WorldWideScience

Sample records for time-of-flight mass spectrometryscopy

  1. Time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Managadze, G.G.

    1991-01-01

    A time-of-flight mass spectrometer comprises an ion source consisting of a grid assembly, a drift space with a focusing system, a reflector and a detector. The grid assembly has the shape of a ring with the internal diameter equal to that of the detector, whereas the focusing system consists of two cylinders coaxially mounted in the drift space whose diameters are equal, respectively, to the internal and the external diameter of the grid assembly of the ion source. The time-of-flight mass spectrometer is intended mainly for studying the mass composition of an inert gas, of a low-energy ion flux as well as of a plasma in a vacuum. (author)

  2. Time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Ivanov, M.A.; Kozlov, B.N.; Mamyrin, B.A.; Shmikk, D.V.; Shebelin, V.G.

    1981-01-01

    A time-of-flight mass spectrometer containing a pulsed ion source with an electron gun and two electrodes limiting ionization range, drift space and ion acceptor, is described. To expand functional possibilities, a slot collimator of the gas stream, two quantum generators and two diaphragms for the inlet of quantum generator radiation located on both sides of the ion source, are introduced in the ion source. The above invention enables to study details of the complex interaction process of laser radiation with molecules of the gas stream, which is actual for laser isotope separation

  3. Quadrupole Time-of-Flight Mass Spectrometer

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The system generates superior quality mass spectrometry (MS) and tandem mass spectrometry (MS/MS) data from both atmospheric pressure ionization (API) and...

  4. TOFI: An isochronous time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Wollnik, H.

    1987-01-01

    A time-of-flight mass spectrometer was constructed to measure the masses of neutron-rich recoils produced in proton-induced fragmentation reactions. This system consists of four sector magnets designed such that the overall flight time is independent of the velocity of the recoil ions and thus depends only on their mass-to-charge ratios. (orig.)

  5. Ion focusing procedures in time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Ioanoviciu, D.

    1999-01-01

    The intact ionisation of big molecules by soft ionisation methods, as matrix assisted laser desorption ionisation and fast atom bombardment, paved the way of mass spectrometry to very high mass ranges (approaching the million of Daltons). This was possible by the branch of time-of-flight mass spectrometry. However, time-of-flight mass spectrometry is lagging far behind other branches as mass resolution, the highest value recently reported being of 45 000. This is a well-documented reason why in time-of-flight mass spectrometry ion packet focusing remains a hot problem. The space focusing in time in linear drift time-of-flight mass spectrometers is discussed including first and second order focusing conditions, second and third order aberrations. The resolution of such instruments is determined and compared to the real performances of some constructed instruments. The focusing conditions for delayed ion extraction are presented and examples given for presently used time of flight mass spectrometers with matrix assisted laser desorption ionisation sources. The post source ionisation method and its effect on the spectrometer mass scale are detailed. The ion energy focusing in time to first and second order in single and double staged electric field mirrors is studied. An explanation is given why time-of-flight mass spectrometers including mirrors are able of much higher resolutions than those based on flight on drift spaces only. The major interest in careful velocity focusing is expressed by the use of the delayed extraction in time of flight mass spectrometers, which include reflectrons. Again, the focusing conditions and aberrations are detailed. A special attention is focused on the possibility to obtain high order velocity focusing for ions created on the surface of hyperbolic electrodes. Also the focusing methods with perfect time focusing by hyperbolic traps and by the so-called 'curved field' were reviewed, especially as means to focus fragment ions from

  6. A new time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Ching-Shen Su.

    1984-01-01

    A new time-of-flight mass spectrometer using a cylindrical mirror analyzer and a cylindrical sector analyzer to select ion energies was reported. The cylindrical sector acts as a flight path for ions also. An energy spread of +- 0.41% can be achieved. (orig.)

  7. Time of flight mass spectrometry of pharmaceutical systems

    OpenAIRE

    Armitage Nolan, Jennifer Claire

    2013-01-01

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a widely used surface chemical analysis technique that is traditionally employed to characterise the first few molecular layers of a material interface. The ability of this technique to accurately reflect the surface chemistry of polymers, biomaterials and many other solid materials is well documented. However, the majority of research that utilises this technique is based upon a qualitative rather than quantitative assessment of th...

  8. Time-of-flight mass spectrometry and its application

    International Nuclear Information System (INIS)

    Mamyrin, B.A.

    1979-01-01

    Discussed are an applicabilities of time-of-flight mass spectrometers in various fields of science and technology. Two types of such spectrometers are considered. Double-section electrostatic reflective fields are used in the first scheme to focus ion beams, this permits to obtain the resolution of the device of about several thousands. Such mass spectrometers called mass reflectrons are successfully used to analyze heavy molecules (ReBr 3 ) and organic compounds. Besides, mass reflectrons are used for an operative control of nickel converter production. A strong magnetic focusing of ion packets and resonance between ion cyclotron frequency and modulator frequency are provided in the second scheme of time-of-flight mass spectrometer. Such magnetic-resonance mass spectrometers (MRMS) have a high resolution (from tens of thousands to hundreds of thousands) at a relatively short length of ion flight (about 1 m). Discussed are the results obtained with MRMS while studying isotopy of natural helium and gas diffusion into crystals at superlow temperatures. Comparative data of the both types of the spectrometers are presented

  9. Small-sized time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Belov, A.S.

    1985-01-01

    A time-of-flight mass spectrometer with beam particle ionization by electron impact developed for the measurement of pulsed hydrogen beam parameters, is described. Duration of electron beam current pulses in the mass-spectrometer ionizer is varied within the 2-20 μs, interval electron pulse current is 0.6 mA, electron energy is 250 eV. Time resolution of the mass spectrometer is determined by the period of electron beam current pulse repetition and equals 40 μs. The ion drift range is 16 cm. Mass resolution ΔM/M=1/5 is sufficient for the determination of hydrogen beam composition. The mass spectrometer has 100% transparency in the direction of molecular beam particle movement. In this direction the mass spectrometer size is 7 cm

  10. Proton Transfer Time-of-Flight Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Thomas B. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    The Proton Transfer Reaction Mass Spectrometer (PTRMS) measures gas-phase compounds in ambient air and headspace samples before using chemical ionization to produce positively charged molecules, which are detected with a time-of-flight (TOF) mass spectrometer. This ionization method uses a gentle proton transfer reaction method between the molecule of interest and protonated water, or hydronium ion (H3O+), to produce limited fragmentation of the parent molecule. The ions produced are primarily positively charged with the mass of the parent ion, plus an additional proton. Ion concentration is determined by adding the number of ions counted at the molecular ion’s mass-to-charge ratio to the number of air molecules in the reaction chamber, which can be identified according to the pressure levels in the reaction chamber. The PTRMS allows many volatile organic compounds in ambient air to be detected at levels from 10–100 parts per trillion by volume (pptv). The response time is 1 to 10 seconds.

  11. Multiple-ion-beam time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Rohrbacher, Andreas; Continetti, Robert E.

    2001-01-01

    An innovative approach to increase the throughput of mass spectrometric analyses using a multiple-ion-beam mass spectrometer is described. Two sample spots were applied onto a laser desorption/ionization target and each spot was simultaneously irradiated by a beam of quadrupled Nd:YLF laser radiation (261.75 nm) to produce ions by laser-desorption ionization. Acceleration of the ions in an electric field created parallel ion beams that were focused by two parallel einzel lens systems. After a flight path of 2.34 m, the ions were detected with a microchannel plate-phosphor screen assembly coupled with a charge coupled device camera that showed two resolved ion beams. Time-of-flight mass spectra were also obtained with this detector. Experiments were performed using both metal atom cations (Ti + and Cr + ) produced by laser desorption/ionization and the molecular ions of two different proteins (myoglobin and lysozyme), created by matrix assisted laser desorption/ionization using an excess of nicotinic acid as matrix

  12. Multiple-ion-beam time-of-flight mass spectrometer

    Science.gov (United States)

    Rohrbacher, Andreas; Continetti, Robert E.

    2001-08-01

    An innovative approach to increase the throughput of mass spectrometric analyses using a multiple-ion-beam mass spectrometer is described. Two sample spots were applied onto a laser desorption/ionization target and each spot was simultaneously irradiated by a beam of quadrupled Nd:YLF laser radiation (261.75 nm) to produce ions by laser-desorption ionization. Acceleration of the ions in an electric field created parallel ion beams that were focused by two parallel einzel lens systems. After a flight path of 2.34 m, the ions were detected with a microchannel plate-phosphor screen assembly coupled with a charge coupled device camera that showed two resolved ion beams. Time-of-flight mass spectra were also obtained with this detector. Experiments were performed using both metal atom cations (Ti+ and Cr+) produced by laser desorption/ionization and the molecular ions of two different proteins (myoglobin and lysozyme), created by matrix assisted laser desorption/ionization using an excess of nicotinic acid as matrix.

  13. LVGEMS Time-of-Flight Mass Spectrometry on Satellites

    Science.gov (United States)

    Herrero, Federico

    2013-01-01

    NASA fs investigations of the upper atmosphere and ionosphere require measurements of composition of the neutral air and ions. NASA is able to undertake these observations, but the instruments currently in use have their limitations. NASA has extended the scope of its research in the atmosphere and now requires more measurements covering more of the atmosphere. Out of this need, NASA developed multipoint measurements using miniaturized satellites, also called nanosatellites (e.g., CubeSats), that require a new generation of spectrometers that can fit into a 4 4 in. (.10 10 cm) cross-section in the upgraded satellites. Overall, the new mass spectrometer required for the new depth of atmospheric research must fulfill a new level of low-voltage/low-power requirements, smaller size, and less risk of magnetic contamination. The Low-Voltage Gated Electrostatic Mass Spectrometer (LVGEMS) was developed to fulfill these requirements. The LVGEMS offers a new spectrometer that eliminates magnetic field issues associated with magnetic sector mass spectrometers, reduces power, and is about 1/10 the size of previous instruments. LVGEMS employs the time of flight (TOF) technique in the GEMS mass spectrometer previously developed. However, like any TOF mass spectrometer, GEMS requires a rectangular waveform of large voltage amplitude, exceeding 100 V -- that means that the voltage applied to one of the GEMS electrodes has to change from 0 to 100 V in a time of only a few nanoseconds. Such electronic speed requires more power than can be provided in a CubeSat. In the LVGEMS, the amplitude of the rectangular waveform is reduced to about 1 V, compatible with digital electronics supplies and requiring little power.

  14. Separation of VX, RVX and GB Enantiomers Using Liquid ChromatographyTime-of-Flight Mass Spectrometry

    Science.gov (United States)

    2016-02-01

    and GB Enantiomers Using Liquid Chromatography– Time-of-Flight Mass Spectrometry 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...used for liquid chromatography–time-of-flight mass spectrometry analysis. For large-scale separation and quantitation, the UV absorbance at 210 nm (with...RVX, AND GB ENANTIOMERS USING LIQUID CHROMATOGRAPHY–TIME-OF-FLIGHT MASS SPECTROMETRY 1. INTRODUCTION Tetra-coordinate pentavalent

  15. A new high resolution time-of-flight mass spectrometer with gridless reflector

    International Nuclear Information System (INIS)

    Bhowmick, A.; Korgaonkar, A.V.; Carvalho, W.C.J.; Yakhmi, J.V.; Sahni, V.C.

    2004-01-01

    High resolution in time-of-flight mass spectrometers essentially depends upon the capacity of the machine to control the initial spatial and energy distributions of the ions from the source or of any particular ionization process. In the present scenario, high resolution time-of-flight mass spectrometers are becoming more and more essential for rapid mass analysis of fairly large molecules or species e.g. large biomolecules, proteins, drugs, atomic clusters, etc. Simple mass measurements of atomic clusters have revealed major fundamental information about their electronic and geometric structures. Newer designs of time-of-flight mass spectrometers have high resolution, adaptability to multiple ionization techniques, high sensitivity, capability of addressing comparatively slower physical events etc. are, therefore, being reported regularly. A newly developed time-of-flight mass spectrometer is described

  16. Miniature Time of Flight Mass Spectrometer for Space and Extraterrestrial Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The PI has developed a miniature time-of-flight mass spectrometer (TOF-MS), which can be op-timized for space and extraterrestrial applications, by using a...

  17. Physical design of time-of-flight mass spectrometer in energetic cluster impact deposition apparatus

    International Nuclear Information System (INIS)

    Yu Guoqing; Shi Ying; Chen Jingsheng; Zhu Dezhang; Pan Haochang; Xu Hongjie

    1999-01-01

    The principle and physical design of the time-of-flight mass spectrometer equipped in the energetic cluster impact deposition apparatus are introduced. Some problems existed in experiments and their solutions are also discussed

  18. Inhomogeneous oscillatory electric field time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Carrico, J.P.

    1977-01-01

    The mass-to-charge ratio of an ion can be determined from the measurement of its flight time in an inhomogeneous, oscillatory electric field produced by the potential distribution V(x, y, t) = Vsub(DC) + Vsub(AC) cos ωt) (αsub(x)X 2 + αsub(y)Y 2 + αsub(z)Z 2 ). The governing equation of motion is the Mathieu equation. The principle of operation of this novel mass spectrometer is described and results of computer calculations of the flight time and resolution are reported. An experimental apparatus and results and results demonstrating the feasibility of this mass spectrometer principle are described. (author)

  19. Linear electric field time-of-flight ion mass spectrometer

    Science.gov (United States)

    Funsten, Herbert O [Los Alamos, NM; Feldman, William C [Los Alamos, NM

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  20. A low energy, high current, pulsed electron gun for Time-of-flight mass spectrometers

    International Nuclear Information System (INIS)

    Reddy, Pratap; Rao, K.C.; Sule, Uday; Rodrigues, S.M.; Bhushan, K.G.

    2015-01-01

    A compact, low energy, high current pulsed electron gun specifically intended for use in time-of-flight mass spectrometers has been developed. The electron gun consists of a thoriated tungsten hairpin type filament, a wehnelt electrode, series of extracting electrodes, an x-y deflector and a set of pulsing electrodes, all mounted on a CF35 conflat flange. The electron gun delivers ∼ 1 mA of current at 70 eV, in the dc mode. The gun can be pulsed in nanosecond pulses with a repetition rate of upto 50 KHz which can be externally synchronized with conventional time-of-flight electronics. The design and performance of the electron gun over the energy range 20eV to 500 eV is presented along with the pulsing mode operation demonstrated in a time-of-flight mass spectrometer. (author)

  1. Laser ionization time of flight mass spectrometer for isotope mass detection and elemental analysis of materials

    Science.gov (United States)

    Ahmed, Nasar; Ahmed, Rizwan; Umar, Z. A.; Aslam Baig, M.

    2017-08-01

    In this paper we present the construction and modification of a linear time-of-flight mass spectrometer to improve its mass resolution. This system consists of a laser ablation/ionization section based on a Q-switched Nd:YAG laser (532 nm, 500 mJ, 5 ns pulse duration) integrated with a one meter linear time-of-flight mass spectrometer coupled with an electric sector and a magnetic lens and outfitted with a channeltron electron multiplier for ion detection. The resolution of the system has been improved by optimizing the accelerating potential and inserting a magnetic lens after the extraction region. The isotopes of lithium, lead and cadmium samples have been resolved and detected in accordance with their natural abundance. The capability of the system has been further exploited to determine the elemental composition of a brass alloy, having a certified composition of zinc and copper. Our results are in excellent agreement with its certified composition. This setup is found to be extremely efficient and convenient for fast analyses of any solid sample.

  2. Identification of Bacteria Using Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry

    Science.gov (United States)

    Kedney, Mollie G.; Strunk, Kevin B.; Giaquinto, Lisa M.; Wagner, Jennifer A.; Pollack, Sidney; Patton, Walter A.

    2007-01-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS or simply MALDI) has become ubiquitous in the identification and analysis of biomacromolecules. As a technique that allows for the molecular weight determination of otherwise nonvolatile molecules, MALDI has had a profound impact in the molecular…

  3. A compact time-of-flight mass spectrometer for ion source characterization

    International Nuclear Information System (INIS)

    Chen, L.; Wan, X.; Jin, D. Z.; Tan, X. H.; Huang, Z. X.; Tan, G. B.

    2015-01-01

    A compact time-of-flight mass spectrometer with overall dimension of about 413 × 250 × 414 mm based on orthogonal injection and angle reflection has been developed for ion source characterization. Configuration and principle of the time-of-flight mass spectrometer are introduced in this paper. The mass resolution is optimized to be about 1690 (FWHM), and the ion energy detection range is tested to be between about 3 and 163 eV with the help of electron impact ion source. High mass resolution and compact configuration make this spectrometer useful to provide a valuable diagnostic for ion spectra fundamental research and study the mass to charge composition of plasma with wide range of parameters

  4. A compact sector-type multi-turn time-of-flight mass spectrometer 'MULTUM II'

    International Nuclear Information System (INIS)

    Okumura, Daisuke; Toyoda, Michisato; Ishihara, Morio; Katakuse, Itsuo

    2004-01-01

    A new compact sector-type multi-turn time-of-flight mass spectrometer 'MULTUM II' was constructed. The ion optical system was simplified compared with former sector-type multi-turn time-of-flight mass spectrometer 'MULTUM Linear plus'. The multi-turn part of the new instruments consisted of only four toroidal electric sector fields. The mean radius of cylindrical electric sectors was 50 mm and the deflection angle was 157.1 deg. . The total flight path length of one cycle was 1.308 m. All ion optical elements were hanged on the top plate (480 mmx380 mm) of the vacuum housing. Variations of the mass resolution and ion transmission according to the number of cycles were determined. The mass resolution of 33,000 was achieved after 150 cycles

  5. The time-of-flight isochronous (TOFI) spectrometer for direct mass measurements of exotic light nuclei

    International Nuclear Information System (INIS)

    Wouters, J.M.; Vieira, D.J.; Butler, G.W.; Wollnik, H.; Kraus, R.H. Jr.; Vaziri, K.

    1987-01-01

    A new type of time-of-flight recoil spectrometer designed to measure the masses of neutron-rich light nuclei has recently been completed at LAMPF. The spectrometer relies on an isochronous design that directly correlates an ion's time-of-flight through the spectrometer with its mass-to-charge ratio. Additional measurements of the ion's velocity and energy enable the charge state of the recoil to be uniquely defined and thus permit precision mass measurements given sufficient statistics. The performance of the spectrometer has been investigated in both-off line (using alpha sources) and on-line tests. The design resolution of ΔM/M=1/2000 (fwhm) has been achieved. Initial performance results of the spectrometer are described with emphasis placed on the techniques used to achieve the overall high mass resolution and large solid angle/momentum acceptance. (orig.)

  6. An improved laser vaporization cluster source and time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Heer, W.A. de; Milani, P.

    1991-01-01

    We briefly describe an improved laser vaporization cluster source, which produces intense, stable and cold cluster beams, and a new time-of-flight mass spectrometer, which in several respects is more versatile and better suited for cluster studies than traditional designs. The mass spectrometer has a high resolution mode with a very large effective ionization region as well as position and velocity sensitive detection modes. (orig.)

  7. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors

    DEFF Research Database (Denmark)

    Andersen, Thomas; Jensen, Robert; Christensen, M. K.

    2012-01-01

    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal...... response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m∕Δm > 2500. The system design...... is superior to conventional batch and flow reactors with accompanying product detection by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0...

  8. High-throughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry

    DEFF Research Database (Denmark)

    Ståhlman, Marcus; Ejsing, Christer S.; Tarasov, Kirill

    2009-01-01

    the absolute quantification of hundreds of molecular glycerophospholipid species, glycerolipid species, sphingolipid species and sterol lipids. Future applications in clinical cohort studies demand detailed lipid molecule information and the application of high-throughput lipidomics platforms. In this review...... we describe a novel high-throughput shotgun lipidomic platform based on 96-well robot-assisted lipid extraction, automated sample infusion by mircofluidic-based nanoelectrospray ionization, and quantitative multiple precursor ion scanning analysis on a quadrupole time-of-flight mass spectrometer...

  9. Development of a hand-portable photoionization time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Dieckman, S.L.; Bostrom, G.A.; Waterfield, L.G.; Jendrzejczyk, J.A.; Raptis, A.C.

    1996-01-01

    ANL is currently developing a portable chemical sensor system based on laser desorption photoionization time-of-flight mass spectrometry. It will incorporate direct sampling, a cryocooler base sample adsorption and concentration, and direct surface multiphoton ionization. All components will be in a package 9 x 11 x 4 in., weighing 15-18 lbs. A sample spectrum is given for a NaCl sample

  10. Dual cascade time-of-flight mass spectrometer basing on electrostatic mirrors with two dimensional fields

    International Nuclear Information System (INIS)

    Glikman, L. G.; Goloskokov, Yu. V.; Karetskaya, S.P.; Mit', A.G.

    1999-01-01

    In the report [1] we have suggested the scheme of time-of-flight spectrometer containing two electrostatic mirrors with two dimensional field that doesn't depend on one of the Cartesian coordinates). In the articles [2,3] there have been found conditions for obtaining high quality of time-of-flight and spatial focusing. One of basic advantages of this scheme - is availability of intermediate stigmatic image. In the plane where this image is it's possible to place controlled diaphragm that limits ion scatter along the energy if the scatter is too large. With the help of this diaphragm at the spectrometer you can register mass spectrum with the selected energy. Good focusing quality allows reducing of initial ion energy by this increasing the time of their flight and thus analyzers resolving ability. Ion source and receiver are spaced at rather a long distances. This can be useful to solve some practical tasks

  11. Tandem Mass Spectrometry on a Miniaturized Laser Desorption Time-of-Flight Mass Spectrometer

    Science.gov (United States)

    Li, Xiang; Cornish, Timothy; Getty, Stephanie A.; Brinckerhoff, William B.

    2016-01-01

    Tandem mass spectrometry (MSMS) is a powerful and widely-used technique for identifying the molecular structure of organic constituents of a complex sample. Application of MSMS to the study of unknown planetary samples on a remote space mission would contribute to our understanding of the origin, evolution, and distribution of extraterrestrial organics in our solar system. Here we report on the realization of MSMS on a miniaturized laser desorption time-of-flight mass spectrometer (LD-TOF-MS), which is one of the most promising instrument types for future planetary missions. This achievement relies on two critical components: a curved-field reflectron and a pulsed-pin ion gate. These enable use of the complementary post-source decay (PSD) and laser-assisted collision induced dissociation (L-CID) MSMS methods on diverse measurement targets with only modest investment in instrument resources such as volume and weight. MSMS spectra of selected molecular targets in various organic standards exhibit excellent agreement when compared with results from a commercial, laboratory-scale TOF instrument, demonstrating the potential of this powerful technique in space and planetary environments.

  12. Solid Phase Microextraction and Miniature Time-of-Flight Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, j.m.

    1999-01-26

    A miniature mass spectrometer, based on the time-of-flight principle, has been developed for the detection of chemical warfare agent precursor molecules. The instrument, with minor modifications, could fulfill many of the needs for sensing organic molecules in various Defense Programs, including Enhanced Surveillance. The basic footprint of the instrument is about that of a lunch box. The instrument has a mass range to about 300, has parts-per-trillion detection limits, and can return spectra in less than a second. The instrument can also detect permanent gases and is especially sensitive to hydrogen. In volume, the device could be manufactured for under $5000.

  13. Fully automatic and precise data analysis developed for time-of-flight mass spectrometry.

    Science.gov (United States)

    Meyer, Stefan; Riedo, Andreas; Neuland, Maike B; Tulej, Marek; Wurz, Peter

    2017-09-01

    Scientific objectives of current and future space missions are focused on the investigation of the origin and evolution of the solar system with the particular emphasis on habitability and signatures of past and present life. For in situ measurements of the chemical composition of solid samples on planetary surfaces, the neutral atmospheric gas and the thermal plasma of planetary atmospheres, the application of mass spectrometers making use of time-of-flight mass analysers is a technique widely used. However, such investigations imply measurements with good statistics and, thus, a large amount of data to be analysed. Therefore, faster and especially robust automated data analysis with enhanced accuracy is required. In this contribution, an automatic data analysis software, which allows fast and precise quantitative data analysis of time-of-flight mass spectrometric data, is presented and discussed in detail. A crucial part of this software is a robust and fast peak finding algorithm with a consecutive numerical integration method allowing precise data analysis. We tested our analysis software with data from different time-of-flight mass spectrometers and different measurement campaigns thereof. The quantitative analysis of isotopes, using automatic data analysis, yields results with an accuracy of isotope ratios up to 100 ppm for a signal-to-noise ratio (SNR) of 10 4 . We show that the accuracy of isotope ratios is in fact proportional to SNR -1 . Furthermore, we observe that the accuracy of isotope ratios is inversely proportional to the mass resolution. Additionally, we show that the accuracy of isotope ratios is depending on the sample width T s by T s 0.5 . Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Isobar Separation in a Multiple-Reflection Time-of-Flight Mass Spectrometer by Mass-Selective Re-Trapping.

    Science.gov (United States)

    Dickel, Timo; Plaß, Wolfgang R; Lippert, Wayne; Lang, Johannes; Yavor, Mikhail I; Geissel, Hans; Scheidenberger, Christoph

    2017-06-01

    A novel method for (ultra-)high-resolution spatial mass separation in time-of-flight mass spectrometers is presented. Ions are injected into a time-of-flight analyzer from a radio frequency (rf) trap, dispersed in time-of-flight according to their mass-to-charge ratios and then re-trapped dynamically in the same rf trap. This re-trapping technique is highly mass-selective and after sufficiently long flight times can provide even isobaric separation. A theoretical treatment of the method is presented and the conditions for optimum performance of the method are derived. The method has been implemented in a multiple-reflection time-of-flight mass spectrometer and mass separation powers (FWHM) in excess of 70,000, and re-trapping efficiencies of up to 35% have been obtained for the protonated molecular ion of caffeine. The isobars glutamine and lysine (relative mass difference of 1/4000) have been separated after a flight time of 0.2 ms only. Higher mass separation powers can be achieved using longer flight times. The method will have important applications, including isobar separation in nuclear physics and (ultra-)high-resolution precursor ion selection in multiple-stage tandem mass spectrometry. Graphical Abstract ᅟ.

  15. Isobar Separation in a Multiple-Reflection Time-of-Flight Mass Spectrometer by Mass-Selective Re-Trapping

    Science.gov (United States)

    Dickel, Timo; Plaß, Wolfgang R.; Lippert, Wayne; Lang, Johannes; Yavor, Mikhail I.; Geissel, Hans; Scheidenberger, Christoph

    2017-06-01

    A novel method for (ultra-)high-resolution spatial mass separation in time-of-flight mass spectrometers is presented. Ions are injected into a time-of-flight analyzer from a radio frequency (rf) trap, dispersed in time-of-flight according to their mass-to-charge ratios and then re-trapped dynamically in the same rf trap. This re-trapping technique is highly mass-selective and after sufficiently long flight times can provide even isobaric separation. A theoretical treatment of the method is presented and the conditions for optimum performance of the method are derived. The method has been implemented in a multiple-reflection time-of-flight mass spectrometer and mass separation powers (FWHM) in excess of 70,000, and re-trapping efficiencies of up to 35% have been obtained for the protonated molecular ion of caffeine. The isobars glutamine and lysine (relative mass difference of 1/4000) have been separated after a flight time of 0.2 ms only. Higher mass separation powers can be achieved using longer flight times. The method will have important applications, including isobar separation in nuclear physics and (ultra-)high-resolution precursor ion selection in multiple-stage tandem mass spectrometry. [Figure not available: see fulltext.

  16. TOF plotter - a program to perform routine analysis time-of-flight mass spectral data

    International Nuclear Information System (INIS)

    Knippel, Brad C.; Padgett, Clifford W.; Marcus, R. Kenneth

    2004-01-01

    The main article discusses the operation and application of the program to mass spectral data files. This laboratory has recently reported the construction and characterization of a linear time-of-flight mass spectrometer (ToF-MS) utilizing a radio frequency glow discharge ionization source. Data acquisition and analysis was performed using a digital oscilloscope and Microsoft Excel, respectively. Presently, no software package is available that is specifically designed for time-of-flight mass spectral analysis that is not instrument dependent. While spreadsheet applications such as Excel offer tremendous utility, they can be cumbersome when repeatedly performing tasks which are too complex or too user intensive for macros to be viable. To address this situation and make data analysis a faster, simpler task, our laboratory has developed a Microsoft Windows-based software program coded in Microsoft Visual Basic. This program enables the user to rapidly perform routine data analysis tasks such as mass calibration, plotting and smoothing on x-y data sets. In addition to a suite of tools for data analysis, a number of calculators are built into the software to simplify routine calculations pertaining to linear ToF-MS. These include mass resolution, ion kinetic energy and single peak identification calculators. A detailed description of the software and its associated functions is presented followed by a characterization of its performance in the analysis of several representative ToF-MS spectra obtained from different GD-ToF-MS systems

  17. Laser desorption and time-of-flight mass spectrometry. Fundamentals .Applications

    International Nuclear Information System (INIS)

    Chaurand, P.

    1994-11-01

    Time-of-flight mass spectrometry is a very powerful technique for the analysis of heavy molecular ions (100 000 u and more). The ejection in the gas phase and the ionization of these molecules is now possible through the MALDI technique (Matrix Assisted Laser Desorption Ionization). This technique consists in mixing the heavy molecules to be analysed with a organic matrix which absorbs at the wavelength of the laser. The necessary irradiance are of the order of 10 6 W/cm 2 . In these conditions we have shown that the mass resolutions are optimum and that the relative mass accuracies are of the order of 10 -4 . We have also demonstrated that the emission angle of the molecular ions in MALDI depends on the incident angle of the laser light. During the desorption process, the molecular ions are emitted in the opposite direction of the incident laser light. This effect is particularly important for the design of the accelerating stage of the time-of-flight spectrometers. Problems relative to the detection of these heavy molecular ions have been studied in details between 0.5 10 4 m/s and 10 5 m/s. The velocity threshold of the electronic emission is lower than the value of 0.5 10 4 m/s. The relation between the electronic emission and the projectile velocity is complex. Finally, examples on mass identification of C 60 molecules and derivated C 60 are presented. Desorption methods are compared. (author). 32 refs., 34 figs

  18. Ion optics of a time-of-flight mass spectrometer with electrostatic sector analyzers

    International Nuclear Information System (INIS)

    Sakurai, T.; Ito, H.; Matsuo, T.

    1995-01-01

    The ion optics for a high resolution time-of-flight mass spectrometer with electrostatic sector analyzers have been investigated. The multiple focusing (triple isochronous focusing and triple spacial focusing) conditions can be achieved by using a symmetrical arrangement of the sectors in a mass spectrometer. Both high mass resolution and high ion transmission can be accomplished simultaneously. The principles of MS/MS and MS/MS/MS analyses using a TOF mass spectrometer with electrostatic sector analyzers have been proposed. Product ion spectra can be obtained by measuring the total flight times and the kinetic energy of the products without any additional separation processes, any coincidence techniques or any special timing circuits. In an experiment, MS/MS and MS/MS/MS mass spectra have been obtained. The first generation product ions have been produced by a metastable decay, and the second generation products have been produced by a sequential decay. (orig.)

  19. Inverted time-of-flight spectrometer for mass-to-charge analysis of plasma.

    Science.gov (United States)

    Gushenets, V I; Burachevsky, Yu A; Vizir, A V; Oks, E M; Savkin, K P; Tynkov, A V; Yushkov, G Yu

    2014-02-01

    The paper describes the principle of operation, design special features, and parameters of an inverted time-of-flight spectrometer. The spectrometer is designed in such way that its deflecting plates, drift tube, and primary measuring system are at high potential with respect to the ground potential, whereas plasma is formed near grounded electrodes. This type of configuration greatly extends the application range of the device, making it possible to measure the mass-to-charge composition of plasma with wide range of parameters.

  20. Single-Particle Time-of-Flight Mass Spectrometry Utilizing a Femtosecond Desorption and Ionization Laser.

    Science.gov (United States)

    Zawadowicz, Maria A; Abdelmonem, Ahmed; Mohr, Claudia; Saathoff, Harald; Froyd, Karl D; Murphy, Daniel M; Leisner, Thomas; Cziczo, Daniel J

    2015-12-15

    Single-particle time-of-flight mass spectrometry has now been used since the 1990s to determine particle-to-particle variability and internal mixing state. Instruments commonly use 193 nm excimer or 266 nm frequency-quadrupled Nd:YAG lasers to ablate and ionize particles in a single step. We describe the use of a femtosecond laser system (800 nm wavelength, 100 fs pulse duration) in combination with an existing single-particle time-of-flight mass spectrometer. The goal of this project was to determine the suitability of a femtosecond laser for single-particle studies via direct comparison to the excimer laser (193 nm wavelength, ∼10 ns pulse duration) usually used with the instrument. Laser power, frequency, and polarization were varied to determine the effect on mass spectra. Atmospherically relevant materials that are often used in laboratory studies, ammonium nitrate and sodium chloride, were used for the aerosol. Detection of trace amounts of a heavy metal, lead, in an ammonium nitrate matrix was also investigated. The femtosecond ionization had a large air background not present with the 193 nm excimer and produced more multiply charged ions. Overall, we find that femtosecond laser ablation and ionization of aerosol particles is not radically different than that provided by a 193 nm excimer.

  1. Characterisation of fulvic acids by electrospray with quadrupole / time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Plancque, G. [Commissariat a l' Energie Atomique, Centre de Saclay, Direction de l' Energie Nucleaire / DPC / SECR / Lab. de Speciation des Radionucleides et des Molecules, Gif-sur-Yvette (France)

    2004-07-01

    Characterisation of fulvic and humic acids (FA and HA) - synthetic model substances M1 and M42 from FZR, FA and HA Gohy 573 from the Gorleben groundwaters from FZK and purified Aldrich HA from CTU - has been performed using a quadrupole time-of-flight (QTOF) mass spectrometer equipped with an electrospray ionisation interface. The same conclusions as for Mol fulvic acids, previously studied in the laboratory, can be drawn: molecular masses centred around 350 Da, sinusoidal spectral distributions, even and odd integral masses distributions and presence of dimmers (and possible trimmers) in negative-mode experiments have been observed for all humic substances. Tandem mass spectrometry (MS/MS) has also been used and experiments showed losses of 18 Da (H{sub 2}O), 28 Da (CO) and 44 Da (CO{sub 2}) as for Mol FA. No obvious differences, in terms of molecular structure, are observed compared to Mol FA. (orig.)

  2. Hard- and software complex for laser time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Sysoev, A.A.; Kas'yanov, V.B.; Poteshin, S.S.; Sil'nikov, E.E.; Sysoev, A.A.; Trofimov, A.S.

    2007-01-01

    The two-level principle serves as a basis to design the hardware and software system for the laser time-of-flight spectrometer. At the upper level the PC ensures the on-line control of the recording and the processing of the highest priority mass spectrometers. The controllers representing the control second level are responsible for monitoring and stabilization. The exchange between the controllers and the PC takes place in the periods free from recording and processing of the mass spectrometers. The use of the hardware and software system ensures as follows: to form up to 10 ns duration short mass peaks at the half-height; to reduce the scattering of the relative sensitivity coefficients from 2-3 orders up to 1 order; to improve the dynamic range of the recorded mass spectra up to 1-1x10 9 [ru

  3. A new approach for accurate mass assignment on a multi-turn time-of-flight mass spectrometer.

    Science.gov (United States)

    Hondo, Toshinobu; Jensen, Kirk R; Aoki, Jun; Toyoda, Michisato

    2017-12-01

    A simple, effective accurate mass assignment procedure for a time-of-flight mass spectrometer is desirable. External mass calibration using a mass calibration standard together with an internal mass reference (lock mass) is a common technique for mass assignment, however, using polynomial fitting can result in mass-dependent errors. By using the multi-turn time-of-flight mass spectrometer infiTOF-UHV, we were able to obtain multiple time-of-flight data from an ion monitored under several different numbers of laps that was then used to calculate a mass calibration equation. We have developed a data acquisition system that simultaneously monitors spectra at several different lap conditions with on-the-fly centroid determination and scan law estimation, which is a function of acceleration voltage, flight path, and instrumental time delay. Less than 0.9 mDa mass errors were observed for assigned mass to charge ratios ( m/z) ranging between 4 and 134 using only 40 Ar + as a reference. It was also observed that estimating the scan law on-the-fly provides excellent mass drift compensation.

  4. A novel ion cooling trap for multi-reflection time-of-flight mass spectrograph

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Y., E-mail: yito@riken.jp [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Schury, P. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); New Mexico State University, Department Chemistry and Biochemistry, Las Cruces, NM 88003 (United States); Wada, M.; Naimi, S. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Smorra, C. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Sonoda, T. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Mita, H. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Takamine, A. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aoyama Gakuin University, 4-4-25 Shibuya, Shibuya-ku, Tokyo 150-8366 (Japan); Okada, K. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554 (Japan); Ozawa, A. [University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Wollnik, H. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); New Mexico State University, Department Chemistry and Biochemistry, Las Cruces, NM 88003 (United States)

    2013-12-15

    Highlights: • Fast cooling time: 2 ms. • High efficiency: ≈27% for {sup 23}Na{sup +} and ≈5.1% for {sup 7}Li{sup +}. • 100% Duty cycle with double trap system. -- Abstract: A radiofrequency quadrupole ion trap system for use with a multi-reflection time-of-flight mass spectrograph (MRTOF) for short-lived nuclei has been developed. The trap system consists of two different parts, an asymmetric taper trap and a flat trap. The ions are cooled to a sufficient small bunch for precise mass measurement with MRTOF in only 2 ms cooling time in the flat trap, then orthogonally ejected to the MRTOF for mass analysis. A trapping efficiency of ≈27% for {sup 23}Na{sup +} and ≈5.1% for {sup 7}Li{sup +} has been achieved.

  5. Detection area enlargement of superconducting stripline detectors for time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Suzuki, K.; Miki, S.; Shiki, S.; Zen, N.; Wang, Z.; Ohkubo, M.

    2009-01-01

    Superconducting stripline detectors (SSLDs) have promise as fast molecule detectors for time-of-flight mass spectrometry (TOF-MS). In this study, we have prepared NbN-SSLDs consisting of a meander structure with a thickness of 10 nm and a sensor size of 200 x 200 μm 2 , which is larger than our previous sensor size of 50 x 50 μm 2 and the largest ever reported as NbN-SSLDs. Mass spectra were successfully acquired for Angiotensin I and lysozyme by using a time-to-digital converter (TDC). It was confirmed that the counting rate and hence the statistics of mass spectra were considerably improved, while the rise time of output pulse was kept to less than 1 ns by adjusting the kinetic inductance of the striplines. With the high statistics, we have investigated the bias current dependence of detection efficiency.

  6. Development of grazing incidence devices for space-borne time of flight mass spectrometry

    Science.gov (United States)

    Cadu, A.; Devoto, P.; Louarn, P.; Sauvaud, J.-A.

    2012-04-01

    Time of flight mass spectrometer is widely used to study space plasmas in planetary and solar missions. This space-borne instrument selects ions in function of their energy through an electrostatic analyzer. Particles are then post-accelerated to energies in the range of 20 keV to cross a carbon foil. At the foil exit, electrons are emitted and separated from ion beam in the time of flight section. A first detector (a Micro-Channel Plate or MCP) emits a start signal at electron arrival and a second one emits a stop signal at incident ion end of path. The time difference gives the speed of the particle and its mass can be calculated, knowing its initial energy. However, current instruments suffer from strong limitations. The post acceleration needs very high voltage power supplies which are heavy, have a high power consumption and imply technical constraints for the development. A typical instrument weighs from 5 to 6 kg, includes a 20 kV power supply, consumes a least 5 W and encounters corona effect and electrical breakdown problems. Moreover, despite the particle high energy range, scattering and straggling phenomena in the carbon foil significantly reduce the instrument overall resolution. Some methods, such as electrostatic focus lenses or reflectrons, really improve mass separation but global system efficiency remains very low because of the charge state dependence of such devices. The main purpose of our work is to replace carbon foil by grazing incidence MCP's - also known as MPO's, for Micro Pore Optics - for electron emission. Thus, incident particles would back-scatter onto the channel inner surface with an angle of a few degrees. With this solution, we can decrease dispersion sources and lower the power supplies to post accelerate ions. The result would be a lighter and simpler instrument with a substantial resolution improvement. We have first simulated MPO's behavior with TRIM and MARLOWE Monte-Carlo codes. Energy scattering and output angle computed

  7. Measurement of the transmission efficiency of He-jet laser time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Cheng Hongxing; Pang Wenning; Shang Rencheng; Zhang Wei; Ta La; Xiao Yuan; Xu Sida; Zhao Zhizheng; Luo Yixiao

    1999-01-01

    A He-jet laser time-of-flight (TOF) mass spectrometer system is built. The sample atoms evaporated in the atomization chamber are used to simulated the reaction products. The sample atoms are transferred by helium gas trough a thin capillary. After passing through a skimmer, the sample atoms are formed into a neutral atom stream. A two-or three-color laser beams perpendicular to the atom jet is used to excite and ionize the atoms by multi-step. Then a pulsed electrical field pulls the ionized atoms to the TOF mass spectrometer. By this processing, the (Z, A) values of the sample atoms can be determined precisely. The efficiency of the spectrometer is studied by measuring the radioactivity of 24 Na atoms. The transmission efficiency consists of two parts, the transportation efficiency and the efficiency of laser resonance ionization. The transportation efficiency is determined to be about 17%

  8. Ion optics of a new time-of-flight mass spectrometer for quantitative surface analysis

    International Nuclear Information System (INIS)

    Veryovkin, Igor V.; Calaway, Wallis F.; Pellin, Michael J.

    2004-01-01

    A new time-of-flight instrument for quantitative surface analysis was developed and constructed at Argonne National Laboratory. It implements ion sputtering and laser desorption for probing analyzed samples and can operate in regimes of secondary neutral mass spectrometry with laser post-ionization and secondary ion mass spectrometry. The instrument incorporates two new ion optics developments: (1) 'push-pull' front end ion optics and (2) focusing and deflecting lens. Implementing these novel elements significantly enhance analytical capabilities of the instrument. Extensive three-dimensional computer simulations of the instrument were conducted in SIMION 3D (c) to perfect its ion optics. The operating principles of the new ion optical systems are described, and a scheme of the new instrument is outlined together with its operating modes

  9. An Improvement on Space Focusing Resolution in Two-Field Time-of-Flight Mass Spectrometers

    International Nuclear Information System (INIS)

    Yildirim, M.; Aydin, R.; Akin, U.; Kilic, H. S.; Sise, O.; Ulu, M.; Dogan, M.

    2007-01-01

    Time-of-Flight Mass Spectrometer (TOFMS) is a sophisticated device for the mass selective analysis of a variety of samples. The main limitation on TOFMS technique is the obtainable resolution where the two main limiting factors are the initial space and energy spread of particles created in ionization region. Similar charged particles starting at different points will reach the detector at different times. So, this problem makes space focusing is very important subject. We have presented principles of two-fields TOFMS with second-order space focusing both using analytical methods and ray-tracing simulation. This work aims understanding of ion optical system clearly and gives hint of expectation for future developments

  10. Laser Time-of-Flight Mass Spectrometry for Future In Situ Planetary Missions

    Science.gov (United States)

    Getty, S. A.; Brinckerhoff, W. B.; Cornish, T.; Ecelberger, S. A.; Li, X.; Floyd, M. A. Merrill; Chanover, N.; Uckert, K.; Voelz, D.; Xiao, X.; hide

    2012-01-01

    Laser desorption/ionization time-of-flight mass spectrometry (LD-TOF-MS) is a versatile, low-complexity instrument class that holds significant promise for future landed in situ planetary missions that emphasize compositional analysis of surface materials. Here we describe a 5kg-class instrument that is capable of detecting and analyzing a variety of analytes directly from rock or ice samples. Through laboratory studies of a suite of representative samples, we show that detection and analysis of key mineral composition, small organics, and particularly, higher molecular weight organics are well suited to this instrument design. A mass range exceeding 100,000 Da has recently been demonstrated. We describe recent efforts in instrument prototype development and future directions that will enhance our analytical capabilities targeting organic mixtures on primitive and icy bodies. We present results on a series of standards, simulated mixtures, and meteoritic samples.

  11. An ion trap time-of-flight mass spectrometer with high mass resolution for cold trapped ion experiments

    Science.gov (United States)

    Schmid, P. C.; Greenberg, J.; Miller, M. I.; Loeffler, K.; Lewandowski, H. J.

    2017-12-01

    Trapping molecular ions that have been sympathetically cooled with laser-cooled atomic ions is a useful platform for exploring cold ion chemistry. We designed and characterized a new experimental apparatus for probing chemical reaction dynamics between molecular cations and neutral radicals at temperatures below 1 K. The ions are trapped in a linear quadrupole radio-frequency trap and sympathetically cooled by co-trapped, laser-cooled, atomic ions. The ion trap is coupled to a time-of-flight mass spectrometer to readily identify product ion species and to accurately determine trapped ion numbers. We discuss, and present in detail, the design of this ion trap time-of-flight mass spectrometer and the electronics required for driving the trap and mass spectrometer. Furthermore, we measure the performance of this system, which yields mass resolutions of m/Δm ≥ 1100 over a wide mass range, and discuss its relevance for future measurements in chemical reaction kinetics and dynamics.

  12. Multiple-reflection time-of-flight mass spectrometry for in situ applications

    International Nuclear Information System (INIS)

    Dickel, T.; Plaß, W.R.; Lang, J.; Ebert, J.; Geissel, H.; Haettner, E.; Jesch, C.; Lippert, W.; Petrick, M.; Scheidenberger, C.; Yavor, M.I.

    2013-01-01

    Highlights: • MR-TOF-MS: huge potential in chemistry, medicine, space science, homeland security. • Compact MR-TOF-MS (length ∼30 cm) with very high mass resolving powers (10 5 ). • Combination of high resolving power (>10 5 ), mobility, API for in situ measurements. • Envisaged applications of mobile MR-TOF-MS. -- Abstract: Multiple-reflection time-of-flight mass spectrometers (MR-TOF-MS) have recently been installed at different low-energy radioactive ion beam facilities. They are used as isobar separators with high ion capacity and as mass spectrometers with high mass resolving power and accuracy for short-lived nuclei. Furthermore, MR-TOF-MS have a huge potential for applications in other fields, such as chemistry, biology, medicine, space science, and homeland security. The development, commissioning and results of an MR-TOF-MS is presented, which serves as proof-of-principle to show that very high mass resolving powers (∼10 5 ) can be achieved in a compact device (length ∼30 cm). Based on this work, an MR-TOF-MS for in situ application has been designed. For the first time, this device combines very high mass resolving power (>10 5 ), mobility, and an atmospheric pressure inlet in one instrument. It will enable in situ measurements without sample preparation at very high mass accuracy. Envisaged applications of this mobile MR-TOF-MS are discussed

  13. TOFwave: reproducibility in biomarker discovery from time-of-flight mass spectrometry data.

    Science.gov (United States)

    Chierici, Marco; Albanese, Davide; Franceschi, Pietro; Furlanello, Cesare

    2012-11-01

    Many are the sources of variability that can affect reproducibility of disease biomarkers from time-of-flight (TOF) Mass Spectrometry (MS) data. Here we present TOFwave, a complete software pipeline for TOF-MS biomarker identification, that limits the impact of parameter tuning along the whole chain of preprocessing and model selection modules. Peak profiles are obtained by a preprocessing based on Continuous Wavelet Transform (CWT), coupled with a machine learning protocol aimed at avoiding selection bias effects. Only two parameters (minimum peak width and a signal to noise cutoff) have to be explicitly set. The TOFwave pipeline is built on top of the mlpy Python package. Examples on Matrix-Assisted Laser Desorption and Ionization (MALDI) TOF datasets are presented. Software prototype, datasets and details to replicate results in this paper can be found at http://mlpy.sf.net/tofwave/.

  14. Design of the multi-reflection time-of-flight mass spectrometer for the RAON facility

    International Nuclear Information System (INIS)

    Yoon, J.W.; Park, Y.H.; Park, S.J.; Kim, G.D.; Kim, Y.K.

    2014-01-01

    A multi-reflection time-of-flight mass spectrometer (MR-TOF-MS) has been proposed for high precision mass measurements on the future Korean heavy ion accelerator called RAON. MR-TOF-MS will allow us to reach very high mass resolving power (> 10 5 ) with extremely short measurement times (several ms) in a compact device. The MR-TOF-MS is composed of two electrostatic ion mirrors in combination with einzel lenses. The principle is that the injected ions travel for hundreds of revolutions inside MR-TOF-MS and ions with different masses are temporally separated. When temporal separation becomes larger than the ion bunch width, ions are extracted from the MR-TOF-MS by switching off the mirror voltages, and then arrive at a detector plane located at time focus, where an MCP detector for the mass measurement or an ion gate for the isobar separation is deployed. In this paper, simulation results for the MR-TOF-MS design using SIMION code are presented. Temporal broadenings, caused by the kinetic energy spread and the transverse emittance, were minimized by optimization of the electrode potentials, and it was demonstrated that the mass resolving power of 10 5 is achievable for the condition of an energy spread of ±30 eV and an emittance of 0.75 π*mm*mrad

  15. Time of flight spectrometer DEPIL and its use for high protein mass measurement greater than 5000 u

    International Nuclear Information System (INIS)

    Della-Negra, S.; Deprun, C.; Le Beyec, Y.

    1986-01-01

    A new time-of-flight mass spectrometer has been built at the Institut to measure high mass molecules. The mass range is between 1 and 20.000 u. We discuss briefly the apparatus and give results on high mass measurements [fr

  16. Multi-Reflection Time-of-Flight Mass Separation and Spectrometry

    CERN Document Server

    Kreim, Susanne; Wolf, R N

    2014-01-01

    The mass of a nucleus is one of its most fundamental ground-state properties and reveals the strength of nuclear binding. Investigating the binding energy of nuclei with respect to the number of protons and neutrons in a nucleus is important for advancing nuclear theory and increases our understanding of nucleosynthesis in supernovae and neutron stars. Precision mass measurements on radioactive nuclides belong to the state-of-the-art techniques [1, 2]. Presently, four complementary techniques are applied: isochronous and Schottky mass spectrometry in storage rings (IMS and SMS, respectively), magnetic-rigidity time-of-flight (TOF-ρ) measurements, and Penning-trap mass spectrometry (PTMS). With measurement cycles in the sub-ms range, IMS and TOF-Bρ MS are well suited for very short-lived species while offering moderate relative precision on the level of 10−6. A higher precision is achieved by SMS but with the need for measurement times on the order of several seconds. As soon as masses with a relative prec...

  17. Enhancing MALDI time-of-flight mass spectrometer performance through spectrum averaging.

    Science.gov (United States)

    Mitchell, Morgan; Mali, Sujina; King, Charles C; Bark, Steven J

    2015-01-01

    Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometers are simple and robust mass spectrometers used for analysis of biologically relevant molecules in diverse fields including pathogen identification, imaging mass spectrometry, and natural products chemistry. Despite high nominal resolution and accuracy, we have observed significant variability where 30-50% of individual replicate measurements have errors in excess of 5 parts-per-million, even when using 5-point internal calibration. Increasing the number of laser shots for each spectrum did not resolve this observed variability. What is responsible for our observed variation? Using a modern MALDI-TOF/TOF instrument, we evaluated contributions to variability. Our data suggest a major component of variability is binning of the raw flight time data by the electronics and clock speed of the analog-to-digital (AD) detection system, which requires interpolation by automated peak fitting algorithms and impacts both calibration and the observed mass spectrum. Importantly, the variation observed is predominantly normal in distribution, which implies multiple components contribute to the observed variation and suggests a method to mitigate this variability through spectrum averaging. Restarting the acquisition impacts each spectrum within the electronic error of the AD detector system and defines a new calibration function. Therefore, averaging multiple independent spectra and not a larger number of laser shots leverages this inherent binning error to mitigate variability in accurate MALDI-TOF mass measurements.

  18. Enhancing MALDI time-of-flight mass spectrometer performance through spectrum averaging.

    Directory of Open Access Journals (Sweden)

    Morgan Mitchell

    Full Text Available Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF mass spectrometers are simple and robust mass spectrometers used for analysis of biologically relevant molecules in diverse fields including pathogen identification, imaging mass spectrometry, and natural products chemistry. Despite high nominal resolution and accuracy, we have observed significant variability where 30-50% of individual replicate measurements have errors in excess of 5 parts-per-million, even when using 5-point internal calibration. Increasing the number of laser shots for each spectrum did not resolve this observed variability. What is responsible for our observed variation? Using a modern MALDI-TOF/TOF instrument, we evaluated contributions to variability. Our data suggest a major component of variability is binning of the raw flight time data by the electronics and clock speed of the analog-to-digital (AD detection system, which requires interpolation by automated peak fitting algorithms and impacts both calibration and the observed mass spectrum. Importantly, the variation observed is predominantly normal in distribution, which implies multiple components contribute to the observed variation and suggests a method to mitigate this variability through spectrum averaging. Restarting the acquisition impacts each spectrum within the electronic error of the AD detector system and defines a new calibration function. Therefore, averaging multiple independent spectra and not a larger number of laser shots leverages this inherent binning error to mitigate variability in accurate MALDI-TOF mass measurements.

  19. Time of flight secondary ion mass spectrometry: A powerful high throughput screening tool

    International Nuclear Information System (INIS)

    Smentkowski, Vincent S.; Ostrowski, Sara G.

    2007-01-01

    Combinatorial materials libraries are becoming more complicated; successful screening of these libraries requires the development of new high throughput screening methodologies. Time of flight secondary ion mass spectrometry (ToF-SIMS) is a surface analytical technique that is able to detect and image all elements (including hydrogen which is problematic for many other analysis instruments) and molecular fragments, with high mass resolution, during a single measurement. Commercial ToF-SIMS instruments can image 500 μm areas by rastering the primary ion beam over the region of interest. In this work, we will show that large area analysis can be performed, in one single measurement, by rastering the sample under the ion beam. We show that an entire 70 mm diameter wafer can be imaged in less than 90 min using ToF-SIMS stage (macro)rastering techniques. ToF-SIMS data sets contain a wealth of information since an entire high mass resolution mass spectrum is saved at each pixel in an ion image. Multivariate statistical analysis (MVSA) tools are being used in the ToF-SIMS community to assist with data interpretation; we will demonstrate that MVSA tools provide details that were not obtained using manual (univariate) analysis

  20. Determination of triacetone triperoxide using ultraviolet femtosecond multiphoton ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Ezoe, Ryota; Imasaka, Tomoko; Imasaka, Totaro

    2015-01-01

    Triacetone triperoxide (TATP), an explosive compound, was measured using gas chromatography combined with multiphoton ionization time-of-flight mass spectrometry (GC/MPI-TOFMS). By decreasing the pulse width of a femtosecond laser from 80 to 35 fs, a molecular ion was drastically enhanced and was measured as one of the major ions in the mass spectrum. The detection limits obtained using the molecular (M(+)) and fragment (C2H3O(+)) ions were similar or slightly superior to those obtained using conventional mass spectrometry based on electron and chemical ionization. In order to improve the reliability, an isotope of TATP, i.e., TATP-d18, was synthesized and used as an internal standard in the trace analysis of TATP in a sample of human blood. TATP could be identified in a two-dimensional display, even though numerous interfering compounds were present in the sample. Acetone, which is frequently used as a solvent in sampling TATP, produced a chemical species with a retention time nearly identical to that of TATP and provided a C2H3O(+) fragment ion that was employed for measuring a chromatogram of TATP in conventional MS. This compound, the structure of which was assigned as phorone, was clearly differentiated from TATP based on a molecular ion observable in MPI-TOFMS. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Membrane introduction/laser photoionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Oser, Harald; Coggiola, Michael J; Young, Steven E; Crosley, David R; Hafer, Virginia; Grist, Gregory

    2007-04-01

    Two-photon resonance enhanced multiphoton ionization (REMPI) has been shown to be a unique ionization method for mass spectrometry, exhibiting both high sensitivity and chemical selectivity. Because REMPI is a gas-phase method, its applications have been limited either to direct analysis of vapor phase samples, or in conjunction with an initial laser desorption or other vaporization step. We describe here for the first time a combination of membrane introduction mass spectrometry (MIMS) and REMPI with time-of-flight mass spectrometry (TOF-MS), which allows for the direct analysis of trace amounts of organic compounds in water samples. The objective of our research was the detection of very low levels of aromatic contaminants, particularly benzene, toluene, and xylene (BTX), in aqueous solutions without interference due to the water. We have measured limits of detection (LOD) for selected aromatics in water below 1 part-per-trillion with an averaging time of less than 10 s using a continuous sample flow.

  2. High Energy Collisions on Tandem Time-of-Flight Mass Spectrometers

    Science.gov (United States)

    Cotter, Robert J.

    2013-05-01

    Long before the introduction of matrix-assisted laser desorption/ionization (MALDI), electrospray ionization (ESI), Orbitraps, and any of the other tools that are now used ubiquitously for proteomics and metabolomics, the highest performance mass spectrometers were sector instruments, providing high resolution mass measurements by combining an electrostatic energy analyzer (E) with a high field magnet (B). In its heyday, the four sector mass spectrometer (or EBEB) was the crown jewel, providing the highest performance tandem mass spectrometry using single, high energy collisions to induce fragmentation. During a time in which quadrupole and tandem triple quadrupole instruments were also enjoying increased usage and popularity, there were, nonetheless, some clear advantages for sectors over their low collision energy counterparts. Time-of-flight (TOF) mass spectrometers are high voltage, high vacuum instruments that have much in common with sectors and have inspired the development of tandem instruments exploiting single high energy collisions. In this retrospective, we recount our own journey to produce high performance TOFs and tandem TOFs, describing the basic theory, problems, and the advantages for such instruments. An experiment testing impulse collision theory (ICT) underscores the similarities with sector mass spectrometers where this concept was first developed. Applications provide examples of more extensive fragmentation, side chain cleavages, and charge-remote fragmentation, also characteristic of high energy sector mass spectrometers. Moreover, the so-called curved-field reflectron has enabled the design of instruments that are simpler, collect and focus all of the ions, and may provide the future technology for the clinic, for tissue imaging, and the characterization of microorganisms.

  3. Identification of organic xenobiotics in urban aquatic environments using time-of-flight mass spectrometry.

    Science.gov (United States)

    Jernberg, Joonas; Pellinen, Jukka; Rantalainen, Anna-Lea

    2013-04-15

    Qualitative non-target and post-target analysis methods using gas chromatography-time-of-flight mass spectrometry were applied for analysing neutral and acidic organic xenobiotics in urban and suburban water samples. Ten water samples representing wastewater, stormwater and surface water matrices were collected and concentrated using solid phase extraction. Compound identification was performed using a spectral deconvolution program, accurate mass measurements and comparisons with library spectra. The non-target and post-target analyses identified 36 and 18 compounds, respectively. The identification of 10 compounds was afterwards confirmed with standard compounds. Organophosphate esters were the most abundant compound group detected. The combination of non-target and post-target analyses proved a useful tool in the tentative identification of xenobiotics in water samples. Post-target analysis can complement non-target analysis results at low analyte concentrations. Results showed that several organic xenobiotics originate in urban areas and accumulate in the environment. The wastewater sample produced the highest number of identified compounds, but most of these compounds were also found in stormwater samples from the city centre. Nearly all the compounds present in wastewater were additionally detected in the surface water sample taken 3 km downstream from the wastewater effluent discharge point. Only a few xenobiotics were otherwise detected in the surface water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Development of a Portable Single Photon Ionization-Photoelectron Ionization Time-of-Flight Mass Spectrometer

    Directory of Open Access Journals (Sweden)

    Yunguang Huang

    2015-01-01

    Full Text Available A vacuum ultraviolet lamp based single photon ionization- (SPI- photoelectron ionization (PEI portable reflecting time-of-flight mass spectrometer (TOFMS was designed for online monitoring gas samples. It has a dual mode ionization source: SPI for analyte with ionization energy (IE below 10.6 eV and PEI for IE higher than 10.6 eV. Two kinds of sampling inlets, a capillary inlet and a membrane inlet, are utilized for high concentration and trace volatile organic compounds, respectively. A mass resolution of 1100 at m/z 64 has been obtained with a total size of 40 × 31 × 29 cm, the weight is 27 kg, and the power consumption is only 70 W. A mixture of benzene, toluene, and xylene (BTX, SO2, and discharging products of SF6 were used to test its performance, and the result showed that the limit of quantitation for BTX is as low as 5 ppbv (S/N = 10 : 1 with linear dynamic ranges greater than four orders of magnitude. The portable TOFMS was also evaluated by analyzing volatile organic compounds from wine and decomposition products of SF6 inside of a gas-insulated switchgear.

  5. Development of a Portable Single Photon Ionization-Photoelectron Ionization Time-of-Flight Mass Spectrometer

    Science.gov (United States)

    Huang, Yunguang; Li, Jinxu; Tang, Bin; Zhu, Liping; Hou, Keyong; Li, Haiyang

    2015-01-01

    A vacuum ultraviolet lamp based single photon ionization- (SPI-) photoelectron ionization (PEI) portable reflecting time-of-flight mass spectrometer (TOFMS) was designed for online monitoring gas samples. It has a dual mode ionization source: SPI for analyte with ionization energy (IE) below 10.6 eV and PEI for IE higher than 10.6 eV. Two kinds of sampling inlets, a capillary inlet and a membrane inlet, are utilized for high concentration and trace volatile organic compounds, respectively. A mass resolution of 1100 at m/z 64 has been obtained with a total size of 40 × 31 × 29 cm, the weight is 27 kg, and the power consumption is only 70 W. A mixture of benzene, toluene, and xylene (BTX), SO2, and discharging products of SF6 were used to test its performance, and the result showed that the limit of quantitation for BTX is as low as 5 ppbv (S/N = 10 : 1) with linear dynamic ranges greater than four orders of magnitude. The portable TOFMS was also evaluated by analyzing volatile organic compounds from wine and decomposition products of SF6 inside of a gas-insulated switchgear. PMID:26587023

  6. A compact time-of-flight mass-spectrometer with electrostatic mirrors

    International Nuclear Information System (INIS)

    Wilken, B.; Stuedemann, W.

    1984-01-01

    A compact low-weight time-of-flight/solid state detector ion mass-spectrometer is described in detail. The two time-zero detectors for the TOF-measurement use secondary electron emission and microchannelplates. A symmetric dual electrostatic mirror is used to deflect both the 'START' and 'STOP' electrons by 90 0 . The crosstalk in the mirror system is measured as a function of the potential applied to the center grid. It is found that 'START' electrons dominate the 'STOP' rate for mirror voltages 0 0 . The primary source for this contamination are backscattered electrons. For Usub(CG) exceeding a critical limit the isolation between the 'START' and 'STOP' system is sufficient. Characteristic background signatures in the two-dimensional pulse height distribution of such a mass-spectrometer are discussed. With some limitations molecular particles can be identified even on an event by event basis. The described TOF spectrometer has particular advantages for ion composition measurements in space plasma research. (orig.)

  7. Development of analytically capable time-of-flight mass spectrometer with continuous ion introduction

    Science.gov (United States)

    Hárs, György; Dobos, Gábor

    2010-03-01

    The present article describes the results and findings explored in the course of the development of the analytically capable prototype of continuous time-of-flight (CTOF) mass spectrometer. Currently marketed pulsed TOF (PTOF) instruments use ion introduction with a 10 ns or so pulse width, followed by a waiting period roughly 100 μs. Accordingly, the sample is under excitation in 10-4 part of the total measuring time. This very low duty cycle severely limits the sensitivity of the PTOF method. A possible approach to deal with this problem is to use linear sinusoidal dual modulation technique (CTOF) as described in this article. This way the sensitivity of the method is increased, due to the 50% duty cycle of the excitation. All other types of TOF spectrometer use secondary electron multiplier (SEM) for detection, which unfortunately discriminates in amplification in favor of the lighter ions. This discrimination effect is especially undesirable in a mass spectrometric method, which targets high mass range. In CTOF method, SEM is replaced with Faraday cup detector, thus eliminating the mass discrimination effect. Omitting SEM is made possible by the high ion intensity and the very slow ion detection with some hundred hertz detection bandwidth. The electrometer electronics of the Faraday cup detector operates with amplification 1010 V/A. The primary ion beam is highly monoenergetic due to the construction of the ion gun, which made possible to omit any electrostatic mirror configuration for bunching the ions. The measurement is controlled by a personal computer and the intelligent signal generator Type Tabor WW 2571, which uses the direct digital synthesis technique for making arbitrary wave forms. The data are collected by a Labjack interface board, and the fast Fourier transformation is performed by the software. Noble gas mixture has been used to test the analytical capabilities of the prototype setup. Measurement presented proves the results of the mathematical

  8. Determination of triacetone triperoxide using ultraviolet femtosecond multiphoton ionization time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ezoe, Ryota [Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Imasaka, Tomoko [Laboratory of Chemistry, Graduate School of Design, Kyushu University, 4-9-1, Shiobaru, Minami-ku, Fukuoka 815-8540 (Japan); Imasaka, Totaro, E-mail: imasaka@cstf.kyushu-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Division of Optoelectronics and Photonics, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2015-01-01

    Highlights: • A UV ultrashort laser pulse was useful for ionization of triacetone triperoxide. • A molecular ion was strongly enhanced in multiphoton ionization mass spectrometry. • Triacetone triperoxide in the human blood was measured without any interferences. • An organic compound of phorone was formed in the human blood from acetone. - Abstract: Triacetone triperoxide (TATP), an explosive compound, was measured using gas chromatography combined with multiphoton ionization time-of-flight mass spectrometry (GC/MPI-TOFMS). By decreasing the pulse width of a femtosecond laser from 80 to 35 fs, a molecular ion was drastically enhanced and was measured as one of the major ions in the mass spectrum. The detection limits obtained using the molecular (M·{sup +}) and fragment (C{sub 2}H{sub 3}O{sup +}) ions were similar or slightly superior to those obtained using conventional mass spectrometry based on electron and chemical ionization. In order to improve the reliability, an isotope of TATP, i.e., TATP-d18, was synthesized and used as an internal standard in the trace analysis of TATP in a sample of human blood. TATP could be identified in a two-dimensional display, even though numerous interfering compounds were present in the sample. Acetone, which is frequently used as a solvent in sampling TATP, produced a chemical species with a retention time nearly identical to that of TATP and provided a C{sub 2}H{sub 3}O{sup +} fragment ion that was employed for measuring a chromatogram of TATP in conventional MS. This compound, the structure of which was assigned as phorone, was clearly differentiated from TATP based on a molecular ion observable in MPI-TOFMS.

  9. Isotope determination of lead and bismuth by pulsed laser evaporation and resonance ionization time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Mingfei Zhou; Qizong Qin

    1995-01-01

    Pulsed laser evaporation coupled with resonance ionization time-of-flight mass spectrometry has been used to measure the isotopic abundance of lead and bismuth. A pulsed Nd:YAG laser was used to evaporate the metal atoms, the evaporated atoms were then detected by one color two photon resonance ionization and time-of-flight mass spectrometry. The arrival time distributions of atoms evaporated by pulsed laser, and the isotopic abundances of Pb and Bi were measured. Our results show that this method is good enough for measuring the isotopic abundances of Pb and Bi with high sensitivity and selectivity. (author). 8 refs., 3 figs., 1 tab

  10. Multi-capillary-column proton-transfer-reaction time-of-flight mass spectrometry.

    Science.gov (United States)

    Ruzsanyi, Veronika; Fischer, Lukas; Herbig, Jens; Ager, Clemes; Amann, Anton

    2013-11-05

    Proton-transfer-reaction time-of-flight mass-spectrometry (PTR-TOFMS) exhibits high selectivity with a resolution of around 5000 m/Δm. While isobars can be separated with this resolution, discrimination of isomeric compounds is usually not possible. The coupling of a multi-capillary column (MCC) with a PTR-TOFMS overcomes these problems as demonstrated in this paper for the ketone isomers 3-heptanone and 2-methyl-3-hexanone and for different aldehydes. Moreover, fragmentation of compounds can be studied in detail which might even improve the identification. LODs for compounds tested are in the range of low ppbv and peak positions of the respective separated substances show good repeatability (RSD of the peak positions <3.2%). Due to its special characteristics, such as isothermal operation, compact size, the MCC setup is suitable to be installed inside the instrument and the overall retention time for a complete spectrum is only a few minutes: this allows near real-time measurements in the optional MCC mode. In contrast to other methods that yield additional separation, such as the use of pre-cursor ions other than H3O(+), this method yields additional information without increasing complexity. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Shock tube/time-of-flight mass spectrometer for high temperature kinetic studies

    International Nuclear Information System (INIS)

    Tranter, Robert S.; Giri, Binod R.; Kiefer, John H.

    2007-01-01

    A shock tube (ST) with online, time-of-flight mass spectrometric (TOF-MS) detection has been constructed for the study of elementary reactions at high temperature. The ST and TOF-MS are coupled by a differentially pumped molecular beam sampling interface, which ensures that the samples entering the TOF-MS are not contaminated by gases drawn from the cold end wall thermal boundary layer in the ST. Additionally, the interface allows a large range of postshock pressures to be used in the shock tube while maintaining high vacuum in the TOF-MS. The apparatus and the details of the sampling system are described along with an analysis in which cooling of the sampled gases and minimization of thermal boundary layer effects are discussed. The accuracy of kinetic measurements made with the apparatus has been tested by investigating the thermal unimolecular dissociation of cyclohexene to ethylene and 1,3-butadiene, a well characterized reaction for which considerable literature data that are in good agreement exist. The experiments were performed at nominal reflected shock wave pressures of 600 and 1300 Torr, and temperatures ranging from 1260 to 1430 K. The rate coefficients obtained are compared with the earlier shock tube studies and are found to be in very good agreement. As expected no significant difference is observed in the rate constant between pressures of 600 and 1300 Torr

  12. Monoacylglycerol Analysis Using MS/MSALL Quadruple Time of Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Fei Gao

    2016-08-01

    Full Text Available Monoacylglycerols (MAGs are structural and bioactive metabolites critical for biological function. Development of facile tools for measuring MAG are essential to understand its role in different diseases and various pathways. A data-independent acquisition method, MS/MSALL, using electrospray ionization (ESI coupled quadrupole time of flight mass spectrometry (MS, was utilized for the structural identification and quantitative analysis of individual MAG molecular species. Compared with other acylglycerols, diacylglycerols (DAG and triacylglycerols (TAG, MAG characteristically presented as a dominant protonated ion, [M + H]+, and under low collision energy as fatty acid-like fragments due to the neutral loss of the glycerol head group. At low concentrations (<10 pmol/µL, where lipid-lipid interactions are rare, there was a strong linear correlation between ion abundance and MAG concentration. Moreover, using the MS/MSALL method the major MAG species from human plasma and mouse brown and white adipose tissues were quantified in less than 6 min. Collectively, these results demonstrate that MS/MSALL analysis of MAG is an enabling strategy for the direct identification and quantitative analysis of low level MAG species from biological samples with high throughput and sensitivity.

  13. Gas-phase pesticide measurement using iodide ionization time-of-flight mass spectrometry

    Science.gov (United States)

    Murschell, Trey; Fulgham, S. Ryan; Farmer, Delphine K.

    2017-06-01

    Volatilization and subsequent processing in the atmosphere are an important environmental pathway for the transport and chemical fate of pesticides. However, these processes remain a particularly poorly understood component of pesticide lifecycles due to analytical challenges in measuring pesticides in the atmosphere. Most pesticide measurements require long (hours to days) sampling times coupled with offline analysis, inhibiting observation of meteorologically driven events or investigation of rapid oxidation chemistry. Here, we present chemical ionization time-of-flight mass spectrometry with iodide reagent ions as a fast and sensitive measurement of four current-use pesticides. These semi-volatile pesticides were calibrated with injections of solutions onto a filter and subsequently volatilized to generate gas-phase analytes. Trifluralin and atrazine are detected as iodide-molecule adducts, while permethrin and metolachlor are detected as adducts between iodide and fragments of the parent analyte molecule. Limits of detection (1 s) are 0.37, 0.67, 0.56, and 1.1 µg m-3 for gas-phase trifluralin, metolachlor, atrazine, and permethrin, respectively. The sensitivities of trifluralin and metolachlor depend on relative humidity, changing as much as 70 and 59, respectively, as relative humidity of the sample air varies from 0 to 80 %. This measurement approach is thus appropriate for laboratory experiments and potentially near-source field measurements.

  14. Gas-phase pesticide measurement using iodide ionization time-of-flight mass spectrometry

    Directory of Open Access Journals (Sweden)

    T. Murschell

    2017-06-01

    Full Text Available Volatilization and subsequent processing in the atmosphere are an important environmental pathway for the transport and chemical fate of pesticides. However, these processes remain a particularly poorly understood component of pesticide lifecycles due to analytical challenges in measuring pesticides in the atmosphere. Most pesticide measurements require long (hours to days sampling times coupled with offline analysis, inhibiting observation of meteorologically driven events or investigation of rapid oxidation chemistry. Here, we present chemical ionization time-of-flight mass spectrometry with iodide reagent ions as a fast and sensitive measurement of four current-use pesticides. These semi-volatile pesticides were calibrated with injections of solutions onto a filter and subsequently volatilized to generate gas-phase analytes. Trifluralin and atrazine are detected as iodide–molecule adducts, while permethrin and metolachlor are detected as adducts between iodide and fragments of the parent analyte molecule. Limits of detection (1 s are 0.37, 0.67, 0.56, and 1.1 µg m−3 for gas-phase trifluralin, metolachlor, atrazine, and permethrin, respectively. The sensitivities of trifluralin and metolachlor depend on relative humidity, changing as much as 70 and 59, respectively, as relative humidity of the sample air varies from 0 to 80 %. This measurement approach is thus appropriate for laboratory experiments and potentially near-source field measurements.

  15. Time-of-flight secondary ion mass spectrometry of fatty acids in rat retina

    Energy Technology Data Exchange (ETDEWEB)

    Gong, H.; Amemiya, T.; Takaya, K.; Tozu, M.; Ohashi, Y

    2003-01-15

    The retina consists of many kinds of central nervous cells, and some cells contain fatty acids such as palmitic acid, stearic acid and oleic acid. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) has a possibility to detect kinds and quantity of materials in relation to the cell or tissue. We applied TOF-SIMS to detect the palmitic acid, stearic acid and oleic acid in the visual cell of the rat retina. We used 4- and 18-month-old normal Wistar Kyoto rats. After pentobarbital anesthesia, the eyes were enucleated, and immediately put into liquid nitrogen without any fixation and then cut into semithin sections (10 {mu}m) with a cryo-ultramicrotome, and laid it on a silicon wafer plate and air-dried. Ion images were detected with TOF-SIMS. Positive ion images were examined with a Ga{sup +} source at an acceleration voltage of 15 keV. The secondary ion acceleration voltage was 4.5 keV. In the 4-month-old rat, palmitic and stearic acid were detected in the photoreceptor outer segment and nuclear parts, but not in the inner segment. In the 18-month-old rat, the oleic acid is significantly decreased compared to that in the 4-month-old rat. TOF-SIMS is a useful tool to detect the changes of fatty acids corresponding to changes of physiological conditions in relation to the histological features.

  16. Quadrupole-time-of-flight mass spectrometry screening for synthetic cannabinoids in herbal blends.

    Science.gov (United States)

    Ibáñez, María; Bijlsma, Lubertus; van Nuijs, Alexander L N; Sancho, Juan V; Haro, Gonzalo; Covaci, Adrian; Hernández, Félix

    2013-06-01

    'Legal highs' are novel substances which are intended to elicit a psychoactive response. They are sold from 'head shops', the internet and from street suppliers and may be possessed without legal restriction. Several months ago, a 19-year-old woman came searching for medical treatment as she had health problems caused by smoking legal highs. The substances were sold as herbal blends in plastic bags under four different labels. In this work, samples of these herbal blends have been analysed to investigate the presence of psychoactive substances without any reference standard being available at the laboratory. A screening strategy for a large number of synthetic and natural cannabinoids has been applied based on the use of ultra-high pressure liquid chromatography coupled to quadrupole-time of flight mass spectrometry (UHPLC-QTOF MS) under MS(E) mode. A customized home-made database containing literature-based exact masses for parent and product ions of around 200 synthetic and natural cannabinoids was compiled. The presence of the (de)protonated molecule measured at its accurate mass was evaluated in the samples. When a peak was detected, collision-induced dissociation fragments and characteristic isotopic ions were also evaluated and used for tentative identification. After this tentative identification, four synthetic cannabinoids (JWH-081, JWH-250, JWH-203 and JWH-019) were unequivocally confirmed by subsequent acquisition of reference standards. The presence in the herbal blends of these synthetic cannabinoids might explain the psychotic and catatonic symptoms observed in the patient, as JWH compounds could act as potent agonists of CB1 and CB2 receptors located in the Limbic System and Basal ganglia of the human brain. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Analysis of Marine Aerosol Polysaccharides by Pyrolysis Time-of-Flight Mass Spectrometry

    Science.gov (United States)

    Lawler, M. J.; Grieman, M. M.; Sengur, I.; Saltzman, E. S.

    2017-12-01

    The relationship between surface ocean biological productivity and marine cloud formation and properties has been explored for decades, but the impacts of marine biogenic emissions on cloudiness and climate remain highly uncertain. This is in part due to the challenge of directly linking biogenic materials in the surface ocean with cloud-forming aerosol. It has been shown that polysaccharide gel-forming materials, also known as transparent exopolymers, may be mechanically ejected from the sea surface during air bubble bursting (Leck and Bigg, 2005). Existing analysis methods for such aerosols require considerable sample mass and sample preparation. As part of the multi-year seasonal North Atlantic Aerosols and Marine Ecosystems Study (NAAMES), ambient submicron marine aerosol was collected in November 2015 and May 2016 from the R/V Atlantis at using a Particle into Liquid Sampler (PILS). These samples of roughly 15 minute time resolution were frozen and returned to UC Irvine for analysis. A new technique has been developed to attempt to quantify polysaccharide material in these ambient samples. A small subsample (1- 5 µL) is taken from the PILS vial samples and allowed to dry on a Pt ribbon filament in the chemical ionization source region of a time-of-flight mass spectrometer. The sample then undergoes a two-step heating process, in which volatilizable molecules are first desorbed and then non-volatilizable large molecules such as polysaccharides are pyrolyzed. These desorbed molecules and decomposition products are ionized using either O2- or H3O+ reagent ion and are directly sampled into the mass spectrometer. The resulting spectra can then be compared to standards of known polysaccharide materials for quantification and potentially structural and/or compositional information.

  18. Accurate mass error correction in liquid chromatography time-of-flight mass spectrometry based metabolomics

    NARCIS (Netherlands)

    Mihaleva, V.V.; Vorst, O.F.J.; Maliepaard, C.A.; Verhoeven, H.A.; Vos, de C.H.; Hall, R.D.; Ham, van R.C.H.J.

    2008-01-01

    Compound identification and annotation in (untargeted) metabolomics experiments based on accurate mass require the highest possible accuracy of the mass determination. Experimental LC/TOF-MS platforms equipped with a time-to-digital converter (TDC) give the best mass estimate for those mass signals

  19. Identification of molecules in graphite furnace by laser ionization time-of-flight mass spectrometry: sulfur and chlorine containing compounds

    CSIR Research Space (South Africa)

    Raseleka, RM

    2004-01-01

    Full Text Available An electro thermal vaporizer (ETV) coupled to a time-of-flight mass spectrometer (TOF-MS) with laser ionization (LI) was applied to the identification of molecules from sulphur and chlorine matrices in the furnace. An interface was developed...

  20. Electrospray ionization quadrupole time-of-flight tandem mass spectrometric analysis of hexamethylenediamine-modified maltodextrin and dextran

    NARCIS (Netherlands)

    Sisu, E.; Bosker, W.T.E.; Norde, W.; Slaghek, T.M.; Timmermans, J.W.; Peter-Katalinić, J.; Cohen-Stuart, M.A.; Zamfir, A.D.

    2006-01-01

    A combined methodology for obtaining at the preparative scale and characterization by nanoelectrospray ionization (nanoESI) quadrupole time-of-flight (QTOF) mass spectrometry (MS) and tandem MS (MS/MS) of linear polysaccharides modified at the reducing end is presented. Two polydisperse

  1. Gas chromatographic quadrupole time-of-flight full scan high resolution mass spectrometric screening of human urine in antidoping analysis

    NARCIS (Netherlands)

    Abushareeda, Wadha; Lyris, Emmanouil; Kraiem, Suhail; Wahaibi, Aisha Al; Alyazidi, Sameera; Dbes, Najib; Lommen, Arjen; Nielen, Michel; Horvatovich, Peter L.; Alsayrafi, Mohammed; Georgakopoulos, Costas

    2017-01-01

    This paper presents the development and validation of a high-resolution full scan (FS) electron impact ionization (EI) gas chromatography coupled to quadrupole Time-of-Flight mass spectrometry (GC/QTOF) platform for screening anabolic androgenic steroids (AAS) in human urine samples. The World

  2. Characterisation of Stevia Rebaudiana by comprehensive two-dimensional liquid chromatography time-of-flight mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Pól, Jaroslav; Hohnová, B.; Hyötyläinen, T.

    2007-01-01

    Roč. 1150, 1-2 (2007), s. 85-92 ISSN 0021-9673 R&D Projects: GA AV ČR KJB4031405 Institutional research plan: CEZ:AV0Z40310501 Keywords : comprehensive two-dimensional liquid chromatography * time-of-flight mass spectrometry * Stevia rebaudiana Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.641, year: 2007

  3. Gas chromatographic quadrupole time-of-flight full scan high resolution mass spectrometric screening of human urine in antidoping analysis

    NARCIS (Netherlands)

    Abushareeda, Wadha; Lyris, Emmanouil; Kraiem, Suhail; Wahaibi, Aisha Al; Alyazidi, Sameera; Dbes, Najib; Lommen, Arjen; Nielen, Michel; Horvatovich, Peter L.; Alsayrafi, Mohammed; Georgakopoulos, Costas

    2017-01-01

    This paper presents the development and validation of a high-resolution full scan (FS) electron impact ionization (EI) gas chromatography coupled to quadrupole Time-of-Flight mass spectrometry (GC/QTOF) platform for screening anabolic androgenic steroids (AAS) in human urine samples. The World

  4. Phenotypic identification of Porphyromonas gingivalis validated with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    NARCIS (Netherlands)

    Rams, Thomas E; Sautter, Jacqueline D; Getreu, Adam; van Winkelhoff, Arie J

    OBJECTIVE: Porphyromonas gingivalis is a major bacterial pathogen in human periodontitis. This study used matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry to assess the accuracy of a rapid phenotypic identification scheme for detection of cultivable P.

  5. A pre-processing strategy for liquid chromatography time-of-flight mass spectrometry metabolic fingerprinting data

    DEFF Research Database (Denmark)

    Nielsen, Nikoline Juul; Tomasi, Giorgio; Frandsen, Rasmus John Normand

    2010-01-01

    A series of simple and robust operations for handling large chromatographic time-of-flight mass spectrometry fingerprinting data has been established and applied to data from extracts of Fusarium graminearum genotypes modified in a non-ribosomal peptide synthase gene by over-expression and deleti...

  6. Dual Source Time-of-flight Mass Spectrometer and Sample Handling System

    Science.gov (United States)

    Brinckerhoff, W.; Mahaffy, P.; Cornish, T.; Cheng, A.; Gorevan, S.; Niemann, H.; Harpold, D.; Rafeek, S.; Yucht, D.

    We present details of an instrument under development for potential NASA missions to planets and small bodies. The instrument comprises a dual ionization source (laser and electron impact) time-of-flight mass spectrometer (TOF-MS) and a carousel sam- ple handling system for in situ analysis of solid materials acquired by, e.g., a coring drill. This DSTOF instrument could be deployed on a fixed lander or a rover, and has an open design that would accommodate measurements by additional instruments. The sample handling system (SHS) is based on a multi-well carousel, originally de- signed for Champollion/DS4. Solid samples, in the form of drill cores or as loose chips or fines, are inserted through an access port, sealed in vacuum, and transported around the carousel to a pyrolysis cell and/or directly to the TOF-MS inlet. Samples at the TOF-MS inlet are xy-addressable for laser or optical microprobe. Cups may be ejected from their holders for analyzing multiple samples or caching them for return. Samples are analyzed with laser desorption and evolved-gas/electron-impact sources. The dual ion source permits studies of elemental, isotopic, and molecular composition of unprepared samples with a single mass spectrometer. Pulsed laser desorption per- mits the measurement of abundance and isotope ratios of refractory elements, as well as the detection of high-mass organic molecules in solid samples. Evolved gas analysis permits similar measurements of the more volatile species in solids and aerosols. The TOF-MS is based on previous miniature prototypes at JHU/APL that feature high sensitivity and a wide mass range. The laser mode, in which the sample cup is directly below the TOF-MS inlet, permits both ablation and desorption measurements, to cover elemental and molecular species, respectively. In the evolved gas mode, sample cups are raised into a small pyrolysis cell and heated, producing a neutral gas that is elec- tron ionized and pulsed into the TOF-MS. (Any imaging

  7. Time-of-flight mass spectrometry of laser exploding foil initiated PETN samples

    Science.gov (United States)

    Fajardo, Mario E.; Molek, Christopher D.; Fossum, Emily C.

    2017-01-01

    We report the results of time-of-flight mass spectrometry (TOFMS) measurements of the gaseous products of thin-film pentaerythritol tetranitrate [PETN, C(CH2NO3)4] samples reacting in vacuo. The PETN sample spots are produced by masked physical vapor deposition [A.S. Tappan, et al., AIP Conf. Proc. 1426, 677 (2012)] onto a first-surface aluminum mirror. A pulsed laser beam imaged through the soda lime glass mirror substrate converts the aluminum layer into a high-temperature high-pressure plasma which initiates chemical reactions in the overlying PETN sample. We had previously proposed [E.C. Fossum, et al., AIP Conf. Proc. 1426, 235 (2012)] to exploit differences in gaseous product chemical identities and molecular velocities to provide a chemically-based diagnostic for distinguishing between "detonation-like" and deflagration responses. Briefly: we expect in-vacuum detonations to produce hyperthermal (v˜10 km/s) thermodynamically-stable products such as N2, CO2, and H2O, and for deflagrations to produce mostly reaction intermediates, such as NO and NO2, with much slower molecular velocities - consistent with the expansion-quenched thermal decomposition of PETN. We observe primarily slow reaction intermediates (NO2, CH2NO3) at low laser pulse energies, the appearance of NO at intermediate laser pulse energies, and the appearance of hyperthemal CO/N2 at mass 28 amu at the highest laser pulse energies. However, these results are somewhat ambiguous, as the NO, NO2, and CH2NO3 intermediates persist and all species become hyperthermal at the higher laser pulse energies. Also, the purported CO/N2 signal at 28 amu may be contaminated by silicon ablated from the glass mirror substrate. We plan to mitigate these problems in future experiments by adopting the "Buelow" sample configuration which employs an intermediate foil barrier to shield the energetic material from the laser and the laser driven plasma [S.J. Buelow, et al., AIP Conf. Proc. 706, 1377 (2003)].

  8. Calibration of matrix-assisted laser desorption/ionization time-of-flight peptide mass fingerprinting spectra

    DEFF Research Database (Denmark)

    Hjernø, Karin; Højrup, Peter

    2007-01-01

    This chapter describes a number of aspects important for calibration of matrix-assisted laser desorption/ionization time-of-flight spectra prior to peptide mass fingerprinting searches. Both multipoint internal calibration and mass defect-based calibration is illustrated. The chapter describes how...... potential internal calibrants, like tryptic autodigest peptides and keratin-related peptides, can be identified and used for high-precision calibration. Furthermore, the construction of project/user-specific lists of potential calibrants is illustrated....

  9. Calibration of matrix-assisted laser desorption/ionization time-of-flight peptide mass fingerprinting spectra

    DEFF Research Database (Denmark)

    Hjernø, Karin; Højrup, Peter

    2007-01-01

    This chapter describes a number of aspects important for calibration of matrix-assisted laser desorption/ionization time-of-flight spectra prior to peptide mass fingerprinting searches. Both multipoint internal calibration and mass defect-based calibration is illustrated. The chapter describes ho...... potential internal calibrants, like tryptic autodigest peptides and keratin-related peptides, can be identified and used for high-precision calibration. Furthermore, the construction of project/user-specific lists of potential calibrants is illustrated....

  10. A novel double-focusing time-of-flight mass spectrometer for absolute recoil ion cross sections measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sigaud, L., E-mail: lsigaud@if.uff.br [Instituto de Física, Universidade Federal Fluminense (UFF), 24210-346 Niterói, RJ (Brazil); Jesus, V. L. B. de [Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Campus Nilópolis, 26530-060 Nilópolis, RJ (Brazil); Ferreira, Natalia [CEFET/RJ, Unidade Maracanã, 20271-110 Rio de Janeiro, RJ (Brazil); Montenegro, E. C. [Instituto de Física, Universidade Federal do Rio de Janeiro (UFRJ), P.O. Box 68528, 21941-972 Rio de Janeiro, RJ (Brazil)

    2016-08-15

    In this work, the inclusion of an Einzel-like lens inside the time-of-flight drift tube of a standard mass spectrometer coupled to a gas cell—to study ionization of atoms and molecules by electron impact—is described. Both this lens and a conical collimator are responsible for further focalization of the ions and charged molecular fragments inside the spectrometer, allowing a much better resolution at the time-of-flight spectra, leading to a separation of a single mass-to-charge unit up to 100 a.m.u. The procedure to obtain the overall absolute efficiency of the spectrometer and micro-channel plate detector is also discussed.

  11. Comparative metabolomic study of transgenic versus conventional soybean using capillary electrophoresis–time-of-flight mass spectrometry

    OpenAIRE

    García-Villalba, Rocío; León, Carlos; Dinelli, Giovanni; Segura-Carretero, Antonio; Fernández-Gutierrez, Alberto; García-Cañas, Virginia; Cifuentes, Alejandro

    2008-01-01

    In this work, capillary electrophoresis–time-of-flight mass spectrometry (CE–TOF-MS) is proposed to identify and quantify the main metabolites found in transgenic soybean and its corresponding non-transgenic parental line both grown under identical conditions. The procedure includes optimization of metabolites extraction, separation by CE, on-line electrospray-TOF-MS analysis and data evaluation. A large number of extraction procedures and background electrolytes are tested in order to obtain...

  12. ADVANCED APPLICATIONS OF MATRIX ASSISTED LASER DESORPTION IONIZATION – TIME OF FLIGHT (MALDI-TOF) MASS SPECTROMETRY IN FOOD LIPIDOMICS

    OpenAIRE

    Picariello, Gianluca

    2013-01-01

    The application of matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) to the study of lipids has been long underestimated due to a series of intrinsic limitations associated to the technique, including the interference of matrix ion signals in the low m/z region, the natural tendency of lipids to fragment even under the “soft” ionization conditions of MALDI, the scarce reproducibility of the analysis, the inability in discriminating positional regioi...

  13. A TIME-OF-FLIGHT MASS SPECTROMETER FOR SIMS AND FIELD IONISED NEUTRAL ANALYSIS USING A PULSED LMIS

    OpenAIRE

    Waugh, A.; Kingham, D.; Richardson, C.; Goff, M.

    1987-01-01

    A new surface analysis instrument has been developed using an energy-compensated time-of-flight mass spectrometer. Samples are ionised for analysis either by microfocussed laser irradiation or by sputtering with a microfocussed (< 0.25 µm) mass-filtered beam of Ga+ ions from a liquid metal ion source. A framestore-based data system allows the simultaneous capture o f both SIMS mass spectra and mass-resolved ion images. Data are presented illustrating both SIMS and Laser Microprobe performance...

  14. Phosphopeptide detection and sequencing by matrix-assisted laser desorption/ionization quadrupole time-of-flight tandem mass spectrometry

    DEFF Research Database (Denmark)

    Bennett, Keiryn L; Stensballe, Allan; Podtelejnikov, Alexandre V

    2002-01-01

    A prototype matrix-assisted laser desorption/ionization quadrupole time-of-flight (MALDI-TOF) tandem mass spectrometer was used to sequence a series of phosphotyrosine-, phosphothreonine- and phosphoserine-containing peptides. The high mass resolution and mass accuracy of the instrument allowed...... ion at m/z 216.04 was observed in these MALDI low-energy CID tandem mass spectra. Elimination of phosphate groups was evident from the triphosphorylated peptide but not from the monophosphorylated species. The main fragmentation pathway for the synthetic phosphothreonine-containing peptide...

  15. Determination of the isotopic abundance of iron and nickel with two-step laser time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Zhou Mingfei; Qin Qizong

    1996-01-01

    Two-step laser time-of-flight mass spectrometry is established to measure the isotopic abundance of iron and nickel. A pulsed Nd:YAG laser (532 nm) is used to evaporate iron and nickel atoms from a Meral alloy sample. These atoms are ionized by a Nd:YAG pumped pulsed dye laser at 300.7 nm and 303.4 nm via resonance ionization and subsequently detected by time-of-flight mass spectrometry. Arrival time distributions are obtained by varying the time delay between evaporation laser and ionization laser. Overlap of the pulsed atomic beam and the ionization laser beam is excellent with about 1% effective duty cycle, then the sensitivity of isotopic detection will be increased substantially using resonance ionization time-of-flight mass spectrometry. A one color two-photon (1 + 1) ionization scheme is employed for Fe and Ni atoms. The results show that all the measured isotopic abundances of Fe and Ni are in agreement with values published in the literature

  16. A new Time-of-Flight mass measurement project for exotic nuclei and ultra-high precision detector development

    Directory of Open Access Journals (Sweden)

    Sun Bao-Hua

    2016-01-01

    Full Text Available The time-of-flight (TOF mass spectrometry (MS, a high-resolution magnetic spectrometer equipped with a fast particle tracking system, is well recognized by its ability in weighing the most exotic nuclei. Currently such TOF-MS can achieve a mass resolution power of about 2×10−4. We show that the mass resolution can be further improved by one order of magnitude with augmented timing and position detectors. We report the progress in developing ultra-fast detectors to be used in TOF-MS.

  17. A multi-reflection time-of-flight mass spectrograph for short-lived and super-heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Schury, P., E-mail: schury@riken.jp [University of Tsukuba, Institute of Physics, Tsukuba City, Ibaraki (Japan); RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); New Mexico State University, Dept. of Chem. and BioChem., Las Cruces, NM (United States); Wada, M. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Ito, Y. [University of Tsukuba, Institute of Physics, Tsukuba City, Ibaraki (Japan); RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Naimi, S.; Sonoda, T. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Mita, H. [University of Tsukuba, Institute of Physics, Tsukuba City, Ibaraki (Japan); RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Takamine, A. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Aoyama Gakuin University, Sagamihara, Kanagawa (Japan); Okada, K. [Sophia University, Chiyoda-ku, Tokyo (Japan); Wollnik, H. [New Mexico State University, Dept. of Chem. and BioChem., Las Cruces, NM (United States); Chon, S. [KEK, Tsukuba, Ibaraki (Japan); Haba, H.; Kaji, D. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Koura, H. [Japan Atomic Energy Research Institute, Ibaraki (Japan); Miyatake, H. [KEK, Tsukuba, Ibaraki (Japan); Morimoto, K.; Morita, K. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Ozawa, A. [University of Tsukuba, Institute of Physics, Tsukuba City, Ibaraki (Japan)

    2013-12-15

    Highlights: • Demonstrated very fast mass measurements with a multi-reflection time of flight mass spectrograph. • Mass resolving power of R{sub m}≈150,000 was achieved in 1.2-ms for A/q=39 ions. • Mass precision of (δm)/m =7.7×10{sup 8} was demonstrated for {sup 40}Ca{sub +}. • Effects of thermal and voltage instabilities are described. • Effects of thermal and voltage instabilities are described. -- Abstract: A multi-reflection time-of-flight (MRTOF) mass spectrograph has been implemented at RIKEN to provide high-precision mass measurements of very short-lived nuclei. Of particular interest are mass measurements of r-process nuclei and trans-uranium nuclei. In such nuclei, the MRTOF can perform on par with or better than traditional Penning trap systems. We demonstrate that the MRTOF-MS is capable of accurately attaining relative mass precision of δm/m<10{sup -7} and describe it’s utility with heavy, short-lived nuclei.

  18. Time-of-flight mass spectrometer using an imaging detector and a rotating electric field

    International Nuclear Information System (INIS)

    Katayama, Atsushi; Kameo, Yutaka; Nakashima, Mikio

    2008-01-01

    A new technique for minor isotope analysis that uses a rotating electric field and an imaging detector is described. The rotating electric field is generated by six cylindrically arranged plane electrodes with multi-phase sinusoidal wave voltage. When ion packets that are discriminated by time-of-flight enter the rotating electric field, they are circularly deflected, rendering a spiral image on the fluorescent screen of the detector. This spiral image represents m/z values of ions as the position and abundance of ions as brightness. For minor isotopes analyses, the micro channel plate detector under gate control operation is used to eliminate the influence of high intensity of major isotopes. (author)

  19. Two-step Laser Time-of-Flight Mass Spectrometry to Elucidate Organic Diversity in Planetary Surface Materials.

    Science.gov (United States)

    Getty, Stephanie A.; Brinckerhoff, William B.; Cornish, Timothy; Li, Xiang; Floyd, Melissa; Arevalo, Ricardo Jr.; Cook, Jamie Elsila; Callahan, Michael P.

    2013-01-01

    Laser desorption/ionization time-of-flight mass spectrometry (LD-TOF-MS) holds promise to be a low-mass, compact in situ analytical capability for future landed missions to planetary surfaces. The ability to analyze a solid sample for both mineralogical and preserved organic content with laser ionization could be compelling as part of a scientific mission pay-load that must be prepared for unanticipated discoveries. Targeted missions for this instrument capability include Mars, Europa, Enceladus, and small icy bodies, such as asteroids and comets.

  20. Rapid Quadrupole-Time-of-Flight Mass Spectrometry Method Quantifies Oxygen-Rich Lignin Compound in Complex Mixtures

    Science.gov (United States)

    Boes, Kelsey S.; Roberts, Michael S.; Vinueza, Nelson R.

    2018-03-01

    Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. [Figure not available: see fulltext.

  1. Rapid Quadrupole-Time-of-Flight Mass Spectrometry Method Quantifies Oxygen-Rich Lignin Compound in Complex Mixtures

    Science.gov (United States)

    Boes, Kelsey S.; Roberts, Michael S.; Vinueza, Nelson R.

    2017-12-01

    Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. [Figure not available: see fulltext.

  2. A new time of flight mass spectrometer for absolute dissociative electron attachment cross-section measurements in gas phase

    Science.gov (United States)

    Chakraborty, Dipayan; Nag, Pamir; Nandi, Dhananjay

    2018-02-01

    A new time of flight mass spectrometer (TOFMS) has been developed to study the absolute dissociative electron attachment (DEA) cross section using a relative flow technique of a wide variety of molecules in gas phase, ranging from simple diatomic to complex biomolecules. Unlike the Wiley-McLaren type TOFMS, here the total ion collection condition has been achieved without compromising the mass resolution by introducing a field free drift region after the lensing arrangement. The field free interaction region is provided for low energy electron molecule collision studies. The spectrometer can be used to study a wide range of masses (H- ion to few hundreds atomic mass unit). The mass resolution capability of the spectrometer has been checked experimentally by measuring the mass spectra of fragment anions arising from DEA to methanol. Overall performance of the spectrometer has been tested by measuring the absolute DEA cross section of the ground state SO2 molecule, and the results are satisfactory.

  3. A new time of flight mass spectrometer for absolute dissociative electron attachment cross-section measurements in gas phase.

    Science.gov (United States)

    Chakraborty, Dipayan; Nag, Pamir; Nandi, Dhananjay

    2018-02-01

    A new time of flight mass spectrometer (TOFMS) has been developed to study the absolute dissociative electron attachment (DEA) cross section using a relative flow technique of a wide variety of molecules in gas phase, ranging from simple diatomic to complex biomolecules. Unlike the Wiley-McLaren type TOFMS, here the total ion collection condition has been achieved without compromising the mass resolution by introducing a field free drift region after the lensing arrangement. The field free interaction region is provided for low energy electron molecule collision studies. The spectrometer can be used to study a wide range of masses (H - ion to few hundreds atomic mass unit). The mass resolution capability of the spectrometer has been checked experimentally by measuring the mass spectra of fragment anions arising from DEA to methanol. Overall performance of the spectrometer has been tested by measuring the absolute DEA cross section of the ground state SO 2 molecule, and the results are satisfactory.

  4. Sequencing of Isotope-Labeled Small RNA Using Femtosecond Laser Ablation Time-of-Flight Mass Spectrometry

    Science.gov (United States)

    Kurata-Nishimura, Mizuki; Ando, Yoshinari; Kobayashi, Tohru; Matsuo, Yukari; Suzuki, Harukazu; Hayashizaki, Yoshihide; Kawai, Jun

    2010-04-01

    A novel method for the analysis of sequences of small RNAs using nucleotide triphosphates labeled with stable isotopes has been developed using time-of-flight mass spectroscopy combined with femtosecond laser ablation (fsLA-TOF-MS). Small RNAs synthesized with nucleotides enriched in 13C and 15N were efficiently atomized and ionized by single-shot fsLA and the isotope ratios 13C/12C and 15N/14N were evaluated using the TOF-MS method. By comparing the isotope ratios among four different configurations, the number of nucleotide contents of the control RNA sample were successfully reproduced.

  5. Development of a time-of-flight mass spectrometer for ion desorption studies at HiSOR

    International Nuclear Information System (INIS)

    Fujii, Kentaro; Taga, Daisuke; Nakashima, Yousuke; Waki, Satoshi; Sardar, Saydul Amin; Yasui, Yoshimi; Wada, S.-I.; Sekitani, Tetsuji; Tanaka, Kenichiro

    2001-01-01

    We have developed a time-of-flight mass spectrometer which is now under operation at HiSOR storage ring for research of photon stimulated ion desorption (PSID). The employment of the pulsed high voltage method as a trigger allowed us to perform the investigations at a multi bunch operation of the storage ring. The performance of this spectrometer was evaluated by applying to the PSID measurements of PMMA (poly-methylmethacrylate) thin films. The results are compared with those obtained at Photon Factory by using pulsed synchrotron radiation in a single bunch operation. The capabilities of the apparatus for ion desorption studies are discussed

  6. Fusobacterium nucleatum subspecies identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Nie, Shuping; Tian, Baoyu; Wang, Xiaowei; Pincus, David H; Welker, Martin; Gilhuley, Kathleen; Lu, Xuedong; Han, Yiping W; Tang, Yi-Wei

    2015-04-01

    We explored the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for identification of Fusobacterium nucleatum subspecies. MALDI-TOF MS spectra of five F. nucleatum subspecies (animalis, fusiforme, nucleatum, polymorphum, and vincentii) were analyzed and divided into four distinct clusters, including subsp. animalis, nucleatum, polymorphum, and fusiforme/vincentii. MALDI-TOF MS with the modified SARAMIS database further correctly identified 28 of 34 F. nucleatum clinical isolates to the subspecies level. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Analysis of sucralose and other sweeteners in water and beverage samples by liquid chromatography/time-of-flight mass spectrometry.

    Science.gov (United States)

    Ferrer, Imma; Thurman, E Michael

    2010-06-18

    A methodology for the chromatographic separation and analysis of three of the most popular artificial sweeteners (aspartame, saccharin, and sucralose) in water and beverage samples was developed using liquid chromatography/time-of-flight mass spectrometry (LC/TOF-MS). The sweeteners were extracted from water samples using solid-phase extraction (SPE) cartridges. Furthermore, several beverages were analyzed by a rapid and simple method without SPE, and the presence of the sweeteners was confirmed by accurate mass measurements below 2-ppm error. The unambiguous confirmation of the compounds was based on accurate mass measurements of the protonated molecules [M+H](+), their sodium adducts and their main fragment ions. Quantitation was carried out using matrix-matched standard calibration and linearity of response over 2 orders of magnitude was demonstrated (r>0.99). A detailed fragmentation study for sucralose was carried out by time-of-flight and a characteristic spectrum fingerprint pattern was obtained for the presence of this compound in water samples. Finally, the analysis of several wastewater, surface water and groundwater samples from the US showed that sucralose can be found in the aquatic environment at concentrations up to 2.4microg/L, thus providing a good indication of wastewater input from beverage sources. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  8. Screening and confirmation criteria for hormone residue analysis using liquid chromatography accurate mass time-of-flight, Fourier transform ion cyclotron resonance and orbitrap mass spectrometry techniques

    NARCIS (Netherlands)

    Nielen, M.W.F.; Engelen, M.C. van; Zuiderent, R.; Ramaker, R.

    2007-01-01

    An emerging trend is recognised in hormone and veterinary drug residue analysis from liquid chromatography tandem mass spectrometry (LC/MS/MS) based screening and confirmation towards accurate mass alternatives such as LC coupled with time-of-flight (TOF), Fourier transform ion cyclotron resonance

  9. An integrated ion trap and time-of-flight mass spectrometer for chemical and photo- reaction dynamics studies.

    Science.gov (United States)

    Schowalter, Steven J; Chen, Kuang; Rellergert, Wade G; Sullivan, Scott T; Hudson, Eric R

    2012-04-01

    We demonstrate the integration of a linear quadrupole trap with a simple time-of-flight mass spectrometer with medium-mass resolution (m/Δm ∼ 50) geared towards the demands of atomic, molecular, and chemical physics experiments. By utilizing a novel radial ion extraction scheme from the linear quadrupole trap into the mass analyzer, a device with large trap capacity and high optical access is realized without sacrificing mass resolution. This provides the ability to address trapped ions with laser light and facilitates interactions with neutral background gases prior to analyzing the trapped ions. Here, we describe the construction and implementation of the device as well as present representative ToF spectra. We conclude by demonstrating the flexibility of the device with proof-of-principle experiments that include the observation of molecular-ion photodissociation and the measurement of trapped-ion chemical reaction rates. © 2012 American Institute of Physics

  10. An integrated ion trap and time-of-flight mass spectrometer for chemical and photo- reaction dynamics studies

    International Nuclear Information System (INIS)

    Schowalter, Steven J.; Chen Kuang; Rellergert, Wade G.; Sullivan, Scott T.; Hudson, Eric R.

    2012-01-01

    We demonstrate the integration of a linear quadrupole trap with a simple time-of-flight mass spectrometer with medium-mass resolution (m/Δm∼ 50) geared towards the demands of atomic, molecular, and chemical physics experiments. By utilizing a novel radial ion extraction scheme from the linear quadrupole trap into the mass analyzer, a device with large trap capacity and high optical access is realized without sacrificing mass resolution. This provides the ability to address trapped ions with laser light and facilitates interactions with neutral background gases prior to analyzing the trapped ions. Here, we describe the construction and implementation of the device as well as present representative ToF spectra. We conclude by demonstrating the flexibility of the device with proof-of-principle experiments that include the observation of molecular-ion photodissociation and the measurement of trapped-ion chemical reaction rates.

  11. A homemade high-resolution orthogonal-injection time-of-flight mass spectrometer with a heated capillary inlet

    International Nuclear Information System (INIS)

    Guo Changjuan; Huang Zhengxu; Gao Wei; Nian Huiqing; Chen Huayong; Dong Junguo; Shen Guoying; Fu Jiamo; Zhou Zhen

    2008-01-01

    We describe a homemade high-resolution orthogonal-injection time-of-flight (O-TOF) mass spectrometer combing a heated capillary inlet. The O-TOF uses a heated capillary tube combined with a radio-frequency only quadrupole (rf-only quadrupole) as an interface to help the ion transmission from the atmospheric pressure to the low-pressure regions. The principle, configuration of the O-TOF, and the performance of the instrument are introduced in this paper. With electrospray ion source, the performances of the mass resolution, the sensitivity, the mass range, and the mass accuracy are described. We also include our results obtained by coupling atmospheric pressure matrix-assisted laser deporption ionization with this instrument

  12. Collision-induced dissociation pathways of H1-antihistamines by electrospray ionization quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Do, Jung-Ah; Noh, Eunyoung; Yoon, Soon-Byung; Lee, Ji Hyun; Park, Sung-Kwan; Mandava, Suresh; Baek, Sun Young; Lee, Jongkook

    2017-06-01

    Over the past decades, mass spectrometry technologies have been developed to obtain mass accuracies of one ppm or less. Of the newly developed technologies, quadrupole time-of-flight mass spectrometry (Q-TOF-MS) has emerged as being well suited to routine and high-throughput analyses of pharmaceuticals. Dietary supplements and functional foods have frequently been found to be contaminated with pharmaceuticals. In our continuous efforts to develop methodologies to protect public health against adulterated dietary supplements, we have constructed a mass spectral database for 21 H 1 -antihistamines encountered as adulterants by using liquid chromatography-electrospray ionization (LC-ESI)/Q-TOF-MS, and have proposed their possible collision-induced dissociation pathways. This database will be very useful for the rapid and accurate detection of H 1 -antihistamines (known) and their analogues (unknown) illegally added to dietary supplements as well as in other sample matrices.

  13. An integrated ion trap and time-of-flight mass spectrometer for chemical and photo- reaction dynamics studies

    Science.gov (United States)

    Schowalter, Steven J.; Chen, Kuang; Rellergert, Wade G.; Sullivan, Scott T.; Hudson, Eric R.

    2012-04-01

    We demonstrate the integration of a linear quadrupole trap with a simple time-of-flight mass spectrometer with medium-mass resolution (m/Δm ˜ 50) geared towards the demands of atomic, molecular, and chemical physics experiments. By utilizing a novel radial ion extraction scheme from the linear quadrupole trap into the mass analyzer, a device with large trap capacity and high optical access is realized without sacrificing mass resolution. This provides the ability to address trapped ions with laser light and facilitates interactions with neutral background gases prior to analyzing the trapped ions. Here, we describe the construction and implementation of the device as well as present representative ToF spectra. We conclude by demonstrating the flexibility of the device with proof-of-principle experiments that include the observation of molecular-ion photodissociation and the measurement of trapped-ion chemical reaction rates.

  14. Time of flight mass spectrometry of DNA laser-ablated from frozen aqueous solutions: applications to the Human Genome Project

    Science.gov (United States)

    Williams, Peter

    1994-02-01

    Time of flight mass spectrometry offers an extremely rapid and accurate alternative to gel electrophoresis for sizing DNA fragments in the Sanger sequencing process, if large single-stranded DNA molecules can be volatilized and ionized without fragmentation. A process based on pulsed laser ablation of thin frozen films of DNA solutions has been shown to ablate intact DNA molecules up to [approximate]400 kDa in mass, and also has been shown to yield molecular ions of single-stranded DNA up to [approximate]18 500 Da. The theoretical basis and the progress to date in this approach are described and the potential impact of mass spectrometry on large-scale DNA sequencing is discussed.

  15. Exploring the phase space of time of flight mass selected PtxY nanoparticles

    DEFF Research Database (Denmark)

    Masini, Federico; Hernandez-Fernandez, Patricia; Deiana, Davide

    2014-01-01

    Mass-selected nanoparticles can be conveniently produced using magnetron sputtering and aggregation techniques. However, numerous pitfalls can compromise the quality of the samples, e.g. double or triple mass production, dendritic structure formation or unpredicted particle composition. We stress...

  16. Rapid detection of undesired cosmetic ingredients by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Ouyang, Jie; An, Dongli; Chen, Tengteng; Lin, Zhiwei

    2017-10-01

    In recent years, cosmetic industry profits soared due to the widespread use of cosmetics, which resulted in illicit manufacturers and products of poor quality. Therefore, the rapid and accurate detection of the composition of cosmetics has become crucial. At present, numerous methods, such as gas chromatography and liquid chromatography-mass spectrometry, were available for the analysis of cosmetic ingredients. However, these methods present several limitations, such as failure to perform comprehensive and rapid analysis of the samples. Compared with other techniques, matrix-assisted laser desorption ionization time-of-flight mass spectrometry offered the advantages of wide detection range, fast speed and high accuracy. In this article, we briefly summarized how to select a suitable matrix and adjust the appropriate laser energy. We also discussed the rapid identification of undesired ingredients, focusing on antibiotics and hormones in cosmetics.

  17. Parallel Configuration For Fast Superconducting Strip Line Detectors With Very Large Area In Time Of Flight Mass Spectrometry

    International Nuclear Information System (INIS)

    Casaburi, A.; Zen, N.; Suzuki, K.; Ohkubo, M.; Ejrnaes, M.; Cristiano, R.; Pagano, S.

    2009-01-01

    We realized a very fast and large Superconducting Strip Line Detector based on a parallel configuration of nanowires. The detector with size 200x200 μm 2 recorded a sub-nanosecond pulse width of 700 ps in FWHM (400 ps rise time and 530 ps relaxation time) for lysozyme monomers/multimers molecules accelerated at 175 keV in a Time of Flight Mass Spectrometer. This record is the best in the class of superconducting detectors and comparable with the fastest NbN superconducting single photon detector of 10x10 μm 2 . We succeeded in acquiring mass spectra as the first step for a scale-up to ∼mm pixel size for high throughput MS analysis, while keeping a fast response.

  18. [Structure identification of contaminants in a beverage product by liquid chromatography coupled with quadrupole time-of-flight mass spectrometry].

    Science.gov (United States)

    Miyamoto, Yasuhisa; Washida, Kazuto; Uyama, Atsuo; Mochizuki, Naoki

    2014-01-01

    The contaminants in a beverage product that had been reported to have a strange taste were identified. By comparative analysis with the normal product using liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC-QTOF-MS), six unknown compounds were detected in the total ion current chromatograms of the product in question. Detailed analysis of the mass spectra and product ion spectra of these compounds strongly suggested that the compounds were capric acid diethanolamide, lauric acid diethanolamide, myristic acid diethanolamide, lauryl dimethylaminoacetic acid, lauryl sulfate, and lauric acid, all of which are surfactants commonly used as ingredients of household detergents and shampoos. We searched commercially available detergent products to check for the presence of these six surfactants, and identified products that might have been intentionally or unintentionally mixed into the beverage product after opening.

  19. An electrodynamic ion funnel for electrospray ionization source based time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Bhushan, K.G.; Rao, K.C.; Sule, U.; Reddy, P.; Rodrigues, S.M.; Gaikwad, D.T.; Mukundhan, R.; Gupta, S.K.

    2016-01-01

    An electrodynamic ion funnel has been developed for improving the sensitivity of electrospray ionization sources widely used in the mass spectrometric study of proteins and other biological macromolecules. The ion funnel consists of 52 electrodes and works under the combined influence of RF and DC voltages in the pressure range of 0.1 to 5 mbar. A novel feature of this ion funnel is the specific shape of the exit electrode that improves transmission of lower mass ions by reducing the depth of effective trapping potentials. In this paper, we report on the optimization of the ion funnel design using ion trajectory simulation software SIMION 8.0 especially in the mass range 500–5000 amu, followed by experimental observations of the ion transmission from the electrospray interface. It is seen that the electrospray-ion funnel combination greatly enhances the transmission when compared with an electrospray-skimmer interface. Ion currents > 1 nA could be obtained at the exit of the ion funnel for dilute Streptomycin Sulphate (∼ 1500 amu) solution with the ion funnel operating in the 500–900 kHz frequency range, amplitude of 70 V p−p , under a DC gradient of about 20 Volts/cm at a background pressure of 0.3 mbar. Details of the construction of the ion funnel along with the experimental results are presented

  20. Lipid imaging by gold cluster time-of-flight secondary ion mass spectrometry: application to Duchenne muscular dystrophy.

    Science.gov (United States)

    Touboul, David; Brunelle, Alain; Halgand, Frédéric; De La Porte, Sabine; Laprévote, Olivier

    2005-07-01

    Imaging with time-of-flight secondary ion mass spectrometry (TOF-SIMS) has expanded very rapidly with the development of gold cluster ion sources (Au(3+)). It is now possible to acquire ion density maps (ion images) on a tissue section without any treatment and with a lateral resolution of few micrometers. In this article, we have taken advantage of this technique to study the degeneration/regeneration process in muscles of a Duchenne muscular dystrophy model mouse. Specific distribution of different lipid classes (fatty acids, triglycerides, phospholipids, tocopherol, coenzyme Q9, and cholesterol) allows us to distinguish three different regions on a mouse leg section: one is destroyed, another is degenerating (oxidative stress and deregulation of the phosphoinositol cycle), and the last one is stable. TOF-SIMS imaging shows the ability to localize directly on a tissue section a great number of lipid compounds that reflect the state of the cellular metabolism.

  1. Identification of Haemophilus influenzae and Haemophilus haemolyticus by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Bruin, J P; Kostrzewa, M; van der Ende, A; Badoux, P; Jansen, R; Boers, S A; Diederen, B M W

    2014-02-01

    Generally accepted laboratory methods that have been used for decades do not reliably distinguish between H. influenzae and H. haemolyticus isolates. H. haemolyticus strains are often incorrectly identified as nontypeable Haemophilus influenzae (NTHi). To distinguish H. influenzae from H. haemolyticus we have created a new database on the matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) bio-typer 2 and compared the results with routine determination of Haemophilus (growth requirement for X and V factor), and multilocus sequence typing (MLST). In total we have tested 277 isolates, 244 H. influenzae and 33 H. haemolyticus. Using MLST as the gold standard, the agreement of MALDI-TOF MS was 99.6 %. MALDI-TOF MS allows reliable and rapid discrimination between H. influenzae and H. haemolyticus.

  2. Collisional activation by MALDI tandem time-of-flight mass spectrometry induces intramolecular migration of amide hydrogens in protonated peptides

    DEFF Research Database (Denmark)

    Jørgensen, Thomas J D; Bache, Nicolai; Roepstorff, Peter

    2005-01-01

    -specific information about the incorporation of deuterium into peptides and proteins in solution. Using a unique set of peptides with their carboxyl-terminal half labeled with deuterium we have shown unambiguously that hydrogen (1H/2H) scrambling is such a dominating factor during low energy collisional activation...... of doubly protonated peptides that the original regioselective deuterium pattern of these peptides is completely erased (Jørgensen, T. J. D., Gårdsvoll, H., Ploug, M., and Roepstorff, P. (2005) Intramolecular migration of amide hydrogens in protonated peptides upon collisional activation. J. Am. Chem. Soc...... randomization among all exchangeable sites (i.e. all N- and O-linked hydrogens) also occurs upon high energy collisional activation of singly protonated peptides. This intense proton/deuteron traffic precludes the use of MALDI tandem time-of-flight mass spectrometry to obtain reliable information...

  3. In-line monitoring of effluents from HTGR fuel particle preparation processes using a time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Lee, D.A.; Costanzo, D.A.; Stinton, D.P.; Carpenter, J.A.; Rainey, W.T. Jr.; Canada, D.C.; Carter, J.A.

    1976-08-01

    The carbonization, conversion, and coating processes in the manufacture of HTGR fuel particles have been studied with the use of a time-of-flight mass spectrometer. Non-condensable effluents from these fluidized-bed processes have been monitored continuously from the beginning to the end of the process. The processes which have been monitored are these: uranium-loaded ion exchange resin carbonization, the carbothermic reduction of UO 2 to UC 2 , buffer and low temperature isotropic pyrocarbon coatings of fuel kernels, SiC coating of the kernels, and high-temperature particle annealing. Changes in concentrations of significant molecules with time and temperature have been useful in the interpretation of reaction mechanisms and optimization of process procedures

  4. Determination of thyroid hormones in placenta using isotope-dilution liquid chromatography quadrupole time-of-flight mass spectrometry

    DEFF Research Database (Denmark)

    Li, Zhong-Min; Giesert, Florian; Vogt-Weisenhorn, Daniela

    2018-01-01

    (13C6-T4, 13C6-T3, 13C6-rT3 and 13C6-T2) and recovery standard (13C12-T4) in combination with solid-liquid extraction, liquid-liquid extraction and solid phase extraction. The linearity was obtained in the range of 0.5-150 pg uL-1 with R2 values >0.99. The method detection limits (MDLs) ranged from 0......-l-thyronine (rT3), 3,3'-diiodo-l-thyronine (T2), 3,5-diiodo-l-thyronine (rT2), 3-iodo-l-thyronine (T1) and 3-iodothyronamine (T1AM), in placenta using isotope dilution liquid chromatography quadrupole time-of-flight mass spectrometry. We optimized the method using isotopically labeled quantification standards...

  5. Random projection for dimensionality reduction--applied to time-of-flight secondary ion mass spectrometry data.

    Science.gov (United States)

    Varmuza, Kurt; Engrand, Cécile; Filzmoser, Peter; Hilchenbach, Martin; Kissel, Jochen; Krüger, Harald; Silén, Johan; Trieloff, Mario

    2011-10-31

    Random projection (RP) is a simple and fast linear method for dimensionality reduction of high-dimensional multivariate data, independent from the data. The method is briefly described and a new memory-saving algorithm is presented for the generation of random projection vectors. Application of RP to data from scanning experiments with a time-of-flight secondary ion mass spectrometer (TOF-SIMS) showed that data reduced by RP have a satisfying discriminant property for separating target material and minerals without using any knowledge about the composition of the sample. A selection method--based on low dimensional RP data--is described and successfully tested for automatic recognition of characteristic, diverse locations of a sample surface. RP is demonstrated as an unbiased, powerful method, especially for large data sets, severe hardware restrictions (such as in space experiments) or the need for fast data evaluation of hyperspectral data. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Structural calculations and experimental detection of small Ga mS n clusters using time-of-flight mass spectrometry

    Science.gov (United States)

    BelBruno, J. J.; Sanville, E.; Burnin, A.; Muhangi, A. K.; Malyutin, A.

    2009-08-01

    Ga mS n clusters were generated by laser ablation of a solid sample of Ga 2S 3. The resulting molecules were analyzed in a time-of-flight mass spectrometer. In addition to atomic species, the spectra exhibited evidence for the existence of GaS3+, GaS4+, GaS5+, and GaS6+ clusters. The potential neutral and cationic structures of the observed Ga mS n clusters were computationally investigated using a density-functional approach. Reference is made to the kinetic pathways required for production of clusters from the starting point of the stoichiometric molecule or molecular ion. Cluster atomization enthalpies are compared with bulk values from the literature.

  7. Liquid chromatography coupled with time-of-flight and ion trap mass spectrometry for qualitative analysis of herbal medicines

    Directory of Open Access Journals (Sweden)

    Xiao-Fei Chen

    2011-11-01

    Full Text Available With the expansion of herbal medicine (HM market, the issue on how to apply up-to-date analytical tools on qualitative analysis of HMs to assure their quality, safety and efficacy has been arousing great attention. Due to its inherent characteristics of accurate mass measurements and multiple stages analysis, the integrated strategy of liquid chromatography (LC coupled with time-of-flight mass spectrometry (TOF-MS and ion trap mass spectrometry (IT-MS is well-suited to be performed as qualitative analysis tool in this field. The purpose of this review is to provide an overview on the potential of this integrated strategy, including the review of general features of LC-IT-MS and LC-TOF-MS, the advantages of their combination, the common procedures for structure elucidation, the potential of LC-hybrid-IT-TOF/MS and also the summary and discussion of the applications of the integrated strategy for HM qualitative analysis (2006–2011. The advantages and future developments of LC coupled with IT and TOF-MS are highlighted. Keywords: High-performance liquid chromatography (HPLC, Time-of-flight mass spectrometry (TOF-MS, Ion trap mass spectrometry (IT-MS, Herbal medicine (HM

  8. Matrix-assisted laser desorption/ionisation, time-of-flight mass spectrometry in genomics research.

    Directory of Open Access Journals (Sweden)

    Jiannis Ragoussis

    2006-07-01

    Full Text Available The beginning of this millennium has seen dramatic advances in genomic research. Milestones such as the complete sequencing of the human genome and of many other species were achieved and complemented by the systematic discovery of variation at the single nucleotide (SNP and whole segment (copy number polymorphism level. Currently most genomics research efforts are concentrated on the production of whole genome functional annotations, as well as on mapping the epigenome by identifying the methylation status of CpGs, mainly in CpG islands, in different tissues. These recent advances have a major impact on the way genetic research is conducted and have accelerated the discovery of genetic factors contributing to disease. Technology was the critical driving force behind genomics projects: both the combination of Sanger sequencing with high-throughput capillary electrophoresis and the rapid advances in microarray technologies were keys to success. MALDI-TOF MS-based genome analysis represents a relative newcomer in this field. Can it establish itself as a long-term contributor to genetics research, or is it only suitable for niche areas and for laboratories with a passion for mass spectrometry? In this review, we will highlight the potential of MALDI-TOF MS-based tools for resequencing and for epigenetics research applications, as well as for classical complex genetic studies, allele quantification, and quantitative gene expression analysis. We will also identify the current limitations of this approach and attempt to place it in the context of other genome analysis technologies.

  9. New Potential Biomarker for Methasterone Misuse in Human Urine by Liquid Chromatography Quadrupole Time of Flight Mass Spectrometry.

    Science.gov (United States)

    Zhang, Jianli; Lu, Jianghai; Wu, Yun; Wang, Xiaobing; Xu, Youxuan; Zhang, Yinong; Wang, Yan

    2016-09-24

    In this study, methasterone urinary metabolic profiles were investigated by liquid chromatography quadrupole time of flight mass spectrometry (LC-QTOF-MS) in full scan and targeted MS/MS modes with accurate mass measurement. A healthy male volunteer was asked to take the drug and liquid-liquid extraction was employed to process urine samples. Chromatographic peaks for potential metabolites were hunted out with the theoretical [M - H](-) as a target ion in a full scan experiment and actual deprotonated ions were studied in targeted MS/MS experiment. Fifteen metabolites including two new sulfates (S1 and S2), three glucuronide conjugates (G2, G6 and G7), and three free metabolites (M2, M4 and M6) were detected for methasterone. Three metabolites involving G4, G5 and M5 were obtained for the first time in human urine samples. Owing to the absence of helpful fragments to elucidate the steroid ring structure of methasterone phase II metabolites, gas chromatography mass spectrometry (GC-MS) was employed to obtain structural information of the trimethylsilylated phase I metabolite released after enzymatic hydrolysis and the potential structure was inferred using a combined MS method. Metabolite detection times were also analyzed and G2 (18-nor-17β-hydroxymethyl-2α, 17α-dimethyl-androst-13-en-3α-ol-ξ-O-glucuronide) was thought to be new potential biomarker for methasterone misuse which can be detected up to 10 days.

  10. New Potential Biomarker for Methasterone Misuse in Human Urine by Liquid Chromatography Quadrupole Time of Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Jianli Zhang

    2016-09-01

    Full Text Available In this study, methasterone urinary metabolic profiles were investigated by liquid chromatography quadrupole time of flight mass spectrometry (LC-QTOF-MS in full scan and targeted MS/MS modes with accurate mass measurement. A healthy male volunteer was asked to take the drug and liquid–liquid extraction was employed to process urine samples. Chromatographic peaks for potential metabolites were hunted out with the theoretical [M − H]− as a target ion in a full scan experiment and actual deprotonated ions were studied in targeted MS/MS experiment. Fifteen metabolites including two new sulfates (S1 and S2, three glucuronide conjugates (G2, G6 and G7, and three free metabolites (M2, M4 and M6 were detected for methasterone. Three metabolites involving G4, G5 and M5 were obtained for the first time in human urine samples. Owing to the absence of helpful fragments to elucidate the steroid ring structure of methasterone phase II metabolites, gas chromatography mass spectrometry (GC-MS was employed to obtain structural information of the trimethylsilylated phase I metabolite released after enzymatic hydrolysis and the potential structure was inferred using a combined MS method. Metabolite detection times were also analyzed and G2 (18-nor-17β-hydroxymethyl-2α, 17α-dimethyl-androst-13-en-3α-ol-ξ-O-glucuronide was thought to be new potential biomarker for methasterone misuse which can be detected up to 10 days.

  11. Characteristics of glycation and glycation sites of lysozyme by matrix-assisted laser desorption/ionization time of flight/time-of-flight mass spectrometry and Liquid chromatography-electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Ruan, Eric Dongliang; Wang, Hui; Ruan, Yuanyuan; Juáreza, Manuel

    2014-01-01

    Protein glycation with reducing sugars through the Maillard reaction is regarded as one of the most important reactions in food chem- istry. Amadori rearrangement products [ARPs] are produced at the initial stage of the Maillard reaction and then advanced glycation products may be formed. We report here that using matrix-assisted laser desorption/ionization mass spectrometry with time-of-flight detection [MALDI-TOF-MS] and electrospray ionization mass spectrometry (ESI-MSJ to monitor the glycation process in lysozyme and the D-glucose model system. MALDI-TOF-MS displayed a heterogeneous distribution of glycation via a total mass shift in spectra. However electrospray ionization mass spectrometry [ESI-MS] data showed that a total of four molecules of glucose reacted with Lysozyme at an increase in molecular weight by a 162 Da unit. Further, we identified the glycation sites of lysozyme by using MALDI-TOF/TOF-MS and Liquid chromatography [LC]-ESI-MS/MS. Besides the two glycation sites of Lys1 and Lys97 identified by MALDI-TOF/TOF-MS, the other two glycation sites of Lys13 and Lys116 were characterized unambiguously by LC-ESI-MS/MS. Both MALDI-TOF/TOF-MS and LC-ESI-MS/ MS provided confidence in the study of the glycation by restricting the number of possible residues through (un]modified ions. The study is useful to monitor and characterize glycation in protein systems based on both MALDI-TOF-MS and ESI-MS. Comparatively, LC-ESI-MS/MS provides more fragments with better recovery for the identification of glycation than MALDI-TOF/TOF-MS.

  12. Time-of-flight mass spectrometry of DNA laser-ablated from frozen aqueous solutions: applications to the Human Genome Project

    Science.gov (United States)

    Williams, Peter W.; Schieltz, David; Nelson, Randall W.; Chou, Chau-Wen; Luo, Cong-Wen; Thomas, Robert

    1993-06-01

    Techniques have been developed to volatilize intact massive DNA molecules using pulsed laser ablation of thin frozen films of aqueous DNA solutions. Electrophoresis assay of the ablated DNA shows that molecules as massive as approximately 400,000 Da can be ablated intact. It has been possible to obtain time-of-flight mass spectra of ablated multicomponent mixtures of single-stranded DNA with masses up to approximately 18,000 Da (a 60-nucleotide DNA oligomer). The possible application of time-of-flight mass spectrometry to the analysis and readout of DNA sequence mixtures, and the potential thereby to accelerate the Human Genome project, are discussed.

  13. A small sized time-of-flight mass spectrometer for simultaneous measurement of neutral and ionic species effusing from plasma, 1

    International Nuclear Information System (INIS)

    Horiuchi, Yukihiko

    1986-01-01

    A principle for simultaneous and real time measurement of neutral and ionic species effusing from plasma by using a time-of-flight mass spectrometer is proposed. A simple, small sized time-of-flight mass spectrometer combined with a dc glow discharge tube and an ion sampling electrode system for the simultaneous measurement on the basis of the proposed plinciple, has been constructed and tested. Details of the experimental setup including the geometry and the electronic hardware are described. It is shown that mass spectra of neutrals and ions from the positive column of the argon dc glow discharge are successfully observed on a single oscilloscope display. (author)

  14. Gas chromatography quadrupole time-of-flight mass spectrometry determination of benzotriazole ultraviolet stabilizers in sludge samples.

    Science.gov (United States)

    Casado, J; Rodríguez, I; Carpinteiro, I; Ramil, M; Cela, R

    2013-06-07

    In this research, a simplified procedure for the selective determination of nine benzotriazole UV stabilizers (BUVSs) in sludge from urban sewage treatment plants is presented. Analytes were extracted from the sample using the matrix solid-phase dispersion (MSPD) technique and further determined by gas chromatography (GC) with quadrupole time-of-flight mass spectrometry (QTOF-MS). Highly selective chromatographic records were attained considering a mass window of 0.005Da, centred in the quantification product ion corresponding to each compound. Moreover, the availability of accurate ion product scan MS/MS spectra permitted to confirm the identities of peaks observed in extracted ion MS/MS chromatograms. As a result, a straightforward sample preparation procedure combining extraction and clean-up in the same step, and consuming just 10mL of ethyl acetate, sufficed to deal with complex sludge samples. The developed method attained limits of quantification (LOQs) between 2ngg(-1) and 10ngg(-1), referred to freeze-dried sludge, and recoveries from 70% to 111%, with standard deviations from 2% to 13%. Analysis of sludge samples and certified reference materials confirmed the existence of residues of eight out of nine BUVSs. UV-326, UV-328 and UV-234 displayed the highest occurrence frequencies and individual concentrations above 100ngg(-1) in several samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Orthogonal time-of-flight secondary ion mass spectrometric analysis of peptides using large gold clusters as primary ions.

    Science.gov (United States)

    Tempez, Agnès; Schultz, J A; Della-Negra, S; Depauw, J; Jacquet, D; Novikov, A; Lebeyec, Y; Pautrat, M; Caroff, M; Ugarov, M; Bensaoula, H; Gonin, M; Fuhrer, K; Woods, Amina

    2004-01-01

    Secondary ion mass spectrometry (SIMS) for biomolecular analysis is greatly enhanced by the instrumental combination of orthogonal extraction time-of-flight mass spectrometry with massive gold cluster primary ion bombardment. Precursor peptide molecular ion yield enhancements of 1000, and signal-to-noise improvements of up to 20, were measured by comparing SIMS spectra obtained using Au(+) and massive Au(400) (4+) cluster primary ion bombardment of neat films of the neuropeptide fragment dynorphin 1-7. Remarkably low damage cross-sections were also measured from dynorphin 1-7 and gramicidin S during prolonged bombardment with 40 keV Au(400) (4+). For gramicidin S, the molecular ion yield increases slightly as a function of Au(400) (4+) beam fluence up to at least 2 x 10(13) Au(400) (4+)/cm(2). This is in marked contrast to the rapid decrease observed when bombarding with ions such as Au(5) (+) and Au(9) (+). When gramicidin S is impinged with Au(5) (+), the molecular ion yield decreases by a factor of 10 after a fluence of only 8 x 10(12) ions/cm(2). Comparison of these damage cross-sections implies that minimal surface damage occurs during prolonged Au(400) (4+) bombardment. Several practical analytical implications are drawn from these observations. Copyright 2004 John Wiley & Sons, Ltd.

  16. Polychlorinated aromatic hydrocarbons in a soil sample measured using gas chromatography/multiphoton ionization/time-of-flight mass spectrometry.

    Science.gov (United States)

    Nakamura, Nami; Uchimura, Tomohiro; Watanabe-Ezoe, Yuka; Imasaka, Totaro

    2011-01-01

    Gas chromatography/multiphoton ionization/time-of-flight mass spectrometry (GC/MPI/TOF-MS) was applied to a soil sample to survey several groups of polychlorinated aromatic hydrocarbons (polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs), polychlorinated diphenylethers (PCDEs), and polychlorinated terphenyls (PCTs)). The signal peaks in the two-dimensional display of GC/MS could be easily and accurately assigned from the intensity distribution of the isotope peaks, even in the presence of numerous interfering species. Using this technology, mutual interferences between organochlorine compounds can be readily recognized from the data of the two-dimensional display after a measurement, although the separation of these compounds is sometimes difficult using high-resolution magnetic-sector-type mass spectrometry. This approach, based on MPI, results in less fragmentation, and is useful for the identification of analytes. Thus, GC/MPI/TOF-MS allows for the simultaneous determination of PCDD/Fs and related compounds in real samples containing numerous interfering species. 2011 © The Japan Society for Analytical Chemistry

  17. Qualitative and Quantitative Analysis of Andrographis paniculata by Rapid Resolution Liquid Chromatography/Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Jian-Fei Qin

    2013-09-01

    Full Text Available A rapid resolution liquid chromatography/time-of-flight tandem mass spectrometry (RRLC-TOF/MS method was developed for qualitative and quantitative analysis of the major chemical constituents in Andrographis paniculata. Fifteen compounds, including flavonoids and diterpenoid lactones, were unambiguously or tentatively identified in 10 min by comparing their retention times and accurate masses with standards or literature data. The characteristic fragmentation patterns of flavonoids and diterpenoid lactones were summarized, and the structures of the unknown compounds were predicted. Andrographolide, dehydroandrographolide and neoandrographolide were further quantified as marker substances. It was found that the calibration curves for all analytes showed good linearity (R2 > 0.9995 within the test ranges. The overall limits of detection (LODs and limits of quantification (LOQs were 0.02 μg/mL to 0.06 μg/mL and 0.06 μg/mL to 0.2 μg/mL, respectively. The relative standard deviations (RSDs for intra- and inter-day precisions were below 3.3% and 4.2%, respectively. The mean recovery rates ranged from 96.7% to 104.5% with the relative standard deviations (RSDs less than 2.72%. It is concluded that RRLC-TOF/MS is powerful and practical in qualitative and quantitative analysis of complex plant samples due to time savings, sensitivity, precision, accuracy and lowering solvent consumption.

  18. Simultaneous determination of oxygen, nitrogen and hydrogen in metals by pulse heating and time of flight mass spectrometric method.

    Science.gov (United States)

    Shen, Xuejing; Wang, Peng; Hu, Shaocheng; Yang, Zhigang; Ma, Hongquan; Gao, Wei; Zhou, Zhen; Wang, Haizhou

    2011-05-30

    The inert gas fusion and infrared absorption and thermal conductivity methods are widely used for quantitative determination of oxygen(O), nitrogen(N) and hydrogen(H) in metals. However, O, N and H cannot be determined simultaneously with this method in most cases and the sensitivity cannot meet the requirement of some new metal materials. Furthermore, there is no equipment or method reported for determination of Argon(Ar) or Helium(He) in metals till now. In this paper, a new method for simultaneous quantitative determination of O, N, H and Ar(or He) in metals has been described in detail, which combined the pulse heating inert gas fusion with time of flight mass spectrometric detection. The whole analyzing process was introduced, including sample retreatment, inert gas fusion, mass spectral line selection, signal acquisition, data processing and calibration. The detection limit, lower quantitative limit and linear range of each element were determined. The accuracy and precision of the new method have also been verified by measurements of several kinds of samples. The results were consistent with that obtained by the traditional method. It has shown that the new method is more sensitive and efficient than the existing method. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Identification of five Mitragyna alkaloids in urine using liquid chromatography-quadrupole/time of flight mass spectrometry.

    Science.gov (United States)

    Basiliere, Stephanie; Bryand, Kelsie; Kerrigan, Sarah

    2018-03-30

    Mitragyna speciosa (Kratom) is a psychoactive plant that has recently emerged as a recreational drug. Mitragyna alkaloids are not within the scope of traditional forensic toxicology screening methods, which may contribute to under-reporting. Solid phase extraction (SPE) and liquid chromatography-quadrupole/time of flight mass spectrometry (LC-Q/TOF-MS) were used to identify five alkaloids in urine. Target analytes included the two known psychoactive compounds, mitragynine and 7-hydroxymitragynine, in addition to speciociliatine, speciogynine, and paynantheine. Two deuterated internal standards (mitragynine-D 3 and 7-hydroxymitragynine-D 3 ) were employed. Using traditional reversed phase chromatography all compounds and isomers were separated in 10 min. The procedure was validated in accordance with the Scientific Working Group for Forensic Toxicology (SWGTOX) Standard Practices for Method Validation. Extraction efficiencies were 63-96% and limits of quantitation were 0.5-1 ng/mL. Precision, bias and matrix effects were all within acceptable thresholds, with the exception of 7-hydroxymitragynine, which is notably unstable and unsuitable for quantitative analysis. In this paper we present a simultaneous quantitative analytical method for mitragynine, speciociliatine, speciogynine and paynantheine, and a qualitative assay for 7-hydroxymitragynine in urine using high resolution mass spectrometry (HRMS). Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Chemical discrimination of lubricant marketing types using direct analysis in real time time-of-flight mass spectrometry.

    Science.gov (United States)

    Maric, Mark; Harvey, Lauren; Tomcsak, Maren; Solano, Angelique; Bridge, Candice

    2017-06-30

    In comparison to other violent crimes, sexual assaults suffer from very low prosecution and conviction rates especially in the absence of DNA evidence. As a result, the forensic community needs to utilize other forms of trace contact evidence, like lubricant evidence, in order to provide a link between the victim and the assailant. In this study, 90 personal bottled and condom lubricants from the three main marketing types, silicone-based, water-based and condoms, were characterized by direct analysis in real time time of flight mass spectrometry (DART-TOFMS). The instrumental data was analyzed by multivariate statistics including hierarchal cluster analysis, principal component analysis, and linear discriminant analysis. By interpreting the mass spectral data with multivariate statistics, 12 discrete groupings were identified, indicating inherent chemical diversity not only between but within the three main marketing groups. A number of unique chemical markers, both major and minor, were identified, other than the three main chemical components (i.e. PEG, PDMS and nonoxynol-9) currently used for lubricant classification. The data was validated by a stratified 20% withheld cross-validation which demonstrated that there was minimal overlap between the groupings. Based on the groupings identified and unique features of each group, a highly discriminating statistical model was then developed that aims to provide the foundation for the development of a forensic lubricant database that may eventually be applied to casework. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Comparison of linear intrascan and interscan dynamic ranges of Orbitrap and ion-mobility time-of-flight mass spectrometers.

    Science.gov (United States)

    Kaufmann, Anton; Walker, Stephan

    2017-11-30

    The linear intrascan and interscan dynamic ranges of mass spectrometers are important in metabolome and residue analysis. A large linear dynamic range is mandatory if both low- and high-abundance ions have to be detected and quantitated in heavy matrix samples. These performance criteria, as provided by modern high-resolution mass spectrometry (HRMS), were systematically investigated. The comparison included two generations of Orbitraps, and an ion mobility quadrupole time-of-flight (QTOF) system In addition, different scan modes, as provided by the utilized instruments, were investigated. Calibration curves of different compounds covering a concentration range of five orders of magnitude were measured to evaluate the linear interscan dynamic range. The linear intrascan dynamic range and the resulting mass accuracy were evaluated by repeating these measurements in the presence of a very intense background. Modern HRMS instruments can show linear dynamic ranges of five orders of magnitude. Often, however, the linear dynamic range is limited by the detection capability (sensitivity and selectivity) and by the electrospray ionization. Orbitraps, as opposed to TOF instruments, show a reduced intrascan dynamic range. This is due to the limited C-trap and Orbitrap capacity. The tested TOF instrument shows poorer mass accuracies than the Orbitraps. In contrast, hyphenation with an ion-mobility device seems not to affect the linear dynamic range. The linear dynamic range of modern HRMS instrumentation has been significantly improved. This also refers to the virtual absence of systematic mass shifts at high ion abundances. The intrascan dynamic range of the current Orbitrap technology may still be a limitation when analyzing complex matrix extracts. On the other hand, the linear dynamic range is not only limited by the detector technology, but can also be shortened by peripheral devices, where the ionization and transfer of ions take place. Copyright © 2017 John Wiley

  2. Gas chromatography interfaced with atmospheric pressure ionization-quadrupole time-of-flight-mass spectrometry by low-temperature plasma ionization

    DEFF Research Database (Denmark)

    Norgaard, Asger W.; Kofoed-Sorensen, Vivi; Svensmark, Bo

    2013-01-01

    A low temperature plasma (LTP) ionization interface between a gas chromatograph (GC) and an atmospheric pressure inlet mass spectrometer, was constructed. This enabled time-of-flight mass spectrometric detection of GC-eluting compounds. The performance of the setup was evaluated by injection...

  3. A SIMPLE AND RAPID MATRIX-ASSISTED LASER DESORPTION/IONIZATION TIME OF FLIGHT MASS SPECTROMETRY METHOD TO SCREEN FISH PLASMA SAMPLES FOR ESTROGEN-RESPONSIVE BIOMARKERS

    Science.gov (United States)

    In this study, we describe and evaluate the performance of a simple and rapid mass spectral method for screening fish plasma for estrogen-responsive biomarkers using matrix assisted laster desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) couopled with a short...

  4. Differentiation of Streptococcus pneumoniae conjunctivitis outbreak isolates by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Williamson, Yulanda M; Moura, Hercules; Woolfitt, Adrian R; Pirkle, James L; Barr, John R; Carvalho, Maria Da Gloria; Ades, Edwin P; Carlone, George M; Sampson, Jacquelyn S

    2008-10-01

    Streptococcus pneumoniae (pneumococcus [Pnc]) is a causative agent of many infectious diseases, including pneumonia, septicemia, otitis media, and conjunctivitis. There have been documented conjunctivitis outbreaks in which nontypeable (NT), nonencapsulated Pnc has been identified as the etiological agent. The use of mass spectrometry to comparatively and differentially analyze protein and peptide profiles of whole-cell microorganisms remains somewhat uncharted. In this report, we discuss a comparative proteomic analysis between NT S. pneumoniae conjunctivitis outbreak strains (cPnc) and other known typeable or NT pneumococcal and streptococcal isolates (including Pnc TIGR4 and R6, Streptococcus oralis, Streptococcus mitis, Streptococcus pseudopneumoniae, and Streptococcus pyogenes) and nonstreptococcal isolates (including Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus) as controls. cPnc cells and controls were grown to mid-log phase, harvested, and subsequently treated with a 10% trifluoroacetic acid-sinapinic acid matrix mixture. Protein and peptide fragments of the whole-cell bacterial isolate-matrix combinations ranging in size from 2 to 14 kDa were evaluated by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Additionally Random Forest analytical tools and dendrogramic representations (Genesis) suggested similarities and clustered the isolates into distinct clonal groups, respectively. Also, a peak list of protein and peptide masses was obtained and compared to a known Pnc protein mass library, in which a peptide common and unique to cPnc isolates was tentatively identified. Information gained from this study will lead to the identification and validation of proteins that are commonly and exclusively expressed in cPnc strains which could potentially be used as a biomarker in the rapid diagnosis of pneumococcal conjunctivitis.

  5. Detection of an extended human volatome with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry.

    Science.gov (United States)

    Phillips, Michael; Cataneo, Renee N; Chaturvedi, Anirudh; Kaplan, Peter D; Libardoni, Mark; Mundada, Mayur; Patel, Urvish; Zhang, Xiang

    2013-01-01

    Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GCxGC-TOF MS) has been proposed as a powerful new tool for multidimensional analysis of complex chemical mixtures. We investigated GCxGC-TOF MS as a new method for identifying volatile organic compounds (VOCs) in normal human breath. Samples of alveolar breath VOCs and ambient room air VOC were collected with a breath collection apparatus (BCA) onto separate sorbent traps from 34 normal healthy volunteers (mean age = 40 yr, SD = 17 yr, male/female = 19/15). VOCs were separated on two serial capillary columns separated by a cryogenic modulator, and detected with TOF MS. The first and second dimension columns were non-polar and polar respectively. BCA collection combined with GC×GC-TOF MS analysis identified approximately 2000 different VOCs in samples of human breath, many of which have not been previously reported. The 50 VOCs with the highest alveolar gradients (abundance in breath minus abundance in ambient room air) mostly comprised benzene derivatives, acetone, methylated derivatives of alkanes, and isoprene. Collection and analysis of breath VOCs with the BCA-GC×GC-TOF MS system extended the size of the detectable human volatile metabolome, the volatome, by an order of magnitude compared to previous reports employing one-dimensional GC-MS. The size of the human volatome has been under-estimated in the past due to coelution of VOCs in one-dimensional GC analytical systems.

  6. Analysis of psychoactive substances in water by information dependent acquisition on a hybrid quadrupole time-of-flight mass spectrometer.

    Science.gov (United States)

    Andrés-Costa, María Jesús; Andreu, Vicente; Picó, Yolanda

    2016-08-26

    Emerging drugs of abuse, belonging to many different chemical classes, are attracting users with promises of "legal" highs and easy access via internet. Prevalence of their consumption and abuse through wastewater-based epidemiology can only be realized if a suitable analytical screening procedure exists to detect and quantify them in water. Solid-phase extraction and ultra-high performance liquid chromatography quadrupole time-of-flight-mass spectrometry (UHPLC-QqTOF-MS/MS) was applied for rapid suspect screening as well as for the quantitative determination of 42 illicit drugs and metabolites in water. Using this platform, we were able to identify amphetamines, tryptamines, piperazines, pyrrolidinophenones, arylcyclohexylamines, cocainics, opioids and cannabinoids. Additionally, paracetamol, carbamazepine, ibersartan, valsartan, sulfamethoxazole, terbumeton, diuron, etc. (including degradation products as 3-hydroxy carbamazepine or deethylterbuthylazine) were detected. This method encompasses easy sample preparation and rapid identification of psychoactive drugs against a database that cover more than 2000 compounds that ionized in positive mode, and possibility to identify metabolites and degradation products as well as unknown compounds. The method for river water, influent and effluents samples was fully validated for the target psychoactive substances including assessment of matrix effects (-88-67.8%), recovery (42-115%), precision (psychoactive drugs biomarkers and other water contaminants is demonstrated. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Verification of protein biomarker specificity for the identification of biological stains by quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Legg, Kevin M; Powell, Roger; Reisdorph, Nichole; Reisdorph, Rick; Danielson, Phillip B

    2017-03-01

    Advances in proteomics technology over the past decade offer forensic serologists a greatly improved opportunity to accurately characterize the tissue source from which a DNA profile has been developed. Such information can provide critical context to evidence and can help to prioritize downstream DNA analyses. Previous proteome studies compiled panels of "candidate biomarkers" specific to each of five body fluids (i.e., peripheral blood, vaginal/menstrual fluid, seminal fluid, urine, and saliva). Here, a multiplex quadrupole time-of-flight mass spectrometry assay has been developed in order to verify the tissue/body fluid specificity the 23 protein biomarkers that comprise these panels and the consistency with which they can be detected across a sample population of 50 humans. Single-source samples of these human body fluids were accurately identified by the detection of one or more high-specificity biomarkers. Recovery of body fluid samples from a variety of substrates did not impede accurate characterization and, of the potential inhibitors assayed, only chewing tobacco juice appeared to preclude the identification of a target body fluid. Using a series of 2-component mixtures of human body fluids, the multiplex assay accurately identified both components in a single-pass. Only in the case of saliva and peripheral blood did matrix effects appear to impede the detection of salivary proteins. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Identification of hyperoside metabolites in rat using ultra performance liquid chromatography/quadrupole-time-of-flight mass spectrometry.

    Science.gov (United States)

    Guo, Jianming; Xue, Caifu; Shang, Er-xin; Duan, Jin-ao; Tang, Yuping; Qian, Dawei

    2011-07-01

    In this paper, ultra performance liquid chromatography (UPLC)/quadrupole-time-of-flight mass spectrometry (QTOF) with automated data analysis software (Metabolynx™) were applied for fast analysis of hyperoside metabolites in rat after intravenous administration. MS(E) was used for simultaneous acquisition of precursor ion information and fragment ion data at high and low collision energy in one analytical run, which facilitated the fast structural characterization of 12 metabolites in rat plasma, urine and bile. The results indicated that methylation, sulfation and glucuronidation were the major metabolic pathways of hyperoside in vivo, and among them, 3'-O-methyl-hyperoside was confirmed by matching its fragmentation patterns with standard compound. The present study provided important information about the metabolism of hyperoside which will be helpful for fully understanding the mechanism of this compound's action. Furthermore, this work demonstrated the potential of the UPLC/QTOFMS approach using Metabolynx for fast and automated identification of metabolites of natural product. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Quantitative analysis of a brass alloy using CF-LIBS and a laser ablation time-of-flight mass spectrometer

    Science.gov (United States)

    Ahmed, Nasar; Abdullah, M.; Ahmed, Rizwan; Piracha, N. K.; Aslam Baig, M.

    2018-01-01

    We present a quantitative analysis of a brass alloy using laser induced breakdown spectroscopy, energy dispersive x-ray spectroscopy (EDX) and laser ablation time-of-flight mass spectrometry (LA-TOF-MS). The emission lines of copper (Cu I) and zinc (Zn I), and the constituent elements of the brass alloy were used to calculate the plasma parameters. The plasma temperature was calculated from the Boltzmann plot as (10 000  ±  1000) K and the electron number density was determined as (2.0  ±  0.5)  ×  1017 cm‑3 from the Stark-broadened Cu I line as well as using the Saha–Boltzmann equation. The elemental composition was deduced using these techniques: the Boltzmann plot method (70% Cu and 30% Zn), internal reference self-absorption correction (63.36% Cu and 36.64% Zn), EDX (61.75% Cu and 38.25% Zn), and LA-TOF (62% Cu and 38% Zn), whereas, the certified composition is (62% Cu and 38% Zn). It was observed that the internal reference self-absorption correction method yields analytical results comparable to that of EDX and LA-TOF-MS.

  10. Laser desorption/ionization time-of-flight mass spectrometry of triacylglycerols and other components in fingermark samples.

    Science.gov (United States)

    Emerson, Beth; Gidden, Jennifer; Lay, Jackson O; Durham, Bill

    2011-03-01

    The chemical composition of fingermarks could potentially be important for determining investigative leads, placing individuals at the time of a crime, and has applications as biomarkers of disease. Fingermark samples containing triacylglycerols (TAGs) and other components were analyzed using laser desorption/ionization (LDI) time-of-flight mass spectrometry (TOF MS). Only LDI appeared to be useful for this application while conventional matrix-assisted LDI-TOF MS was not. Tandem MS was used to identify/confirm selected TAGs. A limited gender comparison, based on a simple t-distribution and peaks intensities, indicated that two TAGs showed gender specificity at the 95% confidence level and two others at 97.5% confidence. Because gender-related TAGs differences were most often close to the standard deviation of the measurements, the majority of the TAGs showed no gender specificity. Thus, LDI-TOF MS is not a reliable indicator of gender based on fingermark analysis. Cosmetic ingredients present in some samples were identified. © 2011 American Academy of Forensic Sciences.

  11. Determination of Prazosin and Simvastatin in Landfill Leachate using Liquid Chromatography-Time of Flight-Mass Spectrometry

    International Nuclear Information System (INIS)

    Zainab Haider Mussa; Zainab Haider Mussa; Fouad Fadhil Al-Qaim; Fouad Fadhil Al-Qaim; Md Pauzi Abdullah; Mohamed Rozali Othman

    2016-01-01

    Human pharmaceuticals have been shown to occur in considerably high amounts in sewage treatment plant (STP) effluents and surface waters. So far there is no data available on the occurrence of prazosin and simvastatin in leachate sample in Malaysia. Thus, this study is the first report to analysis of prazosin and simvastatin in leachate samples by using solid phase extraction-liquid chromatography-time of flight-mass spectrometry (SPE-LC-TOF-MS). The proposed method included isolation and reconstitute procedure. The linearity range was achieved at 1.5-3000 μg/ L and 0.8-125 μg/ L for prazosin and simvstatin, respectively with a determination coefficient (R 2 ) > 0.99. The limit of quantification (LOQ) for prazosin and simvastatin was calculated at 2.1 and 0.5 ng/ L in deionised water (DIW), meanwhile it was recorded at 3.5 and 2.4 ng/ L for prazosin and simvastatin in effluent sample, respectively. Two pharmaceutical compounds were detected in the leachate samples: prazosin and simvastatin at concentrations levels of 3850 and 415 ng/ L, respectively. (author)

  12. Profiling the Metabolism of Astragaloside IV by Ultra Performance Liquid Chromatography Coupled with Quadrupole/Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Xu-Dong Cheng

    2014-11-01

    Full Text Available Astragaloside IV is a compound isolated from the Traditional Chinese Medicine Astragalus membranaceus, that has been reported to have bioactivities against cardiovascular disease and kidney disease. There is limited information on the metabolism of astragaloside IV, which impedes comprehension of its biological actions and pharmacology. In the present study, an ultra-performance liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS-based approach was developed to profile the metabolites of astragaloside IV in rat plasma, bile, urine and feces samples. Twenty-two major metabolites were detected. The major components found in plasma, bile, urine and feces included the parent chemical and phases I and II metabolites. The major metabolic reactions of astragaloside IV were hydrolysis, glucuronidation, sulfation and dehydrogenation. These results will help to improve understanding the metabolism and reveal the biotransformation profiling of astragaloside IV in vivo. The metabolic information obtained from our study will guide studies into the pharmacological activity and clinical safety of astragaloside IV.

  13. Phenotypic identification of Porphyromonas gingivalis validated with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Rams, Thomas E; Sautter, Jacqueline D; Getreu, Adam; van Winkelhoff, Arie J

    2016-05-01

    Porphyromonas gingivalis is a major bacterial pathogen in human periodontitis. This study used matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry to assess the accuracy of a rapid phenotypic identification scheme for detection of cultivable P. gingivalis in human subgingival plaque biofilms. A total of 314 fresh cultivable subgingival isolates from 38 adults with chronic periodontitis were presumptively identified on anaerobically-incubated enriched Brucella blood agar primary isolation plates as P. gingivalis based on dark-pigmented colony morphology, lack of a brick-red autofluorescence reaction under long-wave ultraviolet light, and a positive CAAM fluorescence test for trypsin-like enzyme activity. Each presumptive P. gingivalis isolate, and a panel of other human subgingival bacterial species, were subjected to MALDI-TOF mass spectrometry analysis using a benchtop mass spectrometer equipped with software containing mass spectra for P. gingivalis in its reference library of bacterial protein profiles. A MALDI-TOF mass spectrometry log score of ≥1.7 was required for species identification of the subgingival isolates. All 314 (100%) presumptive P. gingivalis subgingival isolates were confirmed as P. gingivalis with MALDI-TOF mass spectrometry analysis (Cohen's kappa coefficient = 1.0). MALDI-TOF mass spectrometry log scores between 1.7 and 1.9, and ≥2.0, were found for 92 (29.3%) and 222 (70.7%), respectively, of the presumptive P. gingivalis clinical isolates. No other tested bacterial species was identified as P. gingivalis by MALDI-TOF mass spectrometry. Rapid phenotypic identification of cultivable P. gingivalis in human subgingival biofilm specimens was found to be 100% accurate with MALDI-TOF mass spectrometry. These findings provide validation for the continued use of P. gingivalis research data based on this species identification methodology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Rapid identification of polymer additives by atmospheric solid analysis probe with quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Du, Zhenxia; Zhang, Yun; Li, Ailin; Lv, Surong

    2014-10-15

    A method using an atmospheric solid analysis probe (ASAP) combined with quadrupole time-of-flight mass spectrometry (QTOFMS) assisted by a pre-built MS library was found to be efficient in fast and direct analysis of additives for polymers. By this method, sample pretreatment could be eliminated from the additives identification process. Some crucial parameters, such as desolvation gas temperature, corona current, sample cone voltage and collision energy, should be optimized. A MS library of 100 polymer additives, including phenols (Irganox 1010, Irganox 1076), hydroxyl phenyl benzotriazole derivatives (Tinuvin 326, Tinuvin 327, Tinuvin 328), hindered amines (Tinuvin 944, Tinuvin 770) and plasticizers, was built based on the optimized conditions. To verify the application of the MS library, the ASAP-QTOFMS method was applied to identify complex additives, a simulated polypropylene (PP) sample and a real polymethylmethacrylate (PMMA) sample purchased from a local market. By searching the exact mass, and comparing the MS and MS/MS spectra of samples with standards in the MS library, complex additives such as Irganox GX 2921, as well as additives in PP and PMMA samples, could be identified quickly and easily. The determination of mass accuracy increased the confidence of peak identification as well. Moreover, the results also provided information of the characterization for PP and PMMA polymers. A rapid identification method has been developed for polymer additives by ASAP-QTOFMS. A MS library of 100 polymer additives was built by this method. Using ASAP-QTOFMS assisted by the pre-built MS library, polymer additives can be quickly identified. This method was found to be a promising tool in the rapid analysis of additives in polymers and polymer matrices. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Imaging nutrient distributions in plant tissue using time-of-flight secondary ion mass spectrometry and scanning electron microscopy.

    Science.gov (United States)

    Metzner, Ralf; Schneider, Heike Ursula; Breuer, Uwe; Schroeder, Walter Heinz

    2008-08-01

    A new approach to trace the transport routes of macronutrients in plants at the level of cells and tissues and to measure their elemental distributions was developed for investigating the dynamics and structure-function relationships of transport processes. Stem samples from Phaseolus vulgaris were used as a test system. Shock freezing and cryo-preparation were combined in a cryogenic chain with cryo-time-of-flight secondary ion mass spectrometry (cryo-ToF-SIMS) for element and isotope-specific imaging. Cryo-scanning electron microscopy (cryo-SEM) was integrated into the cryogenic workflow to assess the quality of structural preservation. We evaluated the capability of these techniques to monitor transport pathways and processes in xylem and associated tissues using supplementary sodium (Na) and tracers for potassium (K), rubidium (Rb), and (41)K added to the transpiration stream. Cryo-ToF-SIMS imaging produced detailed mappings of water, K, calcium, magnesium, the K tracers, and Na without quantification. Lateral resolutions ranged from 10 microm in survey mappings and at high mass resolution to approximately 1 microm in high lateral resolution imaging in reduced areas and at lower mass resolution. The tracers Rb and (41)K, as well as Na, were imaged with high sensitivity in xylem vessels and surrounding tissues. The isotope signature of the stable isotope tracer was utilized for relative quantification of the (41)K tracer as a fraction of total K at the single pixel level. Cryo-SEM confirmed that tissue structures had been preserved with subcellular detail throughout all procedures. Overlays of cryo-ToF-SIMS images onto the corresponding SEM images allowed detailed correlation of nutrient images with subcellular structures.

  16. Searching for anthropogenic contaminants in human breast adipose tissues using gas chromatography-time-of-flight mass spectrometry.

    Science.gov (United States)

    Hernández, Félix; Portolés, Tania; Pitarch, Elena; López, Francisco J

    2009-01-01

    The potential of gas chromatography-time-of-flight mass spectrometry (GC-TOF MS) for screening anthropogenic organic contaminants in human breast adipose tissues has been investigated. Initially a target screening was performed for a list of 125 compounds which included persistent halogen pollutants [organochlorine (OC) pesticides, polychlorinated biphenylss (PCBs), polybrominated diphenyl ethers (PBDEs)], polyaromatic hydrocarbons (PAHs), alkylphenols, and a notable number of pesticides from the different fungicide, herbicide and insecticide families. Searching for target pollutants was done by evaluating the presence of up to five representative ions for every analyte, all measured at accurate mass (20-mDa mass window). The experimental ion abundance ratios were then compared to those of reference standards for confirmation. Sample treatment consisted of an extraction with hexane and subsequent normal-phase (NP) High performance liquid chromatography (HPLC) or SPE cleanup. The fat-free LC fractions were then investigated by GC-TOF MS.Full-spectral acquisition and accurate mass data generated by GC-TOF MS also allowed the investigation of nontarget compounds using appropriate processing software to manage MS data. Identification was initially based on library fit using commercial nominal mass libraries. This was followed by comparing the experimental accurate masses of the most relevant ions with the theoretical exact masses with calculations made using the elemental composition calculator included in the software.The application of both target and nontarget approaches to around 40 real samples allowed the detection and confirmation of several target pollutants including p,p'-DDE, hexachlorobenzene (HCB), and some polychlorinated biphenyls (PCBs) and polyaromatic hydrocarbons (PAHs). Several nontarget compounds that could be considered anthropogenic pollutants were also detected. These included 3,5-di-tert-butyl-4-hydroxy-toluene (BHT) and its metabolite 3,5-di

  17. Characterization and optimization of a time-of-flight detector for isochronous mass measurement at the ESR

    International Nuclear Information System (INIS)

    Fabian, Benjamin

    2008-01-01

    Isochronous Mass Spectrometry has been developed to measure masses of exotic nuclei with lifetimes as short as a few tens of microseconds at the FRS-ESR facility at GSI. For measurement of the ions revolution frequencies, a time-of-flight detector is used. Secondary electrons released from a thin carbon foil at each passage of the stored ion through the detector are transported to micro-channel-plates (MCP) by electric and magnetic fields. This time-of-flight detector, currently installed in the ESR to measure the masses of ions in the isochronous mode, was investigated in this work by experiments and realistic simulations. The detector efficiency was optimized off line with α-particles and electrons and tested on line with a stable Nickel beam. All stages of the detector from the creation of secondary electrons to the final timing signals were examined. The typical number of secondary electrons released per ion can be estimated within a factor of two using an empirical formula. The formula incorporates the target properties and the electronic stopping power of the ion. Typical average electron numbers for mass measurements in the isochronous mode range from 1 to 10 electrons. The transport of the electrons from the foil to the MCP was calculated for the first time using the 3-dimensional geometry of the detector. The simulation helped to understand the transport of the electrons in the detector and thus optimize the detection efficiency while preserving the timing performance. With the calculate settings the detection efficiency and also the detection duration on one MCP detector side were significantly improved (factor of 2). The detection efficiency of the MCP in dependence of the average number of secondary electrons was also examined in the experiment. The detection efficiency of the MCP detector for a Ni-projectile at 372 MeV/u was estimated to be about 88%. In addition saturation effects of the MCPs were examined. The saturation effect is a dead time effect

  18. Characterization of thin film tandem solar cells by radiofrequency pulsed glow discharge - Time of flight mass spectrometry.

    Science.gov (United States)

    Fernandez, Beatriz; Lobo, Lara; Reininghaus, Nies; Pereiro, Rosario; Sanz-Medel, Alfredo

    2017-04-01

    Beside low production costs and the use of nontoxic and abundant raw materials, silicon based thin-film solar cells have the advantage to be built up as multi junction devices like tandem or triple junction solar cells. Silicon thin film modules made of tandem cells with hydrogenated amorphous silicon (a-Si:H) top cell and microcrystalline (μc) Si:H bottom cell are available on the market. In this work, the analytical potential of state-of-the art radiofrequency (rf) pulsed glow discharge (PGD) time of flight mass spectrometry (TOFMS) commercial instrumentation is investigated for depth profiling analysis of tandem-junctions solar cells on 2mm thick glass substrate with 1µm thick ZnO:Al. Depth profile characterization of two thin film tandem photovoltaic devices was compared using millisecond and sub-millisecond rf-PGD regimes, as well as the so-called "low mass mode" available in the commercial instrument used. Two procedures for sample preparation, namely using flat or rough cell substrates, were compared and the distribution of dopant elements (phosphorous, boron and germanium) was investigated in both cases. Experimental results obtained by rf-PGD-TOFMS as well as electrical measurements of the samples showed that a worse depth resolution of dopant elements in the silicon layers (e.g. distribution of boron in a thicker region that suggests a diffusion of this dopant in the coating of the sample) found using a rough sample substrate was related to a higher power conversion efficiency. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Identification of Tsetse (Glossina spp. using matrix-assisted laser desorption/ionisation time of flight mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Antje Hoppenheit

    Full Text Available Glossina (G. spp. (Diptera: Glossinidae, known as tsetse flies, are vectors of African trypanosomes that cause sleeping sickness in humans and nagana in domestic livestock. Knowledge on tsetse distribution and accurate species identification help identify potential vector intervention sites. Morphological species identification of tsetse is challenging and sometimes not accurate. The matrix-assisted laser desorption/ionisation time of flight mass spectrometry (MALDI TOF MS technique, already standardised for microbial identification, could become a standard method for tsetse fly diagnostics. Therefore, a unique spectra reference database was created for five lab-reared species of riverine-, savannah- and forest- type tsetse flies and incorporated with the commercial Biotyper 3.0 database. The standard formic acid/acetonitrile extraction of male and female whole insects and their body parts (head, thorax, abdomen, wings and legs was used to obtain the flies' proteins. The computed composite correlation index and cluster analysis revealed the suitability of any tsetse body part for a rapid taxonomical identification. Phyloproteomic analysis revealed that the peak patterns of G. brevipalpis differed greatly from the other tsetse. This outcome was comparable to previous theories that they might be considered as a sister group to other tsetse spp. Freshly extracted samples were found to be matched at the species level. However, sex differentiation proved to be less reliable. Similarly processed samples of the common house fly Musca domestica (Diptera: Muscidae; strain: Lei did not yield any match with the tsetse reference database. The inclusion of additional strains of morphologically defined wild caught flies of known origin and the availability of large-scale mass spectrometry data could facilitate rapid tsetse species identification in the future.

  20. Uptake of Ra during the recrystallization of barite: a microscopic and time of flight-secondary ion mass spectrometry study.

    Science.gov (United States)

    Klinkenberg, Martina; Brandt, Felix; Breuer, Uwe; Bosbach, Dirk

    2014-06-17

    A combined macroscopic and microanalytical approach was applied on two distinct barite samples from Ra uptake batch experiments using time of flight-secondary ion mass spectrometry (ToF-SIMS) and detailed scanning electron microscopy (SEM) investigations. The experiments were set up at near to equilibrium conditions to distinguish between two possible scenarios for the uptake of Ra by already existent barite: (1) formation of a Ba1-xRaxSO4 solid solution surface layer on the barite or (2) a complete recrystallization, leading to homogeneous Ba1-xRaxSO4 crystals. It could be clearly shown that Ra uptake in all barite particles analyzed within this study is not limited to the surface but extends to the entire solid. For most grains a homogeneous distribution of Ra could be determined, indicating a complete recrystallization of barite into a Ba1-xRaxSO4 solid solution. The maxima of the Ra/Ba intensity ratio distribution histograms calculated from ToF-SIMS are identical with the expected Ra/Ba ratios calculated from mass balance assuming a complete recrystallization. In addition, the role of Ra during the recrystallization of barite was examined via detailed SEM investigations. Depending on the type of barite used, an additional coarsening effect or a strong formation of oriented aggregates was observed compared to blank samples without Ra. In conclusion, the addition of Ra to a barite at close to equilibrium conditions has a major impact on the system leading to a fast re-equilibration of the solid to a Ba1-xRaxSO4 solid solution and visible effects on the particle size distribution, even at room temperature.

  1. An ultra performance liquid chromatography-time-of-flight-mass spectrometric method for fast analysis of ginsenosides in Panax ginseng root

    NARCIS (Netherlands)

    Hu, C.; Kong, H.; Zhu, C.; Wei, H.; Hankemeier, T.; Greef, J. van der; Wang, M.; Xu, G.

    2011-01-01

    A method for fast analysis of ginsenosides in Panax ginseng roots was developed using ultra performance liquid chromatography-time-of-flight-mass spectrometry (UPLC-TOF-MS). The column used was HSS T3 (100 mm × 2.1 mm, 1.8 µm). The mobile phase consisted of 15 mmol/L ammonium formate and

  2. Identification and classification of components in flash pyrolysis oil and hydrodeoxygenated oils by two-dimensional gas chromatography and time-of-flight mass spectrometry

    NARCIS (Netherlands)

    Marsman, J. H.; Wildschut, J.; Evers, P.; Heeres, H. J.; Koning de, S.

    2008-01-01

    Hydrodeoxygenated pyrolysis oils (HDO) are considered promising renewable liquid energy carriers. To gain insights in the various reaction pathways taking place during the hydrodeoxygenation reaction of pyrolysis oil, two-dimensional gas chromatography with time-of-flight mass spectrometric analyses

  3. Differentiation of Clinically Relevant mucorales Rhizopus microsporus and R. arrhizus by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS)

    NARCIS (Netherlands)

    Dolatabadi, S.; Kolecka, A.; Versteeg, Matthijs; de Hoog, Sybren G; Boekhout, Teun

    This study addresses the usefulness of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) for reliable identification of the two most frequently occuring clinical species of Rhizopus, namely R. arrhizus with its two varieties arrhizus and delemar and R.

  4. Profiling the indole alkaloids in yohimbe bark with ultra-performance liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry

    Science.gov (United States)

    An ultra-high performance liquid chromatography-ion mobility- quadrupole time-of-flight mass spectrometry (UHPLC-IM-QTOF-MS) method was developed for profiling the indole alkaloids in yohimbe bark. Many indole alkaloids with the yohimbine core structure, plus methylated, oxidized, and reduced speci...

  5. Validation of a qualitative screening method for pesticides in fruits and vegetables by gas chromatography quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization

    NARCIS (Netherlands)

    Portoles, T.; Mol, J.G.J.; Sancho, J.V.; Lopez, F.J.; Hernandez, F.

    2014-01-01

    A wide-scope screening method was developed for the detection of pesticides in fruit and vegetables. The method was based on gas chromatography coupled to a hybrid quadrupole time-of-flight mass spectrometer with an atmospheric pressure chemical ionization source (GC-(APCI)QTOF MS). A non-target

  6. Characterisation of volatile components of Pinotage wines using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC x GC–TOFMS)

    NARCIS (Netherlands)

    Weldegergis, B.T.; Villiers, de A.; McNeish, C.; Seethapathy, S.; Mostafa, A.; Górecki, T.; Crouch, A.M.

    2011-01-01

    As part of the ongoing research into the chemical composition of the uniquely South African wine cultivar Pinotage, the volatile composition of nine young wines of this cultivar was investigated using comprehensive two-dimensional gas chromatography (GC × GC) in combination with time-of-flight mass

  7. Identification of medically relevant species of arthroconidial yeasts by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry

    NARCIS (Netherlands)

    Kolecka, A.; Khayhan, K.; Groenewald, M.; Theelen, B.; Arabatzis, M.; Velegraki, A.; Kostrzewa, M.; Mares, M.; Taj-Aldeen, S.J.; Boekhout, T.

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was used for an extensive identification study of arthroconidial yeasts, using 85 reference strains from the CBS-KNAW yeast collection and 134 clinical isolates collected from medical centers in Qatar,

  8. Characterization of polychlorinated n-alkanes using comprehensive two-dimensional gas chromatography-electron-capture negative ionization time-of-flight mass spectrometry

    NARCIS (Netherlands)

    Korytar, P.; Parera, J.; Leonards, P.E.G.; Santos, F.J.; Boer, de J.; Brinkman, U.A.Th.

    2005-01-01

    Comprehensive two-dimensional gas chromatography with electron-capture negative ionization time-of-flight mass spectrometry (GC × GC¿ECNI-TOF-MS) is used to study the composition and characteristics of short-, medium- and long-chain polychlorinated n-alkane (PCA) mixtures. Distinct ordered

  9. Preventive doping control screening analysis of prohibited substances in human urine using rapid-resolution liquid chromatography/high-resolution time-of-flight mass spectrometry

    NARCIS (Netherlands)

    Vonaparti, A.; Lyris, E.; Angelis, Y.S.; Panderi, I.; Koupparis, M.; Tsantili- Kakoulidou, A.; Peters, R.J.B.; Nielen, M.W.F.; Georgakopoulos, C.G.

    2010-01-01

    Unification of the screening protocols for a wide range of doping agents has become an important issue for doping control laboratories. This study presents the development and validation of a generic liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) screening method of 241 small

  10. Characterization of olive oil volatiles by multi-step direct thermal desorption-comprehensive gas chromatography-time-of-flight mass spectrometry using a programmed temperature vaporizing injector

    NARCIS (Netherlands)

    de Koning, S.; Kaal, E.; Janssen, H.-G.; van Platerink, C.; Brinkman, U.A.Th.

    2008-01-01

    The feasibility of a versatile system for multi-step direct thermal desorption (DTD) coupled to comprehensive gas chromatography (GC × GC) with time-of-flight mass spectrometric (TOF-MS) detection is studied. As an application the system is used for the characterization of fresh versus aged olive

  11. Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry in the identification of organic compounds in atmospheric aerosols from coniferous forest

    NARCIS (Netherlands)

    Kallio, M.; Jussila, M.; Rissanen, T.; Anttila, P.; Hartonen, K.; Reissell, A.; Vreuls, R.J.J.; Adahchour, M.; Hyotylainen, T.

    2006-01-01

    Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC-TOF-MS) was applied in the identification of organic compounds in atmospheric aerosols from coniferous forest. The samples were collected at Hyytiälä, Finland, as part of the QUEST campaign, in

  12. Metabolic profiling of Hoodia, Chamomile, Terminalia Species and evaluation of commercial preparations using Ultra-High Performance Quadrupole Time of Flight-Mass Spectrometry

    Science.gov (United States)

    Ultra-High Performance-Quadrupole Time of Flight Mass Spectrometr(UHPLC-QToF-MS)profiling has become an impattant tool for identification of marker compounds and generation of metabolic patterns that could be interrogated using chemometric modeling software. Chemometric approaches can be used to ana...

  13. Analysis of Phospholipid Mixtures from Biological Tissues by Matrix-Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS): A Laboratory Experiment

    Science.gov (United States)

    Eibisch, Mandy; Fuchs, Beate; Schiller, Jurgen; Sub, Rosmarie; Teuber, Kristin

    2011-01-01

    Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used to investigate the phospholipid (PL) compositions of tissues and body fluids, often without previous separation of the total mixture into the individual PL classes. Therefore, the questions of whether all PL classes are detectable…

  14. Comprehensive Two-dimensional Liquid Chromatography coupled to High Resolution Time of Flight Mass Spectrometry for Chemical Characterization of Sewage Treatment Plant Effluents

    NARCIS (Netherlands)

    Ouyang, X.; Leonards, P.E.G.; Legler, J.; van der Oost, R.; de Boer, J.; Lamoree, M.H.

    2015-01-01

    For the first time a comprehensive two-dimensional liquid chromatography (LC. ×. LC) system coupled with a high resolution time-of-flight mass spectrometer (HR-ToF MS) was developed and applied for analysis of emerging toxicants in wastewater effluent. The system was optimized and validated using

  15. Detection of an extended human volatome with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Michael Phillips

    Full Text Available BACKGROUND: Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GCxGC-TOF MS has been proposed as a powerful new tool for multidimensional analysis of complex chemical mixtures. We investigated GCxGC-TOF MS as a new method for identifying volatile organic compounds (VOCs in normal human breath. METHODS: Samples of alveolar breath VOCs and ambient room air VOC were collected with a breath collection apparatus (BCA onto separate sorbent traps from 34 normal healthy volunteers (mean age = 40 yr, SD = 17 yr, male/female = 19/15. VOCs were separated on two serial capillary columns separated by a cryogenic modulator, and detected with TOF MS. The first and second dimension columns were non-polar and polar respectively. RESULTS: BCA collection combined with GC×GC-TOF MS analysis identified approximately 2000 different VOCs in samples of human breath, many of which have not been previously reported. The 50 VOCs with the highest alveolar gradients (abundance in breath minus abundance in ambient room air mostly comprised benzene derivatives, acetone, methylated derivatives of alkanes, and isoprene. CONCLUSIONS: Collection and analysis of breath VOCs with the BCA-GC×GC-TOF MS system extended the size of the detectable human volatile metabolome, the volatome, by an order of magnitude compared to previous reports employing one-dimensional GC-MS. The size of the human volatome has been under-estimated in the past due to coelution of VOCs in one-dimensional GC analytical systems.

  16. A radio frequency signal driver for quadrupole used in desktop orthogonal-injection time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Guo, Changjuan; Jiang, Zhongyao; Xie, Chunguang; Zhu, Hui; Gao, Wei; Huang, Zhengxu; Cheng, Ping; Fu, Zhong; Zhou, Zhen

    2012-01-01

    According to the demand of home-made spectrometer, a radio frequency (RF) signal driver was developed. This RF signal driver is composed of signal generating circuit, signal amplification circuit and power output circuit, to drive the radio frequency quadrupole (RFQ). The designed RFQ is used to transfer ions generated in atmospheric pressure ion source to a home-made desktop orthogonal-injection time-of-flight mass analyzer. This signal driver is divided into low-frequency part and high-frequency part to support RFQ transferring ions of larger values (i.e., m/z=100–600) and smaller values (i.e., m/z=20–100) respectively. The low-frequency part of the RF signal driver can provide RF signals with resonance frequency of 1.43 MHz, peak to peak voltage V p–p of 0–1080 V, and the high-frequency part can provide RF signals with resonance frequency of 2.05 MHz, peak to peak voltage V p–p of 0–520 V. With the radio frequency signal driver described in this paper, ions in the range m/z 20–600 can be transmitted efficiently by RFQ. -- Highlights: ► According to the demand of home-made TOF MS, a radio frequency (RF) signal driver was developed. ► First, we calculated by the theory to determine the parameters, then based on the calculations designed the RF circuit and built it, finally tested the results. ► Found in practice, the theoretical calculations of the air core coil inductances are very close to the actual results. ► The RF circuit built is cheap, compact, stable, and easy to adjust according to the different needs of the TOF MS.

  17. Potential metabolomic biomarkers for reliable diagnosis of Behcet's disease using gas chromatography/ time-of-flight-mass spectrometry.

    Science.gov (United States)

    Ahn, Joong Kyong; Kim, Jungyeon; Hwang, Jiwon; Song, Juhwan; Kim, Kyoung Heon; Cha, Hoon-Suk

    2017-05-24

    Although many diagnostic criteria of Behcet's disease (BD) have been developed and revised by experts, diagnosing BD is still complicated and challenging. No metabolomic studies on serum have been attempted to improve the diagnosis and to identify potential biomarkers of BD. The purposes of this study were to investigate distinctive metabolic changes in serum samples of BD patients and to identify metabolic candidate biomarkers for reliable diagnosis of BD using the metabolomics platform. Metabolomic profiling of 90 serum samples from 45 BD patients and 45 healthy controls (HCs) were performed via gas chromatography with time-of-flight mass spectrometry (GC/TOF-MS) with multivariate statistical analyses. A total of 104 metabolites were identified from samples. The serum metabolite profiles obtained from GC/TOF-MS analysis can distinguish BD patients from HC group in discovery set. The variation values of the partial least squared-discrimination analysis (PLS-DA) model are R 2 X of 0.246, R 2 Y of 0.913 and Q 2 of 0.852, respectively, indicating strong explanation and prediction capabilities of the model. A panel of five metabolic biomarkers, namely, decanoic acid, fructose, tagatose, linoleic acid and oleic acid were selected and adequately validated as putative biomarkers of BD (sensitivity 100%, specificity 97.1%, area under the curve 0.998) in the discovery set and independent set. The PLS_DA model showed clear discrimination of BD and HC groups by the five metabolic biomarkers in independent set. This is the first report on characteristic metabolic profiles and potential metabolite biomarkers in serum for reliable diagnosis of BD using GC/TOF-MS. Copyright © 2017. Published by Elsevier SAS.

  18. Untargeted metabolomic analysis using liquid chromatography quadrupole time-of-flight mass spectrometry for non-volatile profiling of wines

    Energy Technology Data Exchange (ETDEWEB)

    Arbulu, M. [Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz (Spain); Sampedro, M.C. [Central Service of Analysis, SGIker, University of the Basque Country, 01006 Vitoria-Gasteiz (Spain); Gómez-Caballero, A.; Goicolea, M.A. [Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz (Spain); Barrio, R.J., E-mail: r.barrio@ehu.es [Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz (Spain)

    2015-02-09

    Highlights: • An untargeted metabolomic method for the non-volatile profile of the Graciano wine was developed. • 411 different metabolites in Graciano Vitis vinifera red wine were identified. • 15 compounds could serve to differentiate Graciano and Tempranillo wines. • An enological database (WinMet) with 2080 compounds was constructed. - Abstract: The current study presents a method for comprehensive untargeted metabolomic fingerprinting of the non-volatile profile of the Graciano Vitis vinifera wine variety, using liquid chromatography/electrospray ionization time of flight mass spectrometry (LC–ESI-QTOF). Pre-treatment of samples, chromatographic columns, mobile phases, elution gradients and ionization sources, were evaluated for the extraction of the maximum number of metabolites in red wine. Putative compounds were extracted from the raw data using the extraction algorithm, molecular feature extractor (MFE). For the metabolite identification the WinMet database was designed based on electronic databases and literature research and includes only the putative metabolites reported to be present in oenological matrices. The results from WinMet were compared with those in the METLIN database to evaluate how much the databases overlap for performing identifications. The reproducibility of the analysis was assessed using manual processing following replicate injections of Vitis vinifera cv. Graciano wine spiked with external standards. In the present work, 411 different metabolites in Graciano Vitis vinifera red wine were identified, including primary wine metabolites such as sugars (4%), amino acids (23%), biogenic amines (4%), fatty acids (2%), and organic acids (32%) and secondary metabolites such as phenols (27%) and esters (8%). Significant differences between varieties Tempranillo and Graciano were related to the presence of fifteen specific compounds.

  19. Velocity profiles of species ejected in ultraviolet laser ablation of several polymers examined by time-of-flight mass spectroscopy

    Science.gov (United States)

    Hansen, S. G.

    1989-10-01

    Velocity distributions of molecular species ejected by ˜80 mJ/cm2, 266-nm laser ablation of polycarbonate, polyimide, poly(ethylene terephthalate), and poly(α-methylstyrene) are presented and discussed. Time-of-flight mass spectroscopy in conjunction with both 248- and 193-nm laser ionization was used to probe the escaping vapor. Up to three distinct waves of material pass through the ionization zone. The fastest wave (6-8×105 cm/s) appears to consist of highly degraded species such as C3; the arrival profiles are well fit by a velocity offset Maxwell-Boltzmann distribution with offsets typically 3-6×105 cm/s and transverse temperatures above 10 000 K. The second wave has a characteristic velocity of 1-2×105 cm/s, and, except with the poly(α-methylstyrene) target, the associated material is not cleanly ionized to parent ions under our typical conditions. It is hypothesized that this wave consists of hot, fairly heavy (up to a few hundred amu) radicals. The slow wave (2-5×104 cm/s) is composed of stable molecules which do not readily condense on the chamber walls. Its arrival profile is too broad to be described by a simple Maxwell-Boltzmann velocity distribution. A mechanism involving a thermal velocity distribution combined with laser-associated background vapor might explain the broad profiles. Problems related to the largely unknown and highly variable ionization cross sections of diverse organic molecules with 193- and 248-nm light are briefly discussed.

  20. Untargeted metabolomic analysis using liquid chromatography quadrupole time-of-flight mass spectrometry for non-volatile profiling of wines

    International Nuclear Information System (INIS)

    Arbulu, M.; Sampedro, M.C.; Gómez-Caballero, A.; Goicolea, M.A.; Barrio, R.J.

    2015-01-01

    Highlights: • An untargeted metabolomic method for the non-volatile profile of the Graciano wine was developed. • 411 different metabolites in Graciano Vitis vinifera red wine were identified. • 15 compounds could serve to differentiate Graciano and Tempranillo wines. • An enological database (WinMet) with 2080 compounds was constructed. - Abstract: The current study presents a method for comprehensive untargeted metabolomic fingerprinting of the non-volatile profile of the Graciano Vitis vinifera wine variety, using liquid chromatography/electrospray ionization time of flight mass spectrometry (LC–ESI-QTOF). Pre-treatment of samples, chromatographic columns, mobile phases, elution gradients and ionization sources, were evaluated for the extraction of the maximum number of metabolites in red wine. Putative compounds were extracted from the raw data using the extraction algorithm, molecular feature extractor (MFE). For the metabolite identification the WinMet database was designed based on electronic databases and literature research and includes only the putative metabolites reported to be present in oenological matrices. The results from WinMet were compared with those in the METLIN database to evaluate how much the databases overlap for performing identifications. The reproducibility of the analysis was assessed using manual processing following replicate injections of Vitis vinifera cv. Graciano wine spiked with external standards. In the present work, 411 different metabolites in Graciano Vitis vinifera red wine were identified, including primary wine metabolites such as sugars (4%), amino acids (23%), biogenic amines (4%), fatty acids (2%), and organic acids (32%) and secondary metabolites such as phenols (27%) and esters (8%). Significant differences between varieties Tempranillo and Graciano were related to the presence of fifteen specific compounds

  1. Effect of heating strategies on whey protein denaturation--Revisited by liquid chromatography quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Akkerman, M; Rauh, V M; Christensen, M; Johansen, L B; Hammershøj, M; Larsen, L B

    2016-01-01

    Previous standards in the area of effect of heat treatment processes on milk protein denaturation were based primarily on laboratory-scale analysis and determination of denaturation degrees by, for example, electrophoresis. In this study, whey protein denaturation was revisited by pilot-scale heating strategies and liquid chromatography quadrupole time-of-flight mass spectrometer (LC/MC Q-TOF) analysis. Skim milk was heat treated by the use of 3 heating strategies, namely plate heat exchanger (PHE), tubular heat exchanger (THE), and direct steam injection (DSI), under various heating temperatures (T) and holding times. The effect of heating strategy on the degree of denaturation of β-lactoglobulin and α-lactalbumin was determined using LC/MC Q-TOF of pH 4.5-soluble whey proteins. Furthermore, effect of heating strategy on the rennet-induced coagulation properties was studied by oscillatory rheometry. In addition, rennet-induced coagulation of heat-treated micellar casein concentrate subjected to PHE was studied. For skim milk, the whey protein denaturation increased significantly as T and holding time increased, regardless of heating method. High denaturation degrees were obtained for T >100°C using PHE and THE, whereas DSI resulted in significantly lower denaturation degrees, compared with PHE and THE. Rennet coagulation properties were impaired by increased T and holding time regardless of heating method, although DSI resulted in less impairment compared with PHE and THE. No significant difference was found between THE and PHE for effect on rennet coagulation time, whereas the curd firming rate was significantly larger for THE compared with PHE. Micellar casein concentrate possessed improved rennet coagulation properties compared with skim milk receiving equal heat treatment. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Direct determination of acrylamide in food by gas chromatography-high-resolution time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Dunovska, Lenka; Cajka, Tomas; Hajslova, Jana; Holadova, Katerina

    2006-01-01

    Simple and rapid gas chromatographic (GC) method employing a high-resolution time-of-flight mass analyzer that enables direct analysis (no derivatization) of acrylamide in various heat-processed foodstuffs has been developed and validated. Co-isolation of acrylamide precursors such as sugars and asparagine, constituting the risk of results overestimation due to additional formation of analyte in hot GC injector, is avoided by the extraction with n-propanol followed by solvent exchange to acetonitrile (MeCN). Introduction of a novel purification strategy, dispersive solid phase extraction, based on addition of primary-secondary amine (PSA) sorbent into deffated extract in MeCN, provides a significant reduction of some abundant matrix co-extracts (mainly free fatty acids). Isotope dilution technique (d 3 -acrylamide as an internal standard) is employed for compensation of potential target analyte losses and/or matrix-inducted chromatographic response enhancement. Limits of quantifications (LOQs) ranged between 15 and 40 μg kg -1 and recoveries were between 97 and 108% depending on the examined food matrix. The repeatability of measurements (expressed as relative standard deviation, R.S.D.) was as low as 1.9% for potato crisps containing acrylamide at a level of 1 mg kg -1 . Slightly higher values (R.S.D. < 4.0%) were achieved for breakfast cereals and crisp bread with approximately 10 times lower content of this processing contaminant. Trueness of results generated by this new method was demonstrated via FAPAS[reg] (Food Analysis Performance Assessment Scheme) interlaboratory proficiency tests

  3. Performance of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identifying Clinical Malassezia Isolates.

    Science.gov (United States)

    Denis, Julie; Machouart, Marie; Morio, Florent; Sabou, Marcela; Kauffmann-LaCroix, Catherine; Contet-Audonneau, Nelly; Candolfi, Ermanno; Letscher-Bru, Valérie

    2017-01-01

    The genus Malassezia comprises commensal yeasts on human skin. These yeasts are involved in superficial infections but are also isolated in deeper infections, such as fungemia, particularly in certain at-risk patients, such as neonates or patients with parenteral nutrition catheters. Very little is known about Malassezia epidemiology and virulence. This is due mainly to the difficulty of distinguishing species. Currently, species identification is based on morphological and biochemical characteristics. Only molecular biology techniques identify species with certainty, but they are time-consuming and expensive. The aim of this study was to develop and evaluate a matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) database for identifying Malassezia species by mass spectrometry. Eighty-five Malassezia isolates from patients in three French university hospitals were investigated. Each strain was identified by internal transcribed spacer sequencing. Forty-five strains of the six species Malassezia furfur, M. sympodialis, M. slooffiae, M. globosa, M. restricta, and M. pachydermatis allowed the creation of a MALDI-TOF database. Forty other strains were used to test this database. All strains were identified by our Malassezia database with log scores of >2.0, according to the manufacturer's criteria. Repeatability and reproducibility tests showed a coefficient of variation of the log score values of Malassezia database allows easy, fast, and reliable identification of Malassezia species. Implementation of this database will contribute to a better, more rapid identification of Malassezia species and will be helpful in gaining a better understanding of their epidemiology. Copyright © 2016 Denis et al.

  4. Performance of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Identifying Clinical Malassezia Isolates

    Science.gov (United States)

    Machouart, Marie; Morio, Florent; Sabou, Marcela; Kauffmann-LaCroix, Catherine; Contet-Audonneau, Nelly; Candolfi, Ermanno; Letscher-Bru, Valérie

    2016-01-01

    ABSTRACT The genus Malassezia comprises commensal yeasts on human skin. These yeasts are involved in superficial infections but are also isolated in deeper infections, such as fungemia, particularly in certain at-risk patients, such as neonates or patients with parenteral nutrition catheters. Very little is known about Malassezia epidemiology and virulence. This is due mainly to the difficulty of distinguishing species. Currently, species identification is based on morphological and biochemical characteristics. Only molecular biology techniques identify species with certainty, but they are time-consuming and expensive. The aim of this study was to develop and evaluate a matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) database for identifying Malassezia species by mass spectrometry. Eighty-five Malassezia isolates from patients in three French university hospitals were investigated. Each strain was identified by internal transcribed spacer sequencing. Forty-five strains of the six species Malassezia furfur, M. sympodialis, M. slooffiae, M. globosa, M. restricta, and M. pachydermatis allowed the creation of a MALDI-TOF database. Forty other strains were used to test this database. All strains were identified by our Malassezia database with log scores of >2.0, according to the manufacturer's criteria. Repeatability and reproducibility tests showed a coefficient of variation of the log score values of Malassezia database allows easy, fast, and reliable identification of Malassezia species. Implementation of this database will contribute to a better, more rapid identification of Malassezia species and will be helpful in gaining a better understanding of their epidemiology. PMID:27795342

  5. Probing orientation of immobilized humanized anti-lysozyme variable fragment by time-of-flight secondary-ion mass spectrometry.

    Science.gov (United States)

    Baio, J E; Cheng, Fang; Ratner, Daniel M; Stayton, Patrick S; Castner, David G

    2011-04-01

    As methods to orient proteins are conceived, techniques must also be developed that provide an accurate characterization of immobilized protein orientation. In this study, X-ray photoelectron spectroscopy (XPS), surface plasmon resonance (SPR), and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to probe the orientation of a surface immobilized variant of the humanized anti-lysozyme variable fragment (HuLys Fv, 26 kDa). This protein contained both a hexahistidine tag and a cysteine residue, introduced at opposite ends of the HuLys Fv, for immobilization onto nitrilotriacetic acid (NTA) and maleimide oligo(ethylene glycol) (MEG)-terminated substrates, respectively. The thiol group on the cysteine residue selectively binds to the MEG groups, while the his-tag selectively binds to the Ni-loaded NTA groups. XPS was used to monitor protein coverage on both surfaces by following the change in the nitrogen atomic %. SPR results showed a 10-fold difference in lysozyme binding between the two different HuLys Fv orientations. The ToF-SIMS data provided a clear differentiation between the two samples due to the intensity differences of secondary ions originating from asymmetrically located amino acids in HuLys Fv (histidine: 81, 82, and 110 m/z; phenylalanine: 120 and 131 m/z). An intensity ratio of the secondary ion peaks from the histidine and phenylalanine residues at either end of the protein was then calculated directly from the ToF-SIMS data. The 45% change in this ratio, observed between the NTA and MEG substrates with similar HuLys Fv surface coverages, indicates that the HuLys Fv fragment has opposite orientations on two different surfaces. Copyright © 2011 Wiley Periodicals, Inc.

  6. Multiple heart-cutting two dimensional liquid chromatography quadrupole time-of-flight mass spectrometry of pyrrolizidine alkaloids.

    Science.gov (United States)

    van de Schans, Milou G M; Blokland, Marco H; Zoontjes, Paul W; Mulder, Patrick P J; Nielen, Michel W F

    2017-06-23

    Pyrrolizidine alkaloids (PAs) and their and the corresponding N-oxides (PAs-ox) are genotoxic plant metabolites which can be present as unwanted contaminants in food products of herbal origin like tea and food supplements. PAs and PAs-ox come in a wide variety of molecular structures including many structural isomers. For toxicity assessment it is important to determine the composition of a sample and to resolve all isomeric PAs and PAs-ox, which is currently not possible in one liquid or gas chromatographic (LC or GC) run. In this study an online two dimensional liquid chromatography quadrupole time-of-flight mass spectrometry (2D-LC QToF-MS) method was developed to resolve isomeric PAs and PAs-ox. After comprehensive column and mobile phase selection a polar endcapped C 18 column was used at pH 3 in the first dimension, and a cross-linked C 18 column at pH 10 in the second dimension. Injection solvents, column IDs, flow rates and temperatures were carefully optimized. The method with column selection valve switching described in this study was able to resolve and visualize 20 individual PAs/PAs-ox (6 sets of isomers) in one 2D-LC QToF-MS run. Moreover, it was shown that all isomeric PAs/PAs-ox could be unambiguously annotated. The method was shown to be applicable for the determination and quantification of isomeric PAs/PAs-ox in plant extracts and could be easily extended to include other PAs and PAs-ox. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Liquid chromatography time of flight mass spectrometry based environmental metabolomics for the analysis of Pseudomonas putida Bacteria in potable water.

    Science.gov (United States)

    Kouremenos, Konstantinos A; Beale, David J; Antti, Henrik; Palombo, Enzo A

    2014-09-01

    Water supply biofilms have the potential to harbour waterborne diseases, accelerate corrosion, and contribute to the formation of tuberculation in metallic pipes. One particular species of bacteria known to be found in the water supply networks is Pseudomonas sp., with the presence of Pseudomonas putida being isolated to iron pipe tubercles. Current methods for detecting and analysis pipe biofilms are time consuming and expensive. The application of metabolomics techniques could provide an alternative method for assessing biofilm risk more efficiently based on bacterial activity. As such, this paper investigates the application of metabolomic techniques and provides a proof-of-concept application using liquid chromatography coupled with time-of-flight mass spectrometry (LC-ToF-MS) to three biologically independent P. putida samples, across five different growth conditions exposed to solid and soluble iron (Fe). Analysis of the samples in +ESI and -ESI mode yielded 887 and 1789 metabolite features, respectively. Chemometric analysis of the +ESI and -ESI data identified 34 and 39 significant metabolite features, respectively, where features were considered significant if the fold change was greater than 2 and obtained a p-value less than 0.05. Metabolite features were subsequently identified according to the Metabolomics Standard Initiative (MSI) Chemical Analysis Workgroup using analytical standards and standard online LC-MS databases. Possible markers for P. putida growth, with and without being exposed to solid and soluble Fe, were identified from a diverse range of different chemical classes of metabolites including nucleobases, nucleosides, dipeptides, tripeptides, amino acids, fatty acids, sugars, and phospholipids. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF: performance, reference spectra and classification of atmospheric samples

    Directory of Open Access Journals (Sweden)

    X. Shen

    2018-04-01

    Full Text Available The laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF, AeroMegt GmbH is able to identify the chemical composition and mixing state of individual aerosol particles, and thus is a tool for elucidating their impacts on human health, visibility, ecosystem, and climate. The overall detection efficiency (ODE of the instrument we use was determined to range from  ∼  (0.01 ± 0.01 to  ∼  (4.23 ± 2.36 % for polystyrene latex (PSL in the size range of 200 to 2000 nm,  ∼  (0.44 ± 0.19 to  ∼  (6.57 ± 2.38 % for ammonium nitrate (NH4NO3, and  ∼  (0.14 ± 0.02 to  ∼  (1.46 ± 0.08 % for sodium chloride (NaCl particles in the size range of 300 to 1000 nm. Reference mass spectra of 32 different particle types relevant for atmospheric aerosol (e.g. pure compounds NH4NO3, K2SO4, NaCl, oxalic acid, pinic acid, and pinonic acid; internal mixtures of e.g. salts, secondary organic aerosol, and metallic core–organic shell particles; more complex particles such as soot and dust particles were determined. Our results show that internally mixed aerosol particles can result in spectra with new clusters of ions, rather than simply a combination of the spectra from the single components. An exemplary 1-day ambient data set was analysed by both classical fuzzy clustering and a reference-spectra-based classification method. Resulting identified particle types were generally well correlated. We show how a combination of both methods can greatly improve the interpretation of single-particle data in field measurements.

  9. ALICE Time Of Flight Detector

    CERN Multimedia

    Alici, A

    2013-01-01

    Charged particles in the intermediate momentum range are identified in ALICE by the Time Of Flight (TOF) detector. The time measurement with the TOF, in conjunction with the momentum and track length measured by the tracking detector, is used to calculate the particle mass.

  10. Matrix effect in analysis of pesticide residues in fruits and vegetables by high performance liquid chromatography with quadrupole-time of flight mass spectrometry

    Directory of Open Access Journals (Sweden)

    Andoralov A.M.

    2017-03-01

    Full Text Available For modern food safety control are using techniques that allow to determinate a large number of components. So for determination of pesticide residues in fruits and vegetables commonly used methods of gas and liquid chromatography with time-of-flight mass-spectrometric detection. This system allows to carry out quantitative determination several hundreds of pesticides and their identification by the characteristic fragments of the mass spectrum. The main problem when using mass spectrometric detection is a matrix effect, which is caused by the influence of matrix components extracted with pesticides from the sample. In this work, attempts have been made to reduce the influence of the matrix in the analysis of pesticide residues by high performance liquid chromatography with time of flight mass spectrometry (HPLC / TOFMS.

  11. Polymerase Chain Reaction–Electrospray–Time-of-Flight Mass Spectrometry Versus Culture for Bacterial Detection in Septic Arthritis and Osteoarthritis

    Science.gov (United States)

    Palmer, Michael P.; Melton-Kreft, Rachael; Nistico, Laura; Hiller, N. Louisa; Kim, Leon H.J.; Altman, Gregory T.; Altman, Daniel T.; Sotereanos, Nicholas G.; Hu, Fen Z.

    2016-01-01

    Background: Preliminary studies have identified known bacterial pathogens in the knees of patients with osteoarthritis (OA) before arthroplasty. Aims: The current study was designed to determine the incidence and types of bacteria present in the synovial fluid of native knee joints from adult patients with diagnoses of septic arthritis and OA. Patients and Methods: Patients were enrolled between October 2010 and January 2013. Synovial fluid samples from the affected knee were collected and evaluated with both traditional microbial culture and polymerase chain reaction–electrospray ionization–time-of-flight mass spectrometry (molecular diagnostics [MDx]) to prospectively characterize the microbial content. Patients were grouped by diagnosis into one of two cohorts, those with clinical suspicion of septic arthritis (n = 44) and those undergoing primary arthroplasty of the knee for OA (n = 21). In all cases where discrepant culture and MDx results were obtained, we performed species-specific 16S rRNA fluorescence in situ hybridization (FISH) as a confirmatory test. Results: MDx testing identified bacteria in 50% of the suspected septic arthritis cases and 29% of the arthroplasty cases, whereas culture detected bacteria in only 16% of the former and 0% of the latter group. The overall difference in detection rates for culture and MDx was very highly significant, p-value = 2.384 × 10−7. All of the culture-positive cases were typed as Staphylococcus aureus. Two of the septic arthritis cases were polymicrobial as was one of the OA cases by MDx. FISH testing of the specimens with discordant results supported the MDx findings in 91% (19/21) of the cases, including one case where culture detected S. aureus and MDx detected Streptococcus agalactiae. Conclusions: MDx were more sensitive than culture, as confirmed by FISH. FISH only identifies bacteria that are embedded or infiltrated within the tissue and is thus not susceptible to contamination. Not all

  12. Polymerase Chain Reaction-Electrospray-Time-of-Flight Mass Spectrometry Versus Culture for Bacterial Detection in Septic Arthritis and Osteoarthritis.

    Science.gov (United States)

    Palmer, Michael P; Melton-Kreft, Rachael; Nistico, Laura; Hiller, N Louisa; Kim, Leon H J; Altman, Gregory T; Altman, Daniel T; Sotereanos, Nicholas G; Hu, Fen Z; De Meo, Patrick J; Ehrlich, Garth D

    2016-12-01

    Preliminary studies have identified known bacterial pathogens in the knees of patients with osteoarthritis (OA) before arthroplasty. The current study was designed to determine the incidence and types of bacteria present in the synovial fluid of native knee joints from adult patients with diagnoses of septic arthritis and OA. Patients were enrolled between October 2010 and January 2013. Synovial fluid samples from the affected knee were collected and evaluated with both traditional microbial culture and polymerase chain reaction-electrospray ionization-time-of-flight mass spectrometry (molecular diagnostics [MDx]) to prospectively characterize the microbial content. Patients were grouped by diagnosis into one of two cohorts, those with clinical suspicion of septic arthritis (n = 44) and those undergoing primary arthroplasty of the knee for OA (n = 21). In all cases where discrepant culture and MDx results were obtained, we performed species-specific 16S rRNA fluorescence in situ hybridization (FISH) as a confirmatory test. MDx testing identified bacteria in 50% of the suspected septic arthritis cases and 29% of the arthroplasty cases, whereas culture detected bacteria in only 16% of the former and 0% of the latter group. The overall difference in detection rates for culture and MDx was very highly significant, p-value = 2.384 × 10 -7 . All of the culture-positive cases were typed as Staphylococcus aureus. Two of the septic arthritis cases were polymicrobial as was one of the OA cases by MDx. FISH testing of the specimens with discordant results supported the MDx findings in 91% (19/21) of the cases, including one case where culture detected S. aureus and MDx detected Streptococcus agalactiae. MDx were more sensitive than culture, as confirmed by FISH. FISH only identifies bacteria that are embedded or infiltrated within the tissue and is thus not susceptible to contamination. Not all suspected cases of septic arthritis contain bacteria, but a

  13. Rapid "breath-print" of liver cirrhosis by proton transfer reaction time-of-flight mass spectrometry. A pilot study.

    Directory of Open Access Journals (Sweden)

    Filomena Morisco

    Full Text Available UNLABELLED: The aim of the present work was to test the potential of Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS in the diagnosis of liver cirrhosis and the assessment of disease severity by direct analysis of exhaled breath. Twenty-six volunteers have been enrolled in this study: 12 patients (M/F 8/4, mean age 70.5 years, min-max 42-80 years with liver cirrhosis of different etiologies and at different severity of disease and 14 healthy subjects (M/F 5/9, mean age 52.3 years, min-max 35-77 years. Real time breath analysis was performed on fasting subjects using a buffered end-tidal on-line sampler directly coupled to a PTR-ToF-MS. Twelve volatile organic compounds (VOCs resulted significantly differently in cirrhotic patients (CP compared to healthy controls (CTRL: four ketones (2-butanone, 2- or 3- pentanone, C8-ketone, C9-ketone, two terpenes (monoterpene, monoterpene related, four sulphur or nitrogen compounds (sulfoxide-compound, S-compound, NS-compound, N-compound and two alcohols (heptadienol, methanol. Seven VOCs (2-butanone, C8-ketone, a monoterpene, 2,4-heptadienol and three compounds containing N, S or NS resulted significantly differently in compensate cirrhotic patients (Child-Pugh A; CP-A and decompensated cirrhotic subjects (Child-Pugh B+C; CP-B+C. ROC (Receiver Operating Characteristic analysis was performed considering three contrast groups: CP vs CTRL, CP-A vs CTRL and CP-A vs CP-B+C. In these comparisons monoterpene and N-compound showed the best diagnostic performance. CONCLUSIONS: Breath analysis by PTR-ToF-MS was able to distinguish cirrhotic patients from healthy subjects and to discriminate those with well compensated liver disease from those at more advanced severity stage. A breath-print of liver cirrhosis was assessed for the first time.

  14. A fragmentation study of kaempferol using electrospray quadrupole time-of-flight mass spectrometry at high mass resolution

    Science.gov (United States)

    March, Raymond E.; Miao, Xiu-Sheng

    2004-02-01

    A mass spectrometric method based on the combined use of electrospray ionization, collision-induced dissociation and tandem mass spectrometry at high mass resolution has been applied to an investigation of the structural characterization of protonated and deprotonated kaempferol (3,5,7,4'-tetrahydroxyflavone). Low-energy product ion mass spectra of [M+H]+ ions showed simple fragmentations of the C ring that permitted characterization of the substituents in the A and B rings. In addition, four rearrangement reactions accompanied by losses of C2H2O, CHO[radical sign], CO, and H2O were observed. Low-energy product ion mass spectra of [M-H]- ions showed only four rearrangement reactions accompanied by losses of OH[radical sign], CO, CH2O, and C2H2O. The use of elevated cone voltages permitted observation of product ion mass spectra of selected primary and secondary fragment ions so that each fragment ion reported was observed as a direct product of its immediate precursor ion. Product ion mass spectra examined at high mass resolution allowed unambiguous determination of the elemental composition of fragment ions and resolution of two pairs of isobars. Fragmentation mechanisms and ion structures have been proposed.

  15. Real-time analysis of soot emissions from bituminous coal pyrolysis and combustion with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer.

    Science.gov (United States)

    Gao, Shaokai; Zhang, Yang; Meng, Junwang; Shu, Jinian

    2009-01-15

    This paper reports on-line analyses of the soot emissions from the Inner Mongolia bituminous coal combustion and pyrolysis processes with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). The soot particles are generated by heating a small amount of screened coal powder in synthetic air and nitrogen atmosphere in a tubular oven. The vacuum ultraviolet photoionization time-of-flight (VUV-TOF) mass spectra of the soot particles emitted from combustion and pyrolysis at different oven temperatures and different stages are obtained. The VUV-TOF mass spectra are assigned with the references of the results of the off-line GC/MS analysis.

  16. Spontaneous Desorption time-of-flight Mass Spectrometry (SDMS): Time correlated emission of electrons and negative ions in a constant electric field

    Science.gov (United States)

    Della Negra, Serge; Le Beyec, Yvon; Håkansson, Per

    1985-04-01

    A very simple time of flight mass spectrometer has been used to measure mass spectra for the negative ions of organic compounds in the mass range up to 3000 u. Desorbed ions were obtained by applying a constant negative voltage to a flat metallic surface, coated with a few micrograms of organic material. We show that electrons and negative ions are emitted simultaneously from the same point on the surface. Mass spectra obtained by this technique are compared to mass spectra for the same compounds, obtained with 252Cf fission fragment ionization.

  17. Chemical material basis study of Xuefu Zhuyu decoction by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2015-12-01

    Full Text Available Xuefu Zhuyu decoction, a classic prescription in traditional Chinese medicine, has been widely used in the clinical treatment of cardiovascular and cerebrovascular diseases. In order to profile the chemical material basis of this formula, an ultra-performance liquid chromatography (UPLC coupled with quadrupole time-of-flight mass spectrometry (Q/TOF MS method has been established for rapid separation and structural characterization of compounds in the decoction. As a result, 103 compounds including phenolic acids, spermidines, C-glycosyl quinochalcones, terpenoids, flavonoids, saponins, and others were detected; 35 of them were unambiguously identified, and 68 were tentatively characterized by comparing the retention time, MS data, characteristic MS fragmentation pattern and retrieving the literature. In conclusion, the UPLC coupled with quadrupole time-of-flight mass spectrometry method developed in this work is an efficient approach to perform chemical material basis studies of traditional Chinese medicine formulae.

  18. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry: protocol standardization and database expansion for rapid identification of clinically important molds.

    Science.gov (United States)

    Paul, Saikat; Singh, Pankaj; Rudramurthy, Shivaprakash M; Chakrabarti, Arunaloke; Ghosh, Anup K

    2017-12-01

    To standardize the matrix-assisted laser desorption ionization-time of flight mass spectrometry protocols and expansion of existing Bruker Biotyper database for mold identification. Four different sample preparation methods (protocol A, B, C and D) were evaluated. On analyzing each protein extraction method, reliable identification and best log scores were achieved through protocol D. The same protocol was used to identify 153 clinical isolates. Of these 153, 123 (80.3%) were accurately identified by using existing database and remaining 30 (19.7%) were not identified due to unavailability in database. On inclusion of missing main spectrum profile in existing database, all 153 isolates were identified. Matrix-assisted laser desorption ionization-time of flight mass spectrometry can be used for routine identification of clinically important molds.

  19. Identification of Wheat Varieties Using Matrix-assisted Laser Desorption/Ionisation Time-of-flight Mass Spectrometry and an Artificial Neural network

    DEFF Research Database (Denmark)

    Bloch, Helle Aagaard; Kesmir, Can; Petersen, Marianne Kjerstine

    1999-01-01

    A novel tool for variety identification of wheat (Triticum aestivum L,) has been developed: an artificial neural network (ANN) is used to classify the gliadin fraction analysed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). The robustness of this no......A novel tool for variety identification of wheat (Triticum aestivum L,) has been developed: an artificial neural network (ANN) is used to classify the gliadin fraction analysed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). The robustness...... of this novel method with respect to various experimental parameters has been tested, The results can be summarised: (i) With this approach 97% of the wheat varieties can be classified correctly with a corresponding correlation coefficient of 1.0, (ii) The method is fast since the time of extracting gliadins...

  20. High mass resolution, high angular acceptance time-of-flight mass spectroscopy for planetary missions under the Planetary Instrument Definition and Development Program (PIDDP)

    Science.gov (United States)

    Young, David T.

    1991-01-01

    This final report covers three years and several phases of work in which instrumentation for the Planetary Instrument Definition and Development Program (PIDDP) were successfully developed. There were two main thrusts to this research: (1) to develop and test methods for electrostatically scanning detector field-of-views, and (2) to improve the mass resolution of plasma mass spectrometers to M/delta M approximately 25, their field-of-view (FOV) to 360 degrees, and their E-range to cover approximately 1 eV to 50 keV. Prototypes of two different approaches to electrostatic scanning were built and tested. The Isochronous time-of-flight (TOF) and the linear electric field 3D TOF devices were examined.

  1. Laser desorption and time-of-flight mass spectrometry. Fundamentals .Applications; Desorption laser et spectrometrie de masse par temps de vol. Aspects fondamentaux. Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chaurand, P.

    1994-11-01

    Time-of-flight mass spectrometry is a very powerful technique for the analysis of heavy molecular ions (100 000 u and more). The ejection in the gas phase and the ionization of these molecules is now possible through the MALDI technique (Matrix Assisted Laser Desorption Ionization). This technique consists in mixing the heavy molecules to be analysed with a organic matrix which absorbs at the wavelength of the laser. The necessary irradiance are of the order of 10{sup 6} W/cm{sup 2}. In these conditions we have shown that the mass resolutions are optimum and that the relative mass accuracies are of the order of 10{sup -4}. We have also demonstrated that the emission angle of the molecular ions in MALDI depends on the incident angle of the laser light. During the desorption process, the molecular ions are emitted in the opposite direction of the incident laser light. This effect is particularly important for the design of the accelerating stage of the time-of-flight spectrometers. Problems relative to the detection of these heavy molecular ions have been studied in details between 0.5 10{sup 4} m/s and 10{sup 5} m/s. The velocity threshold of the electronic emission is lower than the value of 0.5 10{sup 4} m/s. The relation between the electronic emission and the projectile velocity is complex. Finally, examples on mass identification of C{sub 60} molecules and derivated C{sub 60} are presented. Desorption methods are compared. (author). 32 refs., 34 figs.

  2. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry for species identification of nonfermenting Gram-negative bacilli.

    Science.gov (United States)

    Almuzara, Marisa; Barberis, Claudia; Traglia, Germán; Famiglietti, Angela; Ramirez, Maria Soledad; Vay, Carlos

    2015-05-01

    Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) to identify 396 Nonfermenting Gram-Negative Bacilli clinical isolates was evaluated in comparison with conventional phenotypic tests and/or molecular methods. MALDI-TOF MS identified to species level 256 isolates and to genus or complex level 112 isolates. It identified 29 genera including uncommon species. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Comprehensive two-dimensional liquid chromatography–time-of-flight mass spectrometry in the analysis of acidic compounds in atmospheric aerosols

    Czech Academy of Sciences Publication Activity Database

    Pól, Jaroslav; Hohnová, B.; Jussila, M.; Hyötyläinen, T.

    2006-01-01

    Roč. 1130, č. 1 (2006), s. 64-71 ISSN 0021-9673. [International Symposium on Hyphenated Techniques in Chromatography and Hyphenated Chromatographic Analyzers /9./. York, 08.02.2006-10.02.2006] Institutional research plan: CEZ:AV0Z40310501 Keywords : comprehensive two-dimensional liquid chromatography * time-of-flight mass spectrometry * atmospheric aerosol analysis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.554, year: 2006

  4. Fast, high peak capacity separations in comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry.

    Science.gov (United States)

    Fitz, Brian D; Wilson, Ryan B; Parsons, Brendon A; Hoggard, Jamin C; Synovec, Robert E

    2012-11-30

    Peak capacity production is substantially improved for two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS) and applied to the fast separation of a 28 component liquid test mixture, and two complex vapor samples (a 65 component volatile organic compound test mixture, and the headspace of warm ground coffee beans). A high peak capacity is achieved in a short separation time by selecting appropriate experimental conditions based on theoretical modeling of on-column band broadening, and by reducing the off-column band broadening by applying a narrow, concentrated injection pulse onto the primary column using high-speed cryo-focusing injection (HSCFI), referred to as thermal injection. A long, relatively narrow open tubular capillary column (20 m, 100 μm inner diameter (i.d.) with a 0.4 μm film thickness to benefit column capacity) was used as the primary column. The initial flow rate was 2 ml/min (60 cm/s average linear flow velocity) which is slightly below the optimal average linear gas velocity of 83 cm/s, due to the flow rate constraint of the TOFMS vacuum system. The oven temperature programming rate was 30°C/min. The secondary column (1.8m, 100 μm i.d. with a 0.1 μm film thickness) provided a relatively high peak capacity separation, concurrent with a significantly shorter modulation period, P(M), than commonly applied with the commercial instrument. With this GC×GC-TOFMS instrumental platform, compounds in the 28 component liquid test mixture provided a ∼7 min separation (with a ∼6.5 min separation time window), producing average peak widths of ∼600 ms full width half maximum (FWHM), resulting in a peak capacity on the primary column of ∼400 peaks (at unit resolution). Using a secondary column with a 500 ms P(M), average peak widths of ∼20 ms FWHM were achieved, thus providing a peak capacity of 15 peaks on the second dimension. Overall, an ideal orthogonal GC×GC peak capacity of ∼6000 peaks (at unit

  5. Preanalytical and analytical variation of surface-enhanced laser desorption-ionization time-of-flight mass spectrometry of human serum

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Bøgebo, Rikke; Olsen, Jesper

    2006-01-01

    BACKGROUND: Surface-enhanced laser desorption-ionization time-of-flight (SELDI-TOF) mass spectrometry of human serum is a potential diagnostic tool in human diseases. In the present study, the preanalytical and analytical variation of SELDI-TOF mass spectrometry of serum was assessed in healthy...... was 18% (6%-34%, n=4) for 16 peaks, and inter-individual CV was 38% (16%-56%, n=16) for 20 peaks. CONCLUSIONS: The pre-analytical and analytical conditions of SELDI-TOF mass spectrometry of serum have a significant impact on the protein peaks, with the number of peaks low and the assay variation high...

  6. First on-line applications of a multi-reflection time-of-flight mass separator at ISOLTRAP and the mass measurement of 82Zn

    International Nuclear Information System (INIS)

    Wolf, Robert

    2013-01-01

    This thesis describes the implementation and first on-line application of a multi-reflection time-of-flight (MR-ToF) mass analyzer for high-resolution mass separation at the ISOLTRAP mass spectrometer at ISOLDE/CERN. On the one hand, the major objective was to improve ISOLTRAPs mass-measurement capabilities with respect to the ratio of delivered contaminating ions to ions of interest. On the other hand, the time necessary to purify wanted from unwanted species should be reduced as much as possible to enable access to even more exotic nuclei. The device has been set up, optimized and tested at the University of Greifswald before its move to ISOLTRAP. The achieved performance comprises mass resolving powers of up to 2 x 10 5 reached at observation times of 30 ms and a contamination suppression of about four orders of magnitude by use of a Bradbury-Nielsen gate. With the characteristics, it outperforms clearly the so far state-of-the-art purification method of a gas-filled Penning trap. To improve the utilization of the MR-ToF mass analyzer, the in-trap lift method has been developed. It simplifies the application and optimization of the device, which is a crucial time factor in an on-line experiment. The device was the first of its kind successfully applied to radioactive ion beams for a mass analysis, for a mass separation (in combination with the Bradbury-Nielsen gate) as a preparatory step for a subsequent Penning-trap mass measurement and as a high-precision mass spectrometer of its own. The later was recently used for the first mass measurement of the neutron-rich calcium isotopes 53 Ca and 54 Ca. The so-far achieved mass-resolving power of 2 x 10 5 belongs to the highest reported for time-of-flight mass analyzers at all. The first successful application of the MR-ToF system as the only mass separator at ISOLTRAP resulted in the mass measurement of 82 Zn. The new mass value has been compared to mass extrapolations of the most recent Hartree-Fock-Bogolyubov (HFB

  7. ALICE Time of Flight Module

    CERN Multimedia

    The Time-Of-Flight system of ALICE consists of 90 such modules, each containing 15 or 19 Multigap Resistive Plate Chamber (MRPC) strips. This detector is used for identification of charged particles. It measures with high precision (50 ps) the time of flight of charged particles and therefore their velocity. The curvature of the particle trajectory inside the magnetic field gives the momentum, thus the particle mass is calculated and the particle is identified The MRPC is a stack of resistive glass plates, separated from each other by nylon fishing line. The mass production of the chambers (~1600, covering a surface of 150 m2) was done at INFN Bologna, while the first prototypes were bult at CERN.

  8. Investigation of the ion beam of the Titan source by the time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Bugaev, A.S.; Gushenets, V.V.; Nikolaev, A.G.; Yushkov, G.Yu.

    2000-01-01

    The Titan ion source generates wide-aperture beams of both gaseous and metal ions of various materials. The above possibility is realized on the account of combining two types of arc discharge with cold cathodes in the source discharge system. The vacuum arc, initiated between the cathode accomplished from the ion forming material, and hollow anode, is used for obtaining the metal ions. The pinch-effect low pressure arc discharge, ignited on the same hollow anode, is used for obtaining gaseous ions. The composition of ion beams, generated by the Titan source through the specially designed time-of-flight spectrometer, is studied. The spectrometer design and principle pf operation are presented. The physical peculiarities of the source functioning, influencing the ion beam composition, are discussed [ru

  9. First on-line applications of multi-reflection time-of-flight mass separator at ISOLTRAP and the mass measurement of $^{82}$Zn

    CERN Document Server

    Wolf, Robert

    This thesis describes the implementation and first on-line application of a multi-reflection time-of-flight (MR-ToF) mass analyzer for high-resolution mass separation at the ISOLTRAP mass spectrometer at ISOLDE/CERN. On the one hand, the major objective was to improve ISOLTRAPs mass-measurement capabilities with respect to the ratio of delivered contaminating ions to ions of interest. On the other hand, the time necessary to purify wanted from unwanted species should be reduced as much as possible to enable access to even more exotic nuclei. The device has been set up, optimized and tested at the University of Greifswald before its move to ISOLTRAP. The achieved performance comprises mass resolving powers of up to 200000 reached at observation times of 30ms and a contamination suppression of about four orders of magnitude by use of a Bradbury-Nielsen gate. With the characteristics, it outperforms clearly the so far state-of-the-art purification method of a gas-filled Penning trap. To improve the utilization o...

  10. Accurate Mass GC/LC-Quadrupole Time of Flight Mass Spectrometry Analysis of Fatty Acids and Triacylglycerols of Spicy Fruits from the Apiaceae Family

    Directory of Open Access Journals (Sweden)

    Thao Nguyen

    2015-12-01

    Full Text Available The triacylglycerol (TAG structure and the regio-stereospecific distribution of fatty acids (FA of seed oils from most of the Apiaceae family are not well documented. The TAG structure ultimately determines the final physical properties of the oils and the position of FAs in the TAG molecule affects the digestion; absorption and metabolism; and physical and technological properties of TAGs. Fixed oils from the fruits of dill (Anethum graveolens, caraway (Carum carvi, cumin (Cuminum cyminum, coriander (Coriandrum sativum, anise (Pimpinella anisum, carrot (Daucus carota, celery (Apium graveolens, fennel (Foeniculum vulgare, and Khella (Ammi visnaga, all from the Apiaceae family, were extracted at room temperature in chloroform/methanol (2:1 v/v using percolators. Crude lipids were fractionated by solid phase extraction to separate neutral triacylglycerols (TAGs from other lipids components. Neutral TAGs were subjected to transesterification process to convert them to their corresponding fatty acids methyl esters (FAMES using 1% boron trifluoride (BF3 in methanol. FAMES were analyzed by gas chromatography-quadrupole time of flight (GC-QTOF mass spectrometry. Triglycerides were analyzed using high performance liquid chromatography-quadrupole time of flight (LC-QTOF mass spectrometry. Petroselinic acid was the major fatty acid in all samples ranging from 57% of the total fatty acids in caraway up to 82% in fennel. All samples contained palmitic (16:0, palmitoleic (C16:1n-9, stearic (C18:0, petroselinic (C18:1n-12, linoleic (C18:2n-6, linolinic (18:3n-3, and arachidic (C20:0 acids. TAG were analyzed using LC-QTOF for accurate mass identification and mass spectrometry/mass spectrometry (MS/MS techniques for regiospesific elucidation of the identified TAGs. Five major TAGs were detected in all samples but with different relative concentrations in all of the tested samples. Several other TAGs were detected as minor components and were present in some

  11. Submicron mass spectrometry imaging of single cells by combined use of mega electron volt time-of-flight secondary ion mass spectrometry and scanning transmission ion microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Siketić, Zdravko; Bogdanović Radović, Ivančica; Jakšić, Milko; Popović Hadžija, Marijana; Hadžija, Mirko [Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb (Croatia)

    2015-08-31

    In order to better understand biochemical processes inside an individual cell, it is important to measure the molecular composition at the submicron level. One of the promising mass spectrometry imaging techniques that may be used to accomplish this is Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS), using MeV energy heavy ions for excitation. MeV ions have the ability to desorb large intact molecules with a yield that is several orders of magnitude higher than conventional SIMS using keV ions. In order to increase the spatial resolution of the MeV TOF-SIMS system, we propose an independent TOF trigger using a STIM (scanning transmission ion microscopy) detector that is placed just behind the thin transmission target. This arrangement is suitable for biological samples in which the STIM detector simultaneously measures the mass distribution in scanned samples. The capability of the MeV TOF-SIMS setup was demonstrated by imaging the chemical composition of CaCo-2 cells.

  12. An iodide-adduct high-resolution time-of-flight chemical-ionization mass spectrometer: application to atmospheric inorganic and organic compounds.

    Science.gov (United States)

    Lee, Ben H; Lopez-Hilfiker, Felipe D; Mohr, Claudia; Kurtén, Theo; Worsnop, Douglas R; Thornton, Joel A

    2014-06-03

    A high-resolution time-of-flight chemical-ionization mass spectrometer (HR-ToF-CIMS) using Iodide-adducts has been characterized and deployed in several laboratory and field studies to measure a suite of organic and inorganic atmospheric species. The large negative mass defect of Iodide, combined with soft ionization and the high mass-accuracy (5500) of the time-of-flight mass spectrometer, provides an additional degree of separation and allows for the determination of elemental compositions for the vast majority of detected ions. Laboratory characterization reveals Iodide-adduct ionization generally exhibits increasing sensitivity toward more polar or acidic volatile organic compounds. Simultaneous retrieval of a wide range of mass-to-charge ratios (m/Q from 25 to 625 Th) at a high frequency (>1 Hz) provides a comprehensive view of atmospheric oxidative chemistry, particularly when sampling rapidly evolving plumes from fast moving platforms like an aircraft. We present the sampling protocol, detection limits and observations from the first aircraft deployment for an instrument of this type, which took place aboard the NOAA WP-3D aircraft during the Southeast Nexus (SENEX) 2013 field campaign.

  13. Performance of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Aspergillus, Scedosporium, and Fusarium spp. in the Australian Clinical Setting.

    Science.gov (United States)

    Sleiman, Sue; Halliday, Catriona L; Chapman, Belinda; Brown, Mitchell; Nitschke, Joanne; Lau, Anna F; Chen, Sharon C-A

    2016-08-01

    We developed an Australian database for the identification of Aspergillus, Scedosporium, and Fusarium species (n = 28) by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). In a challenge against 117 isolates, species identification significantly improved when the in-house-built database was combined with the Bruker Filamentous Fungi Library compared with that for the Bruker library alone (Aspergillus, 93% versus 69%; Fusarium, 84% versus 42%; and Scedosporium, 94% versus 18%, respectively). Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Characterization of a Carbon Nanotube Field Emission Electron Gun for the VAPoR Miniaturized Pyrolysis-Time-of-Flight Mass Spectrometer

    Science.gov (United States)

    Getty, Stephanie; Li, Mary; Costen, Nicholas; Hess, Larry; Feng, Steve; King, Todd; Brinckerhoff, William; Mahaffy, Paul; Glavin, Daniel

    2009-01-01

    We are developing the VAPoR (Volatile Analysis by Pyrolysis of Regolith) instrument towards studying soil composition, volatiles, and trapped noble gases in the polar regions of the Moon. VAPOR will ingest a soil sample and conduct analysis by pyrolysis and time-of-flight mass spectrometry (ToF-MS). Here, we describe miniaturization efforts within this development, including a carbon nanotube (CNT) field emission electron gun that is under consideration for use as the electron impact ionization source for the ToF-MS.

  15. Species identification of clinical isolates of anaerobic bacteria: a comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems

    DEFF Research Database (Denmark)

    Justesen, Ulrik Stenz; Holm, Anette; Knudsen, Elisa

    2011-01-01

    We compared two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems (Shimadzu/SARAMIS and Bruker) on a collection of consecutive clinically important anaerobic bacteria (n = 290). The Bruker system had more correct identifications to the species level...... (67.2% versus 49.0%), but also more incorrect identifications (7.9% versus 1.4%). The system databases need to be optimized to increase identification levels. However, MALDI-TOF MS in its present version seems to be a fast and inexpensive method for identification of most clinically important...

  16. A multi-residue method for 17 anticoccidial drugs and ractopamine in animal tissues by liquid chromatography-tandem mass spectrometry and time-of-flight mass spectrometry.

    Science.gov (United States)

    Matus, Johanna L; Boison, Joe O

    2016-05-01

    A new and sensitive multi-residue liquid chromatography-tandem mass spectrometry (LC-MS/MS) and liquid chromatography-quadrupole time-of-flight-mass spectrometry (LC-QToF-MS) method was developed and validated for the determination and confirmation of residues of 17 anticoccidials, plus free ractopamine in poultry muscle and liver, and bovine muscle, liver, and kidney tissues. The 17 anticoccidials are lasalocid, halofuginone, narasin, monensin, semduramicin, ethopabate, robenidine, buquinolate, toltrazuril as its sulfone metabolite, maduramicin, salinomycin, diclazuril, amprolium, decoquinate, dinitolmide, clopidol, and the nicarbazin metabolite DNC (N,N1-bis(4-nitrophenyl)urea). The analytes were extracted and cleaned up within a 3-hour period by simply extracting the analytes into a solvent mixture with salts followed by centrifugation, dilution, and filtration. The validated method was used in a pilot study for the analysis of 173 samples that included quail liver, bovine kidney, liver, muscle, and horse muscle. The predominant residues found in this study were monensin, ractopamine, and lasalocid. The results of this pilot study showed that this new method is applicable to real samples, and is fit for use in a regulatory testing programme. © 2016 Her Majesty the Queen in Right of Canada. Drug Testing and Analysis. © 2016 John Wiley & Sons, Ltd. © 2016 Her Majesty the Queen in Right of Canada. Drug Testing and Analysis. © 2016 John Wiley & Sons, Ltd.

  17. Metabolic profiling of yeast culture using gas chromatography coupled with orthogonal acceleration accurate mass time-of-flight mass spectrometry: application to biomarker discovery.

    Science.gov (United States)

    Kondo, Elsuida; Marriott, Philip J; Parker, Rhiannon M; Kouremenos, Konstantinos A; Morrison, Paul; Adams, Mike

    2014-01-07

    Yeast and yeast cultures are frequently used as additives in diets of dairy cows. Beneficial effects from the inclusion of yeast culture in diets for dairy mammals have been reported, and the aim of this study was to develop a comprehensive analytical method for the accurate mass identification of the 'global' metabolites in order to differentiate a variety of yeasts at varying growth stages (Diamond V XP, Yea-Sacc and Levucell). Microwave-assisted derivatization for metabolic profiling is demonstrated through the analysis of differing yeast samples developed for cattle feed, which include a wide range of metabolites of interest covering a large range of compound classes. Accurate identification of the components was undertaken using GC-oa-ToFMS (gas chromatography-orthogonal acceleration-time-of-flight mass spectrometry), followed by principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) for data reduction and biomarker discovery. Semi-quantification (fold changes in relative peak areas) was reported for metabolites identified as possible discriminative biomarkers (p-value 2), including D-ribose (four fold decrease), myo-inositol (five fold increase), L-phenylalanine (three fold increase), glucopyranoside (two fold increase), fructose (three fold increase) and threitol (three fold increase) respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Determination of the presence or absence of sulfur materials in drywall using direct analysis in real time in conjunction with an accurate-mass time-of-flight mass spectrometer.

    Science.gov (United States)

    Curtis, Matthew E; Jones, Patrick R; Sparkman, O David; Cody, Robert B

    2009-11-01

    Based on the concern about the presence of sulfur materials being in drywall (wallboard), a quick and reliable test to confirm the presence or absence of these materials using direct analysis in real time (DART) mass spectrometry in conjunction with an accurate-mass time-of-flight (TOF) mass spectrometer has been developed and is described here.

  19. Analysis of drugs of forensic interest with capillary zone electrophoresis/time-of-flight mass spectrometry based on the use of non-volatile buffers.

    Science.gov (United States)

    Gottardo, Rossella; Mikšík, Ivan; Aturki, Zeineb; Sorio, Daniela; Seri, Catia; Fanali, Salvatore; Tagliaro, Franco

    2012-02-01

    The present work is aimed at investigating the influence of the background electrolyte composition and concentration on the separation efficiency and resolution and mass spectrometric detection of illicit drugs in a capillary zone electrophoresis-electrospray ionization-time of flight mass spectrometry (CZE-ESI-TOF MS) system. The effect of phosphate, borate and Tris buffers on the separation and mass spectrometry response of a mixture of 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine, methadone, cocaine, morphine, codeine and 6-monoacetylmorphine was studied, in comparison with a reference ammonium formate separation buffer. Inorganic non-volatile borate and Tris buffers proved hardly suitable for capillary electrophoresis-mass spectrometry (CE-MS) analysis, but quite unexpectedly ammonium phosphate buffers showed good separation and ionization performances for all the analytes tested. Applications of this method to real samples of hair from drug addicts are also provided. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Compact Two-step Laser Time-of-Flight Mass Spectrometer for in Situ Analyses of Aromatic Organics on Planetary Missions

    Science.gov (United States)

    Getty, Stephanie; Brickerhoff, William; Cornish, Timothy; Ecelberger, Scott; Floyd, Melissa

    2012-01-01

    RATIONALE A miniature time-of-flight mass spectrometer has been adapted to demonstrate two-step laser desorption-ionization (LOI) in a compact instrument package for enhanced organics detection. Two-step LDI decouples the desorption and ionization processes, relative to traditional laser ionization-desorption, in order to produce low-fragmentation conditions for complex organic analytes. Tuning UV ionization laser energy allowed control ofthe degree of fragmentation, which may enable better identification of constituent species. METHODS A reflectron time-of-flight mass spectrometer prototype measuring 20 cm in length was adapted to a two-laser configuration, with IR (1064 nm) desorption followed by UV (266 nm) postionization. A relatively low ion extraction voltage of 5 kV was applied at the sample inlet. Instrument capabilities and performance were demonstrated with analysis of a model polycyclic aromatic hydrocarbon, representing a class of compounds important to the fields of Earth and planetary science. RESULTS L2MS analysis of a model PAH standard, pyrene, has been demonstrated, including parent mass identification and the onset o(tunable fragmentation as a function of ionizing laser energy. Mass resolution m/llm = 380 at full width at half-maximum was achieved which is notable for gas-phase ionization of desorbed neutrals in a highly-compact mass analyzer. CONCLUSIONS Achieving two-step laser mass spectrometry (L2MS) in a highly-miniature instrument enables a powerful approach to the detection and characterization of aromatic organics in remote terrestrial and planetary applications. Tunable detection of parent and fragment ions with high mass resolution, diagnostic of molecular structure, is possible on such a compact L2MS instrument. Selectivity of L2MS against low-mass inorganic salt interferences is a key advantage when working with unprocessed, natural samples, and a mechanism for the observed selectivity is presented.

  1. Low-molecular weight protein profiling of genetically modified maize using fast liquid chromatography electrospray ionization and time-of-flight mass spectrometry.

    Science.gov (United States)

    Koc, Anna; Cañuelo, Ana; Garcia-Reyes, Juan F; Molina-Diaz, Antonio; Trojanowicz, Marek

    2012-06-01

    In this work, the use of liquid chromatography coupled to electrospray time-of-flight mass spectrometry (LC-TOFMS) has been evaluated for the profiling of relatively low-molecular weight protein species in both genetically modified (GM) and non-GM maize. The proposed approach consisted of a straightforward sample fractionation with different water and ethanol-based buffer solutions followed by separation and detection of the protein species using liquid chromatography with a small particle size (1.8 μm) C(18) column and electrospray-time-of-flight mass spectrometry detection in the positive ionization mode. The fractionation of maize reference material containing different content of transgenic material (from 0 to 5% GM) led to five different fractions (albumins, globulins, zeins, zein-like glutelins, and glutelins), all of them containing different protein species (from 2 to 52 different species in each fraction). Some relevant differences in the quantity and types of protein species were observed in the different fractions of the reference material (with different GM contents) tested, thus revealing the potential use of the proposed approach for fast protein profiling and to detect tentative GMO markers in maize. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Profiling analysis of low molecular weight heparins by multiple heart-cutting two dimensional chromatography with quadruple time-of-flight mass spectrometry.

    Science.gov (United States)

    Ouyang, Yilan; Zeng, Yangyang; Rong, Yinxiu; Song, Yue; Shi, Lv; Chen, Bo; Yang, Xinlei; Xu, Naiyu; Linhardt, Robert J; Zhang, Zhenqing

    2015-09-01

    Low molecular weight heparins (LMWHs) are polydisperse and microheterogenous mixtures of polysaccharides used as anticoagulant drugs. Profiling analysis is important for obtaining deeper insights into the structure of LMWHs. Previous oligosaccharide mapping methods are relatively low resolution and are unable to show an entire picture of the structural complexity of LMWHs. In the current study a profiling method was developed relying on multiple heart-cutting, two-dimensional, ultrahigh performance liquid chromatography with quadruple time-of-flight mass spectrometry. This represents an efficient, automated, and robust approach for profiling LMWHs. Using size-exclusion chromatography and ion-pairing reversed-phase chromatography in a two-dimensional separation, LMW components of different sizes and LMW components of the same size but with different charges and polarities can be resolved, providing a more complete picture of a LMWH. Structural information on each component was then obtained with quadrupole time-of-flight mass spectrometry. More than 80 and 120 oligosaccharides were observed and unambiguously assigned from the LMWHs, nadroparin and enoxaparin, respectively. This method might be useful for quality control of LMWHs and as a powerful tool for heparin-related glycomics.

  3. Osteoblast cell membrane chromatography coupled with liquid chromatography and time-of-flight mass spectrometry for screening specific active components from traditional Chinese medicines.

    Science.gov (United States)

    Wang, Nani; Zhang, Qiaoyan; Xin, Hailiang; Shou, Dan; Qin, Luping

    2017-11-01

    A method using osteoblast membrane chromatography coupled with liquid chromatography and time-of-flight mass spectrometry was developed to recognize and identify the specific active components from traditional Chinese medicines. Primary rat osteoblasts were used for the preparation of the stationary phase in the cell chromatography method. Retention components from the cell chromatography were collected and analyzed by liquid chromatography with time-of-flight mass spectrometry. This method was applied in screening active components from extracts of four traditional Chinese medicines. In total, 24 potentially active components with different structures were retained by osteoblast cell chromatography. There were five phenolic glucosides and one triterpenoid saponin from Curculigo orchioides Gaertn, two organic acids and ten flavonoids from Epimedium sagittatum Maxim, one phthalide compound and one organic acid from Angelica sinensis Diels, and two flavonoids and two saponins from Anemarrhena asphodeloides Bunge. Among those, four components (icariin, curculigoside, ferulaic acid, and timosaponin BII) were used for in vitro pharmacodynamics validation. They significantly increased the osteoblast proliferation, alkaline phosphatase activity, levels of bone gla protein and collagen type 1, and promoted mineralized nodule formation. The developed method was an effective screening method for finding active components from complex medicines that act on bone diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Suspected-target pesticide screening using gas chromatography-quadrupole time-of-flight mass spectrometry with high resolution deconvolution and retention index/mass spectrum library.

    Science.gov (United States)

    Zhang, Fang; Wang, Haoyang; Zhang, Li; Zhang, Jing; Fan, Ruojing; Yu, Chongtian; Wang, Wenwen; Guo, Yinlong

    2014-10-01

    A strategy for suspected-target screening of pesticide residues in complicated matrices was exploited using gas chromatography in combination with hybrid quadrupole time-of-flight mass spectrometry (GC-QTOF MS). The screening workflow followed three key steps of, initial detection, preliminary identification, and final confirmation. The initial detection of components in a matrix was done by a high resolution mass spectrum deconvolution; the preliminary identification of suspected pesticides was based on a special retention index/mass spectrum (RI/MS) library that contained both the first-stage mass spectra (MS(1) spectra) and retention indices; and the final confirmation was accomplished by accurate mass measurements of representative ions with their response ratios from the MS(1) spectra or representative product ions from the second-stage mass spectra (MS(2) spectra). To evaluate the applicability of the workflow in real samples, three matrices of apple, spinach, and scallion, each spiked with 165 test pesticides in a set of concentrations, were selected as the models. The results showed that the use of high-resolution TOF enabled effective extractions of spectra from noisy chromatograms, which was based on a narrow mass window (5 mDa) and suspected-target compounds identified by the similarity match of deconvoluted full mass spectra and filtering of linear RIs. On average, over 74% of pesticides at 50 ng/mL could be identified using deconvolution and the RI/MS library. Over 80% of pesticides at 5 ng/mL or lower concentrations could be confirmed in each matrix using at least two representative ions with their response ratios from the MS(1) spectra. In addition, the application of product ion spectra was capable of confirming suspected pesticides with specificity for some pesticides in complicated matrices. In conclusion, GC-QTOF MS combined with the RI/MS library seems to be one of the most efficient tools for the analysis of suspected-target pesticide residues

  5. On the elemental analysis of different cigarette brands using laser induced breakdown spectroscopy and laser-ablation time of flight mass spectrometry

    Science.gov (United States)

    Ahmed, Nasar; Umar, Zeshan A.; Ahmed, Rizwan; Aslam Baig, M.

    2017-10-01

    We present qualitative and quantitative analysis of the trace elements present in different brands of tobacco available in Pakistan using laser induced breakdown spectroscopy (LIBS) and Laser ablation Time of Flight Mass Spectrometer (LA-TOFMS). The compositional analysis using the calibration free LIBS technique is based on the observed emission spectra of the laser produced plasma plume whereas the elemental composition analysis using LA-TOFMS is based on the mass spectra of the ions produced by laser ablation. The optical emission spectra of these samples contain spectral lines of calcium, magnesium, sodium, potassium, silicon, strontium, barium, lithium and aluminum with varying intensities. The corresponding mass spectra of the elements were detected in LA-TOF-MS with their composition concentration. The analysis of different brands of cigarettes demonstrates that LIBS coupled with a LA-TOF-MS is a powerful technique for the elemental analysis of the trace elements in any solid sample.

  6. Triple Quadrupole Versus High Resolution Quadrupole-Time-of-Flight Mass Spectrometry for Quantitative LC-MS/MS Analysis of 25-Hydroxyvitamin D in Human Serum

    Science.gov (United States)

    Geib, Timon; Sleno, Lekha; Hall, Rabea A.; Stokes, Caroline S.; Volmer, Dietrich A.

    2016-08-01

    We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease.

  7. Identification of novel sites of O-N-acetylglucosamine modification of serum response factor using quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Chalkley, Robert J; Burlingame, A L

    2003-03-01

    The addition of a single N-acetylglucosamine moiety O-linked to serine and threonine residues of nuclear and cytoplasmic proteins is a widespread post-translational modification. The conventional method for detecting and locating sites of modification is through a multistep radioactivity-based approach. We have recently shown that sites of O-GlcNAc modification can be determined using quadrupole time-of-flight tandem mass spectrometry (Chalkley, R. J., and Burlingame, A. L. (2001) Identification of GlcNAcylation sites of peptides and alpha-crystallin using Q-TOF mass spectrometry. J. Am. Soc. Mass Spectrom. 12, 1106-1113). In this work utilization of this new approach has revealed previously undetected sites of O-GlcNAc modification of the transcription factor serum response factor.

  8. Quantification, confirmation and screening capability of UHPLC coupled to triple quadrupole and hybrid quadrupole time-of-flight mass spectrometry in pesticide residue analysis.

    Science.gov (United States)

    Grimalt, Susana; Sancho, Juan V; Pozo, Oscar J; Hernández, Félix

    2010-04-01

    The potential of three mass spectrometry (MS) analyzers (triple quadrupole, QqQ; time of flight, TOF; and quadrupole time of flight, QTOF) has been investigated and compared for quantification, confirmation and screening purposes in pesticide residue analysis of fruit and vegetable samples. For this purpose, analytical methodology for multiresidue determination of 11 pesticides, taken as a model, has been developed and validated in nine food matrices for the three mass analyzers coupled to ultra high pressure liquid chromatography. In all cases, limits of quantification around 0.01 mg/kg were reached, fulfilling the most restrictive case of baby-food analysis. Regarding absolute sensitivity, the lower limits of detection were obtained, as expected, for QqQ (100 fg), whereas slightly higher limits (300 fg) were obtained for both TOF and QTOF. Confirmative capacity of each analyzer was studied for each analyte based on the identification points (IPs) criterion, useful for a comprehensive comparison. QTOF mass analyzer showed the highest confirmatory capacity, although QqQ normally led to sufficient number of IPs, even at lower concentration levels. The potential of TOF MS was also investigated for screening purposes. To this aim, around 50 commercial fruits and vegetables samples were analyzed, searching for more than 400 pesticides. TOF MS proved to be an attractive analytical tool for rapid detection and reliable identification of a large number of pesticides thanks to the full spectrum acquisition at accurate mass with satisfactory sensitivity. This process is readily boosted when combined with specialized software packages, together with theoretical exact mass databases. Several pesticides (e.g. carbendazim in citrus and indoxacarb in grape) were detected in the samples. Further unequivocal confirmation of the identity was performed using reference standards and/or QTOF MS/MS experiments. Copyright 2010 John Wiley & Sons, Ltd.

  9. Rapid Screening of Multiclass Syrup Adulterants in Honey by Ultrahigh-Performance Liquid Chromatography/Quadrupole Time of Flight Mass Spectrometry.

    Science.gov (United States)

    Du, Bing; Wu, Liming; Xue, Xiaofeng; Chen, Lanzhen; Li, Yi; Zhao, Jing; Cao, Wei

    2015-07-29

    Honey adulteration with sugar syrups is a widespread problem. Several types of syrups have been used in honey adulteration, and there is no available method that can simultaneously detect all of these adulterants. In this study, we generated a small-scale database containing the specific chromatographic and mass spectrometry information on sugar syrup markers and developed a simple, rapid, and effective ultrahigh-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS) method for the detection of adulterated honey. Corn syrup, high-fructose corn syrup, inverted syrup, and rice syrup were used as honey adulterants; polysaccharides, difructose anhydrides, and 2-acetylfuran-3-glucopyranoside were used as detection markers. The presence of 10% sugar syrup in honey could be easily detected in <30 min using the developed method. The results revealed that UHPLC/Q-TOF-MS was simple and rapid.

  10. Identification of protein biomarkers in Dupuytren's contracture using surface enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS).

    Science.gov (United States)

    O'Gorman, David; Howard, Jeffrey C; Varallo, Vincenzo M; Cadieux, Peter; Bowley, Erin; McLean, Kris; Pak, Brian J; Gan, Bing Siang

    2006-06-01

    To study the protein expression profiles associated with Dupuytren's contracture (DC) to identify potential disease protein biomarkers (PBM) using a proteomic technology--Surface Enhanced Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (SELDI-TOF-MS). Normal and disease palmar fascia from DC patients were analyzed using Ciphergen's SELDI-TOF-MS Protein Biological System II (PBSII) ProteinChip reader. Analysis of the resulting SELDI-TOF spectra was carried out using the peak cluster analysis program (BioMarker Wizard, Ciphergen). Common peak clusters were then filtered using a bootstrap algorithm called SAM (Significant Analysis of Microarrays) for increased fidelity in our analysis. Several differentially expressed low molecular weight (mass standard deviation for both methods of biomarker-rich low molecular weight region of the human proteome. Application of such novel technology may help clinicians to focus on specific molecular abnormalities in diseases with no known molecular pathogenesis, and uncover therapeutic and/or diagnostic targets.

  11. Chemical and biological differentiation of three human breast cancer cell types using time-of-flight secondary ion mass spectrometry (TOF-SIMS)

    Energy Technology Data Exchange (ETDEWEB)

    Kulp, K S; Berman, E F; Knize, M G; Shattuck, D L; Nelson, E J; Wu, L; Montgomery, J L; Felton, J S; Wu, K J

    2006-01-09

    We use Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) to image and classify individual cells based on their characteristic mass spectra. Using statistical data reduction on the large data sets generated during TOF-SIMS analysis, similar biological materials can be differentiated based on a combination of small changes in protein expression, metabolic activity and cell structure. We apply this powerful technique to image and differentiate three carcinoma-derived human breast cancer cell lines (MCF-7, T47D and MDA-MB-231). In homogenized cells, we show the ability to differentiate the cell types as well as cellular compartments (cytosol, nuclear and membrane). These studies illustrate the capacity of TOF-SIMS to characterize individual cells by chemical composition, which could ultimately be applied to detect and identify single aberrant cells within a normal cell population. Ultimately, we anticipate characterizing rare chemical changes that may provide clues to single cell progression within carcinogenic and metastatic pathways.

  12. Characterization of ornidazole metabolites in human bile after intraveneous doses by ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry

    Directory of Open Access Journals (Sweden)

    Jiangbo Du

    2012-04-01

    Full Text Available Ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS was used to characterize ornidazole metabolites in human bile after intravenous doses. A liquid chromatography tandem mass spectrometry (LC–MS/MS assay was developed for the determination of the bile level of ornidazole. Bile samples, collected from four patients with T-tube drainage after biliary tract surgery, were prepared by protein precipitation with acetonitrile before analysis. A total of 12 metabolites, including 10 novel metabolites, were detected and characterized. The metabolites of ornidazole in human bile were the products of hydrochloride (HCl elimination, oxidative dechlorination, hydroxylation, sulfation, diastereoisomeric glucuronation, and substitution of NO2 or Cl atom by cysteine or N-acetylcysteine, and oxidative dechlorination followed by further carboxylation. The bile levels of ornidazole at 12 h after multiple intravenous infusions were well above its minimal inhibitory concentration for common strains of anaerobic bacteria.

  13. ATP-Mediated Compositional Change in Peripheral Myelin Membranes: A Comparative Raman Spectroscopy and Time-Of-Flight Secondary Ion Mass Spectrometry Study.

    Directory of Open Access Journals (Sweden)

    Nikolay Kutuzov

    Full Text Available In the present paper we addressed a mechanism of the myelin reorganization initiated by extracellular ATP and adenosine in sciatic nerves of the frog Rana temporaria. In combination with Raman microspectroscopy, allowing noninvasive live-cell measurements, we employed time-of-flight secondary ion mass spectrometry (TOF-SIMS to follow the underlying changes in chemical composition of myelin membranes triggered by the purinergic agents. The simultaneous increase in lipid ordering degree, decrease in membrane fluidity and the degree of fatty acid unsaturation were induced by both ATP and adenosine. Mass spectrometry measurements revealed that ATP administration also led to the marked elevation of membrane cholesterol and decrease of phosphotidylcholine amounts. Vesicular lipid transport pathways are considered as possible mechanisms of compositional and structural changes of myelin.

  14. ATP-Mediated Compositional Change in Peripheral Myelin Membranes: A Comparative Raman Spectroscopy and Time-Of-Flight Secondary Ion Mass Spectrometry Study.

    Science.gov (United States)

    Kutuzov, Nikolay; Gulin, Alexander; Lyaskovskiy, Vladimir; Nadtochenko, Victor; Maksimov, Georgy

    2015-01-01

    In the present paper we addressed a mechanism of the myelin reorganization initiated by extracellular ATP and adenosine in sciatic nerves of the frog Rana temporaria. In combination with Raman microspectroscopy, allowing noninvasive live-cell measurements, we employed time-of-flight secondary ion mass spectrometry (TOF-SIMS) to follow the underlying changes in chemical composition of myelin membranes triggered by the purinergic agents. The simultaneous increase in lipid ordering degree, decrease in membrane fluidity and the degree of fatty acid unsaturation were induced by both ATP and adenosine. Mass spectrometry measurements revealed that ATP administration also led to the marked elevation of membrane cholesterol and decrease of phosphotidylcholine amounts. Vesicular lipid transport pathways are considered as possible mechanisms of compositional and structural changes of myelin.

  15. Mass measurements of {sup 238}U-projectile fragments for the first time with a multiple-reflection time-of-flight mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Jens

    2016-07-01

    Mass measurements of short-lived uranium projectile fragments were performed for the first time with a Multiple-Reflexion-Time-of-Flight Mass Spectrometer (MR-TOF-MS). A major part of this doctoral work was a novel development of a data analysis method for the MR-TOF-MS mass measurements of exotic nuclei at the fragment separator FRS at GSI. The developed method was successfully applied to the data obtained from two pilot experiments with the MR-TOF-MS at the FRS in 2012 and 2014. A substantial upgrade of the experimental setup of the MR-TOF-MS was also performed in the frame work of this doctoral thesis after the first run. In the experiments projectile fragments were created with 1000 MeV/u {sup 238}U ions in a Be/Nb target at the entrance of the in-flight separator FRS. The exotic nuclei were spatially separated, energy bunched and slowed down with the ion-optical system of the FRS combined with monoenergetic and homogeneous degraders. At the final focal plane of the FRS the fragments were completely slowed down and thermalized in a cryogenic stopping cell (CSC) filled with 3-5 mg/cm{sup 2} pure helium gas. The exotic nuclei were fast extracted from the CSC to enable mass measurements of very short-lived fragments with the MR-TOF-MS. The achievement of this goal was successfully demonstrated with the mass measurement of {sup 220}Ra ions with a half-life of 17.9 ms and 11 detected events. The mass measurements of the isobars {sup 211}Fr, {sup 211}Po and {sup 211}Rn have clearly demonstrated the scientific potential of the MR-TOF-MS for the investigation of exotic nuclei and the power of the data analysis system. Difficult measurements with overlapping mass distributions with only a few counts in the measured spectra were the challenge for the new data analysis method based on the maximum likelihood method. The drifts during the measurements were corrected with the developed time-resolved calibration method. After the improvements of the setup as a consequence of

  16. High-resolution time-of-flight mass spectrometry fingerprinting of metabolites from cecum and distal colon contents of rats fed resistant starch

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Timothy J. [Ames Laboratory; Jones, Roger W. [Ames Laboratory; Ai, Yongfeng [Iowa State University; Houk, Robert S. [Ames Laboratory; Jane, Jay-lin [Iowa State University; Zhao, Yinsheng [Iowa State University; Birt, Diane F. [Iowa State University; McClelland, John F. [Ames Laboratory

    2013-12-04

    Time-of-flight mass spectrometry along with statistical analysis was utilized to study metabolic profiles among rats fed resistant starch (RS) diets. Fischer 344 rats were fed four starch diets consisting of 55 % (w/w, dbs) starch. A control starch diet consisting of corn starch was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. A subgroup received antibiotic treatment to determine if perturbations in the gut microbiome were long lasting. A second subgroup was treated with azoxymethane (AOM), a carcinogen. At the end of the 8-week study, cecal and distal colon content samples were collected from the sacrificed rats. Metabolites were extracted from cecal and distal colon samples into acetonitrile. The extracts were then analyzed on an accurate-mass time-of-flight mass spectrometer to obtain their metabolic profile. The data were analyzed using partial least-squares discriminant analysis (PLS-DA). The PLS-DA analysis utilized a training set and verification set to classify samples within diet and treatment groups. PLS-DA could reliably differentiate the diet treatments for both cecal and distal colon samples. The PLS-DA analyses of the antibiotic and no antibiotic-treated subgroups were well classified for cecal samples and modestly separated for distal colon samples. PLS-DA analysis had limited success separating distal colon samples for rats given AOM from those not treated; the cecal samples from AOM had very poor classification. Mass spectrometry profiling coupled with PLS-DA can readily classify metabolite differences among rats given RS diets.

  17. Sorption of Aldrich humic acid onto hematite: Insights into fractionation phenomena by electro-spray ionization with quadrupole time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Reiller, Pascal; Amekraz, Badia; Moulin, Christophe [CEA, CE Saclay, Nuclear Energy Division, DANS/DPC/SECR, Laboratoire de Speciation des Radionucleides et des Molecules, Batiment 391, BP 11, F-91191 Gif sur Yvette Cedex (France)

    2006-07-01

    Sorption induced fractionation of purified Aldrich humic acid (PAHA) on hematite is studied through the modification of electro-spray ionization (ESI) quadrupole time-of-flight (QToF) mass spectra of supernatants from retention experiments. The ESI mass spectra show an increase of the 'mean molecular masses' of the molecules that constitutes humic aggregates. The low molecular weight fraction (LMWF; m/z {<=} 600 Da) is preferentially sorbed compared to two other fractions. The resolution provided by ESI-QToF mass spectrometer in the low-mass range provided evidence of further fractionation induced by sorption within the LMWF. Among the two latter fractions, the high molecular weight fraction (HMWF; m/z {approx_equal} 1700 Da) seems to be more prone to sorption compared to the intermediate molecular weight fraction (IMWF; m/z {approx_equal} 900 Da). The IMWF seems to be more hydrophilic as it should be richer in O, N, and alkyl C from the proportion of even mass, and poorer in aromatic structures from mass defect analysis in ESI mass spectra. (authors)

  18. Feasibility study of the single particle analysis of uranium by laser ionization time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Ha, Yeong Keong; Han, Sun Ho; Pyo, Hyung Yeol; Park, Yong Joon; Song, Kyu Seok

    2004-01-01

    The control of activities in nuclear facilities worldwide is one of the most important tasks of nuclear safeguard. To meet the needs for nuclear safeguard, International Atomic Energy Agency (IAEA) strengthened the control of nuclear activities to detect these activities earlier. Thus, it is very important to develop analytical techniques to determine the isotopic composition of hot particles from swipe samples. The precise measurement of the 234 U/ 238 U, 235 U/ 238 U and 236 U/ 238 U ratios is important because it provides information about the initial enrichment of reactor uranium, core history, and post accident story. Because conventional α-spectrometry is not sufficiently sensitive for the determination of long-lived radionuclides in environmental samples, several analytical techniques, such as SNMS (Sputtered Neutral Mass Spectrometry), RIMS (Resonance Ionization Mass Spectrometry), AMS (Accelerator Mass Spectrometry) etc., have been proposed for uranium isotope measurements. In case of microparticles, analytical techniques such as SIMS (Secondary Ion Mass Spectrometry) have been applied for the isotopic characterization. The aim of this work was the development of a sensitive analytical technique for determination of isotopic ratio of uranium in swipe samples. In this work, feasibility of LIMS (Laser Ionization Mass Spectrometry) for the determination of such particles has been evaluated using a reference material of natural uranium

  19. Characterization of lipids in complex samples using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry

    NARCIS (Netherlands)

    Jover, E.; Adahchour, M.; Bayona, J.M.; Vreuls, R.J.J.; Brinkman, U.A.T.

    2005-01-01

    Most lipids are a complex mixture of classes of compounds such as fatty acids, fatty alcohols, diols, sterols and hydroxy acids. In this study, the suitability of comprehensive two-dimensional gas chromatography coupled to a time-of-light mass spectrometer is studied for lipid characterization in

  20. Quantitative chemical derivatization technique in time-of-flight secondary ion mass spectrometry for surface amine groups on plasma-polymerized ethylenediamine film.

    Science.gov (United States)

    Kim, Jinmo; Shon, Hyun Kyong; Jung, Donggeun; Moon, Dae Won; Han, Sang Yun; Lee, Tae Geol

    2005-07-01

    A chemical derivatization technique in time-of-flight secondary ion mass spectrometry (TOF-SIMS) has been developed to quantify the surface density of amine groups of plasma-polymerized ethylenediamine thin film deposited on a glass surface by inductively coupled plasma chemical vapor deposition. Chemical tags of 4-nitrobenzaldehyde or pentafluorobenzaldehyde were hybridized with the surface amine groups and were detected in TOF-SIMS spectra as characteristic molecular secondary ions. The surface amine density was controlled in a reproducible manner as a function of deposition plasma power and was also quantified using UV-visible spectroscopy. A good linear correlation was observed between the results of TOF-SIMS and UV-visible measurements as a function of plasma power. This shows that the chemical derivatization technique in TOF-SIMS analysis would be useful in quantifying the surface density of specific functional groups that exist on the organic surface.

  1. Application of surface-enhanced laser desorption/ionization time-of-flight mass spectrometry coupled with an artificial neural network model for the diagnosis of hepatocellular carcinoma.

    Science.gov (United States)

    Hu, Qiongying; Huang, Yuanshuai; Wang, Zhuan; Tao, Hualin; Liu, Jinbo; Yan, Li; Wang, Kaizheng

    2012-09-01

    There are no satisfactory biomarkers for hepatocellular carcinoma (HCC). The surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) technique has been used to identify biomarkers for cancer. Four hundred thirty five serum samples were tested by SELDI-TOF-MS matching on a gold chip. Samples were assigned to a training set and a testing set according to collection order. The training set was used to identify statistically significant peaks and to develop the artificial neural network (ANN) model for diagnosing HCC. The testing set was used in a blind test to validate the diagnostic efficiency of the ANN model. A total of 75 proteins that differed between patients and controls were identified (pcontrols. The ANN is a new method for diagnosing and identifying HCC.

  2. Characterization of gate oxynitrides by means of time of flight secondary ion mass spectrometry and x-ray photoelectron spectroscopy. Quantification of nitrogen

    CERN Document Server

    Ferrari, S; Fanciulli, M

    2002-01-01

    We present a methodology for the quantitative estimation of nitrogen in ultrathin oxynitrides by means of time of flight secondary ion mass spectrometry (TOF-SIMS) and x-ray photoelectron spectroscopy (XPS). We consider an innovative approach to TOF-SIMS depth profiling, by elemental distribution of single species as sum of peaks containing such species. This approach is very efficient in overcoming matrix effect arising when quantifying elements were distributed in silicon and silicon oxide. We use XPS to calibrate TOF-SIMS and to obtain quantitative information on nitrogen distribution in oxynitride thin layers. In the method we propose we process TOF-SIMS and XPS data simultaneously to obtain a quantitative depth profile.

  3. Determination of steroids, caffeine and methylparaben in water using solid phase microextraction-comprehensive two dimensional gas chromatography-time of flight mass spectrometry.

    Science.gov (United States)

    Lima Gomes, Paulo C F; Barnes, Brian B; Santos-Neto, Álvaro J; Lancas, Fernando M; Snow, Nicholas H

    2013-07-19

    Analysis of several emerging contaminants (steroids, caffeine and methylparaben) in water using automated solid-phase microextraction with comprehensive two dimensional gas chromatography coupled to time of flight mass spectrometry (SPME-GCxGC-ToF/MS) is presented. Experimental design was used to determine the best SPME extraction conditions and the steroids were not derivatized prior to injection. SPME-GCxGC-ToF/MS provided linear ranges from 0.6 to 1200μgL(-1) and limits of detection and quantitation from 0.02 to 100μgL(-1). A series of river water samples obtained locally were subjected to analysis. SPME-GCxGC-ToF/MS is readily automated, straightforward and competitive with other methods for low level analysis of emerging contaminants. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Depth profiling of ion-implanted AlInN using time-of-flight secondary ion mass spectrometry and cathodoluminescence

    International Nuclear Information System (INIS)

    Martin, R.W.; Nogales, E.; Amabile, D.; Wang, K.; Katchkanov, V.; Trager-Cowan, C.; O'Donnell, K.P.; Rading, D.; Kersting, R.; Tallarek, E.; Watson, I.M.; Matias, V.; Vantomme, A.; Lorenz, K.; Alves, E.

    2006-01-01

    Investigation of the depth profiles and luminescence of Eu and Er-ions implanted into AlInN/GaN bilayers differentiates between ions located in the two different III-N hosts. Differences between samples implanted using channeling or off-axis geometries are studied using time-of-flight secondary ion mass spectrometry. A fraction of ions have crossed the AlInN layer (either 130 or 250 nm thick) and reached the underlying GaN. Cathodoluminescence spectra as a function of incident electron energy and photoluminescence excitation data distinguish between ions within AlInN and GaN. The RE emission from the AlInN is broader and red-shifted and the dependence of the intensity on host is discussed. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Liquid chromatography quadrupole time-of-flight mass spectrometry determination of six pharmaceuticals in vegetal biota. Uptake study in Lavandula dentata.

    Science.gov (United States)

    Barreales-Suárez, Sofía; Callejón-Mochón, Manuel; Azoulay, Stéphane; Bello-López, Miguel Ángel; Fernández-Torres, Rut

    2018-05-01

    A procedure based on microwave assisted extraction for the determination of 6 pharmaceuticals in samples of Lavandula dentata, Salicornia ramosissima and Juncus sp. by liquid chromatography-quadrupole time of flight mass spectrometry (LC-QTOF/MS) was optimized and validated. Best results were obtained using microwave assisted extraction of 1.0g of homogeneous lyophilized samples and 5mL of a mixture ACN:H 2 O (1:1 v/v) as extracting solvent. Analytical recoveries ranged from 60 to 107% with relative standard deviation (RSD) lower than 15%. Limits of quantitation (LOQ) for the 6 pharmaceuticals flumequine (FLM), carbamazepine (CBZ), ciprofloxacin (CPR), enrofloxacin (ENR), diclofenac (DCL), and ibuprofen (IBU) were in the range 20.8-125ngg -1 . The method was satisfactory applied for an uptake study in Lavandula dentata samples finding quantifying concentrations of FLM and CBZ in roots, leaf and stem. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of clinically important yeast species.

    Science.gov (United States)

    Stevenson, Lindsay G; Drake, Steven K; Shea, Yvonne R; Zelazny, Adrian M; Murray, Patrick R

    2010-10-01

    We evaluated the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for the rapid identification of yeast species. Using Bruker Daltonics MALDI BioTyper software, we created a spectral database library with m/z ratios of 2,000 to 20,000 Da for 109 type and reference strains of yeast (44 species in 8 genera). The database was tested for accuracy by use of 194 clinical isolates (23 species in 6 genera). A total of 192 (99.0%) of the clinical isolates were identified accurately by MALDI-TOF MS. The MALDI-TOF MS-based method was found to be reproducible and accurate, with low consumable costs and minimal preparation time.

  7. Correlation between phosphorylation ratios by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis and radioactivities by radioactive assay.

    Science.gov (United States)

    Tsuchiya, Akira; Asai, Daisuke; Kang, Jeong-Hun; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki

    2012-02-15

    To investigate the correlation between the counts per minute (CPM) by radioactivity assay and the phosphorylation ratio by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, we prepared 136 peptide substrates. The correlation coefficient of phosphorylation ratios to CPM was 0.77 for all samples. However, the more the numbers of positively charged amino acids increased, the more the correlation coefficient increased. Although positively charged amino acids can have an effect on the correlation results, MALDI-TOF MS analysis is a useful means for monitoring phosphorylated peptide and protein kinase activity instead of radioactivity assays. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Depth profiling of ion-implanted AlInN using time-of-flight secondary ion mass spectrometry and cathodoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.W.; Nogales, E.; Amabile, D.; Wang, K.; Katchkanov, V.; Trager-Cowan, C.; O' Donnell, K.P. [Department of Physics, University of Strathclyde, Glasgow, G4 0NG (United Kingdom); Rading, D. [ION-TOF GmbH, Gievenbecker Weg 15, 48149 Muenster (Germany); Kersting, R.; Tallarek, E. [Tascon GmbH, Gievenbecker Weg 15, 48149 Muenster (Germany); Watson, I.M. [Institute of Photonics, University of Strathclyde, Glasgow, G4 0NW (United Kingdom); Matias, V.; Vantomme, A. [Instituut voor Kern- en Stralingsfysica, K.U. Leuven, 3001 Leuven (Belgium); Lorenz, K.; Alves, E. [Instituto Tecnologico e Nuclear, EN10, 2686-953 Sacavem (Portugal)

    2006-06-15

    Investigation of the depth profiles and luminescence of Eu and Er-ions implanted into AlInN/GaN bilayers differentiates between ions located in the two different III-N hosts. Differences between samples implanted using channeling or off-axis geometries are studied using time-of-flight secondary ion mass spectrometry. A fraction of ions have crossed the AlInN layer (either 130 or 250 nm thick) and reached the underlying GaN. Cathodoluminescence spectra as a function of incident electron energy and photoluminescence excitation data distinguish between ions within AlInN and GaN. The RE emission from the AlInN is broader and red-shifted and the dependence of the intensity on host is discussed. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Analysis of low molecular weight acids by negative mode matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Shroff, Rohit; Muck, Alexander; Svatos, Ales

    2007-01-01

    Free 9-aminoacridine base is demonstrated to be a suitable matrix for negative mode matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOFMS) analysis of a wide range of low molecular weight organic acids including aliphatic (from acetic to palmitic acid), aromatic acids, phytohormones (e.g. jasmonic and salicylic acids), and amino acids. Low limits of quantitation in the femtomolar range (jasmonic - 250 fmol; caffeic - 160 fmol and salicylic - 12.5 fmol) and linear detector response over two concentration orders in the pico- and femtomolar range are extremely encouraging for the direct study of such acids in complex biological matrices. Copyright (c) 2007 John Wiley & Sons, Ltd.

  10. Note: Possibilities of detecting the trace-level erosion products from an electric propulsion hollow cathode plasma source by the method of time-of-flight mass spectrometry

    Science.gov (United States)

    Ning, Zhong-Xi; Zhang, Hai-Guang; Zhu, Xi-Ming; Jiang, Bin-Hao; Zhou, Zhong-Yue; Yu, Da-Ren; An, Bing-Jian; Wang, Yan-Fei

    2018-02-01

    A hollow cathode produces electrons which neutralize ions from electric propulsion thrusters. After hundreds to thousands of hours of operation in space, the cathode materials can be significantly eroded due to ion bombardment. As a result, the electric propulsion system performance will be obviously changed or even fail. In this work, the erosion products from a LaB6 hollow cathode (widely used presently in electric propulsion systems) are studied by using a specific detection system, which consists of a molecular beam sampler and a time-of-flight mass spectrometer. This system measures trace-level-concentration (10-6-10-3) products. Boron (B), tantalum (Ta), and tungsten (W)—originating from the emitter, keeper, and orifice of the hollow cathode—are measured. It is found that the erosion rate is significantly influenced by the gas flow rate to the cathode.

  11. Sulfonation of poly(N-vinylcarbazole) studied by combined time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy

    Science.gov (United States)

    Weng; Wong; Ho; Wang; Zeng; Yang

    2000-10-15

    A series of sulfonated poly(N-vinylcarbazole) (PVK) samples have been systematically studied by time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS). Negative TOF-SIMS results provided unambiguous evidence that sulfonate groups are chemically attached to the carbazole moiety of PVK. The positive SIMS spectrum of PVK was, however, little affected by the sulfonation reaction. The degree of sulfonation was quantitatively determined by XPS. Therefore, the combination of TOF-SIMS and XPS is useful to follow the sulfonation reaction, both qualitatively and quantitatively. The SIMS intensities of some characteristic fragments are linearly related to the degree of sulfonation, suggesting that quantitative analysis is possible from TOF-SIMS data.

  12. Investigation of storage time-dependent alterations of enantioselective amino acid profiles in kimchi using liquid chromatography-time of flight mass spectrometry.

    Science.gov (United States)

    Taniguchi, Moyu; Konya, Yutaka; Nakano, Yosuke; Fukusaki, Eiichiro

    2017-10-01

    Although naturally abundant amino acids are represented mainly by l-enantiomers, fermented foods are known to contain various d-amino acids. Enantiospecific profiles of food products can vary due to fermentation by bacteria, and such alterations may contribute to changes in food properties that would not be dependent exclusively on l-amino acids. Therefore, more attention should be paid to the study of temporal alterations of d-amino acid profiles during fermentation process. However, there have been very few studies reporting time-dependent profiling of d-amino acids because enantioseparation of widely targeted d-amino acids is technically difficult. This study aimed to achieve high throughput profiling of amino acids enantiomers. Enantioselective profiling of amino acids using CROWNPAK CR-I(+) column, liquid chromatography, time of flight mass spectrometry, and principle component analysis was performed to investigate time-dependent alterations in concentrations of free d- and l-amino acids in kimchi stored at 4°C or 25°C. We demonstrated significant changes in d- and l-amino acid profiles in kimchi stored at 25°C. In particular, concentrations of the amino acids d-Ala, d-Ser, d-allo-Ile, d-Leu, d-Asp, d-Glu, and d-Met became higher in kimchi with storage time. This is the first report of time-dependent alterations of d- and l-amino acid contents in kimchi. This study showed that our analytical method of enantioselective detection of amino acids using liquid chromatography time-of-flight mass spectrometry (LC-TOFMS) with CROWNPAK CR-I(+) enables high throughput food screening and can be recommended for advanced studies of the relationship between d-amino acid content and food properties. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. IN-SITU PROBING OF RADIATION-INDUCED PROCESSING OF ORGANICS IN ASTROPHYSICAL ICE ANALOGS-NOVEL LASER DESORPTION LASER IONIZATION TIME-OF-FLIGHT MASS SPECTROSCOPIC STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Gudipati, Murthy S.; Yang Rui, E-mail: gudipati@jpl.nasa.gov, E-mail: ryang73@ustc.edu [University of Maryland (United States)

    2012-09-01

    Understanding the evolution of organic molecules in ice grains in the interstellar medium (ISM) under cosmic rays, stellar radiation, and local electrons and ions is critical to our understanding of the connection between ISM and solar systems. Our study is aimed at reaching this goal of looking directly into radiation-induced processing in these ice grains. We developed a two-color laser-desorption laser-ionization time-of-flight mass spectroscopic method (2C-MALDI-TOF), similar to matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectroscopy. Results presented here with polycyclic aromatic hydrocarbon (PAH) probe molecules embedded in water-ice at 5 K show for the first time that hydrogenation and oxygenation are the primary chemical reactions that occur in astrophysical ice analogs when subjected to Ly{alpha} radiation. We found that hydrogenation can occur over several unsaturated bonds and the product distribution corresponds to their stabilities. Multiple hydrogenation efficiency is found to be higher at higher temperatures (100 K) compared to 5 K-close to the interstellar ice temperatures. Hydroxylation is shown to have similar efficiencies at 5 K or 100 K, indicating that addition of O atoms or OH radicals to pre-ionized PAHs is a barrierless process. These studies-the first glimpses into interstellar ice chemistry through analog studies-show that once accreted onto ice grains PAHs lose their PAH spectroscopic signatures through radiation chemistry, which could be one of the reason for the lack of PAH detection in interstellar ice grains, particularly the outer regions of cold, dense clouds or the upper molecular layers of protoplanetary disks.

  14. IN-SITU PROBING OF RADIATION-INDUCED PROCESSING OF ORGANICS IN ASTROPHYSICAL ICE ANALOGS—NOVEL LASER DESORPTION LASER IONIZATION TIME-OF-FLIGHT MASS SPECTROSCOPIC STUDIES

    International Nuclear Information System (INIS)

    Gudipati, Murthy S.; Yang Rui

    2012-01-01

    Understanding the evolution of organic molecules in ice grains in the interstellar medium (ISM) under cosmic rays, stellar radiation, and local electrons and ions is critical to our understanding of the connection between ISM and solar systems. Our study is aimed at reaching this goal of looking directly into radiation-induced processing in these ice grains. We developed a two-color laser-desorption laser-ionization time-of-flight mass spectroscopic method (2C-MALDI-TOF), similar to matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectroscopy. Results presented here with polycyclic aromatic hydrocarbon (PAH) probe molecules embedded in water-ice at 5 K show for the first time that hydrogenation and oxygenation are the primary chemical reactions that occur in astrophysical ice analogs when subjected to Lyα radiation. We found that hydrogenation can occur over several unsaturated bonds and the product distribution corresponds to their stabilities. Multiple hydrogenation efficiency is found to be higher at higher temperatures (100 K) compared to 5 K—close to the interstellar ice temperatures. Hydroxylation is shown to have similar efficiencies at 5 K or 100 K, indicating that addition of O atoms or OH radicals to pre-ionized PAHs is a barrierless process. These studies—the first glimpses into interstellar ice chemistry through analog studies—show that once accreted onto ice grains PAHs lose their PAH spectroscopic signatures through radiation chemistry, which could be one of the reason for the lack of PAH detection in interstellar ice grains, particularly the outer regions of cold, dense clouds or the upper molecular layers of protoplanetary disks.

  15. Performance of matrix-assisted laser desorption-time of flight mass spectrometry for identification of clinical yeast isolates

    DEFF Research Database (Denmark)

    Rosenvinge, Flemming S; Dzajic, Esad; Knudsen, Elisa

    2013-01-01

    participating laboratories. Of the 102 archived isolates, 81 (79%) and 92 (90%) were correctly identified by Saramis/AXIMA and BioTyper/Bruker respectively. Saramis/AXIMA was unable to separate Candida albicans, C. africana and C. dubliniensis in 13 of 32 isolates. After manual interpretation of the mass...... identification, respectively, whereas the other laboratory identified 83/98 (85%) to species level by both BioTyper/Bruker and conventional identification. Both MALDI-TOF-MS systems are fast, have built-in databases that cover the majority of clinically relevant Candida species, and have an accuracy...

  16. Analysis of Microbial Mixtures by Matrix-assisted Laser Desorption/Ionization time-of-flight Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, Karen L.; Wunschel, Sharon C.; Jarman, Kristin H.; Valentine, Nancy B.; Petersen, Catherine E.; Kingsley, Mark T.; Zartolas, Kimberly A.; Saenz, Adam J.

    2002-12-15

    Many different laboratories are currently developing mass-spectrometric techniques to analyze and identify microorganisms. However, minimal work has been done with mixtures of bacteria. To demonstrate that microbial mixtures could be analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), mixed bacterial cultures were analyzed in a double-blind fashion. Nine different bacterial species currently in our MALDI-MS fingerprint library were used to generate 50 different simulated mixed bacterial cultures similar to that done for an initial blind study previously reported.(1) The samples were analyzed by MALDI-MS with automated data extraction and analysis algorithms developed in our laboratory. The components present in the sample were identified correctly to the species level in all but one of the samples. However, correctly eliminating closely related organisms was challenging for the current algorithms, especially in differentiating Serratia marcescens, Escherichia coli, and Yersinia enterocolitica, which have some similarities in their MALDI-MS fingerprints. Efforts to improve the specificity of the algorithms are in progress.

  17. Comprehensive two-dimensional gas chromatography coupled to high resolution time-of-flight mass spectrometry for screening of organohalogenated compounds in cat hair.

    Science.gov (United States)

    Brits, Martin; Gorst-Allman, Peter; Rohwer, Egmont R; De Vos, Jayne; de Boer, Jacob; Weiss, Jana M

    2018-02-09

    The coupling of comprehensive two-dimensional gas chromatography with high-resolution time-of-flight mass spectrometry offers the best separation efficiency combined with accurate mass measurements over a wide mass range. The tremendous power of this screening tool is illustrated by trace qualitative screening analysis of organohalogenated compounds (OHCs) in pet cat hair. Tentative identification was supported by mass spectral database searches and elemental formula prediction from the experimentally determined accurate mass data. This screening approach resulted in the first tentative identification of pentabromoethylbenzene, decabromodiphenyl ethane, hexabromocyclododecane, trisbromoneopentyl alcohol, tris(2-chloroethyl) phosphate and tris(2-chloroisopropyl)phosphate in the South African indoor environment. A total of seventy-two OHCs were identified in the samples and include known flame retardants, such as polybrominated diphenyl ethers, and legacy contaminants such as polychlorinated biphenyls and organochlorine, organophosphorous and pyrethroid pesticides. The results obtained from cat hair indicate that these pets are exposed to complex mixtures of OHCs and the detection of these compounds suggests that non-invasive cat hair samples can be used to model indoor exposure with reference to external deposition of OHCs present in the air and dust surrounding people. Toddlers share the same environment as pet cats and therefore also the same health risks. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Screening of environmental contaminants in honey bee wax comb using gas chromatography-high-resolution time-of-flight mass spectrometry.

    Science.gov (United States)

    Gómez-Ramos, M M; García-Valcárcel, A I; Tadeo, J L; Fernández-Alba, A R; Hernando, M D

    2016-03-01

    This study reports an analytical approach intended to be used for investigation of non-targeted environmental contaminants and to characterize the organic pollution pattern of bee wax comb samples. The method comprises a generic extraction followed by detection with gas chromatography coupled to high-resolution time-of-flight mass spectrometry (GC-TOF-MS), operated in electron impact ionization (EI) mode. The screening approach for the investigation of non-targeted contaminants consisted of initial peak detection by deconvolution and matching the first-stage mass spectra EI-MS(1) with a nominal mass spectral library. To gain further confidence in the structural characterization of the contaminants under investigation, the molecular formula of representative ions (molecular ion when present in the EI spectrum) and, for at least other two fragment ions, was provided for those with an accurate mass scoring (mass error contaminants in 50 samples of bee wax comb. This approach has allowed the tentative identification of some GC-amenable contaminants belonging to different chemical groups, among them, phthalates and polycyclic aromatic hydrocarbons (PAHs), along with residues of veterinary treatments used in apiculture.

  19. Discrimination of Streptococcus equi subsp. equi and Streptococcus equi subsp. zooepidemicus using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Mani, Rinosh J; Thachil, Anil J; Ramachandran, Akhilesh

    2017-09-01

    Accurate and timely identification of infectious etiologies is of great significance in veterinary microbiology, especially for critical diseases such as strangles, a highly contagious disease of horses caused by Streptococcus equi subsp. equi. We evaluated a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) platform for use in species- and subspecies-level identification of S. equi isolates from horses and compared it with an automated biochemical system. We used 25 clinical isolates each of S. equi subsp. equi and S. equi subsp. zooepidemicus. Using the MALDI-TOF MS platform, it was possible to correctly identify all 50 isolates to the species level. Unique mass peaks were identified in the bacterial peptide mass spectra generated by MALDI-TOF MS, which can be used for accurate subspecies-level identification of S. equi. Mass peaks (mass/charge, m/ z) 6,751.9 ± 1.4 (mean ± standard deviation) and 5,958.1 ± 1.3 were found to be unique to S. equi subsp. equi and S. equi subsp. zooepidemicus, respectively. The automated biochemical system correctly identified 47 of 50 of the isolates to the species level as S. equi, whereas at the subspecies level, 24 of 25 S. equi subsp. equi isolates and 22 of 25 S. equi subsp. zooepidemicus isolates were correctly identified. Our results indicate that MALDI-TOF MS can be used for accurate species- and subspecies-level identification of S. equi.

  20. Rapid detection of porins by matrix-assisted laser desorption/ionization-time of flight mass spectrometry

    Directory of Open Access Journals (Sweden)

    Yanyan eHU

    2015-08-01

    Full Text Available The rapid and cost-efficient determination of carbapenem resistance is an important prerequisite for the choice of an adequate antibiotic therapy. A MALDI-TOF MS-based assay was set up to detect porins in the current study. A loss of the components of porin alone such as OmpK35/OmpK36 or together with the production of carbapenemases will augment the carbapenem resistance. Ten strains of E. coli and eight strains of K. pneumoniae were conducted for both SDS-PAGE and MALDI-TOF MS analysis. MALDI-TOF/TOF MS analysis was then performed to verify the corrospondence of proteins between SDS-PAGE and MALDI-TOF MS. The results indicated that the mass spectrum of ca. 35,000-m/z, 37,000-m/z and 38,000-m/z peaks of E. coli ATCC 25922 corresponded to OmpA, OmpC and OmpF with molecular weight of approximately ca. 38 kDa, 40 kDa and 41 kDa in SDS-PAGE gel, respectively. The band of OmpC and OmpF porins were unable to be distinguished by SDS-PAGE, whereas it was easy to be differentiated by MALDI-TOF MS. As for K. pneumoniae isolates, the mass spectrum of ca. 36,000-m/z and 38,600-m/z peaks was observed corresponding to OmpA and OmpK36 with molecular weight of approximately ca. 40 kDa and 42 kDa in SDS-PAGE gel, respectively. Porin OmpK35 was not observed in the current SDS-PAGE, while a 37,000-m/z peak was found in K. pneumoniae ATCC 13883 and carbapenem-susceptible strains by MALDI-TOF MS which was presumed to be the characteristic peak of the OmpK35 porin. Compared with SDS-PAGE, MALDI-TOF MS is able to rapidly identify the porin-deficient strains within half an hour with better sensitivity, less cost, and is easier to operate and has less interference.

  1. Quantification of genetically modified soya using strong anion exchange chromatography and time-of-flight mass spectrometry.

    Science.gov (United States)

    Chang, Po-Chih; Reddy, P Muralidhar; Ho, Yen-Peng

    2014-09-01

    Stable-isotope dimethyl labeling was applied to the quantification of genetically modified (GM) soya. The herbicide-resistant gene-related protein 5-enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) was labeled using a dimethyl labeling reagent, formaldehyde-H2 or -D2. The identification and quantification of CP4 EPSPS was performed using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The CP4 EPSPS protein was separated from high abundance proteins using strong anion exchange chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Then, the tryptic peptides from the samples and reference were labeled with formaldehyde-H2 and formaldehyde-D2, respectively. The two labeled pools were mixed and analyzed using MALDI-MS. The data showed a good correlation between the peak ratio of the H- and D-labeled peptides and the GM soya percentages at 0.5, 1, 3, and 5 %, with R (2) of 0.99. The labeling reagents are readily available. The labeling experiments and the detection procedures are simple. The approach is useful for the quantification of GM soya at a level as low as 0.5 %.

  2. Trace analysis of total naphthenic acids in aqueous environmental matrices by liquid chromatography/mass spectrometry-quadrupole time of flight mass spectrometry direct injection.

    Science.gov (United States)

    Brunswick, Pamela; Shang, Dayue; van Aggelen, Graham; Hindle, Ralph; Hewitt, L Mark; Frank, Richard A; Haberl, Maxine; Kim, Marcus

    2015-07-31

    A rapid and sensitive liquid chromatography quadrupole time of flight method has been established for the determination of total naphthenic acid concentrations in aqueous samples. This is the first methodology that has been adopted for routine, high resolution, high throughput analysis of total naphthenic acids at trace levels in unprocessed samples. A calibration range from 0.02 to 1.0μgmL(-1) total Merichem naphthenic acids was validated and demonstrated excellent accuracy (97-111% recovery) and precision (1.9% RSD at 0.02μgmL(-1)). Quantitative validation was also demonstrated in a non-commercial oil sands process water (OSPW) acid extractable organics (AEOs) fraction containing a higher percentage of polycarboxylic acid isomers than the Merichem technical mix. The chromatographic method showed good calibration linearity of ≥0.999 RSQ to 0.005μgmL(-1) total naphthenic acids with a precision <3.1% RSD and a calculated detection limit of 0.0004μgmL(-1) employing Merichem technical mix reference material. The method is well suited to monitoring naturally occurring and industrially derived naphthenic acids (and other AEOs) present in surface and ground waters in the vicinity of mining developments. The advantage of the current method is its direct application to unprocessed environmental samples and to examine natural naphthenic acid isomer profiles. It is noted that where the isomer profile of samples differs from that of the reference material, results should be considered semi-quantitative due to the lack of matching isomer content. The fingerprint profile of naphthenic acids is known to be transitory during aging and the present method has the ability to adapt to monitoring of these changes in naphthenic acid content. The method's total ion scan approach allows for data previously collected to be examined retrospectively for specific analyte mass ions of interest. A list of potential naphthenic acid isomers that decrease in response with aging is proposed

  3. A general screening method for doping agents in human urine by solid phase extraction and liquid chromatography/time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kolmonen, Marjo [Forensic Toxicology Division, Department of Forensic Medicine, University of Helsinki (Finland) and Doping Control Laboratory, United Laboratories Ltd., Helsinki (Finland)]. E-mail: marjo.kolmonen@helsinki.fi; Leinonen, Antti [Doping Control Laboratory, United Laboratories Ltd., Helsinki (Finland); Pelander, Anna [Forensic Toxicology Division, Department of Forensic Medicine, University of Helsinki (Finland); Ojanperae, Ilkka [Forensic Toxicology Division, Department of Forensic Medicine, University of Helsinki (Finland)

    2007-02-28

    A general screening method based on solid phase extraction (SPE) and liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) was developed and investigated with 124 different doping agents, including stimulants, {beta}-blockers, narcotics, {beta}{sub 2}-adrenergic agonists, agents with anti-estrogenic activity, diuretics and cannabinoids. Mixed mode cation exchange/C8 cartridges were applied to SPE, and chromatography was based on gradient elution on a C18 column. Ionization of the analytes was achieved with electrospray ionization in the positive mode. Identification by LC/TOFMS was based on retention time, accurate mass and isotopic pattern. Validation of the method consisted of analysis of specificity, analytical recovery, limit of detection and repeatability. The minimum required performance limit (MRPL), established by World Anti-Doping Agency (WADA), was attained to 97 doping agents. The extraction recoveries varied between 33 and 98% and the median was 58%. Mass accuracy was always better than 5 ppm, corresponding to a maximum mass error of 0.7 mDa. The repeatability of the method for spiked urine samples, expressed as median of relative standard deviations (RSD%) at concentrations of MRPL and 10 times MRPL, were 14% and 9%, respectively. The suitability of the LC/TOFMS method for doping control was demonstrated with authentic urine samples.

  4. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric imaging of synthetic polymer sample spots prepared using ionic liquid matrices.

    Science.gov (United States)

    Gabriel, Stefan J; Pfeifer, Dietmar; Schwarzinger, Clemens; Panne, Ulrich; Weidner, Steffen M

    2014-03-15

    Polymer sample spots for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) prepared by the dried-droplet method often reveal ring formation accompanied by possible segregation of matrix and sample molecules as well as of the polymer homologs itself. Since the majority of sample spots are prepared by this simple and fast method, a matrix or sample preparation method that excludes such segregation has to be found. Three different ionic liquid matrices based on conventionally used aromatic compounds for MALDI-TOF MS were prepared. The formation of ionic liquids was proven by (1) H NMR spectroscopy. MALDI-Imaging mass spectrometry was applied to monitor the homogeneity. Our results show a superior sample spot homogeneity using ionic liquid matrices. Spots could be sampled several times without visible differences in the mass spectra. A frequently observed loss of matrix in the mass spectrometer vacuum was not observed. The necessary laser irradiance was reduced, which resulted in less polymer fragmentation. Ionic liquid matrices can be used to overcome segregation, a typical drawback of conventional MALDI dried-droplet preparations. Homogeneous sample spots are easy to prepare, stable in the MS vacuum and, thereby, improve the reproducibility of MALDI. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Fungal pigments inhibit the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of darkly pigmented fungi.

    Science.gov (United States)

    Buskirk, Amanda D; Hettick, Justin M; Chipinda, Itai; Law, Brandon F; Siegel, Paul D; Slaven, James E; Green, Brett J; Beezhold, Donald H

    2011-04-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been used to discriminate moniliaceous fungal species; however, darkly pigmented fungi yield poor fingerprint mass spectra that contain few peaks of low relative abundance. In this study, the effect of dark fungal pigments on the observed MALDI mass spectra was investigated. Peptide and protein samples containing varying concentrations of synthetic melanin or fungal pigments extracted from Aspergillus niger were analyzed by MALDI-TOF and MALDI-qTOF (quadrupole TOF) MS. Signal suppression was observed in samples containing greater than 250ng/μl pigment. Microscopic examination of the MALDI sample deposit was usually heterogeneous, with regions of high pigment concentration appearing as black. Acquisition of MALDI mass spectra from these darkly pigmented regions of the sample deposit yielded poor or no [M+H](+) ion signal. In contrast, nonpigmented regions within the sample deposit and hyphal negative control extracts of A. niger were not inhibited. This study demonstrated that dark fungal pigments inhibited the desorption/ionization process during MALDI-MS; however, these fungi may be successfully analyzed by MALDI-TOF MS when culture methods that suppress pigment expression are used. The addition of tricyclazole to the fungal growth media blocks fungal melanin synthesis and results in less melanized fungi that may be analyzed by MALDI-TOF MS. Published by Elsevier Inc.

  6. Proteomic analysis of serum in patients with non-alcoholic steatohepatitis using matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Ulukaya, Engin; Yilmaz, Yusuf; Moshkovskii, Sergei; Karpova, Maria; Pyatnitskiy, Mikhail; Atug, Ozlen; Dolar, Enver

    2009-01-01

    We sought to investigate whether serum proteomic pattern analysis obtained using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI TOF-MS) may help to diagnose non-alcoholic steatohepatitis (NASH) in the setting of non-alcoholic fatty liver disease (NAFLD). We enrolled 80 patients with biopsy-proven NAFLD and 19 healthy comparison subjects. Patients with NAFLD were classified according to their liver histology as having definite NASH (n = 48), borderline NASH (n = 22) or simple steatosis (n = 10). Liver ultrasound scanning was performed to assess the degree of steatosis. Mass spectra of serum samples were obtained using a Ultraflex II mass spectrometer. The highest accuracy for NASH diagnostics was reached using 15 peaks. Corresponding sensitivity and specificity values were 73.95% +/- 3.38% and 88.71% +/- 1.39%, respectively. However, mass spectra did not allow us to distinguish NASH from simple steatosis. We conclude that proteomic analyses of serum samples from NAFLD patients by MALDI TOF-MS do not seem to have a major clinical value for diagnosing NASH. However, the identification of 15 peaks in our study may help to further elucidate the pathophysiology of NASH and merits further investigation.

  7. Characterization of a time-of-flight mass spectrometer and its applications in the study of solid surfaces; Charakterisierung eines Flugzeitmassenspektrometers und seine Anwendungen in der Festkoerperoberflaechenuntersuchung

    Energy Technology Data Exchange (ETDEWEB)

    Mazarov, P.

    2006-12-21

    The object and the purpose of the present work was to develop, to assemble and to start running a new TOF (time of flight) mass spectrometer for imaging SNMS analytic which is optimized for the analysis of highly molecular secondary ions. The most important purpose was the characterization of the TOF mass spectrometer. The obtained mass spectra of indium, tantalum and silver clusters reflect the excellent properties of the TOF mass spectrometer for the detection of large clusters with good detection efficiency up to masses of 16000 amu. The possibility of the deflection of selected saturated atom and cluster peaks serves for further improvement of the detection efficiency for large molecules. The accessible mass resolution was determined to be of the order of m/{delta}m=1000 in the high mass region. Numerous measurements were carried out to characterize the useful yield of this spectrometer. For a best possible adaptation of the TOF mass spectrometer for the detection of highly molecular particles, a device for post-acceleration of the detected particles by up to 10 keV were inserted directly before the MCP detector. The detection efficiency of positive secondary ions was determined for different post-acceleration voltages for the example of sputtered indium cluster ions. In addition, a new method was developed for the quantitative determination of the spectral ionization probability {alpha}{sup +}({nu}) of sputtered particles as a function of the emission velocity. The next application of the TOF mass spectrometer is the analysis of complicated organic molecules in solid state surfaces. During measurements of the photo-ionization behaviour of neutral tryptophan molecules, it was found out that a stable molecular ion signal is generated in the SNMS spectrum with h{nu}=7.9 eV can only be observed by the use of a continuous ion beam or very long (ms range) ion pulses. (orig.)

  8. Time-of-flight spectrometers

    International Nuclear Information System (INIS)

    Carrico, J.P.

    1976-01-01

    The flight time of an ion in an inhomogeneous, oscillatory electric field (IOFE) is an m/e-dependent property of this field and is independent of the initial position and velocity. The d.c. component of the equation of motion for an ion in the IOFE describes a harmonic oscillation of constant period. When ions oscillate for many periods with one species overtaking another the motion may no longer be truly periodic although the resulting period or 'quasi-period' still remains independent of the initial conditions. This period or 'quasi-period' is used in the time-of-flight mass spectrometer described. The principle of operation is also described and both analytical and experimental results are reported. (B.D.)

  9. Chemometrics comparison of gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry Daphnia magna metabolic profiles exposed to salinity.

    Science.gov (United States)

    Parastar, Hadi; Garreta-Lara, Elba; Campos, Bruno; Barata, Carlos; Lacorte, Silvia; Tauler, Roma

    2018-02-27

    The performances of gas chromatography with mass spectrometry and of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry are examined through the comparison of Daphnia magna metabolic profiles. Gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with mass spectrometry were used to compare the concentration changes of metabolites under saline conditions. In this regard, a chemometric strategy based on wavelet compression and multivariate curve resolution-alternating least squares is used to compare the performances of gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry for the untargeted metabolic profiling of Daphnia magna in control and salinity-exposed samples. Examination of the results confirmed the outperformance of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry over gas chromatography with mass spectrometry for the detection of metabolites in D. magna samples. The peak areas of multivariate curve resolution-alternating least squares resolved elution profiles in every sample analyzed by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry were arranged in a new data matrix that was then modeled by partial least squares discriminant analysis. The control and salt-exposed daphnids samples were discriminated and the most relevant metabolites were estimated using variable importance in projection and selectivity ratio values. Salinity de-regulated 18 metabolites from metabolic pathways involved in protein translation, transmembrane cell transport, carbon metabolism, secondary metabolism, glycolysis, and osmoregulation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Evaluation of a High Resolving Power Time-of-Flight Mass Spectrometer for Drug Analysis in Terms of Resolving Power and Acquisition Rate

    Science.gov (United States)

    Pelander, Anna; Decker, Petra; Baessmann, Carsten; Ojanperä, Ilkka

    2011-02-01

    Liquid chromatography time-of-flight mass spectrometry (LC-TOFMS) is applied increasingly to various fields of small molecule analysis. The moderate resolving power (RP) of standard TOFMS instruments poses a risk of false negative results when complex biological matrices are to be analyzed. In this study, the performance of a high resolving power TOFMS instrument (maXis by Bruker Daltonik, Bremen, Germany) was evaluated for drug analysis. By flow injection analysis of critical drug mixtures, including a total of 17 compounds with nominal masses of 212-415 Da and with mass differences of 8.8-23.5 mDa, RP varied from 34,400 to 51,900 (FWHM). The effect of acquisition rate on RP, mass accuracy, and isotopic pattern fit was studied by applying 1, 2, 5, 10, and 20 Hz acquisition rates in a 16 min gradient elution LC separation. All three variables were independent of the acquisition rate, with an average mass accuracy and isotopic pattern fit factor (mSigma) of 0.33 ppm and 5.9, respectively. The average relative standard deviation of RP was 1.8%, showing high repeatability. The performance was tested further with authentic urine extracts containing a co-eluting compound pair with a nominal mass of 296 Da and an 11.2 mDa mass difference. The authentic sample components were readily resolved and correctly identified by the automated data analysis. The average RP, mass accuracy, and isotopic pattern fit were 36,600, 0.9 ppm, and 7.3 mSigma, respectively.

  11. Increasing throughput and information content for in vitro drug metabolism experiments using ultra-performance liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer.

    Science.gov (United States)

    Castro-Perez, Jose; Plumb, Robert; Granger, Jennifer H; Beattie, Iain; Joncour, Karine; Wright, Andrew

    2005-01-01

    The field of drug metabolism has been revolutionized by liquid chromatography/mass spectrometry (LC/MS) applications with new technologies such as triple quadrupoles, ion traps and time-of-flight (ToF) instrumentation. Over the years, these developments have often relied on the improvements to the mass spectrometer hardware and software, which has allowed users to benefit from lower levels of detection and ease-of-use. One area in which the development pace has been slower is in high-performance liquid chromatography (HPLC). In the case of metabolite identification, where there are many challenges due to the complex nature of the biological matrices and the diversity of the metabolites produced, there is a need to obtain the most accurate data possible. Reactive or toxic metabolites need to be detected and identified as early as possible in the drug discovery process, in order to reduce the very costly attrition of compounds in late-phase development. High-resolution, exact mass measurement plays a very important role in metabolite identification because it allows the elimination of false positives and the determination of non-trivial metabolites in a much faster throughput environment than any other standard current methodology available to this field. By improving the chromatographic resolution, increased peak capacity can be achieved with a reduction in the number of co-eluting species leading to superior separations. The overall enhancement in the chromatographic resolution and peak capacity is transferred into a net reduction in ion suppression leading to an improvement in the MS sensitivity. To investigate this, a number of in vitro samples were analyzed using an ultra-performance liquid chromatography (UPLC) system, with columns packed with porous 1.7 mum particles, coupled to a hybrid quadrupole time-of-flight (ToF) mass spectrometer. This technique showed very clear examples for fundamental gains in sensitivity, chromatographic resolution and speed of

  12. Alkaloids Profiling of Fumaria capreolata by Analytical Platforms Based on the Hyphenation of Gas Chromatography and Liquid Chromatography with Quadrupole-Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    María del Mar Contreras

    2017-01-01

    Full Text Available Two analytical platforms, gas chromatography (GC coupled to quadrupole-time-of-flight (QTOF mass spectrometry (MS and reversed-phase ultrahigh performance liquid chromatography (UHPLC coupled to diode array (DAD and QTOF detection, were applied in order to study the alkaloid profile of Fumaria capreolata. The use of these mass analyzers enabled tentatively identifying the alkaloids by matching their accurate mass signals and suggested molecular formulae with those previously reported in libraries and databases. Moreover, the proposed structures were corroborated by studying their fragmentation pattern obtained by both platforms. In this way, 8 and 26 isoquinoline alkaloids were characterized using GC-QTOF-MS and RP-UHPLC-DAD-QTOF-MS, respectively, and they belonged to the following subclasses: protoberberine, protopine, aporphine, benzophenanthridine, spirobenzylisoquinoline, morphinandienone, and benzylisoquinoline. Moreover, the latter analytical method was selected to determine at 280 nm the concentration of protopine (9.6 ± 0.7 mg/g, a potential active compound of the extract. In conclusion, although GC-MS has been commonly used for the analysis of this type of phytochemicals, RP-UHPLC-DAD-QTOF-MS provided essential complementary information. This analytical method can be applied for the quality control of phytopharmaceuticals containing Fumaria extracts currently found in the market.

  13. Laser Desorption Ionization of As2Ch3 (Ch = S, Se, and Te) Chalcogenides Using Quadrupole Ion Trap Time-of-Flight Mass Spectrometry: A Comparative Study

    Science.gov (United States)

    Mawale, Ravi Madhukar; Ausekar, Mayuri Vilas; Prokeš, Lubomír; Nazabal, Virginie; Baudet, Emeline; Halenkovič, Tomáš; Bouška, Marek; Alberti, Milan; Němec, Petr; Havel, Josef

    2017-12-01

    Laser desorption ionization using time-of-flight mass spectrometer afforded with quadrupole ion trap was used to study As2Ch3 (Ch = S, Se, and Te) bulk chalcogenide materials. The main goal of the study is the identification of species present in the plasma originating from the interaction of laser pulses with solid state material. The generated clusters in both positive and negative ion mode are identified as 10 unary (S p +/- and As m +/- ) and 34 binary (As m S p +/- ) species for As2S3 glass, 2 unary (Se q +/- ) and 26 binary (As m Se q +/- ) species for As2Se3 glass, 7 unary (Te r +/- ) and 23 binary (As m Te r +/- ) species for As2Te3 material. The fragmentation of chalcogenide materials was diminished using some polymers and in this way 45 new, higher mass clusters have been detected. This novel approach opens a new possibility for laser desorption ionization mass spectrometry analysis of chalcogenides as well as other materials. [Figure not available: see fulltext.

  14. Analytical detection of explosives and illicit, prescribed and designer drugs using proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Bishu; Petersson, Fredrik; Juerschik, Simone [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, Technikerstr. 25, 6020 Innsbruck (Austria); Sulzer, Philipp; Jordan, Alfons [IONICON Analytik GmbH, Eduard-Bodem-Gasse 3, 6020 Innsbruck (Austria); Maerk, Tilmann D. [Institut fuer Ionenphysik und Angewandte Physik, Universitaet Innsbruck, Technikerstr. 25, 6020 Innsbruck (Austria); IONICON Analytik GmbH, Eduard-Bodem-Gasse 3, 6020 Innsbruck (Austria); Watts, Peter; Mayhew, Chris A. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 4TT (United Kingdom)

    2011-07-01

    This work demonstrates the extremely favorable features of Proton Transfer Reaction Time-of-flight Mass Spectrometry (PTR-TOF-MS) for the detection and identification of solid explosives, chemical warfare agent simulants and illicit, prescribed and designer drugs in real time. Here, we report the use of PTR-TOF, for the detection of explosives (e.g., trinitrotoluene, trinitrobenzene) and illicit, prescribed and designer drugs (e.g., ecstasy, morphine, heroin, ethcathinone, 2C-D). For all substances, the protonated parent ion (as we used H{sub 3}O{sup +} as a reagent ion) could be detected, providing a high level of confidence in their identification since the high mass resolution allows compounds having the same nominal mass to be separated. We varied the E/N from 90 to 220 T{sub d} (1 T{sub d}=10{sup -17} Vcm{sup -1}). This allowed us to study fragmentation pathways as a function of E/N (reduced electric field). For a few compounds rather unusual E/N dependencies were also discovered.

  15. In-depth study of in-trap high-resolution mass separation by transversal ion ejection from a multi-reflection time-of-flight device.

    Science.gov (United States)

    Fischer, Paul; Knauer, Stefan; Marx, Gerrit; Schweikhard, Lutz

    2018-01-01

    The recently introduced method of ion separation by transversal ejection of unwanted species in electrostatic ion-beam traps and multi-reflection time-of-flight devices has been further studied in detail. As this separation is performed during the ion storage itself, there is no need for additional external devices such as ion gates or traps for either pre- or postselection of the ions of interest. The ejection of unwanted contaminant ions is performed by appropriate pulses of the potentials of deflector electrodes. These segmented ring electrodes are located off-center in the trap, i.e., between one of the two ion mirrors and the central drift tube, which also serves as a potential lift for capturing incoming ions and axially ejecting ions of interest after their selection. The various parameters affecting the selection effectivity and resolving power are illustrated with tin-cluster measurements, where isotopologue ion species provide mass differences down to a single atomic mass unit at ion masses of several hundred. Symmetric deflection voltages of only 10 V were found sufficient for the transversal ejection of ion species with as few as three deflection pulses. The duty cycle, i.e., the pulse duration with respect to the period of ion revolution, has been varied, resulting in resolving powers of up to several tens of thousands for this selection technique.

  16. Proteogenomic biomarkers for identification of Francisella species and subspecies by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry.

    Science.gov (United States)

    Durighello, Emie; Bellanger, Laurent; Ezan, Eric; Armengaud, Jean

    2014-10-07

    Francisella tularensis is the causative agent of tularemia. Because some Francisella strains are very virulent, this species is considered by the Centers for Disease Control and Prevention to be a potential category A bioweapon. A mass spectrometry method to quickly and robustly distinguish between virulent and nonvirulent Francisella strains is desirable. A combination of shotgun proteomics and whole-cell matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry on the Francisella tularensis subsp. holarctica LVS defined three protein biomarkers that allow such discrimination: the histone-like protein HU form B, the 10 kDa chaperonin Cpn10, and the 50S ribosomal protein L24. We established that their combined detection by whole-cell MALDI-TOF spectrum could enable (i) the identification of Francisella species, and (ii) the prediction of their virulence level, i.e., gain of a taxonomical level with the identification of Francisella tularensis subspecies. The detection of these biomarkers by MALDI-TOF mass spectrometry is straightforward because of their abundance and the absence of other abundant protein species closely related in terms of m/z. The predicted molecular weights for the three biomarkers and their presence as intense peaks were confirmed with MALDI-TOF/MS spectra acquired on Francisella philomiragia ATCC 25015 and on Francisella tularensis subsp. tularensis CCUG 2112, the most virulent Francisella subspecies.

  17. Discrimination of Bacillus anthracis Spores by Direct in-situ Analysis of Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Youngsu; Lee, Jonghee; Kim, Seongsoo [Agency for Defense Development, Daejeon (Korea, Republic of)

    2013-09-15

    The rapid and accurate identification of biological agents is a critical step in the case of bio-terror and biological warfare attacks. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been widely used for the identification of microorganisms. In this study, we describe a method for the rapid and accurate discrimination of Bacillus anthracis spores using MALDI-TOF MS. Our direct in-situ analysis of MALDI-TOF MS does not involve subsequent high-resolution mass analyses and sample preparation steps. This method allowed the detection of species-specific biomarkers from each Bacillus spores. Especially, B. anthracis spores had specific biomarker peaks at 2503, 3089, 3376, 6684, 6698, 6753, and 6840 m/z. Cluster and PCA analyses of the mass spectra of Bacillus spores revealed distinctively separated clusters and within-groups similarity. Therefore, we believe that this method is effective in the real-time identification of biological warfare agents such as B. anthracis as well as other microorganisms in the field.

  18. Discrimination of Bacillus anthracis Spores by Direct in-situ Analysis of Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry

    International Nuclear Information System (INIS)

    Jeong, Youngsu; Lee, Jonghee; Kim, Seongsoo

    2013-01-01

    The rapid and accurate identification of biological agents is a critical step in the case of bio-terror and biological warfare attacks. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been widely used for the identification of microorganisms. In this study, we describe a method for the rapid and accurate discrimination of Bacillus anthracis spores using MALDI-TOF MS. Our direct in-situ analysis of MALDI-TOF MS does not involve subsequent high-resolution mass analyses and sample preparation steps. This method allowed the detection of species-specific biomarkers from each Bacillus spores. Especially, B. anthracis spores had specific biomarker peaks at 2503, 3089, 3376, 6684, 6698, 6753, and 6840 m/z. Cluster and PCA analyses of the mass spectra of Bacillus spores revealed distinctively separated clusters and within-groups similarity. Therefore, we believe that this method is effective in the real-time identification of biological warfare agents such as B. anthracis as well as other microorganisms in the field

  19. Analysis of caged xanthones from the resin of Garcinia hanburyi using ultra-performance liquid chromatography/electrospray ionization quadrupole time-of-flight tandem mass spectrometry.

    Science.gov (United States)

    Zhou, Yan; Liu, Xin; Yang, Jing; Han, Quan-Bin; Song, Jing-Zheng; Li, Song-Lin; Qiao, Chun-Feng; Ding, Li-Sheng; Xu, Hong-Xi

    2008-11-23

    On-line ultra high-performance liquid chromatography (UHPLC) coupled with electrospray quadrupole time-of-flight tandem mass spectrometry (ESI-QTOF-MS/MS/MS) has been developed for the analysis of a series of caged xanthones in the resin of Garcinia hanburyi. The fragmentation of protonated molecular ions for 12 known cadged xanthones was carried out using low-energy collision-induced electrospray ionization tandem mass spectrometry. It was found that Retro-Diels-Alder rearrangement occurred in the CID processes and produced the characteristic fragment ions, which are especially valuable for the identification of this class of xanthones. The fragmentation differential between some cis-, trans-isomers was uncovered. Computation methods were utilized to rationalize the observed MS behaviors. On-line UHPLC-ESI-MS/MS/MS method has proved to be rapid and efficient in that within 6min, 15 caged scaffold xanthones, including three pairs of epimers and four pairs of isomers in gamboges, were effectively separated and identified. Among them, two known, namely isogambogenin (13) and isomorellinol (14) and one likely new caged Garcinia xanthones from the Garcinia hanburyi were tentatively characterized based on the tandem mass spectra of known ones.

  20. Alkaloids Profiling of Fumaria capreolata by Analytical Platforms Based on the Hyphenation of Gas Chromatography and Liquid Chromatography with Quadrupole-Time-of-Flight Mass Spectrometry

    Science.gov (United States)

    Bribi, Noureddine; Gómez-Caravaca, Ana María

    2017-01-01

    Two analytical platforms, gas chromatography (GC) coupled to quadrupole-time-of-flight (QTOF) mass spectrometry (MS) and reversed-phase ultrahigh performance liquid chromatography (UHPLC) coupled to diode array (DAD) and QTOF detection, were applied in order to study the alkaloid profile of Fumaria capreolata. The use of these mass analyzers enabled tentatively identifying the alkaloids by matching their accurate mass signals and suggested molecular formulae with those previously reported in libraries and databases. Moreover, the proposed structures were corroborated by studying their fragmentation pattern obtained by both platforms. In this way, 8 and 26 isoquinoline alkaloids were characterized using GC-QTOF-MS and RP-UHPLC-DAD-QTOF-MS, respectively, and they belonged to the following subclasses: protoberberine, protopine, aporphine, benzophenanthridine, spirobenzylisoquinoline, morphinandienone, and benzylisoquinoline. Moreover, the latter analytical method was selected to determine at 280 nm the concentration of protopine (9.6 ± 0.7 mg/g), a potential active compound of the extract. In conclusion, although GC-MS has been commonly used for the analysis of this type of phytochemicals, RP-UHPLC-DAD-QTOF-MS provided essential complementary information. This analytical method can be applied for the quality control of phytopharmaceuticals containing Fumaria extracts currently found in the market. PMID:29348751

  1. Analysis of caged xanthones from the resin of Garcinia hanburyi using ultra-performance liquid chromatography/electrospray ionization quadrupole time-of-flight tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Yan [Hong Kong Jockey Club Institute of Chinese Medicine, Shatin, Hong Kong (China); Liu Xin [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan Province (China); Yang Jing [School of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240 (China); Han Quanbin; Song Jingzheng; Li Songlin; Qiao Chunfeng [Hong Kong Jockey Club Institute of Chinese Medicine, Shatin, Hong Kong (China); Ding Lisheng [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan Province (China)], E-mail: lsding@cib.ac.cn; Xu Hongxi [Hong Kong Jockey Club Institute of Chinese Medicine, Shatin, Hong Kong (China)], E-mail: xuhongxi@hkjcicm.org

    2008-11-23

    On-line ultra high-performance liquid chromatography (UHPLC) coupled with electrospray quadrupole time-of-flight tandem mass spectrometry (ESI-QTOF-MS/MS/MS) has been developed for the analysis of a series of caged xanthones in the resin of Garcinia hanburyi. The fragmentation of protonated molecular ions for 12 known cadged xanthones was carried out using low-energy collision-induced electrospray ionization tandem mass spectrometry. It was found that Retro-Diels-Alder rearrangement occurred in the CID processes and produced the characteristic fragment ions, which are especially valuable for the identification of this class of xanthones. The fragmentation differential between some cis-, trans-isomers was uncovered. Computation methods were utilized to rationalize the observed MS behaviors. On-line UHPLC-ESI-MS/MS/MS method has proved to be rapid and efficient in that within 6 min, 15 caged scaffold xanthones, including three pairs of epimers and four pairs of isomers in gamboges, were effectively separated and identified. Among them, two known, namely isogambogenin (13) and isomorellinol (14) and one likely new caged Garcinia xanthones from the Garcinia hanburyi were tentatively characterized based on the tandem mass spectra of known ones.

  2. Evaluation of relative isotopic abundance measurements in a quadrupole time-of-flight mass spectrometer for elemental composition determination of natural products in traditional Chinese medicine.

    Science.gov (United States)

    Wu, Zhi-Jun; Huo, Jia-Li; Chen, Jian-Zhong; Li, Na; Fang, Dong-Mei; Chen, Xiao-Zhen; Zhang, Guo-Lin; Wang, Jian-Hua; Xu, Xiao-Ying

    2013-01-01

    The relative isotopic abundance (RIA) measurement errors of a quadrupole time-of-flight (Q-ToF) instrument incorporating analog-to-digital converter detectors were systemically evaluated by stochastically collecting about 200 data in positive ion mass spectrometry (MS) mode. Errors varied with peak intensities at definite spectral acquisition rates but were very close, even if peak intensities changed sharply at different spectral acquisition rates with the same concentration. Intensity thresholds were systematically defined at 1 Hz of spectral acquisition rates. RIA measurement errors were also evaluated using peak area. It seemed that peak area was better adapted for the high-intensity ions while peak intensity was suited for very low-intensity ions. Several known compounds were selected for RIA measurements for product ions in tandem mass spectropmetry (MS/MS) mode. An extract of a representative traditional Chinese medicinal, Paederia scandens was analyzed with high-performance liquid chromatography-electrospray ionization-QToF-MS/MS. The unique elemental compositions of some compounds could not be identified even with exact masses and MS/MS spectra of measured and reference compounds. RIA errors, especially of (M+2)M(-1), provided vital information for determining the elemental composition.

  3. Metabolites Software-Assisted Flavonoid Hunting in Plants Using Ultra-High Performance Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Wan-Yi Gu

    2015-03-01

    Full Text Available Plant secondary metabolism drives the generation of metabolites used for host plant resistance, as biopesticides and botanicals, even for the discovery of new therapeutics for human diseases. Flavonoids are one of the largest and most studied classes of specialized plant metabolites. To quickly identify the potential bioactive flavonoids in herbs, a metabolites software-assisted flavonoid hunting approach was developed, which mainly included three steps: firstly, utilizing commercial metabolite software, a flavonoids database was established based on the biosynthetic pathways; secondly, mass spectral data of components in herbs were acquired by ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry (UHPLC-Q-TOF-MS; and finally, the acquired LC-MS data were imported into the database and the compounds in the herbs were automatically identified by comparison of their mass spectra with the theoretical values. As a case study, the flavonoids in Smilax glabra were profiled using this approach. As a result, 104 flavonoids including 27 potential new compounds were identified. To our knowledge, this is the first report on profiling the components in the plants utilizing the plant metabolic principles with the assistance of metabolites software. This approach can be extended to the analysis of flavonoids in other plants.

  4. Identification of pesticide transformation products in food by liquid chromatography/time-of-flight mass spectrometry via "fragmentation-degradation" relationships.

    Science.gov (United States)

    García-Reyes, Juan F; Molina-Díaz, Antonio; Fernandez-Alba, Amadeo R

    2007-01-01

    The identification of transformation products of pesticides in foodstuffs is a crucial task difficult to tackle, due to the lack of standards and scarce information available. In this work, we describe a methodology for the identification and structural elucidation of pesticide transformation products in food. The proposed strategy is based on the use of liquid chromatography electrospray time-of-flight mass spectrometry (LC/TOFMS): accurate mass measurements of (molecule and fragment) ions of interest are used in order to establish relationships between fragmentation of the parent pesticides in the instrument (in-source CID fragmentation) and possible degradation products of these pesticides in food. Examples of this strategy showing the potential of LC/TOFMS to determine unknown pesticides in food are described in two different real samples, suggesting that pesticides often are transformed into degradation products in the same fashion that they are fragmented in the instrument. Using the proposed approach and without using standards a priori, based solely on accurate mass measurements of ions and "fragmentation-degradation" relationships, we have identified two parent pesticides (amitraz and malathion) along with six degradation products, m/z 253 (N,N'-bisdimethylphenylformamidine), 163 (N-2,4-dimethylphenyl-N-methyl formamidine), 150 (2,4-dimethylformamidine), and 122 (2,4-dimethylaniline) from amitraz, and m/z 317 and 303, due to ether hydrolysis of methyl and ethyl groups from malathion. Structures for these species were proposed, and the potential of the proposed approach was critically discussed.

  5. Chemometric and multivariate statistical analysis of time-of-flight secondary ion mass spectrometry spectra from complex Cu-Fe sulfides.

    Science.gov (United States)

    Kalegowda, Yogesh; Harmer, Sarah L

    2012-03-20

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) spectra of mineral samples are complex, comprised of large mass ranges and many peaks. Consequently, characterization and classification analysis of these systems is challenging. In this study, different chemometric and statistical data evaluation methods, based on monolayer sensitive TOF-SIMS data, have been tested for the characterization and classification of copper-iron sulfide minerals (chalcopyrite, chalcocite, bornite, and pyrite) at different flotation pulp conditions (feed, conditioned feed, and Eh modified). The complex mass spectral data sets were analyzed using the following chemometric and statistical techniques: principal component analysis (PCA); principal component-discriminant functional analysis (PC-DFA); soft independent modeling of class analogy (SIMCA); and k-Nearest Neighbor (k-NN) classification. PCA was found to be an important first step in multivariate analysis, providing insight into both the relative grouping of samples and the elemental/molecular basis for those groupings. For samples exposed to oxidative conditions (at Eh ~430 mV), each technique (PCA, PC-DFA, SIMCA, and k-NN) was found to produce excellent classification. For samples at reductive conditions (at Eh ~ -200 mV SHE), k-NN and SIMCA produced the most accurate classification. Phase identification of particles that contain the same elements but a different crystal structure in a mixed multimetal mineral system has been achieved.

  6. A 2 × 2 mm2 superconducting strip-line detector for high-performance time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Casaburi, A; Esposito, E; Ejrnaes, M; Cristiano, R; Suzuki, K; Ohkubo, M; Pagano, S

    2012-01-01

    We present the fabrication and characterization of the latest generation of superconducting strip-line detectors (SSLD) for application in time-of-flight mass spectrometer (TOF MS) of heavy molecules. The SSLD is realized in the parallel strip-line configuration to achieve a 2 × 2 mm 2 sensitive area. The parallel SSLD is mounted in a TOF MS and tested at 4.2 K under bombardment of lysozyme molecules. The detector exhibits output pulses with rise and fall times of 500 ps and 2.3 ns respectively. We also present measurements of the time evolution during the acquisition of the singly and doubly charged monomers and singly charged dimers peaks in the mass spectrum. We argue that the observed behavior proves that parallel SSLD can perform charge state discrimination. The achievement of a 2 × 2 mm 2 sensitive area with an output pulse rise time in the region of the sub-nanosecond and a fall time of a few nanoseconds is a milestone in the development of superconducting detectors for TOF MS applications because it addresses important issues such as high mass resolution and high-throughput analysis. (paper)

  7. Rosetta/COSIMA: Laboratory time-of-flight secondary ion mass spectra of PAHs for in-situ detection in the cometary solid organic matter

    Science.gov (United States)

    Bardyn, A.; Briois, C.; Cottin, H.; Fray, N.; LeRoy, L.; Thirkell, L.; Hilchenbach, M.

    2014-07-01

    ESA's spacecraft called ROSETTA will reach the comet 67P/Churyumov- Gerasimenko in August 2014. During the escort phase of the mission, beginning after the lander (Philae) is released, the COmetary Secondary Ion Mass Analyzer (COSIMA) [1] carried on board will collect and analyse dust grains in the cometary coma. COSIMA is a time-of-flight secondary ion mass spectrometer (TOF-SIMS) with a high mass resolution m/Δ m of 1400 at mass m=100 amu (from FWHM) and mass range from 1 to 3500 amu. The investigations performed by COSIMA on solid cometary grains are aimed to analyze in situ their molecular, elemental, and isotopic composition. The spectra obtained with COSIMA, will be a combination of mass peaks of mineral and organic elements. The organics are expected to be minor peaks, making their identification not simple. To prepare for the future COSIMA spectra interpretation, the COSIMA team members have started to establish a library database of standardized mass spectra [2,3]. High statistics of positive and negative spectra of the samples were then taken in order to get molecular structure information. Polycyclic Aromatic Hydrocarbons (PAHs) are organic macromolecules that could survive harsh radiation environment. They are suspected to be responsible for unidentified infrared bands observed in diverse astrophysical environments. Many attempts were made to demonstrate the presence of PAHs in comets. Tentative attributions of fluorescence emission bands have been made of spectra taken during the Vega-2 mission [4,5], and recently on Stardust samples returned [6]. In this work, we have used the COSIMA prototype based in Orléans to analyze PAHs and alkanes molecules deposition on gold targets.

  8. Performance evaluation of a miniature laser ablation time-of-flight mass spectrometer designed for in situ investigations in planetary space research.

    Science.gov (United States)

    Riedo, A; Bieler, A; Neuland, M; Tulej, M; Wurz, P

    2013-01-01

    Key performance features of a miniature laser ablation time-of-flight mass spectrometer designed for in situ investigations of the chemical composition of planetary surfaces are presented. This mass spectrometer is well suited for elemental and isotopic analysis of raw solid materials with high sensitivity and high spatial resolution. In this study, ultraviolet laser radiation with irradiances suitable for ablation (laser ablation studies at infrared wavelengths, several improvements to the experimental setup have been made, which allow accurate control over the experimental conditions and good reproducibility of measurements. Current performance evaluations indicate significant improvements to several instrumental figures of merit. Calibration of the mass scale is performed within a mass accuracy (Δm/m) in the range of 100 ppm, and a typical mass resolution (m/Δm) ~600 is achieved at the lead mass peaks. At lower laser irradiances, the mass resolution is better, about (m/Δm) ~900 for lead, and limited by the laser pulse duration of 3 ns. The effective dynamic range of the instrument was enhanced from about 6 decades determined in previous study up to more than 8 decades at present. Current studies show high sensitivity in detection of both metallic and non-metallic elements. Their abundance down to tens of ppb can be measured together with their isotopic patterns. Due to strict control of the experimental parameters, e.g. laser characteristics, ion-optical parameters and sample position, by computer control, measurements can be performed with high reproducibility. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Laser Desorption/Ionization-Time of Flight (LDI-TOF and Matrix-Assisted Laser Desorption/Ionization - Time of Flight (MALDI – TOF mass spectrometry of an Algerian asphaltene

    Directory of Open Access Journals (Sweden)

    T. Fergoug

    2017-09-01

    Full Text Available Both LDI-TOF and MALDI-TOF Mass spectroscopy experiments of an Algerian asphaltene derived from a deposit were performed. LDI mass experiments were conducted for both linear and reflectron modes under laser wavelength/attenuation variation. The different LDI-Mass spectra show that mass distribution depends on experimental condition for masses below 1000 amu and that the average molecular weight is around 650 for the polar fraction and beyond 1000 amu for non-polar ones. The use of different matrices as CHCA, HABA and Dithranol changes slightly the aspect of the spectra.

  10. Detection of α-defensin in blister fluids as potential biomarkers for bullous pemphigoid patients by matrix-assisted laser desorption ionization/time-of-flight mass spectrometry.

    Science.gov (United States)

    Wu, Ching-Ying; Lo, Li-Hua; Su, Hung; Shiea, Jentaie

    2018-04-01

    Bullous pemphigoid (BP) is a chronic blistering disease that manifests as multiple tense bullae on the limbs and body. Detecting biomarkers present in skin fluids may assist in the early diagnosis and treatment of BP. In this study, a modern mass spectrometric method was developed for screening biomarkers in blister fluids collected from patients. Blister fluids collected from BP patients and physically injured patients were analyzed and compared using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). The blister fluids were mixed with MALDI matrix solution on the target plate; after drying, they were analyzed by MALDI-TOF MS. Alpha-defensins 1-3 were detected in the samples collected from all BP patients and absent in all patients with physical injuries. Therefore, alpha-defensins 1-3 are potential biomarkers for BP and can be used to differentiate between blisters caused by BP and those caused by physical injuries. Compared to traditional skin biopsy methods that use immunofluorescent stains, analyzing biomarkers in blister fluids using MALDI-TOF is a more rapid and less invasive method. MALDI-TOF-MS is a non-invasive and efficient method that is able to rapidly distinguish between blisters caused by BP and those caused by physical injuries. Copyright © 2018. Published by Elsevier B.V.

  11. Toward unraveling grape tannin composition: application of online hydrophilic interaction chromatography × reversed-phase liquid chromatography-time-of-flight mass spectrometry for grape seed analysis.

    Science.gov (United States)

    Kalili, Kathithileni M; Vestner, Jochen; Stander, Maria A; de Villiers, André

    2013-10-01

    Despite the significant importance of tannins in viticulture and enology, relatively little is known about the detailed chemical composition of these molecules. This is due to challenges associated with the accurate analytical determination of the highly structurally diverse proanthocyanidins which comprise tannins. In this contribution, we address this limitation by demonstrating how online comprehensive two-dimensional liquid chromatography (LC × LC) coupled to high resolution mass spectrometry (HR-MS) can be exploited as a powerful analytical approach for the detailed characterization of grape seed tannins. Hydrophilic interaction chromatography (HILIC) and reversed-phase liquid chromatography (RP-LC) were employed in the two dimensions to provide complementary information in terms of separation according to hydrophilicity and hydrophobicity, respectively. Online coupling of HILIC × RP-LC with fluorescence detection and electrospray ionization MS delivered high resolution analysis in a practical analysis time, while allowing selective detection and facilitating compound identification. Time-of-flight (TOF) MS provided high acquisition rates and sensitivity coupled to accurate mass information, which allowed detection of procyanidins up to a degree of polymerization (DP) of 16 and a degree of galloylation up to 8 in a red grape seed extract. This analytical methodology promises to shed new light on these important grape constituents and potentially on their evolution during wine production.

  12. Negative Ion Laser Desorption/Ionization Time-of-Flight Mass Spectrometric Analysis of Small Molecules Using Graphitic Carbon Nitride Nanosheet Matrix.

    Science.gov (United States)

    Lin, Zian; Zheng, Jiangnan; Lin, Guo; Tang, Zhi; Yang, Xueqing; Cai, Zongwei

    2015-08-04

    Ultrathin graphitic carbon nitride (g-C3N4) nanosheets served as a novel matrix for the detection of small molecules by negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was described for the first time. In comparison with conventional organic matrices and graphene matrix, the use of g-C3N4 nanosheet matrix showed free matrix background interference and increased signal intensity in the analysis of amino acids, nucleobases, peptides, bisphenols (BPs), and nitropolycyclic aromatic hydrocarbons (nitro-PAHs). A systematic comparison of g-C3N4 nanosheets with positive and negative ion modes revealed that mass spectra produced by g-C3N4 nanosheets in negative ion mode were featured by singly deprotonated ion without matrix interference, which was rather different from the complicated alkali metal complexes in positive ion mode. Good salt tolerance and reproducibility allowed the determination of 1-nitropyrene (1-NP) in sewage, and its corresponding detection limit was lowered to 1 pmol. In addition, the ionization mechanism of the g-C3N4 nanosheets as matrix was also discussed. The work expands its application scope of g-C3N4 nanosheets and provides an alternative approach for small molecules.

  13. Shock-tube study of the decomposition of tetramethylsilane using gas chromatography and high-repetition-rate time-of-flight mass spectrometry.

    Science.gov (United States)

    Sela, P; Peukert, S; Herzler, J; Fikri, M; Schulz, C

    2018-04-25

    The decomposition of tetramethylsilane was studied in shock-tube experiments in a temperature range of 1270-1580 K and pressures ranging from 1.5 to 2.3 bar behind reflected shock waves combining gas chromatography/mass spectrometry (GC/MS) and high-repetition-rate time-of-flight mass spectrometry (HRR-TOF-MS). The main observed products were methane (CH4), ethylene (C2H4), ethane (C2H6), and acetylene (C2H2). In addition, the formation of a solid deposit was observed, which was identified to consist of silicon- and carbon-containing nanoparticles. A kinetics sub-mechanism with 13 silicon species and 20 silicon-containing reactions was developed. It was combined with the USC_MechII mechanism for hydrocarbons, which was able to simulate the experimental observations. The main decomposition channel of TMS is the Si-C bond scission forming methyl (CH3) and trimethylsilyl radicals (Si(CH3)3). The rate constant for TMS decomposition is represented by the Arrhenius expression ktotal[TMS → products] = 5.9 × 1012 exp(-267 kJ mol-1/RT) s-1.

  14. Metabolic Profiling of Hoodia, Chamomile, Terminalia Species and Evaluation of Commercial Preparations Using Ultrahigh-Performance Liquid Chromatography Quadrupole-Time-of-Flight Mass Spectrometry.

    Science.gov (United States)

    Avula, Bharathi; Wang, Yan-Hong; Isaac, Giorgis; Yuk, Jimmy; Wrona, Mark; Yu, Kate; Khan, Ikhlas A

    2017-11-01

    Ultrahigh-performance liquid chromatography quadrupole-time-of-flight mass spectrometry (UHPLC-QToF-MS) profiling was used for the identification of marker compounds and generation of metabolic patterns that could be interrogated using chemometric modeling software. UHPLC-QToF-MS was used to generate comprehensive fingerprints of three botanicals ( Hoodia, Terminalia , and chamomile), each having different classes of compounds. Detection of a broad range of ions was carried out in full scan mode in both positive and negative modes over the range m/z 100-1700 using high-resolution mass spectrometry. Multivariate statistical analysis was used to extract relevant chemical information from the data to easily differentiate between Terminalia species, chamomile varieties, and quality control of Hoodia products. Using nontargeted analysis, identification of 37 compounds contributed to the differences between Terminalia species, 26 flavonoids were identified to show the differences between German and Roman chamomile, and 43 pregnane glycosides were identified from Hoodia gordonii samples. The UHPLC-QToF-MS-based chemical fingerprinting with principal component analysis was able to correctly distinguish botanicals and their commercial products. This work can be used as a basis to assure the quality of botanicals and commercial products. Georg Thieme Verlag KG Stuttgart · New York.

  15. Identification of metabolites of Helicid in vivo using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Diao, Xinpeng; Liao, Man; Cheng, Xiaoye; Liang, Caijuan; Sun, Yupeng; Zhang, Xia; Zhang, Lantong

    2018-04-18

    Helicid is an active natural aromatic phenolic glycoside ingredient originating from well-known traditional Chinese herb medicine and has the significant effects of sedative hypnosis, anti-inflammatory analgesia and antidepressant. In this study, we analyzed the potential metabolites of Helicid in rats by multiple mass defect filter (MMDF)and dynamic background subtraction (DBS)in ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). Moreover, we used a novel data processing method 'key product ions (KPIs)' to rapidly detect and identifymetabolites as an assistant tool. MetabolitePilot TM 2.0 software and PeakView TM 2.2 software were used for analyzing metabolites. Twenty metabolites of Helicid (including 15 phase I metabolites and 5 phase II metabolites) were detected by comparing with the blank samples, respectively. Thebiotransformationroute of Helicid was identified as demethylation, oxidation, dehydroxylation, hydrogenation, decarbonylation,glucuronide conjugation and methylation.This is the first study of simultaneously detecting and identifying Helicid metabolism in rats by employing UHPLC-Q-TOF-MS technology. This experiment not only proposed a method for rapidly detecting and identifying metabolites, but also provided useful information for further study of the pharmacology and mechanism of Helicid in vivo. Furthermore, it provided an effective method for the analysis of other aromatic phenolic glycosides metabolic components in vivo. This article is protected by copyright. All rights reserved.

  16. Identification of berberrubine metabolites in rats by using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Wang, Kun; Qiao, Miao; Chai, Liwei; Cao, Shijie; Feng, Xinchi; Ding, Liqin; Qiu, Feng

    2018-01-01

    Berberrubine, an isoquinoline alkaloid isolated from many medicinal plants, possesses diverse pharmacological activities, including glucose-lowering, lipid-lowering, anti-inflammatory, and anti-tumor effects. This study aimed to investigate the metabolic profile of berberrubine in vivo. Therefore, a rapid and reliable method using the ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and metabolynx™ software with mass defect filter (MDF) technique was developed. Plasma, bile, urine and feces samples were collected from rats after oral administration of berberrubine with a dose of 30.0mg/kg and analyzed to characterize the metabolites of berberrubine in vivo for the first time. A total of 57 metabolites were identified, including 54 metabolites in urine, 39 metabolites in plasma, 28 metabolites in bile and 18 metabolites in feces. The results indicated that demethylenation, reduction, hydroxylation, demethylation, glucuronidation, and sulfation were the major metabolic pathways of berberrubine in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Tuneable microsecond-pulsed glow discharge design for the simultaneous acquisition of elemental and molecular chemical information using a time-of-flight mass spectrometer.

    Science.gov (United States)

    Solà-Vázquez, Auristela; Martín, Antonio; Costa-Fernández, José M; Pereiro, Rosario; Sanz-Medel, Alfredo

    2009-04-01

    A microsecond-pulsed direct current glow discharge (GD) was interfaced and synchronized to a time-of-flight mass spectrometer MS(TOF) for time-gated generation and detection of elemental, structural, and molecular ions. In this way, sequential collection of the mass spectra at different temporal regimes occurring during the GD pulse cycle is allowed. The capabilities of this setup were explored using bromochloromethane as model analyte. A simple GD chamber, developed in our laboratory and characterized by a low plasma volume minimizing dilution of the sample but showing great robustness to the entrance of organic compounds in the microsecond-pulsed plasma, has been used. An exhaustive analytical characterization of the GD-MS(TOF) prototype has been performed. Calibration curves for bromochloromethane observed at the different time regimes of the GD pulse cycle (that is, for elemental, fragment, and molecular ions from the analyte) showed very good linearity for the measurement of the different involved ions, with precisions in the range of 7-13% (relative standard deviation). Actual detection limits obtained for bromochloromethane were in the range of 1-3 microg/L for elements monitoring in the GD pulse "prepeak", in the range of 11-13 microg/L when monitoring analyte fragments in the plateau, and about 238 microg/L when measuring the molecular peak in the afterpeak regime.

  18. Global chemical profiling based quality evaluation approach of rhubarb using ultra performance liquid chromatography with tandem quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Zhang, Li; Liu, Haiyu; Qin, Lingling; Zhang, Zhixin; Wang, Qing; Zhang, Qingqing; Lu, Zhiwei; Wei, Shengli; Gao, Xiaoyan; Tu, Pengfei

    2015-02-01

    A global chemical profiling based quality evaluation approach using ultra performance liquid chromatography with tandem quadrupole time-of-flight mass spectrometry was developed for the quality evaluation of three rhubarb species, including Rheum palmatum L., Rheum tanguticum Maxim. ex Balf., and Rheum officinale Baill. Considering that comprehensive detection of chemical components is crucial for the global profile, a systemic column performance evaluation method was developed. Based on this, a Cortecs column was used to acquire the chemical profile, and Chempattern software was employed to conduct similarity evaluation and hierarchical cluster analysis. The results showed R. tanguticum could be differentiated from R. palmatum and R. officinale at the similarity value 0.65, but R. palmatum and R. officinale could not be distinguished effectively. Therefore, a common pattern based on three rhubarb species was developed to conduct the quality evaluation, and the similarity value 0.50 was set as an appropriate threshold to control the quality of rhubarb. A total of 88 common peaks were identified by their accurate mass and fragmentation, and partially verified by reference standards. Through the verification, the newly developed method could be successfully used for evaluating the holistic quality of rhubarb. It would provide a reference for the quality control of other herbal medicines. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Identification of biotransformation products of macrolide and fluoroquinolone antimicrobials in membrane bioreactor treatment by ultrahigh-performance liquid chromatography/quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Terzic, Senka; Senta, Ivan; Matosic, Marin; Ahel, Marijan

    2011-07-01

    Ultrahigh-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry was applied for the identification of transformation products (TPs) of fluoroquinolone (norfloxacin and ciprofloxacin) and macrolide (azithromycin, erythromycin, and roxitromycin) antimicrobials in wastewater effluents from a Zenon hollow-fiber membrane bioreactor (MBR). The detected TPs were thoroughly characterized using the accurate mass feature for the determination of the tentative molecular formulae and MS-MS experiments for the structural elucidation of unknowns. Several novel TPs, which have not been previously reported in the literature, were identified. The TPs of azithromycin and roxithromycin, identified in MBR effluent, were conjugate compounds, which were formed by phosphorylation of desosamine moiety. Transformation of fluoroquinolones yielded two types of products: conjugates, formed by succinylation of the piperazine ring, and smaller metabolites, formed by an oxidative break-up of piperazine moiety to form the 7-[(2-carboxymethyl)amino] group. A semi-quantitative assessment of these TPs suggested that they might have contributed significantly to the overall balance of antimicrobial residues in MBR effluents and thus to the overall removal efficiency. Determination of TPs during a period of 2 months indicated a conspicuous dynamics, which warrants further research to identify microorganisms involved and treatment conditions leading to their formation.

  20. Determination of sildenafil mixed into herbal honey mixture by ultra-performance liquid chromatography-quadrupole time of flight mass spectrometry

    Directory of Open Access Journals (Sweden)

    Neira Mustabasic

    2017-01-01

    Full Text Available There has been a number of reports of natural products contaminated with illegal adulterants that threaten consumer health because of their adverse pharmacological effects worldwide. In this study, a multi-residual ultra-performance liquid chromatography method with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS was applied for the identification of sildenafil added into a herbal honey mixture used as an immune system booster. Electrospray ionization (ESI source was applied and operated in the positive ion mode. The mobile phase consisted of 0.1% formic acid aqueous solution/acetonitrile (70:30, v/v using the isocratic gradient elution system at a detection wavelength of 290 nm. The compound of sildenafil added into traditional herbal mixed honey was identified according to the spectrum, chromatographic behavior, and mass spectral data were identified by comparison with the reference substance. The method is selective, sensitive and can be used to detect the sildenafil illegally added into traditional herbal medicinal preparations.

  1. Evaluation of a multiresidue capillary electrophoresis-quadrupole-time-of-flight mass spectrometry method for the determination of antibiotics in milk samples.

    Science.gov (United States)

    Moreno-González, David; Hamed, Ahmed M; Gilbert-López, Bienvenida; Gámiz-Gracia, Laura; García-Campaña, Ana M

    2017-08-11

    A selective and rapid method has been developed to determine 15 antibiotic residues (eight tetracyclines and seven quinolones) in milk samples by capillary zone electrophoresis coupled with quadrupole time-of-flight mass spectrometry (CZE-Q-TOF-MS). The use of this hybrid mass spectrometer allowed obtaining full scan and full MS/MS spectra for quantification/confirmation purposes in a single run. In addition, solid phase extraction (SPE) using the new Oasis PRiME HLB cartridge was proposed for the extraction, achieving excellent results in terms of sample throughput. The proposed method was validated using whole cow milk as representative matrix. Good linearity was obtained (R 2 >0.99) for all the studied compounds. The precision, expressed as relative standard deviation (%, RSD), at two concentration levels (50 and 100μgkg -1 ) was below 13%. Recoveries obtained from goat milk, whole cow milk and semi-skimmed cow milk, at two concentration levels, ranged from 76 to 106%, while limits of quantification ranged from 1.5 to 9.6μgkg -1 , being lower than the established maximum residue limits in the European legislation. Matrix effect was negligible in all cases, showing that with this new SPE sorbent cleanest extracts were obtained with a minimum number of steps in the sample treatment. Thus, the proposed SPE-CZE-Q-TOF-MS method is suitable for multiclass multiresidue monitoring in different types of milk samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Detection and identification of diterpenoid alkaloids, isoflavonoids and saponins in Qifu decoction and rat plasma by liquid chromatography-time-of-flight mass spectrometry.

    Science.gov (United States)

    Tan, Guangguo; Jing, Jing; Zhu, Zhenyu; Lou, Ziyang; Li, Wuhong; Zhao, Liang; Zhang, Guoqing; Chai, Yifeng

    2012-02-01

    A liquid chromatography-time-of-flight mass spectrometric (LC-TOFMS) method has been developed for analysis of components in Qifu decoction (QFD), a traditional Chinese medical formula consisting of Radix Astragali and Acontium carmichaeli, and in rat plasma after oral administration. Based on accurate mass measurements within 3 ppm error for each molecular ion and subsequent fragment ions of TOFMS, as well as matching of empirical molecular formulae with those of published components in the in-house chemical library, a total of 44 major components including 21 diterpenoid alkaloids, 12 flavonoids and 11 saponins were identified in QFD. After oral administration of QFD, 22 components in rat plasma were detected and identified by comparing and contrasting the constituents measured in QFD with those in the plasma samples. The results provided valuable chemical information for further pharmacology and active mechanism research on QFD. LC-TOFMS was also applied for the comparison of relative peak area of major active components between QFD and the single herb extracts. The concentration ratios of major saponins detected in the crude herb Radix Astragali were found to be different from those in QFD. The experimental data indicated that the decocting process could result in differences in the amounts of active components. Copyright © 2011 John Wiley & Sons, Ltd.

  3. Nontarget analysis of polar contaminants in freshwater sediments influenced by pharmaceutical industry using ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Terzic, Senka, E-mail: terzic@irb.h [Division of Marine and Environmental Research, Rudjer Boskovic Institute, 10000 Zagreb (Croatia); Ahel, Marijan [Division of Marine and Environmental Research, Rudjer Boskovic Institute, 10000 Zagreb (Croatia)

    2011-02-15

    A comprehensive analytical procedure for a reliable identification of nontarget polar contaminants in aquatic sediments was developed, based on the application of ultra-high-pressure liquid chromatography (UHPLC) coupled to hybrid quadrupole time-of-flight mass spectrometry (QTOFMS). The procedure was applied for the analysis of freshwater sediment that was highly impacted by wastewater discharges from the pharmaceutical industry. A number of different contaminants were successfully identified owing to the high mass accuracy of the QTOFMS system, used in combination with high chromatographic resolution of UHPLC. The major compounds, identified in investigated sediment, included a series of polypropylene glycols (n = 3-16), alkylbenzene sulfonate and benzalkonium surfactants as well as a number of various pharmaceuticals (chlorthalidone, warfarin, terbinafine, torsemide, zolpidem and macrolide antibiotics). The particular advantage of the applied technique is its capability to detect less known pharmaceutical intermediates and/or transformation products, which have not been previously reported in freshwater sediments. - Research highlights: UHPLC-QTOFMS coupling was applied for nontarget analysis of polar contaminants. Wide spectrum of polar contaminants was identified in polluted sediments. Pharmaceuticals and their intermediates were present in high concentrations. - Comprehensive analysis of freshwater sediments by UPLC/QTOF indicated importance of pharmaceutically-derived polar contaminants.

  4. Time-of-flight mass spectrometry with desorption-ionization multiprobes (UV photons and KeV and MeV particles). Cluster atoms are used as projectiles

    International Nuclear Information System (INIS)

    Brunelle, A.

    1990-09-01

    A new time-of-flight mass spectrometer, Super-Depil, is used to study secondary ion emission from solid surfaces bombarded by various kinds of primary particles. Three different desorption probes were set up on this machine: a 252 californium source, providing by spontaneous fission about 1 MeV/u energy heavy ions, a 5 to 30 keV energy pulsed caesium ion gun and a pulsed nitrogen laser, which wavelength is 337 mm. A two stages electrostatic mirror was added to the spectrometer. The time spread due to the initial kinetic energy of secondary ions leaving the surface was minimized. The mass resolution is greater than 5000. The analysis of glycosidic terpenes showed the complementarity of the three probes. The study of such metastable ions, with the electrostatic mirror, showed that some fragment ions may conserve the memory of the stereochemistry of the neutral lost. Clusters ions were used as projectiles in the energy range 5-60 keV. A strong non linear enhancement was observed in the secondary ion yield from various targets [fr

  5. Identification of medically relevant species of arthroconidial yeasts by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Kolecka, Anna; Khayhan, Kantarawee; Groenewald, Marizeth; Theelen, Bart; Arabatzis, Michael; Velegraki, Aristea; Kostrzewa, Markus; Mares, Mihai; Taj-Aldeen, Saad J; Boekhout, Teun

    2013-08-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was used for an extensive identification study of arthroconidial yeasts, using 85 reference strains from the CBS-KNAW yeast collection and 134 clinical isolates collected from medical centers in Qatar, Greece, and Romania. The test set included 72 strains of ascomycetous yeasts (Galactomyces, Geotrichum, Saprochaete, and Magnusiomyces spp.) and 147 strains of basidiomycetous yeasts (Trichosporon and Guehomyces spp.). With minimal preparation time, MALDI-TOF MS proved to be an excellent diagnostic tool that provided reliable identification of most (98%) of the tested strains to the species level, with good discriminatory power. The majority of strains were correctly identified at the species level with good scores (>2.0) and seven of the tested strains with log score values between 1.7 and 2.0. The MALDI-TOF MS results obtained were consistent with validated internal transcribed spacer (ITS) and/or large subunit (LSU) ribosomal DNA sequencing results. Expanding the mass spectrum database by increasing the number of reference strains for closely related species, including those of nonclinical origin, should enhance the usefulness of MALDI-TOF MS-based diagnostic analysis of these arthroconidial fungi in medical and other laboratories.

  6. Identification of Medically Relevant Species of Arthroconidial Yeasts by Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    Science.gov (United States)

    Kolecka, Anna; Khayhan, Kantarawee; Groenewald, Marizeth; Theelen, Bart; Arabatzis, Michael; Velegraki, Aristea; Kostrzewa, Markus; Mares, Mihai; Taj-Aldeen, Saad J.

    2013-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) was used for an extensive identification study of arthroconidial yeasts, using 85 reference strains from the CBS-KNAW yeast collection and 134 clinical isolates collected from medical centers in Qatar, Greece, and Romania. The test set included 72 strains of ascomycetous yeasts (Galactomyces, Geotrichum, Saprochaete, and Magnusiomyces spp.) and 147 strains of basidiomycetous yeasts (Trichosporon and Guehomyces spp.). With minimal preparation time, MALDI-TOF MS proved to be an excellent diagnostic tool that provided reliable identification of most (98%) of the tested strains to the species level, with good discriminatory power. The majority of strains were correctly identified at the species level with good scores (>2.0) and seven of the tested strains with log score values between 1.7 and 2.0. The MALDI-TOF MS results obtained were consistent with validated internal transcribed spacer (ITS) and/or large subunit (LSU) ribosomal DNA sequencing results. Expanding the mass spectrum database by increasing the number of reference strains for closely related species, including those of nonclinical origin, should enhance the usefulness of MALDI-TOF MS-based diagnostic analysis of these arthroconidial fungi in medical and other laboratories. PMID:23678074

  7. Matrix-assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) Can Precisely Discriminate the Lineages of Listeria monocytogenes and Species of Listeria.

    Science.gov (United States)

    Ojima-Kato, Teruyo; Yamamoto, Naomi; Takahashi, Hajime; Tamura, Hiroto

    2016-01-01

    The genetic lineages of Listeria monocytogenes and other species of the genus Listeria are correlated with pathogenesis in humans. Although matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has become a prevailing tool for rapid and reliable microbial identification, the precise discrimination of Listeria species and lineages remains a crucial issue in clinical settings and for food safety. In this study, we constructed an accurate and reliable MS database to discriminate the lineages of L. monocytogenes and the species of Listeria (L. monocytogenes, L. innocua, L. welshimeri, L. seeligeri, L. ivanovii, L. grayi, and L. rocourtiae) based on the S10-spc-alpha operon gene encoded ribosomal protein mass spectrum (S10-GERMS) proteotyping method, which relies on both genetic information (genomics) and observed MS peaks in MALDI-TOF MS (proteomics). The specific set of eight biomarkers (ribosomal proteins L24, L6, L18, L15, S11, S9, L31 type B, and S16) yielded characteristic MS patterns for the lineages of L. monocytogenes and the different species of Listeria, and led to the construction of a MS database that was successful in discriminating between these organisms in MALDI-TOF MS fingerprinting analysis followed by advanced proteotyping software Strain Solution analysis. We also confirmed the constructed database on the proteotyping software Strain Solution by using 23 Listeria strains collected from natural sources.

  8. Metabolite profiling using liquid chromatography/quadrupole time-of-flight mass spectrometry for the identification of a suitable marker and target matrix of griseofulvin use in bovines.

    Science.gov (United States)

    Tarbin, J A; Fussell, R J

    2013-06-30

    Griseofulvin is an antifungal agent with potential for misuse in food-producing animals. Little is known about its metabolism in ruminants and hence what are suitable marker residues and target matrices for monitoring purposes. Tissues harvested from cattle treated with the antifungal agent griseofulvin were screened using liquid chromatography coupled to positive and negative electrospray ionization (ESI) quadrupole time-of-flight mass spectrometry (qToFMS) operated in ToF mode. Twenty-five possible metabolites were detected across all tissue types, but two isomeric compounds with accurate masses corresponding to loss of a methyl group from parent griseofulvin were considered to be the best candidate markers. Data from fragmentation experiments enabled a tentative assignment of the structures of the two compounds as 4-demethylgriseofulvin and 6-demethylgriseofulvin. These assignments were confirmed by matching the product ion spectra of incurred residues to those of custom synthesized reference standards. 4-Demethyl- and 6-demethylgriseofulvin have been identified as potential marker compounds of griseofulvin use in cattle. Liver was identified as the target matrix. Hair was shown to have potential for non-invasive testing. © Crown copyright 2013. Reproduced with the permission of Her Majesty's Stationery Office. Published by John Wiley & Sons, Ltd.

  9. Direct Analysis of hCGβcf Glycosylation in Normal and Aberrant Pregnancy by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ray K. Iles

    2014-06-01

    Full Text Available The analysis of human chorionic gonadotropin (hCG in clinical chemistry laboratories by specific immunoassay is well established. However, changes in glycosylation are not as easily assayed and yet alterations in hCG glycosylation is associated with abnormal pregnancy. hCGβ-core fragment (hCGβcf was isolated from the urine of women, pregnant with normal, molar and hyperemesis gravidarum pregnancies. Each sample was subjected to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS analysis following dithiothreitol (DTT reduction and fingerprint spectra of peptide hCGβ 6–40 were analyzed. Samples were variably glycosylated, where most structures were small, core and largely mono-antennary. Larger single bi-antennary and mixtures of larger mono-antennary and bi-antennary moieties were also observed in some samples. Larger glycoforms were more abundant in the abnormal pregnancies and tri-antennary carbohydrate moieties were only observed in the samples from molar and hyperemesis gravidarum pregnancies. Given that such spectral profiling differences may be characteristic, development of small sample preparation for mass spectral analysis of hCG may lead to a simpler and faster approach to glycostructural analysis and potentially a novel clinical diagnostic test.

  10. Analysis of veterinary drug and pesticide residues in animal feed by high-resolution mass spectrometry: comparison between time-of-flight and Orbitrap.

    Science.gov (United States)

    Gómez-Pérez, María Luz; Romero-González, Roberto; Martínez Vidal, José Luis; Garrido Frenich, Antonia

    2015-01-01

    The use of medium-high-resolution mass spectrometers (M-HRMS) provides many advantages in multi-residue analysis. A comparison between two mass spectrometers, medium-resolution (MRMS) time-of-flight (TOF) and high-resolution (HRMS) Orbitrap, has been carried out for the analysis of toxic compounds in animal feed. More than 300 compounds belonging to several classes of veterinary drugs (VDs) and pesticides have been determined in different animal feed samples using a generic extraction method. The use of a clean-up procedure has been evaluated in both instruments, and several validation parameters have been established, such as the matrix effect, linearity, recovery and sensitivity. Finally, both instruments have been used during the analysis of 18 different feed samples (including chicken, hen, rabbit and horse). Some VDs (sulfadiazine, trimethoprim, robenidine and monensin sodium) and one pesticide (chlorpyrifos) have been identified. In general, better results were obtained using the Orbitrap, such as sensitivity (1-12.5 µg kg(-1)) and recovery values (60-125%). Moreover, this analyser had several software tools, which reduced the time for data processing and were easy to use, performing quick screening for more than 450 compounds in less than 5 min. However, some disadvantages such as the high cost and a decrease in the number of detected compounds at low concentrations must be taken into account.

  11. Study of alkyl phosphates in industrial petroleum mixtures by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry.

    Science.gov (United States)

    Harynuk, James J; Rossé, Aleisha D; McGarvey, G Bryce

    2011-11-01

    Dialkyl phosphate esters used as gellants in some oil well fracturing processes for conventional oil production can result in contamination of the collected crude. Though the exact mechanism is unclear, such compounds form volatile phosphorus that compromises refinery processes. Our initial research involved producing a comprehensive two-dimensional gas chromatographic method (GC × GC) for the detection and quantification of alkyl phosphate esters in petroleum samples, which surpassed the current method employed in sensitivity and speciation capabilities. However, selective detection is required for such analytes in petroleum matrices. This article describes the application of GC × GC with time-of-flight mass spectrometry for selective detection to the analysis of di- and tri-alkyl phosphates in petroleum samples. Features in the electron impact mass spectra of alkyl phosphates are discussed along with the GC × GC retention characteristics of the compounds. Based on these discussions, a preliminary classification and quantification of alkyl phosphate contamination in a suite of industrial samples is then presented.

  12. A Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometry (LC-Q-TOF MS) Study for Analyzing 35 Corticosteroid Compounds: Elucidation of MS/MS Fragmentation Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Eunyoung; Yoon, Chang-Yong; Lee, Ji Hyun; Baek, Sun-Young; Do, Jung-Ah [Ministry of Food and Drug Safety, Cheongju (Korea, Republic of); Lee, Jung-min; Oh, Han Bin [Sogang University, Seoul (Korea, Republic of)

    2016-07-15

    Corticosteroids have been often found to be added to a dietary supplement for the purpose of illegally improving the effect of their products. Thus, it is imperative to develop or improve a method that enables one to rapidly and reliably analyze corticosteroids in health or dietary supplements, for the safety management purpose. In the present study, results from liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) experiments for the selected 35 corticosteroid compounds are presented, which can be useful for the qualitative screening of corticosteroids in health or dietary supplements. Specifically, retention times, accurate mass data of the protonated steroids, m/z values of major fragment ions are given for the 35 corticosteroids. Further, fragmentation pathways for the selected steroids are also suggested. Based on the suggested fragmentation pathways, it was shown that an unknown steroid compound can be readily identified using the knowledge of a group of unique and specific common skeletal fragments. The high selectivity and sensitivity of the LC-Q-TOF-MS/MS results combined with the knowledge of the fragmentation pathways can offer a new opportunity for rapid and accurate screening of corticosteroids, thus preventing health-related incidents involving adulterated products and clamping down on illegally circulated health products.

  13. Structural Characterization of New Peptide Variants Produced by Cyanobacteria from the Brazilian Atlantic Coastal Forest Using Liquid Chromatography Coupled to Quadrupole Time-of-Flight Tandem Mass Spectrometry.

    Science.gov (United States)

    Sanz, Miriam; Andreote, Ana Paula Dini; Fiore, Marli Fatima; Dörr, Felipe Augusto; Pinto, Ernani

    2015-06-18

    Cyanobacteria from underexplored and extreme habitats are attracting increasing attention in the search for new bioactive substances. However, cyanobacterial communities from tropical and subtropical regions are still largely unknown, especially with respect to metabolite production. Among the structurally diverse secondary metabolites produced by these organisms, peptides are by far the most frequently described structures. In this work, liquid chromatography/electrospray ionization coupled to high resolution quadrupole time-of-flight tandem mass spectrometry with positive ion detection was applied to study the peptide profile of a group of cyanobacteria isolated from the Southeastern Brazilian coastal forest. A total of 38 peptides belonging to three different families (anabaenopeptins, aeruginosins, and cyanopeptolins) were detected in the extracts. Of the 38 peptides, 37 were detected here for the first time. New structural features were proposed based on mass accuracy data and isotopic patterns derived from full scan and MS/MS spectra. Interestingly, of the 40 surveyed strains only nine were confirmed to be peptide producers; all of these strains belonged to the order Nostocales (three Nostoc sp., two Desmonostoc sp. and four Brasilonema sp.).

  14. Non-target analysis of household dust and laundry dryer lint using comprehensive two-dimensional liquid chromatography coupled with time-of-flight mass spectrometry.

    Science.gov (United States)

    Ouyang, Xiyu; Weiss, Jana M; de Boer, Jacob; Lamoree, Marja H; Leonards, Pim E G

    2017-01-01

    Household dust and laundry dryer lint are important indoor environmental matrices that may have notable health effects on humans due to chronic exposure. However, due to the sample complexity the studies conducted on these sample matrices until now were almost exclusively on the basis of target analysis. In this study, comprehensive two-dimensional liquid chromatography coupled with time-of-flight mass spectrometry (LC × LC-ToF MS) was applied, to enable non-target analysis of household dust as well as laundry dryer lint for the first time. The higher peak capacity and good orthogonality of LC × LC, together with reduced ion suppression in the MS enabled rapid identification of environmental contaminants in these complex sample matrices. A number of environmental contaminants were tentatively identified based on their accurate masses and isotopic patterns, including plasticizers, flame retardants, pesticides, drug metabolites, etc. The identity of seven compounds: tris(2-butoxyethyl) phosphate, tris(2-chloropropyl) phosphate, n-benzyl butyl phthalate, dibutyl phthalate, tributyl phosphate, triethyl phosphate and N, N-diethyl-meta-toluamide was confirmed using two-dimensional retention alignment and their concentrations in the samples were semi-quantitatively determined. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Distribution patterns of flavonoids from three Momordica species by ultra-high performance liquid chromatography quadrupole time of flight mass spectrometry: a metabolomic profiling approach

    Directory of Open Access Journals (Sweden)

    Ntakadzeni Edwin Madala

    Full Text Available ABSTRACT Plants from the Momordica genus, Curcubitaceae, are used for several purposes, especially for their nutritional and medicinal properties. Commonly known as bitter gourds, melon and cucumber, these plants are characterized by a bitter taste owing to the large content of cucurbitacin compounds. However, several reports have shown an undisputed correlation between the therapeutic activities and polyphenolic flavonoid content. Using ultra-high performance liquid chromatography quadrupole time of flight mass spectrometry in combination with multivariate data models such as principal component analysis and hierarchical cluster analysis, three Momordica species (M. foetida Schumach., M. charantia L. and M. balsamina L. were chemo-taxonomically grouped based on their flavonoid content. Using a conventional mass spectrometric-based approach, thirteen flavonoids were tentatively identified and the three species were found to contain different isomers of the quercetin-, kaempferol- and isorhamnetin-O-glycosides. Our results indicate that Momordica species are overall very rich sources of flavonoids but do contain different forms thereof. Furthermore, to the best of our knowledge, this is a first report on the flavonoid content of M. balsamina L.

  16. A novel approach to the quantitative detection of anabolic steroids in bovine muscle tissue by means of a hybrid quadrupole time-of-flight-mass spectrometry instrument.

    Science.gov (United States)

    Bussche, Julie Vanden; Decloedt, Anneleen; Van Meulebroek, Lieven; De Clercq, Nathalie; Lock, Stephen; Stahl-Zeng, Jianru; Vanhaecke, Lynn

    2014-09-19

    In recent years, the analysis of veterinary drugs and growth-promoting agents has shifted from target-oriented procedures, mainly based on liquid chromatography coupled to triple-quadrupole mass spectrometry (LC-QqQ-MS), towards accurate mass full scan MS (such as Time-of-Flight (ToF) and Fourier Transform (FT)-MS). In this study, the performance of a hybrid analysis instrument (i.e. UHPLC-QuadrupoleTime-of-Flight-MS (QqToF-MS)), able to exploit both full scan HR and MS/MS capabilities within a single analytical platform, was evaluated for confirmatory analysis of anabolic steroids (gestagens, estrogens including stilbenes and androgens) in meat. The validation data was compared to previously obtained results (CD 2002/657/EC) for QqQ-MS and single stage Orbitrap-MS. Additionally, a fractional factorial design was used to shorten and optimize the sample extraction. Validation according to CD 2002/657/EC demonstrated that steroid analysis using QqToF has a higher competing value towards QqQ-MS in terms of selectivity/specificity, compared to single stage Orbitrap-MS. While providing excellent linearity, based on lack-of-fit calculations (F-test, α=0.05 for all steroids except 17β-ethinylestradiol: α=0.01), the sensitivity of QqToF-MS proved for 61.8% and 85.3% of the compounds more sensitive compared to QqQ-MS and Orbitrap-MS, respectively. Indeed, the CCα values, obtained upon ToF-MS/MS detection, ranged from 0.02 to 1.74μgkg(-1) for the 34 anabolic steroids, while for QqQ-MS and Orbitrap-MS values ranged from 0.04 to 0.88μgkg(-1) and from 0.07 to 2.50μgkg(-1), respectively. Using QqToF-MS and QqQ-MS, adequate precision was obtained as relative standard deviations for repeatability and within-laboratory reproducibility, were below 20%. In case of Orbitrap-MS, some compounds (i.e. some estrogens) displayed poor precision, which was possibly caused by some lack of sensitivity at lower concentrations and the absence of MRM-like experiments. Overall, it can be

  17. Applicability of a two-step laser desorption-ionization aerosol time-of-flight mass spectrometer for determination of chemical composition of ultrafine aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, T.

    2013-11-01

    This thesis is based on the construction of a two-step laser desorption-ionization aerosol time-of-flight mass spectrometer (laser AMS), which is capable of measuring 10 to 50 nm aerosol particles collected from urban and rural air at-site and in near real time. The operation and applicability of the instrument was tested with various laboratory measurements, including parallel measurements with filter collection/chromatographic analysis, and then in field experiments in urban environment and boreal forest. Ambient ultrafine aerosol particles are collected on a metal surface by electrostatic precipitation and introduced to the time-of-flight mass spectrometer (TOF-MS) with a sampling valve. Before MS analysis particles are desorbed from the sampling surface with an infrared laser and ionized with a UV laser. The formed ions are guided to the TOF-MS by ion transfer optics, separated according to their m/z ratios, and detected with a micro channel plate detector. The laser AMS was used in urban air studies to quantify the carbon cluster content in 50 nm aerosol particles. Standards for the study were produced from 50 nm graphite particles, suspended in toluene, with 72 hours of high power sonication. The results showed the average amount of carbon clusters (winter 2012, Helsinki, Finland) in 50 nm particles to be 7.2% per sample. Several fullerenes/fullerene fragments were detected during the measurements. In boreal forest measurements, the laser AMS was capable of detecting several different organic species in 10 to 50 nm particles. These included nitrogen-containing compounds, carbon clusters, aromatics, aliphatic hydrocarbons, and oxygenated hydrocarbons. A most interesting event occurred during the boreal forest measurements in spring 2011 when the chemistry of the atmosphere clearly changed during snow melt. On that time concentrations of laser AMS ions m/z 143 and 185 (10 nm particles) increased dramatically. Exactly at the same time, quinoline concentrations

  18. Characterization of biomass burning smoke from cooking fires, peat, crop residue and other fuels with high resolution proton-transfer-reaction time-of-flight mass spectrometry

    Science.gov (United States)

    Stockwell, C. E.; Veres, P. R.; Williams, J.; Yokelson, R. J.

    2014-08-01

    We deployed a high-resolution proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) to measure biomass burning emissions from peat, crop-residue, cooking fires, and many other fire types during the fourth Fire Lab at Missoula Experiment (FLAME-4) laboratory campaign. A combination of gas standards calibrations and composition sensitive, mass dependent calibration curves were applied to quantify gas-phase non-methane organic compounds (NMOCs) observed in the complex mixture of fire emissions. We used several approaches to assign best identities to most major "exact masses" including many high molecular mass species. Using these methods approximately 80-96% of the total NMOC mass detected by PTR-TOF-MS and FTIR was positively or tentatively identified for major fuel types. We report data for many rarely measured or previously unmeasured emissions in several compound classes including aromatic hydrocarbons, phenolic compounds, and furans; many of which are suspected secondary organic aerosol precursors. A large set of new emission factors (EFs) for a range of globally significant biomass fuels is presented. Measurements show that oxygenated NMOCs accounted for the largest fraction of emissions of all compound classes. In a brief study of various traditional and advanced cooking methods, the EFs for these emissions groups were greatest for open 3-stone cooking in comparison to their more advanced counterparts. Several little-studied nitrogen-containing organic compounds were detected from many fuel types that together accounted for 0.1-8.7% of the fuel nitrogen and some may play a role in new particle formation.

  19. Application of ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry in identification of three isoflavone glycosides and their corresponding metabolites.

    Science.gov (United States)

    Xu, Xiafen; Li, Xinhui; Liang, Xianrui

    2018-02-15

    Metabolites of isoflavones have attracted much attention in recent years due to their potential bioactivities. However, the complex constituents of the metabolic system and the low level of metabolites make them difficult to analyze. A mass spectrometry (MS) method was applied in our identification of metabolites and study of their fragmentation pathways due to the advantages of rapidity, sensitivity, and low level of sample consumption. Three isoflavone glycosides and their metabolites were identified using ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC/QTOF-MS). These metabolites were obtained by anaerobically incubating three isoflavone glycosides with human intestinal flora. The characteristic fragments of isoflavone glycosides and their metabolites were used for the identification work. Two metabolites from ononin, three metabolites from irilone-4'-O-β-D-glucoside, and five metabolites from sissotrin were identified respectively by the retention time (RT), accurate mass, and mass spectral fragmentation patterns. The losses of the glucosyl group, CO from the [M+H] + ion were observed for all the three isoflavone glycosides. The characteristic retro-Diels-Alder (RDA) fragmentation patterns were used to differentiate the compounds. The metabolic pathways of the three isoflavone glycosides were proposed according to the identified chemical structures of the metabolites. A selective, sensitive and rapid method was established for detecting and identifying three isoflavone glycosides and their metabolites using UPLC/QTOF-MS. The established method can be used for further rapid structural identification studies of metabolites and natural products. Furthermore, the proposed metabolic pathways will be helpful for understanding the in vivo metabolic process of isoflavone. Copyright © 2017 John Wiley & Sons, Ltd.

  20. MetPP: a computational platform for comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry-based metabolomics.

    Science.gov (United States)

    Wei, Xiaoli; Shi, Xue; Koo, Imhoi; Kim, Seongho; Schmidt, Robin H; Arteel, Gavin E; Watson, Walter H; McClain, Craig; Zhang, Xiang

    2013-07-15

    Due to the high complexity of metabolome, the comprehensive 2D gas chromatography time-of-flight mass spectrometry (GC×GC-TOF MS) is considered as a powerful analytical platform for metabolomics study. However, the applications of GC×GC-TOF MS in metabolomics are not popular owing to the lack of bioinformatics system for data analysis. We developed a computational platform entitled metabolomics profiling pipeline (MetPP) for analysis of metabolomics data acquired on a GC×GC-TOF MS system. MetPP can process peak filtering and merging, retention index matching, peak list alignment, normalization, statistical significance tests and pattern recognition, using the peak lists deconvoluted from the instrument data as its input. The performance of MetPP software was tested with two sets of experimental data acquired in a spike-in experiment and a biomarker discovery experiment, respectively. MetPP not only correctly aligned the spiked-in metabolite standards from the experimental data, but also correctly recognized their concentration difference between sample groups. For analysis of the biomarker discovery data, 15 metabolites were recognized with significant concentration difference between the sample groups and these results agree with the literature results of histological analysis, demonstrating the effectiveness of applying MetPP software for disease biomarker discovery. The source code of MetPP is available at http://metaopen.sourceforge.net xiang.zhang@louisville.edu Supplementary data are available at Bioinformatics online.

  1. Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass-Spectrometry (MALDI-TOF MS Based Microbial Identifications: Challenges and Scopes for Microbial Ecologists

    Directory of Open Access Journals (Sweden)

    Parveen Rahi

    2016-08-01

    Full Text Available Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS based biotyping is an emerging technique for high-throughput and rapid microbial identification. Due to its relatively higher accuracy, comprehensive database of clinically important microorganisms and low-cost compared to other microbial identification methods, MALDI-TOF MS has started replacing existing practices prevalent in clinical diagnosis. However, applicability of MALDI-TOF MS in the area of microbial ecology research is still limited mainly due to the lack of data on non-clinical microorganisms. Intense research activities on cultivation of microbial diversity by conventional as well as by innovative and high-throughput methods has substantially increased the number of microbial species known today. This important area of research is in urgent need of rapid and reliable method(s for characterization and de-replication of microorganisms from various ecosystems. MALDI-TOF MS based characterization, in our opinion, appears to be the most suitable technique for such studies. Reliability of MALDI-TOF MS based identification method depends mainly on accuracy and width of reference databases, which need continuous expansion and improvement. In this review, we propose a common strategy to generate MALDI-TOF MS spectral database and advocated its sharing, and also discuss the role of MALDI-TOF MS based high-throughput microbial identification in microbial ecology studies.

  2. Generation of new Agm Ten clusters via laser ablation synthesis using Ag-Te nano-composite as precursor. Quadrupole ion trap time-of-flight mass spectrometry.

    Science.gov (United States)

    Mawale, Ravi Madhukar; Amato, Filippo; Alberti, Milan; Havel, Josef

    2014-12-30

    Silver tellurides find applications in the development of infrared detection, imaging, magnetics, sensors, memory devices, and optic materials. However, only a limited number of silver tellurides have been described to date. Laser ablation synthesis (LAS) was selected to generate new Ag-Te clusters. Isothermal adsorption was used to study the formation of silver nano-particles-tellurium aggregates. Laser desorption ionization quadrupole ion trap time-of-flight mass spectrometry (LDI-QIT-TOFMS) was used for the generation and analysis of Agm Ten clusters. Scanning electron microscopy and energy-dispersive X-ray spectroscopy were used to visualize the structure of materials. The stoichiometry of the generated clusters was determined by computer modeling of isotopic patterns. A simple, one-pot method for the preparation of Ag-Te nano-composite was developed and found suitable for LAS of silver tellurides. The LDI of Ag-Te nano-composite leads to the formation of 11 unary and 52 binary clusters. The stoichiometry of the 34 novel Agm Ten clusters is reported here for the first time. LAS with TOFMS detection was proven to be a powerful technique for the generation of silver telluride clusters. Knowledge of the stoichiometry of the generated clusters might facilitate the further development of novel high-tech silver tellurium nano-materials. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Gas chromatography x gas chromatography-time-of-flight mass spectrometry analysis and antibacterial activity of essential oil from Amomum xanthophlebium

    International Nuclear Information System (INIS)

    Masila, A.; Aminah, I.; Yaakob, W.A.; Nazlina, I.

    2011-01-01

    Essential oils of fresh leaves, stem, rhizomes and whole aromatic plants of Amomum xanthophlebium (Zingiberaceae) were obtained by hydro distillation. Percentage yields of the leaf, stem and whole plant oils were 0.0032, 0.0074 and 0.0021 % whereas the rhizome oil obtained was very little. Chemical components of each oil and their percentages were determined by Gas Chromatography x Gas Chromatography-Time-of-Flight Mass Spectrometry (GCxGC-TOFMS). Analysis of A. xanthophlebium oils showed that they were dominated by terpenes. Main components in the leaves were allo-aromadendrene (3.41 %), (±)-globulol (2.58 %) and rosifoliol (2.55 %); stem, α-terpineol (4.25 %), rosifoliol (2.41 %) and bingpian (2.27 %); rhizomes, viridiflorol (5.72 %), (±)-globulol (5.23 %) and α-cadinol (4.81 %); whole plants, eucalyptol (4.11 %), l-α-terpineol (2.88 %) and rosifoliol (2.82 %). The stem oil of A. xanthophlebium showed antibacterial activity against Gram-negative Escherichia coli and Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) at the minimum inhibitory concentration of 80 mg/ ml. (author)

  4. Fast screening and quantitation of microcystins in microalgae dietary supplement products and water by liquid chromatography coupled to time of flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ortelli, Didier [Food Authority Control of Geneva, Quai Ernest-Ansermet 22, CP 76, CH-1211 Geneva 4 (Switzerland)], E-mail: didier.ortelli@etat.ge.ch; Edder, Patrick; Cognard, Emmanuelle; Jan, Philippe [Food Authority Control of Geneva, Quai Ernest-Ansermet 22, CP 76, CH-1211 Geneva 4 (Switzerland)

    2008-06-09

    Cyanobacteria, commonly called 'blue-green algae', may accumulate in surface water supplies as 'blooms' and may concentrate on the surface as blue-green 'scums'. Some species of cyanobacteria produce toxins and are of relevance to water supplies and to microalgae dietary supplements. To ensure the safety of drinking water and blue-green algae products, analyses are the only way to determine the presence or absence of toxins. This paper shows the use of ultra performance liquid chromatography (UPLC) coupled to orthogonal acceleration time of flight (TOF) mass spectrometry for the detection and quantitation of microcystins. The method presented is very sensitive, simple, fast, robust and did not require fastidious clean-up step. Limits of detection of 0.1 {mu}g L{sup -1} in water and 0.1-0.2 {mu}g g{sup -1} in microalgae samples were achieved. Method performances were satisfactory and appropriate for monitoring of water and dietary supplements. The method was applied in routine to samples taken from Swiss market or buy on internet website. Among 19 samples, six showed the presence of microcystins LR and LA at harmful levels.

  5. Introduction of a 20 kHz Nd:YVO4 laser into a hybrid quadrupole time-of-flight mass spectrometer for MALDI-MS imaging.

    Science.gov (United States)

    Trim, Paul J; Djidja, Marie-Claude; Atkinson, Sally J; Oakes, Keith; Cole, Laura M; Anderson, David M G; Hart, Philippa J; Francese, Simona; Clench, Malcolm R

    2010-08-01

    A commercial hybrid quadrupole time-of-flight mass spectrometer has been modified for high-speed matrix-assisted laser desorption ionisation (MALDI) imaging using a short-pulse optical technology Nd:YVO(4) laser. The laser operating in frequency-tripled mode (lambda = 355 nm) is capable of delivering 1.5-ns pulses of energy at up to 8 microJ at 5-10 kHz and 3 microJ at 20 kHz. Experiments to improve beam homogeneity and reduce laser speckle by mechanical vibration of the fibre-optic laser delivery system are reported along with data from trial and tissue imaging experiments using the modified instrument. The laser appeared to yield best results for MALDI-MS imaging experiments when operating at repetition rates 5-10 kHz. Combining this with raster imaging allowed images of rat brain sections to be recorded in 37 min. Similarly, images of the distribution of peptides in "on-tissue" digest experiments from tumour tissues were recorded in 1 h and 30 min rather than the 8-h acquisition time previously used. A brief investigation of targeted protein analysis/imaging by multiple reaction monitoring experiments "on-tissue" is reported. A total of 26 transitions were recorded over a 3-s cycle time and images of abundant proteins were successfully recorded.

  6. Identification of Lactobacillus from the saliva of adult patients with caries using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Yifei Zhang

    Full Text Available Matrix-assisted laser desorption/ionization (MALDI time-of-flight (TOF mass spectrometry (MS has been presented as a superior method for the detection of microorganisms in body fluid samples (e.g., blood, saliva, pus, etc. However, the performance of MALDI-TOF MS in routine identification of caries-related Lactobacillus isolates from saliva of adult patients with caries has not been determined. In the present study, we introduced a new MALDI-TOF MS system for identification of lactobacilli. Saliva samples were collected from 120 subjects with caries. Bacteria were isolated and cultured, and each isolate was identified by both 16S rRNA sequencing and MALDI-TOF MS. The identification results obtained by MALDI-TOF MS were concordant at the genus level with those of conventional 16S rRNA-based sequencing for 88.6% of lactobacilli (62/70 and 95.5% of non-lactobacilli (21/22. Up to 96 results could be obtained in parallel on a single MALDI target, suggesting that this is a reliable high-throughput approach for routine identification of lactobacilli. However, additional reference strains are necessary to increase the sensitivity and specificity of species-level identification.

  7. Identification of Natural Dyes in Ancient Textiles by Time-of-Flight Secondary Ion Mass Spectrometry and Surface-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Lee, Jihye; Kim, Min Jung; van Elslande, Elsa; Walter, Philippe; Lee, Yeonhee

    2015-11-01

    The identification of dyes in archaeological remains is a long standing challenge. Major problems include contamination by environmental conditions over long periods of time, small amounts and limited availability of excavated samples, and low concentrations of dyestuff in the obtained samples. To address these issues, highly sensitive and non-destructive techniques are required. In response, in this work, two non-destructive analytical techniques, Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) and Surface-Enhanced Raman Spectroscopy (SERS), were used for dye detection and the analysis results are compared. TOF-SIMS provides high detection efficiency for the analysis of organic materials whereas SERS is a useful technique for the detection of dyes in ancient textiles. An Ag colloid was employed to surmount the limitations of normal Raman measurement such as background fluorescence and weak Raman signals in small amounts of components. To identify the dyes used in ancient textiles, standard samples prepared using various dyestuffs and historical samples were analyzed with TOF-SIMS and Raman techniques. From the TOF-SIMS and the SERS spectra, dyestuffs such as alizarin, berberine, an indigo were identified in ancient textiles. The results suggest that TOF-SIMS and SERS are efficient non-destructive techniques for the characterization of archaeological textiles.

  8. Profiling and multivariate statistical analysis of Panax ginseng based on ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry.

    Science.gov (United States)

    Wu, Wei; Sun, Le; Zhang, Zhe; Guo, Yingying; Liu, Shuying

    2015-03-25

    An ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) method was developed for the detection and structural analysis of ginsenosides in white ginseng and related processed products (red ginseng). Original neutral, malonyl, and chemically transformed ginsenosides were identified in white and red ginseng samples. The aglycone types of ginsenosides were determined by MS/MS as PPD (m/z 459), PPT (m/z 475), C-24, -25 hydrated-PPD or PPT (m/z 477 or m/z 493), and Δ20(21)-or Δ20(22)-dehydrated-PPD or PPT (m/z 441 or m/z 457). Following the structural determination, the UHPLC-Q-TOF-MS-based chemical profiling coupled with multivariate statistical analysis method was applied for global analysis of white and processed ginseng samples. The chemical markers present between the processed products red ginseng and white ginseng could be assigned. Process-mediated chemical changes were recognized as the hydrolysis of ginsenosides with large molecular weight, chemical transformations of ginsenosides, changes in malonyl-ginsenosides, and generation of 20-(R)-ginsenoside enantiomers. The relative contents of compounds classified as PPD, PPT, malonyl, and transformed ginsenosides were calculated based on peak areas in ginseng before and after processing. This study provides possibility to monitor multiple components for the quality control and global evaluation of ginseng products during processing. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Selective separation and characterization of the stress degradation products of ondansetron hydrochloride by liquid chromatography with quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Talluri, Murali V N Kumar; Keshari, Kundan Kumar; Kalariya, Pradipbhai D; Srinivas, Ragampeta

    2015-05-01

    Ondansetron hydrochloride was subjected to forced degradation studies under various conditions of hydrolysis (acidic, basic, and neutral), oxidation, photolysis, and thermal as prescribed by International Conference on Harmonisation guideline Q1A (R2). A simple, selective, precise, and accurate high-performance liquid chromatography method was developed on a Waters Xterra C18 (150 × 4.6 mm id, 3.5 μm) column using 10 mM ammonium formate (pH 3.0)/methanol as a mobile phase in gradient elution mode at a flow rate of 0.6 mL/min. The method was extended to liquid chromatography quadrupole time-of-flight tandem mass spectrometry for identification and structural characterization of stress degradation products of ondansetron. The drug showed significant degradation in base hydrolytic and photolytic stress conditions in the liquid state, while it was found to be stable in neutral, acidic, thermal, and oxidative stress conditions. A total of five degradation products were characterized and most probable mechanisms for the formation of degradation products have been proposed on the basis of a comparison of the fragmentation of the [M + H](+) ions of the drug and its degradation products. Finally, the developed method was validated in terms of specificity, linearity, accuracy, precision, and robustness as per International Conference on Harmonisation guideline Q2 (R1). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Simultaneous determination of thiamethoxam, clothianidin, and metazachlor residues in soil by ultrahigh performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Valverde, Silvia; Ares, Ana M; Bernal, José Luis; Nozal, María Jesús; Bernal, José

    2017-03-01

    A rapid pioneering method has been developed to simultaneously determine residues of three pesticides (thiamethoxam, clothianidin, and metazachlor) in soil by ultrahigh performance liquid chromatography coupled to a mass spectrometry detector (quadrupole time-of-flight). An efficient extraction procedure (90-105% average analyte recoveries) has also been proposed, involving solid-liquid extraction by a mixture of water and methanol (60:40, v/v), centrifugation, and concentration. A chromatographic analysis of the compounds was achieved in 5.5 min by means of a core-shell technology based column (Kinetex ® EVO C 18 , 50 × 2.1 mm, 1.7 μm, 100 Å). The mobile phase (0.3 mL/min, gradient elution mode) consisted of 0.1% v/v formic acid in water and 0.1% v/v formic acid in acetonitrile. The method was fully validated in terms of selectivity, detection and quantification limits, matrix effect, linearity, trueness, and precision. Low limits of detection and quantification were obtained, ranging from 0.2 to 3.0 μg/kg, which are similar to those published in previous studies, while the absence of a significant matrix effect allowed quantification of the pesticides with standard calibration curves. The proposed method was applied for an analysis of pesticides in several soil samples from experimental fields dedicated to oilseed rape cultivars. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Time-of-flight-secondary ion mass spectrometry and cyclic voltammetry studies of self-assembly of dodecanethiol on a nanoporous gold surface.

    Science.gov (United States)

    Hafez, Aly M; Huber, Andreas; Wenclawiak, Bernd W

    2013-03-19

    Preparation of a nanoporous gold surface by dealloying (etching) of a 585 gold plate (58.5% Au, 30% Ag, and 11.5% non-noble metals) was studied by applying acidic and thermal treatment of the gold plate. The gold plate surface was studied before and after the etching process using different analytical techniques like field emission scanning electron microscope (FE-SEM) with an energy dispersive X-ray spectroscopy analyzer (EDX), cyclic voltammetry (CV), and time-of-flight-secondary ion mass spectrometry (TOF-SIMS). CV analysis of the gold surface has shown that overnight etching with warm nitric acid increases the surface area 20 times higher than before etching. FE-SEM analysis has shown that a nanoporous gold surface with pore diameter ≤100 nm was obtained. SIMS depth profile analysis and EDX analysis have shown that the nanoporous gold surface was obtained as a result of removing the silver and copper from the first layers of the plate. The nanoporous gold surface was used as a substrate for self-assembly of dodecanethiol and has shown a higher extraction efficiency than the unetched gold alloy.

  12. A novel cluster of Mycobacterium abscessus complex revealed by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Suzuki, Hiromichi; Yoshida, Shiomi; Yoshida, Atsushi; Okuzumi, Katsuko; Fukusima, Atsuhito; Hishinuma, Akira

    2015-12-01

    Mycobacterium abscessus complex is a rapidly growing mycobacterium consisting of 3 subspecies, M. abscessus, Mycobacterium massiliense, and Mycobacterium bolletii. However, rapid and accurate species identification is difficult. We first evaluated a suitable protocol of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) for distinguishing these subspecies. Then, we studied spectral signals by MALDI-TOF MS in 59 M. abscessus, 42 M. massiliense, and 2 M. bolletii. Among several specific spectral signals, 4 signals clearly differentiate M. massiliense from the other 2 subspecies, M. abscessus and M. bolletii. Moreover, 6 of the 42 M. massiliense isolates showed a spectral pattern similar to M. abscessus. These isolates correspond to the distinctive class of M. massiliense (cluster D) which is closer to M. abscessus by the previous variable number tandem repeat analysis. These results indicate that MALDI-TOF MS is not only useful for the identification of 3 subspecies of M. abscessus complex but also capable of distinguishing clusters of M. massiliense. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Differentiation of Lactobacillus brevis strains using Matrix-Assisted-Laser-Desorption-Ionization-Time-of-Flight Mass Spectrometry with respect to their beer spoilage potential.

    Science.gov (United States)

    Kern, Carola C; Vogel, Rudi F; Behr, Jürgen

    2014-06-01

    Lactobacillus (L.) brevis is one of the most frequently encountered bacteria in beer-spoilage incidents. As the species Lactobacillus brevis comprises strains showing varying ability to grow in beer, ranging from growth in low hopped wheat to highly hopped pilsner beer, differentiation and classification of L. brevis with regard to their beer-spoiling ability is of vital interest for the brewing industry. Matrix-Assisted-Laser-Desorption-Ionization-Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) has been shown as a powerful tool for species and sub-species differentiation of bacterial isolates and is increasingly used for strain-level differentiation. Seventeen L. brevis strains, representative of different spoilage types, were characterized according to their tolerance to iso-alpha-acids and their growth in wheat-, lager- and pilsner beer. MALDI-TOF MS spectra were acquired to perform strain-level identification, cluster analysis and biomarker detection. Strain-level identification was achieved in 90% out of 204 spectra. Misidentification occurred nearly exclusively among strains belonging to the same spoilage type. Though spectra of strongly beer-spoiling strains showed remarkable similarity, no decisive single markers were detected to be present in all strains of one group. However, MALDI-TOF MS spectra can be reliably assigned to the corresponding strain and thus allow to track single strains and connect them to their physiological properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Identification and classification of components in flash pyrolysis oil and hydrodeoxygenated oils by two-dimensional gas chromatography and time-of-flight mass spectrometry.

    Science.gov (United States)

    Marsman, J H; Wildschut, J; Evers, P; de Koning, S; Heeres, H J

    2008-04-18

    Hydrodeoxygenated pyrolysis oils (HDO) are considered promising renewable liquid energy carriers. To gain insights in the various reaction pathways taking place during the hydrodeoxygenation reaction of pyrolysis oil, two-dimensional gas chromatography with time-of-flight mass spectrometric analyses (2D-GC-TOF-MS) was applied on the feedstock and product oil. Chromatographic parameters like injection temperature and column choice of the 1D-(2)D ensemble are discussed. Fractionation of the oils by hexane extraction was applied to show the distribution of analytes over the phases. Some 1000 and 2000 components in the pyrolysis and HDO oil, respectively could be identified and classified. The TOF-MS detection considerably improved the understanding of the molecular distribution over the 1D-(2)D retention time fields in the contour plot, in order to classify the analytes in functional groups. By group-type classification of the main components (>0.3% relative area), it was possible to characterize the oils by 250 and 350 analytes, respectively pyrolysis oil and HDO oil, describing 75% of the chromatographable fraction. The 2D-GC-TOF-MS method showed to be a useful and fast technique to determine the composition of (upgraded) pyrolysis oil and is potentially a very useful tool for exploratory catalyst research and kinetic studies. The 2D-GC-TOF-MS technique is not only useful for the chemical study as such, but also provides the basic knowledge for method transfer to a 2D-GC-FID (flame ionization detector) application.

  15. Simultaneous determination of organophosphorus pesticides in fruits and vegetables using atmospheric pressure gas chromatography quadrupole-time-of-flight mass spectrometry.

    Science.gov (United States)

    Cheng, Zhipeng; Dong, Fengshou; Xu, Jun; Liu, Xingang; Wu, Xiaohu; Chen, Zenglong; Pan, Xinglu; Gan, Jay; Zheng, Yongquan

    2017-09-15

    This paper describes the application of atmospheric pressure gas chromatography quadrupole-time-of-flight mass spectrometry for the simultaneous determination of organophosphorus pesticides in apple, pear, tomato, cucumber and cabbage. Soft ionization with atmospheric pressure ionization source was compared with traditional electron impact ionization (EI). The sensitivity of GC coupled to atmospheric pressure ionization (APGC) for all the analytes was enhanced by 1.0-8.2 times. The ionization modes with atmospheric pressure ionization source was studied by comparing the charge-transfer and proton-transfer conditions. The optimized QuEChERs method was used to pretreat the samples. The calibration curves were found linear from 10 to 1000μg/L, obtaining correlation coefficients higher than 0.9845. Satisfactory mean recovery values, in the range of 70.0-115.9%, and satisfactory precision, with all RSD r <19.7% and all RSD R values <19.5% at the three fortified concentration levels for all the fifteen OPPs. The results demonstrate the potential of APGC-QTOF-MS for routine quantitative analysis of organophosphorus pesticide in fruits and vegetables. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Chemometrics-assisted effect-directed analysis of crude and refined oil using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry.

    Science.gov (United States)

    Radović, Jagoš R; Thomas, Kevin V; Parastar, Hadi; Díez, Sergi; Tauler, Romà; Bayona, Josep M

    2014-01-01

    An effect-directed analysis (EDA) of fresh and artificially weathered (evaporated, photooxidized) samples of North Sea crude oil and residual heavy fuel oil is presented. Aliphatic, aromatic, and polar oil fractions were tested for the presence of aryl hydrocarbon receptor (AhR) agonist and androgen receptor (AR) antagonist, demonstrating for the first time the AR antagonist effects in the aromatic and, to a lesser extent, polar fractions. An extension of the typical EDA strategy to include an N-way partial least-squares (N-PLS) model capable of relating the comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS) data set to the bioassay data obtained from normal-phase LC fractions is proposed. The predicted AhR binding effects in the fresh and artificially weathered aromatic oil fractions facilitated the identification of alkyl-substituted three- and four-ring aromatic systems in the active fractions through the weighting of their contributions to the observed effects. A N-PLS chemometric model is demonstrated as a potentially useful strategy for future EDA studies that can streamline the compound identification process and provide additional reduction of samples' complexity. The AhR binding effects of the suspected compounds predicted by N-PLS and identified by GC × GC-TOFMS were confirmed using quantitative structure-activity relationship (QSAR) estimates.

  17. An Ultrahigh-Performance Liquid Chromatography-Time-of-Flight Mass Spectrometry Metabolomic Approach to Studying the Impact of Moderate Red-Wine Consumption on Urinary Metabolome.

    Science.gov (United States)

    Esteban-Fernández, Adelaida; Ibañez, Clara; Simó, Carolina; Bartolomé, Begoña; Moreno-Arribas, M Victoria

    2018-04-06

    Moderate red-wine consumption has been widely described to exert several benefits in human health. This is mainly due to its unique content of bioactive polyphenols, which suffer several modifications along their pass through the digestive system, including microbial transformation in the colon and phase-II metabolism, until they are finally excreted in urine and feces. To determine the impact of moderate wine consumption in the overall urinary metabolome of healthy volunteers ( n = 41), samples from a red-wine interventional study (250 mL/day, 28 days) were investigated. Urine (24 h) was collected before and after intervention and analyzed by an untargeted ultrahigh-performance liquid chromatography-time-of-flight mass spectrometry metabolomics approach. 94 compounds linked to wine consumption, including specific wine components (tartaric acid), microbial-derived phenolic metabolites (5-(dihydroxyphenyl)-γ-valerolactones and 4-hydroxyl-5-(phenyl)-valeric acids), and endogenous compounds were identified. Also, some relationships between parallel fecal and urinary metabolomes are discussed.

  18. Biomarker research for moyamoya disease in cerebrospinal fluid using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Maruwaka, Mikio; Yoshikawa, Kazuhiro; Okamoto, Sho; Araki, Yoshio; Sumitomo, Masaki; Kawamura, Akino; Yokoyama, Kinya; Wakabayashi, Toshihiko

    2015-01-01

    Moyamoya disease (MMD) is a rare cerebrovascular disease characterized by steno-occlusive change in bilateral internal carotid arteries with unknown etiology. To discover biomarker candidates in cerebrospinal fluid from MMD patients, proteome analysis was performed by the surface-enhanced laser desorption/ionization time-of-flight mass spectrometry. Three peptides, 4473Da, 4475Da, and 6253Da, were significantly elevated in MMD group. A positive correlation between 4473Da peptide and postoperative angiogenesis was determined. Twenty MMD patients were enrolled in this pilot study, including 11 pediatric cases less than 18 years of age (mean age, 8.67 years) and 9 adult MMD patients (mean age, 38.1 years). This study also includes 17 control cases with the mean age of 27.9 years old. In conclusion, 4473Da peptide is supposed to be a reliable biomarker of MMD. 4473Da peptide showed higher intensity peaks especially in younger MMD patients, and it was proved to be highly related to postoperative angiogenesis. Further study is needed to show how 4473Da peptide is involved with the etiology and the onset of MMD. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  19. Investigating the coffee flavour in South African Pinotage wine using novel offline olfactometry and comprehensive gas chromatography with time of flight mass spectrometry.

    Science.gov (United States)

    Naudé, Yvette; Rohwer, Egmont R

    2013-01-04

    Pinotage wine from several South African wine cellars has been produced with a novel coffee flavour. We have investigated this innovative coffee effect using in house developed solventless sampling and fractionating olfactometric techniques, which are unique in their ability to study synergistic aroma effects as opposed to traditional gas chromatography olfactometry (GC-O) which is designed to, ideally, evaluate single eluting compounds in a chromatographic sequence. Sections of the chromatogram, multiple or single peaks, were recaptured on multichannel open tubular silicone rubber (polydimethylsiloxane (PDMS)) traps at the end of a GC column. The recaptured fractions were released in a controlled manner for offline olfactory evaluation, and for qualitative analysis using comprehensive gas chromatography coupled to time of flight mass spectrometry (GC×GC-TOFMS) for compound separation and identification, thus permitting correlation of odour with specific compounds. A combination of furfural and 2-furanmethanol was responsible for a roast coffee bean-like odour in coffee style Pinotage wines. This coffee perception is the result of a synergistic effect in which no individual compound was responsible for the characteristic aroma. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Diamondoid Characterization in Condensate by Comprehensive Two-Dimensional Gas Chromatography with Time-of-Flight Mass Spectrometry: The Junggar Basin of Northwest China

    Science.gov (United States)

    Li, Shuifu; Hu, Shouzhi; Cao, Jian; Wu, Ming; Zhang, Dongmei

    2012-01-01

    Diamondoids in crude oil are useful for assessing the maturity of oil in high maturation. However, they are very difficult to separate and accurately quantify by conventional geochemical methods due to their low abundance in oil. In this paper, we use comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) to study the compounds in condensates from the Junggar Basin of northwest China and address their geological and geochemical applications. GC×GC-TOFMS improves the resolution and separation efficiency of the compounds. It not only separates the compounds that coelute in conventional GC-MS (e.g., 4, 8-dimethyl-diamantane and trimethyl-diamantane) but also allows the identification of compounds that were not previously detected (e.g., trimethyl-diamantane (15A)). A reversed-phase column system improves the separation capabilities over the normal phase column system. The diamondoid indexes indicate that a representative condensate from Well DX 10 is highly mature with equivalent Ro being approximately 1.5%. PMID:23109861

  1. Combination of quantitative analysis and chemometric analysis for the quality evaluation of three different frankincenses by ultra high performance liquid chromatography and quadrupole time of flight mass spectrometry.

    Science.gov (United States)

    Zhang, Chao; Sun, Lei; Tian, Run-tao; Jin, Hong-yu; Ma, Shuang-Cheng; Gu, Bing-ren

    2015-10-01

    Frankincense has gained increasing attention in the pharmaceutical industry because of its pharmacologically active components such as boswellic acids. However, the identity and overall quality evaluation of three different frankincense species in different Pharmacopeias and the literature have less been reported. In this paper, quantitative analysis and chemometric evaluation were established and applied for the quality control of frankincense. Meanwhile, quantitative and chemometric analysis could be conducted under the same analytical conditions. In total 55 samples from four habitats (three species) of frankincense were collected and six boswellic acids were chosen for quantitative analysis. Chemometric analyses such as similarity analysis, hierarchical cluster analysis, and principal component analysis were used to identify frankincense of three species to reveal the correlation between its components and species. In addition, 12 chromatographic peaks have been tentatively identified explored by reference substances and quadrupole time-of-flight mass spectrometry. The results indicated that the total boswellic acid profiles of three species of frankincense are similar and their fingerprints can be used to differentiate between them. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Urinary Metabolomic Profiling to Identify Potential Biomarkers for the Diagnosis of Behcet's Disease by Gas Chromatography/Time-of-Flight-Mass Spectrometry.

    Science.gov (United States)

    Ahn, Joong Kyong; Kim, Jungyeon; Hwang, Jiwon; Song, Juhwan; Kim, Kyoung Heon; Cha, Hoon-Suk

    2017-11-02

    Diagnosing Behcet's disease (BD) is challenging because of the lack of a diagnostic biomarker. The purposes of this study were to investigate distinctive metabolic changes in urine samples of BD patients and to identify urinary metabolic biomarkers for diagnosis of BD using gas chromatography/time-of-flight-mass spectrometry (GC/TOF-MS). Metabolomic profiling of urine samples from 44 BD patients and 41 healthy controls (HC) were assessed using GC/TOF-MS, in conjunction with multivariate statistical analysis. A total of 110 urinary metabolites were identified. The urine metabolite profiles obtained from GC/TOF-MS analysis could distinguish BD patients from the HC group in the discovery set. The parameter values of the orthogonal partial least squared-discrimination analysis (OPLS-DA) model were R ² X of 0.231, R ² Y of 0.804, and Q ² of 0.598. A biomarker panel composed of guanine, pyrrole-2-carboxylate, 3-hydroxypyridine, mannose, l-citrulline, galactonate, isothreonate, sedoheptuloses, hypoxanthine, and gluconic acid lactone were selected and adequately validated as putative biomarkers of BD (sensitivity 96.7%, specificity 93.3%, area under the curve 0.974). OPLS-DA showed clear discrimination of BD and HC groups by a biomarker panel of ten metabolites in the independent set (accuracy 88%). We demonstrated characteristic urinary metabolic profiles and potential urinary metabolite biomarkers that have clinical value in the diagnosis of BD using GC/TOF-MS.

  3. Identification of acteoside and its major metabolites in rat urine by ultra-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight tandem mass spectrometry.

    Science.gov (United States)

    Qi, Meng; Xiong, Aizhen; Li, Pengfei; Yang, Qiming; Yang, Li; Wang, Zhengtao

    2013-12-01

    In this study, metabolites in the urine samples of rats orally administered with acteoside, a phenylethanoid glycoside compound, were detected and identified using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC/ESI-QTOF-MS) combined with an automated MS(E) technique. Up to 35 metabolites (19 metabolites of the parent drug and 16 metabolites of the degradation products) were observed, including processes of oxidization, glucuronidation, sulfation, and methyl conjugation. According to the metabolic pathways, acteoside mainly functioned as a prodrug and underwent hydrolysis before being absorbed into the blood. The degradation products, especially caffeic acid and hydroxytyrosol, were involved in further metabolism which was responsible for the low oral bioavailability but obvious pharmacological activities of acteoside. In summary, this work provided valuable information on acteoside metabolism through the rapid and reliable UPLC/ESI-QTOF-MS technique, which could be widely used for the investigation of natural product metabolites. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Identification of pathogenic microorganisms directly from positive blood vials by matrix-assisted laser desorption/ionization time of flight mass spectrometry

    DEFF Research Database (Denmark)

    Nonnemann, Bettina; Tvede, Michael; Bjarnsholt, Thomas

    2013-01-01

    Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) is a promising and fast method for identifying fungi and bacteria directly from positive blood cultures. Various pre-treatment methods for MALDI-TOF MS identification have been reported for this purpose. In......-house results for identification of bacterial colonies by MALDI-TOF MS using a cut-off score of 1.5 did not reduce the diagnostic accuracy compared with the recommended cut-off score of 1.8. A 3-month consecutive study of positive blood cultures was carried out in our laboratory to evaluate whether......% with the value of 1.5. The overall identification rate was 63% (cut-off 1.5) and 54% (cut-off 1.8). Seventy-seven per cent of fungal species were identified with both log scores. MALDI-TOF MS was in this study found to be a powerful tool in fast diagnosis of Gram-negative bacteria and fungi and to a lesser...

  5. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology.

    Science.gov (United States)

    Clark, Andrew E; Kaleta, Erin J; Arora, Amit; Wolk, Donna M

    2013-07-01

    Within the past decade, clinical microbiology laboratories experienced revolutionary changes in the way in which microorganisms are identified, moving away from slow, traditional microbial identification algorithms toward rapid molecular methods and mass spectrometry (MS). Historically, MS was clinically utilized as a high-complexity method adapted for protein-centered analysis of samples in chemistry and hematology laboratories. Today, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS is adapted for use in microbiology laboratories, where it serves as a paradigm-shifting, rapid, and robust method for accurate microbial identification. Multiple instrument platforms, marketed by well-established manufacturers, are beginning to displace automated phenotypic identification instruments and in some cases genetic sequence-based identification practices. This review summarizes the current position of MALDI-TOF MS in clinical research and in diagnostic clinical microbiology laboratories and serves as a primer to examine the "nuts and bolts" of MALDI-TOF MS, highlighting research associated with sample preparation, spectral analysis, and accuracy. Currently available MALDI-TOF MS hardware and software platforms that support the use of MALDI-TOF with direct and precultured specimens and integration of the technology into the laboratory workflow are also discussed. Finally, this review closes with a prospective view of the future of MALDI-TOF MS in the clinical microbiology laboratory to accelerate diagnosis and microbial identification to improve patient care.

  6. Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry: a Fundamental Shift in the Routine Practice of Clinical Microbiology

    Science.gov (United States)

    Clark, Andrew E.; Kaleta, Erin J.; Arora, Amit

    2013-01-01

    SUMMARY Within the past decade, clinical microbiology laboratories experienced revolutionary changes in the way in which microorganisms are identified, moving away from slow, traditional microbial identification algorithms toward rapid molecular methods and mass spectrometry (MS). Historically, MS was clinically utilized as a high-complexity method adapted for protein-centered analysis of samples in chemistry and hematology laboratories. Today, matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) MS is adapted for use in microbiology laboratories, where it serves as a paradigm-shifting, rapid, and robust method for accurate microbial identification. Multiple instrument platforms, marketed by well-established manufacturers, are beginning to displace automated phenotypic identification instruments and in some cases genetic sequence-based identification practices. This review summarizes the current position of MALDI-TOF MS in clinical research and in diagnostic clinical microbiology laboratories and serves as a primer to examine the “nuts and bolts” of MALDI-TOF MS, highlighting research associated with sample preparation, spectral analysis, and accuracy. Currently available MALDI-TOF MS hardware and software platforms that support the use of MALDI-TOF with direct and precultured specimens and integration of the technology into the laboratory workflow are also discussed. Finally, this review closes with a prospective view of the future of MALDI-TOF MS in the clinical microbiology laboratory to accelerate diagnosis and microbial identification to improve patient care. PMID:23824373

  7. Chemical fingerprint analysis of phenolics of Albizia chinensis based on ultra-performance LC-electrospray ionization-quadrupole time-of-flight mass spectrometry and antioxidant activity.

    Science.gov (United States)

    Chaudhary, Abha; Kaur, Pushpinder; Kumar, Neeraj; Singh, Bikram; Awasthi, Shiv; Lal, Brij

    2011-11-01

    Albizia species have been shown to have anti-inflammatory and anti-allergic properties. However, efficient analytical methods for identification of their active constituents are still lacking. Ultra-performance liquid chromatography coupled with electrospray ionization-quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOF-MS) was used to study the phenolic composition of the ethanolic extracts of different parts (flowers, leaves, pods and bark) of A. chinensis. In addition, the antioxidant activity of the ethanolic extracts was evaluated by the 1,1-diphenyl-2-picryl hydrazyl (DPPH) free-radical and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) radical cation scavenging methods. Four compounds were isolated from the ethanolic extract of the flowers and characterized by 1H and 13C NMR spectroscopy as quercetin-3-O-rhamnoside, quercetin, quercetin-3-O-arabinofuranoside, and myricetin-3-O-rhamnoside. Separation and quantification of the phenolics was accomplished using a reversed-phase BEH C18 column with the mobile phase of methanol-water (0.05% formic acid), and detection wavelengths of 360 and 254 nm.

  8. A new approach to determine vapor pressures of compounds in multicomponent systems by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry.

    Science.gov (United States)

    Parshintsev, Jevgeni; Lai, Ching Kwan; Hartonen, Kari; Kulmala, Markku; Riekkola, Marja-Liisa

    2014-06-01

    A method is described to determine vapor pressures of compounds in multicomponent systems simultaneously. The method is based on temperature-gradient analysis by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GCxGC-TOFMS). Vapor pressures are determined with the aid of known vapor pressure values of reference compounds eluting before and after the analytes. Reference compounds with the same functionalities as the analytes are preferred, but when these are not available, the alkane series can be utilized. The number of compounds whose vapor pressures can be determined is limited only by the peak capacity of the chromatographic system. Although the lowest subcooled vapor pressure determined was 0.006 Pa, for tetrahydroaraucarolone in an atmospheric aerosol sample, vapor pressures as low as 10(-6) Pa can be measured with the described set-up. Even lower values can be measured with higher GC temperatures and longer analysis times. Since only a few picograms of compound is required, in a mixture of any complexity, the GCxGC-TOFMS method offers unique sensitivity, rapidity, and comprehensiveness. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Evaluation of a simple protein extraction method for species identification of clinically relevant staphylococci by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Matsuda, Naoto; Matsuda, Mari; Notake, Shigeyuki; Yokokawa, Hirohide; Kawamura, Yoshiaki; Hiramatsu, Keiichi; Kikuchi, Ken

    2012-12-01

    In clinical microbiology, bacterial identification is labor-intensive and time-consuming. A solution for this problem is the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). In this study, we evaluated a modified protein extraction method of identification performed on target plates (on-plate extraction method) with MALDI-TOF (Bruker Microflex LT with Biotyper version 3.0) and compared it to 2 previously described methods: the direct colony method and a standard protein extraction method (standard extraction method). We evaluated the species of 273 clinical strains and 14 reference strains of staphylococci. All isolates were characterized using the superoxide dismutase A sequence as a reference. For the species identification, the on-plate, standard extraction, and direct colony methods identified 257 isolates (89.5%), 232 isolates (80.8%), and 173 isolates (60.2%), respectively, with statistically significant differences among the three methods (P extraction method is at least as good as standard extraction in identification rate and has the advantage of a shorter processing time.

  10. Comparison of the Detection Characteristics of Trace Species Using Laser-Induced Breakdown Spectroscopy and Laser Breakdown Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Zhenzhen Wang

    2015-03-01

    Full Text Available The rapid and precise element measurement of trace species, such as mercury, iodine, strontium, cesium, etc. is imperative for various applications, especially for industrial needs. The elements mercury and iodine were measured by two detection methods for comparison of the corresponding detection features. A laser beam was focused to induce plasma. Emission and ion signals were detected using laser-induced breakdown spectroscopy (LIBS and laser breakdown time-of-flight mass spectrometry (LB-TOFMS. Multi-photon ionization and electron impact ionization in the plasma generation process can be controlled by the pressure and pulse width. The effect of electron impact ionization on continuum emission, coexisting molecular and atomic emissions became weakened in low pressure condition. When the pressure was less than 1 Pa, the plasma was induced by laser dissociation and multi-photon ionization in LB-TOFMS. According to the experimental results, the detection limits of mercury and iodine in N2 were 3.5 ppb and 60 ppb using low pressure LIBS. The mercury and iodine detection limits using LB-TOFMS were 1.2 ppb and 9.0 ppb, which were enhanced due to different detection features. The detection systems of LIBS and LB-TOFMS can be selected depending on the condition of each application.

  11. Evaluation of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Mycobacterium species, Nocardia species, and Other Aerobic Actinomycetes.

    Science.gov (United States)

    Buckwalter, S P; Olson, S L; Connelly, B J; Lucas, B C; Rodning, A A; Walchak, R C; Deml, S M; Wohlfiel, S L; Wengenack, N L

    2016-02-01

    The value of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for the identification of bacteria and yeasts is well documented in the literature. Its utility for the identification of mycobacteria and Nocardia spp. has also been reported in a limited scope. In this work, we report the specificity of MALDI-TOF MS for the identification of 162 Mycobacterium species and subspecies, 53 Nocardia species, and 13 genera (totaling 43 species) of other aerobic actinomycetes using both the MALDI-TOF MS manufacturer's supplied database(s) and a custom database generated in our laboratory. The performance of a simplified processing and extraction procedure was also evaluated, and, similar to the results in an earlier literature report, our viability studies confirmed the ability of this process to inactivate Mycobacterium tuberculosis prior to analysis. Following library construction and the specificity study, the performance of MALDI-TOF MS was directly compared with that of 16S rRNA gene sequencing for the evaluation of 297 mycobacteria isolates, 148 Nocardia species isolates, and 61 other aerobic actinomycetes isolates under routine clinical laboratory working conditions over a 6-month period. MALDI-TOF MS is a valuable tool for the identification of these groups of organisms. Limitations in the databases and in the ability of MALDI-TOF MS to rapidly identify slowly growing mycobacteria are discussed. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Rapid separation and identification of major constituents in Pseudolarix kaempferi by ultra-performance liquid chromatography coupled with electrospray and quadrupole time-of-flight tandem mass spectrometry.

    Science.gov (United States)

    Ye, Xia; Tang, Minghai; Chen, Lijuan; Peng, Aihua; Ma, Liang; Ye, Haoyu

    2009-12-01

    A rapid and reliable method based on ultra-performance liquid chromatography (UPLC) coupled with photodiode-array detection (PDA) and electrospray ionization quadrupole time-of-flight tandem mass spectrometry (ESI-Q-TOF-MS/MS) has been developed for separation and identification of major constituents in extracts of root bark of Pseudolarix kaempferi Gordon (PKG). Identification of the constituents was carried out by interpretation of their retention times, UV absorption spectra, MS and MS/MS spectra, as well as the data provided by authentic standards and literatures. A total of 20 components were separated in only 8.0 min on a small particle size C18 column (1.7 microm). These components included nine diterpene acids, seven glycosides and four triterpenoids, among which pseudolaric acid C-O-beta-D-glucopyranoside and pseudolaric acid C2-O-beta-D-glucopyranoside were separated and identified for the first time in this study. Furthermore, the fragmentation patterns of the three types of compounds were elucidated for the first time. This established UPLC-PDA/Q-TOF-MS/MS method is reliable and effective for the separation and identification of the 20 compounds and will be useful for quality control of the crude materials of Pseudolarix kaempferi Gordon and their related preparations. Copyright 2009 John Wiley & Sons, Ltd.

  13. Parallel microscope-based fluorescence, absorbance and time-of-flight mass spectrometry detection for high performance liquid chromatography and determination of glucosamine in urine.

    Science.gov (United States)

    Xiong, Bo; Wang, Ling-Ling; Li, Qiong; Nie, Yu-Ting; Cheng, Shuang-Shuang; Zhang, Hui; Sun, Ren-Qiang; Wang, Yu-Jiao; Zhou, Hong-Bin

    2015-11-01

    A parallel microscope-based laser-induced fluorescence (LIF), ultraviolet-visible absorbance (UV) and time-of-flight mass spectrometry (TOF-MS) detection for high performance liquid chromatography (HPLC) was achieved and used to determine glucosamine in urines. First, a reliable and convenient LIF detection was developed based on an inverted microscope and corresponding modulations. Parallel HPLC-LIF/UV/TOF-MS detection was developed by the combination of preceding Microscope-based LIF detection and HPLC coupled with UV and TOF-MS. The proposed setup, due to its parallel scheme, was free of the influence from photo bleaching in LIF detection. Rhodamine B, glutamic acid and glucosamine have been determined to evaluate its performance. Moreover, the proposed strategy was used to determine the glucosamine in urines, and subsequent results suggested that glucosamine, which was widely used in the prevention of the bone arthritis, was metabolized to urines within 4h. Furthermore, its concentration in urines decreased to 5.4mM at 12h. Efficient glucosamine detection was achieved based on a sensitive quantification (LIF), a universal detection (UV) and structural characterizations (TOF-MS). This application indicated that the proposed strategy was sensitive, universal and versatile, and it was capable of improved analysis, especially for analytes with low concentrations in complex samples, compared with conventional HPLC-UV/TOF-MS. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Fast screening and quantitation of microcystins in microalgae dietary supplement products and water by liquid chromatography coupled to time of flight mass spectrometry

    International Nuclear Information System (INIS)

    Ortelli, Didier; Edder, Patrick; Cognard, Emmanuelle; Jan, Philippe

    2008-01-01

    Cyanobacteria, commonly called 'blue-green algae', may accumulate in surface water supplies as 'blooms' and may concentrate on the surface as blue-green 'scums'. Some species of cyanobacteria produce toxins and are of relevance to water supplies and to microalgae dietary supplements. To ensure the safety of drinking water and blue-green algae products, analyses are the only way to determine the presence or absence of toxins. This paper shows the use of ultra performance liquid chromatography (UPLC) coupled to orthogonal acceleration time of flight (TOF) mass spectrometry for the detection and quantitation of microcystins. The method presented is very sensitive, simple, fast, robust and did not require fastidious clean-up step. Limits of detection of 0.1 μg L -1 in water and 0.1-0.2 μg g -1 in microalgae samples were achieved. Method performances were satisfactory and appropriate for monitoring of water and dietary supplements. The method was applied in routine to samples taken from Swiss market or buy on internet website. Among 19 samples, six showed the presence of microcystins LR and LA at harmful levels

  15. Decision peptide-driven: a free software tool for accurate protein quantification using gel electrophoresis and matrix assisted laser desorption ionization time of flight mass spectrometry.

    Science.gov (United States)

    Santos, Hugo M; Reboiro-Jato, Miguel; Glez-Peña, Daniel; Nunes-Miranda, J D; Fdez-Riverola, Florentino; Carvallo, R; Capelo, J L

    2010-09-15

    The decision peptide-driven tool implements a software application for assisting the user in a protocol for accurate protein quantification based on the following steps: (1) protein separation through gel electrophoresis; (2) in-gel protein digestion; (3) direct and inverse (18)O-labeling and (4) matrix assisted laser desorption ionization time of flight mass spectrometry, MALDI analysis. The DPD software compares the MALDI results of the direct and inverse (18)O-labeling experiments and quickly identifies those peptides with paralleled loses in different sets of a typical proteomic workflow. Those peptides are used for subsequent accurate protein quantification. The interpretation of the MALDI data from direct and inverse labeling experiments is time-consuming requiring a significant amount of time to do all comparisons manually. The DPD software shortens and simplifies the searching of the peptides that must be used for quantification from a week to just some minutes. To do so, it takes as input several MALDI spectra and aids the researcher in an automatic mode (i) to compare data from direct and inverse (18)O-labeling experiments, calculating the corresponding ratios to determine those peptides with paralleled losses throughout different sets of experiments; and (ii) allow to use those peptides as internal standards for subsequent accurate protein quantification using (18)O-labeling. In this work the DPD software is presented and explained with the quantification of protein carbonic anhydrase. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  16. Multi-residue analysis method for analysis of pharmaceuticals using liquid chromatography-time of flight/mass spectrometry (LC-TOF/MS) in water sample

    Science.gov (United States)

    Al-Qaim, Fouad Fadhil; Abdullah, Md Pauzi; Othman, Mohamed Rozali

    2013-11-01

    In this work, a developed method using solid - phase extraction (SPE) followed by liquid chromatography - time of flight mass spectrometry (LC-ESI-TOF/MS) was developed and validated for quantification and confirmation of eleven pharmaceuticals with different therapeutic classes in water samples, Malaysia. These compounds are caffeine (CAF), prazosin (PRZ), enalapril (ENL), carbamazepine (CBZ), nifedipine (NFD), levonorgestrel (LNG), simvastatin (SMV), hydrochlorothiazide (HYD), gliclazide (GLIC), diclofenac-Na (DIC-Na) and mefenamic acid (MEF). LC was performed on a Dionex Ultimate 3000/LC 09115047 (USA) system. Chromatography was performed on a Thermo Scientific C18 (250 mm × 2.1 mm, i.d.: 5μm) column. Several parameters were optimised such as; mobile phase, gradient elution, collision energy and solvent elution for extraction of compounds from water. The recoveries obtained ranged from 30-148 % in river water. Five pharmaceutical compounds were detected in the surface water samples: caffeine, prazosin, enalpril, diclofenac-Na and mefenamic acid. The developed method is precise and accepted recoveries were got. In addition, this method is suitable to identify and quantify trace concentrations of pharmaceuticals in surface water.

  17. Evaluation of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for identification of viridans group streptococci.

    Science.gov (United States)

    Kärpänoja, P; Harju, I; Rantakokko-Jalava, K; Haanperä, M; Sarkkinen, H

    2014-05-01

    In this study, the performances of two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems, MALDI Biotyper (Bruker Daltonics) and VITEK MS (bioMérieux), were evaluated in the identification of viridans group streptococci. Two collections of isolates were tested with both methods. From a panel of type collection strains (n = 54), MALDI Biotyper gave correct species-level identification for 51/54 (94 %) strains and 37/54 (69 %) strains for the VITEK MS in vitro diagnostic (IVD) method. Additionally, a collection of blood cultures isolates which had been characterized earlier with partial sequencing of 16S rRNA (n = 97) was analyzed. MALDI Biotyper classified 89 % and VITEK MS 93 % of these correctly to the group level. Comparison of species-level identification from the blood culture collection was possible for 36 strains. MALDI Biotyper identified 75 % and VITEK MS 97 % of these strains consistently. Among the clinical isolates, MALDI Biotyper misidentified 36 strains as Streptococcus pneumoniae. Nevertheless, our results suggest that the current MALDI-TOF methods are a good alternative for the identification of viridans streptococci and do perform as well as or better than commercial phenotypical methods.

  18. Real-time monitoring of respiratory absorption factors of volatile organic compounds in ambient air by proton transfer reaction time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhonghui [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Yanli [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Yan, Qiong [Department of Respiratory Diseases, Guangzhou No. 12 People' s Hospital, Guangzhou 510620 (China); Zhang, Zhou [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Wang, Xinming, E-mail: wangxm@gig.ac.cn [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China)

    2016-12-15

    Respiratory absorption factors (AFs) are essential parameters in the evaluation of human health risks from toxic volatile organic compounds (VOCs) in ambient air. A method for the real time monitoring of VOCs in inhaled and exhaled air by proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) has been developed to permit the calculation of respiratory AFs of VOCs. Isoprene was found to be a better breath tracer than O{sub 2}, CO{sub 2}, humidity, or acetone for distinguishing between the expiratory and inspiratory phases, and a homemade online breath sampling device with a buffer tube was used to optimize signal peak shapes. Preliminary tests with seven subjects exposed to aromatic hydrocarbons in an indoor environment revealed mean respiratory AFs of 55.0%, 55.9%, and 66.9% for benzene, toluene, and C8-aromatics (ethylbenzene and xylenes), respectively. These AFs were lower than the values of 90% or 100% used in previous studies when assessing the health risks of inhalation exposure to hazardous VOCs. The mean respiratory AFs of benzene, toluene and C8-aromatics were 66.5%, 70.2% and 82.3% for the three female subjects; they were noticeably much higher than that of 46.4%, 45.2% and 55.3%, respectively, for the four male subjects.

  19. Gas chromatography time-of-flight mass spectrometry (GC-TOF-MS-based metabolomics for comparison of caffeinated and decaffeinated coffee and its implications for Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Kai Lun Chang

    Full Text Available Findings from epidemiology, preclinical and clinical studies indicate that consumption of coffee could have beneficial effects against dementia and Alzheimer's disease (AD. The benefits appear to come from caffeinated coffee, but not decaffeinated coffee or pure caffeine itself. Therefore, the objective of this study was to use metabolomics approach to delineate the discriminant metabolites between caffeinated and decaffeinated coffee, which could have contributed to the observed therapeutic benefits. Gas chromatography time-of-flight mass spectrometry (GC-TOF-MS-based metabolomics approach was employed to characterize the metabolic differences between caffeinated and decaffeinated coffee. Orthogonal partial least squares discriminant analysis (OPLS-DA showed distinct separation between the two types of coffee (cumulative Q(2 = 0.998. A total of 69 discriminant metabolites were identified based on the OPLS-DA model, with 37 and 32 metabolites detected to be higher in caffeinated and decaffeinated coffee, respectively. These metabolites include several benzoate and cinnamate-derived phenolic compounds, organic acids, sugar, fatty acids, and amino acids. Our study successfully established GC-TOF-MS based metabolomics approach as a highly robust tool in discriminant analysis between caffeinated and decaffeinated coffee samples. Discriminant metabolites identified in this study are biologically relevant and provide valuable insights into therapeutic research of coffee against AD. Our data also hint at possible involvement of gut microbial metabolism to enhance therapeutic potential of coffee components, which represents an interesting area for future research.

  20. Metabolism of Genipin in Rat and Identification of Metabolites by Using Ultraperformance Liquid Chromatography/Quadrupole Time-of-Flight Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Yue Ding

    2013-01-01

    Full Text Available The in vivo and in vitro metabolism of genipin was systematically investigated in the present study. Urine, plasma, feces, and bile were collected from rats after oral administration of genipin at a dose of 50 mg/kg body weight. A rapid and sensitive method using ultraperformance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-Q/TOF MS was developed for analysis of metabolic profile of genipin in rat biological samples (urine, plasma, feces, and bile. A total of ten metabolites were detected and identified by comparing their fragmentation patterns with that of genipin using MetaboLynx software tools. On the basis of the chromatographic peak area, the sulfated and glucuronidated conjugates of genipin were identified as major metabolites. And the existence of major metabolites G1 and G2 was confirmed by the in vitro enzymatic study further. Then, metabolite G1 was isolated from rat bile by semipreparative HPLC. Its structure was unambiguously identified as genipin-1-o-glucuronic acid by comparison of its UV, IR, ESI-MS, 1H-NMR, and 13C-NMR spectra with conference. In general, genipin was a very active compound that would transform immediately, and the parent form of genipin could not be observed in rats biological samples. The biotransformation pathways of genipin involved demethylated, ring-opened, cysteine-conjugated, hydroformylated, glucuronidated, and sulfated transformations.

  1. Determination of emerging contaminants in wastewater utilizing comprehensive two-dimensional gas-chromatography coupled with time-of-flight mass spectrometry.

    Science.gov (United States)

    Prebihalo, Sarah; Brockman, Adrienne; Cochran, Jack; Dorman, Frank L

    2015-11-06

    An analytical method for identification of emerging contaminants of concern, such as pesticides and organohalogens has been developed and utilized for true discovery-based analysis. In order to achieve the level of sensitivity and selectivity necessary for detecting compounds in complex samples, comprehensive gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS) was utilized to analyze wastewater samples obtained from the Pennsylvania State University wastewater treatment facility (WWTF). Determination of emerging contaminants through a process of combining samples which represent "normal background" and comparing this to new samples was developed. Results show the presence of halogenated benzotriazoles in wastewater samples as well as soil samples from Pennsylvania State University agricultural fields. The trace levels of chlorinated benzotriazoles observed in the monitoring wells present on the property indicate likely environmental degradation of the chlorinated benzotriazoles. Preliminary investigation of environmental fate of the substituted benzotriazoles indicates their likely degradation into phenol; an Environmental Protection Agency (USEPA) priority pollutant. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A novel method to analyze hepatotoxic components in Polygonum multiflorum using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Lin, Longfei; Lin, Hongmei; Zhang, Miao; Ni, Boran; Yin, Xingbin; Qu, Changhai; Ni, Jian

    2015-12-15

    Polygonum multiflorum, called Heshouwu in China, is a traditional Chinese medicine used to treat various diseases. However, the administration of P. multiflorum (PM) and P. multiflorum Praeparata (PMP) causes numerous adverse effects. This study sought to analyze the toxic components of PM using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS), and their hepatotoxicity in L02 human liver cells. Toxicity was evaluated by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH) leakage, and liver enzyme secretion (aspartate aminotransferase [AST] and alanine aminotransferase [ALT]) assays. Furthermore, UPLC-Q-TOF/MS, Progenesis QI, and Makerlynx XS software analyses were used to differentiate extracts and analyze the toxic components. The order of toxicity was P. multiflorum ethanol extract (PME)>P. multiflorum water extract (PMW)>P. multiflorum Praeparata ethanol extract (PMPE)>P. multiflorum Praeparata water extract (PMPW), which was determined by MTT assay, LDH leakage, and liver enzyme secretion levels. The analysis methods suggest that PM toxicity may be associated with anthraquinone, emodin-O-(malonyl)-hex, emodin-O-glc, emodin, emodin-8-O-glc, emodin-O-(acetyl)-hex, and emodin-O-hex-sulphate. The toxic mechanisms of these components require further study. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Safety and Accuracy of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Identification of Highly Pathogenic Organisms

    Science.gov (United States)

    Rudrik, James T.; Perry, Michael J.; Sullivan, Maureen M.; Reiter-Kintz, Wanda; Lee, Philip A.; Pettit, Denise; Tran, Anthony; Swaney, Erin

    2017-01-01

    ABSTRACT Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) sample preparation methods, including the direct, on-plate formic acid, and ethanol/formic acid tube extraction methods, were evaluated for their ability to render highly pathogenic organisms nonviable and safe for handling in a biosafety level 2 laboratory. Of these, the tube extraction procedure was the most successful, with none of the tested strains surviving this sample preparation method. Tube extracts from several agents of bioterrorism and their near neighbors were analyzed in an eight-laboratory study to examine the utility of the Bruker Biotyper and Vitek MS MALDI-TOF MS systems and their in vitro diagnostic (IVD), research-use-only, and Security-Relevant databases, as applicable, to accurately identify these agents. Forty-six distinct strains of Bacillus anthracis, Yersinia pestis, Francisella tularensis, Burkholderia mallei, Burkholderia pseudomallei, Clostridium botulinum, Brucella melitensis, Brucella abortus, Brucella suis, and Brucella canis were extracted and distributed to participating laboratories for analysis. A total of 35 near-neighbor isolates were also analyzed. PMID:29021156

  4. Identification of Bacillus anthracis by using matrix-assisted laser desorption ionization-time of flight mass spectrometry and artificial neural networks.

    Science.gov (United States)

    Lasch, Peter; Beyer, Wolfgang; Nattermann, Herbert; Stämmler, Maren; Siegbrecht, Enrico; Grunow, Roland; Naumann, Dieter

    2009-11-01

    This report demonstrates the applicability of a combination of matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) and chemometrics for rapid and reliable identification of vegetative cells of the causative agent of anthrax, Bacillus anthracis. Bacillus cultures were prepared under standardized conditions and inactivated according to a recently developed MS-compatible inactivation protocol for highly pathogenic microorganisms. MALDI-TOF MS was then employed to collect spectra from the microbial samples and to build up a database of bacterial reference spectra. This database comprised mass peak profiles of 374 strains from Bacillus and related genera, among them 102 strains of B. anthracis and 121 strains of B. cereus. The information contained in the database was investigated by means of visual inspection of gel view representations, univariate t tests for biomarker identification, unsupervised hierarchical clustering, and artificial neural networks (ANNs). Analysis of gel views and independent t tests suggested B. anthracis- and B. cereus group-specific signals. For example, mass spectra of B. anthracis exhibited discriminating biomarkers at 4,606, 5,413, and 6,679 Da. A systematic search in proteomic databases allowed tentative assignment of some of the biomarkers to ribosomal protein or small acid-soluble proteins. Multivariate pattern analysis by unsupervised hierarchical cluster analysis further revealed a subproteome-based taxonomy of the genus Bacillus. Superior classification accuracy was achieved when supervised ANNs were employed. For the identification of B. anthracis, independent validation of optimized ANN models yielded a diagnostic sensitivity of 100% and a specificity of 100%.

  5. Chemical analysis of pharmaceuticals and explosives in fingermarks using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry.

    Science.gov (United States)

    Kaplan-Sandquist, Kimberly; LeBeau, Marc A; Miller, Mark L

    2014-02-01

    Chemical analysis of latent fingermarks, "touch chemistry," has the potential of providing intelligence or forensically relevant information. Matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI/TOF MS) was used as an analytical platform for obtaining mass spectra and chemical images of target drugs and explosives in fingermark residues following conventional fingerprint development methods and MALDI matrix processing. There were two main purposes of this research: (1) develop effective laboratory methods for detecting drugs and explosives in fingermark residues and (2) determine the feasibility of detecting drugs and explosives after casual contact with pills, powders, and residues. Further, synthetic latent print reference pads were evaluated as mimics of natural fingermark residue to determine if the pads could be used for method development and quality control. The results suggest that artificial amino acid and sebaceous oil residue pads are not suitable to adequately simulate natural fingermark chemistry for MALDI/TOF MS analysis. However, the pads were useful for designing experiments and setting instrumental parameters. Based on the natural fingermark residue experiments, handling whole or broken pills did not transfer sufficient quantities of drugs to allow for definitive detection. Transferring drugs or explosives in the form of powders and residues was successful for preparing analytes for detection after contact with fingers and deposition of fingermark residue. One downfall to handling powders was that the analyte particles were easily spread beyond the original fingermark during development. Analyte particles were confined in the original fingermark when using transfer residues. The MALDI/TOF MS was able to detect procaine, pseudoephedrine, TNT, and RDX from contact residue under laboratory conditions with the integration of conventional fingerprint development methods and MALDI matrix. MALDI/TOF MS is a nondestructive

  6. Rapid Screening of Epidemiologically Important Salmonella enterica subsp. enterica Serovars by Whole-Cell Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry ▿

    Science.gov (United States)

    Dieckmann, Ralf; Malorny, Burkhard

    2011-01-01

    Currently, 2,610 different Salmonella serovars have been described according to the White-Kauffmann-Le Minor scheme. They are routinely differentiated by serotyping, which is based on the antigenic variability at lipopolysaccharide moieties (O antigens), flagellar proteins (H1 and H2 antigens), and capsular polysaccharides (Vi antigens). The aim of this study was to evaluate the potential of matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry for rapid screening and identification of epidemiologically important Salmonella enterica subsp. enterica serovars based on specific sets of serovar-identifying biomarker ions. By analyzing 913 Salmonella enterica subsp. enterica strains representing 89 different serovars using MALDI-TOF mass spectrometry, several potentially serovar-identifying biomarker ions were selected. Based on a combination of genus-, species-, subspecies-, and serovar-identifying biomarker ions, a decision tree classification algorithm was derived for the rapid identification of the five most frequently isolated Salmonella enterica serovars, Enteritidis, Typhimurium/4,[5],12:i:-, Virchow, Infantis, and Hadar. Additionally, sets of potentially serovar-identifying biomarker ions were detected for other epidemiologically interesting serovars, such as Choleraesuis, Heidelberg, and Gallinarum. Furthermore, by using a bioinformatic approach, sequence variations corresponding to single or multiple amino acid exchanges in several biomarker proteins were tentatively assigned. The inclusivity and exclusivity of the specific sets of serovar-identifying biomarker ions for the top 5 serovars were almost 100%. This study shows that whole-cell MALDI-TOF mass spectrometry can be a rapid method for prescreening S. enterica subsp. enterica isolates to identify epidemiologically important serovars and to reduce sample numbers that have to be subsequently analyzed using conventional serotyping by slide agglutination techniques. PMID

  7. New drostanolone metabolites in human urine by liquid chromatography time-of-flight tandem mass spectrometry and their application for doping control.

    Science.gov (United States)

    Liu, Yang; Lu, Jianghai; Yang, Sheng; Zhang, Qingying; Xu, Youxuan

    2016-04-01

    Drostanolone is one of the most frequently detected anabolic androgenic steroids in doping control analysis. Here, we studied drostanolone urinary metabolic profiles using liquid chromatography quadruple time of flight mass spectrometry (LC-QTOF-MS) in full scan and targeted MS/MS modes with accurate mass measurement. The drug was administered to one healthy male volunteer and liquid-liquid extraction along with direct-injection were used to analyze urine samples. Chromatographic peaks for potential metabolites were identified with the theoretical [M-H](-) as a target ion in a full scan experiment and actual deprotonated ions were analyzed in targeted MS/MS mode. Eleven metabolites including five new sulfates, five glucuronide conjugates, and one free metabolite were confirmed for drostanolone. Due to the absence of useful fragment ions to illustrate the steroid ring structure of drostanolone phase II metabolites, gas chromatography mass spectrometry (GC-MS) was used to obtain structural details of the trimethylsilylated phase I metabolite released after enzymatic hydrolysis and a potential structure was proposed using a combined MS approach. Metabolite detection times were recorded and S4 (2α-methyl-5α-androstan-17-one-6β-ol-3α-sulfate) and G1 (2α-methyl-5α-androstan-17-one-3α-glucuronide) were thought to be new potential biomarkers for drostanolone misuse which can be detected up to 24days by liquid-liquid extraction and 7days by direct-injection analysis after intramuscular injection. S4 and G1 were also detected in two drostanolone-positive routine urine samples. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Rapid characterization of dry cured ham produced following different PDOs by proton transfer reaction time of flight mass spectrometry (PTR-ToF-MS).

    Science.gov (United States)

    Del Pulgar, José Sánchez; Soukoulis, Christos; Biasioli, Franco; Cappellin, Luca; García, Carmen; Gasperi, Flavia; Granitto, Pablo; Märk, Tilmann D; Piasentier, Edi; Schuhfried, Erna

    2011-07-15

    In the present study, the recently developed proton transfer reaction time of flight mass spectrometry (PTR-ToF-MS) technique was used for the rapid characterization of dry cured hams produced according to 4 of the most important Protected Designations of Origin (PDOs): an Iberian one (Dehesa de Extremadura) and three Italian ones (Prosciutto di San Daniele, Prosciutto di Parma and Prosciutto Toscano). In total, the headspace composition and respective concentration for nine Spanish and 37 Italian dry cured ham samples were analyzed by direct injection without any pre-treatment or pre-concentration. Firstly, we show that the rapid PTR-ToF-MS fingerprinting in conjunction with chemometrics (Principal Components Analysis) indicates a good separation of the dry cured ham samples according to their production process and that it is possible to set up, using data mining methods, classification models with a high success rate in cross validation. Secondly, we exploited the higher mass resolution of the new PTR-ToF-MS, as compared with standard quadrupole based versions, for the identification of the exact sum formula of the mass spectrometric peaks providing analytical information on the observed differences. The work indicates that PTR-ToF-MS can be used as a rapid method for the identification of differences among dry cured hams produced following the indications of different PDOs and that it provides information on some of the major volatile compounds and their link with the implemented manufacturing practices such as rearing system, salting and curing process, manufacturing practices that seem to strongly affect the final volatile organic profile and thus the perceived quality of dry cured ham. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Imaging Nutrient Distributions in Plant Tissue Using Time-of-Flight Secondary Ion Mass Spectrometry and Scanning Electron Microscopy[OA

    Science.gov (United States)

    Metzner, Ralf; Schneider, Heike Ursula; Breuer, Uwe; Schroeder, Walter Heinz

    2008-01-01

    A new approach to trace the transport routes of macronutrients in plants at the level of cells and tissues and to measure their elemental distributions was developed for investigating the dynamics and structure-function relationships of transport processes. Stem samples from Phaseolus vulgaris were used as a test system. Shock freezing and cryo-preparation were combined in a cryogenic chain with cryo-time-of-flight secondary ion mass spectrometry (cryo-ToF-SIMS) for element and isotope-specific imaging. Cryo-scanning electron microscopy (cryo-SEM) was integrated into the cryogenic workflow to assess the quality of structural preservation. We evaluated the capability of these techniques to monitor transport pathways and processes in xylem and associated tissues using supplementary sodium (Na) and tracers for potassium (K), rubidium (Rb), and 41K added to the transpiration stream. Cryo-ToF-SIMS imaging produced detailed mappings of water, K, calcium, magnesium, the K tracers, and Na without quantification. Lateral resolutions ranged from 10 μm in survey mappings and at high mass resolution to approximately 1 μm in high lateral resolution imaging in reduced areas and at lower mass resolution. The tracers Rb and 41K, as well as Na, were imaged with high sensitivity in xylem vessels and surrounding tissues. The isotope signature of the stable isotope tracer was utilized for relative quantification of the 41K tracer as a fraction of total K at the single pixel level. Cryo-SEM confirmed that tissue structures had been preserved with subcellular detail throughout all procedures. Overlays of cryo-ToF-SIMS images onto the corresponding SEM images allowed detailed correlation of nutrient images with subcellular structures. PMID:18567833

  10. Investigation of cannabis biomarkers and transformation products in waters by liquid chromatography coupled to time of flight and triple quadrupole mass spectrometry.

    Science.gov (United States)

    Boix, Clara; Ibáñez, María; Bijlsma, Lubertus; Sancho, Juan V; Hernández, Félix

    2014-03-01

    11-Nor-9-carboxy-Δ(9)-tetrahydrocannabinol (THC-COOH) is commonly selected as biomarker for the investigation of cannabis consumption through wastewater analysis. The removal efficiency of THC-COOH in wastewater treatment plants (WWTPs) has been reported to vary between 31% and 98%. Accordingly, possible transformation products (TPs) of this metabolite might be formed during treatment processes or in receiving surface water under environmental conditions. In this work, surface water was spiked with THC-COOH and subjected to hydrolysis, chlorination and photo-degradation (both ultraviolet and simulated sunlight) experiments under laboratory-controlled conditions. One hydrolysis, eight chlorination, three ultraviolet photo-degradation and seven sunlight photo-degradation TPs were tentatively identified by liquid chromatography coupled to quadrupole time-of-flight mass spectrometer (LC-QTOF MS). In a subsequent step, THC-COOH and the identified TPs were searched in wastewater samples using LC coupled to tandem mass spectrometry (LC-MS/MS) with triple quadrupole. THC-COOH was found in all influent and effluent wastewater samples analyzed, although at significant lower concentrations in the effluent samples. The removal efficiency of WWTP under study was approximately 86%. Furthermore, THC-COOH was also investigated in several surface waters, and it was detected in 50% of the samples analyzed. Regarding TPs, none were found in influent wastewater, while one hydrolysis and five photo-degradation (simulated sunlight) TPs were detected in effluent and surface waters. The most detected compound, resulting from sunlight photo-degradation, was found in 60% of surface waters analyzed. This fact illustrates the importance of investigating these TPs in the aquatic environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Determination of gamithromycin in an injection by ultra-performance liquid chromatography-tandem quadrupole-time-of-flight mass spectrometry.

    Science.gov (United States)

    Wu, Jia-Xin; Zhang, Gang; Song, Min; Liu, Min; Liang, Jing-Le; Xu, Jin-Lei; Shang, Fei; Qi, Peng

    2016-07-07

    In this study, a sensitive and precise method was developed for the determination of gamithromycin in an injection using ultra-performance liquid chromatography-tandem quadrupole-time-of-flight mass spectrometry (UPLC-QTOF-MS) and the results were compared with a similar analysis for the ion fragments of gamithromycin in MS/ MS. The sample was dissolved in methanol then filtered and separated on a C18 column using acetonitrile-0.1% formic acid (containing 2 mmol/L ammonium acetate) as the mobile phase. The flow rate was 0.4 mL/min and the column temperature was 40 °C. The mass spectrometry conditions were electrospray ionization (ESI) operated in positive ion full scan mode and quantified using external calibration. Subsequently, ion fragments of the MS/MS were compared and analyzed. The linear range was 10 ∼ 200 μg/L with a correlation coefficient of 0.9992. The limit of detection (LOD) was 0.77 μg/L and the limit of quantitation (LOQ) was 2.55 μg/L. The average recoveries of the intra-assay were 98.8%-105.6% with a relative standard deviation ranging from 1.79% to 2.38% and the inter-assay were 89.3%-110.7% with a relative standard deviation ranging from 4.93% to 6.27%. After the comparative analysis of the fragments with a Molecular Structure Correlator, the score of the total matching degree reached 83.19 and the scores of each ion fragment matching degree were all greater than 90, which supplied the basis for the confirmation of gamithromycin. The results indicated that the method was simple, sensitive and precise and could be applied in the determination of gamithromycin in real samples.

  12. In cleanroom, sub-ppb real-time monitoring of volatile organic compounds using proton-transfer reaction/time of flight/mass spectrometry

    Science.gov (United States)

    Hayeck, Nathalie; Maillot, Philippe; Vitrani, Thomas; Pic, Nicolas; Wortham, Henri; Gligorovski, Sasho; Temime-Roussel, Brice; Mizzi, Aurélie; Poulet, Irène

    2014-04-01

    Refractory compounds such as Trimethylsilanol (TMS) and other organic compounds such as propylene glycol methyl ether acetate (PGMEA) used in the photolithography area of microelectronic cleanrooms have irreversible dramatic impact on optical lenses used on photolithography tools. There is a need for real-time, continuous measurements of organic contaminants in representative cleanroom environment especially in lithography zone. Such information is essential to properly evaluate the impact of organic contamination on optical lenses. In this study, a Proton-Transfer Reaction-Time-of-Flight Mass spectrometer (PTR-TOF-MS) was applied for real-time and continuous monitoring of fugitive organic contamination induced by the fabrication process. Three types of measurements were carried out using the PTR-TOF-MS in order to detect the volatile organic compounds (VOCs) next to the tools in the photolithography area and at the upstream and downstream of chemical filters used to purge the air in the cleanroom environment. A validation and verification of the results obtained with PTR-TOF-MS was performed by comparing these results with those obtained with an off-line technique that is Automated Thermal Desorber - Gas Chromatography - Mass Spectrometry (ATD-GC-MS) used as a reference analytical method. The emerged results from the PTR-TOF-MS analysis exhibited the temporal variation of the VOCs levels in the cleanroom environment during the fabrication process. While comparing the results emerging from the two techniques, a good agreement was found between the results obtained with PTR-TOF-MS and those obtained with ATD-GC-MS for the PGMEA, toluene and xylene. Regarding TMS, a significant difference was observed ascribed to the technical performance of both instruments.

  13. Glycerolipid Profiling of Yellow Sarson Seeds Using Ultra High Performance Liquid Chromatography Coupled to Triple Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Shuning ZHENG

    2017-07-01

    Full Text Available Yellow sarson (Brassica rapa ssp. trillocularis is an important rapeseed-mustard species of Brassica rapa due to its high seed oil content. Glycerolipids and fatty acid composition affect seed germination and determine the quality of seed oil. To date, no information is available on the composition of individual glycerolipids in this species. Therefore, in this study the glycerolipid profiling of yellow sarson seeds was performed using ultra high performance liquid chromatography coupled to triple time-of-flight mass spectrometry (UPLC-Triple-TOF-MS. A fast and efficient chromatographic separation of glycerolipids was accomplished based on an UPLCTM BEH C8 column within 22 min. In ESI positive ion mode, TOF-MS scan-information dependent acquisition-product ion scan was carried out to acquire both high resolution MS and MS/MS information from one injection. According to MS/MS spectra, predominant fragmentation patterns of glycerolipids were elucidated in detail. Based on retention time, accurate mass, isotopic distribution, and fragmentation patterns, the composition of 144 glycerolipids and fatty acids were finally identified in yellow sarson seeds, including 77 triacylglycerols, 32 diacylglycerols, 18 sulfoquinovosyl-diacylglycerols, 5 monogalactosyl-diaclyglycerols, and 12 digalactosyl-diacylglycerols. Of them, the most abundant glycerolipids in yellow sarson seeds were triacylglycerols, the major storage form of seed oil in plants. In addition, diacylglycerols were found as a minor component of glycerolipids. The lowest amounts of glycerolipids detected in seeds were glycosyl-acylglycerols. The results revealed the composition and relative content of glycerolipids in yellow sarson seeds, which will provide a more comprehensive assessment of the quality of seed oil and also help to select functional cultivars with higher beneficial glycerolipids. This profiling method has the advantages of high throughput, high sensitivity and good accuracy

  14. Assessment of the plasma desorption time-of-flight mass spectrometry technique for pesticide adsorption and degradation on 'as-received' treated soil samples.

    Science.gov (United States)

    Thomas, J P; Nsouli, B; Darwish, T; Fallavier, M; Khoury, R; Wehbé, N

    2005-01-01

    The assessment of the plasma desorption time-of-flight mass spectrometry (PD-TOFMS) technique as a tool for direct characterization of pesticides adsorbed on agricultural soil is made for the first time in this study. Pellets of soils impregnated by solutions of three pesticides, namely norflurazon, malathion and oxyfluorfen, as well as deposits of these solutions onto aluminum surfaces, were investigated to this end. The yield values of the most characteristic peaks of the negative ion mass spectra were used to determine both the lowest concentrations detected on soils and limits of detection from thin films. The lowest values on soils are for malathion (1000 ppm range), and the largest for norflurazon (20,000 ppm), which is close to the limit of detection (LOD) found for the pesticide on the aluminum substrate (approximately 0.2 microg . cm(-2)). Different behaviors were observed as a function of time of storage in the ambient atmosphere or under vacuum; norflurazon adsorbed on soil exhibited high stability for a long period of time, and a rapid degradation of malathion with the elapsed time was clearly observed. The behavior of oxyfluorfen was also investigated but segregation processes seem to occur after several days. Although by far less sensitive than conventional methods based on extraction processes and used for real-world analytical applications, this technique is well suited to the study of the transformations occurring at the sample surface. A discussion is presented of the future prospects of such experiments in degradation studies. Copyright (c) 2005 John Wiley & Sons, Ltd.

  15. Time-of-flight secondary ion mass spectrometry (ToF-SIMS)-based analysis and imaging of polyethylene microplastics formation during sea surf simulation.

    Science.gov (United States)

    Jungnickel, H; Pund, R; Tentschert, J; Reichardt, P; Laux, P; Harbach, H; Luch, A

    2016-09-01

    Plastic particles smaller than 5mm, so called microplastics have the capability to accumulate in rivers, lakes and the marine environment and therefore have begun to be considered in eco-toxicology and human health risk assessment. Environmental microplastic contaminants may originate from consumer products like body wash, tooth pastes and cosmetic products, but also from degradation of plastic waste; they represent a potential but unpredictable threat to aquatic organisms and possibly also to humans. We investigated exemplarily for polyethylene (PE), the most abundant constituent of microplastic particles in the environment, whether such fragments could be produced from larger pellets (2mm×6mm). So far only few analytical methods exist to identify microplastic particles smaller than 10μm, especially no imaging mass spectrometry technique. We used at first time-of-flight secondary ion mass spectrometry (ToF-SIMS) for analysis and imaging of small PE-microplastic particles directly in the model system Ottawa sand during exposure to sea surf simulation. As a prerequisite, a method for identification of PE was established by identification of characteristic ions for PE out of an analysis of grinded polymer samples. The method was applied onto Ottawa sand in order to investigate the influence of simulated environmental conditions on particle transformation. A severe degradation of the primary PE pellet surface, associated with the transformation of larger particles into smaller ones already after 14days of sea surf simulation, was observed. Within the subsequent period of 14days to 1month of exposure the number of detected smallest-sized particles increased significantly (50%) while the second smallest fraction increased even further to 350%. Results were verified using artificially degraded PE pellets and Ottawa sand. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Efficient identification of Malassezia yeasts by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Kolecka, A; Khayhan, K; Arabatzis, M; Velegraki, A; Kostrzewa, M; Andersson, A; Scheynius, A; Cafarchia, C; Iatta, R; Montagna, M T; Youngchim, S; Cabañes, F J; Hoopman, P; Kraak, B; Groenewald, M; Boekhout, T

    2014-02-01

    Infections caused by Malassezia yeasts are most likely underdiagnosed, because fatty acid supplementation is needed for growth. Rapid identification of Malassezia species is essential for appropriate treatment of Malassezia-related skin infections, fungaemia and nosocomial outbreaks in neonates, children and adults and can be life-saving for those patients. Ma-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been reported to be a rapid and reliable diagnostic tool to identify clinically important yeasts, but so far no data have been reported on identification of Malassezia isolates with this technique. To create an extensive database of main mass spectra (MSPs) that will allow quick identification of Malassezia species by MALDI-TOF MS. An in-house library of 113 MSPs was created from 48 reference strains from the CBS-KNAW yeast collection. The in-house library was challenged with two test sets of Malassezia strains, namely 165 reference strains from the CBS collection and 338 isolates collected in Greece, Italy, Sweden and Thailand. MALDI-TOF MS allowed correct identification of all 14 Malassezia spp. MALDI-TOF MS results were concordant with those of sequence analyses of the internal transcribed spacers (ITS1/ITS2) and the D1/D2 domains of the large subunit of the ribosomal DNA. Implementation of the MALDI-TOF MS system as a routine identification tool will contribute to correct identification of Malassezia yeasts with minimal effort and in a short turnaround time, which is especially important for the rapid identification of Malassezia in skin diseases and nosocomial outbreaks. © 2013 British Association of Dermatologists.

  17. Degradation of Adenine on the Martian Surface in the Presence of Perchlorates and Ionizing Radiation: A Reflectron Time-of-flight Mass Spectrometric Study

    Energy Technology Data Exchange (ETDEWEB)

    Góbi, Sándor; Bergantini, Alexandre; Kaiser, Ralf I., E-mail: ralfk@hawaii.edu [Department of Chemistry, University of Hawaii at Mānoa, Honolulu, HI 96822 (United States)

    2017-04-01

    The aim of the present work is to unravel the radiolytic decomposition of adenine (C{sub 5}H{sub 5}N{sub 5}) under conditions relevant to the Martian surface. Being the fundamental building block of (deoxy)ribonucleic acids, the possibility of survival of this biomolecule on the Martian surface is of primary importance to the astrobiology community. Here, neat adenine and adenine–magnesium perchlorate mixtures were prepared and irradiated with energetic electrons that simulate the secondary electrons originating from the interaction of the galactic cosmic rays with the Martian surface. Perchlorates were added to the samples since they are abundant—and therefore relevant oxidizers on the surface of Mars—and they have been previously shown to facilitate the radiolysis of organics such as glycine. The degradation of the samples were monitored in situ via Fourier transformation infrared spectroscopy and the electron ionization quadruple mass spectrometric method; temperature-programmed desorption profiles were then collected by means of the state-of-the-art single photon photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS), allowing for the detection of the species subliming from the sample. The results showed that perchlorates do increase the destruction rate of adenine by opening alternative reaction channels, including the concurrent radiolysis/oxidation of the sample. This new pathway provides a plethora of different radiolysis products that were identified for the first time. These are carbon dioxide (CO{sub 2}), isocyanic acid (HNCO), isocyanate (OCN{sup −}), carbon monoxide (CO), and nitrogen monoxide (NO); an oxidation product containing carbonyl groups (R{sub 1}R{sub 2}–C=O) with a constrained five-membered cyclic structure could also be observed. Cyanamide (H{sub 2}N–C≡N) was detected in both irradiated samples as well.

  18. Determination of doping peptides via solid-phase microelution and accurate-mass quadrupole time-of-flight LC-MS.

    Science.gov (United States)

    Cuervo, Darío; Loli, Cynthia; Fernández-Álvarez, María; Muñoz, Gloria; Carreras, Daniel

    2017-10-15

    A complete analytical protocol for the determination of 25 doping-related peptidic drugs and 3 metabolites in urine was developed by means of accurate-mass quadrupole time-of-flight (Q-TOF) LC-MS analysis following solid-phase extraction (SPE) on microplates and conventional SPE pre-treatment for initial testing and confirmation, respectively. These substances included growth hormone releasing factors, gonadotropin releasing factors and anti-diuretic hormones, with molecular weights ranging from 540 to 1320Da. Optimal experimental conditions were stablished after investigation of different parameters concerning sample preparation and instrumental analysis. Weak cation exchange SPE followed by C18 HPLC chromatography and accurate mass detection provided the required sensitivity and selectivity for all the target peptides under study. 2mg SPE on 96-well microplates can be used in combination with full scan MS detection for the initial testing, thus providing a fast, cost-effective and high-throughput protocol for the processing of a large batch of samples simultaneously. On the other hand, extraction on 30mg SPE cartridges and subsequent target MS/MS determination was the protocol of choice for confirmatory purposes. The methodology was validated in terms of selectivity, recovery, matrix effect, precision, sensitivity (limit of detection, LOD), cross contamination, carryover, robustness and stability. Recoveries ranged from 6 to 70% (microplates) and 17-95% (cartridges), with LODs from 0.1 to 1ng/mL. The suitability of the method was assessed by analyzing different spiked or excreted urines containing some of the target substances. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Investigation of UHPLC/travelling-wave ion mobility/time-of-flight mass spectrometry for fast profiling of fatty acids in the high Arctic sea surface microlayer.

    Science.gov (United States)

    Rad, Farshid Mashayekhy; Leck, Caroline; Ilag, Leopold L; Nilsson, Ulrika

    2018-03-09

    Fatty acids are enriched in the ocean surface microlayer (SML) and have as a consequence been detected worldwide in sea spray aerosols. In searching for a relationship between the properties of the atmospheric aerosol and its ability to form cloud condensation nuclei and to promote cloud droplet formation over remote marine areas, the role of surface active fatty acids sourced from the SML is of interest to be investigated. Here is presented a fast method for profiling of major fatty acids in SML samples collected in the high Arctic (89 °N, 1 °W) in the summer of 2001. UHPLC/travelling-wave ion mobility spectrometry (TWIMS)/time-of-flight (TOF) mass spectrometry (MS) for profiling was evaluated and compared with UHPLC/TOFMS. No sample preparation, except evaporation and centrifugation, was necessary to perform prior to the analysis. TOFMS data on accurate mass, isotopic ratios and fragmentation patterns enabled identification of the fatty acids. The TWIMS dimension added to the selectivity by extensive reduction of the noise level and the entire UHPLC/TWIMS/TOFMS method provided a fast profiling of the acids, ranging from C 8 to C 24 . Hexadecanoic and octadecanoic acids were shown to yield the highest signals among the fatty acids detected in a high Arctic SML sample, followed by the unsaturated octadecenoic and octadecadienoic acids. The predominance of signal from even-numbered carbon chains indicates a mainly biogenic origin of the detected fatty acids. This study presents a fast alternative method for screening and profiling of fatty acids, which has the advantage of not requiring any complicated sample preparation thus limiting the loss of analytes. Almost no manual handling, together with the very small sample volumes needed, is certainly beneficial for the determination of trace amounts and should open up the field of applications to also include atmospheric aerosol and fog. This article is protected by copyright. All rights reserved.

  20. Obesity-Related Metabolomic Analysis of Human Subjects in Black Soybean Peptide Intervention Study by Ultraperformance Liquid Chromatography and Quadrupole-Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Min Jung Kim

    2013-01-01

    Full Text Available The present study aimed to identify key metabolites related to weight reduction in humans by studying the metabolic profiles of sera obtained from 34 participants who underwent dietary intervention with black soybean peptides (BSP for 12 weeks. This research is a sequel to our previous work in which the effects of BSP on BMI and blood composition of lipid were investigated. Sera of the study were subjected to ultra performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS, and the data were analyzed using partial least-squares discriminate analysis (PLS-DA score plots. Body mass index and percent body fat of the test group were reduced. Levels of betaine, benzoic acid, pyroglutamic acid, pipecolic acid, N-phenylacetamide, uric acid, l-aspartyl-l-phenylalanine, and lysophosphatidyl cholines (lysoPCs (C18:1, C18:2, C20:1, and C20:4 showed significant increases. Levels of l-proline, valine, l-leucine/isoleucine, hypoxanthine, glutamine, l-methionine, phenylpyruvic acid, several carnitine derivatives, and lysoPCs (C14:0, PC16:0, C15:0, C16:0, C17:1, C18:0, and C22:0 were significantly decreased. In particular, lysoPC 16:0 with a VIP value of 12.02 is esteemed to be the most important metabolite for evaluating the differences between the 2 serum samples. Our result confirmed weight-lowering effects of BSP, accompanied by favorable changes in metabolites in the subjects’ blood. Therefore, this research enables us to better understand obesity and increases the predictability of the obesity-related risk by studying metabolites present in the blood.

  1. Determination of nonylphenol isomers in landfill leachate and municipal wastewater using steam distillation extraction coupled with comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry.

    Science.gov (United States)

    Zhang, Caixiang; Eganhouse, Robert P; Pontolillo, James; Cozzarelli, Isabelle M; Wang, Yanxin

    2012-03-23

    4-Nonylphenols (4-NPs) are known endocrine disruptors and by-products of the microbial degradation of nonylphenol polyethoxylate surfactants. One of the challenges to understanding the toxic effects of nonylphenols is the large number of isomers that may exist in environmental samples. In order to attribute toxic effects to specific compounds, a method is needed for the separation and quantitation of individual nonylphenol isomers. The pre-concentration methods of solvent sublimation, solid-phase extraction or liquid-liquid extraction prior to chromatographic analysis can be problematic because of co-extraction of thousands of compounds typically found in complex matrices such as municipal wastewater or landfill leachate. In the present study, steam distillation extraction (SDE) was found to be an effective pre-concentration method for extraction of 4-NPs from leachate and wastewater, and comprehensive two-dimensional gas chromatography (GC×GC) coupled with fast mass spectral data acquisition by time-of-flight mass spectrometry (ToFMS) enhanced the resolution and identification of 4-NP isomers. Concentrations of eight 4-NP isomers were determined in leachate from landfill cells of different age and wastewater influent and effluent samples. 4-NP isomers were about 3 times more abundant in leachate from the younger cell than the older one, whereas concentrations in wastewater effluent were either below detection limits or <1% of influent concentrations. 4-NP isomer distribution patterns were found to have been altered following release to the environment. This is believed to reflect isomer-specific degradation and accumulation of 4-NPs in the aquatic environment. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Determination of nonylphenol isomers in landfill leachate and municipal wastewater using steam distillation extraction coupled with comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry

    Science.gov (United States)

    Zhang, Caixiang; Eganhouse, Robert P.; Pontolillo, James; Cozzarelli, Isabelle M.; Wang, Yanxin

    2012-01-01

    4-Nonylphenols (4-NPs) are known endocrine disruptors and by-products of the microbial degradation of nonylphenol polyethoxylate surfactants. One of the challenges to understanding the toxic effects of nonylphenols is the large number of isomers that may exist in environmental samples. In order to attribute toxic effects to specific compounds, a method is needed for the separation and quantitation of individual nonylphenol isomers. The pre-concentration methods of solvent sublimation, solid-phase extraction or liquid–liquid extraction prior to chromatographic analysis can be problematic because of co-extraction of thousands of compounds typically found in complex matrices such as municipal wastewater or landfill leachate. In the present study, steam distillation extraction (SDE) was found to be an effective pre-concentration method for extraction of 4-NPs from leachate and wastewater, and comprehensive two-dimensional gas chromatography (GC × GC) coupled with fast mass spectral data acquisition by time-of-flight mass spectrometry (ToFMS) enhanced the resolution and identification of 4-NP isomers. Concentrations of eight 4-NP isomers were determined in leachate from landfill cells of different age and wastewater influent and effluent samples. 4-NP isomers were about 3 times more abundant in leachate from the younger cell than the older one, whereas concentrations in wastewater effluent were either below detection limits or <1% of influent concentrations. 4-NP isomer distribution patterns were found to have been altered following release to the environment. This is believed to reflect isomer-specific degradation and accumulation of 4-NPs in the aquatic environment.

  3. Solid phase extraction in combination with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry for the detailed investigation of volatiles in South African red wines

    NARCIS (Netherlands)

    Weldegergis, B.T.; Crouch, A.M.; Górecki, T.; Villiers, de A.

    2011-01-01

    Comprehensive two-dimensional gas chromatography in combination with time-of-flight mass spectrometry (GC × GC–TOFMS) has been applied for the analysis of volatile compounds in three young South African red wines. In spite of the significant benefits offered by GC × GC–TOFMS for the separation and

  4. Improved fatty acid detection in micro-algae and aquatic meiofauna species using a direct thermal desorption interface combined with comprehensive gas chromatography-time-of-flight mass spectrometry

    NARCIS (Netherlands)

    Akoto, L.; Stellaard, F.; Irth, H.; Vreuls, R.J.J.; Pel, R.

    2008-01-01

    Comprehensive two-dimensional gas chromatography (GC × GC) with time-of-flight mass spectrometry detection is used to profile the fatty acid composition of whole/intact aquatic microorganisms such as the common fresh water green algae Scenedesmus acutus and the filamentous cyanobacterium Limnothrix

  5. Classification of wheat varieties: Use of two-dimensional gel electrophoresis for varieties that can not be classified by matrix assisted laser desorption/ionization-time of flight-mass spectrometry and an artificial neural network

    DEFF Research Database (Denmark)

    Jacobsen, Susanne; Nesic, Ljiljana; Petersen, Marianne Kjerstine

    2001-01-01

    Analyzing a gliadin extract by matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI- TOF-MS) combined with an artificial neural network (ANN) is a suitable method for identification of wheat varieties. However, the ANN can not distinguish between all different wheat...

  6. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Analysis of Gram-Positive, Catalase-Negative Cocci Not Belonging to the Streptococcus or Enterococcus Genus and Benefits of Database Extension

    DEFF Research Database (Denmark)

    Christensen, Jens Jørgen; Dargis, Rimtas; Hammer, Monja

    2012-01-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry with a Bruker Daltonics microflex LT system was applied to 90 well-characterized catalase-negative, Gram-positive cocci not belonging to the streptococci or enterococci. Biotyper version 2.0.43.1 software...

  7. Classification of wheat varieties: Use of two-dimensional gel electrophoresis for varieties that can not be classified by matrix assisted laser desorption/ionization-time of flight-mass spectrometry and an artificial neural network

    DEFF Research Database (Denmark)

    Jacobsen, Susanne; Nesic, Ljiljana; Petersen, Marianne Kjerstine

    2001-01-01

    Analyzing a gliadin extract by matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI- TOF-MS) combined with an artificial neural network (ANN) is a suitable method for identification of wheat varieties. However, the ANN can not distinguish between all different wheat...... not be separated by MALDI-TOF-MS and NN....

  8. Use of electron ionization and atmospheric pressure chemical ionization in gas chromatography coupled to time-of-flight mass spetrometry for screening and identification of organic pollutants in waters

    NARCIS (Netherlands)

    Portoles, T.; Mol, J.G.J.; Sancho, J.V.; Hernandez, F.

    2014-01-01

    A new approach has been developed for multiclass screening of organic contaminants in water based on the use of gas chromatography coupled to hybrid quadrupole high-resolution time-of-flight mass spectrometry with atmospheric pressure chemical ionization (GC–(APCI)QTOF MS). The soft ionization

  9. Preferential alkali metal adduct formation by cis geometrical isomers of dicaffeoylquinic acids allows for efficient discrimination from their trans isomers during ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry

    CSIR Research Space (South Africa)

    Makola, MM

    2016-03-01

    Full Text Available discrimination of the geometrical isomers of these molecules has proven to be an elusive task. UV-irradiated methanolic solutions of diCQA were analyzed using an ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC...

  10. Improved fatty acid detection in micro-algae and aquatic meiofauna species using a direct thermal desorption interface combined with comprehensive gas chromatography–time-of-flight mass spectrometry

    NARCIS (Netherlands)

    Akoto, L.; Stellaard, F.; Irth, H.; Vreuls, R.J.J.; Pel, R.

    2008-01-01

    Comprehensive two-dimensional gas chromatography (GC × GC) with time-of-flight mass spectrometry detection is used to profile the fatty acid composition of whole/intact aquatic microorganisms such as the common fresh water green algae Scenedesmus acutus and the filamentous cyanobacterium Limnothrix

  11. Improved fatty acid detection in micro-algae and aquatic meiofauna species using a direct thermal desorption interface combined with comprehensive gas chromatography-time-of-flight mass spectrometry

    NARCIS (Netherlands)

    Akoto, Lawrence; Stellaard, Frans; Irth, Hubertus; Vreuls, Rene J. J.; Pel, Roel

    2008-01-01

    Comprehensive two-dimensional gas chromatography (GC x GC) with time-of-flight mass spectrometry detection is used to profile the fatty acid composition of whole/intact aquatic microorganisms such as the common fresh water green algae Scenedesmus acutus and the filamentous cyanobacterium Limnothrix

  12. Atmospheric pressure gas chromatography quadrupole-time-of-flight mass spectrometry for simultaneous determination of fifteen organochlorine pesticides in soil and water.

    Science.gov (United States)

    Cheng, Zhipeng; Dong, Fengshou; Xu, Jun; Liu, Xingang; Wu, Xiaohu; Chen, Zenglong; Pan, Xinglu; Zheng, Yongquan

    2016-02-26

    In this study, the application of atmospheric pressure gas chromatography quadrupole-time-of-flight mass spectrometry (APGC-QTOF-MS) has been investigated for simultaneous determination of fifteen organochlorine pesticides in soil and water. Soft ionization of atmospheric pressure gas chromatography was evaluated by comparing with traditional more energetic electron impact ionization (EI). APGC-QTOF-MS showed a sensitivity enhancement by approximately 7-305 times. The QuEChERs (Quick, Easy, Cheap, Effective, Rugged, and Safe) method was used to pretreat the soil samples and solid phase extraction (SPE) cleanup was used for water samples. Precision, accuracy and stability experiments were undertaken to evaluate the feasibility of the method. The results showed that the mean recoveries for all the pesticides from the soil samples were 70.3-118.9% with 0.4-18.3% intra-day relative standard deviations (RSD) and 1.0-15.6% inter-day RSD at 10, 50 and 500 μg/L levels, while the mean recoveries of water samples were 70.0-118.0% with 1.1-17.8% intra-day RSD and 0.5-12.2% inter-day RSD at 0.1, 0.5 and 1.0 μg/L levels. Excellent linearity (0.9931 ≦ r(2)≤ 0.9999) was obtained for each pesticides in the soil and water matrix calibration curves within the range of 0.01-1.0mg/L. The limits of detection (LOD) for each of the 15 pesticides was less than 3.00 μg/L, while the limit of quantification (LOQ) was less than 9.99 μg/L in soil and water. Furthermore, the developed method was successfully applied to monitor the targeted pesticides in real soil and water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Comparison of two algorithmic data processing strategies for metabolic fingerprinting by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry.

    Science.gov (United States)

    Almstetter, Martin F; Appel, Inka J; Dettmer, Katja; Gruber, Michael A; Oefner, Peter J

    2011-09-28

    The alignment algorithm Statistical Compare (SC) developed by LECO Corporation for the processing of comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS) data was validated and compared to the in-house developed retention time correction and data alignment tool INCA (Integrative Normalization and Comparative Analysis) by a spike-in experiment and the comparative metabolic fingerprinting of a wild type versus a double mutant strain of Escherichia coli (E. coli). Starting with the same peak lists generated by LECO's ChromaTOF software, the accuracy of peak alignment and detection of 1.1- to 4-fold changes in metabolite concentration was assessed by spiking 20 standard compounds into an aqueous methanol extract of E. coli. To provide the same quality input signals for both alignment routines, the universal m/z 73 trace of the trimethylsilyl (TMS) group was used as a quantitative measure for all features. The performance of data processing and alignment was evaluated and illustrated by ROC curves. Statistical Compare performed marginally better at the lower fold changes, while INCA did so at the higher fold changes. Using SC, quantitative precision could be improved substantially by exploiting the signal intensities of metabolite-specific unique (U) m/z ion traces rather than the universal m/z 73 trace. A list of 56 features that distinguished the two E. coli strains was obtained by the SC alignment using m/z U with an estimated false discovery rate (FDR) of <0.05. Ultimately, 23 metabolites could be identified, one additional and five less than with INCA due to the failure of SC to extract unitized m/z U's across all fingerprints with suitable spectral intensities for the latter metabolites. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Identification of Coagulase-Negative Staphylococci from Bovine Intramammary Infection by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    Science.gov (United States)

    Gonçalves, Juliano Leonel; Barreiro, Juliana Regina; Braga, Patrícia Aparecida de Campos; Prada e Silva, Luis Felipe; Eberlin, Marcos Nogueira

    2014-01-01

    Coagulase-negative staphylococci (CoNS) are among the main pathogens causing bovine intramammary infection (IMI) in many countries. However, one of the limitations related to the specific diagnosis of CoNS is the lack of an accurate, rapid, and convenient method that can differentiate the bacterial species comprising this group. The aim of this study was to evaluate the ability of matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) to accurately identify CoNS species in dairy cow IMI. In addition, the study aimed to determine the frequency of CoNS species causing bovine IMI. A total of 108 bacterial isolates were diagnosed as CoNS by microbiological cultures from two milk samples collected from 21 dairy herds; the first sample was collected at the cow level (i.e., 1,242 composite samples from all quarters), while the second sample was collected at the mammary quarter level (i.e., 1,140 mammary samples collected from 285 cows). After CoNS isolation was confirmed by microbiological culture for both samples, all CoNS isolates (n = 108) were genotypically differentiated by PCR restriction fragment length polymorphism (RFLP) analysis of a partial groEL gene sequence and subjected to the MALDI-TOF MS identification procedure. MALDI-TOF MS correctly identified 103 (95.4%) of the CoNS isolates identified by PCR-RFLP at the species level. Eleven CoNS species isolated from bovine IMI were identified by PCR-RFLP, and the most prevalent species was Staphylococcus chromogenes (n = 80; 74.1%). In conclusion, MALDI-TOF MS may be a reliable alternative method for differentiating CoNS species causing bovine IMI. PMID:24622096

  15. Reliable and reproducible method for rapid identification of Nocardia species by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Toyokawa, Masahiro; Kimura, Keigo; Nishi, Isao; Sunada, Atsuko; Ueda, Akiko; Sakata, Tomomi; Asari, Seishi

    2013-01-01

    Recently, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been challenged for the identification of Nocardia species. However, the standard ethanol-formic acid extraction alone is insufficient in allowing the membrane proteins of Nocardia species to be ionized by the matrix. We therefore aimed to establish our new extraction method for the MALDI-TOF MS-based identification of Nocardia species isolates. Our modified extraction procedure is through dissociation in 0.5% Tween-20 followed by bacterial heat-inactivation, mechanical breaking of the cell wall by acid-washed glass beads and protein extraction with formic acid and acetonitrile. As reference methods for species identification, full-length 16S rRNA gene sequencing and some phenotypical tests were used. In a first step, we made our own Nocardia database by analyzing 13 strains (13 different species including N. elegans, N. otitidiscaviarum, N. asiatica, N. abscessus, N. brasiliensis, N. thailandica, N. farcinica, N. nova, N. mikamii, N. cyriacigeorgica, N. asteroids, Nocardiopsis alba, and Micromonospora sp.) and registered to the MALDI BioTyper database. Then we established our database. The analysis of 12 challenge strains using the our database gave a 100% correct identification, including 8 strains identified to the species level and 4 strains to the genus level (N. elegans, N. nova, N. farcinica, Micromonospora sp.) according to the manufacture's log score specifications. In the estimation of reproducibility of our method intended for 4 strains, both within-run and between-run reproducibility were excellent. These data indicates that our method for rapid identification of Nocardia species is with reliability, reproducibility and cost effective.

  16. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories.

    Science.gov (United States)

    van Veen, S Q; Claas, E C J; Kuijper, Ed J

    2010-03-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is suitable for high-throughput and rapid diagnostics at low costs and can be considered an alternative for conventional biochemical and molecular identification systems in a conventional microbiological laboratory. First, we evaluated MALDI-TOF MS using 327 clinical isolates previously cultured from patient materials and identified by conventional techniques (Vitek-II, API, and biochemical tests). Discrepancies were analyzed by molecular analysis of the 16S genes. Of 327 isolates, 95.1% were identified correctly to genus level, and 85.6% were identified to species level by MALDI-TOF MS. Second, we performed a prospective validation study, including 980 clinical isolates of bacteria and yeasts. Overall performance of MALDI-TOF MS was significantly better than conventional biochemical systems for correct species identification (92.2% and 83.1%, respectively) and produced fewer incorrect genus identifications (0.1% and 1.6%, respectively). Correct species identification by MALDI-TOF MS was observed in 97.7% of Enterobacteriaceae, 92% of nonfermentative Gram-negative bacteria, 94.3% of staphylococci, 84.8% of streptococci, 84% of a miscellaneous group (mainly Haemophilus, Actinobacillus, Cardiobacterium, Eikenella, and Kingella [HACEK]), and 85.2% of yeasts. MALDI-TOF MS had significantly better performance than conventional methods for species identification of staphylococci and genus identification of bacteria belonging to HACEK group. Misidentifications by MALDI-TOF MS were clearly associated with an absence of sufficient spectra from suitable reference strains in the MALDI-TOF MS database. We conclude that MALDI-TOF MS can be implemented easily for routine identification of bacteria (except for pneumococci and viridans streptococci) and yeasts in a medical microbiological laboratory.

  17. Rapid detection of carbapenem resistance in Acinetobacter baumannii using matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Marie Kempf

    Full Text Available Rapid detection of carbapenem-resistant Acinetobacter baumannii strains is critical and will benefit patient care by optimizing antibiotic therapies and preventing outbreaks. Herein we describe the development and successful application of a mass spectrometry profile generated by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF that utilized the imipenem antibiotic for the detection of carbapenem resistance in a large series of A. baumannii clinical isolates from France and Algeria. A total of 106 A. baumannii strains including 63 well-characterized carbapenemase-producing and 43 non-carbapenemase-producing strains, as well as 43 control strains (7 carbapenem-resistant and 36 carbapenem-sensitive strains were studied. After an incubation of bacteria with imipenem for up to 4 h, the mixture was centrifuged and the supernatant analyzed by MALDI-TOF MS. The presence and absence of peaks representing imipenem and its natural metabolite was analyzed. The result was interpreted as positive for carbapenemase production if the specific peak for imipenem at 300.0 m/z disappeared during the incubation time and if the peak of the natural metabolite at 254.0 m/z increased as measured by the area under the curves leading to a ratio between the peak for imipenem and its metabolite being <0.5. This assay, which was applied to the large series of A. baumannii clinical isolates, showed a sensitivity of 100.0% and a specificity of 100.0%. Our study is the first to demonstrate that this quick and simple assay can be used as a routine tool as a point-of-care method for the identification of A. baumannii carbapenemase-producers in an effort to prevent outbreaks and the spread of uncontrollable superbugs.

  18. Non-Halal biomarkers identification based on Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography-Time of Flight Mass Spectroscopy (GC-TOF MS) techniques

    Science.gov (United States)

    Witjaksono, Gunawan; Saputra, Irwan; Latief, Marsad; Jaswir, Irwandi; Akmeliawati, Rini; Abdelkreem Saeed Rabih, Almur

    2017-11-01

    Consumption of meat from halal (lawful) sources is essential for Muslims. The identification of non-halal meat is one of the main issues that face consumers in meat markets, especially in non-Islamic countries. Pig is one of the non-halal sources of meat, and hence pig meat and its derivatives are forbidden for Muslims to consume. Although several studies have been conducted to identify the biomarkers for nonhalal meats like pig meat, these studies are still in their infancy stages, and as a result there is no universal biomarker which could be used for clear cut identification. The purpose of this paper is to use Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography-Time of Flight Mass Spectroscopy (GC-TOF MS) techniques to study fat of pig, cow, lamb and chicken to find possible biomarkers for pig fat (lard) identification. FTIR results showed that lard and chicken fat have unique peaks at wavenumbers 1159.6 cm-1, 1743.4 cm-1, 2853.1 cm-1 and 2922.5 cm-1 compared to lamb and beef fats which did not show peaks at these wavenumbers. On the other hand, GC/MS-TOF results showed that the concentration of 1,2,3-trimethyl-Benzene, Indane, and Undecane in lard are 250, 14.5 and 1.28 times higher than their concentrations in chicken fat, respectively, and 91.4, 2.3 and 1.24 times higher than their concentrations in cow fat, respectively. These initial results clearly indicate that there is a possibility to find biomarkers for non-halal identification.

  19. Identification and characterization of Clostridium botulinum group III field strains by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Bano, Luca; Drigo, Ilenia; Tonon, Elena; Pascoletti, Simone; Puiatti, Cinzia; Anniballi, Fabrizio; Auricchio, Bruna; Lista, Florigio; Montecucco, Cesare; Agnoletti, Fabrizio

    2017-12-01

    Animal botulism is primarily due to botulinum neurotoxin (BoNT) types C, D or their chimeric variants C/D or D/C, produced by Clostridium botulinum group III, which appears to include the genetically indistinguishable Clostridium haemolyticum and Clostridium novyi. In the present study, we used matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI TOF MS) to identify and characterize 81 BoNT-producing Clostridia isolated in 47 episodes of animal botulism. The instrument's default database, containing no entries for Clostridium botulinum, permitted reliable identification of 26 strains at the genus level. Although supplementation of the database with reference strains enhanced the instrument's ability to identify the neurotoxic strains at the genus level, resolution was not sufficient to recognize field strains at species level. Characterization by MALDI TOF confirmed the well-documented phenotypic and genetic differences between Clostridium botulinum strains of serotypes normally implicated in human botulism (A, B, E, F) and other Clostridium species able to produce BoNTs type C and D. The chimeric and non-chimeric field strains grouped separately. In particular, very low similarity was found between two non-chimeric type C field strains isolated in the same outbreak and the other field strains. This difference was comparable with the differences among the various Clostridia species included in the study. Characterization by MALDI TOF confirmed that BoNT-producing Clostridia isolated from animals are closely related and indistinguishable at the species level from Clostridium haemolyticum and Clostridium novyi reference strains. On the contrary, there seem to be substantial differences among chimeric and some non-chimeric type C strains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Detection of ricin in complex samples by immunocapture and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Duriez, Elodie; Fenaille, François; Tabet, Jean-Claude; Lamourette, Patricia; Hilaire, Didier; Becher, François; Ezan, Eric

    2008-09-01

    Ricin, the toxin component of Ricinus communis is considered as a potential chemical weapon. Several complementary techniques are required to confirm its presence in environmental samples. Here, we report a method combining immunocapture and analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the accurate detection of different species of R. communis. Liquid environmental samples were applied to magnetic particles coated with a monoclonal antibody directed against the B-chain of the toxin. After acidic elution, tryptic peptides of the A- and B-chains were obtained by accelerated digestion with trypsin in the presence of acetonitrile. Of the 20 peptides observed by MALDI-TOF MS, three were chosen for detection ( m/ z 1013.6, m/ z 1310.6 and m/ z 1728.9, which correspond to peptides 161-LEQLAGNLR-169, 150-YTFAFGGNYDR-160, and 233-SAPDPSVITLENSWGR-248, respectively). Their selection was based on several parameters such as detection sensitivity, specificity toward ricin forms and absence of isotopic overlap with unrelated peptides. To increase assay reproducibility, stable isotope-labeled peptides were incorporated during the sample preparation phase. The final assay has a limit of detection estimated at approximately 50 ng/mL ( approximately 0.8 nM) of ricin in buffer. No interference was observed when the assay was applied to ricin-spiked milk samples. In addition, several varieties of R. communis or from different geographical origins were also shown to be detectable. The present assay provides a new tool with a total analytical time of approximately 5 h, which is particularly relevant in the context of a bioterrorist incident.

  1. Identification and characterization of vilazodone metabolites in rats and microsomes by ultrahigh-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry.

    Science.gov (United States)

    Chavan, Balasaheb B; Kalariya, Pradipbhai D; Tiwari, Shristy; Nimbalkar, Rakesh D; Garg, Prabha; Srinivas, R; Talluri, M V N Kumar

    2017-12-15

    Vilazodone is a selective serotonin reuptake inhibitor (SSRI) used for the treatment of major depressive disorder (MDD). An extensive literature search found few reports on the in vivo and in vitro metabolism of vilazodone. Therefore, we report a comprehensive in vivo and in vitro metabolic identification and structural characterization of vilazodone using ultrahigh-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF/MS/MS) and in silico toxicity study of the metabolites. To identify in vivo metabolites of vilazodone, blood, urine and faeces samples were collected at different time intervals starting from 0 h to 48 h after oral administration of vilazodone to Sprague-Dawley rats. The in vitro metabolism study was conducted with human liver microsomes (HLM) and rat liver microsomes (RLM). The samples were prepared using an optimized sample preparation approach involving protein precipitation followed by solid-phase extraction. The metabolites have been identified and characterized by using LC/ESI-MS/MS. A total of 12 metabolites (M1-M12) were identified in in vivo and in vitro matrices and characterized by LC/ESI-MS/MS. The majority of the metabolites were observed in urine, while a few metabolites were present in faeces and plasma. Two metabolites were observed in the in vitro study. A semi-quantitative study based on percentage counts shows that metabolites M11, M6 and M8 were observed in higher amounts in urine, faeces and plasma, respectively. The structures of all the 12 metabolites were elucidated by using LC/ESI-MS/MS. The study suggests that vilazodone was metabolized via hydroxylation, dihydroxylation, glucuronidation, oxidative deamination, dealkylation, dehydrogenation and dioxidation. All the metabolites were screened for toxicity using an in silico tool. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Tile-based Fisher-ratio software for improved feature selection analysis of comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry data.

    Science.gov (United States)

    Marney, Luke C; Siegler, W Christopher; Parsons, Brendon A; Hoggard, Jamin C; Wright, Bob W; Synovec, Robert E

    2013-10-15

    Comprehensive two-dimensional (2D) gas chromatography coupled with time-of-flight mass spectrometry (GC × GC-TOFMS) is a highly capable instrumental platform that produces complex and information-rich multi-dimensional chemical data. The data can be initially overwhelming, especially when many samples (of various sample classes) are analyzed with multiple injections for each sample. Thus, the data must be analyzed in such a way as to extract the most meaningful information. The pixel-based and peak table-based Fisher ratio algorithmic approaches have been used successfully in the past to reduce the multi-dimensional data down to those chemical compounds that are changing between the sample classes relative to those that are not changing (i.e., chemical feature selection). We report on the initial development of a computationally fast novel tile-based Fisher-ratio software that addresses the challenges due to 2D retention time misalignment without explicitly aligning the data, which is often a shortcoming for both pixel-based and peak table-based algorithmic approaches. Concurrently, the tile-based Fisher-ratio algorithm significantly improves the sensitivity contrast of true positives against a background of potential false positives and noise. In this study, eight compounds, plus one internal standard, were spiked into diesel at various concentrations. The tile-based F-ratio algorithmic approach was able to "discover" all spiked analytes, within the complex diesel sample matrix with thousands of potential false positives, in each possible concentration comparison, even at the lowest absolute spiked analyte concentration ratio of 1.06, the ratio between the concentrations in the spiked diesel sample to the native concentration in diesel. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Efficiency and rate capability studies of the time-of-flight detector for isochronous mass measurements of stored short-lived nuclei with the FRS-ESR facility

    International Nuclear Information System (INIS)

    Kuzminchuk-Feuerstein, Natalia; Fabian, Benjamin; Diwisch, Marcel; Plaß, Wolfgang R.; Geissel, Hans; Ayet San Andrés, Samuel; Dickel, Timo; Knöbel, Ronja; Scheidenberger, Christoph; Sun, Baohua; Weick, Helmut

    2016-01-01

    A time-of-flight (TOF) detector is used for Isochronous Mass Spectrometry (IMS) with the projectile fragment separator FRS and the heavy-ion storage ring ESR. Exotic nuclei are spatially separated in flight with the FRS at about 70% of the speed of light and are injected into the ESR. The revolution times of the stored ions circulating in the ESR are measured with a thin transmission foil detector. When the ions penetrate the thin detector foil, secondary electrons (SEs) are emitted from the surface and provide the timing information in combination with microchannel plate (MCP) detectors. The isochronous transport of the SEs is performed by perpendicular superimposed electric and magnetic fields. The detection efficiency and the rate capability of the TOF detector have been studied in simulations and experiments. As a result the performance of the TOF detector has been improved substantially: (i) The SE collection efficiency was doubled by use of an optimized set of electric and magnetic field values; now SEs from almost the full area of the foil are transmitted to the MCP detectors. (ii) The rate capability of the TOF detector was improved by a factor of four by the use of MCPs with 5 μm pore size. (iii) With these MCPs and a carbon foil with a reduced thickness of 10 μg/cm 2 the number of recorded revolutions in the ESR has been increased by nearly a factor of 10. The number of recorded revolutions determine the precision of the IMS experiments. Heavy-ion measurements were performed with neon ions at 322 MeV/u and uranium fission fragments at about 370 MeV/u. In addition, measurements with an alpha source were performed in the laboratory with a duplicate of the TOF detector.

  4. Rapid identification of Bacillus anthracis spores in suspicious powder samples by using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Dybwad, Marius; van der Laaken, Anton L; Blatny, Janet Martha; Paauw, Armand

    2013-09-01

    Rapid and reliable identification of Bacillus anthracis spores in suspicious powders is important to mitigate the safety risks and economic burdens associated with such incidents. The aim of this study was to develop and validate a rapid and reliable laboratory-based matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis method for identifying B. anthracis spores in suspicious powder samples. A reference library containing 22 different Bacillus sp. strains or hoax materials was constructed and coupled with a novel classification algorithm and standardized processing protocol for various powder samples. The method's limit of B. anthracis detection was determined to be 2.5 × 10(6) spores, equivalent to a 55-μg sample size of the crudest B. anthracis-containing powder discovered during the 2001 Amerithrax incidents. The end-to-end analysis method was able to successfully discriminate among samples containing B. anthracis spores, closely related Bacillus sp. spores, and commonly encountered hoax materials. No false-positive or -negative classifications of B. anthracis spores were observed, even when the analysis method was challenged with a wide range of other bacterial agents. The robustness of the method was demonstrated by analyzing samples (i) at an external facility using a different MALDI-TOF MS instrument, (ii) using an untrained operator, and (iii) using mixtures of Bacillus sp. spores and hoax materials. Taken together, the observed performance of the analysis method developed demonstrates its potential applicability as a rapid, specific, sensitive, robust, and cost-effective laboratory-based analysis tool for resolving incidents involving suspicious powders in less than 30 min.

  5. Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Identification of Molds of the Fusarium Genus

    Science.gov (United States)

    Stubbe, Dirk; De Cremer, Koen; Piérard, Denis; Normand, Anne-Cécile; Piarroux, Renaud; Detandt, Monique; Hendrickx, Marijke

    2014-01-01

    The rates of infection with Fusarium molds are increasing, and a diverse number of Fusarium spp. belonging to different species complexes can cause infection. Conventional species identification in the clinical laboratory is time-consuming and prone to errors. We therefore evaluated whether matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) is a useful alternative. The 289 Fusarium strains from the Belgian Coordinated Collections of Microorganisms (BCCM)/Institute of Hygiene and Epidemiology Mycology (IHEM) culture collection with validated sequence-based identities and comprising 40 species were used in this study. An identification strategy was developed, applying a standardized MALDI-TOF MS assay and an in-house reference spectrum database. In vitro antifungal testing was performed to assess important differences in susceptibility between clinically relevant species/species complexes. We observed that no incorrect species complex identifications were made by MALDI-TOF MS, and 82.8% of the identifications were correct to the species level. This success rate was increased to 91% by lowering the cutoff for identification. Although the identification of the correct species complex member was not always guaranteed, antifungal susceptibility testing showed that discriminating between Fusarium species complexes can be important for treatment but is not necessarily required between members of a species complex. With this perspective, some Fusarium species complexes with closely related members can be considered as a whole, increasing the success rate of correct identifications to 97%. The application of our user-friendly MALDI-TOF MS identification approach resulted in a dramatic improvement in both time and accuracy compared to identification with the conventional method. A proof of principle of our MALDI-TOF MS approach in the clinical setting using recently isolated Fusarium strains demonstrated its validity. PMID:25411180

  6. Rapid Quantification and Quantitation of Alkaloids in Xinjiang Fritillaria by Ultra Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Aziz Mohammat

    2017-05-01

    Full Text Available The Fritillaria genus, including different kinds of medicinal and edible plants belonging to the Liliaceae family which have the function of treating and relieving a cough and eliminating phlegm, is widely planted in Xinjiang (China. There are few comprehensive studies reporting on the characterization of the chemical constituents of Fritillaria from Xinjiang, and to date, no work describing the quantitative differences between the components in Fritillaria from Xinjiang and related species. The purpose of this study was to develop qualitative and quantitative analytical methods by Ultra Performance Liquid Chromatography-Quadrupole Time-of-flight Mass Spectrometry (UPLC-QTOF-MS for the rapid quantification and quantitation of alkaloids in wild and cultivated Xinjiang Fritillaria, which could be used in the quality control of medicine based on this natural herb. Using the UPLC-QTOF-MS method, the chemical constituents of Xinjiang Fritillaria were identified by fragmentation information and retention behavior, and were compared to reference standards. Furthermore, a quantitative comparision of four major alkaloids in wild and cultivated Xinjiang Fritillaria was conducted by determining the content of Sipeimine-3β-d-glucoside, Sipeimine, Peimisine, and Yibeinoside A, respectively. A total of 89 characteristic peaks, including more than 40 alkaloids, were identified in the chromatographic results of Fritillaria. Four main alkaloids were quantified by using a validated method based on UPLC-QTOF-MS. The relative contents of Sipeimine-3β-d-glucoside, Sipeimine, Peimisine, and Yibeinoside A varied from 0.0013%~0.1357%, 0.0066%~0.1218%, 0.0033%~0.0437%, and 0.0019%~0.1398%, respectively. A rough separation of wild and cultivated Fritillaria could be achieved by the cluster analysis method.

  7. Development and validation of an ultra-performance liquid chromatography quadrupole time of flight mass spectrometry method for rapid quantification of free amino acids in human urine.

    Science.gov (United States)

    Joyce, Richard; Kuziene, Viktorija; Zou, Xin; Wang, Xueting; Pullen, Frank; Loo, Ruey Leng

    2016-01-01

    An ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-qTOF-MS) method using hydrophilic interaction liquid chromatography was developed and validated for simultaneous quantification of 18 free amino acids in urine with a total acquisition time including the column re-equilibration of less than 18 min per sample. This method involves simple sample preparation steps which consisted of 15 times dilution with acetonitrile to give a final composition of 25 % aqueous and 75 % acetonitrile without the need of any derivatization. The dynamic range for our calibration curve is approximately two orders of magnitude (120-fold from the lowest calibration curve point) with good linearity (r (2) ≥ 0.995 for all amino acids). Good separation of all amino acids as well as good intra- and inter-day accuracy (amino acids in the prepared urine samples was found to be stable for 72 h at 4 °C, after one freeze thaw cycle and for up to 4 weeks at -80 °C. We have applied this method to quantify the content of 18 free amino acids in 646 urine samples from a dietary intervention study. We were able to quantify all 18 free amino acids in these urine samples, if they were present at a level above the LOD. We found our method to be reproducible (accuracy and precision were typically <10 % for QCL, QCM and QCH) and the relatively high sample throughput nature of this method potentially makes it a suitable alternative for the analysis of urine samples in clinical setting.

  8. Analysis of intensities of positive and negative ion species from silicon dioxide films using time-of-flight secondary ion mass spectrometry and electronegativity of fragments

    International Nuclear Information System (INIS)

    Chiba, Kiyoshi

    2010-01-01

    Intensities of positive and negative ion species emitted from thermally oxidized and plasma-enhanced chemical vapor deposited (PECVD) SiO 2 films were analyzed using time-of-flight secondary ion mass spectrometry (TOF-SIMS) and the Saha-Boltzmann equation. Intensities of positive and negative secondary ion species were normalized to those of 28 Si + and 28 Si - ions, respectively, and an effective temperature of approximately (7.2 ± 0.1) x 10 3 K of the sputtered region bombarded with pulsed 22 kV Au 3 + primary ions was determined. Intensity spectra showed polarity dependence on both n and m values of Si n O m fragments, and a slight shift to negative polarity for PECVD SiO 2 compared to thermally oxidized SiO 2 films. By dividing the intensity ratios of negative-to-positive ions for PECVD SiO 2 by those for thermally oxidized SiO 2 films to cancel statistical factors, the difference in absolute electronegativity (half the sum of ionization potential and electron affinity of fragments) between both films was obtained. An increase in electronegativity for SiO m (m = 1, 2) and Si 2 O m (m = 1-4) fragments for PECVD SiO 2 films compared to thermally oxidized films was obtained to be 0.1-0.2 Pauling units, indicating a more covalent nature of Si-O bonds for PECVD SiO 2 films compared to the thermally oxidized SiO 2 films.

  9. Quantification of the PR-39 cathelicidin compound in porcine blood by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Smolira, Anna; Hałas, Stanisław; Wessely-Szponder, Joanna

    2015-10-15

    The PR-39 porcine cathelicidin occurs naturally in animal neutrophils. Its main function is antimicrobial activity, which potentially can be used in antibiotic treatments in veterinary medicine. Investigations concerning such a use require the detection and quantification of PR-39 in a given sample. The aim of this work is to determine the concentration of PR-39 contained in porcine blood. Prior to matrix-assisted laser desorption/ionization (MALDI) analysis, the porcine blood sample was subjected to crude extraction in order to release the active form of PR-39 from the neutrophil granules. Next, gel filtration chromatography was performed to separate PR-39 from other cathelicidins present in porcine blood. Positive ion MALDI time-of-flight (TOF) mass spectra of the resulting portion of lyophilisate with unknown PR-39 content were acquired in linear mode. To quantify PR-39 in the lyophilisate sample, the standard addition method was applied. The PR-39 concentration obtained in the lyophilisate sample was then converted into the peptide concentration in porcine blood. The linear fit function of the constructed calibration curve indicates an excellent correlation between the PR-39 peak intensity and the added quantity of synthetic PR-39 (R(2) = 0.994) and a low relative standard deviation of the slope = 1.98%. From the x-intercept of the straight line, we estimated the PR-39 concentration in porcine blood to be 20.5 ± 4.6 ng/mL. The MALDI method was successfully applied for the quantitative analysis of PR-39 found in porcine blood. Compared with other available methods, it is relatively easy, inexpensive and not time-consuming. Despite the method having lower accuracy than the enzyme-linked immunosorbent assay (ELISA), the results obtained here, by a much simpler method, are in good agreement with the literature data. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Interaction of bovine serum albumin and lysozyme with stainless steel studied by time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy.

    Science.gov (United States)

    Hedberg, Yolanda S; Killian, Manuela S; Blomberg, Eva; Virtanen, Sannakaisa; Schmuki, Patrik; Odnevall Wallinder, Inger

    2012-11-27

    An in-depth mechanistic understanding of the interaction between stainless steel surfaces and proteins is essential from a corrosion and protein-induced metal release perspective when stainless steel is used in surgical implants and in food applications. The interaction between lysozyme (LSZ) from chicken egg white and bovine serum albumin (BSA) and AISI 316L stainless steel surfaces was studied ex situ by means of X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) after different adsorption time periods (0.5, 24, and 168 h). The effect of XPS measurements, storage (aging), sodium dodecyl sulfate (SDS), and elevated temperature (up to 200 °C) on the protein layers, as well as changes in surface oxide composition, were investigated. Both BSA and LSZ adsorption induced an enrichment of chromium in the oxide layer. BSA induced significant changes to the entire oxide, while LSZ only induced a depletion of iron at the utmost layer. SDS was not able to remove preadsorbed proteins completely, despite its high concentration and relatively long treatment time (up to 36.5 h), but induced partial denaturation of the protein coatings. High-temperature treatment (200 °C) and XPS exposure (X-ray irradiation and/or photoelectron emission) induced significant denaturation of both proteins. The heating treatment up to 200 °C removed some proteins, far from all. Amino acid fragment intensities determined from ToF-SIMS are discussed in terms of significant differences with adsorption time, between the proteins, and between freshly adsorbed and aged samples. Stainless steel-protein interactions were shown to be strong and protein-dependent. The findings assist in the understanding of previous studies of metal release and surface changes upon exposure to similar protein solutions.

  11. Automating data analysis for two-dimensional gas chromatography/time-of-flight mass spectrometry non-targeted analysis of comparative samples.

    Science.gov (United States)

    Titaley, Ivan A; Ogba, O Maduka; Chibwe, Leah; Hoh, Eunha; Cheong, Paul H-Y; Simonich, Staci L Massey

    2018-03-16

    Non-targeted analysis of environmental samples, using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC/ToF-MS), poses significant data analysis challenges due to the large number of possible analytes. Non-targeted data analysis of complex mixtures is prone to human bias and is laborious, particularly for comparative environmental samples such as contaminated soil pre- and post-bioremediation. To address this research bottleneck, we developed OCTpy, a Python™ script that acts as a data reduction filter to automate GC × GC/ToF-MS data analysis from LECO ® ChromaTOF ® software and facilitates selection of analytes of interest based on peak area comparison between comparative samples. We used data from polycyclic aromatic hydrocarbon (PAH) contaminated soil, pre- and post-bioremediation, to assess the effectiveness of OCTpy in facilitating the selection of analytes that have formed or degraded following treatment. Using datasets from the soil extracts pre- and post-bioremediation, OCTpy selected, on average, 18% of the initial suggested analytes generated by the LECO ® ChromaTOF ® software Statistical Compare feature. Based on this list, 63-100% of the candidate analytes identified by a highly trained individual were also selected by OCTpy. This process was accomplished in several minutes per sample, whereas manual data analysis took several hours per sample. OCTpy automates the analysis of complex mixtures of comparative samples, reduces the potential for human error during heavy data handling and decreases data analysis time by at least tenfold. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Rapid Quantification and Quantitation of Alkaloids in Xinjiang Fritillaria by Ultra Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry.

    Science.gov (United States)

    Mohammat, Aziz; Yili, Abulimiti; Aisa, Haji Akber

    2017-05-01

    The Fritillaria genus, including different kinds of medicinal and edible plants belonging to the Liliaceae family which have the function of treating and relieving a cough and eliminating phlegm, is widely planted in Xinjiang (China). There are few comprehensive studies reporting on the characterization of the chemical constituents of Fritillaria from Xinjiang, and to date, no work describing the quantitative differences between the components in Fritillaria from Xinjiang and related species. The purpose of this study was to develop qualitative and quantitative analytical methods by Ultra Performance Liquid Chromatography-Quadrupole Time-of-flight Mass Spectrometry (UPLC-QTOF-MS) for the rapid quantification and quantitation of alkaloids in wild and cultivated Xinjiang Fritillaria, which could be used in the quality control of medicine based on this natural herb. Using the UPLC-QTOF-MS method, the chemical constituents of Xinjiang Fritillaria were identified by fragmentation information and retention behavior, and were compared to reference standards. Furthermore, a quantitative comparision of four major alkaloids in wild and cultivated Xinjiang Fritillaria was conducted by determining the content of Sipeimine-3β-d-glucoside, Sipeimine, Peimisine, and Yibeinoside A, respectively. A total of 89 characteristic peaks, including more than 40 alkaloids, were identified in the chromatographic results of Fritillaria. Four main alkaloids were quantified by using a validated method based on UPLC-QTOF-MS. The relative contents of Sipeimine-3β-d-glucoside, Sipeimine, Peimisine, and Yibeinoside A varied from 0.0013%~0.1357%, 0.0066%~0.1218%, 0.0033%~0.0437%, and 0.0019%~0.1398%, respectively. A rough separation of wild and cultivated Fritillaria could be achieved by the cluster analysis method.

  13. The use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for rapid bacterial identification in patients with smear-positive bacterial meningitis.

    Science.gov (United States)

    Bishop, B; Geffen, Y; Plaut, A; Kassis, O; Bitterman, R; Paul, M; Neuberger, A

    2018-02-01

    To assess the potential of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in rapid identification of bacteria from smear-positive cerebrospinal fluid (CSF) in a cohort of patients with meningitis. Single-centre observational study, including adults and children with community-acquired or postneurosurgical bacterial meningitis. Meningitis was defined using established criteria. Samples of CSF that had a positive CSF Gram stain were directly examined by MALDI-TOF-MS. Identification was considered accurate when identical to the CSF culture or PCR results (species and genus level). Laboratory workers performing the MALDI-TOF-MS and interpreting its results were blinded to the direct smear results, except for the fact that it was positive. MALDI-TOF-MS results were not conveyed to clinicians. MALDI-TOF-MS was tested on 44 CSF samples; ten samples were obtained from patients with community-acquired meningitis, and 34 samples were from patients with postneurosurgical meningitis. The assay identified bacteria correctly in 17/21 of the samples with Gram-negative rods observed on the direct smear, all obtained from patients who had undergone neurosurgery, (sensitivity 81%, 95% CI 64.2%-97.7%). In the postneurosurgical group, Gram-positive cocci were identified correctly in only 1/11 (9.1%) of the samples, and Candida species were not identified in two samples. Among patients with community-acquired meningitis, the assay did not identify Streptococcus pneumoniae in eight of eight samples, Neisseria meningitidis in one sample (1/1), and Streptococcus agalactiae in one sample (1/1). We found MALDI-TOF-MS to be useful in the rapid identification of Gram-negative rods directly from smear-positive CSF samples, but not of Gram-positive bacteria. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  14. The accumulation pattern of ferruginol in the heartwood-forming Cryptomeria japonica xylem as determined by time-of-flight secondary ion mass spectrometry and quantity analysis

    Science.gov (United States)

    Kuroda, Katsushi; Fujiwara, Takeshi; Hashida, Koh; Imai, Takanori; Kushi, Masayoshi; Saito, Kaori; Fukushima, Kazuhiko

    2014-01-01

    Background and Aims Heartwood formation is a unique phenomenon of tree species. Although the accumulation of heartwood substances is a well-known feature of the process, the accumulation mechanism remains unclear. The aim of this study was to determine the accumulation process of ferruginol, a predominant heartwood substance of Cryptomeria japonica, in heartwood-forming xylem. Methods The radial accumulation pattern of ferruginol was examined from sapwood and through the intermediate wood to the heartwood by direct mapping using time-of-flight secondary ion mass spectrometry (TOF-SIMS). The data were compared with quantitative results obtained from a novel method of gas chromatography analysis using laser microdissection sampling and with water distribution obtained from cryo-scanning electron microscopy. Key Results Ferruginol initially accumulated in the middle of the intermediate wood, in the earlywood near the annual ring boundary. It accumulated throughout the entire earlywood in the inner intermediate wood, and in both the earlywood and the latewood in the heartwood. The process of ferruginol accumulation continued for more than eight annual rings. Ferruginol concentration peaked at the border between the intermediate wood and heartwood, while the concentration was less in the latewood compared wiht the earlywood in each annual ring. Ferruginol tended to accumulate around the ray parenchyma cells. In addition, at the border between the intermediate wood and heartwood, the accumulation was higher in areas without water than in areas with water. Conclusions TOF-SIMS clearly revealed ferruginol distribution at the cellular level. Ferruginol accumulation begins in the middle of intermediate wood, initially in the earlywood near the annual ring boundary, then throughout the entire earlywood, and finally across to the whole annual ring in the heartwood. The heterogeneous timing of ferruginol accumulation could be related to the distribution of ray parenchyma cells

  15. Comparison of a jet separator and an open splitter as an interface between a multi-capillary gas chromatographic column and a time-of-flight mass spectrometer

    Science.gov (United States)

    Pongpun; Mlynski; Crisp; Guilhaus

    2000-09-01

    A gas chromatographic/time-of-flight mass spectrometric (GC/TOFMS) interface is being developed for fast on-line analysis utilizing multi-capillary column technology. A variable gap-distance jet separator has been constructed and its performance compared with that of a commercially supplied post-column open splitter recommended for use between the multi-capillary column and a mass spectrometer. Both interfaces were found to be compatible with the GC/TOFMS system at high carrier gas flow-rates, facilitating high-speed and high-resolution separations. The systems were investigated and tested with a mixture of volatile organic compounds (VOCs) with molecular masses from 85 to 166: dichloromethane, toluene, m-dichlorobenzene, o-dichlorobenzene and tetrachloroethylene. The optimum tip-to-tip gap distance corresponding to the highest efficiency of the jet separator was found to be 0.030 mm for each compound at carrier gas flow-rates of 20, 40 and 60 ml min(-1) giving, in the ion source housing, ion gauge pressure readings of 1.6 x 10(-6), 5.0 x 10(-6) and 5.8 x 10(-6) mbar, respectively. The efficiency of the jet separator (10-30% yields) was significantly higher than that of the open splitter (6-9% yields). The observation that the open splitter did not provide a constant flow-rate to the ion source was not in agreement with the manufacturer's specifications. A method for measuring the gas flow-rates in all parts of the equipment is described. The correlation between yield in the jet separator and molecular mass for the heterogeneous set of compounds studied was found to be less linear than usually reported for homologous series of compounds in jet separator studies. The result suggests that the pressure conditions in the jet may be sufficient for the separation process to be partly controlled by diffusion rather than predominately by effusion. Copyright 2000 John Wiley & Sons, Ltd.

  16. Selective reduction of C=C double bonds in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of microcystins.

    Science.gov (United States)

    Deleuze, Christelle; De Pauw, Edwin; Quinton, Loic

    2010-01-01

    Cyanobacteria are photosynthetic bacteria encountered in various aquatic environments. Some of them are able to produce powerful toxins called cyanotoxins. Among cyanotoxins, microcystins (MCs) constitute a group of closely related cyclic heptapeptides. Their sequences are made up of classical amino acids as well as post- translational modified ones. Interestingly, in vivo metabolism of microcystins seems to be greatly dependent on various minor structural differences and particularly those of the seventh amino acid, which can be either dehydroalanine (or a derivative), dehydroaminobutyric acid (or a derivative), serine or alanine. As a consequence, microcystins have been classified on the basis of the nature of this singular amino acid. A major difficulty in the classification of such toxins is that some of them share the same molecular masses and the same molecular formulas. Consequently, a simple mass measurement is not sufficient to determine the structure and the class of a toxin of interest. Heavy and expensive techniques are used to classify them, such as multi-dimensional nuclear magnetic resonance and amino acid analysis. In this work, a new matrix-assisted laser desorption/ionization time-of-flight method leading to an easy classification of MCs is proposed. The methodology relies on the reductive properties of the matrix 1,5-diaminonaphtalene (1,5-DAN) which appears to be able to selectively reduce the double carbon-carbon bond belonging to the seventh amino acid. Moreover, the yield of reduction seems to be influenced by the degree of substitution of this double bond, allowing a discrimination between dehydroalanine and dehydroaminobutyric acid. This selective reduction was confirmed by the study of three synthetic peptides by mass spectrometry and tandem mass spectrometry. According to these results, the use of reductive matrices seems to be promising in the study of microcystins and in their classification. More generally, 1,5-DAN allows the selective

  17. Development of a Robust, High Current, Low Power Field Emission Electron Gun for a Spaceflight Reflectron Time-of-Flight Mass Spectrometer

    Science.gov (United States)

    Southard, Adrian E.; Getty, Stephanie A.; Feng, Steven; Glavin, Daniel P.; Auciello, Orlando; Sumant, Anirudha

    2012-01-01

    Carbon materials, including carbon nanotubes (CNTs) and nitrogen-incorporated ultrananocrystalline diamond (N-UNCD), have been of considerable interest for field emission applications for over a decade. In particular, robust field emission materials are compelling for space applications due to the low power consumption and potential for miniaturization. A reflectron time-of-flight mass spectrometer (TOF-MS) under development for in situ measurements on the Moon and other Solar System bodies uses a field emitter to generate ions from gaseous samples, using electron ionization. For these unusual environments, robustness, reliability, and long life are of paramount importance, and to this end, we have explored the field emission properties and lifetime of carbon nanotubes and nitrogen-incorporated ultrananocrystalline diamond (N-UNCD) thin films, the latter developed and patented by Argonne National Laboratory. We will present recent investigations of N-UNCD as a robust field emitter, revealing that this material offers stable performance in high vacuum for up to 1000 hours with threshold voltage for emission of about 3-4 V/lJm and current densities in the range of tens of microA. Optimizing the mass resolution and sensitivity of such a mass spectrometer has also been enabled by a parallel effort to scale up a CNT emitter to an array measuring 2 mm x 40 mm. Through simulation and experiment of the new extended format emitter, we have determined that focusing the electron beam is limited due to the angular spread of the emitted electrons. This dispersion effect can be reduced through modification of the electron gun geometry, but this reduces the current reaching the ionization region. By increasing the transmission efficiency of the electron beam to the anode, we have increased the anode current by two orders of magnitude to realize a corresponding enhancement in instrument sensitivity, at a moderate cost to mass resolution. We will report recent experimental and

  18. Analysis of 44 drugs of abuse and metabolites in wastewater and river water using a hybrid quadrupole time-of-flight tandem mass spectrometry

    Science.gov (United States)

    Andres-Costa, M. Jesus; Andreu, Vicente; Picó, Yolanda

    2016-04-01

    The presence of drugs of abuse in the aquatic environment has been recognized as an important issue for the ecosystem due their possible negative effect on it (Richardson, 2011). Incomplete removal of these substances during wastewater treatment could be one of the causes of their release in the environment (Zuccato and Castiglioni, 2009). Pollution by illicit drug residues at very low concentrations is generalized in populated areas, with potential risks for human health and the environment (Zuccato, 2008; Castiglioni et al 2007).The aim of this study was to screen and quantify 44 drugs of abuse and metabolites of wastewater samples using a hybrid quadrupole time-of-flight tandem mass spectrometry and furthermore carry out a post-target screening to identify additional compounds present in the water samples. Wastewater samples were collected from the influent and effluent of three wastewater treatment plants (WWTPs) in Valencia and river water samples form Turia River Basin. Illicit drugs were extracted by solid-phase extraction (SPE). The chromatography was performed with an Agilent 1260 Infinity ultra high performance liquid chromatography (UHPLC). The UHPLC system was coupled to a hybrid quadrupole time-of-flight ABSciex Triple TOFTM 5600. All analytes were analyzed in positive mode. Acquiring full scan MS data was employed for quantification of drugs of abuse, and automatic data dependent information product ion spectra (IDA-MS/MS) was checked for identifying emerging illicit drugs and other compounds in water samples. The use of a database containing 1212 compounds achieved high confidence results for a wide number of contaminants. In the present study, the presence of compounds that belong to amphetamines group (amphetamine, methamphetamine, ephedrine, MDMA, MDA and MDEA), tryptamines (bufotenine), pirrolidinophenone group (α-PVP and 4'-MePHP), arylcyclohexylamines (ketamine), cocainics (cocaine, benzoylecgonine, cocaethylene and ecgonine methyl ester) and

  19. Simultaneous analysis of polychlorinated biphenyls and polychlorinated naphthalenes by isotope dilution comprehensive two-dimensional gas chromatography high-resolution time-of-flight mass spectrometry.

    Science.gov (United States)

    Xia, Dan; Gao, Lirong; Zheng, Minghui; Wang, Shasha; Liu, Guorui

    2016-09-21

    Polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) are listed as persistent organic pollutants (POPs) under the Stockholm Convention. Because they have similar physical and chemical properties, they are coeluted and are usually analyzed separately by different gas chromatography high-resolution mass spectrometry (GC-HRMS) methods. In this study, a novel method was developed for simultaneous analysis of six indicator PCBs, 12 dioxin-like PCBs, and 16 PCNs using isotope dilution comprehensive two-dimensional gas chromatography with high-resolution time-of-flight mass spectrometry (GC × GC-HRTOF-MS). The method parameters, including the type of GC column, oven temperature program, and modulation period, were systematically optimized. Complete separation of all target analytes and the matrix was achieved with a DB-XLB column in the first dimension and a BPX-70 column in the second dimension. The isotope dilution method was used for quantification of the PCBs and PCNs by GC × GC-HRTOF-MS. The method showed good linearity from 5 to 500 pg μL(-1) for all the target compounds. The instrumental limit of detection ranged from 0.03 to 0.3 pg μL(-1) for the 18 PCB congeners and from 0.09 to 0.6 pg μL(-1) for the 16 PCN congeners. Repeatability for triplicate injections was always lower than 20%. The method was successfully applied to the determination of 18 PCBs present at 0.9-2054 pg g(-1) and 16 PCNs present at 0.2-15.7 pg g(-1) in three species of fish. The GC × GC-HRTOF-MS results agreed with those obtained by GC-HRMS. The GC × GC-HRTOF-MS method proved to be a sensitive and accurate technique for simultaneous analysis of the selected PCBs and PCNs. With the excellent chromatographic separation offered by GC × GC and accurate mass measurements offered by HRTOF-MS, this method allowed identification of non-target contaminants in the fish samples, including organochlorine pesticides and polycyclic aromatic hydrocarbons

  20. Headspace solid-phase microextraction-gas chromatographic-time-of-flight mass spectrometric methodology for geographical origin verification of coffee

    International Nuclear Information System (INIS)

    Risticevic, Sanja; Carasek, Eduardo; Pawliszyn, Janusz

    2008-01-01

    Increasing consumer awareness of food safety issues requires the development of highly sophisticated techniques for the authentication of food commodities. The food products targeted for falsification are either products of high commercial value or those produced in large quantities. For this reason, the present investigation is directed towards the characterization of coffee samples according to the geographical origin. The conducted research involves the development of a rapid headspace solid-phase microextraction (HS-SPME)-gas chromatography-time-of-flight mass spectrometry (GC-TOFMS) method that is utilized for the verification of geographical origin traceability of coffee samples. As opposed to the utilization of traditional univariate optimization methods, the current study employs the application of multivariate experimental designs to the optimization of extraction-influencing parameters. Hence, the two-level full factorial first-order design aided in the identification of two influential variables: extraction time and sample temperature. The optimum set of conditions for the two variables was 12 min and 55 deg. C, respectively, as directed by utilization of Doehlert matrix and response surface methodology. The high-throughput automated SPME procedure was completed by implementing a single divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) 50/30 μm metal fiber with excellent durability properties ensuring the completion of overall sequence of coffee samples. The utilization of high-speed TOFMS instrument ensured the completion of one GC-MS run of a complex coffee sample in 7.9 min and the complete list of benefits provided by ChromaTOF software including fully automated background subtraction, baseline correction, peak find and mass spectral deconvolution algorithms was exploited during the data evaluation procedure. The combination of the retention index (RI) system using C 8 -C 40 alkanes and the mass spectral library search was utilized for the

  1. Validation of a qualitative screening method for pesticides in fruits and vegetables by gas chromatography quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization

    Energy Technology Data Exchange (ETDEWEB)

    Portolés, T. [Research Institute for Pesticides and Water, University Jaume I, 12071 Castellón (Spain); RIKILT Institute of Food Safety, Wageningen University and Research Centre, Akkermaalsbos 2, 6708 WB Wageningen (Netherlands); Mol, J.G.J. [RIKILT Institute of Food Safety, Wageningen University and Research Centre, Akkermaalsbos 2, 6708 WB Wageningen (Netherlands); Sancho, J.V.; López, Francisco J. [Research Institute for Pesticides and Water, University Jaume I, 12071 Castellón (Spain); Hernández, F., E-mail: hernandf@uji.es [Research Institute for Pesticides and Water, University Jaume I, 12071 Castellón (Spain)

    2014-08-01

    Highlights: • Applicability of GC-(APCI)QTOF MS as new tool for wide-scope screening of pesticides in fruits and vegetables demonstrated. • Validation of screening method according to SANCO/12571/2013. • Detection of the pesticides based on the presence of M+·/MH+ in most cases. • Screening detection limit 0.01 mg kg{sup −1} for 77% of the pesticides investigated. • Successful identification at 0.01 mg kg{sup −1} for 70% of the pesticides/matrix combinations. - Abstract: A wide-scope screening method was developed for the detection of pesticides in fruit and vegetables. The method was based on gas chromatography coupled to a hybrid quadrupole time-of-flight mass spectrometer with an atmospheric pressure chemical ionization source (GC-(APCI)QTOF MS). A non-target acquisition was performed through two alternating scan events: one at low collision energy and another at a higher collision energy ramp (MS{sup E}). In this way, both protonated molecule and/or molecular ion together with fragment ions were obtained in a single run. Validation was performed according to SANCO/12571/2013 by analysing 20 samples (10 different commodities in duplicate), fortified with a test set of 132 pesticides at 0.01, 0.05 and 0.20 mg kg{sup −1}. For screening, the detection was based on one diagnostic ion (in most cases the protonated molecule). Overall, at the 0.01 mg kg{sup −1} level, 89% of the 2620 fortifications made were detected. The screening detection limit for individual pesticides was 0.01 mg kg{sup −1} for 77% of the pesticides investigated. The possibilities for identification according to the SANCO criteria, requiring two ions with a mass accuracy ≤±5 ppm and an ion-ratio deviation ≤±30%, were investigated. At the 0.01 mg kg{sup −1} level, identification was possible for 70% of the pesticides detected during screening. This increased to 87% and 93% at the 0.05 and 0.20 mg kg{sup −1} level, respectively. Insufficient sensitivity for the second

  2. Design and performance of a matrix-assisted laser desorption time-of-flight mass spectrometer utilizing a pulsed nitrogen laser

    International Nuclear Information System (INIS)

    Brown, R.S.; Gilfrich, N.L.

    1991-01-01

    The design considerations and experimental performance of a linear time-of-flight mass spectrometer are reported for performing matrix-assisted laser desorption studies. A simple pulsed gas-discharge nitrogen laser (337.1 nm) is successfully used in contrast to the more widely used frequency-quadrupled (266 nm) or frequency-tripled (355 nm) Nd:YAG solid-state laser. Optical considerations in utilizing the pulsed nitrogen laser are discussed and a simple optical arrangement is described which allows for suitable imaging of the poor spatial beam profile of the pulsed nitrogen laser. Laser spot sizes of 150x450 μm are obtainable. As with the frequency-tripled Nd:YAG laser, sinapic acid is found to be the most useful matrix for producing protonated molecular species from proteins. Appropriate laser power levels are determined, as matrix/sample levels. Adequate response for most small to medium molecular weight proteins is obtained for less than 1 pmol of sample. A simple einsel lens incorporated into the ion source does not appear to provide any significant focusing on the laser-desorbed ions; however, a constant d.c. voltage applied to beam stirring plates enhances the ion signal significantly. Selective, pulsed deflection of the low-mass ions produced from the matrix is also utilized to prevent excessive saturation of the microchannel plate ion detector. High source potentials are found to provide improved resolution and sensitivity in comparison with lower source potentials combined with post-acceleration at the detector. Representative mass spectra of several proteins and peptides are presented. Increased formation of photoinduced adduct ions are observed in comparison with that reported for matrix-assisted laser desorption experiments utilizing a Nd:YAG laser and significant amounts of dimer and trimer ions are produced. Significantly more peak broadening than would normally be expected is observed above 20000 u. This may be due to the post-acceleration design of

  3. Structural elucidation of biologically active neomycin N-octyl derivatives in a regioisomeric mixture by means of liquid chromatography/ion trap time-of-flight mass spectrometry

    NARCIS (Netherlands)

    Giera, M.; de Vlieger, J.S.B.; Lingeman, H.; Irth, H.; Niessen, W.M.A.

    2010-01-01

    Structural elucidation of six regioisomers of mono-N-octyl derivatized neomycin is achieved using MSn (up to n1/4 4) on an ion trap time-of-flight (IT-TOF) instrument equipped with electrospray ionization. The mixture of six derivatized neomycin analogues was generated by reductive amination in a

  4. Characterization of the sources and processes of organic and inorganic aerosols in New York city with a high-resolution time-of-flight aerosol mass apectrometer

    Directory of Open Access Journals (Sweden)

    Y.-L. Sun

    2011-02-01

    Full Text Available Submicron aerosol particles (PM1 were measured in-situ using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer during the summer 2009 Field Intensive Study at Queens College in New York, NY. Organic aerosol (OA and sulfate are the two dominant species, accounting for 54% and 24%, respectively, of the total PM1 mass. The average mass-based size distribution of OA presents a small mode peaking at ~150 nm (Dva and an accumulation mode (~550 nm that is internally mixed with sulfate, nitrate, and ammonium. The diurnal cycles of both sulfate and OA peak between 01:00–02:00 p.m. EST due to photochemical production. The average (±σ oxygen-to-carbon (O/C, hydrogen-to-carbon (H/C, and nitrogen-to-carbon (N/C ratios of OA in NYC are 0.36 (±0.09, 1.49 (±0.08, and 0.012 (±0.005, respectively, corresponding to an average organic mass-to-carbon (OM/OC ratio of 1.62 (±0.11. Positive matrix factorization (PMF of the high resolution mass spectra identified two primary OA (POA sources, traffic and cooking, and three secondary OA (SOA components including a highly oxidized, regional low-volatility oxygenated OA (LV-OOA; O/C = 0.63, a less oxidized, semi-volatile SV-OOA (O/C = 0.38 and a unique nitrogen-enriched OA (NOA; N/C = 0.053 characterized with prominent CxH2x + 2N+ peaks likely from amino compounds. Our results indicate that cooking and traffic are two distinct and mass-equivalent POA sources in NYC, together contributing ~30% of the total OA mass during this study. The OA composition is dominated by secondary species, especially during high PM events. SV-OOA and LV-OOA on average account for 34% and 30%, respectively, of the total OA mass. The chemical evolution of SOA in NYC appears to progress with a continuous oxidation from SV-OOA to LV-OOA, which is further supported by a gradual increase of O/C ratio and a simultaneous decrease of H/C ratio in total OOA. Detailed

  5. Direct detection of carbapenemase-associated proteins of Acinetobacter baumannii using nanodiamonds coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Chang, Kai-Chih; Chung, Chin-Yi; Yeh, Chen-Hsing; Hsu, Kuo-Hsiu; Chin, Ya-Ching; Huang, Sin-Siang; Liu, Bo-Rong; Chen, Hsi-An; Hu, Anren; Soo, Po-Chi; Peng, Wen-Ping

    2018-04-01

    The appearance and spread of carbapenem-resistant Acinetobacter baumannii (CRAB) pose a challenge for optimization of antibiotic therapies and outbreak preventions. The carbapenemase production can be detected through culture-based methods (e.g. Modified Hodge Test-MHT) and DNA based methods (e.g. Polymerase Chain Reaction-PCR). The culture-based methods are time-consuming, whereas those of PCR assays need only a few hours but due to its specificity, can only detect known genetic targets encoding carbapenem-resistance genes. Therefore, new approaches to detect carbapenemase-producing A. baumannii are of great importance. Here, we have developed a rapid and novel method using detonation nanodiamonds (DNDs) as a platform for concentration and extraction of A. baumannii carbapenemase-associated proteins prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF-MS) analysis. To concentrate and extract the A. baumannii carbapenemase-associated proteins, we tested several protein precipitation conditions and found a 0.5% trifluoroacetic acid (TFA) solution within the bacterial suspension could result in strong ion signals with DNDs. A total of 66 A. baumannii clinical-isolates including 51 carbapenem-resistant strains and 15 carbapenem-susceptible strains were tested. Our result showed that among the 51 carbapenem-resistant strains 49 strains had a signal at m/z ~40,279 (±87); among the 15 carbapenem-susceptible strains, 4 strains showed a signal at m/z ~40,279. With on-diamond digestion, we confirmed that the captured protein at m/z ~40,279 was related to ADC family extended-spectrum class C beta-lactamase, from A. baumannii. Using this ADC family protein as a biomarker (m/z ~ 40,279) for carbapenem susceptibility testing of A. baumannii, the sensitivity and the specificity could reach 96% and 73% as compared to traditional imipenem susceptibility testing (MIC results). However, the sensitivity and specificity of this method

  6. Teaching Microbial Identification with Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS and Bioinformatics Tools

    Directory of Open Access Journals (Sweden)

    Wenfa Ng

    2013-01-01

    Full Text Available Ever since the first observation of “animalcules” under a microscope, and the subsequent discovery of microorganisms of myriad size, shape, pigmentation and motility modes, classification in aid of microbial identification is key to understanding inter-relationships between diverse microbes. Combining universal applicability with robustness, 16S rRNA sequencing is the gold standard for microbial typing; however, recent developments in clinical diagnostics have called attention to a shift towards PCR-independent instrumentation and methods given PCR’s requirement for expensive and complex sample preparation. Using ribosomal proteins as biomarkers for evolutionary relatedness, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS - originally developed for the soft ionization of proteins and peptides in proteomics studies - has been successfully applied to identifying bacteria, archaea, fungi and viruses to the species, and, on occasions, sub-species level. Though experimentally proven and increasingly adopted in the clinic, the relatively low-cost (on a per sample basis and rapid MALDI-TOF MS microbial identification technique, along with its theoretical principles and methodology, is a conspicuous absentee in contemporary microbiology curricula. Motivated by a desire to close the curriculum gap, this article describes a discovery-based activity for teaching microbial identification - using MALDI-TOF MS in combination with open-source genomics and proteomics search tools – while providing tips on mass spectra interpretation and activity implementation for lowering the barrier for classroom adoption. Infused with inquiry-based learning concepts guiding students in identifying microbes from environmental water samples with unknown species diversity, the activity spurs students’ learning by igniting their spirit of inquiry, which leads to better mastery of concepts; a significant departure from

  7. Matrix-assisted laser desorption-ionization-time-of-flight mass spectrometry as a reliable proteomic method for characterization of Escherichia coli and Salmonella isolates.

    Science.gov (United States)

    Shell, Waleed S; Sayed, Mahmoud Lotfy; Allah, Fatma Mohamed Gad; Gamal, Fatma Elzahraa Mohamed; Khder, Afaf Ahmed; Samy, A A; Ali, Abdel Hakam M

    2017-09-01

    Identification of pathogenic clinical bacterial isolates is mainly dependent on phenotypic and genotypic characteristics of the microorganisms. These conventional methods are costive, time-consuming, and need special skills and training. An alternative, mass spectral (proteomics) analysis method for identification of clinical bacterial isolates has been recognized as a rapid, reliable, and economical method for identification. This study was aimed to evaluate and compare the performance, sensitivity and reliability of traditional bacteriology, phenotypic methods and matrix-assisted laser desorption-ionization-time-of-flight mass spectrometry (MALDI-TOF MS) in the identification of clinical Escherichia coli and Salmonella isolates recovered from chickens. A total of 110 samples (cloacal, liver, spleen, and/or gall bladder) were collected from apparently healthy and diseased chickens showing clinical signs as white chalky diarrhea, pasty vent, and decrease egg production as well as freshly dead chickens which showing postmortem lesions as enlarged liver with congestion and enlarged gall bladder from different poultry farms. Depending on colonial characteristics and morphological characteristics, E. coli and Salmonella isolates were recovered and detected in only 42 and 35 samples, respectively. Biochemical identification using API 20E identification system revealed that the suspected E. coli isolates were 33 out of 42 of colonial and morphological identified E. coli isolates where Salmonella isolates were represented by 26 out of 35 of colonial and morphological identified Salmonella isolates. Serological identification of isolates revealed that the most predominant E. coli serotypes were O1 and O78 while the most predominant Salmonella serotype of Salmonella was Salmonella Pullorum. All E. coli and Salmonella isolates were examined using MALDI-TOF MS. In agreement with traditional identification, MADI-TOF MS identified all clinical bacterial samples with valid

  8. Laser ablation particle beam glow discharge time of flight mass spectrometry for the analysis of halogenated polymers and inorganic solid material

    Science.gov (United States)

    Fliegel, Daniel; Günther, Detlef

    2009-05-01

    A laser ablation particle beam pulsed glow discharge mass spectrometer (LA-PB-GD-TOFMS) was designed and used for fundamental studies. The instrument consists of a three stage aerodynamic lens system, a hollow cathode pulsed glow discharge and a time-of-flight mass spectrometer. The particle beam interface was constructed to provide an efficient particle transfer into the hollow cathode. Calculations showed that particles between 1 and 3000 nm in diameter are able to pass through this interface. Glass and metal (SRM NIST610 and CRM JK37) ablated by laser ablation and introduced into a pulsed, He glow discharge showed no ionization, even for major elements such as 27Al +, 28Si +, 23Na + or 56Fe +. This can be explained by the low gas temperature of a pulsed glow discharge which is not sufficient to vaporize particles with high melting and vaporization points. In contrast, ablated particles of soft materials such as PTFE or PVC polymers were vaporized and ionized in a pulsed glow discharge. Ion signals for elements such as carbon ( 12C +), hydrogen ( 1H 3+), fluorine ( 19F +) and chlorine ( 35/37Cl +) were detected when generating an aerosol by laser ablation and introduced into the hollow cathode. Furthermore, various fragments such as 12C x1H v19F y+ and 12C x1H v35/37Cl y+ were identified and provide a "fingerprint" of the ablated polymer. The influence of the laser fluence and glow discharge voltage was investigated with respect to the ratio of fragments to elemental ion signals. The decrease in laser energy leads to an increase of the 12C +/ 12C 19F x+ ratio. Lowering the glow discharge plasma power favors the appearance of fragments such as 12C 19F x+ whereas higher plasma power favors the ion signals of the elements, such as 12C + and 19F +. A set of experiments comparing different PVC polymers with increasing PVC content was evaluated with respect to the 12C +/ 35Cl + ratio. A correlation between the ratio and the concentration of the PVC in the sample was

  9. High throughput analysis of cerebrosides from the sea cucumber Pearsonothria graeffei by liquid chromatography-quadrupole-time-of-flight mass spectrometry.

    Science.gov (United States)

    Jia, Zicai; Li, Shiyan; Cong, Peixu; Wang, Yuming; Sugawara, Tatsuya; Xue, Changhu; Xu, Jie

    2015-01-01

    Liquid chromatography-mass spectrometry was one of the most powerful methods for identification and detection of chemical structures of lipids. In this study, the cerebrosides molecular species from the sea cucumber Pearsonothria graeffei (P. graeffei) were high throughput identified by liquid chromatography-quadrupole-time-of-flight mass spectrometry (LC-Q-TOF-MS). Cerebrosides were separated and purified by solid-phase extraction with chloroform-methanol solution. Precursor ion scan spectra and product ion scan spectra were obtained through auto MS/MS analysis in the positive scan. Cerebroside molecules were selected according to the neutral loss fragments of 180 Da, and then the structures were identified according to pairs of specific products of sphingoid bases and their precursor ions. Eighty-nine cerebrosides molecular species were identified, large amounts of d17:1-C22:0 h, t17:0-C24:1h, d17:1-C24:1h, d17:1-C23:0 h, d17:1-C22:0 and d17:1-C23:0 were present which have hardly found in mammal. There were 13 classes of long-chain base (LCB), and the ratio of phytosphingosines and sphingosines was roughly 1:9, in which two of the most common LCBs were d17:1 and d18:1. The carbon numbers of fatty acids (FAs) were mainly 18~24, while 24 carbon fatty acids were predominant. The ratio of saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA) was about 2:3, and the percentage of hydroxy fatty acid (HFA) was over 60%. The ratio of non-hydroxylated fatty acid (NFA)/HFA was also approximately 2:3. LC-Q-TOF-MS analysis should be useful for the structure determination of diverse cerebrosides molecular species. Meanwhile, this method provided a basis for structure-activity relationship studies and functional food development of the sea cucumber P. graeffei as well.

  10. Metabolite discovery of helicidum in rat urine with XCMS based on the data of ultra performance liquid chromatography coupled to time-of-flight mass spectrometry.

    Science.gov (United States)

    Liu, Qingfei; Shi, Yun; Guo, Tuo; Wang, Yong; Cong, Wenjuan; Zhu, Jingjie

    2012-10-15

    The present study demonstrates the use of XCMS (various forms (X) of chromatography coupled to mass spectrometry), an open-source software tool primarily used in bioinformatics, on the data of ultra-performance liquid chromatography connected online with a mass spectrometer (UPLC/MS) for the discovery of the metabolites of helicidum in urine after oral single dosage to rats. Helicidum (formaldehydephenyl-O-β-D-pyranosyl alloside) is the major active component of the fruits of Helicid hilagirica Beed. In China, it is often used in the clinic to treat neurasthenic syndromes, vascular headache, and trigeminal neuralgia with high efficacy and low side effect and toxicity. The urine samples of five rats were collected during 0-4, 4-8, 8-12, 12-16, 16-20, 20-24, 24-32, 32-40, and 40-48 h, respectively, after oral administration of helicidum at a dosage of 25.0 mg/kg. A UPLC coupled to time-of-flight MS (UPLC/TOF MS) was used to analyze the samples. Concerning XCMS, the ".raw" format files were preliminarily converted to the open mzXML format using massWolf-4.3.1 (http://sourceforge.net/projects/sashimi/files/massWolf%20(MassLynx%20converter)/). For converting lots of files a time, we wrote a tool rawTomzXML which also uses massWolf-4.3.1. The data were processed using XCMS version l.26.0 (http://www.bioconductor.org/packages/2.8/bioc/html/xcms.html) running under R version 2.13 (http://http://www.r-project.org/) which provided the running platform for XCMS. The "centWave" method from XCMS was used for chromatographic peak detection. Based on the m/z data of the metabolites obtained by XCMS, MS was used to identify the molecular formula. Nine metabolites were finally found and identified. For six of them, the bio-transformation mechanisms of the parent compound was elucidated: glucuronide conjugation (C(19)H(24)O(14)), reduction (C(13)H(18)O(7)), oxidation (C(13)H(16)O(8)), methylation (C(14)H(18)O(7)), and the mixed transformation of reduction, methylation, and

  11. A dielectric barrier discharge based ion source for a sensitive and versatile chemical ionization time of flight mass spectrometer instrument using the negative ion mode

    Science.gov (United States)

    Albrecht, Sascha; Afchine, Armin; Barthel, Jochen; Dick, Markus; Rongen, Heinz; Franzke, Joachim; Stroh, Fred; Benter, Thorsten

    2017-04-01

    Chemical ionization mass spectrometry (CIMS) provides high sensitivity for ultra-sensitive trace gas measurements in the atmosphere. The presented ion source is used to replace radioactive Po ion sources. First in-field test runs have been done using an airborne instrument flown on the StratoClim campaign in Greece, Kalamata 2016. Especially stratospheric measurements at ambient pressures lower than 100 hPa require improved sensitivity. Therefore, a chemical ionization (CI) time-of-flight (TOF) instrument using a dielectric barrier discharge (DBD) ion source and a high-transmission transfer stage has been set-up and characterized. A new concept including the ion molecule reaction (IMR) zone inside an ion funnel is used. The focus will be on the brilliant DBD ion source, which also can be used to generate ion precursors in the plasma. Thereby multiple reactants can be generated having a versatile ion source. To finally judge the brilliance of the DBD ion source it is compared to a 10 mCi Po ion source. These measurements are highlighting that even more ions are generated in the DBD ion source compared to a 10 mCi Po ion source. However, first measurements with good sensitivity have been made, employing the CIMS instrument described. The analyte gas is introduced into the first ion funnel and mixed with the ion source gas flow. It has been discovered that the mixing in the IMR funnel is critical in terms of sensitivity and was therefore optimized. The ion funnel achieves a transmission of 40% working at 50 hPa pressure and using a gas flow of 1 slm. The complete transfer stage achieves a high transmission of around 10 % for gas phase ions and therefore enables a high sensitivity combined with the brilliant DBD ion source. A detection limit better than 100 pptV was determined for SO2 using CO3- ions. Further-on a fast exchange of the reactants is possible. NO3-, CO3-, I- and SF6- have been successfully tested and can be generated in the DBD from low ppm or even ppb

  12. Identification of bovine-associated coagulase-negative staphylococci by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using a direct transfer protocol.

    Science.gov (United States)

    Cameron, M; Barkema, H W; De Buck, J; De Vliegher, S; Chaffer, M; Lewis, J; Keefe, G P

    2017-03-01

    This study evaluated matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS) for the identification of bovine-associated coagulase-negative staphylococci (CNS), a heterogeneous group of different species. Additionally, we aimed to expand the MALDI-ToF MS database with new reference spectra as required to fill the gaps within the existing commercial spectral library. A total of 258 isolates of CNS were used in the study, covering 16 different CNS species. The majority of the isolates were previously identified by rpoB gene sequencing (n = 219), and the remainder were identified by sequencing of 16S rRNA, hsp60, or both rpoB and hsp60. The genotypic identification was considered the gold standard identification. All MALDI-ToF MS identifications were carried out using the direct transfer method. In a preliminary evaluation (n = 32 isolates; 2 of each species) with the existing commercial database, MALDI-ToF MS showed a typeability of 81% (26/32) and an accuracy of 96% (25/26). In the main evaluation (n = 226 isolates), MALDI-ToF MS with the existing commercial Biotyper (Bruker Daltonics Inc., Billerica, MA) database achieved a typeability of 92.0% (208/226) and an accuracy of 99.5% (207/208). Based on the assessment of the existing commercial database and prior knowledge of the species, a total of 13 custom reference spectra, covering 8 species, were created and added to the commercial database. Using the custom reference spectra expanded database, isolates were identified by MALDI-ToF MS with 100% typeability and 100% accuracy. Whereas the MALDI-ToF MS manufacturer's cutoff for species-level identification is 2.000, the reduction of the species level cutpoint to ≥1.700 improved the species-level identification rates (from 64 to 92% for the existing commercial database) when classifying CNS isolates. Overall, MALDI-ToF MS using the direct transfer method was shown to be a highly reliable tool for the identification of bovine

  13. Detection of AmpC β-lactamase-producing Gram-negative bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Li, C; Ding, S; Huang, Y; Wang, Z; Shen, J; Ling, H; Xu, Y

    2017-11-22

    Rapid detection of AmpC-producing strains of Gram-negative bacteria is beneficial for patient care. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a novel method that has demonstrated the resistance of a strain to β-lactam antibiotics by determining the molecular structure of an antibiotic and its degradation products. To study the detection of AmpC-producing Gram-negative bacteria by MALDI-TOF MS and to determine whether the method can be used in clinical practice. A total of 105 strains were detected by determining their phenotypes and sequence analysis. Sixty-nine well-characterized AmpC-producing and 36 non-AmpC-producing strains were studied. The bacteria were incubated in different reaction buffer solutions (10 mM NH 4 HCO 3 /0.005% sodium dodecyl sulphate at pH 8.0) containing cefotaxime (0.50 mg/mL), ceftazidime (0.25 mg/mL), ceftriaxone (0.50 mg/mL), cefepime (0.50 mg/mL), and cefoxitin (0.25 and 0.50 mg/mL), respectively. The mixture was centrifuged at 13,000 g for 2 min, and the supernatant analysed by MALDI-TOF MS after incubation for 30, 60, 90, 120, and 240 min. Antibiotic hydrolysed and decarboxylated peaks were identified. When incubated for 90 min, hydrolysed cefotaxime formed peaks at 434 and 494 Da, and the sensitivity and specificity for detection of AmpC-producing strains were 85.5% (59/69) and 88.9% (32/36). When incubated for 4 h, hydrolysed ceftazidime formed peaks at 563 and 587 Da, and the sensitivity and specificity were 89.9% (62/69) and 94.5% (34/36), respectively. For hydrolysed ceftriaxone (0.5 mg/mL), cefepime (0.5 mg/mL) and two concentrations of cefoxitin (0.25 and 0.5 mg/mL), no peaks amenable to analysis were identified. This study demonstrated that MALDI-TOF MS can rapidly detect AmpC-producing strains. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Fast determination of intact glucosinolates in broccoli leaf by pressurized liquid extraction and ultra high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Ares, Ana M; Bernal, José; Nozal, María J; Turner, Charlotta; Plaza, Merichel

    2015-10-01

    In this study, we investigate for the first time the efficiency of an environmentally sustainable extraction technique (pressurized liquid extraction, PLE) in conjunction with a fast separation technique (ultra-high performance liquid chromatography, UHPLC) coupled to a selective mass spectrometry (MS) detector (quadrupole time-of-flight, qTOF) to extract, separate and quantify fifteen intact-glucosinolates (GLSs) in broccoli leaves. Firstly, we have developed and optimized by means of an experimental design an efficient extraction procedure based on PLE (using ethanol/water as a solvent), giving complete extraction within 15min; meanwhile, the average analyte recoveries were between 85% and 96% in all cases. Chromatography was performed on a UHPLC BEH Shield RP18 1.7μm 110Å (2.1×100mm) analytical column with a mobile phase composed by formic acid in water (0.5%, v/v) and formic acid in acetonitrile (0.5%, v/v) in gradient elution mode at 0.3mL/min, resulted in baseline-separated peaks and a run time of 13min. The method was fully validated in terms of selectivity, limits of detection (LOD) and quantification (LOQ), linearity, precision, and trueness; meanwhile a study of the matrix effect was also performed. A good selectivity, low LODs and LOQs, ranging from 2 to 26μg/g, wide linear ranges from LOQ to 2500μg/g, and satisfactory precision and trueness with relative standard deviation and relative error values lower than or equal to 9%, were obtained for the studied GLSs. Finally, the proposed method was successfully applied to the analysis of intact-GLSs in fifteen broccoli leaf samples from three different cultivars (Parthenon, Nubia, and Naxos). Nine intact-GLSs were detected in all the varieties, although in different concentrations, which ranged between 14 and 1136μg/g, depending on the broccoli cultivar. In addition, the highest total content of GLSs was found in broccoli leaf samples from Parthenon cultivar, being the Naxos cultivar the poorest in GLS

  15. Bruker Biotyper Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Nocardia, Rhodococcus, Kocuria, Gordonia, Tsukamurella, and Listeria Species

    Science.gov (United States)

    Lee, Tai-Fen; Du, Shin-Hei; Teng, Shih-Hua; Liao, Chun-Hsing; Sheng, Wang-Hui; Teng, Lee-Jene

    2014-01-01

    We evaluated whether the Bruker Biotyper matrix-associated laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) system provides accurate species-level identifications of 147 isolates of aerobically growing Gram-positive rods (GPRs). The bacterial isolates included Nocardia (n = 74), Listeria (n = 39), Kocuria (n = 15), Rhodococcus (n = 10), Gordonia (n = 7), and Tsukamurella (n = 2) species, which had all been identified by conventional methods, molecular methods, or both. In total, 89.7% of Listeria monocytogenes, 80% of Rhodococcus species, 26.7% of Kocuria species, and 14.9% of Nocardia species (n = 11, all N. nova and N. otitidiscaviarum) were correctly identified to the species level (score values, ≥2.0). A clustering analysis of spectra generated by the Bruker Biotyper identified six clusters of Nocardia species, i.e., cluster 1 (N. cyriacigeorgica), cluster 2 (N. brasiliensis), cluster 3 (N. farcinica), cluster 4 (N. puris), cluster 5 (N. asiatica), and cluster 6 (N. beijingensis), based on the six peaks generated by ClinProTools with the genetic algorithm, i.e., m/z 2,774.477 (cluster 1), m/z 5,389.792 (cluster 2), m/z 6,505.720 (cluster 3), m/z 5,428.795 (cluster 4), m/z 6,525.326 (cluster 5), and m/z 16,085.216 (cluster 6). Two clusters of L. monocytogenes spectra were also found according to the five peaks, i.e., m/z 5,594.85, m/z 6,184.39, and m/z 11,187.31, for cluster 1 (serotype 1/2a) and m/z 5,601.21 and m/z 11,199.33 for cluster 2 (serotypes 1/2b and 4b). The Bruker Biotyper system was unable to accurately identify Nocardia (except for N. nova and N. otitidiscaviarum), Tsukamurella, or Gordonia species. Continuous expansion of the MALDI-TOF MS databases to include more GPRs is necessary. PMID:24759706

  16. Enhancing the chemical selectivity in discovery-based analysis with tandem ionization time-of-flight mass spectrometry detection for comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Freye, Chris E; Moore, Nicholas R; Synovec, Robert E

    2018-02-16

    The complementary information provided by tandem ionization time-of-flight mass spectrometry (TI-TOFMS) is investigated for comparative discovery-based analysis, when coupled with comprehensive two-dimensional gas chromatography (GC × GC). The TI conditions implemented were a hard ionization energy (70 eV) concurrently collected with a soft ionization energy (14 eV). Tile-based Fisher ratio (F-ratio) analysis is used to analyze diesel fuel spiked with twelve analytes at a nominal concentration of 50 ppm. F-ratio analysis is a supervised discovery-based technique that compares two different sample classes, in this case spiked and unspiked diesel, to reduce the complex GC × GC-TI-TOFMS data into a hit list of class distinguishing analyte features. Hit lists of the 70 eV and 14 eV data sets, and the single hit list produced when the two data sets are fused together, are all investigated. For the 70 eV hit list, eleven of the twelve analytes were found in the top thirteen hits. For the 14 eV hit list, nine of the twelve analytes were found in the top nine hits, with the other three analytes either not found or well down the hit list. As expected, the F-ratios per m/z used to calculate each average F-ratio per hit were generally smaller fragment ions for the 70 eV data set, while the larger fragment ions were emphasized in the 14 eV data set, supporting the notion that complementary information was provided. The discovery rate was improved when F-ratio analysis was performed on the fused data sets resulted in eleven of the twelve analytes being at the top of the single hit list. Using PARAFAC, analytes that were "discovered" were deconvoluted in order to obtain their identification via match values (MV). Location of the analytes and the "F-ratio spectra" obtained from F-ratio analysis were used to guide the deconvolution. Eight of the twelve analytes where successfully deconvoluted and identified using the in-house library for the 70

  17. Characterisation of dense non-aqueous phase liquids of coal tar using comprehensive two-dimensional gas chromatography coupled with time of flight mass spectrometry.

    Science.gov (United States)

    Gauchotte-Lindsay, Caroline; McGregor, Laura; Richards, Phil; Kerr, Stephanie; Glenn, Aliyssa; Thomas, Russell; Kalin, Robert

    2013-04-01

    Comprehensive two-dimensional gas chromatography (GCxGC) is a recently developed analytical technique in which two capillary columns with different stationary phases are placed in series enabling planar resolution of the analytes. The resolution power of GCxGC is one order of magnitude higher than that of one dimension gas chromatography. Because of its high resolution capacity, the use of GCxGC for complex environmental samples such as crude oils, petroleum derivatives and polychlorinated biphenyls mixtures has rapidly grown in recent years. We developed a one-step method for the forensic analysis of coal tar dense non-aqueous phase liquids (DNAPLs) from former manufactured gas plant (FMGP) sites. Coal tar is the by-product of the gasification of coal for heating and lighting and it is composed of thousands of organic and inorganic compounds. Before the boom of natural gases and oils, most towns and cities had one or several manufactured gas plants that have, in many cases, left a devastating environmental print due to coal tar contamination. The fate of coal tar DNAPLs, which can persist in the environment for more than a hundred years, is therefore of crucial interest. The presented analytical method consists of a unique clean-up/ extraction stage by pressurized liquid extraction and a single analysis of its organic chemical composition using GCxGC coupled with time of flight mass spectrometry (TOFMS). The chemical fingerprinting is further improved by derivatisation by N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) of the tar compounds containing -OH functions such as alcohols and carboxylic acids. We present here how, using the logical order of elution in GCxGC-TOFMS system, 1) the identification of never before observed -OH containing compounds is possible and 2) the isomeric selectivity of an oxidation reaction on a DNAPL sample can be revealed. Using samples collected at various FMGP sites, we demonstrate how this GCxGC method enables the simultaneous

  18. Effect of mobile phase additives on qualitative and quantitative analysis of ginsenosides by liquid chromatography hybrid quadrupole-time of flight mass spectrometry.

    Science.gov (United States)

    Liang, Yan; Guan, Tianye; Zhou, Yuanyuan; Liu, Yanna; Xing, Lu; Zheng, Xiao; Dai, Chen; Du, Ping; Rao, Tai; Zhou, Lijun; Yu, Xiaoyi; Hao, Kun; Xie, Lin; Wang, Guangji

    2013-07-05

    This study was to systematically investigate the effect of mobile phase additives, including ammonia water, formic acid, acetic acid, ammonium chloride and water (as a control), on qualitative and quantitative analysis of fifteen representative ginsenosides based on liquid chromatography hybrid quadrupole-time of flight mass spectrometry (LC-Q-TOF/MS). To evaluate the influence of mobile phase additives on qualitative performance, the quality of the negative mode MS/MS spectra of ginsenosides produced by online LC-Q-TOF/MS analyses, particularly the numbers and intensities of fragment ions, were compared under different adduct ion states, and found to be strongly affected by the mobile phase additives. When 0.02% acetic acid was added in the mobile phase, the deprotonated ginsenosides ions produced the most abundant product ions, while almost no product ion was observed for the chlorinated ginsenoside ions when 0.1mM ammonium chloride was used as the mobile phase additive. On the other hand, sensitivity, linear range and precision were adopted to investigate the quantitative performance affected by different mobile phase additives. Validation results of the LC-Q-TOF/MS-based quantitative performance for ginsenosides showed that ammonium chloride not only provided the highest sensitivity for all the target analytes, but also dramatically improved the linear ranges, the intra-day and inter-day precisions comparing to the results obtained using other mobile phase additives. Importantly, the validated method, using 0.1mM ammonium chloride as the mobile phase additive, was successfully applied to the quantitative analysis of ginsenosides in rat plasma after intragastric administration of Ginsenoside Extract at 200mg/kg. In conclusion, 0.02% acetic acid was deemed to be the most suitable mobile phase additive for qualitative analysis of ginsenosides, and 0.1mM ammonium chloride in mobile phase could lead to the best quantitative performance. Our results reveal that

  19. Bruker biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of Nocardia, Rhodococcus, Kocuria, Gordonia, Tsukamurella, and Listeria species.

    Science.gov (United States)

    Hsueh, Po-Ren; Lee, Tai-Fen; Du, Shin-Hei; Teng, Shih-Hua; Liao, Chun-Hsing; Sheng, Wang-Hui; Teng, Lee-Jene

    2014-07-01

    We evaluated whether the Bruker Biotyper matrix-associated laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system provides accurate species-level identifications of 147 isolates of aerobically growing Gram-positive rods (GPRs). The bacterial isolates included Nocardia (n = 74), Listeria (n = 39), Kocuria (n = 15), Rhodococcus (n = 10), Gordonia (n = 7), and Tsukamurella (n = 2) species, which had all been identified by conventional methods, molecular methods, or both. In total, 89.7% of Listeria monocytogenes, 80% of Rhodococcus species, 26.7% of Kocuria species, and 14.9% of Nocardia species (n = 11, all N. nova and N. otitidiscaviarum) were correctly identified to the species level (score values, ≥ 2.0). A clustering analysis of spectra generated by the Bruker Biotyper identified six clusters of Nocardia species, i.e., cluster 1 (N. cyriacigeorgica), cluster 2 (N. brasiliensis), cluster 3 (N. farcinica), cluster 4 (N. puris), cluster 5 (N. asiatica), and cluster 6 (N. beijingensis), based on the six peaks generated by ClinProTools with the genetic algorithm, i.e., m/z 2,774.477 (cluster 1), m/z 5,389.792 (cluster 2), m/z 6,505.720 (cluster 3), m/z 5,428.795 (cluster 4), m/z 6,525.326 (cluster 5), and m/z 16,085.216 (cluster 6). Two clusters of L. monocytogenes spectra were also found according to the five peaks, i.e., m/z 5,594.85, m/z 6,184.39, and m/z 11,187.31, for cluster 1 (serotype 1/2a) and m/z 5,601.21 and m/z 11,199.33 for cluster 2 (serotypes 1/2b and 4b). The Bruker Biotyper system was unable to accurately identify Nocardia (except for N. nova and N. otitidiscaviarum), Tsukamurella, or Gordonia species. Continuous expansion of the MALDI-TOF MS databases to include more GPRs is necessary. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Detection of Hanganutziu-Deicher antigens in O-glycans from pig heart tissues by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Jeong, Hee-Jin; Adhya, Mausumi; Park, Hae-Min; Kim, Yun-Gon; Kim, Byung-Gee

    2013-01-01

    In the α1,3-galactosyltransferase knockout (α-GalT KO) pig era, identification of the non-Gal epitopes is necessary for successful pig-to-human xenotransplantation. Recently, we successfully detected α-Gal epitopes as well as Hanganutziu-Deicher (H-D) antigens from the N-glycans in the pig heart tissues, which have been considered as promising non-Gal antigens. However, the profiling of O-glycan from pig heart tissues had not been performed owing to the difficulty of O-glycan preparation. In this study, we established the simple and sensitive method to profile O-glycans from pig heart aortic valve, aortic wall, pulmonary valve, pulmonary wall, and cardiac muscle tissues. To liberate O-glycans from the pig heart tissues, we used non-reductive β-elimination reagent and subsequently purified the glycans. After permethylation, the glycans were qualitatively analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The comprehensive O-glycan analysis method was successfully validated using model glycoproteins such as bovine serum fetuin (BSF) and bovine submaxillary gland mucin (BSM) glycoproteins, and their O-glycan profiles were in accordance with the data of previous studies. Next, we applied the method for O-glycan release and characterization to analysis of various pig heart tissues. As a result, total 39, 33, 24, 36, and 25 of O-glycans were detected from aortic valve, aortic wall, pulmonary valve, pulmonary wall, and cardiac muscle, respectively. Furthermore, four in aortic valve, one in aortic wall, one in pulmonary valve, one in pulmonary wall, and one in cardiac muscle were particularly determined as terminally N-glycolylneuraminic acid-linked O-glycans, which is considered to be the H-D antigens. Here, we initially described the O-glycan structures of various pig heart tissues, and additionally, the existence of H-D antigen type O-glycans was firstly identified. These results will be fundamental information

  1. Thermal desorption comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry for vapour phase mainstream tobacco smoke analysis.

    Science.gov (United States)

    Savareear, Benjamin; Brokl, Michał; Wright, Chris; Focant, Jean-Francois

    2017-11-24

    A thermal desorption comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (TD-GC×GC-TOFMS) method has been developed for the analysis of mainstream tobacco smoke (MTS) vapour phase (VP). The selection process of the sample introduction approach involved comparing the results obtained from three different approaches: a) use of gas sampling bag followed by SPME (Tedlar ® -SPME), b) gas sampling bag followed by TD (Tedlar ® -TD), and c) sampling directly on TD sorbents (Direct-TD). Six different SPME fibers and six different TD sorbent beds were evaluated for the extraction capacities in terms of total number of peaks and related intensities or peak areas. The best results were obtained for the Direct-TD approach using Tenax TA/Carbograph1TD/Carboxen1003 sorbent tubes. The optimisation of TD tube desorption parameters was carried out using a face-centered central composite experimental design and resulted in the use of the Tenax TA/Carbograph 1TD/Carboxen 1003 sorbent with a 7.5min desorption time, a 60mL/min tube desorption flow, and a 250°C tube desorption temperature. The optimised method was applied to the separation of MTS-VP constituents, with 665 analytes detected. The method precision ranged from 1% to 15% for over 99% of identified peak areas and from 0% to 3% and 0% to 1% for both first ( 1 t R ) and second ( 2 t R ) dimension retention times, respectively. The method was applied to the analyses of two cigarette types differing in their filter construction. Principal component analysis (PCA) allowed a clear differentiation of the studied cigarette types (PC1 describing 94% of the explained variance). Supervised Fisher ratio analysis permitted the identification of compounds responsible for the chemical differences between the two sample types. A set of 91 most relevant compounds was selected by applying a Fisher ratio cut-off approach and most of them were selectively removed by one of the cigarette filter types

  2. Simultaneous analysis of polychlorinated biphenyls and polychlorinated naphthalenes by isotope dilution comprehensive two-dimensional gas chromatography high-resolution time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Dan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); University of Chinese Academy of Sciences, Beijing 100085 (China); Gao, Lirong, E-mail: gaolr@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Zheng, Minghui; Wang, Shasha; Liu, Guorui [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2016-09-21

    Polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) are listed as persistent organic pollutants (POPs) under the Stockholm Convention. Because they have similar physical and chemical properties, they are coeluted and are usually analyzed separately by different gas chromatography high-resolution mass spectrometry (GC-HRMS) methods. In this study, a novel method was developed for simultaneous analysis of six indicator PCBs, 12 dioxin-like PCBs, and 16 PCNs using isotope dilution comprehensive two-dimensional gas chromatography with high-resolution time-of-flight mass spectrometry (GC × GC-HRTOF-MS). The method parameters, including the type of GC column, oven temperature program, and modulation period, were systematically optimized. Complete separation of all target analytes and the matrix was achieved with a DB-XLB column in the first dimension and a BPX-70 column in the second dimension. The isotope dilution method was used for quantification of the PCBs and PCNs by GC × GC-HRTOF-MS. The method showed good linearity from 5 to 500 pg μL{sup −1} for all the target compounds. The instrumental limit of detection ranged from 0.03 to 0.3 pg μL{sup −1} for the 18 PCB congeners and from 0.09 to 0.6 pg μL{sup −1} for the 16 PCN congeners. Repeatability for triplicate injections was always lower than 20%. The method was successfully applied to the determination of 18 PCBs present at 0.9–2054 pg g{sup −1} and 16 PCNs present at 0.2–15.7 pg g{sup −1} in three species of fish. The GC × GC-HRTOF-MS results agreed with those obtained by GC-HRMS. The GC × GC-HRTOF-MS method proved to be a sensitive and accurate technique for simultaneous analysis of the selected PCBs and PCNs. With the excellent chromatographic separation offered by GC × GC and accurate mass measurements offered by HRTOF-MS, this method allowed identification of non-target contaminants in the fish samples, including organochlorine pesticides and

  3. Effects of sample injection amount and time-of-flight mass spectrometric detection dynamic range on metabolome analysis by high-performance chemical isotope labeling LC-MS.

    Science.gov (United States)

    Zhou, Ruokun; Li, Liang

    2015-04-06

    The effect of sample injection amount on metabolome analysis in a chemical isotope labeling (CIL) liquid chromatography-mass spectrometry (LC-MS) platform was investigated. The performance of time-of-flight (TOF) mass spectrometers with and without a high-dynamic-range (HD) detection system was compared in the analysis of (12)C2/(13)C2-dansyl labeled human urine samples. An average of 1635 ± 21 (n = 3) peak pairs or putative metabolites was detected using the HD-TOF-MS, compared to 1429 ± 37 peak pairs from a conventional or non-HD TOF-MS. In both instruments, signal saturation was observed. However, in the HD-TOF-MS, signal saturation was mainly caused by the ionization process, while in the non-HD TOF-MS, it was caused by the detection process. To extend the MS detection range in the non-HD TOF-MS, an automated switching from using (12)C to (13)C-natural abundance peaks for peak ratio calculation when the (12)C peaks are saturated has been implemented in IsoMS, a software tool for processing CIL LC-MS data. This work illustrates that injecting an optimal sample amount is important to maximize the metabolome coverage while avoiding the sample carryover problem often associated with over-injection. A TOF mass spectrometer with an enhanced detection dynamic range can also significantly increase the number of peak pairs detected. In chemical isotope labeling (CIL) LC-MS, relative metabolite quantification is done by measuring the peak ratio of a (13)C2-/(12)C2-labeled peak pair for a given metabolite present in two comparative samples. The dynamic range of peak ratio measurement does not need to be very large, as only subtle changes of metabolite concentrations are encountered in most metabolomic studies where relative metabolome quantification of different groups of samples is performed. However, the absolute concentrations of different metabolites can be very different, requiring a technique to provide a wide detection dynamic range to allow the detection of as

  4. Investigations of primary and secondary particulate matter of different wood combustion appliances with a high-resolution time-of-flight aerosol mass spectrometer

    Directory of Open Access Journals (Sweden)

    M. F. Heringa

    2011-06-01

    Full Text Available A series of photo-oxidation smog chamber experiments were performed to investigate the primary emissions and secondary aerosol formation from two different log wood burners and a residential pellet burner under different burning conditions: starting and flaming phase. Emissions were sampled from the chimney and injected into the smog chamber leading to primary organic aerosol (POA concentrations comparable to ambient levels. The composition of the aerosol was measured by an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS and black carbon (BC instrumentation. The primary emissions were then exposed to xenon light to initiate photo-chemistry and subsequent secondary organic aerosol (SOA production. After correcting for wall losses, the average increase in organic matter (OM concentrations by SOA formation for the starting and flaming phase experiments with the two log wood burners was found to be a factor of 4.1±1.4 after five hours of aging. No SOA formation was observed for the stable burning phase of the pellet burner. The startup emissions of the pellet burner showed an increase in OM concentration by a factor of 3.3. Including the measured SOA formation potential, average emission factors of BC+POA+SOA, calculated from CO2 emission, were found to be in the range of 0.04 to 3.9 g/kg wood for the stable burning pellet burner and an old log wood burner during startup respectively. SOA contributed significantly to the ion C2H4O2+ at mass to charge ratio m/z 60, a commonly used marker for primary emissions of wood burning. This contribution at m/z 60 can overcompensate for the degradation of levoglucosan leading to an overestimation of the contribution of wood burning or biomass burning to the total OM. The primary organic emissions from the three different burners showed a wide range in O:C atomic ratio (0.19−0.60 for the starting and flaming

  5. Capillary isoelectric focusing of probiotic bacteria from cow's milk in tapered fused silica capillary with off-line matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification

    Czech Academy of Sciences Publication Activity Database

    Horká, Marie; Karásek, Pavel; Šalplachta, Jiří; Růžička, F.; Vykydalová, Marie; Kubesová, Anna; Dráb, V.; Roth, Michal; Šlais, Karel

    2013-01-01

    Roč. 788, JUL (2013), s. 193-199 ISSN 0003-2670 R&D Projects: GA ČR(CZ) GAP106/12/0522; GA MV VG20102015023 Institutional support: RVO:68081715 Keywords : capillary isoelectric focusing * matrix-assisted laser desorption/ionization time-of-flight mass spectrometry * lactic acid bacteria Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.517, year: 2013

  6. Identification of candidate biomarker mass (m/z) ranges in serous ovarian adenocarcinoma using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry profiling.

    Science.gov (United States)

    Periyasamy, Amutha; Gopisetty, Gopal; Veluswami, Sridevi; Joyimallaya Subramanium, Malliga; Thangarajan, Rajkumar

    2015-01-01

    To differentiate plasma from ovarian cancer and healthy individuals using MALDI-TOF mass spectroscopy. MALDI-TOF was used to generate profiles of immuno-depleted plasma samples (89 cancers and 199 healthy individuals) that were fractionated using three types of magnetic beads (HIC8, WCX and IMAC-Cu). Differentially expressed mass ranges showing >1.5-2-fold change in expression from HIC8 (30), WCX (12) and IMAC-Cu (6) fractions were identified. Cross validation and recognition capability scores for the models indicated discrimination between the classes. Spectral profiles can differentiate plasma samples of ovarian cancer patients from healthy individuals.

  7. Online mass measurements with a Multiple-Reflection Time-of-Flight Mass Spectrometer (MR-TOF-MS) at the FRS Ion Catcher

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Jens; Greiner, Florian; Jesch, Christian; Lang, Johannes; Petrick, Martin; Reiter, Moritz P.; Rink, Ann-Kathrin; Diwisch, Marcel [JLU Giessen (Germany); Dickel, Timo; Plass, Wolfgang R.; Geissel, Hans; Haettner, Emma; Knoebel, Ronja; Scheidenberger, Christoph [JLU Giessen (Germany); GSI, Darmstadt (Germany); Ayet, Samuel; Estrade, Alfredo; Farinon, Fabio; Kurcewicz, Jan; Mukha, Ivan; Nociforo, Chiara; Pfutzner, Marek; Pietri, Stephane; Prochazka, Andrej; Purushothaman, Sivaji; Takechi, Maya; Weick, Helmut; Winfield, John [GSI, Darmstadt (Germany); Dendooven, Peter; Kalantar-Nayestanaki, Nasser [KVI, University of Groningen (Netherlands); Moore, Iain [University of Jyvaeskylae (Finland); Yavor, Mikhail I. [Russian Academy of Sci., St. Petersburg (Russian Federation)

    2013-07-01

    At the Low-Energy-Branch (LEB) of the Super-FRS at FAIR experiments with-slowed down exotic nuclei will be performed. The FRS Ion Catcher experiment at the FRS serves a test facility for the LEB. The relativistic ions are thermalized in a novel cryogenic stopping cell, extracted and transported to a MR-TOF-MS for high precision mass measurements or decay-spectroscopy. In summer 2012 direct mass measurements of U projectile fragments have been performed for the first time with a MR-TOF-MS, among then {sup 213}Rn with a half-life of only 19.5 ns.

  8. Hot filament-dissociation of (CH3)3SiH and (CH3)4Si, probed by vacuum ultra violet laser time of flight mass spectroscopy.

    Science.gov (United States)

    Sharma, Ramesh C; Koshi, Mitsuo

    2006-11-01

    The decomposition of trimethylsilane and tetramethylsilane has been investigated for the first time, using hot wire (catalytic) at various temperatures. Trimethylsilane is catalytic-dissociated in these species SiH(2), CH(3)SiH, CH(3), CH(2)Si. Time of flight mass spectroscopy signal of these species are linearly increasing with increasing catalytic-temperature. Time of flight mass spectroscopy (TOFMS) signals of (CH(3))(3)SiH and photodissociated into (CH(3))(2)SiH are decreasing with increasing hot filament temperature. TOFMS signal of (CH(3))(4)Si is decreasing with increasing hot wire temperature, but (CH(3))(3)Si signal is almost constant with increasing the temperature. We calculated activation energies of dissociated species of the parental molecules for fundamental information of reaction kinetics for the first time. Catalytic-dissociation of trimethylsilane, and tetramethylsilane single source time of flight coupled single photon VUV (118 nm) photoionization collisionless radicals at temperature range of tungsten filament 800-2360 K. The study is focused to understand the fundamental information on reaction kinetics of these molecules at hot wire temperature, and processes of catalytic-chemical vapour deposition (Cat-CVD) technique which could be implemented in amorphous and crystalline SiC semiconductors thin films.

  9. Rapid identification and typing of Yersinia pestis and other Yersinia species by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry.

    Science.gov (United States)

    Ayyadurai, Saravanan; Flaudrops, Christophe; Raoult, Didier; Drancourt, Michel

    2010-11-12

    Accurate identification is necessary to discriminate harmless environmental Yersinia species from the food-borne pathogens Yersinia enterocolitica and Yersinia pseudotuberculosis and from the group A bioterrorism plague agent Yersinia pestis. In order to circumvent the limitations of current phenotypic and PCR-based identification methods, we aimed to assess the usefulness of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) protein profiling for accurate and rapid identification of Yersinia species. As a first step, we built a database of 39 different Yersinia strains representing 12 different Yersinia species, including 13 Y. pestis isolates representative of the Antiqua, Medievalis and Orientalis biotypes. The organisms were deposited on the MALDI-TOF plate after appropriate ethanol-based inactivation, and a protein profile was obtained within 6 minutes for each of the Yersinia species. When compared with a 3,025-profile database, every Yersinia species yielded a unique protein profile and was unambiguously identified. In the second step of analysis, environmental and clinical isolates of Y. pestis (n = 2) and Y. enterocolitica (n = 11) were compared to the database and correctly identified. In particular, Y. pestis was unambiguously identified at the species level, and MALDI-TOF was able to successfully differentiate the three biotypes. These data indicate that MALDI-TOF can be used as a rapid and accurate first-line method for the identification of Yersinia isolates.

  10. Investigation of the Antifatigue Effects of Korean Ginseng on Professional Athletes by Gas Chromatography-Time-of-Flight-Mass Spectrometry-Based Metabolomics.

    Science.gov (United States)

    Yan, Bei; Liu, Yao; Shi, Aixin; Wang, Zhihong; Aa, Jiye; Huang, Xiaoping; Liu, Yi

    2017-09-19

    Ginseng is usually used for alleviating fatigue. The purpose of this paper was to evaluate the regulatory effect of Korean ginseng on the metabolic pattern in professional athletes, and, further, to explore the underlying mechanism of the antifatigue effect of Korean ginseng. GC-time-of-flight-MS was used to profile serum samples from professional athletes before training and after 15 and 30 day training, and professional athletes administered with Korean ginseng in the meanwhile. Biochemical parameters of all athletes were also analyzed. For the athlete control group, strength–endurance training resulted in an elevation of creatine kinase (CK) and blood urea nitrogen (BUN), and a reduction in blood hemoglobin, and a dynamic trajectory of the metabolomic profile which were related to fatigue. Korean ginseng treatment not only lead to a marked reduction in CK and blood urea nitrogen (BUN) in serum, but also showed regulatory effects on the serum metabolic profile and restored scores plots close to normal, suggesting that the change in metabolic profiling could reflect the antifatigue effect of Korean ginseng. Furthermore, perturbed levels of 11 endogenous metabolites were regulated by Korean ginseng significantly, which might be primarily involved in lipid metabolism, energy balance, and chemical signaling. These findings suggest that metabolomics is a potential tool for the evaluation of the antifatigue effect of Korean ginseng and for the elucidation of its pharmacological mechanism.

  11. Tentative Structural Assignment of a Glucuronide Metabolite of Methyltestosterone in Tilapia Bile by Liquid Chromatography-Quadrupole-Time-of-Flight Mass Spectrometry.

    Science.gov (United States)

    Nishshanka, Upul; Chu, Pak-Sin; Evans, Eric; Reimschuessel, Renate; Hasbrouck, Nicholas; Amarasinghe, Kande; Jayasuriya, Hiranthi

    2015-06-24

    Methyltestosterone (MT), a strong androgenic steroid, is not approved for use in fish aquaculture in the United States. It is used in the U.S. under an investigational new animal drug exemption (INAD) only during the early life stages of fish. There is a possibility that farmers feed fish with MT to enhance production for economic gains. Therefore, there is a need to develop methods for the detection of MT and its metabolite residues in fish tissue for monitoring purposes. Previously, our laboratory developed a liquid chromatography-quadrupole time-of-flight (LC-QTOF) method for characterization of 17-O-glucuronide metabolite (MT-glu) in bile of tilapia dosed with MT. The system used was an Agilent 6530 Q-TOF equipped with electrospray jet stream technology, operating in positive ion mode. Retrospective analysis of the data generated in that experiment by a feature-finding algorithm, combined with a search against an in-house library of possible MT-metabolites, resulted in the discovery of a major glucuronide metabolite of MT in the bile extracts. Preliminary data indicate it to be a glucuronide of a hydroxylated MT (OHMT-glu) which persists in tilapia bile for at least 2 weeks after dosing. We present the tentative structural assignment of the OHMT-glu in tilapia bile and time course of development. This glucuronide can serve as a marker to monitor illegal use of MT in tilapia culture.

  12. Differentiation of clinically relevant Mucorales Rhizopus microsporus and R. arrhizus by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Dolatabadi, Somayeh; Kolecka, Anna; Versteeg, Matthijs; de Hoog, Sybren G; Boekhout, Teun

    2015-07-01

    This study addresses the usefulness of matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) MS for reliable identification of the two most frequently occurring clinical species of Rhizopus, namely Rhizopus arrhizus with its two varieties, arrhizus and delemar, and Rhizopus microsporus. The test-set comprised 38 isolates of clinical and environmental origin previously identified by internal transcribed spacer (ITS) sequencing of rDNA. Multi-locus sequence data targeting three gene markers (ITS, ACT, TEF ) showed two monophylic clades for Rhizopus arrhizus and Rhizopus microsporus (bootstrap values of 99 %). Cluster analysis confirmed the presence of two distinct clades within Rhizopus arrhizus representing its varieties arrhizus and delemar. The MALDI Biotyper 3.0 Microflex LT platform (Bruker Daltonics) was used to confirm the distinction between Rhizopus arrhizus and Rhizopus microsporus and the presence of two varieties within the species Rhizopus arrhizus. An in-house database of 30 reference main spectra (MSPs) was initially tested for correctness using commercially available databases of Bruker Daltonics. By challenging the database with the same strains of which an in-house database was created, automatic identification runs confirmed that MALDI-TOF MS is able to recognize the strains at the variety level. Based on principal component analysis, two MSP dendrograms were created and showed concordance with the multi-locus tree; thus, MALDI-TOF MS is a useful tool for diagnostics of mucoralean species.

  13. [Determination of congo red in beef by high performance liquid chromatography-tandem quadrupole time of flight mass spectrometry and ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry].

    Science.gov (United States)

    Lin, Hui; Xu, Chunxiang; Yan, Chunrong; Zhang, Zheng; Wang, Suilou

    2013-09-01

    A method was developed for the determination of congo red in beef. The analyte was identified by high performance liquid chromatography-tandem quadrupole time of flight mass spectrometry (LC-QTOF MS) and quantitatively determined by ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry. After purified by liquid-liquid extraction, the congo red in the beef sample was separated on an Agilent ZORBAX Eclipse Plus C18 Rapid Resolution HD UPLC column (50 mm x 2.1 mm, 1.8 microm) HPLC , using 95% (volume percentage) methanol as the mobile phase at 0.2 mL/min. The detection was performed on an AB 4000 + triple quadrupole mass spectrometer utilizing electrospray ionization (ESI) interface operated in negative ion mode and multiple-reaction monitoring (MRM) mode. The results showed that the linear range of congo red mass concentration was 0.03 - 1 mg/L with the correlation coefficient of 0.999 8. The method had a good precision with the RSDs lower than 5% and the recoveries ranging from 88% to 91%. The limit of detection (LOD) of congo red was 0.01 mg/L. With good reproducibility, the method is simple, fast and effective for the determination of the illegally added congo red in beef and other meat products.

  14. Rapid Detection and Identification of Candidemia by Direct Blood Culturing on Solid Medium by Use of Lysis-Centrifugation Method Combined with Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry (MALDI-TOF MS)

    Science.gov (United States)

    Idelevich, Evgeny A.; Grünastel, Barbara

    2016-01-01

    ABSTRACT Candida sepsis is a life-threatening condition with increasing prevalence. In this study, direct blood culturing on solid medium using a lysis-centrifugation procedure enabled successful Candida species identification by matrix-assisted laser desorption–ionization time of flight mass spectrometry on average 3.8 h (Sabouraud agar) or 7.4 h (chocolate agar) before the positivity signal for control samples in Bactec mycosis-IC/F or Bactec Plus aerobic/F bottles, respectively. Direct culturing on solid medium accelerated candidemia diagnostics compared to that with automated broth-based systems. PMID:27795344

  15. Rapid Detection and Identification of Candidemia by Direct Blood Culturing on Solid Medium by Use of Lysis-Centrifugation Method Combined with Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Idelevich, Evgeny A; Grünastel, Barbara; Becker, Karsten

    2017-01-01

    Candida sepsis is a life-threatening condition with increasing prevalence. In this study, direct blood culturing on solid medium using a lysis-centrifugation procedure enabled successful Candida species identification by matrix-assisted laser desorption-ionization time of flight mass spectrometry on average 3.8 h (Sabouraud agar) or 7.4 h (chocolate agar) before the positivity signal for control samples in Bactec mycosis-IC/F or Bactec Plus aerobic/F bottles, respectively. Direct culturing on solid medium accelerated candidemia diagnostics compared to that with automated broth-based systems. Copyright © 2016 American Society for Microbiology.

  16. Rapid Differentiation of Haemophilus influenzae and Haemophilus haemolyticus by Use of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry with ClinProTools Mass Spectrum Analysis.

    Science.gov (United States)

    Chen, Jonathan H K; Cheng, Vincent C C; Wong, Chun-Pong; Wong, Sally C Y; Yam, Wing-Cheong; Yuen, Kwok-Yung

    2017-09-01

    Haemophilus influenzae is associated with severe invasive disease, while Haemophilus haemolyticus is considered part of the commensal flora in the human respiratory tract. Although the addition of a custom mass spectrum library into the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system could improve identification of these two species, the establishment of such a custom database is technically complicated and requires a large amount of resources, which most clinical laboratories cannot afford. In this study, we developed a mass spectrum analysis model with 7 mass peak biomarkers for the identification of H. influenzae and H. haemolyticus using the ClinProTools software. We evaluated the diagnostic performance of this model using 408 H. influenzae and H. haemolyticus isolates from clinical respiratory specimens from 363 hospitalized patients and compared the identification results with those obtained with the Bruker IVD MALDI Biotyper. The IVD MALDI Biotyper identified only 86.9% of H. influenzae (311/358) and 98.0% of H. haemolyticus (49/50) clinical isolates to the species level. In comparison, the ClinProTools mass spectrum model could identify 100% of H. influenzae (358/358) and H. haemolyticus (50/50) clinical strains to the species level and significantly improved the species identification rate (McNemar's test, P mass spectrometry to handle closely related bacterial species when the proprietary spectrum library failed. This approach should be useful for the differentiation of other closely related bacterial species. Copyright © 2017 American Society for Microbiology.

  17. Tissue-specific metabolite profiling of Cyperus rotundus L. rhizomes and (+)-nootkatone quantitation by laser microdissection, ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, and gas chromatography-mass spectrometry techniques.

    Science.gov (United States)

    Jaiswal, Yogini; Liang, Zhitao; Guo, Ping; Ho, Hing-Man; Chen, Hubiao; Zhao, Zhongzhen

    2014-07-23

    Cyperus rotundus L. is a plant species commonly found in both India and China. The caused destruction of this plant is of critical concern for agricultural produce. Nevertheless, it can serve as a potential source of the commercially important sesquiterpenoid (+)-nootkatone. The present work describes comparative metabolite profiling and (+)-nootkatone content determination in rhizome samples collected from these two countries. Laser dissected tissues, namely, the cortex, hypodermal fiber bundles, endodermis, amphivasal vascular bundles, and whole rhizomes were analyzed by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS). Gas chromatography-mass spectrometry (GC-MS) analysis was used for profiling of essential oil constituents and quantitation of (+)-nootkatone. The content of (+)-nootkatone was found to be higher in samples from India (30.47 μg/10 g) compared to samples from China (21.72 μg/10 g). The method was validated as per International Conference on Harmonisation (ICH) guidelines (Q2 R1). The results from this study can be applied for quality control and efficient utilization of this terpenoid-rich plant for several applications in food-based industries.

  18. Improved fatty acid detection in micro-algae and aquatic meiofauna species using a direct thermal desorption interface combined with comprehensive gas chromatography-time-of-flight mass spectrometry.

    Science.gov (United States)

    Akoto, Lawrence; Stellaard, Frans; Irth, Hubertus; Vreuls, René J J; Pel, Roel

    2008-04-04

    Comprehensive two-dimensional gas chromatography (GC x GC) with time-of-flight mass spectrometry detection is used to profile the fatty acid composition of whole/intact aquatic microorganisms such as the common fresh water green algae Scenedesmus acutus and the filamentous cyanobacterium Limnothrix sp. strain MRI without any sample preparation steps. It is shown that the technique can be useful in the identification of lipid markers in food-web as well as environmental studies. For instance, new mono- and diunsaturated fatty acids were found in the C(16) and C(18) regions of the green algae S. acutus and the filamentous cyanobacterium Limnothrix sp. strain MRI samples. These fatty acids have not, to our knowledge, been detected in the conventional one-dimensional (1D) GC analysis of these species due to either co-elution and/or their presence in low amounts in the sample matrix. In GC x GC, all congeners of the fatty acids in these microorganisms could be detected and identified due to the increased analyte detectability and ordered structures in the two-dimensional separation space. The combination of direct thermal desorption (DTD)-GC x GC-time-of-flight mass spectrometry (ToF-MS) promises to be an excellent tool for a more accurate profiling of biological samples and can therefore be very useful in lipid biomarker research as well as food-web and ecological studies.

  19. Qualitative and quantitative characterization of secondary metabolites and carbohydrates in Bai-Hu-Tang using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and ultraperformance liquid chromatography coupled with photodiode array detector.

    Science.gov (United States)

    Zhong, Wei-Fang; Tong, Wing-Sum; Zhou, Shan-Shan; Yip, Ka-Man; Li, Song-Lin; Zhao, Zhong-Zhen; Xu, Jun; Chen, Hu-Biao

    2017-10-01

    Bai-Hu-Tang (BHT), a classic traditional Chinese medicine (TCM) formula used for clearing heat and promoting body fluid, consists of four traditional Chinese medicines, i.e., Gypsum Fibrosum (Shigao), Anemarrhenae Rhizoma (Zhimu), Glycyrrhizae Radix et Rhizoma Praeparata cum Melle (Zhigancao), and nonglutinous rice (Jingmi). The chemical composition of BHT still remains largely elusive thus far. To qualitatively and quantitatively characterize secondary metabolites and carbohydrates in BHT, here a combination of analytical approaches using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and ultraperformance liquid chromatography coupled with photodiode array detector was developed and validated. A total of 42 secondary metabolites in BHT were tentatively or definitely identified, of which 10 major chemicals were quantified by the extracting ion mode of quadrupole time-of-flight mass spectrometry. Meanwhile, polysaccharides, oligosaccharides, and monosaccharides in BHT were also characterized via sample pretreatment followed by sugar composition analysis. The quantitative results indicated that the determined chemicals accounted for 35.76% of the total extract of BHT, which demonstrated that the study could be instrumental in chemical dissection and quality control of BHT. The research deliverables not only laid the root for further chemical and biological evaluation of BHT, but also provided a comprehensive analytical strategy for chemical characterization of secondary metabolites and carbohydrates in traditional Chinese medicine formulas. Copyright © 2017. Published by Elsevier B.V.

  20. Qualitative and quantitative characterization of secondary metabolites and carbohydrates in Bai-Hu-Tang using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and ultraperformance liquid chromatography coupled with photodiode array detector

    Directory of Open Access Journals (Sweden)

    Wei-Fang Zhong

    2017-10-01

    Full Text Available Bai-Hu-Tang (BHT, a classic traditional Chinese medicine (TCM formula used for clearing heat and promoting body fluid, consists of four traditional Chinese medicines, i.e., Gypsum Fibrosum (Shigao, Anemarrhenae Rhizoma (Zhimu, Glycyrrhizae Radix et Rhizoma Praeparata cum Melle (Zhigancao, and nonglutinous rice (Jingmi. The chemical composition of BHT still remains largely elusive thus far. To qualitatively and quantitatively characterize secondary metabolites and carbohydrates in BHT, here a combination of analytical approaches using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and ultraperformance liquid chromatography coupled with photodiode array detector was developed and validated. A total of 42 secondary metabolites in BHT were tentatively or definitely identified, of which 10 major chemicals were quantified by the extracting ion mode of quadrupole time-of-flight mass spectrometry. Meanwhile, polysaccharides, oligosaccharides, and monosaccharides in BHT were also characterized via sample pretreatment followed by sugar composition analysis. The quantitative results indicated that the determined chemicals accounted for 35.76% of the total extract of BHT, which demonstrated that the study could be instrumental in chemical dissection and quality control of BHT. The research deliverables not only laid the root for further chemical and biological evaluation of BHT, but also provided a comprehensive analytical strategy for chemical characterization of secondary metabolites and carbohydrates in traditional Chinese medicine formulas.

  1. Ultra-high-performance supercritical fluid chromatography with quadrupole-time-of-flight mass spectrometry (UHPSFC/QTOF-MS) for analysis of lignin-derived monomeric compounds in processed lignin samples.

    Science.gov (United States)

    Prothmann, Jens; Sun, Mingzhe; Spégel, Peter; Sandahl, Margareta; Turner, Charlotta

    2017-12-01

    The conversion of lignin to potentially high-value low molecular weight compounds often results in complex mixtures of monomeric and oligomeric compounds. In this study, a method for the quantitative and qualitative analysis of 40 lignin-derived compounds using ultra-high-performance supercritical fluid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UHPSFC/QTOF-MS) has been developed. Seven different columns were explored for maximum selectivity. Makeup solvent composition and ion source settings were optimised using a D-optimal design of experiment (DoE). Differently processed lignin samples were analysed and used for the method validation. The new UHPSFC/QTOF-MS method showed good separation of the 40 compounds within only 6-min retention time, and out of these, 36 showed high ionisation efficiency in negative electrospray ionisation mode. Graphical abstract A rapid and selective method for the quantitative and qualitative analysis of 40 lignin-derived compounds using ultra-high-performance supercritical fluid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UHPSFC/QTOF-MS).

  2. Bayesian Integration and Classification of Composition C-4 Plastic Explosives Based on Time-of-Flight-Secondary Ion Mass Spectrometry and Laser Ablation-Inductively Coupled Plasma Mass Spectrometry.

    Science.gov (United States)

    Mahoney, Christine M; Kelly, Ryan T; Alexander, Liz; Newburn, Matt; Bader, Sydney; Ewing, Robert G; Fahey, Albert J; Atkinson, David A; Beagley, Nathaniel

    2016-04-05

    Time-of-flight-secondary ion mass spectrometry (TOF-SIMS) and laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) were used for characterization and identification of unique signatures from a series of 18 Composition C-4 plastic explosives. The samples were obtained from various commercial and military sources around the country. Positive and negative ion TOF-SIMS data were acquired directly from the C-4 residue on Si surfaces, where the positive ion mass spectra obtained were consistent with the major composition of organic additives, and the negative ion mass spectra were more consistent with explosive content in the C-4 samples. Each series of mass spectra was subjected to partial least squares-discriminant analysis (PLS-DA), a multivariate statistical analysis approach which serves to first find the areas of maximum variance within different classes of C-4 and subsequently to classify unknown samples based on correlations between the unknown data set and the original data set (often referred to as a training data set). This method was able to successfully classify test samples of C-4, though with a limited degree of certainty. The classification accuracy of the method was further improved by integrating the positive and negative ion data using a Bayesian approach. The TOF-SIMS data was combined with a second analytical method, LA-ICPMS, which was used to analyze elemental signatures in the C-4. The integrated data were able to classify test samples with a high degree of certainty. Results indicate that this Bayesian integrated approach constitutes a robust classification method that should be employable even in dirty samples collected in the field.

  3. Chemical profiling of Qixue Shuangbu Tincture by ultra-performance liquid chromatography with electrospray ionization quadrupole-time-of-flight high-definition mass spectrometry (UPLC-QTOF/MS).

    Science.gov (United States)

    Chen, Lin-Wei; Wang, Qin; Qin, Kun-Ming; Wang, Xiao-Li; Wang, Bin; Chen, Dan-Ni; Cai, Bao-Chang; Cai, Ting

    2016-02-01

    The present study was designed to develop and validate a sensitive and reliable ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) method to separate and identify the chemical constituents of Qixue Shuangbu Tincture (QXSBT), a classic traditional Chinese medicine (TCM) prescription. Under the optimized UPLC and QTOF/MS conditions, 56 components in QXSBT, including chalcones, triterpenoids, protopanaxatriol, flavones and flavanones were identified and tentatively characterized within a running time of 42 min. The components were identified by comparing the retention times, accurate mass, and mass spectrometric fragmentation characteristic ions, and matching empirical molecular formula with that of the published compounds. In conclusion, the established UPLC-QTOF/MS method was reliable for a rapid identification of complicated components in the TCM prescriptions. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  4. Application of Ultra-performance Liquid Chromatography with Time-of-Flight Mass Spectrometry for the Rapid Analysis of Constituents and Metabolites from the Extracts of Acanthopanax senticosus Harms Leaf.

    Science.gov (United States)

    Zhang, Yingzhi; Zhang, Aihua; Zhang, Ying; Sun, Hui; Meng, Xiangcai; Yan, Guangli; Wang, Xijun

    2016-01-01

    Acanthopanax senticosus (Rupr and Maxim) Harms (AS), a member of Araliaceae family, is a typical folk medicinal herb, which is widely distributed in the Northeastern part of China. Due to lack of this resource caused by the extensive use of its root, this work studied the chemical constituents of leaves of this plant with the purpose of looking for an alternative resource. In this work, a fast and optimized ultra-performance liquid chromatography method with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) has been developed for the analysis of constituents in leaves extracts. A total of 131 compounds were identified or tentatively characterized including triterpenoid saponins, phenols, flavonoids, lignans, coumarins, polysaccharides, and other compounds based on their fragmentation behaviors. Besides, a total of 21 metabolites were identified in serum in rats after oral administration, among which 12 prototypes and 9 metabolites through the metabolic pathways of reduction, methylation, sulfate conjugation, sulfoxide to thioether and deglycosylation. The coupling of UPLC-QTOF-MS led to the in-depth characterization of the leaves extracts of AS both in vitro and in vivo on the basis of retention time, mass accuracy, and tandem MS/MS spectra. It concluded that this analytical tool was very valuable in the study of complex compounds in medicinal herb. A fast UPLC-QTOF-MS has been developed for analysis of constituents in leaves extractsA total of 131 compounds were identified in leaves extractsA total of 21 metabolites including 12 prototypes and 9 metabolites were identified in vivo. Constituent's analysis of Acanthopanax senticosus Harms leaf by ultra-performance liquid chromatography method with quadrupole time-of-flight mass spectrometry. Abbreviations used: AS: Acanthopanax senticosus (Rupr and Maxim) Harms, TCHM: Traditional Chinese herbal medicine, UPLC-QTOF-MS: Ultra-performance liquid chromatography method with time-of-flight mass spectrometry, MS

  5. COMPARISON OF TIME-OF-FLIGHT AND DOUBLE FOCUSING MASS SPECTROMETRY FOR REACHING TENTATIVE IDENTIFICATIONS FOR UNANTICIPATED COMPOUNDS ADDED TO DRINKING WATER BY TERRORISTS

    Science.gov (United States)

    Local monitoring of post-treatment drinking water using bench-top mass spectrometers could identify target compounds in a mass spectral library. However, a terrorist might seek to incite greater hysteria by injecting or infusing a mixture of unanticipated compounds of unknown tox...

  6. [Use of time-of-flight mass spectrometry with ionization division fragments of californium-252 for studying the mechanisms of action of drugs on DNA and its components].

    Science.gov (United States)

    Sukhodub, L F; Grebenik, L I; Chivanov, V D

    1994-01-01

    Using soft-ionization mass spectrometry (252-Cf particle desorption mass spectrometry, PDMS) a minor adduct of anticancer drug prospidine and deoxyguanosine-5-phosphate (pdG) has been found. It has been shown experimentally that PDMS is very useful for study of biological mixtures as well as mechanisms of interactions between drugs and biomolecules.

  7. Analysis of ibuprofen and its main metabolites in roots, shoots, and seeds of cowpea (Vigna unguiculata L. Walp) using liquid chromatography-quadrupole time-of-flight mass spectrometry: uptake, metabolism, and translocation.

    Science.gov (United States)

    Picó, Yolanda; Alvarez-Ruiz, Rodrigo; Wijaya, Leonard; Alfarhan, Ahmed; Alyemeni, Mohammed; Barceló, Damià

    2018-01-01

    A liquid chromatography quadruple time-of-flight mass spectrometry (LC-QqTOF-MS/MS) method was developed for simultaneous quantitative analysis of ibuprofen (IBU), 1- and 2-hydroxyibuprofen (1-OH IBU and 2-OH IBU), and carboxyibuprofen (CBX IBU) while preserving the ability of the instrument to get precursor and product ion mass spectra of non-target compounds. The trigger was the precursor ions reaching 100 cps intensity. Sample preparation was carried out by ultrasound solid-liquid extraction with methanol as extraction solvent at pH  70% for all target analytes at low and high concentration levels. The lowest limit of quantification was Vigna unguiculata (L.) Walp) treated at high IBU concentrations and its presence in vegetables irrigated with treated water. Up to 46 metabolites, mostly hydroxylated metabolites and conjugates with hexosides and amino acids, were identified. The most abundant metabolites were also identified in an eggplant sample. Graphical Abstract ᅟ Ibuprofen metabolite identification.

  8. Screening of additives in plastics with high resolution time-of-flight mass spectrometry and different ionization sources: direct probe injection (DIP)-APCI, LC-APCI, and LC-ion booster ESI.

    Science.gov (United States)

    Ballesteros-Gómez, Ana; Jonkers, Tim; Covaci, Adrian; de Boer, Jacob

    2016-04-01

    Plastics are complex mixtures consisting of a polymer and additives with different physico-chemical properties. We developed a broad screening method to elucidate the nature of compounds present in plastics used in electrical/electronic equipment commonly found at homes (e.g., electrical adaptors, computer casings, heaters). The analysis was done by (a) solvent extraction followed by liquid chromatography coupled to high accuracy/resolution time-of-flight mass spectrometry (TOFMS) with different ionization sources or (b) direct analysis of the solid by ambient mass spectrometry high accuracy/resolution TOFMS. The different ionization methods showed different selectivity and sensitivity for the different com