the detection of minor phases as compared with the Debye - Scherrer camera. Attention is paid to the precautions taken to obtain reliable Bragg angles from Guinier - Haegg film measurements, with particular reference to calibration procedures. The evaluation of unit cell parameters from Guinier - Haegg data is discussed together with the application of tests for the presence of angle-dependent systematic errors. It is concluded that with proper calibration procedures and least squares treatment of the data, accuracies of the order of 0.005% are attainable. A compilation of diffraction data for a number of compounds examined in the Active Central Laboratory at Studsvik is presented to exemplify the scope of this type of powder camera

  19. A sample holder for in-house X-ray powder diffraction studies of protein powders

    DEFF Research Database (Denmark)

    Frankær, Christian Grundahl; Harris, Pernille; Ståhl, Kenny

    2011-01-01

    A sample holder for handling samples of protein for in-house X-ray powder diffraction (XRPD) analysis has been made and tested on lysozyme. The use of an integrated pinhole reduced the background, and good signal-to-noise ratios were obtained from only 7 l of sample, corresponding to approximatel...... 2-3 mg of dry protein. The sample holder is further adaptable to X-ray absorption spectroscopy (XAS) measurements. Both XRPD and XAS at the Zn K-edge were tested with hexameric Zn insulin....

  20. IL 12: Femtosecond x-ray powder diffraction

    International Nuclear Information System (INIS)

    Woerner, M.; Zamponi, F.; Rothhardt, P.; Ansari, Z.; Dreyer, J.; Freyer, B.; Premont-Schwarz, M.; Elsaesser, T.

    2010-01-01

    A chemical reaction generates new compounds out of one or more initial species. On a molecular level, the spatial arrangement of electrons and nuclei changes. While the structure of the initial and the product molecules can be measured routinely, the transient structures and molecular motions during a reaction have remained unknown in most cases. This knowledge, however, is a key element for the exact understanding of the reaction. The ultimate dream is a 'reaction microscope' which allows for an in situ imaging of the molecules during a reaction. We report on the first femtosecond x-ray powder diffraction experiment in which we directly map the transient electronic charge density in the unit cell of a crystalline solid with 30 pico-meter spatial and 100 femtosecond temporal resolution. X-ray diffraction from polycrystalline powder samples, the Debye Scherrer diffraction technique, is a standard method for determining equilibrium structures. The intensity of the Debye Scherrer rings is determined by the respective x-ray structure factor which represents the Fourier transform of the spatial electron density. In our experiments, the transient intensity and angular positions of up to 20 Debye Scherrer reactions from a polycrystalline powder are measured and unravel for the first time a concerted electron and proton transfer in hydrogen-bonded ionic (NH 4 ) 2 SO 4 crystals. Photoexcitation of ammonium sulfate induces a sub-100 fs electron transfer from the sulfate groups into a highly conned electron channel along the z-axis of the unit cell. The latter geometry is stabilized by transferring protons from the adjacent ammonium groups into the channel. Time-dependent charge density maps derived from the diffraction data display a periodic modulation of the channels charge density by low-frequency lattice motions with a concerted electron and proton motion between the channel and the initial proton binding site. A deeper insight into the underlying microscopic

  1. Doppler time-of-flight imaging

    KAUST Repository

    Heidrich, Wolfgang; Heide, Felix; Wetzstein, Gordon; Hullin, Matthias

    2017-01-01

    Systems and methods for imaging object velocity are provided. In an embodiment, at least one Time-of-Flight camera is used to capture a signal representative of an object in motion over an exposure time. Illumination and modulation frequency

  2. Principles of time-of-flight tomography

    International Nuclear Information System (INIS)

    Campagnolo, R.; Garderet, P.; Lecomte, J.L.; Bouvier, A.; Darier, P.; Soussaline, F.

    1983-03-01

    After a short introduction to the physics of time-of-flight positron tomography, the various aspects of this technique are presented. The characteristics including data acquisition and image reconstruction system of a positron tomograph (TTV01) which uses time-of-flight information, are described. The preliminary results obtained with TTV01, such as resolution and sensitivity, as well as phantom images, are presented [fr

  3. Modelling the X-ray powder diffraction of nitrogen-expanded austenite using the Debye formula

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas; Ståhl, Kenny

    2008-01-01

    Stress-free and homogeneous samples of nitrogen-expanded austenite, a defect-rich f.c.c. structure with a high interstitial nitrogen occupancy (between 0.36 and 0.61), have been studied using X-ray powder diffraction and Debye simulations. The simulations confirm the presence of deformation...... to be indistinguishable to X-ray powder diffraction....

  4. High throughput screening of ligand binding to macromolecules using high resolution powder diffraction

    Science.gov (United States)

    Von Dreele, Robert B.; D'Amico, Kevin

    2006-10-31

    A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.

  5. Multipole electron-density modelling of synchrotron powder diffraction data: the case of diamond

    DEFF Research Database (Denmark)

    Svendsen, H.; Overgaard, J.; Busselez, R.

    2010-01-01

    between experiment and theory, and the study therefore demonstrates that synchrotron powder diffraction can indeed provide accurate structure-factor values based on data measured in minutes with limited sample preparation. Thus, potential systematic errors such as extinction and twinning commonly......Accurate structure factors are extracted from synchrotron powder diffraction data measured on crystalline diamond based on a novel multipole model division of overlapping reflection intensities. The approach limits the spherical-atom bias in structure factors extracted from overlapping powder data...

  6. MacDUST - a powder diffraction package developed for the ''ADONE'' high resolution diffraction station

    International Nuclear Information System (INIS)

    Burattini, E.; Cappuccio, G.; Maistrelli, P.; Simeoni, S.

    1993-01-01

    A High Resolution Powder Diffraction Station (PO.DI.STA.) was installed at the beginning of 1991 on the ADONE-Wiggler magnet beam line. The station and the first powder diffraction spectra, collected with synchrotron radiation, were presented at the EPDIC-1 Conference. More details can also be found in. For this station, a very sophisticated software package ''MacDUST'' has been developed on an Apple Macintosh computer, using the Microsoft QuickBASIC compiler. It allows very easy and comfortable operations by means of a graphical user interface environment, typical of the Macintosh system. The package consists of five major programs. The main program, MacDIFF, performs all the graphic operations on the experimental data, including zooming, overlapping, cursor scanning and editing of patterns, control of output operations to printers and HPGL plotters. It also includes several analysis routines for data smoothing, a first derivative peak search algorithm, two background subtraction routines and two profile fitting programs: one based on the simplex method and the other on the Marquardt modification of a least-square algorithm. MacPDF and MacRIC are both dedicated to phase identification. The first program is an archive manager for searching, displaying and printing phase records; MacRIC is a graphic aided search-match program based on the Hanawalt algorithm. Mac3-DIM is a plot program, useful, e.g., for representing kinetics three dimensionally. MacRIET is a Macintosh version of the well known Rietveld refinement program. This version, besides conventional structure refinements, also allows the determination of micro structural parameters, i.e. micro strain and crystallite size. The program can also be used to simulate a pattern, once the structure of the compound is known. Taking advantage of the very intuitive Macintosh graphic user interface, through dialog and alert boxes, the program allows straightforward introduction and modification of the structure

  7. Thin Time-Of-Flight PET project

    CERN Multimedia

    The pre-R&D aims at designing and producing a compact and thin Time-Of-Flight PET detector device with depth of interaction measurement capability, which employs layered silicon sensors as active material, with a readout consisting of a new generation of very-low noise and very fast electronics based on SiGe Heterojunction Bipolar Transistors (HBT) components.

  8. A time-focusing Fourier chopper time-of-flight diffractometer for large scattering angles

    International Nuclear Information System (INIS)

    Heinonen, R.; Hiismaeki, P.; Piirto, A.; Poeyry, H.; Tiitta, A.

    1975-01-01

    A high-resolution time-of-flight diffractometer utilizing time focusing principles in conjunction with a Fourier chopper is under construction at Otaniemi. The design is an improved version of a test facility which has been used for single-crystal and powder diffraction studies with promising results. A polychromatic neutron beam from a radial beam tube of the FiR 1 reactor, collimated to dia. 70 mm, is modulated by a Fourier chopper (dia. 400 mm) which is placed inside a massive boron-loaded particle board shielding of 900 mm wall thickness. A thin flat sample (5 mm x dia. 80 mm typically) is mounted on a turntable at a distance of 4 m from the chopper, and the diffracted neutrons are counted by a scintillation detector at 4 m distance from the sample. The scattering angle 2theta can be chosen between 90deg and 160deg to cover Bragg angles from 45deg up to 80deg. The angle between the chopper disc and the incident beam direction as well as the angle of the detector surface relative to the diffracted beam can be adjusted between 45deg and 90deg in order to accomplish time-focusing. In our set-up, with equal flight paths from chopper to sample and from sample to detector, the time-focusing conditions are fulfilled when the chopper and the detector are parallel to the sample-plane. The time-of-flight spectrum of the scattered neutrons is measured by the reverse time-of-flight method in which, instead of neutrons, one essentially records the modulation function of the chopper during constant periods preceding each detected neutron. With a Fourier chopper whose speed is varied in a suitable way, the method is equivalent to the conventional Fourier method but the spectrum is obtained directly without any off-line calculations. The new diffractometer is operated automatically by a Super Nova computer which not only accumulates the synthetized diffraction pattern but also controls the chopper speed according to the modulation frequency sweep chosen by the user to obtain a

  9. Rietveld profile analysis of calcined AlPO/sub 4/-11 using pulsed neutron powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, J.W. Jr.; Pluth, J.J.; Smith, J.V.

    1988-08-01

    Aluminium phosphate, AlPO/sub 4/, M/sub r/=121.95, orthorhombic, Icmm (disordered Al, P), Icm2 (ordered Al, P), a=13.5333(8), b=18.4845(10), c=8.3703(4) A, V=2094 A/sup 3/, Z=20, D/sub x/=1.93 g cm/sup -3/, T approx. = 295 K, R/sub wp/=0.031, R/sub F//sup 2/=0.109 (Icmm) and R/sub wp/=0.027, R/sub F//sup 2/=0.058 (Icm2) for 1017 independent reflections. Sample calcined at 873 K and dehydrated at 573 K. Time-of-flight neutron powder diffraction data were taken on the GPPD diffractometer at the Argonne National Laboratory Intense Pulsed Neutron Source. The structure was refined by Rietveld profile analysis in the range d=0.86-3.91 A in two space groups: Icmm assuming no ordering of Al and P, and Icm2 assuming strict alternation of Al and P on tetrahedral nodes. (orig./BHo).

  10. Nanocrystallite characterization of milled simulated dry process fuel powders by neutron diffraction

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Kang, Kwon Ho; Moon, Je Sun; Song, Kee Chan; Choi, Yong Nam

    2003-01-01

    The nano-scale crystallite sizes of simulated spent fuel powders were measured by the neutron diffraction line broadening method in order to analyze the sintering behavior of the dry process fuel. The mixed U0 2 and fission product oxide powders were dry-milled in an attritor for 30, 60, and 120 min. The diffraction patterns of the powders were obtained by using the high resolution powder diffractometer in the HANARO research reactor. Diffraction line broadening due to crystallite size was measured using various techniques such as the Stokes' deconvolution, profile fitting methods using Cauchy function, Gaussian function, and Voigt function, and the Warren-Averbach method. The r.m.s. strain, stacking fault, twin and dislocation density were measured using the information from the diffraction pattern. The realistic crystallite size can be obtained after separation of the contribution from the non-uniform strain, stacking fault and twin

  11. The ARGUS time-of-flight system

    International Nuclear Information System (INIS)

    Heller, R.; Klinger, T.; Salomon, R.; Schubert, K.R.; Stiewe, J.; Waldi, R.; Weseler, S.

    1985-01-01

    The time-of-flight system of the ARGUS detector at the DORIS e + e - storage ring consists of 64 barrel scintillation counters covering 75% of 4π, and 2x48 end cap counters, covering 17% of 4π. The barrel counters are viewed by two phototubes each, while the end cap counters have one tube only. The time-of-flight system serves as a part of the fast trigger and identifies charged particles. The time resolution achieved during the first year of ARGUS operation is 210 ps for Bhabhas (which are used for the off-line monitoring of the system), and 220 ps for hadrons, both in barrel and end cap counters. This converts into a three standard deviation mass separation up to 700 MeV/c between pions and kaons and 1200 MeV/c between kaons and protons. Electrons can be separated from heavier particles up to 230 MeV/c. (orig.)

  12. SHMS Hodoscopes and Time of Flight System

    Science.gov (United States)

    Craycraft, Kayla; Malace, Simona

    2017-09-01

    As part of the Thomas Jefferson National Accelerator Facility's (Jefferson Lab) upgrade from 6 GeV to 12 GeV, a new magnetic focusing spectrometer, the Super High Momentum Spectrometer (SHMS), was installed in experimental Hall C. The detector stack consists of horizontal drift chambers for tracking, gas Cerenkov and Aerogel detectors and a lead glass calorimeter for particle identification. A hodoscope system consisting of three planes of scintillator detectors (constructed by James Madison University) and one plane of quartz bars (built by North Carolina A&T State University) is used for triggering and time of flight measurements. This presentation consists of discussion of the installation, calibration, and characterization of the detectors used in this Time of Flight system. James Madison University, North Carolina A&T State University.

  13. Monitoring protein precipitates by in-house X-ray powder diffraction

    DEFF Research Database (Denmark)

    Ståhl, Kenny; Frankær, Christian Grundahl; Petersen, Jakob

    2013-01-01

    of such calculated powder patterns from insulin and lysozyme have been included in the powder diffraction database and successfully used for search-match identification. However, the fit could be much improved if peak asymmetry and multiple bulk-solvent corrections were included. When including a large number...

  14. In-situ time-of-flight neutron diffraction study of the structure evolution of electrode materials in a commercial battery with LiNi0.8Co0.15Al0.05O2 cathode

    Science.gov (United States)

    Bobrikov, I. A.; Samoylova, N. Yu.; Sumnikov, S. V.; Ivanshina, O. Yu.; Vasin, R. N.; Beskrovnyi, A. I.; Balagurov, A. M.

    2017-12-01

    A commercial lithium-ion battery with LiNi0.8Co0.15Al0.05O2 (NCA) cathode has been studied in situ using high-intensity and high-resolution neutron diffraction. Structure and phase composition of the battery electrodes have been probed during charge-discharge in different cycling modes. The dependence of the anode composition on the charge rate has been determined quantitatively. Different kinetics of Li (de)intercalation in the graphite anode during charge/discharge process have been observed. Phase separation of the cathode material has not been detected in whole voltage range. Non-linear dependencies of the unit cell parameters, atomic and layer spacing on the lithium content in the cathode have been observed. Measured dependencies of interatomic spacing and interlayer spacing, and unit cell parameters of the cathode structure on the lithium content could be qualitatively explained by several factors, such as variations of oxidation state of cation in oxygen octahedra, Coulomb repulsion of oxygen layers, changes of average effective charge of oxygen layers and van der Waals interactions between MeO2-layers at high level of the NCA delithiation.

  15. Polarized neutron powder diffraction studies of antiferromagnetic order in bulk and nanoparticle NiO

    DEFF Research Database (Denmark)

    Brok, Erik; Lefmann, Kim; Deen, Pascale P.

    2015-01-01

    surface contribution to the magnetic anisotropy. Here we explore the potential use of polarized neutron diffraction to reveal the magnetic structure in NiO bulk and nanoparticle powders by applying the XYZ-polarization analysis method. Our investigations address in particular the spin orientation in bulk....... The results show that polarization analyzed neutron powder diffraction is a viable method to investigate magnetic order in powders of antiferromagnetic nanoparticles.......In many materials it remains a challenge to reveal the nature of magnetic correlations, including antiferromagnetism and spin disorder. Revealing the spin structure in magnetic nanoparticles is further complicated by the large incoherent neutron scattering cross section from water adsorbed...

  16. Time-of-flight neutron diffractometer for monocrystal study

    International Nuclear Information System (INIS)

    Anan'ev, B.N.; Balagurov, A.M.; Barabash, I.P.; Georgiu, Z.; Shibaev, V.D.

    1979-01-01

    The design of a neutron diffractometer is discussed. It is used for structural analysis of single crystals on the basis of time-of-flight measurements. The diffractometer is positioned along the axis of a beam of the IBR-30 pulse reactor, its average power is 29 kW. The mechanical part of the diffractometer consists of a massive foundation with a threeaxial goniometer, a rotatable platform with a collimator and a 3 He counter. The flowsheet of a control unit is given, which is used to position the rotatable platform of the diffractometer. The control unit includes a 14 digic binary counter for rotation angle recording, a parallel-to-series converter, a control signal shaper, two position shift registers, and a servo mechanism. The accuracy of diffraction maxima is evaluated. It is found that the ratio D(t)sup(1/2)/t (D(t) is a time dispersion of diffraction maxima, t is total time-of-flight time), which characterize the resolution of the diffractometer, is equal to 0.5% at the Bragg angle Q=45 deg and the neutron wavelength Λ=1 A

  17. X-ray powder diffraction in forensic practice

    Czech Academy of Sciences Publication Activity Database

    Kotrlý, M.; Bezdička, Petr

    2006-01-01

    Roč. 13, č. 3 (2006), s. 153-155 ISSN 1210-8529 R&D Projects: GA MV RN20052005001 Institutional research plan: CEZ:AV0Z40320502 Keywords : X-ray powder microdiffraction * pigments * forensic practice Subject RIV: CA - Inorganic Chemistry

  18. Time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Ivanov, M.A.; Kozlov, B.N.; Mamyrin, B.A.; Shmikk, D.V.; Shebelin, V.G.

    1981-01-01

    A time-of-flight mass spectrometer containing a pulsed ion source with an electron gun and two electrodes limiting ionization range, drift space and ion acceptor, is described. To expand functional possibilities, a slot collimator of the gas stream, two quantum generators and two diaphragms for the inlet of quantum generator radiation located on both sides of the ion source, are introduced in the ion source. The above invention enables to study details of the complex interaction process of laser radiation with molecules of the gas stream, which is actual for laser isotope separation

  19. Doppler time-of-flight imaging

    KAUST Repository

    Heide, Felix

    2015-07-30

    Over the last few years, depth cameras have become increasingly popular for a range of applications, including human-computer interaction and gaming, augmented reality, machine vision, and medical imaging. Many of the commercially-available devices use the time-of-flight principle, where active illumination is temporally coded and analyzed on the camera to estimate a per-pixel depth map of the scene. In this paper, we propose a fundamentally new imaging modality for all time-of-flight (ToF) cameras: per-pixel velocity measurement. The proposed technique exploits the Doppler effect of objects in motion, which shifts the temporal frequency of the illumination before it reaches the camera. Using carefully coded illumination and modulation frequencies of the ToF camera, object velocities directly map to measured pixel intensities. We show that a slight modification of our imaging system allows for color, depth, and velocity information to be captured simultaneously. Combining the optical flow computed on the RGB frames with the measured metric axial velocity allows us to further estimate the full 3D metric velocity field of the scene. We believe that the proposed technique has applications in many computer graphics and vision problems, for example motion tracking, segmentation, recognition, and motion deblurring.

  20. The TORCH time-of-flight detector

    Energy Technology Data Exchange (ETDEWEB)

    Harnew, N., E-mail: Neville.Harnew@physics.ox.ac.uk [University of Oxford, Denys Wilkinson Building, 1 Keble Road, Oxford OX1 3RH (United Kingdom); Brook, N. [University College London, Department of Physics & Astronomy, Gower Street, London WC1E 6BT (United Kingdom); Castillo García, L. [CERN, PH Department, CH-1211 Geneva 23 (Switzerland); Laboratory for High Energy Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Cussans, D. [H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Föhl, K.; Forty, R.; Frei, C. [CERN, PH Department, CH-1211 Geneva 23 (Switzerland); Gao, R. [University of Oxford, Denys Wilkinson Building, 1 Keble Road, Oxford OX1 3RH (United Kingdom); Gys, T.; Piedigrossi, D. [CERN, PH Department, CH-1211 Geneva 23 (Switzerland); Rademacker, J.; Ros Garcia, A.; Dijk, M. van [H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom)

    2016-07-11

    The TORCH time-of-flight detector is being developed to provide particle identification between 2 and 10 GeV/c momentum over a flight distance of 10 m. TORCH is designed for large-area coverage, up to 30 m{sup 2}, and has a DIRC-like construction. The goal is to achieve a 15 ps time-of-flight resolution per incident particle by combining arrival times from multiple Cherenkov photons produced within quartz radiator plates of 10 mm thickness. A four-year R&D programme is underway with an industrial partner (Photek, UK) to produce 53×53 mm{sup 2} Micro-Channel Plate (MCP) detectors for the TORCH application. The MCP-PMT will provide a timing accuracy of 40 ps per photon and it will have a lifetime of up to at least 5 Ccm{sup −2} of integrated anode charge by utilizing an Atomic Layer Deposition (ALD) coating. The MCP will be read out using charge division with customised electronics incorporating the NINO chipset. Laboratory results on prototype MCPs are presented. The construction of a prototype TORCH module and its simulated performance are also described.

  1. Doppler time-of-flight imaging

    KAUST Repository

    Heidrich, Wolfgang

    2017-02-16

    Systems and methods for imaging object velocity are provided. In an embodiment, at least one Time-of-Flight camera is used to capture a signal representative of an object in motion over an exposure time. Illumination and modulation frequency of the captured motion are coded within the exposure time. A change of illumination frequency is mapped to measured pixel intensities of the captured motion within the exposure time, and information about a Doppler shift in the illumination frequency is extracted to obtain a measurement of instantaneous per pixel velocity of the object in motion. The radial velocity information of the object in motion can be simultaneously captured for each pixel captured within the exposure time. In one or more aspects, the illumination frequency can be coded orthogonal to the modulation frequency of the captured motion. The change of illumination frequency can correspond to radial object velocity.

  2. Time of flight spectroscopy with muonic hydrogen

    International Nuclear Information System (INIS)

    Marshall, G.M.; Bailey, J.M.; Beer, G.A.

    1993-01-01

    Time of flight techniques coupled with muonic deuterium and tritium atoms in vacuum can be used to measure parameters important in the understanding of muon catalyzed fusion interactions. Muonic deuterium atomic beams with energy of order 1 eV have been produced via transfer and emission from solid hydrogen containing small deuterium concentrations. Measurements of energy loss in pure deuterium are presented which test calculations of σ μd+D . Muonic tritium beams should be produced in a similar way, with an energy distribution which overlaps the predicted muonic molecular (dμt) formation resonances. The existence of resonances is crucial for high cycling rates in muon catalyzed fusion, but direct experimental verification of strengths and energies is not yet possible by other means. Results of simulations demonstrate how the resonance structure might be confirmed

  3. Vibrational spectra, powder X-ray diffractions and physical properties of cyanide complexes with 1-ethylimidazole

    Science.gov (United States)

    Kürkçüoğlu, Güneş Süheyla; Kiraz, Fulya Çetinkaya; Sayın, Elvan

    2015-10-01

    The heteronuclear tetracyanonickelate(II) complexes of the type [M(etim)Ni(CN)4]n (hereafter, abbreviated as M-Ni-etim, M = Mn(II), Fe(II) or Co(II); etim = 1-ethylimidazole, C5H8N2) were prepared in powder form and characterized by FT-IR and Raman spectroscopy, powder X-ray diffraction (PXRD), thermal (TG; DTG and DTA), and elemental analysis techniques. The structures of these complexes were elucidated using vibrational spectra and powder X-ray diffraction patterns with the peak assignment to provide a better understanding of the structures. It is shown that the spectra are consistent with a proposed crystal structure for these compounds derived from powder X-ray diffraction measurements. Vibrational spectra of the complexes were presented and discussed with respect to the internal modes of both the etim and the cyanide ligands. The C, H and N analyses were carried out for all the complexes. Thermal behaviors of these complexes were followed using TG, DTG and DTA curves in the temperature range 30-700 °C in the static air atmosphere. The FT-IR, Raman spectra, thermal and powder X-ray analyses revealed no significant differences between the single crystal and powder forms. Additionally, electrical and magnetic properties of the complexes were investigated. The FT-IR and Raman spectroscopy, PXRD, thermal and elemental analyses results propose that these complexes are similar in structure to the Hofmann-type complexes.

  4. Beamline I11 at Diamond: a new instrument for high resolution powder diffraction.

    Science.gov (United States)

    Thompson, S P; Parker, J E; Potter, J; Hill, T P; Birt, A; Cobb, T M; Yuan, F; Tang, C C

    2009-07-01

    The performance characteristics of a new synchrotron x-ray powder diffraction beamline (I11) at the Diamond Light Source are presented. Using an in-vacuum undulator for photon production and deploying simple x-ray optics centered around a double-crystal monochromator and a pair of harmonic rejection mirrors, a high brightness and low bandpass x-ray beam is delivered at the sample. To provide fast data collection, 45 Si(111) analyzing crystals and detectors are installed onto a large and high precision diffractometer. High resolution powder diffraction data from standard reference materials of Si, alpha-quartz, and LaB6 are used to characterize instrumental performance.

  5. ZDS - a computer program for analysis of X-ray powder diffraction patterns

    International Nuclear Information System (INIS)

    Ondrus, P.

    1993-01-01

    The ZDS system creates an integrated environment of procedures for complete and precise analysis of raw powder diffraction patterns. The basis of the ZDS system is a graphic control centre for easy and user-friendly application of all included procedures. It offers a number of application procedures without an interaction with any data base. The program operates either in an automatic or manual mode. The manual mode makes possible specialized applications. The input and output of the data are compatible with Philips and Siemens powder diffraction software. The ZDS system runs with Intel 80286 or 80386-based PC computers with or without math-coprocesor. (orig.)

  6. X-ray diffraction microstructural analysis of bimodal size distribution MgO nano powder

    International Nuclear Information System (INIS)

    Suminar Pratapa; Budi Hartono

    2009-01-01

    Investigation on the characteristics of x-ray diffraction data for MgO powdered mixture of nano and sub-nano particles has been carried out to reveal the crystallite-size-related microstructural information. The MgO powders were prepared by co-precipitation method followed by heat treatment at 500 degree Celsius and 1200 degree Celsius for 1 hour, being the difference in the temperature was to obtain two powders with distinct crystallite size and size-distribution. The powders were then blended in air to give the presumably bimodal-size- distribution MgO nano powder. High-quality laboratory X-ray diffraction data for the powders were collected and then analysed using Rietveld-based MAUD software using the lognormal size distribution. Results show that the single-mode powders exhibit spherical crystallite size (R) of 20(1) nm and 160(1) nm for the 500 degree Celsius and 1200 degree Celsius data respectively with the nano metric powder displays narrower crystallite size distribution character, indicated by lognormal dispersion parameter of 0.21 as compared to 0.01 for the sub-nano metric powder. The mixture exhibits relatively more asymmetric peak broadening. Analysing the x-ray diffraction data for the latter specimen using single phase approach give unrealistic results. Introducing two phase models for the double-phase mixture to accommodate the bimodal-size-distribution characteristics give R = 100(6) and σ = 0.62 for the nano metric phase and R = 170(5) and σ= 0.12 for the σ sub-nano metric phase. (author)

  7. Digital Image Correlation of 2D X-ray Powder Diffraction Data for Lattice Strain Evaluation

    Directory of Open Access Journals (Sweden)

    Hongjia Zhang

    2018-03-01

    Full Text Available High energy 2D X-ray powder diffraction experiments are widely used for lattice strain measurement. The 2D to 1D conversion of diffraction patterns is a necessary step used to prepare the data for full pattern refinement, but is inefficient when only peak centre position information is required for lattice strain evaluation. The multi-step conversion process is likely to lead to increased errors associated with the ‘caking’ (radial binning or fitting procedures. A new method is proposed here that relies on direct Digital Image Correlation analysis of 2D X-ray powder diffraction patterns (XRD-DIC, for short. As an example of using XRD-DIC, residual strain values along the central line in a Mg AZ31B alloy bar after 3-point bending are calculated by using both XRD-DIC and the conventional ‘caking’ with fitting procedures. Comparison of the results for strain values in different azimuthal angles demonstrates excellent agreement between the two methods. The principal strains and directions are calculated using multiple direction strain data, leading to full in-plane strain evaluation. It is therefore concluded that XRD-DIC provides a reliable and robust method for strain evaluation from 2D powder diffraction data. The XRD-DIC approach simplifies the analysis process by skipping 2D to 1D conversion, and opens new possibilities for robust 2D powder diffraction data analysis for full in-plane strain evaluation.

  8. Digital Image Correlation of 2D X-ray Powder Diffraction Data for Lattice Strain Evaluation

    Science.gov (United States)

    Zhang, Hongjia; Sui, Tan; Daisenberger, Dominik; Fong, Kai Soon

    2018-01-01

    High energy 2D X-ray powder diffraction experiments are widely used for lattice strain measurement. The 2D to 1D conversion of diffraction patterns is a necessary step used to prepare the data for full pattern refinement, but is inefficient when only peak centre position information is required for lattice strain evaluation. The multi-step conversion process is likely to lead to increased errors associated with the ‘caking’ (radial binning) or fitting procedures. A new method is proposed here that relies on direct Digital Image Correlation analysis of 2D X-ray powder diffraction patterns (XRD-DIC, for short). As an example of using XRD-DIC, residual strain values along the central line in a Mg AZ31B alloy bar after 3-point bending are calculated by using both XRD-DIC and the conventional ‘caking’ with fitting procedures. Comparison of the results for strain values in different azimuthal angles demonstrates excellent agreement between the two methods. The principal strains and directions are calculated using multiple direction strain data, leading to full in-plane strain evaluation. It is therefore concluded that XRD-DIC provides a reliable and robust method for strain evaluation from 2D powder diffraction data. The XRD-DIC approach simplifies the analysis process by skipping 2D to 1D conversion, and opens new possibilities for robust 2D powder diffraction data analysis for full in-plane strain evaluation. PMID:29543728

  9. Qualitative analysis of powder x-ray diffraction data

    International Nuclear Information System (INIS)

    Raftery, T.

    1999-01-01

    Full text: The main task of qualitative analysis is the determination of the presence of major, minor and if practical trace phases in a sample. The attainment of this goal is dependent on the quality of alignment (line position and intensity) as well as quality of sample preparation. Identification is generally on the basis of structure and dependent on the use of reference patterns. There are inherent limitations to the use of reference patterns including lack of reference patterns for the phase of interest (rare), solid solutions or substitutions (likely) and poor quality of reference patterns (unusual). With multiphase samples, there are the added problems of line overlap or interference, determining minor or trace phases in the presence of major phases, the decrease of intensity with concentration and influence of mass absorption on intensities. Within multiphase samples there may be many phases, some of which are in low abundance. It is sometimes possible (and usually desirable) to fractionate the sample by some physical or chemical method (while attempting not to create new phases as a result). It is usually important and often critical to have available supplementary information about the sample - either chemical or physical, or a history of preparation or formation. A central issue is what constitutes a match. A match is an adequate accounting of the distribution of intensity in the diffraction pattern. The match can be thought of in terms of a sum of δ2θ (or δd/d) and/or δI/I ref , and the consistency with known information. The calculated measures give rise to the figures of merit (FOM) of search match programs. It must always be remembered that two compounds of the same space group and similar cell parameters (eg. FCC metals) are going to have very similar diffraction patterns - any search/match technique usually arrives at a stage where there is a list of possibilities that must be decided between. The range search-match techniques span manual

  10. Acquiring the fundamentals: an accredited powder diffraction course on the internet

    International Nuclear Information System (INIS)

    Crockcroft, J.K.; Barnes, P.; Attfield, M.P.; Cranswick, L.M.D.

    2002-01-01

    Full text: In August 1999, building on accredited academic-based crystallographic web courses pioneered by Birkbeck College, University of London, for Protein Crystallography and Principles of Protein Structure, a new 'Advanced Certificate in Powder Diffraction' was officially announced at the International Union of Crystallography congress in Glasgow. Offering tuition via the Internet on the fundamentals in powder diffraction, it is now running successfully into its third year. The background of student intake ranges from new PhD students to scientists, technicians and X-ray analysts in commercial companies. The work for this 1 year long course, takes around 6 to 8 hours a week to complete; and should not be considered equivalent to recreational web browsing, but as serious study. If this course is done as part of staff training and development, it is important that the employer recognize this; and that adequate training time is set aside as part of the working week. The 'Advanced Certificate in Powder Diffraction' is assessed by a mixture of 'coursework', computer based data analysis project and a formal written exam taken at a local university. To obtain the full qualification, the exam must be taken, but it is optional if only training and no formal qualification is required. The course content covers a broad range of knowledge required for an 'understanding' of powder diffraction. These include the Internet Skills required to do the course, Diffraction Instrumentation, Laboratory Methods, Synchrotron Sources and Methods, Neutron Sources, Diffraction Theory, Electron Scattering to Structure Factors, Structure Factors to Diffraction Intensities, the concept of Symmetry to 3-D Symmetry Elements, Point Groups, Space Groups, Space-Group Determination, Interpreting the IUCr International Tables, Qualitative Analysis, Quantitative Analysis, Indexing, Unit-Cell Refinement, Peak Shapes, Structure Refinement and the Rietveld Method, Modern Techniques and Applications

  11. Crystal structure determination from powder diffraction data of the coumarin vanillin chalcone

    Czech Academy of Sciences Publication Activity Database

    Ghouili, A.; Rohlíček, Jan; Ayed, T.B.; Hassen, R.B.

    2014-01-01

    Roč. 29, č. 4 (2014), s. 361-365 ISSN 0885-7156 Grant - others:AV ČR(CZ) Praemium Academiae Institutional support: RVO:68378271 Keywords : chalcone * absorption spectra * powder diffraction * crystal structure determination * coumarin derivatives Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.636, year: 2014

  12. Dihydroxycoumarin Schiff base synthesis and structure determination from powder diffraction data

    Czech Academy of Sciences Publication Activity Database

    Rohlíček, Jan; Ketata, I.; Ben Ayed, T.; Ben Hassen, R.

    2013-01-01

    Roč. 1051, NOV (2013), s. 280-284 ISSN 0022-2860 Grant - others:AV ČR(CZ) AP0701 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378271 Keywords : powder diffraction * structure solution * Schiff base * dihydroxycoumarine Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.599, year: 2013

  13. Application of the ellipsoid modeling of the average shape of nanosized crystallites in powder diffraction

    DEFF Research Database (Denmark)

    Katerinopoulou, Anna; Balic Zunic, Tonci; Lundegaard, Lars Fahl

    2012-01-01

    Anisotropic broadening correction in X-ray powder diffraction by an ellipsoidal formula is applied on samples with nanosized crystals. Two cases of minerals with largely anisotropic crystallite shapes are presented. The properly applied formalism not only improves the fitting of the theoretical...

  14. Soft x-ray resonant magnetic powder diffraction on PrNiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Staub, U [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); GarcIa-Fernandez, M [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Mulders, A M [Department of Applied Physics, Curtin University of Technology, GPO Box U1987, Perth WA 6845 (Australia); Bodenthin, Y [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); MartInez-Lope, M J [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); Alonso, J A [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain)

    2007-03-07

    We report on the first soft x-ray resonant powder diffraction experiments performed at the Ni L{sub 2,3} edges of PrNiO{sub 3}. The temperature, polarization and energy dependence of the (1/2 0 1/2) reflection indicates a magnetic origin for the signal. This experiment demonstrates that x-ray resonant magnetic powder diffraction can be relatively easily performed in the soft x-ray regime due to the very large enhancement factors at the absorption edges. Such experiments allow us to extract important information on the electronic states of the d shell. Similar results can be anticipated from orbital reflections measured in a powder. (fast track communication)

  15. Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders.

    Science.gov (United States)

    Yun, Yifeng; Zou, Xiaodong; Hovmöller, Sven; Wan, Wei

    2015-03-01

    Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED) data collection, namely automated diffraction tomography (ADT) and rotation electron diffraction (RED), have been developed. Compared with X-ray diffraction (XRD) and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD) provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni-Se-O-Cl crystals, zeolites, germanates, metal-organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three-dimensional ED methods

  16. Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders

    Directory of Open Access Journals (Sweden)

    Yifeng Yun

    2015-03-01

    Full Text Available Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED data collection, namely automated diffraction tomography (ADT and rotation electron diffraction (RED, have been developed. Compared with X-ray diffraction (XRD and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni–Se–O–Cl crystals, zeolites, germanates, metal–organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three

  17. Rietveld analysis using powder diffraction data with anomalous scattering effect obtained by focused beam flat sample method

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Masahiko, E-mail: masahiko@spring8.or.jp; Katsuya, Yoshio, E-mail: katsuya@spring8.or.jp; Sakata, Osami, E-mail: SAKATA.Osami@nims.go.jp [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2016-07-27

    Focused-beam flat-sample method (FFM) is a new trial for synchrotron powder diffraction method, which is a combination of beam focusing optics, flat shape powder sample and area detectors. The method has advantages for X-ray diffraction experiments applying anomalous scattering effect (anomalous diffraction), because of 1. Absorption correction without approximation, 2. High intensity X-rays of focused incident beams and high signal noise ratio of diffracted X-rays 3. Rapid data collection with area detectors. We applied the FFM to anomalous diffraction experiments and collected synchrotron X-ray powder diffraction data of CoFe{sub 2}O{sub 4} (inverse spinel structure) using X-rays near Fe K absorption edge, which can distinguish Co and Fe by anomalous scattering effect. We conducted Rietveld analyses with the obtained powder diffraction data and successfully determined the distribution of Co and Fe ions in CoFe{sub 2}O{sub 4} crystal structure.

  18. Rietveld analysis using powder diffraction data with anomalous scattering effect obtained by focused beam flat sample method

    International Nuclear Information System (INIS)

    Tanaka, Masahiko; Katsuya, Yoshio; Sakata, Osami

    2016-01-01

    Focused-beam flat-sample method (FFM) is a new trial for synchrotron powder diffraction method, which is a combination of beam focusing optics, flat shape powder sample and area detectors. The method has advantages for X-ray diffraction experiments applying anomalous scattering effect (anomalous diffraction), because of 1. Absorption correction without approximation, 2. High intensity X-rays of focused incident beams and high signal noise ratio of diffracted X-rays 3. Rapid data collection with area detectors. We applied the FFM to anomalous diffraction experiments and collected synchrotron X-ray powder diffraction data of CoFe_2O_4 (inverse spinel structure) using X-rays near Fe K absorption edge, which can distinguish Co and Fe by anomalous scattering effect. We conducted Rietveld analyses with the obtained powder diffraction data and successfully determined the distribution of Co and Fe ions in CoFe_2O_4 crystal structure.

  19. Application of new synchrotron powder diffraction techniques to anomalous scattering from glasses

    International Nuclear Information System (INIS)

    Beno, M.A.; Knapp, G.S.; Armand, P.; Price, D.L.; Saboungi, M.

    1995-01-01

    We have applied two synchrotron powder diffraction techniques to the measurement of high quality anomalous scattering diffraction data for amorphous materials. One of these methods, which uses a curved perfect crystal analyzer to simultaneously diffract multiple powder lines into a position sensitive detector has been shown to possess high resolution, low background, and very high counting rates. This data measurement technique provides excellent energy resolution while minimizing systematic errors resulting from detector nonlinearity. Anomalous scattering data for a Cesium Germanate glass collected using this technique will be presented. The second powder diffraction technique uses a flat analyzer crystal to deflect multiple diffraction lines out of the equatorial plane. Calculations show that this method possesses sufficient energy resolution for anomalous scattering experiments when a perfect crystal analyzer is used and is experimentally much simpler. Future studies will make use of a rapid sample changer allowing the scattering from the sample and a standard material (a material not containing the anomalous scatterer) to be measured alternately at each angle, reducing systematic errors due to beam instability or sample misalignment

  20. In Situ High Resolution Synchrotron X-Ray Powder Diffraction Studies of Lithium Batteries

    DEFF Research Database (Denmark)

    Amri, Mahrez; Fitch, Andy; Norby, Poul

    2015-01-01

    allowing diffraction information to be obtained from only the active material during battery operation [2]. High resolution synchrotron x-ray powder diffraction technique has been undertaken to obtain detailed structural and compositional information during lithiation/delithiation of commercial LiFePO4...... materials [3]. We report results from the first in situ time resolved high resolution powder diffraction experiments at beamline ID22/31 at the European Synchrotron Radiation Facility, ESRF. We follow the structural changes during charge of commercial LiFePO4 based battery materials using the Rietveld...... method. Conscientious Rietveld analysis shows slight but continuous deviation of lattice parameters from those of the fully stoichiometric end members LiFePO4 and FePO4 indicating a subsequent variation of stoichiometry during cathode delithiation. The application of an intermittent current pulses during...

  1. ENDIX. A computer program to simulate energy dispersive X-ray and synchrotron powder diffraction diagrams

    International Nuclear Information System (INIS)

    Hovestreydt, E.; Karlsruhe Univ.; Parthe, E.; Benedict, U.

    1987-01-01

    A Fortran 77 computer program is described which allows the simulation of energy dispersive X-ray and synchrotron powder diffraction diagrams. The input consists of structural data (space group, unit cell dimensions, atomic positional and displacement parameters) and information on the experimental conditions (chosen Bragg angle, type of X-ray tube and applied voltage or operating power of synchrotron radiation source). The output consists of the normalized intensities of the diffraction lines, listed by increasing energy (in keV), and of an optional intensity-energy plot. The intensities are calculated with due consideration of the wave-length dependence of both the anomalous dispersion and the absorption coefficients. For a better agreement between observed and calculated spectra provision is made to optionally superimpose, on the calculated diffraction line spectrum, all additional lines such as fluorescence and emission lines and escape peaks. The different effects which have been considered in the simulation are discussed in some detail. A sample calculation of the energy dispersive powder diffraction pattern of UPt 3 (Ni 3 Sn structure type) is given. Warning: the user of ENDIX should be aware that for a successful application it is necessary to adapt the program to correspond to the actual experimental conditions. Even then, due to the only approximately known values of certain functions, the agreement between observed and calculated intensities will not be as good as for angle dispersive diffraction methods

  2. Calculated powder x-ray diffraction data for three tantalum tungstates

    International Nuclear Information System (INIS)

    Holcombe, C.E. Jr.

    1976-11-01

    A study was made of computer-simulated powder x-ray diffraction data for Ta 22 W 4 O 67 , Ta 2 WO 8 , and Ta 16 W 18 O 94 --the three compounds in the Ta 2 O 5 --WO 3 system from 27 to 69 mole percent WO 3 . The crystal structures of Ta 2 WO 8 and one form of Ta 16 W 18 O 94 (Type B) were deduced from reported data. 8 tables

  3. Neutron powder diffraction studies of Hydrogen and Denterium in Palladium Phosphides

    International Nuclear Information System (INIS)

    Andersson, Y.

    1986-01-01

    The use of the Rietveld-type profile refinements on neutron powder diffraction intensity data for determining crystallographic positions of hydrogen and deuterium in metal hydrides is illustrated by results obtained on some hydrogenated and deuterated palladium phosphides. The structural features of the solid solutions of hydrogen and deuterium in Pd/sb15/P/sb2/ Pd/sb6/P and Pd/sb3/P/sb1-u/ (0< u<0.28) are briefly presented and discussed

  4. A high-resolution neutron powder diffraction study of neodymium doping in barium cerate

    DEFF Research Database (Denmark)

    Knight, K.S.; Bonanos, N.

    1995-01-01

    High-resolution neutron powder diffraction data have been collected on 6 perovskites of composition BaCe1-xNdxO3-x/(2), with 0 less than or equal to x less than or equal to 0.2, in which structural phase transitions Pmcn-->P4/mbm at x=0.05, and P4/mbm-->Pm3m at x=0.1, were inferred from a recent ...

  5. High-pressure powder x-ray diffraction experiments on Zn at low temperature

    CERN Document Server

    Takemura, K; Fujihisa, H; Kikegawa, T

    2002-01-01

    High-pressure powder x-ray diffraction experiments have been performed on Zn with a He-pressure medium at low temperature. When the sample was compressed in the He medium at low temperature, large nonhydrostaticity developed, yielding erroneous lattice parameters. On the other hand, when the pressure was changed at high temperatures, good hydrostaticity was maintained. No anomaly in the volume dependence of the c/a axial ratio has been found.

  6. Development of MnBi permanent magnet: Neutron diffraction of MnBi powder

    Energy Technology Data Exchange (ETDEWEB)

    Cui, J., E-mail: jun.cui@pnnl.gov; Choi, J. P.; Li, G.; Polikarpov, E.; Darsell, J. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354 (United States); Kramer, M. J.; Zarkevich, N. A.; Wang, L. L.; Johnson, D. D. [Materials Sciences and Engineering Division, Ames Laboratory, Ames, Iowa 50011 (United States); Marinescu, M. [Electron Energy Corporation, Landisville, Pennsylvania 17538 (United States); Huang, Q. Z.; Wu, H. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102 (United States); Vuong, N. V.; Liu, J. P. [Department of Physics, University of Texas at Arlington, Arlington, Texas 76019 (United States)

    2014-05-07

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained powder. The result shows that the purity of the obtained powder is about 91 wt. % at 300 K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 μ{sub B} at 50 K and 300 K, respectively.

  7. Development of MnBi permanent magnet: Neutron diffraction of MnBi powder

    Energy Technology Data Exchange (ETDEWEB)

    Cui, J; Choi, JP; Li, G; Polikarpov, E; Darsell, J; Kramer, MJ; Zarkevich, NA; Wang, LL; Johnson, DD; Marinescu, M; Huang, QZ; Wu, H; Vuong, NV; Liu, JP

    2014-05-07

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained powder. The result shows that the purity of the obtained powder is about 91 wt. % at 300 K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 mu(B) at 50 K and 300 K, respectively. (C) 2014 AIP Publishing LLC.

  8. Advances in X-ray powder diffraction profile analysis and its application in ceramic material studies

    International Nuclear Information System (INIS)

    Zhang, Y.

    1988-01-01

    This dissertation is concerned with the following major aspects: (1) the development of necessary computer codes to carry out X-ray powder diffraction profile analysis (XPDPA) calculations; (2) the establishment of a general reference material (GRM) which greatly extends the application of XPDPA and the study of the application of the GRM in profile analysis; (3) the determination of the coherent diffracting domain size and the lattice residual microstrain for some shock-modified and jet-milled materials. A computer code for diffraction profile refinement, XRAYL, fits a diffraction profile with any one of five mathematical functions, either as symmetric or asymmetric (split mode) forms. The resulting patterns meet the requirements for successful profile analysis of microstrain and crystallite size. Powder diffraction profile analysis requires an instrument calibration standard to correct data for instrumental profiles due to the system optics. A general reference material, LaB 6 , has been established. The pattern of this LaB 6 powder can be used to generate a reference pattern for any other substance. Through three applications, it has been shown that this LaB 6 sample can be used to remove the instrumental broadenings and gives reasonable size and strain estimates in the profile analysis of other materials. Many previous studies have shown that the solid state reactivity and physical properties of some ceramic materials can be substantially enhanced. XPDPA techniques have been used to study the plastic deformation and the reduction of crystallite size for eight shock-modified ceramic materials. The size and strain values of these materials are correlated with shock parameters

  9. High-pressure powder X-ray diffraction at the turn of the century

    International Nuclear Information System (INIS)

    Paszkowicz, W.

    2002-01-01

    Studies at extreme pressures and temperatures are helpful for understanding the physical properties of the solid state, including such classes of materials as semiconductors, superconductors or minerals. This is connected with the opportunity of tuning the pressure by many orders of magnitude. Diamond-anvil and large-anvil pressure cells installed at dedicated synchrotron beamlines are efficient tools for examination of crystal structure, equation of state, compressibility and phase transitions. One of basic methods in such studies is powder diffraction. This review is devoted to methods of powder X-ray diffraction at high-pressures generated by devices installed at synchrotron radiation sources, in particular to the principles of operation of high-pressure-high-temperature cells. General information on high-pressure diffraction facilities installed at 11 synchrotron storage rings in the world is provided. Measurement aspects are considered, including (i) pressure generation and calibration, (ii) strain in the sample, the pressure marker and the pressure-transmitting medium and (iii) pressure and temperature distributions within the cells. Sources of interest in high-pressure diffraction studies (design of new materials, observation of new phenomena, confrontation of theory with experiment) are briefly discussed. Recent developments of high-pressure methods make that pressure becomes a variable playing a key role in investigation of condensed matter. The paper ends with some remarks on the possible future developments of the technique

  10. Calculations of single crystal elastic constants for yttria partially stabilised zirconia from powder diffraction data

    Science.gov (United States)

    Lunt, A. J. G.; Xie, M. Y.; Baimpas, N.; Zhang, S. Y.; Kabra, S.; Kelleher, J.; Neo, T. K.; Korsunsky, A. M.

    2014-08-01

    Yttria Stabilised Zirconia (YSZ) is a tough, phase-transforming ceramic that finds use in a wide range of commercial applications from dental prostheses to thermal barrier coatings. Micromechanical modelling of phase transformation can deliver reliable predictions in terms of the influence of temperature and stress. However, models must rely on the accurate knowledge of single crystal elastic stiffness constants. Some techniques for elastic stiffness determination are well-established. The most popular of these involve exploiting frequency shifts and phase velocities of acoustic waves. However, the application of these techniques to YSZ can be problematic due to the micro-twinning observed in larger crystals. Here, we propose an alternative approach based on selective elastic strain sampling (e.g., by diffraction) of grain ensembles sharing certain orientation, and the prediction of the same quantities by polycrystalline modelling, for example, the Reuss or Voigt average. The inverse problem arises consisting of adjusting the single crystal stiffness matrix to match the polycrystal predictions to observations. In the present model-matching study, we sought to determine the single crystal stiffness matrix of tetragonal YSZ using the results of time-of-flight neutron diffraction obtained from an in situ compression experiment and Finite Element modelling of the deformation of polycrystalline tetragonal YSZ. The best match between the model predictions and observations was obtained for the optimized stiffness values of C11 = 451, C33 = 302, C44 = 39, C66 = 82, C12 = 240, and C13 = 50 (units: GPa). Considering the significant amount of scatter in the published literature data, our result appears reasonably consistent.

  11. Calculations of single crystal elastic constants for yttria partially stabilised zirconia from powder diffraction data

    Energy Technology Data Exchange (ETDEWEB)

    Lunt, A. J. G., E-mail: alexander.lunt@eng.ox.ac.uk; Xie, M. Y.; Baimpas, N.; Korsunsky, A. M. [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ (United Kingdom); Zhang, S. Y.; Kabra, S.; Kelleher, J. [ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell, Oxford OX11 0QX (United Kingdom); Neo, T. K. [Specialist Dental Group, Mount Elizabeth Orchard, 3 Mount Elizabeth, #08-03/08-08/08-10, Singapore 228510 (Singapore)

    2014-08-07

    Yttria Stabilised Zirconia (YSZ) is a tough, phase-transforming ceramic that finds use in a wide range of commercial applications from dental prostheses to thermal barrier coatings. Micromechanical modelling of phase transformation can deliver reliable predictions in terms of the influence of temperature and stress. However, models must rely on the accurate knowledge of single crystal elastic stiffness constants. Some techniques for elastic stiffness determination are well-established. The most popular of these involve exploiting frequency shifts and phase velocities of acoustic waves. However, the application of these techniques to YSZ can be problematic due to the micro-twinning observed in larger crystals. Here, we propose an alternative approach based on selective elastic strain sampling (e.g., by diffraction) of grain ensembles sharing certain orientation, and the prediction of the same quantities by polycrystalline modelling, for example, the Reuss or Voigt average. The inverse problem arises consisting of adjusting the single crystal stiffness matrix to match the polycrystal predictions to observations. In the present model-matching study, we sought to determine the single crystal stiffness matrix of tetragonal YSZ using the results of time-of-flight neutron diffraction obtained from an in situ compression experiment and Finite Element modelling of the deformation of polycrystalline tetragonal YSZ. The best match between the model predictions and observations was obtained for the optimized stiffness values of C11 = 451, C33 = 302, C44 = 39, C66 = 82, C12 = 240, and C13 = 50 (units: GPa). Considering the significant amount of scatter in the published literature data, our result appears reasonably consistent.

  12. In situ X-ray powder diffraction, synthesis, and magnetic properties of InVO 3

    Science.gov (United States)

    Lundgren, Rylan J.; Cranswick, Lachlan M. D.; Bieringer, Mario

    2006-12-01

    We report the first synthesis and high-temperature in situ X-ray diffraction study of InVO 3. Polycrystalline InVO 3 has been prepared via reduction of InVO 4 using a carbon monoxide/carbon dioxide buffer gas. InVO 3 crystallizes in the bixbyite structure in space group Ia-3 (206) with a=9.80636(31) Å with In 3+/V 3+ disorder on the (8 b) and (24 d) cation sites. In situ powder X-ray diffraction experiments and thermal gravimetric analysis in a CO/CO 2 buffer gas revealed the existence of the metastable phase InVO 3. Bulk samples with 98.5(2)% purity were prepared using low-temperature reduction methods. The preparative methods limited the crystallinity of this new phase to approximately 225(50) Å. Magnetic susceptibility and neutron diffraction experiments suggest a spin-glass ground state for InVO 3.

  13. Hybrid Powder - Single Crystal X-Ray Diffraction Instrument for Planetary Mineralogical Analysis of Unprepared Samples, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a planetary exploration XRD/XRF instrument based on a hybrid diffraction approach that complements powder XRD analysis, similar to that of the...

  14. A new parallel and GPU version of a TREOR-based algorithm for indexing powder diffraction data

    Czech Academy of Sciences Publication Activity Database

    Šimeček, I.; Rohlíček, Jan; Zahradnický, T.; Langr, D.

    2015-01-01

    Roč. 48, Feb (2015), 166-170 ISSN 0021-8898 Institutional support: RVO:68378271 Keywords : indexing powder diffraction * TREOR algorithm * GPGPU Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.720, year: 2014

  15. Fast X-ray powder diffraction on I11 at Diamond.

    Science.gov (United States)

    Thompson, Stephen P; Parker, Julia E; Marchal, Julien; Potter, Jonathan; Birt, Adrian; Yuan, Fajin; Fearn, Richard D; Lennie, Alistair R; Street, Steven R; Tang, Chiu C

    2011-07-01

    The commissioning and performance characterization of a position-sensitive detector designed for fast X-ray powder diffraction experiments on beamline I11 at Diamond Light Source are described. The detecting elements comprise 18 detector-readout modules of MYTHEN-II silicon strip technology tiled to provide 90° coverage in 2θ. The modules are located in a rigid housing custom designed at Diamond with control of the device fully integrated into the beamline data acquisition environment. The detector is mounted on the I11 three-circle powder diffractometer to provide an intrinsic resolution of Δ2θ approximately equal to 0.004°. The results of commissioning and performance measurements using reference samples (Si and AgI) are presented, along with new results from scientific experiments selected to demonstrate the suitability of this facility for powder diffraction experiments where conventional angle scanning is too slow to capture rapid structural changes. The real-time dehydrogenation of MgH(2), a potential hydrogen storage compound, is investigated along with ultrafast high-throughput measurements to determine the crystallite quality of different samples of the metastable carbonate phase vaterite (CaCO(3)) precipitated and stabilized in the presence of amino acid molecules in a biomimetic synthesis process.

  16. In situ observation and neutron diffraction of NiTi powder sintering

    International Nuclear Information System (INIS)

    Chen, Gang; Liss, Klaus-Dieter; Cao, Peng

    2014-01-01

    This study investigated NiTi powder sintering behaviour from elemental powder mixtures of Ni/Ti and Ni/TiH 2 using in situ neutron diffraction and in situ scanning electron microscopy. The sintered porous alloys have open porosities ranging from 2.7% to 36.0%. In comparison to the Ni/Ti compact, dehydrogenation occurring in the Ni/TiH 2 compact leads to less densification yet higher chemical homogenization only after high-temperature sintering. For the first time, direct evidence of the eutectoid phase transformation of NiTi at 620 °C is reported by in situ neutron diffraction. A comparative study of cyclic stress–strain behaviours of the porous NiTi alloys made from Ni/Ti and Ni/TiH 2 compacts indicate that the samples sintered from the Ni/TiH 2 compact exhibited a much higher porosity, larger pore size, lower fracture strength, lower close-to-overall porosity ratio and lower Young’s modulus. Instead of enhanced densification by the use of TiH 2 as reported in the literature, this study shows an adverse effect of TiH 2 on powder densification in NiTi

  17. Determination of crystal structures with large known fragments directly from measured X-ray powder diffraction intensities

    International Nuclear Information System (INIS)

    Rius, J.; Miravitlles, C.

    1988-01-01

    A strategy for the determination of crystal structures with large known fragments directly from measured X-ray powder diffraction intensities is presented. It is based on the automated full-symmetry Patterson search method described by Rius and Miravitlles where the Fourier coefficients of the observed Patterson function are modified to allow the use of powder diffraction intensity data. Its application to two structures, one with simulated and one with experimental data, is shown. (orig.)

  18. Structural characterisation of 1- and 2-dimensional transition metal polymers using powder neutron diffraction

    International Nuclear Information System (INIS)

    James, M.

    1999-01-01

    Powder neutron diffraction provides an alternate technique for the structural study of transition metal polymers and finds utility over standard X-ray methods in two significant ways. Firstly, due to a different instrument geometry, preferred orientation effects are removed from the system. The second advantage gained by utilising neutrons is that H atoms in the sample contribute much more to the nuclear scattering of the diffraction profile - allowing their atomic position to be accurately determined. In X-ray diffraction studies, where H atoms typically account for only ∼3-5% of the scattering from the sample, it is essentially impossible to refine their position in the molecular structure. The structures of several transition metal polymers have been determined using neutrons from the HIFAR reactor at ANSTO and the Powder Diffractometers HRPD and MRPD, along with Rietveld refinement methods. The 1-dimensional polymer dibromobis(thiazole)nickel(II) illustrated in the paper is characteristic of these types of systems which are comprised of transition metal centres bridged by halogen atoms with pendant amine side groups

  19. X-ray powder diffraction analysis of liquid-phase-sintered silicon carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, A.L.; Sanchez-Bajo, F. [Universidad de Extremadura, Badajoz (Spain). Dept. de Electronica e Ingenieria Electromecanica; Cumbrera, F.L. [Universidad de Extremadura, Badajoz (Spain). Dept. de Fisica

    2002-07-01

    In an attempt to gain a comprehensive understanding of the microstructural evolution in liquid-phase-sintered silicon carbide ceramics, the effect of the starting {beta}-SiC powder has been studied. Pellets of two different {beta}-SiC starting powders were sintered with simultaneous additions of Al{sub 2}O{sub 3} and Y{sub 2}O{sub 3} at 1950 C for 1 hour in flowing argon atmosphere. Here we have used X-ray diffraction to obtain the relative abundance of the resulting SiC polytypes after sintering. The significant influence of the defects concentration on the {beta} to {alpha} transformation rate has been determined using the Rietveld method. (orig.)

  20. Neutron xyz - polarization analysis at a time-of-flight instrument

    Energy Technology Data Exchange (ETDEWEB)

    Ehlers, Georg [ORNL; Stewart, John Ross [ISIS Facility, Rutherford Appleton Laboratory; Andersen, Ken [ESS

    2015-01-01

    When implementing a dedicated polarization analysis setup at a neutron time-of-flight instrument with a large area detector, one faces enormous challenges. Nevertheless, significant progress has been made towards this goal over the last few years. This paper addresses systematic limitations of the traditional method that is used to make these measurements, and a possible strategy to overcome these limitations. This will be important, for diffraction as well as inelastic experiments, where the scattering occurs mostly out-of-plane.

  1. Time-of-flight studies of multiple Bragg reflections in cylindrically bent perfect crystals

    Czech Academy of Sciences Publication Activity Database

    Mikula, Pavol; Furusaka, M.; Ohkubob, K.; Šaroun, Jan

    2012-01-01

    Roč. 45, č. 12 (2012), s. 1248-1253 ISSN 0021-8898 R&D Projects: GA AV ČR KJB100480901; GA ČR GAP204/10/0654 Institutional support: RVO:61389005 Keywords : neutron diffraction * time-of-flight method * multiple reflections * bent perfect crystals Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.343, year: 2012

  2. Material Classification Using Raw Time-of-Flight Measurements

    KAUST Repository

    Su, Shuochen; Heide, Felix; Swanson, Robin J.; Klein, Jonathan; Callenberg, Clara; Hullin, Matthias; Heidrich, Wolfgang

    2016-01-01

    We propose a material classification method using raw time-of-flight (ToF) measurements. ToF cameras capture the correlation between a reference signal and the temporal response of material to incident illumination. Such measurements encode unique

  3. Extending the reach of powder diffraction modelling by user defined macros

    CERN Document Server

    Scardi, Paolo

    2010-01-01

    The main focus of this special topic volume is the development and possibilities of the MACRO language within TOPAS, with a specific session dedicated to WPPM. The collection is presented here in the form of a ""macro tutorial"" for the benefit of the entire powder diffraction community. More than a collection of standard scientific papers, the contributions to this special issue provide methods, tutorials and practical suggestions and solutions for the proper use of TOPAS and WPPM in a number of applications; ranging from the most common to the most refined and specific cases.Readers will fin

  4. Structural study on the gas adsorption phenomena in porous coordination polymers by synchrotron powder diffraction method

    International Nuclear Information System (INIS)

    Kubota, Yoshiki

    2017-01-01

    In situ synchrotron powder diffraction measurement of gas adsorption and crystal structure analysis for porous coordination polymers (PCPs) were performed. From the obtained accurate crystal structure in both atomic and charge density levels, not only the position and orientation of adsorbed gas molecules but also the interaction between the adsorbed gas molecule and host framework were found. The information enables us to understand the mechanism of gas adsorption phenomena and functions of PCPs. It will give us the guiding principles for the novel functional materials design. (author)

  5. Reflection-mode x-ray powder diffraction cell for in situ studies of electrochemical reactions

    International Nuclear Information System (INIS)

    Roberts, G.A.; Stewart, K.D.

    2004-01-01

    The design and operation of an electrochemical cell for reflection-mode powder x-ray diffraction experiments are discussed. The cell is designed for the study of electrodes that are used in rechargeable lithium batteries. It is designed for assembly in a glove box so that air-sensitive materials, such as lithium foil electrodes and carbonate-based electrolytes with lithium salts, can be used. The cell uses a beryllium window for x-ray transmission and electrical contact. A simple mechanism for compressing the electrodes is included in the design. Sample results for the cell are shown with a Cu Kα source and a position-sensitive detector

  6. Parallel beam powder diffraction study on the A1C60 system (A=K, Rb)

    International Nuclear Information System (INIS)

    Faigel, G.; Tegze, M.; Bortel, G.; Forro, L.; Oszlanyi, G.; Stephens, P.W.

    1994-01-01

    We report x-ray powder diffraction studies on Rb x C 60 and K x C 60 . It is shown that at room temperature there exist stoichiometric compounds in the Rb x C 60 and K x C 60 systems at the x = 1 composition. Their equilibrium structures are pseudo body centered orthorhombic. The C 60 -C 60 intermolecular separation (9.1 A) is the shortest among the known alkali-fullerides. A first order phase transition is observed at about 380 K from the high temperature fcc phase to the room temperature orthorhombic phase. (orig.)

  7. Determination of Ni(II) crystal structure by powder x-ray diffraction ...

    African Journals Online (AJOL)

    X-ray powder diffraction pattern was used to determine the length of the unit cell, “a”, the lattice structure type, and the number of atoms per unit cell of Ni(II) crystal. The “a” value was determined to be 23.66 ± 0.005 Å, particle size of 34.87 nm, volume 13.24 Å and Strain value ε = 9.8 x 10-3. The cell search on PXRD patterns ...

  8. The Crystal Structure of the Malaria Pigment Hemozoin as Elucidated by X-ray Powder Diffraction

    DEFF Research Database (Denmark)

    Straasø, Tine

    survival. Successful inhibition of hemozoin crystallization will lead to parasitic death and thus break the cycle. The aim of this thesis is to elucidate the structure of hemozoin by means of X-ray diffraction techniques. Knowledge of the structure will help facilitate intelligent drug design in the future....... As part of the project an all-in-vacuum powder diffractometer was developed, which provides data with a minimum background level and an improved signal-to-noise ratio. Moreover, the diffractometer is designed with the particular purpose of decreasing the number of parameters to be fitted. Installation...

  9. A new energy-dispersive powder diffraction facility at the SRS

    International Nuclear Information System (INIS)

    Clark, S.M.

    1996-01-01

    A new energy-dispersive powder diffraction facility has been constructed on the 6 T wiggler beam line of the Daresbury Laboratory Synchrotron Radiation Source. This paper describes the facility, in particular the beam definition apparatus (front end), the detector positioning system (back end), a 10 000 kN loading frame and high pressure cell and the counting and control electronics. Some recent results are presented including a study of the compressibility of talc and the phase I→II transition of ammonium chloride. (orig.)

  10. The X-ray powder diffraction pattern and lattice parameters of perovskite

    International Nuclear Information System (INIS)

    Ball, C.J.; Napier, J.G.

    1988-02-01

    The interplanar spacings and intensities of all lines appearing in the X-ray powder diffraction pattern of perovskite have been calculated. Many of the lines occur in groups with a large amount of overlap. As an aid to identifying the lines which are observed, the intensity profiles of the major groups have been plotted. Those lines which are relatively free of overlap and can be identified unambiguously have been used to calculate the lattice parameters, with the results a=5.4424 ± 0.0001 A, b=7.6417 ± 0.0002 A, c=5.3807 ± 0.0001 A

  11. Location of adsorbed species in NO-reduction catalysts by high resolution neutron powder diffraction

    International Nuclear Information System (INIS)

    Fowkes, A.J.; Rosseinsky, M.J.

    1999-01-01

    Complete text of publication follows. Catalysts containing copper ion exchanged into zeolites are attracting considerable attention due to their efficiency for both NO decomposition and the selective catalytic reduction of NO x in so-called lean-burn conditions in automotive exhausts. This presentation will describe the application of in-situ high resolution neutron powder diffraction to study active sites in a Cu-zeolite Y catalyst active for NO decomposition. The study under NO pressure reveals the location of two distinct copper sites for sorption. The influence of copper oxidation state on the structure of both the pristine and NO-loaded zeolites will be discussed. (author)

  12. Neutron powder diffraction and theory-aided structure refinement of rubidium and cesium ureate

    Energy Technology Data Exchange (ETDEWEB)

    Sterri, Kjersti B.; Deringer, Volker L.; Houben, Andreas; Jacobs, Philipp [RWTH Aachen Univ. (Germany). Inst. of Inorganic Chemistry; Kumar, Chogondahalli M.N. [Forschungszentrum Juelich GmbH, Juelich Centre for Neutron Science (JCNS), Outstation at SNS, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Oak Ridge National Laboratory, TN (United States). Chemical and Engineering Materials Div.; Dronskowski, Richard [RWTH Aachen Univ. (Germany). Inst. of Inorganic Chemistry; RWTH Aachen Univ. (Germany). Juelich-Aachen Research Alliance (JARA-HPC)

    2016-08-01

    Urea (CN{sub 2}H{sub 4}O) is a fundamental biomolecule whose derivatives are abundant throughout chemistry. Among the latter, rubidium ureate (RbCN{sub 2}H{sub 3}O) and its cesium analog (CsCN{sub 2}H{sub 3}O) have been described only very recently and form the first structurally characterized salts of deprotonated urea. Here, we report on a neutron diffraction study on the aforementioned alkaline-metal ureates, which affords the positions for all hydrogen atoms (including full anisotropic displacement tensors) and thus allows us to gain fundamental insights into the hydrogen-bonding networks in the title compounds. The structure refinements of the experimental neutron data proceeded successfully using starting parameters from ab initio simulations of atomic positions and anisotropic displacement parameters. Such joint experimental-theoretical refinement procedures promise significant practical potential in cases where complex solids (organic, organometallic, framework materials) are studied by powder diffraction.

  13. Characterisation of microfocused beam for synchrotron powder diffraction using a new X-ray camera

    International Nuclear Information System (INIS)

    Thomas, C; Potter, J; Tang, C C; Lennie, A R

    2012-01-01

    The powder diffraction beamline I11, Diamond Light Source, is being continually upgraded as requirements of the user community evolve. Intensities of X-rays from the I11 in-vacuum electron undulator in the 3 GeV synchrotron fall off at higher energies. By focusing higher energy X-rays, we can overcome flux limitations, and open up new diffraction experiments. Here, we describe characterisation of microfocusing using compound refractive lenses (CRL). For a relatively modest outlay, we have developed an experimental setup and a novel X-ray camera with good sensitivity and a resolution specification suitable for characterising these focusing optics. We show that vertical oscillations in the focused beam compromise resolution of the source imaged by the CRL. Nevertheless, we have measured CRL focusing properties, and demonstrate the use of energy scanning to determine lens alignment. Real benefits of the intensity gain are illustrated.

  14. A standardless method of quantitative ceramic analysis using X-ray powder diffraction

    International Nuclear Information System (INIS)

    Mazumdar, S.

    1999-01-01

    A new procedure using X-ray powder diffraction data for quantitative estimation of the crystalline as well as the amorphous phase in ceramics is described. Classification of the crystalline and amorphous X-ray scattering was achieved by comparison of the slopes at two successive points of the powder pattern at scattering angles at which the crystalline and amorphous phases superimpose. If the second slope exceeds the first by a stipulated value, the intensity is taken as crystalline; otherwise the scattering is considered as amorphous. Crystalline phase analysis is obtained by linear programming techniques using the concept that each observed X-ray diffraction peak has contributions from n component phases, the proportionate analysis of which is required. The method does not require the measurement of calibration data for use as an internal standard, but knowledge of the approximate crystal structure of each phase of interest in the mixture is necessary. The technique is also helpful in qualitative analysis because each suspected phase is characterized by the probability that it will be present when a reflection zone is considered in which the suspected crystalline phase could contribute. The amorphous phases are determined prior to the crystalline ones. The method is applied to ceramic materials and some results are presented. (orig.)

  15. Identification of phases in zinc alloy powders using electron backscatter diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Martin G. [Graduate Center for Materials Research, University of Missouri-Rolla, Rolla, MO 65409 (United States); Kenik, Edward A. [Oak Ridge National Laboratory, 100 Bethel Valley Rd., Bldg. 4515, MS-6064, P.O. Box 2008, Oak Ridge, TN 37831 (United States); O' Keefe, Matthew J. [Graduate Center for Materials Research, University of Missouri-Rolla, Rolla, MO 65409 (United States)]. E-mail: mjokeefe@umr.edu; Miller, F. Scott [Graduate Center for Materials Research, University of Missouri-Rolla, Rolla, MO 65409 (United States); Johnson, Benedict [Graduate Center for Materials Research, University of Missouri-Rolla, Rolla, MO 65409 (United States)

    2006-05-25

    Scanning electron microscopy and electron backscatter diffraction (EBSD) were used for the structural characterization of phases in Zn alloy powders. Commercial Zn alloy powders contained additions of <1000 ppm of Bi, In, Al or Mg. Bismuth and In have extremely low solubility in Zn and form intermetallic Bi-In compounds which segregate to the Zn grain boundaries. The Bi-In phases were <0.3 {mu}m in size, had low melting points, and were not abundant enough for EBSD analysis. Increasing the alloying additions 20-40-fold resulted in Bi-In phases >1 {mu}m that could be used for EBSD analysis for phase characterization. Deformation-free microstructures were obtained by mechanical polishing and ion milling. The Zn matrix was characterized as Zn via EBSD. A BiIn{sub 2} phase was identified in the powder microstructures via EBSD. An In phase with 8-9 wt.% Bi was identified using low voltage energy dispersive spectroscopy and closely matched the composition predicted by the Bi-In phase diagram.

  16. Crystal structure solution of hydrides containing natEu from neutron powder diffraction data

    International Nuclear Information System (INIS)

    Kohlmann, H.

    1999-01-01

    Complete text of publication follows. The location of hydrogen in crystal structures of metal hydrides usually requires neutron diffraction data. Some elements, however, show excessively high absorption cross sections, σ a , for neutrons, thus making this technique seemingly impractical. Therefore no complete, refined crystal structure data of europium hydrides (σ a ( nat Eu) = .4530 barns at λ = 179.8 pm [1]) have been reported so far. It is shown that the absorption can be reduced to a value reasonable for neutron diffraction experiments by taking advantage of the wavelength dependence of σ a combined with the use of annular samples at advanced diffractometers. Neutron powder diffraction data on several nat Eu containing deuterides suitable for the ab initio crystal structure solution and refinement have been taken at D20 and D4 (ILL, Grenoble). The crystal chemistry of these europium hydrides, among them the two new compounds EuMg 2 H 6 and EuMgH 4 [2], is discussed. (author) [1] V.F. Sears, Neutron News 1992, 3, 26-37.; [2] H. Kohlmann, F. Gingl, T. Hansen, K. Yvon, Angew. Chem. Int. Ed. Eng. 1999, 38, accepted

  17. About some practical aspects of X-ray diffraction : From powder to thin film

    Energy Technology Data Exchange (ETDEWEB)

    Valvoda, V [Charles Univ. Prague (Czech Republic). Faculty of Mathematics and Physics

    1996-09-01

    Structure of thin films can be amorphous, polycrystalline or epitaxial, and the films can be prepared as a single layer films, multilayers or as graded films. A complete structure analysis of thin films by means of X-ray diffraction (XRD) usually needs more than one diffraction geometry to be used. Their principles, advantages and disadvantages will be shortly described, especially with respect to their different sampling depth and different response to orientation of diffracting crystallographic planes. Main differences in structure of thin films with respect to powder samples are given by a singular direction of their growth, by their adhesion to a substrate and often also by a simultaneous bombardment by atomic species during the growth. It means that a thermodynamically unstable atomic structures can be found too. These special features of growth of thin polycrystalline films are reflected in often found strong preferred orientation of grains and in residual stresses conserved in the films. The methods of structure analysis of thin films by XRD will be compared with other techniques which can supply structure images on different scales.

  18. Capillary based Li-air batteries for in situ synchrotron X-ray powder diffraction studies

    DEFF Research Database (Denmark)

    Storm, Mie Møller; Johnsen, Rune E.; Younesi, Reza

    2015-01-01

    For Li-air batteries to reach their full potential as energy storage system, a complete understanding of the conditions and reactions in the battery during operation is needed. To follow the reactions in situ a capillary-based Li-O2 battery has been developed for synchrotron-based in situ X......-ray powder diffraction (XRPD). In this article, we present the results for the analysis of 1st and 2nd deep discharge and charge for a cathode being cycled between 2 and 4.6 V. The crystalline precipitation of Li2O2 only is observed in the capillary battery. However, there are indications of side reactions...... of constant exposure of X-ray radiation to the electrolyte and cathode during charge of the battery was also investigated. X-ray exposure during charge leads to changes in the development of the intensity and the FWHM of the Li2O2 diffraction peaks. The X-ray diffraction results are supported by ex situ X...

  19. Development of powder diffraction anomalous fine structure method and applications to electrode materials for rechargeable batteries

    International Nuclear Information System (INIS)

    Kawaguchi, Tomoya; Fukuda, Katsutoshi; Oishi, Masatsugu; Ichitsubo, Tetsu; Matsubara, Eiichiro; Mizuki, Jun'ichiro

    2015-01-01

    A powder diffraction anomalous fine structure (P-DAFS) method is developed both in analytical and experimental techniques and applied to cathode materials for lithium ion batteries. The DAFS method, which is an absorption spectroscopic technique through a scattering measurement, enables us to analyze the chemical states and the local structures of a certain element at different sites, thanks to the nature of x-ray diffraction, where the contributions from each site are different at each diffraction. Electrode materials for rechargeable batteries frequently exhibit the interchange between Li and a transition metal, which is known as the cation mixing phenomena. This cation mixing significantly affects the whole electrode properties; therefore, the site-distinguished understanding of the roles of the transition metal is essential for further material design by controlling and positively utilizing this cation mixing phenomenon. However, the developments of the P-DAFS method are required for the applications to the practical materials such as the electrode materials. In the present study, a direct analysis technique to extract the absorption spectrum from the scattering without using the conventional iterative calculations, fast and accurate measurement techniques of the P-DAFS method, and applications to a typical electrode material of Li 1-x Ni 1+x O 2 , which exhibits the significant cation mixing, are described. (author)

  20. A wavelet transform algorithm for peak detection and application to powder x-ray diffraction data.

    Science.gov (United States)

    Gregoire, John M; Dale, Darren; van Dover, R Bruce

    2011-01-01

    Peak detection is ubiquitous in the analysis of spectral data. While many noise-filtering algorithms and peak identification algorithms have been developed, recent work [P. Du, W. Kibbe, and S. Lin, Bioinformatics 22, 2059 (2006); A. Wee, D. Grayden, Y. Zhu, K. Petkovic-Duran, and D. Smith, Electrophoresis 29, 4215 (2008)] has demonstrated that both of these tasks are efficiently performed through analysis of the wavelet transform of the data. In this paper, we present a wavelet-based peak detection algorithm with user-defined parameters that can be readily applied to the application of any spectral data. Particular attention is given to the algorithm's resolution of overlapping peaks. The algorithm is implemented for the analysis of powder diffraction data, and successful detection of Bragg peaks is demonstrated for both low signal-to-noise data from theta-theta diffraction of nanoparticles and combinatorial x-ray diffraction data from a composition spread thin film. These datasets have different types of background signals which are effectively removed in the wavelet-based method, and the results demonstrate that the algorithm provides a robust method for automated peak detection.

  1. Syntheses and crystal structure determination by X-ray powder diffraction of new compounds of Benzovesamicol

    International Nuclear Information System (INIS)

    Rukiah, M.; Assaad, Th.

    2012-06-01

    The compound 2,2,2-Trifluoro-N-(1a,2,7,7 a-tetra-hydronaphtho[2,3-b]oxiren-3-yl)- acetamide, C 1 2H 1 0F 3 NO 2 , an important precursor in the preparation of benzovesamicol analogues for the diagnosis of Alzheimers disease, was prepared by the epoxidation of 5,8-dihydronaphthalene-1-amine using 3-chloroperoxybenzoic acid. The structure was determined by X-ray powder diffraction, multinuclear NMR spectroscopy and FT-IR spectroscopy. A pair of molecules form intermolecular N- H...O hydrogen bonds, involving the amino and oxirene groups, to produce a dimer.The two racemic compounds (2RS,3RS)-5-amino-3-(4-phenylpiperazin-1-yl)-1,2,3,4 tetrahydronaphthalene-2-ol, C 2 0H 2 5N 3 O, (I) and (2RS,3RS)-5-amino-3-[4-(3- methoxyphenyl)piperazin-1-yl]-1,2,3,4-tetrahydronaphthalene-2-ol, C 2 1H 2 7N 3 O 2 , (II) important benzovesamicol analogues for the diagnosis of Alzheimer's disease, have been synthesized and characterized by FT-IR, and 1 H and 13 C NMR spectroscopic analyses. The crystal structures were analyses using powder diffraction as no suitable single crystal were obtained. The two compounds are racemic mixtures of enantiomers which crystallize in the monoclinic system in a centrosymmetric space group (P21/c). Crystallography, in particular powder X-ray diffraction, was pivotal in revealing that the enantio-resolution did not succeed. In two compounds, the piperazine ring has a chair conformation, while the cyclohexene ring assumes a half-chair conformation. In (I) the crystal packing is mediated by weak contacts, principally by complementary intermolecular N--H...O hydrogen bonds that connect successive molecules into a chain. Further stabilization is provided by weak C--H...N contacts and by a weak intermolecular C--H...π interaction. While in (II), the crystal packing is dominated by intermolecular O--H...N hydrogen bonding which links molecules along the c direction. (authors)

  2. Analytical properties of time-of-flight PET data

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sanghee; Ahn, Sangtae; Quanzheng, Li; Leahy, Richard M [Signal and Image Processing Institute, University of Southern California, Los Angeles, CA 90089 (United States)], E-mail: leahy@sipi.usc.edu

    2008-06-07

    We investigate the analytical properties of time-of-flight (TOF) positron emission tomography (PET) sinograms, where the data are modeled as line integrals weighted by a spatially invariant TOF kernel. First, we investigate the Fourier transform properties of 2D TOF data and extend the 'bow-tie' property of the 2D Radon transform to the time-of-flight case. Second, we describe a new exact Fourier rebinning method, TOF-FOREX, based on the Fourier transform in the time-of-flight variable. We then combine TOF-FOREX rebinning with a direct extension of the projection slice theorem to TOF data, to perform fast 3D TOF PET image reconstruction. Finally, we illustrate these properties using simulated data.

  3. Analytical properties of time-of-flight PET data

    Science.gov (United States)

    Cho, Sanghee; Ahn, Sangtae; Li, Quanzheng; Leahy, Richard M.

    2008-06-01

    We investigate the analytical properties of time-of-flight (TOF) positron emission tomography (PET) sinograms, where the data are modeled as line integrals weighted by a spatially invariant TOF kernel. First, we investigate the Fourier transform properties of 2D TOF data and extend the 'bow-tie' property of the 2D Radon transform to the time-of-flight case. Second, we describe a new exact Fourier rebinning method, TOF-FOREX, based on the Fourier transform in the time-of-flight variable. We then combine TOF-FOREX rebinning with a direct extension of the projection slice theorem to TOF data, to perform fast 3D TOF PET image reconstruction. Finally, we illustrate these properties using simulated data.

  4. Analytical properties of time-of-flight PET data

    International Nuclear Information System (INIS)

    Cho, Sanghee; Ahn, Sangtae; Li Quanzheng; Leahy, Richard M

    2008-01-01

    We investigate the analytical properties of time-of-flight (TOF) positron emission tomography (PET) sinograms, where the data are modeled as line integrals weighted by a spatially invariant TOF kernel. First, we investigate the Fourier transform properties of 2D TOF data and extend the 'bow-tie' property of the 2D Radon transform to the time-of-flight case. Second, we describe a new exact Fourier rebinning method, TOF-FOREX, based on the Fourier transform in the time-of-flight variable. We then combine TOF-FOREX rebinning with a direct extension of the projection slice theorem to TOF data, to perform fast 3D TOF PET image reconstruction. Finally, we illustrate these properties using simulated data

  5. Analytical properties of time-of-flight PET data

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sanghee; Ahn, Sangtae; Li Quanzheng; Leahy, Richard M [Signal and Image Processing Institute, University of Southern California, Los Angeles, CA 90089 (United States)], E-mail: leahy@sipi.usc.edu

    2008-06-07

    We investigate the analytical properties of time-of-flight (TOF) positron emission tomography (PET) sinograms, where the data are modeled as line integrals weighted by a spatially invariant TOF kernel. First, we investigate the Fourier transform properties of 2D TOF data and extend the 'bow-tie' property of the 2D Radon transform to the time-of-flight case. Second, we describe a new exact Fourier rebinning method, TOF-FOREX, based on the Fourier transform in the time-of-flight variable. We then combine TOF-FOREX rebinning with a direct extension of the projection slice theorem to TOF data, to perform fast 3D TOF PET image reconstruction. Finally, we illustrate these properties using simulated data.

  6. Focusing procedures in time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Ioanoviciu, D.

    2002-01-01

    Time-of-flight mass spectrometry is a fast growing field due to its ability to handle very fast processes and due to its theoretically unlimited mass range. The performances of the time-of-flight mass analysers are heavily dependent on the progress in ion optics, a periodically reviewed field. In this presentation the various focusing procedures in time-of-flight mass spectrometry are reviewed. For ions of the same charge and mass flight time differences result from different potentials at the location of formation and from the initial velocity spread. There is no simultaneous space and velocity focusing in time-of-flight mass spectrometry. Space focusing of first and second order can be reached in time-of-flight mass analysers having two homogeneous electric field ion sources followed by a field free space in front of the detector. Single and double stage homogeneous electric field mirrors can focus in time ions of different energies. These different energies result when ions leaving different initial sites and arriving simultaneously to an intermediate space focus. Convenient mass dispersion can be obtained by including a mirror. Initial velocity focusing is obtained by the delayed extraction procedure in drift space and mirror time-of-flight mass analysers. Post source pulse focusing aims at the same purpose. Ion source electrodes of hyperbolic shape, operated by high voltage pulses can bring major improvements of the resolution, especially at high masses. For each focusing procedure the geometric and/or electric conditions are given as well as the aberrations allowing the mass resolution determination. The various focusing procedures are compared and a prediction of their future performances was tempted. (author)

  7. The statistical chopper in the time-of-flight technique

    International Nuclear Information System (INIS)

    Albuquerque Vieira, J. de.

    1975-12-01

    A detailed study of the 'statistical' chopper and of the method of analysis of the data obtained by this technique is made. The study includes the basic ideas behind correlation methods applied in time-of-flight techniques; comparisons with the conventional chopper made by an analysis of statistical errors; the development of a FORTRAN computer programme to analyse experimental results; the presentation of the related fields of work to demonstrate the potential of this method and suggestions for future study together with the criteria for a time-of-flight experiment using the method being studied [pt

  8. Neutron Time-Of-Flight (n_TOF) experiment

    CERN Multimedia

    Brugger, M; Kaeppeler, F K; Jericha, E; Cortes rossell, G P; Riego perez, A; Baccomi, R; Laurent, B G; Griesmayer, E; Leeb, H; Dressler, M; Cano ott, D; Variale, V; Ventura, A; Carrillo de albornoz trillo, A; Andrzejewski, J J; Pavlik, A F; Kadi, Y; Zanni vlastou, R; Krticka, M; Kokkoris, M; Praena rodriguez, A J; Cortes giraldo, M A; Perkowski, J; Losito, R; Audouin, L; Weiss, C; Tagliente, G; Wallner, A; Woods, P J; Mengoni, A; Guerrero sanchez, C G; Tain enriquez, J L; Vlachoudis, V; Calviani, M; Junghans, A R; Reifarth, R; Mendoza cembranos, E; Quesada molina, J M; Babiano suarez, V; Schumann, M D; Tsinganis, A; Rauscher, T; Calvino tavares, F; Mingrone, F; Gonzalez romero, E M; Colonna, N; Negret, A L; Chiaveri, E; Milazzo, P M; De almeida carrapico, C A; Castelluccio, D M

    The neutron time-of-flight facility n_TOF at CERN, Switzerland, operational since 2001, delivers neutrons using the Proton Synchrotron (PS) 20 GeV/c proton beam impinging on a lead spallation target. The facility combines a very high instantaneous neutron flux, an excellent time of flight resolution due to the distance between the experimental area and the production target (185 meters), a low intrinsic background and a wide range of neutron energies, from thermal to GeV neutrons. These characteristics provide a unique possibility to perform neutron-induced capture and fission cross-section measurements for applications in nuclear astrophysics and in nuclear reactor technology.

  9. Combined experimental powder X-ray diffraction and DFT data to obtain the lowest energy molecular conformation of friedelin

    International Nuclear Information System (INIS)

    Oliveira, Djalma Menezes de; Mussel, Wagner da Nova; Duarte, Lucienir Pains; Silva, Gracia Divina de Fatima; Duarte, Helio Anderson; Gomes, Elionai Cassiana de Lima; Guimaraes, Luciana; Vieira Filho, Sidney A.

    2012-01-01

    Friedelin molecular conformers were obtained by Density Functional Theory (DFT) and by ab initio structure determination from powder X-ray diffraction. Their conformers with the five rings in chair-chair-chair-boat-boat, and with all rings in chair, are energy degenerated in gas-phase according to DFT results. The powder diffraction data reveals that rings A, B and C of friedelin are in chair, and rings D and E in boat-boat, conformation. The high correlation values among powder diffraction data, DFT and reported single crystal data indicate that the use of conventional X-ray diffractometer can be applied in routine laboratory analysis in the absence of a single-crystal diffractometer. (author)

  10. Combined experimental powder X-ray diffraction and DFT data to obtain the lowest energy molecular conformation of friedelin

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Djalma Menezes de; Mussel, Wagner da Nova; Duarte, Lucienir Pains; Silva, Gracia Divina de Fatima; Duarte, Helio Anderson; Gomes, Elionai Cassiana de Lima [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Quimica; Guimaraes, Luciana [Universidade Federal de Sao Joao Del-Rei (UFSJ), MG (Brazil). Dept. de Ciencias Naturais; Vieira Filho, Sidney A., E-mail: bibo@ef.ufop.br [Universidade Federal de Ouro Preto (UFOP), MG (Brazil). Dept. de Farmacia

    2012-07-01

    Friedelin molecular conformers were obtained by Density Functional Theory (DFT) and by ab initio structure determination from powder X-ray diffraction. Their conformers with the five rings in chair-chair-chair-boat-boat, and with all rings in chair, are energy degenerated in gas-phase according to DFT results. The powder diffraction data reveals that rings A, B and C of friedelin are in chair, and rings D and E in boat-boat, conformation. The high correlation values among powder diffraction data, DFT and reported single crystal data indicate that the use of conventional X-ray diffractometer can be applied in routine laboratory analysis in the absence of a single-crystal diffractometer. (author)

  11. Neutron diffraction studies on GdB{sub 6} and TbB{sub 6} powders

    Energy Technology Data Exchange (ETDEWEB)

    Luca, S.E.; Amara, M.; Galera, R.M.; Givord, F.; Granovsky, S.; Isnard, O.; Beneu, B

    2004-07-15

    We report here the first powder neutron diffraction study of GdB{sub 6} and TbB{sub 6}. GdB{sub 6} and TbB{sub 6} order antiferromagnetically at 15 and 21 K, respectively. In both compounds the transition at T{sub N} is of the first order. Moreover GdB{sub 6} presents a second spontaneous magnetic transition at T{sup *}=8 K. The present study shows that, in both compounds, the magnetic propagation vectors belong to the <((1)/(4)) ((1)/(4)) ((1)/(2))> star and that the direction of the magnetic moment is perpendicular to the ((1)/(2)) component of the wave-vector in GdB{sub 6}, while in TbB{sub 6} the moment is parallel to it. The deduced low-temperature values of the magnetic moments agree with those of the respective rare-earth trivalent ions.

  12. Neutron diffraction studies on GdB6 and TbB6 powders

    International Nuclear Information System (INIS)

    Luca, S.E.; Amara, M.; Galera, R.M.; Givord, F.; Granovsky, S.; Isnard, O.; Beneu, B.

    2004-01-01

    We report here the first powder neutron diffraction study of GdB 6 and TbB 6 . GdB 6 and TbB 6 order antiferromagnetically at 15 and 21 K, respectively. In both compounds the transition at T N is of the first order. Moreover GdB 6 presents a second spontaneous magnetic transition at T * =8 K. The present study shows that, in both compounds, the magnetic propagation vectors belong to the star and that the direction of the magnetic moment is perpendicular to the ((1)/(2)) component of the wave-vector in GdB 6 , while in TbB 6 the moment is parallel to it. The deduced low-temperature values of the magnetic moments agree with those of the respective rare-earth trivalent ions

  13. Phase transitions in Rb2UBr6 observed by neutron powder diffraction

    International Nuclear Information System (INIS)

    Maletka, K.; Ressouche, E.; Tellgren, R.; Delaplane, R.; Szczepaniak, W.; Rycerz, L.; Zablocka-Malecka, M.

    1997-01-01

    The behaviour of the Rb 2 UBr 6 ionic conductor is studied as a function of the temperature by neutron powder diffraction. The low- room and high temperature structures have been determined. At low temperature range 4.2-80 K the compound crystallizes in a monoclinic unit cell with P2 1 /c space group. Among 80 and 853 K the compound crystallizes in a tetragonal unit cell with space group P4/mnc. At 300 K the lattice constants are; a = b 7,745(1), c = 11.064(1) A. At the temperature range 853-960 K is observed the trigonal phase with P-3m1 space group. Above the phase transitions occurring at 960 K the compound crystallizes in the cubic unit cell with Fm3m space group. (author)

  14. Characterization of polymorphic solid-state changes using variable temperature X-ray powder diffraction

    DEFF Research Database (Denmark)

    Karjalainen, Milja; Airaksinen, Sari; Rantanen, Jukka

    2005-01-01

    The aim of this study was to use variable temperature X-ray powder diffraction (VT-XRPD) to understand the solid-state changes in the pharmaceutical materials during heating. The model compounds studied were sulfathiazole, theophylline and nitrofurantoin. This study showed that the polymorph form...... of sulfathiazole SUTHAZ01 was very stable and SUTHAZ02 changed as a function of temperature to SUTHAZ01. Theophylline monohydrate changed via its metastable form to its anhydrous form during heating and nitrofurantoin monohydrate changed via amorphous form to its anhydrous form during heating. The crystallinity...... to the anhydrous form. The average crystallite size of sulfathiazole samples varied only a little during heating. The average crystallite size of both theophylline and nitrofurantoin monohydrate decreased during heating. However, the average crystallite size of nitrofurantoin monohydrate returned back to starting...

  15. Structure analysis of K3H(SO4)2 by neutron powder diffraction

    International Nuclear Information System (INIS)

    Murakami, Satoshi; Kuroiwa, Yoshihiro; Noda, Yukio; Nakai, Yusuke; Kamiyama, Takashi; Asano, Hajime.

    1993-01-01

    Neutron powder diffraction experiments of K 3 H(SO 4 ) 2 were carried out at KENS-HRP station in order to obtain the positional parameters of hydrogen nuclei. The data was taken at six different temperatures from room temperature to 20K. Even though K 3 H(SO 4 ) 2 contained a hydrogen atom, the structural analysis was successfully performed by using a program RIETAN. Concerning the hydrogen position, four different models give almost the same R-factor so that the state of the hydrogen nucleus is not uniquely determined. The result based on the assumption that a hydrogen nucleus occupies two sites shows that the distance of split hydrogen nuclei is shorter than the distance of hydrogen electron clouds. This result suggests that a large polarizability exists in a hydrogen atom. (author)

  16. A powder neutron diffraction study of stoichiometric silver beta alumina at 4.2 K

    International Nuclear Information System (INIS)

    Newsam, J.M.; Tofield, B.C.

    1980-10-01

    The low-temperature structure of stoichiometric silver beta alumina, AgAl 11 O 17 , is described for the first time. A powder neutron diffraction study at 4.2 K reveals that there is a single three-fold silver location of unit occupancy in each mirror plane. The silver site lies between the mid-oxygen and Beevers-Ross positions where the Ag-O contact distances can be minimised. The Ag-O interactions, in particular the cooperative movement of the spacer oxygens, are responsible for the superlattice which has been described previously. The Beevers-Ross, anti-Beevers-Ross and interstitial aluminium sites are vacant and the c-axis constant is expanded relative to the non-stoichiometric parent. (author)

  17. Anisotropic thermal expansion of MgSiN2 from 10 to 300 K as measured by neutron diffraction

    NARCIS (Netherlands)

    Bruls, R.J.; Hintzen, H.T.J.M.; Metselaar, R.; Loong, C.K.

    2000-01-01

    The lattice parameters of orthorhombic MgSiN2 as a function of the temperature have been determined from time-of-flight neutron powder diffraction. The results indicate that MgSiN2, just like several other adamantine-type crystals, exhibits a relatively small thermal expansion coefficient at low

  18. Rocket-borne time-of-flight mass spectrometry

    Science.gov (United States)

    Reiter, R. F.

    1976-01-01

    Theoretical and numerical analyses are made of planar, cylindrical and spherical-electrode two-field time-of-flight mass spectrometers in order to optimize their operating conditions. A method is introduced which can improve the resolving power of these instruments by a factor of 7.5. Potential barrier gating in time-of-flight mass spectrometers is also analyzed. Experimental studies of a miniature cylindrical-electrode and a hemispherical-electrode time-of-flight mass spectrometer are presented. Their sensitivity and ability to operate at D-region pressures with an open source make them ideal instruments for D-region ion composition measurements. A sounding rocket experiment package carrying a cylindrical electrode time-of-flight mass spectrometer was launched. The data indicate that essentially 100% of the positive electric charge on positive ions is carried by ions with mass-to-charge ratios greater than 500 below an altitude of 92 km. These heavy charge carriers were present at altitudes up to about 100 km.

  19. Rocket-borne time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Reiter, R.F.

    1976-08-01

    Theoretical and numerical analyses are made of planar-, cylindrical- and spherical-electrode two-field time-of-flight mass spectrometers in order to optimize their operating conditions. A method is introduced which can improve the resolving power of these instruments by a factor of 7.5. Potential barrier gating in time-of-flight mass spectrometers is also analyzed. Experimental studies of a miniature cylindrical-electrode and a hemispherical-electrode time-of-flight mass spectrometer are presented. Their sensitivity and ability to operate at D-region pressures with an open source make them ideal instruments for D-region ion composition measurements. A sounding rocket experiment package carrying a cylindrical electrode time-of-flight mass spectrometer was launched. The data indicate that essentially 100% of the positive electric charge on positive ions is carried by ions with mass-to-charge ratios greater than 500 below an altitude of 92 km. These heavy charge carriers were present at altitudes up to about 100 km

  20. Magnetic excitations studied with time-of-flight spectroscopy

    International Nuclear Information System (INIS)

    Rainford, B.

    1996-01-01

    An introduction to time-of-flight neutron spectroscopy is presented in the context of the study of magnetic materials. Examples are taken from the class of rare earth and actinide magnetic materials known as 'strongly correlated electron' systems. (author) 11 figs., 24 refs

  1. Time-of-flight positron emission tomography and associated detectors

    International Nuclear Information System (INIS)

    Vacher, J.; Allemand, R.; Campagnolo, R.

    1983-04-01

    An analysis of the timing capabilities of the detectors (scintillators and photomultipliers) in time-of-flight positron emission tomography is presented. The advantages of BaF 2 compared with CsF for the futur tomographs are evaluated [fr

  2. Magnetic excitations studied with time-of-flight spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rainford, B [Southampton Univ. (United Kingdom). Dept. of Physics

    1996-11-01

    An introduction to time-of-flight neutron spectroscopy is presented in the context of the study of magnetic materials. Examples are taken from the class of rare earth and actinide magnetic materials known as `strongly correlated electron` systems. (author) 11 figs., 24 refs.

  3. Multichannel analyzer for the neutron time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Vojter, A.P.; Slyisenko, V.Yi.; Doronyin, M.Yi.; Maznij, Yi.O.; Vasil'kevich, O.A.; Golyik, V.V.; Koval'ov, O.M.; Kopachov, V.Yi.; Savchuk, V.G.

    2010-01-01

    New multichannel time-of-flight spectrometer for the measurement of the energy and angular distributions of neutrons from the WWWR-M reactor is considered. This spectrometer has been developed for the replacement of the previous one to increase the number of channels and measurement precision, reduce the time of channel tuning and provide the automatic monitoring during the experiment.

  4. Highly segmented, high resolution time-of-flight system

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, T.K.; Nagamiya, S.; Vossnack, O.; Wu, Y.D.; Zajc, W.A. [Columbia Univ., New York, NY (United States); Miake, Y.; Ueno, S.; Kitayama, H.; Nagasaka, Y.; Tomizawa, K.; Arai, I.; Yagi, K [Univ. of Tsukuba, (Japan)

    1991-12-31

    The light attenuation and timing characteristics of time-of-flight counters constructed of 3m long scintillating fiber bundles of different shapes and sizes are presented. Fiber bundles made of 5mm diameter fibers showed good timing characteristics and less light attenuation. The results for a 1.5m long scintillator rod are also presented.

  5. A neutron time-of-flight data acquisition system

    International Nuclear Information System (INIS)

    Morris, D.V.

    1983-10-01

    A neutron time-of-flight scaler system is described for use with the Harwell Linac. The equipment is sufficiently versatile to be used with several types of computers although normally used with DEC PDP 11/45 and PDP 11/34. Using a combination of different input and memory boards most types of experiments can be accommodated. (author)

  6. Powder X-ray diffraction studies of structural and kinetic aspects of polymorphism

    International Nuclear Information System (INIS)

    Chan, F.C.

    1999-01-01

    Polymorphism is a poorly understood phenomenon that is of considerable technological interest to the pharmaceutical industry. The polymorph selected can influence the bioavailability, processing and stability of the pharmaceutical dosage form. In this study structural, kinetic and thermodynamics aspects of polymorphism and polymorphic phase transformations have been examined using powder X-ray diffraction (PXRD). The compound sulphathiazole is a well-studied model in the investigation of polymorphism and crystal growth. There are five known polymorphic forms and the structure of form V was unknown until this study. The difficulty has been that it has not been possibly to prepare crystals of appropriate size and quality for single crystal diffraction. Furthermore, structure solution from powder data for organic molecules is almost impossible. Despite the challenge the structure of sulphathiazole form V have been solved ab initio from powder data using direct methods. With 16 non-hydrogen atoms in the molecule and two molecules in the asymmetric unit, this structure represents a significant advance in terms of the complexity of an organic structure solved from PXRD data. The structural data should be invaluable for rationalizing experimental observations and the development of theoretical ideas regarding polymorphism and crystal growth. The second part of the study, has examined kinetics of polymorphic phase transformations as a function of pressure combined with temperature using real-time synchrotron PXRD. The significance of pressure arises from the fact that phase transitions can be induced in pharmaceuticals during tabletting. The phase transformation behaviour of rubidium iodide (chosen as a simple test model) has been investigated as a function of isobaric pressure at ambient and elevated temperatures. The kinetics have been characterized by using the Johnson-Melil-Avrami equation. The effect of successive cycling across the transition pressure was also

  7. An Inquiry-Based Project Focused on the X-Ray Powder Diffraction Analysis of Common Household Solids

    Science.gov (United States)

    Hulien, Molly L.; Lekse, Jonathan W.; Rosmus, Kimberly A.; Devlin, Kasey P.; Glenn, Jennifer R.; Wisneski, Stephen D.; Wildfong, Peter; Lake, Charles H.; MacNeil, Joseph H.; Aitken, Jennifer A.

    2015-01-01

    While X-ray powder diffraction (XRPD) is a fundamental analytical technique used by solid-state laboratories across a breadth of disciplines, it is still underrepresented in most undergraduate curricula. In this work, we incorporate XRPD analysis into an inquiry-based project that requires students to identify the crystalline component(s) of…

  8. Simvastatin: structure solution of two new low-temperature phases from synchrotron powder diffraction and ss-NMR

    Czech Academy of Sciences Publication Activity Database

    Hušák, M.; Kratochvíl, B.; Jegorov, A.; Brus, Jiří; Maixner, J.; Rohlíček, J.

    2010-01-01

    Roč. 21, č. 3 (2010), s. 511-518 ISSN 1040-0400 R&D Projects: GA AV ČR IAA400500602; GA MŠk 2B08021 Institutional research plan: CEZ:AV0Z40500505 Keywords : crystal structure * simvastatin * powder diffraction Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.727, year: 2010

  9. Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D)

    DEFF Research Database (Denmark)

    van de Streek, Jacco; Neumann, Marcus A

    2014-01-01

    In 2010 we energy-minimized 225 high-quality single-crystal (SX) structures with dispersion-corrected density functional theory (DFT-D) to establish a quantitative benchmark. For the current paper, 215 organic crystal structures determined from X-ray powder diffraction (XRPD) data and published...

  10. Neutron time-of-flight techniques for investigation of the extinction effect

    International Nuclear Information System (INIS)

    Niimura, N.; Tomiyoshi, S.; Takahashi, J.; Harada, J.

    1975-01-01

    An application of the time-of-flight neutron diffraction technique to an investigation of the nature of the extinction effect in a single-crystal specimen is given. It is shown that the wavelength dependence of the extinction can be easily obtained by changing the scattering angle. An estimation of the extinction factor for a CuCl single crystal is given as an example and a comparison of the results with recent extinction theory [Becker and Coppens. Acta Cryst.(1974). A30, 129-147; 148-153] is made. (Auth.)

  11. Software of structure experiMents in a neutron time-of-flight diffractometer

    International Nuclear Information System (INIS)

    Balagurov, A.M.; Dlouga, M.; Zlokazov, V.B.; Mironova, G.M.

    1978-01-01

    A set of programs is discussed to be used in diffraction experiment in a neutron time-of-flight diffractometer. The DIFRAT program, which processes spectra of poly and monocrystals, locates all spectrum maxima and assesses their width on the basis of given experimental data and elementary cell parameters. Accurate location of maxima, evaluation of their area and width is done by the IREAK program. The most important feature of this program is a capability to set an experimental model of maxima patterns. The EXPDAT program is developed to investigate structural characteristics of a sample. It calculates corrections for absorbtion and extinction

  12. Application of focused-beam flat-sample method to synchrotron powder X-ray diffraction with anomalous scattering effect

    International Nuclear Information System (INIS)

    Tanaka, M; Katsuya, Y; Matsushita, Y

    2013-01-01

    The focused-beam flat-sample method (FFM), which is a method for high-resolution and rapid synchrotron X-ray powder diffraction measurements by combination of beam focusing optics, a flat shape sample and an area detector, was applied for diffraction experiments with anomalous scattering effect. The advantages of FFM for anomalous diffraction were absorption correction without approximation, rapid data collection by an area detector and good signal-to-noise ratio data by focusing optics. In the X-ray diffraction experiments of CoFe 2 O 4 and Fe 3 O 4 (By FFM) using X-rays near the Fe K absorption edge, the anomalous scattering effect between Fe/Co or Fe 2+ /Fe 3+ can be clearly detected, due to the change of diffraction intensity. The change of observed diffraction intensity as the incident X-ray energy was consistent with the calculation. The FFM is expected to be a method for anomalous powder diffraction.

  13. An in situ Study of NiTi Powder Sintering Using Neutron Diffraction

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2015-04-01

    Full Text Available This study investigates phase transformation and mechanical properties of porous NiTi alloys using two different powder compacts (i.e., Ni/Ti and Ni/TiH2 by a conventional press-and-sinter means. The compacted powder mixtures were sintered in vacuum at a final temperature of 1373 K. The phase evolution was performed by in situ neutron diffraction upon sintering and cooling. The predominant phase identified in all the produced porous NiTi alloys after being sintered at 1373 K is B2 NiTi phase with the presence of other minor phases. It is found that dehydrogenation of TiH2 significantly affects the sintering behavior and resultant microstructure. In comparison to the Ni/Ti compact, dehydrogenation occurring in the Ni/TiH2 compact leads to less densification, yet higher chemical homogenization, after high temperature sintering but not in the case of low temperature sintering. Moreover, there is a direct evidence of the eutectoid decomposition of NiTi at ca. 847 and 823 K for Ni/Ti and Ni/TiH2, respectively, during furnace cooling. The static and cyclic stress-strain behaviors of the porous NiTi alloys made from the Ni/Ti and Ni/TiH2 compacts were also investigated. As compared with the Ni/Ti sintered samples, the samplessintered from the Ni/TiH2 compact exhibited a much higher porosity, a higher close-to-total porosity, a larger pore size and lower tensile and compressive fracture strength.

  14. The ANTARES recoil time-of-flight spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J W; Russell, G J [New South Wales Univ., Kensington, NSW (Australia); Cohen, D D; Dytlewski, N [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    The Australian National Tandem for Applied Research (ANTARES), is a 8MV FN tandem particle accelerator at the Australian Nuclear Science and Technology Organisation. Research on the accelerator is divided between two groups, Accelerator Mass Spectrometry (AMS) and lon Beam Analysis (IBA). The IBA group carries out a range of research projects from nuclear physics to materials characterisation. The major IBA project on the accelerator is a recoil time-of-flight spectrometer which consists of two electrostatic time pulse generators and an ion-implanted surface barrier detector. The spectrometer is ideally suited to the profiling of layered multi-element materials, and has been used to characterise materials such as metal-germanides, optoelectronics, superconductors and catalytic converters. This paper will describe the time-of-flight system as well as some recent materials characterisation results. 1 refs., 3 figs.

  15. UTOFIA: an underwater time-of-flight image acquisition system

    Science.gov (United States)

    Driewer, Adrian; Abrosimov, Igor; Alexander, Jonathan; Benger, Marc; O'Farrell, Marion; Haugholt, Karl Henrik; Softley, Chris; Thielemann, Jens T.; Thorstensen, Jostein; Yates, Chris

    2017-10-01

    In this article the development of a newly designed Time-of-Flight (ToF) image sensor for underwater applications is described. The sensor is developed as part of the project UTOFIA (underwater time-of-flight image acquisition) funded by the EU within the Horizon 2020 framework. This project aims to develop a camera based on range gating that extends the visible range compared to conventional cameras by a factor of 2 to 3 and delivers real-time range information by means of a 3D video stream. The principle of underwater range gating as well as the concept of the image sensor are presented. Based on measurements on a test image sensor a pixel structure that suits best to the requirements has been selected. Within an extensive characterization underwater the capability of distance measurements in turbid environments is demonstrated.

  16. The ANTARES recoil time-of-flight spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.W.; Russell, G.J. [New South Wales Univ., Kensington, NSW (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    The Australian National Tandem for Applied Research (ANTARES), is a 8MV FN tandem particle accelerator at the Australian Nuclear Science and Technology Organisation. Research on the accelerator is divided between two groups, Accelerator Mass Spectrometry (AMS) and lon Beam Analysis (IBA). The IBA group carries out a range of research projects from nuclear physics to materials characterisation. The major IBA project on the accelerator is a recoil time-of-flight spectrometer which consists of two electrostatic time pulse generators and an ion-implanted surface barrier detector. The spectrometer is ideally suited to the profiling of layered multi-element materials, and has been used to characterise materials such as metal-germanides, optoelectronics, superconductors and catalytic converters. This paper will describe the time-of-flight system as well as some recent materials characterisation results. 1 refs., 3 figs.

  17. Pulse Based Time-of-Flight Range Sensing.

    Science.gov (United States)

    Sarbolandi, Hamed; Plack, Markus; Kolb, Andreas

    2018-05-23

    Pulse-based Time-of-Flight (PB-ToF) cameras are an attractive alternative range imaging approach, compared to the widely commercialized Amplitude Modulated Continuous-Wave Time-of-Flight (AMCW-ToF) approach. This paper presents an in-depth evaluation of a PB-ToF camera prototype based on the Hamamatsu area sensor S11963-01CR. We evaluate different ToF-related effects, i.e., temperature drift, systematic error, depth inhomogeneity, multi-path effects, and motion artefacts. Furthermore, we evaluate the systematic error of the system in more detail, and introduce novel concepts to improve the quality of range measurements by modifying the mode of operation of the PB-ToF camera. Finally, we describe the means of measuring the gate response of the PB-ToF sensor and using this information for PB-ToF sensor simulation.

  18. Time-of-flight detector with KBr working medium

    International Nuclear Information System (INIS)

    Arvanov, A.N.; Gavalyan, V.G.; Lorikyan, M.P.

    1983-01-01

    A detector of controlled secondary electron emission as a 3-electrode focusing electrostatic system of the photomultiplier input chamber having a microchannel electron plate herringbone assembly with the total gain of approXimately 10 7 is described. A controlled secondary emission emitter based on MgO or KBr is installed as a cathode. The detector is designed for time-of-flight spectrometers. The time resolution is < or approximately equal to 0.5 ns. The time-of-flight system realized on the base of such two detectors has 100% detection efficiency and it is ''transparent'' for an identified particle. Its characteristics for α particle, deuteron and proton detection are estimated

  19. Time of flight measurement on the SOFIA experiment

    International Nuclear Information System (INIS)

    Bail, A.; Taieb, J.; Chatillon, A.; Belier, G.; Laurent, B.; Pellereau, E.

    2011-01-01

    The SOFIA experiment, which will be held at GSI (Darmstadt (Germany)) will allow to completely determine the mass and charge numbers of fragments produced in the fission reaction of radioactive actinides in reverse kinematics. Therefore, a dedicated setup has been developed for the Time of Flight measurement of relativistic heavy ions. The studies, which led to the choice of the adequate plastic scintillators and photomultipliers, are presented. Tests have been undertaken with the ELSA laser and electron beam facility. They shown that a suitable choice would be EJ-232 plastic scintillator for the ToF wall and EJ-232Q for the start detector and Hamamatsu H6533 and H10580 photomultipliers. This was confirmed by two test experiments realized at GSI with relativistic heavy ion beam ( 56 Fe and 238 U), where a time of flight resolution better than 20 ps FWHM was reached. (authors)

  20. Time of flight measurement on the SOFIA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bail, A.; Taieb, J.; Chatillon, A.; Belier, G.; Laurent, B.; Pellereau, E. [CEA/DAM/DIF, Arpajon (France)

    2011-07-01

    The SOFIA experiment, which will be held at GSI (Darmstadt (Germany)) will allow to completely determine the mass and charge numbers of fragments produced in the fission reaction of radioactive actinides in reverse kinematics. Therefore, a dedicated setup has been developed for the Time of Flight measurement of relativistic heavy ions. The studies, which led to the choice of the adequate plastic scintillators and photomultipliers, are presented. Tests have been undertaken with the ELSA laser and electron beam facility. They shown that a suitable choice would be EJ-232 plastic scintillator for the ToF wall and EJ-232Q for the start detector and Hamamatsu H6533 and H10580 photomultipliers. This was confirmed by two test experiments realized at GSI with relativistic heavy ion beam ({sup 56}Fe and {sup 238}U), where a time of flight resolution better than 20 ps FWHM was reached. (authors)

  1. Powder X-ray diffraction method for the quantification of cocrystals in the crystallization mixture.

    Science.gov (United States)

    Padrela, Luis; de Azevedo, Edmundo Gomes; Velaga, Sitaram P

    2012-08-01

    The solid state purity of cocrystals critically affects their performance. Thus, it is important to accurately quantify the purity of cocrystals in the final crystallization product. The aim of this study was to develop a powder X-ray diffraction (PXRD) quantification method for investigating the purity of cocrystals. The method developed was employed to study the formation of indomethacin-saccharin (IND-SAC) cocrystals by mechanochemical methods. Pure IND-SAC cocrystals were geometrically mixed with 1:1 w/w mixture of indomethacin/saccharin in various proportions. An accurately measured amount (550 mg) of the mixture was used for the PXRD measurements. The most intense, non-overlapping, characteristic diffraction peak of IND-SAC was used to construct the calibration curve in the range 0-100% (w/w). This calibration model was validated and used to monitor the formation of IND-SAC cocrystals by liquid-assisted grinding (LAG). The IND-SAC cocrystal calibration curve showed excellent linearity (R(2) = 0.9996) over the entire concentration range, displaying limit of detection (LOD) and limit of quantification (LOQ) values of 1.23% (w/w) and 3.74% (w/w), respectively. Validation results showed excellent correlations between actual and predicted concentrations of IND-SAC cocrystals (R(2) = 0.9981). The accuracy and reliability of the PXRD quantification method depend on the methods of sample preparation and handling. The crystallinity of the IND-SAC cocrystals was higher when larger amounts of methanol were used in the LAG method. The PXRD quantification method is suitable and reliable for verifying the purity of cocrystals in the final crystallization product.

  2. Time coder for slow neutron time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Grashilin, V.A.; Ofengenden, R.G.

    1988-01-01

    Time coder for slow neutron time-of-flight spectrometer is described. The time coder is of modular structure, is performed in the CAMAC standard and operates on line with DVK-2 computer. The main coder units include supporting generator, timers, time-to-digital converter, memory unit and crate controller. Method for measuring background symmetrically to the effect is proposed for a more correct background accounting. 4 refs.; 1 fig

  3. Time of flight spectrometry in heavy ions backscattering analysis

    International Nuclear Information System (INIS)

    Chevarier, A.; Chevarier, N.

    1983-05-01

    Time of flight spectrometry for backscattering analysis of MeV heavy ions is proposed. The capabilities and limitations of this method are investigated. Depth and mass resolution obtained in measurements of oxide films thickness as well as in GaAs layers analysis are presented. The importance of minimizing pile-up without significant loss of resolution by use of an adequate absorber set just in front of the rear detector is underlined

  4. Detailed investigation of a time-of-flight neutron spectrometer

    International Nuclear Information System (INIS)

    Elevant, T.; Trostell, B.

    1981-02-01

    Properties of a neutron spectrometer and telescope, based on double neutron interaction in hydrogen based scintillators and neutron time-of-flight technique, have been investigated in detail. Theoretical scaling of the resolutions with the flight path length and scattering angle have been confirmed by experimental results. Important parameters in connection with calibration of the spectrometer are discussed and calculated relative resolutions of the ion temperature are shown when applied to a fusion deuterium plasma. (Auth.)

  5. The time-of-flight detector of the DIRAC experiment

    International Nuclear Information System (INIS)

    Adeva, B.; Gallas, M.V.; Gomez, F.; Lopez-Agueera, A.; Nunez-Pardo, T.; Plo, M.; Rodriguez, A.M.; Rodriguez, X.M.; Saborido, J.J.; Santamarina, C.; Tobar, M.J.; Vazquez, P.

    2002-01-01

    The construction and performance of a large area time-of-flight detector for the DIRAC experiment at CERN is reported. With an average time resolution of 123 ps per counter at rates up to 1 MHz, it allows excellent separation of pπ - from π + π - pairs up to 4.6 GeV/c momentum, as well as of Coulomb-correlated pion pairs from accidentals. The optimization of scintillator material, photomultiplier performance and readout electronics is described

  6. A time of flight detector for high energy heavy particles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z; O` Connor, D J [Newcastle Univ., NSW (Australia). Dept. of Physics

    1994-12-31

    As a commonly used method to measure the energy of a particle with known mass, the flight time of the particle travelling over a certain distance is measured. A detector based on this principle is called a time-of-flight (TOF) detector which has attracted interests constantly during the last 15 years. For high energy heavy particle energy detection, TOF detector is an appropriated choice and such a system, developed recently, is described in this paper. 8 refs., 3 figs.

  7. A time of flight detector for high energy heavy particles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z.; O`Connor, D.J. [Newcastle Univ., NSW (Australia). Dept. of Physics

    1993-12-31

    As a commonly used method to measure the energy of a particle with known mass, the flight time of the particle travelling over a certain distance is measured. A detector based on this principle is called a time-of-flight (TOF) detector which has attracted interests constantly during the last 15 years. For high energy heavy particle energy detection, TOF detector is an appropriated choice and such a system, developed recently, is described in this paper. 8 refs., 3 figs.

  8. KELVIN rare gas time-of-flight program

    International Nuclear Information System (INIS)

    Vernon, M.

    1981-03-01

    The purpose of this appendix is to explain in detail the procedure for performing time-of-flight (TOF) calibration measurements. The result of the calibration measurements is to assign a correct length (L) to the path the molecules travel in a particular experimental configuration. In conjunction with time information (t) a velocity distribution (L/t) can then be determined. The program KELVIN is listed

  9. Computer x-ray powder diffraction patterns and densities for corundum, aluminium, zirconium, delta-UZr2 and the zirconium hydrides

    International Nuclear Information System (INIS)

    Ferguson, I.F.

    1976-11-01

    The computer-calculated X-ray powder diffraction patterns and theoretical densities of α-Al 2 O 3 ; Al; α-Zr; β-Zr; delta-UZr 2 ; γ, delta - and epsilon-zirconium hydrides are presented. Brief comments are given on some of the published X-ray powder diffraction data on these phases. (author)

  10. Time of flight imaging through scattering environments (Conference Presentation)

    Science.gov (United States)

    Le, Toan H.; Breitbach, Eric C.; Jackson, Jonathan A.; Velten, Andreas

    2017-02-01

    Light scattering is a primary obstacle to imaging in many environments. On small scales in biomedical microscopy and diffuse tomography scenarios scattering is caused by tissue. On larger scales scattering from dust and fog provide challenges to vision systems for self driving cars and naval remote imaging systems. We are developing scale models for scattering environments and investigation methods for improved imaging particularly using time of flight transient information. With the emergence of Single Photon Avalanche Diode detectors and fast semiconductor lasers, illumination and capture on picosecond timescales are becoming possible in inexpensive, compact, and robust devices. This opens up opportunities for new computational imaging techniques that make use of photon time of flight. Time of flight or range information is used in remote imaging scenarios in gated viewing and in biomedical imaging in time resolved diffuse tomography. In addition spatial filtering is popular in biomedical scenarios with structured illumination and confocal microscopy. We are presenting a combination analytical, computational, and experimental models that allow us develop and test imaging methods across scattering scenarios and scales. This framework will be used for proof of concept experiments to evaluate new computational imaging methods.

  11. Multivariate Sensitivity Analysis of Time-of-Flight Sensor Fusion

    Science.gov (United States)

    Schwarz, Sebastian; Sjöström, Mårten; Olsson, Roger

    2014-09-01

    Obtaining three-dimensional scenery data is an essential task in computer vision, with diverse applications in various areas such as manufacturing and quality control, security and surveillance, or user interaction and entertainment. Dedicated Time-of-Flight sensors can provide detailed scenery depth in real-time and overcome short-comings of traditional stereo analysis. Nonetheless, they do not provide texture information and have limited spatial resolution. Therefore such sensors are typically combined with high resolution video sensors. Time-of-Flight Sensor Fusion is a highly active field of research. Over the recent years, there have been multiple proposals addressing important topics such as texture-guided depth upsampling and depth data denoising. In this article we take a step back and look at the underlying principles of ToF sensor fusion. We derive the ToF sensor fusion error model and evaluate its sensitivity to inaccuracies in camera calibration and depth measurements. In accordance with our findings, we propose certain courses of action to ensure high quality fusion results. With this multivariate sensitivity analysis of the ToF sensor fusion model, we provide an important guideline for designing, calibrating and running a sophisticated Time-of-Flight sensor fusion capture systems.

  12. TORCH—a Cherenkov based time-of-flight detector

    Energy Technology Data Exchange (ETDEWEB)

    Dijk, M.W.U. van, E-mail: m.vandijk@bristol.ac.uk [H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Brook, N.H. [H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Castillo García, L. [European Organisation for Nuclear Research (CERN), CH-1211 Geneva 23 (Switzerland); Laboratory for High Energy Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Cowie, E.N.; Cussans, D. [H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); D' Ambrosio, C. [European Organisation for Nuclear Research (CERN), CH-1211 Geneva 23 (Switzerland); Fopma, J. [Denys Wilkinson Laboratory, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Forty, R.; Frei, C. [European Organisation for Nuclear Research (CERN), CH-1211 Geneva 23 (Switzerland); Gao, R. [Denys Wilkinson Laboratory, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Gys, T. [European Organisation for Nuclear Research (CERN), CH-1211 Geneva 23 (Switzerland); Harnew, N.; Keri, T. [Denys Wilkinson Laboratory, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Piedigrossi, D. [European Organisation for Nuclear Research (CERN), CH-1211 Geneva 23 (Switzerland)

    2014-12-01

    TORCH is an innovative high-precision time-of-flight system to provide particle identification in the difficult intermediate momentum region up to 10 GeV/c. It is also suitable for large-area applications. The detector provides a time-of-flight measurement from the imaging of Cherenkov photons emitted in a 1 cm thick quartz radiator. The photons propagate by total internal reflection to the edge of the quartz plate and are then focused onto an array of photon detectors at the periphery. A time-of-flight resolution of about 10–15 ps per incident charged particle needs to be achieved to allow a three sigma kaon-pion separation up to 10 GeV/c momentum for the TORCH located 9.5 m from the interaction point. Given ∼30 detected photons per incident charged particle, this requires measuring the time-of-arrival of individual photons to about 70 ps. This paper will describe the design of a TORCH prototype involving a number of ground-breaking and challenging techniques.

  13. FTIR spectroscopy and X-ray powder diffraction characterization of microcrystalline cellulose obtained from alfa fibers

    Directory of Open Access Journals (Sweden)

    Trache D.

    2013-07-01

    Full Text Available Many cereal straws have been used as raw materials for the preparation of microcrystalline cellulose (MCC. These raw materials were gradually replaced with wood products; nevertheless about 10% of the world overall pulp production is obtained from non-wood raw material. The main interest in pulp made from straw is that it provides excellent fibres for different industries with special properties, and that it is the major available source of fibrous raw material in some geographical areas. The aim of the present work was to characterize microcrystalline cellulose prepared from alfa fibers using the hydrolysis process. The products obtained are characterized with FTIR spectroscopy and X-ray powder diffraction. As a result, FTIR spectroscopy is an appropriate technique for studying changes occurred by any chemical treatment. The spectrum of alfa grass stems shows the presence of lignin and hemicelluloses. However, the cellulose spectrum indicates that the extraction of lignin and hemicellulose was effective. The X-ray analysis indicates that the microcrystalline cellulose is more crystalline than the source material.

  14. Validation of powder X-ray diffraction following EN ISO/IEC 17025.

    Science.gov (United States)

    Eckardt, Regina; Krupicka, Erik; Hofmeister, Wolfgang

    2012-05-01

    Powder X-ray diffraction (PXRD) is used widely in forensic science laboratories with the main focus of qualitative phase identification. Little is found in literature referring to the topic of validation of PXRD in the field of forensic sciences. According to EN ISO/IEC 17025, the method has to be tested for several parameters. Trueness, specificity, and selectivity of PXRD were tested using certified reference materials or a combination thereof. All three tested parameters showed the secure performance of the method. Sample preparation errors were simulated to evaluate the robustness of the method. These errors were either easily detected by the operator or nonsignificant for phase identification. In case of the detection limit, a statistical evaluation of the signal-to-noise ratio showed that a peak criterion of three sigma is inadequate and recommendations for a more realistic peak criterion are given. Finally, the results of an international proficiency test showed the secure performance of PXRD. © 2012 American Academy of Forensic Sciences.

  15. Rietveld refinement of magnetic structures from pulsed-neutron-source powder-diffraction data

    International Nuclear Information System (INIS)

    Robinson, R.A.; Lawson, A.C.; Larson, A.C.; Von Dreele, R.B.; Goldstone, J.A.

    1994-01-01

    The General Structure Analysis System, GSAS, has recently been modified to include magnetic neutron- scattering cross-sections. Low-temperature diffraction data have been taken on the hexagonal noncollinear antiferromagnet UPdSn on both the HIPD and the NPD powder diffractometers ail LANSCE. The low-resolution data reveal that the magnetic structure has orthorhombic symmetry (magnetic space group P c m'c2 1 ) between 25K and 40K, and monoclinic symmetry (magnetic space group PC 1121 ) below 25K. The high-resolution data reveal that there are structural distortions with corresponding symmetry changes in each of these phases, to give chemical space groups Cmc2 1 and P2 1 , respectively, while the paramagnetic phase above 40K has space group P6 3 mc. Using GSAS, we have refined data sets from both diffractometers simultaneously, including both magnetic and structural cross-sections. Magnetoelastic coefficients for the distortions have been extracted and we have determined the sign of the coupling between the structural monoclinicity and the magnetic monoclinicity. The magnetic results from Rietveld refinement are in good agreement with model fitting to the integrated intensities of seven independent magnetic reflections and these, in turn, agree with measurements made on the same sample using the constant-wavelength reactor technique. Our results therefore validate, to some level, both the technique of using spallation sources for complicated magnetic structures and the specifics of the GSAS Rietveld code

  16. Neutron Powder Diffraction Studies of Ca2-xSrxCoWO6 Double Perovskites

    International Nuclear Information System (INIS)

    Zhou, Qingdi; Kennedy, Brendan; Elcombe, Margaret

    2005-01-01

    Full text: A series of double perovskite compounds of A 2-x Sr x CoWO 6 (A = Ca, Ba) were synthesized and the room- and variable-temperature structural phase transitions have been studied by synchrotron and neutron powder diffraction techniques. These studies demonstrated that the symmetry increases as the average size of the A-site cation increases. These transitions are associated with the gradual reduction and ultimately removal of the octahedral tiles of the BO 6 octahedra. Temperature dependent structural studies have been undertaken for selected samples. The transition to cubic is continuous in the three Ca doped samples studied as a function of temperature, Ca 2-x Sr x CoWO 6 x = 1.8, 1.7, 1.6, however in each case analysis of the spontaneous strain shows the transition to be tricritical rather than second order in nature. Where observed the temperature induced P2 1 /n to I4/m transition is first order as required by symmetry. (authors)>>>>

  17. X-ray Powder Diffraction for Characterization of Raw Materials in Banknotes.

    Science.gov (United States)

    Marabello, Domenica; Benzi, Paola; Lombardozzi, Antonietta; Strano, Morela

    2017-07-01

    We report about the X-ray powder diffraction characterization of crystalline materials used to produce genuine and counterfeit banknotes, performed with a single-crystal diffractometer that permits fast and nondestructive measurements in different 0.5-mm sized areas; 20-euro denomination genuine banknotes were analyzed, and results were compared with counterfeit banknotes. The analysis shows that the papers used to print real banknotes are composed, as expected, of cotton-based cellulose and titanium dioxide as crystalline additive, but different polymorphs of TiO 2 for different emission countries are evidenced. The counterfeit banknotes are composed of cellulose based on wood pulp; moreover, an unexpected significant quantity of TiO 2 was found to be mixed with calcite, indicating that the paper employed by forgers is not simply a common low-cost type. The crystalline index and intensity ratios between the peaks attributable to cellulose and fillers can provide additional information to trace back paper suppliers for forensic purposes. © 2017 American Academy of Forensic Sciences.

  18. Molecular beam studies with a time-of-flight machine

    International Nuclear Information System (INIS)

    Beijerinck, H.C.W.

    1975-01-01

    The study concerns the development of the time-of-flight method for the velocity analysis of molecular beams and its application to the measurement of the velocity dependence of the total cross-section of the noble gases. It reviews the elastic scattering theory, both in the framework of classical mechanics and in the quantum mechanical description. Attention is paid to the semiclassical correspondence of classical particle trajectories with the partial waves of the quantum mechanical solution. The total cross-section and the small angle differential cross-section are discussed with special emphasis on their relation. The results of this chapter are used later to derive the correction on the measured total cross-section due to the finite angular resolution of the apparatus. Reviewed also is the available information on the intermolecular potential of the Ar-Ar system. Then a discussion of the measurement of total cross-sections with the molecular beam method and the time-of-flight method is compared to other methods used. It is shown that the single burst time-of-flight method can be developed into a reliable and well-calibrated method for the analysis of the velocity distribution of molecular beams. A comparison of the single burst time-of-flight method with the cross-correlation time-of-flight method shows that the two methods are complementary and that the specific experimental circumstances determine which method is to be preferred. Molecular beam sources are discussed. The peaking factor formalism is introduced and helps to compare the performance of different types of sources. The effusive and the supersonic source are treated and recent experimental results are given. The multichannel source is treated in more detail. For the opaque mode, an experimental investigation of the velocity distribution and the angular distribution of the flow pattern is presented. Comparison of these results with Monte Carlo calculations for free molecular flow in a cylindrical

  19. Structure solution from powder neutron and x-ray diffraction data: getting the best of both worlds

    International Nuclear Information System (INIS)

    Hunter, B.A.

    2000-01-01

    Full text: Powder diffraction methods have traditionally been used in three main areas: phase identification and quantification, lattice parameter determination and structure refinement. Until recently structure solution has been the almost exclusive domain of single crystal diffraction methods, predominantly using x-rays. The increasing use of synchrotron and neutron sources, and the unrelenting advances in computing hardware and software means that powder methods are challenging single crystal methods as a practical method for structure solution, especially when single crystal method can not be applied. It is known that structural refinements from a known starting structure using combined X-ray and neutron data sets are capable of providing highly accurate structures. Likewise, using combined x-ray and neutron powder diffraction data in the structure solution process should also be a powerful technique, although to date no one is pursuing this methodology. This paper present examples of solutions to the problem. Namely we are using high resolution powder X-ray and neutron methods to solve the structures of molecular materials and minerals, then refining the structures using both sets of data. In this way we exploit the advantages of both methods while minimising the disadvantages. We present our solution for a small amino acid structure, a metalorganic and a mineral structure

  20. Time-of-flight neutron Bragg-edge transmission imaging of microstructures in bent steel plates

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yuhua, E-mail: yuhua.su@j-parc.jp [J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195 (Japan); Oikawa, Kenichi; Harjo, Stefanus; Shinohara, Takenao; Kai, Tetsuya; Harada, Masahide; Hiroi, Kosuke [J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195 (Japan); Zhang, Shuoyuan; Parker, Joseph Don [Neutron R& D Division, CROSS-Tokai, 162-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan); Sato, Hirotaka [Faculty of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Shiota, Yoshinori; Kiyanagi, Yoshiaki [Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603 (Japan); Tomota, Yo [Research Center for Strategic Materials, National Institute for Materials Science, Tsukuba 305-0047 (Japan)

    2016-10-15

    Neutron Bragg-edge transmission imaging makes it possible to quantitatively visualize the two-dimensional distribution of microstructure within a sample. In order to examine its application to engineering products, time-of-flight Bragg-edge transmission imaging experiments using a pulsed neutron source were performed for plastically bent plates composed of a ferritic steel and a duplex stainless steel. The non-homogeneous microstructure distributions, such as texture, crystalline size, phase volume fraction and residual elastic strain, were evaluated for the cross sections of the bent plates. The obtained results were compared with those by neutron diffraction and electron back scatter diffraction, showing that the Bragg-edge transmission imaging is powerful for engineering use.

  1. The crystal structures and powder diffraction patterns of the uranium tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, R.L. (State Univ. of New York, Alfred, NY (USA). Inst. of Ceramic Superconductivity); Nichols, M.C.; Boehme, D.R. (Sandia National Labs., Livermore, CA (USA))

    1990-10-03

    A critical review of all of the reported structures and powder diffraction patterns in the uranium telluride system has been undertaken. Structures that are correct: Cubic -- UTe: no experimental pattern exists. Retain calculated 15--865. Cubic --U{sub 3}Te{sub 4}: retain the poor quality 12--610 but adopt the pattern calculated here. Cubic U{sub 2}Te{sub 3}: no experimental pattern exists. Adopt pattern calculated here. Orthorhombic UTe{sub 2}: Adopt the new pattern of Boehme et al. Monoclinic {alpha}UTe{sub 3} Adopt the new pattern of Boehme et al. Monoclinic {alpha}UTe{sub 3} Adopt the new pattern of Boehme et al. Orthorhombic {beta}UTe{sub 3}: Adopt pattern calculated here. Orthorhombic UTe{sub 5}: Adopt the new pattern of Boehme et al. Structures in need of refinement: Orthorhombic U{sub 2}Te{sub 3}:Adopt pattern calculated here over 34--807. Hexagonal U{sub 7}Te{sub 12}: Adopt pattern calculated here but retain 24--1368. Orthorhombic UTe{sub 1.78}: Adopt pattern calculated here and retain our modified 21--1404 reported for U{sub 4}Te{sub 7}. Orthorhombic UTe{sub 2.5}: Adopt pattern calculated here. Orthorhombic UTe{sub 3.4}: Accept recent pattern of Boehme et al. Phases for which no structures or reliable patterns exist: Orthorhombic U{sub 3}Te{sub 4}: no published pattern. Tetragonal U{sub 3}Te{sub 5}: three patterns 21--1407, 34--766 and 34--896 exit but all are of very poor quality. Phases which probably do not exist: Tetragonal UTe{sub 1.78}, Tetragonal UTe{sub 2}, Cubic UTe{sub 2} U{sub 3}Te{sub 7}(21--1402), U{sub 3}Te{sub 8}(21--1406).

  2. The development of a time of flight diffractometer, FIONA

    International Nuclear Information System (INIS)

    Goodyear, A.G.; Miller, R.J.R.

    1975-11-01

    A neutron diffractometer, FIONA, has been built at AWRE in order to study structure and equation of state data of materials at high pressures and elevated temperatures. It is required that the sample should be subjected to pressures up to 60 kbar and temperatures up to 800 0 K. There is a further requirement that the diffractometer should have a multi-detector system to make the maximum use of the neutrons available from the 5 MW HERALD reactor. Both these requirements can be met by using a time of flight diffractometer. The instrument is described. (author)

  3. Cluster Tracking with Time-of-Flight Cameras

    DEFF Research Database (Denmark)

    Hansen, Dan Witzner; Hansen, Mads; Kirschmeyer, Martin

    2008-01-01

    We describe a method for tracking people using a time-of-flight camera and apply the method for persistent authentication in a smart-environment. A background model is built by fusing information from intensity and depth images. While a geometric constraint is employed to improve pixel cluster...... coherence and reducing the influence of noise, the EM algorithm (expectation maximization) is used for tracking moving clusters of pixels significantly different from the background model. Each cluster is defined through a statistical model of points on the ground plane. We show the benefits of the time...

  4. The Time-of-Flight Detector for the ALICE experiment

    CERN Document Server

    Williams, M C S

    2002-01-01

    The Multigap Resistive Plate Chamber (MRPC) will be used to build a large Time-of-Flight detector for the ALICEexperiment. It will cover an area of 150 m2 consisting of 160,000 channels of 3.5 x 2.5 cm2 read-out pads. We present the results of the last 2 years of R&D during which we investigated problems associated with scaling up from single cells of 3 x 3 cm2 to strips with active area of 7 × 120 cm2 read out with 96 pads.

  5. Timing properties of a time-of-flight detector

    International Nuclear Information System (INIS)

    Nakagawa, Takahide; Yuasa-Nakagawa, Keiko.

    1989-01-01

    The time resolution of a time-of-flight (T.O.F.) detector which consists of a channel plate detector (CPD) with a central hole and a surface barrier detector (SBD) was measured. A time resolution of 80 psec fwhm was obtained for 8.78 MeV alpha particles. The influence on fast timing of the SBD of alpha particles was carefully studied. The plasma delay time and time resolution of the SBD were found to strongly depend on the electric field strength and properties of the SBD. (author)

  6. Time-of-flight range imaging for underwater applications

    Science.gov (United States)

    Merbold, Hannes; Catregn, Gion-Pol; Leutenegger, Tobias

    2018-02-01

    Precise and low-cost range imaging in underwater settings with object distances on the meter level is demonstrated. This is addressed through silicon-based time-of-flight (TOF) cameras operated with light emitting diodes (LEDs) at visible, rather than near-IR wavelengths. We find that the attainable performance depends on a variety of parameters, such as the wavelength dependent absorption of water, the emitted optical power and response times of the LEDs, or the spectral sensitivity of the TOF chip. An in-depth analysis of the interplay between the different parameters is given and the performance of underwater TOF imaging using different visible illumination wavelengths is analyzed.

  7. Time-of-flight cameras principles, methods and applications

    CERN Document Server

    Hansard, Miles; Choi, Ouk; Horaud, Radu

    2012-01-01

    Time-of-flight (TOF) cameras provide a depth value at each pixel, from which the 3D structure of the scene can be estimated. This new type of active sensor makes it possible to go beyond traditional 2D image processing, directly to depth-based and 3D scene processing. Many computer vision and graphics applications can benefit from TOF data, including 3D reconstruction, activity and gesture recognition, motion capture and face detection. It is already possible to use multiple TOF cameras, in order to increase the scene coverage, and to combine the depth data with images from several colour came

  8. Material Classification Using Raw Time-of-Flight Measurements

    KAUST Repository

    Su, Shuochen

    2016-12-13

    We propose a material classification method using raw time-of-flight (ToF) measurements. ToF cameras capture the correlation between a reference signal and the temporal response of material to incident illumination. Such measurements encode unique signatures of the material, i.e. the degree of subsurface scattering inside a volume. Subsequently, it offers an orthogonal domain of feature representation compared to conventional spatial and angular reflectance-based approaches. We demonstrate the effectiveness, robustness, and efficiency of our method through experiments and comparisons of real-world materials.

  9. Time-of-Flight Positron Emission Tomography with Radiofrequency Phototube

    International Nuclear Information System (INIS)

    Margaryan, A.; Kakoyan, V.; Knyazyan, S.

    2011-01-01

    In this paper γ-detector, based on the radiofrequency (RF) phototube and recently developed fast and ultrafast scintillators, is considered for Time-of-Flight positron emission tomography applications. Timing characteristics of such a device has been investigated by means of a dedicated Monte Carlo code based on the single photon counting concept. Biexponential timing model for scintillators have been used. The calculations have shown that such a timing model is in a good agreement with recently measured data. The timing resolution of -detectors can be significantly improved by using the RF phototube. (authors)

  10. Modern techniques of structural neutron diffraction

    International Nuclear Information System (INIS)

    Aksenov, V.L.; )

    1997-01-01

    Modern techniques of neutron diffraction for structural investigations are analyzed. The time-of-flight method and the reverse time-of-flight method are considered briefly. Characteristics of two-crystal and time-of-flight neutron diffractometers are compared. It is pointed that in the future, the great importance will be possessed the development of high-resolution Fourier neutron diffractometers [ru

  11. The role of iron in tetrahedrite and tennantite determined by Rietveld refinement of neutron powder diffraction data

    DEFF Research Database (Denmark)

    Andreasen, Jens Wenzel; Makovicky, Emil; Lebech, Bente

    2008-01-01

    Rietveld refinement of neutron powder diffraction data on four samples of synthetic, iron-bearing tetrahedrite (Cu12-xFexSb4S13) with x = 0.28, 0.69, 0.91, 2.19 and four samples of synthetic tennantite (Cu12-xFexAs4S13) with x = 0.33, 0.38, 0.86, 1.5 indicate unambiguously that iron is incorporated...

  12. Application of combined multivariate techniques for the description of time-resolved powder X-ray diffraction data

    Czech Academy of Sciences Publication Activity Database

    Taris, A.; Grosso, M.; Brundu, M.; Guida, V.; Viani, Alberto

    2017-01-01

    Roč. 50, č. 2 (2017), s. 451-461 ISSN 1600-5767 R&D Projects: GA MŠk(CZ) LO1219 Keywords : in situ X-ray powder diffraction * amorphous content * chemically bonded ceramic s * statistical total correlation spectroscopy * multivariate curve resolution Subject RIV: JJ - Other Materials OBOR OECD: Materials engineering Impact factor: 2.495, year: 2016 http://journals.iucr.org/j/issues/2017/02/00/ap5006/index.html

  13. Crystal structure refinement of α-Si3N4 using synchrotron radiation powder diffraction data: unbiased refinement strategy

    International Nuclear Information System (INIS)

    Toraya, H.

    2000-01-01

    The crystal structure of α-silicon nitride (Si 3 N 4 ) was refined by the Rietveld method using synchrotron radiation powder diffraction data (wavelength = 1.2 A) collected at station BL-4B2 in the photon factory. A refinement procedure that adopted a new weight function, w = 1/Y o e (Y o is the observed profile intensity and e ≅ 2), for the least-squares fitting [Toraya (1998). J. Appl. Cryst. 31, 333-343] was studied. The most reasonable structural parameters were obtained with e = 1.7. Crystal data of α-Si 3 N 4 : trigonal, P31c, a = 7.75193 (3), c = 5.61949 (4) A, V = 292.447 (3) A 3 , Z = 4; R p = 5.08, R wp = 6.50, R B = 3.36, R F = 2.26%. The following five factors are considered equally important for deriving accurate structural parameters from powder diffraction data: (i) sufficiently large sin θ/λ range of >0.8 A -1 ; (ii) adequate counting statistics; (iii) correct profile model; (iv) proper weighting on observations to give a uniform distribution of the mean weighted squared residuals; (v) high-angular-resolution powder diffraction data. (orig.)

  14. The ALICE Time of Flight Readout System AFRO

    CERN Document Server

    Kluge, A

    1999-01-01

    The ALICE Time of Flight Detector system comprises more than 100.000 channels and covers an area of more than 100 m2. The timing resolution should be better than 150 ps. This combination of requirements poses a major challenge to the readout system. All detector timing measurements are referenced to a unique start signal t0. This signal is generated at the time an event occurs. Timing measurements are performed using a multichannel TDC chip which requires a 40 MHz reference clock signal. The general concept of the readout system is based on a modular architecture. Detector cells are combined to modules of 1024 channels. Each of these modules can be read out and calibrated independently from each other. By distributing a reference signal, a timing relationship between the modules is established. This reference signal can either be the start signal t0 or the TDC-reference clock. The readout architecture is divided into three steps; the TDC controller, the module controller, and the time of flight controller. Th...

  15. A Time of Flight Fast Neutron Imaging System Design Study

    Science.gov (United States)

    Canion, Bonnie; Glenn, Andrew; Sheets, Steven; Wurtz, Ron; Nakae, Les; Hausladen, Paul; McConchie, Seth; Blackston, Matthew; Fabris, Lorenzo; Newby, Jason

    2017-09-01

    LLNL and ORNL are designing an active/passive fast neutron imaging system that is flexible to non-ideal detector positioning. It is often not possible to move an inspection object in fieldable imager applications such as safeguards, arms control treaty verification, and emergency response. Particularly, we are interested in scenarios which inspectors do not have access to all sides of an inspection object, due to interfering objects or walls. This paper will present the results of a simulation-based design parameter study, that will determine the optimum system design parameters for a fieldable system to perform time-of-flight based imaging analysis. The imaging analysis is based on the use of an associated particle imaging deuterium-tritium (API DT) neutron generator to get the time-of-flight of radiation induced within an inspection object. This design study will investigate the optimum design parameters for such a system (e.g. detector size, ideal placement, etc.), as well as the upper and lower feasible design parameters that the system can expect to provide results within a reasonable amount of time (e.g. minimum/maximum detector efficiency, detector standoff, etc.). Ideally the final prototype from this project will be capable of using full-access techniques, such as transmission imaging, when the measurement circumstances allow, but with the additional capability of producing results at reduced accessibility.

  16. Characterization of modulated time-of-flight range image sensors

    Science.gov (United States)

    Payne, Andrew D.; Dorrington, Adrian A.; Cree, Michael J.; Carnegie, Dale A.

    2009-01-01

    A number of full field image sensors have been developed that are capable of simultaneously measuring intensity and distance (range) for every pixel in a given scene using an indirect time-of-flight measurement technique. A light source is intensity modulated at a frequency between 10-100 MHz, and an image sensor is modulated at the same frequency, synchronously sampling light reflected from objects in the scene (homodyne detection). The time of flight is manifested as a phase shift in the illumination modulation envelope, which can be determined from the sampled data simultaneously for each pixel in the scene. This paper presents a method of characterizing the high frequency modulation response of these image sensors, using a pico-second laser pulser. The characterization results allow the optimal operating parameters, such as the modulation frequency, to be identified in order to maximize the range measurement precision for a given sensor. A number of potential sources of error exist when using these sensors, including deficiencies in the modulation waveform shape, duty cycle, or phase, resulting in contamination of the resultant range data. From the characterization data these parameters can be identified and compensated for by modifying the sensor hardware or through post processing of the acquired range measurements.

  17. IceBridge Sigma Space Lidar L0 Raw Time-of-Flight Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA IceBridge Sigma Space Lidar L0 Raw Time-of-Flight Data (ILSIG0) contain raw time-of-flight values for Antarctica and Greenland using the Sigma Space Lidar....

  18. IPNS time-of-flight single crystal diffractometer

    International Nuclear Information System (INIS)

    Schultz, A.J.; Teller, R.G.; Williams, J.M.

    1983-01-01

    The single crystal diffractometer (SCD) at the Argonne Intense Pulsed Neutron Source (IPNS) utilizes the time-of-flight (TOF) Laue technique to provide a three-dimensional sampling of reciprocal space during each pulse. The instrument contains a unique neutron position-sensitive 6 Li-glass scintillation detector with an active area of 30 x 30 cm. The three-dimensional nature of the data is very useful for fast, efficient measurement of Bragg intensities and for the studies of superlattice and diffuse scattering. The instrument was designed to achieve a resolution of 2% or better (R = δQ/Q) with 2 THETA > 60 0 and lambda > 0.7A

  19. Avalanche photodiode based time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ogasawara, Keiichi, E-mail: kogasawara@swri.edu; Livi, Stefano A.; Desai, Mihir I.; Ebert, Robert W.; McComas, David J.; Walther, Brandon C. [Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States)

    2015-08-15

    This study reports on the performance of Avalanche Photodiodes (APDs) as a timing detector for ion Time-of-Flight (TOF) mass spectroscopy. We found that the fast signal carrier speed in a reach-through type APD enables an extremely short timescale response with a mass or energy independent <2 ns rise time for <200 keV ions (1−40 AMU) under proper bias voltage operations. When combined with a microchannel plate to detect start electron signals from an ultra-thin carbon foil, the APD comprises a novel TOF system that successfully operates with a <0.8 ns intrinsic timing resolution even using commercial off-the-shelf constant-fraction discriminators. By replacing conventional total-energy detectors in the TOF-Energy system, APDs offer significant power and mass savings or an anti-coincidence background rejection capability in future space instrumentation.

  20. High resolution fast neutron spectrometry without time-of-flight

    International Nuclear Information System (INIS)

    Evans, A.E.; Brandenberger, J.D.

    1978-01-01

    Performance tests of a spectrometer tube of the type developed by Cuttler and Shalev show that the measurement of fast neutron spectra with this device can be made with an energy resolution previously obtainable only in large time-of-flight facilities. In preliminary tests, resolutions of 16.4 keV for thermal neutrons and 30.9 keV for 1-MeV neutrons were obtained. A broad-window pulse-shape discrimination (PSD) system is used to remove from pulse-height distributions most of the continua due to 3 He-recoil events, noise, and wall effect. Use of PSD improved the energy resolution to 12.9 keV for thermal neutrons and 29.2 keV for 1-MeV neutrons. The detector is a viable tool for neutron research at nominally equipped accelerator laboratories

  1. Time Of Flight Detectors: From phototubes to SiPM

    International Nuclear Information System (INIS)

    Laurenti, G.; Levi, G.; Foschi, E.; Guandalini, C.; Quadrani, L.; Sbarra, C.; Zuffa, M.

    2008-01-01

    A sample of Silicon Photomultipliers was tested because they looked promising for future space missions: low consumption, low weight, resistance to radiation damage and insensitivity to magnetic fields. They have been studied in laboratory by means of the same characterization methods adopted to calibrate the fine mesh photomultipliers used by the Time Of Flight of the AMS-02 experiment. A detailed simulation was made to reproduce the SiPM response to the various experimental conditions. A possible counter design has been studied with front end electronics card equipped with SiPMs and Peltier cell for thermoregulation. A proper simulation based on COMSOL Multiphysics package reproduces quite well the Peltier cell nominal cooling capability

  2. Ion microtomography using ion time-of-flight

    International Nuclear Information System (INIS)

    Roberts, M.L.; Heikkinen, D.W.; Proctor, I.D.; Pontau, A.E.; Olona, G.T.; Felter, T.E.; Morse, D.H.; Hess, B.V.

    1992-01-01

    We have developed and are in the process of testing an ion time-of-flight (TOF) detector system for use in our ion microtomography measurements. Using TOF, ion energy is determined by measurement of the ion's flight time over a certain path length. For ion microtomography, the principle advantage of TOF analysis is that ion count rates of several hundred thousand counts per second can be achieved as compared to a limit of about ten thousand ions per second when using a solid-state silicon surface barrier detector and associated electronics. This greater than 10 fold increase in count rate correspondingly shortens sample analysis time or increases the amount of data that can be collected on a given sample. Details of the system and progress to date are described

  3. Tests and calibration of NIF neutron time of flight detectors.

    Science.gov (United States)

    Ali, Z A; Glebov, V Yu; Cruz, M; Duffy, T; Stoeckl, C; Roberts, S; Sangster, T C; Tommasini, R; Throop, A; Moran, M; Dauffy, L; Horsefield, C

    2008-10-01

    The National Ignition Facility (NIF) neutron time of flight (NTOF) diagnostic will measure neutron yield and ion temperature in all NIF campaigns in DD, DT, and THD(*) implosions. The NIF NTOF diagnostic is designed to measure neutron yield from 1x10(9) to 2x10(19). The NTOF consists of several detectors of varying sensitivity located on the NIF at about 5 and 20 m from the target. Production, testing, and calibration of the NIF NTOF detectors have begun at the Laboratory for Laser Energetics (LLE). Operational tests of the NTOF detectors were performed on several facilities including the OMEGA laser at LLE and the Titan laser at Lawrence Livermore National Laboratory. Neutron calibrations were carried out on the OMEGA laser. Results of the NTOF detector tests and calibration will be presented.

  4. Time-of-flight scattering and recoiling spectrometry

    International Nuclear Information System (INIS)

    Rabalais, J.W.

    1991-01-01

    Ion scattering and recoiling spectrometry consists of directing a collimated beam of monoenergetic ions towards a surface and measuring the flux of scattered and recoiled particles from this surface. When the neutral plus ion flux is velocity selected by measuring the flight times from the sample to the detector, the technique is called time-of-flight scattering and recoiling spectrometry (TOF-SARS). TOF-SARS is capable of (1) surface elemental analysis by applying classical mechanics to the velocities of the particles, (2) surface structural analysis by monitoring the angular anisotropies in the particle flux, and (3) ion-surface electron exchange probabilities by analysis of the ion/neutral fractions in the particle flux. Examples of these three areas are presented herein

  5. submitter Digital Image Correlation of 2D X-ray Powder Diffraction Data for Lattice Strain Evaluation

    CERN Document Server

    Zhang, Hongjia; Salvati, Enrico; Daisenberger, Dominik; Lunt, Alexander J G; Fong, Kai Soon; Song, Xu; Korsunsky, Alexander M

    2018-01-01

    High energy 2D X-ray powder diffraction experiments are widely used for lattice strain measurement. The 2D to 1D conversion of diffraction patterns is a necessary step used to prepare the data for full pattern refinement, but is inefficient when only peak centre position information is required for lattice strain evaluation. The multi-step conversion process is likely to lead to increased errors associated with the ‘caking’ (radial binning) or fitting procedures. A new method is proposed here that relies on direct Digital Image Correlation analysis of 2D X-ray powder diffraction patterns (XRD-DIC, for short). As an example of using XRD-DIC, residual strain values along the central line in a Mg AZ31B alloy bar after 3-point bending are calculated by using both XRD-DIC and the conventional ‘caking’ with fitting procedures. Comparison of the results for strain values in different azimuthal angles demonstrates excellent agreement between the two methods. The principal strains and directions are calculated...

  6. A reverse time of flight analyzer facility at the ETRR-1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maayouf, R M.A.; El-Shafey, A S; Khalil, M I [Reactor and Neutron Physics Dept., NRC, Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    The present work deals both with the theory and performance of a reverse-time-of-flight (RTOF) analyzer designed to analyze pulses emitted from a fourier chopper recently put into operation at the ETRR-1 reactor. The RTOF analyze was found to be adequate for use with pick up pulses from the fourier chopper which operates following a frequency window suitable for rotation rates from 0-9000 rpm; synchronically with neutron pulses from a {sup 6} Li glass detector set at time focusing geometry for scattering angle 20=90 degree. It was possible, with the present RTOF analyzer to obtain diffraction patterns at neutron wavelength range between 1 - 4 A within a resolution = 0.5%. 8 FIGS.

  7. Absolute determination by X-ray diffraction of a binary or ternary mixture: nickel oxide and fluoride in a nickel powder (1960)

    International Nuclear Information System (INIS)

    Charpin, P.; Hauptman, A.

    1960-01-01

    The method employed is based upon the comparison between computed and measured intensities for conveniently selected X-Ray diffraction lines of each component of the powder. Care must be taken to allow for absorption, both inside each grain and in overall sample. This method has been applied to the determination of nickel oxide and fluoride in a nickel powder. (author) [fr

  8. Characterization of cubic ceria?zirconia powders by X-ray diffraction and vibrational and electronic spectroscopy

    Science.gov (United States)

    Sánchez Escribano, Vicente; Fernández López, Enrique; Panizza, Marta; Resini, Carlo; Gallardo Amores, José Manuel; Busca, Guido

    2003-10-01

    The X-ray diffraction (XRD) patterns and the Infrared, Raman and UV-visible spectra of CeO 2ZrO 2 powders prepared by co-precipitation are presented. Raman spectra provide evidence for the largely predominant cubic structure of the powders with CeO 2 molar composition higher than 25%. Also skeletal IR spectra allow to distinguish cubic from tetragonal phases which are instead not easily distinguished on the basis of the XRD patterns. All mixed oxides including pure ceria are strong UV absorbers although also absorb in the violet visible region. By carefully selecting their composition and treatment temperature, the onset of the radiation that they cut off can be chosen in the 425-475 nm interval. Although they are likely metastable, the cubic phases are still pure even after heating at 1173 K for 4 h.

  9. Structural studies of carbon nanotubes by powder x-ray diffraction at SPring-8 and KEK PF

    CERN Document Server

    Maniwa, Y; Fujiwara, A

    2003-01-01

    Powder X-ray diffraction (XRD) studies on carbon nanotubes (CNTs) using synchrotron radiation are reported. In spite of the observed broad XRD peak profiles of two-dimensional triangular (hexagonal) lattice of single-wall carbon nanotubes (SWNTs), it was shown that useful structural information, such as the tube diameter and its distribution, can be deduced from detailed analysis of the characteristic XRD patterns. In particular, powder-XRD measurements were performed to study the phase transition of encapsulated materials inside SWNTs. In the C sub 7 sub 0 -one dimensional (1D) crystals formed inside SWNTs, importance of one-dimensionality in the C sub 7 sub 0 -molecular dynamics was suggested. It was also shown that water inside SWNTs undergoes a phase transition from liquid to an ice-nanotube structure below -38degC. Conversion process from SWNT to double-wall carbon nanotube (DWNT) was also studied by XRD.

  10. Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D)

    International Nuclear Information System (INIS)

    Streek, Jacco van de; Neumann, Marcus A.

    2014-01-01

    The accuracy of 215 experimental organic crystal structures from powder diffraction data is validated against a dispersion-corrected density functional theory method. In 2010 we energy-minimized 225 high-quality single-crystal (SX) structures with dispersion-corrected density functional theory (DFT-D) to establish a quantitative benchmark. For the current paper, 215 organic crystal structures determined from X-ray powder diffraction (XRPD) data and published in an IUCr journal were energy-minimized with DFT-D and compared to the SX benchmark. The on average slightly less accurate atomic coordinates of XRPD structures do lead to systematically higher root mean square Cartesian displacement (RMSCD) values upon energy minimization than for SX structures, but the RMSCD value is still a good indicator for the detection of structures that deserve a closer look. The upper RMSCD limit for a correct structure must be increased from 0.25 Å for SX structures to 0.35 Å for XRPD structures; the grey area must be extended from 0.30 to 0.40 Å. Based on the energy minimizations, three structures are re-refined to give more precise atomic coordinates. For six structures our calculations provide the missing positions for the H atoms, for five structures they provide corrected positions for some H atoms. Seven crystal structures showed a minor error for a non-H atom. For five structures the energy minimizations suggest a higher space-group symmetry. For the 225 SX structures, the only deviations observed upon energy minimization were three minor H-atom related issues. Preferred orientation is the most important cause of problems. A preferred-orientation correction is the only correction where the experimental data are modified to fit the model. We conclude that molecular crystal structures determined from powder diffraction data that are published in IUCr journals are of high quality, with less than 4% containing an error in a non-H atom

  11. Sample cell for powder x-ray diffraction at up to 500 bars and 200 deg. C

    International Nuclear Information System (INIS)

    Jupe, Andrew C.; Wilkinson, Angus P.

    2006-01-01

    A low cost sample cell for powder diffraction at high pressure and temperature that employs either sapphire or steel pressure tubes is described. The cell can be assembled rapidly, facilitating the study of chemically reacting systems, and it provides good control of both pressure and temperature in a regimen where diamond anvil cells and multianvil apparatus cannot be used. The design provides a relatively large sample volume making it suitable for the study of quite large grain size materials, such as hydrating cement slurries. However, relatively high energy x rays are needed to penetrate the pressure tube

  12. Structural study of Sr{sub 2}CuO{sub 3+delta} by neutron powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Shimakawa, Y. [NEC Corp., Tsukuba (Japan). Fundamental Research Labs.; Jorgensen, J.D.; Mitchell, J.F.; Hunter, B.A. [Argonne National Lab., IL (United States); Shaked, S. [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev][Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Physics; Hinks, D.G.; Hitterman, R.L. [Argonne National Lab., IL (United States); Hiroi, Z.; Takano, M. [Kyoto Univ., Uji (Japan). Inst. for Chemical Research

    1996-11-01

    Average crystal structures of superconducting Sr{sub 2}CuO{sub 3+{delta}} synthesized at ambient pressure from a hydroxometallate precursor were refined from neutron powder diffraction data. A simplified model was used to fit the modulated superstructures. Both compounds have an oxygen deficient La{sub 2}CuO{sub 4}-type tetragonal T structure with O vacancies located in the CuO{sub 2} planes, not in the Sr{sub 2}O{sub 2} layers. This raises important questions about the superconductivity in Sr{sub 2}CuO{sub 3+{delta}} reported to be a 70 K superconductor.

  13. A program for the derivation of crystal unit cell parameters from X-ray powder diffraction measurements

    International Nuclear Information System (INIS)

    Ferguson, I.F.; Rogerson, A.H.

    1984-01-01

    The program, FIRESTAR, determines the dimensions of a crystallographic unit cell from a set of X-ray powder diffraction measurements corresponding to a set of Bragg reflections, provided that the crystal system applicable is known and the Bragg reflections have been indexed. The program includes a range of possible extrapolation functions, and the data may be weighted. Provision is made for detecting and rejecting a single 'bad' measurement, and then rejecting measurements which lie outside an error limit set in the input data. (orig.)

  14. Crystal structure and tautomerism of Pigment Yellow 138 determined by X-ray powder diffraction and solid-state NMR

    DEFF Research Database (Denmark)

    Gumbert, Silke D.; Körbitzer, Meike; Alig, Edith

    2016-01-01

    The crystal structure of C.I. Pigment Yellow 138 was determined from X-ray powder diffraction data using real-space methods with subsequent Rietveld refinements. The tautomeric state was investigated by solid-state 1D and 2D multinuclear NMR experiments. In the crystals, the compound exhibits...... the NH-tautomer with a hydrogen atom situated at the nitrogen of the quinoline moiety. Direct evidence of the presence of the NH-tautomer is provided by 1H–14N HMQC solid-state NMR at very fast MAS. Solid-state dispersion-corrected density functional theory calculations with BLYP-D3 confirm...

  15. Determination of the structure factors of a LiF powder sample by the energy dispersive x-ray diffraction

    International Nuclear Information System (INIS)

    Uno, R.; Ahtee, A.; Paakkari, T.

    1977-01-01

    The structure factors of a LiF powder sample were determined by energy dispersive x-ray diffraction in the range 9 to 25 keV, with the use of a Si(Li) solid state detector, following the method applied on GaP. Since the absorption coefficient of LiF is small at high energy, a fraction of the incident x-rays penetrates through the sample and does not contribute to the diffraction. This effect was taken into account in the determination of the structure factors. Then the structure factors generally agree, within the limit of 5 % error, with those obtained by the usual angle dispersive method, if the penetrated part of the incident beam is less than 40 %. (author)

  16. Characterization of monoclinic crystals in tablets by pattern-fitting procedure using X-ray powder diffraction data.

    Science.gov (United States)

    Yamamura, Shigeo; Momose, Yasunori

    2003-06-18

    The purpose of this study is to characterize the monoclinic crystals in tablets by using X-ray powder diffraction data and to evaluate the deformation feature of crystals during compression. The monoclinic crystals of acetaminophen and benzoic acid were used as the samples. The observed X-ray diffraction intensities were fitted to the analytic expression, and the fitting parameters, such as the lattice parameters, the peak-width parameters, the preferred orientation parameter and peak asymmetric parameter were optimized by a non-linear least-squares procedure. The Gauss and March distribution functions were used to correct the preferred orientation of crystallites in the tablet. The March function performed better in correcting the modification of diffraction intensity by preferred orientation of crystallites, suggesting that the crystallites in the tablets had fiber texture with axial orientation. Although a broadening of diffraction peaks was observed in acetaminophen tablets with an increase of compression pressure, little broadening was observed in the benzoic tablets. These results suggest that "acetaminophen is a material consolidating by fragmentation of crystalline particles and benzoic acid is a material consolidating by plastic deformation then occurred rearrangement of molecules during compression". A pattern-fitting procedure is the superior method for characterizing the crystalline drugs of monoclinic crystals in the tablets, as well as orthorhombic isoniazid and mannitol crystals reported in the previous paper.

  17. Time recording unit for a neutron time of flight spectrometer

    International Nuclear Information System (INIS)

    Puranik, Praful; Ajit Kiran, S.; Chandak, R.M.; Poudel, S.K.; Mukhopadhyay, R.

    2011-01-01

    Here the architecture and design of Time Recording Unit for a Neutron Time of Flight Spectrometer have been described. The Spectrometer would have an array of 50 Nos. of one meter long linear Position Sensitive Detector (PSD) placed vertically around the sample at a distance of 2000 mm. The sample receives periodic pulsed neutron beam coming through a Fermi chopper. The time and zone of detection of a scattered neutron in a PSD gives information of its flight time and path length, which will be used to calculate its energy. A neutron event zone (position) and time detection module for each PSD provides a 2 bit position/zone code and an event timing pulse. The path length assigned to a neutron detected in a zone (Z1, Z2 etc) in the PSD is the mean path length seen by the neutrons detected in that zone of the PSD. A Time recording unit described here receives event zone code and timing pulse for all the 50 detectors, tags a proper time window code to it, before streaming it to computer for calculation of the energy distribution of neutrons scattered from the sample

  18. Chern Numbers Hiding in Time of Flight Images

    Science.gov (United States)

    Satija, Indubala; Zhao, Erhai; Ghosh, Parag; Bray-Ali, Noah

    2011-03-01

    Since the experimental realization of synthetic magnetic fields in neural ultracold atoms, transport measurement such as quantized Hall conductivity remains an open challenge. Here we propose a novel and feasible scheme to measure the topological invariants, namely the chern numbers, in the time of flight images. We study both the commensurate and the incommensurate flux, with the later being the main focus here. The central concept underlying our proposal is the mapping between the chern numbers and the size of the dimerized states that emerge when the two-dimensional hopping is tuned to the highly anisotropic limit. In a uncoupled double quantum Hall system exhibiting time reversal invariance, only odd-sized dimer correlation functions are non-zero and hence encode quantized spin current. Finally, we illustrate that inspite of highly fragmented spectrum, a finite set of chern numbers are meaningful. Our results are supported by direct numerical computation of transverse conductivity. NBA acknowledges support from a National Research Council postdoctoral research associateship.

  19. Depth profiling of tritium by neutron time-of-flight

    International Nuclear Information System (INIS)

    Davis, J.C.; Anderson, J.D.; Lefevre, H.W.

    1976-01-01

    A method to measure the depth profile of tritium implanted or absorbed in materials was developed. The sample to be analyzed is bombarded with a pulsed proton beam and the energy of neutrons produced by the T(p,n) reaction is measured by the time-of-flight technique. From the neutron energy the depth in the target of the T atoms may be inferred. A sensitivity of 0.1 at. percent T or greater is possible. The technique is non-destructive and may be used with thick or radioactive host materials. Samples up to 20 μm in thickness may be profiled with resolution limited by straggling of the proton beam for depths greater than 1 μm. Deuterium depth profiling has been demonstrated using the D(d,n) reaction. The technique has been used to observe the behavior of an implantation spike of T produced by a 400 keV T + beam stopping at a depth of 3 μm in 11 μm thick layers of Ti and TiH. The presence of H in the Ti lattice is observed to inhibit the diffusion of T through the lattice. Effects of the total hydrogen concentration (H + T) being forced above stochiometry at the implantation site are suggested by the shapes of the implantation spikes

  20. Multiple-ion-beam time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Rohrbacher, Andreas; Continetti, Robert E.

    2001-01-01

    An innovative approach to increase the throughput of mass spectrometric analyses using a multiple-ion-beam mass spectrometer is described. Two sample spots were applied onto a laser desorption/ionization target and each spot was simultaneously irradiated by a beam of quadrupled Nd:YLF laser radiation (261.75 nm) to produce ions by laser-desorption ionization. Acceleration of the ions in an electric field created parallel ion beams that were focused by two parallel einzel lens systems. After a flight path of 2.34 m, the ions were detected with a microchannel plate-phosphor screen assembly coupled with a charge coupled device camera that showed two resolved ion beams. Time-of-flight mass spectra were also obtained with this detector. Experiments were performed using both metal atom cations (Ti + and Cr + ) produced by laser desorption/ionization and the molecular ions of two different proteins (myoglobin and lysozyme), created by matrix assisted laser desorption/ionization using an excess of nicotinic acid as matrix

  1. Positron Emission Tomography (PET): Towards Time of Flight

    International Nuclear Information System (INIS)

    Karp, Joel

    2004-01-01

    PET is a powerful imaging tool that is being used to study cancer, using a variety of tracers to measure physiological processes including glucose metabolism, cell proliferation, and hypoxia in tumor cells. As the utilization of PET has grown in the last several years, it has become clear that improved lesion detection and quantification are critical goals for cancer studies. Although physical performance of the current generation of PET scanners has improved recently, there are limitations especially for heavy patients where attenuation and scatter effects are increased. We are investigating new scintillation detectors, scanner designs, and image processing algorithms in order to overcome these limitations and improve performance. In particular, we are studying scanner designs that would incorporate scintillators with improved energy and timing resolution. Improved energy resolution helps to reduce scattered radiation, and improved timing resolution makes it feasible to incorporate the time-of-flight information between the two coincident gamma rays into the image reconstruction algorithm, a technique that improves signal-to-noise. Results of recent experiments and computer simulations will be shown to demonstrate these potential improvements.

  2. Polarisation analysis on the LET time-of-flight spectrometer

    Science.gov (United States)

    Nilsen, G. J.; Košata, J.; Devonport, M.; Galsworthy, P.; Bewley, R. I.; Voneshen, D. J.; Dalgliesh, R.; Stewart, J. R.

    2017-06-01

    We present a design for implementing uniaxial polarisation analysis on the LET cold neutron time-of-flight spectrometer, installed on the second target station at ISIS. The polarised neutron beam is to be produced by a transmission-based supermirror polariser with the polarising mirrors arranged in a “double-V” formation. This will be followed by a Mezei-type precession coil spin flipper, selected for its small spatial requirements, as well as a permanent magnet guide field to transport the beam polarisation to the sample position. The sample area will contain a set of holding field coils, whose purpose is to produce a highly homogenous magnetic field for the wide-angle 3He analyser cell. To facilitate fast cell changes and reduce the risk of cell failure, we intend to separate the cell and cryostat from the vacuum of the sample tank by installing both in a vessel at atmospheric pressure. When the instrument upgrade is complete, the performance of LET is expected to be commensurate with existing and planned polarised cold neutron spectrometers at other sources. Finally, we discuss the implications of performing uniaxial polarisation analysis only, and identify quasi-elastic neutron scattering (QENS) on ionic conducting materials as an interesting area to apply the technique.

  3. Distance error correction for time-of-flight cameras

    Science.gov (United States)

    Fuersattel, Peter; Schaller, Christian; Maier, Andreas; Riess, Christian

    2017-06-01

    The measurement accuracy of time-of-flight cameras is limited due to properties of the scene and systematic errors. These errors can accumulate to multiple centimeters which may limit the applicability of these range sensors. In the past, different approaches have been proposed for improving the accuracy of these cameras. In this work, we propose a new method that improves two important aspects of the range calibration. First, we propose a new checkerboard which is augmented by a gray-level gradient. With this addition it becomes possible to capture the calibration features for intrinsic and distance calibration at the same time. The gradient strip allows to acquire a large amount of distance measurements for different surface reflectivities, which results in more meaningful training data. Second, we present multiple new features which are used as input to a random forest regressor. By using random regression forests, we circumvent the problem of finding an accurate model for the measurement error. During application, a correction value for each individual pixel is estimated with the trained forest based on a specifically tailored feature vector. With our approach the measurement error can be reduced by more than 40% for the Mesa SR4000 and by more than 30% for the Microsoft Kinect V2. In our evaluation we also investigate the impact of the individual forest parameters and illustrate the importance of the individual features.

  4. Towards time-of-flight PET with a semiconductor detector

    Science.gov (United States)

    Ariño-Estrada, Gerard; Mitchell, Gregory S.; Kwon, Sun Il; Du, Junwei; Kim, Hadong; Cirignano, Leonard J.; Shah, Kanai S.; Cherry, Simon R.

    2018-02-01

    The feasibility of using Cerenkov light, generated by energetic electrons following 511 keV photon interactions in the semiconductor TlBr, to obtain fast timing information for positron emission tomography (PET) was evaluated. Due to its high refractive index, TlBr is a relatively good Cerenkov radiator and with its wide bandgap, has good optical transparency across most of the visible spectrum. Coupling an SiPM photodetector to a slab of TlBr (TlBr-SiPM) yielded a coincidence timing resolution of 620 ps FWHM between the TlBr-SiPM detector and a LFS reference detector. This value improved to 430 ps FWHM by applying a high pulse amplitude cut based on the TlBr-SiPM and reference detector signal amplitudes. These results are the best ever achieved with a semiconductor PET detector and already approach the performance required for time-of-flight. As TlBr has higher stopping power and better energy resolution than the conventional scintillation detectors currently used in PET scanners, a hybrid TlBr-SiPM detector with fast timing capability becomes an interesting option for further development.

  5. Integrated intensities in inverse time-of-flight technique

    International Nuclear Information System (INIS)

    Dorner, Bruno

    2006-01-01

    In traditional data analysis a model function, convoluted with the resolution, is fitted to the measured data. In case that integrated intensities of signals are of main interest, one can use an approach which does not require a model function for the signal nor detailed knowledge of the resolution. For inverse TOF technique, this approach consists of two steps: (i) Normalisation of the measured spectrum with the help of a monitor, with 1/k sensitivity, which is positioned in front of the sample. This means at the same time a conversion of the data from time of flight to energy transfer. (ii) A Jacobian [I. Waller, P.O. Froeman, Ark. Phys. 4 (1952) 183] transforms data collected at constant scattering angle into data as if measured at constant momentum transfer Q. This Jacobian works correctly for signals which have a constant width at different Q along the trajectory of constant scattering angle. The approach has been tested on spectra of Compton scattering with neutrons, having epithermal energies, obtained on the inverse TOF spectrometer VESUVIO/ISIS. In this case the width of the signal is increasing proportional to Q and in consequence the application of the Jacobian leads to integrated intensities slightly too high. The resulting integrated intensities agree very well with results derived in the traditional way. Thus this completely different approach confirms the observation that signals from recoil by H-atoms at large momentum transfers are weaker than expected

  6. Characterizing Scintillator Response with Neutron Time-of-Flight

    Science.gov (United States)

    Palmisano, Kevin; Visca, Hannah; Caves, Louis; Wilkinson, Corey; McClow, Hannah; Padalino, Stephen; Forrest, Chad; Katz, Joe; Sangster, Craig; Regan, Sean

    2017-10-01

    Neutron scintillator diagnostics for ICF can be characterized using the neutron time-of-flight (nTOF) line on Geneseo's 1.7 MV Tandem Pelletron Accelerator. Neutron signals can be differentiated from gamma signals by employing a coincidence method called the associated particle technique (APT). In this measurement, a 2.1 MeV beam of deuterons incident on a deuterated polyethylene target produces neutrons via the d(d,n)3He reaction. A BC-412 plastic scintillator, placed at a scattering angle of 152º, detects 1.76 MeV neutrons in coincidence with the 2.56 MeV 3He ions at an associated angle of 10º. The APT is used to identify the 1.76 MeV neutron while the nTOF line determines its energy. By gating only mono-energetic neutrons, the instrument response function of the scintillator can be determined free from background scattered neutrons and gamma rays. Funded in part by a Grant from the DOE, through the Laboratory for Laser Energetics.

  7. Proton Transfer Time-of-Flight Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Thomas B. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    The Proton Transfer Reaction Mass Spectrometer (PTRMS) measures gas-phase compounds in ambient air and headspace samples before using chemical ionization to produce positively charged molecules, which are detected with a time-of-flight (TOF) mass spectrometer. This ionization method uses a gentle proton transfer reaction method between the molecule of interest and protonated water, or hydronium ion (H3O+), to produce limited fragmentation of the parent molecule. The ions produced are primarily positively charged with the mass of the parent ion, plus an additional proton. Ion concentration is determined by adding the number of ions counted at the molecular ion’s mass-to-charge ratio to the number of air molecules in the reaction chamber, which can be identified according to the pressure levels in the reaction chamber. The PTRMS allows many volatile organic compounds in ambient air to be detected at levels from 10–100 parts per trillion by volume (pptv). The response time is 1 to 10 seconds.

  8. The high-resolution time-of-flight spectrometer TOFTOF

    Energy Technology Data Exchange (ETDEWEB)

    Unruh, Tobias [Technische Universitaet Muenchen, Forschungsneutronenquelle Heinz Maier-Leibnitz FRM II and Physik Department E13, Lichtenbergstr. 1, 85747 Garching (Germany)], E-mail: Tobias.Unruh@frm2.tum.de; Neuhaus, Juergen; Petry, Winfried [Technische Universitaet Muenchen, Forschungsneutronenquelle Heinz Maier-Leibnitz FRM II and Physik Department E13, Lichtenbergstr. 1, 85747 Garching (Germany)

    2007-10-11

    The TOFTOF spectrometer is a multi-disc chopper time-of-flight spectrometer for cold neutrons at the research neutron source Heinz Maier-Leibnitz (FRM II). After five reactor cycles of routine operation the characteristics of the instrument are reported in this article. The spectrometer features an excellent signal to background ratio due to its remote position in the neutron guide hall, an elaborated shielding concept and an s-shaped curved primary neutron guide which acts i.a. as a neutron velocity filter. The spectrometer is fed with neutrons from the undermoderated cold neutron source of the FRM II leading to a total neutron flux of {approx}10{sup 10}n/cm{sup 2}/s in the continuous white beam at the sample position distributed over a continuous and particularly broad wavelength spectrum. A high energy resolution is achieved by the use of high speed chopper discs made of carbon-fiber-reinforced plastic. In the combination of intensity, resolution and signal to background ratio the spectrometer offers new scientific prospects in the fields of inelastic and quasielastic neutron scattering.

  9. The high-resolution time-of-flight spectrometer TOFTOF

    Science.gov (United States)

    Unruh, Tobias; Neuhaus, Jürgen; Petry, Winfried

    2007-10-01

    The TOFTOF spectrometer is a multi-disc chopper time-of-flight spectrometer for cold neutrons at the research neutron source Heinz Maier-Leibnitz (FRM II). After five reactor cycles of routine operation the characteristics of the instrument are reported in this article. The spectrometer features an excellent signal to background ratio due to its remote position in the neutron guide hall, an elaborated shielding concept and an s-shaped curved primary neutron guide which acts i.a. as a neutron velocity filter. The spectrometer is fed with neutrons from the undermoderated cold neutron source of the FRM II leading to a total neutron flux of ˜1010n/cm2/s in the continuous white beam at the sample position distributed over a continuous and particularly broad wavelength spectrum. A high energy resolution is achieved by the use of high speed chopper discs made of carbon-fiber-reinforced plastic. In the combination of intensity, resolution and signal to background ratio the spectrometer offers new scientific prospects in the fields of inelastic and quasielastic neutron scattering.

  10. Structure of orthorhombic SrZrO/sub 3/ by neutron powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ahtee, A; Ahtee, M [Helsinki Univ. (Finland). Dept. of Physics; Glazer, A M [Cambridge Univ. (UK). Cavendish Lab.; Hewat, A W [Institut Max von Laue - Paul Langevin, 38 - Grenoble (France)

    1976-12-15

    The room-temperature structure of SrZrO/sub 3/ has been established by neutron powder-profile refinement. The space group is Pbnm and SrZrO/sub 3/ is isostructural with other perovskites, such as CaTiO/sub 3/.

  11. Study on mineral components of rat calvaria by means of X-ray powder diffraction analysis and Raman microprobe spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Norihiro [Meikai Univ., Sakado, Saitama (Japan). School of Dentistry

    2000-07-01

    The present study was designed to examine the occurrence of the precursor minerals of hydroxyapatite (HA) during the process of HA formation in the rat calvaria. Dried and powdered rat calvaria and synthetic samples, such as HA, dicalcium phosphate dihydrate (DCPD), octacalcium phosphate (OCP), ({beta}-calcium pyrophosphate) and ({beta}-tricalcium phosphate), were used. Determinations were carried out by X-ray powder diffraction and Raman microprobe spectrometry. In general, significant widening of the diffraction peaks was shown to occur after the plasma ashing was performed for the X-ray diffraction. As a result, two adjacent peaks seen normally in the diffraction angles (2 {theta}) 30-35 deg, which is a characteristic feature of HA, were found to fuse with each other, forming a widened single peak. Also, there was a tendency for the intensity of the diffraction peaks to increase with age. With regard to the effect of plasma ashing on the crystallograms of synthetic specimens, all specimens manifested sharp peak patterns except DCPD and OCP. In contrast, a widening of diffraction peaks was observed in the DCPD and OCP samples, indicating that crystallinity had changed during the pretreatment. Results obtained from both vital and synthetic samples after heat treatment at 1000 deg C were as follow: Clearcut diffraction patterns, characteristics of HA, were obtained in all of the calvaria samples. Further, {beta}-TCP was produced by heat treatment of OCP, and its pattern was detected in the samples from rats younger than 6 days of age. Amounts of {beta}-TCP in percentage were disclosed to be 40.2% in embryonal samples, 28.4% in newborn samples, and 18.6% in 6-day-old samples. But no {beta}-TCP could be detected in the 12-week-old samples, indicating that the amount of {beta}-TCP in calvaria decreased with age. We also found that ashing pretreatment did not cause any changes in the samples of HA, {beta}-CPP, and {beta}-TCP. Further, DCPD and {beta}-CPP samples shared

  12. Study on mineral components of rat calvaria by means of X-ray powder diffraction analysis and Raman microprobe spectroscopy

    International Nuclear Information System (INIS)

    Tamura, Norihiro

    2000-01-01

    The present study was designed to examine the occurrence of the precursor minerals of hydroxyapatite (HA) during the process of HA formation in the rat calvaria. Dried and powdered rat calvaria and synthetic samples, such as HA, dicalcium phosphate dihydrate (DCPD), octacalcium phosphate (OCP), (β-calcium pyrophosphate) and (β-tricalcium phosphate), were used. Determinations were carried out by X-ray powder diffraction and Raman microprobe spectrometry. In general, significant widening of the diffraction peaks was shown to occur after the plasma ashing was performed for the X-ray diffraction. As a result, two adjacent peaks seen normally in the diffraction angles (2 θ) 30-35 deg, which is a characteristic feature of HA, were found to fuse with each other, forming a widened single peak. Also, there was a tendency for the intensity of the diffraction peaks to increase with age. With regard to the effect of plasma ashing on the crystallograms of synthetic specimens, all specimens manifested sharp peak patterns except DCPD and OCP. In contrast, a widening of diffraction peaks was observed in the DCPD and OCP samples, indicating that crystallinity had changed during the pretreatment. Results obtained from both vital and synthetic samples after heat treatment at 1000 deg C were as follow: Clearcut diffraction patterns, characteristics of HA, were obtained in all of the calvaria samples. Further, β-TCP was produced by heat treatment of OCP, and its pattern was detected in the samples from rats younger than 6 days of age. Amounts of β-TCP in percentage were disclosed to be 40.2% in embryonal samples, 28.4% in newborn samples, and 18.6% in 6-day-old samples. But no β-TCP could be detected in the 12-week-old samples, indicating that the amount of β-TCP in calvaria decreased with age. We also found that ashing pretreatment did not cause any changes in the samples of HA, β-CPP, and β-TCP. Further, DCPD and β-CPP samples shared the same diffraction pattern, and OCP

  13. Recent developments in time-of-flight PET

    International Nuclear Information System (INIS)

    Vandenberghe, S.; Mikhaylova, E.; D’Hoe, E.; Mollet, P.; Karp, J. S.

    2016-01-01

    While the first time-of-flight (TOF)-positron emission tomography (PET) systems were already built in the early 1980s, limited clinical studies were acquired on these scanners. PET was still a research tool, and the available TOF-PET systems were experimental. Due to a combination of low stopping power and limited spatial resolution (caused by limited light output of the scintillators), these systems could not compete with bismuth germanate (BGO)-based PET scanners. Developments on TOF system were limited for about a decade but started again around 2000. The combination of fast photomultipliers, scintillators with high density, modern electronics, and faster computing power for image reconstruction have made it possible to introduce this principle in clinical TOF-PET systems. This paper reviews recent developments in system design, image reconstruction, corrections, and the potential in new applications for TOF-PET. After explaining the basic principles of time-of-flight, the difficulties in detector technology and electronics to obtain a good and stable timing resolution are shortly explained. The available clinical systems and prototypes under development are described in detail. The development of this type of PET scanner also requires modified image reconstruction with accurate modeling and correction methods. The additional dimension introduced by the time difference motivates a shift from sinogram- to listmode-based reconstruction. This reconstruction is however rather slow and therefore rebinning techniques specific for TOF data have been proposed. The main motivation for TOF-PET remains the large potential for image quality improvement and more accurate quantification for a given number of counts. The gain is related to the ratio of object size and spatial extent of the TOF kernel and is therefore particularly relevant for heavy patients, where image quality degrades significantly due to increased attenuation (low counts) and high scatter fractions. The

  14. LVGEMS Time-of-Flight Mass Spectrometry on Satellites

    Science.gov (United States)

    Herrero, Federico

    2013-01-01

    NASA fs investigations of the upper atmosphere and ionosphere require measurements of composition of the neutral air and ions. NASA is able to undertake these observations, but the instruments currently in use have their limitations. NASA has extended the scope of its research in the atmosphere and now requires more measurements covering more of the atmosphere. Out of this need, NASA developed multipoint measurements using miniaturized satellites, also called nanosatellites (e.g., CubeSats), that require a new generation of spectrometers that can fit into a 4 4 in. (.10 10 cm) cross-section in the upgraded satellites. Overall, the new mass spectrometer required for the new depth of atmospheric research must fulfill a new level of low-voltage/low-power requirements, smaller size, and less risk of magnetic contamination. The Low-Voltage Gated Electrostatic Mass Spectrometer (LVGEMS) was developed to fulfill these requirements. The LVGEMS offers a new spectrometer that eliminates magnetic field issues associated with magnetic sector mass spectrometers, reduces power, and is about 1/10 the size of previous instruments. LVGEMS employs the time of flight (TOF) technique in the GEMS mass spectrometer previously developed. However, like any TOF mass spectrometer, GEMS requires a rectangular waveform of large voltage amplitude, exceeding 100 V -- that means that the voltage applied to one of the GEMS electrodes has to change from 0 to 100 V in a time of only a few nanoseconds. Such electronic speed requires more power than can be provided in a CubeSat. In the LVGEMS, the amplitude of the rectangular waveform is reduced to about 1 V, compatible with digital electronics supplies and requiring little power.

  15. Time-of-flight PET image reconstruction using origin ensembles

    Science.gov (United States)

    Wülker, Christian; Sitek, Arkadiusz; Prevrhal, Sven

    2015-03-01

    The origin ensemble (OE) algorithm is a novel statistical method for minimum-mean-square-error (MMSE) reconstruction of emission tomography data. This method allows one to perform reconstruction entirely in the image domain, i.e. without the use of forward and backprojection operations. We have investigated the OE algorithm in the context of list-mode (LM) time-of-flight (TOF) PET reconstruction. In this paper, we provide a general introduction to MMSE reconstruction, and a statistically rigorous derivation of the OE algorithm. We show how to efficiently incorporate TOF information into the reconstruction process, and how to correct for random coincidences and scattered events. To examine the feasibility of LM-TOF MMSE reconstruction with the OE algorithm, we applied MMSE-OE and standard maximum-likelihood expectation-maximization (ML-EM) reconstruction to LM-TOF phantom data with a count number typically registered in clinical PET examinations. We analyzed the convergence behavior of the OE algorithm, and compared reconstruction time and image quality to that of the EM algorithm. In summary, during the reconstruction process, MMSE-OE contrast recovery (CRV) remained approximately the same, while background variability (BV) gradually decreased with an increasing number of OE iterations. The final MMSE-OE images exhibited lower BV and a slightly lower CRV than the corresponding ML-EM images. The reconstruction time of the OE algorithm was approximately 1.3 times longer. At the same time, the OE algorithm can inherently provide a comprehensive statistical characterization of the acquired data. This characterization can be utilized for further data processing, e.g. in kinetic analysis and image registration, making the OE algorithm a promising approach in a variety of applications.

  16. A reflecting time-of-flight mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Tang, X

    1991-01-01

    The design, construction and operation of a reflecting time-of-flight mass spectrometer and the details of the ion mirror are discussed. The principle of velocity focusing with a single-stage ion mirror and the effect of the acceleration region are discussed. The performance of the reflecting instrument is described. Its detection limit is illustrated by observation of [M + H][sup +] ions from [approximately]5-35 femtomoles of various peptides. The factors that affect the resolution are discussed. The principle and operation of the reflecting instrument as a tandem mass spectrometer is described; this involves correlated detection of neutral and ionized fragments. The efficiency, resolution, sensitivity, and mass determination of daughter ions by this method are discussed. Methods of sample preparation are described. By using a nitrocellulose substrate, organic molecular ions as large as bovine insulin (MW 5733) were detected for the first time with low energy (keV) ion bombardment of a solid surface. Many daughter ion spectra resulting from metastable decay of parent ions have been studied. Secondary ions [(CsI)[sub n]Cs][sup +] with n up to [approximately]50 were detected; all clusters were found to be metastable, with most lifetimes <100 [mu]s, and for n>10 the daughter ions are dominant in the mass spectrum. Peptides of mass up to [approximately]2000 u have been studied with the correlated method; the daughter ion spectra were found to be strongly influenced by the identity of the bound cation (H[sup +], Na[sup +], K[sup +], or Ag[sup +]). Many daughter ions formed by known reactions yield structure and sequence information about the peptides. In addition, the [M + Na][sup +] and [M + Ag][sup +] ions decompose by a previously unreported pathway, namely, rearrangement of a C-terminal carboxyl oxygen onto the daughter ion containing the N-terminus. Both the reflected spectra and daughter ion spectra were found useful in peptide sequencing.

  17. Evidence for existence of functional monoclinic phase in sodium niobate based solid solution by powder neutron diffraction

    Science.gov (United States)

    Mishra, S. K.; Jauhari, Mrinal; Mittal, R.; Krishna, P. S. R.; Reddy, V. R.; Chaplot, S. L.

    2018-04-01

    We have carried out systematic temperature-dependent neutron diffraction measurements in conjunction with dielectric spectroscopy from 6 to 300 K for sodium niobate based compounds (1-x) NaNbO3-xBaTiO3 (NNBTx). The dielectric constant is measured as a function of both temperature and frequency. It shows an anomaly at different temperatures in cooling and heating cycles and exhibits a large thermal hysteresis of ˜150 K for the composition x = 0.03. The dielectric constant is found to be dispersive in nature and suggests a relaxor ferroelectric behavior. In order to explore structural changes as a function of temperature, we analyzed the powder neutron diffraction data for the compositions x = 0.03 and 0.05. Drastic changes are observed in the powder profiles near 2θ ˜ 30.6°, 32.1°, and 34.6° in the diffraction pattern below 200 K during cooling and above 190 K in heating cycles, respectively. The disappearance of superlattice reflection and splitting in main perovskite peaks provide a signature for structural phase transition. We observed stabilization of a monoclinic phase (Cc) at low temperature. This monoclinic phase is believed to provide a flexible polarization rotation and considered to be directly linked to the high performance piezoelectricity in materials. The thermal hysteresis for composition x = 0.03 is larger than that for x = 0.05. This suggests that the addition of BaTiO3 to NaNbO3 suppresses the thermal hysteresis. It is also observed that the structural phase transition temperature decreases upon increasing the dopant concentration.

  18. Neutron diffraction measurements of residual stress in a powder metallurgy component

    International Nuclear Information System (INIS)

    Schneider, L.C.R.; Hainsworth, S.V.; Cocks, A.C.F.; Fitzpatrick, M.E.

    2005-01-01

    Residual stresses in a typical industrial green component were determined using neutron diffraction. The measured residual stresses were found to correlate with cross-sectional variations. Residual stress at the edge of the compact in contact with the die wall during compaction reached up to +80 MPa (tension) and -100 MPa (compression)

  19. The magnetic structure of GdNi2B2C investigated by neutron powder diffraction

    International Nuclear Information System (INIS)

    Barcza, A.; Rotter, M.; Doerr, M.; Beuneu, B.

    2005-01-01

    Full text: The group of ReT 2 B 2 C (Re=rare earth, T=transition metal) shows a very interesting interplay between magnetism and superconductivity due to the rare earth metals. In this work the magnetism of GdNi 2 B 2 C was studied with neutron diffraction. Previous investigations with x-ray diffraction methods have determined the crystal structure as a body centered tetragonal structure (I 4/mmm). Hot neutrons were used for the diffraction experiment, because the absorption cross section of Gd is significantly smaller for short wavelengths. The investigated compound orders magnetically at TN=19.5 K, and so the experiment was carried out at two temperatures, namely 30 K and 2.2 K. The results show a incommensurate spin structure with a propagation vector of (0.55 0 0). To confirm this results additional simulations of the spin structure were done based on the Standard Model of rare earth magnetism. A neutron diffraction pattern was calculated using the McPhase program package and is compared to the experimental data. (author)

  20. A structural investigation into the compaction behavior of pharmaceutical composites using powder X-ray diffraction and total scattering analysis.

    Science.gov (United States)

    Moore, Michael D; Steinbach, Alison M; Buckner, Ira S; Wildfong, Peter L D

    2009-11-01

    To use advanced powder X-ray diffraction (PXRD) to characterize the structure of anhydrous theophylline following compaction, alone, and as part of a binary mixture with either alpha-lactose monohydrate or microcrystalline cellulose. Compacts formed from (1) pure theophylline and (2) each type of binary mixture were analyzed intact using PXRD. A novel mathematical technique was used to accurately separate multi-component diffraction patterns. The pair distribution function (PDF) of isolated theophylline diffraction data was employed to assess structural differences induced by consolidation and evaluated by principal components analysis (PCA). Changes induced in PXRD patterns by increasing compaction pressure were amplified by the PDF. Simulated data suggest PDF dampening is attributable to molecular deviations from average crystalline position. Samples compacted at different pressures were identified and differentiated using PCA. Samples compacted at common pressures exhibited similar inter-atomic correlations, where excipient concentration factored in the analyses involving lactose. Practical real-space structural analysis of PXRD data by PDF was accomplished for intact, compacted crystalline drug with and without excipient. PCA was used to compare multiple PDFs and successfully differentiated pattern changes consistent with compaction-induced disordering of theophylline as a single component and in the presence of another material.

  1. Quantitative determination of amorphous content in ceramic materials using x-ray powder diffraction

    International Nuclear Information System (INIS)

    Kuchinski, M.A.; Hubbard, C.R.

    1988-01-01

    A quantitative technique which employs a modified method of additions approach to analyze for low amorphous content in crystalline matrices was developed and tested. Known amounts of amorphous material are added to the starting powder. The method uses the ratio of a measure of the intensity of the amorphous phase corrected for background to the background corrected intensity of a reference line from a crystalline phase. The amorphous spiking phase must be close in composition to the amorphous phase existing in the analyte. A critical step of the method is to correctly establish the background intensity. A completely crystalline material of similar scattering power was used to establish background intensity

  2. Quantitative determination of mineral composition by powder X-ray diffraction

    International Nuclear Information System (INIS)

    Pawloski, G.A.

    1986-01-01

    A method is described of quantitatively determining the mineral composition in a test sample containing a number (m) of minerals from a group (n) of known minerals, wherein n=13, where mless than or equal ton, by x-ray diffraction, comprising: determining from standard samples of the known minerals a set of (n) standard coefficients K/sub j/=(X/sub j//X/sub l/)(I/sub l//I/sub j/) for each mineral (j=2...n) in the group of known minerals (j=2...n) relative to one mineral (l) in the group selected as a reference mineral, where X is the weight fraction of the mineral in a standard sample, and I is the x-ray integrated intensity peak of each mineral obtained from the standard sample; obtaining an x-ray diffraction pattern of the test sample; identifying each of the (m) minerals in the test sample for the x-ray diffraction pattern; calculating the relative weight fractions X/sub j//X/sub l/ for each mineral (j=2...m) compared to the reference mineral (l) from the ratio of the measured highest integrated intensity peak I/sub j/ of each mineral in the test sample to the measured highest integrated intensity peak I/sub l/ of the reference mineral in the test sample, and from the previously determined standard coefficients, X/sub j//X/sub l/=K/sub j/(I/sub j//I/sub l/

  3. The high-resolution powder diffraction station PO DI STA is ''running'' at Adone

    International Nuclear Information System (INIS)

    Burattini, E.; Simeoni, S.; Cappuccio, G.; Maistrelli, P.

    1992-01-01

    At the end of February 1991, a ''triple-axis'' high-resolution diffractometer for on powder sample measurements with synchrotron radiation was put in operation on the Adone wiggler line BX1 at Frascati. The diffractometer is based on a Seifert goniometer, designed according to our specifications. During the project, particular attention was paid in assuring the highest reliability together with great flexibility in the use. In fact, the diffractometer can also be used in a ''medium resolution'' configuration. For preliminary alignment and data collection, it is possible to operate with a traditional x-ray tube, too. The alignment procedure of the diffractometer to the x-ray beam is very easy. Powder samples can be measured both on the flat holder and on the capillary. An IBM PC computer is used for the instrument actuation and preliminary on-line data collection, while a large software package has been developed for the data analysis performed by a Macintosh IIcx. The instrument performance has been tested with a standard Si sample and quartz and Ni oxide samples. For the two possible resolution configurations, a test on a NiO sample gave FWHM values of 0.16 degree and 0.04 degree, respectively, for the [012] peak

  4. Time-of-flight Fourier spectrometry of UCN

    International Nuclear Information System (INIS)

    Kulin, G.V.; Frank, A.I.; Goryunov, S.V.; Kustov, D.V.; Geltenbort, P.; Jentshel, M.; Strepetov, A.N.; Bushuev, V.A.

    2014-01-01

    The results of preliminary experiments on TOF Fourier UCN spectrometry are presented. The description of the new Fourier spectrometer that may be used for the measurement of the UCN spectra arising from diffraction by a moving grating is given. The results of preliminary experiments and Monte Carlo calculations give reason to hope for the success of the planned experiment.

  5. Thermal analysis, X-ray powder diffraction and electron microscopy data related with the production of 1:1 Caffeine:Glutaric Acid cocrystals

    Directory of Open Access Journals (Sweden)

    Íris Duarte

    2016-09-01

    Full Text Available The data presented in this article are related to the production of 1:1 Caffeine:Glutaric Acid cocrystals as part of the research article entitled “Green production of cocrystals using a new solvent-free approach by spray congealing” (Duarte et al., 2016 [1]. More specifically, here we present the thermal analysis and the X-ray powder diffraction data for pure Glutaric Acid, used as a raw material in [1]. We also include the X-ray powder diffraction and electron microscopy data obtained for the 1:1 Caffeine:Glutaric Acid cocrystal (form II produced using the cooling crystallization method reported in “Operating Regions in Cooling Cocrystallization of Caffeine and Glutaric Acid in Acetonitrile” (Yu et al., 2010 [2]. Lastly, we show the X-ray powder diffraction data obtained for assessing the purity of the 1:1 Caffeine:Glutaric cocrystals produced in [1].

  6. Characterization of (1 1 1) surface tailored Pt nanoparticles by electrochemistry and X-ray powder diffraction

    International Nuclear Information System (INIS)

    Beyerlein, K.R.; Solla-Gullon, J.; Herrero, E.; Garnier, E.; Pailloux, F.; Leoni, M.; Scardi, P.; Snyder, R.L.; Aldaz, A.; Feliu, J.M.

    2010-01-01

    Platinum nanoparticles with a mean size of 8.7 nm were synthesized by a salt reduction reaction having polyhedron shapes with preferential (1 1 1) surfaces. In situ electrochemical characterization of nanoparticles was performed which confirmed the existence of mostly (1 1 1) surface sites in the sample. The effect of this surface in the electrooxidation of CO was measured. Debye Function Analysis (DFA) and Whole Powder Pattern Modelling (WPPM) of the measured X-ray diffraction pattern were carried out to obtain statistical information on the particle size and shape present in the sample. Both analyses determined that the octahedron particle shape was the most abundant which was also consistent with TEM observations. The existence of a small percentage of single twinned particles was determined by DFA, WPPM, as well as analysis of HRTEM images.

  7. Spiral chain structure of high pressure selenium-II' and sulfur-II from powder x-ray diffraction

    International Nuclear Information System (INIS)

    Fujihisa, Hiroshi; Yamawaki, Hiroshi; Sakashita, Mami; Yamada, Takahiro; Honda, Kazumasa; Akahama, Yuichi; Kawamura, Haruki; Le Bihan, Tristan

    2004-01-01

    The structure of high pressure phases, selenium-II ' (Se-II ' ) and sulfur-II (S-II), for α-Se 8 (monoclinic Se-I) and α-S 8 (orthorhombic S-I) was studied by powder x-ray diffraction experiments. Se-II ' and S-II were found to be isostructural and to belong to the tetragonal space group I4 1 /acd, which is made up of 16 atoms in the unit cell. The structure consisted of unique spiral chains with both 4 1 and 4 3 screws. The results confirmed that the structure sequence of the pressure-induced phase transitions for the group VIb elements depended on the initial molecular form. The chemical bonds of the phases are also discussed from the interatomic distances that were obtained

  8. Structure of La2Cu2O5 by high-resolution synchrotron X-ray powder diffraction

    International Nuclear Information System (INIS)

    La Placa, S.J.; Bringley, J.F.; Scott, B.A.; Cox, D.E.

    1993-01-01

    Dicopper(II) dilanthanum pentaoxide, La 2 Cu 2 O 5 , M r =484.90, orthorhombic, Pbam. At T=300 K: a=5.5490(1), b=10.4774(2), c=3.8796(1) A, V=225.557(8) A 3 , Z=2, D x =7.139 g cm -3 , λ=1.2000 A. Final R I =6.20, R p =14.6 and R wp =20.61%, 124 independent reflections observed. The structure has been refined from high-resolution synchrotron X-ray powder diffraction data using the Rietveld method. It is of the oxygen-defect perovskite type and is composed entirely of corner-shared CuO 5 square pyramids, which share oxygen vacancies forming vacancy tunnels along the c axis. The La atoms reside at a perovskite-like A-site and are tenfold coordinated by oxygen. (orig.)

  9. High-temperature dehydration of talc: a kinetics study using in situ X-ray powder diffraction

    Science.gov (United States)

    Wang, Duojun; Yi, Li; Huang, Bojin; Liu, Chuanjiang

    2015-06-01

    High-temperature in situ X-ray powder diffraction patterns were used to study the dehydration kinetics of natural talc with a size of 10-15 µm. The talc was annealed from 1073 to 1223 K, and the variations in the characteristic peaks corresponding to talc with the time were recorded to determine the reaction progress. The decomposition of talc occurred, and peaks corresponding to talc and peaks corresponding to enstatite and quartz were observed. The enstatite and talc exhibited a topotactic relationship. The dehydration kinetics of talc was studied as a function of temperature between 1073 and 1223 K. The kinetics data could be modeled using an Avrami equation that considers nucleation and growth processes ? where n varies from 0.4 to 0.8. The rate constant (k) equation for the natural talc is ? The reaction mechanism for the dehydration of talc is a heterogeneous nucleation and growth mechanism.

  10. Structures of Bi14WO24 and Bi14MoO24 from neutron powder diffraction data

    International Nuclear Information System (INIS)

    Ling, C.D.; Withers, R.L.; Thompson, J.G.; Schmid, S.

    1999-01-01

    The (isomorphous) structures of Bi 14 WO 24 , tetradecabismuth tungsten tetracosaoxide, and Bi 14 MoO 24 , tetradecabismuth molybdenum tetracosaoxide, have been solved and refined using neutron powder diffraction data in the space group I4/m. The metal-atom array is fully ordered in terms of composition, and in terms of atomic positions deviates only slightly from a fluorite-type δ-Bi 2 O 3 -related parent structure. Three independent O-atom sites (accounting for 70 out of 78 O atoms in the unit cell) are also very close to fluorite-type parent positions. The remaining two O-atom sites, which coordinate W, exhibit partial occupancies and displacive disorder, neither of which could be better modelled by lowering of symmetry. The W site is coordinated by four O atoms in highly distorted tetrahedral coordination, the tetrahedron necessarily being orientationally disordered on that site. Nonetheless, the structure appears to be chemically reasonable. (orig.)

  11. Homogeneity characterisation of (U,Gd)O2 sintered pellets by X-ray diffraction powder analysis applying Rietveld method

    International Nuclear Information System (INIS)

    Leyva, Ana G.; Vega, Daniel R.; Trimarco, Veronica G.; Marchi, Daniel E.

    1999-01-01

    The (U,Gd)O 2 sintered pellets are fabricated by different methods. The homogeneity characterisation of Gd content seems to be necessary as a production control to qualify the process and the final product. The micrographic technique is the most common method used to analyse the homogeneity of these samples, this method requires time and expertise to obtain good results. In this paper, we propose an analysis of the X-ray diffraction powder patterns through the Rietveld method, in which the differences between the experimental data and the calculated from a crystalline structure model proposed are evaluated. This result allows to determine the cell parameters, that can be correlated with the Gd concentration, and the existence of other phases with different Gd ratio. (author)

  12. Neutron powder diffraction study of nuclear and magnetic structures of oxidized and reduced YBa2Fe3O8+w

    International Nuclear Information System (INIS)

    Karen, P.; Kjekshus, A.; Huang, Q.; Karen, V.L.; Lynn, J.W.; Rosov, N.; Natali Sora, I.; Santoro, A.

    2003-01-01

    YBa 2 Fe 3 O 8+w has been investigated by neutron powder diffraction as function of temperature and oxygen nonstoichiometry close to the limits of the homogeneity range, -0.24 0) in the structural layers of Y, or by creating oxygen vacancies (w 2 Cu 3 O 6+w' upon oxidation. The effects of nonstoichiometry on these related crystal structures are discussed in terms of bond-valence sums. The cooperative magnetic structure for all compositions is based on a larger cell related to the nuclear cell by the transformation matrix (11-bar0/110/002), having orthorhombic symmetry when the nuclear structure is tetragonal and monoclinic symmetry when the nuclear structure is orthorhombic. The iron moments are coupled antiferromagnetically in all three directions, the Neel temperature is almost constant as a function of w (T N ∼660 K), and so is also the low-temperature saturation moment μ AF ∼4.0μ B

  13. X-ray powder diffraction camera for high-field experiments

    International Nuclear Information System (INIS)

    Koyama, K; Mitsui, Y; Takahashi, K; Watanabe, K

    2009-01-01

    We have designed a high-field X-ray diffraction (HF-XRD) camera which will be inserted into an experimental room temperature bore (100 mm) of a conventional solenoid-type cryocooled superconducting magnet (10T-CSM). Using the prototype camera that is same size of the HF-XRD camera, a XRD pattern of Si is taken at room temperature in a zero magnetic field. From the obtained results, the expected ability of the designed HF-XRD camera is presented.

  14. About some practical aspects of X-ray diffraction : From single crystal to powders

    Energy Technology Data Exchange (ETDEWEB)

    Giacovazzo, C [Bari Univ. (Italy). Dip. Geomineralogico

    1996-09-01

    An ideal polycrystalline material or power is an ensemble of a very large number of randomly oriented crystallites. It is shown the effect that this random orientation has on the diffraction of a specimen assumed to contain only one reciprocal lattice node. The most remarkable difference with the single-crystal case is that now must think of scattering vectors not as lying on discrete nodes of reciprocal lattice vectors, the distances from the single-crystal reciprocal lattice nodes to the origin of reciprocal space.

  15. About some practical aspects of X-ray diffraction : From single crystal to powders

    International Nuclear Information System (INIS)

    Giacovazzo, C.

    1996-01-01

    An ideal polycrystalline material or power is an ensemble of a very large number of randomly oriented crystallites. It is shown the effect that this random orientation has on the diffraction of a specimen assumed to contain only one reciprocal lattice node. The most remarkable difference with the single-crystal case is that now must think of scattering vectors not as lying on discrete nodes of reciprocal lattice vectors, the distances from the single-crystal reciprocal lattice nodes to the origin of reciprocal space

  16. Solid state characterization and crystal structure from X-ray powder diffraction of two polymorphic forms of ranitidine base.

    Science.gov (United States)

    de Armas, Héctor Novoa; Peeters, Oswald M; Blaton, Norbert; Van Gyseghem, Elke; Martens, Johan; Van Haele, Gerrit; Van Den Mooter, Guy

    2009-01-01

    Ranitidine hydrochloride (RAN-HCl), a known anti-ulcer drug, is the product of reaction between HCl and ranitidine base (RAN-B). RAN-HCl has been extensively studied; however this is not the case of the RAN-B. The solid state characterization of RAN-B polymorphs has been carried out using different analytical techniques (microscopy, thermal analysis, Fourier transform infrared spectrometry in the attenuated total reflection mode, (13)C-CPMAS-NMR spectroscopy and X-ray powder diffraction). The crystal structures of RAN-B form I and form II have been determined using conventional X-ray powder diffraction in combination with simulated annealing and whole profile pattern matching, and refined using rigid-body Rietveld refinement. RAN-B form I is a monoclinic polymorph with cell parameters: a = 7.317(2), b = 9.021(2), c = 25.098(6) A, beta = 95.690(1) degrees and space group P2(1)/c. The form II is orthorhombic: a = 31.252(4), b = 13.052(2), c = 8.0892(11) A with space group Pbca. In RAN-B polymorphs, the nitro group is involved in a strong intramolecular hydrogen bond responsible for the existence of a Z configuration in the enamine portion of the molecules. A tail to tail packing motif can be denoted via intermolecular hydrogen bonds. The crystal structures of RAN-B forms are compared to those of RAN-HCl polymorphs. RAN-B polymorphs are monotropic polymorphic pairs. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  17. Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D).

    Science.gov (United States)

    van de Streek, Jacco; Neumann, Marcus A

    2014-12-01

    In 2010 we energy-minimized 225 high-quality single-crystal (SX) structures with dispersion-corrected density functional theory (DFT-D) to establish a quantitative benchmark. For the current paper, 215 organic crystal structures determined from X-ray powder diffraction (XRPD) data and published in an IUCr journal were energy-minimized with DFT-D and compared to the SX benchmark. The on average slightly less accurate atomic coordinates of XRPD structures do lead to systematically higher root mean square Cartesian displacement (RMSCD) values upon energy minimization than for SX structures, but the RMSCD value is still a good indicator for the detection of structures that deserve a closer look. The upper RMSCD limit for a correct structure must be increased from 0.25 Å for SX structures to 0.35 Å for XRPD structures; the grey area must be extended from 0.30 to 0.40 Å. Based on the energy minimizations, three structures are re-refined to give more precise atomic coordinates. For six structures our calculations provide the missing positions for the H atoms, for five structures they provide corrected positions for some H atoms. Seven crystal structures showed a minor error for a non-H atom. For five structures the energy minimizations suggest a higher space-group symmetry. For the 225 SX structures, the only deviations observed upon energy minimization were three minor H-atom related issues. Preferred orientation is the most important cause of problems. A preferred-orientation correction is the only correction where the experimental data are modified to fit the model. We conclude that molecular crystal structures determined from powder diffraction data that are published in IUCr journals are of high quality, with less than 4% containing an error in a non-H atom.

  18. Cation-dependent anomalous compression of gallosilicate zeolites with CGS topology: A high-pressure synchrotron powder diffraction study

    International Nuclear Information System (INIS)

    Lee, Yongjae; Lee, Hyun-Hwi; Lee, Dong Ryeol; Kim, Sun Jin; Kao, Chi-chang

    2008-01-01

    The high-pressure compression behaviour of 3 different cation forms of gallosilicate zeolite with CGS topology has been investigated using in situ synchrotron X-ray powder diffraction and a diamond-anvil cell technique. Under hydrostatic conditions mediated by a nominally penetrating pressure-transmitting medium, unit-cell lengths and volume compression is modulated by different degrees of pressure-induced hydration and accompanying channel distortion. In a Na-exchanged CGS (Na 10 Ga 10 Si 22 O 64 .16H 2 O), the unit-cell volume expands by ca. 0.6% upon applying hydrostatic pressure to 0.2 GPa, whereas, in an as-synthesized K-form (K 10 Ga 10 Si 22 O 64 .5H 2 O), this initial volume expansion is suppressed to ca. 0.1% at 0.16 GPa. In the early stage of hydrostatic compression below ∼1 GPa, relative decrease in the ellipticity of the non-planar 10-rings is observed, which is then reverted to a gradual increase in the ellipticity at higher pressures above ∼1 GPa, implying a change in the compression mechanism. In a Sr-exchanged sample (Sr 5 Ga 10 Si 22 O 64 .19H 2 O), on the other hand, no initial volume expansion is observed. Instead, a change in the slope of volume contraction is observed near 1.5 GPa, which leads to a 2-fold increase in the compressibility. This is interpreted as pressure-induced rearrangement of water molecules to facilitate further volume contraction at higher pressures. - Graphical abstract: Three different cation forms of gallosilicate CGS zeolites have been investigated using synchrotron X-ray powder diffraction and a diamond-anvil cell. Under hydrostatic conditions, unit-cell lengths and volume show anomalous compression behaviours depending on the non-framework cation type and initial hydration level, which implies different modes of pressure-induced hydration and channel distortion

  19. Crystal structures of new cuprates containing CO3 analyzed by the Rietveld method of neutron powder diffraction

    International Nuclear Information System (INIS)

    Miyazaki, Y.; Yamane, H.; Kajitani, T.; Hiraga, K.; Hirai, T.; Morii, Y.; Funahashi, S.

    1993-01-01

    New compounds containing CO 3 groups, Sr 2 CuO 2 (CO 3 ), (C 0.4 Cu 0.6 )Sr 2 (Y 0.86 Sr 0.14 )Cu 2 O 7 and (C 0.35 Cu 0.65 )Sr 2 (Y 0.73 Ce 0.27 ) 2 Cu 2 O 9 , were prepared as stable phases at 1273-1303 K in a flowing gas of O 2 -CO 2 . The crystal structures of these compounds were refined by means of the Rietveld analysis for neutron powder diffraction data collected using a high resolution powder diffractometer (HRPD) in the JRR-3M reactor hall of the Japan Atomic Energy Research Institute (JAERI). Positions of CO 3 groups were satisfactorily determined. The distances of C-O bonds in the CO 3 groups were around 1.3A and the O-C-O angles were almost equal to the ideal bond angle of 120deg. (author)

  20. Preparation and Crystal Structures of Some AIVB2IIO4 Compounds: Powder X-Ray Diffraction and Rietveld Analysis

    Directory of Open Access Journals (Sweden)

    K. Jeyadheepan

    2014-01-01

    Full Text Available The AIVB2IIO4 compounds such as cadmium tin oxide (Cd2SnO4 or CTO and zinc tin oxide (Zn2SnO4 or ZTO are synthesized by solid state reaction of the subsequent binary oxides. The synthesized powders were analyzed through the powder X-ray diffraction (PXRD. Cell search done on the PXRD patterns shows that the Cd2SnO4 crystallizes in orthorhombic structure with space group Pbam and the cell parameters as a=5.568(2 Å, b=9.894(3 Å, and c=3.193(1 Å and the Zn2SnO4 crystallizes as cubic with the space group Fd3 -m and with the cell parameter a=8.660(2 Å. Rietveld refinement was done on the PXRD patterns to get the crystal structure of the Cd2SnO4 and Zn2SnO4 and to define the site deficiency of atoms which causes the electrical properties of the materials.

  1. Solid-state structural properties of 2,4,6-trimethoxybenzene derivatives, determined directly from powder X-ray diffraction data in conjunction with other techniques

    International Nuclear Information System (INIS)

    Pan Zhigang; Xu Mingcan; Cheung, Eugene Y.; Platts, James A.; Harris, Kenneth D.M.; Constable, Edwin C.; Housecroft, Catherine E.

    2006-01-01

    Structural properties of 2,4,6-trimethoxybenzaldehyde, 2,4,6-trimethoxybenzyl alcohol and 2,4,6-trimethoxyacetophenone have been determined directly from powder X-ray diffraction data, using the direct-space Genetic Algorithm (GA) technique for structure solution followed by Rietveld refinement. Structural similarities and contrasts within this family of materials are elucidated. The work illustrates the value of utilizing information from other sources, including spectroscopic data and computational techniques, as a means of augmenting the structural knowledge established from the powder X-ray diffraction data

  2. Time-of-flight 3D Neutron Diffraction for Multigrain Crystallography

    DEFF Research Database (Denmark)

    Cereser, Alberto

    of the individual grains within the sample. The experiments were conducted at the single crystal diffractometer SENJU at the Japanese neutron source J-PARC. The choice of this instrument was motivated by its large coverage of the reciprocal space. The instrument had to undergo modifications to enable ToF 3DND...... for indexing SENJU data, which then serves as prior information to restrict the extinction spots that belong to the same grain. The ToF 3DND methods are verified through the study of two different samples: an Iron rod and a shape memory alloy (SMA) CoNiGa bi-crystal. Part of this verification involves...

  3. Time-of-Flight Three Dimensional Neutron Diffraction in Transmission Mode for Mapping Crystal Grain Structures

    DEFF Research Database (Denmark)

    Cereser, Alberto; Strobl, Markus; Hall, Stephen A.

    2017-01-01

    The physical properties of polycrystalline materials depend on their microstructure, which is the nano- to centimeter scale arrangement of phases and defects in their interior. Such microstructure depends on the shape, crystallographic phase and orientation, and interfacing of the grains constitu...

  4. Powder neutron diffraction study on Pb2Sr2YCu3O8+δ(δ = 0.0 and 1.67)

    International Nuclear Information System (INIS)

    Fujishita, Hideshi; Sato, Masatoshi; Morii, Yukio; Funahashi, Satoru.

    1993-01-01

    Powder neutron diffraction patterns of Pb 2 Sr 2 YCu 3 O 8+δ (δ = 0.0 and 1.67) were analyzed by Rietveld method. For δ = 0, it had been indicated, by powder X-ray diffraction, that the structure was a monoclinic one. The R factors of the present analysis for the monoclinic structure were about 3/4 of those for the previous orthorhombic ones. The structure was almost the same as the previous X-ray result except z (02). For the annealed phase, the tetragonal and the orthorhombic structures had been presented by X-ray diffraction and by neutron diffraction, respectively. The R factors of the present analysis for the orthorhombic structure were about 5/6 of those for the tetragonal structure. The distance between the Pb plane and the oxygen deficient Cu plane was found to become larger in proportion to δ, though there occurs a phase separation in low δ region. (author)

  5. Time-of-Flight Adjustment Procedure for Acoustic Measurements in Structural Timber

    Science.gov (United States)

    Danbiel F. Llana; Guillermo Iñiguez-Gonzalez; Francisco Arriaga; Xiping Wang

    2016-01-01

    The effect of timber length on time-of-flight acoustic longitudinal measurements was investigated on the structural timber of four Spanish species: radiata pine (Pinus radiata D. Don), Scots pine (Pinus sylvestris L.), laricio pine (Pinus nigra Arn.), and maritime pine (Pinus pinaster Ait.). Time-of-flight longitudinal measurements were conducted on 120 specimens of...

  6. Microstructural characterisation of battery materials using powder diffraction data: DIFFaX, FAULTS and SH-FullProf approaches

    Energy Technology Data Exchange (ETDEWEB)

    Casas-Cabanas, M.; Canales-Vazquez, J.; Palacin, M.R. [Institut de Ciencia de Materials de Barcelona (CSIC), Barcelona 08913 (Spain); Rodriguez-Carvajal, J. [Laboratoire Leon Brillouin (CEA-CNRS), Saclay, 91191 Gif-sur-Ivette Cedex (France); Laligant, Y.; Lacorre, P. [Laboratoire des Oxydes et Fluorures, UMR CNRS 6010, Universite du Maine, 72085 Le Mans Cedex (France)

    2007-12-06

    The microstructure of Li{sub 2}PtO{sub 3}, isostructural with Li{sub 2}MnO{sub 3}, and {beta}-Ni(OH){sub 2} is analyzed from powder diffraction data using two approaches. Firstly, the recently developed FAULTS program (a modification of the DIFFaX program to allow refinement of the diffraction pattern) is used to include different amounts and types of stacking faults in the microstructural description of the material. This approach treats size effects mostly isotropically and assigns most of the anisotropic peak broadening to stacking faults. On the other hand, the FullProf program is also used to perform Rietveld refinement with microstructural models that treat the effects of anisotropic size and hence considers that this is the main contribution to broadening. The simultaneous use of these two approaches allows choosing the most adequate model in each particular case in order to obtain an accurate description of the microstructure of the material. (author)

  7. Report on neutron powder diffraction for the Australian Replacement Research Reactor

    International Nuclear Information System (INIS)

    Hunter, B.A.

    2000-01-01

    There is a clear need for two neutron powder diffractometers at the Australian Replacement Research Reactor when it starts operation in 2005. The high-intensity instrument should be capable of measuring a 10mg sample of moderate complexity, or perform single-shot time-resolved experiments with 1-second time slices, or perform stroboscopic measurements with time slices of order 50 microseconds. The high-resolution instrument should have a target resolution of Δd/d∼6x10 -4 , and be capable of collecting data at this resolution within 1-48 hours depending on sample size and crystal complexity. Key questions that need to be answered in the next 9 months include: (1) a detailed study of monochromator options, (2) analysing the detector options for the high-intensity machine and exploring ways in which the solid angle can be maximised for both instruments, (3) whether the instruments are better situated at the reactor face or on super mirror guides, (4) how to integrate the two instruments (physically, if they are only the same guide), and scientifically as regards detailed performance specifications. The user community clearly wants a wide range of sample-environment options, and these are listed in the report. Combinations of these options will be important

  8. Simulation of time of flight defraction signals for reactor vessel head penetrations

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Tae Hun; Kim, Young Sik; Lee, Jeong Seok [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2016-08-15

    The simulation of nondestructive testing has been used in the prediction of the signal characteristics of various defects and in the development of the procedures. CIVA, a simulation tool dedicated to nondestructive testing, has good accuracy and speed, and provides a three-dimensional graphical user interface for improved visualization and familiar data displays consistent with an NDE technique. Even though internal validations have been performed by the CIVA software development specialists, an independent validation study is necessary for the assessment of the accuracy of the software prior to practical use. In this study, time of flight diffraction signals of ultrasonic inspection of a calibration block for reactor vessel head penetrations were simulated using CIVA. The results were compared to the experimentally inspected signals. The accuracy of the simulated signals and the possible range for simulation were verified. It was found that, there is a good agreement between the CIVA simulated and experimental results in the A-scan signal, B-scan image, and measurement of depth.

  9. Simulation of time of flight defraction signals for reactor vessel head penetrations

    International Nuclear Information System (INIS)

    Lim, Tae Hun; Kim, Young Sik; Lee, Jeong Seok

    2016-01-01

    The simulation of nondestructive testing has been used in the prediction of the signal characteristics of various defects and in the development of the procedures. CIVA, a simulation tool dedicated to nondestructive testing, has good accuracy and speed, and provides a three-dimensional graphical user interface for improved visualization and familiar data displays consistent with an NDE technique. Even though internal validations have been performed by the CIVA software development specialists, an independent validation study is necessary for the assessment of the accuracy of the software prior to practical use. In this study, time of flight diffraction signals of ultrasonic inspection of a calibration block for reactor vessel head penetrations were simulated using CIVA. The results were compared to the experimentally inspected signals. The accuracy of the simulated signals and the possible range for simulation were verified. It was found that, there is a good agreement between the CIVA simulated and experimental results in the A-scan signal, B-scan image, and measurement of depth

  10. Crystal Engineering on Industrial Diaryl Pigments Using Lattice Energy Minimizations and X-ray Powder Diffraction

    International Nuclear Information System (INIS)

    Schmidt, M.; Dinnebier, R.; Kalkhof, H.

    2007-01-01

    Diaryl azo pigments play an important role as yellow pigments for printing inks, with an annual pigment production of more than 50,000 t. The crystal structures of Pigment Yellow 12 (PY12), Pigment Yellow 13 (PY13), Pigment Yellow 14 (PY14), and Pigment Yellow 83 (PY83) were determined from X-ray powder data using lattice energy minimizations and subsequent Rietveld refinements. Details of the lattice energy minimization procedure and of the development of a torsion potential for the biphenyl fragment are given. The Rietveld refinements were carried out using rigid bodies, or constraints. It was also possible to refine all atomic positions individually without any constraint or restraint, even for PY12 having 44 independent non-hydrogen atoms per asymmetric unit. For PY14 (23 independent non-hydrogen atoms), additionally all atomic isotropic temperature factors could be refined individually. PY12 crystallized in a herringbone arrangement with twisted biaryl fragments. PY13 and PY14 formed a layer structure of planar molecules. PY83 showed a herringbone structure with planar molecules. According to quantum mechanical calculations, the twisting of the biaryl fragment results in a lower color strength of the pigments, whereas changes in the substitution pattern have almost no influence on the color strength of a single molecule. Hence, the experimentally observed lower color strength of PY12 in comparison with that of PY13 and PY83 can be explained as a pure packing effect. Further lattice energy calculations explained that the four investigated pigments crystallize in three different structures because these structures are the energetically most favorable ones for each compound. For example, for PY13, PY14, or PY83, a PY12-analogous crystal structure would lead to considerably poorer lattice energies and lower densities. In contrast, lattice energy calculations revealed that PY12 could adopt a PY13-type structure with only slightly poorer energy. This structure was

  11. Evaluation of laboratory powder X-ray micro-diffraction for applications in the fields of cultural heritage and forensic science

    Czech Academy of Sciences Publication Activity Database

    Švarcová, Silvie; Kočí, Eva; Bezdička, Petr; Hradil, David; Hradilová, J.

    2010-01-01

    Roč. 398, č. 2 (2010), s. 1061-1076 ISSN 1618-2642 R&D Projects: GA AV ČR KJB200320901 Institutional research plan: CEZ:AV0Z40320502 Keywords : powder X-ray micro-diffraction * quantitative phase analysis * forensic Subject RIV: CA - Inorganic Chemistry Impact factor: 3.841, year: 2010

  12. The structural phase diagram and oxygen equilibrium partial pressure of YBa2CU3O6+x studied by neutron powder diffraction and gas volumetry

    DEFF Research Database (Denmark)

    Andersen, N.H.; Lebech, B.; Poulsen, H.F.

    1990-01-01

    An experimental technique based on neutron powder diffraction and gas volumetry is presented and used to study the structural phase diagram of YBa2Cu3O6+x under equilibrium conditions in an extended part of (x, T)-phase (0.15

  13. Application of Powder Diffraction Methods to the Analysis of the Atomic Structure of Nanocrystals: The Concept of the Apparent Lattice Parameter (ALP)

    Science.gov (United States)

    Palosz, B.; Grzanka, E.; Gierlotka, S.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H.-P.; Palosz, W.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The applicability of standard methods of elaboration of powder diffraction data for determination of the structure of nano-size crystallites is analysed. Based on our theoretical calculations of powder diffraction data we show, that the assumption of the infinite crystal lattice for nanocrystals smaller than 20 nm in size is not justified. Application of conventional tools developed for elaboration of powder diffraction data, like the Rietveld method, may lead to erroneous interpretation of the experimental results. An alternate evaluation of diffraction data of nanoparticles, based on the so-called 'apparent lattice parameter' (alp) is introduced. We assume a model of nanocrystal having a grain core with well-defined crystal structure, surrounded by a surface shell with the atomic structure similar to that of the core but being under a strain (compressive or tensile). The two structural components, the core and the shell, form essentially a composite crystal with interfering, inseparable diffraction properties. Because the structure of such a nanocrystal is not uniform, it defies the basic definitions of an unambiguous crystallographic phase. Consequently, a set of lattice parameters used for characterization of simple crystal phases is insufficient for a proper description of the complex structure of nanocrystals. We developed a method of evaluation of powder diffraction data of nanocrystals, which refers to a core-shell model and is based on the 'apparent lattice parameter' methodology. For a given diffraction pattem, the alp values are calculated for every individual Bragg reflection. For nanocrystals the alp values depend on the diffraction vector Q. By modeling different a0tomic structures of nanocrystals and calculating theoretically corresponding diffraction patterns using the Debye functions we showed, that alp-Q plots show characteristic shapes which can be used for evaluation of the atomic structure of the core-shell system. We show, that using a simple

  14. Time-of-flight experiments using a pseudo-statistical chopper

    International Nuclear Information System (INIS)

    Aizawa, Otohiko; Kanda, Keiji

    1975-01-01

    A ''pseudo-statistical'' chopper was manufactured and used for the experiments on neutron transmission and scattering. The characteristics of the chopper and the experimental results are discussed in comparison with those in the time-of-flight technique using a conventional chopper. Which of the two methods is superior depends on the form of the time-of-flight distribution to be measured. Pseudo-statistical pulsing may be especially advantageous for scattering experiments with single or a few-line time-of-flight spectrum. (auth.)

  15. MARS. Inverted time-of flight backscattering spectrometer at SINQ

    International Nuclear Information System (INIS)

    Allenspach, P.

    1999-01-01

    Complete text of publication follows. Very recently MARS entered the realization stage as the first second generation instrument at SINQ. Its fundamental design (distance from source, pulse repetition rate and analyzer material) is very similar to that of IRIS (ISIS, UK) but there are some distinct differences mainly to increase the intensity and to adapt it to SINQ. The whole guide will be supermirror coated (m = 2) and the five coppers will provide a very clean beam at the sample. In addition all analyzer banks will be covered with mica crystals pointing to single 3 He-detectors (a total of 12 banks and detectors). This arrangement enables a very flexible adaptation of the secondary to the primary energy resolution - which is depending on the incident energy - by adjusting the analyzer's 2Θ-angle. A by-product of this discrete number of analyzer banks (in contrast to IRIS' continuous bank) is the possibility to place additional diffraction detectors at various angles in-between the analyzer banks and hence cover a wider d-range. MARS is planned to become operational in 2001. (author)

  16. Phase and Chemical Composition Analysis on Neolithic Painted Ceramics Sherds Using Synchrotron Radiation X-Ray Powder Diffraction (SRXPD)

    International Nuclear Information System (INIS)

    Constantinescu, B.

    2003-01-01

    Full text: Synchrotron Radiation X-ray Powder Diffraction studies were performed at the wiggler beamline 1711 of MAX II Synchrotron accelerator from Lund, Sweden, in the frame of EU FPV Access to Large Scale Facilities programme. Diffraction data were collected using radiation of wavelength 1.36 A, which was detected by a Brucker system with a Smart 1000 CCD detector. The main goal of our studies was to distinguish different clays and mineral pigments of various Neolithic pottery-producing centres on Romanian territory in relation with possible inter-regional trade route connections. As main results we can mention: - identification of black pigment composition from Cucuteni (Northern Moldavia), Ariusd (South-Eastern Transylvania) and Cris-Starcevo (Oltenia) type pottery (VI - IV Millennia B. Chr.) as a combination of jacobsite, bixbyite (Manganese oxides), magnetite and goethite (Iron oxides) originary from North Moldova mineral deposits of Iacobeni (150 km up on the river Bistritza from analyzed Cucuteni archaeological sites), and as a combination of pyrolusite, magnetite and hematite for Cris-Starcevo samples, probably from local clay (enriched in Mn-Fe oxides) - identification of white pigment composition as calcite (CaCO3) for Cris- Starcevo culture sites from Central Transylvania (from the local abundant chalk deposits) and as calcium silicates mixed with illite (K, H2))Al2[(H2O, OH)2]AlSi3O10 for Cucuteni culture sites - identification of read-brown pigment composition as various mixtures of hematite - goethite - magnetite, all of local provenance - identification of all examined sherds as having local provenance for the clay The main conclusion is that during Neolithic period, the pottery workshops, largely extended on Romanian territory, used local clays but traded black mineral pigments across the Carpathian mountains (Cucuteni and Ariusd areas are separated by these mountains by easily crossed by passes along small rivers)

  17. Analysis of an industrial production suspension of Bacillus lentus subtilisin crystals by powder diffraction: a powerful quality-control tool.

    Science.gov (United States)

    Frankaer, Christian G; Moroz, Olga V; Turkenburg, Johan P; Aspmo, Stein I; Thymark, Majbritt; Friis, Esben P; Stahl, Kenny; Nielsen, Jens E; Wilson, Keith S; Harris, Pernille

    2014-04-01

    A microcrystalline suspension of Bacillus lentus subtilisin (Savinase) produced during industrial large-scale production was analysed by X-ray powder diffraction (XRPD) and X-ray single-crystal diffraction (MX). XRPD established that the bulk microcrystal sample representative of the entire production suspension corresponded to space group P212121, with unit-cell parameters a = 47.65, b = 62.43, c = 75.74 Å, equivalent to those for a known orthorhombic crystal form (PDB entry 1ndq). MX using synchrotron beamlines at the Diamond Light Source with beam dimensions of 20 × 20 µm was subsequently used to study the largest crystals present in the suspension, with diffraction data being collected from two single crystals (∼20 × 20 × 60 µm) to resolutions of 1.40 and 1.57 Å, respectively. Both structures also belonged to space group P2(1)2(1)2(1), but were quite distinct from the dominant form identified by XRPD, with unit-cell parameters a = 53.04, b = 57.55, c = 71.37 Å and a = 52.72, b = 57.13, c = 65.86 Å, respectively, and refined to R = 10.8% and Rfree = 15.5% and to R = 14.1% and Rfree = 18.0%, respectively. They are also different from any of the forms previously reported in the PDB. A controlled crystallization experiment with a highly purified Savinase sample allowed the growth of single crystals of the form identified by XRPD; their structure was solved and refined to a resolution of 1.17 Å with an R of 9.2% and an Rfree of 11.8%. Thus, there are at least three polymorphs present in the production suspension, albeit with the 1ndq-like microcrystals predominating. It is shown how the two techniques can provide invaluable and complementary information for such a production suspension and it is proposed that XRPD provides an excellent quality-control tool for such suspensions.

  18. Geometrically frustrated magnetic structures of the heavy-fermion compound CePdAl studied by powder neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Doenni, A.; Fischer, P.; Zolliker, M. [Laboratory for Neutron Scattering, ETH Zuerich and Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Ehlers, G.; Maletta, H. [Hahn Meitner Institute Berlin, Glienicker Strasse 100, D-14092 Berlin (Germany); Kitazawa, H. [National Research Institute for Metals, Tsukuba, Ibaraki 305 (Japan)

    1996-12-09

    The heavy-fermion compound CePdAl with ZrNiAl-type crystal structure (hexagonal space group P6-bar2m) was investigated by powder neutron diffraction. The triangular coordination symmetry of magnetic Ce atoms on site 3f gives rise to geometrical frustration. CePdAl orders below T{sub N} = 2.7 K with an incommensurate antiferromagnetic propagation vector k=[1/2, 0, {tau}], {tau} approx. 0.35, and a longitudinal sine-wave (LSW) modulated spin arrangement. Magnetically ordered moments at Ce(1) and Ce(3) coexist with frustrated disordered moments at Ce(2). The experimentally determined magnetic structure is in agreement with group theoretical symmetry analysis considerations, calculated by the program MODY, which confirm that for Ce(2) an ordered magnetic moment parallel to the magnetically easy c-axis is forbidden by symmetry. Further low-temperature experiments give evidence for a second magnetic phase transition in CePdAl between 0.6 and 1.3 K. Magnetic structures of CePdAl are compared with those of the isostructural compound TbNiAl, where a non-zero ordered magnetic moment for the geometrically frustrated Tb(2) atoms is allowed by symmetry. (author)

  19. A study of nitrogenation of a NdFe12-xMox compound by in situ neutron powder diffraction

    International Nuclear Information System (INIS)

    Loong, C.; Short, S.M.; Lin, J.; Ding, Y.

    1998-01-01

    The effects on the crystal lattice of a NdFe 12-x Mo x (x congruent 1.7) during controlled nitrogenation over the 25 endash 600 degree C temperature range were studied by neutron powder diffraction. Prior to nitrogenation the sample contained a major phase of NdFe 10.3 Mo 1.7 and a minor phase (∼12vol%) of bcc-Fe. The sample inside the furnace was connected to a closed volume of ultrapure nitrogen gas while neutron data were collected over regular time intervals during sequential heating. Substantial nitrogen absorption occurred between 500 and 600 degree C. During the nitrogenation process the NdFe 12-x Mo x N y lattice expanded while the bcc-Fe lattice contracted. An increasing decomposition of the compound into bcc-Fe at 600 degree C was observed. The average size of the NdFe 12-x Mo x N y crystalline grains decreased starting at ∼300 degree C, reaching a minimum at ∼500 degree C and then increased markedly at higher temperatures. The development of lattice strains, on the other hand, showed an opposite trend, i.e., a maximum at 500 degree C. copyright 1998 American Institute of Physics

  20. Effect of powder sample granularity on fluorescent intensity and on thermal parameters in x-ray diffraction Rietveld analysis

    International Nuclear Information System (INIS)

    Sparks, C.J.; Specht, E.D.; Ice, G.E.; Kumar, R.; Zschack, P.; Shiraishi, T.; Hisatsune, K.

    1991-01-01

    The effect of sample granularity on diffracted x-ray intensity was evaluated by measuring the 2θ dependence of x-ray fluorescence from various samples. Measurements were made in the symmetric geometry on samples ranging from single crystals to highly absorbing coarse powders. A characteristic shape for the absorption correction was observed. A demonstration of the sensitivity of Rietveld refined site occupation parameters is made on CuAu and Cu 50 Au 44 Ni 6 alloys refined with and without granularity corrections. These alloys provide a good example of the effect of granularity due to their large linear x-ray absorption coefficients. Sample granularity and refined thermal parameters obtained from the Rietveld analysis were found to be correlated. Without a granularity correction, the refined thermal parameters are too low and can actually become negative in an attempt to compensate for granularity. A general shape for granularity correction can be included in refinement procedures. If no granularity correction is included, data should be restricted to above 30 degrees 2θ, and thermal parameters should be ignored unless extreme precautions are taken to produce >5 μm particles and high packing densities

  1. Operation manual for EDXRDDA - a software package for Bragg peak analysis of energy dispersive powder X-ray diffraction data

    International Nuclear Information System (INIS)

    Jayaswal, Balhans; Vijaykumar, V.; Momin, S.N.; Sikka, S.K.

    1992-01-01

    EDXRDDA is a software package for analysis of raw data for energy dispersive x-ray diffraction from powder samples. It resolves the spectra into individual peaks by a constrained non-linear least squares method (Hughes and Sexton, 1988). The profile function adopted is the Gaussian/Lorentzian product with the mixing ratio refinable in the program. The program is implemented on an IBM PC and is highly interactive with extensive plotting facilities. This report is a user's guide for running the program. In the first step after inputting the spectra, the full spectra is plotted on the screen. The user then chooses a portion of this for peak resolution. The initial guess for the peak intensity, peak position are input with the help of a cursor or a mouse. Upto twenty peaks can be fitted at a time in an interval of 500 channels. For overlapping peaks, various constraints can be applied. Bragg peaks and fluorescence peaks with different half widths can be handled simultaneously. The program on execution produces a look up table which contains the refined values of the peak position, half width, peak intensity, integrated intensity, and their error estimates of each peak. The program is very general and can also be used for curve fitting of data from many other experiments. (author). 2 refs., 7 figs., 2 appendices

  2. Ab initio determination of the novel perovskite-related structure of La7Mo7O30 from powder diffraction

    International Nuclear Information System (INIS)

    Goutenoire, F.; Retoux, R.; Lacorre, P.

    1999-01-01

    A new mixed valence molybdate, La 7 Mo 7 O 30 , first prepared by high energy ball milling, has been successfully synthesized by controlled hydrogen reduction of La 2 Mo 2 O 9 . Its original crystal structure was determined from X-ray and neutron powder diffraction (space group R 3 ; a = b = 17.0051(2) angstrom, c = 6.8607(1) angstrom; Z = 3; reliability factors: R p = 0.081, R wp = 0.091, χ 2 = 3.1, R Bragg = 0.049, R F = 0.033). It consists in the hexagonal stacking of individual cylinders of perovskite-type arrangement. These cylinders are built up from perovskite cages sharing corners in trans-position along their diagonal axis. Two different mixed-valence molybdenum sites coexist, with more (Mo +5.75 ) or less (Mo +4.5 ) distorted octahedral environments. Lanthanum atoms are located within the perovskite cages and around them, very close to their regular positions in the perovskite structure. Lanthanum and molybdenum atoms thus form two rows of almost perfect cubes, shifted from each other by c/2. An electron microscopy study revealed the defect-free cationic and octahedral arrangements in the (a,b) plane

  3. Physical design of time-of-flight mass spectrometer in energetic cluster impact deposition apparatus

    International Nuclear Information System (INIS)

    Yu Guoqing; Shi Ying; Chen Jingsheng; Zhu Dezhang; Pan Haochang; Xu Hongjie

    1999-01-01

    The principle and physical design of the time-of-flight mass spectrometer equipped in the energetic cluster impact deposition apparatus are introduced. Some problems existed in experiments and their solutions are also discussed

  4. Time-of-flight trigger based on the use of the time-to-amplitude converter

    International Nuclear Information System (INIS)

    Ladygin, V.P.; Man'yakov, P.K.; Reznikov, S.G.

    2000-01-01

    The method of the time-of-flight trigger realization based on the use of the time-to-amplitude converter is described. Such a trigger has a short decision time and high efficiency of the useful event selection. (author)

  5. Time-of-flight techniques applied to neutron spectra measurements in fast subcritical assemblies

    International Nuclear Information System (INIS)

    Rotival, Michel

    1975-04-01

    Time-of-flight measurements on Uranium-Graphite assemblies were performed using the BCMN linear accelerator. Methods to provide scalar spectra averaged over a core cell from these experimental results are described [fr

  6. Miniature Time of Flight Mass Spectrometer for Space and Extraterrestrial Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The PI has developed a miniature time-of-flight mass spectrometer (TOF-MS), which can be op-timized for space and extraterrestrial applications, by using a...

  7. Single view reflectance capture using multiplexed scattering and time-of-flight imaging

    OpenAIRE

    Zhao, Shuang; Velten, Andreas; Raskar, Ramesh; Bala, Kavita; Naik, Nikhil Deepak

    2011-01-01

    This paper introduces the concept of time-of-flight reflectance estimation, and demonstrates a new technique that allows a camera to rapidly acquire reflectance properties of objects from a single view-point, over relatively long distances and without encircling equipment. We measure material properties by indirectly illuminating an object by a laser source, and observing its reflected light indirectly using a time-of-flight camera. The configuration collectively acquires dense angular, but l...

  8. Powder neutron diffractometers

    International Nuclear Information System (INIS)

    Adib, M.

    2002-01-01

    Basic properties and applications of powder neutron Diffractometers are described for optimum use of the continuous neutron beams. These instruments are equipped with position sensitive detectors, neutron guide tubes, and both high intensity and high resolution modes of operation are possible .The principles of both direct and Fourier reverse time-of-flight neutron Diffractometers are also given

  9. A comparative study of the use of powder X-ray diffraction, Raman and near infrared spectroscopy for quantification of binary polymorphic mixtures of piracetam.

    Science.gov (United States)

    Croker, Denise M; Hennigan, Michelle C; Maher, Anthony; Hu, Yun; Ryder, Alan G; Hodnett, Benjamin K

    2012-04-07

    Diffraction and spectroscopic methods were evaluated for quantitative analysis of binary powder mixtures of FII(6.403) and FIII(6.525) piracetam. The two polymorphs of piracetam could be distinguished using powder X-ray diffraction (PXRD), Raman and near-infrared (NIR) spectroscopy. The results demonstrated that Raman and NIR spectroscopy are most suitable for quantitative analysis of this polymorphic mixture. When the spectra are treated with the combination of multiplicative scatter correction (MSC) and second derivative data pretreatments, the partial least squared (PLS) regression model gave a root mean square error of calibration (RMSEC) of 0.94 and 0.99%, respectively. FIII(6.525) demonstrated some preferred orientation in PXRD analysis, making PXRD the least preferred method of quantification. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. [Separation and identification of bovine lactoferricin by high performance liquid chromatography-matrix-assisted laser desorption/ionization time of flight/ time of flight mass spectrometry].

    Science.gov (United States)

    An, Meichen; Liu, Ning

    2010-02-01

    A high performance liquid chromatography-matrix-assisted laser desorption/ionization time of flight/time of flight mass spectrometry (HPLC-MALDI-TOF/TOF MS) method was developed for the separation and identification of bovine lactoferricin (LfcinB). Bovine lactoferrin was hydrolyzed by pepsin and then separated by ion exchange chromatography and reversed-phase liquid chromatography (RP-LC). The antibacterial activities of the fractions from RP-LC separation were determined and the protein concentration of the fraction with the highest activity was measured, whose sequence was indentified by MALDI-TOF/TOF MS. The relative molecular mass of LfcinB was 3 124.89 and the protein concentration was 18.20 microg/mL. The method of producing LfcinB proposed in this study has fast speed, high accuracy and high resolution.

  11. Phase transitions of Cu.sub.3+x./sub.Si observed by temperature-dependent x-ray powder diffraction

    Czech Academy of Sciences Publication Activity Database

    Correa, Cinthia Antunes; Poupon, Morgane; Kopeček, Jaromír; Král, Robert; Zemenová, Petra; Lecourt, J.; Barrier, N.; Brázda, Petr; Klementová, Mariana; Palatinus, Lukáš

    2017-01-01

    Roč. 91, Dec (2017), s. 129-139 ISSN 0966-9795 R&D Projects: GA ČR GC15-08842J Institutional support: RVO:68378271 Keywords : X-ray powder diffraction * differential scanning calorimetry * phase transitions * Cu3+xSi Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.140, year: 2016

  12. Structural and microstructural changes during anion exchange of CoAl layered double hydroxides: an in situ X-ray powder diffraction study

    DEFF Research Database (Denmark)

    Johnsen, Rune; Krumeich, Frank; Norby, Poul

    2010-01-01

    Anion-exchange processes in cobalt-aluminium layered double hydroxides (LDHs) were studied by in situ synchrotron X-ray powder diffraction (XRPD). The processes investigated were CoAl-CO3 CoAl-Cl CoAl-CO3, CoAl-Cl CoAl-NO3 and CoAl-CO3 CoAl-SO4. The XRPD data show that the CoAl-CO3 CoAl-Cl process...

  13. Time-of-Flight Neutron Imaging on IMAT@ISIS: A New User Facility for Materials Science

    Directory of Open Access Journals (Sweden)

    Winfried Kockelmann

    2018-02-01

    Full Text Available The cold neutron imaging and diffraction instrument IMAT at the second target station of the pulsed neutron source ISIS is currently being commissioned and prepared for user operation. IMAT will enable white-beam neutron radiography and tomography. One of the benefits of operating on a pulsed source is to determine the neutron energy via a time of flight measurement, thus enabling energy-selective and energy-dispersive neutron imaging, for maximizing image contrasts between given materials and for mapping structure and microstructure properties. We survey the hardware and software components for data collection and image analysis on IMAT, and provide a step-by-step procedure for operating the instrument for energy-dispersive imaging using a two-phase metal test object as an example.

  14. Assessing and minimizing contamination in time of flight based validation data

    Science.gov (United States)

    Lennox, Kristin P.; Rosenfield, Paul; Blair, Brenton; Kaplan, Alan; Ruz, Jaime; Glenn, Andrew; Wurtz, Ronald

    2017-10-01

    Time of flight experiments are the gold standard method for generating labeled training and testing data for the neutron/gamma pulse shape discrimination problem. As the popularity of supervised classification methods increases in this field, there will also be increasing reliance on time of flight data for algorithm development and evaluation. However, time of flight experiments are subject to various sources of contamination that lead to neutron and gamma pulses being mislabeled. Such labeling errors have a detrimental effect on classification algorithm training and testing, and should therefore be minimized. This paper presents a method for identifying minimally contaminated data sets from time of flight experiments and estimating the residual contamination rate. This method leverages statistical models describing neutron and gamma travel time distributions and is easily implemented using existing statistical software. The method produces a set of optimal intervals that balance the trade-off between interval size and nuisance particle contamination, and its use is demonstrated on a time of flight data set for Cf-252. The particular properties of the optimal intervals for the demonstration data are explored in detail.

  15. A Time-of-Flight System for Low Energy Charged Particles

    Science.gov (United States)

    Giordano, Micheal; Sadwick, Krystalyn; Fletcher, Kurt; Padalino, Stephen

    2013-10-01

    A time-of-flight system has been developed to measure the energy of charged particles in the keV range. Positively charged ions passing through very thin carbon films mounted on grids generate secondary electrons. These electrons are accelerated by a -2000 V grid bias towards a grounded channeltron electron multiplier (CEM) which amplifies the signal. Two CEM detector assemblies are mounted 23.1 cm apart along the path of the ions. An ion generates a start signal by passing through the first CEM and a stop signal by passing through the second. The start and stop signals generate a time-of-flight spectrum via conventional electronics. Higher energy alpha particles from radioactive sources have been used to test the system. This time-of-flight system will be deployed to measure the energies of 15 to 30 keV ions produced by a duoplasmatron ion source that is used to characterize ICF detectors.

  16. A neutron powder diffraction study of deuterated α-resorcinol: a test of profile refinement using TLS constraints

    International Nuclear Information System (INIS)

    Bacon, G.E.; Lisher, E.J.

    1979-01-01

    Constrained TL, TLX and TLS refinements have been used, with the powder-profile method, in the analysis of accurate neutron powder data for deuterated α-resorcinol at room temperature. There is good agreement between the translational and librational parameters derived from the TL refinement and those obtained from an equivalent analysis of accurate single-crystal neutron measurements. The fine details of the benzene ring are lost in the powder analysis, but the molecular orientation and the OH bond angles are in good agreement with the single-crystal values. No significant improvement could be found in the powder fit by applying the full TLS theory and, therefore, the approximate TLX model appears to be adequate for powder data. (Auth.)

  17. Potential advantages of a cesium fluoride scintillator for a time-of-flight positron camera

    International Nuclear Information System (INIS)

    Allemand, R.; Gresset, C.; Vacher, J.

    1980-01-01

    In order to improve the quality of positron tomographic imaging, a time-of-flight technique combined with a classical reconstruction method has been investigated. The decay time of NaI(Tl) and bismuth germanate (BGO) scintillators is too long for this application, and efficiency of the plastic scintillators is too low. Cesium fluoride appears to be a very promising detector material. This paper presents preliminary results obtained with a time-of-flight technique using CsF scintillators. The expected advantages were realized

  18. The Dynamic Method for Time-of-Flight Measurement of Thermal Neutron Spectra from Pulsed Sources

    International Nuclear Information System (INIS)

    Pepelyshev, Yu.N.; Tulaev, A.B.; Bobrakov, V.F.

    1994-01-01

    The time-of-flight method for a measurement of thermal neutron spectra in the pulsed neutron sources with high efficiency of neutron registration, more than 10 5 times higher in comparison with traditional one, is described. The main problems connected with the electric current technique for time-of-flight spectra measurement are examined. The methodical errors, problems of a special neutron detector design and other questions are discussed. Some experimental results, spectra from surfaces of the water and solid methane moderators, obtained in the pulsed reactor IBR-2 (Dubna, Russia) are presented. 4 refs., 5 figs

  19. Comparison of detector materials for time-of-flight positron tomography

    International Nuclear Information System (INIS)

    Derenzo, S.E.

    1982-06-01

    Knowledge of detection efficiency and timing resolution is essential when comparing detector materials for time-of-flight positron tomography. We present results of Monte Carlo calculations of the detection efficiency of plastic, lead loaded plastic, NaI(T1), liquid xenon, bismuth germanate (BGO), CsF, BaF 2 , Ge, and HgI 2 for 511 keV photons. We also use recently published values of timing resolution for these detector materials to tabulate the quantity (efficiency) 2 /(time resolution) which is a measure of the relative sensitivity for time of flight positron tomography

  20. Design, construction, characterization, and use of a detector to measure time of flight of cosmic rays

    Science.gov (United States)

    Araujo, A. C.; Felix, J.

    2017-01-01

    In the study of cosmic rays, measurements of time of flight and momentum have been used to identify incident particles from its physical properties, like mass. In this document we present the design, construction, characterization, and operation of a detector to measure time of flight of cosmic rays. The device is comprised of three small plates of plastic scintillator arranged in vertical straight line, coupled to one photomultiplier tube. The analogical output has been connected to a data acquisition system to obtain the number of digital pulses per millisecond. We present details of design, construction, operation, and preliminary results.

  1. The dynamic method for time-of-flight measurement of thermal neutron spectra from pulsed sources

    International Nuclear Information System (INIS)

    Pepyolyshev, Yu.N.; Chuklyaev, S.V.; Tulaev, A.B.; Bobrakov, V.F.

    1995-01-01

    A time-of-flight method for measurement of thermal neutron spectra in pulsed neutron sources with an efficiency more than 10 5 times higher than the standard method is described. The main problems associated with the electric current technique for time-of-flight spectra measurement are examined. The methodical errors, problems of special neutron detector design and other questions are discussed. Some experimental results for spectra from the surfaces of water and solid methane moderators obtained at the IBR-2 pulsed reactor (Dubna, Russia) are presented. (orig.)

  2. Time-of-Flight Measurement of the Speed of Sound in a Metal Bar

    Science.gov (United States)

    Ganci, Salvatore

    2016-01-01

    A simple setup was designed for a "time-of-flight" measurement of the sound speed in a metal bar. The experiment requires low cost components and is very simple to understand by students. A good use of it is as a demonstration experiment.

  3. Computer-controlled neutron time-of-flight spectrometer. Part II

    International Nuclear Information System (INIS)

    Merriman, S.H.

    1979-12-01

    A time-of-flight spectrometer for neutron inelastic scattering research has been interfaced to a PDP-15/30 computer. The computer is used for experimental data acquisition and analysis and for apparatus control. This report was prepared to summarize the functions of the computer and to act as a users' guide to the software system

  4. Four-Spot Time-Of-Flight Laser Anemometer For Turbomachinery

    Science.gov (United States)

    Wernet, Mark P.; Skoch, Gary J.

    1995-01-01

    Two-color, four-spot time-of-flight laser anemometer designed for measuring flow velocity within narrow confines of small centrifugal compressor. Apparatus well suited for measuring fast (typical speeds 160 to 700 m/s), highly turbulent gas flows in turbomachinery. Other potential applications include measurement of gas flows in pipelines and in flows from explosions.

  5. TOF-SEMSANS—Time-of-flight spin-echo modulated small-angle neutron scattering

    NARCIS (Netherlands)

    Strobl, M.; Tremsin, A.S.; Hilger, A.; Wieder, F.; Kardjilov, N.; Manke, I.; Bouwman, W.G.; Plomp, J.

    2012-01-01

    We report on measurements of spatial beam modulation of a polarized neutron beam induced by triangular precession regions in time-of-flight mode and the application of this novel technique spin-echo modulated small-angle neutron scattering (SEMSANS) to small-angle neutron scattering in the very

  6. Residual stress analysis by neutron time-of-flight at a reactor source

    International Nuclear Information System (INIS)

    Priesmeyer, H.G.; Schroder, J.

    1990-01-01

    Non-destructive neutron diffractometry for stress analysis will be a powerful experimental tool in material science research performed at the GKSS 5 MW reactor FRG-1. Arguments which show the advantages of the time-of-flight method are given and a suitable high-resolution neutron-efficient type of spectrometer is introduced. First results derived from this method are presented

  7. WINTOF - A program to produce neutron spectra from Zebra time-of-flight experiments

    International Nuclear Information System (INIS)

    Marshall, J.

    1969-06-01

    This report describes a computer program, written for the Winfrith KDF9 computer, which is used to calculate the neutron energy spectrum in the Zebra reactor from neutron time-of-flight measurements using the Zebra Linac. The data requirements for the program are specified and an illustration of the final spectrum is included. (author)

  8. FOCUS: neutron time-of-flight spectrometer at SINQ: recent progress

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, S.; Mesot, J.; Holitzner, L. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Hempelmann, R. [Saarbruecken Univ. (Germany)

    1997-09-01

    At the Swiss neutron spallation source SINQ a time-of-flight spectrometer for cold neutrons is under construction. The design foresees a Hybrid solution combining a Fermi chopper with a doubly focusing crystal monochromator. During 1996 important progress has been made concerning the main spectrometer components such as the spectrometer housing and the detector system. (author) 2 figs., 3 refs.

  9. Computationally effective solution of the inverse problem in time-of-flight spectroscopy

    DEFF Research Database (Denmark)

    Kamran, Faisal; Abildgaard, Otto Højager Attermann; Subash, Arman Ahamed

    2015-01-01

    Photon time-of-flight (PTOF) spectroscopy enables the estimation of absorption and reduced scattering coefficients of turbid media by measuring the propagation time of short light pulses through turbid medium. The present investigation provides a comparison of the assessed absorption and reduced...

  10. arXiv Performance of the ALICE Time-Of-Flight detector at the LHC

    CERN Document Server

    INSPIRE-00531272

    The ALICE Time-Of-Flight (TOF) detector at LHC is based on the Multigap Resistive Plate Chambers (MRPCs). The TOF performance during LHC Run 2 is here reported. Particular attention is given to the improved time resolution reached by TOF detector of $56$ ps, with the consequently improved particle identification capabilities.

  11. Experiments at the time-of-flight neutron spectrometer GNEIS in Gatchina

    International Nuclear Information System (INIS)

    Shcherbakov, O.A.

    1990-01-01

    A brief description of the Gatchina neutron time-of-flight spectrometer GNEIS at the 1 GeV proton synchrocyclotron and its main characteristics are given. Some results of the nuclear fission experiments and neutron cross section measurements are presented not only to illustrate the facility performance but to outline the basic directions of the researches as well. 28 refs.; 10 figs

  12. A fast preamplifier concept for SiPM-based time-of-flight PET detectors

    NARCIS (Netherlands)

    Huizenga, J.; Seifert, S.; Schreuder, F.; Dendooven, P.; Löhner, H.; Vinke, R.; Schaart, D. R.; van Dam, H.T.

    2012-01-01

    Silicon photomultipliers (SiPMs) offer high gain and fast response to light, making them interesting for fast timing applications such as time-of-flight (TOF) PET. To fully exploit the potential of these photosensors, dedicated preamplifiers that do not deteriorate the rise time and signal-to-noise

  13. Sub-nanosecond time-of-flight for segmented silicon detectors

    International Nuclear Information System (INIS)

    Souza, R.T. de; Alexander, A.; Brown, K.; Floyd, B.; Gosser, Z.Q.; Hudan, S.; Poehlman, J.; Rudolph, M.J.

    2011-01-01

    Development of a multichannel time-of-flight system for readout of a segmented, ion-passivated, ion-implanted silicon detector is described. This system provides sub-nanosecond resolution (δt∼370ps) even for low energy α particles which deposit E≤7.687MeV in the detector.

  14. Plant Leaf Imaging using Time of Flight Camera under Sunlight, Shadow and Room Conditions

    DEFF Research Database (Denmark)

    Kazmi, Wajahat; Foix, Sergi; Alenya, Guillem

    2012-01-01

    In this article, we analyze the effects of ambient light on Time of Flight (ToF) depth imaging for a plant's leaf in sunlight, shadow and room conditions. ToF imaging is sensitive to ambient light and we try to find the best possible integration times (IT) for each condition. This is important in...

  15. Processing of acquisition data for a time of flight positron tomograph

    International Nuclear Information System (INIS)

    Robert, G.

    1987-10-01

    After a review of basic principles concerning the time of flight positron tomography, the LETI positron tomograph is briefly described. For performance optimization (acquisition, calibration, image reconstruction), various specialized operators have been designed: the realization of the acquisition system is presented [fr

  16. Analysis of gait using a treadmill and a Time-of-flight camera

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Paulsen, Rasmus Reinhold; Larsen, Rasmus

    2009-01-01

    We present a system that analyzes human gait using a treadmill and a Time-of-flight camera. The camera provides spatial data with local intensity measures of the scene, and data are collected over several gait cycles. These data are then used to model and analyze the gait. For each frame...

  17. Data acquisition system for a positron tomograph using time-of-flight information

    International Nuclear Information System (INIS)

    Bertin, Francois.

    1981-12-01

    Progress in nuclear instrumentation has led to the development of scintillators much faster than the NaI crystal traditionally used in nuclear medicine. As a result it is now possible to measure time-of-flight, i.e. the time between the arrival of two γ rays emitted in coincidence on two detectors. With this extra information the β + annihilation site may be located. The introduction of time-of-flight in tomographic techniques called for research along two lines: - ''theoretical'' research leading to the creation of a new image reconstruction algorithm taking into account time-of-flight information - applied research leading to the development of an efficient measurement line and sophisticated data acquisition and processing electronics. This research has been carried out at LETI and is briefly outlined in chapter I. Chapter II shows how the introduction of time-of-flight and the modification of the reconstruction algorithm complicate the electronic and informatic equipment of the tomograph. Several acquisition and processing strategies are proposed, then the need to use an intermediate mass storage and hence to design a complex acquisition operator is demonstrated. Chapter III examines the structure of the acquisition operator and the resulting block diagram is presented in detail in chapter IV [fr

  18. BGO as a hybrid scintillator / Cherenkov radiator for cost-effective time-of-flight PET

    NARCIS (Netherlands)

    Brunner, S.E.K.; Schaart, D.R.

    2017-01-01

    Due to detector developments in the last decade, the time-of-flight (TOF) method is now commonly used to improve the quality of positron emission tomography (PET) images. Clinical TOF-PET systems based on L(Y)SO:Ce crystals and silicon photomultipliers (SiPMs) with coincidence resolving times

  19. A position-sensitive start detector for time-of-flight measurement

    International Nuclear Information System (INIS)

    Ikezoe, Hiroshi; Shikazono, Naomoto; Isoyama, Goro.

    1978-08-01

    A position-sensitive start detector for a time-of-flight measurement is described. In this detector microchannel plates were used to obtain time and position signals simultaneously. A time resolution of 121 psec FWHM and a position resolution of 0.28 mm FWHM were obtained for α-particles from an 241 Am source. (auth.)

  20. 1-(2-furoyl)-3,3-(diphenyl)thiourea: spectroscopic characterization and structural study from X-ray powder diffraction using simulated annealing

    Energy Technology Data Exchange (ETDEWEB)

    Estevez H, O.; Duque, J. [Universidad de La Habana, Instituto de Ciencia y Tecnologia de Materiales, 10400 La Habana (Cuba); Rodriguez H, J. [UNAM, Instituto de Investigaciones en Materiales, 04510 Mexico D. F. (Mexico); Yee M, H., E-mail: oestevezh@yahoo.com [Instituto Politecnico Nacional, Escuela Superior de Fisica y Matematicas, 07738 Mexico D. F. (Mexico)

    2015-07-01

    1-Furoyl-3,3-diphenylthiourea (FDFT) was synthesized, and characterized by Ftir, {sup 1}H and {sup 13}C NMR and ab initio X-ray powder structure analysis. FDFT crystallizes in the monoclinic space group P2{sub 1} with a = 12.691(1), b = 6.026(2), c = 11.861(1) A, β = 117.95(2) and V = 801.5(3) A{sup 3}. The crystal structure has been determined from laboratory X-ray powder diffraction data using direct space global optimization strategy (simulated annealing) followed by the Rietveld refinement. The thiourea group makes a dihedral angle of 73.8(6) with the furoyl group. In the crystal structure, molecules are linked by van der Waals interactions, forming one-dimensional chains along the a axis. (Author)

  1. The equation of state of PbTiO sub 3 up to 37 GPa: a synchrotron x-ray powder diffraction study

    CERN Document Server

    Sani, A; Levy, D

    2002-01-01

    High-pressure synchrotron x-ray powder diffraction patterns were collected using ID09 of ESRF (Grenoble, France) for a powder sample of PbTiO sub 3 , placed in a diamond anvil cell. The patterns were collected at room temperature using nitrogen (up to 37 GPa) and methanol-ethanol solution (up to 7 GPa) as pressure-transmitting media. The bulk moduli were calculated for the first time using the Vinet equation of state and they were compared to those of isostructural compounds. The trend of the spontaneous polarization as a function of pressure confirms that the ferroelectric-paraelectric phase transition at 11.2 GPa possesses a second-order character.

  2. High-resolution inelastic neutron scattering and neutron powder diffraction study of the adsorption of dihydrogen by the Cu(II) metal-organic framework material HKUST-1

    Science.gov (United States)

    Callear, Samantha K.; Ramirez-Cuesta, Anibal J.; David, William I. F.; Millange, Franck; Walton, Richard I.

    2013-12-01

    We present new high-resolution inelastic neutron scattering (INS) spectra (measured using the TOSCA and MARI instruments at ISIS) and powder neutron diffraction data (measured on the diffractometer WISH at ISIS) from the interaction of the prototypical metal-organic framework HKUST-1 with various dosages of dihydrogen gas. The INS spectra show direct evidence for the sequential occupation of various distinct sites for dihydrogen in the metal-organic framework, whose population is adjusted during increasing loading of the guest. The superior resolution of TOSCA reveals subtle features in the spectra, not previously reported, including evidence for split signals, while complementary spectra recorded on MARI present full information in energy and momentum transfer. The analysis of the powder neutron patterns using the Rietveld method shows a consistent picture, allowing the crystallographic indenisation of binding sites for dihydrogen, thus building a comprehensive picture of the interaction of the guest with the nanoporous host.

  3. Correlation in the statistical analysis of a reverse Fourier neutron time-of-flight experiment. Pt. 2

    International Nuclear Information System (INIS)

    Tilli, K.J.

    1982-01-01

    The significance of the correlation in the statistical analysis of reverse Fourier neutron time-of-flight observations has been evaluated by applying different methods of estimation to diffraction patterns containing peaks with Gaussian line shapes. Effects of the correlation between adjacent channels of a spectrum arise both from the incorrect weighting of the experiment's independent variables and from the misinterpretation of the number of independent observations in the data. The incorrect weighting bears the greatest effects on the width parameter of a Gaussian profile, and it leads to an increase in the relative weights of the broadest peaks of the diffraction pattern. If the correlation is ignored in the analysis, the estimates obtained for the parameters of a model will not be exactly the same as those evaluated from the minimum variance estimation, in which the correlation is taken into account. However, the differences will not be statistically significant. Nevertheless, the standard deviations will then be underestimated typically by a factor of two, which will have serious consequences on every aspect of the statistical inference. (orig.)

  4. Effect of Sr substitution on superconductivity in Hg2(Ba1-ySry)2YCu2O8-d (part 1): a neutron powder diffraction study

    OpenAIRE

    Toulemonde, P.; Odier, P.; Bordet, P.; Floch, S. Le; Suard, E.

    2002-01-01

    The effect of Sr chemical pressure on superconductivity was investigated in Hg2(Ba1-ySry)2YCu2O8-d. The samples were synthesized at high pressure-high temperature from y = 0.0 to full substitution, y = 1.0. These Sr-substituted compounds are superconducting, without Ca doping on the Y site, and show an increasing Tc with Sr, reaching 42 K for y = 1.0. A detailed neutron powder diffraction study compares the structural changes induced by this chemical Sr/Ba substitution and the mechanical pres...

  5. The stoichiometry of synthetic alunite as a function of hydrothermal aging investigated by solid-state NMR spectroscopy, powder X-ray diffraction and infrared spectroscopy

    DEFF Research Database (Denmark)

    Grube, Elisabeth; Nielsen, Ulla Gro

    2015-01-01

    The stoichiometry of a series of synthetic alunite (nominally KAl3(SO4)2(OH)6) samples prepared by hydrothermal methods as a function of reaction time (1 – 31 days) has been investigated by powder X-ray diffraction, Fourier transform infrared spectroscopy as well as solid-state 1H and 27Al magic...... of potassium defects present, from 17.261(1) to 17.324(5) Å. Solid-state 27Al MAS NMR revealed a decrease in the defect concentration as a function of time and showed the presence of 7-10 % impurities in the samples....

  6. A general method for baseline-removal in ultrafast electron powder diffraction data using the dual-tree complex wavelet transform

    Directory of Open Access Journals (Sweden)

    Laurent P. René de Cotret

    2017-07-01

    Full Text Available The general problem of background subtraction in ultrafast electron powder diffraction (UEPD is presented with a focus on the diffraction patterns obtained from materials of moderately complex structure which contain many overlapping peaks and effectively no scattering vector regions that can be considered exclusively background. We compare the performance of background subtraction algorithms based on discrete and dual-tree complex (DTCWT wavelet transforms when applied to simulated UEPD data on the M1–R phase transition in VO2 with a time-varying background. We find that the DTCWT approach is capable of extracting intensities that are accurate to better than 2% across the whole range of scattering vector simulated, effectively independent of delay time. A Python package is available.

  7. Resolution of crystal structures by X-ray and neutrons powder diffraction using global optimisation methods; Resolution des structures cristallines par diffraction des rayons X et neutrons sur poudres en utilisant les methodes d'optimisation globale

    Energy Technology Data Exchange (ETDEWEB)

    Palin, L

    2005-03-15

    We have shown in this work that X-ray diffraction on powder is a powerful tool to analyze crystal structure. The purpose of this thesis is the resolution of crystal structures by X-ray and neutrons diffraction on powder using global optimisation methods. We have studied 3 different topics. The first one is the order-disorder phenomena observed in some globular organic molecular solids. The second is the opiate family of neuropeptides. These neurotransmitters regulate sensory functions including pain and control of respiration in the central nervous system. The aim of our study was to try to determine the crystal structure of Leu-enkephalin and some of its sub-fragments. The determination of the crystal structures has been done performing Monte Carlo simulations. The third one is the location of benzene in a sodium-X zeolite. The zeolite framework was already known and the benzene has been localized by simulated annealing and by the use of maximum entropy maps.

  8. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes

    Science.gov (United States)

    Calta, Nicholas P.; Wang, Jenny; Kiss, Andrew M.; Martin, Aiden A.; Depond, Philip J.; Guss, Gabriel M.; Thampy, Vivek; Fong, Anthony Y.; Weker, Johanna Nelson; Stone, Kevin H.; Tassone, Christopher J.; Kramer, Matthew J.; Toney, Michael F.; Van Buuren, Anthony; Matthews, Manyalibo J.

    2018-05-01

    In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at the Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ˜1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ˜50 × 100 μm area. We also discuss the utility of these measurements for model validation and process improvement.

  9. Monte-Carlo studies of the performance of scintillator detectors for time-of-flight measurements

    International Nuclear Information System (INIS)

    Yang, X.H.

    1995-01-01

    In this paper we report on a Monte-Carlo program, SToF, developed to evaluate the performance of scintillator-based Time-of-Flight (TOF) detectors. This program has been used in the design of the TOF system for the PHENIX experiment at RHIC. The program was used to evaluate the intrinsic time-of-flight resolution of various scintillator and light-guide geometries, and the results of these simulations are presented here. The simulation results agree extremely well with measured pulse-height and time distributions with one adjustable parameter. These results, thus, explain also the reduced quantities, such as the position dependence of the time resolution, etc, implying that SToF will be generally useful for estimating the performance of TOF detectors. ((orig.))

  10. Time of flight and range of the motion of a projectile in a constant gravitational field

    Directory of Open Access Journals (Sweden)

    P. A. Karkantzakos

    2009-01-01

    Full Text Available In this paper we study the classical problem of the motion of a projectile in a constant gravitational field under the influenceof a retarding force proportional to the velocity. Specifically, we express the time of flight, the time of fall and the range ofthe motion as a function of the constant of resistance per unit mass of the projectile. We also prove that the time of fall isgreater than the time of rise with the exception of the case of zero constant of resistance where we have equality. Finally weprove a formula from which we can compute the constant of resistance per unit mass of the projectile from time of flight andrange of the motion when the acceleration due to gravity and the initial velocity of the projectile are known.

  11. Neutron Time-of-Flight Quantification of Water Desorption Isotherms of Montmorillonite

    DEFF Research Database (Denmark)

    Gates, Will P.; Bordallo, Heloisa N.; Aldridge, Laurence P.

    2012-01-01

    enabled us to differentiate at least two water motions during dehydration of Ca- and Na-SAz-1 (initially equilibrated at RH = 55%) by using a "controlled water loss" time-of-flight procedure. This work confirms that (a) interlayer and cationic water in dioctahedral smectites are characterized by slower...... motions than interparticle water, (b) interlayer cations influenced the dynamics of water loss, probably through its affect on clay fabric, and (c) interparticle water behaves more like bulk water. At 55% RH the Ca montmorillonite held more interparticle water, but on dehydration under controlled......The multiple energy states of water held by surfaces of a clay mineral can be effectively probed with time-of-flight and fixed elastic window neutron scattering. We used these techniques to quantitatively differentiate water types, including rotational and translational diffusions, in Ca- and Na...

  12. Particle identification by time-of-flight measurement in the SAPHIR

    International Nuclear Information System (INIS)

    Hoffmann-Rothe, P.

    1993-02-01

    Using photoproduction data which have been measured with the SAPHIR-detector with different target materials (C H 2 solid , H 2 liquid , D 2 liquid ) a detailed investigation and discussion of the detectors performance to measure the time of flight of charged particles and to separate between particles of different mass has been accomplished. A FORTRAN program has been written which provides a calibration of the scintillator panels of the TOF hodoscopes, calculates correction factors for the time-walk effect an finally, by combining the time of flight with track momentum measurement, determines particle masses. The current configuration of the detector makes it possible to separate between proton and pion up to a particle momentum of 1.6 GeV/c. Proton and kaon can be separated up to a momentum of 1.3 GeV/c, kaon and pion up to a momentum of 0.85 GeV/c. (prog.) [de

  13. The time-of-flight TOFW detector of the HARP experiment: construction and performance

    International Nuclear Information System (INIS)

    Baldo-Ceolin, M.; Barichello, G.; Bobisut, F.; Bonesini, M.; De Min, A.; Ferri, A.F.; Gibin, D.; Guglielmi, A.; Laveder, M.; Menegolli, A.; Mezzetto, M.; Paganoni, M.; Paleari, F.; Pepato, A.; Tonazzo, A.; Vascon, M.

    2004-01-01

    The construction and performance of a large area scintillator-based time-of-flight detector for the HARP experiment at CERN are reported. An intrinsic counter time resolution of ∼160 ps was achieved. The precision on the time calibration and monitoring of the detector was maintained at better than 100 ps by using dedicated cosmic rays runs, a fast laser-based system and calibrations with beam particles. The detector was operated on the T9 PS beamline during 2001 and 2002. A time-of-flight resolution of ∼200 ps was obtained, providing π/p discrimination at more than 3σ up to 4.0 GeV/c momentum

  14. The Dubna double-arm time-of-flight spectrometer for heavy-ion reaction products

    International Nuclear Information System (INIS)

    Schilling, K.D.; Gippner, P.; Seidel, W.; Stary, F.; Will, E.; Heidel, K.; Lukyanov, S.M.; Penionzhkevich, Yu.E.; Salamatin, V.S.; Sodan, H.; Chubarian, G.G.

    1986-05-01

    The double-arm time-of-flight spectrometer DEMAS designed for the detection and identification of heavy-ion reaction products at incident energies below 10 MeV/amu is presented. Based on the kinematic coincidence method, the relevant physical information is obtained from the measurement of the two correlated velocity vectors of the binary fragments. Construction and performance of the different detector systems applied to measure the time-of-flight values, the position coordinates and the kinetic energies of both fragments are presented in detail. The description of the data acquisition and analysing procedures is followed by the discussion of some experimental examples to demonstrate the spectrometer performance. A mass resolution of typically 4 - 5 amu (fwhm) is routinely achieved. (author)

  15. Time-of-flight spectrometer for the measurement of gamma correlated neutron spectra

    International Nuclear Information System (INIS)

    Andriashin, A.V.; Devkin, B.V.; Lychagin, A.A.; Minko, J.V.; Mironov, A.N.; Nesterenko, V.S.; Sztaricskai, T.; Petoe, G.; Vasvary, L.

    1986-01-01

    A time-of-flight spectrometer for the measurement of gamma correlated neutron spectra from (n,xnγ) reactions is described. The operation and the main parameters are discussed. The resolution in the neutron channel is 2.2 ns/m at the 150 keV neutron energy threshold. A simultaneous measurement of the time-of-flight and amplitude distributions makes it possible to study gamma correlated neutron spectra as well as the prompt gamma spectra in coincidence with selected energy neutrons. In order to test the spectrometer, measurements of the neutron spectrum in coincidence with the 846 keV gamma line of 56 Fe were carried out at an incident neutron energy of 14.1 MeV. (Auth.)

  16. Time-of-flight spectrometer for the measurement of gamma correlated neutron spectra

    International Nuclear Information System (INIS)

    Andryashin, A.V.; Devlein, B.V.; Lychagin, A.A.; Minko, Y.V.; Mironov, A.N.; Nesterenko, V.S.

    1986-01-01

    A time-of-flight spectrometer for the measurement of gamma correlated neutron spectra form (n,xnγ) reactions is described. The operation and the main parameters are discussed. The resolution in the neutron channel is 2.2 ns/m at the 150 keV neutron energy threshold. A simultaneous measurement of the time-of-flight and amplitude distributions makes it possible to study gamma correlated neutron spectra as well as the prompt gamma spectra in coincidence with selected energy neutrons. In order to test the spectrometer, measurements of the neutron spectrum in coincidence with the 846 keV gamma line of 56 Fe were carried out at an incident neutron energy of 14.1 MeV. (author). 3 figs., 6 refs

  17. A new method of detection for a positron emission tomograph using a time of flight method

    International Nuclear Information System (INIS)

    Gresset, Christian.

    1981-05-01

    In the first chapter, it is shown the advantages of positron radioemitters (β + ) of low period, and the essential characteristics of positron tomographs realized at the present time. The second chapter presents the interest of an original technique of image reconstruction: the time of flight technique. The third chapter describes the characterization methods which were set for verifying the feasibility of cesium fluoride in tomography. Chapter four presents the results obtained by these methods. It appears that the cesium fluoride constitute presently the best positron emission associated to time of flight technique. The hypotheses made on eventual performances of such machines are validated by experiments with phantom. The results obtained with a detector (bismuth germanate) conserves all its interest in skull tomography [fr

  18. High-throughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry

    DEFF Research Database (Denmark)

    Ståhlman, Marcus; Ejsing, Christer S.; Tarasov, Kirill

    2009-01-01

    Technological advances in mass spectrometry and meticulous method development have produced several shotgun lipidomic approaches capable of characterizing lipid species by direct analysis of total lipid extracts. Shotgun lipidomics by hybrid quadrupole time-of-flight mass spectrometry allows...... the absolute quantification of hundreds of molecular glycerophospholipid species, glycerolipid species, sphingolipid species and sterol lipids. Future applications in clinical cohort studies demand detailed lipid molecule information and the application of high-throughput lipidomics platforms. In this review...... we describe a novel high-throughput shotgun lipidomic platform based on 96-well robot-assisted lipid extraction, automated sample infusion by mircofluidic-based nanoelectrospray ionization, and quantitative multiple precursor ion scanning analysis on a quadrupole time-of-flight mass spectrometer...

  19. Beam derived trigger system for multibunch time-of-flight measurement

    International Nuclear Information System (INIS)

    Fox, J.; Pellegrin, J.L.

    1981-01-01

    Particle time-of-flight measurement requires accurate triggers in synchronism with each bunch, and occurring in a sequence which depends on the position of the observer around the storage ring. A system has been devised for tagging the colliding bunches at each interaction point; it allows one to record which pair of bunches is colliding at any time and any location around the machine. Besides bunch identification, the time-of-flight triggers are also expected to have a time stability better than the bunch length itself. A system is presented here which exhibits time variations of less than 80 psec over a 20 to 1 range of beam current, while the jitter is at least an order of magnitude smaller. 4 refs., 4 figs

  20. Time of flight measurements of unirradiated and irradiated nuclear graphite under cyclic compressive load

    Energy Technology Data Exchange (ETDEWEB)

    Bodel, W., E-mail: william.bodel@hotmail.com [Nuclear Graphite Research Group, The University of Manchester (United Kingdom); Atkin, C. [Health and Safety Laboratory, Buxton (United Kingdom); Marsden, B.J. [Nuclear Graphite Research Group, The University of Manchester (United Kingdom)

    2017-04-15

    The time-of-flight technique has been used to investigate the stiffness of nuclear graphite with respect to the grade and grain direction. A loading rig was developed to collect time-of-flight measurements during cycled compressive loading up to 80% of the material's compressive strength and subsequent unloading of specimens along the axis of the applied stress. The transmission velocity (related to Young's modulus), decreased with increasing applied stress; and depending on the graphite grade and orientation, the modulus then increased, decreased or remained constant upon unloading. These tests were repeated while observing the microstructure during the load/unload cycles. Initial decreases in transmission velocity with compressive load are attributed to microcrack formation within filler and binder phases. Three distinct types of behaviour occur on unloading, depending on the grade, irradiation, and loading direction. These different behaviours can be explained in terms of the material microstructure observed from the microscopy performed during loading.

  1. A compact time-of-flight mass spectrometer for ion source characterization

    International Nuclear Information System (INIS)

    Chen, L.; Wan, X.; Jin, D. Z.; Tan, X. H.; Huang, Z. X.; Tan, G. B.

    2015-01-01

    A compact time-of-flight mass spectrometer with overall dimension of about 413 × 250 × 414 mm based on orthogonal injection and angle reflection has been developed for ion source characterization. Configuration and principle of the time-of-flight mass spectrometer are introduced in this paper. The mass resolution is optimized to be about 1690 (FWHM), and the ion energy detection range is tested to be between about 3 and 163 eV with the help of electron impact ion source. High mass resolution and compact configuration make this spectrometer useful to provide a valuable diagnostic for ion spectra fundamental research and study the mass to charge composition of plasma with wide range of parameters

  2. Measurement and simulation of the inelastic resolution function of a time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Roth, S.V.; Zirkel, A.; Neuhaus, J.; Petry, W.; Bossy, J.; Peters, J.; Schober, H.

    2002-01-01

    The deconvolution of inelastic neutron scattering data requires the knowledge of the inelastic resolution function. The inelastic resolution function of the time-of-flight spectrometer IN5/ILL has been measured by exploiting the sharp resonances of the roton and maxon excitations in superfluid 4 He for the two respective (q,ω) values. The calculated inelastic resolution function for three different instrumental setups is compared to the experimentally determined resolution function. The agreement between simulation and experimental data is excellent, allowing us in principle to extrapolate the simulations and thus to determine the resolution function in the whole accessible dynamic range of IN5 or any other time-of-flight spectrometer. (orig.)

  3. Measurement and simulation of the inelastic resolution function of a time-of-flight spectrometer

    CERN Document Server

    Roth, S V; Neuhaus, J; Petry, W; Bossy, J; Peters, J; Schober, H

    2002-01-01

    The deconvolution of inelastic neutron scattering data requires the knowledge of the inelastic resolution function. The inelastic resolution function of the time-of-flight spectrometer IN5/ILL has been measured by exploiting the sharp resonances of the roton and maxon excitations in superfluid sup 4 He for the two respective (q,omega) values. The calculated inelastic resolution function for three different instrumental setups is compared to the experimentally determined resolution function. The agreement between simulation and experimental data is excellent, allowing us in principle to extrapolate the simulations and thus to determine the resolution function in the whole accessible dynamic range of IN5 or any other time-of-flight spectrometer. (orig.)

  4. Cross-correlation time-of-flight analysis of molecular beam scattering

    International Nuclear Information System (INIS)

    Nowikow, C.V.; Grice, R.

    1979-01-01

    The theory of the cross-correlation method of time-of-flight analysis is presented in a form which highlights its formal similarity to the conventional method. A time-of-flight system for the analysis of crossed molecular beam scattering is described, which is based on a minicomputer interface and can operate in both the cross-correlation and conventional modes. The interface maintains the synchronisation of chopper disc rotation and channel advance indefinitely in the cross-correlation method and can acquire data in phase with the beam modulation in both methods. The shutter function of the cross-correlation method is determined and the deconvolution analysis of the data is discussed. (author)

  5. Digitizing data acquisition and time-of-flight pulse processing for ToF-ERDA

    Energy Technology Data Exchange (ETDEWEB)

    Julin, Jaakko, E-mail: jaakko.julin@jyu.fi; Sajavaara, Timo

    2016-01-01

    A versatile system to capture and analyze signals from multi channel plate (MCP) based time-of-flight detectors and ionization based energy detectors such as silicon diodes and gas ionization chambers (GIC) is introduced. The system is based on commercial digitizers and custom software. It forms a part of a ToF-ERDA spectrometer, which has to be able to detect recoil atoms of many different species and energies. Compared to the currently used analogue electronics the digitizing system provides comparable time-of-flight resolution and improved hydrogen detection efficiency, while allowing the operation of the spectrometer be studied and optimized after the measurement. The hardware, data acquisition software and digital pulse processing algorithms to suit this application are described in detail.

  6. Invited Article: Characterization of background sources in space-based time-of-flight mass spectrometers

    International Nuclear Information System (INIS)

    Gilbert, J. A.; Gershman, D. J.; Gloeckler, G.; Lundgren, R. A.; Zurbuchen, T. H.; Orlando, T. M.; McLain, J.; Steiger, R. von

    2014-01-01

    For instruments that use time-of-flight techniques to measure space plasma, there are common sources of background signals that evidence themselves in the data. The background from these sources may increase the complexity of data analysis and reduce the signal-to-noise response of the instrument, thereby diminishing the science value or usefulness of the data. This paper reviews several sources of background commonly found in time-of-flight mass spectrometers and illustrates their effect in actual data using examples from ACE-SWICS and MESSENGER-FIPS. Sources include penetrating particles and radiation, UV photons, energy straggling and angular scattering, electron stimulated desorption of ions, ion-induced electron emission, accidental coincidence events, and noise signatures from instrument electronics. Data signatures of these sources are shown, as well as mitigation strategies and design considerations for future instruments

  7. Dual cascade time-of-flight mass spectrometer basing on electrostatic mirrors with two dimensional fields

    International Nuclear Information System (INIS)

    Glikman, L. G.; Goloskokov, Yu. V.; Karetskaya, S.P.; Mit', A.G.

    1999-01-01

    In the report [1] we have suggested the scheme of time-of-flight spectrometer containing two electrostatic mirrors with two dimensional field that doesn't depend on one of the Cartesian coordinates). In the articles [2,3] there have been found conditions for obtaining high quality of time-of-flight and spatial focusing. One of basic advantages of this scheme - is availability of intermediate stigmatic image. In the plane where this image is it's possible to place controlled diaphragm that limits ion scatter along the energy if the scatter is too large. With the help of this diaphragm at the spectrometer you can register mass spectrum with the selected energy. Good focusing quality allows reducing of initial ion energy by this increasing the time of their flight and thus analyzers resolving ability. Ion source and receiver are spaced at rather a long distances. This can be useful to solve some practical tasks

  8. Computational imaging with multi-camera time-of-flight systems

    KAUST Repository

    Shrestha, Shikhar

    2016-07-11

    Depth cameras are a ubiquitous technology used in a wide range of applications, including robotic and machine vision, human computer interaction, autonomous vehicles as well as augmented and virtual reality. In this paper, we explore the design and applications of phased multi-camera time-of-flight (ToF) systems. We develop a reproducible hardware system that allows for the exposure times and waveforms of up to three cameras to be synchronized. Using this system, we analyze waveform interference between multiple light sources in ToF applications and propose simple solutions to this problem. Building on the concept of orthogonal frequency design, we demonstrate state-of-the-art results for instantaneous radial velocity capture via Doppler time-of-flight imaging and we explore new directions for optically probing global illumination, for example by de-scattering dynamic scenes and by non-line-of-sight motion detection via frequency gating. © 2016 ACM.

  9. Crystal structures of eight mono-methyl alkanes (C26–C32 via single-crystal and powder diffraction and DFT-D optimization

    Directory of Open Access Journals (Sweden)

    Lee Brooks

    2015-09-01

    Full Text Available The crystal structures of eight mono-methyl alkanes have been determined from single-crystal or high-resolution powder X-ray diffraction using synchrotron radiation. Mono-methyl alkanes can be found on the cuticles of insects and are believed to act as recognition pheromones in some social species, e.g. ants, wasps etc. The molecules were synthesized as pure S enantiomers and are (S-9-methylpentacosane, C26H54; (S-9-methylheptacosane and (S-11-methylheptacosane, C28H58; (S-7-methylnonacosane, (S-9-methylnonacosane, (S-11-methylnonacosane and (S-13-methylnonacosane, C30H62; and (S-9-methylhentriacontane, C32H66. All crystallize in space group P21. Depending on the position of the methyl group on the carbon chain, two packing schemes are observed, in which the molecules pack together hexagonally as linear rods with terminal and side methyl groups clustering to form distinct motifs. Carbon-chain torsion angles deviate by less than 10° from the fully extended conformation, but with one packing form showing greater curvature than the other near the position of the methyl side group. The crystal structures are optimized by dispersion-corrected DFT calculations, because of the difficulties in refining accurate structural parameters from powder diffraction data from relatively poorly crystalline materials.

  10. Conformational analysis of an acyclic tetrapeptide: ab-initio structure determination from X-ray powder diffraction, Hirshfeld surface analysis and electronic structure.

    Science.gov (United States)

    Das, Uday; Naskar, Jishu; Mukherjee, Alok Kumar

    2015-12-01

    A terminally protected acyclic tetrapeptide has been synthesized, and the crystal structure of its hydrated form, Boc-Tyr-Aib-Tyr-Ile-OMe·2H2O (1), has been determined directly from powder X-ray diffraction data. The backbone conformation of tetrapeptide (1) exhibiting two consecutive β-turns is stabilized by two 4 → 1 intramolecular N-H · · · O hydrogen bonds. In the crystalline state, the tetrapeptide molecules are assembled through water-mediated O-H · · · O hydrogen bonds to form two-dimensional molecular sheets, which are further linked by intermolecular C-H · · · O hydrogen bonds into a three-dimensional supramolecular framework. The molecular electrostatic potential (MEP) surface of (1) has been used to supplement the crystallographic observations. The nature of intermolecular interactions in (1) has been analyzed quantitatively through the Hirshfeld surface and two-dimensional fingerprint plot. The DFT optimized molecular geometry of (1) agrees closely with that obtained from the X-ray structure analysis. The present structure analysis of Boc-Tyr-Aib-Tyr-Ile-OMe·2H2 O (1) represents a case where ab-initio crystal structure of an acyclic tetrapeptide with considerable molecular flexibility has been accomplished from laboratory X-ray powder diffraction data. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  11. High-resolution inelastic neutron scattering and neutron powder diffraction study of the adsorption of dihydrogen by the Cu(II) metal–organic framework material HKUST-1

    Energy Technology Data Exchange (ETDEWEB)

    Callear, Samantha K.; Ramirez-Cuesta, Anibal J.; David, William I.F. [ISIS Facility, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, OX11 0QX (United Kingdom); Millange, Franck [Institut Lavoisier Versailles (CNRS UMR 8180), Université de Versailles, 78035 Versailles (France); Walton, Richard I., E-mail: r.i.walton@warwick.ac.uk [Department of Chemistry, University of Warwick, CV4 7AL, Coventry (United Kingdom)

    2013-12-12

    Highlights: • Binding sites for dihydrogen in a metal–organic framework have been identified. • The combination of diffraction and spectroscopy shows competitive filling of various adsorption sites. • Inelastic neutron scattering over wide-momentum transfer reveals new models for hydrogen-framework interactions. - Abstract: We present new high-resolution inelastic neutron scattering (INS) spectra (measured using the TOSCA and MARI instruments at ISIS) and powder neutron diffraction data (measured on the diffractometer WISH at ISIS) from the interaction of the prototypical metal–organic framework HKUST-1 with various dosages of dihydrogen gas. The INS spectra show direct evidence for the sequential occupation of various distinct sites for dihydrogen in the metal–organic framework, whose population is adjusted during increasing loading of the guest. The superior resolution of TOSCA reveals subtle features in the spectra, not previously reported, including evidence for split signals, while complementary spectra recorded on MARI present full information in energy and momentum transfer. The analysis of the powder neutron patterns using the Rietveld method shows a consistent picture, allowing the crystallographic indenisation of binding sites for dihydrogen, thus building a comprehensive picture of the interaction of the guest with the nanoporous host.

  12. High-resolution inelastic neutron scattering and neutron powder diffraction study of the adsorption of dihydrogen by the Cu(II) metal–organic framework material HKUST-1

    International Nuclear Information System (INIS)

    Callear, Samantha K.; Ramirez-Cuesta, Anibal J.; David, William I.F.; Millange, Franck; Walton, Richard I.

    2013-01-01

    Highlights: • Binding sites for dihydrogen in a metal–organic framework have been identified. • The combination of diffraction and spectroscopy shows competitive filling of various adsorption sites. • Inelastic neutron scattering over wide-momentum transfer reveals new models for hydrogen-framework interactions. - Abstract: We present new high-resolution inelastic neutron scattering (INS) spectra (measured using the TOSCA and MARI instruments at ISIS) and powder neutron diffraction data (measured on the diffractometer WISH at ISIS) from the interaction of the prototypical metal–organic framework HKUST-1 with various dosages of dihydrogen gas. The INS spectra show direct evidence for the sequential occupation of various distinct sites for dihydrogen in the metal–organic framework, whose population is adjusted during increasing loading of the guest. The superior resolution of TOSCA reveals subtle features in the spectra, not previously reported, including evidence for split signals, while complementary spectra recorded on MARI present full information in energy and momentum transfer. The analysis of the powder neutron patterns using the Rietveld method shows a consistent picture, allowing the crystallographic indenisation of binding sites for dihydrogen, thus building a comprehensive picture of the interaction of the guest with the nanoporous host

  13. Structural study of CaMn_1_−_xMo_xO_3 (0.08 ≤ x ≤ 0.12) system by neutron powder diffraction

    International Nuclear Information System (INIS)

    Supelano, G.I.; Parra Vargas, C.A.; Barón-González, A.J.; Sarmiento Santos, A.; Frontera, C.

    2016-01-01

    Neutron powder diffraction experiments and magnetic measurements in polycrystalline CaMn_1_−_xMo_xO_3 (x = 0.08, 0.10, 0.12) point towards a possible charge and orbital order in this system. The analysis of structural and magnetic data show that the samples present structural phase transformation from Pnma to P2_1/m space group and the system has a C-type antiferromagnetic configuration at low temperature. A detailed analysis of the bond distances signals a small Jahn-Teller distortion of only one (x = 0.08) or of the two Mn ions (x = 0.10, 0.12). We identify the partially occupied e_g orbitals and this explains the C-type magnetic structure. - Highlights: • CaMn_1_−_xMo_xO_3 (x = 0.08, 0.10, 0.12) is investigated by neutron powder diffraction. • Analysis of individual Mn-O distances demonstrates the apparition of orbital order. • By symmetry analysis, we find that the low temperature magnetic structure is C-type. • Magnetic interactions foreseen by the orbital order explain the magnetic structure.

  14. A novel isomorphic phase transition in β-pyrochlore oxide KOs2O6: a study using high resolution neutron powder diffraction

    Science.gov (United States)

    Sasai, Kenzo; Kofu, Maiko; Ibberson, Richard M.; Hirota, Kazuma; Yamaura, Jun-ichi; Hiroi, Zenji; Yamamuro, Osamu

    2010-01-01

    We have carried out adiabatic calorimetric and neutron powder diffraction experiments on the β-pyrochlore oxide KOs2O6, which has a superconducting transition at Tc = 9.6 K and another novel transition at Tp = 7.6 K. A characteristic feature of this compound is that the K ions exhibit rattling vibrations in the cages formed by O atoms even at very low temperatures. The temperature and entropy of the Tp transition is in good agreement with previous data measured using a heat relaxation method, indicating that the present sample is of high purity and the transition entropy, 0.296 J K-1 mol-1, does not depend on the calorimetric method used. The neutron powder diffraction data show no peak splitting nor extra peaks over the temperature range between 2 and 295 K, suggesting that the Tp transition is a rather unusual isomorphic transition. Rietveld analysis revealed an anomalous expansion of the lattice and a deformation of the O atom cage below 7.6 K. In the low-temperature phase, the distribution of scattering density corresponding to the K ions becomes broader whilst maintaining its maximum at the cage center. Based on these findings, we suggest that the Tp transition is due to the expansion of the cage volume and cooperative condensation of the K ions into the ground state of the rattling motion.

  15. Combined Approach for the Structural Characterization of Alkali Fluoroscandates: Solid-State NMR, Powder X-ray Diffraction, and Density Functional Theory Calculations.

    Science.gov (United States)

    Rakhmatullin, Aydar; Polovov, Ilya B; Maltsev, Dmitry; Allix, Mathieu; Volkovich, Vladimir; Chukin, Andrey V; Boča, Miroslav; Bessada, Catherine

    2018-02-05

    The structures of several fluoroscandate compounds are presented here using a characterization approach combining powder X-ray diffraction and solid-state NMR. The structure of K 5 Sc 3 F 14 was fully determined from Rietveld refinement performed on powder X-ray diffraction data. Moreover, the local structures of NaScF 4 , Li 3 ScF 6 , KSc 2 F 7 , and Na 3 ScF 6 compounds were studied in detail from solid-state 19 F and 45 Sc NMR experiments. The 45 Sc chemical shift ranges for six- and seven-coordinated scandium environments were defined. The 19 F chemical shift ranges for bridging and terminal fluorine atoms were also determined. First-principles calculations of the 19 F and 45 Sc NMR parameters were carried out using plane-wave basis sets and periodic boundary conditions (CASTEP), and the results were compared with the experimental data. A good agreement between the calculated shielding constants and experimental chemical shifts was obtained. This demonstrates the good potential of computational methods in spectroscopic assignments of solid-state 45 Sc NMR spectroscopy.

  16. Measurement of fast assembly spectra using time-of-flight method

    International Nuclear Information System (INIS)

    Duquesne, Henry; Rotival, Michel; Schmitt, Andre; Allard, Christian; De Keyser, Albert; Hortsmann, Henri

    1975-07-01

    Measurement of neutron spectra made in fast subcritical assemblies HUG 3 and PHUG 3 (uranium-graphite and plutonium-graphite) utilizing time-of-flight techniques are described. The matrix were excited by the pulsed neutron source from the BCMN Linac beam impinging on a target of natural uranium. Details of the experimental procedure, safety studies, detector calibration and data reduction are given [fr

  17. Time-of-flight and vector polarization analysis for diffuse neutron scattering

    International Nuclear Information System (INIS)

    Schweika, W.

    2003-01-01

    The potential of pulsed neutron sources for diffuse scattering including time-of-flight (TOF) and polarization analysis is discussed in comparison to the capabilities of the present instrument diffuse neutron scattering at the research center Juelich. We present first results of a new method for full polarization analysis using precessing neutron polarization. A proposal is made for a new type of instrument at pulsed sources, which allows for vector polarization analysis in TOF instruments with multi-detectors

  18. Parameters’ Covariance in Neutron Time of Flight Analysis – Explicit Formulae

    Energy Technology Data Exchange (ETDEWEB)

    Odyniec, M. [NSTec; Blair, J. [NSTec

    2014-12-01

    We present here a method that estimates the parameters’ variance in a parametric model for neutron time of flight (NToF). The analytical formulae for parameter variances, obtained independently of calculation of parameter values from measured data, express the variances in terms of the choice, settings, and placement of the detector and the oscilloscope. Consequently, the method can serve as a tool in planning a measurement setup.

  19. Influence of absorption on the time of flight of the light going through a complex medium

    Directory of Open Access Journals (Sweden)

    M. Kervella

    2011-09-01

    Full Text Available The aim of this work is to evaluate the influence of absorption processes on the time of flight of light going through an absorbing and scattering thick medium (clouds, paints, gas cell, etc. In order to study statistical scattering and absorbing processes, we use a Monte-Carlo simulation code with temporal phase function and Debye modes. The main result is that absorption inside particles induces a decrease of the global time delay.

  20. History and current status of PET development based on time of flight

    International Nuclear Information System (INIS)

    Yun Mingkai; Li Ting; Zhang Zhiming; Zhang Yubao; Shan Baoci; Wei Long

    2012-01-01

    The principle of time of flight (TOF) positron emission tomography (PET) and a brief review of the history of TOF-PET are introduced. The factors influencing the time resolution of a TOF-PET scanner are presented, especially focus on the intrinsic properties of scintillators and front-end electronics. Challenges and achievements of the structure of data organization and image reconstruction are reviewed. Finally, the benefits of TOF-PET on image quality improvement and tumor detection are emphasized. (authors)

  1. Identification of microorganisms using superconducting tunnel junctions and time-of-flight mass spectrometry

    Science.gov (United States)

    Ullom, J. N.; Frank, M.; Horn, J. M.; Labov, S. E.; Langry, K.; Benner, W. H.

    2000-04-01

    We present time-of-flight measurements of biological material ejected from bacterial spores following laser irradiation. Ion impacts are registered on a microchannel plate detector and on a Superconducting Tunnel Junction (STJ) detector. We compare mass spectra obtained with the two detectors. The STJ has better sensitivity to massive ions and also measures the energy of each ion. We show evidence that spores of different bacillus species produce distinctive mass spectra and associate the observed mass peaks with coat proteins.

  2. Identification of microorganisms using superconducting tunnel junctions and time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Ullom, J.N.; Frank, M.; Horn, J.M.; Labov, S.E.; Langry, K.; Benner, W.H.

    2000-01-01

    We present time-of-flight measurements of biological material ejected from bacterial spores following laser irradiation. Ion impacts are registered on a microchannel plate detector and on a Superconducting Tunnel Junction (STJ) detector. We compare mass spectra obtained with the two detectors. The STJ has better sensitivity to massive ions and also measures the energy of each ion. We show evidence that spores of different bacillus species produce distinctive mass spectra and associate the observed mass peaks with coat proteins

  3. Analysis of phosphatidylcholine oxidation products in human plasma using quadrupole time-of flight mass spectrometry

    OpenAIRE

    Adachi, Junko; Asano, Migiwa; Yoshioka, Naoki; Nushida, Hideyuki; Ueno, Yasuhiro

    2006-01-01

    We report here an application of the previous method for the analysis ofphosphatidylcholine (PC) and lysophosphatidylcholine (lysoPC) oxidation products inhuman plasma using quadrupole time of flight (Q-TOF) mass spectrometry withelectrospray ionization. We separated these products using an HPLC C8 column witha gradient of methanol and 10 mM aqueous ammonium acetate. Monohydroperoxides,epoxyhydroxy derivatives, oxo derivatives, and trihydroxides of palmitoyl-linoleoyl(C16:0/C18:2) PC and stea...

  4. Testing the time-of-flight model for flagellar length sensing.

    Science.gov (United States)

    Ishikawa, Hiroaki; Marshall, Wallace F

    2017-11-07

    Cilia and flagella are microtubule-based organelles that protrude from the surface of most cells, are important to the sensing of extracellular signals, and make a driving force for fluid flow. Maintenance of flagellar length requires an active transport process known as intraflagellar transport (IFT). Recent studies reveal that the amount of IFT injection negatively correlates with the length of flagella. These observations suggest that a length-dependent feedback regulates IFT. However, it is unknown how cells recognize the length of flagella and control IFT. Several theoretical models try to explain this feedback system. We focused on one of the models, the "time-of-flight" model, which measures the length of flagella on the basis of the travel time of IFT protein in the flagellar compartment. We tested the time-of-flight model using Chlamydomonas dynein mutant cells, which show slower retrograde transport speed. The amount of IFT injection in dynein mutant cells was higher than that in control cells. This observation does not support the prediction of the time-of-flight model and suggests that Chlamydomonas uses another length-control feedback system rather than that described by the time-of-flight model. © 2017 Ishikawa and Marshall. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. Development of a hand-portable photoionization time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Dieckman, S.L.; Bostrom, G.A.; Waterfield, L.G.; Jendrzejczyk, J.A.; Raptis, A.C.

    1996-01-01

    ANL is currently developing a portable chemical sensor system based on laser desorption photoionization time-of-flight mass spectrometry. It will incorporate direct sampling, a cryocooler base sample adsorption and concentration, and direct surface multiphoton ionization. All components will be in a package 9 x 11 x 4 in., weighing 15-18 lbs. A sample spectrum is given for a NaCl sample

  6. The advantages of orthogonal acceleration in ICP time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Gaal, Andrew

    2004-01-01

    The OptiMass 8000 incorporates an orthogonal acceleration time-of-flight mass spectrometer. A general schematic of the instrument is given. The continuous ion beam is chopped by an orthogonal accelerator. A push out pulse supply is coupled to the accelerator for providing repetitive push-out voltages at a frequency of 30 kHz. The ion packets that are sliced out of the beam then travel within the field free space towards the SMARTGATE ion blanker. Orthogonal accelerator parameters are set to enable temporal-spatial focusing at the SMARTGATE ion blanker, so that iso-mass ion packets are resolved in time. Any ion packets of unwanted specie are ejected from the direction of travel by supplying pulsed voltages onto the deflection plates of the SMARTGATE. The ions to be measured are let through SMARTGATE and travel further down the field free space, to enter the ion reflectron. The ion reflectron increases the resolution of the mass spectrometer by means of temporal-energy focussing. After reflection, the ions travel within the field free space towards the discrete-dynode detector. In comparison to other acceleration geometries used in elemental time-of-flight mass spectrometry the OptiMass 8000 orthogonal acceleration geometry ultimately leads to superior resolution. As the energy spread is about 3 orders of magnitude lower in the time-of-flight direction for an oaTOFMS in comparison to an on-axis system, aberration acquired in the initial stages of acceleration are much lower. As a result the orthogonal acceleration scheme provides superior resolution at the first spatial focus point and the detector. The orthogonal acceleration time-of-flight analyzer of the OptiMass 8000 is able to provide resolution of at least 1800 at mass 238. (author)

  7. Timing performances of a data acquisition system for Time of Flight PET

    International Nuclear Information System (INIS)

    Morrocchi, Matteo; Marcatili, Sara; Belcari, Nicola; Bisogni, Maria G.; Collazuol, Gianmaria; Ambrosi, Giovanni; Corsi, Francesco; Foresta, Maurizio; Marzocca, Cristoforo; Matarrese, Gianvito; Sportelli, Giancarlo; Guerra, Pedro; Santos, Andres; Del Guerra, Alberto

    2012-01-01

    We are investigating the performances of a data acquisition system for Time of Flight PET, based on LYSO crystal slabs and 64 channels Silicon Photomultipliers matrices (1.2 cm 2 of active area each). Measurements have been performed to test the timing capability of the detection system (SiPM matices coupled to a LYSO slab and the read-out electronics) with both test signal and radioactive source.

  8. Timing performances of a data acquisition system for Time of Flight PET

    Energy Technology Data Exchange (ETDEWEB)

    Morrocchi, Matteo, E-mail: matteo.morrocchi@pi.infn.it [University of Pisa and INFN Sezione di Pisa, I 56127 Pisa (Italy); Marcatili, Sara; Belcari, Nicola; Bisogni, Maria G. [University of Pisa and INFN Sezione di Pisa, I 56127 Pisa (Italy); Collazuol, Gianmaria [University of Padova and INFN Sezione di Padova (Italy); Ambrosi, Giovanni [INFN Sezione di Perugia, I 06100 Perugia (Italy); Corsi, Francesco; Foresta, Maurizio; Marzocca, Cristoforo; Matarrese, Gianvito [Politecnico di Bari and INFN Sezione di Bari, I 70100 Bari (Italy); Sportelli, Giancarlo; Guerra, Pedro; Santos, Andres [Universidad Politecnica de Madrid, E 28040 Madrid (Spain); Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Del Guerra, Alberto [University of Pisa and INFN Sezione di Pisa, I 56127 Pisa (Italy)

    2012-12-11

    We are investigating the performances of a data acquisition system for Time of Flight PET, based on LYSO crystal slabs and 64 channels Silicon Photomultipliers matrices (1.2 cm{sup 2} of active area each). Measurements have been performed to test the timing capability of the detection system (SiPM matices coupled to a LYSO slab and the read-out electronics) with both test signal and radioactive source.

  9. Calibration and adjustment of the EGRET coincidence/time-of-flight system

    International Nuclear Information System (INIS)

    Hunter, S.D.

    1991-01-01

    The coincidence/time-of-flight system of the energetic gamma ray experiment telescope (EGRET) on NASA's Gamma Ray Observatory (GRO) consists of two layers of sixteen scintillator tiles. These tiles are paired into 96 coincidence telescopes. Valid coincidence and time-of-flight values (indicating downward moving particles) from one of these telescopes are two of the requirements for an EGRET event trigger. To maximize up-down discrimination, variations in the mean timing value of the telescopes must be minimized. The timing values of the 96 telescopes are not independent, hence they cannot be individually adjusted to calibrate the system. An iterative approach was devised to determine adjustments to the length of the photomultiplier signal cables. These adjustments were made directly in units of time using a time domain reflectometry technique, by timing the reflection of a fast pulse from the unterminated end of eable, and observing the charge in signal propagation time as the length of the cable was shortened. Two constant fraction discriminators, a time-to-amplitude converter and a pulse height analyzer were used for these measurements. Using this direct time measuring approach, the timing values for the 96 EGRET coincidence/time-of-flight telescopes were adjusted with an FWHM variation of less than 450 ps (± 1 TOF timing channel). (orig.)

  10. Energy measurement using a resonator based time-of-flight system

    International Nuclear Information System (INIS)

    Pardo, R.C.; Clifft, B.; Johnson, K.W.; Lewis, R.N.

    1983-01-01

    A resonant pick-up time-of-flight system has been developed for the precise measurement of beam energy at the Argonne Tandem-Linac Accelerator System (ATLAS). The excellent timing characteristics available with ATLAS beams make it desirable to design the beam transport system to be isochronous. The advantages of the resonant time-of-flight system over other energy analysis systems such as the dispersive magnet system are numerous. The system is non-interceptive and non-destructive and preserves the beam phase space. It is non-dispersive. Path length variations are not introduced into the beam which would reduce the timing resolution. It has a large signal-to-noise ratio when compared to non-resonant beam pick-up techniques. It provides the means to precisely set the linac energy and potentially to control the energy in a feedback loop. Finally, the resonant pick-up time-of-flight system is less expensive than an equivalent magnetic system. It consists of two beam-excited resonators, associated electronics to decode the information, a computer interface to the linac PDP 11/34 control computer, and software to analyze the information and deduce the measured beam energy. This report describes the system and its components and gives a schematic overview

  11. Determining the Time of Flight and Speed of Sound on Different types of Edible Oil

    Science.gov (United States)

    Azman, N. A.; Hamid, S. B. Abd

    2017-11-01

    Edible oil is most often plant-based oils that have been extracted from various seeds. There are cases where the fully virgin edible oil was found to be a fraud. The adulterated edible oil indicates the intentional, fraudulent addition of extraneous, improper or cheaper ingredients puts into the oil or the dilution or removal of some valuable ingredient of the oil in order to increase profits. Hence, decrease the reliability of the Malaysian food product quality. This research was done by using the method of time of flight obtained using the Texas Instrument board, TDC1000-TDC7200 EVM connected to an ultrasonic transducer with 1 MHz frequency. The authors measured the time of flight and temperatures controlled from 20°C to 40°C of five vegetable oils (olive oil, sunflower oil, corn oil, coconut oil, and mustard oil). The value is observed and compared with other research from the literature review. From the study, time of flight values decreases exponentially while speed of sound value increases. This relationship will be useful in spectrum unfolding method to investigate the adulteration in different type of edible oil.This research outcome is to investigate the quality value of the different type of edible oil while eliminates the issues where the quality of Malaysian food product is not reliable.

  12. Picosecond resolution on relativistic heavy ions' time-of-flight measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ebran, A., E-mail: adeline.ebran@cea.fr; Taieb, J., E-mail: julien.taieb@cea.fr; Belier, G.; Chatillon, A.; Laurent, B.; Martin, J.-F.; Pellereau, E.

    2013-11-11

    We developed a time-of-flight measurement system for relativistic heavy ions with a requested resolution of 40 ps Full Width Half Maximum. Such a resolution is mandatory to assign the correct mass number to every fission fragment, identified using the Bρ-ToF-ΔE method with the recoil spectrometer designed for the SOFIA experiment—which hold very recently at GSI. To achieve such a performance, fast plastic scintillators read-out by dedicated photomultiplier tubes were chosen among other possible options. We have led several test-measurements from 2009 to 2011, in order to investigate: the effect of the addition of a quenching molecule in the scintillator's matrix, the influence of the detector's size and the impact of the photomultiplier tube. The contribution of the dedicated electronics is also characterized. Time-of-flight measurements were performed realized with electron pulses and relativistic heavy ions, respectively provided by the LASER driven electron–accelerator (ELSA) at CEA–DAM Ile-de-France and by the SIS18/FRS facility at GSI. The reported results exhibit a time resolution better than 20 ps Full Width Half Maximum reached with the last prototype at GSI with an Uranium beam. These results confirm that the SOFIA experiment should enable the measurement of the relativistic fission fragments' time-of-flight with the requested resolution.

  13. Picosecond resolution on relativistic heavy ions' time-of-flight measurement

    International Nuclear Information System (INIS)

    Ebran, A.; Taieb, J.; Belier, G.; Chatillon, A.; Laurent, B.; Martin, J.-F.; Pellereau, E.

    2013-01-01

    We developed a time-of-flight measurement system for relativistic heavy ions with a requested resolution of 40 ps Full Width Half Maximum. Such a resolution is mandatory to assign the correct mass number to every fission fragment, identified using the Bρ-ToF-ΔE method with the recoil spectrometer designed for the SOFIA experiment—which hold very recently at GSI. To achieve such a performance, fast plastic scintillators read-out by dedicated photomultiplier tubes were chosen among other possible options. We have led several test-measurements from 2009 to 2011, in order to investigate: the effect of the addition of a quenching molecule in the scintillator's matrix, the influence of the detector's size and the impact of the photomultiplier tube. The contribution of the dedicated electronics is also characterized. Time-of-flight measurements were performed realized with electron pulses and relativistic heavy ions, respectively provided by the LASER driven electron–accelerator (ELSA) at CEA–DAM Ile-de-France and by the SIS18/FRS facility at GSI. The reported results exhibit a time resolution better than 20 ps Full Width Half Maximum reached with the last prototype at GSI with an Uranium beam. These results confirm that the SOFIA experiment should enable the measurement of the relativistic fission fragments' time-of-flight with the requested resolution

  14. Using convolutional neural networks to estimate time-of-flight from PET detector waveforms

    Science.gov (United States)

    Berg, Eric; Cherry, Simon R.

    2018-01-01

    Although there have been impressive strides in detector development for time-of-flight positron emission tomography, most detectors still make use of simple signal processing methods to extract the time-of-flight information from the detector signals. In most cases, the timing pick-off for each waveform is computed using leading edge discrimination or constant fraction discrimination, as these were historically easily implemented with analog pulse processing electronics. However, now with the availability of fast waveform digitizers, there is opportunity to make use of more of the timing information contained in the coincident detector waveforms with advanced signal processing techniques. Here we describe the application of deep convolutional neural networks (CNNs), a type of machine learning, to estimate time-of-flight directly from the pair of digitized detector waveforms for a coincident event. One of the key features of this approach is the simplicity in obtaining ground-truth-labeled data needed to train the CNN: the true time-of-flight is determined from the difference in path length between the positron emission and each of the coincident detectors, which can be easily controlled experimentally. The experimental setup used here made use of two photomultiplier tube-based scintillation detectors, and a point source, stepped in 5 mm increments over a 15 cm range between the two detectors. The detector waveforms were digitized at 10 GS s-1 using a bench-top oscilloscope. The results shown here demonstrate that CNN-based time-of-flight estimation improves timing resolution by 20% compared to leading edge discrimination (231 ps versus 185 ps), and 23% compared to constant fraction discrimination (242 ps versus 185 ps). By comparing several different CNN architectures, we also showed that CNN depth (number of convolutional and fully connected layers) had the largest impact on timing resolution, while the exact network parameters, such as convolutional

  15. Crystal structure of aspartame anhydrate from powder diffraction data. Structural aspects of the dehydration process of aspartame

    NARCIS (Netherlands)

    Guguta, C.; Meekes, H.L.M.; Gelder, R. de

    2006-01-01

    Aspartame has three pseudo-polymorphic forms, two hydrates and a hemi-hydrate, for which crystal structures were determined from single-crystal diffraction data. This paper presents the crystal structure of the anhydrate, which was obtained by dehydrating the hemi-hydrate. The crystal structure of

  16. In situ synchrotron powder diffraction study of the setting reaction kinetics of magnesium-potassium phosphate cements

    Czech Academy of Sciences Publication Activity Database

    Viani, Alberto; Pérez-Estébanez, Marta; Pollastri, S.; Gualtieri, A. F.

    2016-01-01

    Roč. 79, January (2016), s. 344-352 ISSN 0008-8846 R&D Projects: GA MŠk(CZ) LO1219 Keywords : kinetics * reaction * X-ray diffraction * MgO * chemically bonded ceramics Subject RIV: JN - Civil Engineering Impact factor: 4.762, year: 2016 http://www.sciencedirect.com/science/article/pii/S0008884615002690

  17. In situ X-ray powder diffraction studies of the synthesis of graphene oxide and formation of reduced graphene oxide

    International Nuclear Information System (INIS)

    Storm, Mie Møller; Johnsen, Rune E.; Norby, Poul

    2016-01-01

    Graphene oxide (GO) and reduced graphene oxide (rGO) are important materials in a wide range of fields. The modified Hummers methods, for synthesizing GO, and subsequent thermal reduction to rGO, are often employed for production of rGO. However, the mechanism behinds these syntheses methods are still unclear. We present an in situ X-ray diffraction study of the synthesis of GO and thermal reduction of GO. The X-ray diffraction revealed that the Hummers method includes an intercalation state and finally formation of additional crystalline material. The formation of GO is observed during both the intercalation and the crystallization stage. During thermal reduction of GO three stages were observed: GO, a disordered stage, and the rGO stage. The appearance of these stages depends on the heating ramp. The aim of this study is to provide deeper insight into the chemical and physical processes during the syntheses. - Graphical abstract: In situ X-ray diffraction results for of the modified Hummers synthesis and the thermal reduction of graphene oxide, revealing three stages for both syntheses as well as new GO diffraction peaks and unidentified crystalline material for the Hummers synthesis and a disordered stage for the thermal reduction of graphene oxide. Display Omitted - Highlights: • Hummers synthesis consists of three stages: dissolution, intercalation and crystal. • GO is produced early on during the synthesis and display new diffraction peaks. • An unidentified triclinic phase is observed for the Hummers synthesis. • Thermal reduction of GO display three stages: GO, a disordered stage and rGO. • In situ XRD indicate reformation of rGO even for fast heated thermal reduction.

  18. In situ X-ray powder diffraction studies of the synthesis of graphene oxide and formation of reduced graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Storm, Mie Møller, E-mail: mmst@dtu.dk; Johnsen, Rune E.; Norby, Poul

    2016-08-15

    Graphene oxide (GO) and reduced graphene oxide (rGO) are important materials in a wide range of fields. The modified Hummers methods, for synthesizing GO, and subsequent thermal reduction to rGO, are often employed for production of rGO. However, the mechanism behinds these syntheses methods are still unclear. We present an in situ X-ray diffraction study of the synthesis of GO and thermal reduction of GO. The X-ray diffraction revealed that the Hummers method includes an intercalation state and finally formation of additional crystalline material. The formation of GO is observed during both the intercalation and the crystallization stage. During thermal reduction of GO three stages were observed: GO, a disordered stage, and the rGO stage. The appearance of these stages depends on the heating ramp. The aim of this study is to provide deeper insight into the chemical and physical processes during the syntheses. - Graphical abstract: In situ X-ray diffraction results for of the modified Hummers synthesis and the thermal reduction of graphene oxide, revealing three stages for both syntheses as well as new GO diffraction peaks and unidentified crystalline material for the Hummers synthesis and a disordered stage for the thermal reduction of graphene oxide. Display Omitted - Highlights: • Hummers synthesis consists of three stages: dissolution, intercalation and crystal. • GO is produced early on during the synthesis and display new diffraction peaks. • An unidentified triclinic phase is observed for the Hummers synthesis. • Thermal reduction of GO display three stages: GO, a disordered stage and rGO. • In situ XRD indicate reformation of rGO even for fast heated thermal reduction.

  19. Structure and thermal expansion of Ca9Gd(VO4)7: A combined powder-diffraction and dilatometric study of a Czochralski-grown crystal

    Science.gov (United States)

    Paszkowicz, Wojciech; Shekhovtsov, Alexei; Kosmyna, Miron; Loiko, Pavel; Vilejshikova, Elena; Minikayev, Roman; Romanowski, Przemysław; Wierzchowski, Wojciech; Wieteska, Krzysztof; Paulmann, Carsten; Bryleva, Ekaterina; Belikov, Konstantin; Fitch, Andrew

    2017-11-01

    Materials of the Ca9RE(VO4)7 (CRVO) formula (RE = rare earth) and whitlockite-related structures are considered for applications in optoelectronics, e.g., in white-light emitting diodes and lasers. In the CRVO structure, the RE atoms are known to share the site occupation with Ca atoms at two or three among four Ca sites, with partial occupancy values depending on the choice of the RE atom. In this work, the structure and quality of a Czochralski-grown crystal of this family, Ca9Gd(VO4)7 (CGVO), are studied using X-ray diffraction methods. The room-temperature structure is refined using the powder diffraction data collected at a high-resolution synchrotron beamline ID22 (ESRF, Grenoble); for comparison purposes, a laboratory diffraction pattern was collected and analyzed, as well. The site occupancies are discussed on the basis of comparison with literature data of isostructural synthetic crystals of the CRVO series. The results confirm the previously reported site-occupation scheme and indicate a tendency of the CGVO compound to adopt a Gd-deficient composition. Moreover, the thermal expansion coefficient is determined for CGVO as a function of temperature in the 302-1023 K range using laboratory diffraction data. Additionally, for CGVO and six other single crystals of the same family, thermal expansion is studied in the 298-473 K range, using the dilatometric data. The magnitude and anisotropy of thermal expansion, being of importance for laser applications, are discussed for these materials.

  20. Fully automatic and precise data analysis developed for time-of-flight mass spectrometry.

    Science.gov (United States)

    Meyer, Stefan; Riedo, Andreas; Neuland, Maike B; Tulej, Marek; Wurz, Peter

    2017-09-01

    Scientific objectives of current and future space missions are focused on the investigation of the origin and evolution of the solar system with the particular emphasis on habitability and signatures of past and present life. For in situ measurements of the chemical composition of solid samples on planetary surfaces, the neutral atmospheric gas and the thermal plasma of planetary atmospheres, the application of mass spectrometers making use of time-of-flight mass analysers is a technique widely used. However, such investigations imply measurements with good statistics and, thus, a large amount of data to be analysed. Therefore, faster and especially robust automated data analysis with enhanced accuracy is required. In this contribution, an automatic data analysis software, which allows fast and precise quantitative data analysis of time-of-flight mass spectrometric data, is presented and discussed in detail. A crucial part of this software is a robust and fast peak finding algorithm with a consecutive numerical integration method allowing precise data analysis. We tested our analysis software with data from different time-of-flight mass spectrometers and different measurement campaigns thereof. The quantitative analysis of isotopes, using automatic data analysis, yields results with an accuracy of isotope ratios up to 100 ppm for a signal-to-noise ratio (SNR) of 10 4 . We show that the accuracy of isotope ratios is in fact proportional to SNR -1 . Furthermore, we observe that the accuracy of isotope ratios is inversely proportional to the mass resolution. Additionally, we show that the accuracy of isotope ratios is depending on the sample width T s by T s 0.5 . Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Quasi-dynamic mode of nanomembranes for time-of-flight mass spectrometry of proteins.

    Science.gov (United States)

    Park, Jonghoo; Kim, Hyunseok; Blick, Robert H

    2012-04-21

    Mechanical resonators realized on the nano-scale by now offer applications in mass-sensing of biomolecules with extraordinary sensitivity. The general idea is that perfect mechanical biosensors should be of extremely small size to achieve zeptogram sensitivity in weighing single molecules similar to a balance. However, the small scale and long response time of weighing biomolecules with a cantilever restrict their usefulness as a high-throughput method. Commercial mass spectrometry (MS) such as electro-spray ionization (ESI)-MS and matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-MS are the gold standards to which nanomechanical resonators have to live up to. These two methods rely on the ionization and acceleration of biomolecules and the following ion detection after a mass selection step, such as time-of-flight (TOF). Hence, the spectrum is typically represented in m/z, i.e. the mass to ionization charge ratio. Here, we describe the feasibility and mass range of detection of a new mechanical approach for ion detection in time-of-flight mass spectrometry, the principle of which is that the impinging ion packets excite mechanical oscillations in a silicon nitride nanomembrane. These mechanical oscillations are henceforth detected via field emission of electrons from the nanomembrane. Ion detection is demonstrated in MALDI-TOF analysis over a broad range with angiotensin, bovine serum albumin (BSA), and an equimolar protein mixture of insulin, BSA, and immunoglobulin G (IgG). We find an unprecedented mass range of operation of the nanomembrane detector.

  2. Temperature-Induced Desorption of Methyl tert-Butyl Ether Confined on ZSM-5: An In Situ Synchrotron XRD Powder Diffraction Study

    Directory of Open Access Journals (Sweden)

    Elisa Rodeghero

    2017-02-01

    Full Text Available The temperature-induced desorption of methyl tert-butyl ether (MTBE from aqueous solutions onto hydrophobic ZSM-5 was studied by in situ synchrotron powder diffraction and chromatographic techniques. This kind of information is crucial for designing and optimizing the regeneration treatment of such zeolite. The evolution of the structural features monitored by full profile Rietveld refinements revealed that a monoclinic (P21/n to orthorhombic (Pnma phase transition occurred at about 100 °C. The MTBE desorption process caused a remarkable change in the unit-cell parameters. Complete MTBE desorption was achieved upon heating at about 250 °C. Rietveld analysis demonstrated that the desorption process occurred without any significant zeolite crystallinity loss, but with slight deformations in the channel apertures.

  3. Order-disorder-reorder process in thermally treated dolomite samples: a combined powder and single-crystal X-ray diffraction study

    Science.gov (United States)

    Zucchini, A.; Comodi, P.; Katerinopoulou, A.; Balic-Zunic, T.; McCammon, C.; Frondini, F.

    2012-04-01

    A combined powder and single-crystal X-ray diffraction analysis of dolomite [CaMg(CO3)2] heated to 1,200°C at 3 GPa was made to study the order-disorder-reorder process. The order/disorder transition is inferred to start below 1,100°C, and complete disorder is attained at approximately 1,200°C. Twinned crystals characterized by high internal order were found in samples annealed over 1,100°C, and their fraction was found to increase with temperature. Evidences of twinning domains combined with probable remaining disordered portions of the structure imply that reordering processes occur during the quench. Twin domains are hereby proposed as a witness to thermally induced intra-layer-type cation disordering.

  4. Validation of missed space-group symmetry in X-ray powder diffraction structures with dispersion-corrected density functional theory.

    Science.gov (United States)

    Hempler, Daniela; Schmidt, Martin U; van de Streek, Jacco

    2017-08-01

    More than 600 molecular crystal structures with correct, incorrect and uncertain space-group symmetry were energy-minimized with dispersion-corrected density functional theory (DFT-D, PBE-D3). For the purpose of determining the correct space-group symmetry the required tolerance on the atomic coordinates of all non-H atoms is established to be 0.2 Å. For 98.5% of 200 molecular crystal structures published with missed symmetry, the correct space group is identified; there are no false positives. Very small, very symmetrical molecules can end up in artificially high space groups upon energy minimization, although this is easily detected through visual inspection. If the space group of a crystal structure determined from powder diffraction data is ambiguous, energy minimization with DFT-D provides a fast and reliable method to select the correct space group.

  5. X-ray mapping in heterocyclic design: IV. Crystal structure determination of 3-(p-nitrobenzoyl)-2-oxooxazolo[3,2-a]pyridine from powder diffraction data

    International Nuclear Information System (INIS)

    Rybakov, V.B.; Zhukov, S.G.; Babaev, E.V.; Sonneveld, E.J.

    2001-01-01

    The structure of 3-(p-nitrobenzoy)-2-oxooxazolo[3,2-a]pyridine is determined by the powder diffraction technique. The crystals are monoclinic, a = 13.642(2) A, b = 22.278(3) A, c = 3.917(1) A, β = 90.63(2) deg., Z 4, and space group P2 1 /n. The structure is solved by a modified Monte Carlo method and refined by the Reitveld method. The six-membered heterocycle is characterized by the alternation of partially single and partially double bonds. The system of two conjugated heterocycles is planar and forms a dihedral angle of 46.1(1) deg. with the plane of the phenyl ring. The nitro group is virtually coplanar with the phenyl fragment. An extensive system of intramolecular and intermolecular contacts involving hydrogen, oxygen, and nitrogen atoms is observed in the crystal

  6. Quadrupole lamp furnace for high temperature (up to 2050 K) synchrotron powder x-ray diffraction studies in air in reflection geometry

    International Nuclear Information System (INIS)

    Sarin, P.; Yoon, W.; Jurkschat, K.; Zschack, P.; Kriven, W. M.

    2006-01-01

    A four-lamp thermal image furnace has been developed to conduct high temperature x-ray diffraction in reflection geometry on oxide ceramic powder samples in air at temperatures ≤2050 K using synchrotron radiation. A refractory crucible made of Pt20%Rh alloy was used as a specimen holder. A material with well characterized lattice expansion properties was used as an internal crystallographic thermometer to determine the specimen temperature and displacement. The performance of the apparatus was verified by measurement of the thermal expansion properties of CeO 2 , MgO, and Pt which were found to be within ±3% of the acceptable values. The advantages, limitations, and important considerations of the instrument developed are discussed

  7. A neutron time of flight spectrometer appropriate for D-T plasma diagnostics

    International Nuclear Information System (INIS)

    Elevant, T.

    1984-02-01

    A neutron time-of-flight spectrometer with 2 m flight path for diagnostics of deuterium plasmas in JET is presently under construction. An upgrade of this spectrometer to make it appropriate for 14-MeV neutron spectroscopy is presented here. It is suggested to use backscattering in a deuterium based scintillator. The flight path length is 1-2 m and the efficiency is of the order of 2.10 -5 cm -5 . Results from test of principle are presented with estimates for neutron and gamma backgrounds

  8. Time lens for high-resolution neutron time-of-flight spectrometers

    International Nuclear Information System (INIS)

    Baumann, K.; Gaehler, R.; Grigoriev, P.; Kats, E.I.

    2005-01-01

    We examine in analytic and numeric ways the imaging effects of temporal neutron lenses created by traveling magnetic fields. For fields of parabolic shape we derive the imaging equations, investigate the time magnification, the evolution of the phase-space element, the gain factor, and the effect of finite beam size. The main aberration effects are calculated numerically. The system is technologically feasible and should convert neutron time-of-flight instruments from pinhole to imaging configuration in time, thus enhancing intensity and/or time resolution. Further fields of application for high-resolution spectrometry may be opened

  9. A high performance Time-of-Flight detector applied to isochronous mass measurement at CSRe

    International Nuclear Information System (INIS)

    Mei Bo; Tu Xiaolin; Wang Meng; Xu Hushan; Mao Ruishi; Hu Zhengguo; Ma Xinwen; Yuan Youjin; Zhang Xueying; Geng Peng; Shuai Peng; Zang Yongdong; Tang Shuwen; Ma Peng; Lu Wan; Yan Xinshuai; Xia Jiawen; Xiao Guoqing; Guo Zhongyan; Zhang Hongbin

    2010-01-01

    A high performance Time-of-Flight detector has been designed and constructed for isochronous mass spectrometry at the experimental Cooler Storage Ring (CSRe). The detector has been successfully used in an experiment to measure the masses of the N∼Z∼33 nuclides near the proton drip-line. Of particular interest is the mass of 65 As. A maximum detection efficiency of 70% and a time resolution of 118±8 ps (FWHM) have been achieved in the experiment. The dependence of detection efficiency and signal average pulse height (APH) on atomic number Z has been studied. The potential of APH for Z identification has been discussed.

  10. Improved measurement linearity and precision for AMCW time-of-flight range imaging cameras.

    Science.gov (United States)

    Payne, Andrew D; Dorrington, Adrian A; Cree, Michael J; Carnegie, Dale A

    2010-08-10

    Time-of-flight range imaging systems utilizing the amplitude modulated continuous wave (AMCW) technique often suffer from measurement nonlinearity due to the presence of aliased harmonics within the amplitude modulation signals. Typically a calibration is performed to correct these errors. We demonstrate an alternative phase encoding approach that attenuates the harmonics during the sampling process, thereby improving measurement linearity in the raw measurements. This mitigates the need to measure the system's response or calibrate for environmental changes. In conjunction with improved linearity, we demonstrate that measurement precision can also be increased by reducing the duty cycle of the amplitude modulated illumination source (while maintaining overall illumination power).

  11. A time-of-flight array for 1 to 2 GeV/c particles

    International Nuclear Information System (INIS)

    Sum, V.; Berdoz, A.R.; Davis, C.A.

    1992-09-01

    A time-of-flight detector array has been developed for an experiment searching for the strangeness -2 H-particle. The array consists of 40 logs of plastic scintillator with dimensions 2.00 x 0.085 x 0.050 m 3 . The photomultiplier tubes are coupled to the scintillators without the use of light guides, and the mounting of the bars is designed for easy adjustment and servicing. The average intrinsic time resolution was found to be 110 ps σ. 8 refs., 9 figs., 1 tab

  12. Indoor and Outdoor Depth Imaging of Leaves With Time-of-Flight and Stereo Vision Sensors

    DEFF Research Database (Denmark)

    Kazmi, Wajahat; Foix, Sergi; Alenya, Guilliem

    2014-01-01

    In this article we analyze the response of Time-of-Flight (ToF) cameras (active sensors) for close range imaging under three different illumination conditions and compare the results with stereo vision (passive) sensors. ToF cameras are sensitive to ambient light and have low resolution but deliver...... poorly under sunlight. Stereo vision is comparatively more robust to ambient illumination and provides high resolution depth data but is constrained by texture of the object along with computational efficiency. Graph cut based stereo correspondence algorithm can better retrieve the shape of the leaves...

  13. Time-of-flight camera via a single-pixel correlation image sensor

    Science.gov (United States)

    Mao, Tianyi; Chen, Qian; He, Weiji; Dai, Huidong; Ye, Ling; Gu, Guohua

    2018-04-01

    A time-of-flight imager based on single-pixel correlation image sensors is proposed for noise-free depth map acquisition in presence of ambient light. Digital micro-mirror device and time-modulated IR-laser provide spatial and temporal illumination on the unknown object. Compressed sensing and ‘four bucket principle’ method are combined to reconstruct the depth map from a sequence of measurements at a low sampling rate. Second-order correlation transform is also introduced to reduce the noise from the detector itself and direct ambient light. Computer simulations are presented to validate the computational models and improvement of reconstructions.

  14. A time-of-flight neutron reflectometer for surface and interfacial studies

    International Nuclear Information System (INIS)

    Penfold, J.; Ward, R.C.; Williams, W.G.

    1987-03-01

    A time-of-flight neutron reflectometer constructed for surface and interfacial studies, and installed at the ISIS pulsed neutron source, is described. One of its important design features is its inclined incident beam, since this allows both liquid and solid surface phenomena to be investigated. Measurements are presented to show the performance of the instrument, and new representative results, which include studies of liquid surfaces, Langmuir-Blodgett films, and thin film multilayers, are included as illustrations of the scientific potential of the method. (author)

  15. Neutral particle time-of-flight analyzer for the Tandem Mirror Experiment Upgrade (TMX-U)

    International Nuclear Information System (INIS)

    Hibbs, S.M.; Carter, M.R.; Coutts, G.W.

    1985-01-01

    We describe the design and performance of a time-of-flight (ToF) analyzer being built for installation on the east end cell of the Tandem Mirror Experiment Upgrade (TMX-U). Its primary purpose is to measure the velocity distribution of escaping charge exchange neutral particles having energies between 20 and 5000 electron volts (eV). It also enables direct determination of the thermal barrier potential when used in conjunction with the plasma potential diagnostic and the end loss ion spectrometer. In addition, it can measure the velocity distribution of passing ions leaving the central cell and of ions trapped in the thermal barrier

  16. High resolution time-of-flight spectrometer for crossed molecular beam study of elementary chemical reactions

    International Nuclear Information System (INIS)

    Qiu Minghui; Che Li; Ren Zefeng; Dai Dongxu; Wang Xiuyan; Yang Xueming

    2005-01-01

    In this article, we describe an apparatus in our laboratory for investigating elementary chemical reactions using the high resolution time-of-flight Rydberg tagging method. In this apparatus, we have adopted a rotating source design so that collision energy can be changed for crossed beam studies of chemical reactions. Preliminary results on the HI photodissociation and the F atom reaction with H 2 are reported here. These results suggest that the experimental apparatus is potentially a powerful tool for investigating state-to-state dynamics of elementary chemical reactions

  17. Calibration of the time response functions of a quenched plastic scintillator for neutron time of flight

    CERN Document Server

    Chen, J B; Peng, H S; Tang, C H; Zhang, B H; Ding, Y K; Chen, M; Chen, H S; Li, C G; Wen, T S; Yu, R Z

    2002-01-01

    The time response functions of an ultrafast quenched plastic scintillation detector used to measure neutron time of flight spectra were calibrated by utilizing cosmic rays and implosion neutrons from DT-filled capsules at the Shenguang II laser facility. These sources could be regarded as delta function pulses due to their much narrower time widths than those of the time response functions of the detection system. The results showed that the detector responses to DT neutrons and to cosmic rays were 1.18 and 0.96 ns FWHM, respectively.

  18. A silicon photomultiplier readout for time of flight neutron spectroscopy with {gamma}-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pietropaolo, A.; Gorini, G. [Dipartimento di Fisica ' ' G. Occhialini' ' and CNISM, Universita Degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano (Italy); Festa, G.; Andreani, C.; De Pascale, M. P.; Reali, E. [Dipartimento di Fisica and Centro NAST, Universita degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133, Roma (Italy); Grazzi, F. [Istituto dei Sistemi Complessi-Consiglio Nazionale delle Ricerche, Via Madonna del Piano n.10, I-50019 Sesto Fiorentino, Firenze (Italy); Schooneveld, E. M. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX (United Kingdom)

    2009-09-15

    The silicon photomultiplier (SiPM) is a recently developed photosensor used in particle physics, e.g., for detection of minimum ionizing particles and/or Cherenkov radiation. Its performance is comparable to that of photomultiplier tubes, but with advantages in terms of reduced volume and magnetic field insensitivity. In the present study, the performance of a gamma ray detector made of an yttrium aluminum perovskite scintillation crystal and a SiPM-based readout is assessed for use in time of flight neutron spectroscopy. Measurements performed at the ISIS pulsed neutron source demonstrate the feasibility of {gamma}-detection based on the new device.

  19. New development for the reverse time of flight analysis of spectra measured using Fourier Diffractometer Facilities

    CERN Document Server

    Maayouf, R M A

    2002-01-01

    The present work introduces a new design to replace the (Finnish make) reverse time of flight (RTOF) analyzer used for the Fourier diffractometer facilities. The new design applies a data acquisition system, a special interface card and software program installed in a PC computer, to perform the cross-correlation functions between signals received from the chopper-decoder and detector. It has been found from test measurements performed with the Cairo Fourier diffractometer facility (CFDF) and the similar high resolution one at JINR (Dubna-Russia) that the new design can successfully replace the Finnish make RTOF analyzer.

  20. Rotation stability of high speed neutron time-of-flight mechanical chopper

    International Nuclear Information System (INIS)

    Habib, N.; Adib, M.

    1998-01-01

    A modified rotation stabilization system has been designed to maintain the stability of a neutron time-of-flight (TOF) mechanical chopper rates from 460 rpm to 16000 rpm. The main principle of the system is based on comparing the chopper's rotation period with the preselected one from a quartz timer. The result of comparison is used to control the current driver of the chopper's motor. A 600 Hz three phase generator controlled by a magnetic amplifier was used as a current driver. The stability of the chopper's rotation rate at 16000 rpm was 0.02%. An improved method precise time scale calibration of the TOF spectrometer is applied

  1. Timing Calibration for Time-of-Flight PET Using Positron-Emitting Isotopes and Annihilation Targets

    Science.gov (United States)

    Li, Xiaoli; Burr, Kent C.; Wang, Gin-Chung; Du, Huini; Gagnon, Daniel

    2016-06-01

    Adding time-of-flight (TOF) technology has been proven to improve image quality in positron emission tomography (PET). In order for TOF information to significantly reduce the statistical noise in reconstructed PET images, good timing resolution is needed across the scanner field of view (FOV). This work proposes an accurate, robust, and practical crystal-based timing calibration method using 18F - FDG positron-emitting sources together with a spatially separated annihilation target. We calibrated a prototype Toshiba TOF PET scanner using this method and then assessed its timing resolution at different locations in the scanner FOV.

  2. Use of a large time-compensated scintillation detector in neutron time-of-flight measurements

    International Nuclear Information System (INIS)

    Goodman, C.D.

    1979-01-01

    A scintillator for neutron time-of-flight measurements is positioned at a desired angle with respect to the neutron beam, and as a function of the energy thereof, such that the sum of the transit times of the neutrons and photons in the scintillator are substantially independent of the points of scintillations within the scintillator. Extrapolated zero timing is employed rather than the usual constant fraction timing. As a result, a substantially larger scintillator can be employed that substantially increases the data rate and shortens the experiment time. 3 claims

  3. New developments in molecular imaging: positron emission tomography time-of-flight (TOF-PET)

    International Nuclear Information System (INIS)

    Aguilar, P.; Couce, B.; Iglesias, A.; Lois, C.

    2011-01-01

    Positron Emission tomography (PET) in increasingly being used in oncology for the diagnosis and staging of disease, as well as in monitoring response to therapy. One of the last advances in PET is the incorporation of Time-of-Flight (TOF) information, which improves the tomographic reconstruction process and subsequently the quality of the final image. In this work, we explain the principles of PET and the fundamentals of TOF-PET. Clinical images are shown in order to illustrate how TOF-PET improves the detectability of small lesions, particularly in patients with high body mass index. (Author) 20 refs

  4. FOCUS: time-of-flight spectrometer for cold neutrons at SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, S; Mesot, J [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland); Hempelmann, R [Saarbruecken Univ., Physical Chemistry, Saarbruecken (Germany)

    1996-11-01

    The physical layout of the Time-Of-Flight spectrometer at the new spallation source SINQ is presented. The concept shows up a hybrid-TOF combining a Fermi-chopper with a crystal monochromator. The demand of a versatile and flexible instrument for several applications is taken into account by the option of switching from time-focusing to monochromatic focusing mode such that the spectrometer can be optimised for both quasielastic and inelastic scattering applications. (author) 5 figs., 2 tabs., 16 refs.

  5. Measurement of detector neutron energy response using time-of-flight techniques

    International Nuclear Information System (INIS)

    Janee, H.S.

    1973-09-01

    The feasibility of using time-of-flight techniques at the EG and G/AEC linear accelerator for measuring the neutron response of relatively sensitive detectors over the energy range 0.5 to 14 MeV has been demonstrated. The measurement technique is described in detail as are the results of neutron spectrum measurements from beryllium and uranium photoneutron targets. The sensitivity of a fluor photomultiplier LASL detector with a 2- by 1-inch NE-111 scintillator was determined with the two targets, and agreement in the region of overlap was very good. (U.S.)

  6. A study of aging effects of barrel Time-Of-Flight system in the BESIII experiment

    Science.gov (United States)

    Liu, Huan-Huan; Sun, Sheng-Sen; Fang, Shuang-Shi; Wu, Zhi; Dai, Hong-Liang; Heng, Yue-Kun; Zhou, Ming; Deng, Zi-Yan; Liu, Huai-Min

    2018-02-01

    The Time-Of-Flight system consisting of plastic scintillation counters plays an important role for particle identification in the BESIII experiment at the BEPCII double ring e+e- collider. Degradation of the detection efficiency of the barrel TOF system has been observed since the start of physical data taking and this effect has triggered intensive and systematic studies about aging effects of the detector. The aging rates of the attenuation lengths and relative gains are obtained based on the data acquired in past several years. This study is essential for ensuring an extended operation of the barrel TOF system in optimal conditions.

  7. Energy measurement using a resonator-based time-of-flight system

    International Nuclear Information System (INIS)

    Pardo, R.C.; Lewis, R.N.; Johnson, K.W.; Clifft, B.

    1983-01-01

    The resonant time-of-flight system which has been developed has several advantages over other potential approaches. The system is non-interceptive and nondestructive. The beam phase space is preserved. It is non-dispersive. Path length variations are not introduced into the beam transport which would reduce the timing resolution. It has a large signal-to-noise ratio when compared to non-resonant beam pick-up techniques. It provides the means to precisely set the linac energy and, potentially, to control the energy in a feedback loop is desired. It is less expensive than an equivalent magnetic system

  8. Double-arm time-of-flight mass-spectrometer of nuclear fragments

    International Nuclear Information System (INIS)

    Ajvazian, G.M.; Astabatyan, R.A.

    1995-01-01

    A double-arm time-of-flight spectrometer of nuclear fragments for the investigation of heavy nuclei photofission in the intermediate energy range is described. The calibration results and working characteristics of the spectrometer, obtained using 252 Cf as a source of spontaneous fission, are presented. A mass resolution of σ m ∼2-3 a.m.u. was obtained within the registered fragments mass range of 80-160 a.m.u. The spectrometer was tested in the experiment on the investigation of 238 U nuclei fission by Bremsstahlung photons with Eγ max=1.75 GeV

  9. Environmental Effects on Measurement Uncertainties of Time-of-Flight Cameras

    DEFF Research Database (Denmark)

    Gudmundsson, Sigurjon Arni; Aanæs, Henrik; Larsen, Rasmus

    2007-01-01

    In this paper the effect the environment has on the SwissRanger SR3000 Time-Of-Flight camera is investigated. The accuracy of this camera is highly affected by the scene it is pointed at: Such as the reflective properties, color and gloss. Also the complexity of the scene has considerable effects...... on the accuracy. To mention a few: The angle of the objects to the emitted light and the scattering effects of near objects. In this paper a general overview of known such inaccuracy factors are described, followed by experiments illustrating the additional uncertainty factors. Specifically we give a better...

  10. Testing a new NIF neutron time-of-flight detector with a bibenzyl scintillator on OMEGA.

    Science.gov (United States)

    Glebov, V Yu; Forrest, C; Knauer, J P; Pruyne, A; Romanofsky, M; Sangster, T C; Shoup, M J; Stoeckl, C; Caggiano, J A; Carman, M L; Clancy, T J; Hatarik, R; McNaney, J; Zaitseva, N P

    2012-10-01

    A new neutron time-of-flight (nTOF) detector with a bibenzyl crystal as a scintillator has been designed and manufactured for the National Ignition Facility (NIF). This detector will replace a nTOF20-Spec detector with an oxygenated xylene scintillator currently operational on the NIF to improve the areal-density measurements. In addition to areal density, the bibenzyl detector will measure the D-D and D-T neutron yield and the ion temperature of indirect- and direct-drive-implosion experiments. The design of the bibenzyl detector and results of tests on the OMEGA Laser System are presented.

  11. A mechanical nanomembrane detector for time-of-flight mass spectrometry.

    Science.gov (United States)

    Park, Jonghoo; Qin, Hua; Scalf, Mark; Hilger, Ryan T; Westphall, Michael S; Smith, Lloyd M; Blick, Robert H

    2011-09-14

    We describe here a new principle for ion detection in time-of-flight (TOF) mass spectrometry in which an impinging ion packet excites mechanical vibrations in a silicon nitride (Si(3)N(4)) nanomembrane. The nanomembrane oscillations are detected by means of time-varying field emission of electrons from the mechanically oscillating nanomembrane. Ion detection is demonstrated in the MALDI-TOF analysis of proteins varying in mass from 5729 (insulin) to 150,000 (Immunoglobulin G) daltons. The detector response agrees well with the predictions of a thermomechanical model in which the impinging ion packet causes a nonuniform temperature distribution in the nanomembrane, exciting both fundamental and higher order oscillations.

  12. Gas Time-of-Flight Cherenkov Detector with Radiofrequency Phototube for FP420

    International Nuclear Information System (INIS)

    Margaryan, A.

    2011-01-01

    In this paper, the gas Cherenkov detector with radiofrequency phototube is considered as a fast-timing detector for FP420 project. The detector serves for precise Time-of-Flight measurements of forward going protons, capable of accurate vertex reconstruction and background rejection at high luminosities. The proposed technique is a high resolution (∼ 5 ps FWHM for a single proton), high rate (∼ MHz) and highly stable (less than 1 ps) timing technique capable to detect up to several tens events in a short (∼ 1 ns) time interval. (author)

  13. A time-of-flight array for 1 to 2 GeV/c particles

    Energy Technology Data Exchange (ETDEWEB)

    Sum, V; Berdoz, A R; Davis, C A [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; and others

    1992-09-01

    A time-of-flight detector array has been developed for an experiment searching for the strangeness -2 H-particle. The array consists of 40 logs of plastic scintillator with dimensions 2.00 x 0.085 x 0.050 m{sup 3}. The photomultiplier tubes are coupled to the scintillators without the use of light guides, and the mounting of the bars is designed for easy adjustment and servicing. The average intrinsic time resolution was found to be 110 ps {sigma}. 8 refs., 9 figs., 1 tab.

  14. A time-of-flight system for precise measurements of a relativistic charged particle beam momentum

    International Nuclear Information System (INIS)

    Avramenko, S.A.; Belikov, Yu.A.; Golokhvastov, A.I.; Lukstin'sh, Yu.; Man'yakov, P.K.; Rukoyatkin, P.A.; Khorozov, S.A.

    1996-01-01

    A time-of-flight system with a time resolution (σ) about 100 ps is described. The methods for the calibration, stability verification and the method for the time resolution evaluation in conditions of a nonmonochromatic beam are discussed especially. The system was applied in charge exchange ( 3 H, 3 He) experiments with the GIBS spectrometer for a measurement of 3 H-nuclei momenta at 2 GeV/c per nucleon with a precision about 0.2%. (author). 4 refs., 7 figs., 1 tab

  15. Ultrasonic divergent-beam scanner for time-of-flight tomography with computer evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Glover, G H

    1978-03-02

    The rotatable ultrasonic divergent-beam scanner is designed for time-of-flight tomography with computer evaluation. With it there can be measured parameters that are of importance for the structure of soft tissues, e.g. time as a function of the velocity distribution along a certain path of flight(the method is analogous to the transaxial X-ray tomography). Moreover it permits to perform the quantitative measurement of two-dimensional velocity distributions and may therefore be applied to serial examinations for detecting cancer of the breast. As computers digital memories as well as analog-digital-hybrid systems are suitable.

  16. Calibration of time of flight detectors using laser-driven neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Mirfayzi, S. R.; Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.; Green, A.; Alejo, A.; Jung, D. [Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN (United Kingdom); Krygier, A. G.; Freeman, R. R. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States); Clarke, R. [Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX (United Kingdom); Fuchs, J.; Vassura, L. [LULI, Ecole Polytechnique, CNRS, Route de Saclay, 91128 Palaiseau Cedex (France); Kleinschmidt, A.; Roth, M. [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstrasse 9, D-64289 Darmstadt,Germany (Germany); Morrison, J. T. [Propulsion Systems Directorate, Air Force Research Lab, Wright Patterson Air Force Base, Ohio 45433 (United States); Najmudin, Z.; Nakamura, H. [Blackett Laboratory, Department of Physics, Imperial College, London SW7 2AZ (United Kingdom); Norreys, P. [Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX (United Kingdom); Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Oliver, M. [Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Zepf, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN (United Kingdom); Helmholtz Institut Jena, D-07743 Jena (Germany); Borghesi, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN (United Kingdom); Institute of Physics of the ASCR, ELI-Beamlines Project, Na Slovance 2, 18221 Prague (Czech Republic)

    2015-07-15

    Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil.

  17. Calibration of time of flight detectors using laser-driven neutron source

    Science.gov (United States)

    Mirfayzi, S. R.; Kar, S.; Ahmed, H.; Krygier, A. G.; Green, A.; Alejo, A.; Clarke, R.; Freeman, R. R.; Fuchs, J.; Jung, D.; Kleinschmidt, A.; Morrison, J. T.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.

    2015-07-01

    Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil.

  18. Calibration of time of flight detectors using laser-driven neutron source

    International Nuclear Information System (INIS)

    Mirfayzi, S. R.; Kar, S.; Ahmed, H.; Green, A.; Alejo, A.; Jung, D.; Krygier, A. G.; Freeman, R. R.; Clarke, R.; Fuchs, J.; Vassura, L.; Kleinschmidt, A.; Roth, M.; Morrison, J. T.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Oliver, M.; Zepf, M.; Borghesi, M.

    2015-01-01

    Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil

  19. Design study of a time-of-flight neutron spectrometer for JT-60U

    International Nuclear Information System (INIS)

    Elevant, T.; Hoek, M.; Nishitani, Takeo.

    1993-06-01

    A time-of-flight neutron spectrometer is proposed for measurements of neutron energy spectra from deuterium-deuterium reactions in JT-60U tokamak plasmas. The sensitivity of the instrument is 2 · 10 -2 cm 2 , energy resolution is 4.5 % (FWHM) and maximum useful count-rate is 6 kHz. Analysis of neutron energy spectra will provide information on central ion temperatures larger than ∼ 4 keV with an accuracy of ± 10 %, and neutron source fraction from reactions between thermal ions with an accuracy of ± 15 %. The minimum time required for data acquisition is 0.1 s. (author)

  20. Clock-transport synchronisation for neutrino time-of-flight measurements

    International Nuclear Information System (INIS)

    Field, J.H.

    2012-01-01

    A method to synchronise, at the sub-nanosecond level, clocks used for neutrino time-of-flight measurements is proposed. Clocks situated near the neutrino source and target are compared with a moveable clock that is transported between them. The general-relativistic theory of the procedure was tested and verified in an experiment performed by Hafele and Keating in 1972. It is suggested that use of such a synchronisation method may contribute to a precise test of the Sagnac effect - a measured velocity greater than c - for neutrinos of the proposed LBNE beam between Fermilab and the Homestake mine. (orig.)

  1. TOF neutron diffraction study of archaeological ceramics

    International Nuclear Information System (INIS)

    Kockelmann, W.; Kirfel, A.

    1999-01-01

    Complete text of publication follows. The time-of flight (TOF) neutron diffractometer ROTAX [1] at ISIS has been used for identification and quantitative phase analysis of archaeological pottery. Neutron diffraction yields mineral phase fractions which, in parallel with information obtained from other archaeometric examination techniques, can provide a fingerprint that can be used to identify provenance and reconstruct methods of manufacturing of an archaeological ceramic product. Phase fractions obtained from a 13th century Rhenish stoneware jar compare well with those obtained from a powder sample prepared from the same fragment. This indicates that reliable results can be obtained by illuminating a large piece or even an intact ceramic object making TOF neutron diffraction a truly non-destructive examination technique. In comparison to X-ray diffraction, information from the bulk sample rather than from surface regions is obtained. ROTAX allows for a simple experimental set-up, free of sample movements. Programmes of archaeological study on ROTAX involve Russian samples (Upper-Volga culture, 5000-2000 BC), Greek pottery, (Agora/Athens, 500-300 BC), and medieval German earthenware and stoneware ceramics (Siegburg waster heap, 13-15th century). (author)

  2. Evaluation of laboratory powder X-ray micro-diffraction for applications in the fields of cultural heritage and forensic science.

    Science.gov (United States)

    Svarcová, Silvie; Kocí, Eva; Bezdicka, Petr; Hradil, David; Hradilová, Janka

    2010-09-01

    The uniqueness and limited amounts of forensic samples and samples from objects of cultural heritage together with the complexity of their composition requires the application of a wide range of micro-analytical methods, which are non-destructive to the samples, because these must be preserved for potential late revision. Laboratory powder X-ray micro-diffraction (micro-XRD) is a very effective non-destructive technique for direct phase analysis of samples smaller than 1 mm containing crystal constituents. It compliments optical and electron microscopy with elemental micro-analysis, especially in cases of complicated mixtures containing phases with similar chemical composition. However, modification of X-ray diffraction to the micro-scale together with its application for very heterogeneous real samples leads to deviations from the standard procedure. Knowledge of both the limits and the phenomena which can arise during the analysis is crucial for the meaningful and proper application of the method. We evaluated basic limits of micro-XRD equipped with a mono-capillary with an exit diameter of 0.1 mm, for example the size of irradiated area, appropriate grain size, and detection limits allowing identification of given phases. We tested the reliability and accuracy of quantitative phase analysis based on micro-XRD data in comparison with conventional XRD (reflection and transmission), carrying out experiments with two-phase model mixtures simulating historic colour layers. Furthermore, we demonstrate the wide use of micro-XRD for investigation of various types of micro-samples (contact traces, powder traps, colour layers) and we show how to enhance data quality by proper choice of experiment geometry and conditions.

  3. Dehydrogenation kinetics of pure and nickel-doped magnesium hydride investigated by in situ time-resolved powder X-ray diffraction

    DEFF Research Database (Denmark)

    Jensen, T.R.; Andreasen, A.; Vegge, Tejs

    2006-01-01

    The dehydrogenation kinetics of pure and nickel (Ni)-doped (2w/w%) magnesium hydride (MgH2) have been investigated by in situ time-resolved powder X-ray diffraction (PXD). Deactivated samples, i.e. air exposed, are investigated in order to focus on the effect of magnesium oxide (MgO) surface layers......, which might be unavoidable for magnesium (Mg)-based storage media for mobile applications. A curved position-sensitive detector covering 120 degrees in 20 and a rotating anode X-ray source provide a time resolution of 45 s and up to 90 powder pattems collected during an experiment under isothermal...... by the Johnson-Mehi-Avrami formalism in order to derive rate constants at different temperatures. The apparent activation energies for dehydrogenation of pure and Ni-doped magnesium hydride were E-A approximate to 300 and 250 kJ/mol, respectively. Differential scanning calorimetry gave, E-A = 270 k...

  4. Resolution of the crystal structure of the deficient perovskite LaNiO2.5 from neutron powder diffraction data

    International Nuclear Information System (INIS)

    Alonso, J.A.; Martinez-Lope, M.J.

    1996-01-01

    The oxygen-deficient perovskite LaNiO 2.5 has been prepared by controlled reduction of LaNiO 3 with Zr metal. The XRD pattern could be indexed in a monoclinic unit-cell with dimensions a 0 xa 0 xa 0 (a 0 : lattice parameter of the ideal cubic perovskite). The indexing of the neutron powder diffraction pattern needed a doubled cell to account for the superstructure reflections originated by the oxygen vacancy ordering and the tilting of the Ni coordination polyhedra. The structure was solved and refined from the neutron powder data. The oxygen vacancies are ordered in such a way that square planar NiO 4 and NiO 6 octahedra alternate in the ab plane along the [110] direction. Both kinds of Ni polyhedra are fairly distorted and tilted in order to optimize the La-O distances, giving rise to a highly strained structure of metastable character. In fact, the compound readily takes oxygen, above 175 C in air, to give the much more stable LaNiO 3 perovskite. (orig.)

  5. Polymer Analysis by Liquid Chromatography/Electrospray Ionization Time-of-Flight Mass Spectrometry.

    Science.gov (United States)

    Nielen, M W; Buijtenhuijs, F A

    1999-05-01

    Hyphenation of liquid chromatography (LC) techniques with electrospray ionization (ESI) orthogonal acceleration time-of-flight (oa-TOF) mass spectrometry (MS) provides both MS-based structural information and LC-based quantitative data in polymer analysis. In one experimental setup, three different LC modes are interfaced with MS:  size-exclusion chromatography (SEC/MS), gradient polymer elution chromatography (GPEC/MS), and liquid chromatography at the critical point of adsorption (LCCC/MS). In SEC/MS, both absolute mass calibration of the SEC column based on the polymer itself and determination of monomers and end groups from the mass spectra are achieved. GPEC/MS shows detailed chemical heterogeneity of the polymer and the chemical composition distribution within oligomer groups. In LCCC/MS, the retention behavior is primarily governed by chemical heterogeneities, such as different end group functionalities, and quantitative end group calculations can be easily made. The potential of these methods and the benefit of time-of-flight analyzers in polymer analysis are discussed using SEC/MS of a polydisperse poly(methyl methacrylate) sample, GPEC/MS of dipropoxylated bisphenol A/adipic acid polyester resin, LCCC/MS of alkylated poly(ethylene glycol), and LCCC/MS of terephthalic acid/neopentyl glycol polyester resin.

  6. Electric field measurement in the ionosphere using the time-of-flight technique

    International Nuclear Information System (INIS)

    Nakamura, Masato; Hayakawa, Hajime; Tsuruda, Koichiro

    1989-01-01

    The first successful electric field measurement in the ionosphere using the time-of-flight technique with a lithium ion beam was carried out on a S-520 sounding rocket launched from Kagoshima Space Center, Japan on January 15, 1987. The purpose of this experiment was to prove the validity of the time-of-flight technique when it is applied to the measurement of the dc electric field in the ionosphere. A time-coded ion beam was ejected from the rocket in the direction perpendicular to the Earth's magnetic field. The beam returned to the rocket twice per rocket spin when the initial beam direction was nearly perpendicular to the electric field. The electric field and the magnetic field were derived from the travel time of these return lithium ions. The accuracy of the electric field determination was ± 0.3 mV/m. The direction of the electric field was obtained from the direction of the returning ion beam after about one ion gyration. The main constituent of the measured electric field was a V x B field due to the rocket motion across the geomagnetic field. The ambient field was less than 1 mV/m. The magnetic field was measured with an accuracy of ± 2.7 nT in this experiment

  7. Barrel time-of-flight detector for the PANDA experiment at FAIR

    Science.gov (United States)

    Gruber, L.; Brunner, S. E.; Marton, J.; Orth, H.; Suzuki, K.; PANDA Tof Group

    2016-07-01

    The barrel time-of-flight detector for the PANDA experiment at FAIR is foreseen as a Scintillator Tile (SciTil) Hodoscope based on several thousand small plastic scintillator tiles read-out with directly attached Silicon Photomultipliers (SiPMs). The main tasks of the system are an accurate determination of the time origin of particle tracks to avoid event mixing at high collision rates, relative time-of-flight measurements as well as particle identification in the low momentum regime. The main requirements are the use of a minimum material amount and a time resolution of σ < 100 ps. We have performed extensive optimization studies and prototype tests to prove the feasibility of the SciTil design and finalize the R&D phase. In a 2.7 GeV/c proton beam at Forschungszentrum Jülich a time resolution of about 80 ps has been achieved using SiPMs from KETEK and Hamamatsu with an active area of 3 × 3mm2. Employing the Digital Photon Counter from Philips a time resolution of about 30 ps has been reached.

  8. TOFPET 2: A high-performance circuit for PET time-of-flight

    Energy Technology Data Exchange (ETDEWEB)

    Di Francesco, Agostino, E-mail: agodifra@lip.pt [LIP, Lisbon (Portugal); Bugalho, Ricardo [LIP, Lisbon (Portugal); PETsys Electronics, Oeiras (Portugal); Oliveira, Luis [CTS-UNINOVA, DEE FCT-UNL, Caparica (Portugal); Rivetti, Angelo [INFN - sez. Torino (Italy); Rolo, Manuel [LIP, Lisbon (Portugal); INFN - sez. Torino (Italy); Silva, Jose C.; Varela, Joao [LIP, Lisbon (Portugal); PETsys Electronics, Oeiras (Portugal)

    2016-07-11

    We present a readout and digitization ASIC featuring low-noise and low-power for time-of flight (TOF) applications using SiPMs. The circuit is designed in standard CMOS 110 nm technology, has 64 independent channels and is optimized for time-of-flight measurement in Positron Emission Tomography (TOF-PET). The input amplifier is a low impedance current conveyor based on a regulated common-gate topology. Each channel has quad-buffered analogue interpolation TDCs (time binning 20 ps) and charge integration ADCs with linear response at full scale (1500 pC). The signal amplitude can also be derived from the measurement of time-over-threshold (ToT). Simulation results show that for a single photo-electron signal with charge 200 (550) fC generated by a SiPM with (320 pF) capacitance the circuit has 24 (30) dB SNR, 75 (39) ps r.m.s. resolution, and 4 (8) mW power consumption. The event rate is 600 kHz per channel, with up to 2 MHz dark counts rejection.

  9. Development of the STEFF detector for the neutron Time Of Flight facility (n_TOF), CERN

    CERN Document Server

    AUTHOR|(CDS)2092031

    Signicant work has been performed on the development of STEFF (SpecTrometer for Exotic Fission Fragments), a 2E2V (2-Energy 2-Velocity) spectrometer built by the University of Manchester Fission Group. The majority of this work was in the development of the time-of-flight systems, in particular the stop detector; with the main goals of improving the timing resolution and the detection eciency of the ssion fragments. Further development of the STEFF spectrometer was done to enable 2E2V measurements of the $^{235}$U(n,f) reaction with coincident measurements using a white neutron spectra of energies ranging from 10 meV to 200 MeV provided by the n_TOF (neutron Time Of Flight) facility, CERN. The STEFF spectrometer was successfully operated twice on the Experimental Area-2 high flux pulsed neutron beam line resulting in 2E2V measurements for ssion events with neutron energies ranging from 20 meV to 10 MeV. The first experiment received 1.36 X 10$^{18}$ POT (Protons On Target) with stable conditions and the seco...

  10. Laser desorption and time-of-flight mass spectrometry. Fundamentals .Applications

    International Nuclear Information System (INIS)

    Chaurand, P.

    1994-11-01

    Time-of-flight mass spectrometry is a very powerful technique for the analysis of heavy molecular ions (100 000 u and more). The ejection in the gas phase and the ionization of these molecules is now possible through the MALDI technique (Matrix Assisted Laser Desorption Ionization). This technique consists in mixing the heavy molecules to be analysed with a organic matrix which absorbs at the wavelength of the laser. The necessary irradiance are of the order of 10 6 W/cm 2 . In these conditions we have shown that the mass resolutions are optimum and that the relative mass accuracies are of the order of 10 -4 . We have also demonstrated that the emission angle of the molecular ions in MALDI depends on the incident angle of the laser light. During the desorption process, the molecular ions are emitted in the opposite direction of the incident laser light. This effect is particularly important for the design of the accelerating stage of the time-of-flight spectrometers. Problems relative to the detection of these heavy molecular ions have been studied in details between 0.5 10 4 m/s and 10 5 m/s. The velocity threshold of the electronic emission is lower than the value of 0.5 10 4 m/s. The relation between the electronic emission and the projectile velocity is complex. Finally, examples on mass identification of C 60 molecules and derivated C 60 are presented. Desorption methods are compared. (author). 32 refs., 34 figs

  11. Studying time of flight imaging through scattering media across multiple size scales (Conference Presentation)

    Science.gov (United States)

    Velten, Andreas

    2017-05-01

    Light scattering is a primary obstacle to optical imaging in a variety of different environments and across many size and time scales. Scattering complicates imaging on large scales when imaging through the atmosphere when imaging from airborne or space borne platforms, through marine fog, or through fog and dust in vehicle navigation, for example in self driving cars. On smaller scales, scattering is the major obstacle when imaging through human tissue in biomedical applications. Despite the large variety of participating materials and size scales, light transport in all these environments is usually described with very similar scattering models that are defined by the same small set of parameters, including scattering and absorption length and phase function. We attempt a study of scattering and methods of imaging through scattering across different scales and media, particularly with respect to the use of time of flight information. We can show that using time of flight, in addition to spatial information, provides distinct advantages in scattering environments. By performing a comparative study of scattering across scales and media, we are able to suggest scale models for scattering environments to aid lab research. We also can transfer knowledge and methodology between different fields.

  12. A fast large-area position-sensitive time-of-flight neutron detection system

    International Nuclear Information System (INIS)

    Crawford, R.K.; Haumann, J.R.

    1989-01-01

    A new position-sensitive time-of-flight neutron detection and histograming system has been developed for use at the Intense Pulsed Neutron Source. Spatial resolution of roughly 1 cm x 1 cm and time-of-flight resolution of ∼1 μsec are combined in a detection system which can ultimately be expanded to cover several square meters of active detector area. This system is based on the use of arrays of cylindrical one-dimensional position-sensitive proportional counters, and is capable of collecting the x-y-t data and sorting them into histograms at time-averaged data rates up to ∼300,000 events/sec over the full detector area and with instantaneous data rates up to more than fifty times that. Numerous hardware features have been incorporated to facilitate initial tuning of the position encoding, absolute calibration of the encoded positions, and automatic testing for drifts. 7 refs., 11 figs., 1 tabs

  13. Fast neutron measurements at the nELBE time-of-flight facility

    Directory of Open Access Journals (Sweden)

    Junghansa A. R.

    2015-01-01

    Full Text Available The compact neutron-time-of-flight facility nELBE at the superconducting electron accelerator ELBE of Helmholtz-Zentrum Dresden-Rossendorf has been rebuilt. A new enlarged experimental hall with a flight path of up to 10 m is available for neutron time-of-flight experiments in the fast energy range from about 50 keV to 10 MeV. nELBE is intended to deliver nuclear data of fast neutron nuclear interactions e.g. for the transmutation of nuclear waste and improvement of neutron physical simulations of innovative nuclear systems. The experimental programme consists of transmission measurements of neutron total cross sections, elastic and inelastic scattering cross section measurements, and neutron induced fission cross sections. The inelastic scattering to the first few excited states in 56Fe was investigated by measuring the gamma production cross section with an HPGe detector. The neutron induced fission of 242Pu was studied using fast ionisation chambers with large homogeneous actinide deposits.

  14. Neutron Spectroscopy for pulsed beams with frame overlap using a double time-of-flight technique

    Science.gov (United States)

    Harrig, K. P.; Goldblum, B. L.; Brown, J. A.; Bleuel, D. L.; Bernstein, L. A.; Bevins, J.; Harasty, M.; Laplace, T. A.; Matthews, E. F.

    2018-01-01

    A new double time-of-flight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous pulses. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performed using both GEANT4 and MCNP6. The efficiency-corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. This method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams with frame overlap and opens new opportunities for pulsed white neutron source facilities.

  15. Contribution of time-of-flight information to limited-angle positron tomography

    International Nuclear Information System (INIS)

    Macdonald, B.; Perez-Mendez, V.; Tam, K.C.

    1981-10-01

    Limited-angle emission tomography was investigated using a two-dimensional phantom to generate positron events simulating a camera with two opposed parallel position-sensitive detectors collecting data within a 90 0 cone. The data, backprojected onto lines passing through the phantom volume, is used with a matrix reconstruction method to provide two-dimensional images. Image quality was measured using the standard deviation of the reconstructions with respect to the original phantom. The application of Phillips-Twomey smoothing to the deconvolution matrices has substantially improved the original reconstructions, a factor of 1.9 in signal to noise ratio, giving S/N = 3.4 for a phantom having an average of 150 events/pixel. Using photon time-of-flight to restrict the reconstruction volume a further considerable improvement is made. When the time-of-flight limited the contributing volume to 4 lines out of 11 the improvement was another factor of 1.9 giving S/N = 6.0 for the same phantom. Comparable increases in signal to noise ratios are expected for three-dimensional reconstructions

  16. Laser ionization time of flight mass spectrometer for isotope mass detection and elemental analysis of materials

    Science.gov (United States)

    Ahmed, Nasar; Ahmed, Rizwan; Umar, Z. A.; Aslam Baig, M.

    2017-08-01

    In this paper we present the construction and modification of a linear time-of-flight mass spectrometer to improve its mass resolution. This system consists of a laser ablation/ionization section based on a Q-switched Nd:YAG laser (532 nm, 500 mJ, 5 ns pulse duration) integrated with a one meter linear time-of-flight mass spectrometer coupled with an electric sector and a magnetic lens and outfitted with a channeltron electron multiplier for ion detection. The resolution of the system has been improved by optimizing the accelerating potential and inserting a magnetic lens after the extraction region. The isotopes of lithium, lead and cadmium samples have been resolved and detected in accordance with their natural abundance. The capability of the system has been further exploited to determine the elemental composition of a brass alloy, having a certified composition of zinc and copper. Our results are in excellent agreement with its certified composition. This setup is found to be extremely efficient and convenient for fast analyses of any solid sample.

  17. TORCH: A Large-Area Detector for Precision Time-of-Flight Measurements at LHCb

    CERN Document Server

    Harnew, N

    2012-01-01

    The TORCH (Time Of internally Reflected CHerenkov light) is an innovative high-precision time-of-flight detector which is suitable for large areas, up to tens of square metres, and is being developed for the upgraded LHCb experiment. The TORCH provides a time-of-flight measurement from the imaging of photons emitted in a 1 cm thick quartz radiator, based on the Cherenkov principle. The photons propagate by total internal reflection to the edge of the quartz plane and are then focused onto an array of Micro-Channel Plate (MCP) photon detectors at the periphery of the detector. The goal is to achieve a timing resolution of 15 ps per particle over a flight distance of 10 m. This will allow particle identification in the challenging momentum region up to 20 GeV/c. Commercial MCPs have been tested in the laboratory and demonstrate the required timing precision. An electronics readout system based on the NINO and HPTDC chipset is being developed to evaluate an 8×8 channel TORCH prototype. The simulated performance...

  18. The multiple disk chopper neutron time-of-flight spectrometer at NIST

    International Nuclear Information System (INIS)

    Altorfer, F.B.; Cook, J.C.; Copley, J.R.D.

    1995-01-01

    A highly versatile multiple disk chopper neutron time-of-flight spectrometer is being installed at the Cold Neutron Research Facility of the National institute of Standards and Technology. This new instrument will fill an important gap in the portfolio of neutron inelastic scattering spectrometers in North America. It will be used for a wide variety of experiments such as studies of magnetic and vibrational excitations, tunneling spectroscopy, and quasielastic neutron scattering investigations of local and translational diffusion. The instrument uses disk choppers to monochromate and pulse the incident beam, and the energy changes of scattered neutrons are determined from their times-of-flight to a large array of detectors. The disks and the guide have been designed to make the instrument readily adaptable to the specific performance requirements of experimenters. The authors present important aspects of the design, as well as estimated values of the flux at the sample and the energy resolution for elastic scattering. The instrument should be operational in 1996

  19. Time-of-flight discrimination between gamma-rays and neutrons by using artificial neural networks

    International Nuclear Information System (INIS)

    Akkoyun, S.

    2013-01-01

    Highlights: ► Time-of-flight (tof) is an obvious method for separation between gamma and neutron particles. ► tof distributions are obtained by neural networks. ► Neural network method is consistent with the experimental results. ► Neural networks can classify different events for discrimination. - Abstract: In gamma-ray spectroscopy, a number of neutrons are emitted from the nuclei together with the gamma-rays. These neutrons influence gamma-ray spectra. An obvious method for discrimination between neutrons and gamma-rays is based on the time-of-flight (tof) technique. In this work, the tof distributions of gamma-rays and neutrons were obtained both experimentally and by using artificial neural networks (ANNs). It was shown that, ANN can correctly classify gamma-ray and neutron events. Also, for highly nonlinear detector response for tof, we have constructed consistent empirical physical formulas (EPFs) by appropriate ANNs. These ANN–EPFs can be used to derive further physical functions which could be relevant to discrimination between gamma-rays and neutrons

  20. Modeling of a 3D CMOS sensor for time-of-flight measurements

    Science.gov (United States)

    Kuhla, Rico; Hosticka, Bedrich J.; Mengel, Peter; Listl, Ludwig

    2004-02-01

    A solid state 3D-CMOS camera system for direct time-of-flight image acquisition consisting of a CMOS imaging sensor, a laser diode module for active laser pulse illumination and all optics for image forming is presented, including MDSI & CDS algorithms for time-of-flight evaluation from intensity imaging. The investigation is carried out using ideal and real signals. For real signals the narrow infrared laser pulse of the laser diode module and the shutter function of the sensors column circuit were sampled by a new sampling procedure. A discrete sampled shutter function was recorded by using the impulse response of a narrow pulse of FWHM=50ps and an additional delay block with step size of Δτ = 0.25ns. A deterministic system model based on LTI transfer functions was developed. The visual shutter windows give a good understanding of differences between ideal and real output functions of measurement system. Simulations of shutter and laser pulse brought out an extended linear delay domain from MDSI. A stochastic model for the transfer function and photon noise in time domain was developed. We used the model to investigate noise in variation the laser pulse shutter configuration.

  1. TOF plotter - a program to perform routine analysis time-of-flight mass spectral data

    International Nuclear Information System (INIS)

    Knippel, Brad C.; Padgett, Clifford W.; Marcus, R. Kenneth

    2004-01-01

    The main article discusses the operation and application of the program to mass spectral data files. This laboratory has recently reported the construction and characterization of a linear time-of-flight mass spectrometer (ToF-MS) utilizing a radio frequency glow discharge ionization source. Data acquisition and analysis was performed using a digital oscilloscope and Microsoft Excel, respectively. Presently, no software package is available that is specifically designed for time-of-flight mass spectral analysis that is not instrument dependent. While spreadsheet applications such as Excel offer tremendous utility, they can be cumbersome when repeatedly performing tasks which are too complex or too user intensive for macros to be viable. To address this situation and make data analysis a faster, simpler task, our laboratory has developed a Microsoft Windows-based software program coded in Microsoft Visual Basic. This program enables the user to rapidly perform routine data analysis tasks such as mass calibration, plotting and smoothing on x-y data sets. In addition to a suite of tools for data analysis, a number of calculators are built into the software to simplify routine calculations pertaining to linear ToF-MS. These include mass resolution, ion kinetic energy and single peak identification calculators. A detailed description of the software and its associated functions is presented followed by a characterization of its performance in the analysis of several representative ToF-MS spectra obtained from different GD-ToF-MS systems

  2. Satellite-borne time-of-flight particle spectrometer and its response to protons

    International Nuclear Information System (INIS)

    Shino, T.

    1994-01-01

    One of the purposes of the high energy particle (HEP) experiment of the GEOTAIL satellite launched in 1992 is the elucidation of plasma dynamics in the tail region of planetary magnetosphere. For that purpose, a low energy particle detector (LD) was on board, which mainly observed relatively low energy particles up to a few MeV. The LD is the particle spectrometer based on time of flight technique. In order to confirm further its sensitivity to high energy protons, the beam experiment was carried out at Waseda University using the engineering model of the LD spectrometer that is exactly the same as the launched one. The LD spectrometer is shown, and its functions are explained. The LD was designed to identify electrons of 30 - 400 keV, protons of 30 - 1500 keV, helium ions of 80 - 4000 keV, and heavy ions (mainly C, N and O) of 160 - 1500 keV. The relation of measured time of flight signals with energy signals is shown. There are several factors that determine the detection efficiency of the spectrometer, which are discussed. The experiment and the results are reported. (K.I.)

  3. Magnetic interactions in HoCr{sub 1-x}Fe{sub x}O{sub 3} (x = 0, 0.2) investigated by neutron powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinzhi, E-mail: liuxinzhi1984.cn@163.com [Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413 (China); Hao, Lijie; Ma, Xiaobai [Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413 (China); Wang, Chin-Wei [Neutron Group, National Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan (China); Klose, Frank [Australian Nuclear Science and Technology Organization, Lucas Heights, New South Wales 2234 (Australia); Department of Physics and Materials Science, The City University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong); Liu, Yuntao, E-mail: ytliu@ciae.ac.cn [Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413 (China); Sun, Kai; Li, Yuqing [Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413 (China); Chen, Dongfeng, E-mail: dongfeng@ciae.ac.cn [Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413 (China)

    2017-07-01

    Highlights: • The temperature dependent magnetism of HoCr{sub 1-x}Fe{sub x}O{sub 3} (x = 0, 0.2) were investigated by neutron diffraction. • Cr{sup 3+} moment follows a mean field theory while Ho{sup 3+} follows a spin 1/2 model. • An magneto-elastic strain was observed accompanying with the ordering of Cr{sup 3+}. - Abstract: The temperature dependent magnetism of Fe-doped rare earth orthochromite HoCr{sub 1-x}Fe{sub x}O{sub 3}(x = 0, 0.2) was investigated by neutron powder diffraction. It is found that the magnetism of Cr(Fe){sup 3+} can be well understood within mean field theory, while the ordering of Ho{sup 3+} was induced by the Cr(Fe){sup 3+} sublattice and can be satisfyingly described by an effective S = 1/2 model. The absences of both the most common G{sub x}F{sub z} configuration of Cr{sup 3+} and the ordering of Ho{sup 3+} caused by Ho-Ho interaction evidence a strong Ho{sup 3+}-Cr{sup 3+} interaction which dominates this system. On the other hand, a remarkable magnetoelastic strain was observed accompanying the Cr(Fe){sup 3+} ordering. An analysis based on the equation of state with a Grüneisen approximation was performed and revealed magnetic origin of this strain.

  4. Time-of-flight neutron diffraction investigation of temperature factors in the Zn blende semiconductor InP

    International Nuclear Information System (INIS)

    Ferrari, C.; Bocchi, C.; Fornari, R.; Moze, O.; Wilson, C.C.

    1992-01-01

    A structural investigation of the Zn blende structure semiconductor InP has been carried out using the single crystal diffractometer SXD at the pulsed neutron facility ISIS. The ability to measure structure factors accurately at large Q values even with highly absorbing materials such as InP is demonstrated. Measurements were performed on a single crystal of InP at 293, 100 and 50 K with the crystallographic axis mounted perpendicular to the scattering plane. This enabled collection of (hhl) reflections up to a maximum with Miller indices (10, 10, 8). (orig.)

  5. Neutron powder diffraction investigation of magnetic structure and spin reorientation transition of HoFe{sub 1-x}Cr{sub x}O{sub 3} solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinzhi [Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413 (China); Hao, Lijie, E-mail: haolijie@ciae.ac.cn [Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413 (China); Liu, Yuntao; Ma, Xiaobai; Meng, Siqin; Li, Yuqing; Gao, Jianbo; Guo, Hao; Han, Wenze; Sun, Kai; Wu, Meimei [Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413 (China); Chen, Xiping; Xie, Lei [Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621900 (China); Klose, Frank [Australian Nuclear Science and Technology Organization, Lucas Heights, New South Wales 2234 (Australia); Department of Physics and Materials Science, The City University of Hong Kong, Hong Kong (China); Chen, Dongfeng, E-mail: dongfeng@ciae.ac.cn [Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413 (China)

    2016-11-01

    Orthoferrite solid solution HoFe{sub 1−x}Cr{sub x}O{sub 3} (x=0, 0.2,…,1.0) was synthesized via solid state reaction methods. The crystal structure, magnetism and spin reorientation properties of this system were investigated by X-ray diffraction, neutron powder diffraction and magnetic measurements. For compositions of x≤0.6, the system exhibits similar magnetic properties to HoFeO{sub 3}. With increasing Cr-doping, the system adopts a Γ{sub 4}(G{sub x}A{sub y}F{sub z}) magnetic configuration with a decreased Neel temperature from 640 K to 360 K. A Γ{sub 42} spin reorientation of Fe(Cr){sup 3+} was also observed in this system with an increase in transition temperature from 56 K to about 200 K due to competition between the Fe(Cr)–Fe(Cr) and Ho–Fe(Cr) interactions. For the x≥0.8, the system behaves more like HoCrO{sub 3} which adopts a Γ{sub 2}(F{sub x}C{sub y}G{sub z}) configuration with no spin reorientation below the Neel temperature T{sub N}. Throughout the whole substitution range, we found that the saturated moment of Fe(Cr) was less than the ideal value for a free ion, which implies the existence of spin fluctuation in this system. A systematic magnetic structure variation with Cr-substitution is revealed by Rietveld refinement. A phase diagram combining the results of the magnetic measurements and neutron powder diffraction results was obtained. - Highlights: • With Cr-substitution in the HoFe{sub 1−x}Cr{sub x}O{sub 3} system, A Γ{sub 42} spin reorientation of Fe(Cr){sup 3+} was observed with an increase in transition temperature from 56 K to about 200 K for x=0−0.6. • The saturated moment of Fe(Cr) position was found to be systematically less than the ideal value of free ion, and thus implies the presence of spin quantum fluctuation. • A composition–temperature phase diagram throughout x=0–1 for HoFe{sub 1−x}Cr{sub x}O{sub 3} system was established.

  6. Time-frequency energy density precipitation method for time-of-flight extraction of narrowband Lamb wave detection signals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y., E-mail: thuzhangyu@foxmail.com; Huang, S. L., E-mail: huangsling@tsinghua.edu.cn; Wang, S.; Zhao, W. [State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China)

    2016-05-15

    The time-of-flight of the Lamb wave provides an important basis for defect evaluation in metal plates and is the input signal for Lamb wave tomographic imaging. However, the time-of-flight can be difficult to acquire because of the Lamb wave dispersion characteristics. This work proposes a time-frequency energy density precipitation method to accurately extract the time-of-flight of narrowband Lamb wave detection signals in metal plates. In the proposed method, a discrete short-time Fourier transform is performed on the narrowband Lamb wave detection signals to obtain the corresponding discrete time-frequency energy density distribution. The energy density values at the center frequency for all discrete time points are then calculated by linear interpolation. Next, the time-domain energy density curve focused on that center frequency is precipitated by least squares fitting of the calculated energy density values. Finally, the peak times of the energy density curve obtained relative to the initial pulse signal are extracted as the time-of-flight for the narrowband Lamb wave detection signals. An experimental platform is established for time-of-flight extraction of narrowband Lamb wave detection signals, and sensitivity analysis of the proposed time-frequency energy density precipitation method is performed in terms of propagation distance, dispersion characteristics, center frequency, and plate thickness. For comparison, the widely used Hilbert–Huang transform method is also implemented for time-of-flight extraction. The results show that the time-frequency energy density precipitation method can accurately extract the time-of-flight with relative error of <1% and thus can act as a universal time-of-flight extraction method for narrowband Lamb wave detection signals.

  7. Time-frequency energy density precipitation method for time-of-flight extraction of narrowband Lamb wave detection signals

    International Nuclear Information System (INIS)

    Zhang, Y.; Huang, S. L.; Wang, S.; Zhao, W.

    2016-01-01

    The time-of-flight of the Lamb wave provides an important basis for defect evaluation in metal plates and is the input signal for Lamb wave tomographic imaging. However, the time-of-flight can be difficult to acquire because of the Lamb wave dispersion characteristics. This work proposes a time-frequency energy density precipitation method to accurately extract the time-of-flight of narrowband Lamb wave detection signals in metal plates. In the proposed method, a discrete short-time Fourier transform is performed on the narrowband Lamb wave detection signals to obtain the corresponding discrete time-frequency energy density distribution. The energy density values at the center frequency for all discrete time points are then calculated by linear interpolation. Next, the time-domain energy density curve focused on that center frequency is precipitated by least squares fitting of the calculated energy density values. Finally, the peak times of the energy density curve obtained relative to the initial pulse signal are extracted as the time-of-flight for the narrowband Lamb wave detection signals. An experimental platform is established for time-of-flight extraction of narrowband Lamb wave detection signals, and sensitivity analysis of the proposed time-frequency energy density precipitation method is performed in terms of propagation distance, dispersion characteristics, center frequency, and plate thickness. For comparison, the widely used Hilbert–Huang transform method is also implemented for time-of-flight extraction. The results show that the time-frequency energy density precipitation method can accurately extract the time-of-flight with relative error of <1% and thus can act as a universal time-of-flight extraction method for narrowband Lamb wave detection signals.

  8. COINTOF mass spectrometry: design of a time-of-flight analyzer and development of the analysis method

    International Nuclear Information System (INIS)

    Teyssier, C.

    2012-01-01

    DIAM (Device for the irradiation of molecular clusters) is a newly designed experimental setup to investigate processes resulting from the irradiation of molecular nano-systems by 20-150 keV protons. One of its specificities relies on the original technique of mass spectrometry named COINTOF (Correlated Ion and Neutral Time Of Flight) consisting in correlated measurements of the time of flight of charged and neutral fragments produced by the dissociation of a single molecular ion parent. A strategy of treatment and analysis of the detection signals was developed to distinguish two fragments close in time ( 3 O + and two water molecules. The distribution of the time of flight difference between the two neutral fragments is measured providing an estimate of the kinetic energy release of a few eV. In parallel, a second time-of-flight mass spectrometer was designed. It associates a linear time-of-flight and an orthogonal time-of-flight and integrates position detectors (delay line anode). Simulations demonstrate the potentials of the new analyzer. Finally, research works were led at the laboratory R.-J. A. Levesque (Universite de Montreal) on the imaging capabilities of the multi-pixel detectors of the MPX-ATLAS collaboration. (author)

  9. Development of an ion time-of-flight spectrometer for neutron depth profiling

    Science.gov (United States)

    Cetiner, Mustafa Sacit

    Ion time-of-flight spectrometry techniques are investigated for applicability to neutron depth profiling. Time-of-flight techniques are used extensively in a wide range of scientific and technological applications including energy and mass spectroscopy. Neutron depth profiling is a near-surface analysis technique that gives concentration distribution versus depth for certain technologically important light elements. The technique uses thermal or sub-thermal neutrons to initiate (n, p) or (n, alpha) reactions. Concentration versus depth distribution is obtained by the transformation of the energy spectrum into depth distribution by using stopping force tables of the projectiles in the substrate, and by converting the number of counts into concentration using a standard sample of known dose value. Conventionally, neutron depth profiling measurements are based on charged particle spectrometry, which employs semiconductor detectors such as a surface barrier detector (SBD) and the associated electronics. Measurements with semiconductor detectors are affected by a number of broadening mechanisms, which result from the interactions between the projectile ion and the detector material as well as fluctuations in the signal generation process. These are inherent features of the detection mechanism that involve the semiconductor detectors and cannot be avoided. Ion time-of-flight spectrometry offers highly precise measurement capabilities, particularly for slow particles. For high-energy low-mass particles, measurement resolution tends to degrade with all other parameters fixed. The threshold for more precise ion energy measurements with respect to conventional techniques, such as direct energy measurement by a surface barrier detector, is directly related to the design and operating parameters of the device. Time-of-flight spectrometry involves correlated detection of two signals by a coincidence unit. In ion time-of-flight spectroscopy, the ion generates the primary input

  10. Development of grazing incidence devices for space-borne time of flight mass spectrometry

    Science.gov (United States)

    Cadu, A.; Devoto, P.; Louarn, P.; Sauvaud, J.-A.

    2012-04-01

    Time of flight mass spectrometer is widely used to study space plasmas in planetary and solar missions. This space-borne instrument selects ions in function of their energy through an electrostatic analyzer. Particles are then post-accelerated to energies in the range of 20 keV to cross a carbon foil. At the foil exit, electrons are emitted and separated from ion beam in the time of flight section. A first detector (a Micro-Channel Plate or MCP) emits a start signal at electron arrival and a second one emits a stop signal at incident ion end of path. The time difference gives the speed of the particle and its mass can be calculated, knowing its initial energy. However, current instruments suffer from strong limitations. The post acceleration needs very high voltage power supplies which are heavy, have a high power consumption and imply technical constraints for the development. A typical instrument weighs from 5 to 6 kg, includes a 20 kV power supply, consumes a least 5 W and encounters corona effect and electrical breakdown problems. Moreover, despite the particle high energy range, scattering and straggling phenomena in the carbon foil significantly reduce the instrument overall resolution. Some methods, such as electrostatic focus lenses or reflectrons, really improve mass separation but global system efficiency remains very low because of the charge state dependence of such devices. The main purpose of our work is to replace carbon foil by grazing incidence MCP's - also known as MPO's, for Micro Pore Optics - for electron emission. Thus, incident particles would back-scatter onto the channel inner surface with an angle of a few degrees. With this solution, we can decrease dispersion sources and lower the power supplies to post accelerate ions. The result would be a lighter and simpler instrument with a substantial resolution improvement. We have first simulated MPO's behavior with TRIM and MARLOWE Monte-Carlo codes. Energy scattering and output angle computed

  11. Quantitative myocardial blood flow imaging with integrated time-of-flight PET-MR.

    Science.gov (United States)

    Kero, Tanja; Nordström, Jonny; Harms, Hendrik J; Sörensen, Jens; Ahlström, Håkan; Lubberink, Mark

    2017-12-01

    The use of integrated PET-MR offers new opportunities for comprehensive assessment of cardiac morphology and function. However, little is known on the quantitative accuracy of cardiac PET imaging with integrated time-of-flight PET-MR. The aim of the present work was to validate the GE Signa PET-MR scanner for quantitative cardiac PET perfusion imaging. Eleven patients (nine male; mean age 59 years; range 46-74 years) with known or suspected coronary artery disease underwent 15 O-water PET scans at rest and during adenosine-induced hyperaemia on a GE Discovery ST PET-CT and a GE Signa PET-MR scanner. PET-MR images were reconstructed using settings recommended by the manufacturer, including time-of-flight (TOF). Data were analysed semi-automatically using Cardiac VUer software, resulting in both parametric myocardial blood flow (MBF) images and segment-based MBF values. Correlation and agreement between PET-CT-based and PET-MR-based MBF values for all three coronary artery territories were assessed using regression analysis and intra-class correlation coefficients (ICC). In addition to the cardiac PET-MR reconstruction protocol as recommended by the manufacturer, comparisons were made using a PET-CT resolution-matched reconstruction protocol both without and with TOF to assess the effect of time-of-flight and reconstruction parameters on quantitative MBF values. Stress MBF data from one patient was excluded due to movement during the PET-CT scanning. Mean MBF values at rest and stress were (0.92 ± 0.12) and (2.74 ± 1.37) mL/g/min for PET-CT and (0.90 ± 0.23) and (2.65 ± 1.15) mL/g/min for PET-MR (p = 0.33 and p = 0.74). ICC between PET-CT-based and PET-MR-based regional MBF was 0.98. Image quality was improved with PET-MR as compared to PET-CT. ICC between PET-MR-based regional MBF with and without TOF and using different filter and reconstruction settings was 1.00. PET-MR-based MBF values correlated well with PET-CT-based MBF values and

  12. Time-of-flight spectroscopy of metastable photodissociation fragments in vacuum-UV

    International Nuclear Information System (INIS)

    Fisher, C.H.; Welge, K.H.

    1974-01-01

    Photofragment time-of-flight experiments carried out at photon energies > approximately 11.8eV (1050A) is reported. Processes of the kind AB+hν→A*+B have been investigated where A* is an electronically excited species in a metastable state that can be detected by Auger electron emission from metal surfaces. The present work has been concerned with the identification of dissociation processes from N 2 O, CO 2 , and OCS, measurement of recoil energies and, for the first time, also angular dependent experiments. One objective of the work was to further explore the potential of such studies in the vacuum uv. Their feasibility was demonstrated previously in preliminary experiments

  13. Pose estimation and tracking of non-cooperative rocket bodies using Time-of-Flight cameras

    Science.gov (United States)

    Gómez Martínez, Harvey; Giorgi, Gabriele; Eissfeller, Bernd

    2017-10-01

    This paper presents a methodology for estimating the position and orientation of a rocket body in orbit - the target - undergoing a roto-translational motion, with respect to a chaser spacecraft, whose task is to match the target dynamics for a safe rendezvous. During the rendezvous maneuver the chaser employs a Time-of-Flight camera that acquires a point cloud of 3D coordinates mapping the sensed target surface. Once the system identifies the target, it initializes the chaser-to-target relative position and orientation. After initialization, a tracking procedure enables the system to sense the evolution of the target's pose between frames. The proposed algorithm is evaluated using simulated point clouds, generated with a CAD model of the Cosmos-3M upper stage and the PMD CamCube 3.0 camera specifications.

  14. Heavy ion time-of-flight ERDA of high dose metal implanted germanium

    Energy Technology Data Exchange (ETDEWEB)

    Dytlewski, N.; Evans, P.J.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Wielunski, L.S. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics; Bunder, J. [New South Wales Univ., Wollongong, NSW (Australia). Wollongong Univ. Coll

    1996-12-31

    With the thick Ge substrates used in ion implantation, RBS can have difficulty in resolving the mass-depth ambiguities when analysing materials composed of mixtures of elements with nearly equal masses. Additional, and complimentary techniques are thus required. This paper reports the use of heavy ion time-of-flight elastic recoil detection analysis (ToF- ERDA), and conventional RBS in the analysis of Ge(100) implanted with high dose Ti and Cu ions from a MEWA ion source . Heavy ion ToF ERDA has been used to resolve, and profile the implanted transition metal species, and also to study any oxygen incorporation into the sample resulting from the implantation, or subsequential reactions with air or moisture. This work is part of a study on high dose metal ion implantation of medium atomic weight semiconductor materials. 13 refs., 6 figs.

  15. Stochastic calculus analysis of optical time-of-flight range imaging and estimation of radial motion.

    Science.gov (United States)

    Streeter, Lee

    2017-07-01

    Time-of-flight range imaging is analyzed using stochastic calculus. Through a series of interpretations and simplifications, the stochastic model leads to two methods for estimating linear radial velocity: maximum likelihood estimation on the transition probability distribution between measurements, and a new method based on analyzing the measured correlation waveform and its first derivative. The methods are tested in a simulated motion experiment from (-40)-(+40)  m/s, with data from a camera imaging an object on a translation stage. In tests maximum likelihood is slow and unreliable, but when it works it estimates the linear velocity with standard deviation of 1 m/s or better. In comparison the new method is fast and reliable but works in a reduced velocity range of (-20)-(+20)  m/s with standard deviation ranging from 3.5 m/s to 10 m/s.

  16. Heavy ion time-of-flight ERDA of high dose metal implanted germanium

    Energy Technology Data Exchange (ETDEWEB)

    Dytlewski, N; Evans, P J; Noorman, J T [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Wielunski, L S [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics; Bunder, J [New South Wales Univ., Wollongong, NSW (Australia). Wollongong Univ. Coll

    1997-12-31

    With the thick Ge substrates used in ion implantation, RBS can have difficulty in resolving the mass-depth ambiguities when analysing materials composed of mixtures of elements with nearly equal masses. Additional, and complimentary techniques are thus required. This paper reports the use of heavy ion time-of-flight elastic recoil detection analysis (ToF- ERDA), and conventional RBS in the analysis of Ge(100) implanted with high dose Ti and Cu ions from a MEWA ion source . Heavy ion ToF ERDA has been used to resolve, and profile the implanted transition metal species, and also to study any oxygen incorporation into the sample resulting from the implantation, or subsequential reactions with air or moisture. This work is part of a study on high dose metal ion implantation of medium atomic weight semiconductor materials. 13 refs., 6 figs.

  17. Fluence measurement at the neutron time of flight experiment at CERN

    CERN Document Server

    Weiss, Christina; Jericha, Erwin

    At the neutron time of flight facility n_TOF at CERN a new spallation target was installed in 2008. In 2008 and 2009 the commissioning of the new target took place. During the summer 2009 a fission chamber of the Physikalisch Technische Bundesanstalt (PTB) Braunschweig was used for the neutron fluence measurement. The evaluation of the data recorded with this detector is the primary topic of this thesis. Additionally a neutron transmission experiment with air has been performed at the TRIGA Mark II reactor of the Atomic Institute of the Austrian Universities (ATI). The experiment was implemented to clarify a question about the scattering cross section of molecular gas which could not be answered clearly via the literature. This problem came up during the evaluations for n_TOF.

  18. Ion-induced particle desorption in time-of-flight medium energy ion scattering

    Science.gov (United States)

    Lohmann, S.; Primetzhofer, D.

    2018-05-01

    Secondary ions emitted from solids upon ion impact are studied in a time-of-flight medium energy ion scattering (ToF-MEIS) set-up. In order to investigate characteristics of the emission processes and to evaluate the potential for surface and thin film analysis, experiments employing TiN and Al samples were conducted. The ejected ions exhibit a low initial kinetic energy of a few eV, thus, requiring a sufficiently high acceleration voltage for detection. Molecular and atomic ions of different charge states originating both from surface contaminations and the sample material are found, and relative yields of several species were determined. Experimental evidence that points towards a predominantly electronic sputtering process is presented. For emitted Ti target atoms an additional nuclear sputtering component is suggested.

  19. Energy and time of flight measurements of REX-ISOLDE stable beams using Si detectors

    CERN Document Server

    Cantero, E D; Fraser, M A; Lanaia, D; Sosa, A; Voulot, D; Zocca, F

    2014-01-01

    In this paper we present energy and time spectroscopy measurements for the stable beams of REX-ISOLDE obtained using Si detectors. By using an alpha source as a calibration reference, the absolute energy E of stable beam particles (A/q = 4) was determined in spectroscopy mode in the energy range 1 MeV < E < 8 MeV (0.30 MeV/u < E/A < 1.87 MeV/u). The time of flight of the beam particles (2.18 MeV/u < E/A < 2.27 MeV/u) was determined by installing identical Si detectors in two diagnostic boxes separated by 7.7 m. The results obtained with these two techniques are compared with the values obtained by dipole scans using a bending magnet. The measurements took place between January and February of 2013.

  20. Development of time-of-flight RBS system using multi microchannel plates

    International Nuclear Information System (INIS)

    Nguyen, N.V.; Abo, S.; Lohner, T.; Sawaragi, H.; Wakaya, F.; Takai, M.

    2007-01-01

    A new time-of-flight Rutherford backscattering spectroscopy (TOF-RBS) system with two circular microchannel plates (MCPs) installed at a distance of 140 mm from a sample holder and a scattering angle of 125 o and a 100 kV focused ion beam column having a liquid metal ion source (LMIS) of AuSiBe alloy has been assembled to obtain high counting rate and enhanced mass resolution. The possible influence of the two MCPs by logical summation of the output signals on the time resolution was investigated by measuring dedicated thin deposited metallic samples. And, the time resolution was found in the range of 1.5-2 ns