Impedance models in time domain
Rienstra, S.W.
2005-01-01
Necessary conditions for an impedance function are derived. Methods available in the literature are discussed. A format with recipe is proposed for an exact impedance condition in time domain on a time grid, based on the Helmholtz resonator model. An explicit solution is given of a pulse reflecting
Time-domain representation of frequency-dependent foundation impedance functions
Safak, E.
2006-01-01
Foundation impedance functions provide a simple means to account for soil-structure interaction (SSI) when studying seismic response of structures. Impedance functions represent the dynamic stiffness of the soil media surrounding the foundation. The fact that impedance functions are frequency dependent makes it difficult to incorporate SSI in standard time-history analysis software. This paper introduces a simple method to convert frequency-dependent impedance functions into time-domain filters. The method is based on the least-squares approximation of impedance functions by ratios of two complex polynomials. Such ratios are equivalent, in the time-domain, to discrete-time recursive filters, which are simple finite-difference equations giving the relationship between foundation forces and displacements. These filters can easily be incorporated into standard time-history analysis programs. Three examples are presented to show the applications of the method.
Gastric Emptying Assessment in Frequency and Time Domain Using Bio-impedance: Preliminary Results
Huerta-Franco, R.; Vargas-Luna, M.; Hernández, E.; Córdova, T.; Sosa, M.; Gutiérrez, G.; Reyes, P.; Mendiola, C.
2006-09-01
The impedance assessment to measure gastric emptying and in general gastric activity has been reported since 1985. The physiological interpretation of these measurements, is still under research. This technique usually uses a single frequency, and the conductivity parameter. The frequency domain and the Fourier analysis of the time domain behavior of the gastric impedance in different gastric conditions (fasting state, and after food administration) has not been explored in detail. This work presents some insights of the potentiality of these alternative methodologies to measure gastric activity.
Jang, Hae-Won; Ih, Jeong-Guon
2012-04-01
The time domain boundary element method (BEM) is associated with numerical instability that typically stems from the time marching scheme. In this work, a formulation of time domain BEM is derived to deal with all types of boundary conditions adopting a multi-input, multi-output, infinite impulse response structure. The fitted frequency domain impedance data are converted into a time domain expression as a form of an infinite impulse response filter, which can also invoke a modeling error. In the calculation, the response at each time step is projected onto the wave vector space of natural radiation modes, which can be obtained from the eigensolutions of the single iterative matrix. To stabilize the computation, unstable oscillatory modes are nullified, and the same decay rate is used for two nonoscillatory modes. As a test example, a transient sound field within a partially lined, parallelepiped box is used, within which a point source is excited by an octave band impulse. In comparison with the results of the inverse Fourier transform of a frequency domain BEM, the average of relative difference norm in the stabilized time response is found to be 4.4%.
Spencer, E. A.; Clark, D. C.; Vadepu, S. K.; Patra, S.
2017-12-01
A Time Domain Impedance Probe (TDIP) measures electron density and electron neutral collision frequencies in the ionosphere. This instrument has been tested on a sounding rocket flight and is now being further developed to fly on a NASA Undergraduate Student Instrument Program (USIP) cubesat to be launched out of the ISS in 2019. Here we report on the development of a new combined TDIP and plasma wave instrument that can be used on cubesat platforms to measure local electron parameters, and also to receive or transmit electron scale waves. This combined instrument can be used to study short time and space scale phenomena in the upper ionosphere using only RF signals. The front end analog circuitry is dual-purposed to perform active or passive probing of the ambient plasma. Two dipole antennas are used, one is optimzed for impedance measurements, while the other is optimized for transmitter-receiver performance. We show our circuit realization, and initial results from laboratory measurements using the TDIP prototype modified for receiver function. We also show Finite Difference Time Domain (FDTD) simulations of an electrically long antenna immersed in a magnetized plasma used to optimize the transmitter receiver performance.
Methodology for Time-Domain Estimation of Storm-Time Electric Fields Using the 3D Earth Impedance
Kelbert, A.; Balch, C. C.; Pulkkinen, A. A.; Egbert, G. D.; Love, J. J.; Rigler, E. J.; Fujii, I.
2016-12-01
Magnetic storms can induce geoelectric fields in the Earth's electrically conducting interior, interfering with the operations of electric-power grid industry. The ability to estimate these electric fields at Earth's surface in close to real-time and to provide local short-term predictions would improve the ability of the industry to protect their operations. At any given time, the electric field at the Earth's surface is a function of the time-variant magnetic activity (driven by the solar wind), and the local electrical conductivity structure of the Earth's crust and mantle. For this reason, implementation of an operational electric field estimation service requires an interdisciplinary, collaborative effort between space science, real-time space weather operations, and solid Earth geophysics. We highlight in this talk an ongoing collaboration between USGS, NOAA, NASA, Oregon State University, and the Japan Meteorological Agency, to develop algorithms that can be used for scenario analyses and which might be implemented in a real-time, operational setting. We discuss the development of a time domain algorithm that employs discrete time domain representation of the impedance tensor for a realistic 3D Earth, known as the discrete time impulse response (DTIR), convolved with the local magnetic field time series, to estimate the local electric field disturbances. The algorithm is validated against measured storm-time electric field data collected in the United States and Japan. We also discuss our plans for operational real-time electric field estimation using 3D Earth impedances.
Impedance based time-domain modeling of lithium-ion batteries: Part I
Gantenbein, Sophia; Weiss, Michael; Ivers-Tiffée, Ellen
2018-03-01
This paper presents a novel lithium-ion cell model, which simulates the current voltage characteristic as a function of state of charge (0%-100%) and temperature (0-30 °C). It predicts the cell voltage at each operating point by calculating the total overvoltage from the individual contributions of (i) the ohmic loss η0, (ii) the charge transfer loss of the cathode ηCT,C, (iii) the charge transfer loss and the solid electrolyte interface loss of the anode ηSEI/CT,A, and (iv) the solid state and electrolyte diffusion loss ηDiff,A/C/E. This approach is based on a physically meaningful equivalent circuit model, which is parametrized by electrochemical impedance spectroscopy and time domain measurements, covering a wide frequency range from MHz to μHz. The model is exemplarily parametrized to a commercial, high-power 350 mAh graphite/LiNiCoAlO2-LiCoO2 pouch cell and validated by continuous discharge and charge curves at varying temperature. For the first time, the physical background of the model allows the operator to draw conclusions about the performance-limiting factor at various operating conditions. Not only can the model help to choose application-optimized cell characteristics, but it can also support the battery management system when taking corrective actions during operation.
On the initial condition problem of the time domain PMCHWT surface integral equation
Uysal, Ismail Enes; Bagci, Hakan; Ergin, A. Arif; Ulku, H. Arda
2017-01-01
Non-physical, linearly increasing and constant current components are induced in marching on-in-time solution of time domain surface integral equations when initial conditions on time derivatives of (unknown) equivalent currents are not enforced
Monteghetti, Florian; Matignon, Denis; Piot, Estelle; Pascal, Lucas
2016-09-01
A methodology to design broadband time-domain impedance boundary conditions (TDIBCs) from the analysis of acoustical models is presented. The derived TDIBCs are recast exclusively as first-order differential equations, well-suited for high-order numerical simulations. Broadband approximations are yielded from an elementary linear least squares optimization that is, for most models, independent of the absorbing material geometry. This methodology relies on a mathematical technique referred to as the oscillatory-diffusive (or poles and cuts) representation, and is applied to a wide range of acoustical models, drawn from duct acoustics and outdoor sound propagation, which covers perforates, semi-infinite ground layers, as well as cavities filled with a porous medium. It is shown that each of these impedance models leads to a different TDIBC. Comparison with existing numerical models, such as multi-pole or extended Helmholtz resonator, provides insights into their suitability. Additionally, the broadly-applicable fractional polynomial impedance models are analyzed using fractional calculus.
Hornikx, Maarten; Dragna, Didier
2015-07-01
The Fourier pseudospectral time-domain method is an efficient wave-based method to model sound propagation in inhomogeneous media. One of the limitations of the method for atmospheric sound propagation purposes is its restriction to a Cartesian grid, confining it to staircase-like geometries. A transform from the physical coordinate system to the curvilinear coordinate system has been applied to solve more arbitrary geometries. For applicability of this method near the boundaries, the acoustic velocity variables are solved for their curvilinear components. The performance of the curvilinear Fourier pseudospectral method is investigated in free field and for outdoor sound propagation over an impedance strip for various types of shapes. Accuracy is shown to be related to the maximum grid stretching ratio and deformation of the boundary shape and computational efficiency is reduced relative to the smallest grid cell in the physical domain. The applicability of the curvilinear Fourier pseudospectral time-domain method is demonstrated by investigating the effect of sound propagation over a hill in a nocturnal boundary layer. With the proposed method, accurate and efficient results for sound propagation over smoothly varying ground surfaces with high impedances can be obtained.
On the initial condition problem of the time domain PMCHWT surface integral equation
Uysal, Ismail Enes
2017-05-13
Non-physical, linearly increasing and constant current components are induced in marching on-in-time solution of time domain surface integral equations when initial conditions on time derivatives of (unknown) equivalent currents are not enforced properly. This problem can be remedied by solving the time integral of the surface integral for auxiliary currents that are defined to be the time derivatives of the equivalent currents. Then the equivalent currents are obtained by numerically differentiating the auxiliary ones. In this work, this approach is applied to the marching on-in-time solution of the time domain Poggio-Miller-Chan-Harrington-Wu-Tsai surface integral equation enforced on dispersive/plasmonic scatterers. Accuracy of the proposed method is demonstrated by a numerical example.
Time-Domain Modeling of RF Antennas and Plasma-Surface Interactions
Directory of Open Access Journals (Sweden)
Jenkins Thomas G.
2017-01-01
Full Text Available Recent advances in finite-difference time-domain (FDTD modeling techniques allow plasma-surface interactions such as sheath formation and sputtering to be modeled concurrently with the physics of antenna near- and far-field behavior and ICRF power flow. Although typical sheath length scales (micrometers are much smaller than the wavelengths of fast (tens of cm and slow (millimeter waves excited by the antenna, sheath behavior near plasma-facing antenna components can be represented by a sub-grid kinetic sheath boundary condition, from which RF-rectified sheath potential variation over the surface is computed as a function of current flow and local plasma parameters near the wall. These local time-varying sheath potentials can then be used, in tandem with particle-in-cell (PIC models of the edge plasma, to study sputtering effects. Particle strike energies at the wall can be computed more accurately, consistent with their passage through the known potential of the sheath, such that correspondingly increased accuracy of sputtering yields and heat/particle fluxes to antenna surfaces is obtained. The new simulation capabilities enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We will present results/animations from high-performance (10k-100k core FDTD/PIC simulations of Alcator C-Mod antenna operation.
An innovative application of time-domain spectroscopy on localized surface plasmon resonance sensing
Li, Meng-Chi; Chang, Ying-Feng; Wang, Huai-Yi; Lin, Yu-Xen; Kuo, Chien-Cheng; Annie Ho, Ja-An; Lee, Cheng-Chung; Su, Li-Chen
2017-03-01
White-light scanning interferometry (WLSI) is often used to study the surface profiles and properties of thin films because the strength of the technique lies in its ability to provide fast and high resolution measurements. An innovative attempt is made in this paper to apply WLSI as a time-domain spectroscopic system for localized surface plasmon resonance (LSPR) sensing. A WLSI-based spectrometer is constructed with a breadboard of WLSI in combination with a spectral centroid algorithm for noise reduction and performance improvement. Experimentally, the WLSI-based spectrometer exhibits a limit of detection (LOD) of 1.2 × 10-3 refractive index units (RIU), which is better than that obtained with a conventional UV-Vis spectrometer, by resolving the LSPR peak shift. Finally, the bio-applicability of the proposed spectrometer was investigated using the rs242557 tau gene, an Alzheimer’s and Parkinson’s disease biomarker. The LOD was calculated as 15 pM. These results demonstrate that the proposed WLSI-based spectrometer could become a sensitive time-domain spectroscopic biosensing platform.
Al-Jabr, Ahmad; Alsunaidi, Mohammad A.
2010-01-01
A time-domain analysis of the propagation properties of surface-plasmon-polaritons (SPP) in Silver nanostructures is presented. The analysis is based on a simulation algorithm that unifies the formulation of different dispersion models and multi
Uysal, Ismail Enes
2016-10-01
Plasmonic structures are utilized in many applications ranging from bio-medicine to solar energy generation and transfer. Numerical schemes capable of solving equations of classical electrodynamics have been the method of choice for characterizing scattering properties of such structures. However, as dimensions of these plasmonic structures reduce to nanometer scale, quantum mechanical effects start to appear. These effects cannot be accurately modeled by available classical numerical methods. One of these quantum effects is the tunneling, which is observed when two structures are located within a sub-nanometer distance of each other. At these small distances electrons “jump" from one structure to another and introduce a path for electric current to flow. Classical equations of electrodynamics and the schemes used for solving them do not account for this additional current path. This limitation can be lifted by introducing an auxiliary tunnel with material properties obtained using quantum models and applying a classical solver to the structures connected by this auxiliary tunnel. Early work on this topic focused on quantum models that are generated using a simple one-dimensional wave function to find the tunneling probability and assume a simple Drude model for the permittivity of the tunnel. These tunnel models are then used together with a classical frequency domain solver. In this thesis, a time domain surface integral equation solver for quantum corrected analysis of transient plasmonic interactions is proposed. This solver has several advantages: (i) As opposed to frequency domain solvers, it provides results at a broad band of frequencies with a single simulation. (ii) As opposed to differential equation solvers, it only discretizes surfaces (reducing number of unknowns), enforces the radiation condition implicitly (increasing the accuracy), and allows for time step selection independent of spatial discretization (increasing efficiency). The quantum model
A wavelet-based PWTD algorithm-accelerated time domain surface integral equation solver
Liu, Yang
2015-10-26
© 2015 IEEE. The multilevel plane-wave time-domain (PWTD) algorithm allows for fast and accurate analysis of transient scattering from, and radiation by, electrically large and complex structures. When used in tandem with marching-on-in-time (MOT)-based surface integral equation (SIE) solvers, it reduces the computational and memory costs of transient analysis from equation and equation to equation and equation, respectively, where Nt and Ns denote the number of temporal and spatial unknowns (Ergin et al., IEEE Trans. Antennas Mag., 41, 39-52, 1999). In the past, PWTD-accelerated MOT-SIE solvers have been applied to transient problems involving half million spatial unknowns (Shanker et al., IEEE Trans. Antennas Propag., 51, 628-641, 2003). Recently, a scalable parallel PWTD-accelerated MOT-SIE solver that leverages a hiearchical parallelization strategy has been developed and successfully applied to the transient problems involving ten million spatial unknowns (Liu et. al., in URSI Digest, 2013). We further enhanced the capabilities of this solver by implementing a compression scheme based on local cosine wavelet bases (LCBs) that exploits the sparsity in the temporal dimension (Liu et. al., in URSI Digest, 2014). Specifically, the LCB compression scheme was used to reduce the memory requirement of the PWTD ray data and computational cost of operations in the PWTD translation stage.
A wavelet-based PWTD algorithm-accelerated time domain surface integral equation solver
Liu, Yang; Yucel, Abdulkadir C.; Gilbert, Anna C.; Bagci, Hakan; Michielssen, Eric
2015-01-01
© 2015 IEEE. The multilevel plane-wave time-domain (PWTD) algorithm allows for fast and accurate analysis of transient scattering from, and radiation by, electrically large and complex structures. When used in tandem with marching-on-in-time (MOT
VLF surface-impedance modelling techniques for coal exploration
Energy Technology Data Exchange (ETDEWEB)
Wilson, G.; Thiel, D.; O' Keefe, S. [Central Queensland University, Rockhampton, Qld. (Australia). Faculty of Engineering and Physical Systems
2000-10-01
New and efficient computational techniques are required for geophysical investigations of coal. This will allow automated inverse analysis procedures to be used for interpretation of field data. In this paper, a number of methods of modelling electromagnetic surface impedance measurements are reviewed, particularly as applied to typical coal seam geology found in the Bowen Basin. At present, the Impedance method and the finite-difference time-domain (FDTD) method appear to offer viable solutions although both have problems. The Impedance method is currently slightly inaccurate, and the FDTD method has large computational demands. In this paper both methods are described and results are presented for a number of geological targets. 17 refs., 14 figs.
Numerical results for near surface time domain electromagnetic exploration: a full waveform approach
Sun, H.; Li, K.; Li, X., Sr.; Liu, Y., Sr.; Wen, J., Sr.
2015-12-01
Time domain or Transient electromagnetic (TEM) survey including types with airborne, semi-airborne and ground play important roles in applicants such as geological surveys, ground water/aquifer assess [Meju et al., 2000; Cox et al., 2010], metal ore exploration [Yang and Oldenburg, 2012], prediction of water bearing structures in tunnels [Xue et al., 2007; Sun et al., 2012], UXO exploration [Pasion et al., 2007; Gasperikova et al., 2009] etc. The common practice is introducing a current into a transmitting (Tx) loop and acquire the induced electromagnetic field after the current is cut off [Zhdanov and Keller, 1994]. The current waveforms are different depending on instruments. Rectangle is the most widely used excitation current source especially in ground TEM. Triangle and half sine are commonly used in airborne and semi-airborne TEM investigation. In most instruments, only the off time responses are acquired and used in later analysis and data inversion. Very few airborne instruments acquire the on time and off time responses together. Although these systems acquire the on time data, they usually do not use them in the interpretation.This abstract shows a novel full waveform time domain electromagnetic method and our recent modeling results. The benefits comes from our new algorithm in modeling full waveform time domain electromagnetic problems. We introduced the current density into the Maxwell's equation as the transmitting source. This approach allows arbitrary waveforms, such as triangle, half-sine, trapezoidal waves or scatter record from equipment, being used in modeling. Here, we simulate the establishing and induced diffusion process of the electromagnetic field in the earth. The traditional time domain electromagnetic with pure secondary fields can also be extracted from our modeling results. The real time responses excited by a loop source can be calculated using the algorithm. We analyze the full time gates responses of homogeneous half space and two
Pan, Yudi; Gao, Lingli; Bohlen, Thomas
2018-05-01
Correct estimation of near-surface seismic-wave velocity when encountering lateral heterogeneity and free surface topography is one of the challenges to current shallow seismic. We propose to use time-domain full-waveform inversion (FWI) of surface waves, including both Rayleigh and Love waves, to solve this problem. We adopt a 2D time-domain finite-difference method with an improved vacuum formulation (IVF) to simulate shallow-seismic Rayleigh wave in presence of free-surface topography. We modify the IVF for SH-wave equation for the simulation of Love wave in presence of topographic free surface and prove its accuracy by benchmark tests. Checkboard model tests are performed in both cases when free-surface topography is included or neglected in FWI. Synthetic model containing a dipping planar free surface and lateral heterogeneity was then tested, in both cases of considering and neglecting free-surface topography. Both checkerboard and synthetic models show that Rayleigh- and Love-wave FWI have similar ability of reconstructing near-surface structures when free-surface topography is considered, while Love-wave FWI could reconstruct near-surface structures better than Rayleigh-wave when free-surface topography is neglected.
DEFF Research Database (Denmark)
Bording, Thue Sylvester; Fiandaca, Gianluca; Maurya, Pradip Kumar
Traditional methods for mapping possible flowpaths of contaminants in sedimentary environments by boreholes may often be insufficient. Additional information may be acquired by geophysical methods. In the present study, cross-borehole and surface measurements were performed using time-domain indu......-domain induced polarization (TDIP). After measurements the entire test site was dug out, and the geology was described. A 2D spectral inversion of the combined dataset is presented, which is in great correspondence with the observed geology....
Impedance of Surface Footings on Layered Ground
DEFF Research Database (Denmark)
Andersen, Lars; Clausen, Johan Christian
2005-01-01
is discussed. Based on the Green's function for a stratified half-space, the impedance of a surface footing with arbitrary shape is computed. A wind turbine foundation is analysed in the frequency range 0 to 3 Hz. Analyses show that soil stratification may lead to a significant changes in the impedance related...
Impedance of Surface Footings on Layered Ground
DEFF Research Database (Denmark)
Andersen, Lars; Clausen, Johan
2008-01-01
is discussed. Based on the Green's function for a stratified half-space, the impedance of a surface footing with arbitrary shape is computed. A wind turbine foundation is analysed in the frequency range 0-3 Hz. Analyses show that soil stratification may lead to significant changes in the impedance related...
Directory of Open Access Journals (Sweden)
Min-Jhong Gu
2014-08-01
Full Text Available This article describes the development of a suite of programs that is capable of simulating the radiation properties of a random rough surface (RRS. The fundamental approach involves the generation, by fast Fourier transform (FFT built with rigorous finite difference time domain (FDTD, as the theoretical basis for the simulation of a bidirectional reflectance distribution function (BRDF of the RRS. The results are compared with the measurements and modeling of existing work to verify the feasibility of customized programming. It was found that the results of this study were a better match to the measurement data than those achieved in other modeling work.
Al-Jabr, Ahmad
2010-01-01
A time-domain analysis of the propagation properties of surface-plasmon-polaritons (SPP) in Silver nanostructures is presented. The analysis is based on a simulation algorithm that unifies the formulation of different dispersion models and multi-pole relations into one form. The main objective of this work is to perform a comparative analysis between different dispersion models used for Silver, including Debye, Drude and multi-pole Lorentz-Drude models. The quantities that are used in the comparison are the SPP propagation length and propagation speed. Experimental results reported in literature are used to support the conclusions.
DEFF Research Database (Denmark)
Tanev, Stoyan; Sun, Wenbo
2012-01-01
for particle and surface scattering calculations and the uniaxial perfectly matched layer (UPML) absorbing boundary conditions for truncation of the FDTD grid. We show that the FDTD approach has a significant potential for studying the light scattering by cloud, dust, and biological particles. The applications...
Fibre-tree network for water-surface ranging using an optical time-domain reflectometry technique
Directory of Open Access Journals (Sweden)
Yoshiaki Yamabayashi
2014-10-01
Full Text Available To monitor water level at long distance, a fibre-based time-domain reflectometry network is proposed. A collimator at each fibre end of a tree-type network retrieves 1.55 μm wavelength pulses that are reflected back from remote surfaces. Since this enables a power-supply-free sensor network with non-metal media, this system is expected to be less susceptible to lightning strikes and power cuts than conventional systems that use electrically powered sensors and metal cables. In the present Letter, a successful simultaneous monitoring experiment of two water levels in the laboratory, as well as a trial for detecting a disturbed surface by beam-expanding is reported.
International Nuclear Information System (INIS)
Fujii, A; Hayashi, S; Fujii, S; Yanagi, K
2014-01-01
This paper deals with the functional performance of optical surface texture measuring instruments on the market. It is well known that their height response curves against certain referential geometry are not always identical to each other. So, a more precise study on the optical instrument's characteristics is greatly needed. Firstly, we developed a new simulation tool using a finite-difference time-domain technique, which enables the prediction of the height response curve against the fundamental surface geometry in the case of the confocal laser scanning microscope. Secondly, by utilizing this new simulation tool, measurement results, including outliers, were compared with the analytical simulation results. The comparison showed the consistency, which indicates that necessary conditions of surface measurement standards for verifying the instrument performance can be established. Consequently, we suggest that the maximum measurable slope angle must be added to evaluation subjects as significant metrological characteristics of measuring instruments, along with the lateral period limit. Finally, we propose a procedure to determine the lateral period limit in an ISO standard. (paper)
Concentric artificial impedance surface for directional sound beamforming
Directory of Open Access Journals (Sweden)
Kyungjun Song
2017-03-01
Full Text Available Utilizing acoustic metasurfaces consisting of subwavelength resonant textures, we design an artificial impedance surface by creating a new boundary condition. We demonstrate a circular artificial impedance surface with surface impedance modulation for directional sound beamforming in three-dimensional space. This artificial impedance surface is implemented by revolving two-dimensional Helmholtz resonators with varying internal coiled path. Physically, the textured surface has inductive surface impedance on its inner circular patterns and capacitive surface impedance on its outer circular patterns. Directional receive beamforming can be achieved using an omnidirectional microphone located at the focal point formed by the gradient-impeding surface. In addition, the uniaxial surface impedance patterning inside the circular aperture can be used for steering the direction of the main lobe of the radiation pattern.
Directory of Open Access Journals (Sweden)
Chunling DU
2012-03-01
Full Text Available In this work the condition of metallic structures are classified based on the acquired sensor data from a surface-mounted piezoelectric sensor/actuator network. The structures are aluminum plates with riveted holes and possible crack damage at these holes. A 400 kHz sine wave burst is used as diagnostic signals. The combination of time-domain S0 waves from received sensor signals is directly used as features and preprocessing is not needed for the dam age detection. Since the time sequence of the extracted S0 has a high dimension, principal component estimation is applied to reduce its dimension before entering NN (neural network training for classification. An LVQ (learning vector quantization NN is used to classify the conditions as healthy or damaged. A number of FEM (finite element modeling results are taken as inputs to the NN for training, since the simulated S0 waves agree well with the experimental results on real plates. The performance of the classification is then validated by using these testing results.
DEFF Research Database (Denmark)
Schamper, Cyril Noel Clarence; Auken, Esben; Sørensen, Kurt Ingvard K.I.
2014-01-01
Very early times in the order of 2-3 μs from the end of the turn-off ramp for time-domain electromagnetic systems are crucial for obtaining a detailed resolution of the near-surface geology in the depth interval 0-20 m. For transient electromagnetic systems working in the off time, an electric cu...... resolution of shallow geological layers in the depth interval 0-20 m. This is proved by comparing results from the airborne electromagnetic survey to more than 100 km of Electrical Resistivity Tomography measured with 5 m electrode spacing.......Very early times in the order of 2-3 μs from the end of the turn-off ramp for time-domain electromagnetic systems are crucial for obtaining a detailed resolution of the near-surface geology in the depth interval 0-20 m. For transient electromagnetic systems working in the off time, an electric...
Impedance deduction for vegetated roof surfaces : multiple geometry strategy
Liu, C.; Hornikx, M.
2016-01-01
The transfer function method is an efficient procedure to deduce the ground surface impedance from short-range propagation measurements using one point source. It is able to provide a reasonable prediction of the surface impedance of a vegetated roof as well, and the characteristics of the vegetated
Time Domain Induced Polarization
DEFF Research Database (Denmark)
Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest
2012-01-01
Time-domain-induced polarization has significantly broadened its field of reference during the last decade, from mineral exploration to environmental geophysics, e.g., for clay and peat identification and landfill characterization. Though, insufficient modeling tools have hitherto limited the use...... of time-domaininduced polarization for wider purposes. For these reasons, a new forward code and inversion algorithm have been developed using the full-time decay of the induced polarization response, together with an accurate description of the transmitter waveform and of the receiver transfer function......, to reconstruct the distribution of the Cole-Cole parameters of the earth. The accurate modeling of the transmitter waveform had a strong influence on the forward response, and we showed that the difference between a solution using a step response and a solution using the accurate modeling often is above 100...
Estimation of surface impedance using different types of microphone arrays
DEFF Research Database (Denmark)
Richard, Antoine Philippe André; Fernandez Grande, Efren; Brunskog, Jonas
2017-01-01
This study investigates microphone array methods to measure the angle dependent surface impedance of acoustic materials. The methods are based on the reconstruction of the sound field on the surface of the material, using a wave expansion formulation. The reconstruction of both the pressure...... and the particle velocity leads to an estimation of the surface impedance for a given angle of incidence. A porous type absorber sample is tested experimentally in anechoic conditions for different array geometries, sample sizes, incidence angles, and distances between the array and sample. In particular......, the performances of a rigid spherical array and a double layer planar array are examined. The use of sparse array processing methods and conventional regulariation approaches are studied. In addition, the influence of the size of the sample on the surface impedance estimation is investigated using both...
Finite difference time domain modeling of spiral antennas
Penney, Christopher W.; Beggs, John H.; Luebbers, Raymond J.
1992-01-01
The objectives outlined in the original proposal for this project were to create a well-documented computer analysis model based on the finite-difference, time-domain (FDTD) method that would be capable of computing antenna impedance, far-zone radiation patterns, and radar cross-section (RCS). The ability to model a variety of penetrable materials in addition to conductors is also desired. The spiral antennas under study by this project meet these requirements since they are constructed of slots cut into conducting surfaces which are backed by dielectric materials.
Surface impedance of travelling--Wave antenna in magnetized plasma
International Nuclear Information System (INIS)
Denisenko, I.B.; Ostrikov, K.N.
1993-01-01
Wave properties of metal antennas immersed in a magnetoactive plasma are intensively studied nowadays with the objects of radio communications in ionosphere, plasma heating, gas discharge technique. Many papers are devoted to studies of sheath waves (SW) in magnetoplasma, which are surface by nature and propagate along the metal-low-density sheath-plasma waveguide structure. The results of these papers suggest that the existence of these waves makes significant contribution in antenna impedance. Note that the impedance measurement is one of possible ways of experimental surface waves characterization. In the present report the surface impedance of travelling SW antenna immersed in magnetoactive plasma is calculated and its dependence on the waveguide structure parameters such as plasma density, external magnetic field H 0 and electrons collisional frequency values, sheath region width, conductivity of metal surface is studied. The calculations have been carried out in a quasiplane approximation, when antenna radius greatly exceeds the SW skin depth. Note that the finite conductivity of metal is necessary to be taken into account to provide a finite surface impedance value. The surface impedance is calculated in two cases, namely when SW propagate along (Ζ parallel ) and across (Ζ perpendicular ) the external magnetic field. The relation between the values Ζ parallel and Ζ perpendicular is obtained. This relation shows that the values Ζ parallel and Ζ parallel may satisfy both inequalities Ζ parallel much-gt Ζ perpendicular and Ζ perpendicular approx-gt Ζ perpendicular dependent on the parameters of the structure. The comparison of dispersion properties of the SW propagating along Η 0 with the experimental results is carried out. The results are shown to satisfactorily correspond to the experimental results
Design methodology to enhance high impedance surfaces performances
Directory of Open Access Journals (Sweden)
M. Grelier
2014-04-01
Full Text Available A methodology is introduced for designing wideband, compact and ultra-thin high impedance surfaces (HIS. A parametric study is carried out to examine the effect of the periodicity on the electromagnetic properties of an HIS. This approach allows designers to reach the best trade-off for HIS performances.
Hsiu, Hsin; Chen, Chao-Tsung; Hung, Shuo-Hui; Chen, Guan-Zhang; Huang, Yu-Ling
2018-04-13
There is an urgent need to improve the early diagnosis of breast cancer. The present study applied spectral and beat-to-beat analyses to laser-Doppler (LDF) data sequences measured on the skin surface on the back of the right hands, with the aim of comparing the different peripheral microcirculatory-blood-flow (MBF) perfusion condition between breast-cancer and control subjects. ECG and LDF signals were obtained simultaneously and noninvasively from 23 breast-cancer patients and 23 age-matched control subjects. Time-domain beat-to-beat indexes and their variability parameters were calculated. Spectral indexes were calculated using the Morlet wavelet transform. The beat-to-beat LDF pulse width and its variability were significantly smaller in cancer patients than in the controls. The energy contributions of endothelial-, neural-, and myogenic-related frequency bands were also significantly smaller in cancer patients. The present study has revealed significant differences in the beat-to-beat and spectral indexes of skin-surface-acquired LDF signals between control subjects and breast-cancer patients. This illustrates that LDF indexes may be useful for monitoring the changes in the MBF perfusion condition induced by breast cancer. Since the breast-cancer patients were at TNM stages 0- 2, the present findings may aid the development of indexes for detecting breast cancer.
Estimating surface acoustic impedance with the inverse method.
Piechowicz, Janusz
2011-01-01
Sound field parameters are predicted with numerical methods in sound control systems, in acoustic designs of building and in sound field simulations. Those methods define the acoustic properties of surfaces, such as sound absorption coefficients or acoustic impedance, to determine boundary conditions. Several in situ measurement techniques were developed; one of them uses 2 microphones to measure direct and reflected sound over a planar test surface. Another approach is used in the inverse boundary elements method, in which estimating acoustic impedance of a surface is expressed as an inverse boundary problem. The boundary values can be found from multipoint sound pressure measurements in the interior of a room. This method can be applied to arbitrarily-shaped surfaces. This investigation is part of a research programme on using inverse methods in industrial room acoustics.
Zakirov, Andrey; Belousov, Sergei; Valuev, Ilya; Levchenko, Vadim; Perepelkina, Anastasia; Zempo, Yasunari
2017-10-01
We demonstrate an efficient approach to numerical modeling of optical properties of large-scale structures with typical dimensions much greater than the wavelength of light. For this purpose, we use the finite-difference time-domain (FDTD) method enhanced with a memory efficient Locally Recursive non-Locally Asynchronous (LRnLA) algorithm called DiamondTorre and implemented for General Purpose Graphical Processing Units (GPGPU) architecture. We apply our approach to simulation of optical properties of organic light emitting diodes (OLEDs), which is an essential step in the process of designing OLEDs with improved efficiency. Specifically, we consider a problem of excitation and propagation of surface plasmon polaritons (SPPs) in a typical OLED, which is a challenging task given that SPP decay length can be about two orders of magnitude greater than the wavelength of excitation. We show that with our approach it is possible to extend the simulated volume size sufficiently so that SPP decay dynamics is accounted for. We further consider an OLED with periodically corrugated metallic cathode and show how the SPP decay length can be greatly reduced due to scattering off the corrugation. Ultimately, we compare the performance of our algorithm to the conventional FDTD and demonstrate that our approach can efficiently be used for large-scale FDTD simulations with the use of only a single GPGPU-powered workstation, which is not practically feasible with the conventional FDTD.
Meandered-line antenna with integrated high-impedance surface.
Energy Technology Data Exchange (ETDEWEB)
Forman, Michael A.
2010-09-01
A reduced-volume antenna composed of a meandered-line dipole antenna over a finite-width, high-impedance surface is presented. The structure is novel in that the high-impedance surface is implemented with four Sievenpiper via-mushroom unit cells, whose area is optimized to match the meandered-line dipole antenna. The result is an antenna similar in performance to patch antenna but one fourth the area that can be deployed directly on the surface of a conductor. Simulations demonstrate a 3.5 cm ({lambda}/4) square antenna with a bandwidth of 4% and a gain of 4.8 dBi at 2.5 GHz.
Hornikx, M.C.J.; Dragna, D.
2015-01-01
The Fourier pseudospectral time-domain method is an efficient wave-based method to model sound propagation in inhomogeneous media. One of the limitations of the method for atmospheric sound propagation purposes is its restriction to a Cartesian grid, confining it to staircase-like geometries. A
Heliborne time domain electromagnetic system
International Nuclear Information System (INIS)
Bhattacharya, S.
2009-01-01
Atomic Minerals Directorate (AMD), are using heliborne and ground time domain electromagnetic (TDEM) system for the exploration of deep seated unconformity type uranium deposits. Uranium has been explored in various parts of the world like Athabasca basin using time domain electromagnetic system. AMD has identified some areas in India where such deposits are available. Apart from uranium exploration, the TDEM systems are used for the exploration of deep seated minerals like diamonds. Bhabha Atomic Research Centre (BARC) is involved in the indigenous design of the heliborne time domain system since this system is useful for DAE and also it has a scope of wide application. In this paper we discuss about the principle of time domain electromagnetic systems, their capabilities and the development and problems of such system for various other mineral exploration. (author)
Reconstruction of surface impedance of an object located over a planar PEC surface
International Nuclear Information System (INIS)
Uenal, Guel Seda; Cayoeren, Mehmet; Tetik, Evrim
2008-01-01
A method for the determination of inhomogeneous surface impedance of an arbitrary shaped cylindrical object located over a perfectly conducting (PEC) plane is presented. The problem is reduced to the solution of an ill-posed integral equation by the use of single layer representation which is handled by Truncated Singular Value Decomposition (TSVD). The total field and its normal derivative on the boundary of the object which are required for the evaluation of the surface impedance are obtained through Nystroem method. The method can also be used in shape reconstruction by using the relation between the shape of a PEC object and its equivalent one in terms of the surface impedance. The numerical implementations yield quite satisfactory results.
Surface impedance and optimum surface resistance of a superconductor with an imperfect surface
Gurevich, Alex; Kubo, Takayuki
2017-11-01
We calculate a low-frequency surface impedance of a dirty, s -wave superconductor with an imperfect surface incorporating either a thin layer with a reduced pairing constant or a thin, proximity-coupled normal layer. Such structures model realistic surfaces of superconducting materials which can contain oxide layers, absorbed impurities, or nonstoichiometric composition. We solved the Usadel equations self-consistently and obtained spatial distributions of the order parameter and the quasiparticle density of states which then were used to calculate a low-frequency surface resistance Rs(T ) and the magnetic penetration depth λ (T ) as functions of temperature in the limit of local London electrodynamics. It is shown that the imperfect surface in a single-band s -wave superconductor results in a nonexponential temperature dependence of Z (T ) at T ≪Tc which can mimic the behavior of multiband or d -wave superconductors. The imperfect surface and the broadening of the gap peaks in the quasiparticle density of states N (ɛ ) in the bulk give rise to a weakly temperature-dependent residual surface resistance. We show that the surface resistance can be optimized and even reduced below its value for an ideal surface by engineering N (ɛ ) at the surface using pair-breaking mechanisms, particularly by incorporating a small density of magnetic impurities or by tuning the thickness and conductivity of the normal layer and its contact resistance. The results of this work address the limit of Rs in superconductors at T ≪Tc , and the ways of engineering the optimal density of states by surface nanostructuring and impurities to reduce losses in superconducting microresonators, thin-film strip lines, and radio-frequency cavities for particle accelerators.
Surface impedance of superconductors in wide frequency ranges for wake field calculations
International Nuclear Information System (INIS)
Davidovskii, V.G.
2006-01-01
The problem of the surface impedance of superconductors in wide frequency ranges for calculations of wake fields, generated by bunches of charged particles moving axially inside a metallic vacuum chambers, is solved. The case of specular electron reflection at the superconductor surface is considered. The expression for the surface impedance of superconductors suitable for numerical computation is derived [ru
Flexible time domain averaging technique
Zhao, Ming; Lin, Jing; Lei, Yaguo; Wang, Xiufeng
2013-09-01
Time domain averaging(TDA) is essentially a comb filter, it cannot extract the specified harmonics which may be caused by some faults, such as gear eccentric. Meanwhile, TDA always suffers from period cutting error(PCE) to different extent. Several improved TDA methods have been proposed, however they cannot completely eliminate the waveform reconstruction error caused by PCE. In order to overcome the shortcomings of conventional methods, a flexible time domain averaging(FTDA) technique is established, which adapts to the analyzed signal through adjusting each harmonic of the comb filter. In this technique, the explicit form of FTDA is first constructed by frequency domain sampling. Subsequently, chirp Z-transform(CZT) is employed in the algorithm of FTDA, which can improve the calculating efficiency significantly. Since the signal is reconstructed in the continuous time domain, there is no PCE in the FTDA. To validate the effectiveness of FTDA in the signal de-noising, interpolation and harmonic reconstruction, a simulated multi-components periodic signal that corrupted by noise is processed by FTDA. The simulation results show that the FTDA is capable of recovering the periodic components from the background noise effectively. Moreover, it can improve the signal-to-noise ratio by 7.9 dB compared with conventional ones. Experiments are also carried out on gearbox test rigs with chipped tooth and eccentricity gear, respectively. It is shown that the FTDA can identify the direction and severity of the eccentricity gear, and further enhances the amplitudes of impulses by 35%. The proposed technique not only solves the problem of PCE, but also provides a useful tool for the fault symptom extraction of rotating machinery.
Microwave surface impedance of MgB2 thin film
International Nuclear Information System (INIS)
Jin, B B; Klein, N; Kang, W N; Kim, Hyeong-Jin; Choi, Eun-Mi; Lee, Sung-I K; Dahm, T; Maki, K
2003-01-01
The microwave surface impedance Z s = R s + jωμ 0 λ was measured with dielectric resonator techniques for two c-axis-oriented MgB 2 thin films. The temperature dependence of the penetration depth λ measured with a sapphire resonator at 17.93 GHz can be well fitted from 5 K close to T c by the standard BCS integral expression assuming the reduced energy gap Δ(0)/kT c to be as low as 1.13 and 1.03 for the two samples. From these fits the penetration depth at zero temperatures was determined to be 102 nm and 107 nm, respectively. The results clearly indicate the s-wave nature of the order parameter. The temperature dependence of surface resistance R s , measured with a rutile dielectric resonator, shows an exponential behaviour below about T c /2 with a reduced energy gap being consistent with the one determined from the λ data. The R s value at 4.2 K was found to be as low as 19 μΩ at 7.2 GHz, which is comparable with that of a high-quality high-temperature thin film of YBa 2 Cu 3 O 7 . A higher-order mode at 17.9 GHz was employed to determine the frequency f dependence of R s ∝ f n(T) . Our results revealed a decrease of n with increasing temperature ranging from n = 2 below 8 K to n 1 from 13 to 34 K
Time domain electromagnetic metal detectors
International Nuclear Information System (INIS)
Hoekstra, P.
1996-01-01
This presentation focuses on illustrating by case histories the range of applications and limitations of time domain electromagnetic (TDEM) systems for buried metal detection. Advantages claimed for TDEM metal detectors are: independent of instrument response (Geonics EM61) to surrounding soil and rock type; simple anomaly shape; mitigation of interference by ambient electromagnetic noise; and responsive to both ferrous and non-ferrous metallic targets. The data in all case histories to be presented were acquired with the Geonics EM61 TDEM system. Case histories are a test bed site on Molokai, Hawaii; Fort Monroe, Virginia; and USDOE, Rocky Flats Plant. The present limitations of this technology are: discrimination capabilities in terms of type of ordnance, and depth of burial is limited, and ability of resolving targets with small metallic ambient needs to be improved
Li, Ping; Jiang, Li Jun; Bagci, Hakan
2018-01-01
It is well known that graphene demonstrates spatial dispersion properties, i.e., its conductivity is nonlocal and a function of spectral wave number (momentum operator) q. In this paper, to account for effects of spatial dispersion on transmission of high speed signals along graphene nano-ribbon (GNR) interconnects, a discontinuous Galerkin time-domain (DGTD) algorithm is proposed. The atomically-thick GNR is modeled using a nonlocal transparent surface impedance boundary condition (SIBC) incorporated into the DGTD scheme. Since the conductivity is a complicated function of q (and one cannot find an analytical Fourier transform pair between q and spatial differential operators), an exact time domain SIBC model cannot be derived. To overcome this problem, the conductivity is approximated by its Taylor series in spectral domain under low-q assumption. This approach permits expressing the time domain SIBC in the form of a second-order partial differential equation (PDE) in current density and electric field intensity. To permit easy incorporation of this PDE with the DGTD algorithm, three auxiliary variables, which degenerate the second-order (temporal and spatial) differential operators to first-order ones, are introduced. Regarding to the temporal dispersion effects, the auxiliary differential equation (ADE) method is utilized to eliminates the expensive temporal convolutions. To demonstrate the applicability of the proposed scheme, numerical results, which involve characterization of spatial dispersion effects on the transfer impedance matrix of GNR interconnects, are presented.
Li, Ping
2018-04-13
It is well known that graphene demonstrates spatial dispersion properties, i.e., its conductivity is nonlocal and a function of spectral wave number (momentum operator) q. In this paper, to account for effects of spatial dispersion on transmission of high speed signals along graphene nano-ribbon (GNR) interconnects, a discontinuous Galerkin time-domain (DGTD) algorithm is proposed. The atomically-thick GNR is modeled using a nonlocal transparent surface impedance boundary condition (SIBC) incorporated into the DGTD scheme. Since the conductivity is a complicated function of q (and one cannot find an analytical Fourier transform pair between q and spatial differential operators), an exact time domain SIBC model cannot be derived. To overcome this problem, the conductivity is approximated by its Taylor series in spectral domain under low-q assumption. This approach permits expressing the time domain SIBC in the form of a second-order partial differential equation (PDE) in current density and electric field intensity. To permit easy incorporation of this PDE with the DGTD algorithm, three auxiliary variables, which degenerate the second-order (temporal and spatial) differential operators to first-order ones, are introduced. Regarding to the temporal dispersion effects, the auxiliary differential equation (ADE) method is utilized to eliminates the expensive temporal convolutions. To demonstrate the applicability of the proposed scheme, numerical results, which involve characterization of spatial dispersion effects on the transfer impedance matrix of GNR interconnects, are presented.
1980-09-01
where 4BD represents the instantaneous effect of the body, while OFS represents the free surface disturbance generated by the body over all previous...acceleration boundary condition. This deter- mines the time-derivative of the body-induced component of the flow, 4BD (as well as OBD through integration...panel with uniform density ei acting over a surface of area Ai is replaced by a single point source with strength s i(t) - A i(a i(t n ) + (t-t n ) G( td
Impedance de surface dans les supraconducteurs quasi-bidimensionnels
Achkir, Driss Brice
Ce travail a caractere experimental et theorique vise l'etude de l'etat supraconducteur de trois familles de composes: les supraconducteurs conventionnels, les organiques et les cuprates YBCO. Pour ce faire, nous avons utilise une technique hyperfrequence, a savoir la mesure d'impedance de surface en fonction de la temperature et du champ magnetique. Dans les supraconducteurs conventionnels, nous avons mesure pour la premiere fois le pic de "coherence" dans la partie reelle de la conductivite. Bien que predit par la theorie BCS, ce pic n'avait pas ete clairement observe en raison de difficultes techniques liees a ce type d'experience. D'autre part, la theorie d'Eliashberg appliquee a la partie reelle de la conductivite du niobium nous a revele l'importance des mesures hyperfrequences pour mieux extraire la partie basse frequence de la densite spectrale alphasp2F(omega). Cette possibilite est attrayante puisque c'est precisement la region de frequences de alphasp2F(omega) ou les donnees d'effet tunnel sont imprecises. Les resultats obtenus sur la longueur de penetration dans les organiques et les cuprates ont permis de montrer que le gap presente des lignes de zeros au niveau de Fermi ou qu'il est, a tout le moins, fortement anisotrope. En effet, la dependance en temperature de la longueur de penetration dans les cristaux purs est lineaire a basse temperature et elle devient quadratique dans les cristaux dopes. Pour le cas des supraconducteurs organiques quasi-bidimensionnels (Et)sb2X, nous avons aussi observe un maximum sur la partie reelle de la conductivite qui n'a rien a voir avec un pic de coherence. Pour ces composes, nous avons effectue une des toutes premieres etudes des fluctuations supraconductrices en temperature et en champ magnetique. Nous montrons que la paraconductivite sigmasp' due aux fluctuations presente un comportement de type Aslamazov-Larkin de nature tridimensionnelle. Ces mesures sont appuyees par les resultats theoriques d'un modele Ginzburg
Impedance spectroscopy studies of surface engineered TiO2 ...
Indian Academy of Sciences (India)
Administrator
Impedance; nanoTiO2; self-assembled monolayers; electrical resistivity; permittivity. 1. Introduction ... search studies showed that nanostructured TiO2 ceramics possess ..... tion handbook (ed) J Cazes (New York: Marcel Dekker). 3rd ed, p ...
Xiao, B P; Reece, C E; Phillips, H L; Geng, R L; Wang, H; Marhauser, F; Kelley, M J
2011-05-01
A radio frequency (RF) surface impedance characterization (SIC) system that uses a novel sapphire-loaded niobium cavity operating at 7.5 GHz has been developed as a tool to measure the RF surface impedance of flat superconducting material samples. The SIC system can presently make direct calorimetric RF surface impedance measurements on the central 0.8 cm(2) area of 5 cm diameter disk samples from 2 to 20 K exposed to RF magnetic fields up to 14 mT. To illustrate system utility, we present first measurement results for a bulk niobium sample.
Microwave effective surface impedance of structures including a high-Tc superconducting film
International Nuclear Information System (INIS)
Hartemann, P.
1992-01-01
The microwave effective surface impedances of different stacks made of high-temperature superconducting films, dielectric materials and bulk normal metals were computed. The calculations were based on the two-fluid model of superconductors and the conventional transmission line theory. These effective impedances are compared to the calculated intrinsic surface impedances of the stacked superconducting films. The considered superconducting material has been the oxide YBa 2 Cu 3 O 7 epitaxially grown on crystalline substrates (MgO, LaAlO 3 , SrTiO 3 ), the film thickness ranging from a few nm to 1μm. Discrepancies between the effective surface resistances or reactances and the corresponding intrinsic values were determined at 10 GHz for non resonant or resonant structures. At resonance the surface resistance discrepancy exhibits a sharp peak which reaches 10 4 or more in relative value according to the geometry and the used materials. Obviously the effective surface reactance shows also huge variations about the resonance and may be negative. Moreover geometries allowing to obtain an effective resistance smaller than the film intrinsic value have been found. The effects of the resonance phenomenon on the electromagnetic wave reflectivity and reflection phase shift are investigated. Therefore the reported theoretical results demonstrate that the effective surface impedance of YBCO films with a thickness smaller than 500 nm can be very different from the intrinsic film impedance according to the structures. (Author). 3 refs., 10 figs., 2 tabs
High transmission acoustic focusing by impedance-matched acoustic meta-surfaces
Al Jahdali, Rasha
2016-01-19
Impedance is an important issue in the design of acoustic lenses because mismatched impedance is detrimental to real focusing applications. Here, we report two designs of acoustic lenses that focus acoustic waves in water and air, respectively. They are tailored by acoustic meta-surfaces, which are rigid thin plates decorated with periodically distributed sub-wavelength slits. Their respective building blocks are constructed from the coiling-up spaces in water and the layered structures in air. Analytic analysis based on coupled-mode theory and transfer matrix reveals that the impedances of the lenses are matched to those of the background media. With these impedance-matched acoustic lenses, we demonstrate the acoustic focusing effect by finite-element simulations.
High transmission acoustic focusing by impedance-matched acoustic meta-surfaces
Al Jahdali, Rasha; Wu, Ying
2016-01-01
Impedance is an important issue in the design of acoustic lenses because mismatched impedance is detrimental to real focusing applications. Here, we report two designs of acoustic lenses that focus acoustic waves in water and air, respectively. They are tailored by acoustic meta-surfaces, which are rigid thin plates decorated with periodically distributed sub-wavelength slits. Their respective building blocks are constructed from the coiling-up spaces in water and the layered structures in air. Analytic analysis based on coupled-mode theory and transfer matrix reveals that the impedances of the lenses are matched to those of the background media. With these impedance-matched acoustic lenses, we demonstrate the acoustic focusing effect by finite-element simulations.
Structure Irregularity Impedes Drop Roll-Off at Superhydrophobic Surfaces
DEFF Research Database (Denmark)
Larsen, Simon Tylsgaard; Andersen, Nis Korsgaard; Søgaard, Emil
2014-01-01
-off angles is found to be caused by a decrease of the receding contact angle, which in turn is caused by an increase of the triple phase contact line of the drops for those more irregular surfaces. To understand the observation, we propose to treat the microdrops as rigid bodies and apply a torque balance...
Calibration of TAMA300 in time domain
International Nuclear Information System (INIS)
Telada, Souichi; Tatsumi, Daisuke; Akutsu, Tomomi; Ando, Masaki; Kanda, Nobuyuki
2005-01-01
We could reconstruct the strain of gravitational wave signals from acquired data in the time domain by using the infinite impulse response filter technique in TAMA300. We would like to analyse the waveform in the time domain for burst-like signal, merger phase waveform of binary neutron stars, and so on. We established the way to make a continuous time-series gravitational wave strain signal. We compared the time-domain reconstruction with the Fourier-space reconstruction. Both coincided within 3% in the observation range. We could also produce the voltage signal which would be recorded by the data-acquisition system from a simulated gravitational wave. This is useful for some analyses of simulations and signal injections. We could extract the waveform of the hardware injection signal in an observational run in the time domain. The extracted waveform was similar to the injection signal
Bockman, Alexander; Fackler, Cameron; Xiang, Ning
2015-04-01
Acoustic performance for an interior requires an accurate description of the boundary materials' surface acoustic impedance. Analytical methods may be applied to a small class of test geometries, but inverse numerical methods provide greater flexibility. The parameter estimation problem requires minimizing prediction vice observed acoustic field pressure. The Bayesian-network sampling approach presented here mitigates other methods' susceptibility to noise inherent to the experiment, model, and numerics. A geometry agnostic method is developed here and its parameter estimation performance is demonstrated for an air-backed micro-perforated panel in an impedance tube. Good agreement is found with predictions from the ISO standard two-microphone, impedance-tube method, and a theoretical model for the material. Data by-products exclusive to a Bayesian approach are analyzed to assess sensitivity of the method to nuisance parameters.
Casimir forces in the time domain: Theory
International Nuclear Information System (INIS)
Rodriguez, Alejandro W.; McCauley, Alexander P.; Joannopoulos, John D.; Johnson, Steven G.
2009-01-01
We present a method to compute Casimir forces in arbitrary geometries and for arbitrary materials based on the finite-difference time-domain (FDTD) scheme. The method involves the time evolution of electric and magnetic fields in response to a set of current sources, in a modified medium with frequency-independent conductivity. The advantage of this approach is that it allows one to exploit existing FDTD software, without modification, to compute Casimir forces. In this paper, we focus on the derivation, implementation choices, and essential properties of the time-domain algorithm, both considered analytically and illustrated in the simplest parallel-plate geometry.
Graphene as a high impedance surface for ultra-wideband electromagnetic waves
Energy Technology Data Exchange (ETDEWEB)
Aldrigo, Martino; Costanzo, Alessandra [Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi” – DEI, University of Bologna, Viale del Risorgimento, 2, 40132 Bologna (Italy); Dragoman, Mircea [National Institute for Research and Development in Microtechnology (IMT), P.O. Box 38-160, 023573 Bucharest (Romania); Dragoman, Daniela [Department of Physics, University of Bucharest, P.O. Box MG-11, 077125 Bucharest (Romania)
2013-11-14
The metals are regularly used as reflectors of electromagnetic fields emitted by antennas ranging from microwaves up to THz. To enhance the reflection and thus the gain of the antenna, metallic high impedance surfaces (HIS) are used. HIS is a planar array of continuous metallic periodic cell surfaces able to suppress surface waves, which cause multipath interference and backward radiation in a narrow bandwidth near the cell resonance. Also, the image currents are reduced, and therefore the antenna can be placed near the HIS. We demonstrate that graphene is acting as a HIS surface in a very large bandwidth, from microwave to THz, suppressing the radiation leakages better than a metal.
Generating Dynamic Persistence in the Time Domain
Guerrero, A.; Smith, L. A.; Smith, L. A.; Kaplan, D. T.
2001-12-01
Many dynamical systems present long-range correlations. Physically, these systems vary from biological to economical, including geological or urban systems. Important geophysical candidates for this type of behaviour include weather (or climate) and earthquake sequences. Persistence is characterised by slowly decaying correlation function; that, in theory, never dies out. The Persistence exponent reflects the degree of memory in the system and much effort has been expended creating and analysing methods that successfully estimate this parameter and model data that exhibits persistence. The most widely used methods for generating long correlated time series are not dynamical systems in the time domain, but instead are derived from a given spectral density. Little attention has been drawn to modelling persistence in the time domain. The time domain approach has the advantage that an observation at certain time can be calculated using previous observations which is particularly suitable when investigating the predictability of a long memory process. We will describe two of these methods in the time domain. One is a traditional approach using fractional ARIMA (autoregressive and moving average) models; the second uses a novel approach to extending a given series using random Fourier basis functions. The statistical quality of the two methods is compared, and they are contrasted with weather data which shows, reportedly, persistence. The suitability of this approach both for estimating predictability and for making predictions is discussed.
Time-Domain Simulation of RF Couplers
International Nuclear Information System (INIS)
Smithe, David; Carlsson, Johan; Austin, Travis
2009-01-01
We have developed a finite-difference time-domain (FDTD) fluid-like approach to integrated plasma-and-coupler simulation [1], and show how it can be used to model LH and ICRF couplers in the MST and larger tokamaks.[2] This approach permits very accurate 3-D representation of coupler geometry, and easily includes non-axi-symmetry in vessel wall, magnetic equilibrium, and plasma density. The plasma is integrated with the FDTD Maxwell solver in an implicit solve that steps over electron time-scales, and permits tenuous plasma in the coupler itself, without any need to distinguish or interface between different regions of vacuum and/or plasma. The FDTD algorithm is also generalized to incorporate a time-domain sheath potential [3] on metal structures within the simulation, to look for situations where the sheath potential might generate local sputtering opportunities. Benchmarking of the time-domain sheath algorithm has been reported in the references. Finally, the time-domain software [4] permits the use of particles, either as field diagnostic (test particles) or to self-consistently compute plasma current from the applied RF power.
Structural Time Domain Identification Toolbox User's Guide
DEFF Research Database (Denmark)
Andersen, P.; Kirkegaard, Poul Henning; Brincker, Rune
This manual describes the Structural Time Domain Identification toolbox for use with MA TLAB. This version of the tool box has been developed using the PC-based MA TLAB version 4.2c, but is compatible with prior versions of MATLAB and UNIX-based versions. The routines of the toolbox are the so...
Multiple Shooting and Time Domain Decomposition Methods
Geiger, Michael; Körkel, Stefan; Rannacher, Rolf
2015-01-01
This book offers a comprehensive collection of the most advanced numerical techniques for the efficient and effective solution of simulation and optimization problems governed by systems of time-dependent differential equations. The contributions present various approaches to time domain decomposition, focusing on multiple shooting and parareal algorithms. The range of topics covers theoretical analysis of the methods, as well as their algorithmic formulation and guidelines for practical implementation. Selected examples show that the discussed approaches are mandatory for the solution of challenging practical problems. The practicability and efficiency of the presented methods is illustrated by several case studies from fluid dynamics, data compression, image processing and computational biology, giving rise to possible new research topics. This volume, resulting from the workshop Multiple Shooting and Time Domain Decomposition Methods, held in Heidelberg in May 2013, will be of great interest to applied...
Effective wave tilt and surface impedance over a laterally inhomogeneous two-layer earth
International Nuclear Information System (INIS)
Hughes, W.J.; Wait, J.R.
1975-01-01
Using a perturbation method, the effect of a simple two-dimensional model on the electromagnetic fields at the surface of the Earth is considered for a postulated downcoming plane wave. The calculated change in the surface impedance and wave tilt due to lateral inhomogeneities is examined. It is found that the magnetic wave tilt (H/sub z//H/sub x/) is most seriously affected by such anomalies. This may have important consequences on electromagnetic probing of nonuniform portions of the Earth's crust
Development of AC impedance methods for evaluating corroding metal surfaces and coatings
Knockemus, Ward
1986-01-01
In an effort to investigate metal surface corrosion and the breakdown of metal protective coatings the AC Impedance Method was applied to zinc chromate primer coated 2219-T87 aluminum. The model 368-1 AC Impedance Measurement System recently acquired by the MSFC Corrosion Research Branch was used to monitor changing properties of coated aluminum disks immersed in 3.5% NaCl buffered at ph 5.5 over three to four weeks. The DC polarization resistance runs were performed on the same samples. The corrosion system can be represented by an electronic analog called an equivalent circuit that consists of transistors and capacitors in specific arrangements. This equivalent circuit parallels the impedance behavior of the corrosion system during a frequency scan. Values for resistances and capacities that can be assigned in the equivalent circuit following a least squares analysis of the data describe changes that occur on the corroding metal surface and in the protective coating. A suitable equivalent circuit was determined that predicts the correct Bode phase and magnitude for the experimental sample. The DC corrosion current density data are related to equivalent circuit element parameters.
Synchronous machine parameter identification in frequency and time domain
Directory of Open Access Journals (Sweden)
Hasni M.
2007-01-01
Full Text Available This paper presents the results of a frequency and time-domain identification procedure to estimate the linear parameters of a salient-pole synchronous machine at standstill. The objective of this study is to use several input signals to identify the model structure and parameters of a salient-pole synchronous machine from standstill test data. The procedure consists to define, to conduct the standstill tests and also to identify the model structure. The signals used for identification are the different excitation voltages at standstill and the flowing current in different windings. We estimate the parameters of operational impedances, or in other words the reactance and the time constants. The tests were carried out on synchronous machine of 1.5 kVA 380V 1500 rpm.
Time-Domain Diversity in Ultra-Wideband MIMO Communications
Directory of Open Access Journals (Sweden)
Alain Sibille
2005-03-01
Full Text Available The development of ultra-wideband (UWB communications is impeded by the drastic transmitted power limitations imposed by regulation authorities due to the Ã¢Â€ÂœpollutingÃ¢Â€Â character of these radio emissions with respect to existing services. Technical solutions must be researched in order either to limit the level of spectral pollution by UWB devices or to increase their reception sensitivity. In the present work, we consider pulse-based modulations and investigate time-domain multiple-input multiple-output (MIMO diversity as one such possible solution. The basic principles of time-domain diversity in the extreme (low multipath density or intermediate (dense multipath UWB regimes are addressed, which predict the possibility of a MIMO gain equal to the product NtÃƒÂ—Nr of the numbers of transmit/receive antenna elements when the channel is not too severe. This analysis is confirmed by simulations using a parametric empirical stochastic double-directional channel model. They confirm the potential interest of MIMO approaches solutions in order to bring a valuable performance gain in UWB communications.
Directory of Open Access Journals (Sweden)
Prabir K. Dutta
2012-10-01
Full Text Available Measurement by impedance spectroscopy of the changes in intrazeolitic cation motion of pressed pellets of zeolite particles upon adsorption of dimethylmethylphosphonate (DMMP provides a strategy for sensing DMMP, a commonly used simulant for highly toxic organophosphate nerve agents. In this work, two strategies for improving the impedance spectroscopy based sensing of DMMP on zeolites were investigated. The first one is the use of cerium oxide (CeO2 coated on the zeolite surface to neutralize acidic groups that may cause the decomposition of DMMP, and results in better sensor recovery. The second strategy was to explore the use of zeolite Y membrane. Compared to pressed pellets, the membranes have connected supercages of much longer length scales. The zeolite membranes resulted in higher sensitivity to DMMP, but recovery of the device was significantly slower as compared to pressed zeolite pellets.
Parallel time domain solvers for electrically large transient scattering problems
Liu, Yang
2014-09-26
Marching on in time (MOT)-based integral equation solvers represent an increasingly appealing avenue for analyzing transient electromagnetic interactions with large and complex structures. MOT integral equation solvers for analyzing electromagnetic scattering from perfect electrically conducting objects are obtained by enforcing electric field boundary conditions and implicitly time advance electric surface current densities by iteratively solving sparse systems of equations at all time steps. Contrary to finite difference and element competitors, these solvers apply to nonlinear and multi-scale structures comprising geometrically intricate and deep sub-wavelength features residing atop electrically large platforms. Moreover, they are high-order accurate, stable in the low- and high-frequency limits, and applicable to conducting and penetrable structures represented by highly irregular meshes. This presentation reviews some recent advances in the parallel implementations of time domain integral equation solvers, specifically those that leverage multilevel plane-wave time-domain algorithm (PWTD) on modern manycore computer architectures including graphics processing units (GPUs) and distributed memory supercomputers. The GPU-based implementation achieves at least one order of magnitude speedups compared to serial implementations while the distributed parallel implementation are highly scalable to thousands of compute-nodes. A distributed parallel PWTD kernel has been adopted to solve time domain surface/volume integral equations (TDSIE/TDVIE) for analyzing transient scattering from large and complex-shaped perfectly electrically conducting (PEC)/dielectric objects involving ten million/tens of millions of spatial unknowns.
Metrology for terahertz time-domain spectrometers
Molloy, John F.; Naftaly, Mira
2015-12-01
In recent years the terahertz time-domain spectrometer (THz TDS) [1] has emerged as a key measurement device for spectroscopic investigations in the frequency range of 0.1-5 THz. To date, almost every type of material has been studied using THz TDS, including semiconductors, ceramics, polymers, metal films, liquid crystals, glasses, pharmaceuticals, DNA molecules, proteins, gases, composites, foams, oils, and many others. Measurements with a TDS are made in the time domain; conversion from the time domain data to a frequency spectrum is achieved by applying the Fourier Transform, calculated numerically using the Fast Fourier Transform (FFT) algorithm. As in many other types of spectrometer, THz TDS requires that the sample data be referenced to similarly acquired data with no sample present. Unlike frequency-domain spectrometers which detect light intensity and measure absorption spectra, a TDS records both amplitude and phase information, and therefore yields both the absorption coefficient and the refractive index of the sample material. The analysis of the data from THz TDS relies on the assumptions that: a) the frequency scale is accurate; b) the measurement of THz field amplitude is linear; and c) that the presence of the sample does not affect the performance characteristics of the instrument. The frequency scale of a THz TDS is derived from the displacement of the delay line; via FFT, positioning errors may give rise to frequency errors that are difficult to quantify. The measurement of the field amplitude in a THz TDS is required to be linear with a dynamic range of the order of 10 000. And attention must be given to the sample positioning and handling in order to avoid sample-related errors.
Time-domain multiple-quantum NMR
International Nuclear Information System (INIS)
Weitekamp, D.P.
1982-11-01
The development of time-domain multiple-quantum nuclear magnetic resonance is reviewed through mid 1982 and some prospects for future development are indicated. Particular attention is given to the problem of obtaining resolved, interpretable, many-quantum spectra for anisotropic magnetically isolated systems of coupled spins. New results are presented on a number of topics including the optimization of multiple-quantum-line intensities, analysis of noise in two-dimensional spectroscopy, and the use of order-selective excitation for cross polarization between nuclear-spin species
Directory of Open Access Journals (Sweden)
H. Haddad
2018-02-01
Full Text Available This study proposes a new approach to flatten retrodirective corner reflectors. The proposed method enables compact reflectors via Transformation Optics (TO combined with Surface Impedance Modulation (SIM. This combination permits to relax the constraints on the anisotropic material resulting from the TO. Phase gradient approach is generalized to be used within anisotropic media and is implemented with SIM. Different reflector setups are designed, simulated and compared for fop = 8GHz using ANSYS® HFSS® in order to validate the use of such a combination.
The microwave surface impedance of MgB2 thin films
International Nuclear Information System (INIS)
Purnell, A J; Zhukov, A A; Nurgaliev, T; Lamura, G; Bugoslavsky, Y; Lockman, Z; MacManus-Driscoll, J L; Zhai, H Y; Christen, H M; Paranthaman, M P; Lowndes, D H; Jo, M H; Blamire, M G; Hao, Ling; Gallop, J C; Cohen, L F
2003-01-01
In this paper we present the results of measurements of the microwave surface impedance of a powder sample and two films of MgB 2 . The powder sample has a T c = 39 K and the films have T c = 29 K and 38 K. These samples show different temperature dependences of the field penetration depth. Over a period of six months, the film with T c = 38 K degraded to a T c of 35 K. We compare the results on all samples with data obtained elsewhere and discuss the implications as far as is possible at this stage
Gravitational Waves and Time Domain Astronomy
Centrella, Joan; Nissanke, Samaya; Williams, Roy
2012-01-01
The gravitational wave window onto the universe will open in roughly five years, when Advanced LIGO and Virgo achieve the first detections of high frequency gravitational waves, most likely coming from compact binary mergers. Electromagnetic follow-up of these triggers, using radio, optical, and high energy telescopes, promises exciting opportunities in multi-messenger time domain astronomy. In the decade, space-based observations of low frequency gravitational waves from massive black hole mergers, and their electromagnetic counterparts, will open up further vistas for discovery. This two-part workshop featured brief presentations and stimulating discussions on the challenges and opportunities presented by gravitational wave astronomy. Highlights from the workshop, with the emphasis on strategies for electromagnetic follow-up, are presented in this report.
The time domain triple probe method
International Nuclear Information System (INIS)
Meier, M.A.; Hallock, G.A.; Tsui, H.Y.W.; Bengtson, R.D.
1994-01-01
A new Langmuir probe technique based on the triple probe method is being developed to provide simultaneous measurement of plasma temperature, potential, and density with the temporal and spatial resolution required to accurately characterize plasma turbulence. When the conventional triple probe method is used in an inhomogeneous plasma, local differences in the plasma measured at each probe introduce significant error in the estimation of turbulence parameters. The Time Domain Triple Probe method (TDTP) uses high speed switching of Langmuir probe potential, rather than spatially separated probes, to gather the triple probe information thus avoiding these errors. Analysis indicates that plasma response times and recent electronics technology meet the requirements to implement the TDTP method. Data reduction techniques of TDTP data are to include linear and higher order correlation analysis to estimate fluctuation induced particle and thermal transport, as well as energy relationships between temperature, density, and potential fluctuations
Coherent combining pulse bursts in time domain
Galvanauskas, Almantas
2018-01-09
A beam combining and pulse stacking technique is provided that enhances laser pulse energy by coherent stacking pulse bursts (i.e. non-periodic pulsed signals) in time domain. This energy enhancement is achieved by using various configurations of Fabry-Perot, Gires-Tournois and other types of resonant cavities, so that a multiple-pulse burst incident at either a single input or multiple inputs of the system produces an output with a solitary pulse, which contains the summed energy of the incident multiple pulses from all beams. This disclosure provides a substantial improvement over conventional coherent-combining methods in that it achieves very high pulse energies using a relatively small number of combined laser systems, thus providing with orders of magnitude reduction in system size, complexity, and cost compared to current combining approaches.
International Nuclear Information System (INIS)
Mosquera, A.S.; Landinez Tellez, D.A.; Roa-Rojas, J.
2007-01-01
We report the application of a phenomenological model for the microwave surface impedance in high temperature superconducting films. This model is based on the modified two-fluid model, in which the real and imaginary parts of the surface impedance use the modelling parameter γ. This is responsible for the superconducting and normal charge carrier density and is used for the description of the temperature dependence of the London penetration depth λ L (T) including λ L (0). The relaxation time model also uses the γ parameter in combination with the residual resistance parameter α. The parameter δ 1 1 , γ, α, and δ 2 . The parameter δ 2 n (T) is a result of the competition between the increase of the relaxation time and the decrease of the normal charge-carrier density. We applied this model to analyze experimental results of MgB 2 , YBa 2 Cu 3 O 7-δ and GdBa 2 Cu 3 O 7-δ superconducting material. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Nonlinear surface impedance of YBCO thin films: Measurements, modeling, and effects in devices
International Nuclear Information System (INIS)
Oates, D.E.; Koren, G.; Polturak, E.
1995-01-01
High-T c thin films continue to be of interest for passive device applications at microwave frequencies, but nonlinear effects may limit the performance. To understand these effects we have measured the nonlinear effects may limit the performance. To understand these effects we have measured the nonlinear surface impedance Z s in a number of YBa 2 Cu 3 O 7-x thin films as a function of frequency from 1 to 18 GHz, rf surface magnetic field H rf to 1500 Oe, and temperature from 4 K to T c . The results at low H rf are shown to agree quantitatively with a modified coupled-grain model and at high H rf with hysteresis-loss calculations using the Bean critical-state model applied to a thin strip. The loss mechanisms are extrinsic properties resulting from defects in the films. We also report preliminary measurements of the nonlinear impedance of Josephson junctions, and the results are related to the models of nonlinear Z s . The implications of nonlinear Z s for devices are discussed using the example of a five-pole bandpass filter
Directory of Open Access Journals (Sweden)
Maciej Sowa
2018-04-01
Full Text Available Tantalum has recently become an actively researched biomaterial for the bone reconstruction applications because of its excellent corrosion resistance and successful clinical records. However, a bare Ta surface is not capable of directly bonding to the bone upon implantation and requires some method of bioactivation. In this study, this was realized by direct current (DC plasma electrolytic oxidation (PEO. Susceptibility to corrosion is a major factor determining the service-life of an implant. Therefore, herein, the corrosion resistance of the PEO coatings on Ta was investigated in Ringer’s solution. The coatings were formed by galvanostatic anodization up to 200, 300 and 400 V, after which the treatment was conducted potentiostatically until the total process time amounted to 5 min. Three solutions containing Ca(H2PO22, Ca(HCOO2 and Mg(CH3COO2 were used in the treatment. For the corrosion characterization, electrochemical impedance spectroscopy and potentiodynamic polarization techniques were chosen. The coatings showed the best corrosion resistance at voltages low enough so that the intensive sparking was absent, which resulted in the formation of thin films. The impedance data were fitted to the equivalent electrical circuits with two time constants, namely R(Q[R(QR] and R(Q[R(Q[RW
International Nuclear Information System (INIS)
Makhnovskiy, D. P.; Panina, L. V.; Mapps, D. J.
2001-01-01
This article concerns the investigation of the magnetic behavior of the surface impedance tensor cflx var-sigma in CoSiB amorphous wires having a residual torsion stress and a helical anisotropy. The full tensor cflx var-sigma involving three different components is found by measuring the S 21 parameter at a required excitation with a Hewlett-Packard network/spectrum analyzer at MHz frequencies. In general, the impedance plots versus axial magnetic field H ex exhibit a hysteresis related to that for the case of static magnetization. The diagonal components of cflx var-sigma (longitudinal var-sigma zz and circular var-sigma v ar-phi v ar-phi) show a sharp peak in a narrow field interval where the domain walls form and contribute to the ac magnetization dynamics. This peak is not seen for the off-diagonal component var-sigma zv ar-phi (var-sigma v ar-phi z ) since the existence of the domain structure suppresses it. Applying a dc bias current results in a gradual transition to a nonhysteretic asymmetrical behavior with an enhanced sensitivity. The portions of the experimental plots associated with the rotational dynamic process are in qualitative agreement with the theory based on a single-domain model. [copyright] 2001 American Institute of Physics
Reengineering observatory operations for the time domain
Seaman, Robert L.; Vestrand, W. T.; Hessman, Frederic V.
2014-07-01
Observatories are complex scientific and technical institutions serving diverse users and purposes. Their telescopes, instruments, software, and human resources engage in interwoven workflows over a broad range of timescales. These workflows have been tuned to be responsive to concepts of observatory operations that were applicable when various assets were commissioned, years or decades in the past. The astronomical community is entering an era of rapid change increasingly characterized by large time domain surveys, robotic telescopes and automated infrastructures, and - most significantly - of operating modes and scientific consortia that span our individual facilities, joining them into complex network entities. Observatories must adapt and numerous initiatives are in progress that focus on redesigning individual components out of the astronomical toolkit. New instrumentation is both more capable and more complex than ever, and even simple instruments may have powerful observation scripting capabilities. Remote and queue observing modes are now widespread. Data archives are becoming ubiquitous. Virtual observatory standards and protocols and astroinformatics data-mining techniques layered on these are areas of active development. Indeed, new large-aperture ground-based telescopes may be as expensive as space missions and have similarly formal project management processes and large data management requirements. This piecewise approach is not enough. Whatever challenges of funding or politics facing the national and international astronomical communities it will be more efficient - scientifically as well as in the usual figures of merit of cost, schedule, performance, and risks - to explicitly address the systems engineering of the astronomical community as a whole.
Toward practical terahertz time-domain spectroscopy
Brigada, David J.
Terahertz time-domain spectroscopy is a promising technology for the identification of explosive and pharmaceutical substances in adverse conditions. It interacts strongly with intermolecular vibrational and rotational modes. Terahertz also passes through many common dielectric covering materials, allowing for the identification of substances in envelopes, wrapped in opaque plastic, or otherwise hidden. However, there are several challenges preventing the adoption of terahertz spectroscopy outside the laboratory. This dissertation examines the problems preventing widespread adoption of terahertz technology and attempts to resolve them. In order to use terahertz spectroscopy to identify substances, a spectrum measured of the target sample must be compared to the spectra of various known standard samples. This dissertation examines various methods that can be employed throughout the entire process of acquiring and transforming terahertz waveforms to improve the accuracy of these comparisons. The concepts developed in this dissertation directly apply to terahertz spectroscopy, but also carry implications for other spectroscopy methods, from Raman to mass spectrometry. For example, these techniques could help to lower the rate of false positives at airport security checkpoints. This dissertation also examines the implementation of several of these methods as a way to realize a fully self-contained, handheld, battery-operated terahertz spectrometer. This device also employs techniques to allow minimally-trained operators use terahertz to detect different substances of interest. It functions as a proof-of-concept of the true benefits of the improvements that have been developed in this dissertation.
Surface impedance of epitaxial films Y-Ba-Cu-O in short wave region of range millimetric
International Nuclear Information System (INIS)
Vojnovskij, I.V.; Pustyl'nik, O.D.; Boguslavskij, Yu.M.; Shapovalov, A.P.
1992-01-01
Epitaxial Y-Ba-Cu-O films on MgO substrate with perfect crystal structure are obtained due to nonaxial magnetron HF-spraying. Temperature dependence of the surface impedance of the films within 66 and 134 GHz frequency is studied. The obtained value of residual surface resistance within 134 GHz frequency (60 mohm) confirms high quality of the films
International Nuclear Information System (INIS)
Fathul Karim Sahrani; Zaharah Ibrahim; Madzlan Aziz; Adibah Yahya
2009-01-01
Sulphate-reducing bacteria (SRB), implicated in microbiologically influenced corrosion were isolated from the deep subsurface at the vicinity of Pasir Gudang, Johor, Malaysia. Electrochemical impedance spectroscopic (EIS) study was carried out to determine the polarization resistance in various types of culturing solutions, with SRB1, SRB2, combination of SRB1 and SRB2 and without SRBs inoculated (control). EIS results showed that in the presence of SRB1, SRB2 and mixed culture SRB1 and SRB2, polarisation resistance values were 7170, 6370 and 7190 ohms respectively compared to that of control, 92400 ohm. X-ray analysis (EDS) of the specimens indicated high sulphur content in the medium containing SRBs. Localized corrosion was observed on the metal surface which was associated with the SRB activity. (author)
Experimental test of proximity effect theories by surface impedance measurements on the Pb-Sn system
International Nuclear Information System (INIS)
Hook, J.R.; Battilana, J.A.
1976-01-01
The proximity effect in the Pb-Sn system in zero magnetic field has been studied by measuring the surface impedance at 3 GHz of a thin film of tin evaporated on to a bulk lead substrate. The results are compared with the predictions of theories of the proximity effect. It is found that good agreement can be obtained by using a theory due to Hook and Waldram of the spatial variation of the superconducting order parameter Δ inside each metal together with suitable boundary conditions on Δ at the interface between the metals. The required boundary conditions are a generalization to the case of non-zero electron reflection at the interface of the boundary conditions given by Zaitsev for the Ginsburg-Landau equation. (author)
Benoit, Gaëlle; Heinkélé, Christophe; Gourdon, Emmanuel
2013-12-01
This paper deals with a numerical procedure to identify the acoustical parameters of road pavement from surface impedance measurements. This procedure comprises three steps. First, a suitable equivalent fluid model for the acoustical properties porous media is chosen, the variation ranges for the model parameters are set, and a sensitivity analysis for this model is performed. Second, this model is used in the parameter inversion process, which is performed with simulated annealing in a selected frequency range. Third, the sensitivity analysis and inversion process are repeated to estimate each parameter in turn. This approach is tested on data obtained for porous bituminous concrete and using the Zwikker and Kosten equivalent fluid model. This work provides a good foundation for the development of non-destructive in situ methods for the acoustical characterization of road pavements.
Voltammetric and impedance behaviours of surface-treated nano-crystalline diamond film electrodes
International Nuclear Information System (INIS)
Liu, F. B.; Jing, B.; Cui, Y.; Di, J. J.; Qu, M.
2015-01-01
The electrochemical performances of hydrogen- and oxygen-terminated nano-crystalline diamond film electrodes were investigated by cyclic voltammetry and AC impedance spectroscopy. In addition, the surface morphologies, phase structures, and chemical states of the two diamond films were analysed by scanning probe microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, respectively. The results indicated that the potential window is narrower for the hydrogen-terminated nano-crystalline diamond film than for the oxygen-terminated one. The diamond film resistance and capacitance of oxygen-terminated diamond film are much larger than those of the hydrogen-terminated diamond film, and the polarization resistances and double-layer capacitance corresponding to oxygen-terminated diamond film are both one order of magnitude larger than those corresponding to the hydrogen-terminated diamond film. The electrochemical behaviours of the two diamond film electrodes are discussed
Kelbert, Anna; Balch, Christopher C.; Pulkkinen, Antti; Egbert, Gary D.; Love, Jeffrey J.; Rigler, E. Joshua; Fujii, Ikuko
2017-07-01
Geoelectric fields at the Earth's surface caused by magnetic storms constitute a hazard to the operation of electric power grids and related infrastructure. The ability to estimate these geoelectric fields in close to real time and provide local predictions would better equip the industry to mitigate negative impacts on their operations. Here we report progress toward this goal: development of robust algorithms that convolve a magnetic storm time series with a frequency domain impedance for a realistic three-dimensional (3-D) Earth, to estimate the local, storm time geoelectric field. Both frequency domain and time domain approaches are presented and validated against storm time geoelectric field data measured in Japan. The methods are then compared in the context of a real-time application.
Lehti-Polojärvi, Mari; Koskela, Olli; Seppänen, Aku; Figueiras, Edite; Hyttinen, Jari
2018-02-01
Electrical impedance tomography (EIT) is an imaging method that could become a valuable tool in multimodal applications. One challenge in simultaneous multimodal imaging is that typically the EIT electrodes cover a large portion of the object surface. This paper investigates the feasibility of rotational EIT (rEIT) in applications where electrodes cover only a limited angle of the surface of the object. In the studied rEIT, the object is rotated a full 360° during a set of measurements to increase the information content of the data. We call this approach limited angle full revolution rEIT (LAFR-rEIT). We test LAFR-rEIT setups in two-dimensional geometries with computational and experimental data. We use up to 256 rotational measurement positions, which requires a new way to solve the forward and inverse problem of rEIT. For this, we provide a modification, available for EIDORS, in the supplementary material. The computational results demonstrate that LAFR-rEIT with eight electrodes produce the same image quality as conventional 16-electrode rEIT, when data from an adequate number of rotational measurement positions are used. Both computational and experimental results indicate that the novel LAFR-rEIT provides good EIT with setups with limited surface coverage and a small number of electrodes.
Gélat, P.; ter Haar, G.; Saffari, N.
2014-04-01
High intensity focused ultrasound (HIFU) enables highly localised, non-invasive tissue ablation and its efficacy has been demonstrated in the treatment of a range of cancers, including those of the kidney, prostate and breast. HIFU offers the ability to treat deep-seated tumours locally, and potentially bears fewer side effects than more established treatment modalities such as resection, chemotherapy and ionising radiation. There remains however a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the ribcage to ablate tissue at the required foci whilst minimising the formation of side lobes and sparing healthy tissue. Ribs both absorb and reflect ultrasound strongly. This sometimes results in overheating of bone and overlying tissue during treatment, leading to skin burns. Successful treatment of a patient with tumours in the upper abdomen therefore requires a thorough understanding of the way acoustic and thermal energy is deposited. Previously, a boundary element (BE) approach based on a Generalised Minimal Residual (GMRES) implementation of the Burton-Miller formulation was developed to predict the field of a multi-element HIFU array scattered by human ribs, the topology of which was obtained from CT scan data [1]. Dissipative mechanisms inside the propagating medium have since been implemented, together with a complex surface impedance condition at the surface of the ribs. A reformulation of the boundary element equations as a constrained optimisation problem was carried out to determine the complex surface velocities of a multi-element HIFU array which generated the acoustic pressure field that best fitted a required acoustic pressure distribution in a least-squares sense. This was done whilst ensuring that an acoustic dose rate parameter at the surface of the ribs was kept below a specified threshold. The methodology was tested at an
Electrochemical Impedance Response of the surface treated FMS in Liquid Sodium Environment
International Nuclear Information System (INIS)
Lee, Jeong Hyeon; Shin, Sang Hun; Kim, Ji Hyun
2014-01-01
HT9 and Gr.92 are known as compatible in sodium environment because the usual refueling time of SFRs is designed about 54 months. It is very important to investigate the corrosion-related behavior such as surface corrosion rate, carburization, decarburization and mechanical properties for its operation time. SiC and Si 3 N 4 CVD coating for decarburization barrier on the surface of FMS is considered in this study. The decarburization process where dissolved carbon near the specimen surface disused in to the liquid sodium. This process can originate from the difference between dissolved carbon in the material and liquid sodium. A compatibility test the cladding tube revealed that a decrease of the mechanical property instigated by the aging proves governed the whole mechanical property. To monitor the corrosion behavior of these candidate materials in sodium environment, Electrochemical Impedance Spectroscopy (EIS) method is first introduced and investigated in this study. The compatibility of cladding and structural materials with sodium has to be carefully investigated, as sodium could promote corrosion of cladding and structural materials in two ways. One is produced by the dissolution of alloy constituents into the sodium, and the other is produced through a chemical reaction with impurities (especially oxygen and carbon) in the sodium environment. EIS test with pre-oxidized Gr. 92 specimen in 200 .deg. C liquid sodium environment was carried out in this study. A clear Nyquist and Bode plots were obtained in liquid metal environment and the resistance of sodium and the oxide, and the capacitance of the oxide were measured from this result
Han, Changfeng; Wang, Kai; Zhu, Xixiang; Yu, Haomiao; Sun, Xiaojuan; Yang, Qin; Hu, Bin
2018-03-01
Organic-inorganic hybrid perovskites (OIHPs) have been widely recognized as an excellent candidate for next-generation photovoltaic materials because of their highly efficient power conversion. Acquiring a complete understanding of trap states and dielectric properties in OIHP-based solar cells at the steady state is highly desirable in order to further explore and improve their optoelectronic functionalities and properties. We report CH3NH3PbI3-x Cl x -based planar solar cells with a power conversion efficiency (PCE) of 15.8%. The illumination intensity dependence of the current density-voltage (J-V) revealed the presence of trap-assisted recombination at low fluences. Non-destructive ac impedance spectroscopy (ac-IS) was applied to characterize the device at the steady state. The capacitance-voltage (C-V) spectra exhibited some distinct variations at a wide range of ac modulation frequencies with and without photo-excitations. Since the frequency-dependent chemical capacitance ({{C}μ }) is concerned with the surface and bulk related density of states (DOS) in CH3NH3PbI3-x Cl x , we verified this by fitting the corresponding DOS by a Gaussian distribution function. We ascertained that the electronic sub-gap trap states present in the solution processed CH3NH3PbI3-x Cl x and their distribution differs from the surface to the bulk. In fact, we demonstrated that both surfaces that were adjacent to the electron and hole transport layers featured analogous DOS. Despite this, photo- and bias-induced giant dielectric responses (i.e. both real and imaginary parts) were detected. A remarkable reduction of {{C}μ } at higher frequencies (i.e. more than 100 kHz) was ascribed to the effect of dielectric loss in CH3NH3PbI3-x Cl x .
Time-domain Hydroelasticity Theory of Ships Responding to Waves
DEFF Research Database (Denmark)
Xia, Jinzhu; Wang, Zhaohui
1997-01-01
free surface flow. The general interface boundary condition is used in the mathematical formulation of the fluid motion around the flexible structure. The general time-domain theory is simplified to a slender-body theory for the analysis of wave-induced global responses of monohull ships. The structure...... is represented by a non-uniform beam, while the generalized hydrodynamic coefficients can be obtained from two-dimensional potential flow theory. The linear slender body theory is generalized to treat the non-linear loading effects of rigid motion and structural response of ships travelling in rough seas....... The non-linear hydrostatic restoring force and hydrodynamic momentum action are considered. A numerical solution is presented for the slender body theory. Numerical examples are given for two ship cases with different geometry features, a warship hull and the S175 containership with two different bow...
Impedance of accelerator components
International Nuclear Information System (INIS)
Corlett, J.N.
1996-05-01
As demands for high luminosity and low emittance particle beams increase, an understanding of the electromagnetic interaction of these beams with their vacuum chamber environment becomes more important in order to maintain the quality of the beam. This interaction is described in terms of the wake field in time domain, and the beam impedance in frequency domain. These concepts are introduced, and related quantities such as the loss factor are presented. The broadband Q = 1 resonator impedance model is discussed. Perturbation and coaxial wire methods of measurement of real components are reviewed
Finite difference time domain analysis of a chiro plasma
International Nuclear Information System (INIS)
Torres-Silva, H.; Obligado, A.; Reggiani, N.; Sakanaka, P.H.
1995-01-01
The finite difference time-domain (FDTD) method is one of the most widely used computational methods in electromagnetics. Using FDTD, Maxwell's equations are solved directly in the time domain via finite differences and time stepping. The basic approach is relatively easy to understand and is an alternative to the more usual frequency-domain approaches. (author). 5 refs
Timalsina, Yukta P.
In this dissertation, a process of vertically-aligned (silica) nanosprings (VANS) based biosensor development is presented. Alternating current (AC) impedance spectroscopy has been used to analyze sensor response as a function of saline phosphate (SP) buffer and biological solutions. The sensor is a parallel plate capacitor consisting of two glass substrates coated with indium tin oxide (ITO), where the VANS [or randomly-aligned nanosprings (RANS)] grown on one substrate serve as the dielectric spacer layer. The response of a VANS device as a function of ionic concentration in SP buffer was examined and an equivalent circuit model was developed. The results demonstrated that VANS sensors exhibited greater sensitivity to the changes in SP concentration relative to the ITO sensors, which serve as controls. The biofunctionalized VANS surface via physisorption and the cross-linker method demonstrates the repeatability, specificity, and selectivity of the binding. The physisorption of biotinylated immunoglobulin G (B-IgG) onto the VANS surface simplifies the whole sensing procedure for the detection of glucose oxidase, since the avidin-conjugated glucose oxidase (Av-GOx) can directly be immobilized on the B-IgG. The cross linker method involves the covalent attachment of antibodies onto the functionalized VANS surface via imine bond. The experiments revealed that the VANS sensor response is solely the result of the interaction of target molecule i.e. mouse IgG with the probe layer, i.e. goat antimouse IgG (GalphaM IgG). It was determined that VANS-based sensors exhibit a greater magnitude of change between successive bio-layers relative to the controls above 100 Hz, which indicates that the addition of biomolecules inhibits the diffusion of ions and changes the effective dielectric response of the VANS via biomolecular polarization. The study of ionic transport in nanosprings suggested that conductance follows a scaling law. It was demonstrated that a VANS-based device
International Nuclear Information System (INIS)
Bertram, F.; Evertsson, J.; Messing, M. E.; Mikkelsen, A.; Lundgren, E.; Zhang, F.; Pan, J.; Carlà, F.; Nilsson, J.-O.
2014-01-01
We present results from the anodization of an aluminum single crystal [Al(111)] and an aluminum alloy [Al 6060] studied by in situ x-ray reflectivity, in situ electrochemical impedance spectroscopy and ex situ scanning electron microscopy. For both samples, a linear increase of oxide film thickness with increasing anodization voltage was found. However, the slope is much higher in the single crystal case, and the break-up of the oxide film grown on the alloy occurs at a lower anodization potential than on the single crystal. The reasons for these observations are discussed as are the measured differences observed for x-ray reflectivity and electrochemical impedance spectroscopy.
Shear-wave seismic reflection imaging and impedance inversion for a near-surface point-bar
Benton, N. W.; Morrison, M.; Lorenzo, J. M.; Odom, B.; Clift, P. D.; Olson, E.; Gostic, A.
2017-12-01
Imaging and inversion of SH-waves are useful to detect, map, and quantitatively characterize near-surface point-bar strata. We conduct a horizontally-polarized (SH) reflection survey across and along a near-surface (9 - 40 m) downstream point-bar. We invert for shear-impedance profiles and correlate our interpretation to electrical conductivity (EC) logs in adjacent wells to study the internal architecture and lithology of point-bars. We acquire two common-midpoint (CMP) SH-wave seismic reflection lines at False River (Point Coupee Parish, Louisiana). A 104 m long seismic line (L1) is oriented orthogonal (NW - SE) to point-bar strike. A second line (L2) is 48 m long and set parallel to point-bar strike (NE - SW). Two EC wells lie 33 m apart. Both wells are parallel with respect to the L1 survey and offset from it by 15 m. EC log measurements range from 1 - 25 m depth. Interference of Love-waves prevents seismic imaging at depths less than 9 m. The L1 and L2 data sets are inverted for shear-impedance using a model-based band-limited impedance (BLIMP) algorithm that incorporates a low-frequency velocity model. This model is also used for the depthing processing. The L1 cross-section shows coherent dipping reflection events ( 4 - 7º) from 0.15 - 0.35 s (10 - 40 m). The corresponding shear-impedance profile also reveals coherent and dipping impedance contrasts that grow in magnitude with increasing depth. The L2 cross-section shows comparatively less dip ( 1º) as well as sharper and shallower continuity of reflection events (0.1 - 0.28 s TWT or 9 - 25 m). Depth-converted (TVD) seismic amplitudes and impedance values correlate to near-surface point-bar geology via superposition of log data. The first well (W5) shows distinct EC local maxima (+50 - 70 mS/m) at 14.5 and 15.5 m depth that correlate well with the seismic amplitudes and impedance values from both L1 and L2 data sets. The second well (W7) shows comparatively lower local maxima (+40 - 60 mS/m) but at greater
Cable Damage Detection System and Algorithms Using Time Domain Reflectometry
Energy Technology Data Exchange (ETDEWEB)
Clark, G A; Robbins, C L; Wade, K A; Souza, P R
2009-03-24
This report describes the hardware system and the set of algorithms we have developed for detecting damage in cables for the Advanced Development and Process Technologies (ADAPT) Program. This program is part of the W80 Life Extension Program (LEP). The system could be generalized for application to other systems in the future. Critical cables can undergo various types of damage (e.g. short circuits, open circuits, punctures, compression) that manifest as changes in the dielectric/impedance properties of the cables. For our specific problem, only one end of the cable is accessible, and no exemplars of actual damage are available. This work addresses the detection of dielectric/impedance anomalies in transient time domain reflectometry (TDR) measurements on the cables. The approach is to interrogate the cable using time domain reflectometry (TDR) techniques, in which a known pulse is inserted into the cable, and reflections from the cable are measured. The key operating principle is that any important cable damage will manifest itself as an electrical impedance discontinuity that can be measured in the TDR response signal. Machine learning classification algorithms are effectively eliminated from consideration, because only a small number of cables is available for testing; so a sufficient sample size is not attainable. Nonetheless, a key requirement is to achieve very high probability of detection and very low probability of false alarm. The approach is to compare TDR signals from possibly damaged cables to signals or an empirical model derived from reference cables that are known to be undamaged. This requires that the TDR signals are reasonably repeatable from test to test on the same cable, and from cable to cable. Empirical studies show that the repeatability issue is the 'long pole in the tent' for damage detection, because it is has been difficult to achieve reasonable repeatability. This one factor dominated the project. The two-step model
Direct time-domain techniques for transient radiation and scattering
International Nuclear Information System (INIS)
Miller, E.K.; Landt, J.A.
1976-01-01
A tutorial introduction to transient electromagnetics, focusing on direct time-domain techniques, is presented. Physical, mathematical, numerical, and experimental aspects of time-domain methods, with emphasis on wire objects excited as antennas or scatters are examined. Numerous computed examples illustrate the characteristics of direct time-domain procedures, especially where they may offer advantages over procedures in the more familiar frequency domain. These advantages include greater solution efficiency for many types of problems, the ability to handle nonlinearities, improved physical insight and interpretability, availability of wide-band information from a single calculation, and the possibility of isolating interactions among various parts of an object using time-range gating
Evaluation of Damping Using Time Domain OMA Techniques
DEFF Research Database (Denmark)
Bajric, Anela; Brincker, Rune; Georgakis, Christos T.
2014-01-01
. In this paper a comparison is made of the effectiveness of three existing OMA techniques in providing accurate damping estimates for varying loadings, levels of noise, number of added measurement channels and structural damping. The evaluated techniques are derived in the time domain and are namely the Ibrahim...... Time Domain (ITD), Eigenvalue Realization Algorithm (ERA) and the Polyreference Time Domain (PTD). The response of a two degree-of-freedom (2DOF) system is numerically established from specified modal parameters with well separated and closely spaced modes. Two types of response are considered, free...
Zhang, Zhendong
2017-07-11
Full waveform inversion for reection events is limited by its linearized update re-quirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate, the resulting gradient can have an inaccurate update direction leading the inversion to converge what we refer to as local minima of the objective function. In our approach, we consider mild lateral variation in the model, and thus, use a gradient given by the oriented time-domain imaging method. Specifically, we apply the oriented time-domain imaging on the data residual to obtain the geometrical features of the velocity perturbation. After updating the model in the time domain, we convert the perturbation from the time domain to depth using the average velocity. Considering density is constant, we can expand the conventional 1D impedance inversion method to 2D or 3D velocity inversion within the process of full waveform inversion. This method is not only capable of inverting for velocity, but it is also capable of retrieving anisotropic parameters relying on linearized representations of the reection response. To eliminate the cross-talk artifacts between different parameters, we utilize what we consider being an optimal parametrization for this step. To do so, we extend the prestack time-domain migration image in incident angle dimension to incorporate angular dependence needed by the multiparameter inversion. For simple models, this approach provides an efficient and stable way to do full waveform inversion or modified seismic inversion and makes the anisotropic inversion more practicable. The proposed method still needs kinematically accurate initial models since it only recovers the high-wavenumber part as conventional full waveform inversion method does. Results on synthetic data of isotropic and anisotropic cases illustrate the benefits and limitations of this method.
Czech Academy of Sciences Publication Activity Database
Vlčková Živcová, Zuzana; Petrák, Václav; Frank, Otakar; Kavan, Ladislav
2015-01-01
Roč. 55, MAY 2015 (2015), s. 70-76 ISSN 0925-9635 R&D Projects: GA ČR GA13-31783S Institutional support: RVO:61388955 ; RVO:68378271 Keywords : Boron doped diamond * Electrochemical impedance spectroscopy * Aqueous electrolyte solution Subject RIV: CG - Electrochemistry Impact factor: 2.125, year: 2015
Space moving target detection using time domain feature
Wang, Min; Chen, Jin-yong; Gao, Feng; Zhao, Jin-yu
2018-01-01
The traditional space target detection methods mainly use the spatial characteristics of the star map to detect the targets, which can not make full use of the time domain information. This paper presents a new space moving target detection method based on time domain features. We firstly construct the time spectral data of star map, then analyze the time domain features of the main objects (target, stars and the background) in star maps, finally detect the moving targets using single pulse feature of the time domain signal. The real star map target detection experimental results show that the proposed method can effectively detect the trajectory of moving targets in the star map sequence, and the detection probability achieves 99% when the false alarm rate is about 8×10-5, which outperforms those of compared algorithms.
FDTD modeling of thin impedance sheets
Luebbers, Raymond J.; Kunz, Karl S.
1991-01-01
Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. In this paper it is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods.
Microresonator-Based Optical Frequency Combs: A Time Domain Perspective
2016-04-19
AFRL-AFOSR-VA-TR-2016-0165 (BRI) Microresonator-Based Optical Frequency Combs: A Time Domain Perspective Andrew Weiner PURDUE UNIVERSITY 401 SOUTH...Optical Frequency Combs: A Time Domain Perspective 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0236 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data
Time domain structures in a colliding magnetic flux rope experiment
Tang, Shawn Wenjie; Gekelman, Walter; Dehaas, Timothy; Vincena, Steve; Pribyl, Patrick
2017-10-01
Electron phase-space holes, regions of positive potential on the scale of the Debye length, have been observed in auroras as well as in laboratory experiments. These potential structures, also known as Time Domain Structures (TDS), are packets of intense electric field spikes that have significant components parallel to the local magnetic field. In an ongoing investigation at UCLA, TDS were observed on the surface of two magnetized flux ropes produced within the Large Plasma Device (LAPD). A barium oxide (BaO) cathode was used to produce an 18 m long magnetized plasma column and a lanthanum hexaboride (LaB6) source was used to create 11 m long kink unstable flux ropes. Using two probes capable of measuring the local electric and magnetic fields, correlation analysis was performed on tens of thousands of these structures and their propagation velocities, probability distribution function and spatial distribution were determined. The TDS became abundant as the flux ropes collided and appear to emanate from the reconnection region in between them. In addition, a preliminary analysis of the permutation entropy and statistical complexity of the data suggests that the TDS signals may be chaotic in nature. Work done at the Basic Plasma Science Facility (BaPSF) at UCLA which is supported by DOE and NSF.
High-Order Calderón Preconditioned Time Domain Integral Equation Solvers
Valdes, Felipe
2013-05-01
Two high-order accurate Calderón preconditioned time domain electric field integral equation (TDEFIE) solvers are presented. In contrast to existing Calderón preconditioned time domain solvers, the proposed preconditioner allows for high-order surface representations and current expansions by using a novel set of fully-localized high-order div-and quasi curl-conforming (DQCC) basis functions. Numerical results demonstrate that the linear systems of equations obtained using the proposed basis functions converge rapidly, regardless of the mesh density and of the order of the current expansion. © 1963-2012 IEEE.
High-Order Calderón Preconditioned Time Domain Integral Equation Solvers
Valdes, Felipe; Ghaffari-Miab, Mohsen; Andriulli, Francesco P.; Cools, Kristof; Michielssen,
2013-01-01
Two high-order accurate Calderón preconditioned time domain electric field integral equation (TDEFIE) solvers are presented. In contrast to existing Calderón preconditioned time domain solvers, the proposed preconditioner allows for high-order surface representations and current expansions by using a novel set of fully-localized high-order div-and quasi curl-conforming (DQCC) basis functions. Numerical results demonstrate that the linear systems of equations obtained using the proposed basis functions converge rapidly, regardless of the mesh density and of the order of the current expansion. © 1963-2012 IEEE.
Heliborne time-domain electromagnetic (TEM) surveys for uranium exploration
International Nuclear Information System (INIS)
Chaturvedi, A.K.
2015-01-01
Airborne geophysical surveys have been used extensively in petroleum, mineral exploration, and environmental mapping. Of all the geophysical methods, Electromagnetic (EM) methods, both ground and airborne are used to map the conductive ore bodies buried in the resistive bed rock. Mapping resistivity variations can help unravel complex geological problems and identify areas of hidden potential. Besides the traditional applications to ground water investigations and other natural resource exploration and geological mapping, a number of new applications have been reported. These include hazardous-waste characterization studies, precision agriculture applications, archaeological surveys etc. Airborne Electromagnetic (AEM) methods have undergone rapid improvements over the past few decades. Several new airborne Time Do-main EM (TDEM) systems appeared; existing systems were updated and/or enhanced. The use of natural field (passive) EM surveys continued to increase, with new or improved systems becoming available for both airborne and ground surveys. The number of large airborne survey systems with combined EM, magnetic, gravimetric and gamma-ray spectrometric capabilities also increased. Exploration of a mineral deposit is a multi-stage and multi-disciplinary approach that commences from regional investigations and concludes with establishing of a deposit. As economics play a major role in exploration, a proper integrated study is always beneficial in narrowing down the potential mineral target zones. Heliborne geophysical surveys are being conducted world-wide for exploration of base metals, gold, phosphorite, oil, uranium etc. that are very effective tool in identifying zones of interest accurately, economically and with less span of time. These surveys give a very good insight of surface and sub-surface geophysical signatures that can be attributed to geology with proper modeling. Heliborne Time - domain Electromagnetic (TEM) methods are well known for search of
Koo, Sukmo; Kumar, M. Sathish; Shin, Jonghwa; Kim, Daisik; Park, Namkyoo
2009-12-01
We propose and analyze the “complementary” structure of a metallic nanogap, namely, the metallic nanowire for magnetic field enhancement. A huge enhancement of the field up to a factor of 300 was achieved. Introducing the surface impedance concept, we also develop and numerically confirm a new analytic theory which successfully predicts the field enhancement factors for metal nanostructures. Compared to the predictions of the classical Babinet principle applied to a nanogap, an order of magnitude difference in the field enhancement factor was observed for the sub-skin-depth regime nanowire.
International Nuclear Information System (INIS)
Spencer, G.L.
1976-01-01
The surface impedances and ac critical fields of superconducting thin tin films were studied. These experiments were performed using a superconducting frequency stabilized microwave cavity of high Q. Measurements of the power losses in the cavity and the center frequency of the cavity were used to determine the surface impedance and the critical field of a thin film sample placed in the cavity. In this case a theoretical treatment based on a model proposed by I.O. Kulik was used to fit the data. The general agreement between the modified Kulik treatment and the data, obtained in this experiment, was substantial. The second method was to modify the thin film data to correspond to a bulk situation. This modification was accomplished by taking into account the measuring techniques used and the geometric consideration inherent in the experiment. The comparison between the modified experimental data and calculations obtained from the Mattis-Bardeen bulk model was generally very good. One aspect of the results which was not explained was the presence of a slight increase in the surface resistance in the vicinity of the transition temperature. The critical field measurements were compared to the (1 - (T/T/sub c/)/sup 1/2) dependence predicted by Bardeen. If it is assumed that substantial microwave heating took place in the sample near T/sub c/, then remarkable agreement with the Bardeen model can be reached
Determination of beam coupling impedance in the frequency domain
Energy Technology Data Exchange (ETDEWEB)
Niedermayer, Uwe
2016-07-01
The concept of beam coupling impedance describes the electromagnetic interaction of uniformly moving charged particles with their surrounding structures in the Frequency Domain (FD). In synchrotron accelerators, beam coupling impedances can lead to beam induced component heating and coherent beam instabilities. Thus, in order to ensure the stable operation of a synchrotron, its impedances have to be quantified and their effects have to be controlled. Nowadays, beam coupling impedances are mostly obtained by Fourier transform of wake potentials, which are the results of Time Domain (TD) simulations. However, at low frequencies, low beam velocity, or for dispersive materials, TD simulations become unhandy. In this area, analytical calculations of beam coupling impedance in the FD, combined with geometry approximations, are still widely used. This thesis describes the development of two electromagnetic field solvers to obtain the beam coupling impedance directly in the FD, where the beam velocity is only a parameter and dispersive materials can be included easily. One solver is based on the Finite Integration Technique (FIT) on a staircase mesh. It is implemented both in 2D and 3D. However, the staircase mesh is inefficient on curved structures, which is particularly problematic for the modeling of a dipole source, that is required for the computation of the transverse beam coupling impedance. This issue is overcome by the second solver developed in this thesis, which is based on the Finite Element Method (FEM) on an unstructured triangular mesh. It is implemented in 2D and includes an optional Surface Impedance Boundary Condition (SIBC). Thus, it is well suited for the computation of longitudinal and transverse impedances of long beam pipe structures of arbitrary cross-section. Besides arbitrary frequency and beam velocity, also dispersive materials can be chosen, which is crucial for the computation of the impedance of ferrite kicker magnets. Numerical impedance
Three Dimensional Energy Transmitting Boundary in the Time Domain
Directory of Open Access Journals (Sweden)
Naohiro eNakamura
2015-11-01
Full Text Available Although the energy transmitting boundary is accurate and efficient for the FEM earthquake response analysis, it could be applied in the frequency domain only. In the previous papers, the author proposed an earthquake response analysis method using the time domain energy transmitting boundary for two dimensional problems. In this paper, this technique is expanded for three dimensional problems. The inner field is supposed to be a hexahedron shape and the approximate time domain boundary is explained, first. Next, two dimensional anti-plane time domain boundary is studied for a part of the approximate three dimensional boundary method. Then, accuracy and efficiency of the proposed method are confirmed by example problems.
Eulerian Time-Domain Filtering for Spatial LES
Pruett, C. David
1997-01-01
Eulerian time-domain filtering seems to be appropriate for LES (large eddy simulation) of flows whose large coherent structures convect approximately at a common characteristic velocity; e.g., mixing layers, jets, and wakes. For these flows, we develop an approach to LES based on an explicit second-order digital Butterworth filter, which is applied in,the time domain in an Eulerian context. The approach is validated through a priori and a posteriori analyses of the simulated flow of a heated, subsonic, axisymmetric jet.
Modern EMC analysis I time-domain computational schemes
Kantartzis, Nikolaos V
2008-01-01
The objective of this two-volume book is the systematic and comprehensive description of the most competitive time-domain computational methods for the efficient modeling and accurate solution of contemporary real-world EMC problems. Intended to be self-contained, it performs a detailed presentation of all well-known algorithms, elucidating on their merits or weaknesses, and accompanies the theoretical content with a variety of applications. Outlining the present volume, the analysis covers the theory of the finite-difference time-domain, the transmission-line matrix/modeling, and the finite i
Energy Technology Data Exchange (ETDEWEB)
Pompeo, N [Dipartimento di Fisica ' E Amaldi' and Unita CNISM, Universita Roma Tre, Via dellaVasca Navale 84, 00146 Rome (Italy); Muzzi, L [Dipartimento di Fisica ' E Amaldi' and Unita CNISM, Universita Roma Tre, Via dellaVasca Navale 84, 00146 Rome (Italy); Galluzzi, V [ENEA-Frascati, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Marcon, R [Dipartimento di Fisica ' E Amaldi' and Unita CNISM, Universita Roma Tre, Via dellaVasca Navale 84, 00146 Rome (Italy); Silva, E [Dipartimento di Fisica ' E Amaldi' and Unita CNISM, Universita Roma Tre, Via dellaVasca Navale 84, 00146 Rome (Italy)
2007-10-15
We reconsider the problem of the measurements of the microwave complex surface impedance in thin superconducting films deposited on SrTiO{sub 3} substrates. We perform measurements of the complex surface impedance Z{sub s}' = R{sub s}'+i{delta}X{sub s}' of thin YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} films deposited by laser ablation on SrTiO{sub 3} substrates. The typical oscillations due to the strong temperature variation of the SrTiO{sub 3} permittivity are confirmed in R{sub s}' and observed in {delta}X{sub s}'. The effects of the SrTiO{sub 3} substrate are evident even well below the superconducting transition temperature of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}. Similarly to previous works, we describe the overall response in terms of impedance transformations. We extend the known results by (i) considering the measurements of the imaginary part (ii) comparing the measurements to the absolute dc resistivity measured on the same sample, and (iii) suggesting a method for measuring the intrinsic thin film surface impedance by adjusting the substrate impedance. To demonstrate the feasibility of microwave measurements of intrinsic properties of films grown onto SrTiO{sub 3} substrates, we check the proposed method by measuring the field dependent surface impedance before and after removal of the substrate resonance.
Time domain optical spectrometry with fiber optic waveguides
International Nuclear Information System (INIS)
Whitten, W.B.
1983-01-01
Spectrometers which use optical fibers to obtain time domain spectral dispersion are reviewed. Pulse transmission through fiber optic waveguides is discussed and the basic requirements for sources and detectors are given. Multiplex spectrometry and time-of-flight spectrometry are then discussed. Resolution, fiber requirements, instrumentation and specific spectrometers are presented
A pseudospectral collocation time-domain method for diffractive optics
DEFF Research Database (Denmark)
Dinesen, P.G.; Hesthaven, J.S.; Lynov, Jens-Peter
2000-01-01
We present a pseudospectral method for the analysis of diffractive optical elements. The method computes a direct time-domain solution of Maxwell's equations and is applied to solving wave propagation in 2D diffractive optical elements. (C) 2000 IMACS. Published by Elsevier Science B.V. All rights...
Finite difference time domain modelling of particle accelerators
International Nuclear Information System (INIS)
Jurgens, T.G.; Harfoush, F.A.
1989-03-01
Finite Difference Time Domain (FDTD) modelling has been successfully applied to a wide variety of electromagnetic scattering and interaction problems for many years. Here the method is extended to incorporate the modelling of wake fields in particle accelerators. Algorithmic comparisons are made to existing wake field codes, such as MAFIA T3. 9 refs., 7 figs
DRK methods for time-domain oscillator simulation
Sevat, M.F.; Houben, S.H.M.J.; Maten, ter E.J.W.; Di Bucchianico, A.; Mattheij, R.M.M.; Peletier, M.A.
2006-01-01
This paper presents a new Runge-Kutta type integration method that is well-suited for time-domain simulation of oscillators. A unique property of the new method is that its damping characteristics can be controlled by a continuous parameter.
Structural Time Domain Identification (STDI) Toolbox for Use with MATLAB
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Andersen, P.; Brincker, Rune
1997-01-01
The Structural Time Domain Identification (STDI) toolbox for use with MATLABTM is developed at Aalborg University, Denmark, based on the system identification research performed during recent years. By now, a reliable set of functions offers a wide spectrum of services for all the important steps...
Structural Time Domain Identification (STDI) Toolbox for Use with MATLAB
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Andersen, P.; Brincker, Rune
The Structural Time Domain Identification (STDI) toolbox for use with MATLABTM is developed at Aalborg University, Denmark, based on the system identification research performed during recent years. By now, a reliable set of functions offers a wide spectrum of services for all the important steps...
Assessment of perceptual diffuseness in the time domain
DEFF Research Database (Denmark)
Garcia, Julian Martinez-Villalba; Jeong, Cheol-Ho; Brunskog, Jonas
2017-01-01
This study proposes a numerical and experimental framework for evaluating the perceptual aspect of the diffuse field condition with intended final use in music auditoria. Multiple Impulse Responses are simulated based on the time domain Poisson process with increasing reflection density. Different...
Paul, Subir; Yadav, Kasturi
2011-04-01
Implant materials for orthopedic and heart surgical services demand a better corrosion resistance material than the presently used titanium alloys, where protective oxide layer breaks down on a prolonged stay in aqueous physiological human body, giving rise to localized corrosion of pitting, crevice, and fretting corrosion. A few surface treatments on Ti alloy, in the form of anodization, passivation, and thermal oxidation, followed by soaking in Hank solution have been found to be very effective in bringing down the corrosion rate as well as producing high corrosion resistance surface film as reflected from electrochemical polarization, cyclic polarization, and Electrochemical Impedance Spectroscopy (EIS) studies. The XRD study revealed the presence of various types of oxides along with anatase and rutile on the surface, giving rise to high corrosion resistance film. While surface treatment of passivation and thermal oxidation could reduce the corrosion rate by 1/5th, anodization in 0.3 M phosphoric acid at 16 V versus stainless steel cathode drastically brought down the corrosion rate by less than ten times. The mechanism of corrosion behavior and formation of different surface films is better understood from the determination of EIS parameters derived from the best-fit equivalent circuit.
Stastny, Jeffrey A.; Rogers, Craig A.; Liang, Chen
1993-07-01
A parametric design model has been created to optimize the sensitivity of the sensing cable in a distributed sensing system. The system consists of electrical time domain reflectometry (ETDR) signal processing equipment and specially designed sensing cables. The ETDR equipment sends a high-frequency electric pulse (in the giga hertz range) along the sensing cable. Some portion of the electric pulse will be reflected back to the ETDR equipment as a result of the variation of the cable impedance. The electric impedance variation in the sensing cable can be related to its mechanical deformation, such as cable elongation (change in the resistance), shear deformation (change in the capacitance), corrosion of the cable or the materials around the cable (change in inductance and capacitance), etc. The time delay, amplitude, and shape of the reflected pulse provides the means to locate, determine the magnitude, and indicate the nature of the change in the electrical impedance, which is then related to the distributed structural deformation. The sensing cables are an essential part of the health-monitoring system. By using the parametric design model, the optimum cable parameters can be determined for specific deformation. Proof-of-concept experiments also are presented in the paper to demonstrate the utility of an electrical TDR system in distributed sensing applications.
TeraHertz Time Domain Spectroscopy of Astrophysical Analog Materials
Blake, Geoffrey
The section of the electromagnetic spectrum extending roughly from wavelengths of 3 millimeters to 30 microns is commonly known as the far-infrared or TeraHertz (THz) region. It contains the great majority of the photons emitted by the universe, and THz observations of molecules and dust are able penetrate deeply into molecular clouds, thus revealing the full history of star and planet formation. Accordingly, the successful deployments of the Herschel and SOFIA observatories, and the emerging capabilities of ALMA, are both revolutionizing our understanding of THz astrophysics and placing stringent demands on the generation of accurate laboratory data on the relevant gas phase and solid state materials detected. With APRA support, we have constructed a combined high bandwidth and high spectral resolution femtosecond THz Time Domain Spectroscopy (THz TDS) system and an FT-IR spectrometer, and coupled these instruments to a high vacuum chamber and cryostat and to gas phase cells including a molecular beam system. We have investigated solid materials from room temperature to 10 K, and can examine both refractory matter such as silicates and molecular ices. For the latter, we have demonstrated that the THz bands observed are uniquely sensitive to both the molecular structure of the ice and its thermal history, and thus that THz observations can provide novel insight into the dominant condensable materials in dense, cold regions. In the gas phase we can record doppler-limited data over at least a decade in bandwidth. While quite capable, the high vacuum cryostat can only study thick samples, especially ices, due to the fairly rapid adsorption of gases onto surfaces at low temperature under such conditions. It is therefore not possible to examine highly layered/structured samples or reactive species. We therefore propose here to upgrade the chamber/cryostat to ultrahigh vacuum, and implement additional sample preparation and characterization tools. With such modifications
Improved methods for nightside time domain Lunar Electromagnetic Sounding
Fuqua-Haviland, H.; Poppe, A. R.; Fatemi, S.; Delory, G. T.; De Pater, I.
2017-12-01
Time Domain Electromagnetic (TDEM) Sounding isolates induced magnetic fields to remotely deduce material properties at depth. The first step of performing TDEM Sounding at the Moon is to fully characterize the dynamic plasma environment, and isolate geophysically induced currents from concurrently present plasma currents. The transfer function method requires a two-point measurement: an upstream reference measuring the pristine solar wind, and one downstream near the Moon. This method was last performed during Apollo assuming the induced fields on the nightside of the Moon expand as in an undisturbed vacuum within the wake cavity [1]. Here we present an approach to isolating induction and performing TDEM with any two point magnetometer measurement at or near the surface of the Moon. Our models include a plasma induction model capturing the kinetic plasma environment within the wake cavity around a conducting Moon, and a geophysical forward model capturing induction in a vacuum. The combination of these two models enable the analysis of magnetometer data within the wake cavity. Plasma hybrid models use the upstream plasma conditions and interplanetary magnetic field (IMF) to capture the wake current systems formed around the Moon. The plasma kinetic equations are solved for ion particles with electrons as a charge-neutralizing fluid. These models accurately capture the large scale lunar wake dynamics for a variety of solar wind conditions: ion density, temperature, solar wind velocity, and IMF orientation [2]. Given the 3D orientation variability coupled with the large range of conditions seen within the lunar plasma environment, we characterize the environment one case at a time. The global electromagnetic induction response of the Moon in a vacuum has been solved numerically for a variety of electrical conductivity models using the finite-element method implemented within the COMSOL software. This model solves for the geophysically induced response in vacuum to
Li, Ping; Shi, Yifei; Jiang, Lijun; Bagci, Hakan
2014-01-01
A scheme hybridizing discontinuous Galerkin time-domain (DGTD) and time-domain boundary integral (TDBI) methods for accurately analyzing transient electromagnetic scattering is proposed. Radiation condition is enforced using the numerical flux on the truncation boundary. The fields required by the flux are computed using the TDBI from equivalent currents introduced on a Huygens' surface enclosing the scatterer. The hybrid DGTDBI ensures that the radiation condition is mathematically exact and the resulting computation domain is as small as possible since the truncation boundary conforms to scatterer's shape and is located very close to its surface. Locally truncated domains can also be defined around each disconnected scatterer additionally reducing the size of the overall computation domain. Numerical examples demonstrating the accuracy and versatility of the proposed method are presented. © 2014 IEEE.
A higher order space-time Galerkin scheme for time domain integral equations
Pray, Andrew J.; Beghein, Yves; Nair, Naveen V.; Cools, Kristof; Bagci, Hakan; Shanker, Balasubramaniam
2014-01-01
Stability of time domain integral equation (TDIE) solvers has remained an elusive goal formany years. Advancement of this research has largely progressed on four fronts: 1) Exact integration, 2) Lubich quadrature, 3) smooth temporal basis functions, and 4) space-time separation of convolutions with the retarded potential. The latter method's efficacy in stabilizing solutions to the time domain electric field integral equation (TD-EFIE) was previously reported for first-order surface descriptions (flat elements) and zeroth-order functions as the temporal basis. In this work, we develop the methodology necessary to extend the scheme to higher order surface descriptions as well as to enable its use with higher order basis functions in both space and time. These basis functions are then used in a space-time Galerkin framework. A number of results are presented that demonstrate convergence in time. The viability of the space-time separation method in producing stable results is demonstrated experimentally for these examples.
Li, Ping
2014-05-01
A scheme hybridizing discontinuous Galerkin time-domain (DGTD) and time-domain boundary integral (TDBI) methods for accurately analyzing transient electromagnetic scattering is proposed. Radiation condition is enforced using the numerical flux on the truncation boundary. The fields required by the flux are computed using the TDBI from equivalent currents introduced on a Huygens\\' surface enclosing the scatterer. The hybrid DGTDBI ensures that the radiation condition is mathematically exact and the resulting computation domain is as small as possible since the truncation boundary conforms to scatterer\\'s shape and is located very close to its surface. Locally truncated domains can also be defined around each disconnected scatterer additionally reducing the size of the overall computation domain. Numerical examples demonstrating the accuracy and versatility of the proposed method are presented. © 2014 IEEE.
Time domain optical coherence tomography investigation of bone matrix interface in rat femurs
Rusu, Laura-Cristina; Negruá¹±iu, Meda-Lavinia; Sinescu, Cosmin; Hoinoiu, Bogdan; Topala, Florin-Ionel; Duma, Virgil-Florin; Rominu, Mihai; Podoleanu, Adrian G.
2013-08-01
The materials used to fabricate scaffolds for tissue engineering are derived from synthetic polymers, mainly from the polyester family, or from natural materials (e.g., collagen and chitosan). The mechanical properties and the structural properties of these materials can be tailored by adjusting the molecular weight, the crystalline state, and the ratio of monomers in the copolymers. Quality control and adjustment of the scaffold manufacturing process are essential to achieve high standard scaffolds. Most scaffolds are made from highly crystalline polymers, which inevitably result in their opaque appearance. Their 3-D opaque structure prevents the observation of internal uneven surface structures of the scaffolds under normal optical instruments, such as the traditional light microscope. The inability to easily monitor the inner structure of scaffolds as well as the interface with the old bone poses a major challenge for tissue engineering: it impedes the precise control and adjustment of the parameters that affect the cell growth in response to various mimicked culture conditions. The aim of this paper is to investigate the interface between the femur rat bone and the new bone that is obtained using a method of tissue engineering that is based on different artificial matrixes inserted in previously artificially induced defects. For this study, 15 rats were used in conformity with ethical procedures. In all the femurs a round defect was induced by drilling with a 1 mm spherical Co-Cr surgical drill. The matrixes used were Bioss and 4bone. These materials were inserted into the induced defects. The femurs were investigated at 1 week, 1 month, 2 month and three month after the surgical procedures. The interfaces were examined using Time Domain (TD) Optical Coherence Tomography (OCT) combined with Confocal Microscopy (CM). The optical configuration uses two single mode directional couplers with a superluminiscent diode as the source centered at 1300 nm. The scanning
A wearable microwave antenna array for time-domain breast tumor screening
Porter, Emily; Bahrami, Hadi; Santorelli, Adam; Gosselin, Benoit; Rusch, Leslie; Popovic, Milica
2016-01-01
In this work, we present a clinical prototype with a wearable patient interface for microwave breast cancer detection. The long-term aim of the prototype is a breast health monitoring application. The system operates using multistatic time-domain pulsed radar, with 16 flexible antennas embedded into a bra. Unlike the previously reported, table-based prototype with a rigid cup-like holder, the wearable one requires no immersion medium and enables simple localization of breast surface. In compa...
Molecular Frame Reconstruction Using Time-Domain Photoionization Interferometry.
Marceau, Claude; Makhija, Varun; Platzer, Dominique; Naumov, A Yu; Corkum, P B; Stolow, Albert; Villeneuve, D M; Hockett, Paul
2017-08-25
Photoionization of molecular species is, essentially, a multipath interferometer with both experimentally controllable and intrinsic molecular characteristics. In this work, XUV photoionization of impulsively aligned molecular targets (N_{2}) is used to provide a time-domain route to "complete" photoionization experiments, in which the rotational wave packet controls the geometric part of the photoionization interferometer. The data obtained is sufficient to determine the magnitudes and phases of the ionization matrix elements for all observed channels, and to reconstruct molecular frame interferograms from lab frame measurements. In principle, this methodology provides a time-domain route to complete photoionization experiments and the molecular frame, which is generally applicable to any molecule (no prerequisites), for all energies and ionization channels.
Drug detection by terahertz time-domain spectroscopy
International Nuclear Information System (INIS)
Duan Ruixin; Zhu Yiming; Zhao Hongwei
2013-01-01
Due to unique spectral region, functional imaging ability, excellent penetration and safety characteristics of terahertz radiation, the terahertz technology rapidly becomes a vital method to detect and analyze drugs. In this paper, firstly, we identify the functional groups of anti-diabetic drugs by density functional theory (DFT), HIPHOP models and experimental results from terahertz time-domain spectroscopy measurements. Secondly, we identify four kinds of herbs of radix curcumae by using the support vector machine (SVM) analysis. Besides, we analyze the absorption of anhydrous and hydrous glucose, and determine the state of water in the crystalized D-glucose·H 2 O through the results of differential scanning calorimetry measurement. Finally, we summarize the advantages and disadvantages of terahertz time-domain spectroscopy method in drug detection and analyzing. (authors)
Time Domain Partitioning of Electricity Production Cost Simulations
Energy Technology Data Exchange (ETDEWEB)
Barrows, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hummon, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jones, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hale, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2014-01-01
Production cost models are often used for planning by simulating power system operations over long time horizons. The simulation of a day-ahead energy market can take several weeks to compute. Tractability improvements are often made through model simplifications, such as: reductions in transmission modeling detail, relaxation of commitment variable integrality, reductions in cost modeling detail, etc. One common simplification is to partition the simulation horizon so that weekly or monthly horizons can be simulated in parallel. However, horizon partitions are often executed with overlap periods of arbitrary and sometimes zero length. We calculate the time domain persistence of historical unit commitment decisions to inform time domain partitioning of production cost models. The results are implemented using PLEXOS production cost modeling software in an HPC environment to improve the computation time of simulations while maintaining solution integrity.
Advances in spectral inversion of time-domain induced polarization
DEFF Research Database (Denmark)
Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest
The extraction of spectral information in the inversion process of time-domain (TD) induced polarization (IP) data is changing the use of the TDIP method. Data interpretation is evolving from a qualitative description of the subsurface, able only to discriminate the presence of contrasts in charg......The extraction of spectral information in the inversion process of time-domain (TD) induced polarization (IP) data is changing the use of the TDIP method. Data interpretation is evolving from a qualitative description of the subsurface, able only to discriminate the presence of contrasts...... in chargeability parameters, towards a quantitative analysis of the investigated media, which allows for detailed soil- and rock-type characterization. In this work a review of the recent advances in spectral inversion of TDIP data is presented, in terms of: supported IP parameterizations; modelling of transmitter...
The Simulation Realization of Pavement Roughness in the Time Domain
XU, H. L.; He, L.; An, D.
2017-10-01
As the needs for the dynamic study on the vehicle-pavement system and the simulated vibration table test, how to simulate the pavement roughness actually is important guarantee for whether calculation and test can reflect the actual situation or not. Using the power spectral density function, the simulation of pavement roughness can be realized by Fourier inverse transform. The main idea of this method was that the spectrum amplitude and random phase were obtained separately according to the power spectrum, and then the simulation of pavement roughness was obtained in the time domain through the Fourier inverse transform (IFFT). In the process, the sampling interval (Δl) was 0.1m, and the sampling points(N) was 4096, which satisfied the accuracy requirements. Using this method, the simulate results of pavement roughness (A~H grades) were obtain in the time domain.
THz time domain spectroscopy of biomolecular conformational modes
International Nuclear Information System (INIS)
Markelz, Andrea; Whitmire, Scott; Hillebrecht, Jay; Birge, Robert
2002-01-01
We discuss the use of terahertz time domain spectroscopy for studies of conformational flexibility and conformational change in biomolecules. Protein structural dynamics are vital to biological function with protein flexibility affecting enzymatic reaction rates and sensory transduction cycling times. Conformational mode dynamics occur on the picosecond timescale and with the collective vibrational modes associated with these large scale structural motions in the 1-100 cm -1 range. We have performed THz time domain spectroscopy (TTDS) of several biomolecular systems to explore the sensitivity of TTDS to distinguish different molecular species, different mutations within a single species and different conformations of a given biomolecule. We compare the measured absorbances to normal mode calculations and find that the TTDS absorbance reflects the density of normal modes determined by molecular mechanics calculations, and is sensitive to both conformation and mutation. These early studies demonstrate some of the advantages and limitations of using TTDS for the study of biomolecules
Time domain spectroscopy to monitor the condition of cable insulation
International Nuclear Information System (INIS)
Mopsik, F.I.; Martzloff, F.D.
1989-01-01
The use of Time Domain Spectroscopy, the measurement of dielectric constant and loss using time-domain response, the monitoring the aging of reactor cable insulation is examined. The method is presented, showing its sensitivity, accuracy and wide frequency range. The method's ability to acquire a great deal of information in a short time and its superiority to conventional single frequency data is shown. Different cable samples are examined before and after exposure to radiation and changes with exposure are clearly seen to occur. Also it is shown that a wide range of behavior can be found in different insulation systems. The requirements for performing valid measurements is presented. The need for controlled samples and correlation with other criteria for aging is discussed. 14 refs., 9 figs
Using random response input in Ibrahim Time Domain
DEFF Research Database (Denmark)
Olsen, Peter; Brincker, R.
2013-01-01
In this paper the time domain technique Ibrahim Time Domain (ITD) is used to analyze random time data. ITD is known to be a technique for identification of output only systems. The traditional formulation of ITD is claimed to be limited, when identifying closely spaced modes, because....... In this article it is showed that when using the modified ITD random time data can be analyzed. The application of the technique is displayed by a case study, with simulations and experimental data....... of the technique being Single Input Multiple Output (SIMO). It has earlier been showed that when modifying ITD with Toeplitz matrix averaging. Identification of time data with closely spaced modes is improved. In the traditional formulation of ITD the time data has to be free decays or impulse response functions...
Surface impedance of BaFe2-xNixAs2 in the radio frequency range
Directory of Open Access Journals (Sweden)
A. Abbassi
2012-08-01
Full Text Available We report measurements of the temperature dependence of the surface impedance in superconducting BaFe1.93Ni0.07As2 crystals using the radiofrequency reflection technique in the 5
Ultrabroadband THz time-domain spectroscopy of biomolecular crystals
DEFF Research Database (Denmark)
Kaltenecker, Korbinian J.; Engelbrecht, Sebastian; Iwaszczuk, Krzysztof
2016-01-01
Ultrabroadband THz time-domain spectroscopy based on two-color plasma generation and air biased coherent detection is used for the investigation of molecular dynamics of crystalline materials in the frequency range from 0.3 THz to 20 THz. We show that the spectral features in this extended...... frequency range are a result of inter- and intramolecular vibrations which are identified by means of simulations of the crystalline materials....
Surface Impedance of Copper MOB Depending on the Annealing Temperature and Deformation Degree
International Nuclear Information System (INIS)
Kutovoj, V.A.; Nikolaenko, A.A.; Stoev, P.I.; Vinogradov, D.V.
2006-01-01
Results of researches of influence of annealing temperature and deformation degree on mechanical features of copper MOB are presented. It is shown that minimal surface resistance is observed in copper samples that were subject to pre-deformation and were annealed in the range of temperatures 873...923 K
THEORETICAL RESEARCH ON HYDRODYNAMICS OF A GEOMETRIC SPAR IN FREQUENCY- AND TIME-DOMAINS
Institute of Scientific and Technical Information of China (English)
WANG Ying; YANG Jian-min; HU Zhi-qiang; XIAO Long-fei
2008-01-01
Considering the coupling effects of the vessel and its riser and mooring system, hydrodynamic analyses of a geometric spar were performed both in frequency- and time-domains. Based on the boundary element method, the 3-D panel model of the geometric spar and the related free water surface model were established, and the first-order and second-order difference-frequency wave loads and other hydrodynamic coefficients were calculated. Frequency domain analysis of the motion Response Amplitude Operators (RAO) and Quadratic Transfer Functions (QTF) and time domain analysis of the response series and spectra in an extreme wave condition were conducted for the coupled system with the mooring lines and risers involved. These analyses were further validated by the physical model test results.
Progress in parallel implementation of the multilevel plane wave time domain algorithm
Liu, Yang
2013-07-01
The computational complexity and memory requirements of classical schemes for evaluating transient electromagnetic fields produced by Ns dipoles active for Nt time steps scale as O(NtN s 2) and O(Ns 2), respectively. The multilevel plane wave time domain (PWTD) algorithm [A.A. Ergin et al., Antennas and Propagation Magazine, IEEE, vol. 41, pp. 39-52, 1999], viz. the extension of the frequency domain fast multipole method (FMM) to the time domain, reduces the above costs to O(NtNslog2Ns) and O(Ns α) with α = 1.5 for surface current distributions and α = 4/3 for volumetric ones. Its favorable computational and memory costs notwithstanding, serial implementations of the PWTD scheme unfortunately remain somewhat limited in scope and ill-suited to tackle complex real-world scattering problems, and parallel implementations are called for. © 2013 IEEE.
Quantum-corrected plasmonic field analysis using a time domain PMCHWT integral equation
Uysal, Ismail E.
2016-03-13
When two structures are within sub-nanometer distance of each other, quantum tunneling, i.e., electrons "jumping" from one structure to another, becomes relevant. Classical electromagnetic solvers do not directly account for this additional path of current. In this work, an auxiliary tunnel made of Drude material is used to "connect" the structures as a support for this current path (R. Esteban et al., Nat. Commun., 2012). The plasmonic fields on the resulting connected structure are analyzed using a time domain surface integral equation solver. Time domain samples of the dispersive medium Green function and the dielectric permittivities are computed from the analytical inverse Fourier transform applied to the rational function representation of their frequency domain samples.
New Flutter Analysis Technique for Time-Domain Computational Aeroelasticity
Pak, Chan-Gi; Lung, Shun-Fat
2017-01-01
A new time-domain approach for computing flutter speed is presented. Based on the time-history result of aeroelastic simulation, the unknown unsteady aerodynamics model is estimated using a system identification technique. The full aeroelastic model is generated via coupling the estimated unsteady aerodynamic model with the known linear structure model. The critical dynamic pressure is computed and used in the subsequent simulation until the convergence of the critical dynamic pressure is achieved. The proposed method is applied to a benchmark cantilevered rectangular wing.
Terahertz time-domain spectroscopy and imaging of artificial RNA
DEFF Research Database (Denmark)
Fischer, Bernd M.; Hoffmann, Matthias; Helm, Hanspeter
2005-01-01
We use terahertz time-domain spectroscopy (THz-TDS) to measure the far-infrared dielectric function of two artificial RNA single strands, composed of polyadenylic acid (poly-A) and polycytidylic acid (poly-C). We find a significant difference in the absorption between the two types of RNA strands......, and we show that we can use this difference to record images of spot arrays of the RNA strands. Under controlled conditions it is possible to use the THz image to distinguish between the two RNA strands. We discuss the requirements to sample preparation imposed by the lack of sharp spectral features...
CORRTEX: a compact and versatile system for time domain reflectometry
International Nuclear Information System (INIS)
Deupree, R.G.; Eilers, D.D.; McKown, T.O.; Storey, W.H.
1981-01-01
The CORRTEX (COntinuous Reflectometry for Radius versus Time EXperiments) system was designed to be an adaptable and versatile unit for performing time domain reflectometry (TDR). The system consists of a coaxial cable, a digital TDR, which uses a Motorola 6800 microprocessor, a power source or battery pack, and an output terminal or recording driver. Desirable criteria for the system are discussed as well as the operation of the CORRTEX system. The types of present applications of the CORRTEX system are summarized and data presented
Terahertz time-domain transmission and reflection spectroscopy of niobium
International Nuclear Information System (INIS)
Hong, Tae Yoon; Choi, Kyu Jin; Park, Byoung Cheol; Ha, Tae Woo; Sim, Kyung Ik; Kim, Jea Hoon; Ha, Dong Gwang; Chang, Yonuk
2013-01-01
We have developed a terahertz time-domain spectroscopy (THz-TDS) system for transmission and reflection measurements of metallic thin films. Using our THz-TDS system, we studied the conventional superconductor niobium (Nb) in the normal state in the spectral range from 5 to 50 cm -1 . Both the real and imaginary parts of the conductivity are acquired without Kramers-Kronig analysis. Nb exhibits a nearly frequency independent real conductivity spectrum in the terahertz range, with a very small imaginary part.
Solution of the Burgers Equation in the Time Domain
Directory of Open Access Journals (Sweden)
M. Bednařík
2002-01-01
Full Text Available This paper deals with a theoretical description of the propagation of a finite amplitude acoustic waves. The theory based on the homogeneous Burgers equation of the second order of accuracy is presented here. This equation takes into account both nonlinear effects and dissipation. The method for solving this equation, using the well-known Cole-Hopf transformation, is presented. Two methods for numerical solution of these equations in the time domain are presented. The first is based on the simple Simpson method, which is suitable for smaller Goldberg numbers. The second uses the more advanced saddle point method, and is appropriate for large Goldberg numbers.
Physical optics far field inverse scattering in the time domain
International Nuclear Information System (INIS)
Bleistein, N.
1976-01-01
The physical optics far field inverse scattering (POFFIS) identity relates the phase and range normalized far field back scattering amplitude to the spatial Fourier transform of the characteristic function of the scattering obstacle. The characteristic function is equal to unity in the region occupied by the obstacle and zero elsewhere. The original identity was derived by Bojarski for impulsive point sources. The result is extended to sources of arbitrary time dependence. One obtains an alternative form of Bojarski's POFFIS identity. One also derives a POFFIS identity in the time domain. Numerically synthesized checks on the method are provided
Evaluation of skin moisturizer effects using terahertz time domain imaging
Martinez-Meza, L. H.; Rojas-Landeros, S. C.; Castro-Camus, E.; Alfaro-Gomez, M.
2018-02-01
We use terahertz time domain imaging for the evaluation of the effects of skin-moisturizers in vivo. We evaluate three principal substances used in commercial moisturizers: glycerin, hyaluronic acid and lanolin. We image the interaction of the forearm with each of the substances taking terahertz spectra at sequential times. With this, we are able to measure the effect of the substances on the hydration level of the skin in time, determining the feasibility of using THz imaging for the evaluation of the products and their effects on the hydration levels of the skin.
Directory of Open Access Journals (Sweden)
Joko Suryana
2010-10-01
Full Text Available Frequency domain analysis is a powerful and compact tool for characterizing the antenna parameters such as gain, radiation pattern and the impedance as a function of frequency. However, if time or space is a major concern, such as in the GPR appication, the time domain analysis would be a very important tool due to their unique capability for determining the echo delay and range profile of target image. In this paper, we will describe the classical theory of system characterization in time domain, and then also propose the mathematical model for characterizing the 1 - 2 GHz circular-ended Bowtie antenna. From the measurement results, we concluded that the implemented Bowtie antenna has good normalized impulse response with very small ringing, so it is suitable for GPR applications.
Impedance Scaling and Impedance Control
International Nuclear Information System (INIS)
Chou, W.; Griffin, J.
1997-06-01
When a machine becomes really large, such as the Very Large Hadron Collider (VLHC), of which the circumference could reach the order of megameters, beam instability could be an essential bottleneck. This paper studies the scaling of the instability threshold vs. machine size when the coupling impedance scales in a ''normal'' way. It is shown that the beam would be intrinsically unstable for the VLHC. As a possible solution to this problem, it is proposed to introduce local impedance inserts for controlling the machine impedance. In the longitudinal plane, this could be done by using a heavily detuned rf cavity (e.g., a biconical structure), which could provide large imaginary impedance with the right sign (i.e., inductive or capacitive) while keeping the real part small. In the transverse direction, a carefully designed variation of the cross section of a beam pipe could generate negative impedance that would partially compensate the transverse impedance in one plane
DEFF Research Database (Denmark)
Escolano-Carrasco, José; Jacobsen, Finn; López, J.J.
2008-01-01
The finite-difference time-domain (FDTD) method provides a simple and accurate way of solving initial boundary value problems. However, most acoustic problems involve frequency dependent boundary conditions, and it is not easy to include such boundary conditions in an FDTD model. Although solutions...... to this problem exist, most of them have high computational costs, and stability cannot always be ensured. In this work, a solution is proposed based on "mixing modelling strategies"; this involves separating the FDTD mesh and the boundary conditions (a digital filter representation of the impedance...
International Nuclear Information System (INIS)
Souza, Leticia Lopes de
2011-01-01
Carbon-based electrodes as well the ion exchange electrodes among others have been applied mainly in the treatment of industrial effluents and radioactive wastes. Carbon is also used in fuel cells as substrate for the electrocatalysts, having high surface area which surpasses its geometric area. The knowledge of the total active area is important for the determination of operating conditions of an electrochemical cell with respect to the currents to be applied (current density). In this study it was used two techniques to determine the electrochemical active surface area of glassy carbon, electrodes and ion exchange electrodes: cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The experiments were carried out with KNO 3 0.1 mol.L -1 solutions in a three-electrode electrochemical cell: carbon-based working electrode, platinum auxiliary electrode and Ag/AgCl reference electrode. The glassy carbon and porous carbon electrodes with geometric areas of 3.14 x 10 -2 and 2.83 X 10 -1 cm 2 , respectively, were used. The ion exchange electrode was prepared by mixing graphite, carbon, ion exchange resin and a binder, and this mixture was applied in three layers on carbon felt, using a geometric area of 1.0 cm 2 during the experiments. The capacitance (Cd) of the materials was determined by EIS using Bode diagrams. The value of 172 μF.cm -2 found for the glassy carbon is consistent with the literature data (∼ 200 μF.cm'- 2 ). By VC, varying the scan rate from 0.2 to 2.0 mV.s-1, the capacitance CdS (S = active surface area) in the region of the electric double layer (EDL) of each material was determined. By EIS, the values of C d , 3.0 x 10 -5 μF.cm'- 2 and 11 x 10 3 μF.cm-2, were found for the porous carbon and ion exchange electrodes, respectively, which allowed the determination of active surface areas as 3.73 x 106 cm 2 and 4.72 cm 2 . To sum up, the combined use of EIS and CV techniques is a valuable tool for the calculation of active surface
Explicit solution of Calderon preconditioned time domain integral equations
Ulku, Huseyin Arda
2013-07-01
An explicit marching on-in-time (MOT) scheme for solving Calderon-preconditioned time domain integral equations is proposed. The scheme uses Rao-Wilton-Glisson and Buffa-Christiansen functions to discretize the domain and range of the integral operators and a PE(CE)m type linear multistep to march on in time. Unlike its implicit counterpart, the proposed explicit solver requires the solution of an MOT system with a Gram matrix that is sparse and well-conditioned independent of the time step size. Numerical results demonstrate that the explicit solver maintains its accuracy and stability even when the time step size is chosen as large as that typically used by an implicit solver. © 2013 IEEE.
Computational electrodynamics the finite-difference time-domain method
Taflove, Allen
2005-01-01
This extensively revised and expanded third edition of the Artech House bestseller, Computational Electrodynamics: The Finite-Difference Time-Domain Method, offers engineers the most up-to-date and definitive resource on this critical method for solving Maxwell's equations. The method helps practitioners design antennas, wireless communications devices, high-speed digital and microwave circuits, and integrated optical devices with unsurpassed efficiency. There has been considerable advancement in FDTD computational technology over the past few years, and the third edition brings professionals the very latest details with entirely new chapters on important techniques, major updates on key topics, and new discussions on emerging areas such as nanophotonics. What's more, to supplement the third edition, the authors have created a Web site with solutions to problems, downloadable graphics and videos, and updates, making this new edition the ideal textbook on the subject as well.
Iterative Refinement Methods for Time-Domain Equalizer Design
Directory of Open Access Journals (Sweden)
Evans Brian L
2006-01-01
Full Text Available Commonly used time domain equalizer (TEQ design methods have been recently unified as an optimization problem involving an objective function in the form of a Rayleigh quotient. The direct generalized eigenvalue solution relies on matrix decompositions. To reduce implementation complexity, we propose an iterative refinement approach in which the TEQ length starts at two taps and increases by one tap at each iteration. Each iteration involves matrix-vector multiplications and vector additions with matrices and two-element vectors. At each iteration, the optimization of the objective function either improves or the approach terminates. The iterative refinement approach provides a range of communication performance versus implementation complexity tradeoffs for any TEQ method that fits the Rayleigh quotient framework. We apply the proposed approach to three such TEQ design methods: maximum shortening signal-to-noise ratio, minimum intersymbol interference, and minimum delay spread.
In vitro osteosarcoma biosensing using THz time domain spectroscopy
Ferguson, Bradley S.; Liu, Haibo; Hay, Shelley; Findlay, David; Zhang, Xi-Cheng; Abbott, Derek
2004-03-01
Terahertz time domain spectroscopy (THz-TDS) has a wide range of applications from semiconductor diagnostics to biosensing. Recent attention has focused on bio-applications and several groups have noted the ability of THz-TDS to differentiate basal cell carcinoma tissue from healthy dermal tissue ex vivo. The contrast mechanism is unclear but has been attributed to increased interstitial water in cancerous tissue. In this work we investigate the THz response of human osteosarcoma cells and normal human bone cells grown in culture to isolate the cells' responses from other effects. A classification algorithms based on a frequency selection by genetic algorithm is used to attempt to differentiate between the cell types based on the THz spectra. Encouraging preliminary results have been obtained.
Modern linear control design a time-domain approach
Caravani, Paolo
2013-01-01
This book offers a compact introduction to modern linear control design. The simplified overview presented of linear time-domain methodology paves the road for the study of more advanced non-linear techniques. Only rudimentary knowledge of linear systems theory is assumed - no use of Laplace transforms or frequency design tools is required. Emphasis is placed on assumptions and logical implications, rather than abstract completeness; on interpretation and physical meaning, rather than theoretical formalism; on results and solutions, rather than derivation or solvability. The topics covered include transient performance and stabilization via state or output feedback; disturbance attenuation and robust control; regional eigenvalue assignment and constraints on input or output variables; asymptotic regulation and disturbance rejection. Lyapunov theory and Linear Matrix Inequalities (LMI) are discussed as key design methods. All methods are demonstrated with MATLAB to promote practical use and comprehension. ...
Perfectly matched layer for the time domain finite element method
International Nuclear Information System (INIS)
Rylander, Thomas; Jin Jianming
2004-01-01
A new perfectly matched layer (PML) formulation for the time domain finite element method is described and tested for Maxwell's equations. In particular, we focus on the time integration scheme which is based on Galerkin's method with a temporally piecewise linear expansion of the electric field. The time stepping scheme is constructed by forming a linear combination of exact and trapezoidal integration applied to the temporal weak form, which reduces to the well-known Newmark scheme in the case without PML. Extensive numerical tests on scattering from infinitely long metal cylinders in two dimensions show good accuracy and no signs of instabilities. For a circular cylinder, the proposed scheme indicates the expected second order convergence toward the analytic solution and gives less than 2% root-mean-square error in the bistatic radar cross section (RCS) for resolutions with more than 10 points per wavelength. An ogival cylinder, which has sharp corners supporting field singularities, shows similar accuracy in the monostatic RCS
Differentiation of illicit drugs with THz time-domain spectroscopy
International Nuclear Information System (INIS)
Liu Guifeng; Ma Shihua; Ji Te; Zhao Hongwei; Wang Wenfeng
2010-01-01
The tera hertz time-domain spectroscopy (THz-TDS) was used for sensing and identifying illicit drugs. The absorption spectra of seven illicit drug samples(morphine and its hydrochloride, cocaine hydrochloride, codeine phosphate, papaverine hydrochloride, pethidine hydrochloride, and thebaine) were studied by THz-TDS at 0.3-2.0 THz at room temperature. The geometric structure and vibration frequencies of morphine were calculated by density functional theory. The four absorption features were dominated by intra-/inter-molecular collective or lattice vibration modes. Each illicit drug has a distinct signature in its THz spectra. The results indicate that the THz-TDS can be used to identify and discriminate illicit drugs by their characteristic fingerprints. (authors)
Terahertz time-domain spectroscopy of edible oils
Dinovitser, Alex; Valchev, Dimitar G.; Abbott, Derek
2017-06-01
Chemical degradation of edible oils has been studied using conventional spectroscopic methods spanning the spectrum from ultraviolet to mid-IR. However, the possibility of morphological changes of oil molecules that can be detected at terahertz frequencies is beginning to receive some attention. Furthermore, the rapidly decreasing cost of this technology and its capability for convenient, in situ measurement of material properties, raises the possibility of monitoring oil during cooking and processing at production facilities, and more generally within the food industry. In this paper, we test the hypothesis that oil undergoes chemical and physical changes when heated above the smoke point, which can be detected in the 0.05-2 THz spectral range, measured using the conventional terahertz time-domain spectroscopy technique. The measurements demonstrate a null result in that there is no significant change in the spectra of terahertz optical parameters after heating above the smoke point for 5 min.
SVD compression for magnetic resonance fingerprinting in the time domain.
McGivney, Debra F; Pierre, Eric; Ma, Dan; Jiang, Yun; Saybasili, Haris; Gulani, Vikas; Griswold, Mark A
2014-12-01
Magnetic resonance (MR) fingerprinting is a technique for acquiring and processing MR data that simultaneously provides quantitative maps of different tissue parameters through a pattern recognition algorithm. A predefined dictionary models the possible signal evolutions simulated using the Bloch equations with different combinations of various MR parameters and pattern recognition is completed by computing the inner product between the observed signal and each of the predicted signals within the dictionary. Though this matching algorithm has been shown to accurately predict the MR parameters of interest, one desires a more efficient method to obtain the quantitative images. We propose to compress the dictionary using the singular value decomposition, which will provide a low-rank approximation. By compressing the size of the dictionary in the time domain, we are able to speed up the pattern recognition algorithm, by a factor of between 3.4-4.8, without sacrificing the high signal-to-noise ratio of the original scheme presented previously.
Terahertz Time Domain Spectroscopy for Structure-II Gas Hydrates
DEFF Research Database (Denmark)
Takeya, Kei; Zhang, Caihong; Kawayama, Iwao
2009-01-01
For the nondestructive inspection of gas hydrates, terahertz (THz) time-domain spectroscopy (TDS) was applied to tetrahydrofuran (THF) hydrate and propane hydrate. The absorption of propane hydrate monotonically increases with frequency, similar to the case of ice, while THF hydrate has...... a characteristic broad absorption peak at 0.5 THz corresponding to the dipole moment of THF molecules. The refractive indices of THF and propane hydrates are 1.725 and 1.775 at 1 THz, respectively, and show a slight but clear difference from the refractive index of ice (1.79). THz-TDS is a potentially useful...... technique for the ondestructive inspection of gas hydrates. # 2009 The Japan Society of Applied Physics...
Detection of Poisonous Herbs by Terahertz Time-Domain Spectroscopy
Zhang, H.; Li, Z.; Chen, T.; Liu, J.-J.
2018-03-01
The aim of this paper is the application of terahertz (THz) spectroscopy combined with chemometrics techniques to distinguish poisonous and non-poisonous herbs which both have a similar appearance. Spectra of one poisonous and two non-poisonous herbs (Gelsemium elegans, Lonicera japonica Thunb, and Ficus Hirta Vahl) were obtained in the range 0.2-1.4 THz by using a THz time-domain spectroscopy system. Principal component analysis (PCA) was used for feature extraction. The prediction accuracy of classification is between 97.78 to 100%. The results demonstrate an efficient and applicative method to distinguish poisonous herbs, and it may be implemented by using THz spectroscopy combined with chemometric algorithms.
Acoustic, finite-difference, time-domain technique development
International Nuclear Information System (INIS)
Kunz, K.
1994-01-01
A close analog exists between the behavior of sound waves in an ideal gas and the radiated waves of electromagnetics. This analog has been exploited to obtain an acoustic, finite-difference, time-domain (AFDTD) technique capable of treating small signal vibrations in elastic media, such as air, water, and metal, with the important feature of bending motion included in the behavior of the metal. This bending motion is particularly important when the metal is formed into sheets or plates. Bending motion does not have an analog in electromagnetics, but can be readily appended to the acoustic treatment since it appears as a single additional term in the force equation for plate motion, which is otherwise analogous to the electromagnetic wave equation. The AFDTD technique has been implemented in a code architecture that duplicates the electromagnetic, finite-difference, time-domain technique code. The main difference in the implementation is the form of the first-order coupled differential equations obtained from the wave equation. The gradient of pressure and divergence of velocity appear in these equations in the place of curls of the electric and magnetic fields. Other small changes exist as well, but the codes are essentially interchangeable. The pre- and post-processing for model construction and response-data evaluation of the electromagnetic code, in the form of the TSAR code at Lawrence Livermore National Laboratory, can be used for the acoustic version. A variety of applications is possible, pending validation of the bending phenomenon. The applications include acoustic-radiation-pattern predictions for a submerged object; mine detection analysis; structural noise analysis for cars; acoustic barrier analysis; and symphonic hall/auditorium predictions and speaker enclosure modeling
Time domain series system definition and gear set reliability modeling
International Nuclear Information System (INIS)
Xie, Liyang; Wu, Ningxiang; Qian, Wenxue
2016-01-01
Time-dependent multi-configuration is a typical feature for mechanical systems such as gear trains and chain drives. As a series system, a gear train is distinct from a traditional series system, such as a chain, in load transmission path, system-component relationship, system functioning manner, as well as time-dependent system configuration. Firstly, the present paper defines time-domain series system to which the traditional series system reliability model is not adequate. Then, system specific reliability modeling technique is proposed for gear sets, including component (tooth) and subsystem (tooth-pair) load history description, material priori/posterior strength expression, time-dependent and system specific load-strength interference analysis, as well as statistically dependent failure events treatment. Consequently, several system reliability models are developed for gear sets with different tooth numbers in the scenario of tooth root material ultimate tensile strength failure. The application of the models is discussed in the last part, and the differences between the system specific reliability model and the traditional series system reliability model are illustrated by virtue of several numerical examples. - Highlights: • A new type of series system, i.e. time-domain multi-configuration series system is defined, that is of great significance to reliability modeling. • Multi-level statistical analysis based reliability modeling method is presented for gear transmission system. • Several system specific reliability models are established for gear set reliability estimation. • The differences between the traditional series system reliability model and the new model are illustrated.
Discontinuous Galerkin time-domain analysis of power/ground plate pairs with wave port excitation
Li, Ping; Jiang, Li Jun; Bagci, Hakan
2018-01-01
In this work, a discontinuous Galerkin time-domain method is developed to analyze the power/ground plate pairs taking into account arbitrarily shaped antipads. To implement proper source excitations over the antipads, the magnetic surface current expanded by the electric eigen-modes supported by the corresponding antipad is employed as the excitation. For irregularly shaped antipads, the eigen-modes are obtained by numerical approach. Accordingly, the methodology for the S-parameter extraction is derived based on the orthogonal properties of the different modes. Based on the approach, the transformation between different modes can be readily evaluated.
Scattering analysis of periodic structures using finite-difference time-domain
ElMahgoub, Khaled; Elsherbeni, Atef Z
2012-01-01
Periodic structures are of great importance in electromagnetics due to their wide range of applications such as frequency selective surfaces (FSS), electromagnetic band gap (EBG) structures, periodic absorbers, meta-materials, and many others. The aim of this book is to develop efficient computational algorithms to analyze the scattering properties of various electromagnetic periodic structures using the finite-difference time-domain periodic boundary condition (FDTD/PBC) method. A new FDTD/PBC-based algorithm is introduced to analyze general skewed grid periodic structures while another algor
Discontinuous Galerkin time-domain analysis of power/ground plate pairs with wave port excitation
Li, Ping
2018-04-06
In this work, a discontinuous Galerkin time-domain method is developed to analyze the power/ground plate pairs taking into account arbitrarily shaped antipads. To implement proper source excitations over the antipads, the magnetic surface current expanded by the electric eigen-modes supported by the corresponding antipad is employed as the excitation. For irregularly shaped antipads, the eigen-modes are obtained by numerical approach. Accordingly, the methodology for the S-parameter extraction is derived based on the orthogonal properties of the different modes. Based on the approach, the transformation between different modes can be readily evaluated.
Numerical modeling of wind turbine aerodynamic noise in the time domain.
Lee, Seunghoon; Lee, Seungmin; Lee, Soogab
2013-02-01
Aerodynamic noise from a wind turbine is numerically modeled in the time domain. An analytic trailing edge noise model is used to determine the unsteady pressure on the blade surface. The far-field noise due to the unsteady pressure is calculated using the acoustic analogy theory. By using a strip theory approach, the two-dimensional noise model is applied to rotating wind turbine blades. The numerical results indicate that, although the operating and atmospheric conditions are identical, the acoustical characteristics of wind turbine noise can be quite different with respect to the distance and direction from the wind turbine.
Ulku, Huseyin Arda
2014-07-06
Effects of material nonlinearities on electromagnetic field interactions become dominant as field amplitudes increase. A typical example is observed in plasmonics, where highly localized fields “activate” Kerr nonlinearities. Naturally, time domain solvers are the method of choice when it comes simulating these nonlinear effects. Oftentimes, finite difference time domain (FDTD) method is used for this purpose. This is simply due to the fact that explicitness of the FDTD renders the implementation easier and the material nonlinearity can be easily accounted for using an auxiliary differential equation (J.H. Green and A. Taflove, Opt. Express, 14(18), 8305-8310, 2006). On the other hand, explicit marching on-in-time (MOT)-based time domain integral equation (TDIE) solvers have never been used for the same purpose even though they offer several advantages over FDTD (E. Michielssen, et al., ECCOMAS CFD, The Netherlands, Sep. 5-8, 2006). This is because explicit MOT solvers have never been stabilized until not so long ago. Recently an explicit but stable MOT scheme has been proposed for solving the time domain surface magnetic field integral equation (H.A. Ulku, et al., IEEE Trans. Antennas Propag., 61(8), 4120-4131, 2013) and later it has been extended for the time domain volume electric field integral equation (TDVEFIE) (S. B. Sayed, et al., Pr. Electromagn. Res. S., 378, Stockholm, 2013). This explicit MOT scheme uses predictor-corrector updates together with successive over relaxation during time marching to stabilize the solution even when time step is as large as in the implicit counterpart. In this work, an explicit MOT-TDVEFIE solver is proposed for analyzing electromagnetic wave interactions on scatterers exhibiting Kerr nonlinearity. Nonlinearity is accounted for using the constitutive relation between the electric field intensity and flux density. Then, this relation and the TDVEFIE are discretized together by expanding the intensity and flux - sing half
Time-domain hybrid method for simulating large amplitude motions of ships advancing in waves
Directory of Open Access Journals (Sweden)
Shukui Liu
2011-03-01
Full Text Available Typical results obtained by a newly developed, nonlinear time domain hybrid method for simulating large amplitude motions of ships advancing with constant forward speed in waves are presented. The method is hybrid in the way of combining a time-domain transient Green function method and a Rankine source method. The present approach employs a simple double integration algorithm with respect to time to simulate the free-surface boundary condition. During the simulation, the diffraction and radiation forces are computed by pressure integration over the mean wetted surface, whereas the incident wave and hydrostatic restoring forces/moments are calculated on the instantaneously wetted surface of the hull. Typical numerical results of application of the method to the seakeeping performance of a standard containership, namely the ITTC S175, are herein presented. Comparisons have been made between the results from the present method, the frequency domain 3D panel method (NEWDRIFT of NTUA-SDL and available experimental data and good agreement has been observed for all studied cases between the results of the present method and comparable other data.
DEFF Research Database (Denmark)
Rossi, Matteo; Olsson, Per-Ivar; Johansson, Sara
2017-01-01
-current resistivity distribution of the subsoil and the phase of the complex conductivity using a constant-phase angle model. The joint interpretation of electrical resistivity and induced-polarization models leads to a better understanding of complex three-dimensional subsoil geometries. The results have been......An investigation of geological conditions is always a key point for planning infrastructure constructions. Bedrock surface and rock quality must be estimated carefully in the designing process of infrastructures. A large direct-current resistivity and time-domain induced-polarization survey has......, there are northwest-trending Permian dolerite dykes that are less deformed. Four 2D direct-current resistivity and time-domain induced-polarization profiles of about 1-km length have been carefully pre-processed to retrieve time-domain induced polarization responses and inverted to obtain the direct...
Time domain optical memories using rare earth ions
International Nuclear Information System (INIS)
Sellars, M.J.; Dyke, T.; Pryde, G.J.; Manson, N.B.
1998-01-01
Full text: Rare earth doped crystals are the chosen materials for the next generation of optical memories where the process of spectral holeburning can be employed to provide an extra dimension of frequency or time to spatial dimensions and with certain rare earth ions increases of the order of 10 7 in storage capacity can be achieved over conventional optical memories. Time domain techniques are preferred over frequency domain techniques and are now well developed. In these techniques arbitrary pulse sequences are stored in the material and read out at some later time with a single read pulse using a stimulated photon echo process. Long pulse sequences will enable more data to be stored but necessitates the use of materials with long dephasing times (corresponding to narrow spectral lines) and it is this characteristic of rare earth systems that makes them the preferred material for the new time domain optical memories. The storage time can range from hours to days but in a practical device will require refreshing or re-enforcing and this puts special requirements on the stability of the laser used for storing the information. The storage process itself can also be weak and more reliable storage can be achieved by recording the data several times with the same pulse sequence. For this to be successful the laser must be at held at a constant frequency and be stable in phase over the entire duration of the pulse sequence. The procedure of reinforcing the data sequence has been proposed before and attempted without attention to the laser frequency stability. However, if the laser is not stable although some data bits will be reinforced or increased in size others will be decreased or even erased. Indeed the reliability of the memory is degraded by the introducing the rewrite process. For our work we have developed a laser with the excellent stability and able to demonstrate reproducible reinforcement of the data sequence. Thus with the rewrite sequence we are able to
Near-infrared laser, time domain, breast tumour detection system
International Nuclear Information System (INIS)
Joblin, A.J.
1996-01-01
Full text: The use of near-infrared laser, time domain techniques have been proposed for some time now as an alternative to X-ray mammography, as a means of mass screening for breast disease. The great driving force behind this research has been that near-infrared photons are a non-ionising radiation, which affords a greater degree of patient safety than when using X-rays. This would mean that women at risk of breast disease could be screened with a near-infrared laser imaging system, much more regularly than with an X-ray mammography system, which should allow for the earlier detection and treatment of breast disease. This paper presents a theoretical investigation of the performance of a near-infrared, time domain breast imaging system. The performance of the imaging system is characterised by the resolution and contrast parameters, which were studied using a numerical finite difference calculation method. The finite difference method is used to solve the diffusion equation for the photon transport through the inhomogeneous breast tissue medium. Optimal performance was found to be obtained with short photon times of flight. However the signal to noise ratio decreases rapidly as the photon time of flight is decreased. The system performance will therefore be limited by the noise equivalent power of the time resolved detection system, which is the signal incident on the time resolved detection system which gives a signal to noise ratio of 1:1. Photon times of flight shorter than 500 ps are not practical with current technology, which places limits on the resolution and contrast. The photon signal throughput can be increased by increasing the size of the laser beam width, by increasing the size of the aperture stop of the detector, by increasing the laser pulse duration or decreasing the detector time resolution. Best system performance is found by optimising these parameters for a given time gating and detector system characteristic (NEP). It was found that the
Time domain functional NIRS imaging for human brain mapping.
Torricelli, Alessandro; Contini, Davide; Pifferi, Antonio; Caffini, Matteo; Re, Rebecca; Zucchelli, Lucia; Spinelli, Lorenzo
2014-01-15
This review is aimed at presenting the state-of-the-art of time domain (TD) functional near-infrared spectroscopy (fNIRS). We first introduce the physical principles, the basics of modeling and data analysis. Basic instrumentation components (light sources, detection techniques, and delivery and collection systems) of a TD fNIRS system are described. A survey of past, existing and next generation TD fNIRS systems used for research and clinical studies is presented. Performance assessment of TD fNIRS systems and standardization issues are also discussed. Main strengths and weakness of TD fNIRS are highlighted, also in comparison with continuous wave (CW) fNIRS. Issues like quantification of the hemodynamic response, penetration depth, depth selectivity, spatial resolution and contrast-to-noise ratio are critically examined, with the help of experimental results performed on phantoms or in vivo. Finally we give an account on the technological developments that would pave the way for a broader use of TD fNIRS in the neuroimaging community. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Time-domain Brillouin scattering assisted by diffraction gratings
Matsuda, Osamu; Pezeril, Thomas; Chaban, Ievgeniia; Fujita, Kentaro; Gusev, Vitalyi
2018-02-01
Absorption of ultrashort laser pulses in a metallic grating deposited on a transparent sample launches coherent compression/dilatation acoustic pulses in directions of different orders of acoustic diffraction. Their propagation is detected by delayed laser pulses, which are also diffracted by the metallic grating, through the measurement of the transient intensity change of the first-order diffracted light. The obtained data contain multiple frequency components, which are interpreted by considering all possible angles for the Brillouin scattering of light achieved through multiplexing of the propagation directions of light and coherent sound by the metallic grating. The emitted acoustic field can be equivalently presented as a superposition of plane inhomogeneous acoustic waves, which constitute an acoustic diffraction grating for the probe light. Thus the obtained results can also be interpreted as a consequence of probe light diffraction by both metallic and acoustic gratings. The realized scheme of time-domain Brillouin scattering with metallic gratings operating in reflection mode provides access to wide range of acoustic frequencies from minimal to maximal possible values in a single experimental optical configuration for the directions of probe light incidence and scattered light detection. This is achieved by monitoring the backward and forward Brillouin scattering processes in parallel. Potential applications include measurements of the acoustic dispersion, simultaneous determination of sound velocity and optical refractive index, and evaluation of samples with a single direction of possible optical access.
Application of Time Domain Reflectometers in Urban Settings ...
Time domain reflectometers (TDRs) are sensors that measure the volumetric water content of soils and porous media. The sensors consist of stainless steel rods connected to a circuit board in an epoxy housing. An electromagnetic pulse is propagated along the rods. The time, or period, required for the signal to travel down the rods and back varies with the volumetric water content of the surrounding media and temperature. A calibration curve is needed for the specific media. TDRs were developed mostly for agricultural applications; however, the technology has also been applied to forestry and ecological research. This study demonstrates the use of TDRs for quantifying drainage properties in low impact development (LID) stormwater controls, specifically permeable pavement and rain garden systems. TDRs were successfully used to monitor the responses of urban fill, engineered bioretention media, and the aggregate storage layer under permeable pavement to multiple rain events of varying depth, intensity, and duration. The hydrologic performance of permeable pavement and rain garden systems has previously been quantified for underdrain systems, but there have been few studies of systems that drain to the underlying soils. We know of no published studies outlining the use of TDR technology to document drainage properties in media other than soil. In this study TDRs were installed at multiple locations and depths in underlying urban fill soils, engineered bior
Numerical integration of the Teukolsky equation in the time domain
International Nuclear Information System (INIS)
Pazos-Avalos, Enrique; Lousto, Carlos O.
2005-01-01
We present a fourth-order convergent (2+1)-dimensional, numerical formalism to solve the Teukolsky equation in the time domain. Our approach is first to rewrite the Teukolsky equation as a system of first-order differential equations. In this way we get a system that has the form of an advection equation. This is then used in combination with a series expansion of the solution in powers of time. To obtain a fourth-order scheme we kept terms up to fourth derivative in time and use the advectionlike system of differential equations to substitute the temporal derivatives by spatial derivatives. This scheme is applied to evolve gravitational perturbations in the Schwarzschild and Kerr backgrounds. Our numerical method proved to be stable and fourth-order convergent in r* and θ directions. The correct power-law tail, ∼1/t 2l+3 , for general initial data, and ∼1/t 2l+4 , for time-symmetric data, was found in our runs. We noted that it is crucial to resolve accurately the angular dependence of the mode at late times in order to obtain these values of the exponents in the power-law decay. In other cases, when the decay was too fast and round-off error was reached before a tail was developed, then the quasinormal modes frequencies provided a test to determine the validity of our code
The Future of the Time Domain with LSST
Walkowicz, Lucianne M.
2012-04-01
abstract-type="normal">SummaryIn the coming decade LSST's combination of all-sky coverage, consistent long-term monitoring and flexible criteria for event identification will revolutionize studies of a wide variety of astrophysical phenomena. Time-domain science with LSST encompasses objects both familiar and exotic, from classical variables within our Galaxy to explosive cosmological events. Increased sample sizes of known-but-rare observational phenomena will quantify their distributions for the first time, thus challenging existing theories. Perhaps most excitingly, LSST will provide the opportunity to sample previously untouched regions of parameter space. LSST will generate `alerts' within 60 seconds of detecting a new transient, permitting the community to follow up unusual events in greater detail. However, follow-up will remain a challenge as the volume of transients will easily saturate available spectroscopic resources. Characterization of events and access to appropriate ancillary data (e.g. from prior observations, either in the optical or in other passbands) will be of the utmost importance in prioritizing follow-up observations. The incredible scientific opportunities and unique challenges afforded by LSST demand organization, forethought and creativity from the astronomical community. To learn more about the telescope specifics and survey design, as well as obtaining a overview of the variety of the scientific investigations that LSST will enable, readers are encouraged to look at the LSST Science Book: http://www.lsst.org/lsst/scibook. Organizational details of the LSST science collaborations and management may be found at http://www.lsstcorp.org.
Time domain simulations of preliminary breakdown pulses in natural lightning.
Carlson, B E; Liang, C; Bitzer, P; Christian, H
2015-06-16
Lightning discharge is a complicated process with relevant physical scales spanning many orders of magnitude. In an effort to understand the electrodynamics of lightning and connect physical properties of the channel to observed behavior, we construct a simulation of charge and current flow on a narrow conducting channel embedded in three-dimensional space with the time domain electric field integral equation, the method of moments, and the thin-wire approximation. The method includes approximate treatment of resistance evolution due to lightning channel heating and the corona sheath of charge surrounding the lightning channel. Focusing our attention on preliminary breakdown in natural lightning by simulating stepwise channel extension with a simplified geometry, our simulation reproduces the broad features observed in data collected with the Huntsville Alabama Marx Meter Array. Some deviations in pulse shape details are evident, suggesting future work focusing on the detailed properties of the stepping mechanism. Preliminary breakdown pulses can be reproduced by simulated channel extension Channel heating and corona sheath formation are crucial to proper pulse shape Extension processes and channel orientation significantly affect observations.
Landfill cover performance monitoring using time domain reflectometry
International Nuclear Information System (INIS)
Neher, E.R.; Cotten, G.B.; McElroy, D.
1998-01-01
Time domain reflectometry (TDR) systems were installed to monitor soil moisture in two newly constructed landfill covers at the Idaho National Engineering and Environmental Laboratory. Each TDR system includes four vertical arrays with each array consisting of four TDR probes located at depths of 15, 30, 45, and 60 cm. The deepest probes at 60 cm were installed beneath a compacted soil layer to analyze infiltration through the compacted layer. Based on the TDR data, infiltration through the two covers between March and October, 1997 ranged from less than measurable to 1.5 cm. However, due to a prohibition on penetrating the buried waste and resulting limits on probe placement depths, deeper percolation was not evaluated. Some of the advantages found in the application of TDR for infiltration monitoring at this site are the relative low cost and rugged nature of the equipment. Also, of particular importance, the ability to collect frequent moisture measurements allows the capture and evaluation of soil moisture changes resulting from episodic precipitation events. Disadvantages include the inability to install the probes into the waste, difficulties in interpretation of infiltration during freeze/thaw periods, and some excessive noise in the data
A Time Domain Waveform for Testing General Relativity
International Nuclear Information System (INIS)
Huwyler, Cédric; Jetzer, Philippe; Porter, Edward K
2015-01-01
Gravitational-wave parameter estimation is only as good as the theory the waveform generation models are based upon. It is therefore crucial to test General Relativity (GR) once data becomes available. Many previous works, such as studies connected with the ppE framework by Yunes and Pretorius, rely on the stationary phase approximation (SPA) to model deviations from GR in the frequency domain. As Fast Fourier Transform algorithms have become considerably faster and in order to circumvent possible problems with the SPA, we test GR with corrected time domain waveforms instead of SPA waveforms. Since a considerable amount of work has been done already in the field using SPA waveforms, we establish a connection between leading-order-corrected waveforms in time and frequency domain, concentrating on phase-only corrected terms. In a Markov Chain Monte Carlo study, whose results are preliminary and will only be available later, we will assess the ability of the eLISA detector to measure deviations from GR for signals coming from supermassive black hole inspirals using these corrected waveforms. (paper)
Demonstration of Time Domain Multiplexed Readout for Magnetically Coupled Calorimeters
Porst, J.-P.; Adams, J. S.; Balvin, M.; Bandler, S.; Beyer, J.; Busch, S. E.; Drung, D.; Seidel, G. M.; Smith, S. J.; Stevenson, T. R.
2012-01-01
Magnetically coupled calorimeters (MCC) have extremely high potential for x-ray applications due to the inherent high energy resolution capability and being non-dissipative. Although very high energy-resolution has been demonstrated, until now there has been no demonstration of multiplexed read-out. We report on the first realization of a time domain multiplexed (TDM) read-out. While this has many similarities with TDM of transition-edge-sensors (TES), for MGGs the energy resolution is limited by the SQUID read-out noise and requires the well established scheme to be altered in order to minimize degradation due to noise aliasing effects. In cur approach, each pixel is read out by a single first stage SQUID (SQ1) that is operated in open loop. The outputs of the SQ1 s are low-pass filtered with an array of low cross-talk inductors, then fed into a single-stage SQUID TD multiplexer. The multiplexer is addressed from room temperature and read out through a single amplifier channel. We present results achieved with a new detector platform. Noise performance is presented and compared to expectations. We have demonstrated multiplexed X-ray spectroscopy at 5.9keV with delta_FWHM=10eV. In an optimized setup, we show it is possible to multiplex 32 detectors without significantly degrading the Intrinsic detector resolution.
Time domain NMR evaluation of poly(vinyl alcohol) xerogels
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, Elton Jorge da Rocha; Cavalcante, Maxwell de Paula; Tavares, Maria Ines Bruno, E-mail: mibt@ima.ufrj.br [Universidade Federal do Rio de Janeiro (IMA/UFRJ), Rio de Janeiro, RJ (Brazil). Centro de Tecnologia. Instituto de Macromoleculas Professora Eloisa Mano
2016-05-15
Poly(vinyl alcohol) (PVA)-based chemically cross-linked xerogels, both neat and loaded with nanoparticulate hydrophilic silica (SiO{sub 2}), were obtained and characterized mainly through time domain NMR experiments (TD-NMR). Fourier-transform infrared (FT-IR) and wide angle X-ray diffraction (WAXD) analyses were employed as secondary methods. TD-NMR, through the interpretation of the spin-lattice relaxation constant values and related information, showed both cross-linking and nanoparticle influences on PVA matrix. SiO{sub 2} does not interact chemically with the PVA chains, but has effect on its molecular mobility, as investigated via TD-NMR. Apparent energy of activation, spin-lattice time constant and size of spin domains in the sample have almost linear dependence with the degree of cross-linking of the PVA and are affected by the addition of SiO{sub 2}. These three parameters were derived from a single set of TD-NMR experiments, which demonstrates the versatility of the technique for characterization of inorganic-organic hybrid xerogels, an important class of materials. (author)
Design of a coil sensor for time domain electromagnetic system for uranium exploration
International Nuclear Information System (INIS)
Keshwani, R.T.; Bhattacharya, S.
2011-01-01
Time domain electromagnetic system is used for exploration of deep seated deposits under the Earth surface. The basic principle is to set up eddy currents in conductors using pulsed excited transmitter coil during on time of a pulse. The decay time of eddy currents during off time of a pulse is a function conductivity, permeability and depth of conductor located under the Earth surface. The technology is being developed to carry out exploration of mineral deposits (basically uranium) under the Earth surface. The decay of eddy currents is eddy using J coil sensor located coplanar with the transmitter coil. The depth upto which successful exploration can be carried is strong function of design of receiver coil. The design parameters include number of turns, bandwidth, stray capacitance and resistance of a coil. This paper describes various designs tried out and their characterization results. Field results for a ground based system developed are also described. (author)
A higher order space-time Galerkin scheme for time domain integral equations
Pray, Andrew J.
2014-12-01
Stability of time domain integral equation (TDIE) solvers has remained an elusive goal formany years. Advancement of this research has largely progressed on four fronts: 1) Exact integration, 2) Lubich quadrature, 3) smooth temporal basis functions, and 4) space-time separation of convolutions with the retarded potential. The latter method\\'s efficacy in stabilizing solutions to the time domain electric field integral equation (TD-EFIE) was previously reported for first-order surface descriptions (flat elements) and zeroth-order functions as the temporal basis. In this work, we develop the methodology necessary to extend the scheme to higher order surface descriptions as well as to enable its use with higher order basis functions in both space and time. These basis functions are then used in a space-time Galerkin framework. A number of results are presented that demonstrate convergence in time. The viability of the space-time separation method in producing stable results is demonstrated experimentally for these examples.
A time-domain finite element boundary integral approach for elastic wave scattering
Shi, F.; Lowe, M. J. S.; Skelton, E. A.; Craster, R. V.
2018-04-01
The response of complex scatterers, such as rough or branched cracks, to incident elastic waves is required in many areas of industrial importance such as those in non-destructive evaluation and related fields; we develop an approach to generate accurate and rapid simulations. To achieve this we develop, in the time domain, an implementation to efficiently couple the finite element (FE) method within a small local region, and the boundary integral (BI) globally. The FE explicit scheme is run in a local box to compute the surface displacement of the scatterer, by giving forcing signals to excitation nodes, which can lie on the scatterer itself. The required input forces on the excitation nodes are obtained with a reformulated FE equation, according to the incident displacement field. The surface displacements computed by the local FE are then projected, through time-domain BI formulae, to calculate the scattering signals with different modes. This new method yields huge improvements in the efficiency of FE simulations for scattering from complex scatterers. We present results using different shapes and boundary conditions, all simulated using this approach in both 2D and 3D, and then compare with full FE models and theoretical solutions to demonstrate the efficiency and accuracy of this numerical approach.
Seismic response of three-dimensional topographies using a time-domain boundary element method
Janod, François; Coutant, Olivier
2000-08-01
We present a time-domain implementation for a boundary element method (BEM) to compute the diffraction of seismic waves by 3-D topographies overlying a homogeneous half-space. This implementation is chosen to overcome the memory limitations arising when solving the boundary conditions with a frequency-domain approach. This formulation is flexible because it allows one to make an adaptive use of the Green's function time translation properties: the boundary conditions solving scheme can be chosen as a trade-off between memory and cpu requirements. We explore here an explicit method of solution that requires little memory but a high cpu cost in order to run on a workstation computer. We obtain good results with four points per minimum wavelength discretization for various topographies and plane wave excitations. This implementation can be used for two different aims: the time-domain approach allows an easier implementation of the BEM in hybrid methods (e.g. coupling with finite differences), and it also allows one to run simple BEM models with reasonable computer requirements. In order to keep reasonable computation times, we do not introduce any interface and we only consider homogeneous models. Results are shown for different configurations: an explosion near a flat free surface, a plane wave vertically incident on a Gaussian hill and on a hemispherical cavity, and an explosion point below the surface of a Gaussian hill. Comparison is made with other numerical methods, such as finite difference methods (FDMs) and spectral elements.
Integral ceramic superstructure evaluation using time domain optical coherence tomography
Sinescu, Cosmin; Bradu, Adrian; Topala, Florin I.; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.
2014-02-01
Optical Coherence Tomography (OCT) is a non-invasive low coherence interferometry technique that includes several technologies (and the corresponding devices and components), such as illumination and detection, interferometry, scanning, adaptive optics, microscopy and endoscopy. From its large area of applications, we consider in this paper a critical aspect in dentistry - to be investigated with a Time Domain (TD) OCT system. The clinical situation of an edentulous mandible is considered; it can be solved by inserting 2 to 6 implants. On these implants a mesostructure will be manufactured and on it a superstructure is needed. This superstructure can be integral ceramic; in this case materials defects could be trapped inside the ceramic layers and those defects could lead to fractures of the entire superstructure. In this paper we demonstrate that a TD-OCT imaging system has the potential to properly evaluate the presence of the defects inside the ceramic layers and those defects can be fixed before inserting the prosthesis inside the oral cavity. Three integral ceramic superstructures were developed by using a CAD/CAM technology. After the milling, the ceramic layers were applied on the core. All the three samples were evaluated by a TD-OCT system working at 1300 nm. For two of the superstructures evaluated, no defects were found in the most stressed areas. The third superstructure presented four ceramic defects in the mentioned areas. Because of those defects the superstructure may fracture. The integral ceramic prosthesis was send back to the dental laboratory to fix the problems related to the material defects found. Thus, TD-OCT proved to be a valuable method for diagnosing the ceramic defects inside the integral ceramic superstructures in order to prevent fractures at this level.
Boiling water reactor stability analysis in the time domain
International Nuclear Information System (INIS)
Borkowski, J.A.
1991-01-01
Boiling water nuclear reactors may experience density wave instabilities. These instabilities cause the density, and consequently the mass flow rate, to oscillate in the shrouded fuel bundles. This effect causes the nuclear power generation to oscillate due to the tight coupling of flow to power, especially under gravity-driven circulation. In order to predict the amplitude of the power oscillation, a time domain transient analysis tool may be employed. The modeling tool must have sufficient hydrodynamic detail to model natural circulation in two-phase flow as well as the coupled nuclear feedback. TRAC/BF1 is a modeling code with such capabilities. A dynamic system model has been developed for a typical boiling water reactor. Using this tool it has been demonstrated that density waxes may be modeled in this fashion and that their resultant hydrodynamic and nuclear behavior correspond well to simple theory. Several cases have been analyzed using this model, the goal being to determine the coupling between the channel hydrodynamics and the nuclear power. From that study it has been concluded that two-phase friction controls the extent of the oscillation and that the existing conventional methodologies of implementing two-phase friction into analysis codes of this type can lead to significant deviation in results from case to case. It has also been determined that higher dimensional nuclear feedback models reduce the extent of the oscillation. It has also been confirmed from a nonlinear dynamic standpoint that the birth of this oscillation may be described as a Hopf Bifurcation
Detection of Ionic liquid using terahertz time-domain spectroscopy
Wang, Cuicui; Zhao, Xiaojing; Liu, Shangjian; Zuo, Jian; Zhang, Cunlin
2018-01-01
Terahertz (THz, THz+1012Hz) spectroscopy is a far-infrared analytical technology with spectral bands locating between microware and infrared ranges. Being of excellent transmission, non-destruction and high discrimination, this technology has been applied in various fields such as physics, chemistry, nondestructive detection, communication, biomedicine public security. Terahertz spectrum is corresponding with vibration and rotation of liquid molecules, which is suitable to identify and study the liquid molecular dynamics. It is as a powerful spectral detection technology, terahertz time-domain spectroscopy is widely used in solution detection. can enable us to extract the material parameters or dielectric spectrum that show material micro-structure and dynamics by measuring amplitude and phase from coherent terahertz pulses. Ionic liquid exists in most biological tissues, and it is very important for life. It has recently been suggested that near-fired terahertz ionic contrast microscopy can be employed to image subtle changes in ionic concentrations arising from neuronal activity. In this paper, we detected Ionic liquid with different concentrations at room temperature by THz-TDS technique in the range of 0.2-1.5 THz. The liquid cell with a thickness of 0.2mm is made of quartz. The absorption coefficient, refractive index and dielectric function of solutions can be extracted based on THz-TDS. We use an expanded model for fitting the dielectric function based on a combination of a Debye relation for the anions and cations. We find A linear increase of the real and imaginary part of the dielectric function compared with pure water with increasing ion concentrations. A good agreement between the model and the experimental results is obtained. By means of dielectric relaxation process, it was found that the characteristic time of molecular movement and the information related to the liquid molecular structure and movement was obtained.
THE TIME DOMAIN SPECTROSCOPIC SURVEY: VARIABLE SELECTION AND ANTICIPATED RESULTS
Energy Technology Data Exchange (ETDEWEB)
Morganson, Eric; Green, Paul J. [Harvard Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States); Anderson, Scott F.; Ruan, John J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Eracleous, Michael; Brandt, William Nielsen [Department of Astronomy and Astrophysics, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802 (United States); Kelly, Brandon [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106-9530 (United States); Badenes, Carlos [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 O’Hara St, Pittsburgh, PA 15260 (United States); Bañados, Eduardo [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Blanton, Michael R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Bershady, Matthew A. [Department of Astronomy, University of Wisconsin, 475 N. Charter St., Madison, WI 53706 (United States); Borissova, Jura [Instituto de Física y Astronomía, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Casilla 5030, and Millennium Institute of Astrophysics (MAS), Santiago (Chile); Burgett, William S. [GMTO Corp, Suite 300, 251 S. Lake Ave, Pasadena, CA 91101 (United States); Chambers, Kenneth, E-mail: emorganson@cfa.harvard.edu [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); and others
2015-06-20
We present the selection algorithm and anticipated results for the Time Domain Spectroscopic Survey (TDSS). TDSS is an Sloan Digital Sky Survey (SDSS)-IV Extended Baryon Oscillation Spectroscopic Survey (eBOSS) subproject that will provide initial identification spectra of approximately 220,000 luminosity-variable objects (variable stars and active galactic nuclei across 7500 deg{sup 2} selected from a combination of SDSS and multi-epoch Pan-STARRS1 photometry. TDSS will be the largest spectroscopic survey to explicitly target variable objects, avoiding pre-selection on the basis of colors or detailed modeling of specific variability characteristics. Kernel Density Estimate analysis of our target population performed on SDSS Stripe 82 data suggests our target sample will be 95% pure (meaning 95% of objects we select have genuine luminosity variability of a few magnitudes or more). Our final spectroscopic sample will contain roughly 135,000 quasars and 85,000 stellar variables, approximately 4000 of which will be RR Lyrae stars which may be used as outer Milky Way probes. The variability-selected quasar population has a smoother redshift distribution than a color-selected sample, and variability measurements similar to those we develop here may be used to make more uniform quasar samples in large surveys. The stellar variable targets are distributed fairly uniformly across color space, indicating that TDSS will obtain spectra for a wide variety of stellar variables including pulsating variables, stars with significant chromospheric activity, cataclysmic variables, and eclipsing binaries. TDSS will serve as a pathfinder mission to identify and characterize the multitude of variable objects that will be detected photometrically in even larger variability surveys such as Large Synoptic Survey Telescope.
Opportunities and challenges for time domain astronomy with LSST
Ivezic, Zeljko
2014-01-01
The Large Synoptic Survey Telescope (LSST) will enable faint optical time-domain astronomy by carrying out an imaging survey covering the sky that is visible from Cerro Pachon in Northern Chile. Of the order thousand 9.6 sq. deg. images (3.2 Gigapix) will be obtained per night using pairs of 15-second back-to-back exposures, with typical 5-sigma depth for point sources of 24.5 (AB). With close to 1000 observations of a 18,000 sq. deg. region in ugrizy bands over a 10-year period, these data will enable a deep stack across half the sky reaching five magnitudes deeper than the SDSS survey ( 27.5, 5 sigma, point source), and with twice as good seeing (0.7 arcsec median seeing in the r band). The measured and archived properties of newly discovered and known astrometric and photometric transients will be publicly reported within 60 sec after closing the shutter. Automated classification of the expected several million alerts per night, and selection of transient events requiring immediate follow-up, is an outstanding problem for the community. These data will represent a treasure trove for follow-up programs using other ground and space-based telescopes, such as fast-response fast-cadence photometric observations and spectroscopy, as well as for facilities operating at non-optical wavelengths and for gravitational wave programs. I will describe the relevant data products to be delivered by LSST and will summarize challenges that will need to be addressed by the community at large.
THz Time-Domain Spectroscopy of Interstellar Ice Analogs
Ioppolo, Sergio; McGuire, Brett A.; de Vries, Xander; Carroll, Brandon; Allodi, Marco; Blake, Geoffrey
2015-08-01
The unambiguous identification of nearly 200 molecular species in different astronomical environments proves that our cosmos is a ‘Molecular Universe’. The cumulative outcome of recent observations, laboratory studies, and astrochemical models indicates that there is a strong interplay between the gas and the solid phase throughout the process of forming molecules in space. Observations of interstellar ices are generally limited to lines-of-sight along which infrared absorption spectroscopy is possible. Therefore, the identification of more complex prebiotic molecules in the mid-IR is difficult because of their low expected interstellar abundances and the overlap of their absorption features with those from the more abundant species. In the THz region, telescopes can detect Interstellar ices in emission or absorption against dust continuum. Thus, THz searches do not require a background point source. Moreover, since THz spectra are the fingerprint of inter- and intramolecular forces, complex species can present unique modes that do not overlap with those from simpler, more abundant molecules. THz modes are also sensitive to temperature and phase changes in the ice. Therefore, spectroscopy at THz frequencies has the potential to better characterize the physics and chemistry of the ISM. Currently, the Herschel Space Telescope, SOFIA, and ALMA databases contain a vast amount of new THz spectral data that require THz laboratory spectra for interpretation. The latter, however, are largely lacking. We have recently constructed a new THz time-domain spectroscopy system operating in the range between 0.3 - 7.5 THz. This work focuses on the laboratory investigation of the composition and structure of the most abundant interstellar ice analogs compared to some more complex species. Different temperatures, mixing ratios, and matrix isolation experiments will be shown. The ultimate goal of this research is to provide the scientific community with an extensive THz ice
Energy Technology Data Exchange (ETDEWEB)
Sallis, S. [Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States); Pereira, N.; Faenza, N.; Amatucci, G. G. [Energy Storage Research Group, Department of Materials Science and Engineering, Rutgers University, North Brunswick, New Jersey 08902 (United States); Mukherjee, P.; Cosandey, F. [Department of Materials Science and Engineering, Rutgers University, North Brunswick, New Jersey 08902 (United States); Quackenbush, N. F. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Schlueter, C.; Lee, T.-L. [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Yang, W. L. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Piper, L. F. J., E-mail: lpiper@binghamton.edu [Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States); Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York 13902 (United States)
2016-06-27
The pronounced capacity fade in Ni-rich layered oxide lithium ion battery cathodes observed when cycling above 4.1 V (versus Li/Li{sup +}) is associated with a rise in impedance, which is thought to be due to either bulk structural fatigue or surface reactions with the electrolyte (or combination of both). Here, we examine the surface reactions at electrochemically stressed Li{sub 1–x}Ni{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} binder-free powder electrodes with a combination of electrochemical impedance spectroscopy, spatially resolving electron microscopy, and spatially averaging X-ray spectroscopy techniques. We circumvent issues associated with cycling by holding our electrodes at high states of charge (4.1 V, 4.5 V, and 4.75 V) for extended periods and correlate charge-transfer impedance rises observed at high voltages with surface modifications retained in the discharged state (2.7 V). The surface modifications involve significant cation migration (and disorder) along with Ni and Co reduction, and can occur even in the absence of significant Li{sub 2}CO{sub 3} and LiF. These data provide evidence that surface oxygen loss at the highest levels of Li{sup +} extraction is driving the rise in impedance.
Time-Domain Studies as a Probe of Stellar Evolution
Miller, Adam Andrew
This dissertation focuses on the use of time-domain techniques to discover and characterize these rare astrophysical gems, while also addressing some gaps in our understanding of the earliest and latest stages of stellar evolution. The observational studies presented herein can be grouped into three parts: (i) the study of stellar death (supernovae); (ii) the study of stellar birth; and (iii) the use of modern machine-learning algorithms to discover and classify variable sources. I present observations of supernova (SN) 2006gy, the most luminous SN ever at the time of discovery, and the even-more luminous SN 2008es. Together, these two supernovae (SNe) demonstrate that core-collapse SNe can be significantly more luminous than thermonuclear type Ia SNe, and that there are multiple channels for producing these brilliant core-collapse explosions. For SN 2006gy I show that the progenitor star experienced violent, eruptive mass loss on multiple occasions during the centuries prior to explosion, a scenario that was completely unexpected within the cannon of massive-star evolution theory. I also present observations of SN 2008iy, one of the most unusual SNe ever discovered. Typical SNe take ≲3 weeks to reach peak luminosity; SN 2008iy exhibited a slow and steady rise for ˜400 days before reaching maximum brightness. The best explanation for such behavior is that the progenitor of SN 2008iy experienced an episodic phase of mass loss ˜100 yr prior to explosion. The three SNe detailed in this dissertation have altered our understanding of massive-star mass loss, namely, these SNe provide distinct evidence that post-main sequence mass loss, for at least some massive stars, occurs in sporatic fits, rather than being steady. They also demonstrate that core collapse is not restricted to the red supergiant and Wolf-Rayet stages of stellar evolution as theory predicted. Instead, some massive stars explode while in a luminous blue variable-like state. I also present
Lawson, Christopher M.; Michael, Robert R., Jr.; Dressel, Earl M.; Harmony, David W.
1991-12-01
Optical time domain reflectometry (OTDR) measurements have been performed on polished polymethylmethacrylate (PMMA) plastic fiber splices. After the dominant splice reflection sources due to surface roughness, inexact index matching, and fiber core misalignment were eliminated, an intrinsic OTDR signature 3 - 8 dB above the Rayleigh backscatter floor remained with all tested fibers. This minimum splice reflectivity exhibits characteristics that are consistent with sub-surface polymer damage and can be used for detection of PMMA fiber splices.
International Nuclear Information System (INIS)
Jung, Kyu-Nam; Pyun, Su-Il
2007-01-01
The mechanism transition of lithium transport through a Li 1-δ Mn 2 O 4 composite electrode caused by the surface-modification and temperature variation was investigated using the galvanostatic intermittent titration technique (GITT), electrochemical impedance spectroscopy (EIS) and the potentiostatic current transient technique. From the analyses of the ac-impedance spectra, experimentally measured from unmodified Li 1-δ Mn 2 O 4 and surface-modified Li 1-δ Mn 2 O 4 with MgO composite electrodes, the internal cell resistance of the MgO-modified Li 1-δ Mn 2 O 4 electrode was determined to be much smaller in value than that of the unmodified electrode over the whole potential range. Moreover, from the analysis of the anodic current transients measured on the MgO-modified Li 1-δ Mn 2 O 4 electrode, it was found that the cell-impedance-controlled constraint at the electrode surface is changed to a diffusion-controlled constraint, which is characterised by a large potential step and simultaneously by a small amount of lithium transferred during lithium transport. This strongly suggests that the internal cell resistance plays a significant role in determining the cell-impedance-controlled lithium transport through the MgO-modified Li 1-δ Mn 2 O 4 electrode. Furthermore, from the temperature dependence of the internal cell resistance and diffusion resistance in the unmodified Li 1-δ Mn 2 O 4 composite electrode measured by GITT and EIS, it was concluded that which mechanism of lithium transport will be operative strongly depends on the diffusion resistance as well as on the internal cell resistance
International Nuclear Information System (INIS)
Chilcott, Terry C.; Guo, Chuan
2013-01-01
Silicon dioxide, organic monolayers covalently attached to silicon and gold are used as biosensor substrates and anchoring platforms for hybrid, tethered and supported lipid membranes used in membrane-protein studies. Electrical impedance spectroscopy (EIS) studies of gold in contact with potassium chloride electrolytes of concentrations ranging from 1 mM to 300 mM, characterized the gold–electrolyte interface as principally a Stern layer 20–30 Å thick and conductivity many orders of magnitude less than that of the bulk electrolyte. EIS studies of SiO 2 –electrolyte system that were similar to studies of a tetradecane–electrolyte system are presented herein that reveal an interface comprised of at least two interfacial layers and extending some 10 5 Å into the electrolyte. The average conductivity and thickness values for the layer in contact with the SiO 2 surface (∼10 −6 S m −1 and ∼28 Å, respectively) were of the order of magnitude expected for the Gouy–Chapman layer but the dependency of the thickness on concentration did not reflect the expected dependency of the Debye length over the full range of concentrations. The average values for the next layer (∼10 −3 S m −1 and ∼10 5 Å) exhibited a dependency on concentration similar to that expected for the bulk electrolyte. The theoretical derivations of ionic partitioning arising from the Born (dielectric) energy distributions in both the SiO 2 and gold interfaces were generally consistent with the respective EIS studies and revealed that partitioning in the SiO 2 interface mimicked that in bio-membranous interfaces. The dielectric characterizations suggest that; ionic partitioning in biomimetic interfaces play a role in long-ranging sequestration of organic molecules, the extensiveness of these interfaces contributes to differences in the lipid densities of bilayers formed on biomimetic substrates, and chloride ions have a greater affinity than the smaller potassium ions for gold
Energy Technology Data Exchange (ETDEWEB)
Pettersen, Bjoernar Hauknes
1997-12-31
Many problems in offshore oil production and multiphase transport are related to surface and colloid chemistry. This thesis applies dielectric spectroscopy as an experimental technique to study the behaviour of particle suspensions in polar media. The thesis opens with an introduction to suspensions and time domain dielectric spectroscopy. It then investigates the dielectric properties of silica and alumina dispersed in polar solvents. It is found that theoretical models can be used to calculate the volume fraction disperse phase in the suspension and that the particle sedimentation depends on the wetting of the particles, charge on the particle surface and viscosity of the solvent, and that this dependency can be measured by time domain dielectric spectroscopy. When the surface properties of silica and alumina particles were modified by coating them with a non-ionic polymer and a non-ionic surfactant, then different degrees of packing in the sedimented phase at the bottom of the sedimentation vessel occurred. Chemometrical methods on the synthesis of monodisperse silica particles were used to investigate what factors influence the particle size. It turned out that it is insufficient to consider only main variables when discussing the results of the synthesis. By introducing interaction terms, the author could explain the variation in the size of particles synthesized. The difference in the sedimentation rate of monodisperse silica particles upon variation of volume fraction particles, pH, salinity, amount of silanol groups at the particle surface and temperature was studied. The cross interactions play an important role and a model explaining the variation in sedimentation is introduced. Finally, magnetic particles dispersed in water and in an external magnetic field were used to study the impact on the sedimentation due to the induced flocculation. 209 refs., 90 figs., 9 tabs.
Time-domain SFG spectroscopy using mid-IR pulse shaping: practical and intrinsic advantages.
Laaser, Jennifer E; Xiong, Wei; Zanni, Martin T
2011-03-24
Sum-frequency generation (SFG) spectroscopy is a ubiquitous tool in the surface sciences. It provides infrared transition frequencies and line shapes that probe the structure and environment of molecules at interfaces. In this article, we apply techniques learned from the multidimensional spectroscopy community to SFG spectroscopy. We implement balanced heterodyne detection to remove scatter and the local oscillator background. Heterodyning also separates the resonant and nonresonant signals by acquiring both the real and imaginary parts of the spectrum. We utilize mid-IR pulse shaping to control the phase and delay of the mid-IR pump pulse. Pulse shaping allows phase cycling for data collection in the rotating frame and additional background subtraction. We also demonstrate time-domain data collection, which is a Fourier transform technique, and has many advantages in signal throughput, frequency resolution, and line shape accuracy over existing frequency domain methods. To demonstrate time-domain SFG spectroscopy, we study an aryl isocyanide on gold, and find that the system has an inhomogeneous structural distribution, in agreement with computational results, but which was not resolved by previous frequency-domain SFG studies. The ability to rapidly and actively manipulate the mid-IR pulse in an SFG pules sequence makes possible new experiments and more accurate spectra. © 2011 American Chemical Society
Time-domain electromagnetic energy in a frequency-dispersive left-handed medium
International Nuclear Information System (INIS)
Cui Tiejun; Kong Jinau
2004-01-01
From Maxwell's equations and the Poynting theorem, the time-domain electric and magnetic energy densities are generally defined in the frequency-dispersive media based on the conservation of energy. As a consequence, a general definition of electric and magnetic energy is proposed. Comparing with existing formulations of electric and magnetic energy in frequency-dispersive media, the new definition is more reasonable and is valid in any case. Using the new definition and staring from the equation of motion, we have shown rigorously that the total energy density and the individual electric and magnetic energy densities are always positive in a realistic artificial left-handed medium (LHM) [R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001)], which obeys actually the Lorentz medium model, although such a LHM has negative permittivity and negative permeability simultaneously in a certain frequency range. We have also shown that the conservation of energy is not violated in LHM. The earlier conclusions can be easily extended to the Drude medium model and the cold plasma medium model. Through an exact analysis of a one-dimensional transient current source radiating in LHM, numerical results are given to demonstrate that the work done by source, the power flowing outwards a surface, and the electric and magnetic energy stored in a volume are all positive in the time domain
ASIC-enabled High Resolution Optical Time Domain Reflectometer
Skendzic, Sandra
Fiber optics has become the preferred technology in communication systems because of what it has to offer: high data transmission rates, immunity to electromagnetic interference, and lightweight, flexible cables. An optical time domain reflectometer (OTDR) provides a convenient method of locating and diagnosing faults (e.g. break in a fiber) along a fiber that can obstruct crucial optical pathways. Both the ability to resolve the precise location of the fault and distinguish between two discrete, closely spaced faults are figures of merit. This thesis presents an implementation of a high resolution OTDR through the use of a compact and programmable ASIC (application specific integrated circuit). The integration of many essential OTDR functions on a single chip is advantageous over existing commercial instruments because it enables small, lightweight packaging, and offers low power and cost efficiency. Furthermore, its compactness presents the option of placing multiple ASICs in parallel, which can conceivably ease the characterization of densely populated fiber optic networks. The OTDR ASIC consists of a tunable clock, pattern generator, precise timer, electrical receiver, and signal sampling circuit. During OTDR operation, the chip generates narrow electrical pulse, which can then be converted to optical format when coupled with an external laser diode driver. The ASIC also works with an external photodetector to measure the timing and amplitude of optical reflections in a fiber. It has a 1 cm sampling resolution, which allows for a 2 cm spatial resolution. While this OTDR ASIC has been previously demonstrated for multimode fiber fault diagnostics, this thesis focuses on extending its functionality to single mode fiber. To validate this novel approach to OTDR, this thesis is divided into five chapters: (1) introduction, (2) implementation, (3), performance of ASIC-based OTDR, (4) exploration in optical pre-amplification with a semiconductor optical amplifier, and
Time-Domain Terahertz Computed Axial Tomography NDE System
Zimdars, David
2012-01-01
NASA has identified the need for advanced non-destructive evaluation (NDE) methods to characterize aging and durability in aircraft materials to improve the safety of the nation's airline fleet. 3D THz tomography can play a major role in detection and characterization of flaws and degradation in aircraft materials, including Kevlar-based composites and Kevlar and Zylon fabric covers for soft-shell fan containment where aging and durability issues are critical. A prototype computed tomography (CT) time-domain (TD) THz imaging system has been used to generate 3D images of several test objects including a TUFI tile (a thermal protection system tile used on the Space Shuttle and possibly the Orion or similar capsules). This TUFI tile had simulated impact damage that was located and the depth of damage determined. The CT motion control gan try was designed and constructed, and then integrated with a T-Ray 4000 control unit and motion controller to create a complete CT TD-THz imaging system prototype. A data collection software script was developed that takes multiple z-axis slices in sequence and saves the data for batch processing. The data collection software was integrated with the ability to batch process the slice data with the CT TD-THz image reconstruction software. The time required to take a single CT slice was decreased from six minutes to approximately one minute by replacing the 320 ps, 100-Hz waveform acquisition system with an 80 ps, 1,000-Hz waveform acquisition system. The TD-THZ computed tomography system was built from pre-existing commercial off-the-shelf subsystems. A CT motion control gantry was constructed from COTS components that can handle larger samples. The motion control gantry allows inspection of sample sizes of up to approximately one cubic foot (.0.03 cubic meters). The system reduced to practice a CT-TDTHz system incorporating a COTS 80- ps/l-kHz waveform scanner. The incorporation of this scanner in the system allows acquisition of 3D
Calibrating electromagnetic induction conductivities with time-domain reflectometry measurements
Dragonetti, Giovanna; Comegna, Alessandro; Ajeel, Ali; Piero Deidda, Gian; Lamaddalena, Nicola; Rodriguez, Giuseppe; Vignoli, Giulio; Coppola, Antonio
2018-02-01
This paper deals with the issue of monitoring the spatial distribution of bulk electrical conductivity, σb, in the soil root zone by using electromagnetic induction (EMI) sensors under different water and salinity conditions. To deduce the actual distribution of depth-specific σb from EMI apparent electrical conductivity (ECa) measurements, we inverted the data by using a regularized 1-D inversion procedure designed to manage nonlinear multiple EMI-depth responses. The inversion technique is based on the coupling of the damped Gauss-Newton method with truncated generalized singular value decomposition (TGSVD). The ill-posedness of the EMI data inversion is addressed by using a sharp stabilizer term in the objective function. This specific stabilizer promotes the reconstruction of blocky targets, thereby contributing to enhance the spatial resolution of the EMI results in the presence of sharp boundaries (otherwise smeared out after the application of more standard Occam-like regularization strategies searching for smooth solutions). Time-domain reflectometry (TDR) data are used as ground-truth data for calibration of the inversion results. An experimental field was divided into four transects 30 m long and 2.8 m wide, cultivated with green bean, and irrigated with water at two different salinity levels and using two different irrigation volumes. Clearly, this induces different salinity and water contents within the soil profiles. For each transect, 26 regularly spaced monitoring soundings (1 m apart) were selected for the collection of (i) Geonics EM-38 and (ii) Tektronix reflectometer data. Despite the original discrepancies in the EMI and TDR data, we found a significant correlation of the means and standard deviations of the two data series; in particular, after a low-pass spatial filtering of the TDR data. Based on these findings, this paper introduces a novel methodology to calibrate EMI-based electrical conductivities via TDR direct measurements. This
Parallel time domain solvers for electrically large transient scattering problems
Liu, Yang; Yucel, Abdulkadir; Bagcý , Hakan; Michielssen, Eric
2014-01-01
scattering from perfect electrically conducting objects are obtained by enforcing electric field boundary conditions and implicitly time advance electric surface current densities by iteratively solving sparse systems of equations at all time steps. Contrary
Gonçalves, Rui; Farzamian, Mohammad; Monteiro Santos, Fernando A.; Represas, Patrícia; Mota Gomes, A.; Lobo de Pina, A. F.; Almeida, Eugénio P.
2017-11-01
Santiago Island, the biggest and most populated island of the Cape Verde Republic, is characterised by limited surface waters and strong dependence on groundwater sources as the primary source of natural water supply for extensive agricultural activity and human use. However, as a consequence of the scarce precipitation and high evaporation as well as the intense overexploitation of the groundwater resources, the freshwater management is also in a delicate balance with saltwater at coastal areas. The time-domain electromagnetic (TDEM) method is used to locate the extent of saltwater intrusion in four important agricultural regions in Santiago Island; São Domingos, Santa Cruz, São Miguel, and Tarrafal. The application of this method in Santiago Island proves it to be a successful tool in imaging the fresh/saltwater interface location. Depths to the saline zones and extensions of saline water are mapped along eight TDEM profiles.
Simulation of acoustic streaming by means of the finite-difference time-domain method
DEFF Research Database (Denmark)
Santillan, Arturo Orozco
2012-01-01
Numerical simulations of acoustic streaming generated by a standing wave in a narrow twodimensional cavity are presented. In this case, acoustic streaming arises from the viscous boundary layers set up at the surfaces of the walls. It is known that streaming vortices inside the boundary layer have...... directions of rotation that are opposite to those of the outer streaming vortices (Rayleigh streaming). The general objective of the work described in this paper has been to study the extent to which it is possible to simulate both the outer streaming vortices and the inner boundary layer vortices using...... the finite-difference time-domain method. To simplify the problem, thermal effects are not considered. The motivation of the described investigation has been the possibility of using the numerical method to study acoustic streaming, particularly under non-steady conditions. Results are discussed for channels...
New developments in THz-time domain spectroscopy involving ML-VECSELs
Apostolopoulos, Vasilis; Tropper, Anne C.; Keenlyside, Benjamin; Chen-Sverre, Theo; Woods, Jonathan R. C.
2018-02-01
The THz time domain spectrometer (THz-TDS) has revolutionized the adoption of THz science in fields such as medicine, material characterization, pharmaceutical research and biology among others. Traditionally a THz-TDS was based on a titanium sapphire laser, while most of the commercially sold spectrometers today adopt fiber lasers. Vertical External Cavity Surface emitting lasers or VECSELs have potential to be the future laser of choice for the implementation of THz spectrometers, as they are small, low-cost, low noise and high repetition rate. Here I will outline the progress in our laboratory and the general community concerning VECSEL-THz technology and I will account the problems that have to be solved for the VECSEL-THz technology to succeed.
Mars SubsurfAce Sounding by Time-Domain Electromagnetic MeasuRements
Tacconi, G.; Minna, L.; Pagnan, S.; Tacconi, M.
1999-09-01
MASTER (Mars subsurfAce Sounding by Time-domain Electromagnetic measuRements) is an experimental project proposed to fly aboard the Italian Drill (DEEDRI) payload for the Mars Surveyor Program 2003. MASTER will offer the scientific community the first opportunity to scan Mars subsurface structure by means of the technique employing time-domain electromagnetic measurements TDEM. Up today proposed experiments for scanning the Martian subsurface have focused on exploring the crust of the planet Mars up to few meters, while MASTER will explore electrical structures and related soil characteristics and processes at depths up to hundreds meters at least. TDEM represents an active remote sensing system and will be used likely a ULF/ELF/VLF ``radar." If a certain volumetric zone has different electrical conductivity, the current in the sample will vary generating a secondary scattered electromagnetic field containing the information about the explored volume. The volumetric mean value of the conductivity will be estimated according to the implicit near field e.m. propagation conditions, considering the skin depth (d) and the apparent resistivity (ra) as the most representative and critical parameters. As any active remotely sensed measurements the TDEM system behaves like a ``bistatic" communication channel and is mandatory to investigate the characteristics of the background noise at the receiver site. The MASTER system, can operate also as a passive listening device of the possible electromagnetic background noise on the Mars surface at ULF/ELF/VLF bands. Present paper will describe in details the application of the TDEM method as well as the approaches to the detection and estimation of the e.m. BGN on Mars surface, in terms of man made, natural BGN and intrinsic noise of the sensors and electronic systems. The electromagnetic background noise detection/estimation represents by itself a no cost experiment and the first experiment of this type on Mars.
International Nuclear Information System (INIS)
Omari, A.
1993-01-01
A surface impedance measurement system for conducting or superconducting thin films have been developed through the electromagnetic coupling of these films to a tunnel diode oscillator. The electromagnetic response of YBa 2 Cu 3 O 7-δ superconducting films and of id/La 2-x Sr x Cu O 4 multilayers, is studied, showing the 'granular' type of these materials. The intergranular coupling is of the SIS type for the films and of the SNS type for the multilayers. A resistance increase is observed when the temperature decreases in the superconducting phase. 120 p., 45 fig., 60 ref
Jafar-Zanjani, Samad; Cheng, Jierong; Mosallaei, Hossein
2016-04-10
An efficient auxiliary differential equation method for incorporating 2D inhomogeneous dispersive impedance sheets in the finite-difference time-domain solver is presented. This unique proposed method can successfully solve optical problems of current interest involving 2D sheets. It eliminates the need for ultrafine meshing in the thickness direction, resulting in a significant reduction of computation time and memory requirements. We apply the method to characterize a novel broad-beam leaky-wave antenna created by cascading three sinusoidally modulated reactance surfaces and also to study the effect of curvature on the radiation characteristic of a conformal impedance sheet holographic antenna. Considerable improvement in the simulation time based on our technique in comparison with the traditional volumetric model is reported. Both applications are of great interest in the field of antennas and 2D sheets.
Time domain numerical calculations of the short electron bunch wakefields in resistive structures
Energy Technology Data Exchange (ETDEWEB)
Tsakanian, Andranik
2010-10-15
The acceleration of electron bunches with very small longitudinal and transverse phase space volume is one of the most actual challenges for the future International Linear Collider and high brightness X-Ray Free Electron Lasers. The exact knowledge on the wake fields generated by the ultra-short electron bunches during its interaction with surrounding structures is a very important issue to prevent the beam quality degradation and to optimize the facility performance. The high accuracy time domain numerical calculations play the decisive role in correct evaluation of the wake fields in advanced accelerators. The thesis is devoted to the development of a new longitudinally dispersion-free 3D hybrid numerical scheme in time domain for wake field calculation of ultra short bunches in structures with walls of finite conductivity. The basic approaches used in the thesis to solve the problem are the following. For materials with high but finite conductivity the model of the plane wave reflection from a conducting half-space is used. It is shown that in the conductive half-space the field components perpendicular to the interface can be neglected. The electric tangential component on the surface contributes to the tangential magnetic field in the lossless area just before the boundary layer. For high conducting media, the task is reduced to 1D electromagnetic problem in metal and the so-called 1D conducting line model can be applied instead of a full 3D space description. Further, a TE/TM (''transverse electric - transverse magnetic'') splitting implicit numerical scheme along with 1D conducting line model is applied to develop a new longitudinally dispersion-free hybrid numerical scheme in the time domain. The stability of the new hybrid numerical scheme in vacuum, conductor and bound cell is studied. The convergence of the new scheme is analyzed by comparison with the well-known analytical solutions. The wakefield calculations for a number of
THE PSTD ALGORITHM: A TIME-DOMAIN METHOD REQUIRING ONLY TWO CELLS PER WAVELENGTH. (R825225)
A pseudospectral time-domain (PSTD) method is developed for solutions of Maxwell's equations. It uses the fast Fourier transform (FFT), instead of finite differences on conventional finite-difference-time-domain (FDTD) methods, to represent spatial derivatives. Because the Fourie...
Time-domain fiber loop ringdown sensor and sensor network
Kaya, Malik
Optical fibers have been mostly used in fiber optic communications, imaging optics, sensing technology, etc. Fiber optic sensors have gained increasing attention for scientific and structural health monitoring (SHM) applications. In this study, fiber loop ringdown (FLRD) sensors were fabricated for scientific, SHM, and sensor networking applications. FLRD biosensors were fabricated for both bulk refractive index (RI)- and surface RI-based DNA sensing and one type of bacteria sensing. Furthermore, the effect of glucose oxidase (GOD) immobilization at the sensor head on sensor performance was evaluated for both glucose and synthetic urine solutions with glucose concentration between 0.1% and 10%. Detection sensitivities of the glucose sensors were achieved as low as 0.05%. For chemical sensing, heavy water, ranging from 97% to 10%, and several elemental solutions were monitored by using the FLRD chemical sensors. Bulk index-based FLRD sensing showed that trace elements can be detected in deionized water. For physical sensing, water and cracking sensors were fabricated and embedded into concrete. A partially-etched single-mode fiber (SMF) was embedded into a concrete bar for water monitoring while a bare SMF without any treatment was directly embedded into another concrete bar for monitoring cracks. Furthermore, detection sensitivities of water and crack sensors were investigated as 10 ml water and 0.5 mm surface crack width, respectively. Additionally fiber loop ringdown-fiber Bragg grating temperature sensors were developed in the laboratory; two sensor units for water, crack, and temperature sensing were deployed into a concrete cube in a US Department of Energy test bed (Miami, FL). Multi-sensor applications in a real concrete structure were accomplished by testing the six FLRD sensors. As a final stage, a sensor network was assembled by multiplexing two or three FLRD sensors in series and parallel. Additionally, two FLRD sensors were combined in series and
A two-dimensional time domain near zone to far zone transformation
Luebbers, Raymond J.; Ryan, Deirdre; Beggs, John H.; Kunz, Karl S.
1991-01-01
In a previous paper, a time domain transformation useful for extrapolating 3-D near zone finite difference time domain (FDTD) results to the far zone was presented. In this paper, the corresponding 2-D transform is outlined. While the 3-D transformation produced a physically observable far zone time domain field, this is not convenient to do directly in 2-D, since a convolution would be required. However, a representative 2-D far zone time domain result can be obtained directly. This result can then be transformed to the frequency domain using a Fast Fourier Transform, corrected with a simple multiplicative factor, and used, for example, to calculate the complex wideband scattering width of a target. If an actual time domain far zone result is required it can be obtained by inverse Fourier transform of the final frequency domain result.
The development of efficient numerical time-domain modeling methods for geophysical wave propagation
Zhu, Lieyuan
This Ph.D. dissertation focuses on the numerical simulation of geophysical wave propagation in the time domain including elastic waves in solid media, the acoustic waves in fluid media, and the electromagnetic waves in dielectric media. This thesis shows that a linear system model can describe accurately the physical processes of those geophysical waves' propagation and can be used as a sound basis for modeling geophysical wave propagation phenomena. The generalized stability condition for numerical modeling of wave propagation is therefore discussed in the context of linear system theory. The efficiency of a series of different numerical algorithms in the time-domain for modeling geophysical wave propagation are discussed and compared. These algorithms include the finite-difference time-domain method, pseudospectral time domain method, alternating directional implicit (ADI) finite-difference time domain method. The advantages and disadvantages of these numerical methods are discussed and the specific stability condition for each modeling scheme is carefully derived in the context of the linear system theory. Based on the review and discussion of these existing approaches, the split step, ADI pseudospectral time domain (SS-ADI-PSTD) method is developed and tested for several cases. Moreover, the state-of-the-art stretched-coordinate perfect matched layer (SCPML) has also been implemented in SS-ADI-PSTD algorithm as the absorbing boundary condition for truncating the computational domain and absorbing the artificial reflection from the domain boundaries. After algorithmic development, a few case studies serve as the real-world examples to verify the capacities of the numerical algorithms and understand the capabilities and limitations of geophysical methods for detection of subsurface contamination. The first case is a study using ground penetrating radar (GPR) amplitude variation with offset (AVO) for subsurface non-aqueous-liquid (NAPL) contamination. The
International Nuclear Information System (INIS)
Geyer, B.; Klimchitskaya, G.L.; Mostepanenko, V.M.
2004-01-01
The preceding Comment discusses in detail the main idea of our paper [Phys. Rev. A 67, 062102 (2003)], namely that one cannot substitute the Drude dielectric function into the Lifshitz formula for the thermal Casimir force in the frequency region where a real current of conduction electrons leads to Joule heating in the metal. In that Comment, it is claimed that this idea would be in contradiction to the fluctuation-dissipation theorem. In this Reply we present an explicit explanation why there is no contradiction. In the second part of the Comment an alternative method is suggested, different from the one used in our paper, to calculate the thermal Casimir force in the framework of the impedance approach. This method is in support of a previous prediction by Svetovoy and Lokhanin, criticized by us, that there exists a relatively large thermal correction to the Casimir force between real metals at small separations. Here we present strong quantitative arguments in favor of the statement that the method of the Comment is in violation of the Nernst heat theorem. We also demonstrate that it is in contradiction with experiment. The approach of our paper is shown to be in agreement with both thermodynamics and experimental data
A time-domain fluorescence diffusion optical tomography system for breast tumor diagnosis
Zhang, Wei; Gao, Feng; Wu, LinHui; Ma, Wenjuan; Yang, Fang; Zhou, Zhongxing; Zhang, Limin; Zhao, Huijuan
2011-02-01
A prototype time-domain fluorescence diffusion optical tomography (FDOT) system using near-infrared light is presented. The system employs two pulsed light sources, 32 source fibers and 32 detection channels, working separately for acquiring the temporal distribution of the photon flux on the tissue surface. The light sources are provided by low power picosecond pulsed diode lasers at wavelengths of 780 nm and 830 nm, and a 1×32-fiber-optic-switch sequentially directs light sources to the object surface through 32 source fibers. The light signals re-emitted from the object are collected by 32 detection fibers connected to four 8×1 fiber-optic-switch and then routed to four time-resolved measuring channels, each of which consists of a collimator, a filter wheel, a photomultiplier tube (PMT) photon-counting head and a time-correlated single photon counting (TCSPC) channel. The performance and efficacy of the designed multi-channel PMT-TCSPC system are assessed by reconstructing the fluorescent yield and lifetime images of a solid phantom.
Directory of Open Access Journals (Sweden)
Yong Cheng
2014-01-01
Full Text Available The transient response of the VLFS subjected to arbitrary external load is systematically investigated by a direct time domain modal expansion method, in which the BEM solutions based on time domain Kelvin sources are used for hydrodynamic forces. In the analysis, the time domain free-surface Green functions with sufficient accuracy are rapidly evaluated in finite water depth by the interpolation-tabulation method, and the boundary integral equation with a quarter VLFS model is established taking advantage of symmetry of flow field and structure. The validity of the present method is verified by comparing with the time histories of vertical displacements of the VLFS during a mass drop and airplane landing and takeoff in still water conditions, respectively. Then the developed numerical scheme is used in wave conditions to study the combined action taking into account the mass drop/airplane landing/takeoff loads as well as incident wave action. It is found that the elevation of structural waves due to mass drop load can be significantly changed near the impact region, while the vertical motion of runway in wave conditions is dominant as compared with that only generated by airplane.
Directory of Open Access Journals (Sweden)
A. Becker
2007-06-01
Full Text Available In this paper a hybrid method combining the Time-Domain Method of Moments (TD-MoM, the Time-Domain Uniform Theory of Diffraction (TD-UTD and the Finite-Difference Time-Domain Method (FDTD is presented. When applying this new hybrid method, thin-wire antennas are modeled with the TD-MoM, inhomogeneous bodies are modelled with the FDTD and large perfectly conducting plates are modelled with the TD-UTD. All inhomogeneous bodies are enclosed in a so-called FDTD-volume and the thin-wire antennas can be embedded into this volume or can lie outside. The latter avoids the simulation of white space between antennas and inhomogeneous bodies. If the antennas are positioned into the FDTD-volume, their discretization does not need to agree with the grid of the FDTD. By using the TD-UTD large perfectly conducting plates can be considered efficiently in the solution-procedure. Thus this hybrid method allows time-domain simulations of problems including very different classes of objects, applying the respective most appropriate numerical techniques to every object.
Calculation of nonzero-temperature Casimir forces in the time domain
International Nuclear Information System (INIS)
Pan, Kai; Reid, M. T. Homer; McCauley, Alexander P.; Rodriguez, Alejandro W.; White, Jacob K.; Johnson, Steven G.
2011-01-01
We show how to compute Casimir forces at nonzero temperatures with time-domain electromagnetic simulations, for example, using a finite-difference time-domain (FDTD) method. Compared to our previous zero-temperature time-domain method, only a small modification is required, but we explain that some care is required to properly capture the zero-frequency contribution. We validate the method against analytical and numerical frequency-domain calculations, and show a surprising high-temperature disappearance of a nonmonotonic behavior previously demonstrated in a pistonlike geometry.
Spectral phase encoding of ultra-short optical pulse in time domain for OCDMA application.
Wang, Xu; Wada, Naoya
2007-06-11
We propose a novel reconfigurable time domain spectral phase encoding (SPE) scheme for coherent optical code-division-multiple-access application. In the proposed scheme, the ultra-short optical pulse is stretched by dispersive device and the SPE is done in time domain using high speed phase modulator. The time domain SPE scheme is robust to wavelength drift of the light source and is very flexible and compatible with the fiber optical system. Proof-of-principle experiments of encoding with 16-chip, 20 GHz/chip binary-phase-shift-keying codes and 1.25 Gbps data transmission have been successfully demonstrated together with an arrayed-wave-guide decoder.
Böhringer, Klaus; Hess, Ortwin
The spatio-temporal dynamics of novel semiconductor lasers is discussed on the basis of a space- and momentum-dependent full time-domain approach. To this means the space-, time-, and momentum-dependent Full-Time Domain Maxwell Semiconductor Bloch equations, derived and discussed in our preceding paper I [K. Böhringer, O. Hess, A full time-domain approach to spatio-temporal dynamics of semiconductor lasers. I. Theoretical formulation], are solved by direct numerical integration. Focussing on the device physics of novel semiconductor lasers that profit, in particular, from recent advances in nanoscience and nanotechnology, we discuss the examples of photonic band edge surface emitting lasers (PBE-SEL) and semiconductor disc lasers (SDLs). It is demonstrated that photonic crystal effects can be obtained for finite crystal structures, and leading to a significant improvement in laser performance such as reduced lasing thresholds. In SDLs, a modern device concept designed to increase the power output of surface-emitters in combination with near-diffraction-limited beam quality, we explore the complex interplay between the intracavity optical fields and the quantum well gain material in SDL structures. Our simulations reveal the dynamical balance between carrier generation due to pumping into high energy states, momentum relaxation of carriers, and stimulated recombination from states near the band edge. Our full time-domain approach is shown to also be an excellent framework for the modelling of the interaction of high-intensity femtosecond and picosecond pulses with semiconductor nanostructures. It is demonstrated that group velocity dispersion, dynamical gain saturation and fast self-phase modulation (SPM) are the main causes for the induced changes and asymmetries in the amplified pulse shape and spectrum of an ultrashort high-intensity pulse. We attest that the time constants of the intraband scattering processes are critical to gain recovery. Moreover, we present
Assiongbon, K. A.; Roy, D.
2005-12-01
Electro-catalytic oxidation of methanol is the anode reaction in direct methanol fuel cells. We have studied the adsorption characteristics of the intermediate reactants of this multistep reaction on a gold film electrode in alkaline solutions by combining surface plasmon resonance (SPR) measurements with Fourier transform electro-chemical impedance spectroscopy (FT-EIS). Methanol oxidation in this system shows no significant effects of "site poisoning" by chemisorbed CO. Our results suggest that OH - chemisorbed onto Au acts as a stabilizing agent for the surface species of electro-active methanol. Double layer charging/discharging and adsorption/desorption of OH - show more pronounced effects than adsorption/oxidation of methanol in controlling the surface charge density of the Au substrate. These effects are manifested in both the EIS and the SPR data, and serve as key indicators of the surface reaction kinetics. The data presented here describe the important role of adsorbed OH - in electro-catalysis of methanol on Au, and demonstrate how SPR and FT-EIS can be combined for quantitative probing of catalytically active metal-solution interfaces.
Perry, Nicola H; Kim, Jae Jin; Tuller, Harry L
2018-01-01
We compare approaches to measure oxygen surface exchange kinetics, by simultaneous optical transmission relaxation (OTR) and AC-impedance spectroscopy (AC-IS), on the same mixed conducting SrTi 0.65 Fe 0.35 O 3-x film. Surface exchange coefficients were evaluated as a function of oxygen activity in the film, controlled by gas partial pressure and/or DC bias applied across the ionically conducting yttria-stabilized zirconia substrate. Changes in measured light transmission through the film over time (relaxations) resulted from optical absorption changes in the film corresponding to changes in its oxygen and oxidized Fe (~Fe 4+ ) concentrations; such relaxation profiles were successfully described by the equation for surface exchange-limited kinetics appropriate for the film geometry. The k chem values obtained by OTR were significantly lower than the AC-IS derived k chem values and k q values multiplied by the thermodynamic factor (bulk or thin film), suggesting a possible enhancement in k by the metal current collectors (Pt, Au). Long-term degradation in k chem and k q values obtained by AC-IS was also attributed to deterioration of the porous Pt current collector, while no significant degradation was observed in the optically derived k chem values. The results suggest that, while the current collector might influence measurements by AC-IS, the OTR method offers a continuous, in situ , and contact-free method to measure oxygen exchange kinetics at the native surfaces of thin films.
Perry, Nicola H.; Kim, Jae Jin; Tuller, Harry L.
2018-01-01
Abstract We compare approaches to measure oxygen surface exchange kinetics, by simultaneous optical transmission relaxation (OTR) and AC-impedance spectroscopy (AC-IS), on the same mixed conducting SrTi0.65Fe0.35O3-x film. Surface exchange coefficients were evaluated as a function of oxygen activity in the film, controlled by gas partial pressure and/or DC bias applied across the ionically conducting yttria-stabilized zirconia substrate. Changes in measured light transmission through the film over time (relaxations) resulted from optical absorption changes in the film corresponding to changes in its oxygen and oxidized Fe (~Fe4+) concentrations; such relaxation profiles were successfully described by the equation for surface exchange-limited kinetics appropriate for the film geometry. The kchem values obtained by OTR were significantly lower than the AC-IS derived kchem values and kq values multiplied by the thermodynamic factor (bulk or thin film), suggesting a possible enhancement in k by the metal current collectors (Pt, Au). Long-term degradation in kchem and kq values obtained by AC-IS was also attributed to deterioration of the porous Pt current collector, while no significant degradation was observed in the optically derived kchem values. The results suggest that, while the current collector might influence measurements by AC-IS, the OTR method offers a continuous, in situ, and contact-free method to measure oxygen exchange kinetics at the native surfaces of thin films. PMID:29511391
Li, Ping; Jiang, Li Jun; Bagci, Hakan
2017-01-01
In this paper, a discontinuous Galerkin time-domain (DGTD) method is developed to analyze the power-ground planes taking into account the decoupling capacitors. In the presence of decoupling capacitors, the whole physical system can be split
On the mixed discretization of the time domain magnetic field integral equation
Ulku, Huseyin Arda; Bogaert, Ignace; Cools, Kristof; Andriulli, Francesco P.; Bagci, Hakan
2012-01-01
Time domain magnetic field integral equation (MFIE) is discretized using divergence-conforming Rao-Wilton-Glisson (RWG) and curl-conforming Buffa-Christiansen (BC) functions as spatial basis and testing functions, respectively. The resulting mixed
Valdé s, Felipe; Andriulli, Francesco P.; Bagci, Hakan; Michielssen, Eric
2013-01-01
Single-source time-domain electric-and magnetic-field integral equations for analyzing scattering from homogeneous penetrable objects are presented. Their temporal discretization is effected by using shifted piecewise polynomial temporal basis
On spurious resonant modes in the MOT solution of time domain EFIE
Shi, Yifei; Bagci, Hakan; Lu, Mingyu
2013-01-01
Theoretically, internal resonant modes should not be induced in the marching-on-in-time (MOT) solution of the time domain electric field integral equation since zero initial conditions are enforced at the beginning of time marching and the internal
Time Domain Terahertz Axial Computed Tomography Non Destructive Evaluation, Phase I
National Aeronautics and Space Administration — We propose to demonstrate key elements of feasibility for a high speed automated time domain terahertz computed axial tomography (TD-THz CT) non destructive...
Time Domain Terahertz Axial Computed Tomography Non Destructive Evaluation, Phase II
National Aeronautics and Space Administration — In this Phase 2 project, we propose to develop, construct, and deliver to NASA a computed axial tomography time-domain terahertz (CT TD-THz) non destructive...
Zhang, Xiao-bo; Tan, Jun; Song, Peng; Li, Jin-shan; Xia, Dong-ming; Liu, Zhao-lun
2017-01-01
The gradient preconditioning approach based on seismic wave energy can effectively avoid the huge storage consumption in the gradient preconditioning algorithms based on Hessian matrices in time-domain full waveform inversion (FWI), but the accuracy
Ulku, Huseyin Arda; Sayed, Sadeed Bin; Bagci, Hakan
2014-01-01
solvers are the method of choice when it comes simulating these nonlinear effects. Oftentimes, finite difference time domain (FDTD) method is used for this purpose. This is simply due to the fact that explicitness of the FDTD renders the implementation
Microprocessor-controlled time domain reflectometer for dynamic shock position measurements
International Nuclear Information System (INIS)
Virchow, C.F.; Conrad, G.E.; Holt, D.M.; Hodson, E.K.
1980-01-01
Time-domain reflectometry is used in a novel way to measure dynamically shock propagation in various media. The primary component in this measurement system is a digital time domain reflectometer, which uses local intelligence, a Motorola 6800 microprocessor, to make the unit adaptable and versatile. The recorder, its operating theory and its method of implementation are described and typical data are reviewed. Applications include nuclear explosion yield estimates and explosive energy flow measurements
Windowing of THz time-domain spectroscopy signals: A study based on lactose
Vázquez-Cabo, José; Chamorro-Posada, Pedro; Fraile-Peláez, Francisco Javier; Rubiños-López, Óscar; López-Santos, José María; Martín-Ramos, Pablo
2016-05-01
Time-domain spectroscopy has established itself as a reference method for determining material parameters in the terahertz spectral range. This procedure requires the processing of the measured time-domain signals in order to estimate the spectral data. In this work, we present a thorough study of the properties of the signal windowing, a step previous to the parameter extraction algorithm, that permits to improve the accuracy of the results. Lactose has been used as sample material in the study.
Time-Domain Optical Fourier Transformation for OTDM-DWDM and DWDM-OTDM Conversion
DEFF Research Database (Denmark)
Mulvad, Hans Christian Hansen; Palushani, Evarist; Galili, Michael
2011-01-01
Applications of time-domain optical Fourier transformation (OFT) in ultra-high-speed optical time-division multiplexed systems (OTDM) are reviewed, with emphasis on the recent demonstrations of OFT-based conversion between the OTDM and DWDM formats.......Applications of time-domain optical Fourier transformation (OFT) in ultra-high-speed optical time-division multiplexed systems (OTDM) are reviewed, with emphasis on the recent demonstrations of OFT-based conversion between the OTDM and DWDM formats....
Oisjöen, Fredrik; Schneiderman, Justin F; Astalan, Andrea Prieto; Kalabukhov, Alexey; Johansson, Christer; Winkler, Dag
2010-01-15
We demonstrate a one-step wash-free bioassay measurement system capable of tracking biochemical binding events. Our approach combines the high resolution of frequency- and high speed of time-domain measurements in a single device in combination with a fast one-step bioassay. The one-step nature of our magnetic nanoparticle (MNP) based assay reduces the time between sample extraction and quantitative results while mitigating the risks of contamination related to washing steps. Our method also enables tracking of binding events, providing the possibility of, for example, investigation of how chemical/biological environments affect the rate of a binding process or study of the action of certain drugs. We detect specific biological binding events occurring on the surfaces of fluid-suspended MNPs that modify their magnetic relaxation behavior. Herein, we extrapolate a modest sensitivity to analyte of 100 ng/ml with the present setup using our rapid one-step bioassay. More importantly, we determine the size-distributions of the MNP systems with theoretical fits to our data obtained from the two complementary measurement modalities and demonstrate quantitative agreement between them. Copyright 2009 Elsevier B.V. All rights reserved.
Numerical study of time domain analogy applied to noise prediction from rotating blades
Fedala, D.; Kouidri, S.; Rey, R.
2009-04-01
Aeroacoustic formulations in time domain are frequently used to model the aerodynamic sound of airfoils, the time data being more accessible. The formulation 1A developed by Farassat, an integral solution of the Ffowcs Williams and Hawkings equation, holds great interest because of its ability to handle surfaces in arbitrary motion. The aim of this work is to study the numerical sensitivity of this model to specified parameters used in the calculation. The numerical algorithms, spatial and time discretizations, and approximations used for far-field acoustic simulation are presented. An approach of quantifying of the numerical errors resulting from implementation of formulation 1A is carried out based on Isom's and Tam's test cases. A helicopter blade airfoil, as defined by Farassat to investigate Isom's case, is used in this work. According to Isom, the acoustic response of a dipole source with a constant aerodynamic load, ρ0c02, is equal to the thickness noise contribution. Discrepancies are observed when the two contributions are computed numerically. In this work, variations of these errors, which depend on the temporal resolution, Mach number, source-observer distance, and interpolation algorithm type, are investigated. The results show that the spline interpolating algorithm gives the minimum error. The analysis is then extended to Tam's test case. Tam's test case has the advantage of providing an analytical solution for the first harmonic of the noise produced by a specific force distribution.
Application of spatial time domain reflectometry measurements in heterogeneous, rocky substrates
Gonzales, C.; Scheuermann, A.; Arnold, S.; Baumgartl, T.
2016-10-01
Measurement of soil moisture across depths using sensors is currently limited to point measurements or remote sensing technologies. Point measurements have limitations on spatial resolution, while the latter, although covering large areas may not represent real-time hydrologic processes, especially near the surface. The objective of the study was to determine the efficacy of elongated soil moisture probes—spatial time domain reflectometry (STDR)—and to describe transient soil moisture dynamics of unconsolidated mine waste rock materials. The probes were calibrated under controlled conditions in the glasshouse. Transient soil moisture content was measured using the gravimetric method and STDR. Volumetric soil moisture content derived from weighing was compared with values generated from a numerical model simulating the drying process. A calibration function was generated and applied to STDR field data sets. The use of elongated probes effectively assists in the real-time determination of the spatial distribution of soil moisture. It also allows hydrologic processes to be uncovered in the unsaturated zone, especially for water balance calculations that are commonly based on point measurements. The elongated soil moisture probes can potentially describe transient substrate processes and delineate heterogeneity in terms of the pore size distribution in a seasonally wet but otherwise arid environment.
Energy Technology Data Exchange (ETDEWEB)
Koenig, Michael [Institut fuer Theoretische Festkoerperphysik, Universitaet Karlsruhe (Germany); Karlsruhe School of Optics and Photonics (KSOP), Universitaet Karlsruhe (Germany); Niegemann, Jens; Tkeshelashvili, Lasha; Busch, Kurt [Institut fuer Theoretische Festkoerperphysik, Universitaet Karlsruhe (Germany); DFG Forschungszentrum Center for Functional Nanostructures (CFN), Universitaet Karlsruhe (Germany); Karlsruhe School of Optics and Photonics (KSOP), Universitaet Karlsruhe (Germany)
2008-07-01
Numerical simulations of metallic nano-structures are crucial for the efficient design of plasmonic devices. Conventional time-domain solvers such as FDTD introduce large numerical errors especially at metallic surfaces. Our approach combines a discontinuous Galerkin method on an adaptive mesh for the spatial discretisation with a Krylov-subspace technique for the time-stepping procedure. Thus, the higher-order accuracy in both time and space is supported by unconditional stability. As illustrative examples, we compare numerical results obtained with our method against analytical reference solutions and results from FDTD calculations.
Sprague, Mark W; Luczkovich, Joseph J
2016-01-01
This finite-difference time domain (FDTD) model for sound propagation in very shallow water uses pressure and velocity grids with both 3-dimensional Cartesian and 2-dimensional cylindrical implementations. Parameters, including water and sediment properties, can vary in each dimension. Steady-state and transient signals from discrete and distributed sources, such as the surface of a vibrating pile, can be used. The cylindrical implementation uses less computation but requires axial symmetry. The Cartesian implementation allows asymmetry. FDTD calculations compare well with those of a split-step parabolic equation. Applications include modeling the propagation of individual fish sounds, fish aggregation sounds, and distributed sources.
Li, Ping
2017-03-22
In this paper, a discontinuous Galerkin time-domain (DGTD) method is developed to analyze the power-ground planes taking into account the decoupling capacitors. In the presence of decoupling capacitors, the whole physical system can be split into two subsystems: 1) the field subsystem that is governed by Maxwell\\'s equations that will be solved by the DGTD method, and 2) the circuit subsystem including the capacitor and its parasitic inductor and resistor, which is going to be characterized by the modified nodal analysis algorithm constructed circuit equations. With the aim to couple the two subsystems together, a lumped port is defined over a coaxial surface between the via barrel and the ground plane. To reach the coupling from the field to the circuit subsystem, a lumped voltage source calculated by the integration of electric field along the radial direction is introduced. On the other hand, to facilitate the coupling from the circuit to field subsystem, a lumped port current source calculated from the circuit equation is introduced, which serves as an impressed current source for the field subsystem. With these two auxiliary terms, a hybrid field-circuit matrix equation is established, which enables the field and circuit subsystems are solved in a synchronous scheme. Furthermore, the arbitrarily shaped antipads are considered by enforcing the proper wave port excitation using the magnetic surface current source derived from the antipads supported electric eigenmodes. In this way, the S-parameters corresponding to different modes can be conveniently extracted. To further improve the efficiency of the proposed algorithm in handling multiscale meshes, the local time-stepping marching scheme is applied. The proposed algorithm is verified by several representative examples.
Novel Time-domain Ultra-wide Band TEM Horn Antenna for Highway GPR Applications
Directory of Open Access Journals (Sweden)
Yin De
2017-12-01
Full Text Available Based on transmission line theory and impedance transition, we design an ultra-wideband Transverse ElectroMagnetic (TEM horn antenna that takes advantage of index gradient structure and loading techniques and is optimized for highway Ground Penetrating Radar (GPR applications. We use numerical simulation to analyze the effects of different curved surfaces as an extension of the antenna and further improve the antenna performance by the use of a metallic reflective cavity and distributed resistor loading. We then fabricated an antenna based on the optimization results and determined the Voltage Standing Wave Ratio (VSWR of the antenna to be less than 2 for bandwidths ranging from 0.9–12.6 GHz. The waveform fidelity of the antenna is also good and when we applied this antenna to highway scenarios, it achieved good results.
Energy Technology Data Exchange (ETDEWEB)
Deville, A.; Fawaz, H.; Gaillard, B. (Lab. d' Electronique des Milieux Condenses, Univ. de Provence, Centre Saint-Jerome, 13 - Marseille (France)); Noel, H.; Potel, M. (Lab. de Chimie Minerale, Univ. de Rennes, 35 (France)); Monnereau, O. (Lab. de Chimie des Materiaux, Univ. de Provence, Centre Saint-Charles, 13 - Marseille (France))
1992-07-15
After a presentation of the theoretical framework, and a short review of existing r.f. results in high-temperature superconductors, we present our own 10 GHz measurements on YBa[sub 2]Cu[sub 3]O[sub 7] single crystals and sintered samples. We use an electron spin resonance (ESR) heterodyne spectrometer and measurements of the reflection coefficient and resonant frequency of a cavity to get information not only on the surface resistance, R[sub S], as generally done, but also on the surface reactance, X[sub S]. The theoretical analysis of the frequency shift is made by adapting Slater's perturbation method to the present problem. In order to explain both the R[sub s] and X[sub S] results, and previous ESR observations, while keeping theoretical simplicity, we are led to suggest that in the normal state these materials show an unconventional skin effect, where the phenomenon is governed not by the d.c. conductivity, but by an effective (lower) conductivity, the other characteristics being unchanged. We briefly discuss the superconductor results and the validity of the two-fluid model. (orig.).
International Nuclear Information System (INIS)
Stupakov, G.
2009-01-01
We review recent progress in the following areas of the impedance theory: calculation of impedance of tapers and small angle collimators; optical approximation and parabolic equation for the high-frequency impedance; impedance due to resistive inserts in a perfectly conducting pipe.
Compressible turbulent channel flow with impedance boundary conditions
Scalo, Carlo; Bodart, Julien; Lele, Sanjiva K.
2015-03-01
We have performed large-eddy simulations of isothermal-wall compressible turbulent channel flow with linear acoustic impedance boundary conditions (IBCs) for the wall-normal velocity component and no-slip conditions for the tangential velocity components. Three bulk Mach numbers, Mb = 0.05, 0.2, 0.5, with a fixed bulk Reynolds number, Reb = 6900, have been investigated. For each Mb, nine different combinations of IBC settings were tested, in addition to a reference case with impermeable walls, resulting in a total of 30 simulations. The adopted numerical coupling strategy allows for a spatially and temporally consistent imposition of physically realizable IBCs in a fully explicit compressible Navier-Stokes solver. The IBCs are formulated in the time domain according to Fung and Ju ["Time-domain impedance boundary conditions for computational acoustics and aeroacoustics," Int. J. Comput. Fluid Dyn. 18(6), 503-511 (2004)]. The impedance adopted is a three-parameter damped Helmholtz oscillator with resonant angular frequency, ωr, tuned to the characteristic time scale of the large energy-containing eddies. The tuning condition, which reads ωr = 2πMb (normalized with the speed of sound and channel half-width), reduces the IBCs' free parameters to two: the damping ratio, ζ, and the resistance, R, which have been varied independently with values, ζ = 0.5, 0.7, 0.9, and R = 0.01, 0.10, 1.00, for each Mb. The application of the tuned IBCs results in a drag increase up to 300% for Mb = 0.5 and R = 0.01. It is shown that for tuned IBCs, the resistance, R, acts as the inverse of the wall-permeability and that varying the damping ratio, ζ, has a secondary effect on the flow response. Typical buffer-layer turbulent structures are completely suppressed by the application of tuned IBCs. A new resonance buffer layer is established characterized by large spanwise-coherent Kelvin-Helmholtz rollers, with a well-defined streamwise wavelength λx, traveling downstream with
International Nuclear Information System (INIS)
Jung, Kyu-Nam; Pyun, Su-Il
2007-01-01
Lithium transport through the partially inactive fractal Li 1-δ Mn 2 O 4 film electrode under the cell-impedance-controlled constraint was theoretically investigated by using the kinetic Monte Carlo method based upon random walk approach. Under the cell-impedance-controlled constraint, all the potentiostatic current transients calculated from the totally active and partially inactive fractal electrodes hardly exhibited the generalised Cottrell behaviour and they were significantly affected in shape by the interfacial charge-transfer kinetics. In the case of the linear sweep voltammogram determined from the totally active and partially inactive fractal electrodes, all the power dependence of the peak current on the scan rate above the characteristic scan rate deviated from the generalised Randles-Sevcik behaviour. From the analyses of the current transients and the linear sweep voltammograms simulated with various values of the simulation parameters, it was further recognised that the cell-impedance-controlled lithium transport through the partially inactive fractal Li 1-δ Mn 2 O 4 film electrode strongly deviates from the generalised diffusion-controlled transport behaviour of the electrode with the totally active surface, which is attributed to the impeded interfacial charge-transfer kinetics governed by the surface inhomogeneities including the fractal dimension of the surface and the surface coverage by active sites and by the kinetic parameters including the internal cell resistance
Comparison of Cole-Cole and Constant Phase Angle modeling in time-domain induced polarization
DEFF Research Database (Denmark)
Lajaunie, Myriam; Maurya, Pradip Kumar; Fiandaca, Gianluca
The Cole-Cole model and the constant phase angle (CPA) model are two prevailing phenomenological descriptions of the induced polarization (IP), used for both frequency domain (FD) and time domain (TD) modeling. The former one is a 4-parameter description, while the latest one involves only two......, forward modeling of quadrupolar sequences on 1D and 2D heterogeneous CPA models shows that the CPA decays differ among each other only by a multiplication factor. Consequently, the inspection of field data in log-log plots gives insight on the modeling needed for fitting them: the CPA inversion cannot...... is reflected in TDIP data, and therefore, at identifying (1) if and when it is possible to distinguish, in time domain, between a Cole-Cole description and a CPA one, and (2) if features of time domain data exist in order to know, from a simple data inspection, which model will be the most adapted to the data...
Optimal time-domain combination of the two calibrated output quadratures of GEO 600
International Nuclear Information System (INIS)
Hewitson, M; Grote, H; Hild, S; Lueck, H; Ajith, P; Smith, J R; Strain, K A; Willke, B; Woan, G
2005-01-01
GEO 600 is an interferometric gravitational wave detector with a 600 m arm-length and which uses a dual-recycled optical configuration to give enhanced sensitivity over certain frequencies in the detection band. Due to the dual-recycling, GEO 600 has two main output signals, both of which potentially contain gravitational wave signals. These two outputs are calibrated to strain using a time-domain method. In order to simplify the analysis of the GEO 600 data set, it is desirable to combine these two calibrated outputs to form a single strain signal that has optimal signal-to-noise ratio across the detection band. This paper describes a time-domain method for doing this combination. The method presented is similar to one developed for optimally combining the outputs of two colocated gravitational wave detectors. In the scheme presented in this paper, some simplifications are made to allow its implementation using time-domain methods
Time domain passivity controller for 4-channel time-delay bilateral teleoperation.
Rebelo, Joao; Schiele, Andre
2015-01-01
This paper presents an extension of the time-domain passivity control approach to a four-channel bilateral controller under the effects of time delays. Time-domain passivity control has been used successfully to stabilize teleoperation systems with position-force and position-position controllers; however, the performance with such control architectures is sub-optimal both with and without time delays. This work extends the network representation of the time-domain passivity controller to the four-channel architecture, which provides perfect transparency to the user without time delay. The proposed architecture is based on modelling the controllers as dependent voltage sources and using only series passivity controllers. The obtained results are shown on a one degree-of-freedom setup and illustrate the stabilization behaviour of the proposed controller when time delay is present in the communication channel.
Numerical simulation of electromagnetic wave propagation using time domain meshless method
International Nuclear Information System (INIS)
Ikuno, Soichiro; Fujita, Yoshihisa; Itoh, Taku; Nakata, Susumu; Nakamura, Hiroaki; Kamitani, Atsushi
2012-01-01
The electromagnetic wave propagation in various shaped wave guide is simulated by using meshless time domain method (MTDM). Generally, Finite Differential Time Domain (FDTD) method is applied for electromagnetic wave propagation simulation. However, the numerical domain should be divided into rectangle meshes if FDTD method is applied for the simulation. On the other hand, the node disposition of MTDM can easily describe the structure of arbitrary shaped wave guide. This is the large advantage of the meshless time domain method. The results of computations show that the damping rate is stably calculated in case with R < 0.03, where R denotes a support radius of the weight function for the shape function. And the results indicate that the support radius R of the weight functions should be selected small, and monomials must be used for calculating the shape functions. (author)
Analysis of noise in energy-dispersive spectrometers using time-domain methods
Goulding, F S
2002-01-01
This paper presents an integrated time domain approach to the optimization of the signal-to-noise ratio in all spectrometer systems that contain a detector that converts incoming quanta of radiation into electrical pulse signals that are amplified and shaped by an electronic pulse shaper. It allows analysis of normal passive pulse shapers as well as time-variant systems where switching of shaping elements occurs in synchronism with the signal. It also deals comfortably with microcalorimeters (sometimes referred to as bolometers), where noise-determining elements, such as the temperature-sensing element's resistance and temperature, change with time in the presence of a signal. As part of the purely time-domain approach, a new method of calculating the Johnson noise in resistors using only the statistics of electron motion is presented. The result is a time-domain analog of the Nyquist formula.
Impact of non-white noises in pulse amplitude measurements: a time-domain approach
International Nuclear Information System (INIS)
Pullia, A.
1998-01-01
The contribution of the 1/f-noise to the spectral line broadening in pulse amplitude measurements is derived with a time-domain analysis. The known time-domain relationships which provide the contributions of the series and parallel white noises are generalised for the case of 1/f and other typical non-white noises, by using the fractional derivative of either the system impulse response (time-invariant linear filters) or its weight function folded (time-variant linear filters). It is shown that a time-domain approach is also effective to determine the contribution of Lorentzian noises. A simple rule suitable to derive numerically the fractional derivative is given, which permits to calculate the effect of non-white noises even when the filter impulse response is not known analytically but only in sampled form. (orig.)
Bedrosian, Paul A.; Burgess, Matthew K.; Nishikawa, Tracy
2013-01-01
Within the south-western Mojave Desert, the Joshua Basin Water District is considering applying imported water into infiltration ponds in the Joshua Tree groundwater sub-basin in an attempt to artificially recharge the underlying aquifer. Scarce subsurface hydrogeological data are available near the proposed recharge site; therefore, time-domain electromagnetic (TDEM) data were collected and analysed to characterize the subsurface. TDEM soundings were acquired to estimate the depth to water on either side of the Pinto Mountain Fault, a major east-west trending strike-slip fault that transects the proposed recharge site. While TDEM is a standard technique for groundwater investigations, special care must be taken when acquiring and interpreting TDEM data in a twodimensional (2D) faulted environment. A subset of the TDEM data consistent with a layered-earth interpretation was identified through a combination of three-dimensional (3D) forward modelling and diffusion time-distance estimates. Inverse modelling indicates an offset in water table elevation of nearly 40 m across the fault. These findings imply that the fault acts as a low-permeability barrier to groundwater flow in the vicinity of the proposed recharge site. Existing production wells on the south side of the fault, together with a thick unsaturated zone and permeable near-surface deposits, suggest the southern half of the study area is suitable for artificial recharge. These results illustrate the effectiveness of targeted TDEM in support of hydrological studies in a heavily faulted desert environment where data are scarce and the cost of obtaining these data by conventional drilling techniques is prohibitive.
Time-domain electromagnetic soundings at the Nevada Test Site, Nevada
International Nuclear Information System (INIS)
Frischknecht, F.C.; Raab, P.V.
1984-01-01
Structural discontinuities and variations in the resistivity of near-surface rocks often seriously distort dc resistivity and frequency-domain electromagnetic (FDEM) depth sounding curves. Reliable interpretation of such curves using one-dimensional (1-D) models is difficult or impossible. Short-offset time-domain electromagnetic (TDEM) sounding methods offer a number of advantages over other common geoelectrical sounding methods when working in laterally heterogeneous areas. In order to test the TDEM method in a geologically complex region, measurements were made on the east flank of Yucca Mountain at the Nevada Test Site (NTS). Coincident, offset coincident, single, and central loop configurations with square transmitting loops, either 305 or 152 m on a side, were used. Measured transient voltages were transformed into apparent resistivity values and then inverted in terms of 1-D models. Good fits to all of the offset coincident and single loop data were obtained using three-layer models. In most of the area, two well-defined interfaces were mapped, one which corresponds closely to a contact between stratigraphic units at a depth of about 400 m and another which corresponds to a transition from relatively unaltered to altered volcanic rocks at a depth of about 1000 m. In comparison with the results of a dipole-dipole resistivity survey, the results of the TDEM survey emphasize changes in the geoelectrical section with depth. Nonetheless, discontinuities in the layering mapped with the TDEM method delineated major faults or fault zones along the survey traverse. 5 refs., 10 figs., 1 tab
DEFF Research Database (Denmark)
Mackenzie, David; Buron, Jonas Christian Due; Bøggild, Peter
2016-01-01
We perform contactless full-wafer maps of the electrical conductance of a 4-inch wafer of single-layer CVD graphene using terahertz time-domain spectroscopy both before and after deposition of metal contacts and fabrication of devices via laser ablation. We find that there is no significant change...... in the measured conductance of graphene before and after device fabrication. We also show that precise terahertz time-domain spectroscopy can be performed when the beam spot is at sufficient distance (>1.2 mm) from metal contacts....
Perturbative evolution of particle orbits around Kerr black holes: time-domain calculation
Energy Technology Data Exchange (ETDEWEB)
Lopez-Aleman, Ramon [Physical Sciences Department, University of Puerto Rico-Rio Piedras, San Juan, PR 00931 (Puerto Rico); Khanna, Gaurav [Natural Science Division, Long Island University, Southampton, NY 11968 (United States); Pullin, Jorge [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, LA 70803-4001 (United States)
2003-07-21
We consider the problem of the gravitational waves produced by a particle of negligible mass orbiting a Kerr black hole. We treat the Teukolsky perturbation equation in the time domain numerically as a 2 + 1 partial differential equation. We model the particle by smearing the singularities in the source term by the use of narrow Gaussian distributions. We have been able to reproduce earlier results for equatorial circular orbits that were computed using the frequency-domain formalism. The time-domain approach is however geared for a more general evolution, for instance of nearly geodesic orbits under the effects of radiation reaction.
Perturbative evolution of particle orbits around Kerr black holes: time-domain calculation
International Nuclear Information System (INIS)
Lopez-Aleman, Ramon; Khanna, Gaurav; Pullin, Jorge
2003-01-01
We consider the problem of the gravitational waves produced by a particle of negligible mass orbiting a Kerr black hole. We treat the Teukolsky perturbation equation in the time domain numerically as a 2 + 1 partial differential equation. We model the particle by smearing the singularities in the source term by the use of narrow Gaussian distributions. We have been able to reproduce earlier results for equatorial circular orbits that were computed using the frequency-domain formalism. The time-domain approach is however geared for a more general evolution, for instance of nearly geodesic orbits under the effects of radiation reaction
Time-domain Green's Function Method for three-dimensional nonlinear subsonic flows
Tseng, K.; Morino, L.
1978-01-01
The Green's Function Method for linearized 3D unsteady potential flow (embedded in the computer code SOUSSA P) is extended to include the time-domain analysis as well as the nonlinear term retained in the transonic small disturbance equation. The differential-delay equations in time, as obtained by applying the Green's Function Method (in a generalized sense) and the finite-element technique to the transonic equation, are solved directly in the time domain. Comparisons are made with both linearized frequency-domain calculations and existing nonlinear results.
Solving the Schroedinger equation using the finite difference time domain method
International Nuclear Information System (INIS)
Sudiarta, I Wayan; Geldart, D J Wallace
2007-01-01
In this paper, we solve the Schroedinger equation using the finite difference time domain (FDTD) method to determine energies and eigenfunctions. In order to apply the FDTD method, the Schroedinger equation is first transformed into a diffusion equation by the imaginary time transformation. The resulting time-domain diffusion equation is then solved numerically by the FDTD method. The theory and an algorithm are provided for the procedure. Numerical results are given for illustrative examples in one, two and three dimensions. It is shown that the FDTD method accurately determines eigenfunctions and energies of these systems
Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics
Gedney, Stephen
2011-01-01
Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics provides a comprehensive tutorial of the most widely used method for solving Maxwell's equations -- the Finite Difference Time-Domain Method. This book is an essential guide for students, researchers, and professional engineers who want to gain a fundamental knowledge of the FDTD method. It can accompany an undergraduate or entry-level graduate course or be used for self-study. The book provides all the background required to either research or apply the FDTD method for the solution of Maxwell's equations to p
DWDM-TO-OTDM Conversion by Time-Domain Optical Fourier Transformation
DEFF Research Database (Denmark)
Mulvad, Hans Christian Hansen; Hu, Hao; Galili, Michael
2011-01-01
We propose DWDM-OTDM conversion by time-domain optical Fourier transformation. Error-free conversion of a 16×10 Gbit/s 50 GHz-spacing DWDM data signal to a 160 Gbit/s OTDM signal with a 2.1 dB average penalty is demonstrated.......We propose DWDM-OTDM conversion by time-domain optical Fourier transformation. Error-free conversion of a 16×10 Gbit/s 50 GHz-spacing DWDM data signal to a 160 Gbit/s OTDM signal with a 2.1 dB average penalty is demonstrated....
Time-domain analysis of frequency dependent inertial wave forces on cylinders
DEFF Research Database (Denmark)
Krenk, Steen
2013-01-01
a simple time-domain procedure for the inertial force, in which the frequency dependence is represented via a simple explicit time filter on the wave particle acceleration or velocity. The frequency dependence of the inertia coefficient is known analytically as a function of the wave......-number, and the relevant range of waves shorter than about six times the diameter typically corresponds to deep water waves. This permits a universal non-dimensional frequency representation, that is converted to rational form to provide the relevant filter equation. Simple time-domain simulations demonstrate...... the reduction of the resonant part of the response for natural structural frequencies above the dominating wave frequency....
Directory of Open Access Journals (Sweden)
Qian Yang
2017-01-01
Full Text Available The near fields of electric dipole are commonly used in wide-band analysis of complex electromagnetic problems. In this paper, we propose new near field time-domain expressions for electric dipole. The analytical expressions for the frequency-domain of arbitrarily oriented electric dipole are given at first; next we give the time-domain expressions by time-frequency transformation. The proposed expressions are used in hybrid TDIE/DGTD method for analysis of circular antenna with radome. The accuracy of the proposed algorithm is verified by numerical examples.
Development and application of dispersive soft ferrite models for time-domain simulation
International Nuclear Information System (INIS)
DeFord, J.F.; Kamin, G.; Craig, G.D.; Walling, L.
1992-01-01
Ferrite has a variety of applications in accelerator components, and the capability to model this magnetic material in the time domain is an important adjunct to currently available accelerator modeling tool. We describe in this report a material model we have developed for the magnetic characteristics of PE11BL, the ferrite found in the ETA-II (Experimental Test Accelerator-II) induction module. This model, which includes the important magnetic dispersion effects found in most soft ferrites, has been implemented in 1-D and 2-D finite-difference time-domain (FDTD) electromagnetic simulators, and comparisons with analytic and experimental results are presented
Energy Technology Data Exchange (ETDEWEB)
De Marco, Roland [Nanochemistry Research Institute, Department of Applied Chemistry, Curtin University of Technology, GPO Box U 1987, Perth, WA 6845 (Australia)]. E-mail: r.demarco@exchange.curtin.edu.au; Jiang, Z.-T. [Nanochemistry Research Institute, Department of Applied Chemistry, Curtin University of Technology, GPO Box U 1987, Perth, WA 6845 (Australia); Martizano, Jay [Nanochemistry Research Institute, Department of Applied Chemistry, Curtin University of Technology, GPO Box U 1987, Perth, WA 6845 (Australia); Lowe, Alex [Nanochemistry Research Institute, Department of Applied Chemistry, Curtin University of Technology, GPO Box U 1987, Perth, WA 6845 (Australia); Pejcic, Bobby [Nanochemistry Research Institute, Department of Applied Chemistry, Curtin University of Technology, GPO Box U 1987, Perth, WA 6845 (Australia); Riessen, Arie van [Materials Research Group, Department of Applied Physics, Curtin University of Technology, GPO Box U 1987, Perth, WA 6845 (Australia)
2006-08-15
A marriage of electrochemical impedance spectroscopy (EIS) and in situ synchrotron radiation grazing incidence X-ray diffraction (SR-GIXRD) has provided a powerful new technique for the elucidation of the mechanistic chemistry of electrochemical systems. In this study, EIS/SR-GIXRD has been used to investigate the influence of metal ion buffer calibration ligands, along with natural organic ligands in seawater, on the behaviour of the iron chalcogenide glass ion-selective electrode (ISE). The SR-GIXRD data demonstrated that citrate - a previously reported poor iron calibration ligand for the analysis of seawater - induced an instantaneous and total dissolution of crystalline GeSe and Sb{sub 2}Se{sub 3} in the modified surface layer (MSL) of the ISE, while natural organic ligands in seawater and a mixture of ligands in a mimetic seawater ligand system protected the MSL's crystalline inclusions of GeSe and Sb{sub 2}Se{sub 3} from oxidative attack. Expectedly, the EIS data showed that citrate induced a loss in the medium frequency time constant for the MSL of the ISE, while seawater's natural organic ligands and the mimetic ligand system preserved the medium frequency EIS response characteristics of the ISE's MSL. The new EIS/SR-GIXRD technique has provided insights into the suitability of iron calibration ligands for the analysis of iron in seawater.
Finite-difference time-domain simulation of electromagnetic bandgap and bi-anisotropic metamaterials
Bray, Matthew G.
The term "Metamaterial" has been introduced into the electromagnetic lexicon in recent years to describe new artificial materials with electromagnetic properties that are not found in naturally occurring materials. Metamaterials exhibit electromagnetic properties that are not observed in its constituent materials, and/or not observed in nature. This thesis will analyze two different classes of metamaterials through the use of the finite-difference time-domain (FDTD) technique. The first class of metamaterials are artificial magnetic conductors (AMC) which approximate the behavior of a perfect magnetic conductor (PMC) over a finite frequency range. The AMC metamaterials are created through the use of an electromagnetic bandgap (EBG) structure. A periodic FDTD code is used to simulate a full-wave model of the metallodielectric EBG structures. The AMCs developed with the aid of the FDTD tool are then used to create low-profile antenna systems consisting of a dipole antenna in close proximity to an AMC surface. Through the use of this FDTD tool, several original contributions were made to the electromagnetic community. These include the first dual-band independently tunable EBG AMC ground plane and the first linearly polarized single-band and dual-band tunable antenna/EBG systems. The second class of materials analyzed are bi-anisotropic metamaterials. Bi-anisotropic media are the largest class of linear media which is able to describe the macroscopic material properties of artificial dielectrics, artificial magnetics, artificial chiral materials, left-handed materials, and other composite materials. The dispersive properties of these materials can be approximated by the oscillator model. This model assumes a Lorentzian frequency profile for the permittivity and permeability and a Condon model for chirality. A new FDTD formulation is introduced which can simulate this type of bi-anisotropic media. This FDTD method incorporates the dispersive material properties through
Time-domain electromagnetic soundings collected in Dawson County, Nebraska, 2007-09
Payne, Jason; Teeple, Andrew
2011-01-01
Between April 2007 and November 2009, the U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District, collected time-domain electro-magnetic (TDEM) soundings at 14 locations in Dawson County, Nebraska. The TDEM soundings provide information pertaining to the hydrogeology at each of 23 sites at the 14 locations; 30 TDEM surface geophysical soundings were collected at the 14 locations to develop smooth and layered-earth resistivity models of the subsurface at each site. The soundings yield estimates of subsurface electrical resistivity; variations in subsurface electrical resistivity can be correlated with hydrogeologic and stratigraphic units. Results from each sounding were used to calculate resistivity to depths of approximately 90-130 meters (depending on loop size) below the land surface. Geonics Protem 47 and 57 systems, as well as the Alpha Geoscience TerraTEM, were used to collect the TDEM soundings (voltage data from which resistivity is calculated). For each sounding, voltage data were averaged and evaluated statistically before inversion (inverse modeling). Inverse modeling is the process of creating an estimate of the true distribution of subsurface resistivity from the mea-sured apparent resistivity obtained from TDEM soundings. Smooth and layered-earth models were generated for each sounding. A smooth model is a vertical delineation of calculated apparent resistivity that represents a non-unique estimate of the true resistivity. Ridge regression (Interpex Limited, 1996) was used by the inversion software in a series of iterations to create a smooth model consisting of 24-30 layers for each sounding site. Layered-earth models were then generated based on results of smooth modeling. The layered-earth models are simplified (generally 1 to 6 layers) to represent geologic units with depth. Throughout the area, the layered-earth models range from 2 to 4 layers, depending on observed inflections in the raw data and smooth model
Pagan Munoz, R.; Hornikx, M.C.J.
The wave-based Fourier Pseudospectral time-domain (Fourier-PSTD) method was shown to be an effective way of modeling outdoor acoustic propagation problems as described by the linearized Euler equations (LEE), but is limited to real-valued frequency independent boundary conditions and predominantly
The finite-difference time-domain method for electromagnetics with Matlab simulations
Elsherbeni, Atef Z
2016-01-01
This book introduces the powerful Finite-Difference Time-Domain method to students and interested researchers and readers. An effective introduction is accomplished using a step-by-step process that builds competence and confidence in developing complete working codes for the design and analysis of various antennas and microwave devices.
Linearity of Air-Biased Coherent Detection for Terahertz Time-Domain Spectroscopy
DEFF Research Database (Denmark)
Wang, Tianwu; Iwaszczuk, Krzysztof; Wrisberg, Emil Astrup
2016-01-01
The performance of air-biased coherent detection (ABCD) in a broadband two-color laser-induced air plasma system for terahertz time-domain spectroscopy (THz-TDS) has been investigated. Fundamental parameters of the ABCD detection, including signal-to-noise ratio (SNR), dynamic range (DR), and lin...
CSIR Research Space (South Africa)
Loveday, PW
2007-03-01
Full Text Available Piezoelectric transducers are commonly used to excite waves in elastic waveguides such as pipes, rock bolts and rails. While it is possible to simulate the operation of these transducers attached to the waveguide, in the time domain, using...
Stationary echo canceling in velocity estimation by time-domain cross-correlation
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt
1993-01-01
The application of stationary echo canceling to ultrasonic estimation of blood velocities using time-domain cross-correlation is investigated. Expressions are derived that show the influence from the echo canceler on the signals that enter the cross-correlation estimator. It is demonstrated...
Time domain calculation of connector loads of a very large floating structure
Gu, Jiayang; Wu, Jie; Qi, Enrong; Guan, Yifeng; Yuan, Yubo
2015-06-01
Loads generated after an air crash, ship collision, and other accidents may destroy very large floating structures (VLFSs) and create additional connector loads. In this study, the combined effects of ship collision and wave loads are considered to establish motion differential equations for a multi-body VLFS. A time domain calculation method is proposed to calculate the connector load of the VLFS in waves. The Longuet-Higgins model is employed to simulate the stochastic wave load. Fluid force and hydrodynamic coefficient are obtained with DNV Sesam software. The motion differential equation is calculated by applying the time domain method when the frequency domain hydrodynamic coefficient is converted into the memory function of the motion differential equation of the time domain. As a result of the combined action of wave and impact loads, high-frequency oscillation is observed in the time history curve of the connector load. At wave directions of 0° and 75°, the regularities of the time history curves of the connector loads in different directions are similar and the connector loads of C1 and C2 in the X direction are the largest. The oscillation load is observed in the connector in the Y direction at a wave direction of 75° and not at 0°. This paper presents a time domain calculation method of connector load to provide a certain reference function for the future development of Chinese VLFS
Full waveform inversion in the frequency domain using classified time-domain residual wavefields
Son, Woohyun; Koo, Nam-Hyung; Kim, Byoung-Yeop; Lee, Ho-Young; Joo, Yonghwan
2017-04-01
We perform the acoustic full waveform inversion in the frequency domain using residual wavefields that have been separated in the time domain. We sort the residual wavefields in the time domain according to the order of absolute amplitudes. Then, the residual wavefields are separated into several groups in the time domain. To analyze the characteristics of the residual wavefields, we compare the residual wavefields of conventional method with those of our residual separation method. From the residual analysis, the amplitude spectrum obtained from the trace before separation appears to have little energy at the lower frequency bands. However, the amplitude spectrum obtained from our strategy is regularized by the separation process, which means that the low-frequency components are emphasized. Therefore, our method helps to emphasize low-frequency components of residual wavefields. Then, we generate the frequency-domain residual wavefields by taking the Fourier transform of the separated time-domain residual wavefields. With these wavefields, we perform the gradient-based full waveform inversion in the frequency domain using back-propagation technique. Through a comparison of gradient directions, we confirm that our separation method can better describe the sub-salt image than the conventional approach. The proposed method is tested on the SEG/EAGE salt-dome model. The inversion results show that our algorithm is better than the conventional gradient based waveform inversion in the frequency domain, especially for deeper parts of the velocity model.
Conversion of Dielectric Data from the Time Domain to the Frequency Domain
Directory of Open Access Journals (Sweden)
Vladimir Durman
2005-01-01
Full Text Available Polarisation and conduction processes in dielectric systems can be identified by the time domain or the frequency domain measurements. If the systems is a linear one, the results of the time domain measurements can be transformed into the frequency domain, and vice versa. Commonly, the time domain data of the absorption conductivity are transformed into the frequency domain data of the dielectric susceptibility. In practice, the relaxation are mainly evaluated by the frequency domain data. In the time domain, the absorption current measurement were prefered up to now. Recent methods are based on the recovery voltage measurements. In this paper a new method of the recovery data conversion from the time the frequency domain is proposed. The method is based on the analysis of the recovery voltage transient based on the Maxwell equation for the current density in a dielectric. Unlike the previous published solutions, the Laplace fransform was used to derive a formula suitable for practical purposes. the proposed procedure allows also calculating of the insulation resistance and separating the polarisation and conduction losses.
OpenPSTD : The open source implementation of the pseudospectral time-domain method
Krijnen, T.; Hornikx, M.C.J.; Borkowski, B.
2014-01-01
An open source implementation of the pseudospectral time-domain method for the propagation of sound is presented, which is geared towards applications in the built environment. Being a wavebased method, PSTD captures phenomena like diffraction, but maintains efficiency in processing time and memory
Reflection terahertz time-domain imaging for analysis of an 18th century neoclassical easel painting
DEFF Research Database (Denmark)
Dandolo, Corinna Ludovica Koch; Filtenborg, Troels; Fukunaga, Kaori
2015-01-01
Terahertz time-domain imaging (THz-TDI) has been applied for imaging a hidden portrait and other subsurfacecomposition layers of an 18th century (18C) easel painting by Nicolai Abildgaard, the most important 18CDanish neoclassical painter of historical and mythological subjects. For the first time...
Non-Causal Time-Domain Filters for Single-Channel Noise Reduction
DEFF Research Database (Denmark)
Jensen, Jesper Rindom; Benesty, Jacob; Christensen, Mads Græsbøll
2012-01-01
suppression and signal distortion by allowing the filters to be non-causal. Non-causal time-domain filters require knowledge of the future, and are therefore not directly implementable. If the observed signal is processed in blocks, however, the non-causal filters are implementable. In this paper, we propose...
Dekkers, Birgit L.; Kort, de Daan W.; Grabowska, Katarzyna J.; Tian, Bei; As, Van Henk; Goot, van der Atze Jan
2016-01-01
We present a combined time domain NMR and rheology approach to quantify the water distribution in a phase separated protein blend. The approach forms the basis for a new tool to assess the microstructural properties of phase separated biopolymer blends, making it highly relevant for many food and
Finite-difference time-domain analysis of time-resolved terahertz spectroscopy experiments
DEFF Research Database (Denmark)
Larsen, Casper; Cooke, David G.; Jepsen, Peter Uhd
2011-01-01
In this paper we report on the numerical analysis of a time-resolved terahertz (THz) spectroscopy experiment using a modified finite-difference time-domain method. Using this method, we show that ultrafast carrier dynamics can be extracted with a time resolution smaller than the duration of the T...
Time-domain incomplete Gauss-Newton full-waveform inversion of Gulf of Mexico data
AlTheyab, Abdullah; Wang, Xin; Schuster, Gerard T.
2013-01-01
We apply the incomplete Gauss-Newton full-waveform inversion (TDIGN-FWI) to Gulf of Mexico (GOM) data in the space-time domain. In our application, iterative least-squares reverse-time migration (LSRTM) is used to estimate the model update at each
Effects of the airwave in time-domain marine controlled-source electromagnetics
Hunziker, J.W.; Slob, E.C.; Mulder, W.
2011-01-01
In marine time-domain controlled-source electromagnetics (CSEM), there are two different acquisition methods: with horizontal sources for fast and simple data acquisition or with vertical sources for minimizing the effects of the airwave. Illustrations of the electric field as a function of space
DEFF Research Database (Denmark)
Tong, M.S.; Lu, Y.; Chen, Y.
2005-01-01
-layer structures are analyzed. Results show that this method matches satisfactorily the Nyquist sampling theorem in terms of spatial discretization. By comparing the given results, it is found that the PSTD method outperforms the finite-difference time-domain (FDTD) method in general, especially in terms...
Optimal time-domain technique for pulse width modulation in power electronics
Directory of Open Access Journals (Sweden)
I. Mayergoyz
2018-05-01
Full Text Available Optimal time-domain technique for pulse width modulation is presented. It is based on exact and explicit analytical solutions for inverter circuits, obtained for any sequence of input voltage rectangular pulses. Two optimal criteria are discussed and illustrated by numerical examples.
A time-domain binaural detection model and its predictions temporal-resolution data
Breebaart, D.J.; Par, van de S.L.J.D.E.; Kohlrausch, A.G.
2002-01-01
This paper discusses the application of a time-domain binaural signal-detection model in the context of estimates of the temporal resolution of the binaural auditory system. It is demonstrated that the optimal detector which is present in the model is crucial to account for specific temporal
Measuring the Moisture Content of Green Wood Using Time Domain Reflectometry
Laurence Schimleck; Kim Love-Myers; Joe Sanders; Heath Raybon; Richard Daniels; Jerry Mahon; Edward Andrews; Erik Schilling
2011-01-01
The responsible usage of water by facilities that rely on wet log storage in the southern United States has become an issue of great importance as restrictions on water usage have grown in recent years. In order to learn about the dynamics of moisture content in wet-stored logs over time, it is necessary to conduct continuous monitoring of log piles. Time domain...
Non-linear wave loads and ship responses by a time-domain strip theory
DEFF Research Database (Denmark)
Xia, Jinzhu; Wang, Zhaohui; Jensen, Jørgen Juncher
1998-01-01
. Based on this time-domain strip theory, an efficient non-linear hydroelastic method of wave- and slamming-induced vertical motions and structural responses of ships is developed, where the structure is represented as a Timoshenko beam. Numerical calculations are presented for the S175 Containership...
Non-Linear Wave Loads and Ship responses by a time-domain Strip Theory
DEFF Research Database (Denmark)
Xia, Jinzhu; Wang, Zhaohui; Jensen, Jørgen Juncher
1998-01-01
. Based on this time-domain strip theory, an efficient non-linear hyroelastic method of wave- and slamming-induced vertical motions and structural responses of ships is developed, where the structure is represented by the Timoshenko beam theory. Numerical calculations are presented for the S175...
Continuous performance test assessed with time-domain functional near infrared spectroscopy
Torricelli, Alessandro; Contini, Davide; Spinelli, Lorenzo; Caffini, Matteo; Butti, Michele; Baselli, Giuseppe; Bianchi, Anna M.; Bardoni, Alessandra; Cerutti, Sergio; Cubeddu, Rinaldo
2007-07-01
A time-domain fNIRS multichannel system was used in a sustained attention protocol (continuous performance test) to study activation of the prefrontal cortex. Preliminary results on volounteers show significant activation (decrease in deoxy-hemoglobin and increase in oxy-hemoglobin) in both left and right prefrontal cortex.
On-chip Brownian relaxation measurements of magnetic nanobeads in the time domain
DEFF Research Database (Denmark)
Østerberg, Frederik Westergaard; Rizzi, Giovanni; Hansen, Mikkel Fougt
2013-01-01
the time and frequency domain methods on Brownian relaxation detection of clustering of streptavidin coated magnetic beads in the presence of different concentrations of biotin-conjugated bovine serum albumin and obtain comparable results. In the time domain, a measurement is carried out in less than 30 s...
Broadband time domain acoustic holography based on the discrete orthonormal S-transform
Zhou, H.; Lopez Arteaga, I.; Nijmeijer, H.; Lim, Kian Meng
2015-01-01
The purpose of this paper is to deal with the problem of nonstationary broadband sound fields more efficiently. A basis function of the discrete orthonormal S-transform (DOST) is used to analyze the measured signal. With respect to the time domain signal in a certain band, DOST leads to a
Although empirical models have been developed previously, a mechanistic model is needed for estimating electrical conductivity (EC) using time domain reflectometry (TDR) with variable lengths of coaxial cable. The goals of this study are to: (1) derive a mechanistic model based on multisection tra...
Time-domain modeling of electromagnetic diffusion with a frequency-domain code
Mulder, W.A.; Wirianto, M.; Slob, E.C.
2007-01-01
We modeled time-domain EM measurements of induction currents for marine and land applications with a frequency-domain code. An analysis of the computational complexity of a number of numerical methods shows that frequency-domain modeling followed by a Fourier transform is an attractive choice if a
Quantitative terahertz time-domain spectroscopy and analysis in chemistry and biology
DEFF Research Database (Denmark)
Jepsen, Peter Uhd
2005-01-01
I will describe how Terahertz Time-Domain Spectroscopy (THz-TDS) can be used for quantitative, broadband spectroscopy in the far-infrared spectral region. Thz-TDS is sensitive to long-range, non-covalent interactions in the condensed phase, for instance intermolecular hydrogen bonding in molecula...
DEFF Research Database (Denmark)
Hu, Hao; Kong, Deming; Palushani, Evarist
2013-01-01
We demonstrate transmission of a 1.28-Tbaud Nyquist-OTDM signal over a record distance of 100 km with detection by time-domain optical Fourier transformation followed by FEC decoding, resulting in error-free performance for all tributaries....
320 Gb/s Nyquist OTDM received by polarization-insensitive time-domain OFT
DEFF Research Database (Denmark)
Hu, Hao; Kong, Deming; Palushani, Evarist
2014-01-01
We have demonstrated the generation of a 320 Gb/s Nyquist-OTDM signal by rectangular filtering on an RZ-OTDM signal with the filter bandwidth (320 GHz) equal to the baud rate (320 Gbaud) and the reception of such a Nyquist-OTDM signal using polarization-insensitive time-domain optical Fourier tra...
Fra Angelico’s painting technique revealed by terahertz time-domain imaging (THz-TDI)
DEFF Research Database (Denmark)
Dandolo, Corinna Ludovica Koch; Picollo, Marcello; Cucci, Costanza
2016-01-01
We have investigated with terahertz time-domain imaging (THz-TDI) the well-known Lamentation over the dead Christ panel painting (San Marco Museum, Florence) painted by Fra Giovanni Angelico within 1436 and 1441. The investigation provided a better understanding of the construction and gilding te...
OpenPSTD : The open source pseudospectral time-domain method for acoustic propagation
Hornikx, M.C.J.; Krijnen, T.F.; van Harten, L.
2016-01-01
An open source implementation of the Fourier pseudospectral time-domain (PSTD) method for computing the propagation of sound is presented, which is geared towards applications in the built environment. Being a wave-based method, PSTD captures phenomena like diffraction, but maintains efficiency in
International Nuclear Information System (INIS)
Khorasani, A.; Mousavi Shalmani, M. A.; Piervali Bieranvand, N.
2011-01-01
An accurate, precise, fast and ease as well as the ability for measurements in depth are the characteristics that are desirable in measuring soil moisture methods. To compare methods (time domain reflectometry and capacitance) with neutron scattering for soil water monitoring, an experiment was carried out in a randomized complete block design (Split Split plot) on tomato with three replications on the experimental field of International Atomic Energy Agency (Seibersdorf-Austria). The treatment instruments for the soil moisture monitoring (main factor) consist of neutron gauge, Diviner 2000, time domain reflectometer and an EnviroScan and different irrigation systems (first sub factor) consist of trickle and furrow irrigations and different depths of soil (second sub factor) consist of 0-20, 20-40 and 40-60 cm. The results showed that for the neutron gauge and time domain reflectometer the amount of soil moisture in both of trickle and furrow irrigations were the same, but the significant differences were recorded in Diviner 2000 and EnviroScan measurements. The results of this study showed that the neutron gauge is an acceptable and reliable means with the modern technology, with a precision of ±2 mm in 450 mm soil water to a depth of 1.5 meter and can be considered as the most practical method for measuring soil moisture profiles and irrigation planning program. The time domain reflectometer method in most mineral soils, without the need for calibration, with an accuracy ±0.01m 3 m -3 has a good performance in soil moisture and electrical conductivity measurements. The Diviner 2000 and EnviroScan are not well suitable for the above conditions for several reasons such as much higher soil moisture and a large error measurement and also its sensitivity to the soil gap and to the small change in the soil moisture in comparison with the neutron gauge and the time domain reflectometer methods.
International Nuclear Information System (INIS)
Ford, Patrick J.; Beeson, Sterling R.; Krompholz, Hermann G.; Neuber, Andreas A.
2012-01-01
A finite-difference algorithm was developed to calculate several RF breakdown parameters, for example, the formative delay time that is observed between the initial application of a RF field to a dielectric surface and the formation of field-induced plasma interrupting the RF power flow. The analysis is focused on the surface being exposed to a background gas pressure above 50 Torr. The finite-difference algorithm provides numerical solutions to partial differential equations with high resolution in the time domain, making it suitable for simulating the time evolving interaction of microwaves with plasma; in lieu of direct particle tracking, a macroscopic electron density is used to model growth and transport. This approach is presented as an alternative to particle-in-cell methods due to its low complexity and runtime leading to more efficient analysis for a simulation of a microsecond scale pulse. The effect and development of the plasma is modeled in the simulation using scaling laws for ionization rates, momentum transfer collision rates, and diffusion coefficients, as a function of electric field, gas type and pressure. The incorporation of plasma material into the simulation involves using the Z-transform to derive a time-domain algorithm from the complex frequency-dependent permittivity of plasma. Therefore, the effect of the developing plasma on the instantaneous microwave field is calculated. Simulation results are compared with power measurements using an apparatus designed to facilitate surface flashover across a polycarbonate boundary in a controlled N 2 , air, or argon environment at pressures exceeding 50 Torr.
Plasmonic Resonances for Spectroscopy Applications using 3D Finite-Difference Time-Domain Models
Ravi, Aruna
Tuning plasmonic extinction resonances of sub-wavelength scale structures is essential to achieve maximum sensitivity and accuracy. These resonances can be controlled with careful design of nanoparticle geometries and incident wave attributes. In the first part of this dissertation, plasmonically enhanced effects on hexagonal-arrays of metal nanoparticles, metal-hole arrays (micro-mesh), and linear-arrays of metal nanorings are analyzed using three-dimensional Finite-Difference Time-Domain (3D-FDTD) simulations. The effect of particle size, lattice spacing, and lack of monodispersity of a self-assembled, hexagonal array layer of silver (Ag) nanoparticles on the extinction resonance is investigated to help determine optimal design specifications for efficient organic solar power harvesting. The enhancement of transmission resonances using plasmonic thin metal films with arrays of holes which enable recording of scatter-free infrared (IR) transmission spectra of individual particles is also explored. This method is quantitative, non-destructive and helps in better understanding the interaction of light with sub-wavelength particles. Next, plasmonically enhanced effects on linear arrays of gold (Au) rings are studied. Simulations employing 3D-FDTD can be used to determine the set of geometrical parameters to attain localized surface plasmon resonance (LSPR). The shifts in resonances due to changes in the effective dielectric of the structure are investigated, which is useful in sensing applications. Computational models enrich experimental studies. In the second part of this dissertation, the effect of particle size, shape and orientation on the IR spectra is investigated using 3D-FDTD and Mie-Bruggeman models. This computational analysis is extended to include clusters of particles of mixed composition. The prediction of extinction and absorption spectra of single particles of mixed composition helps in interpreting their physical properties and predict chemical
Directory of Open Access Journals (Sweden)
S. Hasegawa
1997-01-01
Full Text Available Time domain reflectometry (TDR was used to monitor soil water conditions and to evaluate infiltration characteristics associated with rainfall into a volcanic-ash soil (Hydric Hapludand with a low bulk density. Four 1 m TDR probes were installed vertically along a 6 m line in a bare field. Three 30 cm and one 60 cm probes were installed between the 1 m probes. Soil water content was measured every half or every hour throughout the year. TDR enabled prediction of the soil water content precisely even though the empirical equation developed by Topp et al. (1980 underestimated the water content. Field capacity, defined as the amount of water stored to a depth of 1 m on the day following heavy rainfall, was 640 mm. There was approximately 100 mm difference in the amount of water stored between field capacity and the driest period. Infiltration characteristics of rainfall were investigated for 36 rainfall events exceeding 10 mm with a total amount of rain of 969 mm out of an annual rainfall of 1192 mm. In the case of 25 low intensity rainfall events with less than 10 mm h-1 on to dry soils, the increase in the amount of water stored to a depth of 1 m was equal to the cumulative rainfall. For rain intensity in excess of 10 mm h-1, non-uniform infiltration occurred. The increase in the amount of water stored at lower elevation locations was 1.4 to 1.6 times larger than at higher elevation locations even though the difference in ground height among the 1 m probes was 6 cm. In the two instances when rainfall exceeded 100 mm, including the amount of rain in a previous rainfall event, the increase in the amount of water stored to a depth of 1 m was 65 mm lower than the total quantity of rain on the two occasions (220 mm; this indicated that 65 mm of water or 5.5% of the annual rainfall had flowed away either by surface runoff or bypass flow. Hence, approximately 95% of the annual rainfall was absorbed by the soil matrix but it is not possible to simulate
Mapping the lithotypes using the in-situ measurement of time domain induced polarization: El-log
DEFF Research Database (Denmark)
Auken, Esben; Fiandaca, Gianluca; Christiansen, Anders Vest
This study presents a novel application of the El-log-drilling technique for measurement while drilling of the DC, time domain IP and gamma log. In addition pore water samples can be taken at arbitrary levels. The technique itself is developed in Denmark and has been widely used in the field...... of ground water and environmental studies. The El-log drilling method yields detailed information on small changes in lithology, sediment chemistry and water quality and with data comparable to what can be obtained in the laboratory. . We collected the data at a landfill site located near Grindsted...... in the southern part of Denmark. The purpose of the study was 1) to obtain a direct correlation between the undisturbed geophysical logs and surface measurements, 2) correlation of IP parameters to lithology and grain size distribution and 3) to investigate any correlation with effluent and IP parameters. We...
International Nuclear Information System (INIS)
Lu Jia; Zhou Huaichun
2016-01-01
To deal with the staircase approximation problem in the standard finite-difference time-domain (FDTD) simulation, the two-dimensional boundary condition equations (BCE) method is proposed in this paper. In the BCE method, the standard FDTD algorithm can be used as usual, and the curved surface is treated by adding the boundary condition equations. Thus, while maintaining the simplicity and computational efficiency of the standard FDTD algorithm, the BCE method can solve the staircase approximation problem. The BCE method is validated by analyzing near field and far field scattering properties of the PEC and dielectric cylinders. The results show that the BCE method can maintain a second-order accuracy by eliminating the staircase approximation errors. Moreover, the results of the BCE method show good accuracy for cylinder scattering cases with different permittivities. (paper)
International Nuclear Information System (INIS)
Yang, Zhen; Liu, Yan; Lei, Chong; Sun, Xue-cheng; Zhou, Yong
2016-01-01
We report on a method for ultrasensitive detection and quantification of the pathogen Escherichia coli (E. coli), type O157:H7. It is using a tortuous-shaped giant magneto impedance (GMI) sensor in combination with an open-surface micro fluidic system coated with a gold film for performing the sandwich immuno binding on its surface. Streptavidin-coated super magnetic Dynabeads were loaded with biotinylated polyclonal antibody to capture E. coli O157:H7. The E. coli-loaded Dynabeads are then injected into the microfluidics system where it comes into contact with the surface of gold nanofilm carrying the monoclonal antibody to form the immuno complex. As a result, the GMI ratio is strongly reduced at high frequencies if E. coli O157:H7 is present. The sensor has a linear response in the 50 to 500 cfu·mL"−"1 concentration range, and the detection limit is 50 cfu·mL"−"1 at a working frequency of 2.2 MHz. In our perception, this method provides a valuable tool for developing GMI-based micro fluidic sensors systems for ultrasensitive and quantitative analysis of pathogenic bacteria. The method may also be extended to other sensing applications by employing respective immuno reagents. (author)
International Nuclear Information System (INIS)
Hao Yun-Qi; Ye Qing; Pan Zheng-Qing; Cai Hai-Wen; Qu Rong-Hui
2014-01-01
The digital coherent detection technique has been investigated without any frequency-scanning device in the Brillouin optical time domain reflectometry (BOTDR), where the simplex pulse codes are applied in the sensing system. The time domain signal of every code sequence is collected by the data acquisition card (DAQ). A shift-averaging technique is applied in the frequency domain for the reason that the local oscillator (LO) in the coherent detection is fix-frequency deviated from the primary source. With the 31-bit simplex code, the signal-to-noise ratio (SNR) has 3.5-dB enhancement with the same single pulse traces, accordant with the theoretical analysis. The frequency fluctuation for simplex codes is 14.01 MHz less than that for a single pulse as to 4-m spatial resolution. The results are believed to be beneficial for the BOTDR performance improvement. (general)
Zaghloul, Mohamed A S; Wang, Mohan; Milione, Giovanni; Li, Ming-Jun; Li, Shenping; Huang, Yue-Kai; Wang, Ting; Chen, Kevin P
2018-04-12
Brillouin optical time domain analysis is the sensing of temperature and strain changes along an optical fiber by measuring the frequency shift changes of Brillouin backscattering. Because frequency shift changes are a linear combination of temperature and strain changes, their discrimination is a challenge. Here, a multicore optical fiber that has two cores is fabricated. The differences between the cores' temperature and strain coefficients are such that temperature (strain) changes can be discriminated with error amplification factors of 4.57 °C/MHz (69.11 μ ϵ /MHz), which is 2.63 (3.67) times lower than previously demonstrated. As proof of principle, using the multicore optical fiber and a commercial Brillouin optical time domain analyzer, the temperature (strain) changes of a thermally expanding metal cylinder are discriminated with an error of 0.24% (3.7%).
Nonlinear behavior in the time domain in argon atmospheric dielectric-barrier discharges
International Nuclear Information System (INIS)
Shi Hong; Wang Yanhui; Wang Dezhen
2008-01-01
A vast majority of nonlinear behavior in atmospheric pressure discharges has so far been studied in the space domain, and their time-domain characters are often believed to exact the periodicity of the externally applied voltage. In this paper, based on one-dimensional fluid mode, we study complex nonlinear behavior in the time domain in argon atmospheric dielectric-barrier discharges at very broad frequency range from kilohertz to megahertz. Under certain conditions, the discharge not only can be driven to chaos from time-periodic state through period-doubling bifurcation, but also can return stable periodic motion from chaotic state through an inverse period-doubling bifurcation sequence. Upon changing the parameter the discharge undergoes alternatively chaotic and periodic behavior. Some periodic windows embedded in chaos, as well as the secondary bifurcation occurring in the periodic windows can also be observed. The corresponding discharge characteristics are investigated.
Li, Ping
2014-07-01
This paper presents an algorithm hybridizing discontinuous Galerkin time domain (DGTD) method and time domain boundary integral (BI) algorithm for 3-D open region electromagnetic scattering analysis. The computational domain of DGTD is rigorously truncated by analytically evaluating the incoming numerical flux from the outside of the truncation boundary through BI method based on the Huygens\\' principle. The advantages of the proposed method are that it allows the truncation boundary to be conformal to arbitrary (convex/ concave) scattering objects, well-separated scatters can be truncated by their local meshes without losing the physics (such as coupling/multiple scattering) of the problem, thus reducing the total mesh elements. Furthermore, low frequency waves can be efficiently absorbed, and the field outside the truncation domain can be conveniently calculated using the same BI formulation. Numerical examples are benchmarked to demonstrate the accuracy and versatility of the proposed method.
Multichannel Signal Enhancement using Non-Causal, Time-Domain Filters
DEFF Research Database (Denmark)
Jensen, Jesper Rindom; Christensen, Mads Græsbøll; Benesty, Jacob
2013-01-01
In the vast amount of time-domain filtering methods for speech enhancement, the filters are designed to be causal. Recently, however, it was shown that the noise reduction and signal distortion capabilities of such single-channel filters can be improved by allowing the filters to be non-causal. W......In the vast amount of time-domain filtering methods for speech enhancement, the filters are designed to be causal. Recently, however, it was shown that the noise reduction and signal distortion capabilities of such single-channel filters can be improved by allowing the filters to be non......-causal, multichannel filters for enhancement based on an orthogonal decomposition is proposed. The evaluation shows that there is a potential gain in noise reduction and signal distortion by introducing non-causality. Moreover, experiments on real-life speech show that we can improve the perceptual quality....
International Nuclear Information System (INIS)
Jamali, J.; Aghajafari, R.; Moini, R.; Sadeghi, H.
2002-01-01
A time-domain approach is presented to calculate electromagnetic fields inside a large Electromagnetic Pulse (EMP) simulator. This type of EMP simulator is used for studying the effect of electromagnetic pulses on electrical apparatus in various structures such as vehicles, a reoplanes, etc. The simulator consists of three planar transmission lines. To solve the problem, we first model the metallic structure of the simulator as a grid of conducting wires. The numerical solution of the governing electric field integral equation is then obtained using the method of moments in time domain. To demonstrate the accuracy of the model, we consider a typical EMP simulator. The comparison of our results with those obtained experimentally in the literature validates the model introduced in this paper
Directory of Open Access Journals (Sweden)
Mohamed A. S. Zaghloul
2018-04-01
Full Text Available Brillouin optical time domain analysis is the sensing of temperature and strain changes along an optical fiber by measuring the frequency shift changes of Brillouin backscattering. Because frequency shift changes are a linear combination of temperature and strain changes, their discrimination is a challenge. Here, a multicore optical fiber that has two cores is fabricated. The differences between the cores’ temperature and strain coefficients are such that temperature (strain changes can be discriminated with error amplification factors of 4.57 °C/MHz (69.11 μ ϵ /MHz, which is 2.63 (3.67 times lower than previously demonstrated. As proof of principle, using the multicore optical fiber and a commercial Brillouin optical time domain analyzer, the temperature (strain changes of a thermally expanding metal cylinder are discriminated with an error of 0.24% (3.7%.
Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics
DEFF Research Database (Denmark)
D’Angelo, Francesco; Mics, Zoltán; Bonn, Mischa
2014-01-01
-domain spectrometer employing air-photonics for the generation and detection of single-cycle sub-50 fs THz transients. The time domain measurements provide direct access to both the absorption and refractive index spectra. The polymers LDPE and TOPAS® demonstrate negligible absorption and spectrally-flat refractive...... index across the entire spectroscopy window, revealing the high potential of these polymers for applications in THz photonics such as ultra-broadband polymer-based dielectric mirrors, waveguides, and fibers. Resonant high-frequency polar vibrational modes are observed and assigned in polymers PA6...... and PTFE, and their dielectric functions in the complete frequency window 2-15 THz are theoretically reproduced. Our results demonstrate the potential of ultrabroadband air-photonics-based THz time domain spectroscopy as a valuable analytic tool for materials science....
Layered and Laterally Constrained 2D Inversion of Time Domain Induced Polarization Data
DEFF Research Database (Denmark)
Fiandaca, Gianluca; Ramm, James; Auken, Esben
description of the transmitter waveform and of the receiver transfer function allowing for a quantitative interpretation of the parameters. The code has been optimized for parallel computation and the inversion time is comparable to codes inverting just for direct current resistivity. The new inversion......In a sedimentary environment, quasi-layered models often represent the actual geology more accurately than smooth minimum-structure models. We have developed a new layered and laterally constrained inversion algorithm for time domain induced polarization data. The algorithm is based on the time...... transform of a complex resistivity forward response and the inversion extracts the spectral information of the time domain measures in terms of the Cole-Cole parameters. The developed forward code and inversion algorithm use the full time decay of the induced polarization response, together with an accurate...
Efficient reconstruction of dispersive dielectric profiles using time domain reflectometry (TDR
Directory of Open Access Journals (Sweden)
P. Leidenberger
2006-01-01
Full Text Available We present a numerical model for time domain reflectometry (TDR signal propagation in dispersive dielectric materials. The numerical probe model is terminated with a parallel circuit, consisting of an ohmic resistor and an ideal capacitance. We derive analytical approximations for the capacitance, the inductance and the conductance of three-wire probes. We couple the time domain model with global optimization in order to reconstruct water content profiles from TDR traces. For efficiently solving the inverse problem we use genetic algorithms combined with a hierarchical parameterization. We investigate the performance of the method by reconstructing synthetically generated profiles. The algorithm is then applied to retrieve dielectric profiles from TDR traces measured in the field. We succeed in reconstructing dielectric and ohmic profiles where conventional methods, based on travel time extraction, fail.
International Nuclear Information System (INIS)
Chen, Xiang; Chen, Yong Guang; Wei, Ming; Hu, Xiao Feng
2013-01-01
Shielding effectiveness (SE) of materials against electromagnetic pulse (EMP) cannot be well estimated by traditional test method of SE of materials which only consider the amplitude-frequency characteristic of materials, but ignore the phase-frequency ones. In order to solve this problem, the model of SE of materials against EMP was established based on system identification (SI) method with time-domain linear cosine frequency sweep signal. The feasibility of the method in this paper was examined depending on infinite planar material and the simulation research of coaxial test method and windowed semi-anechoic box of materials. The results show that the amplitude-frequency and phase-frequency information of each frequency can be fully extracted with this method. SE of materials against strong EMP can be evaluated with time-domain low field strength (voltage) of cosine frequency sweep signal. And SE of materials against a variety EMP will be predicted by the model.
Numerical modeling of time domain 3-D problems in accelerator physics
International Nuclear Information System (INIS)
Harfoush, F.A.; Jurgens, T.G.
1990-06-01
Time domain analysis is relevant in particle accelerators to study the electromagnetic field interaction of a moving source particle on a lagging test particle as the particles pass an accelerating cavity or some other structure. These fields are called wake fields. The travelling beam inside a beam pipe may undergo more complicated interactions with its environment due to the presence of other irregularities like wires, thin slots, joints and other types of obstacles. Analytical solutions of such problems is impossible and one has to resort to a numerical method. In this paper we present results of our first attempt to model these problems in 3-D using our finite difference time domain (FDTD) code. 10 refs., 9 figs
Finite-difference time-domain simulation of thermal noise in open cavities
International Nuclear Information System (INIS)
Andreasen, Jonathan; Cao Hui; Taflove, Allen; Kumar, Prem; Cao Changqi
2008-01-01
A numerical model based on the finite-difference time-domain (FDTD) method is developed to simulate thermal noise in open cavities owing to output coupling. The absorbing boundary of the FDTD grid is treated as a blackbody, whose thermal radiation penetrates the cavity in the grid. The calculated amount of thermal noise in a one-dimensional dielectric cavity recovers the standard result of the quantum Langevin equation in the Markovian regime. Our FDTD simulation also demonstrates that in the non-Markovian regime the buildup of the intracavity noise field depends on the ratio of the cavity photon lifetime to the coherence time of thermal radiation. The advantage of our numerical method is that the thermal noise is introduced in the time domain without prior knowledge of cavity modes
Fault Detection of Aircraft Cable via Spread Spectrum Time Domain Reflectometry
Directory of Open Access Journals (Sweden)
Xudong SHI
2014-03-01
Full Text Available As the airplane cable fault detection based on TDR (time domain reflectometry is affected easily by various noise signals, which makes the reflected signal attenuate and distort heavily, failing to locate the fault. In order to solve these problems, a method of spread spectrum time domain reflectometry (SSTDR is introduced in this paper, taking the advantage of the sharp peak of correlation function. The test signal is generated from ML sequence (MLS modulated by sine wave in the same frequency. Theoretically, the test signal has the very high immunity of noise, which can be applied with excellent precision to fault location on the aircraft cable. In this paper, the method of SSTDR was normally simulated in MATLAB. Then, an experimental setup, based on LabVIEW, was organized to detect and locate the fault on the aircraft cable. It has been demonstrated that SSTDR has the high immunity of noise, reducing some detection errors effectively.
International Nuclear Information System (INIS)
Hu, Xiao-feng; Chen, Xiang; Wei, Ming
2013-01-01
Shielding effectiveness (SE) of materials of current testing standards is often carried out by using continuous-wave measurement and amplitude-frequency characteristics curve is used to characterize the results. However, with in-depth study of high-power electromagnetic pulse (EMP) interference, it was discovered that only by frequency-domain SE of materials cannot be completely characterized by shielding performance of time-domain pulsed-field. And there is no uniform testing methods and standards of SE of materials against EMP. In this paper, the method of minimum phase transfer function is used to reconstruct shielded time-domain waveform based on the analysis of the waveform reconstruction method. Pulse of plane waves through an infinite planar material is simulated by using CST simulation software. The reconstructed waveform and simulation waveform is compared. The results show that the waveform reconstruction method based on the minimum phase can be well estimated EMP waveform through the infinite planar materials.
Quasi-exact evaluation of time domain MFIE MOT matrix elements
Shi, Yifei
2013-07-01
A previously proposed quasi-exact scheme for evaluating matrix elements resulting from the marching-on-in-time (MOT) discretization of the time domain electric field integral equation (EFIE) is extended to matrix entries resulting from the discretization of its magnetic field integral equation (MFIE) counterpart. Numerical results demonstrate the accuracy of the scheme as well as the late-time stability of the resulting MOT-MFIE solver. © 2013 IEEE.
Mini Tensiometer-Time Domain Reflectometry Coil Probe for Measuring Soil Water Retention Properties
DEFF Research Database (Denmark)
Subedi, Shaphal; Kawamoto, Ken; Karunarathna, Anurudda Kumara
2013-01-01
Time domain reflectometry (TDR) is used widely for measuring soil-water content. New TDR coil probe technology facilitates the development of small, nondestructive probes for simultaneous measurement of soil-water content (θ) and soil-water potential (ψ). In this study we developed mini tensiomet...... between measured soil-water retention curves (ψ > –100 cm H2O) by the new T-TDR coil probes and independent measurements by the hanging water column method....
DEFF Research Database (Denmark)
Mackenzie, David M.A.; Whelan, Patrick Rebsdorf; Bøggild, Peter
2018-01-01
We present a comparative study of electrical measurements of graphene using terahertz time-domain spectroscopy in transmission and reflection mode, and compare the measured sheet conductivity values to electrical van der Pauw measurements made independently in three different laboratories. Overall......, while offering the additional advantages associated with contactless mapping, such as high throughput, no lithography requirement, and with the spatial mapping directly revealing the presence of any inhomogeneities or isolating defects. The confirmation of the accuracy of reflection-mode removes...
Ulku, Huseyin Arda; Bagci, Hakan; Michielssen, Eric
2012-01-01
An explicit yet stable marching-on-in-time (MOT) scheme for solving the time domain magnetic field integral equation (TD-MFIE) is presented. The stability of the explicit scheme is achieved via (i) accurate evaluation of the MOT matrix elements using closed form expressions and (ii) a PE(CE) m type linear multistep method for time marching. Numerical results demonstrate the accuracy and stability of the proposed explicit MOT-TD-MFIE solver. © 2012 IEEE.
Results of time-domain electromagnetic soundings in Everglades National Park, Florida
Fitterman, D.V.; Deszcz-Pan, Maria; Stoddard, C.E.
1999-01-01
This report describes the collection, processing, and interpretation of time-domain electromagnetic soundings from Everglades National Park. The results are used to locate the extent of seawater intrusion in the Biscayne aquifer and to map the base of the Biscayne aquifer in regions where well coverage is sparse. The data show no evidence of fresh, ground-water flows at depth into Florida Bay.
Quasi-exact evaluation of time domain MFIE MOT matrix elements
Shi, Yifei; Bagci, Hakan; Shanker, Balasubramaniam; Lu, Mingyu; Michielssen, Eric
2013-01-01
A previously proposed quasi-exact scheme for evaluating matrix elements resulting from the marching-on-in-time (MOT) discretization of the time domain electric field integral equation (EFIE) is extended to matrix entries resulting from the discretization of its magnetic field integral equation (MFIE) counterpart. Numerical results demonstrate the accuracy of the scheme as well as the late-time stability of the resulting MOT-MFIE solver. © 2013 IEEE.
Thermal Loss of High-Q Antennas in Time Domain vs. Frequency Domain Solver
DEFF Research Database (Denmark)
Bahramzy, Pevand; Pedersen, Gert Frølund
2014-01-01
High-Q structures pose great challenges to their loss simulations in Time Domain Solvers (TDS). Therefore, in this work the thermal loss of high-Q antennas is calculated both in TDS and Frequency Domain Solver (FDS), which are then compared with each other and with the actual measurements....... The thermal loss calculation in FDS is shown to be more accurate for high-Q antennas....
Fast and non-destructive pore structure analysis using terahertz time-domain spectroscopy.
Markl, Daniel; Bawuah, Prince; Ridgway, Cathy; van den Ban, Sander; Goodwin, Daniel J; Ketolainen, Jarkko; Gane, Patrick; Peiponen, Kai-Erik; Zeitler, Jochen Axel
2018-01-01
Pharmaceutical tablets are typically manufactured by the uni-axial compaction of powder that is confined radially by a rigid die. The directional nature of the compaction process yields not only anisotropic mechanical properties (e.g. tensile strength) but also directional properties of the pore structure in the porous compact. This study derives a new quantitative parameter, $S_a$, to describe the anisotropy in pore structure of pharmaceutical tablets based on terahertz time-domain spectrosc...
Gabran, S R I; Saad, J H; Salama, M M A; Mansour, R R
2009-01-01
This paper demonstrates the electromagnetic modeling and simulation of an implanted Medtronic deep brain stimulation (DBS) electrode using finite difference time domain (FDTD). The model is developed using Empire XCcel and represents the electrode surrounded with brain tissue assuming homogenous and isotropic medium. The model is created to study the parameters influencing the electric field distribution within the tissue in order to provide reference and benchmarking data for DBS and intra-cortical electrode development.
Angular Random Walk Estimation of a Time-Domain Switching Micromachined Gyroscope
2016-10-19
angular random walk (ARW), bias instability, and scale factor instability. While there are methods to address issues with bias and scale factor...effects. Thus, it is expected that it will have low bias and scale factor instabilities. Simulated ARW performance of a particular incarnation of the...1 2. PARAMETRIC SYSTEM IDENTIFICATION BASED ON TIME-DOMAIN SWITCHING ........ 2 3. FINITE ELEMENT MODELING OF RESONATOR
Concept of an ionizing time-domain matter-wave interferometer
Nimmrichter, Stefan; Haslinger, Philipp; Hornberger, Klaus; Arndt, Markus
2011-01-01
We discuss the concept of an all-optical and ionizing matter-wave interferometer in the time domain. The proposed setup aims at testing the wave nature of highly massive clusters and molecules, and it will enable new precision experiments with a broad class of atoms, using the same laser system. The propagating particles are illuminated by three pulses of a standing ultraviolet laser beam, which detaches an electron via efficient single photon-absorption. Optical gratings may have periods as ...
Ulku, Huseyin Arda
2012-09-01
An explicit yet stable marching-on-in-time (MOT) scheme for solving the time domain magnetic field integral equation (TD-MFIE) is presented. The stability of the explicit scheme is achieved via (i) accurate evaluation of the MOT matrix elements using closed form expressions and (ii) a PE(CE) m type linear multistep method for time marching. Numerical results demonstrate the accuracy and stability of the proposed explicit MOT-TD-MFIE solver. © 2012 IEEE.
Reduced order for nuclear reactor model in frequency and time domain
International Nuclear Information System (INIS)
Nugroho, D.H.
1997-01-01
In control system theory, a model can be represented by frequency or time domain. In frequency domain, the model was represented by transfer function. in time domain, the model was represented by state space. for the sake of simplification in computation, it is necessary to reduce the model order. the main aim of this research is to find the best in nuclear reactor model. Model order reduction in frequency domain can be done utilizing pole-zero cancellation method; while in time domain utilizing balanced aggregation method the balanced aggregation method was developed by moore (1981). In this paper, the two kinds of method were applied to reduce a nuclear reactor model which was constructed by neutron dynamics and heat transfer equations. to validate that the model characteristics were not change when model order reduction applied, the response was utilized for full and reduced order. it was shown that the nuclear reactor order model can be reduced from order 8 to 2 order 2 is the best order for nuclear reactor model
Electroporation-Induced Cell Modifications Detected with THz Time-Domain Spectroscopy
Romeo, Stefania; Vernier, P. Thomas; Zeni, Olga
2018-04-01
Electroporation (electropermeabilization) increases the electrical conductivity of biological cell membranes and lowers transport barriers for normally impermeant materials. Molecular simulations suggest that electroporation begins with the reorganization of water and lipid head group dipoles in the phospholipid bilayer interface, driven by an externally applied electric field, and the evolution of the resulting defects into water-filled, lipid pores. The interior of the electroporated membrane thus contains water, which should provide a signature for detection of the electropermeabilized state. In this feasibility study, we use THz time-domain spectroscopy, a powerful tool for investigating biomolecular systems and their interactions with water, to detect electroporation in human cells subjected to permeabilizing pulsed electric fields (PEFs). The time-domain response of electroporated human monocytes was acquired with a commercial THz, time-domain spectrometer. For each sample, frequency spectra were calculated, and the absorption coefficient and refractive index were extracted in the frequency range between 0.2 and 1.5 THz. This analysis reveals a higher absorption of THz radiation by PEF-exposed cells, with respect to sham-exposed ones, consistent with the intrusion of water into the cell through the permeabilized membrane that is presumed to be associated with electroporation.
Dancing with the Electrons: Time-Domain and CW In Vivo EPR Imaging
Directory of Open Access Journals (Sweden)
Murali C. Krishna
2008-01-01
Full Text Available The progress in the development of imaging the distribution of unpaired electrons in living systems and the functional and the potential diagnostic dimensions of such an imaging process, using Electron Paramagnetic Resonance Imaging (EPRI, is traced from its origins with emphasis on our own work. The importance of EPR imaging stems from the fact that many paramagnetic probes show oxygen dependent spectral broadening. Assessment of in vivo oxygen concentration is an important factor in radiation oncology in treatment-planning and monitoring treatment-outcome. The emergence of narrow-line trairylmethyl based, bio-compatible spin probes has enabled the development of radiofrequency time-domain EPRI. Spectral information in time-domain EPRI can be achieved by generating a time sequence of T2* or T2 weighted images. Progress in CW imaging has led to the use of rotating gradients, more recently rapid scan with direct detection, and a combination of all the three. Very low field MRI employing Dynamic Nuclear polarization (Overhauser effect is also employed for monitoring tumor hypoxia, and re-oxygenation in vivo. We have also been working on the co-registration of MRI and time domain EPRI on mouse tumor models at 300 MHz using a specially designed resonator assembly. The mapping of the unpaired electron distribution and unraveling the spectral characteristics by using magnetic resonance in presence of stationary and rotating gradients in indeed ‘dancing with the (unpaired electrons’, metaphorically speaking.
Inversion of time-domain induced polarization data based on time-lapse concept
Kim, Bitnarae; Nam, Myung Jin; Kim, Hee Joon
2018-05-01
Induced polarization (IP) surveys, measuring overvoltage phenomena of the medium, are widely and increasingly performed not only for exploration of mineral resources but also for engineering applications. Among several IP survey methods such as time-domain, frequency-domain and spectral IP surveys, this study introduces a noble inversion method for time-domain IP data to recover the chargeability structure of target medium. The inversion method employs the concept of 4D inversion of time-lapse resistivity data sets, considering the fact that measured voltage in time-domain IP survey is distorted by IP effects to increase from the instantaneous voltage measured at the moment the source current injection starts. Even though the increase is saturated very fast, we can consider the saturated and instantaneous voltages as a time-lapse data set. The 4D inversion method is one of the most powerful method for inverting time-lapse resistivity data sets. Using the developed IP inversion algorithm, we invert not only synthetic but also field IP data to show the effectiveness of the proposed method by comparing the recovered chargeability models with those from linear inversion that was used for the inversion of the field data in a previous study. Numerical results confirm that the proposed inversion method generates reliable chargeability models even though the anomalous bodies have large IP effects.
Valdés, Felipe
2013-03-01
Single-source time-domain electric-and magnetic-field integral equations for analyzing scattering from homogeneous penetrable objects are presented. Their temporal discretization is effected by using shifted piecewise polynomial temporal basis functions and a collocation testing procedure, thus allowing for a marching-on-in-time (MOT) solution scheme. Unlike dual-source formulations, single-source equations involve space-time domain operator products, for which spatial discretization techniques developed for standalone operators do not apply. Here, the spatial discretization of the single-source time-domain integral equations is achieved by using the high-order divergence-conforming basis functions developed by Graglia alongside the high-order divergence-and quasi curl-conforming (DQCC) basis functions of Valdés The combination of these two sets allows for a well-conditioned mapping from div-to curl-conforming function spaces that fully respects the space-mapping properties of the space-time operators involved. Numerical results corroborate the fact that the proposed procedure guarantees accuracy and stability of the MOT scheme. © 2012 IEEE.
Dancing with the Electrons: Time-Domain and CW EPR Imaging
Directory of Open Access Journals (Sweden)
Sankaran Subramanian
2008-01-01
Full Text Available The progress in the development of imaging the distribution of unpaired electrons in living systems and the functional and the potential diagnostic dimensions of such an imaging process, using Electron Paramagnetic Resonance Imaging (EPRI, is traced from its origins with emphasis on our own work. The importance of EPR imaging stems from the fact that many paramagnetic probes show oxygen dependent spectral broadening. Assessment of in vivo oxygen concentration is an important factor in radiation oncology in treatment-planning and monitoring treatment-outcome. The emergence of narrow-line trairylmethyl based, bio-compatible spin probes has enabled the development of radiofrequency time-domain EPRI. Spectral information in time-domain EPRI can be achieved by generating a time sequence of T 2 * or T 2 weighted images. Progress in CW imaging has led to the use of rotating gradients, more recently rapid scan with direct detection, and a combination of all the three. Very low field MRI employing Dynamic Nuclear polarization (Overhauser effect is also employed for monitoring tumor hypoxia, and re-oxygenation in vivo . We have also been working on the co-registration of MRI and time domain EPRI on mouse tumor models at 300 MHz using a specially designed resonator assembly. The mapping of the unpaired electron distribution and unraveling the spectral characteristics by using magnetic resonance in presence of stationary and rotating gradients in indeed ‘dancing with the ( unpaired electrons’, metaphorically speaking.
Time Domains of the Hypoxic Ventilatory Response and Their Molecular Basis
Pamenter, Matthew E.; Powell, Frank L.
2016-01-01
Ventilatory responses to hypoxia vary widely depending on the pattern and length of hypoxic exposure. Acute, prolonged, or intermittent hypoxic episodes can increase or decrease breathing for seconds to years, both during the hypoxic stimulus, and also after its removal. These myriad effects are the result of a complicated web of molecular interactions that underlie plasticity in the respiratory control reflex circuits and ultimately control the physiology of breathing in hypoxia. Since the time domains of the physiological hypoxic ventilatory response (HVR) were identified, considerable research effort has gone toward elucidating the underlying molecular mechanisms that mediate these varied responses. This research has begun to describe complicated and plastic interactions in the relay circuits between the peripheral chemoreceptors and the ventilatory control circuits within the central nervous system. Intriguingly, many of these molecular pathways seem to share key components between the different time domains, suggesting that varied physiological HVRs are the result of specific modifications to overlapping pathways. This review highlights what has been discovered regarding the cell and molecular level control of the time domains of the HVR, and highlights key areas where further research is required. Understanding the molecular control of ventilation in hypoxia has important implications for basic physiology and is emerging as an important component of several clinical fields. PMID:27347896
Mapping of landfills using time-domain spectral induced polarization data
DEFF Research Database (Denmark)
Gazoty, Aurélie; Fiandaca, Gianluca; Pedersen, Jesper Bjergsted
2012-01-01
This study uses time-domain induced polarization data for the delineation and characterization of the former landfill site at Eskelund, Denmark. With optimized acquisition parameters combined with a new inversion algorithm, we use the full content of the decay curve and retrieve spectral informat......This study uses time-domain induced polarization data for the delineation and characterization of the former landfill site at Eskelund, Denmark. With optimized acquisition parameters combined with a new inversion algorithm, we use the full content of the decay curve and retrieve spectral...... information from time-domain IP data. Thirteen IP/DC profiles were collected in the area, supplemented by el-log drilling for accurate correlation between the geophysics and the lithology. The data were inverted using a laterally constrained 1D inversion considering the full decay curves to retrieve the four......-log measurements giving in situ values, for which the Cole-Cole parameters were computed. The 3D shape of the waste body was pinpointed and well-defined. The inversion of the IP data also shows a strong correlation with the initial stage of the waste dump and its composition combining an aerial map with acquired...
Nonsynchronous Noncommensurate Impedance Transformers
DEFF Research Database (Denmark)
Zhurbenko, Vitaliy; Kim, K
2012-01-01
Nonsynchronous noncommensurate impedance transformers consist of a combination of two types of transmission lines: transmission lines with a characteristic impedance equal to the impedance of the source, and transmission lines with a characteristic impedance equal to the load. The practical...... advantage of such transformers is that they can be constructed using sections of transmission lines with a limited variety of characteristic impedances. These transformers also provide comparatively compact size in applications where a wide transformation ratio is required. This paper presents the data...... matrix approach and experimentally verified by synthesizing a 12-section nonsynchronous noncommensurate impedance transformer. The measured characteristics of the transformer are compared to the characteristics of a conventional tapered line transformer....
arXiv Bench Measurements and Simulations of Beam Coupling Impedance
Niedermayer, Uwe
After a general introduction, the basic principles of wake-field and beamcoupling- impedance computations are explained. This includes time domain, frequency domain, and methods that do not include excitations by means of a particle beam. The second part of this paper deals with radio frequency bench measurements of beam coupling impedances. The general procedure of the wire measurement is explained, and its features and limitations are discussed.
Aji Hapsoro, Cahyo; Purqon, Acep; Srigutomo, Wahyu
2017-07-01
2-D Time Domain Electromagnetic (TDEM) has been successfully conducted to illustrate the value of Electric field distribution under the Earth surface. Electric field compared by magnetic field is used to analyze resistivity and resistivity is one of physical properties which very important to determine the reservoir potential area of geothermal systems as one of renewable energy. In this modeling we used Time Domain Electromagnetic method because it can solve EM field interaction problem with complex geometry and to analyze transient problems. TDEM methods used to model the value of electric and magnetic fields as a function of the time combined with the function of distance and depth. The result of this modeling is Electric field intensity value which is capable to describe the structure of the Earth’s subsurface. The result of this modeling can be applied to describe the Earths subsurface resistivity values to determine the reservoir potential of geothermal systems.
DEFF Research Database (Denmark)
Clausen, Anders; Guan, Pengyu; Mulvad, Hans Christian Hansen
2014-01-01
All-optical time-domain Optical Fourier Transformation utilised for signal processing of ultra-high-speed OTDM signals and OFDM signals will be presented.......All-optical time-domain Optical Fourier Transformation utilised for signal processing of ultra-high-speed OTDM signals and OFDM signals will be presented....
Lansing, Faiza S.; Rascoe, Daniel L.
1993-01-01
This paper presents a modified Finite-Difference Time-Domain (FDTD) technique using a generalized conformed orthogonal grid. The use of the Conformed Orthogonal Grid, Finite Difference Time Domain (GFDTD) enables the designer to match all the circuit dimensions, hence eliminating a major source o error in the analysis.
An FFT-accelerated time-domain multiconductor transmission line simulator
Bagci, Hakan
2010-02-01
A fast time-domain multiconductor transmission line (MTL) simulator for analyzing general MTL networks is presented. The simulator models the networks as homogeneous MTLs that are excited by external fields and driven/terminated/ connected by potentially nonlinear lumped circuitry. It hybridizes an MTL solver derived from time-domain integral equations (TDIEs) in unknown wave coefficients for each MTL with a circuit solver rooted in modified nodal analysis equations in unknown node voltages and voltage-source currents for each circuit. These two solvers are rigorously interfaced at MTL and circuit terminals, and the resulting coupled system of equations is solved simultaneously for all MTL and circuit unknowns at each time step. The proposed simulator is amenable to hybridization, is fast Fourier transform (FFT)-accelerated, and is highly accurate: 1) It can easily be hybridized with TDIE-based field solvers (in a fully rigorous mathematical framework) for performing electromagnetic interference and compatibility analysis on electrically large and complex structures loaded with MTL networks. 2) It is accelerated by an FFT algorithm that calculates temporal convolutions of time-domain MTL Green functions in only O(Ntlog2 N t) rather than O(Ntt2) operations, where N t is the number of time steps of simulation. Moreover, the algorithm, which operates on temporal samples of MTL Green functions, is indifferent to the method used to obtain them. 3) It approximates MTL voltages, currents, and wave coefficients, using high-order temporal basis functions. Various numerical examples, including the crosstalk analysis of a (twisted) unshielded twisted-pair (UTP)-CAT5 cable and the analysis of field coupling into UTP-CAT5 and RG-58 cables located on an airplane, are presented to demonstrate the accuracy, efficiency, and versatility of the proposed simulator. © 2010 IEEE.
DEFF Research Database (Denmark)
Santillan, Arturo Orozco
2011-01-01
The aim of the work described in this paper has been to investigate the use of the finite-difference time-domain method to describe the interactions between a moving object and a sound field. The main objective was to simulate oscillational instabilities that appear in single-axis acoustic...... levitation devices and to describe their evolution in time to further understand the physical mechanism involved. The study shows that the method gives accurate results for steady state conditions, and that it is a promising tool for simulations with a moving object....
Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission
DEFF Research Database (Denmark)
Verhulst, Sarah; Dau, Torsten; Shera, Christopher A.
2012-01-01
This paper describes the implementation and performance of a nonlinear time-domain model of the cochlea for transient stimulation and human otoacoustic emission generation. The nonlinearity simulates compressive growth of measured basilar-membrane impulse responses. The model accounts...... for reflection and distortion-source otoacoustic emissions (OAEs) and simulates spontaneous OAEs through manipulation of the middle-ear reflectance. The model was calibrated using human psychoacoustical and otoacoustic tuning parameters. It can be used to investigate time-dependent properties of cochlear...
Impact of time-domain IP pulse length on measured data and inverted models
DEFF Research Database (Denmark)
Olsson, P. I.; Fiandaca, G.; Dahlin, T.
2015-01-01
The duration of time domain (TD) induced polarization (IP) current injections has significant impact on the acquired IP data as well as on the inversion models, if the standard evaluation procedure is followed. However, it is still possible to retrieve similar inversion models if the waveform...... of the injected current and the IP response waveform are included in the inversion. The on-time also generally affects the signal-tonoise ratio (SNR) where an increased on-time gives higher SNR for the IP data....
Al Jarro, Ahmed; Salem, Mohamed; Bagci, Hakan; Benson, Trevor; Sewell, Phillip D.; Vuković, Ana
2012-01-01
An explicit marching-on-in-time (MOT) scheme for solving the time domain volume integral equation is presented. The proposed method achieves its stability by employing, at each time step, a corrector scheme, which updates/corrects fields computed by the explicit predictor scheme. The proposedmethod is computationally more efficient when compared to the existing filtering techniques used for the stabilization of explicit MOT schemes. Numerical results presented in this paper demonstrate that the proposed method maintains its stability even when applied to the analysis of electromagnetic wave interactions with electrically large structures meshed using approximately half a million discretization elements.
On the mixed discretization of the time domain magnetic field integral equation
Ulku, Huseyin Arda
2012-09-01
Time domain magnetic field integral equation (MFIE) is discretized using divergence-conforming Rao-Wilton-Glisson (RWG) and curl-conforming Buffa-Christiansen (BC) functions as spatial basis and testing functions, respectively. The resulting mixed discretization scheme, unlike the classical scheme which uses RWG functions as both basis and testing functions, is proper: Testing functions belong to dual space of the basis functions. Numerical results demonstrate that the marching on-in-time (MOT) solution of the mixed discretized MFIE yields more accurate results than that of classically discretized MFIE. © 2012 IEEE.
Nonlinear System Identification via Basis Functions Based Time Domain Volterra Model
Directory of Open Access Journals (Sweden)
Yazid Edwar
2014-07-01
Full Text Available This paper proposes basis functions based time domain Volterra model for nonlinear system identification. The Volterra kernels are expanded by using complex exponential basis functions and estimated via genetic algorithm (GA. The accuracy and practicability of the proposed method are then assessed experimentally from a scaled 1:100 model of a prototype truss spar platform. Identification results in time and frequency domain are presented and coherent functions are performed to check the quality of the identification results. It is shown that results between experimental data and proposed method are in good agreement.
A time domain inverse dynamic method for the end point tracking control of a flexible manipulator
Kwon, Dong-Soo; Book, Wayne J.
1991-01-01
The inverse dynamic equation of a flexible manipulator was solved in the time domain. By dividing the inverse system equation into the causal part and the anticausal part, we calculated the torque and the trajectories of all state variables for a given end point trajectory. The interpretation of this method in the frequency domain was explained in detail using the two-sided Laplace transform and the convolution integral. The open loop control of the inverse dynamic method shows an excellent result in simulation. For real applications, a practical control strategy is proposed by adding a feedback tracking control loop to the inverse dynamic feedforward control, and its good experimental performance is presented.
Time domain oscillating poles: Stability redefined in Memristor based Wien-oscillators
Talukdar, Abdul Hafiz Ibne
2012-07-28
Traditionally, the necessary and sufficient condition for any system to be oscillating is that its poles are located on the imaginary (jω) axis. In this paper, for the first time, we have shown that systems can oscillate with time-domain oscillating poles. The idea is verified using a Memristor based Wien oscillator. Sustained oscillations are observed without having the poles of the system fixed on the imaginary axis and the oscillating behavior of the system poles is reported. The oscillating resistance and triangular shape of FFT are also demonstrated with mathematical reasoning and simulation results to support the unusual and surprising characteristics. © 2009 IEEE.
Al Jarro, Ahmed
2012-11-01
An explicit marching-on-in-time (MOT) scheme for solving the time domain volume integral equation is presented. The proposed method achieves its stability by employing, at each time step, a corrector scheme, which updates/corrects fields computed by the explicit predictor scheme. The proposedmethod is computationally more efficient when compared to the existing filtering techniques used for the stabilization of explicit MOT schemes. Numerical results presented in this paper demonstrate that the proposed method maintains its stability even when applied to the analysis of electromagnetic wave interactions with electrically large structures meshed using approximately half a million discretization elements.
Absence of phase-dependent noise in time-domain reflectivity studies of impulsively excited phonons
Hussain, A.
2010-06-17
There have been several reports of phase-dependent noise in time-domain reflectivity studies of optical phonons excited by femtosecond laser pulses in semiconductors, semimetals, and superconductors. It was suggested that such behavior is associated with the creation of squeezed phonon states although there is no theoretical model that directly supports such a proposal. We have experimentally re-examined the studies of phonons in bismuth and gallium arsenide, and find no evidence of any phase-dependent noise signature associated with the phonons. We place an upper limit on any such noise at least 40–50 dB lower than previously reported.
Rander, D. N.; Joshi, Y. S.; Kanse, K. S.; Kumbharkhane, A. C.
2016-01-01
The measurements of complex dielectric permittivity of xylitol-water mixtures have been carried out in the frequency range of 10 MHz-30 GHz using a time domain reflectometry technique. Measurements have been done at six temperatures from 0 to 25 °C and at different weight fractions of xylitol (0 xylitol-water can be well described by Cole-Davidson model having an asymmetric distribution of relaxation times. The dielectric parameters such as static dielectric constant and relaxation time for the mixtures have been evaluated. The molecular interaction between xylitol and water molecules is discussed using the Kirkwood correlation factor ( g eff ) and thermodynamic parameter.
Measurement of electron paramagnetic resonance using terahertz time-domain spectroscopy.
Kozuki, Kohei; Nagashima, Takeshi; Hangyo, Masanori
2011-12-05
We present a frequency-domain electron spin resonance (ESR) measurement system using terahertz time-domain spectroscopy. A crossed polarizer technique is utilized to increase the sensitivity in detecting weak ESR signals of paramagnets caused by magnetic dipole transitions between magnetic sublevels. We demonstrate the measurements of ESR signal of paramagnetic copper(II) sulfate pentahydrate with uniaxial anisotropy of the g-factor under magnetic fields up to 10 T. The lineshape of the obtained ESR signals agrees well with the theoretical predictions for a powder sample with the uniaxial anisotropy.
Time domain-nuclear magnetic resonance study of chars from southern hardwoods
International Nuclear Information System (INIS)
Elder, Thomas; Labbe, Nicole; Harper, David; Rials, Timothy
2006-01-01
Chars from the thermal degradation of silver maple (Acer saccharinum), red maple (Acer rubrum), sugar maple (Acer saccharum), and white oak (Quercus spp.), performed at temperatures from 250 to 350 o C, were examined using time domain-nuclear magnetic resonance spectroscopy. Prior to analysis, the chars were equilibrated under conditions insuring the presence of bound water only and both bound water and free water. Transverse relaxation times were found to be related to the moisture content of the chars, which varied with temperature. At elevated temperatures the number of signals assigned to free water decreased, indicative of an increase in pore size within the chars
Time-domain calculation of sub-nanosecond pulse launched by a proton beam
International Nuclear Information System (INIS)
Chan, Kwok-Chi Dominic; Cooper, R.K.
1990-01-01
Using the finite-difference time-domain code TBCI, we have numerically calculated the radiation from a sub-nanosecond 800-MeV proton bunch as it is launched into space. The calculation is compared to measurements of the time history of the radiated fields and good agreement is found. A movie showing the development of the radiation pattern will be shown during the presentation at this conference, namely, the First Los Alamos Symposium on Ultra-Wideband Radar. 6 refs., 7 figs
Studies in astronomical time series analysis. I - Modeling random processes in the time domain
Scargle, J. D.
1981-01-01
Several random process models in the time domain are defined and discussed. Attention is given to the moving average model, the autoregressive model, and relationships between and combinations of these models. Consideration is then given to methods for investigating pulse structure, procedures of model construction, computational methods, and numerical experiments. A FORTRAN algorithm of time series analysis has been developed which is relatively stable numerically. Results of test cases are given to study the effect of adding noise and of different distributions for the pulse amplitudes. A preliminary analysis of the light curve of the quasar 3C 272 is considered as an example.
Perfectly Matched Layer for the Wave Equation Finite Difference Time Domain Method
Miyazaki, Yutaka; Tsuchiya, Takao
2012-07-01
The perfectly matched layer (PML) is introduced into the wave equation finite difference time domain (WE-FDTD) method. The WE-FDTD method is a finite difference method in which the wave equation is directly discretized on the basis of the central differences. The required memory of the WE-FDTD method is less than that of the standard FDTD method because no particle velocity is stored in the memory. In this study, the WE-FDTD method is first combined with the standard FDTD method. Then, Berenger's PML is combined with the WE-FDTD method. Some numerical demonstrations are given for the two- and three-dimensional sound fields.
Inspection of Asian Lacquer Substructures by Terahertz Time-Domain Imaging (THz-TDI)
DEFF Research Database (Denmark)
Dandolo, Corinna Ludovica Koch; Fukunaga, Kaori; Kohzuma, Yoshei
2017-01-01
Lacquering is considered one of the most representative Asian artistic techniques. While the decorative part of lacquerwares is the lacquer itself, their substructures serve as the backbone of the object itself. Very little is known about these hidden substructures. Since lacquerwares are mostly...... by inspecting the substructures of Asian lacquerwares by means of THz time-domain imaging (THz-TDI). Three different kinds of Asian lacquerwares were examined by THz-TDI, and the outcomes have been compared with those obtained by standard X-radiography. THz-TDI provides unique information on lacquerwares...
Detection and characterization of corrosion of bridge cables by time domain reflectometry
Liu, Wei; Hunsperger, Robert G.; Folliard, Kevin; Chajes, Michael J.; Barot, Jignesh; Jhaveri, Darshan; Kunz, Eric
1999-02-01
In this paper, we develop and demonstrate a nondestructive evaluation technique for corrosion detection of embedded or encased steel cables. This technique utilizes time domain reflectometry (TDR), which has been traditionally used to detect electrical discontinuities in transmission lines. By applying a sensor wire along with the bridge cable, we can model the cable as an asymmetric, twin-conductor transmission line. Physical defects of the bridge cable will change the electromagnetic properties of the line and can be detected by TDR. Furthermore, different types of defects can be modeled analytically, and identified using TDR. TDR measurement results from several fabricated bridge cable sections with built-in defects are reported.
Absence of phase-dependent noise in time-domain reflectivity studies of impulsively excited phonons
Hussain, A.; Andrews, S. R.
2010-01-01
There have been several reports of phase-dependent noise in time-domain reflectivity studies of optical phonons excited by femtosecond laser pulses in semiconductors, semimetals, and superconductors. It was suggested that such behavior is associated with the creation of squeezed phonon states although there is no theoretical model that directly supports such a proposal. We have experimentally re-examined the studies of phonons in bismuth and gallium arsenide, and find no evidence of any phase-dependent noise signature associated with the phonons. We place an upper limit on any such noise at least 40–50 dB lower than previously reported.
Discrete-Time Domain Modelling of Voltage Source Inverters in Standalone Applications
DEFF Research Database (Denmark)
Federico, de Bosio; de Sousa Ribeiro, Luiz Antonio; Freijedo Fernandez, Francisco Daniel
2017-01-01
modelling of the LC plant with consideration of delay and sample-and-hold effects on the state feedback cross-coupling decoupling is derived. From this plant formulation, current controllers with wide bandwidth and good relative stability properties are developed. Two controllers based on lead compensation......The decoupling of the capacitor voltage and inductor current has been shown to improve significantly the dynamic performance of voltage source inverters in standalone applications. However, the computation and PWM delays still limit the achievable bandwidth. In this paper a discrete-time domain...
Thermal diffusivity of a metallic thin layer using the time-domain thermo reflectance technique
International Nuclear Information System (INIS)
Battaglia, J-L; Kusiak, A; Rossignol, C; Chigarev, N
2007-01-01
The time domain thermo reflectance (TDTR) is widely used in the field of acoustic and thermal characterization of thin layers at the nano and micro scale. In this paper, we propose to derive a simple analytical expression of the thermal diffusivity of the layer. This relation is based on the analytical solution of one-dimensional heat transfer in the medium using integral transforms. For metals, the two-temperature model shows that the capacitance effect at the short times is essentially governed by the electronic contribution
International Nuclear Information System (INIS)
Greffet, Jean-Jacques; Laroche, Marine; Marquier, Francois
2009-01-01
We introduce a generalized definition of the impedance of a nanoantenna that can be applied to any system. We also introduce a definition of the impedance of a two level system. Using this framework, we establish a link between the electrical engineering and the quantum optics picture of light emission.
RHIC injection kicker impedance
International Nuclear Information System (INIS)
Mane, V.; Peggs, S.; Trbojevic, D.; Zhang, W.
1995-01-01
The longitudinal impedance of the RHIC injection kicker is measured using the wire method up to a frequency of 3 GHz. The mismatch between the 50 ohm cable and the wire and pipe system is calibrated using the TRL calibration algorithm. Various methods of reducing the impedance, such as coated ceramic pipe and copper strips are investigated
Dandolo, Corinna Ludovica Koch; Jepsen, Peter Uhd
2016-02-01
Characterization of subsurface features of wall paintings is important in conservation and technical art history as well as in building archaeology and architecture fields. In this study, an area of the apsidal wall painting of Nebbelunde Church (Rødby, Denmark) has been investigated by means of terahertz time-domain imaging (THz-TDI). Subsurface structures have been detected at different depths inside the lime-based plaster of the wall painting until approximately 1 cm from the surface. The surface morphology of the buried structures has been 3D imaged in detail, providing a substantial contribution in their characterization.
A Unified Impedance Model of Voltage-Source Converters with Phase-Locked Loop Effect
DEFF Research Database (Denmark)
Wang, Xiongfei; Harnefors, Lennart; Blaabjerg, Frede
2016-01-01
This paper proposes a unified impedance model for analyzing the effect of Phase-Locked Loop (PLL) on the stability of grid-connected voltage-source converters. In the approach, the dq-frame impedance model is transformed into the stationary αβ-frame by means of complex transfer functions...... and complex space vectors, which not only predicts the stability impact of the PLL, but reveals also its frequency coupling effect in the phase domain. Thus, the impedance models previously developed in the different domains can be unified. Moreover, the impedance shaping effects of PLL are structurally...... characterized for the current control in the rotating dq-frame and the stationary αβ-frame. Case studies based on the unified impedance model are presented, which are then verified in the time-domain simulations and experiments. The results closely correlate with the impedance-based analysis....
SPATIAL VARIABILITY OF PEDOZEMS MECHANICAL IMPEDANCE
Directory of Open Access Journals (Sweden)
Zhukov A.V.
2013-04-01
Full Text Available We studied the spatial variability of pedozem mechanical impedance in ResearchRemediation Center of the Dnipropetrovsk State Agrarian University in Ordzhonikidze. Thestatistical distribution of the soil mechanical impedance within the studied area is characterized by deviation from the normal law in 0–10 and 30–50 cm layers from the surface. 2D and 3D modeling shows the structural design of the soil as locations of high mechanical impedance which found in the soils with less hardness.
Time Domain Filtering of Resolved Images of Sgr A{sup ∗}
Energy Technology Data Exchange (ETDEWEB)
Shiokawa, Hotaka; Doeleman, Sheperd S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Gammie, Charles F. [Department of Physics, University of Illinois, 1110 West Green Street, Urbana, IL 61801 (United States)
2017-09-01
The goal of the Event Horizon Telescope (EHT) is to provide spatially resolved images of Sgr A*, the source associated with the Galactic Center black hole. Because Sgr A* varies on timescales that are short compared to an EHT observing campaign, it is interesting to ask whether variability contains information about the structure and dynamics of the accretion flow. In this paper, we introduce “time-domain filtering,” a technique to filter time fluctuating images with specific temporal frequency ranges and to demonstrate the power and usage of the technique by applying it to mock millimeter wavelength images of Sgr A*. The mock image data is generated from the General Relativistic Magnetohydrodynamic (GRMHD) simulation and the general relativistic ray-tracing method. We show that the variability on each line of sight is tightly correlated with a typical radius of emission. This is because disk emissivity fluctuates on a timescale of the order of the local orbital period. Time-domain filtered images therefore reflect the model dependent emission radius distribution, which is not accessible in time-averaged images. We show that, in principle, filtered data have the power to distinguish between models with different black-hole spins, different disk viewing angles, and different disk orientations in the sky.
Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes
Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng
2016-09-01
Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.
Time-domain least-squares migration using the Gaussian beam summation method
Yang, Jidong; Zhu, Hejun; McMechan, George; Yue, Yubo
2018-04-01
With a finite recording aperture, a limited source spectrum and unbalanced illumination, traditional imaging methods are insufficient to generate satisfactory depth profiles with high resolution and high amplitude fidelity. This is because traditional migration uses the adjoint operator of the forward modeling rather than the inverse operator. We propose a least-squares migration approach based on the time-domain Gaussian beam summation, which helps to balance subsurface illumination and improve image resolution. Based on the Born approximation for the isotropic acoustic wave equation, we derive a linear time-domain Gaussian beam modeling operator, which significantly reduces computational costs in comparison with the spectral method. Then, we formulate the corresponding adjoint Gaussian beam migration, as the gradient of an L2-norm waveform misfit function. An L1-norm regularization is introduced to the inversion to enhance the robustness of least-squares migration, and an approximated diagonal Hessian is used as a preconditioner to speed convergence. Synthetic and field data examples demonstrate that the proposed approach improves imaging resolution and amplitude fidelity in comparison with traditional Gaussian beam migration.
Liu, Yang
2016-03-25
A parallel plane-wave time-domain (PWTD)-accelerated explicit marching-on-in-time (MOT) scheme for solving the time domain electric field volume integral equation (TD-EFVIE) is presented. The proposed scheme leverages pulse functions and Lagrange polynomials to spatially and temporally discretize the electric flux density induced throughout the scatterers, and a finite difference scheme to compute the electric fields from the Hertz electric vector potentials radiated by the flux density. The flux density is explicitly updated during time marching by a predictor-corrector (PC) scheme and the vector potentials are efficiently computed by a scalar PWTD scheme. The memory requirement and computational complexity of the resulting explicit PWTD-PC-EFVIE solver scale as ( log ) s s O N N and ( ) s t O N N , respectively. Here, s N is the number of spatial basis functions and t N is the number of time steps. A scalable parallelization of the proposed MOT scheme on distributed- memory CPU clusters is described. The efficiency, accuracy, and applicability of the resulting (parallelized) PWTD-PC-EFVIE solver are demonstrated via its application to the analysis of transient electromagnetic wave interactions on canonical and real-life scatterers represented with up to 25 million spatial discretization elements.
Rapid screening of fatty acid alkyl esters in olive oils by time domain reflectometry.
Berardinelli, Annachiara; Ragni, Luigi; Bendini, Alessandra; Valli, Enrico; Conte, Lanfranco; Guarnieri, Adriano; Toschi, Tullia Gallina
2013-11-20
The main aim of the present research is to assess the possibility of quickly screening fatty acid alkyl esters (FAAE) in olive oils using time domain reflectometry (TDR) and partial least-squares (PLS) multivariate statistical analysis. Eighteen virgin olive oil samples with fatty acid alkyl ester contents and fatty acid ethyl ester/methyl ester ratios (FAEE/FAME) ranging from 3 to 100 mg kg(-1) and from 0.3 to 2.6, respectively, were submitted to tests with time domain resolution of 1 ps. The results obtained in test set validation demonstrated that this new and fast analytical approach is able to predict FAME, FAEE, and FAME + FAEE contents with R(2) values of 0.905, 0.923, and 0.927, respectively. Further measurements on mixtures between olive oil and FAAE standards confirmed that the prediction is based on a direct influence of fatty acid alkyl esters on the TDR signal. The suggested technique appeared potentially suitable for monitoring one of the most important quality attribute of the olive oil in the extraction process.
Zhang, Xiao-bo
2017-06-01
The gradient preconditioning approach based on seismic wave energy can effectively avoid the huge storage consumption in the gradient preconditioning algorithms based on Hessian matrices in time-domain full waveform inversion (FWI), but the accuracy is affected by the energy of reflected waves when strong reflectors are present in velocity model. To address this problem, we propose a gradient preconditioning method, which scales the gradient based on the energy of the “approximated transmitted wavefield” simulated by the nonreflecting acoustic wave equation. The method does not require computing or storing the Hessian matrix or its inverse. Furthermore, it can effectively eliminate the effects caused by geometric diffusion and non-uniformity illumination on gradient. The results of model experiments confirm that the time-domain FWI using the gradient preconditioning based on transmitted waves energy can achieve higher inversion precision for high-velocity body and the deep strata below when compared with using the gradient preconditioning based on seismic waves energy.
Time-domain incomplete Gauss-Newton full-waveform inversion of Gulf of Mexico data
AlTheyab, Abdullah
2013-09-22
We apply the incomplete Gauss-Newton full-waveform inversion (TDIGN-FWI) to Gulf of Mexico (GOM) data in the space-time domain. In our application, iterative least-squares reverse-time migration (LSRTM) is used to estimate the model update at each non-linear iteration, and the number of LSRTM iterations is progressively increased after each non-linear iteration. With this method, model updating along deep reflection wavepaths are automatically enhanced, which in turn improves imaging below the reach of diving-waves. The forward and adjoint operators are implemented in the space-time domain to simultaneously invert the data over a range of frequencies. A multiscale approach is used where higher frequencies are down-weighted significantly at early iterations, and gradually included in the inversion. Synthetic data results demonstrate the effectiveness of reconstructing both the high- and low-wavenumber features in the model without relying on diving waves in the inversion. Results with Gulf of Mexico field data show a significantly improved migration image in both the shallow and deep sections.
Time domain SAR raw data simulation using CST and image focusing of 3D objects
Saeed, Adnan; Hellwich, Olaf
2017-10-01
This paper presents the use of a general purpose electromagnetic simulator, CST, to simulate realistic synthetic aperture radar (SAR) raw data of three-dimensional objects. Raw data is later focused in MATLAB using range-doppler algorithm. Within CST Microwave Studio a replica of TerraSAR-X chirp signal is incident upon a modeled Corner Reflector (CR) whose design and material properties are identical to that of the real one. Defining mesh and other appropriate settings reflected wave is measured at several distant points within a line parallel to the viewing direction. This is analogous to an array antenna and is synthesized to create a long aperture for SAR processing. The time domain solver in CST is based on the solution of differential form of Maxwells equations. Exported data from CST is arranged into a 2-d matrix of axis range and azimuth. Hilbert transform is applied to convert the real signal to complex data with phase information. Range compression, range cell migration correction (RCMC), and azimuth compression are applied in time domain to obtain the final SAR image. This simulation can provide valuable information to clarify which real world objects cause images suitable for high accuracy identification in the SAR images.
Liu, Yang; Al-Jarro, Ahmed; Bagci, Hakan; Michielssen, Eric
2016-01-01
A parallel plane-wave time-domain (PWTD)-accelerated explicit marching-on-in-time (MOT) scheme for solving the time domain electric field volume integral equation (TD-EFVIE) is presented. The proposed scheme leverages pulse functions and Lagrange polynomials to spatially and temporally discretize the electric flux density induced throughout the scatterers, and a finite difference scheme to compute the electric fields from the Hertz electric vector potentials radiated by the flux density. The flux density is explicitly updated during time marching by a predictor-corrector (PC) scheme and the vector potentials are efficiently computed by a scalar PWTD scheme. The memory requirement and computational complexity of the resulting explicit PWTD-PC-EFVIE solver scale as ( log ) s s O N N and ( ) s t O N N , respectively. Here, s N is the number of spatial basis functions and t N is the number of time steps. A scalable parallelization of the proposed MOT scheme on distributed- memory CPU clusters is described. The efficiency, accuracy, and applicability of the resulting (parallelized) PWTD-PC-EFVIE solver are demonstrated via its application to the analysis of transient electromagnetic wave interactions on canonical and real-life scatterers represented with up to 25 million spatial discretization elements.
Differences between time domain and Fourier domain optical coherence tomography in imaging tissues.
Gao, W; Wu, X
2017-11-01
It has been numerously demonstrated that both time domain and Fourier domain optical coherence tomography (OCT) can generate high-resolution depth-resolved images of living tissues and cells. In this work, we compare the common points and differences between two methods when the continuous and random properties of live tissue are taken into account. It is found that when relationships that exist between the scattered light and tissue structures are taken into account, spectral interference measurements in Fourier domain OCT (FDOCT) is more advantageous than interference fringe envelope measurements in time domain OCT (TDOCT) in the cases where continuous property of tissue is taken into account. It is also demonstrated that when random property of tissue is taken into account FDOCT measures the Fourier transform of the spatial correlation function of the refractive index and speckle phenomena will limit the effective limiting imaging resolution in both TDOCT and FDOCT. Finally, the effective limiting resolution of both TDOCT and FDOCT are given which can be used to estimate the effective limiting resolution in various practical applications. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Merrikh-Bayat, Farshad
2011-04-01
One main approach for time-domain simulation of the linear output-feedback systems containing fractional-order controllers is to approximate the transfer function of the controller with an integer-order transfer function and then perform the simulation. In general, this approach suffers from two main disadvantages: first, the internal stability of the resulting feedback system is not guaranteed, and second, the amount of error caused by this approximation is not exactly known. The aim of this paper is to propose an efficient method for time-domain simulation of such systems without facing the above mentioned drawbacks. For this purpose, the fractional-order controller is approximated with an integer-order transfer function (possibly in combination with the delay term) such that the internal stability of the closed-loop system is guaranteed, and then the simulation is performed. It is also shown that the resulting approximate controller can effectively be realized by using the proposed method. Some formulas for estimating and correcting the simulation error, when the feedback system under consideration is subjected to the unit step command or the unit step disturbance, are also presented. Finally, three numerical examples are studied and the results are compared with the Oustaloup continuous approximation method. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Liu, Lihong; Fang, Wei-Hai; Long, Run; Prezhdo, Oleg V
2018-03-01
Nonradiative electron-hole recombination plays a key role in determining photon conversion efficiencies in solar cells. Experiments demonstrate significant reduction in the recombination rate upon passivation of methylammonium lead iodide perovskite with Lewis base molecules. Using nonadiabatic molecular dynamics combined with time-domain density functional theory, we find that the nonradiative charge recombination is decelerated by an order of magnitude upon adsorption of the molecules. Thiophene acts by the traditional passivation mechanism, forcing electron density away from the surface. In contrast, pyridine localizes the electron at the surface while leaving it energetically near the conduction band edge. This is because pyridine creates a stronger coordinative bond with a lead atom of the perovskite and has a lower energy unoccupied orbital compared with thiophene due to the more electronegative nitrogen atom relative to thiophene's sulfur. Both molecules reduce two-fold the nonadiabatic coupling and electronic coherence time. A broad range of vibrational modes couple to the electronic subsystem, arising from inorganic and organic components. The simulations reveal the atomistic mechanisms underlying the enhancement of the excited-state lifetime achieved by the perovskite passivation, rationalize the experimental results, and advance our understanding of charge-phonon dynamics in perovskite solar cells.
Beam coupling impedance of fast stripline beam kickers
International Nuclear Information System (INIS)
Caporaso, G; Chen, Y J; Nelson, A D; Poole, B R
1999-01-01
A fast stripline beam kicker is used to dynamically switch a high current electron beam between two beamlines. The transverse dipole impedance of a stripline beam kicker has been previously determined from a simple transmission line model of the structure. This model did not include effects due to the long axial slots along the structure as well as the cavities and coaxial feed transition sections at the ends of the structure. 3-D time domain simulations show that the simple transmission line model underestimates the low frequency dipole beam coupling impedance by about 20% for our structure. In addition, the end cavities and transition sections can exhibit dipole impedances not included in the transmission line model. For high current beams, these additional dipole coupling terms can provide additional beam-induced steering effects not included in the transmission line model of the structure
Almuhammadi, Khaled; Bera, Tushar Kanti; Lubineau, Gilles
2017-01-01
impedance spectroscopy response at various frequencies of laminates chosen to be representative of classical layups employed in composite structures. We clarify the relationship between the frequency of the electrical current, the conductivity of the surface
Impedance and Collective Effects
Metral, E; Rumolo, R; Herr, W
2013-01-01
This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Chapter '4 Impedance and Collective Effects' with the content: 4 Impedance and Collective Effects Introduction 4.1 Space Charge 4.2 Wake Fields and Impedances 4.3 Coherent Instabilities 4.4 Landau Damping 4.5 Two-Stream Effects (Electron Cloud and Ions) 4.6 Beam-Beam Effects 4.7 Numerical Modelling
UV--Visible observations with HST in the JWST North Ecliptic Pole Time-Domain Field
Jansen, Rolf A.; Windhorst, Rogier; Grogin, Norman; Koekemoer, Anton; Royle, Patricia; Hathi, Nimish; Jones, Victoria; Cohen, Seth; Ashcraft, Teresa; Willmer, Christopher; Conselice, Christopher; White, Cameron; Frye, Brenda; HST-GO-15278 team; and the Webb Medium Deep Fields IDS GTO team.
2018-01-01
We report the first results from a UV–Visible HST imaging survey of the JWST North Ecliptic Pole (NEP) Time-Domain Field (TDF). Using CVZ and near-CVZ opportunities we observed the first two out of nine tiles with WFC3/UVIS in F275W and with ACS/WFC in F435W and F606W. Over the course of the next 13 months, this survey is designed to provide near-contiguous 3-filter coverage of the central r ≤ 5‧ of this new community field for time-domain science with JWST. The JWST NEP TDF is located within JWST's northern Continuous Viewing Zone, will span ~14‧ in diameter (~10‧ with NIRISS coverage), is devoid of sources bright enough to saturate the NIRCam detectors, has low Galactic foreground extinction, and will be roughly circular in shape (initially sampled during Cycle 1 at 4 distinct orientations with JWST/NIRCam — the JWST “windmill”). NIRISS slitless grism spectroscopy will be taken in parallel, overlapping an alternate NIRCam orientation. This is the only region in the sky where JWST can observe a clean extragalactic deep survey field of this size at arbitrary cadence or at arbitrary orientation. This will crucially enable a wide range of new and exciting time-domain science, including high redshift transient searches and monitoring (e.g., SNe), variability studies from Active Galactic Nuclei to brown dwarf atmospheres, as well as proper motions of extreme scattered Kuiper Belt and Oort Cloud Objects, and of nearby Galactic brown dwarfs, low-mass stars, and ultracool white dwarfs. Ancillary data across the electromagnetic spectrum will exist for this field when JWST science operations commence in the second half of 2019. This includes deep (mAB ~ 26 mag) wide-field (~23‧×25‧) Ugriz photometry of this field and its surroundings from LBT/LBC and Subaru/HSC, JHK from MMT/MMIRS, VLA 3 GHz and VLBA 4.5 GHz radio observations, and Chandra/ACIS X-ray images. Proposals for (sub)mm observations and spectroscopy to mAB ~ 24 mag are pending.
3D airborne EM modeling based on the spectral-element time-domain (SETD) method
Cao, X.; Yin, C.; Huang, X.; Liu, Y.; Zhang, B., Sr.; Cai, J.; Liu, L.
2017-12-01
In the field of 3D airborne electromagnetic (AEM) modeling, both finite-difference time-domain (FDTD) method and finite-element time-domain (FETD) method have limitations that FDTD method depends too much on the grids and time steps, while FETD requires large number of grids for complex structures. We propose a time-domain spectral-element (SETD) method based on GLL interpolation basis functions for spatial discretization and Backward Euler (BE) technique for time discretization. The spectral-element method is based on a weighted residual technique with polynomials as vector basis functions. It can contribute to an accurate result by increasing the order of polynomials and suppressing spurious solution. BE method is a stable tine discretization technique that has no limitation on time steps and can guarantee a higher accuracy during the iteration process. To minimize the non-zero number of sparse matrix and obtain a diagonal mass matrix, we apply the reduced order integral technique. A direct solver with its speed independent of the condition number is adopted for quickly solving the large-scale sparse linear equations system. To check the accuracy of our SETD algorithm, we compare our results with semi-analytical solutions for a three-layered earth model within the time lapse 10-6-10-2s for different physical meshes and SE orders. The results show that the relative errors for magnetic field B and magnetic induction are both around 3-5%. Further we calculate AEM responses for an AEM system over a 3D earth model in Figure 1. From numerical experiments for both 1D and 3D model, we draw the conclusions that: 1) SETD can deliver an accurate results for both dB/dt and B; 2) increasing SE order improves the modeling accuracy for early to middle time channels when the EM field diffuses fast so the high-order SE can model the detailed variation; 3) at very late time channels, increasing SE order has little improvement on modeling accuracy, but the time interval plays
Electrical Impedance Tomography Technology
National Aeronautics and Space Administration — The goal for the Electrical Impedance Tomography Technology (EITT) project is to develop a reliable portable, lightweight device providing two-dimensional...
Impedance and component heating
Métral, E; Mounet, N; Pieloni, T; Salvant, B
2015-01-01
The impedance is a complex function of frequency, which represents, for the plane under consideration (longitudinal, horizontal or vertical), the force integrated over the length of an element, from a “source” to a “test” wave, normalized by their charges. In general, the impedance in a given plane is a nonlinear function of the test and source transverse coordinates, but it is most of the time sufficient to consider only the first few linear terms. Impedances can influence the motion of trailing particles, in the longitudinal and in one or both transverse directions, leading to energy loss, beam instabilities, or producing undesirable secondary effects such as excessive heating of sensitive components at or near the chamber wall, called beam-induced RF heating. The LHC performance limitations linked to impedances encountered during the 2010-2012 run are reviewed and the currently expected situation during the HL-LHC era is discussed.
Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy
International Nuclear Information System (INIS)
Fischer, B M; Walther, M; Jepsen, P Uhd
2002-01-01
The far-infrared dielectric function of a wide range of organic molecules is dominated by vibrations involving a substantial fraction of the atoms forming the molecule and motion associated with intermolecular hydrogen bond vibrations. Due to their collective nature such modes are highly sensitive to the intra- and intermolecular structure and thus provide a unique fingerprint of the conformational state of the molecule and effects of its environment. We demonstrate the use of terahertz time-domain spectroscopy (THz-TDS) for recording the far-infrared (0.5-4.0 THz) dielectric function of the four nucleobases and corresponding nucleosides forming the building blocks of deoxyribose nucleic acid (DNA). We observe numerous distinct spectral features with large differences between the molecules in both frequency-dependent absorption coefficient and index of refraction. Assisted by results from density-functional calculations we interpret the origin of the observed resonances as vibrations of hydrogen bonds between the molecules
Directory of Open Access Journals (Sweden)
Ana Paula Delowski Ciniello
Full Text Available Abstract The present paper aims at presenting a methodology for characterizing viscoelastic materials in time domain, taking into account the fractional Zener constitutive model and the influence of temperature through Williams, Landel, and Ferry’s model. To that effect, a set of points obtained experimentally through uniaxial tensile tests with different constant strain rates is considered. The approach is based on the minimization of the quadratic relative distance between the experimental stress-strain curves and the corresponding ones given by the theoretical model. In order to avoid the local minima in the process of optimization, a hybrid technique based on genetic algorithms and non-linear programming techniques is used. The methodology is applied in the characterization of two different commercial viscoelastic materials. The results indicate that the proposed methodology is effective in identifying thermorheologically simple viscoelastic materials.
Quantify Glucose Level in Freshly Diabetic's Blood by Terahertz Time-Domain Spectroscopy
Chen, Hua; Chen, Xiaofeng; Ma, Shihua; Wu, Xiumei; Yang, Wenxing; Zhang, Weifeng; Li, Xiao
2018-04-01
We demonstrate the capability of terahertz (THz) time-domain spectroscopy (TDS) to quantify glucose level in ex vivo freshly diabetic's blood. By investigating the THz spectra of different human blood, we find out THz absorption coefficients reflect a high sensitivity to the glucose level in blood. With a quantitative analysis of 70 patients, we demonstrate that the THz absorption coefficients and the blood glucose levels perform a linear relationship. A comparative experiment between THz measurement and glucometers is also conducted with another 20 blood samples, and the results confirm that the relative error is as less as 15%. Our ex vivo human blood study indicates that THz technique has great potential application to diagnose blood glucose level in clinical practice.
On the DC loop modes in the MOT solution of the time domain EFIE
Shi, Yifei
2014-07-01
When marching-on-in-time (MOT) method is applied to solve the time domain electric field integral equation (TD-EFIE), DC loop modes are always observed in the solution. In theory these modes should not be observed since they do not satisfy the relaxed initial conditions. Their appearance is attributed to numerical errors. It is shown here that when Rao-Wilton-Glisson basis and Lagrange interpolation functions are used to discretize the TD-EFIE, errors due to this space-time discretization have zero impact on the DC loop modes. Numerical experiments demonstrate that the numerical errors due to approximate solution of the MOT matrix system have more dominant impact on DC loop modes in the MOT solution.
Parallel, explicit, and PWTD-enhanced time domain volume integral equation solver
Liu, Yang
2013-07-01
Time domain volume integral equations (TDVIEs) are useful for analyzing transient scattering from inhomogeneous dielectric objects in applications as varied as photonics, optoelectronics, and bioelectromagnetics. TDVIEs typically are solved by implicit marching-on-in-time (MOT) schemes [N. T. Gres et al., Radio Sci., 36, 379-386, 2001], requiring the solution of a system of equations at each and every time step. To reduce the computational cost associated with such schemes, [A. Al-Jarro et al., IEEE Trans. Antennas Propagat., 60, 5203-5215, 2012] introduced an explicit MOT-TDVIE method that uses a predictor-corrector technique to stably update field values throughout the scatterer. By leveraging memory-efficient nodal spatial discretization and scalable parallelization schemes [A. Al-Jarro et al., in 28th Int. Rev. Progress Appl. Computat. Electromagn., 2012], this solver has been successfully applied to the analysis of scattering phenomena involving 0.5 million spatial unknowns. © 2013 IEEE.
On spurious resonant modes in the MOT solution of time domain EFIE
Shi, Yifei
2013-07-01
Theoretically, internal resonant modes should not be induced in the marching-on-in-time (MOT) solution of the time domain electric field integral equation since zero initial conditions are enforced at the beginning of time marching and the internal resonant modes do not satisfy these initial conditions. However, these spurious modes are always observed in the MOT solution. It has been conjectured in the past that numerical errors might establish the necessary initial conditions and allow the incident field to induce the internal resonant modes. Systematic numerical experiments carried out in this work prove this conjecture by demonstrating that the internal resonant modes\\' amplitudes are indeed dictated by the numerical errors and the spectrum of the incident field. © 2013 IEEE.
Inspection of Asian Lacquer Substructures by Terahertz Time-Domain Imaging (THz-TDI)
Dandolo, Corinna Ludovica Koch; Fukunaga, Kaori; Kohzuma, Yoshei; Kiriyama, Kyoko; Matsuda, Kazutaka; Jepsen, Peter Uhd
2017-04-01
Lacquering is considered one of the most representative Asian artistic techniques. While the decorative part of lacquerwares is the lacquer itself, their substructures serve as the backbone of the object itself. Very little is known about these hidden substructures. Since lacquerwares are mostly composed of organic materials, such as urushi, wood, carbon black, and fabrics which are very X-ray transparent, standard X-ray radiography has some problems in achieving clear X-ray radiographic images. Therefore, we wanted to contribute to the understanding of the lacquer manufacturing technique by inspecting the substructures of Asian lacquerwares by means of THz time-domain imaging (THz-TDI). Three different kinds of Asian lacquerwares were examined by THz-TDI, and the outcomes have been compared with those obtained by standard X-radiography. THz-TDI provides unique information on lacquerwares substructures, aiding in the comprehension of the manufacturing technology yielding to these precious artefacts.
Analytical approximate solutions of the time-domain diffusion equation in layered slabs.
Martelli, Fabrizio; Sassaroli, Angelo; Yamada, Yukio; Zaccanti, Giovanni
2002-01-01
Time-domain analytical solutions of the diffusion equation for photon migration through highly scattering two- and three-layered slabs have been obtained. The effect of the refractive-index mismatch with the external medium is taken into account, and approximate boundary conditions at the interface between the diffusive layers have been considered. A Monte Carlo code for photon migration through a layered slab has also been developed. Comparisons with the results of Monte Carlo simulations showed that the analytical solutions correctly describe the mean path length followed by photons inside each diffusive layer and the shape of the temporal profile of received photons, while discrepancies are observed for the continuous-wave reflectance or transmittance.
Time-domain vibrational study on defects in ion-irradiated crystal
International Nuclear Information System (INIS)
Kitajima, M.
2003-01-01
We have studied the effects of point defects on coherent phonons in ion-implanted bismuth and graphite. Ultrafast dynamics of coherent phonons and photo-generated carriers in the femtosecond time-domain have been investigated by means of pump-probe reflectivity measurements. Point defects are introduced by irradiating graphite with 5 keV He + ions. For Bi the dephasing rate of the A 1g phonon increases linearly with increasing ion dose, which is explained by the additional dephasing process of the coherent phonon originated from scattering of phonons by the defects. For graphite, introduction of the defects enhances the carrier relaxation by opening a decay channel via vacancy-states, which competes efficiently with carrier-phonon scattering. The coherent acoustic phonon relaxation is also accelerated due to an additional scattering by defects. The linear fluence-dependence of the decay rate is understood as scattering of propagating acoustic phonon by single vacancies. (author)
A Compact Unconditionally Stable Method for Time-Domain Maxwell's Equations
Directory of Open Access Journals (Sweden)
Zhuo Su
2013-01-01
Full Text Available Higher order unconditionally stable methods are effective ways for simulating field behaviors of electromagnetic problems since they are free of Courant-Friedrich-Levy conditions. The development of accurate schemes with less computational expenditure is desirable. A compact fourth-order split-step unconditionally-stable finite-difference time-domain method (C4OSS-FDTD is proposed in this paper. This method is based on a four-step splitting form in time which is constructed by symmetric operator and uniform splitting. The introduction of spatial compact operator can further improve its performance. Analyses of stability and numerical dispersion are carried out. Compared with noncompact counterpart, the proposed method has reduced computational expenditure while keeping the same level of accuracy. Comparisons with other compact unconditionally-stable methods are provided. Numerical dispersion and anisotropy errors are shown to be lower than those of previous compact unconditionally-stable methods.
Time-domain simulation and nonlinear analysis on ride performance of four-wheel vehicles
Energy Technology Data Exchange (ETDEWEB)
Wang, Y S; He, H; Geng, A L [School of Automobile and Traffic Engineering, Liaoning University of Technology, Jinzhou 121001 (China)], E-mail: jzwbt@163.com
2008-02-15
A nonlinear dynamic model with eight DOFs of a four-wheel vehicle is established in this paper. After detaching the nonlinear characteristics of the leaf springs and shock absorbers, the multi-step linearizing method is used to simulate the vehicle vibration in time domain, under a correlated four-wheel road roughness model. Experimental verifications suggest that the newly built vehicle model and simulation procedure are reasonable and feasible to be used in vehicle vibration analysis. Furthermore, some nonlinear factors of the leaf springs and shock absorbers, which affect the vehicle ride performance (or comfort), are investigated under different vehicle running speeds. Some substaintial rules of the nonlinear vehicle vibrations are revealed in this paper.
Cvetkovic, V.; Molin, S.
2012-02-01
We present a methodology that combines numerical simulations of groundwater flow and advective transport in heterogeneous porous media with analytical retention models for computing the infection risk probability from pathogens in aquifers. The methodology is based on the analytical results presented in [1,2] for utilising the colloid filtration theory in a time-domain random walk framework. It is shown that in uniform flow, the results from the numerical simulations of advection yield comparable results as the analytical TDRW model for generating advection segments. It is shown that spatial variability of the attachment rate may be significant, however, it appears to affect risk in a different manner depending on if the flow is uniform or radially converging. In spite of the fact that numerous issues remain open regarding pathogen transport in aquifers on the field scale, the methodology presented here may be useful for screening purposes, and may also serve as a basis for future studies that would include greater complexity.
Time-domain simulation and nonlinear analysis on ride performance of four-wheel vehicles
International Nuclear Information System (INIS)
Wang, Y S; He, H; Geng, A L
2008-01-01
A nonlinear dynamic model with eight DOFs of a four-wheel vehicle is established in this paper. After detaching the nonlinear characteristics of the leaf springs and shock absorbers, the multi-step linearizing method is used to simulate the vehicle vibration in time domain, under a correlated four-wheel road roughness model. Experimental verifications suggest that the newly built vehicle model and simulation procedure are reasonable and feasible to be used in vehicle vibration analysis. Furthermore, some nonlinear factors of the leaf springs and shock absorbers, which affect the vehicle ride performance (or comfort), are investigated under different vehicle running speeds. Some substaintial rules of the nonlinear vehicle vibrations are revealed in this paper
Time Domain Analysis of Graphene Nanoribbon Interconnects Based on Transmission Line Model
Directory of Open Access Journals (Sweden)
S. Haji Nasiri
2012-03-01
Full Text Available Time domain analysis of multilayer graphene nanoribbon (MLGNR interconnects, based on transmission line modeling (TLM using a six-order linear parametric expression, has been presented for the first time. We have studied the effects of interconnect geometry along with its contact resistance on its step response and Nyquist stability. It is shown that by increasing interconnects dimensions their propagation delays are increased and accordingly the system becomes relatively more stable. In addition, we have compared time responses and Nyquist stabilities of MLGNR and SWCNT bundle interconnects, with the same external dimensions. The results show that under the same conditions, the propagation delays for MLGNR interconnects are smaller than those of SWCNT bundle interconnects are. Hence, SWCNT bundle interconnects are relatively more stable than their MLGNR rivals.
Calibrating a Salt Water Intrusion Model with Time-Domain Electromagnetic Data
DEFF Research Database (Denmark)
Herckenrath, Daan; Odlum, Nick; Nenna, Vanessa
2013-01-01
Salt water intrusion models are commonly used to support groundwater resource management in coastal aquifers. Concentration data used for model calibration are often sparse and limited in spatial extent. With airborne and ground-based electromagnetic surveys, electrical resistivity models can......, we perform a coupled hydrogeophysical inversion (CHI) in which we use a salt water intrusion model to interpret the geophysical data and guide the geophysical inversion. We refer to this methodology as a Coupled Hydrogeophysical Inversion-State (CHI-S), in which simulated salt concentrations...... are transformed to an electrical resistivity model, after which a geophysical forward response is calculated and compared with the measured geophysical data. This approach was applied for a field site in Santa Cruz County, California, where a time-domain electromagnetic (TDEM) dataset was collected...
CALCULATION OF CONTROL CIRCUITS IN TIME DOMAIN USING SCILAB / XCOS ENVIRONMENT
Directory of Open Access Journals (Sweden)
Chioncel Petru
2014-10-01
Full Text Available The paper presents the computing of control circuits in time domain, starting from the mathematical model of the control path described by differential equation’s with constant coefficients, whose solution can be obtained through Laplace transform and transfer functions. In the field of electric drives, the control circuits can be reduced to elements of PT1 and PT2 type, for which, the responses obtained from step and impulse function in the test process, are analyzed. The presented calculation, done in Scilab, highlights the test responses of the process and, the speed control circuit implemented as block diagrams in Xcos, reveals the improve of the process parameter through the control loop.
International Nuclear Information System (INIS)
Wei Biao; Feng Peng; Yang Fan; Ren Yong
2014-01-01
To deal with the disadvantages of the homogeneous signature of the nuclear material identification system (NMIS) and limited methods to extract the characteristic parameters of the nuclear materials, an enhanced method using the combination of the Time-of-Flight (TOF) and the Pulse Shape Discrimination (PSD) was introduced into the traditional characteristic parameters extraction and recognition system of the NMIS. With the help of the PSD, the γ signal and the neutron signal can be discriminated. Further based on the differences of the neutron-γ flight time of the detectors in various positions, a new time-domain signature reflecting the position information of unknown nuclear material was investigated. The simulation result showed that the algorithm is feasible and helpful to identify the relative position of unknown nuclear material. (authors)
On the DC loop modes in the MOT solution of the time domain EFIE
Shi, Yifei; Bagci, Hakan; Lu, Mingyu
2014-01-01
When marching-on-in-time (MOT) method is applied to solve the time domain electric field integral equation (TD-EFIE), DC loop modes are always observed in the solution. In theory these modes should not be observed since they do not satisfy the relaxed initial conditions. Their appearance is attributed to numerical errors. It is shown here that when Rao-Wilton-Glisson basis and Lagrange interpolation functions are used to discretize the TD-EFIE, errors due to this space-time discretization have zero impact on the DC loop modes. Numerical experiments demonstrate that the numerical errors due to approximate solution of the MOT matrix system have more dominant impact on DC loop modes in the MOT solution.
A time-domain method to generate artificial time history from a given reference response spectrum
Energy Technology Data Exchange (ETDEWEB)
Shin, Gang Sik [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Song, Oh Seop [Dept. of Mechanical Engineering, Chungnam National University, Daejeon (Korea, Republic of)
2016-06-15
Seismic qualification by test is widely used as a way to show the integrity and functionality of equipment that is related to the overall safety of nuclear power plants. Another means of seismic qualification is by direct integration analysis. Both approaches require a series of time histories as an input. However, in most cases, the possibility of using real earthquake data is limited. Thus, artificial time histories are widely used instead. In many cases, however, response spectra are given. Thus, most of the artificial time histories are generated from the given response spectra. Obtaining the response spectrum from a given time history is straightforward. However, the procedure for generating artificial time histories from a given response spectrum is difficult and complex to understand. Thus, this paper presents a simple time-domain method for generating a time history from a given response spectrum; the method was shown to satisfy conditions derived from nuclear regulatory guidance.
Time-Domain Finite Elements for Virtual Testing of Electromagnetic Compatibility
Directory of Open Access Journals (Sweden)
V. Sedenka
2013-04-01
Full Text Available The paper presents a time-domain finite-element solver developed for simulations related to solving electromagnetic compatibility issues. The software is applied as a module integrated into a computational framework developed within a FP7 European project High Intensity Radiated Field – Synthetic Environment (HIRF SE able to simulate a large class of problems. In the paper, the mathematical formulation is briefly presented, and special emphasis is put on the user point of view on the simulation tool-chain. The functionality is demonstrated on the computation of shielding effectiveness of two composite materials. Results are validated through experimental measurements and agreement is confirmed by automatic feature selective algorithms.
Time domain acoustic contrast control implementation of sound zones for low-frequency input signals
DEFF Research Database (Denmark)
Schellekens, Daan H. M.; Møller, Martin Bo; Olsen, Martin
2016-01-01
Sound zones are two or more regions within a listening space where listeners are provided with personal audio. Acoustic contrast control (ACC) is a sound zoning method that maximizes the average squared sound pressure in one zone constrained to constant pressure in other zones. State......-of-the-art time domain broadband acoustic contrast control (BACC) methods are designed for anechoic environments. These methods are not able to realize a flat frequency response in a limited frequency range within a reverberant environment. Sound field control in a limited frequency range is a requirement...... to accommodate the effective working range of the loudspeakers. In this paper, a new BACC method is proposed which results in an implementation realizing a flat frequency response in the target zone. This method is applied in a bandlimited low-frequency scenario where the loudspeaker layout surrounds two...
On using moving windows in finite element time domain simulation for long accelerator structures
International Nuclear Information System (INIS)
Lee, L.-Q.; Candel, Arno; Ng, Cho; Ko, Kwok
2010-01-01
A finite element moving window technique is developed to simulate the propagation of electromagnetic waves induced by the transit of a charged particle beam inside large and long structures. The window moving along with the beam in the computational domain adopts high-order finite element basis functions through p refinement and/or a high-resolution mesh through h refinement so that a sufficient accuracy is attained with substantially reduced computational costs. Algorithms to transfer discretized fields from one mesh to another, which are the keys to implementing a moving window in a finite element unstructured mesh, are presented. Numerical experiments are carried out using the moving window technique to compute short-range wakefields in long accelerator structures. The results are compared with those obtained from the normal finite element time domain (FETD) method and the advantages of using the moving window technique are discussed.
Bi-Directional Brillouin Optical Time Domain Analyzer System for Long Range Distributed Sensing.
Guo, Nan; Wang, Liang; Wang, Jie; Jin, Chao; Tam, Hwa-Yaw; Zhang, A Ping; Lu, Chao
2016-12-16
We propose and experimentally demonstrate a novel scheme of bi-directional Brillouin time domain analyzer (BD-BOTDA) to extend the sensing range. By deploying two pump-probe pairs at two different wavelengths, the Brillouin frequency shift (BFS) distribution over each half of the whole fiber can be obtained with the simultaneous detection of Brillouin signals in both channels. Compared to the conventional unidirectional BOTDA system of the same sensing range, the proposed BD-BOTDA scheme enables distributed sensing with a performance level comparable to the conventional one with half of the sensing range and a spatial resolution of 2 m, while maintaining the Brillouin signal-to-noise ratio (SNR) and the BFS uncertainty. Based on this technique, we have achieved distributed temperature sensing with a measurement range of 81.9 km fiber at a spatial resolution of 2 m and BFS uncertainty of ~0.44 MHz without introducing any complicated components or schemes.
Time-Domain Reflectometry for Tamper Indication in Unattended Monitoring Systems for Safeguards
Energy Technology Data Exchange (ETDEWEB)
Tedeschi, Jonathan R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Leon E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moore, David E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sheen, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Conrad, Ryan C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2014-12-01
The International Atomic Energy Agency (IAEA) continues to expand its use of unattended, remotely monitored measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. Pacific Northwest National Laboratory (PNNL) leads a collaboration that is exploring various tamper-indicating (TI) measures that could help to address some of the long-standing detector and data-transmission authentication challenges with IAEA’s unattended systems. PNNL is investigating the viability of active time-domain reflectometry (TDR) along two parallel but interconnected paths: (1) swept-frequency TDR as the highly flexible, laboratory gold standard to which field-deployable options can be compared, and (2) a low-cost commercially available spread-spectrum TDR technology as one option for field implementation. This report describes PNNL’s progress and preliminary findings from the first year of the study, and describes the path forward.
Transient analysis of printed lines using finite-difference time-domain method
Energy Technology Data Exchange (ETDEWEB)
Ahmed, Shahid [Thomas Jefferson National Accelerator Facility, 12050 Jefferson Avenue, Suite 704, Newport News, VA, 23606, USA
2012-03-29
Comprehensive studies of ultra-wideband pulses and electromagnetic coupling on printed coupled lines have been performed using full-wave 3D finite-difference time-domain analysis. Effects of unequal phase velocities of coupled modes, coupling between line traces, and the frequency dispersion on the waveform fidelity and crosstalk have been investigated in detail. To discriminate the contributions of different mechanisms into pulse evolution, single and coupled microstrip lines without (ϵ_{r} = 1) and with (ϵ_{r} > 1) dielectric substrates have been examined. To consistently compare the performance of the coupled lines with substrates of different permittivities and transients of different characteristic times, a generic metric similar to the electrical wavelength has been introduced. The features of pulse propagation on coupled lines with layered and pedestal substrates and on the irregular traces have been explored. Finally, physical interpretations of the simulation results are discussed in the paper.
A time-domain method to generate artificial time history from a given reference response spectrum
International Nuclear Information System (INIS)
Shin, Gang Sik; Song, Oh Seop
2016-01-01
Seismic qualification by test is widely used as a way to show the integrity and functionality of equipment that is related to the overall safety of nuclear power plants. Another means of seismic qualification is by direct integration analysis. Both approaches require a series of time histories as an input. However, in most cases, the possibility of using real earthquake data is limited. Thus, artificial time histories are widely used instead. In many cases, however, response spectra are given. Thus, most of the artificial time histories are generated from the given response spectra. Obtaining the response spectrum from a given time history is straightforward. However, the procedure for generating artificial time histories from a given response spectrum is difficult and complex to understand. Thus, this paper presents a simple time-domain method for generating a time history from a given response spectrum; the method was shown to satisfy conditions derived from nuclear regulatory guidance
Using the time domain reflectometer to check for a locate a fault
International Nuclear Information System (INIS)
Ramphal, M.; Sadok, E.
1995-01-01
The Time Domain Reflectometer (TDR) is one of the most useful tools for finding cable faults (opens, shorts, bad cable splices). The TDR is connected to the end of the line and shows the distance to the fault. It uses a low voltage signal that will not damage the line or interfere with nearby lines. The TDR sends a pulse or energy down the cable under test; when the pulse encounters the end of the cable or any cable fault, a portion of the pulse energy is reflected. The elapsed time of the reflected pulse is and indication of the distance to the fault. The shape of the reflected pulse uniquely identifies the type of cable fault. (author)
Ultrabroadband THz Time-Domain Spectroscopy of a Free-Flowing Water Film
DEFF Research Database (Denmark)
Wang, Tianwu; Pedersen, Pernille Klarskov; Jepsen, Peter Uhd
2014-01-01
of liquid water using two different THz-TDS setups. The extracted absorption coefficient and refractive index of water are in agreement with previous results reported in the literature. With this we show that the thin free-flowing liquid film is a versatile tool for windowless, ultrabroadband THz......We demonstrate quantitative ultrabroadband THz time-domain spectroscopy (THz-TDS) of water by application of a 17-$\\mu$m thick gravity-driven wire-guided flow jet of water. The thickness and stability of the water film is accurately measured by an optical intensity crosscorrelator, and the standard...... deviation of the film thickness is less than 500 nm. The cross section of the water film is found to have a biconcave cylindrical lens shape. By transmitting through such a thin film, we perform the first ultrabroadband (0.2–30 THz) THz-TDS across the strongest absorbing part of the infrared spectrum...
Application of the symplectic finite-difference time-domain scheme to electromagnetic simulation
International Nuclear Information System (INIS)
Sha, Wei; Huang, Zhixiang; Wu, Xianliang; Chen, Mingsheng
2007-01-01
An explicit fourth-order finite-difference time-domain (FDTD) scheme using the symplectic integrator is applied to electromagnetic simulation. A feasible numerical implementation of the symplectic FDTD (SFDTD) scheme is specified. In particular, new strategies for the air-dielectric interface treatment and the near-to-far-field (NFF) transformation are presented. By using the SFDTD scheme, both the radiation and the scattering of three-dimensional objects are computed. Furthermore, the energy-conserving characteristic hold for the SFDTD scheme is verified under long-term simulation. Numerical results suggest that the SFDTD scheme is more efficient than the traditional FDTD method and other high-order methods, and can save computational resources
Time domain simulation of the response of geometrically nonlinear panels subjected to random loading
Moyer, E. Thomas, Jr.
1988-01-01
The response of composite panels subjected to random pressure loads large enough to cause geometrically nonlinear responses is studied. A time domain simulation is employed to solve the equations of motion. An adaptive time stepping algorithm is employed to minimize intermittent transients. A modified algorithm for the prediction of response spectral density is presented which predicts smooth spectral peaks for discrete time histories. Results are presented for a number of input pressure levels and damping coefficients. Response distributions are calculated and compared with the analytical solution of the Fokker-Planck equations. RMS response is reported as a function of input pressure level and damping coefficient. Spectral densities are calculated for a number of examples.
Beam diagnostics based on time-domain bunch-by-bunch data
International Nuclear Information System (INIS)
Teytelman, D.; Fox, J.; Hindi, H.; Limborg, C.; Linscott, I.; Prabhakar, S.; Sebek, J.; Young, A.; Drago, A.; Serio, M.; Barry, W.; Stover, G.
1998-01-01
A bunch-by-bunch longitudinal feedback system has been used to control coupled-bunch longitudinal motion and study the behavior of the beam at ALS, SPEAR, PEP-II, and DAΦNE. Each of these machines presents unique challenges to feedback control of unstable motion and data analysis. Here we present techniques developed to adapt this feedback system to operating conditions at these accelerators. A diverse array of techniques has been developed to extract information on different aspects of beam behavior from the time-domain data captured by the feedback system. These include measurements of growth and damping rates of coupled-bunch modes, bunch-by-bunch current monitoring, measurements of bunch-by-bunch synchronous phases and longitudinal tunes, and beam noise spectra. A technique is presented which uses the longitudinal feedback system to measure transverse growth and damping rates. Techniques are illustrated with data acquired at all of the four above-mentioned machines
Studies in astronomical time series analysis: Modeling random processes in the time domain
Scargle, J. D.
1979-01-01
Random process models phased in the time domain are used to analyze astrophysical time series data produced by random processes. A moving average (MA) model represents the data as a sequence of pulses occurring randomly in time, with random amplitudes. An autoregressive (AR) model represents the correlations in the process in terms of a linear function of past values. The best AR model is determined from sampled data and transformed to an MA for interpretation. The randomness of the pulse amplitudes is maximized by a FORTRAN algorithm which is relatively stable numerically. Results of test cases are given to study the effects of adding noise and of different distributions for the pulse amplitudes. A preliminary analysis of the optical light curve of the quasar 3C 273 is given.
Wang, Xu; Gao, Zhensen; Kataoka, Nobuyuki; Wada, Naoya
2010-05-10
A novel scheme using single phase modulator for simultaneous time domain spectral phase encoding (SPE) signal generation and DPSK data modulation is proposed and experimentally demonstrated. Array- Waveguide-Grating and Variable-Bandwidth-Spectrum-Shaper based devices can be used for decoding the signal directly in spectral domain. The effects of fiber dispersion, light pulse width and timing error on the coding performance have been investigated by simulation and verified in experiment. In the experiment, SPE signal with 8-chip, 20GHz/chip optical code patterns has been generated and modulated with 2.5 Gbps DPSK data using single modulator. Transmission of the 2.5 Gbps data over 34km fiber with BEROCDMA) and secure optical communication applications. (c) 2010 Optical Society of America.
Implementation of a custom time-domain firmware trigger for RADAR-based cosmic ray detection
Prohira, S.; Besson, D.; Kunwar, S.; Ratzlaff, K.; Young, R.
2018-05-01
Interest in Radio-based detection schemes for ultra-high energy cosmic rays (UHECR) has surged in recent years, owing to the potentially very low cost/detection ratio. The method of radio-frequency (RF) scatter has been proposed as potentially the most economical detection technology. Though the first dedicated experiment to employ this method, the Telescope Array RADAR experiment (TARA) reported no signal, efforts to develop more robust and sensitive trigger techniques continue. This paper details the development of a time-domain firmware trigger that exploits characteristics of the expected scattered signal from an UHECR extensive-air shower (EAS). The improved sensitivity of this trigger is discussed, as well as implementation in two separate field deployments from 2016 to 2017.
Quantifying NMR relaxation correlation and exchange in articular cartilage with time domain analysis
Mailhiot, Sarah E.; Zong, Fangrong; Maneval, James E.; June, Ronald K.; Galvosas, Petrik; Seymour, Joseph D.
2018-02-01
Measured nuclear magnetic resonance (NMR) transverse relaxation data in articular cartilage has been shown to be multi-exponential and correlated to the health of the tissue. The observed relaxation rates are dependent on experimental parameters such as solvent, data acquisition methods, data analysis methods, and alignment to the magnetic field. In this study, we show that diffusive exchange occurs in porcine articular cartilage and impacts the observed relaxation rates in T1-T2 correlation experiments. By using time domain analysis of T2-T2 exchange spectroscopy, the diffusive exchange time can be quantified by measurements that use a single mixing time. Measured characteristic times for exchange are commensurate with T1 in this material and so impacts the observed T1 behavior. The approach used here allows for reliable quantification of NMR relaxation behavior in cartilage in the presence of diffusive fluid exchange between two environments.
Finite difference time domain solution of electromagnetic scattering on the hypercube
International Nuclear Information System (INIS)
Calalo, R.H.; Lyons, J.R.; Imbriale, W.A.
1988-01-01
Electromagnetic fields interacting with a dielectric or conducting structure produce scattered electromagnetic fields. To model the fields produced by complicated, volumetric structures, the finite difference time domain (FDTD) method employs an iterative solution to Maxwell's time dependent curl equations. Implementations of the FDTD method intensively use memory and perform numerous calculations per time step iteration. The authors have implemented an FDTD code on the California Institute of Technology/Jet Propulsion Laboratory Mark III Hypercube. This code allows to solve problems requiring as many as 2,048,000 unit cells on a 32 node Hypercube. For smaller problems, the code produces solutions in a fraction of the time to solve the same problems on sequential computers
Dispersive finite-difference time-domain (FDTD) analysis of the elliptic cylindrical cloak
Energy Technology Data Exchange (ETDEWEB)
Lee, Y. Y.; Ahn, D. [University of Seoul, Seoul (Korea, Republic of)
2012-05-15
A dispersive full-wave finite-difference time-domain (FDTD) model is used to calculate the performance of elliptic cylindrical cloaking devices. The permittivity and the permeability tensors for the cloaking structure are derived by using an effective medium approach in general relativity. The elliptic cylindrical invisibility devices are found to show imperfect cloaking, and the cloaking performance is found to depend on the polarization of the incident waves, the direction of the propagation of those waves, the semi-focal distances and the loss tangents of the meta-material. When the semifocal distance of the elliptic cylinder decreases, the performance of the cloaking becomes very good, with neither noticeable scatterings nor field penetrations. For a larger semi-focal distance, only the TM wave with a specific propagation direction shows good cloaking performance. Realistic cloaking materials with loss still show a cloak that is working, but attenuated back-scattering waves exist.
Bao, Rima; Wu, Zhikui; Li, Hao; Wang, Fang; Miao, Xinyang; Feng, Chengjing
2017-01-01
The study of fluid inclusion is one of the important means to understanding the evolution of mineral crystals, and can therefore provide original information of mineral evolution. In the process of evolution, outside factors such as temperature and pressure, directly affect the number and size of inclusions, and thus are related to the properties of crystals. In this paper, terahertz time-domain spectroscopy (THz-TDS) was used to detect sodium sulfate crystals with different growth temperatures, and absorption coefficient spectra of the samples were obtained. It is suggested that the evolution of sodium sulfate could be divided into two stages, and 80°C was the turning point. X-ray diffraction (XRD) and polarizing microscopy were used to support this conclusion. The research showed that THz-TDS could characterize the evolution of mineral crystals, and it had a unique advantage in terms of crystal evolution.
Application of Time Domain PARET to the measured responses of a building
International Nuclear Information System (INIS)
Lager, D.L.
1979-01-01
The application of the Time Domain PARET (TDP) algorithm to data obtained from the measured responses of a three story reinforced concrete building approximately 465 feet long by 220 feet wide by 40 feet high, with 12 to 18 inch thick walls, is described. The measurements were taken by Agbabian Associates, El Segundo, California. The structure was excited by a device developed at Agbabian that uses a mass sliding down a rod to cut metal disks attached to the rod. The result is a series of impulse forces driving the building at the attachment point of the rod. The responses measured were the accelerations at two locations on the structure. A constraint imposed was that the equipment in the building must remain operating during the time the measurements were made
Bi-Directional Brillouin Optical Time Domain Analyzer System for Long Range Distributed Sensing
Guo, Nan; Wang, Liang; Wang, Jie; Jin, Chao; Tam, Hwa-Yaw; Zhang, A. Ping; Lu, Chao
2016-01-01
We propose and experimentally demonstrate a novel scheme of bi-directional Brillouin time domain analyzer (BD-BOTDA) to extend the sensing range. By deploying two pump-probe pairs at two different wavelengths, the Brillouin frequency shift (BFS) distribution over each half of the whole fiber can be obtained with the simultaneous detection of Brillouin signals in both channels. Compared to the conventional unidirectional BOTDA system of the same sensing range, the proposed BD-BOTDA scheme enables distributed sensing with a performance level comparable to the conventional one with half of the sensing range and a spatial resolution of 2 m, while maintaining the Brillouin signal-to-noise ratio (SNR) and the BFS uncertainty. Based on this technique, we have achieved distributed temperature sensing with a measurement range of 81.9 km fiber at a spatial resolution of 2 m and BFS uncertainty of ~0.44 MHz without introducing any complicated components or schemes. PMID:27999250
Degradation diagnosis of transformer insulating oils with terahertz time-domain spectroscopy
Kang, Seung Beom; Kim, Won-Seok; Chung, Dong Chul; Joung, Jong Man; Kwak, Min Hwan
2017-12-01
We report the frequency-dependent complex optical constants, refractive index and absorption, and complex dielectric properties over the frequency range from 0.2 to 3.0 THz for aged power transformer mineral insulating oils. These results have been obtained using terahertz time-domain spectroscopy (THz-TDS) and demonstrate the double-Debye relaxation behavior of the mineral insulating oil. The measured complex optical and dielectric characteristics can be important benchmarks for liquid molecular dynamics and theoretical studies of insulating oils. Due to clear differences in THz responses of aged mineral insulating oils, THz-TDS can be used as a novel on-site diagnostic technique to monitor the insulation condition in aged power transformers and may be valuable alternative to characterize other developing eco-friendly insulating oils and industrial liquids.
International Nuclear Information System (INIS)
Liu, J.; Lan, T.; Qin, H.
2017-01-01
Traditional data cleaning identifies dirty data by classifying original data sequences, which is a class-imbalanced problem since the proportion of incorrect data is much less than the proportion of correct ones for most diagnostic systems in Magnetic Confinement Fusion (MCF) devices. When using machine learning algorithms to classify diagnostic data based on class-imbalanced training set, most classifiers are biased towards the major class and show very poor classification rates on the minor class. By transforming the direct classification problem about original data sequences into a classification problem about the physical similarity between data sequences, the class-balanced effect of Time-Domain Global Similarity (TDGS) method on training set structure is investigated in this paper. Meanwhile, the impact of improved training set structure on data cleaning performance of TDGS method is demonstrated with an application example in EAST POlarimetry-INTerferometry (POINT) system.
Time-Reversal MUSIC Imaging with Time-Domain Gating Technique
Choi, Heedong; Ogawa, Yasutaka; Nishimura, Toshihiko; Ohgane, Takeo
A time-reversal (TR) approach with multiple signal classification (MUSIC) provides super-resolution for detection and localization using multistatic data collected from an array antenna system. The theory of TR-MUSIC assumes that the number of antenna elements is greater than that of scatterers (targets). Furthermore, it requires many sets of frequency-domain data (snapshots) in seriously noisy environments. Unfortunately, these conditions are not practical for real environments due to the restriction of a reasonable antenna structure as well as limited measurement time. We propose an approach that treats both noise reduction and relaxation of the transceiver restriction by using a time-domain gating technique accompanied with the Fourier transform before applying the TR-MUSIC imaging algorithm. Instead of utilizing the conventional multistatic data matrix (MDM), we employ a modified MDM obtained from the gating technique. The resulting imaging functions yield more reliable images with only a few snapshots regardless of the limitation of the antenna arrays.
International Nuclear Information System (INIS)
Evett, S.R.
2000-01-01
Soil-water measurements encounter particular problems related to the physics of the method used. For time domain reflectometry (TDR), these relate to wave form shape changes caused by soil, soil water, and TDR probe properties. Methods of wave form interpretation that overcome these problems are discussed and specific computer algorithms are presented. Neutron scattering is well understood, but calibration methods remain critical to accuracy and precision, and are discussed with recommendations for field calibration and use. Capacitance probes tend to exhibit very small radii of influence, thus are sensitive to small-scale changes in soil properties, and are difficult or impossible to field calibrate. Field comparisons of neutron and capacitance probes are presented. (author)
Time-domain representation of frequency dependent inertial forces on offshore structures
DEFF Research Database (Denmark)
Krenk, Steen
2013-01-01
dependence is then approximated by a rational function, corresponding to a set of ordinary differential equations in the time domain. The MacCamy-Fuchs solution leads to a representation of the inertial force coefficient as a complex function with argument mainly corresponding to a 'phase lead', in contrast...... history of the inertial force is determined by processing the stable part of the transformation by a forward time integration, followed by an integration in the negative time-direction to obtain the final inertial force time history. The differential equations of the local inertial force at a cross......The inertial wave force on a vertical cylinder decreases with decreasing wave length, when the wave length is less than about six times the diameter of the diameter of the cylinder. In structures with a largediameter component like mono-towers the resonance frequency of the structure is typically...
Pressure-dependent refractive indices of gases by THz time-domain spectroscopy.
Sang, Bark Hyeon; Jeon, Tea-In
2016-12-12
Noncontact terahertz time-domain spectroscopy was employed to measure pressure-dependent refractive indices of gases such as helium (He), argon (Ar), krypton (Kr), oxygen (O2), nitrogen (N2), methane (CH4), and carbon dioxide (CO2). The refractive indices of these gases scaled linearly with pressure, for pressures in the 55-3,750 torr range. At the highest pressure, the refractive indices ((n-1) x 106) of He and CO2 were 170 and 2,390, respectively. The refractive index of CO2 was 14.1-fold higher than that of He, owing to the stronger polarizability of CO2. Although the studied gases differed in terms of their molecular structure, their refractive indices were strongly determined by polarizability. The measured refractive indices agreed well with the theoretical calculations.
Huang, Chongyang; Zhou, Qi; Gao, Shan; Bao, Qingjia; Chen, Fang; Liu, Chaoyang
2016-01-20
Different ginger cultivars may contain different nutritional and medicinal values. In this study, a time-domain nuclear magnetic resonance method was employed to study water dynamics in different ginger cultivars. Significant differences in transverse relaxation time T2 values assigned to the distribution of water in different parts of the plant were observed between Henan ginger and four other ginger cultivars. Ion concentration and metabolic analysis showed similar differences in Mn ion concentrations and organic solutes among the different ginger cultivars, respectively. On the basis of Pearson's correlation analysis, many organic solutes and 6-gingerol, the main active substance of ginger, exhibited significant correlations with water distribution as determined by NMR T2 relaxation, suggesting that the organic solute differences may impact water distribution. Our work demonstrates that low-field NMR relaxometry provides useful information about water dynamics in different ginger cultivars as affected by the presence of different organic solutes.
International Nuclear Information System (INIS)
Khaizer, A.N.; Hussain, I.
2015-01-01
This paper presents a time-domain approach for identification of longitudinal dynamics of single rotor model helicopter. A frequency sweep excitation input signal is applied for hover flying mode widely used for space state linearized model. A fully automated programmed flight test method provides high quality flight data for system identification using the computer controlled flight simulator X-plane. The flight test data were recorded, analyzed and reduced using the SIDPAC (System Identification Programs for Air Craft) toolbox for MATLAB, resulting in an aerodynamic model of single rotor helicopter. Finally, the identified model of single rotor helicopter is validated on Raptor 30-class model helicopter at hover showing the reliability of proposed approach. (author)
Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays
Directory of Open Access Journals (Sweden)
Robert K. Henderson
2012-05-01
Full Text Available We have successfully demonstrated video-rate CMOS single-photon avalanche diode (SPAD-based cameras for fluorescence lifetime imaging microscopy (FLIM by applying innovative FLIM algorithms. We also review and compare several time-domain techniques and solid-state FLIM systems, and adapt the proposed algorithms for massive CMOS SPAD-based arrays and hardware implementations. The theoretical error equations are derived and their performances are demonstrated on the data obtained from 0.13 μm CMOS SPAD arrays and the multiple-decay data obtained from scanning PMT systems. In vivo two photon fluorescence lifetime imaging data of FITC-albumin labeled vasculature of a P22 rat carcinosarcoma (BD9 rat window chamber are used to test how different algorithms perform on bi-decay data. The proposed techniques are capable of producing lifetime images with enough contrast.
A VLSI Implementation of Rank-Order Searching Circuit Employing a Time-Domain Technique
Directory of Open Access Journals (Sweden)
Trong-Tu Bui
2013-01-01
Full Text Available We present a compact and low-power rank-order searching (ROS circuit that can be used for building associative memories and rank-order filters (ROFs by employing time-domain computation and floating-gate MOS techniques. The architecture inherits the accuracy and programmability of digital implementations as well as the compactness and low-power consumption of analog ones. We aim to implement identification function as the first priority objective. Filtering function would be implemented once the location identification function has been carried out. The prototype circuit was designed and fabricated in a 0.18 μm CMOS technology. It consumes only 132.3 μW for an eight-input demonstration case.
Retarded potentials and time domain boundary integral equations a road map
Sayas, Francisco-Javier
2016-01-01
This book offers a thorough and self-contained exposition of the mathematics of time-domain boundary integral equations associated to the wave equation, including applications to scattering of acoustic and elastic waves. The book offers two different approaches for the analysis of these integral equations, including a systematic treatment of their numerical discretization using Galerkin (Boundary Element) methods in the space variables and Convolution Quadrature in the time variable. The first approach follows classical work started in the late eighties, based on Laplace transforms estimates. This approach has been refined and made more accessible by tailoring the necessary mathematical tools, avoiding an excess of generality. A second approach contains a novel point of view that the author and some of his collaborators have been developing in recent years, using the semigroup theory of evolution equations to obtain improved results. The extension to electromagnetic waves is explained in one of the appendices...
Rotation commensurate echo of asymmetric molecules—Molecular fingerprints in the time domain
Energy Technology Data Exchange (ETDEWEB)
Chesnokov, E. N., E-mail: chesnok@kinetics.nsc.ru [Institute of Chemical Kinetics and Combustion, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Kubarev, V. V. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Koshlyakov, P. V. [Institute of Chemical Kinetics and Combustion, Novosibirsk 630090 (Russian Federation)
2014-12-29
Using the pulses of terahertz free electron laser and ultra-fast Schottky diode detectors, we observed the coherent transients within a free induction decay of gaseous nitrogen dioxide NO{sub 2}. The laser excited different sub-bands of rotation spectra of NO{sub 2} containing about 50–70 lines. The free induction signal continued more than 30 ns and consisted of many echo-like bursts duration about 0.2 ns. Unlike the similar effect observed previously for linear and symmetric top molecules, the sequence of echo bursts is not periodic. The values for delay of individual echo are stable, and the set of these delays can be considered as a “molecular fingerprint” in the time domain.
A hybrid method of estimating pulsating flow parameters in the space-time domain
Pałczyński, Tomasz
2017-05-01
This paper presents a method for estimating pulsating flow parameters in partially open pipes, such as pipelines, internal combustion engine inlets, exhaust pipes and piston compressors. The procedure is based on the method of characteristics, and employs a combination of measurements and simulations. An experimental test rig is described, which enables pressure, temperature and mass flow rate to be measured within a defined cross section. The second part of the paper discusses the main assumptions of a simulation algorithm elaborated in the Matlab/Simulink environment. The simulation results are shown as 3D plots in the space-time domain, and compared with proposed models of phenomena relating to wave propagation, boundary conditions, acoustics and fluid mechanics. The simulation results are finally compared with acoustic phenomena, with an emphasis on the identification of resonant frequencies.
International Nuclear Information System (INIS)
Hasegawa, M.; Nakai, S.; Watanabe, T.
1985-01-01
A practical method for elasto-plastic seismic response analysis is described under considerations of nonlinear material law of a structure and dynamic soil-structure interaction. The method is essentially based on the substructure approach of time domain analysis. Verification of the present method is carried out for typical BWR-MARK II type reactor building which is embedded in a soil, and the results are compared with those of the frequency response analysis which gives good accuracy for linear system. As a result, the present method exhibits sufficient accuracy. Furthermore, elasto-plastic analyses considering the soil-structure interaction are made as an application of the present method, and nonlinear behaviors of the structure and embedment effects are discussed. (orig.)
A model of the formation of illusory conjunctions in the time domain.
Botella, J; Suero, M; Barriopedro, M I
2001-12-01
The authors present a model to account for the miscombination of features when stimuli are presented using the rapid serial visual presentation (RSVP) technique (illusory conjunctions in the time domain). It explains the distributions of responses through a mixture of trial outcomes. In some trials, attention is successfully focused on the target, whereas in others, the responses are based on partial information. Two experiments are presented that manipulated the mean processing time of the target-defining dimension and of the to-be-reported dimension, respectively. As predicted, the average origin of the responses is delayed when lengthening the target-defining dimension, whereas it is earlier when lengthening the to-be-reported dimension; in the first case the number of correct responses is dramatically reduced, whereas in the second it does not change. The results, a review of other research, and simulations carried out with a formal version of the model are all in close accordance with the predictions.
Energy Technology Data Exchange (ETDEWEB)
Zotter, B [European Organization for Nuclear Research, Geneva (Switzerland)
1996-08-01
This report describes a number of measurements and computations of the impedance of the Large Electron Positron collider LEP at CERN. The work has been performed over several years, together with D. Brandt, K. Cornelis, A. Hofmann, G. Sabbi and many others. The agreement between measurements of single bunch instabilities on the machine and computer simulations is in general excellent and gives confidence in the impedance model used. (author)
Time-domain soil-structure interaction analysis of nuclear facilities
International Nuclear Information System (INIS)
Coleman, Justin L.; Bolisetti, Chandrakanth; Whittaker, Andrew S.
2016-01-01
The Nuclear Regulatory Commission (NRC) regulation 10 CFR Part 50 Appendix S requires consideration of soil-structure interaction (SSI) in nuclear power plant (NPP) analysis and design. Soil-structure interaction analysis for NPPs is routinely carried out using guidance provided in the ASCE Standard 4-98 titled “Seismic Analysis of Safety-Related Nuclear Structures and Commentary”. This Standard, which is currently under revision, provides guidance on linear seismic soil-structure-interaction (SSI) analysis of nuclear facilities using deterministic and probabilistic methods. A new appendix has been added to the forthcoming edition of ASCE Standard 4 to provide guidance for time-domain, nonlinear SSI (NLSSI) analysis. Nonlinear SSI analysis will be needed to simulate material nonlinearity in soil and/or structure, static and dynamic soil pressure effects on deeply embedded structures, local soil failure at the foundation-soil interface, nonlinear coupling of soil and pore fluid, uplift or sliding of the foundation, nonlinear effects of gaps between the surrounding soil and the embedded structure and seismic isolation systems, none of which can be addressed explicitly at present. Appendix B of ASCE Standard 4 provides general guidance for NLSSI analysis but will not provide a methodology for performing the analysis. This paper provides a description of an NLSSI methodology developed for application to nuclear facilities, including NPPs. This methodology is described as series of sequential steps to produce reasonable results using any time-domain numerical code. These steps require some numerical capabilities, such as nonlinear soil constitutive models, which are also described in the paper.
Helicopter time-domain electromagnetic numerical simulation based on Leapfrog ADI-FDTD
Guan, S.; Ji, Y.; Li, D.; Wu, Y.; Wang, A.
2017-12-01
We present a three-dimension (3D) Alternative Direction Implicit Finite-Difference Time-Domain (Leapfrog ADI-FDTD) method for the simulation of helicopter time-domain electromagnetic (HTEM) detection. This method is different from the traditional explicit FDTD, or ADI-FDTD. Comparing with the explicit FDTD, leapfrog ADI-FDTD algorithm is no longer limited by Courant-Friedrichs-Lewy(CFL) condition. Thus, the time step is longer. Comparing with the ADI-FDTD, we reduce the equations from 12 to 6 and .the Leapfrog ADI-FDTD method will be easier for the general simulation. First, we determine initial conditions which are adopted from the existing method presented by Wang and Tripp(1993). Second, we derive Maxwell equation using a new finite difference equation by Leapfrog ADI-FDTD method. The purpose is to eliminate sub-time step and retain unconditional stability characteristics. Third, we add the convolution perfectly matched layer (CPML) absorbing boundary condition into the leapfrog ADI-FDTD simulation and study the absorbing effect of different parameters. Different absorbing parameters will affect the absorbing ability. We find the suitable parameters after many numerical experiments. Fourth, We compare the response with the 1-Dnumerical result method for a homogeneous half-space to verify the correctness of our algorithm.When the model contains 107*107*53 grid points, the conductivity is 0.05S/m. The results show that Leapfrog ADI-FDTD need less simulation time and computer storage space, compared with ADI-FDTD. The calculation speed decreases nearly four times, memory occupation decreases about 32.53%. Thus, this algorithm is more efficient than the conventional ADI-FDTD method for HTEM detection, and is more precise than that of explicit FDTD in the late time.
From blackbirds to black holes: Investigating capture-recapture methods for time domain astronomy
Laycock, Silas G. T.
2017-07-01
In time domain astronomy, recurrent transients present a special problem: how to infer total populations from limited observations. Monitoring observations may give a biassed view of the underlying population due to limitations on observing time, visibility and instrumental sensitivity. A similar problem exists in the life sciences, where animal populations (such as migratory birds) or disease prevalence, must be estimated from sparse and incomplete data. The class of methods termed Capture-Recapture is used to reconstruct population estimates from time-series records of encounters with the study population. This paper investigates the performance of Capture-Recapture methods in astronomy via a series of numerical simulations. The Blackbirds code simulates monitoring of populations of transients, in this case accreting binary stars (neutron star or black hole accreting from a stellar companion) under a range of observing strategies. We first generate realistic light-curves for populations of binaries with contrasting orbital period distributions. These models are then randomly sampled at observing cadences typical of existing and planned monitoring surveys. The classical capture-recapture methods, Lincoln-Peterson, Schnabel estimators, related techniques, and newer methods implemented in the Rcapture package are compared. A general exponential model based on the radioactive decay law is introduced which is demonstrated to recover (at 95% confidence) the underlying population abundance and duty cycle, in a fraction of the observing visits (10-50%) required to discover all the sources in the simulation. Capture-Recapture is a promising addition to the toolbox of time domain astronomy, and methods implemented in R by the biostats community can be readily called from within python.
Bodin, Jacques
2015-03-01
In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical solutions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to travel a specified distance in a homogeneous medium and the mass recovery at the observation point, which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is then decomposed along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of solute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to advection-dispersion transport problems dominated by advection. Conversely, the method is not recommended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW algorithms degrades rapidly for a low Péclet number, consistent with the accuracy limit of the approximate analytical solutions. The proposed approach provides a unified methodology for deriving multi-dimensional time-domain particle equations and may be applicable to other mathematical transport models, provided that appropriate analytical solutions are available.
Time domain simulation of Gd3+-Gd3+ distance measurements by EPR
Manukovsky, Nurit; Feintuch, Akiva; Kuprov, Ilya; Goldfarb, Daniella
2017-07-01
Gd3+-based spin labels are useful as an alternative to nitroxides for intramolecular distance measurements at high fields in biological systems. However, double electron-electron resonance (DEER) measurements using model Gd3+ complexes featured a low modulation depth and an unexpected broadening of the distance distribution for short Gd3+-Gd3+ distances, when analysed using the software designed for S = 1/2 pairs. It appears that these effects result from the different spectroscopic characteristics of Gd3+—the high spin, the zero field splitting (ZFS), and the flip-flop terms in the dipolar Hamiltonian that are often ignored for spin-1/2 systems. An understanding of the factors affecting the modulation frequency and amplitude is essential for the correct analysis of Gd3+-Gd3+ DEER data and for the educated choice of experimental settings, such as Gd3+ spin label type and the pulse parameters. This work uses time-domain simulations of Gd3+-Gd3+ DEER by explicit density matrix propagation to elucidate the factors shaping Gd3+ DEER traces. The simulations show that mixing between the |+½, -½> and |-½, +½> states of the two spins, caused by the flip-flop term in the dipolar Hamiltonian, leads to dampening of the dipolar modulation. This effect may be mitigated by a large ZFS or by pulse frequency settings allowing for a decreased contribution of the central transition and the one adjacent to it. The simulations reproduce both the experimental line shapes of the Fourier-transforms of the DEER time domain traces and the trends in the behaviour of the modulation depth, thus enabling a more systematic design and analysis of Gd3+ DEER experiments.
All-Digital Time-Domain CMOS Smart Temperature Sensor with On-Chip Linearity Enhancement.
Chen, Chun-Chi; Chen, Chao-Lieh; Lin, Yi
2016-01-30
This paper proposes the first all-digital on-chip linearity enhancement technique for improving the accuracy of the time-domain complementary metal-oxide semiconductor (CMOS) smart temperature sensor. To facilitate on-chip application and intellectual property reuse, an all-digital time-domain smart temperature sensor was implemented using 90 nm Field Programmable Gate Arrays (FPGAs). Although the inverter-based temperature sensor has a smaller circuit area and lower complexity, two-point calibration must be used to achieve an acceptable inaccuracy. With the help of a calibration circuit, the influence of process variations was reduced greatly for one-point calibration support, reducing the test costs and time. However, the sensor response still exhibited a large curvature, which substantially affected the accuracy of the sensor. Thus, an on-chip linearity-enhanced circuit is proposed to linearize the curve and achieve a new linearity-enhanced output. The sensor was implemented on eight different Xilinx FPGA using 118 slices per sensor in each FPGA to demonstrate the benefits of the linearization. Compared with the unlinearized version, the maximal inaccuracy of the linearized version decreased from 5 °C to 2.5 °C after one-point calibration in a range of -20 °C to 100 °C. The sensor consumed 95 μW using 1 kSa/s. The proposed linearity enhancement technique significantly improves temperature sensing accuracy, avoiding costly curvature compensation while it is fully synthesizable for future Very Large Scale Integration (VLSI) system.
Analytical Time-Domain Solution of Plane Wave Propagation Across a Viscoelastic Rock Joint
Zou, Yang; Li, Jianchun; Laloui, Lyesse; Zhao, Jian
2017-10-01
The effects of viscoelastic filled rock joints on wave propagation are of great significance in rock engineering. The solutions in time domain for plane longitudinal ( P-) and transverse ( S-) waves propagation across a viscoelastic rock joint are derived based on Maxwell and Kelvin models which are, respectively, applied to describe the viscoelastic deformational behaviour of the rock joint and incorporated into the displacement discontinuity model (DDM). The proposed solutions are verified by comparing with the previous studies on harmonic waves, which are simulated by sinusoidal incident P- and S-waves. Comparison between the predicted transmitted waves and the experimental data for P-wave propagation across a joint filled with clay is conducted. The Maxwell is found to be more appropriate to describe the filled joint. The parametric studies show that wave propagation is affected by many factors, such as the stiffness and the viscosity of joints, the incident angle and the duration of incident waves. Furthermore, the dependences of the transmission and reflection coefficients on the specific joint stiffness and viscosity are different for the joints with Maxwell and Kelvin behaviours. The alternation of the reflected and transmitted waveforms is discussed, and the application scope of this study is demonstrated by an illustration of the effects of the joint thickness. The solutions are also extended for multiple parallel joints with the virtual wave source method and the time-domain recursive method. For an incident wave with arbitrary waveform, it is convenient to adopt the present approach to directly calculate wave propagation across a viscoelastic rock joint without additional mathematical methods such as the Fourier and inverse Fourier transforms.
Choi, Yun Seok; Alkhalifah, Tariq Ali
2011-01-01
Full waveform inversion requires a good estimation of the source wavelet to improve our chances of a successful inversion. This is especially true for an encoded multisource time-domain implementation, which, conventionally, requires separate
CSIR Research Space (South Africa)
Vogt, D
2008-06-01
Full Text Available published borehole radar antennas have achieved directivity by post processing data received in the frequency domain, or by constructing an aperture antenna, where borehole dimensions allowed this. In this paper, a time-domain technique is investigated...
Energy Technology Data Exchange (ETDEWEB)
Li, Xuebao, E-mail: lxb08357x@ncepu.edu.cn; Cui, Xiang, E-mail: x.cui@ncepu.edu.cn; Ma, Wenzuo; Bian, Xingming; Wang, Donglai [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206 (China); Lu, Tiebing, E-mail: tiebinglu@ncepu.edu.cn [Beijing Key Laboratory of High Voltage and EMC, North China Electric Power University, Beijing 102206 (China); Hiziroglu, Huseyin [Department of Electrical and Computer Engineering, Kettering University, Flint, Michigan 48504 (United States)
2016-03-15
The corona-generated audible noise (AN) has become one of decisive factors in the design of high voltage direct current (HVDC) transmission lines. The AN from transmission lines can be attributed to sound pressure pulses which are generated by the multiple corona sources formed on the conductor, i.e., transmission lines. In this paper, a detailed time-domain characteristics of the sound pressure pulses, which are generated by the DC corona discharges formed over the surfaces of a stranded conductors, are investigated systematically in a laboratory settings using a corona cage structure. The amplitude of sound pressure pulse and its time intervals are extracted by observing a direct correlation between corona current pulses and corona-generated sound pressure pulses. Based on the statistical characteristics, a stochastic model is presented for simulating the sound pressure pulses due to DC corona discharges occurring on conductors. The proposed stochastic model is validated by comparing the calculated and measured A-weighted sound pressure level (SPL). The proposed model is then used to analyze the influence of the pulse amplitudes and pulse rate on the SPL. Furthermore, a mathematical relationship is found between the SPL and conductor diameter, electric field, and radial distance.
International Nuclear Information System (INIS)
Wan Zakaria Wan Muhd Tahir; Lakam Anak Mejus; Johari Abdul Latif
2004-01-01
Time Domain Reflectometry (TDR) is one of non-destructive methods and widely used in hydrology and soil science for accurate and flexible measurement of soil water content The TDR technique is based on measuring the dielectric constant of soil from the propagation of an electromagnetic pulse traveling along installed probe rods (parallel wire transmission line). An adjustable soil column i.e., 80 cm (L) x 35 cm (H) x 44 cm (W) instrumented with six pairs of vertically installed CS615 reflectometer probes (TDR rods) was developed and wetted under a laboratory simulated rainfall and their sub-surface moisture variations as the slope changes were monitored using TDR method Soil samples for gravimetric determination of water content, converted to a volume basis were taken at selected times and locations after the final TDR reading for every slope change made of the soil column Comparisons of water contents by TDR with those from grawmetric samples at different slopes of soil column were examined. The accuracy was found to be comparable and to some extent dependent upon the variability of the soil. This study also suggests that the response of slope (above 20 degrees) to the gradual increase in water content profile may cause soil saturation faster and increased overland flow (runoff especially on weak soil conditions
Li, Xuebao; Cui, Xiang; Lu, Tiebing; Ma, Wenzuo; Bian, Xingming; Wang, Donglai; Hiziroglu, Huseyin
2016-03-01
The corona-generated audible noise (AN) has become one of decisive factors in the design of high voltage direct current (HVDC) transmission lines. The AN from transmission lines can be attributed to sound pressure pulses which are generated by the multiple corona sources formed on the conductor, i.e., transmission lines. In this paper, a detailed time-domain characteristics of the sound pressure pulses, which are generated by the DC corona discharges formed over the surfaces of a stranded conductors, are investigated systematically in a laboratory settings using a corona cage structure. The amplitude of sound pressure pulse and its time intervals are extracted by observing a direct correlation between corona current pulses and corona-generated sound pressure pulses. Based on the statistical characteristics, a stochastic model is presented for simulating the sound pressure pulses due to DC corona discharges occurring on conductors. The proposed stochastic model is validated by comparing the calculated and measured A-weighted sound pressure level (SPL). The proposed model is then used to analyze the influence of the pulse amplitudes and pulse rate on the SPL. Furthermore, a mathematical relationship is found between the SPL and conductor diameter, electric field, and radial distance.
Stupin, Daniil D.; Koniakhin, Sergei V.; Verlov, Nikolay A.; Dubina, Michael V.
2017-05-01
The time-domain technique for impedance spectroscopy consists of computing the excitation voltage and current response Fourier images by fast or discrete Fourier transformation and calculating their relation. Here we propose an alternative method for excitation voltage and current response processing for deriving a system impedance spectrum based on a fast and flexible adaptive filtering method. We show the equivalence between the problem of adaptive filter learning and deriving the system impedance spectrum. To be specific, we express the impedance via the adaptive filter weight coefficients. The noise-canceling property of adaptive filtering is also justified. Using the RLC circuit as a model system, we experimentally show that adaptive filtering yields correct admittance spectra and elements ratings in the high-noise conditions when the Fourier-transform technique fails. Providing the additional sensitivity of impedance spectroscopy, adaptive filtering can be applied to otherwise impossible-to-interpret time-domain impedance data. The advantages of adaptive filtering are justified with practical living-cell impedance measurements.
International Nuclear Information System (INIS)
Spears, Robert Edward; Coleman, Justin Leigh
2015-01-01
Currently the Department of Energy (DOE) and the nuclear industry perform seismic soil-structure interaction (SSI) analysis using equivalent linear numerical analysis tools. For lower levels of ground motion, these tools should produce reasonable in-structure response values for evaluation of existing and new facilities. For larger levels of ground motion these tools likely overestimate the in-structure response (and therefore structural demand) since they do not consider geometric nonlinearities (such as gaping and sliding between the soil and structure) and are limited in the ability to model nonlinear soil behavior. The current equivalent linear SSI (SASSI) analysis approach either joins the soil and structure together in both tension and compression or releases the soil from the structure for both tension and compression. It also makes linear approximations for material nonlinearities and generalizes energy absorption with viscous damping. This produces the potential for inaccurately establishing where the structural concerns exist and/or inaccurately establishing the amplitude of the in-structure responses. Seismic hazard curves at nuclear facilities have continued to increase over the years as more information has been developed on seismic sources (i.e. faults), additional information gathered on seismic events, and additional research performed to determine local site effects. Seismic hazard curves are used to develop design basis earthquakes (DBE) that are used to evaluate nuclear facility response. As the seismic hazard curves increase, the input ground motions (DBE's) used to numerically evaluation nuclear facility response increase causing larger in-structure response. As ground motions increase so does the importance of including nonlinear effects in numerical SSI models. To include material nonlinearity in the soil and geometric nonlinearity using contact (gaping and sliding) it is necessary to develop a nonlinear time domain methodology. This
Energy Technology Data Exchange (ETDEWEB)
Kopp, Joachim; Liu, Jia [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7, 55099 Mainz (Germany); Slatyer, Tracy R. [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Wang, Xiao-Ping [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7, 55099 Mainz (Germany); Xue, Wei [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)
2016-12-12
We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario “Impeded Dark Matter”. We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.
International Nuclear Information System (INIS)
Kopp, Joachim; Liu, Jia; Slatyer, Tracy R.; Wang, Xiao-Ping; Xue, Wei
2016-01-01
We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario “Impeded Dark Matter”. We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.
Modelling a coal subcrop using the impedance method
Energy Technology Data Exchange (ETDEWEB)
Wilson, G.A.; Thiel, D.V.; O' Keefe, S.G. [Griffith University, Nathan, Qld. (Australia). School of Microelectronic Engineering
2000-07-01
An impedance model was generated for two coal subcrops in the Biloela and Middlemount areas (Queensland, Australia). The model results were compared with actual surface impedance data. It was concluded that the impedance method satisfactorily modelled the surface response of the coal subcrops in two dimensions. There were some discrepancies between the field data and the model results, due to factors such as the method of discretization of the solution space in the impedance model and the lack of consideration of the three-dimensional nature of the coal outcrops. 10 refs., 8 figs.
Harmonic current prediction by impedance modeling of grid-tied inverters
DEFF Research Database (Denmark)
Pereira, Heverton A.; Freijedo, Francisco D.; Silva, M. M.
2017-01-01
and harmonic voltage profiles. Results reinforce that impedance models can represent with relatively accuracy the harmonic current emitted by the PV plants at the point of common coupling (PCC). Lastly, a stress test is performed to show how a variation in the harmonic voltage phase angle impacts the PV plant...... impedance models when used in harmonic integration studies. It is aimed to estimate the harmonic current contribution as a function of the background harmonic voltages components. Time domain simulations based on detailed and average models are compared with the impedance model developed in frequency domain....... In grids with harmonic voltages, impedance models can predict the current distortion for all active power injection scenarios. Furthermore, measurements in a 1.4 MW PV plant connected in a distributed grid are used to validate the simulation based on impedance models during different power injections...
From medium heterogeneity to flow and transport: A time-domain random walk approach
Hakoun, V.; Comolli, A.; Dentz, M.
2017-12-01
The prediction of flow and transport processes in heterogeneous porous media is based on the qualitative and quantitative understanding of the interplay between 1) spatial variability of hydraulic conductivity, 2) groundwater flow and 3) solute transport. Using a stochastic modeling approach, we study this interplay through direct numerical simulations of Darcy flow and advective transport in heterogeneous media. First, we study flow in correlated hydraulic permeability fields and shed light on the relationship between the statistics of log-hydraulic conductivity, a medium attribute, and the flow statistics. Second, we determine relationships between Eulerian and Lagrangian velocity statistics, this means, between flow and transport attributes. We show how Lagrangian statistics and thus transport behaviors such as late particle arrival times are influenced by the medium heterogeneity on one hand and the initial particle velocities on the other. We find that equidistantly sampled Lagrangian velocities can be described by a Markov process that evolves on the characteristic heterogeneity length scale. We employ a stochastic relaxation model for the equidistantly sampled particle velocities, which is parametrized by the velocity correlation length. This description results in a time-domain random walk model for the particle motion, whose spatial transitions are characterized by the velocity correlation length and temporal transitions by the particle velocities. This approach relates the statistical medium and flow properties to large scale transport, and allows for conditioning on the initial particle velocities and thus to the medium properties in the injection region. The approach is tested against direct numerical simulations.
Liang, Fayun; Chen, Haibing; Huang, Maosong
2017-07-01
To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.
Shao, Liyang; Zhang, Yunpeng; Li, Zonglei; Zhang, Zhiyong; Zou, Xihua; Luo, Bin; Pan, Wei; Yan, Lianshan
2016-11-01
Logarithmic detectors (LogDs) have been used in coherent Brillouin optical time-domain analysis (BOTDA) sensors to reduce the effect of phase fluctuation, demodulation complexities, and measurement time. However, because of the inherent properties of LogDs, a DC component at the level of hundreds of millivolts that prohibits high-gain signal amplification (SA) could be generated, resulting in unacceptable data acquisition (DAQ) inaccuracies and decoding errors in the process of prototype integration. By generating a reference light at a level similar to the probe light, differential detection can be applied to remove the DC component automatically using a differential amplifier before the DAQ process. Therefore, high-gain SA can be employed to reduce quantization errors. The signal-to-noise ratio of the weak Brillouin gain signal is improved from ˜11.5 to ˜21.8 dB. A BOTDA prototype is implemented based on the proposed scheme. The experimental results show that the measurement accuracy of the Brillouin frequency shift (BFS) is improved from ±1.9 to ±0.8 MHz at the end of a 40-km sensing fiber.
Characterisation of historic plastics using terahertz time-domain spectroscopy and pulsed imaging.
Pastorelli, Gianluca; Trafela, Tanja; Taday, Phillip F; Portieri, Alessia; Lowe, David; Fukunaga, Kaori; Strlič, Matija
2012-05-01
Terahertz (THz) time-domain spectroscopy and 3D THz pulsed imaging have been explored with regard to polymer materials, both commodity and historic polymers. A systematic spectroscopic study of a wide range of different polymer materials showed significant differences in their spectra. Polyolefins and polystyrenes generally exhibit lower absorption than other examined polymers, various cellulose derivates, poly(vinyl chloride), poly(methyl methacrylate), polyamide, hard rubber and phenol formaldehyde resin, the last of these exhibiting the most intense absorption over the entire range, 0.15-4.2 THz. It was also examined how the presence of plasticisers in poly(vinyl chloride), the presence of fillers in polypropylene, and the degree of branching in polyethylene and polystyrene affect the spectra; inorganic fillers in polypropylene affected the absorption most. With 3D THz pulsed imaging, features in polymer objects were explored, appearing either as integral parts of the material (coatings and pores in foams) or as a consequence of physical deterioration (cracks, delamination). All of these features of various complexities can be successfully imaged in 3D. Terahertz technology is thus shown to have significant potential for both chemical and structural characterisation of polymers, which will be of interest to heritage science, but also to the polymer industry and development of analytical technologies in general.
Algorithm for determining two-periodic steady-states in AC machines directly in time domain
Directory of Open Access Journals (Sweden)
Sobczyk Tadeusz J.
2016-09-01
Full Text Available This paper describes an algorithm for finding steady states in AC machines for the cases of their two-periodic nature. The algorithm enables to specify the steady-state solution identified directly in time domain despite of the fact that two-periodic waveforms are not repeated in any finite time interval. The basis for such an algorithm is a discrete differential operator that specifies the temporary values of the derivative of the two-periodic function in the selected set of points on the basis of the values of that function in the same set of points. It allows to develop algebraic equations defining the steady state solution reached in a chosen point set for the nonlinear differential equations describing the AC machines when electrical and mechanical equations should be solved together. That set of those values allows determining the steady state solution at any time instant up to infinity. The algorithm described in this paper is competitive with respect to the one known in literature an approach based on the harmonic balance method operated in frequency domain.
Study of time-domain digital pulse shaping algorithms for nuclear signals
International Nuclear Information System (INIS)
Zhou Jianbin; Tuo Xianguo; Zhu Xing; Liu Yi; Zhou Wei; Lei Jiarong
2012-01-01
With the development on high-speed integrated circuit, fast high resolution sampling ADC and digital signal processors are replacing analog shaping amplifier circuit. This paper firstly presents the numerical analysis and simulation on R-C shaping circuit model and C-R shaping circuit model. Mathematic models are established based on 1 st order digital differential method and Kirchhoff Current Law in time domain, and a simulation and error evaluation experiment on an ideal digital signal are carried out with Excel VBA. A digital shaping test for a semiconductor X-ray detector in real time is also presented. Then a numerical analysis for Sallen-Key(S-K) low-pass filter circuit model is implemented based on the analysis of digital R-C and digital C-R shaping methods. By applying the 2 nd order non-homogeneous differential equation,the authors implement a digital Gaussian filter model for a standard exponential-decaying signal and a nuclear pulse signal. Finally, computer simulations and experimental tests are carried out and the results show the possibility of the digital pulse processing algorithms. (authors)
Thermal denaturation of protein studied by terahertz time-domain spectroscopy
Fu, Xiuhua; Li, Xiangjun; Liu, Jianjun; Du, Yong; Hong, Zhi
2012-12-01
In this study, the absorption spectra of native or thermal protein were measured in 0.2-1.4THz using terahertz time-domain spectroscopy (THz-TDS) system at room temperature, their absorption spectra and the refractive spectra were obtained. Experimental results indicate that protein both has strong absorption but their characteristics were not distinct in the THz region, and the absorption decreased during thermal denatured state. In order to prove protein had been denatured, we used Differential scanning calorimeter (DSC) measured their denatured temperature, from their DSC heating traces, collagen Td=101℃, Bovine serum albumin Td=97℃. While we also combined the Fourier transform infrared spectrometer (FTIR) to investigate their secondary and tertiary structure before and after denatuation, but the results did not have the distinct changes. We turned the absorption spectra and the refractive spectra to the dielectric spectra, and used the one-stage Debye model simulated the terahertz dielectric spectra of protein before and after denaturation. This research proved that the terahertz spectrum technology is feasible in testing protein that were affected by temperature or other factors which can provide theoretical foundation in the further study about the THz spectrum of protein and peptide temperature stability.
Classifying three imaginary states of the same upper extremity using time-domain features.
Directory of Open Access Journals (Sweden)
Mojgan Tavakolan
Full Text Available Brain-computer interface (BCI allows collaboration between humans and machines. It translates the electrical activity of the brain to understandable commands to operate a machine or a device. In this study, we propose a method to improve the accuracy of a 3-class BCI using electroencephalographic (EEG signals. This BCI discriminates rest against imaginary grasps and elbow movements of the same limb. This classification task is challenging because imaginary movements within the same limb have close spatial representations on the motor cortex area. The proposed method extracts time-domain features and classifies them using a support vector machine (SVM with a radial basis kernel function (RBF. An average accuracy of 74.2% was obtained when using the proposed method on a dataset collected, prior to this study, from 12 healthy individuals. This accuracy was higher than that obtained when other widely used methods, such as common spatial patterns (CSP, filter bank CSP (FBCSP, and band power methods, were used on the same dataset. These results are encouraging and the proposed method could potentially be used in future applications including BCI-driven robotic devices, such as a portable exoskeleton for the arm, to assist individuals with impaired upper extremity functions in performing daily tasks.
Robot-assisted motor activation monitored by time-domain optical brain imaging
Steinkellner, O.; Wabnitz, H.; Schmid, S.; Steingräber, R.; Schmidt, H.; Krüger, J.; Macdonald, R.
2011-07-01
Robot-assisted motor rehabilitation proved to be an effective supplement to conventional hand-to-hand therapy in stroke patients. In order to analyze and understand motor learning and performance during rehabilitation it is desirable to develop a monitor to provide objective measures of the corresponding brain activity at the rehabilitation progress. We used a portable time-domain near-infrared reflectometer to monitor the hemodynamic brain response to distal upper extremity activities. Four healthy volunteers performed two different robot-assisted wrist/forearm movements, flexion-extension and pronation-supination in comparison with an unassisted squeeze ball exercise. A special headgear with four optical measurement positions to include parts of the pre- and postcentral gyrus provided a good overlap with the expected activation areas. Data analysis based on variance of time-of-flight distributions of photons through tissue was chosen to provide a suitable representation of intracerebral signals. In all subjects several of the four detection channels showed a response. In some cases indications were found of differences in localization of the activated areas for the various tasks.
Ultrasound-based measurement of liquid-layer thickness: A novel time-domain approach
Praher, Bernhard; Steinbichler, Georg
2017-01-01
Measuring the thickness of a thin liquid layer between two solid materials is important when the adequate separation of metallic parts by a lubricant film (e.g., in bearings or mechanical seals) is to be assessed. The challenge in using ultrasound-based systems for such measurements is that the signal from the liquid layer is a superposition of multiple reflections. We have developed an algorithm for reconstructing this superimposed signal in the time domain. By comparing simulated and measured signals, the time-of-flight of the ultrasonic pulse in a layer can be estimated. With the longitudinal sound velocity known, the layer thickness can then be calculated. In laboratory measurements, we validate successfully (maximum relative error 4.9%) our algorithm for layer thicknesses ranging from 30 μm to 200 μm. Furthermore, we tested our method in the high-temperature environment of polymer processing by measuring the clearance between screw and barrel in the plasticisation unit of an injection moulding machine. The results of such measurements can indicate (i) the wear status of the tribo-mechanical screw-barrel system and (ii) unsuitable process conditions.
Towards the use of bioresorbable fibers in time-domain diffuse optics.
Di Sieno, Laura; Boetti, Nadia G; Dalla Mora, Alberto; Pugliese, Diego; Farina, Andrea; Konugolu Venkata Sekar, Sanathana; Ceci-Ginistrelli, Edoardo; Janner, Davide; Pifferi, Antonio; Milanese, Daniel
2018-01-01
In the last years bioresorbable materials are gaining increasing interest for building implantable optical components for medical devices. In this work we show the fabrication of bioresorbable optical fibers designed for diffuse optics applications, featuring large core diameter (up to 200 μm) and numerical aperture (0.17) to maximize the collection efficiency of diffused light. We demonstrate the suitability of bioresorbable fibers for time-domain diffuse optical spectroscopy firstly checking the intrinsic performances of the setup by acquiring the instrument response function. We then validate on phantoms the use of bioresorbable fibers by applying the MEDPHOT protocol to assess the performance of the system in measuring optical properties (namely, absorption and scattering coefficients) of homogeneous media. Further, we show an ex-vivo validation on a chicken breast by measuring the absorption and scattering spectra in the 500-1100 nm range using interstitially inserted bioresorbable fibers. This work represents a step toward a new way to look inside the body using optical fibers that can be implanted in patients. These fibers could be useful either for diagnostic (e. g. for monitoring the evolution after surgical interventions) or treatment (e. g. photodynamic therapy) purposes. Picture: Microscopy image of the 100 μm core bioresorbable fiber. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Miniaturized pulsed laser source for time-domain diffuse optics routes to wearable devices.
Di Sieno, Laura; Nissinen, Jan; Hallman, Lauri; Martinenghi, Edoardo; Contini, Davide; Pifferi, Antonio; Kostamovaara, Juha; Mora, Alberto Dalla
2017-08-01
We validate a miniaturized pulsed laser source for use in time-domain (TD) diffuse optics, following rigorous and shared protocols for performance assessment of this class of devices. This compact source (12×6 mm2) has been previously developed for range finding applications and is able to provide short, high energy (∼100 ps, ∼0.5 nJ) optical pulses at up to 1 MHz repetition rate. Here, we start with a basic level laser characterization with an analysis of suitability of this laser for the diffuse optics application. Then, we present a TD optical system using this source and its performances in both recovering optical properties of tissue-mimicking homogeneous phantoms and in detecting localized absorption perturbations. Finally, as a proof of concept of in vivo application, we demonstrate that the system is able to detect hemodynamic changes occurring in the arm of healthy volunteers during a venous occlusion. Squeezing the laser source in a small footprint removes a key technological bottleneck that has hampered so far the realization of a miniaturized TD diffuse optics system, able to compete with already assessed continuous-wave devices in terms of size and cost, but with wider performance potentialities, as demonstrated by research over the last two decades. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Fitterman, David V.; Prinos, Scott T.
2011-01-01
Time-domain electromagnetic (TEM) soundings were made in Miami-Dade and southern Broward Counties to aid in mapping the landward extent of saltwater in the Biscayne aquifer. A total of 79 soundings were collected in settings ranging from urban to undeveloped land, with some of the former posing problems of land access and interference from anthropogenic features. TEM soundings combined with monitoring-well data were used to determine if the saltwater front had moved since the last time it was mapped, to provide additional spatial coverage where existing monitoring wells were insufficient, and to help interpret a previously collected helicopter electromagnetic (HEM) survey flown in the southernmost portion of the study area. TEM soundings were interpreted as layered resistivity-depth models. Using information from well logs and water-quality data, the resistivity of the freshwater saturated Biscayne aquifer is expected to be above 30 ohm-meters, and the saltwater-saturated aquifer will have resistivities of less than 10 ohm-meters allowing determination of water quality from the TEM interpretations. TEM models from 29 soundings were compared to electromagnetic induction logs collected in nearby monitoring wells. In general, the agreement of these results was very good, giving confidence in the use of the TEM data for mapping saltwater encroachment.
A time-domain finite element model reduction method for viscoelastic linear and nonlinear systems
Directory of Open Access Journals (Sweden)
Antônio Marcos Gonçalves de Lima
Full Text Available AbstractMany authors have shown that the effective design of viscoelastic systems can be conveniently carried out by using modern mathematical models to represent the frequency- and temperature-dependent behavior of viscoelastic materials. However, in the quest for design procedures of real-word engineering structures, the large number of exact evaluations of the dynamic responses during iterative procedures, combined with the typically high dimensions of large finite element models, makes the numerical analysis very costly, sometimes unfeasible. It is especially true when the viscoelastic materials are used to reduce vibrations of nonlinear systems. As a matter of fact, which the resolution of the resulting nonlinear equations of motion with frequency- and temperature-dependent viscoelastic damping forces is an interesting, but hard-to-solve problem. Those difficulties motivate the present study, in which a time-domain condensation strategy of viscoelastic systems is addressed, where the viscoelastic behavior is modeled by using a four parameter fractional derivative model. After the discussion of various theoretical aspects, the exact and reduced time responses are calculated for a three-layer sandwich plate by considering nonlinear boundary conditions.
Directory of Open Access Journals (Sweden)
Sanaz Mahmoudpour
2011-01-01
Full Text Available Analysis and design of structures subjected to arbitrary dynamic loadings especially earthquakes have been studied during past decades. In practice, the effects of soil-structure interaction on the dynamic response of structures are usually neglected. In this study, the effect of soil-structure interaction on the dynamic response of structures has been examined. The substructure method using dynamic stiffness of soil is used to analyze soil-structure system. A coupled model based on finite element method and scaled boundary finite element method is applied. Finite element method is used to analyze the structure, and scaled boundary finite element method is applied in the analysis of unbounded soil region. Due to analytical solution in the radial direction, the radiation condition is satisfied exactly. The material behavior of soil and structure is assumed to be linear. The soil region is considered as a homogeneous half-space. The analysis is performed in time domain. A computer program is prepared to analyze the soil-structure system. Comparing the results with those in literature shows the exactness and competency of the proposed method.
Acceleration for 2D time-domain elastic full waveform inversion using a single GPU card
Jiang, Jinpeng; Zhu, Peimin
2018-05-01
Full waveform inversion (FWI) is a challenging procedure due to the high computational cost related to the modeling, especially for the elastic case. The graphics processing unit (GPU) has become a popular device for the high-performance computing (HPC). To reduce the long computation time, we design and implement the GPU-based 2D elastic FWI (EFWI) in time domain using a single GPU card. We parallelize the forward modeling and gradient calculations using the CUDA programming language. To overcome the limitation of relatively small global memory on GPU, the boundary saving strategy is exploited to reconstruct the forward wavefield. Moreover, the L-BFGS optimization method used in the inversion increases the convergence of the misfit function. A multiscale inversion strategy is performed in the workflow to obtain the accurate inversion results. In our tests, the GPU-based implementations using a single GPU device achieve >15 times speedup in forward modeling, and about 12 times speedup in gradient calculation, compared with the eight-core CPU implementations optimized by OpenMP. The test results from the GPU implementations are verified to have enough accuracy by comparing the results obtained from the CPU implementations.
Recent advances in marching-on-in-time schemes for solving time domain volume integral equations
Sayed, Sadeed Bin; Ulku, Huseyin Arda; Bagci, Hakan
2015-01-01
Transient electromagnetic field interactions on inhomogeneous penetrable scatterers can be analyzed by solving time domain volume integral equations (TDVIEs). TDVIEs are constructed by setting the summation of the incident and scattered field intensities to the total field intensity on the volumetric support of the scatterer. The unknown can be the field intensity or flux/current density. Representing the total field intensity in terms of the unknown using the relevant constitutive relation and the scattered field intensity in terms of the spatiotemporal convolution of the unknown with the Green function yield the final form of the TDVIE. The unknown is expanded in terms of local spatial and temporal basis functions. Inserting this expansion into the TDVIE and testing the resulting equation at discrete times yield a system of equations that is solved by the marching on-in-time (MOT) scheme. At each time step, a smaller system of equations, termed MOT system is solved for the coefficients of the expansion. The right-hand side of this system consists of the tested incident field and discretized spatio-temporal convolution of the unknown samples computed at the previous time steps with the Green function.
Singular trajectories: space-time domain topology of developing speckle fields
Vasil'ev, Vasiliy; Soskin, Marat S.
2010-02-01
It is shown the space-time dynamics of optical singularities is fully described by singularities trajectories in space-time domain, or evolution of transverse coordinates(x, y) in some fixed plane z0. The dynamics of generic developing speckle fields was realized experimentally by laser induced scattering in LiNbO3:Fe photorefractive crystal. The space-time trajectories of singularities can be divided topologically on two classes with essentially different scenario and duration. Some of them (direct topological reactions) consist from nucleation of singularities pair at some (x, y, z0, t) point, their movement and annihilation. They possess form of closed loops with relatively short time of existence. Another much more probable class of trajectories are chain topological reactions. Each of them consists from sequence of links, i.e. of singularities nucleation in various points (xi yi, ti) and following annihilation of both singularities in other space-time points with alien singularities of opposite topological indices. Their topology and properties are established. Chain topological reactions can stop on the borders of a developing speckle field or go to infinity. Examples of measured both types of topological reactions for optical vortices (polarization C points) in scalar (elliptically polarized) natural developing speckle fields are presented.
Long, Feng-Lai; Sun, Xiao-Mei; Peng, Xiu-Juan; Liu, Peng; He, Fang-Hui
2016-08-01
Xiangsha Yangwei pill was selected as a model drug in this research, and time domain reflectometry (TDR) was used to determine the water content in the pill. The effects of five factors including the number of pill layers, pill packing density, atmospheric moisture, ambient temperature and the ratio of pill formula were investigated on water content. The results showed that the number of pill layers and ambient temperature had significant effects on water content of pills, while the pill packing density, atmospheric moisture and pill formula ratio had little effect on the determination of water content in pills. The reflection value was stable when 6 layers of pills were used. Under the condition of 25 ℃ and 45% relative humidity, the water content of pills ranged from 4.01% to 22.38%, showing good linear relationship between water content and reflection value, and the model equation was as follows: Y=0.279X－21.670 (R²=0.997 0). Verification experiment was used to explain the feasibility of this prediction model. The precision of the method complied with the methodology standard. It is concluded that TDR can be used in determination of water content in Xiangsha Yangwei pills. Additionally, TDR, as a new way to quickly and efficiently determine the water content, has a prospect application in the processing of traditional Chinese medicine pharmacy, especially for concentrated pill. Copyright© by the Chinese Pharmaceutical Association.
Directory of Open Access Journals (Sweden)
Rasha Al-Hujazy
2018-03-01
Full Text Available Microfluidic platforms have received much attention in recent years. In particular, there is interest in combining spectroscopy with microfluidic platforms. This work investigates the integration of microfluidic platforms and terahertz time-domain spectroscopy (THz-TDS systems. A semiclassical computational model is used to simulate the emission of THz radiation from a GaAs photoconductive THz emitter. This model incorporates white noise with increasing noise amplitude (corresponding to decreasing dynamic range values. White noise is selected over other noise due to its contributions in THz-TDS systems. The results from this semiclassical computational model, in combination with defined sample thicknesses, can provide the maximum measurable absorption coefficient for a microfluidic-based THz-TDS system. The maximum measurable frequencies for such systems can be extracted through the relationship between the maximum measurable absorption coefficient and the absorption coefficient for representative biofluids. The sample thickness of the microfluidic platform and the dynamic range of the THz-TDS system play a role in defining the maximum measurable frequency for microfluidic-based THz-TDS systems. The results of this work serve as a design tool for the development of such systems.
Time Domain Equalizer Design Using Bit Error Rate Minimization for UWB Systems
Directory of Open Access Journals (Sweden)
Syed Imtiaz Husain
2009-01-01
Full Text Available Ultra-wideband (UWB communication systems occupy huge bandwidths with very low power spectral densities. This feature makes the UWB channels highly rich in resolvable multipaths. To exploit the temporal diversity, the receiver is commonly implemented through a Rake. The aim to capture enough signal energy to maintain an acceptable output signal-to-noise ratio (SNR dictates a very complicated Rake structure with a large number of fingers. Channel shortening or time domain equalizer (TEQ can simplify the Rake receiver design by reducing the number of significant taps in the effective channel. In this paper, we first derive the bit error rate (BER of a multiuser and multipath UWB system in the presence of a TEQ at the receiver front end. This BER is then written in a form suitable for traditional optimization. We then present a TEQ design which minimizes the BER of the system to perform efficient channel shortening. The performance of the proposed algorithm is compared with some generic TEQ designs and other Rake structures in UWB channels. It is shown that the proposed algorithm maintains a lower BER along with efficiently shortening the channel.
Active Time-Domain Reflectometry for Unattended Safeguards Systems FY15 Report
Energy Technology Data Exchange (ETDEWEB)
Tedeschi, Jonathan R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Leon E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moore, David E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sheen, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Conrad, Ryan C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gavric, Gordan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2015-09-01
The International Atomic Energy Agency (IAEA) continues to expand its use of unattended measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. In collaboration with the IAEA, tamper-indicating measures to address data-transmission authentication challenges with unattended safeguards systems are under investigation. Pacific Northwest National Laboratory (PNNL) is studying the viability of active time-domain reflectometry (TDR) along two parallel but interconnected paths: (1) swept-frequency TDR as the highly flexible, laboratory gold standard to which field-deployable options can be compared, and (2) a low-cost commercially available spread-spectrum TDR technology as one option for field implementation. This report describes PNNL’s FY15 progress in the viability study including: an overview of the TDR methods under investigation; description of the testing configurations and mock tampering scenarios; results from a preliminary sensitivity comparison of the two TDR methods; demonstration of a quantitative metric for estimating field performance that acknowledges the need for high detection probability while minimizing false alarms. FY15 progress reported here sets the stage for a rigorous comparison of the candidate TDR methods, over a range of deployment scenarios and perturbing effects typical of IAEA unattended monitoring systems.