WorldWideScience

Sample records for time-domain electromagnetic sounder

  1. Heliborne time domain electromagnetic system

    International Nuclear Information System (INIS)

    Bhattacharya, S.

    2009-01-01

    Atomic Minerals Directorate (AMD), are using heliborne and ground time domain electromagnetic (TDEM) system for the exploration of deep seated unconformity type uranium deposits. Uranium has been explored in various parts of the world like Athabasca basin using time domain electromagnetic system. AMD has identified some areas in India where such deposits are available. Apart from uranium exploration, the TDEM systems are used for the exploration of deep seated minerals like diamonds. Bhabha Atomic Research Centre (BARC) is involved in the indigenous design of the heliborne time domain system since this system is useful for DAE and also it has a scope of wide application. In this paper we discuss about the principle of time domain electromagnetic systems, their capabilities and the development and problems of such system for various other mineral exploration. (author)

  2. Time domain electromagnetic metal detectors

    International Nuclear Information System (INIS)

    Hoekstra, P.

    1996-01-01

    This presentation focuses on illustrating by case histories the range of applications and limitations of time domain electromagnetic (TDEM) systems for buried metal detection. Advantages claimed for TDEM metal detectors are: independent of instrument response (Geonics EM61) to surrounding soil and rock type; simple anomaly shape; mitigation of interference by ambient electromagnetic noise; and responsive to both ferrous and non-ferrous metallic targets. The data in all case histories to be presented were acquired with the Geonics EM61 TDEM system. Case histories are a test bed site on Molokai, Hawaii; Fort Monroe, Virginia; and USDOE, Rocky Flats Plant. The present limitations of this technology are: discrimination capabilities in terms of type of ordnance, and depth of burial is limited, and ability of resolving targets with small metallic ambient needs to be improved

  3. Cerenkov radio pulses from electromagnetic showers in the time domain

    International Nuclear Information System (INIS)

    Alvarez-Muniz, Jaime; Romero-Wolf, Andres; Zas, Enrique

    2010-01-01

    The electric field of the Cerenkov radio pulse produced by a single charged particle track in a dielectric medium is derived from first principles. An algorithm is developed to obtain the pulse in the time domain for numerical calculations. The algorithm is implemented in a Monte Carlo simulation of electromagnetic showers in dense media (specifically designed for coherent radio emission applications) as might be induced by interactions of ultrahigh energy neutrinos. The coherent Cerenkov radio emission produced by such showers is obtained simultaneously both in the time and frequency domains. A consistency check performed by Fourier transforming the pulse in time and comparing it to the frequency spectrum obtained directly in the simulations yields, as expected, fully consistent results. The reversal of the time structure inside the Cerenkov cone and the signs of the corresponding pulses are addressed in detail. The results, besides testing algorithms used for reference calculations in the frequency domain, shed new light into the properties of the radio pulse in the time domain. The shape of the pulse in the time domain is directly related to the depth development of the excess charge in the shower and its width to the observation angle with respect to the Cerenkov direction. This information can be of great practical importance for interpreting actual data.

  4. Improved methods for nightside time domain Lunar Electromagnetic Sounding

    Science.gov (United States)

    Fuqua-Haviland, H.; Poppe, A. R.; Fatemi, S.; Delory, G. T.; De Pater, I.

    2017-12-01

    Time Domain Electromagnetic (TDEM) Sounding isolates induced magnetic fields to remotely deduce material properties at depth. The first step of performing TDEM Sounding at the Moon is to fully characterize the dynamic plasma environment, and isolate geophysically induced currents from concurrently present plasma currents. The transfer function method requires a two-point measurement: an upstream reference measuring the pristine solar wind, and one downstream near the Moon. This method was last performed during Apollo assuming the induced fields on the nightside of the Moon expand as in an undisturbed vacuum within the wake cavity [1]. Here we present an approach to isolating induction and performing TDEM with any two point magnetometer measurement at or near the surface of the Moon. Our models include a plasma induction model capturing the kinetic plasma environment within the wake cavity around a conducting Moon, and a geophysical forward model capturing induction in a vacuum. The combination of these two models enable the analysis of magnetometer data within the wake cavity. Plasma hybrid models use the upstream plasma conditions and interplanetary magnetic field (IMF) to capture the wake current systems formed around the Moon. The plasma kinetic equations are solved for ion particles with electrons as a charge-neutralizing fluid. These models accurately capture the large scale lunar wake dynamics for a variety of solar wind conditions: ion density, temperature, solar wind velocity, and IMF orientation [2]. Given the 3D orientation variability coupled with the large range of conditions seen within the lunar plasma environment, we characterize the environment one case at a time. The global electromagnetic induction response of the Moon in a vacuum has been solved numerically for a variety of electrical conductivity models using the finite-element method implemented within the COMSOL software. This model solves for the geophysically induced response in vacuum to

  5. Calibrating electromagnetic induction conductivities with time-domain reflectometry measurements

    Directory of Open Access Journals (Sweden)

    G. Dragonetti

    2018-02-01

    Full Text Available This paper deals with the issue of monitoring the spatial distribution of bulk electrical conductivity, σb, in the soil root zone by using electromagnetic induction (EMI sensors under different water and salinity conditions. To deduce the actual distribution of depth-specific σb from EMI apparent electrical conductivity (ECa measurements, we inverted the data by using a regularized 1-D inversion procedure designed to manage nonlinear multiple EMI-depth responses. The inversion technique is based on the coupling of the damped Gauss–Newton method with truncated generalized singular value decomposition (TGSVD. The ill-posedness of the EMI data inversion is addressed by using a sharp stabilizer term in the objective function. This specific stabilizer promotes the reconstruction of blocky targets, thereby contributing to enhance the spatial resolution of the EMI results in the presence of sharp boundaries (otherwise smeared out after the application of more standard Occam-like regularization strategies searching for smooth solutions. Time-domain reflectometry (TDR data are used as ground-truth data for calibration of the inversion results. An experimental field was divided into four transects 30 m long and 2.8 m wide, cultivated with green bean, and irrigated with water at two different salinity levels and using two different irrigation volumes. Clearly, this induces different salinity and water contents within the soil profiles. For each transect, 26 regularly spaced monitoring soundings (1 m apart were selected for the collection of (i Geonics EM-38 and (ii Tektronix reflectometer data. Despite the original discrepancies in the EMI and TDR data, we found a significant correlation of the means and standard deviations of the two data series; in particular, after a low-pass spatial filtering of the TDR data. Based on these findings, this paper introduces a novel methodology to calibrate EMI-based electrical conductivities via TDR

  6. Calibrating electromagnetic induction conductivities with time-domain reflectometry measurements

    Science.gov (United States)

    Dragonetti, Giovanna; Comegna, Alessandro; Ajeel, Ali; Piero Deidda, Gian; Lamaddalena, Nicola; Rodriguez, Giuseppe; Vignoli, Giulio; Coppola, Antonio

    2018-02-01

    This paper deals with the issue of monitoring the spatial distribution of bulk electrical conductivity, σb, in the soil root zone by using electromagnetic induction (EMI) sensors under different water and salinity conditions. To deduce the actual distribution of depth-specific σb from EMI apparent electrical conductivity (ECa) measurements, we inverted the data by using a regularized 1-D inversion procedure designed to manage nonlinear multiple EMI-depth responses. The inversion technique is based on the coupling of the damped Gauss-Newton method with truncated generalized singular value decomposition (TGSVD). The ill-posedness of the EMI data inversion is addressed by using a sharp stabilizer term in the objective function. This specific stabilizer promotes the reconstruction of blocky targets, thereby contributing to enhance the spatial resolution of the EMI results in the presence of sharp boundaries (otherwise smeared out after the application of more standard Occam-like regularization strategies searching for smooth solutions). Time-domain reflectometry (TDR) data are used as ground-truth data for calibration of the inversion results. An experimental field was divided into four transects 30 m long and 2.8 m wide, cultivated with green bean, and irrigated with water at two different salinity levels and using two different irrigation volumes. Clearly, this induces different salinity and water contents within the soil profiles. For each transect, 26 regularly spaced monitoring soundings (1 m apart) were selected for the collection of (i) Geonics EM-38 and (ii) Tektronix reflectometer data. Despite the original discrepancies in the EMI and TDR data, we found a significant correlation of the means and standard deviations of the two data series; in particular, after a low-pass spatial filtering of the TDR data. Based on these findings, this paper introduces a novel methodology to calibrate EMI-based electrical conductivities via TDR direct measurements. This

  7. Solution of electromagnetic scattering problems using time domain techniques

    Science.gov (United States)

    Britt, Charles L.

    1989-01-01

    New methods are developed to calculate the electromagnetic diffraction or scattering characteristics of objects of arbitrary material and shape. The methods extend the efforts of previous researchers in the use of finite-difference and pulse response techniques. Examples are given of the scattering from infinite conducting and nonconducting cylinders, open channel, sphere, cone, cone sphere, coated disk, open boxes, and open and closed finite cylinders with axially incident waves.

  8. Modeling ferrite electromagnetic response in the time domain

    International Nuclear Information System (INIS)

    Johnson, J.; DeFord, J.F.; Craig, G.D.

    1989-01-01

    The behavior of ferrite loads commonly found in induction accelertors has important consequences for the performance of these accelerators. Previous work by the authors on modeling the electromagnetic fields in induction cavities has focussed upon use of a simple, phenomenological model for the process of magnetization reversal in these ferrite loads. In this paper we consider a model for magnetization reversal which is more deeply rooted in theory, and present a simulation of the reversal process based upon this model for an idealized set of boundary conditions. 7 refs., 3 figs

  9. Effects of the airwave in time-domain marine controlled-source electromagnetics

    NARCIS (Netherlands)

    Hunziker, J.W.; Slob, E.C.; Mulder, W.

    2011-01-01

    In marine time-domain controlled-source electromagnetics (CSEM), there are two different acquisition methods: with horizontal sources for fast and simple data acquisition or with vertical sources for minimizing the effects of the airwave. Illustrations of the electric field as a function of space

  10. analysis of large electromagnetic pulse simulators using the electric field integral equation method in time domain

    International Nuclear Information System (INIS)

    Jamali, J.; Aghajafari, R.; Moini, R.; Sadeghi, H.

    2002-01-01

    A time-domain approach is presented to calculate electromagnetic fields inside a large Electromagnetic Pulse (EMP) simulator. This type of EMP simulator is used for studying the effect of electromagnetic pulses on electrical apparatus in various structures such as vehicles, a reoplanes, etc. The simulator consists of three planar transmission lines. To solve the problem, we first model the metallic structure of the simulator as a grid of conducting wires. The numerical solution of the governing electric field integral equation is then obtained using the method of moments in time domain. To demonstrate the accuracy of the model, we consider a typical EMP simulator. The comparison of our results with those obtained experimentally in the literature validates the model introduced in this paper

  11. Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics

    CERN Document Server

    Gedney, Stephen

    2011-01-01

    Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics provides a comprehensive tutorial of the most widely used method for solving Maxwell's equations -- the Finite Difference Time-Domain Method. This book is an essential guide for students, researchers, and professional engineers who want to gain a fundamental knowledge of the FDTD method. It can accompany an undergraduate or entry-level graduate course or be used for self-study. The book provides all the background required to either research or apply the FDTD method for the solution of Maxwell's equations to p

  12. Numerical results for near surface time domain electromagnetic exploration: a full waveform approach

    Science.gov (United States)

    Sun, H.; Li, K.; Li, X., Sr.; Liu, Y., Sr.; Wen, J., Sr.

    2015-12-01

    Time domain or Transient electromagnetic (TEM) survey including types with airborne, semi-airborne and ground play important roles in applicants such as geological surveys, ground water/aquifer assess [Meju et al., 2000; Cox et al., 2010], metal ore exploration [Yang and Oldenburg, 2012], prediction of water bearing structures in tunnels [Xue et al., 2007; Sun et al., 2012], UXO exploration [Pasion et al., 2007; Gasperikova et al., 2009] etc. The common practice is introducing a current into a transmitting (Tx) loop and acquire the induced electromagnetic field after the current is cut off [Zhdanov and Keller, 1994]. The current waveforms are different depending on instruments. Rectangle is the most widely used excitation current source especially in ground TEM. Triangle and half sine are commonly used in airborne and semi-airborne TEM investigation. In most instruments, only the off time responses are acquired and used in later analysis and data inversion. Very few airborne instruments acquire the on time and off time responses together. Although these systems acquire the on time data, they usually do not use them in the interpretation.This abstract shows a novel full waveform time domain electromagnetic method and our recent modeling results. The benefits comes from our new algorithm in modeling full waveform time domain electromagnetic problems. We introduced the current density into the Maxwell's equation as the transmitting source. This approach allows arbitrary waveforms, such as triangle, half-sine, trapezoidal waves or scatter record from equipment, being used in modeling. Here, we simulate the establishing and induced diffusion process of the electromagnetic field in the earth. The traditional time domain electromagnetic with pure secondary fields can also be extracted from our modeling results. The real time responses excited by a loop source can be calculated using the algorithm. We analyze the full time gates responses of homogeneous half space and two

  13. Calibrating a Salt Water Intrusion Model with Time-Domain Electromagnetic Data

    DEFF Research Database (Denmark)

    Herckenrath, Daan; Odlum, Nick; Nenna, Vanessa

    2013-01-01

    are transformed to an electrical resistivity model, after which a geophysical forward response is calculated and compared with the measured geophysical data. This approach was applied for a field site in Santa Cruz County, California, where a time-domain electromagnetic (TDEM) dataset was collected......Salt water intrusion models are commonly used to support groundwater resource management in coastal aquifers. Concentration data used for model calibration are often sparse and limited in spatial extent. With airborne and ground-based electromagnetic surveys, electrical resistivity models can...

  14. A discontinuous galerkin time domain-boundary integral method for analyzing transient electromagnetic scattering

    KAUST Repository

    Li, Ping

    2014-07-01

    This paper presents an algorithm hybridizing discontinuous Galerkin time domain (DGTD) method and time domain boundary integral (BI) algorithm for 3-D open region electromagnetic scattering analysis. The computational domain of DGTD is rigorously truncated by analytically evaluating the incoming numerical flux from the outside of the truncation boundary through BI method based on the Huygens\\' principle. The advantages of the proposed method are that it allows the truncation boundary to be conformal to arbitrary (convex/ concave) scattering objects, well-separated scatters can be truncated by their local meshes without losing the physics (such as coupling/multiple scattering) of the problem, thus reducing the total mesh elements. Furthermore, low frequency waves can be efficiently absorbed, and the field outside the truncation domain can be conveniently calculated using the same BI formulation. Numerical examples are benchmarked to demonstrate the accuracy and versatility of the proposed method.

  15. A hybrid time-domain discontinuous galerkin-boundary integral method for electromagnetic scattering analysis

    KAUST Repository

    Li, Ping

    2014-05-01

    A scheme hybridizing discontinuous Galerkin time-domain (DGTD) and time-domain boundary integral (TDBI) methods for accurately analyzing transient electromagnetic scattering is proposed. Radiation condition is enforced using the numerical flux on the truncation boundary. The fields required by the flux are computed using the TDBI from equivalent currents introduced on a Huygens\\' surface enclosing the scatterer. The hybrid DGTDBI ensures that the radiation condition is mathematically exact and the resulting computation domain is as small as possible since the truncation boundary conforms to scatterer\\'s shape and is located very close to its surface. Locally truncated domains can also be defined around each disconnected scatterer additionally reducing the size of the overall computation domain. Numerical examples demonstrating the accuracy and versatility of the proposed method are presented. © 2014 IEEE.

  16. Application of time domain electromagnetic method to study Lembang fault, West Java

    Science.gov (United States)

    Widodo, Rasyid, Faeruz Maulana

    2017-07-01

    Lembang Fault is an active fault structure lied beneath a populous area of West Java. It is located at about 9 km from the city centre of Bandung. We have conducted an electromagnetic survey in the area suggested as the zone of Lembang Fault, the Karyawangi Village, West Bandung. Time domain electromagnetic (TDEM) measurements were carried out using two profiles, with a total number of 34 soundings. The TDEM data gives detail information of the shallow conductivity structure down to a depth of 100 m. The 1-D models consist of three layers in the research area. The first layer at the depth between 0 to 3 meters is dominated by low resistivity (resistivity (> 100 Ωm). The third layer with a resistivity of 10 - 100 Ωm corresponds to sandstone. The model indicates a local fault structure in the study area.

  17. Analysis of electromagnetic wave interactions on nonlinear scatterers using time domain volume integral equations

    KAUST Repository

    Ulku, Huseyin Arda

    2014-07-06

    Effects of material nonlinearities on electromagnetic field interactions become dominant as field amplitudes increase. A typical example is observed in plasmonics, where highly localized fields “activate” Kerr nonlinearities. Naturally, time domain solvers are the method of choice when it comes simulating these nonlinear effects. Oftentimes, finite difference time domain (FDTD) method is used for this purpose. This is simply due to the fact that explicitness of the FDTD renders the implementation easier and the material nonlinearity can be easily accounted for using an auxiliary differential equation (J.H. Green and A. Taflove, Opt. Express, 14(18), 8305-8310, 2006). On the other hand, explicit marching on-in-time (MOT)-based time domain integral equation (TDIE) solvers have never been used for the same purpose even though they offer several advantages over FDTD (E. Michielssen, et al., ECCOMAS CFD, The Netherlands, Sep. 5-8, 2006). This is because explicit MOT solvers have never been stabilized until not so long ago. Recently an explicit but stable MOT scheme has been proposed for solving the time domain surface magnetic field integral equation (H.A. Ulku, et al., IEEE Trans. Antennas Propag., 61(8), 4120-4131, 2013) and later it has been extended for the time domain volume electric field integral equation (TDVEFIE) (S. B. Sayed, et al., Pr. Electromagn. Res. S., 378, Stockholm, 2013). This explicit MOT scheme uses predictor-corrector updates together with successive over relaxation during time marching to stabilize the solution even when time step is as large as in the implicit counterpart. In this work, an explicit MOT-TDVEFIE solver is proposed for analyzing electromagnetic wave interactions on scatterers exhibiting Kerr nonlinearity. Nonlinearity is accounted for using the constitutive relation between the electric field intensity and flux density. Then, this relation and the TDVEFIE are discretized together by expanding the intensity and flux - sing half

  18. Electromagnetic Field Theory in (N+1)-Space-Time : AModern Time-Domain Tensor/Array Introduction

    NARCIS (Netherlands)

    De Hoop, A.T.

    2012-01-01

    In this paper, a modern time-domain introduction is presented for electromagnetic field theory in (N+1)-spacetime. It uses a consistent tensor/array notation that accommodates the description of electromagnetic phenomena in N-dimensional space (plus time), a requirement that turns up in present-day

  19. Modeling induced polarization effects in helicopter time domain electromagnetic data: Synthetic case studies

    DEFF Research Database (Denmark)

    Viezzoli, Andrea; Kaminskiy, Vladislav; Fiandaca, Gianluca

    2017-01-01

    We have developed a synthetic multiparametric modeling and inversion exercise undertaken to study the robustness of inverting airborne time-domain electromagnetic (TDEM) data to extract Cole-Cole parameters. The following issues were addressed: nonuniqueness, ill posedness, dependency on manual...... constrained multiparametric inversion was evaluated, including recovery of chargeability distributions from shallow and deep targets based on analysis of induced polarization (IP) effects, simulated in airborne TDEM data. Different scenarios were studied, including chargeable targets associated...... by a shallower chargeable target, became possible only when full Cole-Cole modeling was used in the inversion. Lateral constraints improved the recoverability of model parameters. Finally, modeling IP effects increased the accuracy of recovered electrical resistivity models....

  20. Design of a coil sensor for time domain electromagnetic system for uranium exploration

    International Nuclear Information System (INIS)

    Keshwani, R.T.; Bhattacharya, S.

    2011-01-01

    Time domain electromagnetic system is used for exploration of deep seated deposits under the Earth surface. The basic principle is to set up eddy currents in conductors using pulsed excited transmitter coil during on time of a pulse. The decay time of eddy currents during off time of a pulse is a function conductivity, permeability and depth of conductor located under the Earth surface. The technology is being developed to carry out exploration of mineral deposits (basically uranium) under the Earth surface. The decay of eddy currents is eddy using J coil sensor located coplanar with the transmitter coil. The depth upto which successful exploration can be carried is strong function of design of receiver coil. The design parameters include number of turns, bandwidth, stray capacitance and resistance of a coil. This paper describes various designs tried out and their characterization results. Field results for a ground based system developed are also described. (author)

  1. An asynchronous spacetime discontinuous Galerkin finite element method for time domain electromagnetics

    Science.gov (United States)

    Abedi, Reza; Mudaliar, Saba

    2017-12-01

    We present an asynchronous spacetime discontinuous Galerkin (aSDG) method for time domain electromagnetics in which space and time are directly discretized. By using differential forms we express Maxwell's equations and consequently their discontinuous Galerkin discretization for arbitrary domains in spacetime. The elements are discretized with electric and magnetic basis functions that are discontinuous across all inter-element boundaries and can have arbitrary high and per element spacetime orders. When restricted to unstructured grids that satisfy a specific causality constraint, the method has a local and asynchronous solution procedure with linear solution complexity in terms of the number of elements. We numerically investigate the convergence properties of the method for 1D to 3D uniform grids for energy dissipation, an error relative to the exact solution, and von Neumann dissipation and dispersion errors. Two dimensional simulations demonstrate the effectiveness of the method in resolving sharp wave fronts.

  2. Hydrogeophysical exploration of three-dimensional salinity anomalies with the time-domain electromagnetic method (TDEM)

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Gondwe, Bibi Ruth Neuman; Christiansen, Lars

    2010-01-01

    Delta is presented. Evaporative salt enrichment causes a strong salinity anomaly under the island. We show that the TDEM field data cannot be interpreted in terms of standard one-dimensional layered-earth TDEM models, because of the strongly three-dimensional nature of the salinity anomaly. Three......The time-domain electromagnetic method (TDEM) is widely used in groundwater exploration and geological mapping applications. TDEM measures subsurface electrical conductivity, which is strongly correlated with groundwater salinity. TDEM offers a cheap and non-invasive option for mapping saltwater...... intrusion and groundwater salinization. Traditionally, TDEM data is interpreted using one-dimensional layered-earth models of the subsurface. However, most saltwater intrusion and groundwater salinization phenomena are characterized by three-dimensional anomalies. To fully exploit the information content...

  3. A Moving Window Technique in Parallel Finite Element Time Domain Electromagnetic Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Lie-Quan; Candel, Arno; Ng, Cho; Ko, Kwok; /SLAC

    2010-06-07

    A moving window technique for the finite element time domain (FETD) method is developed to simulate the propagation of electromagnetic waves induced by the transit of a charged particle beam inside large and long structures. The window moving along with the beam in the computational domain adopts high-order finite-element basis functions through p refinement and/or a high-resolution mesh through h refinement so that a sufficient accuracy is attained with substantially reduced computational costs. Algorithms to transfer discretized fields from one mesh to another, which are the key to implementing a moving window in a finite-element unstructured mesh, are presented. Numerical experiments are carried out using the moving window technique to compute short-range wakefields in long accelerator structures. The results are compared with those obtained from the normal FETD method and the advantages of using the moving window technique are discussed.

  4. Application of Time-Domain Electromagnetic Method in Investigating Saltwater Intrusion of Santiago Island (Cape Verde)

    Science.gov (United States)

    Gonçalves, Rui; Farzamian, Mohammad; Monteiro Santos, Fernando A.; Represas, Patrícia; Mota Gomes, A.; Lobo de Pina, A. F.; Almeida, Eugénio P.

    2017-11-01

    Santiago Island, the biggest and most populated island of the Cape Verde Republic, is characterised by limited surface waters and strong dependence on groundwater sources as the primary source of natural water supply for extensive agricultural activity and human use. However, as a consequence of the scarce precipitation and high evaporation as well as the intense overexploitation of the groundwater resources, the freshwater management is also in a delicate balance with saltwater at coastal areas. The time-domain electromagnetic (TDEM) method is used to locate the extent of saltwater intrusion in four important agricultural regions in Santiago Island; São Domingos, Santa Cruz, São Miguel, and Tarrafal. The application of this method in Santiago Island proves it to be a successful tool in imaging the fresh/saltwater interface location. Depths to the saline zones and extensions of saline water are mapped along eight TDEM profiles.

  5. Time-Domain Finite Elements for Virtual Testing of Electromagnetic Compatibility

    Directory of Open Access Journals (Sweden)

    V. Sedenka

    2013-04-01

    Full Text Available The paper presents a time-domain finite-element solver developed for simulations related to solving electromagnetic compatibility issues. The software is applied as a module integrated into a computational framework developed within a FP7 European project High Intensity Radiated Field – Synthetic Environment (HIRF SE able to simulate a large class of problems. In the paper, the mathematical formulation is briefly presented, and special emphasis is put on the user point of view on the simulation tool-chain. The functionality is demonstrated on the computation of shielding effectiveness of two composite materials. Results are validated through experimental measurements and agreement is confirmed by automatic feature selective algorithms.

  6. Spatially constrained Bayesian inversion of frequency- and time-domain electromagnetic data from the Tellus projects

    Science.gov (United States)

    Kiyan, Duygu; Rath, Volker; Delhaye, Robert

    2017-04-01

    The frequency- and time-domain airborne electromagnetic (AEM) data collected under the Tellus projects of the Geological Survey of Ireland (GSI) which represent a wealth of information on the multi-dimensional electrical structure of Ireland's near-surface. Our project, which was funded by GSI under the framework of their Short Call Research Programme, aims to develop and implement inverse techniques based on various Bayesian methods for these densely sampled data. We have developed a highly flexible toolbox using Python language for the one-dimensional inversion of AEM data along the flight lines. The computational core is based on an adapted frequency- and time-domain forward modelling core derived from the well-tested open-source code AirBeo, which was developed by the CSIRO (Australia) and the AMIRA consortium. Three different inversion methods have been implemented: (i) Tikhonov-type inversion including optimal regularisation methods (Aster el al., 2012; Zhdanov, 2015), (ii) Bayesian MAP inversion in parameter and data space (e.g. Tarantola, 2005), and (iii) Full Bayesian inversion with Markov Chain Monte Carlo (Sambridge and Mosegaard, 2002; Mosegaard and Sambridge, 2002), all including different forms of spatial constraints. The methods have been tested on synthetic and field data. This contribution will introduce the toolbox and present case studies on the AEM data from the Tellus projects.

  7. A Time Domain Update Method for Reservoir History Matching of Electromagnetic Data

    KAUST Repository

    Katterbauer, Klemens

    2014-03-25

    The oil & gas industry has been the backbone of the world\\'s economy in the last century and will continue to be in the decades to come. With increasing demand and conventional reservoirs depleting, new oil industry projects have become more complex and expensive, operating in areas that were previously considered impossible and uneconomical. Therefore, good reservoir management is key for the economical success of complex projects requiring the incorporation of reliable uncertainty estimates for reliable production forecasts and optimizing reservoir exploitation. Reservoir history matching has played here a key role incorporating production, seismic, electromagnetic and logging data for forecasting the development of reservoirs and its depletion. With the advances in the last decade, electromagnetic techniques, such as crosswell electromagnetic tomography, have enabled engineers to more precisely map the reservoirs and understand their evolution. Incorporating the large amount of data efficiently and reducing uncertainty in the forecasts has been one of the key challenges for reservoir management. Computing the conductivity distribution for the field for adjusting parameters in the forecasting process via solving the inverse problem has been a challenge, due to the strong ill-posedness of the inversion problem and the extensive manual calibration required, making it impossible to be included into an efficient reservoir history matching forecasting algorithm. In the presented research, we have developed a novel Finite Difference Time Domain (FDTD) based method for incorporating electromagnetic data directly into the reservoir simulator. Based on an extended Archie relationship, EM simulations are performed for both forecasted and Porosity-Saturation retrieved conductivity parameters being incorporated directly into an update step for the reservoir parameters. This novel direct update method has significant advantages such as that it overcomes the expensive and ill

  8. Generalized algorithm for control of numerical dispersion in explicit time-domain electromagnetic simulations

    Directory of Open Access Journals (Sweden)

    Benjamin M. Cowan

    2013-04-01

    Full Text Available We describe a modification to the finite-difference time-domain algorithm for electromagnetics on a Cartesian grid which eliminates numerical dispersion error in vacuum for waves propagating along a grid axis. We provide details of the algorithm, which generalizes previous work by allowing 3D operation with a wide choice of aspect ratio, and give conditions to eliminate dispersive errors along one or more of the coordinate axes. We discuss the algorithm in the context of laser-plasma acceleration simulation, showing significant reduction—up to a factor of 280, at a plasma density of 10^{23}  m^{-3}—of the dispersion error of a linear laser pulse in a plasma channel. We then compare the new algorithm with the standard electromagnetic update for laser-plasma accelerator stage simulations, demonstrating that by controlling numerical dispersion, the new algorithm allows more accurate simulation than is otherwise obtained. We also show that the algorithm can be used to overcome the critical but difficult challenge of consistent initialization of a relativistic particle beam and its fields in an accelerator simulation.

  9. Time-domain Electromagnetic Exploration of Salt Islands: Three-dimensional Modelling and Field Results

    Science.gov (United States)

    Bauer-Gottwein, P.; . Gondwe, B. R. N.; Christiansen, L.; Kgotlhang, L.; Herckenrath, D.; Zimmermann, S.

    2009-04-01

    The time-domain electromagnetic method (TDEM) has been widely used in groundwater exploration and geological mapping applications. TDEM measures the subsurface electrical conductivity, which is strongly correlated with groundwater salinity. TDEM thus offers cheap and non-invasive ways to map saltwater intrusion and groundwater salinization. Typically, TDEM data is interpreted using 1D layered-earth models of the subsurface. However, most saltwater intrusion and groundwater salinization phenomena produce eminently three-dimensional anomalies. To fully exploit the information of TDEM data in this context, three-dimensional modeling of the TDEM response is required. We present a finite-element solution for three-dimensional forward modeling of TDEM responses from arbitrary subsurface electrical conductivity distributions. As an application example, the groundwater salinization process on islands in the Okavango Delta is simulated using a variable-density flow and salinity transport model. The transport model outputs are subsequently converted to TDEM responses using the 3D TDEM forward code. A field dataset of ground-based and airborne TDEM data from a selected Okavango Delta island is presented. The TDEM field data cannot be interpreted in terms of 1D layered-earth models, because of the strongly three-dimensional nature of the salinity anomaly under the island. A 3D interpretation of the field data allows detailed and consistent mapping of this anomaly.

  10. Characterizing leachate contamination in a landfill site using Time Domain Electromagnetic (TDEM) imaging

    Science.gov (United States)

    Baawain, Mahad S.; Al-Futaisi, Ahmed M.; Ebrahimi, A.; Omidvarborna, Hamid

    2018-04-01

    Time Domain Electromagnetic (TDEM) survey as well as drilling investigations were conducted to identify possible contamination of a dumping site in an unsaturated zone located in Barka, Oman. The method was applied to evaluate conductivity of the contaminated plumes in hot and arid/semiarid region, where high temperatures commonly ranged between 35 and 50 °C. The drilling investigation was carried out over the survey area to verify the geophysical results. The low-resistivity zone (waste disposal activities. The combination of TDEM survey results with the lithology of piezometers showed that higher resistivity (>90 Ωm) was correlated with compacted or cemented gravels and cobbles, particularly that of medium dense to very dense gravels and cobbles. Additionally, the TDEM profiles suggested that the plume migration followed a preferential flow path. The resistivity range 40-80 Ωm considered as contaminated areas; however, the drilling results showed the close resistivity domain in the depth >70 m below water table for some profiles (BL1, BL2, BL3, BL4 and BL5). The combined results of drilling wells, piezometers, and TDEM apparent resistivity maps showed a coincidence of the migrated leachate plume and water table. Predicted zone of the probable contamination was located at the depth of around 65 m and horizontal offset ranges 0-280 m, 80-240 m, and 40-85 m in the sounding traverses of BL4, BL6 and BL7, respectively.

  11. Joint Electrical and Time Domain Electromagnetism (TDEM) Data Inversion Applied to the Super Sauze Earthflow (France)

    Science.gov (United States)

    Schmutz, Myriam; Albouy, Yves; Guerin, Roger; Maquaire, Olivier; Vassal, Jacques; Schott, Jean-Jacques; Descloitres, Marc

    In order to evaluate the risk of an earthflow to evolve abruptly into torrential surge, knowledge of its internal structure is necessary. This study deals with the internal structure of the Super Sauze earthflow developed in black marls in the southern French Alps. Difficulties in this study area are a rough topography, surface heterogeneities and a large thickness variability of the earthflow mass. These conditions hamper the application of geotechnical methods as a preferred investigation mean. Moreover, they pose problems to geophysical investigations and their interpretation.This paper shows the advantage offered by the joint inversion of Time Domain ElectroMagne-tism data (TDEM) and data obtained from Direct Current soundings (DC). The results of the joint inversions are checked using geotechnical data. The internal structure of the earthflow interpreted on the basis of joint inversion data is comparable to that obtained from geotechnical results. Moreover, contrary to separate electrical and TDEM inversions, a satisfactory joint inversion model can be derived without supplying additional a priori information.

  12. Hydrogeophysical exploration of three-dimensional salinity anomalies with the time-domain electromagnetic method (TDEM)

    Science.gov (United States)

    Bauer-Gottwein, Peter; Gondwe, Bibi N.; Christiansen, Lars; Herckenrath, Daan; Kgotlhang, Lesego; Zimmermann, Stephanie

    2010-01-01

    SummaryThe time-domain electromagnetic method (TDEM) is widely used in groundwater exploration and geological mapping applications. TDEM measures subsurface electrical conductivity, which is strongly correlated with groundwater salinity. TDEM offers a cheap and non-invasive option for mapping saltwater intrusion and groundwater salinization. Traditionally, TDEM data is interpreted using one-dimensional layered-earth models of the subsurface. However, most saltwater intrusion and groundwater salinization phenomena are characterized by three-dimensional anomalies. To fully exploit the information content of TDEM data in this context, three-dimensional modeling of the TDEM response is required. We present a finite-element solution for three-dimensional forward modeling of TDEM responses from arbitrary subsurface electrical conductivity distributions. The solution is benchmarked against standard layered-earth models and previously published three-dimensional forward TDEM modeling results. Concentration outputs from a groundwater flow and salinity transport model are converted to subsurface electrical conductivity using standard petrophysical relationships. TDEM responses over the resulting subsurface electrical conductivity distribution are generated using the three-dimensional TDEM forward model. The parameters of the hydrodynamic model are constrained by matching observed and simulated TDEM responses. As an application example, a field dataset of ground-based TDEM data from an island in the Okavango Delta is presented. Evaporative salt enrichment causes a strong salinity anomaly under the island. We show that the TDEM field data cannot be interpreted in terms of standard one-dimensional layered-earth TDEM models, because of the strongly three-dimensional nature of the salinity anomaly. Three-dimensional interpretation of the field data allows for detailed and consistent mapping of this anomaly and makes better use of the information contained in the TDEM field

  13. Use of the finite-difference time-domain method in electromagnetic dosimetry

    International Nuclear Information System (INIS)

    Sullivan, D.M.

    1987-01-01

    Although there are acceptable methods for calculating whole body electromagnetic absorption, no completely acceptable method for calculating the local specific absorption rate (SAR) at points within the body has been developed. Frequency domain methods, such as the method of moments (MoM) have achieved some success; however, the MoM requires computer storage on the order of (3N) 2 , and computation time on the order of (3N) 3 where N is the number of cells. The finite-difference time-domain (FDTD) method has been employed extensively in calculating the scattering from metallic objects, and recently is seeing some use in calculating the interaction of EM fields with complex, lossy dielectric bodies. Since the FDTD method has storage and time requirements proportional to N, it presents an attractive alternative to calculating SAR distribution in large bodies. This dissertation describes the FDTD method and evaluates it by comparing its results with analytic solutions in 2 and 3 dimensions. The results obtained demonstrate that the FDTD method is capable of calculating internal SAR distribution with acceptable accuracy. The construction of a data base to provide detailed, inhomogeneous man models for use with the FDTD method is described. Using this construction method, a model of 40,000 1.31 cm. cells is developed for use at 350 MHz, and another model consisting of 5000 2.62 cm. cells is developed for use at 100 MHz. To add more realism to the problem, a ground plane is added to the FDTD software. The needed changes to the software are described, along with a test which confirms its accuracy. Using the CRAY II supercomputer, SAR distributions in human models are calculated using incident frequencies of 100 MHz and 350 MHz for three different cases: (1) A homogeneous man model in free space, (2) an inhomogeneous man model in free space, and (3) an inhomogeneous man model standing on a ground plane

  14. Time-domain electromagnetic soundings collected in Dawson County, Nebraska, 2007-09

    Science.gov (United States)

    Payne, Jason; Teeple, Andrew

    2011-01-01

    Between April 2007 and November 2009, the U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District, collected time-domain electro-magnetic (TDEM) soundings at 14 locations in Dawson County, Nebraska. The TDEM soundings provide information pertaining to the hydrogeology at each of 23 sites at the 14 locations; 30 TDEM surface geophysical soundings were collected at the 14 locations to develop smooth and layered-earth resistivity models of the subsurface at each site. The soundings yield estimates of subsurface electrical resistivity; variations in subsurface electrical resistivity can be correlated with hydrogeologic and stratigraphic units. Results from each sounding were used to calculate resistivity to depths of approximately 90-130 meters (depending on loop size) below the land surface. Geonics Protem 47 and 57 systems, as well as the Alpha Geoscience TerraTEM, were used to collect the TDEM soundings (voltage data from which resistivity is calculated). For each sounding, voltage data were averaged and evaluated statistically before inversion (inverse modeling). Inverse modeling is the process of creating an estimate of the true distribution of subsurface resistivity from the mea-sured apparent resistivity obtained from TDEM soundings. Smooth and layered-earth models were generated for each sounding. A smooth model is a vertical delineation of calculated apparent resistivity that represents a non-unique estimate of the true resistivity. Ridge regression (Interpex Limited, 1996) was used by the inversion software in a series of iterations to create a smooth model consisting of 24-30 layers for each sounding site. Layered-earth models were then generated based on results of smooth modeling. The layered-earth models are simplified (generally 1 to 6 layers) to represent geologic units with depth. Throughout the area, the layered-earth models range from 2 to 4 layers, depending on observed inflections in the raw data and smooth model

  15. Comparing bulk electrical conductivities spatial series obtained by Time Domain Reflectometry and Electromagnetic Induction sensors

    Science.gov (United States)

    Saeed, Ali; Ajeel, Ali; dragonetti, giovanna; Comegna, Alessandro; Lamaddalena, Nicola; Coppola, Antonio

    2016-04-01

    The ability to determine and monitor the effects of salts on soils and plants, are of great importance to agriculture. To control its harmful effects, soil salinity needs to be monitored in space and time. This requires knowledge of its magnitude, temporal dynamics, and spatial variability. Conventional ground survey procedures by direct soil sampling are time consuming, costly and destructive. Alternatively, soil salinity can be evaluated by measuring the bulk electrical conductivity (σb) directly in the field. Time domain reflectometry (TDR) sensors allow simultaneous measurements of water content, θ, and σb. They may be calibrated for estimating the electrical conductivity of the soil solution (σw). However, they have a relatively small observation window and thus they are thought to only provide local-scale measurements. The spatial range of the sensors is limited to tens of centimeters and extension of the information to a large area can be problematic. Also, information on the vertical distribution of the σb soil profile may only be obtained by installing sensors at different depths. In this sense, the TDR may be considered as an invasive technique. Compared to the TDR, other geophysical methods based for example on Electromagnetic Induction (EMI) techniques are non-invasive methods and represent a viable alternative to traditional techniques for soil characterization. The problem is that all these techniques give depth-weighted apparent electrical conductivity (σa) measurements, depending on the specific depth distribution of the σb, as well as on the depth response function of the sensor used. In order to deduce the actual distribution of the bulk electrical conductivity, σb, in the soil profile, one needs to invert the signal coming from EMI. Because of their relatively lower observation window, TDR sensors provide quasi-point values and do not adequately integrate the spatial variability of the chemical concentration distribution in the soil

  16. A comparison of helicopter-borne electromagnetics in frequency- and time-domain at the Cuxhaven valley in Northern Germany

    DEFF Research Database (Denmark)

    Steuner, Annika; Siemon, Bernhard; Auken, Esben

    2010-01-01

    , but they are definitively slower than airborne surveys. It depends on targets of interest, time, budget, andmanpower available by which a method or combination of methods will be chosen. A combination of different methods is useful to obtain adetailed understanding of the subsurface resistivity distribution.......Two different airborne electromagnetic methods were applied in the same area: the frequency-domain helicopter-borne electromagnetic (HEM)system operated by the Federal Institute for Geosciences and Natural Resources, Germany, and the time-domain SkyTEM system of theHydroGeophysics Group...

  17. The finite-difference time-domain method for electromagnetics with Matlab simulations

    CERN Document Server

    Elsherbeni, Atef Z

    2016-01-01

    This book introduces the powerful Finite-Difference Time-Domain method to students and interested researchers and readers. An effective introduction is accomplished using a step-by-step process that builds competence and confidence in developing complete working codes for the design and analysis of various antennas and microwave devices.

  18. Exploration of an alluvial aquifer in Oman by time-domain electromagnetic sounding

    Science.gov (United States)

    Young, M. E.; de Bruijn, R. G. M.; Al-Ismaily, A. Salim

    One-third of the population of Oman depends upon groundwater extracted from the alluvium of the Batinah Plain, on the coast of the Gulf of Oman. Deep geophysical exploration techniques were used to determine the depth and nature of the alluvium and the boundaries of the aquifer. The base and structural controls of the alluvial basin at its contact with Tertiary marine sediments and Cretaceous ophiolite were mapped with seismic reflection data, recorded originally for oil exploration. The base of the alluvium dips northward from the foothills of the Northern Oman Mountains, reaching a maximum depth of 2000m at the coast. The varying facies of the alluvium are grossly characterised by different, overlapping ranges of electrical resistivity, depending largely on the clay content and degree of cementation. Resistivities near the coast are reduced by saline intrusion. These variations of resistivity were mapped with time-domain electromagnetic sounding along 400km of profile, to distinguish among the three zones of the alluvial aquifer. The wedge of saline intrusion was also delineated, up to 10km from the coast. The thickness of the saturated gravel aquifer ranges from 20-160m in an area greater than 600km2. Résumé Un tiers de la population d'Oman est alimenté par de l'eau souterraine pompée dans les alluvions de la plaine de Batinah, sur la côte du golfe d'Oman. Des techniques d'exploration géophysique profonde ont été mises en oeuvre pour déterminer la profondeur et la nature des alluvions et les limites de l'aquifère. La base et les contrôles structuraux du bassin alluvial au contact des sédiments marins tertiaires et des ophiolites crétacées ont été cartographiés à partir des données de sismique réflexion obtenues à l'origine pour la recherche pétrolière. La base des alluvions plonge vers le nord à partir du piémont du massif septentrional d'Oman, pour atteindre une profondeur maximale de 2000m sur la côte. Les divers faciès alluviaux

  19. Time-domain electromagnetic energy in a frequency-dispersive left-handed medium

    International Nuclear Information System (INIS)

    Cui Tiejun; Kong Jinau

    2004-01-01

    From Maxwell's equations and the Poynting theorem, the time-domain electric and magnetic energy densities are generally defined in the frequency-dispersive media based on the conservation of energy. As a consequence, a general definition of electric and magnetic energy is proposed. Comparing with existing formulations of electric and magnetic energy in frequency-dispersive media, the new definition is more reasonable and is valid in any case. Using the new definition and staring from the equation of motion, we have shown rigorously that the total energy density and the individual electric and magnetic energy densities are always positive in a realistic artificial left-handed medium (LHM) [R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001)], which obeys actually the Lorentz medium model, although such a LHM has negative permittivity and negative permeability simultaneously in a certain frequency range. We have also shown that the conservation of energy is not violated in LHM. The earlier conclusions can be easily extended to the Drude medium model and the cold plasma medium model. Through an exact analysis of a one-dimensional transient current source radiating in LHM, numerical results are given to demonstrate that the work done by source, the power flowing outwards a surface, and the electric and magnetic energy stored in a volume are all positive in the time domain

  20. Resistivity structures imaging using time-domain electromagnetic data; TDEM ho ni yoru chika hiteiko kozo no imaging

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, K. [Waseda University, Tokyo (Japan). School of Science and Engineering; Endo, M. [Waseda University, Tokyo (Japan)

    1996-10-01

    The kernel function for transient vertical magnetic dipole was defined for semi-infinite uniform medium, and the 1-D imaging algorithm by TDEM (time-domain electromagnetic) method was developed for underground resistivity structure. Electromagnetic migration method directly images sectional resistivity profiles from the data observed by frequency-domain MT method, and determines underground resistivity profiles by integral equation of MT field using the concept of return travel time in reflection seismic exploration. The method reported in this paper is also one of the EM migration methods. The imaging algorithm of 2-D resistivity structure was developed by correcting 1-D imaging in consideration of the effect of 2-D anomaly on 1-D imaging (the resistivity of anomaly can be obtained from the resistivity contrast between anomaly and medium). The conventional methods require enormous forward computation, while this method can obtain underground resistivity structure in extremely short computation time, resulting in superior practicability. 12 refs., 7 figs.

  1. The finite-difference time-domain (FD-TD) method for electromagnetic scattering and interaction problems

    Science.gov (United States)

    Taflove, A.; Umashankar, K. R.

    1987-01-01

    The formulation and recent applications of the finite-difference time-domain (FD-TD) method for the numerical modeling of electromagnetic scattering and interaction problems are considered. It is shown that improvements in FD-TD modeling concepts and software implementation often make it a preferable choice for structures which cannot be easily treated by conventional integral equations and asymptotic approaches. Recent FD-TD modeling validations in research areas including coupling to wires and wire bundles in free space and cavities, scattering from surfaces in relativistic motion, inverse scattering, and radiation condition theory, are reviewed. Finally, the advantages and disadvantages of FD-TD, and guidelines concerning when FD-TD should and should not be used in high-frequency electromagnetic modeling problems, are summarized.

  2. Study on the time-domain electromagnetic responses; TDEM ho ni okeru denji oto ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, K.; Endo, M. [Waseda University, Tokyo (Japan). School of Science and Engineering

    1997-05-27

    With an objective to perform three-dimensional analysis with high accuracy in using the electromagnetic exploration method, characteristics in electromagnetic response were analyzed, and conditions for acquiring necessary data were discussed. The discussion defined a parameter called `response anomaly` which uses response from media to standardize response only from substances with abnormal resistivity. The receivers were located uniformly on the same plane, and the response anomaly was derived from electromagnetic response from each of the three horizontal and vertical components at each receiving point, which was expressed as a contour map. The parameter for the abnormal body was consisted of location and resistivity contrast with media. Discussions using the contour map were given on the response when these factors for the parameter were varied. As a result, it was found that the response anomaly appears in the form that reflects the abnormal body, and the response anomaly of the horizontal component is superior in terms of being large. It was also referred that, as a requirement for the abnormal body which gives larger impact from the electromagnetic response, the abnormal body should have lower resistivity than that in the media, and resistivity contrast with the media should be greater. 2 refs., 7 figs., 1 tab.

  3. The use of Time Domain Electromagnetic method and Continuous Vertical Electrical Sounding to map groundwater salinity in the Barotse sub-basin, Zambia

    DEFF Research Database (Denmark)

    Chongo, Mkhuzo; Wibroe, Johanne; Staal-Thomsen, K.

    2011-01-01

    This paper describes the results from the application of two geophysical exploration techniques, Time Domain Electromagnetic (TDEM) and Continuous Vertical Electrical Sounding (CVES) that have proved effective in mapping groundwater salinity variations within the sedimentary formations...

  4. Time Domain Surface Integral Equation Solvers for Quantum Corrected Electromagnetic Analysis of Plasmonic Nanostructures

    KAUST Repository

    Uysal, Ismail Enes

    2016-10-01

    Plasmonic structures are utilized in many applications ranging from bio-medicine to solar energy generation and transfer. Numerical schemes capable of solving equations of classical electrodynamics have been the method of choice for characterizing scattering properties of such structures. However, as dimensions of these plasmonic structures reduce to nanometer scale, quantum mechanical effects start to appear. These effects cannot be accurately modeled by available classical numerical methods. One of these quantum effects is the tunneling, which is observed when two structures are located within a sub-nanometer distance of each other. At these small distances electrons “jump" from one structure to another and introduce a path for electric current to flow. Classical equations of electrodynamics and the schemes used for solving them do not account for this additional current path. This limitation can be lifted by introducing an auxiliary tunnel with material properties obtained using quantum models and applying a classical solver to the structures connected by this auxiliary tunnel. Early work on this topic focused on quantum models that are generated using a simple one-dimensional wave function to find the tunneling probability and assume a simple Drude model for the permittivity of the tunnel. These tunnel models are then used together with a classical frequency domain solver. In this thesis, a time domain surface integral equation solver for quantum corrected analysis of transient plasmonic interactions is proposed. This solver has several advantages: (i) As opposed to frequency domain solvers, it provides results at a broad band of frequencies with a single simulation. (ii) As opposed to differential equation solvers, it only discretizes surfaces (reducing number of unknowns), enforces the radiation condition implicitly (increasing the accuracy), and allows for time step selection independent of spatial discretization (increasing efficiency). The quantum model

  5. Electromagnetic Characterization of a Composite (RE-CB-MT by Time Domain Spectroscopy

    Directory of Open Access Journals (Sweden)

    Amina Bounar

    2017-01-01

    Full Text Available The aim of this article is to study the dielectric behavior (ε, σ in microwaves domain of composites made with Epoxy Resin (RE, Carbon Black (CB, and Magnesium Titanate (MT on a large band of frequency. This kind of composites is very solicited for applications and miniaturization of the components circuits (cavities, antennas, substrates, etc. in hyperfrequency electronics. In this study we have also highlighted the effect of the fillers nature and their concentrations on the behavior of these composites. The results obtained by time domain spectroscopy (TDS have revealed the strong dependence of complex permittivity of the composite materials on both the nature and the concentration of conductive environment. Low frequency analysis (500 MHz has been investigated to determine the conductivity of composites which is related to the percolation phenomenon. Moreover, the comparison between experimental results and theoretical models shows that the modeling Lichtenecker law is applicable to the ternary mixture in this frequency range and is in accordance with the approach postulated by Bottreau.

  6. Time-domain modeling of high-frequency electromagnetic wave propagation, overhead wires, and earth

    Science.gov (United States)

    Stenvig, Nils Markus

    2011-12-01

    Prediction of radiated fields from transmission lines has not previously been studied from a panoptical power system perspective. The application of BPL technologies to overhead transmission lines would benefit greatly from an ability to simulate real power system environments, not limited to the transmission lines themselves. Presently circuit-based transmission line models used by EMTP-type programs utilize Carson's formula for a waveguide parallel to an interface. This formula is not valid for calculations at high frequencies, considering effects of earth return currents. This thesis explains the challenges of developing such improved models, explores an approach to combining circuit-based and electromagnetics modeling to predict radiated fields from transmission lines, exposes inadequacies of simulation tools, and suggests methods of extending the validity of transmission line models into very high frequency ranges. Electromagnetics programs are commonly used to study radiated fields from transmission lines. However, an approach is proposed here which is also able to incorporate the components of a power system through the combined use of EMTP-type models. Carson's formulas address the series impedance of electrical conductors above and parallel to the earth. These equations have been analyzed to show their inherent assumptions and what the implications are. Additionally, the lack of validity into higher frequencies has been demonstrated, showing the need to replace Carson's formulas for these types of studies. This body of work leads to several conclusions about the relatively new study of BPL. Foremost, there is a gap in modeling capabilities which has been bridged through integration of circuit-based and electromagnetics modeling, allowing more realistic prediction of BPL performance and radiated fields. The proposed approach is limited in its scope of validity due to the formulas used by EMTP-type software. To extend the range of validity, a new set of

  7. Processing and inversion of commercial helicopter time-domain electromagnetic data for environmental assessments and geologic and hydrologic mapping

    DEFF Research Database (Denmark)

    J.E., Podgorski; Auken, Esben; Schamper, Cyril Noel Clarence

    2013-01-01

    spaced data over large regions. At the same time, the quality of HTEM data can suffer from various inaccuracies. We developed an effective strategy for processing and inverting a commercial HTEM data set affected by uncertainties and systematic errors. The delivered data included early time gates......%-23%, and the artificial lineations were practically eliminated. Our processing and inversion strategy is entirely general, such that with minor system-specific modifications it could be applied to any HTEM data set, including those recorded many years ago. © 2013 Society of Exploration Geophysicists.......Helicopter time-domain electromagnetic (HTEM) surveying has historically been used for mineral exploration, but over the past decade it has started to be used in environmental assessments and geologic and hydrologic mapping. Such surveying is a cost-effective means of rapidly acquiring densely...

  8. Finite-element time-domain modeling of electromagnetic data in general dispersive medium using adaptive Padé series

    Science.gov (United States)

    Cai, Hongzhu; Hu, Xiangyun; Xiong, Bin; Zhdanov, Michael S.

    2017-12-01

    The induced polarization (IP) method has been widely used in geophysical exploration to identify the chargeable targets such as mineral deposits. The inversion of the IP data requires modeling the IP response of 3D dispersive conductive structures. We have developed an edge-based finite-element time-domain (FETD) modeling method to simulate the electromagnetic (EM) fields in 3D dispersive medium. We solve the vector Helmholtz equation for total electric field using the edge-based finite-element method with an unstructured tetrahedral mesh. We adopt the backward propagation Euler method, which is unconditionally stable, with semi-adaptive time stepping for the time domain discretization. We use the direct solver based on a sparse LU decomposition to solve the system of equations. We consider the Cole-Cole model in order to take into account the frequency-dependent conductivity dispersion. The Cole-Cole conductivity model in frequency domain is expanded using a truncated Padé series with adaptive selection of the center frequency of the series for early and late time. This approach can significantly increase the accuracy of FETD modeling.

  9. Advances in time-domain electromagnetic simulation capabilities through the use of overset grids and massively parallel computing

    Science.gov (United States)

    Blake, Douglas Clifton

    A new methodology is presented for conducting numerical simulations of electromagnetic scattering and wave-propagation phenomena on massively parallel computing platforms. A process is constructed which is rooted in the Finite-Volume Time-Domain (FVTD) technique to create a simulation capability that is both versatile and practical. In terms of versatility, the method is platform independent, is easily modifiable, and is capable of solving a large number of problems with no alterations. In terms of practicality, the method is sophisticated enough to solve problems of engineering significance and is not limited to mere academic exercises. In order to achieve this capability, techniques are integrated from several scientific disciplines including computational fluid dynamics, computational electromagnetics, and parallel computing. The end result is the first FVTD solver capable of utilizing the highly flexible overset-gridding process in a distributed-memory computing environment. In the process of creating this capability, work is accomplished to conduct the first study designed to quantify the effects of domain-decomposition dimensionality on the parallel performance of hyperbolic partial differential equations solvers; to develop a new method of partitioning a computational domain comprised of overset grids; and to provide the first detailed assessment of the applicability of overset grids to the field of computational electromagnetics. Using these new methods and capabilities, results from a large number of wave propagation and scattering simulations are presented. The overset-grid FVTD algorithm is demonstrated to produce results of comparable accuracy to single-grid simulations while simultaneously shortening the grid-generation process and increasing the flexibility and utility of the FVTD technique. Furthermore, the new domain-decomposition approaches developed for overset grids are shown to be capable of producing partitions that are better load balanced and

  10. Three-Dimensional Time Domain Simulation of Tsunami-Generated Electromagnetic Fields: Application to the 2011 Tohoku Earthquake Tsunami

    Science.gov (United States)

    Minami, Takuto; Toh, Hiroaki; Ichihara, Hiroshi; Kawashima, Issei

    2017-12-01

    We present a new finite element simulation approach in time domain for electromagnetic (EM) fields associated with motional induction by tsunamis. Our simulation method allows us to conduct three-dimensional simulation with realistic smooth bathymetry and to readily obtain broad structures of tsunami-generated EM fields and their time evolution, benefitting from time domain implementation with efficient unstructured mesh. Highly resolved mesh near observation sites enables us to compare simulation results with observed data and to investigate tsunami properties in terms of EM variations. Furthermore, it makes source separations available for EM data during tsunami events. We applied our simulation approach to the 2011 Tohoku tsunami event with seawater velocity from linear-long and linear-Boussinesq approximations. We revealed that inclusion of dispersion effect is necessary to explain magnetic variations at a northwest Pacific seafloor site, 1,500 km away from the epicenter, while linear-long approximation is enough at a seafloor site 200 km east-northeast of the epicenter. Our simulations provided, for the first time, comprehensive views of spatiotemporal structures of tsunami-generated EM fields for the 2011 Tohoku tsunami, including large-scale electric current circuits in the ocean. Finally, subtraction of the simulated magnetic fields from the observed data revealed symmetric magnetic variations on the western and eastern sides of the epicenter for 30 min since the earthquake origin time. These imply a pair of southward and northward electric currents in the ionosphere that exist on the western and eastern sides of the source region, respectively, which was likely to be caused by tsunami-generated atmospheric acoustic/gravity waves reaching the ionosphere.

  11. Preliminary Study of 2-D Time Domain Electromagnetic (TDEM) Modeling to Analyze Subsurface Resistivity Distribution and its Application to the Geothermal Systems

    Science.gov (United States)

    Aji Hapsoro, Cahyo; Purqon, Acep; Srigutomo, Wahyu

    2017-07-01

    2-D Time Domain Electromagnetic (TDEM) has been successfully conducted to illustrate the value of Electric field distribution under the Earth surface. Electric field compared by magnetic field is used to analyze resistivity and resistivity is one of physical properties which very important to determine the reservoir potential area of geothermal systems as one of renewable energy. In this modeling we used Time Domain Electromagnetic method because it can solve EM field interaction problem with complex geometry and to analyze transient problems. TDEM methods used to model the value of electric and magnetic fields as a function of the time combined with the function of distance and depth. The result of this modeling is Electric field intensity value which is capable to describe the structure of the Earth’s subsurface. The result of this modeling can be applied to describe the Earths subsurface resistivity values to determine the reservoir potential of geothermal systems.

  12. Coil response inversion for very early time modelling of helicopter-borne time-domain electromagnetic data and mapping of near-surface geological layers

    DEFF Research Database (Denmark)

    Schamper, Cyril Noel Clarence; Auken, Esben; Sørensen, Kurt Ingvard K.I.

    2014-01-01

    current is abruptly turned off in a large transmitter loop causing a secondary electromagnetic field to be generated by the eddy currents induced in the ground. Often, however, there is still a residual primary field generated by remaining slowly decaying currents in the transmitter loop. The decay...... disturbs or biases the earth response data at the very early times. These biased data must be culled, or some specific processing must be applied in order to compensate or remove the residual primary field. As the bias response can be attributed to decaying currents with its time constantly controlled......Very early times in the order of 2-3 μs from the end of the turn-off ramp for time-domain electromagnetic systems are crucial for obtaining a detailed resolution of the near-surface geology in the depth interval 0-20 m. For transient electromagnetic systems working in the off time, an electric...

  13. Electromagnetic Pulse Excitation of Finite-Long Dissipative Conductors over a Conducting Ground Plane in the Time Domain

    Energy Technology Data Exchange (ETDEWEB)

    Campione, Salvatore [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Warne, Larry K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schiek, Richard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Basilio, Lorena I. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    This report details the modeling results for the response of a finite-length dissipative conductor interacting with a conducting ground to a hypothetical nuclear device with the same output energy spectrum as the Fat Man device. We use a time-domain method based on transmission line theory that allows accounting for time-varying air conductivities. We implemented such method in a code we call ATLOG - Analytic Transmission Line Over Ground. Results are compared the frequency-domain version of ATLOG previously developed and to the circuit simulator Xyce in some instances. Intentionally Left Blank

  14. Optimally Accurate Second-Order Time-Domain Finite-Difference Scheme for Acoustic, Electromagnetic, and Elastic Wave Modeling

    Directory of Open Access Journals (Sweden)

    C. Bommaraju

    2005-01-01

    Full Text Available Numerical methods are extremely useful in solving real-life problems with complex materials and geometries. However, numerical methods in the time domain suffer from artificial numerical dispersion. Standard numerical techniques which are second-order in space and time, like the conventional Finite Difference 3-point (FD3 method, Finite-Difference Time-Domain (FDTD method, and Finite Integration Technique (FIT provide estimates of the error of discretized numerical operators rather than the error of the numerical solutions computed using these operators. Here optimally accurate time-domain FD operators which are second-order in time as well as in space are derived. Optimal accuracy means the greatest attainable accuracy for a particular type of scheme, e.g., second-order FD, for some particular grid spacing. The modified operators lead to an implicit scheme. Using the first order Born approximation, this implicit scheme is transformed into a two step explicit scheme, namely predictor-corrector scheme. The stability condition (maximum time step for a given spatial grid interval for the various modified schemes is roughly equal to that for the corresponding conventional scheme. The modified FD scheme (FDM attains reduction of numerical dispersion almost by a factor of 40 in 1-D case, compared to the FD3, FDTD, and FIT. The CPU time for the FDM scheme is twice of that required by the FD3 method. The simulated synthetic data for a 2-D P-SV (elastodynamics problem computed using the modified scheme are 30 times more accurate than synthetics computed using a conventional scheme, at a cost of only 3.5 times as much CPU time. The FDM is of particular interest in the modeling of large scale (spatial dimension is more or equal to one thousand wave lengths or observation time interval is very high compared to reference time step wave propagation and scattering problems, for instance, in ultrasonic antenna and synthetic scattering data modeling for Non

  15. Constraining lightning channel growth dynamics by comparison of time domain electromagnetic simulations to Huntsville Alabama Marx Meter Array observations

    Science.gov (United States)

    Carlson, B. E.; Bitzer, P. M.; Burchfield, J.

    2015-12-01

    Major unknowns in lightning research include the mechanism and dynamics of lightning channel extension. Such processes are most simple during the initial growth of the channel, when the channel is relatively short and has not yet branched extensively throughout the cloud. During this initial growth phase, impulsive electromagnetic emissions (preliminary breakdown pulses) can be well-described as produced by current pulses generated as the channel extends, but the overall growth rate, channel geometry, and degree of branching are not known. We approach such issues by examining electric field change measurements made with the Huntsville Alabama Marx Meter Array (HAMMA) during the first few milliseconds of growth of a lightning discharge. We compare HAMMA observations of electromagnetic emissions and overall field change to models of lightning channel growth and development and attempt to constrain channel growth rate, degree of branching, channel physical properties, and uniformity of thunderstorm electric field. Preliminary comparisons suggest that the lightning channel branches relatively early in the discharge, though more complete and detailed analysis will be presented.

  16. Mapping groundwater reserves in northwestern Cambodia with the combined use of data from lithologs and time-domain-electromagnetic and magnetic-resonance soundings

    Science.gov (United States)

    Valois, Remi; Vouillamoz, Jean-Michel; Lun, Sambo; Arnout, Ludovic

    2018-01-01

    Lack of access to water is the primary constraint to development in rural areas of northwestern Cambodia. Communities lack water for both domestic and irrigation purposes. To provide access to drinking water, governmental and aid agencies have focused on drilling shallow boreholes but they have not had a clear understanding of groundwater potential. The goal of this study has been to improve hydrogeological knowledge of two districts in Oddar Meanchey Province by analyzing borehole lithologs and geophysical data sets. The comparison of 55 time-domain electromagnetic (TEM) soundings and lithologs, as well as 66 magnetic-resonance soundings (MRS) with TEM soundings, allows a better understanding of the links between geology, electrical resistivity and hydrogeological parameters such as the specific yield (S y) derived from MRS. The main findings are that water inflow and S y are more related to electrical resistivity and elevation than to the litholog description. Indeed, conductive media are associated with a null value of S y, whereas resistive rocks at low elevation are always linked to strictly positive S y. A new methodology was developed to create maps of groundwater reserves based on 612 TEM soundings and the observed relationship between resistivity and S y. TEM soundings were inverted using a quasi-3D modeling approach called `spatially constrained inversion'. Such maps will, no doubt, be very useful for borehole siting and in the economic development of the province because they clearly distinguish areas of high groundwater-reserves potential from areas that lack reserves.

  17. Accelerated Time-Domain Modeling of Electromagnetic Pulse Excitation of Finite-Length Dissipative Conductors over a Ground Plane via Function Fitting and Recursive Convolution

    Energy Technology Data Exchange (ETDEWEB)

    Campione, Salvatore [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Warne, Larry K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sainath, Kamalesh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Basilio, Lorena I. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    In this report we overview the fundamental concepts for a pair of techniques which together greatly hasten computational predictions of electromagnetic pulse (EMP) excitation of finite-length dissipative conductors over a ground plane. In a time- domain, transmission line (TL) model implementation, predictions are computationally bottlenecked time-wise, either for late-time predictions (about 100ns-10000ns range) or predictions concerning EMP excitation of long TLs (order of kilometers or more ). This is because the method requires a temporal convolution to account for the losses in the ground. Addressing this to facilitate practical simulation of EMP excitation of TLs, we first apply a technique to extract an (approximate) complex exponential function basis-fit to the ground/Earth's impedance function, followed by incorporating this into a recursion-based convolution acceleration technique. Because the recursion-based method only requires the evaluation of the most recent voltage history data (versus the entire history in a "brute-force" convolution evaluation), we achieve necessary time speed- ups across a variety of TL/Earth geometry/material scenarios. Intentionally Left Blank

  18. Shallow subsurface imaging of the Piano di Pezza active normal fault (central Italy) by high-resolution refraction and electrical resistivity tomography coupled with time domain electromagnetic data

    Science.gov (United States)

    Villani, Fabio; Tulliani, Valerio; Fierro, Elisa; Sapia, Vincenzo; Civico, Riccardo

    2015-04-01

    The Piano di Pezza fault is the north-westernmost segment of the >20 km long Ovindoli-Pezza active normal fault-system (central Italy). Although existing paleoseismic data document high vertical Holocene slip rates (~1 mm/yr) and a remarkable seismogenic potential of this fault, its subsurface setting and Pleistocene cumulative displacement are still poorly known. We investigated for the first time by means of high-resolution seismic and electrical resistivity tomography coupled with time domain electromagnetic (TDEM) measurements the shallow subsurface of a key section of the Piano di Pezza fault. Our surveys cross a ~5 m-high fault scarp that was generated by repeated surface-rupturing earthquakes displacing some Late Holocene alluvial fans. We provide 2-D Vp and resistivity images which clearly show significant details of the fault structure and the geometry of the shallow basin infill material down to 50 m depth. We can estimate the dip (~50°) and the Holocene vertical displacement of the master fault (~10 m). We also recognize in the hangingwall some low-velocity/low-resistivity regions that we relate to packages of colluvial wedges derived from scarp degradation, which may represent the record of several paleo-earthquakes older than the Late Holocene events previously recognized by paleoseismic trenching. Conversely, due to the limited investigation depth of seismic and electrical tomography, the estimation of the cumulative amount of Pleistocene throw is hampered. Therefore, to increase the depth of investigation, we performed 7 TDEM measurements along the electrical profile using a 50 m loop size both in central and offset configuration. The recovered 1-D resistivity models show a good match with 2-D resistivity images in the near surface. Moreover, TDEM inversion results indicate that in the hangingwall, ~200 m away from the surface fault trace, the carbonate pre-Quaternary basement may be found at ~90-100 m depth. The combined approach of electrical and

  19. Time Domain Induced Polarization

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest

    2012-01-01

    Time-domain-induced polarization has significantly broadened its field of reference during the last decade, from mineral exploration to environmental geophysics, e.g., for clay and peat identification and landfill characterization. Though, insufficient modeling tools have hitherto limited the use...... of time-domaininduced polarization for wider purposes. For these reasons, a new forward code and inversion algorithm have been developed using the full-time decay of the induced polarization response, together with an accurate description of the transmitter waveform and of the receiver transfer function......%. Furthermore, the presence of low-pass filters in time-domain-induced polarization instruments affects the early times of the acquired decays (typically up to 100 ms) and has to be modeled in the forward response to avoid significant loss of resolution. The developed forward code has been implemented in a 1D...

  20. Coupling electromagnetic pulse-shaped waves into wire-like interconnection structures with a non-linear protection – Time domain calculations by the PEEC method

    Directory of Open Access Journals (Sweden)

    G. Wollenberg

    2004-01-01

    Full Text Available An interconnection system whose loads protected by a voltage suppressor and a low-pass filter against overvoltages caused by coupling pulse-shaped electromagnetic waves is analyzed. The external wave influencing the system is assumed as a plane wave with HPM form. The computation is provided by a full-wave PEEC model for the interconnection structure incorporated in the SPICE code. Thus, nonlinear elements of the protection circuit can be included in the calculation. The analysis shows intermodulation distortions and penetrations of low frequency interferences caused by intermodulations through the protection circuits. The example examined shows the necessity of using full-wave models for interconnections together with non-linear circuit solvers for simulation of noise immunity in systems protected by nonlinear devices.

  1. Time-domain radio pulses from particle showers

    International Nuclear Information System (INIS)

    Alvarez-Muñiz, Jaime; Romero-Wolf, Andrés; Zas, Enrique

    2012-01-01

    The time-domain properties of the far-field coherent radio emission from electromagnetic showers are studied in depth. A purely time-domain technique for mapping the electromagnetic fields of charged tracks is developed. The method is applied to the ZHS shower code to produce electric fields. It is demonstrated that the technique is equivalent to the frequency domain methods used in the ZHS code and produces consistent results. In addition, a model for mapping the longitudinal charge profile of a shower to a time-domain electromagnetic field is developed. It is shown that the model is in good agreement to the results of shower simulation.

  2. Underwater Advanced Time-Domain Electromagnetic System

    Science.gov (United States)

    2017-03-03

    sufficiently waterproofed ...................................................................... 20 Objective: Calibration method can be used both topside... additional background variability is observed at early times, as illustrated in Figure 15. The layout of this figure is the same as Figure 14. Now the...are discussed in the following sections and summarized in Table 5. Objective: System is sufficiently waterproofed The array remained underwater up to

  3. Underwater Advanced Time-Domain Electromagnetic System

    Science.gov (United States)

    2017-03-01

    Information Center DTIC-CQ 8725 John J. Kingman Road Fort Belvoir, VA 22060 To whom it may concern: A. <Cl>ESTCP ~ January 10th, 2018 The...15 Buried Target...18 Buried target fit locations for ISOs and inert munitions 19 Graph showing the relationship of the distance from the center of the array of each

  4. Gravitational Waves and Time Domain Astronomy

    Science.gov (United States)

    Centrella, Joan; Nissanke, Samaya; Williams, Roy

    2012-01-01

    The gravitational wave window onto the universe will open in roughly five years, when Advanced LIGO and Virgo achieve the first detections of high frequency gravitational waves, most likely coming from compact binary mergers. Electromagnetic follow-up of these triggers, using radio, optical, and high energy telescopes, promises exciting opportunities in multi-messenger time domain astronomy. In the decade, space-based observations of low frequency gravitational waves from massive black hole mergers, and their electromagnetic counterparts, will open up further vistas for discovery. This two-part workshop featured brief presentations and stimulating discussions on the challenges and opportunities presented by gravitational wave astronomy. Highlights from the workshop, with the emphasis on strategies for electromagnetic follow-up, are presented in this report.

  5. Shallow subsurface imaging of the Piano di Pezza active normal fault (central Italy) by high-resolution refraction and electrical resistivity tomography coupled with time-domain electromagnetic data

    Science.gov (United States)

    Villani, Fabio; Tulliani, Valerio; Sapia, Vincenzo; Fierro, Elisa; Civico, Riccardo; Pantosti, Daniela

    2015-12-01

    The Piano di Pezza fault is the central section of the 35 km long L'Aquila-Celano active normal fault-system in the central Apennines of Italy. Although palaeoseismic data document high Holocene vertical slip rates (˜1 mm yr-1) and a remarkable seismogenic potential of this fault, its subsurface setting and Pleistocene cumulative displacement are still poorly known. We investigated for the first time the shallow subsurface of a key section of the main Piano di Pezza fault splay by means of high-resolution seismic and electrical resistivity tomography coupled with time-domain electromagnetic soundings (TDEM). Our surveys cross a ˜5-m-high fault scarp that was generated by repeated surface-rupturing earthquakes displacing Holocene alluvial fans. We provide 2-D Vp and resistivity images, which show significant details of the fault structure and the geometry of the shallow basin infill material down to 50 m depth. Our data indicate that the upper fault termination has a sub-vertical attitude, in agreement with palaeoseismological trench evidence, whereas it dips ˜50° to the southwest in the deeper part. We recognize some low-velocity/low-resistivity regions in the fault hangingwall that we relate to packages of colluvial wedges derived from scarp degradation, which may represent the record of some Holocene palaeo-earthquakes. We estimate a ˜13-15 m throw of this fault splay since the end of the Last Glacial Maximum (˜18 ka), leading to a 0.7-0.8 mm yr-1 throw rate that is quite in accordance with previous palaeoseismic estimation of Holocene vertical slip rates. The 1-D resistivity models from TDEM soundings collected along the trace of the electrical profile significantly match with 2-D resistivity images. Moreover, they indicate that in the fault hangingwall, ˜200 m away from the surface fault trace, the pre-Quaternary carbonate basement is at ˜90-100 m depth. We therefore provide a minimal ˜150-160 m estimate of the cumulative throw of the Piano di Pezza

  6. Flexible time domain averaging technique

    Science.gov (United States)

    Zhao, Ming; Lin, Jing; Lei, Yaguo; Wang, Xiufeng

    2013-09-01

    Time domain averaging(TDA) is essentially a comb filter, it cannot extract the specified harmonics which may be caused by some faults, such as gear eccentric. Meanwhile, TDA always suffers from period cutting error(PCE) to different extent. Several improved TDA methods have been proposed, however they cannot completely eliminate the waveform reconstruction error caused by PCE. In order to overcome the shortcomings of conventional methods, a flexible time domain averaging(FTDA) technique is established, which adapts to the analyzed signal through adjusting each harmonic of the comb filter. In this technique, the explicit form of FTDA is first constructed by frequency domain sampling. Subsequently, chirp Z-transform(CZT) is employed in the algorithm of FTDA, which can improve the calculating efficiency significantly. Since the signal is reconstructed in the continuous time domain, there is no PCE in the FTDA. To validate the effectiveness of FTDA in the signal de-noising, interpolation and harmonic reconstruction, a simulated multi-components periodic signal that corrupted by noise is processed by FTDA. The simulation results show that the FTDA is capable of recovering the periodic components from the background noise effectively. Moreover, it can improve the signal-to-noise ratio by 7.9 dB compared with conventional ones. Experiments are also carried out on gearbox test rigs with chipped tooth and eccentricity gear, respectively. It is shown that the FTDA can identify the direction and severity of the eccentricity gear, and further enhances the amplitudes of impulses by 35%. The proposed technique not only solves the problem of PCE, but also provides a useful tool for the fault symptom extraction of rotating machinery.

  7. Time Domain Diffraction by Composite Structures

    Science.gov (United States)

    Riccio, Giovanni; Frongillo, Marcello

    2017-04-01

    Time domain (TD) diffraction problems are receiving great attention because of the widespread use of ultra wide band (UWB) communication and radar systems. It is commonly accepted that, due to the large bandwidth of the UWB signals, the analysis of the wave propagation mechanisms in the TD framework is preferable to the frequency domain (FD) data processing. Furthermore, the analysis of transient scattering phenomena is also of importance for predicting the effects of electromagnetic pulses on civil structures. Diffraction in the TD framework represents a challenging problem and numerical discretization techniques can be used to support research and industry activities. Unfortunately, these methods become rapidly intractable when considering excitation pulses with high frequency content. This contribution deals with the TD diffraction phenomenon related to composite structures containing a dielectric wedge with arbitrary apex angle when illuminated by a plane wave. The approach is the same used in [1]-[3]. The transient diffracted field originated by an arbitrary function plane wave is evaluated via a convolution integral involving the TD diffraction coefficients, which are determined in closed form starting from the knowledge of the corresponding FD counterparts. In particular, the inverse Laplace transform is applied to the FD Uniform Asymptotic Physical Optics (FD-UAPO) diffraction coefficients available for the internal region of the structure and the surrounding space. For each observation domain, the FD-UAPO expressions are obtained by considering electric and magnetic equivalent PO surface currents located on the interfaces. The surface radiation integrals using these sources is assumed as starting point and manipulated for obtaining integrals able to be solved by means of the Steepest Descent Method and the Multiplicative Method. [1] G. Gennarelli and G. Riccio, "Time domain diffraction by a right-angled penetrable wedge," IEEE Trans. Antennas Propag., Vol

  8. On the calculation of scattered fields by 3-D structure in the time-domain electromagnetic (TDEM) method; Jikan ryoiki denjiho ni okeru sanjigen kozo kara no sanranba no keisan ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Y. [Geological Survey of Japan, Tsukuba (Japan); Saito, A.; Oya, T. [Mitsui Mineral Development Engineering Co. Ltd., Tokyo (Japan)

    1996-10-01

    This paper describes the calculation method of 3-D underground structures in TDME method which measures only field components. Recently, FDTD method was developed as calculation method in time domain difference calculus, and the forward analysis accuracy of 3-D fields was rapidly improved. The survey results using a large-scale loop (600m{times}360m) were numerically analyzed by FDTD method. 16 measuring lines were prepared in both X and Y directions, and measuring points were prepared on intersection points of the measuring lines. Since signal current is staircase one, step and impulse responses of the ground were determined by calculating magnetic field and its time differentiation. The rectangular body (120m{times}120m{times}100m) of 0.2S/m in conductivity (5 ohm m in resistivity) was installed 160m under the ground as 3-D resistivity anomaly. The ground of 0.01S/m (100 ohm m) was assumed. Time variation in horizontal magnetic field vector plot of impulse responses of the uniform ground could be observed. The position of the resistivity anomaly could be also determined from spacial differentiation of magnetic field of grid pattern measuring points. 1 ref., 6 figs.

  9. Parallel time domain solvers for electrically large transient scattering problems

    KAUST Repository

    Liu, Yang

    2014-09-26

    Marching on in time (MOT)-based integral equation solvers represent an increasingly appealing avenue for analyzing transient electromagnetic interactions with large and complex structures. MOT integral equation solvers for analyzing electromagnetic scattering from perfect electrically conducting objects are obtained by enforcing electric field boundary conditions and implicitly time advance electric surface current densities by iteratively solving sparse systems of equations at all time steps. Contrary to finite difference and element competitors, these solvers apply to nonlinear and multi-scale structures comprising geometrically intricate and deep sub-wavelength features residing atop electrically large platforms. Moreover, they are high-order accurate, stable in the low- and high-frequency limits, and applicable to conducting and penetrable structures represented by highly irregular meshes. This presentation reviews some recent advances in the parallel implementations of time domain integral equation solvers, specifically those that leverage multilevel plane-wave time-domain algorithm (PWTD) on modern manycore computer architectures including graphics processing units (GPUs) and distributed memory supercomputers. The GPU-based implementation achieves at least one order of magnitude speedups compared to serial implementations while the distributed parallel implementation are highly scalable to thousands of compute-nodes. A distributed parallel PWTD kernel has been adopted to solve time domain surface/volume integral equations (TDSIE/TDVIE) for analyzing transient scattering from large and complex-shaped perfectly electrically conducting (PEC)/dielectric objects involving ten million/tens of millions of spatial unknowns.

  10. Acoustic, finite-difference, time-domain technique development

    International Nuclear Information System (INIS)

    Kunz, K.

    1994-01-01

    A close analog exists between the behavior of sound waves in an ideal gas and the radiated waves of electromagnetics. This analog has been exploited to obtain an acoustic, finite-difference, time-domain (AFDTD) technique capable of treating small signal vibrations in elastic media, such as air, water, and metal, with the important feature of bending motion included in the behavior of the metal. This bending motion is particularly important when the metal is formed into sheets or plates. Bending motion does not have an analog in electromagnetics, but can be readily appended to the acoustic treatment since it appears as a single additional term in the force equation for plate motion, which is otherwise analogous to the electromagnetic wave equation. The AFDTD technique has been implemented in a code architecture that duplicates the electromagnetic, finite-difference, time-domain technique code. The main difference in the implementation is the form of the first-order coupled differential equations obtained from the wave equation. The gradient of pressure and divergence of velocity appear in these equations in the place of curls of the electric and magnetic fields. Other small changes exist as well, but the codes are essentially interchangeable. The pre- and post-processing for model construction and response-data evaluation of the electromagnetic code, in the form of the TSAR code at Lawrence Livermore National Laboratory, can be used for the acoustic version. A variety of applications is possible, pending validation of the bending phenomenon. The applications include acoustic-radiation-pattern predictions for a submerged object; mine detection analysis; structural noise analysis for cars; acoustic barrier analysis; and symphonic hall/auditorium predictions and speaker enclosure modeling

  11. Calibration of TAMA300 in time domain

    International Nuclear Information System (INIS)

    Telada, Souichi; Tatsumi, Daisuke; Akutsu, Tomomi; Ando, Masaki; Kanda, Nobuyuki

    2005-01-01

    We could reconstruct the strain of gravitational wave signals from acquired data in the time domain by using the infinite impulse response filter technique in TAMA300. We would like to analyse the waveform in the time domain for burst-like signal, merger phase waveform of binary neutron stars, and so on. We established the way to make a continuous time-series gravitational wave strain signal. We compared the time-domain reconstruction with the Fourier-space reconstruction. Both coincided within 3% in the observation range. We could also produce the voltage signal which would be recorded by the data-acquisition system from a simulated gravitational wave. This is useful for some analyses of simulations and signal injections. We could extract the waveform of the hardware injection signal in an observational run in the time domain. The extracted waveform was similar to the injection signal

  12. A time domain technique for mechanism extraction

    Science.gov (United States)

    Dominek, Allen K.; Peters, Leon, Jr.; Burnside, Walter D.

    1987-01-01

    The properties of scattered fields from a structure can be better evaluated from the characteristics of the individual scatterers. Decomposition techniques can be classified either as a matrix or an integral formulation. With either formulation, aspect pattern of frequency information of a scattering center can be obtained. Emphasis is placed on an integral (time domain) isolation extraction technique to obtain the frequency characteristics of scattering mechanisms. This technique has its origins in the time domain interpretation of scattered fields.

  13. Electromagnetics

    CERN Document Server

    Rothwell, Edward J

    2009-01-01

    Introductory concepts Notation, conventions, and symbology The field concept of electromagneticsThe sources of the electromagnetic field Problems Maxwell's theory of electromagnetism The postulate Maxwell's equations in moving frames The Maxwell-Boffi equations Large-scale form of Maxwell's equationsThe nature of the four field quantities Maxwell's equations with magnetic sources Boundary (jump) conditions Fundamental theorems The wave nature of the electromagnetic field ProblemsThe static electromagnetic field Static fields and steady currents ElectrostaticsMagnetostatics Static field theorem

  14. Calculation of nonzero-temperature Casimir forces in the time domain

    International Nuclear Information System (INIS)

    Pan, Kai; Reid, M. T. Homer; McCauley, Alexander P.; Rodriguez, Alejandro W.; White, Jacob K.; Johnson, Steven G.

    2011-01-01

    We show how to compute Casimir forces at nonzero temperatures with time-domain electromagnetic simulations, for example, using a finite-difference time-domain (FDTD) method. Compared to our previous zero-temperature time-domain method, only a small modification is required, but we explain that some care is required to properly capture the zero-frequency contribution. We validate the method against analytical and numerical frequency-domain calculations, and show a surprising high-temperature disappearance of a nonmonotonic behavior previously demonstrated in a pistonlike geometry.

  15. Time Domain Astronomy with Swift and Fermi

    African Journals Online (AJOL)

    J.D. Myers

    Time Domain Astronomy with Swift and Fermi. N. Gehrels1, J. K. Cannizzo23. 1NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771, USA. 2CRESST and Astroparticle Physics Laboratory, NASA/GSFC, Greenbelt, MD 20771, USA. 3Department of Physics, University of Maryland, Baltimore County, ...

  16. Multiple Shooting and Time Domain Decomposition Methods

    CERN Document Server

    Geiger, Michael; Körkel, Stefan; Rannacher, Rolf

    2015-01-01

    This book offers a comprehensive collection of the most advanced numerical techniques for the efficient and effective solution of simulation and optimization problems governed by systems of time-dependent differential equations. The contributions present various approaches to time domain decomposition, focusing on multiple shooting and parareal algorithms.  The range of topics covers theoretical analysis of the methods, as well as their algorithmic formulation and guidelines for practical implementation. Selected examples show that the discussed approaches are mandatory for the solution of challenging practical problems. The practicability and efficiency of the presented methods is illustrated by several case studies from fluid dynamics, data compression, image processing and computational biology, giving rise to possible new research topics.  This volume, resulting from the workshop Multiple Shooting and Time Domain Decomposition Methods, held in Heidelberg in May 2013, will be of great interest to applied...

  17. Efficient time-domain model of the graphene dielectric function

    Science.gov (United States)

    Prokopeva, Ludmila J.; Kildishev, Alexander V.

    2013-09-01

    A honey-comb monolayer lattice of carbon atoms, graphene, is not only ultra-thin, ultra-light, flexible and strong, but also highly conductive when doped and exhibits strong interaction with electromagnetic radiation in the spectral range from microwaves to the ultraviolet. Moreover, this interaction can be effectively controlled electrically. High flexibility and conductivity makes graphene an attractive material for numerous photonic applications requiring transparent conducting electrodes: touchscreens, liquid crystal displays, organic photovoltaic cells, and organic light-emitting diodes. Meanwhile, its tunability makes it desirable for optical modulators, tunable filters and polarizers. This paper deals with the basics of the time-domain modeling of the graphene dielectric function under a random-phase approximation. We focus at applicability of Padé approximants to the interband dielectric function (IDF) of single layer graphene. Our study is centered on the development of a two-critical points approximation (2CPA) of the IDF within a single-electron framework with negligible carrier scattering and a realistic range of chemical potential at room temperature. This development is successfully validated by comparing reflection and transmission spectra computed by a numerical method in time-domain versus semi-analytical calculations in frequency domain. Finally, we sum up our results - (1) high-quality approximation, (2) tunability, and (3) second-order accurate numerical FDTD implementation of the 2CPA of IDF demonstrated across the desired range of the chemical potential to temperature ratios (4 - 23). Finally, we put forward future directions for time-domain modeling of optical response of graphene with wide range of tunable and fabrication-dependent parameters, including other broadening factors and variations of temperature and chemical potentials.

  18. Parallel finite-difference time-domain method

    CERN Document Server

    Yu, Wenhua

    2006-01-01

    The finite-difference time-domain (FTDT) method has revolutionized antenna design and electromagnetics engineering. This book raises the FDTD method to the next level by empowering it with the vast capabilities of parallel computing. It shows engineers how to exploit the natural parallel properties of FDTD to improve the existing FDTD method and to efficiently solve more complex and large problem sets. Professionals learn how to apply open source software to develop parallel software and hardware to run FDTD in parallel for their projects. The book features hands-on examples that illustrate the power of parallel FDTD and presents practical strategies for carrying out parallel FDTD. This detailed resource provides instructions on downloading, installing, and setting up the required open source software on either Windows or Linux systems, and includes a handy tutorial on parallel programming.

  19. Metrology for terahertz time-domain spectrometers

    Science.gov (United States)

    Molloy, John F.; Naftaly, Mira

    2015-12-01

    In recent years the terahertz time-domain spectrometer (THz TDS) [1] has emerged as a key measurement device for spectroscopic investigations in the frequency range of 0.1-5 THz. To date, almost every type of material has been studied using THz TDS, including semiconductors, ceramics, polymers, metal films, liquid crystals, glasses, pharmaceuticals, DNA molecules, proteins, gases, composites, foams, oils, and many others. Measurements with a TDS are made in the time domain; conversion from the time domain data to a frequency spectrum is achieved by applying the Fourier Transform, calculated numerically using the Fast Fourier Transform (FFT) algorithm. As in many other types of spectrometer, THz TDS requires that the sample data be referenced to similarly acquired data with no sample present. Unlike frequency-domain spectrometers which detect light intensity and measure absorption spectra, a TDS records both amplitude and phase information, and therefore yields both the absorption coefficient and the refractive index of the sample material. The analysis of the data from THz TDS relies on the assumptions that: a) the frequency scale is accurate; b) the measurement of THz field amplitude is linear; and c) that the presence of the sample does not affect the performance characteristics of the instrument. The frequency scale of a THz TDS is derived from the displacement of the delay line; via FFT, positioning errors may give rise to frequency errors that are difficult to quantify. The measurement of the field amplitude in a THz TDS is required to be linear with a dynamic range of the order of 10 000. And attention must be given to the sample positioning and handling in order to avoid sample-related errors.

  20. Architectures for Time-domain Astronomy

    Science.gov (United States)

    Seaman, R.; Allan, A.; Pierfederici, F.; Williams, R.

    2009-09-01

    Wonder at the changing sky predates recorded history. Empirical studies of time-varying celestial phenomena date back to Galileo and Tycho. Telegrams conveying news of transient and recurrent events have been key astronomical infrastructure since the nineteenth century. Recent micro-lensing, supernova and gamma-ray burst studies have lead to a succession of exciting discoveries, but massive new time-domain surveys will soon overwhelm our nineteenth century transient response technologies. Meeting this challenge demands new autonomous architectures for astronomy. These Architectures should reach from proposing new research, through experimental design and the scheduling of telescope operations, to the archiving and pipeline-processing of data to discover new transients, to the publishing of these events, through automated follow-up via robotic and ToO assets, and to the display and analysis of observational results. All will lead to adaptive adjustment of time-domain investigations. The IVOA VOEvent protocol provides an engine for purpose-built astronomical architectures.

  1. Scattering analysis of periodic structures using finite-difference time-domain

    CERN Document Server

    ElMahgoub, Khaled; Elsherbeni, Atef Z

    2012-01-01

    Periodic structures are of great importance in electromagnetics due to their wide range of applications such as frequency selective surfaces (FSS), electromagnetic band gap (EBG) structures, periodic absorbers, meta-materials, and many others. The aim of this book is to develop efficient computational algorithms to analyze the scattering properties of various electromagnetic periodic structures using the finite-difference time-domain periodic boundary condition (FDTD/PBC) method. A new FDTD/PBC-based algorithm is introduced to analyze general skewed grid periodic structures while another algor

  2. Two-dimensional finite difference time domain inverse scattering scheme for a perfectly conducting cylinder

    Science.gov (United States)

    Chen, Chien-Hung; Chiu, Chien-Ching; Sun, Chi-Hsien; Chang, Wan-Ling

    2011-01-01

    This paper reports a two-dimensional time-domain inverse scattering algorithm based upon the finite-difference time domain method (FDTD) for determining the shape of a perfectly conducting cylinder. FDTD is used to solve the scattering electromagnetic wave of a perfectly conducting cylinder. The inverse problem is resolved by an optimization approach and the global searching scheme asynchronous particle swarm optimization is then employed to search the parameter space. By properly processing the scattered field, some electromagnetic properties can be reconstructed. A set of representative numerical results is presented to demonstrate that the proposed approach is able to efficiently reconstruct the electromagnetic properties of metallic scatterer even when the initial guess is far away from the exact one. In addition, the effects of Gaussian noises on imaging reconstruction are also investigated.

  3. Coherent combining pulse bursts in time domain

    Science.gov (United States)

    Galvanauskas, Almantas

    2018-01-09

    A beam combining and pulse stacking technique is provided that enhances laser pulse energy by coherent stacking pulse bursts (i.e. non-periodic pulsed signals) in time domain. This energy enhancement is achieved by using various configurations of Fabry-Perot, Gires-Tournois and other types of resonant cavities, so that a multiple-pulse burst incident at either a single input or multiple inputs of the system produces an output with a solitary pulse, which contains the summed energy of the incident multiple pulses from all beams. This disclosure provides a substantial improvement over conventional coherent-combining methods in that it achieves very high pulse energies using a relatively small number of combined laser systems, thus providing with orders of magnitude reduction in system size, complexity, and cost compared to current combining approaches.

  4. Exploration of the Time Domain (Abstract)

    Science.gov (United States)

    Djorgovski, G.

    2017-06-01

    (Abstract only) Time-domain astronomy is one of the most active and growing areas of astronomical research today, thanks to the new generation of synoptic sky surveys, and leading to LSST. Catalina Real-Time Transient Survey (CRTS; http://crts.caltech.edu) is systematically exploring and characterizing the variable sky since 2008, with the archival data going back to 2005. The survey covers the total area of 33,000 deg2, down to 19±21 mag per exposure, with time baselines from 10 min to 10 years, and growing; there are now typically 200±400 exposures per pointing, and coadded images reach deeper than 23 magnitude. The survey has so far detected over 13,000 unique, high-amplitude transients, including 4,000 confirmed or likely supernovae, nearly 2,000 CVs (the great majority of them previously uncatalogued), about 4,000 blazars and other flaring AGN, and a broad variety of other types of objects. Many of these objects can benefit from a follow-up by the amateur community. CRTS is intended to be a data resource for the entire astronomical community. We have a completely open data policy: all discovered transient events are published in real time with no proprietary delay period, and all data are made public, in order to better serve the entire community, and maximize the scientific returns. This includes an archive of 500 million light curves, which are being updated continuously. This is an unprecedented data set for the exploration of the time domain, in terms of the area, depth, and temporal coverage. Numerous scientific projects have been enabled by this data stream, including: discoveries of ultraluminous and otherwise peculiar SNe; unusual CVs and dwarf novae; mapping of the structure in the Galactic halo using RR Lyrae; variability-based discovery of AGN and probes of their physics; and so on.

  5. Development and application of dispersive soft ferrite models for time-domain simulation

    International Nuclear Information System (INIS)

    DeFord, J.F.; Kamin, G.; Craig, G.D.; Walling, L.

    1992-01-01

    Ferrite has a variety of applications in accelerator components, and the capability to model this magnetic material in the time domain is an important adjunct to currently available accelerator modeling tool. We describe in this report a material model we have developed for the magnetic characteristics of PE11BL, the ferrite found in the ETA-II (Experimental Test Accelerator-II) induction module. This model, which includes the important magnetic dispersion effects found in most soft ferrites, has been implemented in 1-D and 2-D finite-difference time-domain (FDTD) electromagnetic simulators, and comparisons with analytic and experimental results are presented

  6. Electromagnetism

    CERN Document Server

    Grant, Ian S

    1990-01-01

    The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw the Physics of Stars Second Edition A. C. Phillips Computing for Scient

  7. 3D parallel inversion of time-domain airborne EM data

    Science.gov (United States)

    Liu, Yun-He; Yin, Chang-Chun; Ren, Xiu-Yan; Qiu, Chang-Kai

    2016-12-01

    To improve the inversion accuracy of time-domain airborne electromagnetic data, we propose a parallel 3D inversion algorithm for airborne EM data based on the direct Gauss-Newton optimization. Forward modeling is performed in the frequency domain based on the scattered secondary electrical field. Then, the inverse Fourier transform and convolution of the transmitting waveform are used to calculate the EM responses and the sensitivity matrix in the time domain for arbitrary transmitting waves. To optimize the computational time and memory requirements, we use the EM "footprint" concept to reduce the model size and obtain the sparse sensitivity matrix. To improve the 3D inversion, we use the OpenMP library and parallel computing. We test the proposed 3D parallel inversion code using two synthetic datasets and a field dataset. The time-domain airborne EM inversion results suggest that the proposed algorithm is effective, efficient, and practical.

  8. Mie scattering in the time domain. Part II. The role of diffraction.

    Science.gov (United States)

    Lock, James A; Laven, Philip

    2011-06-01

    The p=0 term of the Mie-Debye scattering amplitude contains the effects of external reflection and diffraction. We computed the reflected intensity in the time domain as a function of the scattering angle and delay time for a short electromagnetic pulse incident on a spherical particle and compared it to the predicted behavior in the forward-focusing region, the specular reflection region, and the glory region. We examined the physical consequences of three different approaches to the exact diffraction amplitude, and determined the signature of diffraction in the time domain. The external reflection surface wave amplitude gradually replaces the diffraction amplitude in the angular transition region between forward-focusing and the region of specular reflection. The details of this replacement were studied in the time domain.

  9. Application of Time Domain Reflectometers in Urban Settings ...

    Science.gov (United States)

    Time domain reflectometers (TDRs) are sensors that measure the volumetric water content of soils and porous media. The sensors consist of stainless steel rods connected to a circuit board in an epoxy housing. An electromagnetic pulse is propagated along the rods. The time, or period, required for the signal to travel down the rods and back varies with the volumetric water content of the surrounding media and temperature. A calibration curve is needed for the specific media. TDRs were developed mostly for agricultural applications; however, the technology has also been applied to forestry and ecological research. This study demonstrates the use of TDRs for quantifying drainage properties in low impact development (LID) stormwater controls, specifically permeable pavement and rain garden systems. TDRs were successfully used to monitor the responses of urban fill, engineered bioretention media, and the aggregate storage layer under permeable pavement to multiple rain events of varying depth, intensity, and duration. The hydrologic performance of permeable pavement and rain garden systems has previously been quantified for underdrain systems, but there have been few studies of systems that drain to the underlying soils. We know of no published studies outlining the use of TDR technology to document drainage properties in media other than soil. In this study TDRs were installed at multiple locations and depths in underlying urban fill soils, engineered bior

  10. Alternating Direction Implicit Finite Difference Time Domain Acoustic ...

    African Journals Online (AJOL)

    A time domain numerical technique is presented for the modelling of acoustic wave phenomena. The technique is an adaptation of the alternating direction implicit finite difference time domain method. The stability condition for the algorithm is given. Simple illustrations of propagation in an infinite homogeneous medium are ...

  11. Quantum-corrected plasmonic field analysis using a time domain PMCHWT integral equation

    KAUST Repository

    Uysal, Ismail E.

    2016-03-13

    When two structures are within sub-nanometer distance of each other, quantum tunneling, i.e., electrons "jumping" from one structure to another, becomes relevant. Classical electromagnetic solvers do not directly account for this additional path of current. In this work, an auxiliary tunnel made of Drude material is used to "connect" the structures as a support for this current path (R. Esteban et al., Nat. Commun., 2012). The plasmonic fields on the resulting connected structure are analyzed using a time domain surface integral equation solver. Time domain samples of the dispersive medium Green function and the dielectric permittivities are computed from the analytical inverse Fourier transform applied to the rational function representation of their frequency domain samples.

  12. Progress in parallel implementation of the multilevel plane wave time domain algorithm

    KAUST Repository

    Liu, Yang

    2013-07-01

    The computational complexity and memory requirements of classical schemes for evaluating transient electromagnetic fields produced by Ns dipoles active for Nt time steps scale as O(NtN s 2) and O(Ns 2), respectively. The multilevel plane wave time domain (PWTD) algorithm [A.A. Ergin et al., Antennas and Propagation Magazine, IEEE, vol. 41, pp. 39-52, 1999], viz. the extension of the frequency domain fast multipole method (FMM) to the time domain, reduces the above costs to O(NtNslog2Ns) and O(Ns α) with α = 1.5 for surface current distributions and α = 4/3 for volumetric ones. Its favorable computational and memory costs notwithstanding, serial implementations of the PWTD scheme unfortunately remain somewhat limited in scope and ill-suited to tackle complex real-world scattering problems, and parallel implementations are called for. © 2013 IEEE.

  13. A time domain phase-gradient based ISAR autofocus algorithm

    CSIR Research Space (South Africa)

    Nel, W

    2011-10-01

    Full Text Available Autofocus is a well known required step in ISAR (and SAR) processing to compensate translational motion. This research proposes a time domain autofocus algorithm and discusses its relation to the well known phase gradient autofocus (PGA) technique...

  14. Time Domain Terahertz Axial Computed Tomography Non Destructive Evaluation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to demonstrate key elements of feasibility for a high speed automated time domain terahertz computed axial tomography (TD-THz CT) non destructive...

  15. TeraHertz Time Domain Spectroscopy of Astrophysical Analog Materials

    Science.gov (United States)

    Blake, Geoffrey

    The section of the electromagnetic spectrum extending roughly from wavelengths of 3 millimeters to 30 microns is commonly known as the far-infrared or TeraHertz (THz) region. It contains the great majority of the photons emitted by the universe, and THz observations of molecules and dust are able penetrate deeply into molecular clouds, thus revealing the full history of star and planet formation. Accordingly, the successful deployments of the Herschel and SOFIA observatories, and the emerging capabilities of ALMA, are both revolutionizing our understanding of THz astrophysics and placing stringent demands on the generation of accurate laboratory data on the relevant gas phase and solid state materials detected. With APRA support, we have constructed a combined high bandwidth and high spectral resolution femtosecond THz Time Domain Spectroscopy (THz TDS) system and an FT-IR spectrometer, and coupled these instruments to a high vacuum chamber and cryostat and to gas phase cells including a molecular beam system. We have investigated solid materials from room temperature to 10 K, and can examine both refractory matter such as silicates and molecular ices. For the latter, we have demonstrated that the THz bands observed are uniquely sensitive to both the molecular structure of the ice and its thermal history, and thus that THz observations can provide novel insight into the dominant condensable materials in dense, cold regions. In the gas phase we can record doppler-limited data over at least a decade in bandwidth. While quite capable, the high vacuum cryostat can only study thick samples, especially ices, due to the fairly rapid adsorption of gases onto surfaces at low temperature under such conditions. It is therefore not possible to examine highly layered/structured samples or reactive species. We therefore propose here to upgrade the chamber/cryostat to ultrahigh vacuum, and implement additional sample preparation and characterization tools. With such modifications

  16. ASIC-enabled High Resolution Optical Time Domain Reflectometer

    Science.gov (United States)

    Skendzic, Sandra

    Fiber optics has become the preferred technology in communication systems because of what it has to offer: high data transmission rates, immunity to electromagnetic interference, and lightweight, flexible cables. An optical time domain reflectometer (OTDR) provides a convenient method of locating and diagnosing faults (e.g. break in a fiber) along a fiber that can obstruct crucial optical pathways. Both the ability to resolve the precise location of the fault and distinguish between two discrete, closely spaced faults are figures of merit. This thesis presents an implementation of a high resolution OTDR through the use of a compact and programmable ASIC (application specific integrated circuit). The integration of many essential OTDR functions on a single chip is advantageous over existing commercial instruments because it enables small, lightweight packaging, and offers low power and cost efficiency. Furthermore, its compactness presents the option of placing multiple ASICs in parallel, which can conceivably ease the characterization of densely populated fiber optic networks. The OTDR ASIC consists of a tunable clock, pattern generator, precise timer, electrical receiver, and signal sampling circuit. During OTDR operation, the chip generates narrow electrical pulse, which can then be converted to optical format when coupled with an external laser diode driver. The ASIC also works with an external photodetector to measure the timing and amplitude of optical reflections in a fiber. It has a 1 cm sampling resolution, which allows for a 2 cm spatial resolution. While this OTDR ASIC has been previously demonstrated for multimode fiber fault diagnostics, this thesis focuses on extending its functionality to single mode fiber. To validate this novel approach to OTDR, this thesis is divided into five chapters: (1) introduction, (2) implementation, (3), performance of ASIC-based OTDR, (4) exploration in optical pre-amplification with a semiconductor optical amplifier, and

  17. Time domain referencing in intensity modulation fiber optic sensing systems

    Science.gov (United States)

    Adamovsky, G.

    1986-01-01

    Intensity modulation sensors are classified depending on the way in which the reference and signal channels are separated: in space, wavelength (frequency), or time domains. To implement the time domain referencing different types of fiber optic (FO) loops have been used. A pulse of short duration sent into the loop results in a series of pulses of different amplitudes. The information about the measured parameter is retrieved from the relative amplitudes of pulses in the same train.

  18. Time domain modeling of tunable response of graphene

    DEFF Research Database (Denmark)

    Prokopeva, Ludmila; Emani, Naresh K.; Boltasseva, Alexandra

    2013-01-01

    We present a causal numerical model for time domain simulations of the optical response of graphene. The dielectric function is approximated with a conductivity term, a Drude term and a number of the critical points terms.......We present a causal numerical model for time domain simulations of the optical response of graphene. The dielectric function is approximated with a conductivity term, a Drude term and a number of the critical points terms....

  19. Structural Time Domain Identification (STDI) Toolbox for Use with MATLAB

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Andersen, P.; Brincker, Rune

    1997-01-01

    The Structural Time Domain Identification (STDI) toolbox for use with MATLABTM is developed at Aalborg University, Denmark, based on the system identification research performed during recent years. By now, a reliable set of functions offers a wide spectrum of services for all the important steps...... of multivariate time domain system identification of time-variant as well as time-invariant civil engineering structures from ambient testing data. A graphical user interface (GUI) is also developed to make the toolbox more user friendly....

  20. Mie scattering in the time domain. Part 1. The role of surface waves.

    Science.gov (United States)

    Lock, James A; Laven, Philip

    2011-06-01

    We computed the Debye series p=1 and p=2 terms of the Mie scattered intensity as a function of scattering angle and delay time for a linearly polarized plane wave pulse incident on a spherical dielectric particle and physically interpreted the resulting numerical data. Radiation shed by electromagnetic surface waves plays a prominent role in the scattered intensity. We determined the surface wave phase and damping rate and studied the structure of the p=1,2 surface wave glory in the time domain.

  1. Explicit solution of the time domain volume integral equation using a stable predictor-corrector scheme

    KAUST Repository

    Al Jarro, Ahmed

    2012-11-01

    An explicit marching-on-in-time (MOT) scheme for solving the time domain volume integral equation is presented. The proposed method achieves its stability by employing, at each time step, a corrector scheme, which updates/corrects fields computed by the explicit predictor scheme. The proposedmethod is computationally more efficient when compared to the existing filtering techniques used for the stabilization of explicit MOT schemes. Numerical results presented in this paper demonstrate that the proposed method maintains its stability even when applied to the analysis of electromagnetic wave interactions with electrically large structures meshed using approximately half a million discretization elements.

  2. Premier's imaging IR limb sounder

    Science.gov (United States)

    Kraft, Stefan; Bézy, Jean-Loup; Meynart, Roland; Langen, Jörg; Carnicero Dominguez, Bernardo; Bensi, Paolo; Silvestrin, Pierluigi

    2017-11-01

    The Imaging IR Limb Sounder (IRLS) is one of the two instruments planned on board of the candidate Earth Explorer Core Mission PREMIER. PREMIER stands for PRocess Exploration through Measurements of Infrared and Millimetre-wave Emitted Radiation. PREMIER went recently through the process of a feasibility study (Phase A) within the Earth Observation Envelope Program. Emerging from recent advanced instrument technologies IRLS shall, next to a millimetre-wave limb sounder (called STEAMR), explore the benefits of three-dimensional limb sounding with embedded cloud imaging capability. Such 3D imaging technology is expected to open a new era of limb sounding that will allow detailed studies of the link between atmospheric composition and climate, since it will map simultaneously fields of temperature and many trace gases in the mid/upper troposphere and stratosphere across a large vertical and horizontal field of view and with high vertical and horizontal resolution. PREMIER shall fly in a tandem formation looking backwards to METOP's swath and thereby improve meteorological and environmental analyses.

  3. Three Dimensional Energy Transmitting Boundary in the Time Domain

    Directory of Open Access Journals (Sweden)

    Naohiro eNakamura

    2015-11-01

    Full Text Available Although the energy transmitting boundary is accurate and efficient for the FEM earthquake response analysis, it could be applied in the frequency domain only. In the previous papers, the author proposed an earthquake response analysis method using the time domain energy transmitting boundary for two dimensional problems. In this paper, this technique is expanded for three dimensional problems. The inner field is supposed to be a hexahedron shape and the approximate time domain boundary is explained, first. Next, two dimensional anti-plane time domain boundary is studied for a part of the approximate three dimensional boundary method. Then, accuracy and efficiency of the proposed method are confirmed by example problems.

  4. 3D time-domain airborne EM forward modeling with topography

    Science.gov (United States)

    Yin, Changchun; Qi, Yanfu; Liu, Yunhe; Cai, Jing

    2016-11-01

    The time-domain finite-difference method has been widely used in simulation of the electromagnetic field diffusion. However, this method is severely restricted by the mesh size and time step. To overcome the defect, we adopted edge finite-element method for unstructured grid with Backward Euler method to conduct 3D airborne electromagnetic forward modeling directly in time-domain. The tetrahedral meshes provide the flexibility required for representing the rugged topography and complex-shape anomalous bodies. We simulated the practical shape, size and attitude of transmitting source by directly setting the loop into the well-generated grids. The characteristic properties of vector basic functions guarantee automatic satisfaction of divergence-free property of electric fields. The Galerkin's method is used to discretize the governing equations and a direct solver is adopted to solve the large sparse linear system. We adopted an algorithm with constant step in each time segment to speed up the forward modeling. Further we introduced the local mesh strategy to reduce the calculations, in which an optimized grid is designed for each sounding station. We check the accuracy of our 3D modeling results against the solution for a homogenous half-space and those for a buried vertical plate model using integral equation. The numerical experiments for a hill, a valley or undulating topography model with buried anomalous bodies were further studied that show that the topography has a serious effect on airborne EM data.

  5. Using random response input in Ibrahim Time Domain

    DEFF Research Database (Denmark)

    Olsen, Peter; Brincker, R.

    2013-01-01

    In this paper the time domain technique Ibrahim Time Domain (ITD) is used to analyze random time data. ITD is known to be a technique for identification of output only systems. The traditional formulation of ITD is claimed to be limited, when identifying closely spaced modes, because of the techn....... In this article it is showed that when using the modified ITD random time data can be analyzed. The application of the technique is displayed by a case study, with simulations and experimental data....

  6. Terahertz Time Domain Spectroscopy for Structure-II Gas Hydrates

    DEFF Research Database (Denmark)

    Takeya, Kei; Zhang, Caihong; Kawayama, Iwao

    2009-01-01

    For the nondestructive inspection of gas hydrates, terahertz (THz) time-domain spectroscopy (TDS) was applied to tetrahydrofuran (THF) hydrate and propane hydrate. The absorption of propane hydrate monotonically increases with frequency, similar to the case of ice, while THF hydrate has a charact......For the nondestructive inspection of gas hydrates, terahertz (THz) time-domain spectroscopy (TDS) was applied to tetrahydrofuran (THF) hydrate and propane hydrate. The absorption of propane hydrate monotonically increases with frequency, similar to the case of ice, while THF hydrate has...

  7. Modern EMC analysis I time-domain computational schemes

    CERN Document Server

    Kantartzis, Nikolaos V

    2008-01-01

    The objective of this two-volume book is the systematic and comprehensive description of the most competitive time-domain computational methods for the efficient modeling and accurate solution of contemporary real-world EMC problems. Intended to be self-contained, it performs a detailed presentation of all well-known algorithms, elucidating on their merits or weaknesses, and accompanies the theoretical content with a variety of applications. Outlining the present volume, the analysis covers the theory of the finite-difference time-domain, the transmission-line matrix/modeling, and the finite i

  8. [Terahertz time-domain spectroscopy of Clenbuterol hydrochloride].

    Science.gov (United States)

    Chen, Xi-ai; Hou, Di-bo; Huang, Ping-jie; Kang, Xu-sheng; Zhang, Guang-xin; Zhou, Ze-kui

    2011-12-01

    The terahertz spectra of Clenbuterol hydrochloride in the range of 0.2 to 2.6 THz were obtained by THz time-domain spectroscopy, the absorption and refraction spectra of Clenbuterol hydrochloride was got meanwhile. The structure and vibrational frequencies of Clenbuterol molecule, Clenbuterol hydrochloride molecule and Clenbuterol hydrochloride crystal in the THz range were simulated. Based on the difference between experimental and theoretical results, the origin of the vibrational frequencies was analyzed. This study demonstrated the feasibility of time-domain terahertz spectroscopy for the identification of Clenbuterol hydrochloride and provides a new way for the detection of Clenbuterol hydrochloride.

  9. Axes of Discovery: The Time Domain and the Radio Synoptic Survey Telescope

    Science.gov (United States)

    Cordes, J. M.

    2008-08-01

    As Heraclitus might have said, ``You don't observe the same universe twice,'' and in modern times we recognize the time domain as an important dimension in the overall phase space of variables that characterizes the observable universe. Examples abound across the electromagnetic spectrum and in non-photonic regimes (neutrinos, gravitational waves, cosmic rays). However, while we can glimpse the richness of time-domain phenomena at radio wavelengths, the radio sky is largely unexplored in any comprehensive sense, especially when compared to the successes of wide-field surveys at high energies. Known radio transients are as short as 0.4 ns with an equivalent brightness temperature of 1042 K tep{jmc:he07} related to the coherent nature of pulsar radiation; others with incoherent emission extend to hour and longer time scales with thermal brightness temperatures. Some time-domain properties are intrinsic to sources while others are imposed by multi-path propagation through intervening plasma. This paper discusses both known and speculative aspects of the radio transient sky, with an emphasis on discoveries that can be made with new, appropriately designed instrumentation and telescopes. A generalized survey figure of merit is presented that takes into account the rate and duration of transient celestial events. The key for expanding discovery space is a wide field of view (FoV) combined with adequate sensitivity and high-resolution sampling in time and frequency. I discuss implementation of time-domain studies as an integral part of synoptic survey modes and the potential for cross-wavelength and joint photonic/non-photonic studies. In particular, I make the case for designing and operating the mid-frequency-range Square Kilometer Array as a Radio Synoptic Survey Telescope.

  10. Structural Time Domain Identification (STDI) Toolbox for Use with MATLAB

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Andersen, P.; Brincker, Rune

    1997-01-01

    The Structural Time Domain Identification (STDI) toolbox for use with MATLABTM is developed at Aalborg University, Denmark, based on the system identification research performed during recent years. By now, a reliable set of functions offers a wide spectrum of services for all the important steps...

  11. Structural Time Domain Identification (STDI) Toolbox for Use with MATLAB

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Andersen, P.; Brincker, Rune

    The Structural Time Domain Identification (STDI) toolbox for use with MATLABTM is developed at Aalborg University, Denmark, based on the system identification research performed during recent years. By now, a reliable set of functions offers a wide spectrum of services for all the important steps...

  12. Nonlinear time-domain modeling of balanced-armature receivers

    DEFF Research Database (Denmark)

    Jensen, Joe; Agerkvist, Finn T.; Harte, James

    2011-01-01

    of the loudspeaker diaphragm inevitably changes the magnetic and electrical characteristics of the loudspeaker. A numerical time-domain model capable of describing these nonlinearities is presented. By simulation it is demonstrated how the output distortion could potentially be reduced significantly through careful...

  13. Frequency and voice: perspectives in the time domain.

    Science.gov (United States)

    Roark, Rick M

    2006-09-01

    Frequency variation is one of the most primitive features of voice production, endowing language and communication with richness and efficiency and enhancing enjoyment of the voice arts. In the first of two tutorial articles, the subject of frequency is examined formally, beginning in the time domain. A companion article explores the topic of frequency and voice from the frequency domain perspective. Frequency is a well-defined quantity of the sinusoidal function and of periodic functions of time. However, voice is inherently nonstationary, even over short time segments, to degrees that range from minor (stable vowels of a healthy voice) to major (singing voice and voiced consonants). For signals that are not periodic, the notion of frequency is ambiguous and often altogether unclear, which has led to a multitude of frequency-measurement techniques and discrepancy of measures. This article identifies the source of these discrepancies for a variety of time-domain techniques that are examined in the absence of noise. In the time domain, the subject of frequency is inherently coupled to the topic of signal modeling, which is explored in some detail. Sinusoidal models having time-varying phase are examined with the objective of achieving a frequency description of voice that is both continuous and instantaneous. The analytic signal method of mathematical physics is discussed and applied to the technology of empirical mode decomposition to demonstrate that the frequencies of voice may be comprehensively examined from the time domain point of view.

  14. A pseudospectral collocation time-domain method for diffractive optics

    DEFF Research Database (Denmark)

    Dinesen, P.G.; Hesthaven, J.S.; Lynov, Jens-Peter

    2000-01-01

    We present a pseudospectral method for the analysis of diffractive optical elements. The method computes a direct time-domain solution of Maxwell's equations and is applied to solving wave propagation in 2D diffractive optical elements. (C) 2000 IMACS. Published by Elsevier Science B.V. All rights...

  15. Assessment of perceptual diffuseness in the time domain

    DEFF Research Database (Denmark)

    Garcia, Julian Martinez-Villalba; Jeong, Cheol-Ho; Brunskog, Jonas

    2017-01-01

    This study proposes a numerical and experimental framework for evaluating the perceptual aspect of the diffuse field condition with intended final use in music auditoria. Multiple Impulse Responses are simulated based on the time domain Poisson process with increasing reflection density. Different...

  16. Ultrabroadband THz time-domain spectroscopy of biomolecular crystals

    DEFF Research Database (Denmark)

    Kaltenecker, Korbinian J.; Engelbrecht, Sebastian; Iwaszczuk, Krzysztof

    2016-01-01

    Ultrabroadband THz time-domain spectroscopy based on two-color plasma generation and air biased coherent detection is used for the investigation of molecular dynamics of crystalline materials in the frequency range from 0.3 THz to 20 THz. We show that the spectral features in this extended freque...

  17. Time-domain seismic reliability of nonlinear structures

    Indian Academy of Sciences (India)

    Abstract. A novel reliability analysis technique is presented to estimate the reli- ability of real structural systems. Its unique feature is that the dynamic loadings can be applied in time domain. It is a nonlinear stochastic finite element logarithm combined with the response surface method (RSM). It generates the response sur-.

  18. Terahertz time-domain spectroscopy and imaging of artificial RNA

    DEFF Research Database (Denmark)

    Fischer, Bernd M.; Hoffmann, Matthias; Helm, Hanspeter

    2005-01-01

    We use terahertz time-domain spectroscopy (THz-TDS) to measure the far-infrared dielectric function of two artificial RNA single strands, composed of polyadenylic acid (poly-A) and polycytidylic acid (poly-C). We find a significant difference in the absorption between the two types of RNA strands...

  19. [Terahertz time-domain spectroscopy of ractopamine hydrochloride].

    Science.gov (United States)

    Chen, Xi-ai; Huang, Ping-jie; Hou, Di-bo; Kang, Xu-sheng; Zhang, Guang-xin; Zhou, Ze-kui

    2011-03-01

    The terahertz spectra of Ractopamine hydrochloride in the range of 0.2 to 2.2 THz was obtained by THz time-domain spectroscopy, and the absorption and refraction spectra of Ractopamine hydrochloride was got meanwhile. The structure and vibrational frequencies of Ractopamine molecule in the THz range were simulated by density functional theory. The difference between experimental and theoretical results was analyzed. And assisted by Gaussian View 3.09, the origin of the vibrational frequencies was recognized. The results show that besides the intramolecular vibrations, THz absorption of Ractopamine hydrochloride originated from the intermolecular hydrogen bond network and Van der Waals force between molecules. This study demonstrated the feasibility of time-domain terahertz spectroscopy for the identification of Ractopamine hydrochloride and provided a new way for the detection of Ractopamine hydrochloride.

  20. Advances in spectral inversion of time-domain induced polarization

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest

    The extraction of spectral information in the inversion process of time-domain (TD) induced polarization (IP) data is changing the use of the TDIP method. Data interpretation is evolving from a qualitative description of the subsurface, able only to discriminate the presence of contrasts in charg......The extraction of spectral information in the inversion process of time-domain (TD) induced polarization (IP) data is changing the use of the TDIP method. Data interpretation is evolving from a qualitative description of the subsurface, able only to discriminate the presence of contrasts...... in chargeability parameters, towards a quantitative analysis of the investigated media, which allows for detailed soil- and rock-type characterization. In this work a review of the recent advances in spectral inversion of TDIP data is presented, in terms of: supported IP parameterizations; modelling of transmitter...

  1. Drug detection by terahertz time-domain spectroscopy

    International Nuclear Information System (INIS)

    Duan Ruixin; Zhu Yiming; Zhao Hongwei

    2013-01-01

    Due to unique spectral region, functional imaging ability, excellent penetration and safety characteristics of terahertz radiation, the terahertz technology rapidly becomes a vital method to detect and analyze drugs. In this paper, firstly, we identify the functional groups of anti-diabetic drugs by density functional theory (DFT), HIPHOP models and experimental results from terahertz time-domain spectroscopy measurements. Secondly, we identify four kinds of herbs of radix curcumae by using the support vector machine (SVM) analysis. Besides, we analyze the absorption of anhydrous and hydrous glucose, and determine the state of water in the crystalized D-glucose·H 2 O through the results of differential scanning calorimetry measurement. Finally, we summarize the advantages and disadvantages of terahertz time-domain spectroscopy method in drug detection and analyzing. (authors)

  2. Time Domain Partitioning of Electricity Production Cost Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Barrows, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hummon, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jones, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hale, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-01-01

    Production cost models are often used for planning by simulating power system operations over long time horizons. The simulation of a day-ahead energy market can take several weeks to compute. Tractability improvements are often made through model simplifications, such as: reductions in transmission modeling detail, relaxation of commitment variable integrality, reductions in cost modeling detail, etc. One common simplification is to partition the simulation horizon so that weekly or monthly horizons can be simulated in parallel. However, horizon partitions are often executed with overlap periods of arbitrary and sometimes zero length. We calculate the time domain persistence of historical unit commitment decisions to inform time domain partitioning of production cost models. The results are implemented using PLEXOS production cost modeling software in an HPC environment to improve the computation time of simulations while maintaining solution integrity.

  3. Time-domain Hydroelasticity Theory of Ships Responding to Waves

    DEFF Research Database (Denmark)

    Xia, Jinzhu; Wang, Zhaohui

    1997-01-01

    flare forms. The predicted results include linear and non-linear rigid motions and structural responses of ships advancing in regular and irregular waves. The results clearly demonstrate the importance and the magnitude of non-linear effects in ship motions and internal forces. Numerical calculations......A time-domain linear theory of fluid-structure interaction between floating structures and the incident waves is presented. The structure is assumed to be elastic and represented by general separation of variables, whereas the fluid is described as an initial boundary value problem of potential...... free surface flow. The general interface boundary condition is used in the mathematical formulation of the fluid motion around the flexible structure. The general time-domain theory is simplified to a slender-body theory for the analysis of wave-induced global responses of monohull ships. The structure...

  4. Evaluation of Damping Using Time Domain OMA Techniques

    DEFF Research Database (Denmark)

    Bajric, Anela; Brincker, Rune; Georgakis, Christos T.

    2014-01-01

    The prevailing Operational Modal Analysis (OMA) techniques provide in most cases reasonably accurate estimates of structural frequencies and mode shapes. In contrast though, they are known to often produce poor structural damping estimates, which is mainly due to inherent random and/or bias errors...... Time Domain (ITD), Eigenvalue Realization Algorithm (ERA) and the Polyreference Time Domain (PTD). The response of a two degree-of-freedom (2DOF) system is numerically established from specified modal parameters with well separated and closely spaced modes. Two types of response are considered, free...... response and random response from white noise loading. Finally, the results of the numerical study are presented, in which the error of the structural damping estimates obtained by each OMA technique is shown for a range of damping levels. From this, it is clear that there are notable differences...

  5. Anderson localization and Mott insulator phase in the time domain

    Science.gov (United States)

    Sacha, Krzysztof

    2015-01-01

    Particles in space periodic potentials constitute standard models for investigation of crystalline phenomena in solid state physics. Time periodicity of periodically driven systems is a close analogue of space periodicity of solid state crystals. There is an intriguing question if solid state phenomena can be observed in the time domain. Here we show that wave-packets localized on resonant classical trajectories of periodically driven systems are ideal elements to realize Anderson localization or Mott insulator phase in the time domain. Uniform superpositions of the wave-packets form stationary states of a periodically driven particle. However, an additional perturbation that fluctuates in time results in disorder in time and Anderson localization effects emerge. Switching to many-particle systems we observe that depending on how strong particle interactions are, stationary states can be Bose-Einstein condensates or single Fock states where definite numbers of particles occupy the periodically evolving wave-packets. Our study shows that non-trivial crystal-like phenomena can be observed in the time domain. PMID:26074169

  6. Efficient smoothed finite element time domain analysis for photonic devices.

    Science.gov (United States)

    Atia, Khaled S R; Heikal, A M; Obayya, S S A

    2015-08-24

    In this paper, a new finite element method (FEM) is proposed to analyse time domain wave propagation in photonic devices. Dissimilar to conventional FEM, efficient "inter-element" matrices are accurately formed through smoothing the field derivatives across element boundaries. In this sense, the new approach is termed "smoothed FEM" (SFETD). For time domain analysis, the propagation is made via the time domain beam propagation method (TD-BPM). Relying on first order elements, our suggested SFETD-BPM enjoys accuracy levels comparable to second-order conventional FEM; thanks to the element smoothing. The proposed method numerical performance is tested through applicating on analysis of a single mode slab waveguide, optical grating structure, and photonic crystal cavity. It is clearly demonstrated that our method is not only accurate but also more computationally efficient (far few run time, and memory requirements) than the conventional FEM approach. The SFETD-BPM is also extended to deal with the very challenging problem of dispersive materials. The material dispersion is smartly utilized to enhance the quality factor of photonic crystal cavity.

  7. An FFT-accelerated time-domain multiconductor transmission line simulator

    KAUST Repository

    Bagci, Hakan

    2010-02-01

    A fast time-domain multiconductor transmission line (MTL) simulator for analyzing general MTL networks is presented. The simulator models the networks as homogeneous MTLs that are excited by external fields and driven/terminated/ connected by potentially nonlinear lumped circuitry. It hybridizes an MTL solver derived from time-domain integral equations (TDIEs) in unknown wave coefficients for each MTL with a circuit solver rooted in modified nodal analysis equations in unknown node voltages and voltage-source currents for each circuit. These two solvers are rigorously interfaced at MTL and circuit terminals, and the resulting coupled system of equations is solved simultaneously for all MTL and circuit unknowns at each time step. The proposed simulator is amenable to hybridization, is fast Fourier transform (FFT)-accelerated, and is highly accurate: 1) It can easily be hybridized with TDIE-based field solvers (in a fully rigorous mathematical framework) for performing electromagnetic interference and compatibility analysis on electrically large and complex structures loaded with MTL networks. 2) It is accelerated by an FFT algorithm that calculates temporal convolutions of time-domain MTL Green functions in only O(Ntlog2 N t) rather than O(Ntt2) operations, where N t is the number of time steps of simulation. Moreover, the algorithm, which operates on temporal samples of MTL Green functions, is indifferent to the method used to obtain them. 3) It approximates MTL voltages, currents, and wave coefficients, using high-order temporal basis functions. Various numerical examples, including the crosstalk analysis of a (twisted) unshielded twisted-pair (UTP)-CAT5 cable and the analysis of field coupling into UTP-CAT5 and RG-58 cables located on an airplane, are presented to demonstrate the accuracy, efficiency, and versatility of the proposed simulator. © 2010 IEEE.

  8. A Compact Unconditionally Stable Method for Time-Domain Maxwell's Equations

    Directory of Open Access Journals (Sweden)

    Zhuo Su

    2013-01-01

    Full Text Available Higher order unconditionally stable methods are effective ways for simulating field behaviors of electromagnetic problems since they are free of Courant-Friedrich-Levy conditions. The development of accurate schemes with less computational expenditure is desirable. A compact fourth-order split-step unconditionally-stable finite-difference time-domain method (C4OSS-FDTD is proposed in this paper. This method is based on a four-step splitting form in time which is constructed by symmetric operator and uniform splitting. The introduction of spatial compact operator can further improve its performance. Analyses of stability and numerical dispersion are carried out. Compared with noncompact counterpart, the proposed method has reduced computational expenditure while keeping the same level of accuracy. Comparisons with other compact unconditionally-stable methods are provided. Numerical dispersion and anisotropy errors are shown to be lower than those of previous compact unconditionally-stable methods.

  9. [Application of terahertz time domain spectroscopy to explosive and illegal drug].

    Science.gov (United States)

    Liu, Gui-Feng; Zhao, Hong-Wei; Ge, Min; Wang, Wen-Feng

    2008-05-01

    Terahertz waves (THz, T-ray) lie between far-infrared and microwave in electromagnetic spectrum with frequency from 0.1 to 10 THz. Many explosives and illicit drugs show characteristic spectral features in the terahertz. Compared with conventional methods of detecting a variety of threats, such as weapons, explosives and illegal drugs, THz radiation is low frequency and non-ionizing, and does not give rise to safety concerns. Moreover, THz can penetrate many barrier materials, such as clothing and common packaging materials. THz technique has a great potential and advantage in antiterrorism and security inspection of explosives and illegal drugs due to the ability of high-sensitivity, nondestructive and stand-off inspection of many substances. The present paper summarizes the latest progress in the application of terahertz time domain spectroscopy (THz-TDS) to explosives and illegal drugs. Studies on RDX are discussed in details and many factors affecting experiments are also introduced.

  10. Transient analysis of printed lines using finite-difference time-domain method

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Shahid [Thomas Jefferson National Accelerator Facility, 12050 Jefferson Avenue, Suite 704, Newport News, VA, 23606, USA

    2012-03-29

    Comprehensive studies of ultra-wideband pulses and electromagnetic coupling on printed coupled lines have been performed using full-wave 3D finite-difference time-domain analysis. Effects of unequal phase velocities of coupled modes, coupling between line traces, and the frequency dispersion on the waveform fidelity and crosstalk have been investigated in detail. To discriminate the contributions of different mechanisms into pulse evolution, single and coupled microstrip lines without (ϵr = 1) and with (ϵr > 1) dielectric substrates have been examined. To consistently compare the performance of the coupled lines with substrates of different permittivities and transients of different characteristic times, a generic metric similar to the electrical wavelength has been introduced. The features of pulse propagation on coupled lines with layered and pedestal substrates and on the irregular traces have been explored. Finally, physical interpretations of the simulation results are discussed in the paper.

  11. Evaluation of Waveform Structure Features on Time Domain Target Recognition under Cross Polarization

    Science.gov (United States)

    Selver, M. A.; Seçmen, M.; Zoral, E. Y.

    2016-08-01

    Classification of aircraft targets from scattered electromagnetic waves is a challenging application, which suffers from aspect angle dependency. In order to eliminate the adverse effects of aspect angle, various strategies were developed including the techniques that rely on extraction of several features and design of suitable classification systems to process them. Recently, a hierarchical method, which uses features that take advantage of waveform structure of the scattered signals, is introduced and shown to have effective results. However, this approach has been applied to the special cases that consider only a single planar component of electric field that cause no-cross polarization at the observation point. In this study, two small scale aircraft models, Boeing-747 and DC-10, are selected as the targets and various polarizations are used to analyse the cross-polarization effects on system performance of the aforementioned method. The results reveal the advantages and the shortcomings of using waveform structures in time-domain target identification.

  12. Retarded potentials and time domain boundary integral equations a road map

    CERN Document Server

    Sayas, Francisco-Javier

    2016-01-01

    This book offers a thorough and self-contained exposition of the mathematics of time-domain boundary integral equations associated to the wave equation, including applications to scattering of acoustic and elastic waves. The book offers two different approaches for the analysis of these integral equations, including a systematic treatment of their numerical discretization using Galerkin (Boundary Element) methods in the space variables and Convolution Quadrature in the time variable. The first approach follows classical work started in the late eighties, based on Laplace transforms estimates. This approach has been refined and made more accessible by tailoring the necessary mathematical tools, avoiding an excess of generality. A second approach contains a novel point of view that the author and some of his collaborators have been developing in recent years, using the semigroup theory of evolution equations to obtain improved results. The extension to electromagnetic waves is explained in one of the appendices...

  13. Time domain SAR raw data simulation using CST and image focusing of 3D objects

    Science.gov (United States)

    Saeed, Adnan; Hellwich, Olaf

    2017-10-01

    This paper presents the use of a general purpose electromagnetic simulator, CST, to simulate realistic synthetic aperture radar (SAR) raw data of three-dimensional objects. Raw data is later focused in MATLAB using range-doppler algorithm. Within CST Microwave Studio a replica of TerraSAR-X chirp signal is incident upon a modeled Corner Reflector (CR) whose design and material properties are identical to that of the real one. Defining mesh and other appropriate settings reflected wave is measured at several distant points within a line parallel to the viewing direction. This is analogous to an array antenna and is synthesized to create a long aperture for SAR processing. The time domain solver in CST is based on the solution of differential form of Maxwells equations. Exported data from CST is arranged into a 2-d matrix of axis range and azimuth. Hilbert transform is applied to convert the real signal to complex data with phase information. Range compression, range cell migration correction (RCMC), and azimuth compression are applied in time domain to obtain the final SAR image. This simulation can provide valuable information to clarify which real world objects cause images suitable for high accuracy identification in the SAR images.

  14. Parallel PWTD-Accelerated Explicit Solution of the Time Domain Electric Field Volume Integral Equation

    KAUST Repository

    Liu, Yang

    2016-03-25

    A parallel plane-wave time-domain (PWTD)-accelerated explicit marching-on-in-time (MOT) scheme for solving the time domain electric field volume integral equation (TD-EFVIE) is presented. The proposed scheme leverages pulse functions and Lagrange polynomials to spatially and temporally discretize the electric flux density induced throughout the scatterers, and a finite difference scheme to compute the electric fields from the Hertz electric vector potentials radiated by the flux density. The flux density is explicitly updated during time marching by a predictor-corrector (PC) scheme and the vector potentials are efficiently computed by a scalar PWTD scheme. The memory requirement and computational complexity of the resulting explicit PWTD-PC-EFVIE solver scale as ( log ) s s O N N and ( ) s t O N N , respectively. Here, s N is the number of spatial basis functions and t N is the number of time steps. A scalable parallelization of the proposed MOT scheme on distributed- memory CPU clusters is described. The efficiency, accuracy, and applicability of the resulting (parallelized) PWTD-PC-EFVIE solver are demonstrated via its application to the analysis of transient electromagnetic wave interactions on canonical and real-life scatterers represented with up to 25 million spatial discretization elements.

  15. Terahertz time domain spectroscopy of epoxy resin composite with various carbon inclusions

    International Nuclear Information System (INIS)

    Macutkevic, J.; Seliuta, D.; Valusis, G.; Adomavicius, R.; Kuzhir, P.; Paddubskaya, A.; Shuba, M.; Maksimenko, S.; Coderoni, L.; Micciulla, F.; Sacco, I.; Bellucci, S.

    2012-01-01

    Highlights: ► Epoxy resin with carbon inclusions is studied by terahertz time domain spectroscopy. ► The resonance dielectric dispersion is observed for all investigated samples. ► Dielectric properties are modeled by Maxwell–Garnett and nanoelectromagnetic formalism. -- Abstract: The propagation properties of terahertz waves through epoxy resin filled with small amounts (0.25–1.5 wt.%) of commercially available carbon black (CB) and CVD made single-walled and multi-walled carbon nanotubes (CNT) have been investigated by terahertz time domain spectroscopy. High electromagnetic attenuation specified substantially with absorption of THz radiation and strongly decreasing with the decrease of frequency from 0.2 to 1.5 THz has been found for both types of CNT fillers starting from 1 wt.% of nanocarbon concentration. At the same time CB in the same concentration does not make any impact to THz transmission spectrum. The resonance dielectric dispersion has been observed for all investigated samples, which can be attributed to phonon resonance in epoxy resin matrix. The availability of Maxwell–Garnett model for epoxy resin filled with 0.25–1.5 wt.% of CNT was also addressed in the paper.

  16. Terahertz time-domain transmission and reflection spectroscopy of niobium

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tae Yoon; Choi, Kyu Jin; Park, Byoung Cheol; Ha, Tae Woo; Sim, Kyung Ik; Kim, Jea Hoon [Dept. of Physics, Yonsei University, Seoul (Korea, Republic of); Ha, Dong Gwang; Chang, Yonuk [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2013-03-15

    We have developed a terahertz time-domain spectroscopy (THz-TDS) system for transmission and reflection measurements of metallic thin films. Using our THz-TDS system, we studied the conventional superconductor niobium (Nb) in the normal state in the spectral range from 5 to 50 cm{sup -1}. Both the real and imaginary parts of the conductivity are acquired without Kramers-Kronig analysis. Nb exhibits a nearly frequency independent real conductivity spectrum in the terahertz range, with a very small imaginary part.

  17. A wavefront analyzer for terahertz time-domain spectrometers

    DEFF Research Database (Denmark)

    Abraham, E.; Brossard, M.; Fauche, P.

    2017-01-01

    We report on the development of a terahertz wavefront sensor able to determine the optical aberrations of a terahertz time-domain spectrometer. The system measures point-by-point the amplitude and phase of the terahertz electric field in a given plane. From this measurement, we reconstruct...... the terahertz wavefront and calculate its Zernike coefficients. In particular, we especially show that the focus spot of the spectrometer suffers from optical aberrations such as remaining defocus, first and second order astigmatisms, as well as spherical aberration. This opens a route to wavefront correction...... for improved terahertz imaging and spectroscopy....

  18. Detection probabilities for time-domain velocity estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1991-01-01

    Estimation of blood velocities by time-domain cross-correlation of successive high frequency sampled ultrasound signals is investigated. It is shown that any velocity can result from the estimator regardless of the true velocity due to the nonlinear technique employed. Using a simple simulation...... as a filter with a transfer function depending on the actual velocity. This influences the detection probability, which gets lower at certain velocities. An index directly reflecting the probability of detection can easily be calculated from the cross-correlation estimated. This makes it possible to assess...

  19. Solution of the Burgers Equation in the Time Domain

    Directory of Open Access Journals (Sweden)

    M. Bednařík

    2002-01-01

    Full Text Available This paper deals with a theoretical description of the propagation of a finite amplitude acoustic waves. The theory based on the homogeneous Burgers equation of the second order of accuracy is presented here. This equation takes into account both nonlinear effects and dissipation. The method for solving this equation, using the well-known Cole-Hopf transformation, is presented. Two methods for numerical solution of these equations in the time domain are presented. The first is based on the simple Simpson method, which is suitable for smaller Goldberg numbers. The second uses the more advanced saddle point method, and is appropriate for large Goldberg numbers.

  20. Time-Domain Diversity in Ultra-Wideband MIMO Communications

    Directory of Open Access Journals (Sweden)

    Alain Sibille

    2005-03-01

    Full Text Available The development of ultra-wideband (UWB communications is impeded by the drastic transmitted power limitations imposed by regulation authorities due to the “polluting” character of these radio emissions with respect to existing services. Technical solutions must be researched in order either to limit the level of spectral pollution by UWB devices or to increase their reception sensitivity. In the present work, we consider pulse-based modulations and investigate time-domain multiple-input multiple-output (MIMO diversity as one such possible solution. The basic principles of time-domain diversity in the extreme (low multipath density or intermediate (dense multipath UWB regimes are addressed, which predict the possibility of a MIMO gain equal to the product Nt×Nr of the numbers of transmit/receive antenna elements when the channel is not too severe. This analysis is confirmed by simulations using a parametric empirical stochastic double-directional channel model. They confirm the potential interest of MIMO approaches solutions in order to bring a valuable performance gain in UWB communications.

  1. Time domain terahertz electro- and magneto-optic spectroscopy

    CERN Document Server

    Moore, G P

    2001-01-01

    sub i sub c sub u sub l sub a sub r = 0 centre dot 19m sub e and m sub p sub a sub r sub a sub l sub l sub e sub l = 0 centre dot 90m sub e. The temperature dependence of the cyclotron resonance was measured over the range 5K to 80 K, and a peak is found at approx 30 K which can be explained in terms of ionised and neutral impurity scattering at temperatures below 30 K and by phonon scattering above 30 K. The measurement of small amplitude ferromagnetic resonance oscillations in the time domain in thin films of permalloy (78), iron and cobalt has been achieved by using the time resolved magneto-optic Kerr effect. A stripline device was fabricated to provide an out of plane broadband magnetic pulse with a peak strength of approx 5 Oe. The observed frequencies are shown to agree well with the established theory. A time domain terahertz spectrometer and a bolometer have been used to study the coherent THz radiation emitted from n- and p-type InAs surfaces illuminated by femtosecond near infrared pulses. The magn...

  2. Time-Domain Analysis of Scrotal Thermoregulatory Impairment in Varicocele

    Directory of Open Access Journals (Sweden)

    Enas eIsmail

    2014-09-01

    Full Text Available Varicocele is a common male disease defined as the pathological dilatation of the pampiniform plexus and scrotal veins with venous blood reflux. Varicocele usually impairs the scrotal thermoregulation via a hemodynamic alteration, thus inducing an increase in cutaneous temperature. The investigation of altered scrotal thermoregulation by means of thermal infrared imaging has been proved to be useful in the study of the functional thermal impairment. In this study, we use the Control System Theory to analyze the time-domain dynamics of the scrotal thermoregulation in response to a mild cold challenge. Four standard time-domain dynamic parameters of a prototype second order control system (Delay Time, Rise Time, closed poles locations, steady state error and the static basal temperatures were directly estimated from thermal recovery curves. Thermal infrared imaging data from 31 healthy controls (HCS and 95 varicocele patients were processed. True-positive predictions, by comparison with standard echo color Doppler findings, higher than 87 % were achieved into the proper classification of the disease stage. The proposed approach could help to understand at which specific level the presence of the disease impacts the scrotal thermoregulation, which is also involved into normal spermatogenesis process.

  3. Finite Difference Time Domain Modeling at USA Instruments, Inc.

    Science.gov (United States)

    Curtis, Richard

    2003-10-01

    Due to the competitive nature of the commercial MRI industry, it is essential for the financial health of a participating company to innovate new coil designs and bring product to market rapidly in response to ever-changing market conditions. However, the technology of MRI coil design is still early in its stage of development and its principles are yet evolving. As a result, it is not always possible to know the relevant electromagnetic effects of a given design since the interaction of coil elements is complex and often counter-intuitive. Even if the effects are known qualitatively, the quantitative results are difficult to obtain. At USA Instruments, Inc., the acquisition of the XFDTDâ electromagnetic simulation tool from REMCOM, Inc., has been helpful in determining the electromagnetic performance characteristics of existing coil designs in the prototype stage before the coils are released for production. In the ideal case, a coil design would be modeled earlier at the conceptual stage, so that only good designs will make it to the prototyping stage and the electromagnetic characteristics better understood very early in the design process and before the testing stage has begun. This paper is a brief overview of using FDTD modeling for MRI coil design at USA Instruments, Inc., and shows some of the highlights of recent FDTD modeling efforts on Birdcage coils, a staple of the MRI coil design portfolio.

  4. Frequency and Time Domain Modeling of Acoustic Liner Boundary Conditions

    Science.gov (United States)

    Bliss, Donald B.

    1982-01-01

    As part of a research program directed at the acoustics of advanced subsonic propulsion systems undertaken at NASA Langley, Duke University was funded to develop a boundary condition model for bulk-reacting nacelle liners. The overall objective of the Langley program was to understand and predict noise from advanced subsonic transport engines and to develop related noise control technology. The overall technical areas included: fan and propeller source noise, acoustics of ducts and duct liners, interior noise, subjective acoustics, and systems noise prediction. The Duke effort was directed toward duct liner acoustics for the development of analytical methods to characterize liner behavior in both frequency domain and time domain. A review of duct acoustics and liner technology can be found in Reference [1]. At that time, NASA Langley was investigating the propulsion concept of an advanced ducted fan, with a large diameter housed inside a relatively short duct. Fan diameters in excess of ten feet were proposed. The lengths of both the inlet and exhaust portions of the duct were to be short, probably less than half the fan diameter. The nacelle itself would be relatively thin-walled for reasons of aerodynamic efficiency. The blade-passage frequency was expected to be less than I kHz, and very likely in the 200 to 300 Hz range. Because of the design constraints of a short duct, a thin nacelle, and long acoustic wavelengths, the application of effective liner technology would be especially challenging. One of the needs of the NASA Langley program was the capability to accurately and efficiently predict the behavior of the acoustic liner. The traditional point impedance method was not an adequate model for proposed liner designs. The method was too restrictive to represent bulk reacting liners and to allow for the characterization of many possible innovative liner concepts. In the research effort at Duke, an alternative method, initially developed to handle bulk

  5. Assessment of perceptual diffuseness in the time domain

    DEFF Research Database (Denmark)

    Garcia, Julian Martinez-Villalba; Jeong, Cheol-Ho; Brunskog, Jonas

    2017-01-01

    acoustic environment to examine how sensitive the human auditory system is to changes in the diffuseness condition, which factors are most crucial and which conditions are most favourable in music halls. Two types of stimuli, a music signal and an impulse response, are tested under the same diffuseness......This study proposes a numerical and experimental framework for evaluating the perceptual aspect of the diffuse field condition with intended final use in music auditoria. Multiple Impulse Responses are simulated based on the time domain Poisson process with increasing reflection density. Different...... conditions. The study shows that subjective diffuseness is highly correlated to the parameters of Surround, Source Width, and Timbre, and is modelled with relevant acoustic parameters such as LG, LF and uniformity of the incident sound....

  6. Time-domain Hydroelasticity Theory of Ships Responding to Waves

    DEFF Research Database (Denmark)

    Xia, Jinzhu; Wang, Zhaohui

    1997-01-01

    free surface flow. The general interface boundary condition is used in the mathematical formulation of the fluid motion around the flexible structure. The general time-domain theory is simplified to a slender-body theory for the analysis of wave-induced global responses of monohull ships. The structure...... is represented by a non-uniform beam, while the generalized hydrodynamic coefficients can be obtained from two-dimensional potential flow theory. The linear slender body theory is generalized to treat the non-linear loading effects of rigid motion and structural response of ships travelling in rough seas....... The non-linear hydrostatic restoring force and hydrodynamic momentum action are considered. A numerical solution is presented for the slender body theory. Numerical examples are given for two ship cases with different geometry features, a warship hull and the S175 containership with two different bow...

  7. A time domain frequency-selective multivariate Granger causality approach.

    Science.gov (United States)

    Leistritz, Lutz; Witte, Herbert

    2016-08-01

    The investigation of effective connectivity is one of the major topics in computational neuroscience to understand the interaction between spatially distributed neuronal units of the brain. Thus, a wide variety of methods has been developed during the last decades to investigate functional and effective connectivity in multivariate systems. Their spectrum ranges from model-based to model-free approaches with a clear separation into time and frequency range methods. We present in this simulation study a novel time domain approach based on Granger's principle of predictability, which allows frequency-selective considerations of directed interactions. It is based on a comparison of prediction errors of multivariate autoregressive models fitted to systematically modified time series. These modifications are based on signal decompositions, which enable a targeted cancellation of specific signal components with specific spectral properties. Depending on the embedded signal decomposition method, a frequency-selective or data-driven signal-adaptive Granger Causality Index may be derived.

  8. Acoustic Finite Element Calculations in the Time Domain

    DEFF Research Database (Denmark)

    Jensen, Morten Skaarup

    The use of the finite element method (FEM) for making predictions for acoustic fields in the time domain is investigated. First, an introduction to FEM for acoustics is given. This includes a description of important present day algorithms and a derivation of FEM. The overall performance...... of these algorithms is then examined with particular emphasis on accuracy and computational costs. It is shown that the most important error is one that takes the form of a falsely predicted dispersion. The dispersion error can be reduced by using smaller elements and time steps, but this is very costly. Attempts...... and consequences of the dispersion error has been obtained. This led to a new method for determining the optimum element and time step size. The method is valuable because the present way of doing this is not theoretically well-founded....

  9. Modern linear control design a time-domain approach

    CERN Document Server

    Caravani, Paolo

    2013-01-01

    This book offers a compact introduction to modern linear control design.  The simplified overview presented of linear time-domain methodology paves the road for the study of more advanced non-linear techniques. Only rudimentary knowledge of linear systems theory is assumed - no use of Laplace transforms or frequency design tools is required. Emphasis is placed on assumptions and logical implications, rather than abstract completeness; on interpretation and physical meaning, rather than theoretical formalism; on results and solutions, rather than derivation or solvability.  The topics covered include transient performance and stabilization via state or output feedback; disturbance attenuation and robust control; regional eigenvalue assignment and constraints on input or output variables; asymptotic regulation and disturbance rejection. Lyapunov theory and Linear Matrix Inequalities (LMI) are discussed as key design methods. All methods are demonstrated with MATLAB to promote practical use and comprehension. ...

  10. Computational electrodynamics the finite-difference time-domain method

    CERN Document Server

    Taflove, Allen

    2005-01-01

    This extensively revised and expanded third edition of the Artech House bestseller, Computational Electrodynamics: The Finite-Difference Time-Domain Method, offers engineers the most up-to-date and definitive resource on this critical method for solving Maxwell's equations. The method helps practitioners design antennas, wireless communications devices, high-speed digital and microwave circuits, and integrated optical devices with unsurpassed efficiency. There has been considerable advancement in FDTD computational technology over the past few years, and the third edition brings professionals the very latest details with entirely new chapters on important techniques, major updates on key topics, and new discussions on emerging areas such as nanophotonics. What's more, to supplement the third edition, the authors have created a Web site with solutions to problems, downloadable graphics and videos, and updates, making this new edition the ideal textbook on the subject as well.

  11. Terahertz time-domain spectroscopy of edible oils.

    Science.gov (United States)

    Dinovitser, Alex; Valchev, Dimitar G; Abbott, Derek

    2017-06-01

    Chemical degradation of edible oils has been studied using conventional spectroscopic methods spanning the spectrum from ultraviolet to mid-IR. However, the possibility of morphological changes of oil molecules that can be detected at terahertz frequencies is beginning to receive some attention. Furthermore, the rapidly decreasing cost of this technology and its capability for convenient, in situ measurement of material properties, raises the possibility of monitoring oil during cooking and processing at production facilities, and more generally within the food industry. In this paper, we test the hypothesis that oil undergoes chemical and physical changes when heated above the smoke point, which can be detected in the 0.05-2 THz spectral range, measured using the conventional terahertz time-domain spectroscopy technique. The measurements demonstrate a null result in that there is no significant change in the spectra of terahertz optical parameters after heating above the smoke point for 5 min.

  12. Terahertz time-domain spectroscopy of edible oils

    Science.gov (United States)

    Dinovitser, Alex; Valchev, Dimitar G.; Abbott, Derek

    2017-06-01

    Chemical degradation of edible oils has been studied using conventional spectroscopic methods spanning the spectrum from ultraviolet to mid-IR. However, the possibility of morphological changes of oil molecules that can be detected at terahertz frequencies is beginning to receive some attention. Furthermore, the rapidly decreasing cost of this technology and its capability for convenient, in situ measurement of material properties, raises the possibility of monitoring oil during cooking and processing at production facilities, and more generally within the food industry. In this paper, we test the hypothesis that oil undergoes chemical and physical changes when heated above the smoke point, which can be detected in the 0.05-2 THz spectral range, measured using the conventional terahertz time-domain spectroscopy technique. The measurements demonstrate a null result in that there is no significant change in the spectra of terahertz optical parameters after heating above the smoke point for 5 min.

  13. Synchronous machine parameter identification in frequency and time domain

    Directory of Open Access Journals (Sweden)

    Hasni M.

    2007-01-01

    Full Text Available This paper presents the results of a frequency and time-domain identification procedure to estimate the linear parameters of a salient-pole synchronous machine at standstill. The objective of this study is to use several input signals to identify the model structure and parameters of a salient-pole synchronous machine from standstill test data. The procedure consists to define, to conduct the standstill tests and also to identify the model structure. The signals used for identification are the different excitation voltages at standstill and the flowing current in different windings. We estimate the parameters of operational impedances, or in other words the reactance and the time constants. The tests were carried out on synchronous machine of 1.5 kVA 380V 1500 rpm.

  14. Time domain random walks for hydrodynamic transport in heterogeneous media

    Science.gov (United States)

    Russian, Anna; Dentz, Marco; Gouze, Philippe

    2016-05-01

    We derive a general formulation of the time domain random walk (TDRW) approach to model the hydrodynamic transport of inert solutes in complex geometries and heterogeneous media. We demonstrate its formal equivalence with the discretized advection-dispersion equation and show that the TDRW is equivalent to a continuous time random walk (CTRW) characterized by space-dependent transition times and transition probabilities. The transition times are exponentially distributed. We discuss the implementation of different concentration boundary conditions and initial conditions as well as the occurrence of numerical dispersion. Furthermore, we propose an extension of the TDRW scheme to account for mobile-immobile multirate mass transfer. Finally, the proposed TDRW scheme is validated by comparison to analytical solutions for spatially homogeneous and heterogeneous transport scenarios.

  15. Explicit solution of Calderon preconditioned time domain integral equations

    KAUST Repository

    Ulku, Huseyin Arda

    2013-07-01

    An explicit marching on-in-time (MOT) scheme for solving Calderon-preconditioned time domain integral equations is proposed. The scheme uses Rao-Wilton-Glisson and Buffa-Christiansen functions to discretize the domain and range of the integral operators and a PE(CE)m type linear multistep to march on in time. Unlike its implicit counterpart, the proposed explicit solver requires the solution of an MOT system with a Gram matrix that is sparse and well-conditioned independent of the time step size. Numerical results demonstrate that the explicit solver maintains its accuracy and stability even when the time step size is chosen as large as that typically used by an implicit solver. © 2013 IEEE.

  16. Informing groundwater model hydrostratigraphy with airborne time-domain electromagnetic data and borehole logs

    DEFF Research Database (Denmark)

    Marker, Pernille Aabye; Bauer-Gottwein, Peter; Mosegaard, Klaus

    a k-means cluster analysis of the principal components of resistivity and clay-fraction values. Under the assumption that the units have uniform hydrological properties, the units constitute the hydrostratigraphy for a groundwater model. Only aquifer structures are obtained from geophysical...... and lithological data, while the estimation of the hydrological properties of the units is inversely derived from the groundwater model and hydrological data. A synthetic analysis was performed to investigate the principles underlying the clustering approach using three petrophysical relationships between...... electrical conductivity and hydraulic conductivity. Aquifer structures obtained from clustering on electrical conductivity and clay fraction resulted in mismatch with the true pumping well capture isochrone of 8 to 13 percent. Results for clustering only on electrical conductivity were not stable...

  17. A leap-frog discontinuous Galerkin time-domain method of analyzing electromagnetic scattering problems

    Science.gov (United States)

    Cui, Xue-Wu; Yang, Feng; Zhou, Long-Jian; Gao, Min; Yan, Fei; Liang, Zhi-Peng

    2017-09-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61301056 and 11176007), the Sichuan Provincial Science and Technology Support Program, China (Grant No. 2013HH0047), the Fok Ying Tung Education Foundation, China (Grant No. 141062), and the “111” Project, China (Grant No. B07046).

  18. Finite element time domain modeling of controlled-Source electromagnetic data with a hybrid boundary condition

    DEFF Research Database (Denmark)

    Cai, Hongzhu; Hu, Xiangyun; Xiong, Bin

    2017-01-01

    method which is unconditionally stable. We solve the diffusion equation for the electric field with a total field formulation. The finite element system of equation is solved using the direct method. The solutions of electric field, at different time, can be obtained using the effective time stepping...... method with trivial computation cost once the matrix is factorized. We try to keep the same time step size for a fixed number of steps using an adaptive time step doubling (ATSD) method. The finite element modeling domain is also truncated using a semi-adaptive method. We proposed a new boundary...... condition based on approximating the total field on the modeling boundary using the primary field corresponding to a layered background model. We validate our algorithm using several synthetic model studies....

  19. Time domain series system definition and gear set reliability modeling

    International Nuclear Information System (INIS)

    Xie, Liyang; Wu, Ningxiang; Qian, Wenxue

    2016-01-01

    Time-dependent multi-configuration is a typical feature for mechanical systems such as gear trains and chain drives. As a series system, a gear train is distinct from a traditional series system, such as a chain, in load transmission path, system-component relationship, system functioning manner, as well as time-dependent system configuration. Firstly, the present paper defines time-domain series system to which the traditional series system reliability model is not adequate. Then, system specific reliability modeling technique is proposed for gear sets, including component (tooth) and subsystem (tooth-pair) load history description, material priori/posterior strength expression, time-dependent and system specific load-strength interference analysis, as well as statistically dependent failure events treatment. Consequently, several system reliability models are developed for gear sets with different tooth numbers in the scenario of tooth root material ultimate tensile strength failure. The application of the models is discussed in the last part, and the differences between the system specific reliability model and the traditional series system reliability model are illustrated by virtue of several numerical examples. - Highlights: • A new type of series system, i.e. time-domain multi-configuration series system is defined, that is of great significance to reliability modeling. • Multi-level statistical analysis based reliability modeling method is presented for gear transmission system. • Several system specific reliability models are established for gear set reliability estimation. • The differences between the traditional series system reliability model and the new model are illustrated.

  20. Time-Domain Techniques for Computation and Reconstruction of One-Dimensional Profiles

    Directory of Open Access Journals (Sweden)

    M. Rahman

    2005-01-01

    Full Text Available This paper presents a time-domain technique to compute the electromagnetic fields and to reconstruct the permittivity profile within a one-dimensional medium of finite length. The medium is characterized by a permittivity as well as conductivity profile which vary only with depth. The discussed scattering problem is thus one-dimensional. The modeling tool is divided into two different schemes which are named as the forward solver and the inverse solver. The task of the forward solver is to compute the internal fields of the specimen which is performed by Green’s function approach. When a known electromagnetic wave is incident normally on the media, the resulting electromagnetic field within the media can be calculated by constructing a Green’s operator. This operator maps the incident field on either side of the medium to the field at an arbitrary observation point. It is nothing but a matrix of integral operators with kernels satisfying known partial differential equations. The reflection and transmission behavior of the medium is also determined from the boundary values of the Green's operator. The inverse solver is responsible for solving an inverse scattering problem by reconstructing the permittivity profile of the medium. Though it is possible to use several algorithms to solve this problem, the invariant embedding method, also known as the layer-stripping method, has been implemented here due to the advantage that it requires a finite time trace of reflection data. Here only one round trip of reflection data is used, where one round trip is defined by the time required by the pulse to propagate through the medium and back again. The inversion process begins by retrieving the reflection kernel from the reflected wave data by simply using a deconvolution technique. The rest of the task can easily be performed by applying a numerical approach to determine different profile parameters. Both the solvers have been found to have the

  1. Object-Oriented Implementation of the Finite-Difference Time-Domain Method in Parallel Computing Environment

    Science.gov (United States)

    Chun, Kyungwon; Kim, Huioon; Hong, Hyunpyo; Chung, Youngjoo

    GMES which stands for GIST Maxwell's Equations Solver is a Python package for a Finite-Difference Time-Domain (FDTD) simulation. The FDTD method widely used for electromagnetic simulations is an algorithm to solve the Maxwell's equations. GMES follows Object-Oriented Programming (OOP) paradigm for the good maintainability and usability. With the several optimization techniques along with parallel computing environment, we could make the fast and interactive implementation. Execution speed has been tested in a single host and Beowulf class cluster. GMES is open source and available on the web (http://www.sf.net/projects/gmes).

  2. Wakefield Computations for the CLIC PETS using the Parallel Finite Element Time-Domain Code T3P

    Energy Technology Data Exchange (ETDEWEB)

    Candel, A; Kabel, A.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; Ko, K.; /SLAC; Syratchev, I.; /CERN

    2009-06-19

    In recent years, SLAC's Advanced Computations Department (ACD) has developed the high-performance parallel 3D electromagnetic time-domain code, T3P, for simulations of wakefields and transients in complex accelerator structures. T3P is based on advanced higher-order Finite Element methods on unstructured grids with quadratic surface approximation. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with unprecedented accuracy, aiding the design of the next generation of accelerator facilities. Applications to the Compact Linear Collider (CLIC) Power Extraction and Transfer Structure (PETS) are presented.

  3. Space Plasma Slab Studies using a new 3D Embedded Reconfigurable MPSoC Sounder

    Science.gov (United States)

    Dekoulis, George

    2016-07-01

    This paper presents recent ionospheric slab thickness measurements using a new mobile digital sounder system. The datasets obtained have been compared to the results of existing sounders in operation. The data validity has been verified. The slab thickness data allow constant monitoring of the lower ionosphere revealing the dynamic trends of the physical processes being involved. The prototype offers a tremendous amount of hardware processing power and a previously unseen response time in servicing the input and output data interfaces. This has been enabled by incorporating the latest three-dimensional Ultrascale+ technologies available commercially from the reconfigurable Field Programmable Gate Array (FPGA) computing industry. Furthermore, a previously developed Network-on-Chip (NoC) design methodology has been incorporated for connecting and controlling the application driven multiprocessor network. The system determines electron distributions, aggregate electromagnetic field gradients and plasma current density.

  4. 3D airborne EM modeling based on the spectral-element time-domain (SETD) method

    Science.gov (United States)

    Cao, X.; Yin, C.; Huang, X.; Liu, Y.; Zhang, B., Sr.; Cai, J.; Liu, L.

    2017-12-01

    In the field of 3D airborne electromagnetic (AEM) modeling, both finite-difference time-domain (FDTD) method and finite-element time-domain (FETD) method have limitations that FDTD method depends too much on the grids and time steps, while FETD requires large number of grids for complex structures. We propose a time-domain spectral-element (SETD) method based on GLL interpolation basis functions for spatial discretization and Backward Euler (BE) technique for time discretization. The spectral-element method is based on a weighted residual technique with polynomials as vector basis functions. It can contribute to an accurate result by increasing the order of polynomials and suppressing spurious solution. BE method is a stable tine discretization technique that has no limitation on time steps and can guarantee a higher accuracy during the iteration process. To minimize the non-zero number of sparse matrix and obtain a diagonal mass matrix, we apply the reduced order integral technique. A direct solver with its speed independent of the condition number is adopted for quickly solving the large-scale sparse linear equations system. To check the accuracy of our SETD algorithm, we compare our results with semi-analytical solutions for a three-layered earth model within the time lapse 10-6-10-2s for different physical meshes and SE orders. The results show that the relative errors for magnetic field B and magnetic induction are both around 3-5%. Further we calculate AEM responses for an AEM system over a 3D earth model in Figure 1. From numerical experiments for both 1D and 3D model, we draw the conclusions that: 1) SETD can deliver an accurate results for both dB/dt and B; 2) increasing SE order improves the modeling accuracy for early to middle time channels when the EM field diffuses fast so the high-order SE can model the detailed variation; 3) at very late time channels, increasing SE order has little improvement on modeling accuracy, but the time interval plays

  5. Time domain numerical calculations of the short electron bunch wakefields in resistive structures

    International Nuclear Information System (INIS)

    Tsakanian, Andranik

    2010-10-01

    The acceleration of electron bunches with very small longitudinal and transverse phase space volume is one of the most actual challenges for the future International Linear Collider and high brightness X-Ray Free Electron Lasers. The exact knowledge on the wake fields generated by the ultra-short electron bunches during its interaction with surrounding structures is a very important issue to prevent the beam quality degradation and to optimize the facility performance. The high accuracy time domain numerical calculations play the decisive role in correct evaluation of the wake fields in advanced accelerators. The thesis is devoted to the development of a new longitudinally dispersion-free 3D hybrid numerical scheme in time domain for wake field calculation of ultra short bunches in structures with walls of finite conductivity. The basic approaches used in the thesis to solve the problem are the following. For materials with high but finite conductivity the model of the plane wave reflection from a conducting half-space is used. It is shown that in the conductive half-space the field components perpendicular to the interface can be neglected. The electric tangential component on the surface contributes to the tangential magnetic field in the lossless area just before the boundary layer. For high conducting media, the task is reduced to 1D electromagnetic problem in metal and the so-called 1D conducting line model can be applied instead of a full 3D space description. Further, a TE/TM (''transverse electric - transverse magnetic'') splitting implicit numerical scheme along with 1D conducting line model is applied to develop a new longitudinally dispersion-free hybrid numerical scheme in the time domain. The stability of the new hybrid numerical scheme in vacuum, conductor and bound cell is studied. The convergence of the new scheme is analyzed by comparison with the well-known analytical solutions. The wakefield calculations for a number of structures are performed

  6. Time domain numerical calculations of the short electron bunch wakefields in resistive structures

    Energy Technology Data Exchange (ETDEWEB)

    Tsakanian, Andranik

    2010-10-15

    The acceleration of electron bunches with very small longitudinal and transverse phase space volume is one of the most actual challenges for the future International Linear Collider and high brightness X-Ray Free Electron Lasers. The exact knowledge on the wake fields generated by the ultra-short electron bunches during its interaction with surrounding structures is a very important issue to prevent the beam quality degradation and to optimize the facility performance. The high accuracy time domain numerical calculations play the decisive role in correct evaluation of the wake fields in advanced accelerators. The thesis is devoted to the development of a new longitudinally dispersion-free 3D hybrid numerical scheme in time domain for wake field calculation of ultra short bunches in structures with walls of finite conductivity. The basic approaches used in the thesis to solve the problem are the following. For materials with high but finite conductivity the model of the plane wave reflection from a conducting half-space is used. It is shown that in the conductive half-space the field components perpendicular to the interface can be neglected. The electric tangential component on the surface contributes to the tangential magnetic field in the lossless area just before the boundary layer. For high conducting media, the task is reduced to 1D electromagnetic problem in metal and the so-called 1D conducting line model can be applied instead of a full 3D space description. Further, a TE/TM (''transverse electric - transverse magnetic'') splitting implicit numerical scheme along with 1D conducting line model is applied to develop a new longitudinally dispersion-free hybrid numerical scheme in the time domain. The stability of the new hybrid numerical scheme in vacuum, conductor and bound cell is studied. The convergence of the new scheme is analyzed by comparison with the well-known analytical solutions. The wakefield calculations for a number of

  7. Time domain attenuation estimation method from ultrasonic backscattered signals.

    Science.gov (United States)

    Ghoshal, Goutam; Oelze, Michael L

    2012-07-01

    Ultrasonic attenuation is important not only as a parameter for characterizing tissue but also for compensating other parameters that are used to classify tissues. Several techniques have been explored for estimating ultrasonic attenuation from backscattered signals. In the present study, a technique is developed to estimate the local ultrasonic attenuation coefficient by analyzing the time domain backscattered signal. The proposed method incorporates an objective function that combines the diffraction pattern of the source/receiver with the attenuation slope in an integral equation. The technique was assessed through simulations and validated through experiments with a tissue mimicking phantom and fresh rabbit liver samples. The attenuation values estimated using the proposed technique were compared with the attenuation estimated using insertion loss measurements. For a data block size of 15 pulse lengths axially and 15 beamwidths laterally, the mean attenuation estimates from the tissue mimicking phantoms were within 10% of the estimates using insertion loss measurements. With a data block size of 20 pulse lengths axially and 20 beamwidths laterally, the error in the attenuation values estimated from the liver samples were within 10% of the attenuation values estimated from the insertion loss measurements.

  8. A Time Domain Waveform for Testing General Relativity

    International Nuclear Information System (INIS)

    Huwyler, Cédric; Jetzer, Philippe; Porter, Edward K

    2015-01-01

    Gravitational-wave parameter estimation is only as good as the theory the waveform generation models are based upon. It is therefore crucial to test General Relativity (GR) once data becomes available. Many previous works, such as studies connected with the ppE framework by Yunes and Pretorius, rely on the stationary phase approximation (SPA) to model deviations from GR in the frequency domain. As Fast Fourier Transform algorithms have become considerably faster and in order to circumvent possible problems with the SPA, we test GR with corrected time domain waveforms instead of SPA waveforms. Since a considerable amount of work has been done already in the field using SPA waveforms, we establish a connection between leading-order-corrected waveforms in time and frequency domain, concentrating on phase-only corrected terms. In a Markov Chain Monte Carlo study, whose results are preliminary and will only be available later, we will assess the ability of the eLISA detector to measure deviations from GR for signals coming from supermassive black hole inspirals using these corrected waveforms. (paper)

  9. Seismic analysis of wind turbines in the time domain

    Energy Technology Data Exchange (ETDEWEB)

    Witcher, D. [Garrad Hassan and Partners Ltd., Bristol (United Kingdom)

    2004-07-01

    The analysis of wind turbine loading associated with earthquakes is clearly important when designing for and assessing the feasibility of wind farms in seismically active regions. The approach taken for such analysis is generally based on codified methods which have been developed for the assessment of seismic loads acting on buildings. These methods are not able to deal properly with the aeroelastic interaction of the dynamic motion of the wind turbine structure with either the wind loading acting on the rotor blades or the response of the turbine controller. This article presents an alternative approach, which is to undertake the calculation in the time domain. In this case a full aeroelastic model of the wind turbine subject to turbulent wind loading is further excited by ground motion corresponding to the earthquake. This capability has been introduced to the GH Bladed wind turbine simulation package. The software can be used to compute the combined wind and earthquake loading of a wind turbine given a definition of the external conditions for an appropriate series of load cases. This article discusses the method and presents example results. (Author)

  10. Seismic analysis of wind turbines in the time domain

    Energy Technology Data Exchange (ETDEWEB)

    Witcher, D. [Garrad Hassan and Partners, Bristol (United Kingdom)

    2005-07-01

    The analysis of wind turbine loading associated with earthquakes is clearly important when designing for and assessing the feasibility of wind farms in seismically active regions. The approach taken for such analysis is generally based on codified methods which have been developed for the assessment of seismic loads acting on buildings. These methods are not able to deal properly with the aeroelastic interaction of the dynamic motion of the wind turbine structure with either the wind loading acting on the rotor blades or the response of the turbine controller. This article presents an alternative approach, which is to undertake the calculation in the time domain. In this case a full aeroelastic model of the wind turbine subject to turbulent wind loading is further excited by ground motion corresponding to the earthquake. This capability has been introduced to the GH Bladed wind turbine simulation package. The software can be used to compute the combined wind and earthquake loading of a wind turbine given a definition of the external conditions for an appropriate series of load cases. This article discusses the method and presents example results. (author)

  11. Time domain NMR evaluation of poly(vinyl alcohol) xerogels

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Elton Jorge da Rocha; Cavalcante, Maxwell de Paula; Tavares, Maria Ines Bruno, E-mail: mibt@ima.ufrj.br [Universidade Federal do Rio de Janeiro (IMA/UFRJ), Rio de Janeiro, RJ (Brazil). Centro de Tecnologia. Instituto de Macromoleculas Professora Eloisa Mano

    2016-05-15

    Poly(vinyl alcohol) (PVA)-based chemically cross-linked xerogels, both neat and loaded with nanoparticulate hydrophilic silica (SiO{sub 2}), were obtained and characterized mainly through time domain NMR experiments (TD-NMR). Fourier-transform infrared (FT-IR) and wide angle X-ray diffraction (WAXD) analyses were employed as secondary methods. TD-NMR, through the interpretation of the spin-lattice relaxation constant values and related information, showed both cross-linking and nanoparticle influences on PVA matrix. SiO{sub 2} does not interact chemically with the PVA chains, but has effect on its molecular mobility, as investigated via TD-NMR. Apparent energy of activation, spin-lattice time constant and size of spin domains in the sample have almost linear dependence with the degree of cross-linking of the PVA and are affected by the addition of SiO{sub 2}. These three parameters were derived from a single set of TD-NMR experiments, which demonstrates the versatility of the technique for characterization of inorganic-organic hybrid xerogels, an important class of materials. (author)

  12. The Future of the Time Domain with LSST

    Science.gov (United States)

    Walkowicz, Lucianne M.

    2012-04-01

    abstract-type="normal">SummaryIn the coming decade LSST's combination of all-sky coverage, consistent long-term monitoring and flexible criteria for event identification will revolutionize studies of a wide variety of astrophysical phenomena. Time-domain science with LSST encompasses objects both familiar and exotic, from classical variables within our Galaxy to explosive cosmological events. Increased sample sizes of known-but-rare observational phenomena will quantify their distributions for the first time, thus challenging existing theories. Perhaps most excitingly, LSST will provide the opportunity to sample previously untouched regions of parameter space. LSST will generate `alerts' within 60 seconds of detecting a new transient, permitting the community to follow up unusual events in greater detail. However, follow-up will remain a challenge as the volume of transients will easily saturate available spectroscopic resources. Characterization of events and access to appropriate ancillary data (e.g. from prior observations, either in the optical or in other passbands) will be of the utmost importance in prioritizing follow-up observations. The incredible scientific opportunities and unique challenges afforded by LSST demand organization, forethought and creativity from the astronomical community. To learn more about the telescope specifics and survey design, as well as obtaining a overview of the variety of the scientific investigations that LSST will enable, readers are encouraged to look at the LSST Science Book: http://www.lsst.org/lsst/scibook. Organizational details of the LSST science collaborations and management may be found at http://www.lsstcorp.org.

  13. Time domain functional NIRS imaging for human brain mapping.

    Science.gov (United States)

    Torricelli, Alessandro; Contini, Davide; Pifferi, Antonio; Caffini, Matteo; Re, Rebecca; Zucchelli, Lucia; Spinelli, Lorenzo

    2014-01-15

    This review is aimed at presenting the state-of-the-art of time domain (TD) functional near-infrared spectroscopy (fNIRS). We first introduce the physical principles, the basics of modeling and data analysis. Basic instrumentation components (light sources, detection techniques, and delivery and collection systems) of a TD fNIRS system are described. A survey of past, existing and next generation TD fNIRS systems used for research and clinical studies is presented. Performance assessment of TD fNIRS systems and standardization issues are also discussed. Main strengths and weakness of TD fNIRS are highlighted, also in comparison with continuous wave (CW) fNIRS. Issues like quantification of the hemodynamic response, penetration depth, depth selectivity, spatial resolution and contrast-to-noise ratio are critically examined, with the help of experimental results performed on phantoms or in vivo. Finally we give an account on the technological developments that would pave the way for a broader use of TD fNIRS in the neuroimaging community. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  14. A 128 Multiplexing Factor Time-Domain SQUID Multiplexer

    Science.gov (United States)

    Prêle, D.; Voisin, F.; Piat, M.; Decourcelle, T.; Perbost, C.; Chapron, C.; Rambaud, D.; Maestre, S.; Marty, W.; Montier, L.

    2016-07-01

    A cryogenic 128:1 Time-Domain Multiplexer (TDM) has been developed for the readout of kilo-pixel Transition Edge Sensor (TES) arrays dedicated to the Q&U Bolometric Interferometer for Cosmology (QUBIC) instrument which aims to measure the B-mode polarization of the Cosmic Microwave Background. Superconducting QUantum Interference Devices (SQUIDs) are usually used to read out TESs. Moreover, SQUIDs are used to build TDM by biasing sequentially the SQUIDs connected together—one for each TES. In addition to this common technique which allows a typical 32 multiplexing factor, a cryogenic integrated circuit provides a 4:1 second multiplexing stage. This cryogenic integrated circuit is one of the original part of our TDM achieving an unprecedented 128 multiplexing factor. We present these two dimension TDM stages: topology of the SQUID multiplexer, operation of the cryogenic integrated circuit, and integration of the full system to read out a TES array dedicated to the QUBIC instrument. Flux-locked loop operation in multiplexed mode is also discussed.

  15. Time domain simulations of preliminary breakdown pulses in natural lightning.

    Science.gov (United States)

    Carlson, B E; Liang, C; Bitzer, P; Christian, H

    2015-06-16

    Lightning discharge is a complicated process with relevant physical scales spanning many orders of magnitude. In an effort to understand the electrodynamics of lightning and connect physical properties of the channel to observed behavior, we construct a simulation of charge and current flow on a narrow conducting channel embedded in three-dimensional space with the time domain electric field integral equation, the method of moments, and the thin-wire approximation. The method includes approximate treatment of resistance evolution due to lightning channel heating and the corona sheath of charge surrounding the lightning channel. Focusing our attention on preliminary breakdown in natural lightning by simulating stepwise channel extension with a simplified geometry, our simulation reproduces the broad features observed in data collected with the Huntsville Alabama Marx Meter Array. Some deviations in pulse shape details are evident, suggesting future work focusing on the detailed properties of the stepping mechanism. Preliminary breakdown pulses can be reproduced by simulated channel extension Channel heating and corona sheath formation are crucial to proper pulse shape Extension processes and channel orientation significantly affect observations.

  16. Linear time domain model of the acoustic potential field.

    Science.gov (United States)

    Lesniewski, Peter J

    2002-08-01

    A new time domain formulation of the acoustic wave is developed to avoid approximating assumptions of the linearized scalar wave equation that limit its validity to low Mach particle velocity modeling or to a smooth potential field in a stationary medium. The proposed model offers precision of the moving frame while retaining the form of the widely used linearized scalar wave equation although with respect to modified coordinates. It is applicable to field calculations involving transient waves with unlimited particle velocity, propagating in inhomogenous fluids or in those with time varying density. The model is based on the exact flux continuity equation and the equation of motion, both using the moving reference frame. The resulting closed-form free space scalar wave equation employing total derivatives is converted back to the partial differential form by using modified independent variables. The modified variables are related to the common coordinates of space and time following integral expressions involving transient particle velocity representing wave radiated by each point of a stationary source. Consequently, transient field produced by complex surface velocity sources can be calculated following existing surface integrals of the radiation theory although using modified coordinates. The use of the proposed model is presented in a numerical simulation of a transient velocity source vibrating at selected magnitudes, leading to the determination of the propagating pressure and velocity wave at any point.

  17. Modal participation in multiple input Ibrahim time domain identification

    DEFF Research Database (Denmark)

    Brincker, Rune; Olsen, Peter; Amador, Sandro

    2017-01-01

    The Ibrahim time domain (ITD) identification technique was one of the first techniques formulated for multiple output modal analysis based on impulse response functions or general free decays. However, the technique has not been used much in recent decades due to the fact that the technique was o...... of the identification technique are investigated in a simulation study with closely spaced modes. The simulation study shows that the multiple-input formulation provides estimates with significantly smaller errors on both mode shape and natural frequency estimates....... was originally formulated for single input systems that suffer from well-known problems in case of closely spaced modes. In this paper, a known, but more modern formulation of the ITD technique is discussed. In this formulation the technique becomes multiple input by adding some Toeplitz matrices over a set...... matrix has full rank. This secures that all modes will be contained in the estimated system matrix. Finally, it is discussed how correlation functions estimated from the operational responses of structures can be used as free decays for the multiple-input ITD formulation, and the estimation errors...

  18. Landfill cover performance monitoring using time domain reflectometry

    International Nuclear Information System (INIS)

    Neher, E.R.; Cotten, G.B.; McElroy, D.

    1998-01-01

    Time domain reflectometry (TDR) systems were installed to monitor soil moisture in two newly constructed landfill covers at the Idaho National Engineering and Environmental Laboratory. Each TDR system includes four vertical arrays with each array consisting of four TDR probes located at depths of 15, 30, 45, and 60 cm. The deepest probes at 60 cm were installed beneath a compacted soil layer to analyze infiltration through the compacted layer. Based on the TDR data, infiltration through the two covers between March and October, 1997 ranged from less than measurable to 1.5 cm. However, due to a prohibition on penetrating the buried waste and resulting limits on probe placement depths, deeper percolation was not evaluated. Some of the advantages found in the application of TDR for infiltration monitoring at this site are the relative low cost and rugged nature of the equipment. Also, of particular importance, the ability to collect frequent moisture measurements allows the capture and evaluation of soil moisture changes resulting from episodic precipitation events. Disadvantages include the inability to install the probes into the waste, difficulties in interpretation of infiltration during freeze/thaw periods, and some excessive noise in the data

  19. Landfill cover performance monitoring using time domain reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Neher, E.R.; Cotten, G.B. [Parsons Infrastructure & Technology Group, Inc., Idaho Falls, ID (United States); McElroy, D. [Lockheed-Martin Idaho Technologies Company, Idaho Falls, ID (United States)

    1998-03-01

    Time domain reflectometry (TDR) systems were installed to monitor soil moisture in two newly constructed landfill covers at the Idaho National Engineering and Environmental Laboratory. Each TDR system includes four vertical arrays with each array consisting of four TDR probes located at depths of 15, 30, 45, and 60 cm. The deepest probes at 60 cm were installed beneath a compacted soil layer to analyze infiltration through the compacted layer. Based on the TDR data, infiltration through the two covers between March and October, 1997 ranged from less than measurable to 1.5 cm. However, due to a prohibition on penetrating the buried waste and resulting limits on probe placement depths, deeper percolation was not evaluated. Some of the advantages found in the application of TDR for infiltration monitoring at this site are the relative low cost and rugged nature of the equipment. Also, of particular importance, the ability to collect frequent moisture measurements allows the capture and evaluation of soil moisture changes resulting from episodic precipitation events. Disadvantages include the inability to install the probes into the waste, difficulties in interpretation of infiltration during freeze/thaw periods, and some excessive noise in the data.

  20. Hilbert Spectrum for Time-Domain Measurement Data and Its Application

    National Research Council Canada - National Science Library

    Peng, H. M; Chang, P. C; Chang, F. R

    2003-01-01

    In this paper, a new method for analyzing the time domain data is introduced. As one knows, the time domain phase measurements are nonstationary and the differencing technique is usually adopted for generating stationary data...

  1. Integral ceramic superstructure evaluation using time domain optical coherence tomography

    Science.gov (United States)

    Sinescu, Cosmin; Bradu, Adrian; Topala, Florin I.; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.

    2014-02-01

    Optical Coherence Tomography (OCT) is a non-invasive low coherence interferometry technique that includes several technologies (and the corresponding devices and components), such as illumination and detection, interferometry, scanning, adaptive optics, microscopy and endoscopy. From its large area of applications, we consider in this paper a critical aspect in dentistry - to be investigated with a Time Domain (TD) OCT system. The clinical situation of an edentulous mandible is considered; it can be solved by inserting 2 to 6 implants. On these implants a mesostructure will be manufactured and on it a superstructure is needed. This superstructure can be integral ceramic; in this case materials defects could be trapped inside the ceramic layers and those defects could lead to fractures of the entire superstructure. In this paper we demonstrate that a TD-OCT imaging system has the potential to properly evaluate the presence of the defects inside the ceramic layers and those defects can be fixed before inserting the prosthesis inside the oral cavity. Three integral ceramic superstructures were developed by using a CAD/CAM technology. After the milling, the ceramic layers were applied on the core. All the three samples were evaluated by a TD-OCT system working at 1300 nm. For two of the superstructures evaluated, no defects were found in the most stressed areas. The third superstructure presented four ceramic defects in the mentioned areas. Because of those defects the superstructure may fracture. The integral ceramic prosthesis was send back to the dental laboratory to fix the problems related to the material defects found. Thus, TD-OCT proved to be a valuable method for diagnosing the ceramic defects inside the integral ceramic superstructures in order to prevent fractures at this level.

  2. Detection of Ionic liquid using terahertz time-domain spectroscopy

    Science.gov (United States)

    Wang, Cuicui; Zhao, Xiaojing; Liu, Shangjian; Zuo, Jian; Zhang, Cunlin

    2018-01-01

    Terahertz (THz, THz+1012Hz) spectroscopy is a far-infrared analytical technology with spectral bands locating between microware and infrared ranges. Being of excellent transmission, non-destruction and high discrimination, this technology has been applied in various fields such as physics, chemistry, nondestructive detection, communication, biomedicine public security. Terahertz spectrum is corresponding with vibration and rotation of liquid molecules, which is suitable to identify and study the liquid molecular dynamics. It is as a powerful spectral detection technology, terahertz time-domain spectroscopy is widely used in solution detection. can enable us to extract the material parameters or dielectric spectrum that show material micro-structure and dynamics by measuring amplitude and phase from coherent terahertz pulses. Ionic liquid exists in most biological tissues, and it is very important for life. It has recently been suggested that near-fired terahertz ionic contrast microscopy can be employed to image subtle changes in ionic concentrations arising from neuronal activity. In this paper, we detected Ionic liquid with different concentrations at room temperature by THz-TDS technique in the range of 0.2-1.5 THz. The liquid cell with a thickness of 0.2mm is made of quartz. The absorption coefficient, refractive index and dielectric function of solutions can be extracted based on THz-TDS. We use an expanded model for fitting the dielectric function based on a combination of a Debye relation for the anions and cations. We find A linear increase of the real and imaginary part of the dielectric function compared with pure water with increasing ion concentrations. A good agreement between the model and the experimental results is obtained. By means of dielectric relaxation process, it was found that the characteristic time of molecular movement and the information related to the liquid molecular structure and movement was obtained.

  3. Terahertz time-domain reflectometry of multilayered systems

    Science.gov (United States)

    Jackson, J. Bianca

    Presented in this work are applications of terahertz pulse ranging, spectroscopy and imaging to the nondestructive evaluation of three disparate multilayer systems for the detection and measurement of hidden layers, as well as the extraction of system information that will aid in its maintenance, repair or replacement. Thermal protection systems for turbine engine components were investigated. Thermal barrier coatings (TBC) and thermally-grown oxide (TGO) thicknesses were determined with 10 micron resolution using time-of-flight and refractive index calculations. Two alternative methods of monitoring TGO growth using reflection amplitudes and spectral shifts were proposed for the prediction of TBC failure. Laser-machined defects as narrow as 50 microns were resolved in one- and two-dimensional images. The light and dark rings of trees, which reflect the changes in tree growth density over the course of a year, are measurable using pulsed terahertz beams. Tree-rings of bare and painted wood specimen were laterally and axially tomographically imaged in order to facilitate the dendrochronological cross-dating of artifacts. Comparisons were made between photographs and terahertz images to demonstrate the reliability of the technique. Historically, numerous unique artworks have been lost through the act of being covered over time. Samples of paintings, drawings and mosaics were imaged beneath layers of paint and plaster using pulsed-terahertz techniques to demonstrate the efficacy of the technique for art history and restoration. Sketch materials and pigments were measured, between 0.05 and 1.0 THz, to help identify colors in spectroscopic images. Other computational and processing methods were used to optimize the distinction between color domains. Additional time-domain terahertz applications for the examination of artwork and other artifacts were proposed.

  4. THE TIME DOMAIN SPECTROSCOPIC SURVEY: VARIABLE SELECTION AND ANTICIPATED RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Morganson, Eric; Green, Paul J. [Harvard Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States); Anderson, Scott F.; Ruan, John J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Eracleous, Michael; Brandt, William Nielsen [Department of Astronomy and Astrophysics, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802 (United States); Kelly, Brandon [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106-9530 (United States); Badenes, Carlos [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 O’Hara St, Pittsburgh, PA 15260 (United States); Bañados, Eduardo [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Blanton, Michael R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Bershady, Matthew A. [Department of Astronomy, University of Wisconsin, 475 N. Charter St., Madison, WI 53706 (United States); Borissova, Jura [Instituto de Física y Astronomía, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Casilla 5030, and Millennium Institute of Astrophysics (MAS), Santiago (Chile); Burgett, William S. [GMTO Corp, Suite 300, 251 S. Lake Ave, Pasadena, CA 91101 (United States); Chambers, Kenneth, E-mail: emorganson@cfa.harvard.edu [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); and others

    2015-06-20

    We present the selection algorithm and anticipated results for the Time Domain Spectroscopic Survey (TDSS). TDSS is an Sloan Digital Sky Survey (SDSS)-IV Extended Baryon Oscillation Spectroscopic Survey (eBOSS) subproject that will provide initial identification spectra of approximately 220,000 luminosity-variable objects (variable stars and active galactic nuclei across 7500 deg{sup 2} selected from a combination of SDSS and multi-epoch Pan-STARRS1 photometry. TDSS will be the largest spectroscopic survey to explicitly target variable objects, avoiding pre-selection on the basis of colors or detailed modeling of specific variability characteristics. Kernel Density Estimate analysis of our target population performed on SDSS Stripe 82 data suggests our target sample will be 95% pure (meaning 95% of objects we select have genuine luminosity variability of a few magnitudes or more). Our final spectroscopic sample will contain roughly 135,000 quasars and 85,000 stellar variables, approximately 4000 of which will be RR Lyrae stars which may be used as outer Milky Way probes. The variability-selected quasar population has a smoother redshift distribution than a color-selected sample, and variability measurements similar to those we develop here may be used to make more uniform quasar samples in large surveys. The stellar variable targets are distributed fairly uniformly across color space, indicating that TDSS will obtain spectra for a wide variety of stellar variables including pulsating variables, stars with significant chromospheric activity, cataclysmic variables, and eclipsing binaries. TDSS will serve as a pathfinder mission to identify and characterize the multitude of variable objects that will be detected photometrically in even larger variability surveys such as Large Synoptic Survey Telescope.

  5. Opportunities and challenges for time domain astronomy with LSST

    Science.gov (United States)

    Ivezic, Zeljko

    2014-01-01

    The Large Synoptic Survey Telescope (LSST) will enable faint optical time-domain astronomy by carrying out an imaging survey covering the sky that is visible from Cerro Pachon in Northern Chile. Of the order thousand 9.6 sq. deg. images (3.2 Gigapix) will be obtained per night using pairs of 15-second back-to-back exposures, with typical 5-sigma depth for point sources of 24.5 (AB). With close to 1000 observations of a 18,000 sq. deg. region in ugrizy bands over a 10-year period, these data will enable a deep stack across half the sky reaching five magnitudes deeper than the SDSS survey ( 27.5, 5 sigma, point source), and with twice as good seeing (0.7 arcsec median seeing in the r band). The measured and archived properties of newly discovered and known astrometric and photometric transients will be publicly reported within 60 sec after closing the shutter. Automated classification of the expected several million alerts per night, and selection of transient events requiring immediate follow-up, is an outstanding problem for the community. These data will represent a treasure trove for follow-up programs using other ground and space-based telescopes, such as fast-response fast-cadence photometric observations and spectroscopy, as well as for facilities operating at non-optical wavelengths and for gravitational wave programs. I will describe the relevant data products to be delivered by LSST and will summarize challenges that will need to be addressed by the community at large.

  6. Time-Domain Astronomy with the Fermi GBM

    Science.gov (United States)

    Hui, C. M.

    2017-01-01

    The Fermi Gamma-ray Burst Monitor (GBM) is an all-sky monitoring instrument sensitive to energies from 8 keV to 40 MeV. Over the past 8 years of operation, the GBM has detected over 240 gamma-ray bursts per year and provided timely GCN notices with localization to few-degree accuracy for follow-up observations. In addition to GRBs, Galactic transients, solar flares, and terrestrial gamma-ray flashes have also been observed. In recent years we have also been searching the continuous GBM data for electromagnetic counterpart to astrophysical neutrinos and gravitational wave events, as these are believed to be associated with gamma-ray bursts. With continuous data downlink every few hours and a temporal resolution of 2 microseconds, GBM is well suited for observing transients and supporting EM follow-up in the era of multi-messenger astronomy.

  7. Recent advances in marching-on-in-time schemes for solving time domain volume integral equations

    KAUST Repository

    Sayed, Sadeed Bin

    2015-05-16

    Transient electromagnetic field interactions on inhomogeneous penetrable scatterers can be analyzed by solving time domain volume integral equations (TDVIEs). TDVIEs are constructed by setting the summation of the incident and scattered field intensities to the total field intensity on the volumetric support of the scatterer. The unknown can be the field intensity or flux/current density. Representing the total field intensity in terms of the unknown using the relevant constitutive relation and the scattered field intensity in terms of the spatiotemporal convolution of the unknown with the Green function yield the final form of the TDVIE. The unknown is expanded in terms of local spatial and temporal basis functions. Inserting this expansion into the TDVIE and testing the resulting equation at discrete times yield a system of equations that is solved by the marching on-in-time (MOT) scheme. At each time step, a smaller system of equations, termed MOT system is solved for the coefficients of the expansion. The right-hand side of this system consists of the tested incident field and discretized spatio-temporal convolution of the unknown samples computed at the previous time steps with the Green function.

  8. [The error analysis and experimental verification of laser radar spectrum detection and terahertz time domain spectroscopy].

    Science.gov (United States)

    Liu, Wen-Tao; Li, Jing-Wen; Sun, Zhi-Hui

    2010-03-01

    Terahertz waves (THz, T-ray) lie between far-infrared and microwave in electromagnetic spectrum with frequency from 0.1 to 10 THz. Many chemical agent explosives show characteristic spectral features in the terahertz. Compared with conventional methods of detecting a variety of threats, such as weapons and chemical agent, THz radiation is low frequency and non-ionizing, and does not give rise to safety concerns. The present paper summarizes the latest progress in the application of terahertz time domain spectroscopy (THz-TDS) to chemical agent explosives. A kind of device on laser radar detecting and real time spectrum measuring was designed which measures the laser spectrum on the bases of Fourier optics and optical signal processing. Wedge interferometer was used as the beam splitter to wipe off the background light and detect the laser and measure the spectrum. The result indicates that 10 ns laser radar pulse can be detected and many factors affecting experiments are also introduced. The combination of laser radar spectrum detecting, THz-TDS, modern pattern recognition and signal processing technology is the developing trend of remote detection for chemical agent explosives.

  9. Time-Domain Terahertz Computed Axial Tomography NDE System

    Science.gov (United States)

    Zimdars, David

    2012-01-01

    NASA has identified the need for advanced non-destructive evaluation (NDE) methods to characterize aging and durability in aircraft materials to improve the safety of the nation's airline fleet. 3D THz tomography can play a major role in detection and characterization of flaws and degradation in aircraft materials, including Kevlar-based composites and Kevlar and Zylon fabric covers for soft-shell fan containment where aging and durability issues are critical. A prototype computed tomography (CT) time-domain (TD) THz imaging system has been used to generate 3D images of several test objects including a TUFI tile (a thermal protection system tile used on the Space Shuttle and possibly the Orion or similar capsules). This TUFI tile had simulated impact damage that was located and the depth of damage determined. The CT motion control gan try was designed and constructed, and then integrated with a T-Ray 4000 control unit and motion controller to create a complete CT TD-THz imaging system prototype. A data collection software script was developed that takes multiple z-axis slices in sequence and saves the data for batch processing. The data collection software was integrated with the ability to batch process the slice data with the CT TD-THz image reconstruction software. The time required to take a single CT slice was decreased from six minutes to approximately one minute by replacing the 320 ps, 100-Hz waveform acquisition system with an 80 ps, 1,000-Hz waveform acquisition system. The TD-THZ computed tomography system was built from pre-existing commercial off-the-shelf subsystems. A CT motion control gantry was constructed from COTS components that can handle larger samples. The motion control gantry allows inspection of sample sizes of up to approximately one cubic foot (.0.03 cubic meters). The system reduced to practice a CT-TDTHz system incorporating a COTS 80- ps/l-kHz waveform scanner. The incorporation of this scanner in the system allows acquisition of 3D

  10. Cable Damage Detection System and Algorithms Using Time Domain Reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G A; Robbins, C L; Wade, K A; Souza, P R

    2009-03-24

    This report describes the hardware system and the set of algorithms we have developed for detecting damage in cables for the Advanced Development and Process Technologies (ADAPT) Program. This program is part of the W80 Life Extension Program (LEP). The system could be generalized for application to other systems in the future. Critical cables can undergo various types of damage (e.g. short circuits, open circuits, punctures, compression) that manifest as changes in the dielectric/impedance properties of the cables. For our specific problem, only one end of the cable is accessible, and no exemplars of actual damage are available. This work addresses the detection of dielectric/impedance anomalies in transient time domain reflectometry (TDR) measurements on the cables. The approach is to interrogate the cable using time domain reflectometry (TDR) techniques, in which a known pulse is inserted into the cable, and reflections from the cable are measured. The key operating principle is that any important cable damage will manifest itself as an electrical impedance discontinuity that can be measured in the TDR response signal. Machine learning classification algorithms are effectively eliminated from consideration, because only a small number of cables is available for testing; so a sufficient sample size is not attainable. Nonetheless, a key requirement is to achieve very high probability of detection and very low probability of false alarm. The approach is to compare TDR signals from possibly damaged cables to signals or an empirical model derived from reference cables that are known to be undamaged. This requires that the TDR signals are reasonably repeatable from test to test on the same cable, and from cable to cable. Empirical studies show that the repeatability issue is the 'long pole in the tent' for damage detection, because it is has been difficult to achieve reasonable repeatability. This one factor dominated the project. The two-step model

  11. Computational electromagnetic-aerodynamics

    CERN Document Server

    Shang, Joseph J S

    2016-01-01

    Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields, fluid flow, and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physics kinetics, and plasmadynamics This book addresses modeling and simulation science and technology for studying ionized gas phenomena in engineering applications. Computational Electromagnetic-Aerodynamics is organized into ten chapters. Chapter one to three introduce the fundamental concepts of plasmadynamics, chemical-physics of ionization, classical magnetohydrodynamics, and their extensions to plasma-based flow control actuators, high-speed flows of interplanetary re-entry, and ion thrusters in space exploration. Chapter four to six explain numerical algorithms and procedures for solving Maxwell’s equation in the time domain for computational electromagnetics, plasma wave propagation, and the time-dependent c mpressible Navier-Stokes equation for aerodyn...

  12. Essentials of Computational Electromagnetics

    CERN Document Server

    Sheng, Xin-Qing

    2012-01-01

    Essentials of Computational Electromagnetics provides an in-depth introduction of the three main full-wave numerical methods in computational electromagnetics (CEM); namely, the method of moment (MoM), the finite element method (FEM), and the finite-difference time-domain (FDTD) method. Numerous monographs can be found addressing one of the above three methods. However, few give a broad general overview of essentials embodied in these methods, or were published too early to include recent advances. Furthermore, many existing monographs only present the final numerical results without specifyin

  13. Monitoring moisture storage in trees using time domain reflectometry

    Science.gov (United States)

    Constantz, J.; Murphy, F.

    1990-01-01

    Laboratory and field tests were performed to examine the feasibility of using time domain reflectometry (TDR) to monitor changes in the moisture storage of the woody parts of trees. To serve as wave guides for the TDR signal, pairs of stainless steel rods (13 cm long, 0.32 cm in diameter, and 2.5 cm separation) were driven into parallel pilot holes drilled into the woody parts of trees, and a cable testing oscilloscope was used to determine the apparent dielectric constant. A laboratory calibration test was performed on two sapwood samples, so that the relation between the volumetric water content and the apparent dielectric constant of the sapwood could be determined over a range of water contents. The resulting calibration curve for these sapwood samples was significantly different than the general calibration curve used for soils, showing a smaller change in the apparent dielectric constant for a given change in the volumetric water content than is typical for soils. The calibration curve was used to estimate the average volumetric water content to a depth of 13 cm in living trees. One field experiment was conducted on an English walnut tree (Juglans regia) with a diameter of 40 cm, growing in a flood-irrigated orchard on a Hanford sandy loam near Modesto, California (U.S.A.). Rods were driven into the tree at about 50 cm above the soil surface and monitored hourly for the month of August, 1988. The moisture content determined by TDR showed a gradual decrease from 0.44 to 0.42 cm3 cm-3 over a two week period prior to flood irrigation, followed by a rapid rise to 0.47 cm3 cm-3 over a four day period after irrigation, then again a gradual decline approaching the next irrigation. A second field experiment was made on ten evergreen and deciduous trees with diameters ranging from 30 to 120 cm, growing in the foothills of the Coast Range of central California. Rods were driven into each tree at 50 to 100 cm above the soil surface and monitored on a biweekly to monthly

  14. Non-deteriorating time domain numerical algorithms for Maxwell's electrodynamics

    Science.gov (United States)

    Petropavlovsky, S.; Tsynkov, S.

    2017-05-01

    The Huygens' principle and lacunae can help construct efficient far-field closures for the numerical simulation of unsteady waves propagating over unbounded regions. Those closures can be either standalone or combined with other techniques for the treatment of artificial outer boundaries. A standalone lacunae-based closure can be thought of as a special artificial boundary condition (ABC) that is provably free from any error associated with the domain truncation. If combined with a different type of ABC or a perfectly matched layer (PML), a lacunae-based approach can help remove any long-time deterioration (e.g., instability) that arises at the outer boundary regardless of why it occurs in the first place. A specific difficulty associated with Maxwell's equations of electromagnetism is that in general their solutions do not have classical lacunae and rather have quasi-lacunae. Unlike in the classical case, the field inside the quasi-lacunae is not zero; instead, there is an electrostatic solution driven by the electric charges that accumulate over time. In our previous work [23], we have shown that quasi-lacunae can also be used for building the far-field closures. However, for achieving a provably non-deteriorating performance over arbitrarily long time intervals, the accumulated charges need to be known ahead of time. The main contribution of the current paper is that we remove this limitation and modify the algorithm in such a way that one can rather avoid the accumulation of charge all together. Accordingly, the field inside the quasi-lacunae becomes equal to zero, which facilitates obtaining the temporally uniform error estimates as in the case of classical lacunae. The performance of the modified algorithm is corroborated by a series of numerical simulations. The range of problems that the new method can address includes important combined formulations, for which the interior subproblem may be non-Huygens', and only the exterior subproblem, i.e., the far

  15. Computational Electronics and Electromagnetics

    Energy Technology Data Exchange (ETDEWEB)

    DeFord, J.F.

    1993-03-01

    The Computational Electronics and Electromagnetics thrust area is a focal point for computer modeling activities in electronics and electromagnetics in the Electronics Engineering Department of Lawrence Livermore National Laboratory (LLNL). Traditionally, they have focused their efforts in technical areas of importance to existing and developing LLNL programs, and this continues to form the basis for much of their research. A relatively new and increasingly important emphasis for the thrust area is the formation of partnerships with industry and the application of their simulation technology and expertise to the solution of problems faced by industry. The activities of the thrust area fall into three broad categories: (1) the development of theoretical and computational models of electronic and electromagnetic phenomena, (2) the development of useful and robust software tools based on these models, and (3) the application of these tools to programmatic and industrial problems. In FY-92, they worked on projects in all of the areas outlined above. The object of their work on numerical electromagnetic algorithms continues to be the improvement of time-domain algorithms for electromagnetic simulation on unstructured conforming grids. The thrust area is also investigating various technologies for conforming-grid mesh generation to simplify the application of their advanced field solvers to design problems involving complicated geometries. They are developing a major code suite based on the three-dimensional (3-D), conforming-grid, time-domain code DSI3D. They continue to maintain and distribute the 3-D, finite-difference time-domain (FDTD) code TSAR, which is installed at several dozen university, government, and industry sites.

  16. Advanced computational electromagnetic methods and applications

    CERN Document Server

    Li, Wenxing; Elsherbeni, Atef; Rahmat-Samii, Yahya

    2015-01-01

    This new resource covers the latest developments in computational electromagnetic methods, with emphasis on cutting-edge applications. This book is designed to extend existing literature to the latest development in computational electromagnetic methods, which are of interest to readers in both academic and industrial areas. The topics include advanced techniques in MoM, FEM and FDTD, spectral domain method, GPU and Phi hardware acceleration, metamaterials, frequency and time domain integral equations, and statistics methods in bio-electromagnetics.

  17. On the Analysis Methods for the Time Domain and Frequency Domain Response of a Buried Objects*

    Science.gov (United States)

    Poljak, Dragan; Šesnić, Silvestar; Cvetković, Mario

    2014-05-01

    There has been a continuous interest in the analysis of ground-penetrating radar systems and related applications in civil engineering [1]. Consequently, a deeper insight of scattering phenomena occurring in a lossy half-space, as well as the development of sophisticated numerical methods based on Finite Difference Time Domain (FDTD) method, Finite Element Method (FEM), Boundary Element Method (BEM), Method of Moments (MoM) and various hybrid methods, is required, e.g. [2], [3]. The present paper deals with certain techniques for time and frequency domain analysis, respectively, of buried conducting and dielectric objects. Time domain analysis is related to the assessment of a transient response of a horizontal straight thin wire buried in a lossy half-space using a rigorous antenna theory (AT) approach. The AT approach is based on the space-time integral equation of the Pocklington type (time domain electric field integral equation for thin wires). The influence of the earth-air interface is taken into account via the simplified reflection coefficient arising from the Modified Image Theory (MIT). The obtained results for the transient current induced along the electrode due to the transmitted plane wave excitation are compared to the numerical results calculated via an approximate transmission line (TL) approach and the AT approach based on the space-frequency variant of the Pocklington integro-differential approach, respectively. It is worth noting that the space-frequency Pocklington equation is numerically solved via the Galerkin-Bubnov variant of the Indirect Boundary Element Method (GB-IBEM) and the corresponding transient response is obtained by the aid of inverse fast Fourier transform (IFFT). The results calculated by means of different approaches agree satisfactorily. Frequency domain analysis is related to the assessment of frequency domain response of dielectric sphere using the full wave model based on the set of coupled electric field integral

  18. Ground penetrating radar data analyzed in frequency and time domain for engineering issues

    Science.gov (United States)

    Capozzoli, Luigi; Giampaolo, Valeria; Votta, Mario; Rizzo, Enzo

    2014-05-01

    spectrum that allows a supplementary help to complete the information extracted in time-domain (dos Santos et al., 2014). The signal processing technique is based on a Fast Fourier Transform (FFT) that allows analyzing in frequency domain variations due to presence of anomalous bodies of different materials in the concrete and in the sand. Furthermore the data obtained in situ are compared with data extracted by theoretical simulation of e-m signal propagation built in Reflex-w software. There is a good agreement between simulated data and real data both in frequency domain both in time domain. So we have verified that frequency analysis can be adopted such as a useful tools to increase and complete information achieved in traditional way. Bibliography James S. Mellett (1995). Ground penetrating radar applications in engineering, environmental Management, and geology. Journal of Applied Geophysics. V. 33, Issues 1-3, January 1995, Pages 157-166 Proto, M.; Bavusi, M.; Bernini, R.; Bigagli, L.; Bost, M.; Bourquin, F.; Cottineau, L.-M.; Cuomo, V.; Vecchia, P.D.; Dolce, M.; Dumoulin, J.; Eppelbaum, L.; Fornaro, G.; Gustafsson, M.; Hugenschimdt, J.; Kaspersen, P.; Kim, H.; Lapenna, V.; Leggio, M.; Loperte, A.; Mazzetti, P.; Moroni, C.; Nativi, S.; Nordebo, S.; Pacini, F.; Palombo, A.; Pascucci, S.; Perrone, A.; Pignatti, S.; Ponzo, F.C.; Rizzo, E.; Soldovieri, F.; Taillade, F. Transport Infrastructure Surveillance and Monitoring by Electromagnetic Sensing: The ISTIMES Project. Sensors 2010, 10, 10620-10639 Vinicius Rafael N. dos Santos, Waleed Al-Nuaimy, Jorge Luís Porsani, Nina S. Tomita Hirata, Hamzah S. Alzubi (2014). Spectral analysis of ground penetrating radar signals in concrete, metallic and plastic targets. Journal of Applied Geophysics, V.100, January 2014, Pages 32-43

  19. ISIS Topside-Sounder Plasma-Wave Investigations as Guides to Desired Virtual Wave Observatory (VWO) Data Search Capabilities

    Science.gov (United States)

    Benson, Robert F.; Fung, Shing F.

    2008-01-01

    Many plasma-wave phenomena, observed by space-borne radio sounders, cannot be properly explained in terms of wave propagation in a cold plasma consisting of mobile electrons and infinitely massive positive ions. These phenomena include signals known as plasma resonances. The principal resonances at the harmonics of the electron cyclotron frequency, the plasma frequency, and the upper-hybrid frequency are well explained by the warm-plasma propagation of sounder-generated electrostatic waves, Other resonances have been attributed to sounder-stimulated plasma instability and non-linear effects, eigenmodes of cylindrical electromagnetic plasma oscillations, and plasma memory processes. Data from the topside sounders of the International Satellites for Ionospheric Studies (ISIS) program played a major role in these interpretations. A data transformation and preservation effort at the Goddard Space Flight Center has produced digital ISIS topside ionograms and a metadata search program that has enabled some recent discoveries pertaining to the physics of these plasma resonances. For example, data records were obtained that enabled the long-standing question (several decades) of the origin of the plasma resonance at the fundamental electron cyclotron frequency to be explained [Muldrew, Radio Sci., 2006]. These data-search capabilities, and the science enabled by them, will be presented as a guide to desired data search capabilities to be included in the Virtual Wave Observatory (VWO).

  20. Non-destructive evaluation of specialty coating degradation using terahertz time-domain spectroscopy

    Science.gov (United States)

    Nicoletti, Carley R.; Cramer, Laura; Fletcher, Alan; Zimdars, David; Iqbal, Zafar; Federici, John F.

    2017-05-01

    The Terahertz Time Domain Reflection Spectroscopy (THz-TDS) method of paint layer diagnostics is a non-contact electromagnetic technique analogous to pulsed-ultrasound with the added capability of spectroscopic characterization. The THz-TDS sensor emits a near-single cycle electromagnetic pulse with a bandwidth from 0.1 to 3 THz. This wide bandwidth pulse is focused on the coating, and echo pulses are generated from each interface (air-coating, layer-layer, coating-substrate). In this paper, the THz-TDS method is applied to specialty aircraft coatings. The THz-TDS method is able to penetrate the whole coating stack and sample the properties of each layer. Because the reflected pulses from individual layers typically overlap in time, the complex permittivity function and thickness of each layer is determined by a best fit of the measured reflection (either in time or frequency domain) to a layered model of the paint. The THz- TDS method is applied to specialty coatings prior to and during accelerated aging on a series of test coupons. The coupons are also examined during aging using ATR (attenuated total reflectance)-FTIR spectroscopy, Raman scattering spectroscopy, and Scanning Electron Microscopy (SEM) to ascertain, quantify, and understand the breakdown mechanisms of the coatings. In addition, the same samples are characterized using THz-TDS techniques to determine if the THz-TDS method can be utilized as a non-destructive evaluation technique to sense degradation of the coatings. Our results suggest that the degradation mechanism begins in the top coat layer. In this layer, 254 nm UV illumination in combination with the presence of moisture works partially with oxides as catalysts to decompose the polymer matrix thereby creating porosity in the top coat layer. Since the catalytic effect is partial, loss of the oxides by chemical reaction can also occur. As the topcoat layer becomes more porous, it allows water vapor to permeate the topcoat layer and interact

  1. The Weighted Peak Method in the Time Domain Compared With Alternative Methods for Assessing LF Electric and Magnetic Fields.

    Science.gov (United States)

    Keller, Helmut

    2017-07-01

    Directive 2013/35/EU of the European Parliament and Council recommends the weighted peak method for assessing non-thermal effects of low frequency (LF) electric and magnetic fields. This article shows that this method is very practical and user friendly and is absolutely reliable to lead to correct results when applied in the time domain. The method can be used without limitations for any field profile and emulates the underlying physical and biological effects significantly better than all other presently known methods. For this reason, this method is described and recommended in many technical standards for assessing the non-thermal effects of electromagnetic fields and is recognized by the international scientific community. The disadvantages of competing methods are demonstrated. Some technical aspects of real measurement systems are also examined.

  2. Implementation of Unsplit Perfectly Matched Layer Absorbing Boundary Condition in 3 Dimensional Finite Difference Time Domain Method

    Directory of Open Access Journals (Sweden)

    B. U. Musa

    2017-04-01

    Full Text Available The C++ programming language was used to implement three-dimensional (3-D finite-difference time-domain (FDTD technique to simulate radiation of high frequency electromagnetic waves in free space. To achieve any meaningful results the computational domain of interest should have to be truncated in some way and this is achieved by applying absorbing boundary conditions. A uniaxial perfectly matched layer (UPML absorbing boundary condition is used in this work. The discretised equations of the UPML in FDTD time stepping scheme were derived and has been successfully implemented using the computer program. Simulation results showed that the UPML behaves as an absorber. This was confirmed by comparing the results with another boundary condition, the Mur ABC.

  3. Improvement of Electromagnetic Code for Phased Array Antenna Design

    National Research Council Canada - National Science Library

    Holter, Henrik

    2007-01-01

    ... . An existing time domain code for electromagnetic design and analysis of phased array antennas and other periodic structures such as frequency selective surfaces and meta-materials has been improved in several ways...

  4. Study of stratified dielectric slab medium structures using pseudo-spectral time domain (PSTD) algorithm

    DEFF Research Database (Denmark)

    Tong, M.S.; Lu, Y.; Chen, Y.

    2005-01-01

    A planar stratified dielectric slab medium, which is an interesting problem in optics and geophysics, is studied using a pseudo-spectral time-domain (PSTD) algorithm. Time domain electric fields and frequency domain propagation characteristics of both single and periodic dielectric slab...

  5. Time-domain analysis of EPR measurements of polyacetylene and soliton diffusion

    International Nuclear Information System (INIS)

    Tang, J.; Lin, C.P.; Bowman, M.K.; Norris, J.R.; Isoya, J.; Shirakawa, H.

    1983-01-01

    A novel analysis of EPR measurements on polyacetylene is demonstrated by the analysis of the conventional line shape in time domain. Quantitative results of the hyperfine-coupling constant, the on-chain diffusion rate, and the off-chain hopping rate were extracted by nonlinear curve fitting to the time-domain signals, and they are consistent with the soliton model of polyacetylene

  6. A general structure for a time-domain model of the cochlea

    NARCIS (Netherlands)

    Duifhuis, H; Wada, H; Takasaka, T; Ikeda, K; Koike, T

    2000-01-01

    This study presents an implementation of our basic ideas about a time-domain nonlinear model of the cochlea. The time-domain approach is considered necessary because it allows implementation of nonlinearity in general and of a proper temporal analysis of natural transient responses in particular. It

  7. Study of stratified dielectric slab medium structures using pseudo-spectral time domain (PSTD) algorithm

    DEFF Research Database (Denmark)

    Tong, M.S.; Lu, Y.; Chen, Y.

    2005-01-01

    A planar stratified dielectric slab medium, which is an interesting problem in optics and geophysics, is studied using a pseudo-spectral time-domain (PSTD) algorithm. Time domain electric fields and frequency domain propagation characteristics of both single and periodic dielectric slab-layer str...

  8. The detection of amoxicillin medicines by terahertz time-domain spectroscopy

    Science.gov (United States)

    Meng, Kun; Li, Zeren; Liu, Qiao

    2012-03-01

    Terahertz time-domain spectroscopy (THz-TDS) is a new spectroscopic technique, which improve a good complement for other spectroscopic techniques and has broad application prospects in the biomedical field. In this paper, a terahertz time-domain spectroscopy system is set up. Using this system, the amoxicillin drugs are detected, and the spectrum are analyzed.

  9. A multi-frequency radar sounder for lava tubes detection on the Moon: Design, performance assessment and simulations

    Science.gov (United States)

    Carrer, Leonardo; Gerekos, Christopher; Bruzzone, Lorenzo

    2018-03-01

    Lunar lava tubes have attracted special interest as they would be suitable shelters for future human outposts on the Moon. Recent experimental results from optical images and gravitational anomalies have brought strong evidence of their existence, but such investigative means have very limited potential for global mapping of lava tubes. In this paper, we investigate the design requirement and feasibility of a radar sounder system specifically conceived for detecting subsurface Moon lava tubes from orbit. This is done by conducting a complete performance assessment and by simulating the electromagnetic signatures of lava tubes using a coherent 3D simulator. The results show that radar sounding of lava tubes is feasible with good performance margins in terms of signal-to-noise and signal-to-clutter ratio, and that a dual-frequency radar sounder would be able to detect the majority of lunar lava tubes based on their potential dimension with some limitations for very small lava tubes having width smaller than 250 m. The electromagnetic simulations show that lava tubes display an unique signature characterized by a signal phase inversion on the roof echo. The analysis is provided for different acquisition geometries with respect to the position of the sounded lava tube. This analysis confirms that orbiting multi-frequency radar sounder can detect and map in a reliable and unambiguous way the majority of Moon lava tubes.

  10. Measuring tropospheric wind with microwave sounders

    Science.gov (United States)

    Lambrigtsen, B.; Su, H.; Turk, J.; Hristova-Veleva, S. M.; Dang, V. T.

    2017-12-01

    In its 2007 "Decadal Survey" of earth science missions for NASA the U.S. National Research Council recommended that a Doppler wind lidar be developed for a three-dimensional tropospheric winds mission ("3D-Winds"). The technology required for such a mission has not yet been developed, and it is expected that the next Decadal Survey, planned to be released by the end of 2017, will put additional emphasis on the still pressing need for wind measurements from space. The first Decadal Survey also called for a geostationary microwave sounder (GMS) on a Precipitation and All-weather Temperature and Humidity (PATH) mission, which could be used to measure wind from space. Such a sounder, the Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR), has been developed at the Jet Propulsion Laboratory (JPL). The PATH mission has not yet been funded by NASA, but a low-cost subset of PATH, GeoStorm has been proposed as a hosted payload on a commercial communications satellite. Both PATH and GeoStorm would obtain frequent (every 15 minutes of better) measurements of tropospheric water vapor profiles, and they can be used to derive atmospheric motion vector (AMV) wind profiles, even in the presence of clouds. Measurement of wind is particularly important in the tropics, where the atmosphere is largely not in thermal balance and wind estimates cannot generally be derived from temperature and pressure fields. We report on simulation studies of AMV wind vectors derived from a GMS and from a cluster of low-earth-orbiting (LEO) small satellites (e.g., CubeSats). The results of two separate simulation studies are very encouraging and show that a ±2 m/s wind speed precision is attainable, which would satisfy WMO requirements. A GMS observing system in particular, which can be implemented now, would enable significant progress in the study of atmospheric dynamics. Copyright 2017 California Institute of Technology. Government sponsorship acknowledged

  11. Microwave Atmospheric Sounder on CubeSat

    Science.gov (United States)

    Padmanabhan, S.; Brown, S. E.; Kangaslahti, P.; Cofield, R.; Russell, D.; Stachnik, R. A.; Su, H.; Wu, L.; Tanelli, S.; Niamsuwan, N.

    2014-12-01

    To accurately predict how the distribution of extreme events may change in the future we need to understand the mechanisms that influence such events in our current climate. Our current observing system is not well-suited for observing extreme events globally due to the sparse sampling and in-homogeneity of ground-based in-situ observations and the infrequent revisit time of satellite observations. Observations of weather extremes, such as extreme precipitation events, temperature extremes, tropical and extra-tropical cyclones among others, with temporal resolution on the order of minutes and spatial resolution on the order of few kms (CubeSats that would work in concert with traditional flagship observational systems, such as those manifested on large environmental satellites (i.e. JPSS,WSF,GCOM-W), to monitor weather extremes. A 118/183 GHz sensor would enable observations of temperature and precipitation extremes over land and ocean as well as tropical and extra-tropical cyclones. This proposed project would enable low cost, compact radiometer instrumentation at 118 and 183 GHz that would fit in a 6U Cubesat with the objective of mass-producing this design to enable a suite of small satellites to image the key geophysical parameters needed to improve prediction of extreme weather events. We take advantage of past and current technology developments at JPL viz. HAMSR (High Altitude Microwave Scanning Radiometer), Advanced Component Technology (ACT'08) to enable low-mass, low-power high frequency airborne radiometers. In this paper, we will describe the design and implementation of the 118 GHz temperature sounder and 183 GHz humidity sounder on the 6U CubeSat. In addition, a summary of radiometer calibration and retrieval techniques of temperature and humidity will be discussed. The successful demonstration of this instrument on the 6U CubeSat would pave the way for the development of a constellation which could sample tropospheric temperature and humidity with

  12. A hybrid method combining the Time-Domain Method of Moments, the Time-Domain Uniform Theory of Diffraction and the FDTD

    Science.gov (United States)

    Becker, A.; Hansen, V.

    2007-06-01

    In this paper a hybrid method combining the Time-Domain Method of Moments (TD-MoM), the Time-Domain Uniform Theory of Diffraction (TD-UTD) and the Finite-Difference Time-Domain Method (FDTD) is presented. When applying this new hybrid method, thin-wire antennas are modeled with the TD-MoM, inhomogeneous bodies are modelled with the FDTD and large perfectly conducting plates are modelled with the TD-UTD. All inhomogeneous bodies are enclosed in a so-called FDTD-volume and the thin-wire antennas can be embedded into this volume or can lie outside. The latter avoids the simulation of white space between antennas and inhomogeneous bodies. If the antennas are positioned into the FDTD-volume, their discretization does not need to agree with the grid of the FDTD. By using the TD-UTD large perfectly conducting plates can be considered efficiently in the solution-procedure. Thus this hybrid method allows time-domain simulations of problems including very different classes of objects, applying the respective most appropriate numerical techniques to every object.

  13. Spectral phase encoding of ultra-short optical pulse in time domain for OCDMA application.

    Science.gov (United States)

    Wang, Xu; Wada, Naoya

    2007-06-11

    We propose a novel reconfigurable time domain spectral phase encoding (SPE) scheme for coherent optical code-division-multiple-access application. In the proposed scheme, the ultra-short optical pulse is stretched by dispersive device and the SPE is done in time domain using high speed phase modulator. The time domain SPE scheme is robust to wavelength drift of the light source and is very flexible and compatible with the fiber optical system. Proof-of-principle experiments of encoding with 16-chip, 20 GHz/chip binary-phase-shift-keying codes and 1.25 Gbps data transmission have been successfully demonstrated together with an arrayed-wave-guide decoder.

  14. A two dimensional finite difference time domain analysis of the quiet zone fields of an anechoic chamber

    Science.gov (United States)

    Ryan, Deirdre A.; Luebbers, Raymond J.; Nguyen, Truong X.; Kunz, Karl S.; Steich, David J.

    1992-01-01

    Prediction of anechoic chamber performance is a difficult problem. Electromagnetic anechoic chambers exist for a wide range of frequencies but are typically very large when measured in wavelengths. Three dimensional finite difference time domain (FDTD) modeling of anechoic chambers is possible with current computers but at frequencies lower than most chamber design frequencies. However, two dimensional FDTD (2D-FTD) modeling enables much greater detail at higher frequencies and offers significant insight into compact anechoic chamber design and performance. A major subsystem of an anechoic chamber for which computational electromagnetic analyses exist is the reflector. First, an analysis of the quiet zone fields of a low frequency anechoic chamber produced by a uniform source and a reflector in two dimensions using the FDTD method is presented. The 2D-FDTD results are compared with results from a three dimensional corrected physical optics calculation and show good agreement. Next, a directional source is substituted for the uniform radiator. Finally, a two dimensional anechoic chamber geometry, including absorbing materials, is considered, and the 2D-FDTD results for these geometries appear reasonable.

  15. Time-domain reflectometry of water content in portland cement concrete

    Science.gov (United States)

    1997-11-01

    Time-domain reflectometry is useful for measuring the moisture content of solids. However, little information exists on its use with portland cement concrete. By monitoring the response from TDR sensors embedded in concrete as the concrete dried, the...

  16. Time Domain Terahertz Axial Computed Tomography Non Destructive Evaluation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to demonstrate key elements of feasibility for a high speed automated time domain terahertz computed axial tomography (TD-THz CT) non destructive...

  17. Time-Domain Terahertz Reflection Holograhic Tomography Nondestructive Evaluation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to demonstrate key elements of feasibility for a single-sided time-domain terahertz reflection holographic tomographic imaging (TD-THz RHT) nondestructive...

  18. Time Domain Terahertz Axial Computed Tomography Non Destructive Evaluation, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase 2 project, we propose to develop, construct, and deliver to NASA a computed axial tomography time-domain terahertz (CT TD-THz) non destructive...

  19. Truncated Fourier-series approximation of the time-domain radiative transfer equation using finite elements.

    Science.gov (United States)

    Pulkkinen, Aki; Tarvainen, Tanja

    2013-03-01

    The radiative transfer equation (RTE) is widely accepted to accurately describe light transport in a medium with scattering particles, and it has been successfully applied as a light-transport model, for example, in diffuse optical tomography. Due to the computationally expensive nature of the RTE, most of these applications have been in the frequency domain. In this paper, an efficient solution method for the time-domain RTE is proposed. The method is based on solving the frequency-domain RTE at multiple modulation frequencies and using the Fourier-series representation of the radiance to obtain approximation of the time-domain solution. The approach is tested with simulations. The results show that the method can be used to obtain the solution of the time-domain RTE with good accuracy and with significantly fewer computational resources than are needed in the direct time-domain solution.

  20. Time-Domain Convolutive Blind Source Separation Employing Selective-Tap Adaptive Algorithms

    Directory of Open Access Journals (Sweden)

    Pan Qiongfeng

    2007-01-01

    Full Text Available We investigate novel algorithms to improve the convergence and reduce the complexity of time-domain convolutive blind source separation (BSS algorithms. First, we propose MMax partial update time-domain convolutive BSS (MMax BSS algorithm. We demonstrate that the partial update scheme applied in the MMax LMS algorithm for single channel can be extended to multichannel time-domain convolutive BSS with little deterioration in performance and possible computational complexity saving. Next, we propose an exclusive maximum selective-tap time-domain convolutive BSS algorithm (XM BSS that reduces the interchannel coherence of the tap-input vectors and improves the conditioning of the autocorrelation matrix resulting in improved convergence rate and reduced misalignment. Moreover, the computational complexity is reduced since only half of the tap inputs are selected for updating. Simulation results have shown a significant improvement in convergence rate compared to existing techniques.

  1. Time-Domain Convolutive Blind Source Separation Employing Selective-Tap Adaptive Algorithms

    Directory of Open Access Journals (Sweden)

    Qiongfeng Pan

    2007-04-01

    Full Text Available We investigate novel algorithms to improve the convergence and reduce the complexity of time-domain convolutive blind source separation (BSS algorithms. First, we propose MMax partial update time-domain convolutive BSS (MMax BSS algorithm. We demonstrate that the partial update scheme applied in the MMax LMS algorithm for single channel can be extended to multichannel time-domain convolutive BSS with little deterioration in performance and possible computational complexity saving. Next, we propose an exclusive maximum selective-tap time-domain convolutive BSS algorithm (XM BSS that reduces the interchannel coherence of the tap-input vectors and improves the conditioning of the autocorrelation matrix resulting in improved convergence rate and reduced misalignment. Moreover, the computational complexity is reduced since only half of the tap inputs are selected for updating. Simulation results have shown a significant improvement in convergence rate compared to existing techniques.

  2. Revisiting the time domain induced polarization technique, from linearization to inversion

    Science.gov (United States)

    Kang, S.; Oldenburg, D.

    2015-12-01

    The induced polarization (IP) technique has been successful in mineral exploration, particularly for finding disseminated sulphide or porphyry deposits, but also in helping solve geotechnical and environmental problems. Electrical induced polarization (EIP) surveys use grounded electrodes and take measurements of the electric field while the current is both "on" and "off". Currently, 2D and 3D inversions of EIP data are generally carried out by first finding a background conductivity from the asymptotic "on-time" measurements. The DC resistivity problem is then linearized about that conductivity to obtain a linear relationship between the off-time data and the "pseudo-chargeability". The distribution of pseudo-chargeability in the earth is then interpreted within the context of the initial geoscience problem pursued. Despite its success, the current EIP implementation does have challenges. A fundamental assumption, that there is no electromagnetic induction (EM) effect, breaks down when the background is conductive. This is especially problematic in regions having conductive overburden. EM induction complicates, and sometimes overwhelms, the IP signal. To ameliorate this effect, we estimate the inductive signal, subtract it from the "off-time" data and invert the resultant IP data using the linearized formulation. We carefully examine the conditions under which this works. We also investigate the potential alterations to the linearized sensitivity function that are needed to allow a linearized inversion to be carried out. Inversions of EIP data recover a "chargeability" but this is not a uniquely defined quantity. There are multiple definitions of this property because there are a diverse number of ways in which an IP datum is defined. In time domain IP surveys, the data might be mV/V or a time-integrated voltage with units of ms. In reality however, data from an EIP survey have many time channels and each one can be inverted separately to produce a chargeability

  3. An application of the multibeam sounder for seabed backscattering analysis

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Raju, Y.S.N.

    A theoretical analysis of vertical farfield pattern for a multibeam sounder is performed. The farfield pattern for different steered angles establish the usefulness of present multibeam arrays. An interaction effect of different steered multibeam...

  4. UARS Microwave Limb Sounder (MLS) Level 3AT V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Microwave Limb Sounder (MLS) Level 3AT data product consists of daily, 65.536 second interval time-ordered vertical profiles of temperature, geopotential height,...

  5. UARS Microwave Limb Sounder (MLS) Level 3AL V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Microwave Limb Sounder (MLS) Level 3AL data product consists of daily, 4 degree increment latitude-ordered vertical profiles of temperature, geopotential height,...

  6. Windowing of THz time-domain spectroscopy signals: A study based on lactose

    Science.gov (United States)

    Vázquez-Cabo, José; Chamorro-Posada, Pedro; Fraile-Peláez, Francisco Javier; Rubiños-López, Óscar; López-Santos, José María; Martín-Ramos, Pablo

    2016-05-01

    Time-domain spectroscopy has established itself as a reference method for determining material parameters in the terahertz spectral range. This procedure requires the processing of the measured time-domain signals in order to estimate the spectral data. In this work, we present a thorough study of the properties of the signal windowing, a step previous to the parameter extraction algorithm, that permits to improve the accuracy of the results. Lactose has been used as sample material in the study.

  7. Time-Domain Optical Fourier Transformation for OTDM-DWDM and DWDM-OTDM Conversion

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Palushani, Evarist; Galili, Michael

    2011-01-01

    Applications of time-domain optical Fourier transformation (OFT) in ultra-high-speed optical time-division multiplexed systems (OTDM) are reviewed, with emphasis on the recent demonstrations of OFT-based conversion between the OTDM and DWDM formats.......Applications of time-domain optical Fourier transformation (OFT) in ultra-high-speed optical time-division multiplexed systems (OTDM) are reviewed, with emphasis on the recent demonstrations of OFT-based conversion between the OTDM and DWDM formats....

  8. Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission

    DEFF Research Database (Denmark)

    Verhulst, Sarah; Dau, Torsten; Shera, Christopher A.

    2012-01-01

    This paper describes the implementation and performance of a nonlinear time-domain model of the cochlea for transient stimulation and human otoacoustic emission generation. The nonlinearity simulates compressive growth of measured basilar-membrane impulse responses. The model accounts for reflect......This paper describes the implementation and performance of a nonlinear time-domain model of the cochlea for transient stimulation and human otoacoustic emission generation. The nonlinearity simulates compressive growth of measured basilar-membrane impulse responses. The model accounts...

  9. Time-domain effects on error rates of multilevel digital pulse interval modulation systems

    Science.gov (United States)

    Wei, Wei; Zhang, Xiaohui; Rao, Jionghui; Pan, Chen

    2011-10-01

    A channel discretization was applied to investigate time-domain effects on error rates of Multilevel Digital Pulse Interval Modulation (MDPIM) underwater optical wireless communication systems imposed by water scattering. Taking time domain dispersion into account, package error rates of MDPIM were analyzed. The deterioration of package error rates were computed at various link ranges and transmitted rates. Theory model is an agreement with Monte Carlo simulation.

  10. NOAA JPSS Advanced Technology Microwave Sounder (ATMS) Remapped to Cross-track Infrared Sounder (CrIS) Sensor Data Record (SDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Technology Microwave Sounder (ATMS) is a 22 channel microwave sounder on board the Suomi NPP satellite that provides continuous cross-track scanning in...

  11. GRIPS - The Geostationary Remote Infrared Pollution Sounder

    Science.gov (United States)

    Spackman, Ryan; Dickerson, Russell; Schoeberl, Mark; Bloom, Hal; Gordley, Larry; McHugh, Martin; Thompson, Anne; Burrows, John; Zeng, Ning; Marshall, Tom; Fish, Chad; Kim, Jhoon; Park, Rokjin; Warner, Juying; Bhartia, Pawan; Kollonige, Debra

    2013-04-01

    Climate change and air quality are the most pressing environmental issues of the 21st century for America and for the world as a whole. Despite decades of research, the sources and sinks of key greenhouse gases and other pollutants remain highly uncertain making atmospheric composition predictions difficult. The Geostationary Remote Infrared Pollution Sounder (GRIPS) will measure carbon dioxide (CO2), carbon monoxide (CO), and methane (CH4). By using measurements of nitrous oxide (N2O) and the O2 A-band to help correct for clouds and aerosols, GRIPS will achieve unprecedented precision. Together these gases account for about 85% of all climate forcing and they impact atmospheric ozone (O3). GRIPS, employing gas-filter correlation radiometry, uses the target gases themselves in place of dispersive elements to achieve outstanding throughput, sensitivity, and specificity. Because it uses a combination of reflected and thermal IR, GRIPS will detect trace gas concentrations right down to the Earth's surface. When flown in parallel to a UV/VIS sensor such as GEMS on GEO-KOMPSAT-2B over East Asia or the Sentinel 4 on MTG over Europe/Africa, the combination offers powerful finger-printing capabilities to distinguish and quantify diverse pollution sources such as electricity generation, biomass burning, and motor vehicles. From geostationary orbit, GRIPS will be able to focus on important targets to quantify sources, net flux, diurnal cycles, and long-range transport of these key components in the Earth's radiative balance and air quality.

  12. High performance electromagnetic simulation tools

    Science.gov (United States)

    Gedney, Stephen D.; Whites, Keith W.

    1994-10-01

    Army Research Office Grant #DAAH04-93-G-0453 has supported the purchase of 24 additional compute nodes that were installed in the Intel iPsC/860 hypercube at the Univesity Of Kentucky (UK), rendering a 32-node multiprocessor. This facility has allowed the investigators to explore and extend the boundaries of electromagnetic simulation for important areas of defense concerns including microwave monolithic integrated circuit (MMIC) design/analysis and electromagnetic materials research and development. The iPSC/860 has also provided an ideal platform for MMIC circuit simulations. A number of parallel methods based on direct time-domain solutions of Maxwell's equations have been developed on the iPSC/860, including a parallel finite-difference time-domain (FDTD) algorithm, and a parallel planar generalized Yee-algorithm (PGY). The iPSC/860 has also provided an ideal platform on which to develop a 'virtual laboratory' to numerically analyze, scientifically study and develop new types of materials with beneficial electromagnetic properties. These materials simulations are capable of assembling hundreds of microscopic inclusions from which an electromagnetic full-wave solution will be obtained in toto. This powerful simulation tool has enabled research of the full-wave analysis of complex multicomponent MMIC devices and the electromagnetic properties of many types of materials to be performed numerically rather than strictly in the laboratory.

  13. Optimal time-domain combination of the two calibrated output quadratures of GEO 600

    International Nuclear Information System (INIS)

    Hewitson, M; Grote, H; Hild, S; Lueck, H; Ajith, P; Smith, J R; Strain, K A; Willke, B; Woan, G

    2005-01-01

    GEO 600 is an interferometric gravitational wave detector with a 600 m arm-length and which uses a dual-recycled optical configuration to give enhanced sensitivity over certain frequencies in the detection band. Due to the dual-recycling, GEO 600 has two main output signals, both of which potentially contain gravitational wave signals. These two outputs are calibrated to strain using a time-domain method. In order to simplify the analysis of the GEO 600 data set, it is desirable to combine these two calibrated outputs to form a single strain signal that has optimal signal-to-noise ratio across the detection band. This paper describes a time-domain method for doing this combination. The method presented is similar to one developed for optimally combining the outputs of two colocated gravitational wave detectors. In the scheme presented in this paper, some simplifications are made to allow its implementation using time-domain methods

  14. Time domain passivity controller for 4-channel time-delay bilateral teleoperation.

    Science.gov (United States)

    Rebelo, Joao; Schiele, Andre

    2015-01-01

    This paper presents an extension of the time-domain passivity control approach to a four-channel bilateral controller under the effects of time delays. Time-domain passivity control has been used successfully to stabilize teleoperation systems with position-force and position-position controllers; however, the performance with such control architectures is sub-optimal both with and without time delays. This work extends the network representation of the time-domain passivity controller to the four-channel architecture, which provides perfect transparency to the user without time delay. The proposed architecture is based on modelling the controllers as dependent voltage sources and using only series passivity controllers. The obtained results are shown on a one degree-of-freedom setup and illustrate the stabilization behaviour of the proposed controller when time delay is present in the communication channel.

  15. Analysis of noise in energy-dispersive spectrometers using time-domain methods

    CERN Document Server

    Goulding, F S

    2002-01-01

    This paper presents an integrated time domain approach to the optimization of the signal-to-noise ratio in all spectrometer systems that contain a detector that converts incoming quanta of radiation into electrical pulse signals that are amplified and shaped by an electronic pulse shaper. It allows analysis of normal passive pulse shapers as well as time-variant systems where switching of shaping elements occurs in synchronism with the signal. It also deals comfortably with microcalorimeters (sometimes referred to as bolometers), where noise-determining elements, such as the temperature-sensing element's resistance and temperature, change with time in the presence of a signal. As part of the purely time-domain approach, a new method of calculating the Johnson noise in resistors using only the statistics of electron motion is presented. The result is a time-domain analog of the Nyquist formula.

  16. An Efficient Channel Model for OFDM and Time Domain Single Carrier Transmission Using Impulse Responses

    Directory of Open Access Journals (Sweden)

    Tariq Jamil Saifullah Khanzada

    2012-01-01

    Full Text Available The OFDM (Orthogonal Frequency Division Multiplexing is well-known, most utilized wideband communication technique of the current era. SCT (Single Carrier Transmission provides equivalent performance in time domain while decision equalizer is implemented in frequency domain. SCT annihilates the ICT (Inter Carrier Interference and the PAPR (Peak to Average Power Ratio which is inherent to OFDM and degrades its performance in time varying channels. An efficient channel model is presented in this contribution, to implement OFDM and SCT in time domain using impulse responses. Both OFDM and SCT models are derived dialectically to model the channel impulse responses. Our model enhances the performance of time domain SCT compared with OFDM and subsides the PAPR and ICI problems of OFDM. SCT is implemented at symbol level contained in blocks. Simulation results implementing Digital Radio Monadiale (DRM assert the performance gain of SCT over OFDM.

  17. A Stable Marching on-in-time Scheme for Solving the Time Domain Electric Field Volume Integral Equation on High-contrast Scatterers

    KAUST Repository

    Sayed, Sadeed Bin

    2015-05-05

    A time domain electric field volume integral equation (TD-EFVIE) solver is proposed for characterizing transient electromagnetic wave interactions on high-contrast dielectric scatterers. The TD-EFVIE is discretized using the Schaubert- Wilton-Glisson (SWG) and approximate prolate spherical wave (APSW) functions in space and time, respectively. The resulting system of equations can not be solved by a straightforward application of the marching on-in-time (MOT) scheme since the two-sided APSW interpolation functions require the knowledge of unknown “future” field samples during time marching. Causality of the MOT scheme is restored using an extrapolation technique that predicts the future samples from known “past” ones. Unlike the extrapolation techniques developed for MOT schemes that are used in solving time domain surface integral equations, this scheme trains the extrapolation coefficients using samples of exponentials with exponents on the complex frequency plane. This increases the stability of the MOT-TD-EFVIE solver significantly, since the temporal behavior of decaying and oscillating electromagnetic modes induced inside the scatterers is very accurately taken into account by this new extrapolation scheme. Numerical results demonstrate that the proposed MOT solver maintains its stability even when applied to analyzing wave interactions on high-contrast scatterers.

  18. Analytical and computational methods in electromagnetics

    CERN Document Server

    Garg, Ramesh

    2008-01-01

    This authoritative resource offers you clear and complete explanation of this essential electromagnetics knowledge, providing you with the analytical background you need to understand such key approaches as MoM (method of moments), FDTD (Finite Difference Time Domain) and FEM (Finite Element Method), and Green's functions. This comprehensive book includes all math necessary to master the material.

  19. Engineering Electromagnetics

    International Nuclear Information System (INIS)

    Kim, Se Yun

    2009-01-01

    This book deals with engineering electromagnetics. It contains seven chapters, which treats understanding of engineering electromagnetics such as magnet and electron spin, current and a magnetic field and an electromagnetic wave, Essential tool for engineering electromagnetics on rector and scalar, rectangular coordinate system and curl vector, electrostatic field with coulomb rule and method of electric images, Biot-Savart law, Ampere law and magnetic force, Maxwell equation and an electromagnetic wave and reflection and penetration of electromagnetic plane wave.

  20. DWDM-TO-OTDM Conversion by Time-Domain Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Hu, Hao; Galili, Michael

    2011-01-01

    We propose DWDM-OTDM conversion by time-domain optical Fourier transformation. Error-free conversion of a 16×10 Gbit/s 50 GHz-spacing DWDM data signal to a 160 Gbit/s OTDM signal with a 2.1 dB average penalty is demonstrated.......We propose DWDM-OTDM conversion by time-domain optical Fourier transformation. Error-free conversion of a 16×10 Gbit/s 50 GHz-spacing DWDM data signal to a 160 Gbit/s OTDM signal with a 2.1 dB average penalty is demonstrated....

  1. Design of one-dimensional optical pulse-shaping filters by time-domain topology optimization

    DEFF Research Database (Denmark)

    Yang, Lirong; Lavrinenko, Andrei; Hvam, Jørn Märcher

    2009-01-01

    Time-domain topology optimization is used here to design optical pulse-shaping filters in Si/SiO2 thin-film systems. A novel envelope objective function as well as explicit penalization are used to adapt the optimization method to this unique class of design problems.......Time-domain topology optimization is used here to design optical pulse-shaping filters in Si/SiO2 thin-film systems. A novel envelope objective function as well as explicit penalization are used to adapt the optimization method to this unique class of design problems....

  2. Time-domain Green's Function Method for three-dimensional nonlinear subsonic flows

    Science.gov (United States)

    Tseng, K.; Morino, L.

    1978-01-01

    The Green's Function Method for linearized 3D unsteady potential flow (embedded in the computer code SOUSSA P) is extended to include the time-domain analysis as well as the nonlinear term retained in the transonic small disturbance equation. The differential-delay equations in time, as obtained by applying the Green's Function Method (in a generalized sense) and the finite-element technique to the transonic equation, are solved directly in the time domain. Comparisons are made with both linearized frequency-domain calculations and existing nonlinear results.

  3. High-Order Calderón Preconditioned Time Domain Integral Equation Solvers

    KAUST Repository

    Valdes, Felipe

    2013-05-01

    Two high-order accurate Calderón preconditioned time domain electric field integral equation (TDEFIE) solvers are presented. In contrast to existing Calderón preconditioned time domain solvers, the proposed preconditioner allows for high-order surface representations and current expansions by using a novel set of fully-localized high-order div-and quasi curl-conforming (DQCC) basis functions. Numerical results demonstrate that the linear systems of equations obtained using the proposed basis functions converge rapidly, regardless of the mesh density and of the order of the current expansion. © 1963-2012 IEEE.

  4. Crystallization of amorphous lactose at high humidity studied by terahertz time domain spectroscopy

    Science.gov (United States)

    McIntosh, Alexander I.; Yang, Bin; Goldup, Stephen M.; Watkinson, Michael; Donnan, Robert S.

    2013-02-01

    We report the first use of terahertz time-domain spectroscopy (THz-TDS) to study the hydration and crystallization of an amorphous molecular solid at high humidity. Lactose in its amorphous and monohydrate forms exhibits different terahertz spectra due to the lack of long range order in the amorphous material. This difference allowed the transformation of amorphous lactose to its monohydrate form at high humidity to be studied in real time. Spectral fitting of frequency-domain data allowed kinetic data to be obtained and the crystallization was found to obey Avrami kinetics. Bulk changes during the crystallization could also be observed in the time-domain.

  5. Three dimensional numerical modeling for ground penetrating radar using finite difference time domain (FDTD) method; Jikan ryoiki yugen sabunho ni yoru chika radar no sanjigen suchi modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sanada, Y.; Ashida, Y.; Sassa, K. [Kyoto University, Kyoto (Japan)

    1996-10-01

    3-D numerical modeling by FDTD method was studied for ground penetrating radar. Radar radiates electromagnetic wave, and determines the existence and distance of objects by reflection wave. Ground penetrating radar uses the above functions for underground surveys, however, its resolution and velocity analysis accuracy are problems. In particular, propagation characteristics of electromagnetic wave in media such as heterogeneous and anisotropic soil and rock are essential. The behavior of electromagnetic wave in the ground could be precisely reproduced by 3-D numerical modeling using FDTD method. FDTD method makes precise analysis in time domain and electric and magnetic fields possible by sequentially calculating the difference equation of Maxwell`s equation. Because of the high calculation efficiency of FDTD method, more precise complicated analysis can be expected by using the latest advanced computers. The numerical model and calculation example are illustrated for surface type electromagnetic pulse ground penetrating radar assuming the survey of steel pipes of 1m deep. 4 refs., 3 figs., 1 tab.

  6. Shallow groundwater investigation using time-domain electromagnetic (TEM method at Itay El-Baroud, Nile Delta, Egypt

    Directory of Open Access Journals (Sweden)

    H. Shaaban

    2016-12-01

    Based on the interpretation of the acquired geophysical data, four geoelectric cross-sections were constructed. These sections show that the Upper Quaternary sequence consists of three geoelectric layers. The Holocene Nile mud is separated into two layers: the agricultural root zone (Layer 1 and thick water saturated mud (Layer 2. The Upper Pleistocene sandy aquifer (Layer 3 is very complicated non-linear boundary. This aquifer is the most important unit since it is considered as the main water bearing unit in the study area.

  7. Rapid evaluation of radiation boundary kernels for time-domain wave propagation on black holes: implementation and numerical tests

    International Nuclear Information System (INIS)

    Lau, Stephen R

    2004-01-01

    For scalar, electromagnetic, or gravitational wave propagation on a fixed Schwarzschild black hole background, we consider the exact nonlocal radiation outer boundary conditions (ROBC) appropriate for a spherical outer boundary of finite radius enclosing the black hole. Such boundary conditions feature temporal integral convolution between each spherical harmonic mode of the wave field and a time-domain radiation kernel (TDRK). For each orbital angular integer l the associated TDRK is the inverse Laplace transform of a frequency-domain radiation kernel (FDRK). Drawing upon theory and numerical methods developed in a previous article, we numerically implement the ROBC via a rapid algorithm involving approximation of the FDRK by a rational function. Such an approximation is tailored to have relative error ε uniformly along the axis of imaginary Laplace frequency. Theoretically, ε is also a long-time bound on the relative convolution error. Via study of one-dimensional radial evolutions, we demonstrate that the ROBC capture the phenomena of quasinormal ringing and decay tails. We also consider a three-dimensional evolution based on a spectral code, one showing that the ROBC yield accurate results for the scenario of a wave packet striking the boundary at an angle. Our work is a partial generalization to Schwarzschild wave propagation and Heun functions of the methods developed for flatspace wave propagation and Bessel functions by Alpert, Greengard, and Hagstrom

  8. Multi-GPU-based acceleration of the explicit time domain volume integral equation solver using MPI-OpenACC

    KAUST Repository

    Feki, Saber

    2013-07-01

    An explicit marching-on-in-time (MOT)-based time-domain volume integral equation (TDVIE) solver has recently been developed for characterizing transient electromagnetic wave interactions on arbitrarily shaped dielectric bodies (A. Al-Jarro et al., IEEE Trans. Antennas Propag., vol. 60, no. 11, 2012). The solver discretizes the spatio-temporal convolutions of the source fields with the background medium\\'s Green function using nodal discretization in space and linear interpolation in time. The Green tensor, which involves second order spatial and temporal derivatives, is computed using finite differences on the temporal and spatial grid. A predictor-corrector algorithm is used to maintain the stability of the MOT scheme. The simplicity of the discretization scheme permits the computation of the discretized spatio-temporal convolutions on the fly during time marching; no \\'interaction\\' matrices are pre-computed or stored resulting in a memory efficient scheme. As a result, most often the applicability of this solver to the characterization of wave interactions on electrically large structures is limited by the computation time but not the memory. © 2013 IEEE.

  9. Finite-difference time domain solution of light scattering by arbitrarily shaped particles and surfaces

    DEFF Research Database (Denmark)

    Tanev, Stoyan; Sun, Wenbo

    2012-01-01

    This chapter reviews the fundamental methods and some of the applications of the three-dimensional (3D) finite-difference time-domain (FDTD) technique for the modeling of light scattering by arbitrarily shaped dielectric particles and surfaces. The emphasis is on the details of the FDTD algorithm...

  10. Range/velocity limitations for time-domain blood velocity estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1993-01-01

    The traditional range/velocity limitation for blood velocity estimation systems using ultrasound is elucidated. It is stated that the equation is a property of the estimator used, not the actual physical measurement situation, as higher velocities can be estimated by the time domain cross...

  11. Non-Causal Time-Domain Filters for Single-Channel Noise Reduction

    DEFF Research Database (Denmark)

    Jensen, Jesper Rindom; Benesty, Jacob; Christensen, Mads Græsbøll

    2012-01-01

    suppression and signal distortion by allowing the filters to be non-causal. Non-causal time-domain filters require knowledge of the future, and are therefore not directly implementable. If the observed signal is processed in blocks, however, the non-causal filters are implementable. In this paper, we propose...

  12. Implementation of ultrasound time-domain cross-correlation blood velocity estimators

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1993-01-01

    The implementation of real-time blood velocity estimators using time-domain cross-correlation is investigated. The basic algorithm for stationary echo canceling, cross-correlation estimation and subsequent velocity estimation is presented. Sampled data acquired at rates of approximately 20 MHz...

  13. A Time-Domain Method for Separating Incident and Reflected Irregular Waves

    DEFF Research Database (Denmark)

    Frigaard, Peter; Brorsen, Michael

    of the model test. Goda and Suzuki (1976) presented a frequency method for estimation of irregular incident and reflected waves in random waves. Mansard and Funke (1980) improved this method uaing a least squares technique. In the following, a time-domain method for seperating the incident waves...

  14. Angular Random Walk Estimation of a Time-Domain Switching Micromachined Gyroscope

    Science.gov (United States)

    2016-10-19

    TECHNICAL DOCUMENT 3308 September 2016 Angular Random Walk Estimation of a Time-Domain Switching Micromachined Gyroscope Andrew B. Sabater Paul...angular random walk (ARW), bias instability, and scale factor instability. While there are methods to address issues with bias and scale factor...8 4. ANGULAR RANDOM WALK CHARACTERIZATION

  15. Time domain characteristics of wave motion in dispersive and anisotropic continuum acoustic metamaterials.

    Science.gov (United States)

    Wang, Zhaojun; Zhou, Xiaoming

    2016-12-01

    The authors study the wave propagation in continuum acoustic metamaterials whose all or not all of the principal elements of the mass tensor or the scalar compressibility can be negative due to wave dispersion. Their time-domain wave characteristics are particularly investigated by the finite-difference time-domain (FDTD) method, in which algorithms for the Drude and Lorentz dispersion pertinent to acoustic metamaterials are provided necessarily. Wave propagation nature of anisotropic acoustic metamaterials with all admissible material parameters are analyzed in a general manner. It is found that anomalous negative refraction phenomena can appear in several dispersion regimes, and their unique time-domain signatures have been discovered by the FDTD modeling. It is further proposed that two different metamaterial layers with specially assigned dispersions could comprise a conjugate pair that permits wave propagation only at specific points in the wave vector space. The time-domain pulse simulation verifies that acoustic directive radiation capable of modulating radiation angle with the wave frequency can be realized with this conjugate pair. The study provides the detailed analysis of wave propagation in anisotropic and dispersive acoustic mediums, which makes a further step toward dispersion engineering and transient wave control through acoustic metamaterials.

  16. Fra Angelico’s painting technique revealed by terahertz time-domain imaging (THz-TDI)

    DEFF Research Database (Denmark)

    Dandolo, Corinna Ludovica Koch; Picollo, Marcello; Cucci, Costanza

    2016-01-01

    We have investigated with terahertz time-domain imaging (THz-TDI) the well-known Lamentation over the dead Christ panel painting (San Marco Museum, Florence) painted by Fra Giovanni Angelico within 1436 and 1441. The investigation provided a better understanding of the construction and gilding...

  17. Time domain-nuclear magnetic resonance study of chars from southern hardwoods

    Science.gov (United States)

    Thomas Elder; Nicole Labbe; David Harper; Timothy Rials

    2006-01-01

    Chars from the thermal degradation of silver maple (Acer saccharinum), red maple (Acer rubrum), sugar maple (Acer saccharum), and white oak (Quercus spp.), performed at temperatures from 250 to 350 oC, were examined using time domain-nuclear magnetic resonance...

  18. Continuous performance test assessed with time-domain functional near infrared spectroscopy

    Science.gov (United States)

    Torricelli, Alessandro; Contini, Davide; Spinelli, Lorenzo; Caffini, Matteo; Butti, Michele; Baselli, Giuseppe; Bianchi, Anna M.; Bardoni, Alessandra; Cerutti, Sergio; Cubeddu, Rinaldo

    2007-07-01

    A time-domain fNIRS multichannel system was used in a sustained attention protocol (continuous performance test) to study activation of the prefrontal cortex. Preliminary results on volounteers show significant activation (decrease in deoxy-hemoglobin and increase in oxy-hemoglobin) in both left and right prefrontal cortex.

  19. Development of a method for reconstruction of crowded NMR spectra from undersampled time-domain data

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Takumi; Yoshiura, Chie; Matsumoto, Masahiko; Kofuku, Yutaka; Okude, Junya; Kondo, Keita; Shiraishi, Yutaro [The University of Tokyo, Graduate School of Pharmaceutical Sciences (Japan); Takeuchi, Koh [Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (Japan); Shimada, Ichio, E-mail: shimada@iw-nmr.f.u-tokyo.ac.jp [The University of Tokyo, Graduate School of Pharmaceutical Sciences (Japan)

    2015-05-15

    NMR is a unique methodology for obtaining information about the conformational dynamics of proteins in heterogeneous biomolecular systems. In various NMR methods, such as transferred cross-saturation, relaxation dispersion, and paramagnetic relaxation enhancement experiments, fast determination of the signal intensity ratios in the NMR spectra with high accuracy is required for analyses of targets with low yields and stabilities. However, conventional methods for the reconstruction of spectra from undersampled time-domain data, such as linear prediction, spectroscopy with integration of frequency and time domain, and analysis of Fourier, and compressed sensing were not effective for the accurate determination of the signal intensity ratios of the crowded two-dimensional spectra of proteins. Here, we developed an NMR spectra reconstruction method, “conservation of experimental data in analysis of Fourier” (Co-ANAFOR), to reconstruct the crowded spectra from the undersampled time-domain data. The number of sampling points required for the transferred cross-saturation experiments between membrane proteins, photosystem I and cytochrome b{sub 6}f, and their ligand, plastocyanin, with Co-ANAFOR was half of that needed for linear prediction, and the peak height reduction ratios of the spectra reconstructed from truncated time-domain data by Co-ANAFOR were more accurate than those reconstructed from non-uniformly sampled data by compressed sensing.

  20. Measuring the Moisture Content of Green Wood Using Time Domain Reflectometry

    Science.gov (United States)

    Laurence Schimleck; Kim Love-Myers; Joe Sanders; Heath Raybon; Richard Daniels; Jerry Mahon; Edward Andrews; Erik Schilling

    2011-01-01

    The responsible usage of water by facilities that rely on wet log storage in the southern United States has become an issue of great importance as restrictions on water usage have grown in recent years. In order to learn about the dynamics of moisture content in wet-stored logs over time, it is necessary to conduct continuous monitoring of log piles. Time domain...

  1. Time domain calculation of connector loads of a very large floating structure

    Science.gov (United States)

    Gu, Jiayang; Wu, Jie; Qi, Enrong; Guan, Yifeng; Yuan, Yubo

    2015-06-01

    Loads generated after an air crash, ship collision, and other accidents may destroy very large floating structures (VLFSs) and create additional connector loads. In this study, the combined effects of ship collision and wave loads are considered to establish motion differential equations for a multi-body VLFS. A time domain calculation method is proposed to calculate the connector load of the VLFS in waves. The Longuet-Higgins model is employed to simulate the stochastic wave load. Fluid force and hydrodynamic coefficient are obtained with DNV Sesam software. The motion differential equation is calculated by applying the time domain method when the frequency domain hydrodynamic coefficient is converted into the memory function of the motion differential equation of the time domain. As a result of the combined action of wave and impact loads, high-frequency oscillation is observed in the time history curve of the connector load. At wave directions of 0° and 75°, the regularities of the time history curves of the connector loads in different directions are similar and the connector loads of C1 and C2 in the X direction are the largest. The oscillation load is observed in the connector in the Y direction at a wave direction of 75° and not at 0°. This paper presents a time domain calculation method of connector load to provide a certain reference function for the future development of Chinese VLFS

  2. ANALYSIS AND DESIGN OF CONTROL SYSTEMS BY MEANS OF TIME DOMAIN MATRICES

    Science.gov (United States)

    The time domain matrix method is presented and illustrated as a method of analysis and design of linear, nonlinear, and time varying systems of the...intermediate points throughout the loops are readily available. Also, systems with multiple nonlinearities may be investigated, for which there is not a presently available method of analysis and design.

  3. Lithological characterization of a contaminated site using Direct current resistivity and time domain Induced Polarization

    DEFF Research Database (Denmark)

    Maurya, Pradip Kumar; Fiandaca, Gianluca; Auken, Esben

    study a large contaminated site in Denmark was investigated using direct current resistivity and time domain induced polarization (DCIP). For this purpose 14 profiles were collected alongside a stream in order to investigate the contamination and delineate the lithological units. 2D inversion using...

  4. Insensitivity of single particle time domain measurements to laser velocimeter 'Doppler ambiguity.'

    Science.gov (United States)

    Johnson, D. A.

    1973-01-01

    It is shown that single particle time domain measurements in high speed gas flows obtained by a laser velocimeter technique developed for use in wind tunnels are not affected by the so-called 'Doppler ambiguity.' A comparison of hot-wire anemometer and laser velocimeter measurements taken under similar flow conditions is used for the demonstration.

  5. Finite-difference time-domain analysis of time-resolved terahertz spectroscopy experiments

    DEFF Research Database (Denmark)

    Larsen, Casper; Cooke, David G.; Jepsen, Peter Uhd

    2011-01-01

    In this paper we report on the numerical analysis of a time-resolved terahertz (THz) spectroscopy experiment using a modified finite-difference time-domain method. Using this method, we show that ultrafast carrier dynamics can be extracted with a time resolution smaller than the duration of the THz...

  6. On-chip Brownian relaxation measurements of magnetic nanobeads in the time domain

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Rizzi, Giovanni; Hansen, Mikkel Fougt

    2013-01-01

    the time and frequency domain methods on Brownian relaxation detection of clustering of streptavidin coated magnetic beads in the presence of different concentrations of biotin-conjugated bovine serum albumin and obtain comparable results. In the time domain, a measurement is carried out in less than 30 s...

  7. Improved theory of time domain reflectometry with variable coaxial cable length for electrical conductivity measurements

    Science.gov (United States)

    Although empirical models have been developed previously, a mechanistic model is needed for estimating electrical conductivity (EC) using time domain reflectometry (TDR) with variable lengths of coaxial cable. The goals of this study are to: (1) derive a mechanistic model based on multisection tra...

  8. Non-linear wave loads and ship responses by a time-domain strip theory

    DEFF Research Database (Denmark)

    Xia, Jinzhu; Wang, Zhaohui; Jensen, Jørgen Juncher

    1998-01-01

    . Based on this time-domain strip theory, an efficient non-linear hydroelastic method of wave- and slamming-induced vertical motions and structural responses of ships is developed, where the structure is represented as a Timoshenko beam. Numerical calculations are presented for the S175 Containership...

  9. Non-Linear Wave Loads and Ship responses by a time-domain Strip Theory

    DEFF Research Database (Denmark)

    Xia, Jinzhu; Wang, Zhaohui; Jensen, Jørgen Juncher

    1998-01-01

    . Based on this time-domain strip theory, an efficient non-linear hyroelastic method of wave- and slamming-induced vertical motions and structural responses of ships is developed, where the structure is represented by the Timoshenko beam theory. Numerical calculations are presented for the S175...

  10. Discrete-Time Domain Modelling of Voltage Source Inverters in Standalone Applications

    DEFF Research Database (Denmark)

    Federico, de Bosio; de Sousa Ribeiro, Luiz Antonio; Freijedo Fernandez, Francisco Daniel

    2017-01-01

    The decoupling of the capacitor voltage and inductor current has been shown to improve significantly the dynamic performance of voltage source inverters in standalone applications. However, the computation and PWM delays still limit the achievable bandwidth. In this paper a discrete-time domain...

  11. Temperature effects in soil water content determined with time domain reflectometry

    NARCIS (Netherlands)

    Halbertsma, J.; Elsen, van den E.; Bohl, H.; Skierucha, W.

    1996-01-01

    The relative permittivity of water decreases with increasing temperature. Therefore, it is likely that the soil water content determined with time domain reflectometry is influenced by temperature. This study showed that significant temperature effects may occur. The magnitude of these effects is a

  12. Characterization of Flaws in the Elastic Medium by Time Domain Born Approximation

    International Nuclear Information System (INIS)

    Yi, J. Y.; Lee, S. K.; Lee, J. O.; Kim, Y. H.

    1983-01-01

    The impulse response function are studied using time domain Born approximation in two cases; firstly when the material parameters of a flaw are constant, secondly when the parameters are varying with positions. From the impulse response functions, characteristics can be learned about a flaw with high symmetry

  13. Conversion of Dielectric Data from the Time Domain to the Frequency Domain

    Directory of Open Access Journals (Sweden)

    Vladimir Durman

    2005-01-01

    Full Text Available Polarisation and conduction processes in dielectric systems can be identified by the time domain or the frequency domain measurements. If the systems is a linear one, the results of the time domain measurements can be transformed into the frequency domain, and vice versa. Commonly, the time domain data of the absorption conductivity are transformed into the frequency domain data of the dielectric susceptibility. In practice, the relaxation are mainly evaluated by the frequency domain data. In the time domain, the absorption current measurement were prefered up to now. Recent methods are based on the recovery voltage measurements. In this paper a new method of the recovery data conversion from the time the frequency domain is proposed. The method is based on the analysis of the recovery voltage transient based on the Maxwell equation for the current density in a dielectric. Unlike the previous published solutions, the Laplace fransform was used to derive a formula suitable for practical purposes. the proposed procedure allows also calculating of the insulation resistance and separating the polarisation and conduction losses.

  14. Probing Mars’ atmosphere with ExoMars Mars Climate Sounder

    OpenAIRE

    Irwin, Patrick G. J.; Calcutt, S. B.; Read, P. L.; Bowles, N. E.; Lewis, S.

    2011-01-01

    The 2016 Mars Trace Gas Mission will carry with it the ExoMars Mars Climate Sounder instrument, a development of the very successful Mars Climate Sounder instrument already in orbit about Mars on NASA's Mars Reconnaissance Orbiter spacecraft. EMCS will continue the monitoring of Mars global temperature/pressure/aerosol field, and will also be able to measure the vertical profile of water vapour across the planet from 0 – 50 km. Key components of EMCS will be provided by Oxford, Reading and Ca...

  15. Special Sensor Microwave Imager/Sounder (SSMIS) Temperature Data Record (TDR) in netCDF

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Special Sensor Microwave Imager/Sounder (SSMIS) is a series of passive microwave conically scanning imagers and sounders onboard the DMSP satellites beginning...

  16. Special Sensor Microwave Imager/Sounder (SSMIS) Sensor Data Record (SDR) in netCDF

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Special Sensor Microwave Imager/Sounder (SSMIS) is a series of passive microwave conically scanning imagers and sounders onboard the DMSP satellites beginning...

  17. Comparison of time domain reflectometry, capacitance methods and neutron scattering in soil moisture measurements

    International Nuclear Information System (INIS)

    Khorasani, A.; Mousavi Shalmani, M. A.; Piervali Bieranvand, N.

    2011-01-01

    An accurate, precise, fast and ease as well as the ability for measurements in depth are the characteristics that are desirable in measuring soil moisture methods. To compare methods (time domain reflectometry and capacitance) with neutron scattering for soil water monitoring, an experiment was carried out in a randomized complete block design (Split Split plot) on tomato with three replications on the experimental field of International Atomic Energy Agency (Seibersdorf-Austria). The treatment instruments for the soil moisture monitoring (main factor) consist of neutron gauge, Diviner 2000, time domain reflectometer and an EnviroScan and different irrigation systems (first sub factor) consist of trickle and furrow irrigations and different depths of soil (second sub factor) consist of 0-20, 20-40 and 40-60 cm. The results showed that for the neutron gauge and time domain reflectometer the amount of soil moisture in both of trickle and furrow irrigations were the same, but the significant differences were recorded in Diviner 2000 and EnviroScan measurements. The results of this study showed that the neutron gauge is an acceptable and reliable means with the modern technology, with a precision of ±2 mm in 450 mm soil water to a depth of 1.5 meter and can be considered as the most practical method for measuring soil moisture profiles and irrigation planning program. The time domain reflectometer method in most mineral soils, without the need for calibration, with an accuracy ±0.01m 3 m -3 has a good performance in soil moisture and electrical conductivity measurements. The Diviner 2000 and EnviroScan are not well suitable for the above conditions for several reasons such as much higher soil moisture and a large error measurement and also its sensitivity to the soil gap and to the small change in the soil moisture in comparison with the neutron gauge and the time domain reflectometer methods.

  18. [Identification of Official Rhubarb Samples by Using PLS and Terahertz Time-Domain Spectroscopy].

    Science.gov (United States)

    Wang, Jing-rong; Zhang, Zhuo-yong; Zhang, Zhen-wei; Xiang, Yu-hong

    2016-02-01

    The development of terahertz technology is attracting broad intention in recent years. The quality identification is important for the quality control of Chinese medicine production. In the present work, terahertz time-domain spectroscopy (THz-TDS) combined with partial least squares (PLS) were used for the identification model building and studied based on 41 official and unofficial rhubarb samples. First, the THz-TDS spectra of rhubarb samples were collected and were preprocessed by using chemometrics methods rather than transformed to absorption spectra. The identification models were then established based on the processed terahertz time domain spectra. The spectral preprocessing methods include Savitzky-Golay (S-G) first derivative, detrending, standard normal transformation (SNV), autoscaling, and mean centering. The identification accuracy of 90% was accomplished by using proper pretreatment methods, which was higher than the classified accuracy of 80% without any preprocessing for the time domain spectra. The component number of the PLS model was evaluated by leave-one-out cross-validation (LOOCV). The minimum values of the root-mean squared error of cross-validation (RMSECV) and root-mean squared error of prediction (RMSEP) were 0.076 6 and 0.169 0 by using mean centering method, respectively. The results of this work showed that the combination of terahertz time domain spectroscopy technology with chemometrics methods, as well as PLS can be applied for the recognition of genuine and counterfeit Chinese herbal medicines, as well as official and unofficial rhubarbs. The advantage of using terahertz time domain spectra directly with no transformation into absorption spectra is: (1) the thickness of samples could not be considered in the model establishment, and (2) the spectral processing was simplified. The proposed method based on the combination of THz-TDS and chemometrics proved to be rapid, simple, non-pollution and solvent free, suitable to be

  19. Full waveform inversion using oriented time-domain imaging method for vertical transverse isotropic media

    KAUST Repository

    Zhang, Zhendong

    2017-07-11

    Full waveform inversion for reection events is limited by its linearized update re-quirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate, the resulting gradient can have an inaccurate update direction leading the inversion to converge what we refer to as local minima of the objective function. In our approach, we consider mild lateral variation in the model, and thus, use a gradient given by the oriented time-domain imaging method. Specifically, we apply the oriented time-domain imaging on the data residual to obtain the geometrical features of the velocity perturbation. After updating the model in the time domain, we convert the perturbation from the time domain to depth using the average velocity. Considering density is constant, we can expand the conventional 1D impedance inversion method to 2D or 3D velocity inversion within the process of full waveform inversion. This method is not only capable of inverting for velocity, but it is also capable of retrieving anisotropic parameters relying on linearized representations of the reection response. To eliminate the cross-talk artifacts between different parameters, we utilize what we consider being an optimal parametrization for this step. To do so, we extend the prestack time-domain migration image in incident angle dimension to incorporate angular dependence needed by the multiparameter inversion. For simple models, this approach provides an efficient and stable way to do full waveform inversion or modified seismic inversion and makes the anisotropic inversion more practicable. The proposed method still needs kinematically accurate initial models since it only recovers the high-wavenumber part as conventional full waveform inversion method does. Results on synthetic data of isotropic and anisotropic cases illustrate the benefits and limitations of this method.

  20. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....

  1. Spatial noise-aware temperature retrieval from infrared sounder data

    DEFF Research Database (Denmark)

    Malmgren-Hansen, David; Laparra, Valero; Nielsen, Allan Aasbjerg

    2017-01-01

    In this paper we present a combined strategy for the retrieval of atmospheric profiles from infrared sounders. The approach considers the spatial information and a noise-dependent dimensionality reduction approach. The extracted features are fed into a canonical linear regression. We compare...

  2. CIME School on "Computational Electromagnetism"

    CERN Document Server

    Valli, Alberto

    2015-01-01

    Presenting topics that have not previously been contained in a single volume, this book offers an up-to-date review of computational methods in electromagnetism, with a focus on recent results in the numerical simulation of real-life electromagnetic problems and on theoretical results that are useful in devising and analyzing approximation algorithms. Based on four courses delivered in Cetraro in June 2014, the material covered includes the spatial discretization of Maxwell’s equations in a bounded domain, the numerical approximation of the eddy current model in harmonic regime, the time domain integral equation method (with an emphasis on the electric-field integral equation) and an overview of qualitative methods for inverse electromagnetic scattering problems. Assuming some knowledge of the variational formulation of PDEs and of finite element/boundary element methods, the book is suitable for PhD students and researchers interested in numerical approximation of partial differential equations and scienti...

  3. THE SOLUTION OF THE CABLE EQUATIONS BY MEANS OF FINITE DIFFERENCE TIME DOMAIN METHOD

    Directory of Open Access Journals (Sweden)

    Patsiuk V.I.

    2010-04-01

    Full Text Available The analysis and comparison of accuracy of numerical solutions received by Finite Difference Time Domain (FDTD method and Godunov's method at the solution of the cable equations is carried out. It is demonstrated, that at sudden short circuits and at transition to idling mode in numerical solutions received by means of FDTD method for long lines with the distributed parameters appear strong nonphysical oscillations. It is shown, that the settlement scheme offered by authors on the basis of Godunov's method is deprived these lacks and provides high accuracy for the numerical solutions received at the analysis of dynamic modes in long lines, caused by sudden short circuits and line transitions in an idling mode. Key words: cable equations, finite difference time domain method, Godunov’s scheme.

  4. Efficient reconstruction of dispersive dielectric profiles using time domain reflectometry (TDR

    Directory of Open Access Journals (Sweden)

    P. Leidenberger

    2006-01-01

    Full Text Available We present a numerical model for time domain reflectometry (TDR signal propagation in dispersive dielectric materials. The numerical probe model is terminated with a parallel circuit, consisting of an ohmic resistor and an ideal capacitance. We derive analytical approximations for the capacitance, the inductance and the conductance of three-wire probes. We couple the time domain model with global optimization in order to reconstruct water content profiles from TDR traces. For efficiently solving the inverse problem we use genetic algorithms combined with a hierarchical parameterization. We investigate the performance of the method by reconstructing synthetically generated profiles. The algorithm is then applied to retrieve dielectric profiles from TDR traces measured in the field. We succeed in reconstructing dielectric and ohmic profiles where conventional methods, based on travel time extraction, fail.

  5. Multichannel Signal Enhancement using Non-Causal, Time-Domain Filters

    DEFF Research Database (Denmark)

    Jensen, Jesper Rindom; Christensen, Mads Græsbøll; Benesty, Jacob

    2013-01-01

    In the vast amount of time-domain filtering methods for speech enhancement, the filters are designed to be causal. Recently, however, it was shown that the noise reduction and signal distortion capabilities of such single-channel filters can be improved by allowing the filters to be non-causal. W......In the vast amount of time-domain filtering methods for speech enhancement, the filters are designed to be causal. Recently, however, it was shown that the noise reduction and signal distortion capabilities of such single-channel filters can be improved by allowing the filters to be non......-causal, multichannel filters for enhancement based on an orthogonal decomposition is proposed. The evaluation shows that there is a potential gain in noise reduction and signal distortion by introducing non-causality. Moreover, experiments on real-life speech show that we can improve the perceptual quality....

  6. Time-domain Helmholtz-Kirchhoff integral for surface scattering in a refractive medium.

    Science.gov (United States)

    Choo, Youngmin; Song, H C; Seong, Woojae

    2017-03-01

    The time-domain Helmholtz-Kirchhoff (H-K) integral for surface scattering is derived for a refractive medium, which can handle shadowing effects. The starting point is the H-K integral in the frequency domain. In the high-frequency limit, the Green's function can be calculated by ray theory, while the normal derivative of the incident pressure from a point source is formulated using the ray geometry and ray-based Green's function. For a corrugated pressure-release surface, a stationary phase approximation can be applied to the H-K integral, reducing the surface integral to a line integral. Finally, a computationally-efficient, time-domain H-K integral is derived using an inverse Fourier transform. A broadband signal scattered from a sinusoidal surface in an upwardly refracting medium is evaluated with and without geometric shadow corrections, and compared to the result from a conventional ray model.

  7. Layered and Laterally Constrained 2D Inversion of Time Domain Induced Polarization Data

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca; Ramm, James; Auken, Esben

    transform of a complex resistivity forward response and the inversion extracts the spectral information of the time domain measures in terms of the Cole-Cole parameters. The developed forward code and inversion algorithm use the full time decay of the induced polarization response, together with an accurate...... algorithm retrieves consistent values for both the Cole-Cole parameters and the layer thicknesses and is a promising tool for identifying formation boundaries, e.g. in for discriminating sand and clay layers or pollution fans, due to the chargeability of these layers.......In a sedimentary environment, quasi-layered models often represent the actual geology more accurately than smooth minimum-structure models. We have developed a new layered and laterally constrained inversion algorithm for time domain induced polarization data. The algorithm is based on the time...

  8. Mapping of landfills using time-domain spectral induced polarization data

    DEFF Research Database (Denmark)

    Gazoty, Aurélie; Fiandaca, Gianluca; Pedersen, Jesper Bjergsted

    2012-01-01

    information from time-domain IP data. Thirteen IP/DC profiles were collected in the area, supplemented by el-log drilling for accurate correlation between the geophysics and the lithology. The data were inverted using a laterally constrained 1D inversion considering the full decay curves to retrieve the four......This study uses time-domain induced polarization data for the delineation and characterization of the former landfill site at Eskelund, Denmark. With optimized acquisition parameters combined with a new inversion algorithm, we use the full content of the decay curve and retrieve spectral...... Cole-Cole parameters. For all profiles, the results reveal a highly chargeable unit that shows a very good agreement to the findings from 15 boreholes covering the area, where the extent of the waste deposits was measured. The thickness and depth of surface measurements were furthermore validated by el-log...

  9. Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics

    DEFF Research Database (Denmark)

    D’Angelo, Francesco; Mics, Zoltán; Bonn, Mischa

    2014-01-01

    Terahertz-range dielectric properties of the common polymers low-density polyethylene (LDPE), cyclic olefin/ethylene copolymer (TOPAS®), polyamide-6 (PA6), and polytetrafluoroethylene (PTFE or Teflon®) are characterized in the ultra-broadband frequency window 2-15 THz, using a THz time-domain spe......Terahertz-range dielectric properties of the common polymers low-density polyethylene (LDPE), cyclic olefin/ethylene copolymer (TOPAS®), polyamide-6 (PA6), and polytetrafluoroethylene (PTFE or Teflon®) are characterized in the ultra-broadband frequency window 2-15 THz, using a THz time...... and PTFE, and their dielectric functions in the complete frequency window 2-15 THz are theoretically reproduced. Our results demonstrate the potential of ultrabroadband air-photonics-based THz time domain spectroscopy as a valuable analytic tool for materials science....

  10. Terahertz quasi time-domain spectroscopy based on telecom technology for 1550 nm.

    Science.gov (United States)

    Kohlhaas, Robert B; Rehn, Arno; Nellen, Simon; Koch, Martin; Schell, Martin; Dietz, Roman J B; Balzer, Jan C

    2017-05-29

    We present a fiber-coupled terahertz quasi time-domain spectroscopy system driven by a laser with a central wavelength of 1550 nm. By using a commercially available multimode laser diode in combination with state-of-the-art continuous wave antennas, a bandwidth of more than 1.8 THz is achieved. The peak signal-to-noise ratio is around 60 dB. A simulation based on the optical spectrum of the laser diode and the transfer function of the THz path is in agreement with the experimental results. The system is used to extract the refractive index from two different samples and the results indicate that the performance is up to 1.8 THz comparable to a terahertz time-domain spectroscopy system.

  11. Scatterer size estimation using the center frequency assessed from ultrasound time domain data.

    Science.gov (United States)

    Erlöv, Tobias; Jansson, Tomas; Persson, Hans W; Cinthio, Magnus

    2016-10-01

    Scatterer size estimation is useful when characterizing tissue using ultrasound. In all previous studies on scatterer size, the estimations are performed in the frequency domain and are thus subjected to a trade off in time-frequency resolution. This study focused on the feasibility of estimating scatterer size in the time domain using only the ultrasound center frequency, assuming a Gaussian-shaped pulse. A model for frequency normalization was derived and the frequency-dependent attenuation was compensated. Five phantoms with well-defined sizes of spherical glass beads were made and scanned with two different linear array transducers with variable center frequencies. A strong correlation (r = 0.99, p estimation of scatterer size is possible using only the center frequency assessed in the time domain.

  12. On the initial condition problem of the time domain PMCHWT surface integral equation

    KAUST Repository

    Uysal, Ismail Enes

    2017-05-13

    Non-physical, linearly increasing and constant current components are induced in marching on-in-time solution of time domain surface integral equations when initial conditions on time derivatives of (unknown) equivalent currents are not enforced properly. This problem can be remedied by solving the time integral of the surface integral for auxiliary currents that are defined to be the time derivatives of the equivalent currents. Then the equivalent currents are obtained by numerically differentiating the auxiliary ones. In this work, this approach is applied to the marching on-in-time solution of the time domain Poggio-Miller-Chan-Harrington-Wu-Tsai surface integral equation enforced on dispersive/plasmonic scatterers. Accuracy of the proposed method is demonstrated by a numerical example.

  13. Fault Detection of Aircraft Cable via Spread Spectrum Time Domain Reflectometry

    Directory of Open Access Journals (Sweden)

    Xudong SHI

    2014-03-01

    Full Text Available As the airplane cable fault detection based on TDR (time domain reflectometry is affected easily by various noise signals, which makes the reflected signal attenuate and distort heavily, failing to locate the fault. In order to solve these problems, a method of spread spectrum time domain reflectometry (SSTDR is introduced in this paper, taking the advantage of the sharp peak of correlation function. The test signal is generated from ML sequence (MLS modulated by sine wave in the same frequency. Theoretically, the test signal has the very high immunity of noise, which can be applied with excellent precision to fault location on the aircraft cable. In this paper, the method of SSTDR was normally simulated in MATLAB. Then, an experimental setup, based on LabVIEW, was organized to detect and locate the fault on the aircraft cable. It has been demonstrated that SSTDR has the high immunity of noise, reducing some detection errors effectively.

  14. Water percolation estimated with time domain reflectometry (TDR) in drainage lysimeters

    OpenAIRE

    Alisson Jadavi Pereira da Silva; Eugênio Ferreira Coelho

    2013-01-01

    Due to the difficulty of estimating water percolation in unsaturated soils, the purpose of this study was to estimate water percolation based on time-domain reflectometry (TDR). In two drainage lysimeters with different soil textures TDR probes were installed, forming a water monitoring system consisting of different numbers of probes. The soils were saturated and covered with plastic to prevent evaporation. Tests of internal drainage were carried out using a TDR 100 unit with constant dielec...

  15. Mini Tensiometer-Time Domain Reflectometry Coil Probe for Measuring Soil Water Retention Properties

    DEFF Research Database (Denmark)

    Subedi, Shaphal; Kawamoto, Ken; Karunarathna, Anurudda Kumara

    2013-01-01

    Time domain reflectometry (TDR) is used widely for measuring soil-water content. New TDR coil probe technology facilitates the development of small, nondestructive probes for simultaneous measurement of soil-water content (θ) and soil-water potential (ψ). In this study we developed mini tensiomet...... between measured soil-water retention curves (ψ > –100 cm H2O) by the new T-TDR coil probes and independent measurements by the hanging water column method....

  16. Time-domain approach for multi-exciter random environment test

    Science.gov (United States)

    Cui, Song; Chen, Huai-hai; He, Xu-dong

    2017-06-01

    This paper presents a time-domain method for multi-exciter random environment tests. Traditional random environment test theory has been formulated in the frequency domain, where an important step is taking the inverse of the frequency response function matrices (FRFMs). The accuracy of this inversion tends to be poor, particularly at frequencies near lightly damped resonances. The currently used control algorithms face difficulties in suppressing abnormal spectral lines caused by this inverse problem. In this paper, traditional formulations of the environment test are reformed, and the time-domain method is adopted; this results in a more precise inverse operation in environment tests. To achieve this, reference spectra are converted into time-domain response signals. The finite long driving signals are derived by the state-space method with estimated state vectors. During the process, the inverse of rank-deficient Toeplitz matrices are stabilized with truncated singular value decomposition (TSVD) to suppress all abnormally high-level components in the driving forces; thus, overall, the spectra lines produced by noise within the frequency band are filtered out. A numerical simulation of a single-axis random vibration test of a cantilever beam is conducted using the traditional frequency-domain procedure (FDP) and the proposed time-domain procedure (TDP). The response spectra generated by both procedures are tested by control algorithms, and the result shows that responses generated by the proposed TDP are more easily controlled. The conditions of stability for both the FDP and the TDP are also determined and introduced in the simulation. Moreover, a multi-axis vibration experiment further validates the effectiveness of the TDP.

  17. Control of linear systems subject to time-domain constraints with polynomial pole placement and LMIs

    Czech Academy of Sciences Publication Activity Database

    Henrion, D.; Tarbouriech, S.; Kučera, Vladimír

    2005-01-01

    Roč. 50, č. 9 (2005), s. 1360-1364 ISSN 0018-9286 R&D Projects: GA MŠk 1M0567; GA ČR GA102/05/0011 Institutional research plan: CEZ:AV0Z10750506 Keywords : linear matrix inequality (LMI) * linear systems * pole placement * polynomials * time-domain constraints Subject RIV: BC - Control Systems Theory Impact factor: 2.159, year: 2005

  18. Time-domain diffuse optical tomography using silicon photomultipliers: feasibility study

    OpenAIRE

    Di Sieno, Laura; Zouaoui, Judy; Hervé, Lionel; Pifferi, Antonio; Farina, Andrea; Martinenghi, Edoardo; Derouard, Jacques; Dinten, Jean-Marc; Dalla Mora, Alberto

    2016-01-01

    International audience; Silicon photomultipliers (SiPMs) have been very recently introduced as the most promising detectors in the field of diffuse optics, in particular due to the inherent low cost and large active area. We also demonstrate the suitability of SiPMs for time-domain diffuse optical tomography (DOT). The study is based on both simulations and experimental measurements. Results clearly show excellent performances in terms of spatial localization of an absorbing perturbation, thu...

  19. Thermal Loss of High-Q Antennas in Time Domain vs. Frequency Domain Solver

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert Frølund

    2014-01-01

    High-Q structures pose great challenges to their loss simulations in Time Domain Solvers (TDS). Therefore, in this work the thermal loss of high-Q antennas is calculated both in TDS and Frequency Domain Solver (FDS), which are then compared with each other and with the actual measurements....... The thermal loss calculation in FDS is shown to be more accurate for high-Q antennas....

  20. Modelling and analysis of nonlinear thermoacoustic systems using frequency and time domain methods

    OpenAIRE

    Orchini, Alessandro

    2017-01-01

    In this thesis, low-order nonlinear models for the prediction of the nonlinear behaviour of thermoacoustic systems are developed. These models are based on thermoacoustic networks, in which linear acoustics is combined with a nonlinear heat release model. The acoustic networks considered in this thesis can take into account mean flow and non-trivial acoustic reflection coefficients, and are cast in state-space form to enable analysis both in the frequency and time domains. Starting from l...

  1. Advanced communication system time domain modeling techniques ASYSTD software description. Volume 2: Program support documentation

    Science.gov (United States)

    1972-01-01

    The theoretical basis for the ASYSTD program is discussed in detail. In addition, the extensive bibliography given in this document illustrates some of the extensive work accomplished in the area of time domain simulation. Additions have been in the areas of modeling and language program enhancements, orthogonal transform modeling, error analysis, general filter models, BER measurements, etc. Several models have been developed which utilize the COMSAT generated orthogonal transform algorithms.

  2. Quality assessment of terahertz time-domain spectroscopy transmission and reflection modes for graphene conductivity mapping

    DEFF Research Database (Denmark)

    Mackenzie, David M.A.; Whelan, Patrick Rebsdorf; Bøggild, Peter

    2018-01-01

    We present a comparative study of electrical measurements of graphene using terahertz time-domain spectroscopy in transmission and reflection mode, and compare the measured sheet conductivity values to electrical van der Pauw measurements made independently in three different laboratories. Overall......, while offering the additional advantages associated with contactless mapping, such as high throughput, no lithography requirement, and with the spatial mapping directly revealing the presence of any inhomogeneities or isolating defects. The confirmation of the accuracy of reflection-mode removes...

  3. Quasi-exact evaluation of time domain MFIE MOT matrix elements

    KAUST Repository

    Shi, Yifei

    2013-07-01

    A previously proposed quasi-exact scheme for evaluating matrix elements resulting from the marching-on-in-time (MOT) discretization of the time domain electric field integral equation (EFIE) is extended to matrix entries resulting from the discretization of its magnetic field integral equation (MFIE) counterpart. Numerical results demonstrate the accuracy of the scheme as well as the late-time stability of the resulting MOT-MFIE solver. © 2013 IEEE.

  4. Explicit solution of the time domain magnetic field integral equation using a predictor-corrector scheme

    KAUST Repository

    Ulku, Huseyin Arda

    2012-09-01

    An explicit yet stable marching-on-in-time (MOT) scheme for solving the time domain magnetic field integral equation (TD-MFIE) is presented. The stability of the explicit scheme is achieved via (i) accurate evaluation of the MOT matrix elements using closed form expressions and (ii) a PE(CE) m type linear multistep method for time marching. Numerical results demonstrate the accuracy and stability of the proposed explicit MOT-TD-MFIE solver. © 2012 IEEE.

  5. Time Domains of the Hypoxic Ventilatory Response and Their Molecular Basis

    Science.gov (United States)

    Pamenter, Matthew E.; Powell, Frank L.

    2016-01-01

    Ventilatory responses to hypoxia vary widely depending on the pattern and length of hypoxic exposure. Acute, prolonged, or intermittent hypoxic episodes can increase or decrease breathing for seconds to years, both during the hypoxic stimulus, and also after its removal. These myriad effects are the result of a complicated web of molecular interactions that underlie plasticity in the respiratory control reflex circuits and ultimately control the physiology of breathing in hypoxia. Since the time domains of the physiological hypoxic ventilatory response (HVR) were identified, considerable research effort has gone toward elucidating the underlying molecular mechanisms that mediate these varied responses. This research has begun to describe complicated and plastic interactions in the relay circuits between the peripheral chemoreceptors and the ventilatory control circuits within the central nervous system. Intriguingly, many of these molecular pathways seem to share key components between the different time domains, suggesting that varied physiological HVRs are the result of specific modifications to overlapping pathways. This review highlights what has been discovered regarding the cell and molecular level control of the time domains of the HVR, and highlights key areas where further research is required. Understanding the molecular control of ventilation in hypoxia has important implications for basic physiology and is emerging as an important component of several clinical fields. PMID:27347896

  6. Frequency- and Time-Domain Methods in Soil-Structure Interaction Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bolisetti, Chandrakanth; Whittaker, Andrew S.; Coleman, Justin L.

    2015-06-01

    Soil-structure interaction (SSI) analysis in the nuclear industry is currently performed using linear codes that function in the frequency domain. There is a consensus that these frequency-domain codes give reasonably accurate results for low-intensity ground motions that result in almost linear response. For higher intensity ground motions, which may result in nonlinear response in the soil, structure or at the vicinity of the foundation, the adequacy of frequency-domain codes is unproven. Nonlinear analysis, which is only possible in the time domain, is theoretically more appropriate in such cases. These methods are available but are rarely used due to the large computational requirements and a lack of experience with analysts and regulators. This paper presents an assessment of the linear frequency-domain code, SASSI, which is widely used in the nuclear industry, and the time-domain commercial finite-element code, LS-DYNA, for SSI analysis. The assessment involves benchmarking the SSI analysis procedure in LS-DYNA against SASSI for linearly elastic models. After affirming that SASSI and LS-DYNA result in almost identical responses for these models, they are used to perform nonlinear SSI analyses of two structures founded on soft soil. An examination of the results shows that, in spite of using identical material properties, the predictions of frequency- and time-domain codes are significantly different in the presence of nonlinear behavior such as gapping and sliding of the foundation.

  7. Radionuclides Transport from the Hypothetical Disposal Facility in the KURT Field Condition on the Time Domain

    International Nuclear Information System (INIS)

    Hwang, Young Tae; Jo, Seong Seock; Choi, Jong Won; Ko, Nak Youl

    2012-01-01

    Based on the data observed and analyzed on a groundwater flow system in the KURT (KAERI Underground Research Tunnel) site, the transport of radionuclides, which were assumed to be released at the supposed position, was calculated on the time-domain. A groundwater pathway from the release position to the surface was identified by simulating the groundwater flow model with the hydrogeological characteristics measured from the field tests in the KURT site. The elapsed time when the radionuclides moved through the pathway is evaluated using TDRW (Time Domain Random Walk) method for simulating the transport on the time-domain. Some retention mechanisms, such as radioactive decay, equilibrium sorption, and matrix diffusion, as well as the advection dispersion were selected as the factors to influence on the elapsed time. From the simulation results, the effects of the sorption and matrix diffusion, determined by the properties of the radionuclides and underground media, on the transport of the radionuclides were analyzed and a decay chain of the radionuclides was also examined. The radionuclide ratio of the mass discharge into the surface environment to the mass released from the supposed repository did not exceed 10 -3 , and it decreased when the matrix diffusion were considered. The method used in this study could be used in preparing the data on radionuclide transport for a safety assessment of a geological disposal facility because the method could evaluate the travel time of the radionuclides considering the transport retention mechanism.

  8. Broadband Beamspace DOA Estimation: Frequency-Domain and Time-Domain Processing Approaches

    Directory of Open Access Journals (Sweden)

    Yan Shefeng

    2007-01-01

    Full Text Available Frequency-domain and time-domain processing approaches to direction-of-arrival (DOA estimation for multiple broadband far field signals using beamspace preprocessing structures are proposed. The technique is based on constant mainlobe response beamforming. A set of frequency-domain and time-domain beamformers with constant (frequency independent mainlobe response and controlled sidelobes is designed to cover the spatial sector of interest using optimal array pattern synthesis technique and optimal FIR filters design technique. These techniques lead the resulting beampatterns higher mainlobe approximation accuracy and yet lower sidelobes. For the scenario of strong out-of-sector interfering sources, our approaches can form nulls or notches in the direction of them and yet guarantee that the mainlobe response of the beamformers is constant over the design band. Numerical results show that the proposed time-domain processing DOA estimator has comparable performance with the proposed frequency-domain processing method, and that both of them are able to resolve correlated source signals and provide better resolution at lower signal-to-noise ratio (SNR and lower root-mean-square error (RMSE of the DOA estimate compared with the existing method. Our beamspace DOA estimators maintain good DOA estimation and spatial resolution capability in the scenario of strong out-of-sector interfering sources.

  9. Discontinuous Galerkin Time-Domain Modeling of Graphene Nano-Ribbon Incorporating the Spatial Dispersion Effects

    KAUST Repository

    Li, Ping

    2018-04-13

    It is well known that graphene demonstrates spatial dispersion properties, i.e., its conductivity is nonlocal and a function of spectral wave number (momentum operator) q. In this paper, to account for effects of spatial dispersion on transmission of high speed signals along graphene nano-ribbon (GNR) interconnects, a discontinuous Galerkin time-domain (DGTD) algorithm is proposed. The atomically-thick GNR is modeled using a nonlocal transparent surface impedance boundary condition (SIBC) incorporated into the DGTD scheme. Since the conductivity is a complicated function of q (and one cannot find an analytical Fourier transform pair between q and spatial differential operators), an exact time domain SIBC model cannot be derived. To overcome this problem, the conductivity is approximated by its Taylor series in spectral domain under low-q assumption. This approach permits expressing the time domain SIBC in the form of a second-order partial differential equation (PDE) in current density and electric field intensity. To permit easy incorporation of this PDE with the DGTD algorithm, three auxiliary variables, which degenerate the second-order (temporal and spatial) differential operators to first-order ones, are introduced. Regarding to the temporal dispersion effects, the auxiliary differential equation (ADE) method is utilized to eliminates the expensive temporal convolutions. To demonstrate the applicability of the proposed scheme, numerical results, which involve characterization of spatial dispersion effects on the transfer impedance matrix of GNR interconnects, are presented.

  10. Electroporation-Induced Cell Modifications Detected with THz Time-Domain Spectroscopy

    Science.gov (United States)

    Romeo, Stefania; Vernier, P. Thomas; Zeni, Olga

    2018-04-01

    Electroporation (electropermeabilization) increases the electrical conductivity of biological cell membranes and lowers transport barriers for normally impermeant materials. Molecular simulations suggest that electroporation begins with the reorganization of water and lipid head group dipoles in the phospholipid bilayer interface, driven by an externally applied electric field, and the evolution of the resulting defects into water-filled, lipid pores. The interior of the electroporated membrane thus contains water, which should provide a signature for detection of the electropermeabilized state. In this feasibility study, we use THz time-domain spectroscopy, a powerful tool for investigating biomolecular systems and their interactions with water, to detect electroporation in human cells subjected to permeabilizing pulsed electric fields (PEFs). The time-domain response of electroporated human monocytes was acquired with a commercial THz, time-domain spectrometer. For each sample, frequency spectra were calculated, and the absorption coefficient and refractive index were extracted in the frequency range between 0.2 and 1.5 THz. This analysis reveals a higher absorption of THz radiation by PEF-exposed cells, with respect to sham-exposed ones, consistent with the intrusion of water into the cell through the permeabilized membrane that is presumed to be associated with electroporation.

  11. Time-domain single-source integral equations for analyzing scattering from homogeneous penetrable objects

    KAUST Repository

    Valdés, Felipe

    2013-03-01

    Single-source time-domain electric-and magnetic-field integral equations for analyzing scattering from homogeneous penetrable objects are presented. Their temporal discretization is effected by using shifted piecewise polynomial temporal basis functions and a collocation testing procedure, thus allowing for a marching-on-in-time (MOT) solution scheme. Unlike dual-source formulations, single-source equations involve space-time domain operator products, for which spatial discretization techniques developed for standalone operators do not apply. Here, the spatial discretization of the single-source time-domain integral equations is achieved by using the high-order divergence-conforming basis functions developed by Graglia alongside the high-order divergence-and quasi curl-conforming (DQCC) basis functions of Valdés The combination of these two sets allows for a well-conditioned mapping from div-to curl-conforming function spaces that fully respects the space-mapping properties of the space-time operators involved. Numerical results corroborate the fact that the proposed procedure guarantees accuracy and stability of the MOT scheme. © 2012 IEEE.

  12. Maxwell-Equations Based on Mining Transient Electromagnetic Method for Coal Mine-Disaster Water Detection

    OpenAIRE

    Su, Benyu; Yu, Jingcun; Sheng, Chenxing; Zhang, Yulei

    2017-01-01

    Water-bearing geological structure is a serious threat to coalmine safety. This research focuses on detecting water-bearing geological structure by transient electromagnetic method. First, we introduce the principle of mining transient electromagnetic method, and then explain the technique of Finite Different Time Domain using in the transient electromagnetic method. Based on Maxwell equations, we derive the difference equations of electromagnetic field and study the responses of water-bearin...

  13. Time-domain measurement technique to analyze cyclic short-time interference in power supply networks

    NARCIS (Netherlands)

    Setiawan, Iwan; Keyer, Cornelis H.A.; Azpurua, Marco; Silva, Ferran; Leferink, Frank Bernardus Johannes

    2016-01-01

    Conducted interference caused by equipment connected to power supply networks, and the interference in these networks, is conventionally measured using (slow) scanning tuned electromagnetic interference (EMI) receivers. A voltage sensor which separates common mode and differential mode in a

  14. Time Domain Characterization of Light Trapping States in Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Pfeiffer W.

    2013-03-01

    Full Text Available Spectral interferometry of the backscattered radiation reveals coherence lifetimes of about 150 fs for nanolocalized electromagnetic modes in textured layered nanostructures as they are commonly used in thin film photovoltaics to achieve high cell efficiencies.

  15. The DST group ionospheric sounder replacement for JORN

    Science.gov (United States)

    Harris, T. J.; Quinn, A. D.; Pederick, L. H.

    2016-06-01

    The Jindalee Over-the-horizon Radar Network (JORN) is an integral part of Australia's national defense capability. JORN uses a real-time ionospheric model as part of its operations. The primary source of data for this model is a set of 13 vertical-incidence sounders (VIS) scattered around the Australian coast and inland locations. These sounders are a mix of Lowell digisonde portable sounder (DPS)-1 and DPS-4. Both of these sounders, the DPS-1 in particular, are near the end of their maintainable life. A replacement for these aging sounders was required as part of the ongoing sustainment program for JORN. Over the last few years the High-Frequency Radar Branch (HFRB) of the Defence Science and Technology (DST) Group, Australian Department of Defence, has been developing its own sounders based on its successful radar hardware technology. The DST Group VIS solution known as PRIME (Portable Remote Ionospheric Monitoring Equipment) is a 100% duty cycle, continuous wave system that receives the returned ionospheric signal while it is still transmitting and operates the receiver in the near field of the transmitter. Of considerable importance to a successful VIS is the autoscaling software, which takes the ionogram data and produces an ionogram trace (group delay as a function of frequency), and from that produces a set of ionospheric parameters that represent the (bottomside) overhead electron density profile. HFRB has developed its own robust autoscaling software. The performance of DST Group's PRIME under a multitude of challenging ionospheric conditions has been studied. In December 2014, PRIME was trialed at a JORN VIS site collocated with the existing Lowell Digisonde DPS-1. This side-by-side testing determined that PRIME was fit for purpose. A summary of the results of this comparison and example PRIME output will be discussed. Note that this paper compares PRIME with the 25 year old Lowell Digisonde DPS-1, which is planned to be replaced. Our future plans include

  16. Graphics-processing-unit-accelerated finite-difference time-domain simulation of the interaction between ultrashort laser pulses and metal nanoparticles

    Science.gov (United States)

    Nikolskiy, V. P.; Stegailov, V. V.

    2018-01-01

    Metal nanoparticles (NPs) serve as important tools for many modern technologies. However, the proper microscopic models of the interaction between ultrashort laser pulses and metal NPs are currently not very well developed in many cases. One part of the problem is the description of the warm dense matter that is formed in NPs after intense irradiation. Another part of the problem is the description of the electromagnetic waves around NPs. Description of wave propagation requires the solution of Maxwell’s equations and the finite-difference time-domain (FDTD) method is the classic approach for solving them. There are many commercial and free implementations of FDTD, including the open source software that supports graphics processing unit (GPU) acceleration. In this report we present the results on the FDTD calculations for different cases of the interaction between ultrashort laser pulses and metal nanoparticles. Following our previous results, we analyze the efficiency of the GPU acceleration of the FDTD algorithm.

  17. Three-dimensional efficient dispersive alternating-direction-implicit finite-difference time-domain algorithm using a quadratic complex rational function.

    Science.gov (United States)

    Kim, E-K; Ha, S-G; Lee, J; Park, Y B; Jung, K-Y

    2015-01-26

    Efficient unconditionally stable FDTD method is developed for the electromagnetic analysis of dispersive media. Toward this purpose, a quadratic complex rational function (QCRF) dispersion model is applied to the alternating-direction-implicit finite-difference time-domain (ADI-FDTD) method. The 3-D update equations of QCRF-ADI-FDTD are derived using Maxwell's curl equations and the constitutive relation. The periodic boundary condition of QCRF-ADI-FDTD is discussed in detail. A 3-D numerical example shows that the time-step size can be increased by the proposed QCRF-ADI-FDTD beyond the Courant-Friedrich-Levy (CFL) number, without numerical instability. It is observed that, for refined computational cells, the computational time of QCRF-ADI-FDTD is reduced to 28.08 % of QCRF-FDTD, while the L2 relative error norm of a field distribution is 6.92 %.

  18. THz pulsed time-domain imaging of an oil canvas painting: a case study of a painting by Pablo Picasso

    Science.gov (United States)

    Fukunaga, Kaori; Ikari, Tomofumi; Iwai, Kikuko

    2016-02-01

    The terahertz pulsed time-domain imaging technique and near-infrared observation were applied to investigate an oil painting on canvas by Pablo Picasso. The multilayer structure is clearly observed in cross-sectional image by terahertz pulsed time-domain imaging, and particular Cubism style lines were revealed under newly painted area by near-infrared image.

  19. All-optical signal processing of OTDM and OFDM signals based on time-domain Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Clausen, Anders; Guan, Pengyu; Mulvad, Hans Christian Hansen

    2014-01-01

    All-optical time-domain Optical Fourier Transformation utilised for signal processing of ultra-high-speed OTDM signals and OFDM signals will be presented.......All-optical time-domain Optical Fourier Transformation utilised for signal processing of ultra-high-speed OTDM signals and OFDM signals will be presented....

  20. Time domain parameters of heart rate variability in children born as small-for-gestational age.

    Science.gov (United States)

    Zamecznik, Agata; Stańczyk, Jerzy; Wosiak, Agnieszka; Niewiadomska-Jarosik, Katarzyna

    2017-05-01

    According to metabolic programming theory, small-for-gestational age patients are at high risk of cardiovascular diseases also because of the possible malfunction of the autonomic nervous system. Autonomic disorders can be assessed by heart rate variability. The aims of this study were to compare time domain parameters of heart rate variability in children born as small-for-gestational age and appropriate-for-gestational age and to assess the correlation of the postnatal and current somatic parameters with the time domain parameters. The small-for-gestational age group consisted of 68 children aged 5-10 years who were born with birth weight below the 10th percentile. The appropriate-for-gestational age group consisted of 30 healthy peers, matched in terms of gender and age. On the basis of Holter monitoring, slightly higher average heart rate was observed in the small-for-gestational age group than in the appropriate-for-gestational age group. It was found that all the time domain parameters (SDNN, SDNNi, SDANNi, rMSSD, pNN50) were lower in the small-for-gestational age group than in the appropriate-for-gestational age group. In the small-for-gestational age group, girls had lower heart rate and some of the heart rate variability parameters (SDNN, SDNNi, SDANNi) in comparison with boys. Children born as small-for-gestational age have impaired function of the autonomic nervous system. Moreover, in the small-for-gestational age group, autonomic balance moved towards the sympathetic component, which was evidenced by higher heart rate. Children with faster heart rate and lower heart rate variability parameters may be at risk of cardiovascular disease.

  1. Thermal diffusivity of a metallic thin layer using the time-domain thermo reflectance technique

    International Nuclear Information System (INIS)

    Battaglia, J-L; Kusiak, A; Rossignol, C; Chigarev, N

    2007-01-01

    The time domain thermo reflectance (TDTR) is widely used in the field of acoustic and thermal characterization of thin layers at the nano and micro scale. In this paper, we propose to derive a simple analytical expression of the thermal diffusivity of the layer. This relation is based on the analytical solution of one-dimensional heat transfer in the medium using integral transforms. For metals, the two-temperature model shows that the capacitance effect at the short times is essentially governed by the electronic contribution

  2. Soil water retention measurements using a combined tensiometer-coiled time domain reflectometry probe

    DEFF Research Database (Denmark)

    Vaz, C.M.P.; Hopmans, J.W.; Macedo, A.

    2002-01-01

    in situ soil water retention data from simultaneous soil water matric potential and water content measurements within approximately the same small soil volume around the combined probe, but requires soil specific calibration because of slight desaturation of the porous cup of the tensiometer.......The objective of the presented study was to develop a single probe that can be used to determine soil water retention curves in both laboratory and field conditions, by including a coiled time domain reflectometry (TDR) probe around the porous cup of a standard tensiometer. The combined tensiometer...

  3. Time domain oscillating poles: Stability redefined in Memristor based Wien-oscillators

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-07-28

    Traditionally, the necessary and sufficient condition for any system to be oscillating is that its poles are located on the imaginary (jω) axis. In this paper, for the first time, we have shown that systems can oscillate with time-domain oscillating poles. The idea is verified using a Memristor based Wien oscillator. Sustained oscillations are observed without having the poles of the system fixed on the imaginary axis and the oscillating behavior of the system poles is reported. The oscillating resistance and triangular shape of FFT are also demonstrated with mathematical reasoning and simulation results to support the unusual and surprising characteristics. © 2009 IEEE.

  4. Numerical modeling of wind turbine aerodynamic noise in the time domain.

    Science.gov (United States)

    Lee, Seunghoon; Lee, Seungmin; Lee, Soogab

    2013-02-01

    Aerodynamic noise from a wind turbine is numerically modeled in the time domain. An analytic trailing edge noise model is used to determine the unsteady pressure on the blade surface. The far-field noise due to the unsteady pressure is calculated using the acoustic analogy theory. By using a strip theory approach, the two-dimensional noise model is applied to rotating wind turbine blades. The numerical results indicate that, although the operating and atmospheric conditions are identical, the acoustical characteristics of wind turbine noise can be quite different with respect to the distance and direction from the wind turbine.

  5. Plasmonic enhanced terahertz time-domain spectroscopy system for identification of common explosives

    Science.gov (United States)

    Demiraǧ, Yiǧit; Bütün, Bayram; Özbay, Ekmel

    2017-05-01

    In this study, we present a classification algorithm for terahertz time-domain spectroscopy systems (THz-TDS) that can be trained to identify most commonly used explosives (C4, HMX, RDX, PETN, TNT, composition-B and blackpowder) and some non-explosive samples (lactose, sucrose, PABA). Our procedure can be used in any THz-TDS system that detects either transmission or reflection spectra at room conditions. After preprocessing the signal in low THz regime (0.1 - 3 THz), our algorithm takes advantages of a latent space transformation based on principle component analysis in order to classify explosives with low false alarm rate.

  6. Time-domain diffuse optical tomography using silicon photomultipliers: feasibility study.

    Science.gov (United States)

    Di Sieno, Laura; Zouaoui, Judy; Hervé, Lionel; Pifferi, Antonio; Farina, Andrea; Martinenghi, Edoardo; Derouard, Jacques; Dinten, Jean-Marc; Mora, Alberto Dalla

    2016-11-01

    Silicon photomultipliers (SiPMs) have been very recently introduced as the most promising detectors in the field of diffuse optics, in particular due to the inherent low cost and large active area. We also demonstrate the suitability of SiPMs for time-domain diffuse optical tomography (DOT). The study is based on both simulations and experimental measurements. Results clearly show excellent performances in terms of spatial localization of an absorbing perturbation, thus opening the way to the use of SiPMs for DOT, with the possibility to conceive a new generation of low-cost and reliable multichannel tomographic systems.

  7. A RF time domain approach for electric arcs detection and localization systems

    Science.gov (United States)

    Deacu, Daniela; Tamas, Razvan; Petrescu, Teodor; Paun, Mirel; Anchidin, Liliana; Algiu, Madalina

    2016-12-01

    In this paper we propose a new method for detection and localization of electric arcs by using two ultra-wide band (UWB) antennas together with data processing in the time-domain. The source of electric arcs is localized by computing an average on the inter-correlation functions of the signals received on two channels. By calculating the path length difference to the antennas, the direction of the electric arcs is then found. The novelty of the method consists in the spatial averaging in order to reduce the incertitude caused by the finite sampling rate.

  8. Time domain-nuclear magnetic resonance study of chars from southern hardwoods

    International Nuclear Information System (INIS)

    Elder, Thomas; Labbe, Nicole; Harper, David; Rials, Timothy

    2006-01-01

    Chars from the thermal degradation of silver maple (Acer saccharinum), red maple (Acer rubrum), sugar maple (Acer saccharum), and white oak (Quercus spp.), performed at temperatures from 250 to 350 o C, were examined using time domain-nuclear magnetic resonance spectroscopy. Prior to analysis, the chars were equilibrated under conditions insuring the presence of bound water only and both bound water and free water. Transverse relaxation times were found to be related to the moisture content of the chars, which varied with temperature. At elevated temperatures the number of signals assigned to free water decreased, indicative of an increase in pore size within the chars

  9. Nonlinear System Identification via Basis Functions Based Time Domain Volterra Model

    Directory of Open Access Journals (Sweden)

    Yazid Edwar

    2014-07-01

    Full Text Available This paper proposes basis functions based time domain Volterra model for nonlinear system identification. The Volterra kernels are expanded by using complex exponential basis functions and estimated via genetic algorithm (GA. The accuracy and practicability of the proposed method are then assessed experimentally from a scaled 1:100 model of a prototype truss spar platform. Identification results in time and frequency domain are presented and coherent functions are performed to check the quality of the identification results. It is shown that results between experimental data and proposed method are in good agreement.

  10. Note: Gaussian mixture model for event recognition in optical time-domain reflectometry based sensing systems.

    Science.gov (United States)

    Fedorov, A K; Anufriev, M N; Zhirnov, A A; Stepanov, K V; Nesterov, E T; Namiot, D E; Karasik, V E; Pnev, A B

    2016-03-01

    We propose a novel approach to the recognition of particular classes of non-conventional events in signals from phase-sensitive optical time-domain-reflectometry-based sensors. Our algorithmic solution has two main features: filtering aimed at the de-nosing of signals and a Gaussian mixture model to cluster them. We test the proposed algorithm using experimentally measured signals. The results show that two classes of events can be distinguished with the best-case recognition probability close to 0.9 at sufficient numbers of training samples.

  11. Optical time-domain analog pattern correlator for high-speed real-time image recognition.

    Science.gov (United States)

    Kim, Sang Hyup; Goda, Keisuke; Fard, Ali; Jalali, Bahram

    2011-01-15

    The speed of image processing is limited by image acquisition circuitry. While optical pattern recognition techniques can reduce the computational burden on digital image processing, their image correlation rates are typically low due to the use of spatial optical elements. Here we report a method that overcomes this limitation and enables fast real-time analog image recognition at a record correlation rate of 36.7 MHz--1000 times higher rates than conventional methods. This technique seamlessly performs image acquisition, correlation, and signal integration all optically in the time domain before analog-to-digital conversion by virtue of optical space-to-time mapping.

  12. Inspection of Asian Lacquer Substructures by Terahertz Time-Domain Imaging (THz-TDI)

    DEFF Research Database (Denmark)

    Dandolo, Corinna Ludovica Koch; Fukunaga, Kaori; Kohzuma, Yoshei

    2017-01-01

    Lacquering is considered one of the most representative Asian artistic techniques. While the decorative part of lacquerwares is the lacquer itself, their substructures serve as the backbone of the object itself. Very little is known about these hidden substructures. Since lacquerwares are mostly...... by inspecting the substructures of Asian lacquerwares by means of THz time-domain imaging (THz-TDI). Three different kinds of Asian lacquerwares were examined by THz-TDI, and the outcomes have been compared with those obtained by standard X-radiography. THz-TDI provides unique information on lacquerwares...

  13. Optical Efficiency and R(T,I) Measurements of ACTPol TESes Using Time Domain Multiplexing Electronics

    Science.gov (United States)

    Pappas, C. G.; Beall, J.; Brevick, J.; Cho, H. M.; Devlin, M. J.; Fox, A.; Grace, E. A.; Hilton, G. C.; Hubmayr, J.; Irwin, K. D.; Klein, J.; Li, D.; Lungu, M.; Newburgh, L. B.; Nibarger, J. P.; Niemack, M. D.; McMahon, J. J.; Page, L. A.; Schmitt, B. L.; Staggs, S. T.; Van Lanen, J.; Wollack, E. J.

    2014-09-01

    We present new data on feedhorn-coupled transition-edge sensor devices fabricated for the second-generation receiver (ACTPol) for the Atacama cosmology telescope (ACT). First, we describe optical efficiency measurements of the latest ACTPol detector wafer, which has a average optical efficiency. Next, we discuss measurements of the TES resistance as a function of temperature and bias current () using the ACTPol time-domain multiplexing electronics. Qualitative agreement between data at low bias current and the two-fluid model prediction is shown. Using the two-fluid model and low bias current data, and at our operating bias current are calculated.

  14. 3D time-domain spectral elements for stress waves modelling

    International Nuclear Information System (INIS)

    Kudela, P; Ostachowicz, W

    2009-01-01

    Elastic stress waves induced by piezoelectric transducers are extensively used for damage detection purposes. Induced high frequency impulse signals cause that stress wave modelling by the finite element method is inefficient. Instead, numerical model based on the time-domain spectral element method has been developed to simulate stress wave propagation in metallic structures induced by the piezoelectric transducers. The model solves the coupled electromechanical field equations simultaneously in three-dimensional case. Visualisation of the propagating elastic waves generated by the actuator of different shapes and properties has been performed.

  15. Suppression of Time-domain Jitter of Impulse Radio Ultra-wide Band Radar

    Directory of Open Access Journals (Sweden)

    Liang Fu-lai

    2015-08-01

    Full Text Available For Impulse Radio Ultra-Wide Band (IR-UWB radar, the time jitter transforms the static clutters to dynamic clutters. Thus, strong residue exists and false alarms form after traditional direct current suppression. The effect of the time-domain jitter on the life detection capacity is analyzed, and then the phenomenon that the relative time delays between the coupling echoes can reflect the time jitter is pointed out. Based on the coupling echo, a method of time jitter suppression is proposed. Experimental data demonstrate that the proposed method can effectively suppress the residue of strong static clutter, and further improve the life-detection capacity.

  16. On the mixed discretization of the time domain magnetic field integral equation

    KAUST Repository

    Ulku, Huseyin Arda

    2012-09-01

    Time domain magnetic field integral equation (MFIE) is discretized using divergence-conforming Rao-Wilton-Glisson (RWG) and curl-conforming Buffa-Christiansen (BC) functions as spatial basis and testing functions, respectively. The resulting mixed discretization scheme, unlike the classical scheme which uses RWG functions as both basis and testing functions, is proper: Testing functions belong to dual space of the basis functions. Numerical results demonstrate that the marching on-in-time (MOT) solution of the mixed discretized MFIE yields more accurate results than that of classically discretized MFIE. © 2012 IEEE.

  17. Time domain characterization for the electric field considering a Chinese female physical phantom

    Science.gov (United States)

    Yang, Xiaodong; Zhang, Qing

    2015-02-01

    Recently, wireless communications around the human body, which are essential for wireless vital data monitoring, have been widely studied. Besides statistical channel modeling, characterization of time-varying electric field is also highly necessary to understand the communication mechanism in this area; however, few studies have been conducted. In this paper, time-varying electric fields, both on the digital human body and in the two-dimensional space around the human body, were studied through the finite-difference time-domain (FDTD) numerical analysis.

  18. Discontinuous Galerkin time-domain analysis of power/ground plate pairs with wave port excitation

    KAUST Repository

    Li, Ping

    2018-04-06

    In this work, a discontinuous Galerkin time-domain method is developed to analyze the power/ground plate pairs taking into account arbitrarily shaped antipads. To implement proper source excitations over the antipads, the magnetic surface current expanded by the electric eigen-modes supported by the corresponding antipad is employed as the excitation. For irregularly shaped antipads, the eigen-modes are obtained by numerical approach. Accordingly, the methodology for the S-parameter extraction is derived based on the orthogonal properties of the different modes. Based on the approach, the transformation between different modes can be readily evaluated.

  19. Bacillus spores and their relevant chemicals studied by terahertz time domain spectroscopy

    Science.gov (United States)

    Tang, Jianhua; Yang, Bin; Llewellyn, Ian; Cutler, Ronald R.; Donnan, Robert S.

    2014-01-01

    Terahertz time domain spectroscopy has been used to investigate 0.2-2.2 THz transmission responses of Bacillus spores and their related chemical components. Whilst no THz signatures could be clearly associated with either sporulated cells or their chief chemical components, differing degrees of signal attenuation and frequency-dependent light scattering were observed depending on spore composition and culture media. The observed monotonic increase in absorption by spores over this THz spectral domain is mainly from Mie scattering and also from remnant water bound to the spores.

  20. Resolving spectral information from time domain induced polarization data through 2-D inversion

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca; Ramm, James; Binley, A.

    2013-01-01

    SUMMARY Field-based time domain (TD) induced polarization (IP) surveys are usually modelled by taking into account only the integral chargeability, thus disregarding spectral content. Furthermore, the effect of the transmitted waveform is commonly neglected, biasing inversion results. Given...... these limitations of conventional approaches, a new 2-D inversion algorithm has been developed using the full voltage decay of the IP response, together with an accurate description of the transmitter waveform and receiver transfer function. This allows reconstruction of the spectral information contained in the TD...

  1. Perfectly Matched Layer for the Wave Equation Finite Difference Time Domain Method

    Science.gov (United States)

    Miyazaki, Yutaka; Tsuchiya, Takao

    2012-07-01

    The perfectly matched layer (PML) is introduced into the wave equation finite difference time domain (WE-FDTD) method. The WE-FDTD method is a finite difference method in which the wave equation is directly discretized on the basis of the central differences. The required memory of the WE-FDTD method is less than that of the standard FDTD method because no particle velocity is stored in the memory. In this study, the WE-FDTD method is first combined with the standard FDTD method. Then, Berenger's PML is combined with the WE-FDTD method. Some numerical demonstrations are given for the two- and three-dimensional sound fields.

  2. Finite Difference Time-Domain Modelling of Metamaterials: GPU Implementation of Cylindrical Cloak

    Directory of Open Access Journals (Sweden)

    A. Dawood

    2013-08-01

    Full Text Available Finite difference time-domain (FDTD technique can be used to model metamaterials by treating them as dispersive material. Drude or Lorentz model can be incorporated into the standard FDTD algorithm for modelling negative permittivity and permeability. FDTD algorithm is readily parallelisable and can take advantage of GPU acceleration to achieve speed-ups of 5x-50x depending on hardware setup. Metamaterial scattering problems are implemented using dispersive FDTD technique on GPU resulting in performance gain of 10x-15x compared to conventional CPU implementation.

  3. Impact of time-domain IP pulse length on measured data and inverted models

    DEFF Research Database (Denmark)

    Olsson, P. I.; Fiandaca, G.; Dahlin, T.

    2015-01-01

    The duration of time domain (TD) induced polarization (IP) current injections has significant impact on the acquired IP data as well as on the inversion models, if the standard evaluation procedure is followed. However, it is still possible to retrieve similar inversion models if the waveform...... of the injected current and the IP response waveform are included in the inversion. The on-time also generally affects the signal-tonoise ratio (SNR) where an increased on-time gives higher SNR for the IP data....

  4. Absence of phase-dependent noise in time-domain reflectivity studies of impulsively excited phonons

    KAUST Repository

    Hussain, A.

    2010-06-17

    There have been several reports of phase-dependent noise in time-domain reflectivity studies of optical phonons excited by femtosecond laser pulses in semiconductors, semimetals, and superconductors. It was suggested that such behavior is associated with the creation of squeezed phonon states although there is no theoretical model that directly supports such a proposal. We have experimentally re-examined the studies of phonons in bismuth and gallium arsenide, and find no evidence of any phase-dependent noise signature associated with the phonons. We place an upper limit on any such noise at least 40–50 dB lower than previously reported.

  5. Dielectric relaxation and hydrogen bonding interaction in xylitol-water mixtures using time domain reflectometry

    Science.gov (United States)

    Rander, D. N.; Joshi, Y. S.; Kanse, K. S.; Kumbharkhane, A. C.

    2016-01-01

    The measurements of complex dielectric permittivity of xylitol-water mixtures have been carried out in the frequency range of 10 MHz-30 GHz using a time domain reflectometry technique. Measurements have been done at six temperatures from 0 to 25 °C and at different weight fractions of xylitol (0 xylitol-water can be well described by Cole-Davidson model having an asymmetric distribution of relaxation times. The dielectric parameters such as static dielectric constant and relaxation time for the mixtures have been evaluated. The molecular interaction between xylitol and water molecules is discussed using the Kirkwood correlation factor ( g eff ) and thermodynamic parameter.

  6. Linearity of Air-Biased Coherent Detection for Terahertz Time-Domain Spectroscopy

    DEFF Research Database (Denmark)

    Wang, Tianwu; Iwaszczuk, Krzysztof; Wrisberg, Emil Astrup

    2016-01-01

    The performance of air-biased coherent detection (ABCD) in a broadband two-color laser-induced air plasma system for terahertz time-domain spectroscopy (THz-TDS) has been investigated. Fundamental parameters of the ABCD detection, including signal-to-noise ratio (SNR), dynamic range (DR......), and linearity of detection have been characterized. Moreover, the performance of a photomultiplier tube (PMT) and an avalanche photodiode (APD) as photodetector in the ABCD have been compared. We have observed nonlinear behavior of PMT detector, which leads to artificial gain factor in TDS spectroscopy. The APD...

  7. Improving retrieval quality for airborne limb sounders by horizontal regularisation

    Directory of Open Access Journals (Sweden)

    J. Ungermann

    2013-01-01

    Full Text Available Modern airborne infrared limb sounders are capable of measuring profiles so fast that neighbouring profiles are very similar to one another. This can be exploited by retrieving whole 2-D cross-sections instead of simple 1-D profiles.

    This paper presents algorithms that are able to perform such a large-scale retrieval and that efficiently produce typical diagnostic quantities. The characteristics and capabilities of the proposed method are analysed and demonstrated in a detailed case study using a series of profiles that were measured by CRISTA-NF (Cryogenic Infrared Spectrometers and Telescope for the Atmosphere–New Frontiers.

    It is shown that cross-section retrievals can either reduce noise-induced artefacts or produce finer vertical structures while maintaining the same image noise level. Further, it is discussed how the presented methodology can also be applied to improve the retrievals for other instrument types including current satellite-borne nadir-sounders and near-future satellite-borne limb sounders.

  8. Observations of atmospheric structure using an acoustic sounder

    International Nuclear Information System (INIS)

    Shaw, N.A.

    1974-11-01

    An acoustic sounder has been used to monitor the vertical temperature structure of the lowest 1.5 km of the atmosphere over the meteorological field site at Argonne National Laboratory since February 1972. Additional records were obtained near St. Louis, Mo., during the month of August. Sounder records obtained during cloudless days on which no major synoptic events occurred are separated into three characteristic phases. The first phase is the rise of the morning inversion associated with increasing solar heating of the surface after dawn. The second phase is the period of strong convective activity that usually exists between about 1100 and 1600 local time in summer and which typically destroys the inversion. The third phase includes the gradual regeneration of the low level inversion through radiation cooling of the lowest levels, followed by a period of persistence throughout the night until the first phase begins again after sunrise. Analysis of records obtained from a single acoustic sounder operating in the vertically-pointing, monostatic mode is subject to the usual ambiguity regarding the relative importance of advective effects and local changes with time. To provide a spatial sampling facility, a mobile acoustic sounding system was constructed during 1972. Details of the mobile antenna acoustic baffle or cuff are given in the Appendix. (19 figures, 1 table) (U.S.)

  9. Space Electron Density Gradient Studies using a 3D Embedded Reconfigurable Sounder and ESA/NASA CLUSTER Mission

    Science.gov (United States)

    Dekoulis, George

    2016-07-01

    This paper provides a direct comparison between data captured by a new embedded reconfigurable digital sounder, different ground-based ionospheric sounders spread around Europe and the ESA/NASA CLUSTER mission. The CLUSTER mission consists of four identical space probes flying in a formation that allows measurements of the electron density gradient in the local magnetic field. Both the ground-based and the spacecraft instrumentations assist in studying the motion, geometry and boundaries of the plasmasphere. The comparison results are in accordance to each other. Some slight deviations among the captured data were expected from the beginning of this investigation. These small discrepancies are reasonable and seriatim analyzed. The results of this research are significant, since the level of the plasma's ionization, which is related to the solar activity, dominates the propagation of electromagnetic waves through it. Similarly, unusually high solar activity presents serious hazards to orbiting satellites, spaceborne instrumentation, satellite communications and infrastructure located on the Earth's surface. Long-term collaborative study of the data is required to continue, in order to identify and determine the enhanced risk in advance. This would allow scientists to propose an immediate cure.

  10. Time Domain Filtering of Resolved Images of Sgr A{sup ∗}

    Energy Technology Data Exchange (ETDEWEB)

    Shiokawa, Hotaka; Doeleman, Sheperd S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Gammie, Charles F. [Department of Physics, University of Illinois, 1110 West Green Street, Urbana, IL 61801 (United States)

    2017-09-01

    The goal of the Event Horizon Telescope (EHT) is to provide spatially resolved images of Sgr A*, the source associated with the Galactic Center black hole. Because Sgr A* varies on timescales that are short compared to an EHT observing campaign, it is interesting to ask whether variability contains information about the structure and dynamics of the accretion flow. In this paper, we introduce “time-domain filtering,” a technique to filter time fluctuating images with specific temporal frequency ranges and to demonstrate the power and usage of the technique by applying it to mock millimeter wavelength images of Sgr A*. The mock image data is generated from the General Relativistic Magnetohydrodynamic (GRMHD) simulation and the general relativistic ray-tracing method. We show that the variability on each line of sight is tightly correlated with a typical radius of emission. This is because disk emissivity fluctuates on a timescale of the order of the local orbital period. Time-domain filtered images therefore reflect the model dependent emission radius distribution, which is not accessible in time-averaged images. We show that, in principle, filtered data have the power to distinguish between models with different black-hole spins, different disk viewing angles, and different disk orientations in the sky.

  11. Time-domain incomplete Gauss-Newton full-waveform inversion of Gulf of Mexico data

    KAUST Repository

    AlTheyab, Abdullah

    2013-09-22

    We apply the incomplete Gauss-Newton full-waveform inversion (TDIGN-FWI) to Gulf of Mexico (GOM) data in the space-time domain. In our application, iterative least-squares reverse-time migration (LSRTM) is used to estimate the model update at each non-linear iteration, and the number of LSRTM iterations is progressively increased after each non-linear iteration. With this method, model updating along deep reflection wavepaths are automatically enhanced, which in turn improves imaging below the reach of diving-waves. The forward and adjoint operators are implemented in the space-time domain to simultaneously invert the data over a range of frequencies. A multiscale approach is used where higher frequencies are down-weighted significantly at early iterations, and gradually included in the inversion. Synthetic data results demonstrate the effectiveness of reconstructing both the high- and low-wavenumber features in the model without relying on diving waves in the inversion. Results with Gulf of Mexico field data show a significantly improved migration image in both the shallow and deep sections.

  12. A low-power time-domain VCO-based ADC in 65 nm CMOS

    Science.gov (United States)

    Chenluan, Wang; Shengxi, Diao; Fujiang, Lin

    2014-10-01

    A low-power, high-FoM (figure of merit), time-domain VCO (voltage controlled oscillator)-based ADC (analog-to-digital converter) in 65 nm CMOS technology is proposed. An asynchronous sigma—delta modulator (ASDM) is used to convert the voltage input signal to a square wave time signal, where the information is contained in its pulse-width. A time-domain quantizer, which uses VCO to convert voltage to frequency, is adopted, while the XOR (exclusive-OR) gate circuits convert the frequency information to digital representatives. The ASDM does not need an external clock, so there is no quantization noise. At the same time, the ASDM applies a harmonic-distortion-cancellation technique to its transconductance stage, which increases the SNDR (signal to noise and distortion ratio) performance of the ASDM. Since the output of the ASDM is a two-level voltage signal, the VCO's V—F (voltage to frequency) conversion curve is always linear. The XOR phase quantizer has an inherent feature of first-order noise-shaping. It puts the ADC's low-frequency output noise to high-frequency which is further filtered out by a low-pass filter. The proposed ADC achieves an SNR/SNDR of 54. dB/54.3 dB in the 8 MHz bandwidth, while consuming 2.8 mW. The FoM of the proposed ADC is a 334 fJ/conv-step.

  13. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes

    Science.gov (United States)

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  14. Time-domain hybrid method for simulating large amplitude motions of ships advancing in waves

    Directory of Open Access Journals (Sweden)

    Shukui Liu

    2011-03-01

    Full Text Available Typical results obtained by a newly developed, nonlinear time domain hybrid method for simulating large amplitude motions of ships advancing with constant forward speed in waves are presented. The method is hybrid in the way of combining a time-domain transient Green function method and a Rankine source method. The present approach employs a simple double integration algorithm with respect to time to simulate the free-surface boundary condition. During the simulation, the diffraction and radiation forces are computed by pressure integration over the mean wetted surface, whereas the incident wave and hydrostatic restoring forces/moments are calculated on the instantaneously wetted surface of the hull. Typical numerical results of application of the method to the seakeeping performance of a standard containership, namely the ITTC S175, are herein presented. Comparisons have been made between the results from the present method, the frequency domain 3D panel method (NEWDRIFT of NTUA-SDL and available experimental data and good agreement has been observed for all studied cases between the results of the present method and comparable other data.

  15. Differences between time domain and Fourier domain optical coherence tomography in imaging tissues.

    Science.gov (United States)

    Gao, W; Wu, X

    2017-11-01

    It has been numerously demonstrated that both time domain and Fourier domain optical coherence tomography (OCT) can generate high-resolution depth-resolved images of living tissues and cells. In this work, we compare the common points and differences between two methods when the continuous and random properties of live tissue are taken into account. It is found that when relationships that exist between the scattered light and tissue structures are taken into account, spectral interference measurements in Fourier domain OCT (FDOCT) is more advantageous than interference fringe envelope measurements in time domain OCT (TDOCT) in the cases where continuous property of tissue is taken into account. It is also demonstrated that when random property of tissue is taken into account FDOCT measures the Fourier transform of the spatial correlation function of the refractive index and speckle phenomena will limit the effective limiting imaging resolution in both TDOCT and FDOCT. Finally, the effective limiting resolution of both TDOCT and FDOCT are given which can be used to estimate the effective limiting resolution in various practical applications. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  16. Mathematical Framework for Hydromechanical Time-Domain Simulation of Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    J. Seixas de Medeiros

    2018-01-01

    Full Text Available Efficient design of wave energy converters based on floating body motion heavily depends on the capacity of the designer to accurately predict the device’s dynamics, which ultimately leads to the power extraction. We present a (quasi-nonlinear time-domain hydromechanical dynamic model to simulate a particular type of pitch-resonant WEC which uses gyroscopes for power extraction. The dynamic model consists of a time-domain three-dimensional Rankine panel method coupled, during time integration, with a MATLAB algorithm that solves for the equations of the gyroscope and Power Take-Off (PTO. The former acts as a force block, calculating the forces due to the waves on the hull, which is then sent to the latter through TCP/IP, which couples the external dynamics and performs the time integration using a 4th-order Runge-Kutta method. The panel method, accounting for the gyroscope and PTO dynamics, is then used for the calculation of the optimal flywheel spin, PTO damping, and average power extracted, completing the basic design cycle of the WEC. The proposed numerical method framework is capable of considering virtually any type of nonlinear force (e.g., nonlinear wave loads and it is applied and verified in the paper against the traditional frequency domain linear model. It proved to be a versatile tool to verify performance in resonant conditions.

  17. Front end with offset-free symmetrical current source optimized for time domain impedance spectroscopy.

    Science.gov (United States)

    Pliquett, Uwe; Schönfeldt, Markus; Barthel, Andreas; Frense, Dieter; Nacke, Thomas; Beckmann, Dieter

    2011-07-01

    Fast impedance measurements are often performed in time domain utilizing broad bandwidth excitation signals. Other than in frequency domain measurements harmonic distortion cannot be compensated which requires careful design of the analog front end. In order to minimize the influence of electrode polarization and noise, especially in low-frequency measurements, current injection shows several advantages compared to voltage application. Here, we show an active front end based on a voltage-controlled current source for a wide range of impedances. Using proper feedback, the majority of the parasitic capacitances are compensated. The bandwidth ranges from dc to 20 MHz for impedance magnitude below 5 kΩ. The output is a symmetric signal without dc-offset which is accomplished by combination of a current conveyor and a voltage inverter. An independent feedback loop compensates the offset arising from asymmetries within the circuitry. We focused especially on the stability of the current source for usage with small metal electrodes in aqueous solutions. At the monitor side two identical, high input impedance difference amplifiers convert the net current through the object and the voltage dropping across into a 50 Ω symmetric output. The entire circuitry is optimized for step response making it suitable for fast time domain measurements.

  18. Time-Domain Modeling of RF Antennas and Plasma-Surface Interactions

    Directory of Open Access Journals (Sweden)

    Jenkins Thomas G.

    2017-01-01

    Full Text Available Recent advances in finite-difference time-domain (FDTD modeling techniques allow plasma-surface interactions such as sheath formation and sputtering to be modeled concurrently with the physics of antenna near- and far-field behavior and ICRF power flow. Although typical sheath length scales (micrometers are much smaller than the wavelengths of fast (tens of cm and slow (millimeter waves excited by the antenna, sheath behavior near plasma-facing antenna components can be represented by a sub-grid kinetic sheath boundary condition, from which RF-rectified sheath potential variation over the surface is computed as a function of current flow and local plasma parameters near the wall. These local time-varying sheath potentials can then be used, in tandem with particle-in-cell (PIC models of the edge plasma, to study sputtering effects. Particle strike energies at the wall can be computed more accurately, consistent with their passage through the known potential of the sheath, such that correspondingly increased accuracy of sputtering yields and heat/particle fluxes to antenna surfaces is obtained. The new simulation capabilities enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We will present results/animations from high-performance (10k-100k core FDTD/PIC simulations of Alcator C-Mod antenna operation.

  19. A Combined Time Domain Impedance Probe And Plasma Wave Receiver System For Small Satellite Applications.

    Science.gov (United States)

    Spencer, E. A.; Clark, D. C.; Vadepu, S. K.; Patra, S.

    2017-12-01

    A Time Domain Impedance Probe (TDIP) measures electron density and electron neutral collision frequencies in the ionosphere. This instrument has been tested on a sounding rocket flight and is now being further developed to fly on a NASA Undergraduate Student Instrument Program (USIP) cubesat to be launched out of the ISS in 2019. Here we report on the development of a new combined TDIP and plasma wave instrument that can be used on cubesat platforms to measure local electron parameters, and also to receive or transmit electron scale waves. This combined instrument can be used to study short time and space scale phenomena in the upper ionosphere using only RF signals. The front end analog circuitry is dual-purposed to perform active or passive probing of the ambient plasma. Two dipole antennas are used, one is optimzed for impedance measurements, while the other is optimized for transmitter-receiver performance. We show our circuit realization, and initial results from laboratory measurements using the TDIP prototype modified for receiver function. We also show Finite Difference Time Domain (FDTD) simulations of an electrically long antenna immersed in a magnetized plasma used to optimize the transmitter receiver performance.

  20. A time-domain finite element boundary integration method for ultrasonic nondestructive evaluation.

    Science.gov (United States)

    Shi, Fan; Choi, Wonjae; Skelton, Elizabeth A; Lowe, Michael J S; Craster, Richard V

    2014-12-01

    A 2-D and 3-D numerical modeling approach for calculating the elastic wave scattering signals from complex stress-free defects is evaluated. In this method, efficient boundary integration across the complex boundary of the defect is coupled with a time-domain finite element (FE) solver. The model is designed to simulate time-domain ultrasonic nondestructive evaluation in bulk media. This approach makes use of the hybrid concept of linking a local numerical model to compute the near-field scattering behavior and theoretical mathematical formulas for postprocessing to calculate the received signals. It minimizes the number of monitoring signals from the FE calculation so that the computation effort in postprocessing decreases significantly. In addition, by neglecting the conventional regular monitoring box, the region for FE calculation can be made smaller. In this paper, the boundary integral method is implemented in a commercial FE code, and it is validated by comparing the scattering signals with results from corresponding full FE models. The coupled method is then implemented in real inspection scenarios in both 2-D and 3-D, and the accuracy and the efficiency are demonstrated. The limitations of the proposed model and future works are also discussed.

  1. Terahertz time domain spectroscopy allows contactless monitoring of grapevine water status

    Directory of Open Access Journals (Sweden)

    Luis Gonzaga Santesteban

    2015-06-01

    Full Text Available Agriculture is the sector with the greatest water consumption, since food production is frequently based on crop irrigation. Proper irrigation management requires reliable information on plant water status, but all the plant-based methods to determine it suffer from several inconveniences, mainly caused by the necessity of destructive sampling or of alteration of the plant organ due to contact installation. The aim of this work is to test if THz time domain reflectance measurements made on the grapevine trunk allows contactless monitoring of plant status. The experiments were performed on a potted 14-years old plant, using a general purpose THz emitter receiver head.Trunk THz time-domain reflection signal proved to be very sensitive to changes in plant water availability, as its pattern follows the trend of soil water content and trunk growth variations. Therefore, it could be used to contactless monitor plant water status. Apart from that, THz reflection signal was observed to respond to light conditions which, according to a specifically designed girdling experiment, was caused by changes in the phloem. This latter results opens a promising field of research for contactless monitoring of phloem activity.

  2. On time-domain and frequency-domain MMSE-based TEQ design for DMT transmission

    CERN Document Server

    Vanbleu, K; Moonen, M; Ysebaert, G; 10.1109/TSP.2005.851161

    2005-01-01

    We reconsider the minimum mean square error (MMSE) time-domain equalizer (TEQ), bitrate maximizing TEQ (BM-TEQ), and per-tone equalizer design (PTEQ) for discrete multitone (DMT) transmission and cast them in a common least-squares (LS) based framework. The MMSE- TEQ design criterion can be formulated as a constrained linear least-squares (CLLS) criterion that minimizes a time-domain (TD) error energy. From this CLLS-based TD-MMSE-TEQ criterion, we derive two new least-squares (LS) based frequency-domain (FD) MMSE-TEQ design criteria: a CLLS-based FD-MMSE-TEQ criterion and a so-called separable nonlinear LS (SNLLS) based FD-MMSE-TEQ design. Finally, the original BM-TEQ design is shown to be equivalent to a so-called iteratively-reweighted (IR) version of the SNLLS-based FD-MMSE-TEQ design. This LS-based framework then results in the following contributions. The new, IR-SNLLS-based BM-TEQ design criterion gives rise to an elegant, iterative, fast converging, Gauss-Newton-based design algorithm that exploits th...

  3. Application of modified integration rule to time-domain finite-element acoustic simulation of rooms.

    Science.gov (United States)

    Okuzono, Takeshi; Otsuru, Toru; Tomiku, Reiji; Okamoto, Noriko

    2012-08-01

    The applicability of the modified integration rule for time-domain finite-element analysis is tested in sound field analysis of rooms involving rectangular elements, distorted elements, and finite impedance boundary conditions. Dispersion error analysis in three dimensions is conducted to evaluate the dispersion error in time-domain finite-element analysis using eight-node hexahedral elements. The results of analysis confirmed that fourth-order accuracy with respect to dispersion error is obtainable using the Fox-Goodwin method (FG) with a modified integration rule, even for rectangular elements. The stability condition in three-dimensional analysis using the modified integration rule is also presented. Numerical experiments demonstrate that FG with a modified integration rule performs much better than FG with the conventional integration rule for problems with rectangular elements, distorted elements, and with finite impedance boundary conditions. Further, as another advantage, numerical results revealed that the use of modified integration rule engenders faster convergence of the iterative solver than a conventional rule for problems with the same degrees of freedom.

  4. A Time-Domain Analog Spatial Compressed Sensing Encoder for Multi-Channel Neural Recording.

    Science.gov (United States)

    Okazawa, Takayuki; Akita, Ippei

    2018-01-11

    A time-domain analog spatial compressed sensing encoder for neural recording applications is proposed. Owing to the advantage of MEMS technologies, the number of channels on a silicon neural probe array has doubled in 7.4 years, and therefore, a greater number of recording channels and higher density of front-end circuitry is required. Since neural signals such as action potential (AP) have wider signal bandwidth than that of an image sensor, a data compression technique is essentially required for arrayed neural recording systems. In this paper, compressed sensing (CS) is employed for data reduction, and a novel time-domain analog CS encoder is proposed. A simpler and lower power circuit than conventional analog or digital CS encoders can be realized by using the proposed CS encoder. A prototype of the proposed encoder was fabricated in a 180 nm 1P6M CMOS process, and it achieved an active area of 0.0342 mm 2 / ch . and an energy efficiency of 25.0 pJ / ch . · conv .

  5. Enhanced Measurement of Paper Basis Weight Using Phase Shift in Terahertz Time-Domain Spectroscopy

    Directory of Open Access Journals (Sweden)

    Mengbao Fan

    2017-01-01

    Full Text Available THz time-domain spectroscopy has evolved as a noncontact, safe, and efficient technique for paper characterization. Our previous work adopted peak amplitude and delay time as features to determine paper basis weight using terahertz time-domain spectroscopy. However, peak amplitude and delay time tend to suffer from noises, resulting in degradation of accuracy and robustness. This paper proposes a noise-robust phase-shift based method to enhance measurements of paper basis weight. Based on Fresnel Formulae, the physical relationship between phase shift and paper basis weight is formulated theoretically neglecting multiple reflections in the case of normal incidence. The established formulation indicates that phase shift correlates linearly with paper basis weight intrinsically. Subsequently, paper sheets were stacked to fabricate the samples with different basis weights, and experimental results verified the developed mathematical formulation. Moreover, a comparison was made between phase shift, peak amplitude, and delay time with respect to linearity, accuracy, and noise robustness. The results show that phase shift is superior to the others.

  6. Time-domain full waveform inversion using the gradient preconditioning based on transmitted waves energy

    KAUST Repository

    Zhang, Xiao-bo

    2017-06-01

    The gradient preconditioning approach based on seismic wave energy can effectively avoid the huge storage consumption in the gradient preconditioning algorithms based on Hessian matrices in time-domain full waveform inversion (FWI), but the accuracy is affected by the energy of reflected waves when strong reflectors are present in velocity model. To address this problem, we propose a gradient preconditioning method, which scales the gradient based on the energy of the “approximated transmitted wavefield” simulated by the nonreflecting acoustic wave equation. The method does not require computing or storing the Hessian matrix or its inverse. Furthermore, it can effectively eliminate the effects caused by geometric diffusion and non-uniformity illumination on gradient. The results of model experiments confirm that the time-domain FWI using the gradient preconditioning based on transmitted waves energy can achieve higher inversion precision for high-velocity body and the deep strata below when compared with using the gradient preconditioning based on seismic waves energy.

  7. A higher order space-time Galerkin scheme for time domain integral equations

    KAUST Repository

    Pray, Andrew J.

    2014-12-01

    Stability of time domain integral equation (TDIE) solvers has remained an elusive goal formany years. Advancement of this research has largely progressed on four fronts: 1) Exact integration, 2) Lubich quadrature, 3) smooth temporal basis functions, and 4) space-time separation of convolutions with the retarded potential. The latter method\\'s efficacy in stabilizing solutions to the time domain electric field integral equation (TD-EFIE) was previously reported for first-order surface descriptions (flat elements) and zeroth-order functions as the temporal basis. In this work, we develop the methodology necessary to extend the scheme to higher order surface descriptions as well as to enable its use with higher order basis functions in both space and time. These basis functions are then used in a space-time Galerkin framework. A number of results are presented that demonstrate convergence in time. The viability of the space-time separation method in producing stable results is demonstrated experimentally for these examples.

  8. Efficient method for time-domain simulation of the linear feedback systems containing fractional order controllers.

    Science.gov (United States)

    Merrikh-Bayat, Farshad

    2011-04-01

    One main approach for time-domain simulation of the linear output-feedback systems containing fractional-order controllers is to approximate the transfer function of the controller with an integer-order transfer function and then perform the simulation. In general, this approach suffers from two main disadvantages: first, the internal stability of the resulting feedback system is not guaranteed, and second, the amount of error caused by this approximation is not exactly known. The aim of this paper is to propose an efficient method for time-domain simulation of such systems without facing the above mentioned drawbacks. For this purpose, the fractional-order controller is approximated with an integer-order transfer function (possibly in combination with the delay term) such that the internal stability of the closed-loop system is guaranteed, and then the simulation is performed. It is also shown that the resulting approximate controller can effectively be realized by using the proposed method. Some formulas for estimating and correcting the simulation error, when the feedback system under consideration is subjected to the unit step command or the unit step disturbance, are also presented. Finally, three numerical examples are studied and the results are compared with the Oustaloup continuous approximation method. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Time-Domain Full-Wave Modeling of Nonlinear Air Breakdown in High-Power Microwave Devices and Systems

    Science.gov (United States)

    2017-09-30

    electromagnetic --plasma interactions and the resulting air breakdown, electromagnetic pulse tail erosion, plasma formation and shielding are simulated and...DEVICES AND SYSTEMS Su Yan and Jian-Ming Jin Center for Computational Electromagnetics Department of Electrical and Computer Engineering...Computational Electromagnetics Department of Electrical and Computer Engineering University of Illinois Urbana, IL 61801 9. SPONSORING / MONITORING

  10. Surface Clutter Suppression Techniques Applied to P-band Multi-Channel SAR Ice Sounder Data from East Antarctica

    DEFF Research Database (Denmark)

    Lin, Chung-Chi; Bekaert, David; Gebert, Nicolas

    Radar ice sounding allows for the retrieval of ice depth and provides information on ba-sal topography, basal conditions, flow, and layering. In the prospect of a possible future satellite ice sounding mission, surface clutters are expected to severely hamper measurement of radar ech-oes from...... the depth due to the unfavourable observation geometry. Synthetic aperture radar (SAR) processing enables to attenuate surface clutters in the forward and backward directions, but not in the across-track directions. Thus, additional across-track clutter cancellation is a crucial step for extracting weaker...... subsurface radar echoes. ESA’s P-band POLarimetric Airborne Radar Ice Sounder (POLARIS), recently upgraded with a larger antenna of 4 m length, enables simultaneous reception of up to 4 sub-aperture channels in across-track. Laboratory of Electromagnetics and Acoustics of Swiss Fed. Institute of Tech...

  11. Identifying causes of ground-penetrating radar reflections using time-domain reflectometry and sedimentological analyses.

    NARCIS (Netherlands)

    van Dam, R.L.; Schlager, W.

    2000-01-01

    Ground-penetrating radar (GPR) is a geophysical technique widely used to study the shallow subsurface and identify various sediment features that reflect electromagnetic waves. However, little is known about the exact cause of GPR reflections because few studies have coupled wave theory to

  12. Electric field, Magnetic field and Magnetization : THz time-domain spectroscopy studies

    NARCIS (Netherlands)

    Kumar, N.

    2015-01-01

    Terahertz radiation is electromagnetic waves with frequencies from 0.1-10 THz. THz radiation can pass through cardboard, paper, plastics, ceramics and many other materials. Hence, it can be used for non-destructive imaging. Another important application of THz radiation is spectroscopy. Many organic

  13. Algorithm development for Maxwell's equations for computational electromagnetism

    Science.gov (United States)

    Goorjian, Peter M.

    1990-01-01

    A new algorithm has been developed for solving Maxwell's equations for the electromagnetic field. It solves the equations in the time domain with central, finite differences. The time advancement is performed implicitly, using an alternating direction implicit procedure. The space discretization is performed with finite volumes, using curvilinear coordinates with electromagnetic components along those directions. Sample calculations are presented of scattering from a metal pin, a square and a circle to demonstrate the capabilities of the new algorithm.

  14. Stationary echo canceling in velocity estimation by time-domain cross-correlation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1993-01-01

    The application of stationary echo canceling to ultrasonic estimation of blood velocities using time-domain cross-correlation is investigated. Expressions are derived that show the influence from the echo canceler on the signals that enter the cross-correlation estimator. It is demonstrated......, number of samples in the range gate, and number of A-lines employed in the estimation. Quantitative results calculated by a simple simulation program are given for the variation in probability from these parameters. An index reflecting the reliability of the estimate at hand can be calculated from...... the actual cross-correlation estimate by a simple formula and used in rejecting poor estimates or in displaying the reliability of the velocity estimated...

  15. Analytical approximate solutions of the time-domain diffusion equation in layered slabs.

    Science.gov (United States)

    Martelli, Fabrizio; Sassaroli, Angelo; Yamada, Yukio; Zaccanti, Giovanni

    2002-01-01

    Time-domain analytical solutions of the diffusion equation for photon migration through highly scattering two- and three-layered slabs have been obtained. The effect of the refractive-index mismatch with the external medium is taken into account, and approximate boundary conditions at the interface between the diffusive layers have been considered. A Monte Carlo code for photon migration through a layered slab has also been developed. Comparisons with the results of Monte Carlo simulations showed that the analytical solutions correctly describe the mean path length followed by photons inside each diffusive layer and the shape of the temporal profile of received photons, while discrepancies are observed for the continuous-wave reflectance or transmittance.

  16. Reflection terahertz time-domain imaging for analysis of an 18th century neoclassical easel painting

    DEFF Research Database (Denmark)

    Dandolo, Corinna Ludovica Koch; Filtenborg, Troels; Fukunaga, Kaori

    2015-01-01

    Terahertz time-domain imaging (THz-TDI) has been applied for imaging a hidden portrait and other subsurfacecomposition layers of an 18th century (18C) easel painting by Nicolai Abildgaard, the most important 18CDanish neoclassical painter of historical and mythological subjects. For the first time......, a real hidden portraiton an easel painting has been imaged by THz-TDI, with an unexpected richness of detail. THz C- andB-scans have been compared with images obtained by x-ray radiography and invasive cross-sectional imaging,leading to a deeper understanding of the strengths and limitations...... in practical applications of the technique. Interfaces between layers ofthe painting have been successfully imaged, contributing substantially to the understanding of the structure of the painting....

  17. Optimization of neural networks for time-domain simulation of mooring lines

    DEFF Research Database (Denmark)

    Christiansen, Niels Hørbye; Voie, Per Erlend Torbergsen; Winther, Ole

    2016-01-01

    When using artificial neural networks in methods for dynamic analysis of slender structures, the computational effort associated with time-domain response simulation may be reduced drastically compared to classic solution strategies. This article demonstrates that the network structure...... of an artificial neural network, which has been trained to simulate forces in a mooring line of a floating offshore platform, can be optimized and reduced by different optimization procedures. The procedures both detect and prune the least salient network weights successively, and besides trimming the network......, they also can be used to rank the importance of the various network inputs. The dynamic response of slender marine structures often depends on several external load components, and by applying the optimization procedures to a trained artificial neural network, it is possible to classify the external force...

  18. Spectroscopic and time domain reflectometry studies on acetonitrile - Ethylene glycol binary solutions

    Science.gov (United States)

    Mahendraprabu, A.; Kumbharkhane, A. C.; Joshi, Y. S.; Shaikh, S. S.; Kannan, P. P.; Karthick, N. K.; Arivazhagan, G.

    2017-05-01

    Spectroscopic (FTIR and 13C NMR) and time domain reflectometry (in the frequency range from 10 MHz to 25 GHz) studies have been carried out on the binary solutions of acetonitrile (AN) with ethylene glycol (EG). The presence of EG-EG multimers of various orders in neat EG has been confirmed by spectroscopic studies. AN-EG association through the formation of ∁ ≡ N ⋯ H - O , ∁ ≡ N ⋯ H - C(EG) and (EG) C - O ⋯ H - C(AN) hydrogen bonds have been identified using spectral studies. The principal relaxation process of the heteromolecular entities that involve higher order alcohol association in ethylene glycol rich solutions is found to be relatively slower than that in acetonitrile rich solutions in which lower order alcohol association involves in heterointeraction. The angular correlation among the dipoles appears to be described more precisely when the experimental ε∞ values rather than ε∞ =n2 are used for the calculation of geff .

  19. Time domain analysis method for aerodynamic noises from wind turbine blades

    Directory of Open Access Journals (Sweden)

    Hua ZHAO

    2015-04-01

    Full Text Available The issue of the aerodynamic noises from wind turbine blades affecting the surrounding residents life begins to attract researcher's attention. Most of the existing researches are based on CFD software or experimental data fitting method to analyze the aerodynamic noises, so it is difficult to adapt the demand to dynamic analysis of the aerodynamic noises from wind speed variation. In this paper, the operation parameters, the inflow wind speed and the receiver location are considered, and a modified model to calculate aerodynamic noises from wind turbine blades which is based on traditional acoustic formulas is established. The program to calculate the aerodynamic noises from the 2 MW wind turbine blades is compiled using a time-domain analysis method based on the Simulink modular in Matlab software. And the pressure time sequence diagrams of the aerodynamic noises from wind turbine blades are drawn. It has provided a theoretical foundation to develop low noise wind turbine blades.

  20. Simulation of acoustic streaming by means of the finite-difference time-domain method

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco

    2012-01-01

    Numerical simulations of acoustic streaming generated by a standing wave in a narrow twodimensional cavity are presented. In this case, acoustic streaming arises from the viscous boundary layers set up at the surfaces of the walls. It is known that streaming vortices inside the boundary layer have...... directions of rotation that are opposite to those of the outer streaming vortices (Rayleigh streaming). The general objective of the work described in this paper has been to study the extent to which it is possible to simulate both the outer streaming vortices and the inner boundary layer vortices using...... the finite-difference time-domain method. To simplify the problem, thermal effects are not considered. The motivation of the described investigation has been the possibility of using the numerical method to study acoustic streaming, particularly under non-steady conditions. Results are discussed for channels...

  1. Bi-Directional Brillouin Optical Time Domain Analyzer System for Long Range Distributed Sensing.

    Science.gov (United States)

    Guo, Nan; Wang, Liang; Wang, Jie; Jin, Chao; Tam, Hwa-Yaw; Zhang, A Ping; Lu, Chao

    2016-12-16

    We propose and experimentally demonstrate a novel scheme of bi-directional Brillouin time domain analyzer (BD-BOTDA) to extend the sensing range. By deploying two pump-probe pairs at two different wavelengths, the Brillouin frequency shift (BFS) distribution over each half of the whole fiber can be obtained with the simultaneous detection of Brillouin signals in both channels. Compared to the conventional unidirectional BOTDA system of the same sensing range, the proposed BD-BOTDA scheme enables distributed sensing with a performance level comparable to the conventional one with half of the sensing range and a spatial resolution of 2 m, while maintaining the Brillouin signal-to-noise ratio (SNR) and the BFS uncertainty. Based on this technique, we have achieved distributed temperature sensing with a measurement range of 81.9 km fiber at a spatial resolution of 2 m and BFS uncertainty of ~0.44 MHz without introducing any complicated components or schemes.

  2. Improvement of training set structure in fusion data cleaning using Time-Domain Global Similarity method

    International Nuclear Information System (INIS)

    Liu, J.; Lan, T.; Qin, H.

    2017-01-01

    Traditional data cleaning identifies dirty data by classifying original data sequences, which is a class-imbalanced problem since the proportion of incorrect data is much less than the proportion of correct ones for most diagnostic systems in Magnetic Confinement Fusion (MCF) devices. When using machine learning algorithms to classify diagnostic data based on class-imbalanced training set, most classifiers are biased towards the major class and show very poor classification rates on the minor class. By transforming the direct classification problem about original data sequences into a classification problem about the physical similarity between data sequences, the class-balanced effect of Time-Domain Global Similarity (TDGS) method on training set structure is investigated in this paper. Meanwhile, the impact of improved training set structure on data cleaning performance of TDGS method is demonstrated with an application example in EAST POlarimetry-INTerferometry (POINT) system.

  3. Nonlinear seismic response analysis of embedded reactor buildings based on the substructure approach in time domain

    International Nuclear Information System (INIS)

    Hasegawa, M.; Nakai, S.; Watanabe, T.

    1985-01-01

    A practical method for elasto-plastic seismic response analysis is described under considerations of nonlinear material law of a structure and dynamic soil-structure interaction. The method is essentially based on the substructure approach of time domain analysis. Verification of the present method is carried out for typical BWR-MARK II type reactor building which is embedded in a soil, and the results are compared with those of the frequency response analysis which gives good accuracy for linear system. As a result, the present method exhibits sufficient accuracy. Furthermore, elasto-plastic analyses considering the soil-structure interaction are made as an application of the present method, and nonlinear behaviors of the structure and embedment effects are discussed. (orig.)

  4. Time-Reversal MUSIC Imaging with Time-Domain Gating Technique

    Science.gov (United States)

    Choi, Heedong; Ogawa, Yasutaka; Nishimura, Toshihiko; Ohgane, Takeo

    A time-reversal (TR) approach with multiple signal classification (MUSIC) provides super-resolution for detection and localization using multistatic data collected from an array antenna system. The theory of TR-MUSIC assumes that the number of antenna elements is greater than that of scatterers (targets). Furthermore, it requires many sets of frequency-domain data (snapshots) in seriously noisy environments. Unfortunately, these conditions are not practical for real environments due to the restriction of a reasonable antenna structure as well as limited measurement time. We propose an approach that treats both noise reduction and relaxation of the transceiver restriction by using a time-domain gating technique accompanied with the Fourier transform before applying the TR-MUSIC imaging algorithm. Instead of utilizing the conventional multistatic data matrix (MDM), we employ a modified MDM obtained from the gating technique. The resulting imaging functions yield more reliable images with only a few snapshots regardless of the limitation of the antenna arrays.

  5. Time-domain vibrational study on defects in ion-irradiated crystal

    International Nuclear Information System (INIS)

    Kitajima, M.

    2003-01-01

    We have studied the effects of point defects on coherent phonons in ion-implanted bismuth and graphite. Ultrafast dynamics of coherent phonons and photo-generated carriers in the femtosecond time-domain have been investigated by means of pump-probe reflectivity measurements. Point defects are introduced by irradiating graphite with 5 keV He + ions. For Bi the dephasing rate of the A 1g phonon increases linearly with increasing ion dose, which is explained by the additional dephasing process of the coherent phonon originated from scattering of phonons by the defects. For graphite, introduction of the defects enhances the carrier relaxation by opening a decay channel via vacancy-states, which competes efficiently with carrier-phonon scattering. The coherent acoustic phonon relaxation is also accelerated due to an additional scattering by defects. The linear fluence-dependence of the decay rate is understood as scattering of propagating acoustic phonon by single vacancies. (author)

  6. Time-Domain Reflectometry for Tamper Indication in Unattended Monitoring Systems for Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Tedeschi, Jonathan R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Leon E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moore, David E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sheen, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Conrad, Ryan C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    The International Atomic Energy Agency (IAEA) continues to expand its use of unattended, remotely monitored measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. Pacific Northwest National Laboratory (PNNL) leads a collaboration that is exploring various tamper-indicating (TI) measures that could help to address some of the long-standing detector and data-transmission authentication challenges with IAEA’s unattended systems. PNNL is investigating the viability of active time-domain reflectometry (TDR) along two parallel but interconnected paths: (1) swept-frequency TDR as the highly flexible, laboratory gold standard to which field-deployable options can be compared, and (2) a low-cost commercially available spread-spectrum TDR technology as one option for field implementation. This report describes PNNL’s progress and preliminary findings from the first year of the study, and describes the path forward.

  7. Identifying Mechanical Properties of Viscoelastic Materials in Time Domain Using the Fractional Zener Model

    Directory of Open Access Journals (Sweden)

    Ana Paula Delowski Ciniello

    Full Text Available Abstract The present paper aims at presenting a methodology for characterizing viscoelastic materials in time domain, taking into account the fractional Zener constitutive model and the influence of temperature through Williams, Landel, and Ferry’s model. To that effect, a set of points obtained experimentally through uniaxial tensile tests with different constant strain rates is considered. The approach is based on the minimization of the quadratic relative distance between the experimental stress-strain curves and the corresponding ones given by the theoretical model. In order to avoid the local minima in the process of optimization, a hybrid technique based on genetic algorithms and non-linear programming techniques is used. The methodology is applied in the characterization of two different commercial viscoelastic materials. The results indicate that the proposed methodology is effective in identifying thermorheologically simple viscoelastic materials.

  8. Study of a Miniaturized Quasi-Self-Complementary UWB Antenna in Frequency and Time Domain

    Directory of Open Access Journals (Sweden)

    L. Guo

    2009-12-01

    Full Text Available A compact antenna for UWB communication systems has been realized by employing a quasi-selfcomplementary structure together with a triangular notch on microstrip feed line in this paper. The optimal design of this type of antenna can offer an ultra wide return loss bandwidth with reasonable radiation properties. It features a quite small physical dimension of 16 mm x 25 mm, corresponding to an electrically size of 0.24 λ. A good agreement is achieved between the simulated and the measured antenna characteristics. The major parameters that influence the performance of the antenna are investigated numerically to gain an insight into the antenna operation. Time domain performance of the antenna is also examined in order to assess its suitability for impulse radio applications.

  9. Inspection of Asian Lacquer Substructures by Terahertz Time-Domain Imaging (THz-TDI)

    Science.gov (United States)

    Dandolo, Corinna Ludovica Koch; Fukunaga, Kaori; Kohzuma, Yoshei; Kiriyama, Kyoko; Matsuda, Kazutaka; Jepsen, Peter Uhd

    2017-04-01

    Lacquering is considered one of the most representative Asian artistic techniques. While the decorative part of lacquerwares is the lacquer itself, their substructures serve as the backbone of the object itself. Very little is known about these hidden substructures. Since lacquerwares are mostly composed of organic materials, such as urushi, wood, carbon black, and fabrics which are very X-ray transparent, standard X-ray radiography has some problems in achieving clear X-ray radiographic images. Therefore, we wanted to contribute to the understanding of the lacquer manufacturing technique by inspecting the substructures of Asian lacquerwares by means of THz time-domain imaging (THz-TDI). Three different kinds of Asian lacquerwares were examined by THz-TDI, and the outcomes have been compared with those obtained by standard X-radiography. THz-TDI provides unique information on lacquerwares substructures, aiding in the comprehension of the manufacturing technology yielding to these precious artefacts.

  10. An Analytical Time Domain Solution for the Forced Vibration Analysis of Thick-Walled Cylinders

    Directory of Open Access Journals (Sweden)

    Bashir Movahedian

    Full Text Available Abstract In this paper, we propose a time domain analytical solution for the forced vibration analysis of thick-walled hollow cylinders in presence of polar orthotropy. In this regard, solution of the governing equation is decomposed into two parts. The role of the first one is to satisfy boundary conditions utilizing the method of separation of variables besides of Fourier series expansion of the non-homogenous boundary conditions. The second part has been also expressed as the series of orthogonal characteristic functions with the aim of satisfaction of initial conditions. The proposed analytical solution has been implemented to evaluate the dynamic response of the cylinder in solution of some sample problems which are chosen from previous studies.

  11. Inverse calculation of biochemical oxygen demand models based on time domain for the tidal Foshan River.

    Science.gov (United States)

    Er, Li; Xiangying, Zeng

    2014-01-01

    To simulate the variation of biochemical oxygen demand (BOD) in the tidal Foshan River, inverse calculations based on time domain are applied to the longitudinal dispersion coefficient (E(x)) and BOD decay rate (K(x)) in the BOD model for the tidal Foshan River. The derivatives of the inverse calculation have been respectively established on the basis of different flow directions in the tidal river. The results of this paper indicate that the calculated values of BOD based on the inverse calculation developed for the tidal Foshan River match the measured ones well. According to the calibration and verification of the inversely calculated BOD models, K(x) is more sensitive to the models than E(x) and different data sets of E(x) and K(x) hardly affect the precision of the models.

  12. Ultrabroadband THz Time-Domain Spectroscopy of a Free-Flowing Water Film

    DEFF Research Database (Denmark)

    Wang, Tianwu; Pedersen, Pernille Klarskov; Jepsen, Peter Uhd

    2014-01-01

    of liquid water using two different THz-TDS setups. The extracted absorption coefficient and refractive index of water are in agreement with previous results reported in the literature. With this we show that the thin free-flowing liquid film is a versatile tool for windowless, ultrabroadband THz......We demonstrate quantitative ultrabroadband THz time-domain spectroscopy (THz-TDS) of water by application of a 17-$\\mu$m thick gravity-driven wire-guided flow jet of water. The thickness and stability of the water film is accurately measured by an optical intensity crosscorrelator, and the standard...... deviation of the film thickness is less than 500 nm. The cross section of the water film is found to have a biconcave cylindrical lens shape. By transmitting through such a thin film, we perform the first ultrabroadband (0.2–30 THz) THz-TDS across the strongest absorbing part of the infrared spectrum...

  13. Far-infrared characteristics of ZnS nanoparticles measured by terahertz time-domain spectroscopy.

    Science.gov (United States)

    Han, Jiaguang; Zhang, Weili; Chen, Wei; Thamizhmani, L; Azad, Abul K; Zhu, Zhiyuan

    2006-02-09

    The optical and dielectric properties of ZnS nanoparticles are studied by use of terahertz time-domain spectroscopy (THz-TDS) over the frequency range from 0.3 to 3.0 THz. The effective medium approach combined with the pseudo-harmonic model of the dielectric response, where nanoparticles are embedded in the host medium, provides a good fit on the experimental results. The extrapolation of the measured data indicates that the absorption is dominated by the transverse optical mode localized at 11.6+/-0.2 THz. Meanwhile, the low-frequency phonon resonance of ZnS nanoparticles is compared with the single-crystal ZnS. The THz-TDS clearly reveals the remarkable distinction in the low-frequency phonon resonances between ZnS nanoparticles and single-crystal ZnS. The results demonstrate that the acoustic phonons become confined in small-size nanoparticles.

  14. A hybrid method of estimating pulsating flow parameters in the space-time domain

    Science.gov (United States)

    Pałczyński, Tomasz

    2017-05-01

    This paper presents a method for estimating pulsating flow parameters in partially open pipes, such as pipelines, internal combustion engine inlets, exhaust pipes and piston compressors. The procedure is based on the method of characteristics, and employs a combination of measurements and simulations. An experimental test rig is described, which enables pressure, temperature and mass flow rate to be measured within a defined cross section. The second part of the paper discusses the main assumptions of a simulation algorithm elaborated in the Matlab/Simulink environment. The simulation results are shown as 3D plots in the space-time domain, and compared with proposed models of phenomena relating to wave propagation, boundary conditions, acoustics and fluid mechanics. The simulation results are finally compared with acoustic phenomena, with an emphasis on the identification of resonant frequencies.

  15. Rotation commensurate echo of asymmetric molecules—Molecular fingerprints in the time domain

    Energy Technology Data Exchange (ETDEWEB)

    Chesnokov, E. N., E-mail: chesnok@kinetics.nsc.ru [Institute of Chemical Kinetics and Combustion, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Kubarev, V. V. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Koshlyakov, P. V. [Institute of Chemical Kinetics and Combustion, Novosibirsk 630090 (Russian Federation)

    2014-12-29

    Using the pulses of terahertz free electron laser and ultra-fast Schottky diode detectors, we observed the coherent transients within a free induction decay of gaseous nitrogen dioxide NO{sub 2}. The laser excited different sub-bands of rotation spectra of NO{sub 2} containing about 50–70 lines. The free induction signal continued more than 30 ns and consisted of many echo-like bursts duration about 0.2 ns. Unlike the similar effect observed previously for linear and symmetric top molecules, the sequence of echo bursts is not periodic. The values for delay of individual echo are stable, and the set of these delays can be considered as a “molecular fingerprint” in the time domain.

  16. Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Robert K. Henderson

    2012-05-01

    Full Text Available We have successfully demonstrated video-rate CMOS single-photon avalanche diode (SPAD-based cameras for fluorescence lifetime imaging microscopy (FLIM by applying innovative FLIM algorithms. We also review and compare several time-domain techniques and solid-state FLIM systems, and adapt the proposed algorithms for massive CMOS SPAD-based arrays and hardware implementations. The theoretical error equations are derived and their performances are demonstrated on the data obtained from 0.13 μm CMOS SPAD arrays and the multiple-decay data obtained from scanning PMT systems. In vivo two photon fluorescence lifetime imaging data of FITC-albumin labeled vasculature of a P22 rat carcinosarcoma (BD9 rat window chamber are used to test how different algorithms perform on bi-decay data. The proposed techniques are capable of producing lifetime images with enough contrast.

  17. Time-Domain Functional Diffuse Optical Tomography System Based on Fiber-Free Silicon Photomultipliers

    Directory of Open Access Journals (Sweden)

    Andrea Farina

    2017-11-01

    Full Text Available Based on recent developments in both single-photon detectors and timing electronic circuits, we designed a compact and cost effective time-domain diffuse optical tomography system operated at 1 Hz acquisition rate, based on eight silicon photomultipliers and an 8-channel time-to-digital converter. The compact detectors are directly hosted on the probe in a circular arrangement around a single light injection fiber, so to maximize light harvesting. Tomography is achieved exploiting the depth sensitivity that is encoded in the arrival time of detected photons. The system performances were evaluated on simulations to assess possible the limitations arising from the use of a single injection point, and then on phantoms and in vivo to prove the eligibility of these technologies for diffuse optical tomography.

  18. Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy

    International Nuclear Information System (INIS)

    Fischer, B M; Walther, M; Jepsen, P Uhd

    2002-01-01

    The far-infrared dielectric function of a wide range of organic molecules is dominated by vibrations involving a substantial fraction of the atoms forming the molecule and motion associated with intermolecular hydrogen bond vibrations. Due to their collective nature such modes are highly sensitive to the intra- and intermolecular structure and thus provide a unique fingerprint of the conformational state of the molecule and effects of its environment. We demonstrate the use of terahertz time-domain spectroscopy (THz-TDS) for recording the far-infrared (0.5-4.0 THz) dielectric function of the four nucleobases and corresponding nucleosides forming the building blocks of deoxyribose nucleic acid (DNA). We observe numerous distinct spectral features with large differences between the molecules in both frequency-dependent absorption coefficient and index of refraction. Assisted by results from density-functional calculations we interpret the origin of the observed resonances as vibrations of hydrogen bonds between the molecules

  19. A new IEEE Std 1459-2000 - Compatible time-domain formulation for apparent power

    Energy Technology Data Exchange (ETDEWEB)

    de Almeida, Jose Eugenio Lopes; da Silveira, Paulo Marcio; de Abreu, Jose Policarpo Goncalves; Arango, Hector [Institute of Electrical Systems and Energy, Itajuba Federal University, Av. BPS, 1303, CEP 37 500-903 Itajuba, M.G. (Brazil)

    2009-04-15

    This paper presents the development of new time-domain equations related to the definition of apparent power. These equations are compatible with the IEEE Std 1459-2000 Standard. When the application of these formulations involves an adequate quantity of samples, thus obeying the Nyquist Criterion, they can be utilized without restrictions regarding distortion, imbalance and asymmetry. Thus, they may be used in numeric meters for power measurements. In addition, unlike the above-mentioned standard, they do not oversimplify with respect to the phase and neutral resistance ratio or the percentage of delta-connected and wye-connected loads. This paper uses these formulations to present several illustrative examples regarding the apparent power definition. Simulated cases have confirmed that both approaches, American and European, lead to similar results, which differ only if the voltage homopolar component is present. (author)

  20. Dispersive finite-difference time-domain (FDTD) analysis of the elliptic cylindrical cloak

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. Y.; Ahn, D. [University of Seoul, Seoul (Korea, Republic of)

    2012-05-15

    A dispersive full-wave finite-difference time-domain (FDTD) model is used to calculate the performance of elliptic cylindrical cloaking devices. The permittivity and the permeability tensors for the cloaking structure are derived by using an effective medium approach in general relativity. The elliptic cylindrical invisibility devices are found to show imperfect cloaking, and the cloaking performance is found to depend on the polarization of the incident waves, the direction of the propagation of those waves, the semi-focal distances and the loss tangents of the meta-material. When the semifocal distance of the elliptic cylinder decreases, the performance of the cloaking becomes very good, with neither noticeable scatterings nor field penetrations. For a larger semi-focal distance, only the TM wave with a specific propagation direction shows good cloaking performance. Realistic cloaking materials with loss still show a cloak that is working, but attenuated back-scattering waves exist.

  1. A new NMIS characteristic signature acquisition method based on time-domain fission correlation spectrum

    International Nuclear Information System (INIS)

    Wei Biao; Feng Peng; Yang Fan; Ren Yong

    2014-01-01

    To deal with the disadvantages of the homogeneous signature of the nuclear material identification system (NMIS) and limited methods to extract the characteristic parameters of the nuclear materials, an enhanced method using the combination of the Time-of-Flight (TOF) and the Pulse Shape Discrimination (PSD) was introduced into the traditional characteristic parameters extraction and recognition system of the NMIS. With the help of the PSD, the γ signal and the neutron signal can be discriminated. Further based on the differences of the neutron-γ flight time of the detectors in various positions, a new time-domain signature reflecting the position information of unknown nuclear material was investigated. The simulation result showed that the algorithm is feasible and helpful to identify the relative position of unknown nuclear material. (authors)

  2. Some aspects of time domain reflectometry, neutron scattering, and capacitance methods for soil water content measurement

    International Nuclear Information System (INIS)

    Evett, S.R.

    2000-01-01

    Soil-water measurements encounter particular problems related to the physics of the method used. For time domain reflectometry (TDR), these relate to wave form shape changes caused by soil, soil water, and TDR probe properties. Methods of wave form interpretation that overcome these problems are discussed and specific computer algorithms are presented. Neutron scattering is well understood, but calibration methods remain critical to accuracy and precision, and are discussed with recommendations for field calibration and use. Capacitance probes tend to exhibit very small radii of influence, thus are sensitive to small-scale changes in soil properties, and are difficult or impossible to field calibrate. Field comparisons of neutron and capacitance probes are presented. (author)

  3. A time-domain method to generate artificial time history from a given reference response spectrum

    International Nuclear Information System (INIS)

    Shin, Gang Sik; Song, Oh Seop

    2016-01-01

    Seismic qualification by test is widely used as a way to show the integrity and functionality of equipment that is related to the overall safety of nuclear power plants. Another means of seismic qualification is by direct integration analysis. Both approaches require a series of time histories as an input. However, in most cases, the possibility of using real earthquake data is limited. Thus, artificial time histories are widely used instead. In many cases, however, response spectra are given. Thus, most of the artificial time histories are generated from the given response spectra. Obtaining the response spectrum from a given time history is straightforward. However, the procedure for generating artificial time histories from a given response spectrum is difficult and complex to understand. Thus, this paper presents a simple time-domain method for generating a time history from a given response spectrum; the method was shown to satisfy conditions derived from nuclear regulatory guidance

  4. The analysis of reactively loaded microstrip antennas by finite difference time domain modelling

    Science.gov (United States)

    Hilton, G. S.; Beach, M. A.; Railton, C. J.

    1990-01-01

    In recent years, much interest has been shown in the use of printed circuit antennas in mobile satellite and communications terminals at microwave frequencies. Although such antennas have many advantages in weight and profile size over more conventional reflector/horn configurations, they do, however, suffer from an inherently narrow bandwidth. A way of optimizing the bandwidth of such antennas by an electronic tuning technique using a loaded probe mounted within the antenna structure is examined, and the resulting far-field radiation patterns are shown. Simulation results from a 2D finite difference time domain (FDTD) model for a rectangular microstrip antenna loaded with shorting pins are given and compared to results obtained with an actual antenna. It is hoped that this work will result in a design package for the analysis of microstrip patch antenna elements.

  5. Investigation of Ag2O Thermal Decomposition by Terahertz Time-Domain Spectroscopy

    International Nuclear Information System (INIS)

    Hua, Chen; Li, Wang

    2009-01-01

    Application of terahertz time-domain spectroscopy is demonstrated to study the process of Ag 2 O thermal decomposition. In the process of decomposition, the time-resolved signals are characterized by broad oscillations and decreased intensity, and THz pulse essentially contains two broad spectral components: one centered at around 0.35 THz and a band with a maximum at around 0.81 THz shift to 0.71 THz. Optical absorption spectra of different specimens are studied in the frequency range 0.3–1.4 THz and the data are analyzed by the relevant theory of the effective medium approach combined with the Drude–Lorentz model. The analysis suggests that optical properties stem from the Drude term for the metallic phase and the Lorentz term for the insulator phase in the complex system. (fundamental areas of phenomenology(including applications))

  6. Quantify Glucose Level in Freshly Diabetic's Blood by Terahertz Time-Domain Spectroscopy

    Science.gov (United States)

    Chen, Hua; Chen, Xiaofeng; Ma, Shihua; Wu, Xiumei; Yang, Wenxing; Zhang, Weifeng; Li, Xiao

    2018-04-01

    We demonstrate the capability of terahertz (THz) time-domain spectroscopy (TDS) to quantify glucose level in ex vivo freshly diabetic's blood. By investigating the THz spectra of different human blood, we find out THz absorption coefficients reflect a high sensitivity to the glucose level in blood. With a quantitative analysis of 70 patients, we demonstrate that the THz absorption coefficients and the blood glucose levels perform a linear relationship. A comparative experiment between THz measurement and glucometers is also conducted with another 20 blood samples, and the results confirm that the relative error is as less as 15%. Our ex vivo human blood study indicates that THz technique has great potential application to diagnose blood glucose level in clinical practice.

  7. Time domain spectral phase encoding/DPSK data modulation using single phase modulator for OCDMA application.

    Science.gov (United States)

    Wang, Xu; Gao, Zhensen; Kataoka, Nobuyuki; Wada, Naoya

    2010-05-10

    A novel scheme using single phase modulator for simultaneous time domain spectral phase encoding (SPE) signal generation and DPSK data modulation is proposed and experimentally demonstrated. Array- Waveguide-Grating and Variable-Bandwidth-Spectrum-Shaper based devices can be used for decoding the signal directly in spectral domain. The effects of fiber dispersion, light pulse width and timing error on the coding performance have been investigated by simulation and verified in experiment. In the experiment, SPE signal with 8-chip, 20GHz/chip optical code patterns has been generated and modulated with 2.5 Gbps DPSK data using single modulator. Transmission of the 2.5 Gbps data over 34km fiber with BEROCDMA) and secure optical communication applications. (c) 2010 Optical Society of America.

  8. On spurious resonant modes in the MOT solution of time domain EFIE

    KAUST Repository

    Shi, Yifei

    2013-07-01

    Theoretically, internal resonant modes should not be induced in the marching-on-in-time (MOT) solution of the time domain electric field integral equation since zero initial conditions are enforced at the beginning of time marching and the internal resonant modes do not satisfy these initial conditions. However, these spurious modes are always observed in the MOT solution. It has been conjectured in the past that numerical errors might establish the necessary initial conditions and allow the incident field to induce the internal resonant modes. Systematic numerical experiments carried out in this work prove this conjecture by demonstrating that the internal resonant modes\\' amplitudes are indeed dictated by the numerical errors and the spectrum of the incident field. © 2013 IEEE.

  9. On the DC loop modes in the MOT solution of the time domain EFIE

    KAUST Repository

    Shi, Yifei

    2014-07-01

    When marching-on-in-time (MOT) method is applied to solve the time domain electric field integral equation (TD-EFIE), DC loop modes are always observed in the solution. In theory these modes should not be observed since they do not satisfy the relaxed initial conditions. Their appearance is attributed to numerical errors. It is shown here that when Rao-Wilton-Glisson basis and Lagrange interpolation functions are used to discretize the TD-EFIE, errors due to this space-time discretization have zero impact on the DC loop modes. Numerical experiments demonstrate that the numerical errors due to approximate solution of the MOT matrix system have more dominant impact on DC loop modes in the MOT solution.

  10. Parallel, explicit, and PWTD-enhanced time domain volume integral equation solver

    KAUST Repository

    Liu, Yang

    2013-07-01

    Time domain volume integral equations (TDVIEs) are useful for analyzing transient scattering from inhomogeneous dielectric objects in applications as varied as photonics, optoelectronics, and bioelectromagnetics. TDVIEs typically are solved by implicit marching-on-in-time (MOT) schemes [N. T. Gres et al., Radio Sci., 36, 379-386, 2001], requiring the solution of a system of equations at each and every time step. To reduce the computational cost associated with such schemes, [A. Al-Jarro et al., IEEE Trans. Antennas Propagat., 60, 5203-5215, 2012] introduced an explicit MOT-TDVIE method that uses a predictor-corrector technique to stably update field values throughout the scatterer. By leveraging memory-efficient nodal spatial discretization and scalable parallelization schemes [A. Al-Jarro et al., in 28th Int. Rev. Progress Appl. Computat. Electromagn., 2012], this solver has been successfully applied to the analysis of scattering phenomena involving 0.5 million spatial unknowns. © 2013 IEEE.

  11. A VLSI Implementation of Rank-Order Searching Circuit Employing a Time-Domain Technique

    Directory of Open Access Journals (Sweden)

    Trong-Tu Bui

    2013-01-01

    Full Text Available We present a compact and low-power rank-order searching (ROS circuit that can be used for building associative memories and rank-order filters (ROFs by employing time-domain computation and floating-gate MOS techniques. The architecture inherits the accuracy and programmability of digital implementations as well as the compactness and low-power consumption of analog ones. We aim to implement identification function as the first priority objective. Filtering function would be implemented once the location identification function has been carried out. The prototype circuit was designed and fabricated in a 0.18 μm CMOS technology. It consumes only 132.3 μW for an eight-input demonstration case.

  12. Research of biological liquid albumin based on terahertz time domain spectroscopy

    Science.gov (United States)

    Yang, Shuai; Liu, Shang-jian; Zuo, Jian; Zhang, Cun-lin

    2016-11-01

    There is no corresponding fingerprint characteristic spectrum detecting complex ensemble biological samples in liquid, in the paper, such urine of kidney disease patients as samples of the research, using terahertz time-domain spectroscopy emphatically explores response characteristics of the urine albumin in the terahertz spectrum characteristics, and combined with stoichiometric method, we find a certain kind of relationship between terahertz spectrum data and the content of urine albumin, which offsets the defects of other spectroscopy in measuring liquid protein, and in accordance with hospital clinical data. This study established a semi-qualitative method of using terahertz spectroscopy in detecting non-purification of biological liquid sample, which provides a simple, nondestructive, cheap and fast reference method in identifying the early nephropathy for medical test.

  13. A 2D Time Domain DRBEM Computer Model for MagnetoThermoelastic Coupled Wave Propagation Problems

    Directory of Open Access Journals (Sweden)

    Mohamed Abdelsabour Fahmy

    2014-07-01

    Full Text Available A numerical computer model based on the dual reciprocity boundary element method (DRBEM is extended to study magneto-thermoelastic coupled wave propagation problems with relaxation times involving anisotropic functionally graded solids. The model formulation is tested through its application to the problem of a solid placed in a constant primary magnetic field acting in the direction of the z-axis and rotating about this axis with a constant angular velocity. In the case of two-dimensional deformation, an implicit-explicit time domain DRBEM was presented and implemented to obtain the solution for the displacement and temperature fields. A comparison of the results is presented graphically in the context of Lord and Shulman (LS and Green and Lindsay (GL theories. Numerical results that demonstrate the validity of the proposed method are also presented graphically.

  14. Using the time domain reflectometer to check for a locate a fault

    International Nuclear Information System (INIS)

    Ramphal, M.; Sadok, E.

    1995-01-01

    The Time Domain Reflectometer (TDR) is one of the most useful tools for finding cable faults (opens, shorts, bad cable splices). The TDR is connected to the end of the line and shows the distance to the fault. It uses a low voltage signal that will not damage the line or interfere with nearby lines. The TDR sends a pulse or energy down the cable under test; when the pulse encounters the end of the cable or any cable fault, a portion of the pulse energy is reflected. The elapsed time of the reflected pulse is and indication of the distance to the fault. The shape of the reflected pulse uniquely identifies the type of cable fault. (author)

  15. Time domain simulation of Gd3+-Gd3+ distance measurements by EPR

    Science.gov (United States)

    Manukovsky, Nurit; Feintuch, Akiva; Kuprov, Ilya; Goldfarb, Daniella

    2017-07-01

    Gd3+-based spin labels are useful as an alternative to nitroxides for intramolecular distance measurements at high fields in biological systems. However, double electron-electron resonance (DEER) measurements using model Gd3+ complexes featured a low modulation depth and an unexpected broadening of the distance distribution for short Gd3+-Gd3+ distances, when analysed using the software designed for S = 1/2 pairs. It appears that these effects result from the different spectroscopic characteristics of Gd3+—the high spin, the zero field splitting (ZFS), and the flip-flop terms in the dipolar Hamiltonian that are often ignored for spin-1/2 systems. An understanding of the factors affecting the modulation frequency and amplitude is essential for the correct analysis of Gd3+-Gd3+ DEER data and for the educated choice of experimental settings, such as Gd3+ spin label type and the pulse parameters. This work uses time-domain simulations of Gd3+-Gd3+ DEER by explicit density matrix propagation to elucidate the factors shaping Gd3+ DEER traces. The simulations show that mixing between the |+½, -½> and |-½, +½> states of the two spins, caused by the flip-flop term in the dipolar Hamiltonian, leads to dampening of the dipolar modulation. This effect may be mitigated by a large ZFS or by pulse frequency settings allowing for a decreased contribution of the central transition and the one adjacent to it. The simulations reproduce both the experimental line shapes of the Fourier-transforms of the DEER time domain traces and the trends in the behaviour of the modulation depth, thus enabling a more systematic design and analysis of Gd3+ DEER experiments.

  16. Time-domain soil-structure interaction analysis of nuclear facilities

    International Nuclear Information System (INIS)

    Coleman, Justin L.; Bolisetti, Chandrakanth; Whittaker, Andrew S.

    2016-01-01

    The Nuclear Regulatory Commission (NRC) regulation 10 CFR Part 50 Appendix S requires consideration of soil-structure interaction (SSI) in nuclear power plant (NPP) analysis and design. Soil-structure interaction analysis for NPPs is routinely carried out using guidance provided in the ASCE Standard 4-98 titled “Seismic Analysis of Safety-Related Nuclear Structures and Commentary”. This Standard, which is currently under revision, provides guidance on linear seismic soil-structure-interaction (SSI) analysis of nuclear facilities using deterministic and probabilistic methods. A new appendix has been added to the forthcoming edition of ASCE Standard 4 to provide guidance for time-domain, nonlinear SSI (NLSSI) analysis. Nonlinear SSI analysis will be needed to simulate material nonlinearity in soil and/or structure, static and dynamic soil pressure effects on deeply embedded structures, local soil failure at the foundation-soil interface, nonlinear coupling of soil and pore fluid, uplift or sliding of the foundation, nonlinear effects of gaps between the surrounding soil and the embedded structure and seismic isolation systems, none of which can be addressed explicitly at present. Appendix B of ASCE Standard 4 provides general guidance for NLSSI analysis but will not provide a methodology for performing the analysis. This paper provides a description of an NLSSI methodology developed for application to nuclear facilities, including NPPs. This methodology is described as series of sequential steps to produce reasonable results using any time-domain numerical code. These steps require some numerical capabilities, such as nonlinear soil constitutive models, which are also described in the paper.

  17. Time-domain Astronomy with the Advanced X-ray Imaging Satellite

    Science.gov (United States)

    Winter, Lisa M.; Vestrand, Tom; Smith, Karl; Kippen, Marc; Schirato, Richard

    2018-01-01

    The Advanced X-ray Imaging Satellite (AXIS) is a concept NASA Probe class mission that will enable time-domain X-ray observations after the conclusion of the successful Swift Gamma-ray burst mission. AXIS will achieve rapid response, like Swift, with an improved X-ray monitoring capability through high angular resolution (similar to the 0.5 arc sec resolution of the Chandra X-ray Observatory) and high sensitivity (ten times the Chandra count rate) observations in the 0.3-10 keV band. In the up-coming decades, AXIS’s fast slew rate will provide the only rapid X-ray capability to study explosive transient events. Increased ground-based monitoring with next-generation survey telescopes like the Large Synoptic Survey Telescope will provide a revolution in transient science through the discovery of many new known and unknown phenomena – requiring AXIS follow-ups to establish the highest energy emission from these events. This synergy between AXIS and ground-based detections will constrain the rapid rise through decline in energetic emission from numerous transients including: supernova shock breakout winds, gamma-ray burst X-ray afterglows, ionized gas resulting from the activation of a hidden massive black hole in tidal disruption events, and intense flares from magnetic reconnection processes in stellar coronae. Additionally, the combination of high sensitivity and angular resolution will allow deeper and more precise monitoring for prompt X-ray signatures associated with gravitational wave detections. We present a summary of time-domain science with AXIS, highlighting its capabilities and expected scientific gains from rapid high quality X-ray imaging of transient phenomena.

  18. Sedimentation in Particulate Aqueous Suspensions as studied by means of Dielectric Time Domain Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Bjoernar Hauknes

    1997-12-31

    Many problems in offshore oil production and multiphase transport are related to surface and colloid chemistry. This thesis applies dielectric spectroscopy as an experimental technique to study the behaviour of particle suspensions in polar media. The thesis opens with an introduction to suspensions and time domain dielectric spectroscopy. It then investigates the dielectric properties of silica and alumina dispersed in polar solvents. It is found that theoretical models can be used to calculate the volume fraction disperse phase in the suspension and that the particle sedimentation depends on the wetting of the particles, charge on the particle surface and viscosity of the solvent, and that this dependency can be measured by time domain dielectric spectroscopy. When the surface properties of silica and alumina particles were modified by coating them with a non-ionic polymer and a non-ionic surfactant, then different degrees of packing in the sedimented phase at the bottom of the sedimentation vessel occurred. Chemometrical methods on the synthesis of monodisperse silica particles were used to investigate what factors influence the particle size. It turned out that it is insufficient to consider only main variables when discussing the results of the synthesis. By introducing interaction terms, the author could explain the variation in the size of particles synthesized. The difference in the sedimentation rate of monodisperse silica particles upon variation of volume fraction particles, pH, salinity, amount of silanol groups at the particle surface and temperature was studied. The cross interactions play an important role and a model explaining the variation in sedimentation is introduced. Finally, magnetic particles dispersed in water and in an external magnetic field were used to study the impact on the sedimentation due to the induced flocculation. 209 refs., 90 figs., 9 tabs.

  19. The Time-domain Spectroscopic Survey: Target Selection for Repeat Spectroscopy

    Science.gov (United States)

    MacLeod, Chelsea L.; Green, Paul J.; Anderson, Scott F.; Eracleous, Michael; Ruan, John J.; Runnoe, Jessie; Nielsen Brandt, William; Badenes, Carles; Greene, Jenny; Morganson, Eric; Schmidt, Sarah J.; Schwope, Axel; Shen, Yue; Amaro, Rachael; Lebleu, Amy; Filiz Ak, Nurten; Grier, Catherine J.; Hoover, Daniel; McGraw, Sean M.; Dawson, Kyle; Hall, Patrick B.; Hawley, Suzanne L.; Mariappan, Vivek; Myers, Adam D.; Pâris, Isabelle; Schneider, Donald P.; Stassun, Keivan G.; Bershady, Matthew A.; Blanton, Michael R.; Seo, Hee-Jong; Tinker, Jeremy; Fernández-Trincado, J. G.; Chambers, Kenneth; Kaiser, Nick; Kudritzki, R.-P.; Magnier, Eugene; Metcalfe, Nigel; Waters, Chris Z.

    2018-01-01

    As astronomers increasingly exploit the information available in the time domain, spectroscopic variability in particular opens broad new channels of investigation. Here we describe the selection algorithms for all targets intended for repeat spectroscopy in the Time Domain Spectroscopic Survey (TDSS), part of the extended Baryon Oscillation Spectroscopic Survey within the Sloan Digital Sky Survey (SDSS)-IV. Also discussed are the scientific rationale and technical constraints leading to these target selections. The TDSS includes a large “repeat quasar spectroscopy” (RQS) program delivering ∼13,000 repeat spectra of confirmed SDSS quasars, and several smaller “few-epoch spectroscopy” (FES) programs targeting specific classes of quasars as well as stars. The RQS program aims to provide a large and diverse quasar data set for studying variations in quasar spectra on timescales of years, a comparison sample for the FES quasar programs, and an opportunity for discovering rare, serendipitous events. The FES programs cover a wide variety of phenomena in both quasars and stars. Quasar FES programs target broad absorption line quasars, high signal-to-noise ratio normal broad line quasars, quasars with double-peaked or very asymmetric broad emission line profiles, binary supermassive black hole candidates, and the most photometrically variable quasars. Strongly variable stars are also targeted for repeat spectroscopy, encompassing many types of eclipsing binary systems, and classical pulsators like RR Lyrae. Other stellar FES programs allow spectroscopic variability studies of active ultracool dwarf stars, dwarf carbon stars, and white dwarf/M dwarf spectroscopic binaries. We present example TDSS spectra and describe anticipated sample sizes and results.

  20. Study of stability of time-domain features for electromyographic pattern recognition

    Directory of Open Access Journals (Sweden)

    Huang He

    2010-05-01

    Full Text Available Abstract Background Significant progress has been made towards the clinical application of human-machine interfaces (HMIs based on electromyographic (EMG pattern recognition for various rehabilitation purposes. Making this technology practical and available to patients with motor deficits requires overcoming real-world challenges, such as physical and physiological changes, that result in variations in EMG signals and systems that are unreliable for long-term use. In this study, we aimed to address these challenges by (1 investigating the stability of time-domain EMG features during changes in the EMG signals and (2 identifying the feature sets that would provide the most robust EMG pattern recognition. Methods Variations in EMG signals were introduced during physical experiments. We identified three disturbances that commonly affect EMG signals: EMG electrode location shift, variation in muscle contraction effort, and muscle fatigue. The impact of these disturbances on individual features and combined feature sets was quantified by changes in classification performance. The robustness of feature sets was evaluated by a stability index developed in this study. Results Muscle fatigue had the smallest effect on the studied EMG features, while electrode location shift and varying effort level significantly reduced the classification accuracy for most of the features. Under these disturbances, the most stable EMG feature set with combination of four features produced at least 16.0% higher classification accuracy than the least stable set. EMG autoregression coefficients and cepstrum coefficients showed the most robust classification performance of all studied time-domain features. Conclusions Selecting appropriate EMG feature combinations can overcome the impact of the studied disturbances on EMG pattern classification to a certain extent; however, this simple solution is still inadequate. Stabilizing electrode contact locations and developing

  1. From blackbirds to black holes: Investigating capture-recapture methods for time domain astronomy

    Science.gov (United States)

    Laycock, Silas G. T.

    2017-07-01

    In time domain astronomy, recurrent transients present a special problem: how to infer total populations from limited observations. Monitoring observations may give a biassed view of the underlying population due to limitations on observing time, visibility and instrumental sensitivity. A similar problem exists in the life sciences, where animal populations (such as migratory birds) or disease prevalence, must be estimated from sparse and incomplete data. The class of methods termed Capture-Recapture is used to reconstruct population estimates from time-series records of encounters with the study population. This paper investigates the performance of Capture-Recapture methods in astronomy via a series of numerical simulations. The Blackbirds code simulates monitoring of populations of transients, in this case accreting binary stars (neutron star or black hole accreting from a stellar companion) under a range of observing strategies. We first generate realistic light-curves for populations of binaries with contrasting orbital period distributions. These models are then randomly sampled at observing cadences typical of existing and planned monitoring surveys. The classical capture-recapture methods, Lincoln-Peterson, Schnabel estimators, related techniques, and newer methods implemented in the Rcapture package are compared. A general exponential model based on the radioactive decay law is introduced which is demonstrated to recover (at 95% confidence) the underlying population abundance and duty cycle, in a fraction of the observing visits (10-50%) required to discover all the sources in the simulation. Capture-Recapture is a promising addition to the toolbox of time domain astronomy, and methods implemented in R by the biostats community can be readily called from within python.

  2. Experimentally achieving borehole antenna radar directivity in the time domain in the presence of strong mutual coupling

    CSIR Research Space (South Africa)

    Vogt, D

    2008-06-01

    Full Text Available published borehole radar antennas have achieved directivity by post processing data received in the frequency domain, or by constructing an aperture antenna, where borehole dimensions allowed this. In this paper, a time-domain technique is investigated...

  3. Comparison of soil water measurement using the neutron scattering, time domain reflectometry and capacitance methods. Results of a consultants meeting

    International Nuclear Information System (INIS)

    2000-02-01

    Soil water measurement based on neutron scattering has been a valuable tool for the past 40 years because it possesses many of the above mentioned qualities. However, licensing, training of users and safety regulations pertaining to the radioactive source in these devices make their use preventive and expensive in some situations such as unattended monitoring. Disposal of gauges is also increasingly expensive. In past years, the high dielectric constant property of water at high frequencies has been used as the basis to estimate the soil water content. The two major techniques that make use of this property are the capacitance sensors and time domain reflectometry (TDR). The capacitance approach makes use of radio frequencies for determining soil dielectric constant and thus its water content. Significant progress has been made in this approach, with the ability to carry out profile measurement in recent improvement. However, poor precision, dependant on soil types, salinity and temperature are some of the concern relating to the method, making its use difficult for routine soil water measurements. The TDR measures the propagation of an electromagnetic pulse along the transmission lines (wave guides). By measuring the travel time, the velocity and hence the apparent dielectric constant of the soil can be estimated. This then allows the water content of the soil to be determined. Major advances in TDR equipment, probe configurations, data logging and multiplexing, make this a promising technique for point specific monitoring of soil water. In view of the restrictive use of neutron probes, the rapid advancement and the decreasing cost of the non-nuclear methods in recent years, there is a need to compare these methodologies in order to formulate recommendations and establish guidelines for future uses. The objectives of the consultants meeting, as defined by the IAEA in agreement with its mandate, were: To compare the advantages and disadvantages in the various soil

  4. SkyDOT (Sky Database for Objects in the Time Domain): A Virtual Observatory for Variability Studies at LANL

    OpenAIRE

    Wozniak, P.; Borozdin, K.; Galassi, M.; Priedhorsky, W.; Starr, D.; Vestrand, W. T.; White, R.; Wren, J.

    2002-01-01

    The mining of Virtual Observatories (VOs) is becoming a powerful new method for discovery in astronomy. Here we report on the development of SkyDOT (Sky Database for Objects in the Time domain), a new Virtual Observatory, which is dedicated to the study of sky variability. The site will confederate a number of massive variability surveys and enable exploration of the time domain in astronomy. We discuss the architecture of the database and the functionality of the user interface. An important...

  5. FDTD Modelling of Electromagnetic waves in Stratified Medium ...

    African Journals Online (AJOL)

    The technique is an adaptation of the finite-difference time domain (FDTD) approach usually applied to model electromagnetic wave propagation. In this paper a simple 2D implementation of FDTD algorithm in mathematica environment is presented. Source implementation and the effect of conductivity on the incident field ...

  6. Applied Electromagnetics

    International Nuclear Information System (INIS)

    Yamashita, H.; Marinova, I.; Cingoski, V.

    2002-01-01

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics

  7. Electromagnetic Attraction.

    Science.gov (United States)

    Milson, James L.

    1990-01-01

    Three activities involving electromagnetism are presented. Discussed are investigations involving the construction of an electromagnet, the effect of the number of turns of wire in the magnet, and the effect of the number of batteries in the circuit. Extension activities are suggested. (CW)

  8. Multiorder etalon sounder (MOES) development and test for balloon experiment

    Science.gov (United States)

    Hays, Paul B.; Wnag, Jinxue; Wu, Jian

    1993-12-01

    The Fabry-Perot interferometer (FPI), with its high throughput and high spectral resolution has been used in the remote-sensing measurements of the earth's atmospheric composition, winds, and temperatures. The most recent satellite instruments include the Fabry-Perot interferometer flown on the Dynamics Explorer-2 (DE-2), the High Resolution Doppler Imager (HRDI), and the Cryogenic Limb Array Etalon Spectrometer (CLAES) flown on the Upper Atmosphere Research Satellite (UARS). These instruments measure the Doppler line profiles of the emission and absorption of certain atmospheric species (such as atomic oxygen) in the visible and infrared spectral region. The successful space flight of DE-FPI, HRDI, and CLAES on UARS demonstrated the extremely high spectral resolution and ruggedness of the etalon system for the remote sensing of earth and planetary atmospheres. Recently, an innovative FPI focal plane detection technique called the Circle-to-Line Interferometer Optical (CLIO) system was invented at the Space Physics Research Laboratory. The CLIO simplifies the FPI focal plane detection process by converting the circular rings or fringes into a linear pattern similar to that produced by a conventional spectrometer, while retaining the throughput advantage of the etalon interferometer. The combination of FPI and CLIO allows the development of more sensitive Fabry-Perot interferometers in the infrared for the remote sensing of the lower atmospheres of Earth and possibly other planets. The Multiorder Etalon Sounder (MOES), a combination of the rugged etalon and the CLIO, compares very favorably to other space-borne optical instruments in terms of performance versus complexity. The new instrument is expected to be rugged, compact, and very suitable for an operational temperature and moisture sounder. With this technique, the contamination of radiance measurements by emissions of other gases is also minimized. At the Space Physics Research Laboratory (SPRL), the MOES

  9. Electromagnetic interactions

    CERN Document Server

    Bosanac, Slobodan Danko

    2016-01-01

    This book is devoted to theoretical methods used in the extreme circumstances of very strong electromagnetic fields. The development of high power lasers, ultrafast processes, manipulation of electromagnetic fields and the use of very fast charged particles interacting with other charges requires an adequate theoretical description. Because of the very strong electromagnetic field, traditional theoretical approaches, which have primarily a perturbative character, have to be replaced by descriptions going beyond them. In the book an extension of the semi-classical radiation theory and classical dynamics for particles is performed to analyze single charged atoms and dipoles submitted to electromagnetic pulses. Special attention is given to the important problem of field reaction and controlling dynamics of charges by an electromagnetic field.

  10. Nonlinear Time Domain Seismic Soil-Structure Interaction (SSI) Deep Soil Site Methodology Development

    International Nuclear Information System (INIS)

    Spears, Robert Edward; Coleman, Justin Leigh

    2015-01-01

    Currently the Department of Energy (DOE) and the nuclear industry perform seismic soil-structure interaction (SSI) analysis using equivalent linear numerical analysis tools. For lower levels of ground motion, these tools should produce reasonable in-structure response values for evaluation of existing and new facilities. For larger levels of ground motion these tools likely overestimate the in-structure response (and therefore structural demand) since they do not consider geometric nonlinearities (such as gaping and sliding between the soil and structure) and are limited in the ability to model nonlinear soil behavior. The current equivalent linear SSI (SASSI) analysis approach either joins the soil and structure together in both tension and compression or releases the soil from the structure for both tension and compression. It also makes linear approximations for material nonlinearities and generalizes energy absorption with viscous damping. This produces the potential for inaccurately establishing where the structural concerns exist and/or inaccurately establishing the amplitude of the in-structure responses. Seismic hazard curves at nuclear facilities have continued to increase over the years as more information has been developed on seismic sources (i.e. faults), additional information gathered on seismic events, and additional research performed to determine local site effects. Seismic hazard curves are used to develop design basis earthquakes (DBE) that are used to evaluate nuclear facility response. As the seismic hazard curves increase, the input ground motions (DBE's) used to numerically evaluation nuclear facility response increase causing larger in-structure response. As ground motions increase so does the importance of including nonlinear effects in numerical SSI models. To include material nonlinearity in the soil and geometric nonlinearity using contact (gaping and sliding) it is necessary to develop a nonlinear time domain methodology. This

  11. The JWST North Ecliptic Pole Survey Field for Time-domain Studies

    Science.gov (United States)

    Jansen, Rolf A.; Webb Medium Deep Fields IDS GTO Team, the NEPTDS-VLA/VLBA Team, and the NEPTDS-Chandra Team

    2017-06-01

    The JWST North Ecliptic Pole (NEP) Survey field is located within JWST's northern Continuous Viewing Zone, will span ~14‧ in diameter (~10‧ with NIRISS coverage) and will be roughly circular in shape (initially sampled during Cycle 1 at 4 distinct orientations with JWST/NIRCam's 4.4‧×2.2‧ FoV —the JWST "windmill") and will have NIRISS slitless grism spectroscopy taken in parallel, overlapping an alternate NIRCam orientation. This is the only region in the sky where JWST can observe a clean extragalactic deep survey field (free of bright foreground stars and with low Galactic foreground extinction AV) at arbitrary cadence or at arbitrary orientation. This will crucially enable a wide range of new and exciting time-domain science, including high redshift transient searches and monitoring (e.g., SNe), variability studies from Active Galactic Nuclei to brown dwarf atmospheres, as well as proper motions of extreme scattered Kuiper Belt and Oort Cloud Objects, and of nearby Galactic brown dwarfs, low-mass stars, and ultracool white dwarfs. We therefore welcome and encourage follow-up through GO programs of the initial GTO observations to realize its potential as a JWST time-domain community field. The JWST NEP Survey field was selected from an analysis of WISE 3.4+4.6 μm, 2MASS JHKs, and SDSS ugriz source counts and of Galactic foreground extinction, and is one of very few such ~10‧ fields that are devoid of sources brighter than mAB = 16 mag. We have secured deep (mAB ~ 26 mag) wide-field (~23‧×25‧) Ugrz images of this field and its surroundings with LBT/LBC. We also expect that deep MMT/MMIRS YJHK images, deep 3-4.5 GHz VLA and VLBA radio observations, and possibly HST ACS/WFC and WFC3/UVIS ultraviolet-visible (pending) and Chandra/ACIS X-ray (pending) images will be available before JWST launches in Oct 2018.

  12. Time Domain Reflectometry and Electrical Resistivity Tomography applications for optimizing water use in irrigation

    Science.gov (United States)

    Satriani, A.; Loperte, A.; Catalano, M.

    2012-04-01

    This abstract deals with the joint use of the Time Domain Reflectometry (TDR) and Electrical Resistivity Tomography (ERT) for soil moisture monitoring and spatial distribution estimation in agriculture. In fact, an effective use of irrigation water for a sustainable agriculture helps to cut irrigation cost and the exploitation of technologies for water resource monitoring and management can help to achieve this objective. The work has regarded a flat experimental vegetable area of about 1000 m2 with the bean crop (Phaseolus vulgaris L), which was an subdivided in two adjacent plots of land five meters distant each from other. From sowing and for the whole cultural cycle, irrigation monitoring was performed by using non-invasive surveys, based on measurements of physical properties of the soil, as the dielectric constant and the electrical resistivity. A drip irrigation system was used with the water pumped by a nearby water reserve, represented by a small artificial lake, but a different irrigation treatment was performed for each plot. In the plot A, the irrigation water supply was managed by the farmer, with an intensive irrigation treatment. Differently, in the plot B, the irrigation water supply was decided on the basis of the results of the TDR and ERT surveys. In particular, the amount and the time of irrigation were determined on the basis of the measurements of physical properties of the soil using TDR and ERT, with a specific focus to the soil moisture content estimation and spatial distribution . In fact, during the crop cycle, the soil moisture was measured weekly before and after irrigation, by a 20 cm vertical time domain reflectometry probe located at the center and at the ends of the bean rows. Moreover, the soil water distribution was determined by an electrical resistivity tomography using a multielectrode method. On the basis of the TDR and ERT results, a reduced water supply was performed, which did not affect the bean yield, and moreover

  13. How Strong is the Case for Geostationary Hyperspectral Sounders?

    Science.gov (United States)

    Kirk-Davidoff, D. B.; Liu, Z.; Jensen, S.; Housley, E.

    2014-12-01

    The NASA GIFTS program designed and constructed a flight-ready hyperspectral infrared sounder for geostationary orbit. Efforts are now underway to launch a constellation of similar instruments. Salient characteristics included 4 km spatial resolution at nadir and 0.6 cm-1 spectral resolution in two infrared bands. Observing system experiments have demonstrated the success of assimilated hyperspectral infrared radiances from IASI and AIRS in improving weather forecast skill. These results provide circumstantial evidence that additional observations at higher spatial and temporal resolution would likely improve forecast skill further. However, there is only limited work investigating the magnitude of this skill improvement in the literature. Here we present a systematic program to quantify the additional skill of a constellation of geostationary hyperspectral sounders through observing system simulation experiments (OSSEs) using the WRF model and the WRFDA data assimilation system. The OSSEs will focus first on high-impact events, such as the forecast for Typhoon Haiyun, but will also address quotidian synoptic forecast skill. The focus will be on short-term forecast skill (additionality can be addressed, but will also consider contingencies, such as the loss of particular elements of the existing system, as well as the degree to which a stand-alone system of hyperspectral sounds would be able to successfully initialize a regional forecast model. A variety of settings, tropical and extratropical, marine and continental will be considered.

  14. Requirements for a Moderate-Resolution Infrared Imaging Sounder (MIRIS)

    Science.gov (United States)

    Pagano, Thomas S.; Aumann, Hartmut H.; Gerber, Andrew J.; Kuai, Le; Gontijo, I.; DeLeon, Berta; Susskind, Joel; Iredell, Lena; Bajpai, Shyam

    2013-01-01

    The high cost of imaging and sounding from space warrants exploration of new methods for obtaining the required information, including changing the spectral band sets, employing new technologies and merging instruments. In some cases we must consider relaxation of the current capability. In others, we expect higher performance. In general our goal is to meet the VIIRS and CrIS requirements while providing the enhanced next generation capabilities: 1) Hyperspectral Imaging in the Vis/NIR bands, 2) High Spatial Resolution Sounding in the Infrared bands. The former will improve the accuracy of ocean color products, aerosols and water vapor, surface vegetation and geology. The latter will enable the high-impact achieved by the current suite of hyperspectral infrared sounders to be achieved by the next generation high resolution forecast models. We examine the spectral, spatial and radiometric requirements for a next generation system and technologies that can be applied from the available inventory within government and industry. A two-band grating spectrometer instrument called the Moderate-resolution Infrared Imaging Sounder (MIRIS) is conceived that, when used with the planned NASA PACE Ocean Color Instrument (OCI) will meet the vast majority of CrIS and VIIRS requirements in the all bands and provide the next generation capabilities desired. MIRIS resource requirements are modest and the Technology Readiness Level is high leading to the expectation that the cost and risk of MIRIS will be reasonable.

  15. Time-Domain Finite Element Analysis of Nonlinear Breakdown Problems in High-Power-Microwave Devices and Systems

    Science.gov (United States)

    2015-12-24

    waves and the plasma fluid is governed by the coupled electromagnetic -plasma system, where the electromagnetic physics is described and Approved for...for public release: distribution unlimited. 8 Table 1. Characteristics of the Multiscale Physics Electromagnetics Plasma Fluid Ratio Fast Physics...DEVICES AND SYSTEMS Su Yan and Jian-Ming Jin University of Illinois Center for Computational Electromagnetics Department of Electrical and Computer

  16. Precision level measurement based on time-domain reflection (TDR measurements

    Directory of Open Access Journals (Sweden)

    M. Gerding

    2003-01-01

    Full Text Available A system for a high precision multi target level measurement based on guided microwave pulses is presented. A wide-band technique based on time-domain reflectometry (TDR in combination with a TEM-waveguide as the probe fulfils the requirements of mm-precision level measurements in tanks. The coaxial waveguide provides very low dispersion for wide-band signals. Inside the coaxial waveguide the different fluids with their specific dielectric constants influence the waveguide’s characteristic impedance, so that reflections take place at each discontinuity and separating layer respectively. A second very important requirement of the system is a high resolution. Thin layers (< 10 mm should be measured reliably. For that reason the pulse width must be sufficiently small. In this case a pulse width about 100 ps is suitable. It is obvious, that a high bandwidth of the whole system is necessary to provide the precision and the resolution. One further requirement is a nearly jitter free generation of two pulse trains with slightly different pulse repetition rates. These pulse trains are used for sequential sampling. The following analog to digital conversion of the received signal occurs at a relatively slow rate, in order to allow an A/D conversion with a high resolution.

  17. Time domain reshuffling for OFDM based indoor visible light communication systems.

    Science.gov (United States)

    You, Xiaodi; Chen, Jian; Yu, Changyuan; Zheng, Huanhuan

    2017-05-15

    For orthogonal frequency division multiplexing (OFDM) based indoor visible light communication (VLC) systems, partial non-ideal transmission conditions such as insufficient guard intervals and a dispersive channel can result in severe inter-symbol crosstalk (ISC). By deriving from the inverse Fourier transform, we present a novel time domain reshuffling (TDR) concept for both DC-biased optical (DCO-) and asymmetrically clipped optical (ACO-) OFDM VLC systems. By using only simple operations in the frequency domain, potential high peaks can be relocated within each OFDM symbol to alleviate ISC. To simplify the system, we also propose an effective unified design of the TDR schemes for both DCO- and ACO-OFDM. Based on Monte-Carlo simulations, we demonstrate the statistical distribution of the signal high peak values and the complementary cumulative distribution function of the peak-to-average power ratio under different cases for comparison. Simulation results indicate improved bit error rate (BER) performance by adopting TDR to counteract ISC deterioration. For example, for binary phase shift keying at a BER of 10 -3 , the signal to noise ratio gains are ~1.6 dB and ~6.6 dB for DCO- and ACO-OFDM, respectively, with ISC of 1/64. We also show a reliable transmission by adopting TDR for rectangle 8-quadrature amplitude modulation with ISC of < 1/64.

  18. openPSTD: The open source pseudospectral time-domain method for acoustic propagation

    Science.gov (United States)

    Hornikx, Maarten; Krijnen, Thomas; van Harten, Louis

    2016-06-01

    An open source implementation of the Fourier pseudospectral time-domain (PSTD) method for computing the propagation of sound is presented, which is geared towards applications in the built environment. Being a wave-based method, PSTD captures phenomena like diffraction, but maintains efficiency in processing time and memory usage as it allows to spatially sample close to the Nyquist criterion, thus keeping both the required spatial and temporal resolution coarse. In the implementation it has been opted to model the physical geometry as a composition of rectangular two-dimensional subdomains, hence initially restricting the implementation to orthogonal and two-dimensional situations. The strategy of using subdomains divides the problem domain into local subsets, which enables the simulation software to be built according to Object-Oriented Programming best practices and allows room for further computational parallelization. The software is built using the open source components, Blender, Numpy and Python, and has been published under an open source license itself as well. For accelerating the software, an option has been included to accelerate the calculations by a partial implementation of the code on the Graphical Processing Unit (GPU), which increases the throughput by up to fifteen times. The details of the implementation are reported, as well as the accuracy of the code.

  19. Acceleration for 2D time-domain elastic full waveform inversion using a single GPU card

    Science.gov (United States)

    Jiang, Jinpeng; Zhu, Peimin

    2018-05-01

    Full waveform inversion (FWI) is a challenging procedure due to the high computational cost related to the modeling, especially for the elastic case. The graphics processing unit (GPU) has become a popular device for the high-performance computing (HPC). To reduce the long computation time, we design and implement the GPU-based 2D elastic FWI (EFWI) in time domain using a single GPU card. We parallelize the forward modeling and gradient calculations using the CUDA programming language. To overcome the limitation of relatively small global memory on GPU, the boundary saving strategy is exploited to reconstruct the forward wavefield. Moreover, the L-BFGS optimization method used in the inversion increases the convergence of the misfit function. A multiscale inversion strategy is performed in the workflow to obtain the accurate inversion results. In our tests, the GPU-based implementations using a single GPU device achieve >15 times speedup in forward modeling, and about 12 times speedup in gradient calculation, compared with the eight-core CPU implementations optimized by OpenMP. The test results from the GPU implementations are verified to have enough accuracy by comparing the results obtained from the CPU implementations.

  20. Fast determination of beef quality parameters with time-domain nuclear magnetic resonance spectroscopy and chemometrics.

    Science.gov (United States)

    Pereira, Fabíola Manhas Verbi; Bertelli Pflanzer, Sérgio; Gomig, Thaísa; Lugnani Gomes, Carolina; de Felício, Pedro Eduardo; Colnago, Luiz Alberto

    2013-04-15

    The noteworthy of this study is to predict seven quality parameters for beef samples using time-domain nuclear magnetic resonance (TD-NMR) relaxometry data and multivariate models. Samples from 61 Bonsmara heifers were separated into five groups based on genetic (breeding composition) and feed system (grain and grass feed). Seven sample parameters were analyzed by reference methods; among them, three sensorial parameters, flavor, juiciness and tenderness and four physicochemical parameters, cooking loss, fat and moisture content and instrumental tenderness using Warner Bratzler shear force (WBSF). The raw beef samples of the same animals were analyzed by TD-NMR relaxometry using Carr-Purcell-Meiboom-Gill (CPMG) and Continuous Wave-Free Precession (CWFP) sequences. Regression models computed by partial least squares (PLS) chemometric technique using CPMG and CWFP data and the results of the classical analysis were constructed. The results allowed for the prediction of aforementioned seven properties. The predictive ability of the method was evaluated using the root mean square error (RMSE) for the calibration (RMSEC) and validation (RMSEP) data sets. The reference and predicted values showed no significant differences at a 95% confidence level. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Time Domain Response Analysis of Barge Floater Supporting an Offshore Wind Turbine

    Directory of Open Access Journals (Sweden)

    A.C. Mayilvahanan

    2011-12-01

    Full Text Available Wind energy is a reliable source of sustainable power generation and has been an active area of research globally to economically harness the energy for human use. Reliable source of wind energy pushed the engineers to install wind turbines near and far off the coasts. In shallow water upto 100 m, fixed structures like tripods, jackets, monopiles and gravity base are functionally and economically feasible. In deep waters, a floating substructure can be more economical for offshore wind turbine. In this study a barge type floater of different aspect ratios from 0.4 to 1.0 is investigated for its performance under wave and wind loading. All these floaters were designed with a defined transverse metacentric height (GM equal to 1.0 m and the hydrodynamic analysis is carried out using WAMIT. The barge with aspect ratio B/L = 1.0 is found to have lowest pitch RAO. The time domain surge, heave and pitch response for this barge has been obtained using Integro-differential equation of motion and the statistical response characteristics are compared for two different cases of excitation namely, wave excitation alone and combined wave and wind excitation. Statistics of surge, heave and pitch responses are obtained for three different seas states and for two different wave heading angles.

  2. Time domain analysis of superradiant instability for the charged stringy black hole–mirror system

    Directory of Open Access Journals (Sweden)

    Ran Li

    2015-11-01

    Full Text Available It has been proved that the charged stringy black holes are stable under the perturbations of massive charged scalar fields. However, superradiant instability can be generated by adding the mirror-like boundary condition to the composed system of charged stringy black hole and scalar field. The unstable boxed quasinormal modes have been calculated by using both analytical and numerical methods. In this paper, we further provide a time domain analysis by performing a long time evolution of charged scalar field configuration in the background of the charged stringy black hole with the mirror-like boundary condition imposed. We have used the ingoing Eddington–Finkelstein coordinates to derive the evolution equation, and adopted Pseudo-spectral method and the forth-order Runge–Kutta method to evolve the scalar field with the initial Gaussian wave packet. It is shown by our numerical scheme that Fourier transforming the evolution data coincides well with the unstable modes computed from frequency domain analysis. The existence of the rapid growth mode makes the charged stringy black hole a good test ground to study the nonlinear development of superradiant instability.

  3. Dielectric properties of ZnO nanoparticles determined by time-domain THz spectroscopy

    International Nuclear Information System (INIS)

    Furka, D.; Furka, S.; Naftaly, M.; Janek, M.

    2017-01-01

    Increased demand for hybrid materials with catalytic and photocatalytic properties requires the preparation of new materials with low cost and appropriate parameters. As reasonable alternative with optical and thermoelectric behaviour were investigated Zinc oxide (ZnO) nanoparticles prepared by hydrothermal synthesis. ZnO is a semiconductor with a wide band gap ∼3.37 eV. The dielectric response of ZnO can be affected by morphology. Also different loading of ZnO in nanocomposite materials can affect resulting optical and dielectric properties. For this purpose, THz time domain spectroscopy was utilised to investigate the dielectric response of composite prepared from ZnO nanoparticles and polytetrafluoroethylene (teflon). The aim of our work was to characterize the frequency dependence of ZnO nanoparticles with different morphology and concentration in composite mixture on their complex dielectric properties. Such well-defined ZnO nanoparticles can find utilization in gas sensors with high resolution, and photocatalytic or optoelectric applications. (authors)

  4. On Time Domain Analysis of Photoplethysmogram Signals for Monitoring Heat Stress

    Directory of Open Access Journals (Sweden)

    Mohamed Elgendi

    2015-09-01

    Full Text Available There are a limited number of studies on heat stress dynamics during exercise using the photoplethysmogram (PPG and its second derivative (APG. However, we investigate the most suitable index from short PPG signal recordings for heat stress assessment. The APG waveform consists of a, b, c and d waves in systole and an e wave in diastole. Our preliminary results indicate that the use of the energy of aa area, derived from PPG signals measured from emergency responders in tropical conditions, is promising in determining the heat stress level using 20-s recordings. After examining 14 time domain features using leave-one-out cross-validation, we found that the aa energy extracted from PPG signals is the most informative feature for classifying heat-stressed subjects, with an overall accuracy of 79%. Moreover, the combination of the aa energy with the traditional heart rate variability index of heat stress (i.e., the square root of the mean of the squares of the successive aa intervals improved the heat stress detection to an overall accuracy of 83%.

  5. Time Domain Simulation of Sound Waves Using Smoothed Particle Hydrodynamics Algorithm with Artificial Viscosity

    Directory of Open Access Journals (Sweden)

    Xu Li

    2015-06-01

    Full Text Available Smoothed particle hydrodynamics (SPH, as a Lagrangian, meshfree method, is supposed to be useful in solving acoustic problems, such as combustion noise, bubble acoustics, etc., and has been gradually used in sound wave computation. However, unphysical oscillations in the sound wave simulation cannot be ignored. In this paper, an artificial viscosity term is added into the standard SPH algorithm used for solving linearized acoustic wave equations. SPH algorithms with or without artificial viscosity are both built to compute sound propagation and interference in the time domain. Then, the effects of the smoothing kernel function, particle spacing and Courant number on the SPH algorithms of sound waves are discussed. After comparing SPH simulation results with theoretical solutions, it is shown that the result of the SPH algorithm with the artificial viscosity term added attains good agreement with the theoretical solution by effectively reducing unphysical oscillations. In addition, suitable computational parameters of SPH algorithms are proposed through analyzing the sound pressure errors for simulating sound waves.

  6. The Stranglehold on Time-Domain Astronomy: Preserve the Plates or Lose the Science

    Science.gov (United States)

    Griffin, Elizabeth

    2012-09-01

    Many celestial objects of all types exhibit changes within the time-frame of humanity's collective memory. Investigating, analysing and understanding those changes---be they periodic, irregular, slow, recurring or explosive---is at the very heart of most astrophysics. But essential progress in our science is limited to the time-span of the observational data which can be readily accessed and incorporated into modern analyses, and that time-span is currently no longer than that of our all-digital data archives---a mere 15 years at most. A great many important changes are longer than that, but we have no way of learning about them even though almost all the observations ever recorded by most observatories still exist. Those inherited data may be absolutely critical to solving a problem, and many enable science that cannot otherwise be even attempted, but they are not in electronic format so today's astronomers cannot get access to the information which they need. Our wealth of inherited observations, mostly in observatory plate stores, are in increasing danger of loss from a multitude of causes, and moves are afoot to digitize them appropriately in order to provide that much-needed broadening of astrophysical understanding. The scientific case is irrefutable, the technology is understood, and expertise is still available; it is only money that is in short supply. Once the preservation and correct digitization of those older data can be funded, astronomy will quickly be benefiting from a greatly extended baseline for time-domain studies.

  7. Time Domain Equalizer Design Using Bit Error Rate Minimization for UWB Systems

    Directory of Open Access Journals (Sweden)

    Syed Imtiaz Husain

    2009-01-01

    Full Text Available Ultra-wideband (UWB communication systems occupy huge bandwidths with very low power spectral densities. This feature makes the UWB channels highly rich in resolvable multipaths. To exploit the temporal diversity, the receiver is commonly implemented through a Rake. The aim to capture enough signal energy to maintain an acceptable output signal-to-noise ratio (SNR dictates a very complicated Rake structure with a large number of fingers. Channel shortening or time domain equalizer (TEQ can simplify the Rake receiver design by reducing the number of significant taps in the effective channel. In this paper, we first derive the bit error rate (BER of a multiuser and multipath UWB system in the presence of a TEQ at the receiver front end. This BER is then written in a form suitable for traditional optimization. We then present a TEQ design which minimizes the BER of the system to perform efficient channel shortening. The performance of the proposed algorithm is compared with some generic TEQ designs and other Rake structures in UWB channels. It is shown that the proposed algorithm maintains a lower BER along with efficiently shortening the channel.

  8. Active Time-Domain Reflectometry for Unattended Safeguards Systems FY15 Report

    Energy Technology Data Exchange (ETDEWEB)

    Tedeschi, Jonathan R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Leon E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moore, David E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sheen, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Conrad, Ryan C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gavric, Gordan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    The International Atomic Energy Agency (IAEA) continues to expand its use of unattended measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. In collaboration with the IAEA, tamper-indicating measures to address data-transmission authentication challenges with unattended safeguards systems are under investigation. Pacific Northwest National Laboratory (PNNL) is studying the viability of active time-domain reflectometry (TDR) along two parallel but interconnected paths: (1) swept-frequency TDR as the highly flexible, laboratory gold standard to which field-deployable options can be compared, and (2) a low-cost commercially available spread-spectrum TDR technology as one option for field implementation. This report describes PNNL’s FY15 progress in the viability study including: an overview of the TDR methods under investigation; description of the testing configurations and mock tampering scenarios; results from a preliminary sensitivity comparison of the two TDR methods; demonstration of a quantitative metric for estimating field performance that acknowledges the need for high detection probability while minimizing false alarms. FY15 progress reported here sets the stage for a rigorous comparison of the candidate TDR methods, over a range of deployment scenarios and perturbing effects typical of IAEA unattended monitoring systems.

  9. Numerical modeling of wave propagation in functionally graded materials using time-domain spectral Chebyshev elements

    Science.gov (United States)

    Hedayatrasa, Saeid; Bui, Tinh Quoc; Zhang, Chuanzeng; Lim, Chee Wah

    2014-02-01

    Numerical modeling of the Lamb wave propagation in functionally graded materials (FGMs) by a two-dimensional time-domain spectral finite element method (SpFEM) is presented. The high-order Chebyshev polynomials as approximation functions are used in the present formulation, which provides the capability to take into account the through thickness variation of the material properties. The efficiency and accuracy of the present model with one and two layers of 5th order spectral elements in modeling wave propagation in FGM plates are analyzed. Different excitation frequencies in a wide range of 28-350 kHz are investigated, and the dispersion properties obtained by the present model are verified by reference results. The through thickness wave structure of two principal Lamb modes are extracted and analyzed by the symmetry and relative amplitude of the vertical and horizontal oscillations. The differences with respect to Lamb modes generated in homogeneous plates are explained. Zero-crossing and wavelet signal processing-spectrum decomposition procedures are implemented to obtain phase and group velocities and their dispersion properties. So it is attested how this approach can be practically employed for simulation, calibration and optimization of Lamb wave based nondestructive evaluation techniques for the FGMs. The capability of modeling stress wave propagation through the thickness of an FGM specimen subjected to impact load is also investigated, which shows that the present method is highly accurate as compared with other existing reference data.

  10. Terahertz time domain interferometry of a SIS tunnel junction and a quantum point contact

    International Nuclear Information System (INIS)

    Karadi, C.; Lawrence Berkeley Lab., CA

    1995-09-01

    The author has applied the Terahertz Time Domain Interferometric (THz-TDI) technique to probe the ultrafast dynamic response of a Superconducting-Insulating-Superconducting (SIS) tunnel junction and a Quantum Point Contact (QPC). The THz-TDI technique involves monitoring changes in the dc current induced by interfering two picosecond electrical pulses on the junction as a function of time delay between them. Measurements of the response of the Nb/AlO x /Nb SIS tunnel junction from 75--200 GHz are in full agreement with the linear theory for photon-assisted tunneling. Likewise, measurements of the induced current in a QPC as a function of source-drain voltage, gate voltage, frequency, and magnetic field also show strong evidence for photon-assisted transport. These experiments together demonstrate the general applicability of the THz-TDI technique to the characterization of the dynamic response of any micron or nanometer scale device that exhibits a non-linear I-V characteristic. 133 refs., 49 figs

  11. Structural System Identification in the Time Domain using Evolutionary and Behaviorally Inspired Algorithms and their Hybrids

    Directory of Open Access Journals (Sweden)

    S. Sandesh

    2009-12-01

    Full Text Available In this study, parametric identification of structural properties such as stiffness and damping is carried out using acceleration responses in the time domain. The process consists of minimizing the difference between the experimentally measured and theoretically predicted acceleration responses. The unknown parameters of certain numerical models, viz., a ten degree of freedom lumped mass system, a nine member truss and a non-uniform simply supported beam are thus identified. Evolutionary and behaviorally inspired optimization algorithms are used for minimization operations. The performance of their hybrid combinations is also investigated. Genetic Algorithm (GA is a well known evolutionary algorithm used in system identification. Recently Particle Swarm Optimization (PSO, a behaviorally inspired algorithm, has emerged as a strong contender to GA in speed and accuracy. The discrete Ant Colony Optimization (ACO method is yet another behaviorally inspired method studied here. The performance (speed and accuracy of each algorithm alone and in their hybrid combinations such as GA with PSO, ACO with PSO and ACO with GA are extensively investigated using the numerical examples with effects of noise added for realism. The GA+PSO hybrid algorithm was found to give the best performance in speed and accuracy compared to all others. The next best in performance was pure PSO followed by pure GA. ACO performed poorly in all the cases.

  12. Accurate Behavioral Simulator of All-Digital Time-Domain Smart Temperature Sensors by Using SIMULINK

    Directory of Open Access Journals (Sweden)

    Chun-Chi Chen

    2016-08-01

    Full Text Available This study proposes a new behavioral simulator that uses SIMULINK for all-digital CMOS time-domain smart temperature sensors (TDSTSs for performing rapid and accurate simulations. Inverter-based TDSTSs offer the benefits of low cost and simple structure for temperature-to-digital conversion and have been developed. Typically, electronic design automation tools, such as HSPICE, are used to simulate TDSTSs for performance evaluations. However, such tools require extremely long simulation time and complex procedures to analyze the results and generate figures. In this paper, we organize simple but accurate equations into a temperature-dependent model (TDM by which the TDSTSs evaluate temperature behavior. Furthermore, temperature-sensing models of a single CMOS NOT gate were devised using HSPICE simulations. Using the TDM and these temperature-sensing models, a novel simulator in SIMULINK environment was developed to substantially accelerate the simulation and simplify the evaluation procedures. Experiments demonstrated that the simulation results of the proposed simulator have favorable agreement with those obtained from HSPICE simulations, showing that the proposed simulator functions successfully. This is the first behavioral simulator addressing the rapid simulation of TDSTSs.

  13. Impedance based time-domain modeling of lithium-ion batteries: Part I

    Science.gov (United States)

    Gantenbein, Sophia; Weiss, Michael; Ivers-Tiffée, Ellen

    2018-03-01

    This paper presents a novel lithium-ion cell model, which simulates the current voltage characteristic as a function of state of charge (0%-100%) and temperature (0-30 °C). It predicts the cell voltage at each operating point by calculating the total overvoltage from the individual contributions of (i) the ohmic loss η0, (ii) the charge transfer loss of the cathode ηCT,C, (iii) the charge transfer loss and the solid electrolyte interface loss of the anode ηSEI/CT,A, and (iv) the solid state and electrolyte diffusion loss ηDiff,A/C/E. This approach is based on a physically meaningful equivalent circuit model, which is parametrized by electrochemical impedance spectroscopy and time domain measurements, covering a wide frequency range from MHz to μHz. The model is exemplarily parametrized to a commercial, high-power 350 mAh graphite/LiNiCoAlO2-LiCoO2 pouch cell and validated by continuous discharge and charge curves at varying temperature. For the first time, the physical background of the model allows the operator to draw conclusions about the performance-limiting factor at various operating conditions. Not only can the model help to choose application-optimized cell characteristics, but it can also support the battery management system when taking corrective actions during operation.

  14. AGN Accretion Physics in the Time Domain: Survey Cadences, Stochastic Analysis, and Physical Interpretations

    Science.gov (United States)

    Moreno, Jackeline; Vogeley, Michael S.; Richards, Gordon; O'Brien, John T.; Kasliwal, Vishal

    2018-01-01

    We present rigorous testing of survey cadences (K2, SDSS, CRTS, & Pan-STARRS) for quasar variability science using a magnetohydrodynamics synthetic lightcurve and the canonical lightcurve from Kepler, Zw 229.15. We explain where the state of the art is in regards to physical interpretations of stochastic models (CARMA) applied to AGN variability. Quasar variability offers a time domain approach of probing accretion physics at the SMBH scale. Evidence shows that the strongest amplitude changes in the brightness of AGN occur on long timescales ranging from months to hundreds of days. These global behaviors can be constrained by survey data despite low sampling resolution. CARMA processes provide a flexible family of models used to interpolate between data points, predict future observations and describe behaviors in a lightcurve. This is accomplished by decomposing a signal into rise and decay timescales, frequencies for cyclic behavior and shock amplitudes. Characteristic timescales may point to length-scales over which a physical process operates such as turbulent eddies, warping or hotspots due to local thermal instabilities. We present the distribution of SDSS Stripe 82 quasars in CARMA parameters space that pass our cadence tests and also explain how the Damped Harmonic Oscillator model, CARMA(2,1), reduces to the Damped Random Walk, CARMA(1,0), given the data in a specific region of the parameter space.

  15. Active Time-Domain Reflectometry for Unattended Safeguards Systems: FY16 Report

    Energy Technology Data Exchange (ETDEWEB)

    Tedeschi, Jonathan R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Leon E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Conrad, Ryan C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gavric, Gordan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zalavadia, Mital A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Keller, Daniel T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pratt, Richard M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-21

    The International Atomic Energy Agency (IAEA) continues to expand its use of unattended measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. Traditional data security measures, for example tamper-indicating (TI) conduit, are impractical for the long separation distances (often 100 meters or more) between unattended monitoring system (UMS) components. Pacific Northwest National Laboratory (PNNL) is studying the viability of active time-domain reflectometry (TDR) for the detection of cable tampering in unattended radiation detection systems. The instrument concept under investigation would allow for unmanned cable integrity measurements, remote surveillance reporting and locating of cable faults and/or tampers. This report describes PNNL’s FY16 progress and includes: an overview of the TDR methods under investigation; description of the TDR evaluation testbed developed by PNNL; development and testing of advanced signal processing algorithms to extract weak signals from relatively high noise levels; and initial testing of a laboratory prototype intended for IAEA UMS applications and based on a commercially available TDR module. Preliminary viability findings and recommendations for the next stage of development and testing are provided.

  16. Subcriticality determination by a new time-domain correlation experiment with a 252Cf neutron source

    International Nuclear Information System (INIS)

    Nishina, K.; Yamane, Y.; Ishiguro, S.; Miyoshi, Y.; Suzaki, T.; Kobayahi, I.

    1985-01-01

    As a candidate for the on-site subcriticality-monitoring method, a new time-domain correlation experiment is proposed. Hinted by the Cf-252 detector method of Mihalczo, three covariances are taken between the count of three detectors; namely an ionization chamber with Cf-252 coating, and two He-3 proportional counters. A ratio Q is formed from the three quantities such that it does not depend either on detector efficiencies or counting gate duration T, and then related to reactivity. A formulation is given deriving a theoretical expression for this Q, with the effect of higher spatial modes included. Experiments were carried out with a loading at Tank-type Critical Assembly of Japan Atomic Energy Research Institute, which is a slightly-enriched, and light-water moderated system. With fundamental mode approximation adopted in the data processing, reasonable agreements are observed between the present method and the reactivity scale that has been calibrated by water-level variety. The possibility of the present method is to be investigated further beyond the range of 7$ reported

  17. Ultrasound-based measurement of liquid-layer thickness: A novel time-domain approach

    Science.gov (United States)

    Praher, Bernhard; Steinbichler, Georg

    2017-01-01

    Measuring the thickness of a thin liquid layer between two solid materials is important when the adequate separation of metallic parts by a lubricant film (e.g., in bearings or mechanical seals) is to be assessed. The challenge in using ultrasound-based systems for such measurements is that the signal from the liquid layer is a superposition of multiple reflections. We have developed an algorithm for reconstructing this superimposed signal in the time domain. By comparing simulated and measured signals, the time-of-flight of the ultrasonic pulse in a layer can be estimated. With the longitudinal sound velocity known, the layer thickness can then be calculated. In laboratory measurements, we validate successfully (maximum relative error 4.9%) our algorithm for layer thicknesses ranging from 30 μm to 200 μm. Furthermore, we tested our method in the high-temperature environment of polymer processing by measuring the clearance between screw and barrel in the plasticisation unit of an injection moulding machine. The results of such measurements can indicate (i) the wear status of the tribo-mechanical screw-barrel system and (ii) unsuitable process conditions.

  18. Miniaturized pulsed laser source for time-domain diffuse optics routes to wearable devices.

    Science.gov (United States)

    Di Sieno, Laura; Nissinen, Jan; Hallman, Lauri; Martinenghi, Edoardo; Contini, Davide; Pifferi, Antonio; Kostamovaara, Juha; Mora, Alberto Dalla

    2017-08-01

    We validate a miniaturized pulsed laser source for use in time-domain (TD) diffuse optics, following rigorous and shared protocols for performance assessment of this class of devices. This compact source (12×6  mm2) has been previously developed for range finding applications and is able to provide short, high energy (∼100  ps, ∼0.5  nJ) optical pulses at up to 1 MHz repetition rate. Here, we start with a basic level laser characterization with an analysis of suitability of this laser for the diffuse optics application. Then, we present a TD optical system using this source and its performances in both recovering optical properties of tissue-mimicking homogeneous phantoms and in detecting localized absorption perturbations. Finally, as a proof of concept of in vivo application, we demonstrate that the system is able to detect hemodynamic changes occurring in the arm of healthy volunteers during a venous occlusion. Squeezing the laser source in a small footprint removes a key technological bottleneck that has hampered so far the realization of a miniaturized TD diffuse optics system, able to compete with already assessed continuous-wave devices in terms of size and cost, but with wider performance potentialities, as demonstrated by research over the last two decades. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  19. Upper limb movements can be decoded from the time-domain of low-frequency EEG.

    Science.gov (United States)

    Ofner, Patrick; Schwarz, Andreas; Pereira, Joana; Müller-Putz, Gernot R

    2017-01-01

    How neural correlates of movements are represented in the human brain is of ongoing interest and has been researched with invasive and non-invasive methods. In this study, we analyzed the encoding of single upper limb movements in the time-domain of low-frequency electroencephalography (EEG) signals. Fifteen healthy subjects executed and imagined six different sustained upper limb movements. We classified these six movements and a rest class and obtained significant average classification accuracies of 55% (movement vs movement) and 87% (movement vs rest) for executed movements, and 27% and 73%, respectively, for imagined movements. Furthermore, we analyzed the classifier patterns in the source space and located the brain areas conveying discriminative movement information. The classifier patterns indicate that mainly premotor areas, primary motor cortex, somatosensory cortex and posterior parietal cortex convey discriminative movement information. The decoding of single upper limb movements is specially interesting in the context of a more natural non-invasive control of e.g., a motor neuroprosthesis or a robotic arm in highly motor disabled persons.

  20. Linear and nonlinear frequency- and time-domain spectroscopy with multiple frequency combs

    Science.gov (United States)

    Bennett, Kochise; Rouxel, Jeremy R.; Mukamel, Shaul

    2017-09-01

    Two techniques that employ equally spaced trains of optical pulses to map an optical high frequency into a low frequency modulation of the signal that can be detected in real time are compared. The development of phase-stable optical frequency combs has opened up new avenues to metrology and spectroscopy. The ability to generate a series of frequency spikes with precisely controlled separation permits a fast, highly accurate sampling of the material response. Recently, pairs of frequency combs with slightly different repetition rates have been utilized to down-convert material susceptibilities from the optical to microwave regime where they can be recorded in real time. We show how this one-dimensional dual comb technique can be extended to multiple dimensions by using several combs. We demonstrate how nonlinear susceptibilities can be quickly acquired using this technique. In a second class of techniques, sequences of ultrafast mode locked laser pulses are used to recover pathways of interactions contributing to nonlinear susceptibilities by using a photo-acoustic modulation varying along the sequences. We show that these techniques can be viewed as a time-domain analog of the multiple frequency comb scheme.

  1. Functional Connectomes in Time Domain from Simulated Neurotransmitter Release Based on Electrocorticograms

    Directory of Open Access Journals (Sweden)

    You Zhai

    2018-02-01

    Full Text Available This paper uses a newly defined functional connectome and connectome values calculated in time domain of simulated neurotransmitter release (NTR from an electrocorticogram (ECoG to distinguish between conditioned and unconditioned stimuli. The NTR derived from multiple channels releasing one quantum at the same time suggests that one functional connectome occurs across those channels at that time. During the first 600 ms after conditional stimulation, the connectome indexes of the 64-channel NTR trains were sorted from the 8 to 20 Hz band obtained from filtered rabbit ECoGs recorded from the visual cortices. In the small scale visual cortex area, this association was significantly larger than the habituation, even though the trial-to-trail variability of large scale synchrony after conditional stimulation is increased, which is also consistent with the hypothesis that attention decreases coherence of lower frequency within each cortical area. The increased conectome index suggests that the stimuli related to association are able to generate stronger substantial responses in the small scale visual cortex than habituation. That is, besides of the background cortical states as well as attention-related decreases in synchrony of lower frequency, the increased part of neurotransmitters released simultaneously from the pre-synaptic terminals of small scale visual cortex for association is larger than habituation.

  2. Effective crop evapotranspiration measurement using time-domain reflectometry technique in a sub-humid region

    Science.gov (United States)

    Srivastava, R. K.; Panda, R. K.; Halder, Debjani

    2017-08-01

    The primary objective of this study was to evaluate the performance of the time-domain reflectometry (TDR) technique for daily evapotranspiration estimation of peanut and maize crop in a sub-humid region. Four independent methods were used to estimate crop evapotranspiration (ETc), namely, soil water balance budgeting approach, energy balance approach—(Bowen ratio), empirical methods approach, and Pan evaporation method. The soil water balance budgeting approach utilized the soil moisture measurement by gravimetric and TDR method. The empirical evapotranspiration methods such as combination approach (FAO-56 Penman-Monteith and Penman), temperature-based approach (Hargreaves-Samani), and radiation-based approach (Priestley-Taylor, Turc, Abetw) were used to estimate the reference evapotranspiration (ET0). The daily ETc determined by the FAO-56 Penman-Monteith, Priestley-Taylor, Turc, Pan evaporation, and Bowen ratio were found to be at par with the ET values derived from the soil water balance budget; while the methods Abetw, Penman, and Hargreaves-Samani were not found to be ideal for the determination of ETc. The study illustrates the in situ applicability of the TDR method in order to make it possible for a user to choose the best way for the optimum water consumption for a given crop in a sub-humid region. The study suggests that the FAO-56 Penman-Monteith, Turc, and Priestley-Taylor can be used for the determination of crop ETc using TDR in comparison to soil water balance budget.

  3. Design Considerations for Integration of Terahertz Time-Domain Spectroscopy in Microfluidic Platforms

    Directory of Open Access Journals (Sweden)

    Rasha Al-Hujazy

    2018-03-01

    Full Text Available Microfluidic platforms have received much attention in recent years. In particular, there is interest in combining spectroscopy with microfluidic platforms. This work investigates the integration of microfluidic platforms and terahertz time-domain spectroscopy (THz-TDS systems. A semiclassical computational model is used to simulate the emission of THz radiation from a GaAs photoconductive THz emitter. This model incorporates white noise with increasing noise amplitude (corresponding to decreasing dynamic range values. White noise is selected over other noise due to its contributions in THz-TDS systems. The results from this semiclassical computational model, in combination with defined sample thicknesses, can provide the maximum measurable absorption coefficient for a microfluidic-based THz-TDS system. The maximum measurable frequencies for such systems can be extracted through the relationship between the maximum measurable absorption coefficient and the absorption coefficient for representative biofluids. The sample thickness of the microfluidic platform and the dynamic range of the THz-TDS system play a role in defining the maximum measurable frequency for microfluidic-based THz-TDS systems. The results of this work serve as a design tool for the development of such systems.

  4. Application of spatial time domain reflectometry measurements in heterogeneous, rocky substrates

    Science.gov (United States)

    Gonzales, C.; Scheuermann, A.; Arnold, S.; Baumgartl, T.

    2016-10-01

    Measurement of soil moisture across depths using sensors is currently limited to point measurements or remote sensing technologies. Point measurements have limitations on spatial resolution, while the latter, although covering large areas may not represent real-time hydrologic processes, especially near the surface. The objective of the study was to determine the efficacy of elongated soil moisture probes—spatial time domain reflectometry (STDR)—and to describe transient soil moisture dynamics of unconsolidated mine waste rock materials. The probes were calibrated under controlled conditions in the glasshouse. Transient soil moisture content was measured using the gravimetric method and STDR. Volumetric soil moisture content derived from weighing was compared with values generated from a numerical model simulating the drying process. A calibration function was generated and applied to STDR field data sets. The use of elongated probes effectively assists in the real-time determination of the spatial distribution of soil moisture. It also allows hydrologic processes to be uncovered in the unsaturated zone, especially for water balance calculations that are commonly based on point measurements. The elongated soil moisture probes can potentially describe transient substrate processes and delineate heterogeneity in terms of the pore size distribution in a seasonally wet but otherwise arid environment.

  5. From medium heterogeneity to flow and transport: A time-domain random walk approach

    Science.gov (United States)

    Hakoun, V.; Comolli, A.; Dentz, M.

    2017-12-01

    The prediction of flow and transport processes in heterogeneous porous media is based on the qualitative and quantitative understanding of the interplay between 1) spatial variability of hydraulic conductivity, 2) groundwater flow and 3) solute transport. Using a stochastic modeling approach, we study this interplay through direct numerical simulations of Darcy flow and advective transport in heterogeneous media. First, we study flow in correlated hydraulic permeability fields and shed light on the relationship between the statistics of log-hydraulic conductivity, a medium attribute, and the flow statistics. Second, we determine relationships between Eulerian and Lagrangian velocity statistics, this means, between flow and transport attributes. We show how Lagrangian statistics and thus transport behaviors such as late particle arrival times are influenced by the medium heterogeneity on one hand and the initial particle velocities on the other. We find that equidistantly sampled Lagrangian velocities can be described by a Markov process that evolves on the characteristic heterogeneity length scale. We employ a stochastic relaxation model for the equidistantly sampled particle velocities, which is parametrized by the velocity correlation length. This description results in a time-domain random walk model for the particle motion, whose spatial transitions are characterized by the velocity correlation length and temporal transitions by the particle velocities. This approach relates the statistical medium and flow properties to large scale transport, and allows for conditioning on the initial particle velocities and thus to the medium properties in the injection region. The approach is tested against direct numerical simulations.

  6. Accuracy of three-dimensional seismic ground response analysis in time domain using nonlinear numerical simulations

    Science.gov (United States)

    Liang, Fayun; Chen, Haibing; Huang, Maosong

    2017-07-01

    To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.

  7. Study of time-domain digital pulse shaping algorithms for nuclear signals

    International Nuclear Information System (INIS)

    Zhou Jianbin; Tuo Xianguo; Zhu Xing; Liu Yi; Zhou Wei; Lei Jiarong

    2012-01-01

    With the development on high-speed integrated circuit, fast high resolution sampling ADC and digital signal processors are replacing analog shaping amplifier circuit. This paper firstly presents the numerical analysis and simulation on R-C shaping circuit model and C-R shaping circuit model. Mathematic models are established based on 1 st order digital differential method and Kirchhoff Current Law in time domain, and a simulation and error evaluation experiment on an ideal digital signal are carried out with Excel VBA. A digital shaping test for a semiconductor X-ray detector in real time is also presented. Then a numerical analysis for Sallen-Key(S-K) low-pass filter circuit model is implemented based on the analysis of digital R-C and digital C-R shaping methods. By applying the 2 nd order non-homogeneous differential equation,the authors implement a digital Gaussian filter model for a standard exponential-decaying signal and a nuclear pulse signal. Finally, computer simulations and experimental tests are carried out and the results show the possibility of the digital pulse processing algorithms. (authors)

  8. Accurate Behavioral Simulator of All-Digital Time-Domain Smart Temperature Sensors by Using SIMULINK.

    Science.gov (United States)

    Chen, Chun-Chi; Chen, Chao-Lieh; Lin, You-Ting

    2016-08-08

    This study proposes a new behavioral simulator that uses SIMULINK for all-digital CMOS time-domain smart temperature sensors (TDSTSs) for performing rapid and accurate simulations. Inverter-based TDSTSs offer the benefits of low cost and simple structure for temperature-to-digital conversion and have been developed. Typically, electronic design automation tools, such as HSPICE, are used to simulate TDSTSs for performance evaluations. However, such tools require extremely long simulation time and complex procedures to analyze the results and generate figures. In this paper, we organize simple but accurate equations into a temperature-dependent model (TDM) by which the TDSTSs evaluate temperature behavior. Furthermore, temperature-sensing models of a single CMOS NOT gate were devised using HSPICE simulations. Using the TDM and these temperature-sensing models, a novel simulator in SIMULINK environment was developed to substantially accelerate the simulation and simplify the evaluation procedures. Experiments demonstrated that the simulation results of the proposed simulator have favorable agreement with those obtained from HSPICE simulations, showing that the proposed simulator functions successfully. This is the first behavioral simulator addressing the rapid simulation of TDSTSs.

  9. Determination of plane stress state using terahertz time-domain spectroscopy

    Science.gov (United States)

    Wang, Zhiyong; Kang, Kai; Wang, Shibin; Li, Lin'an; Xu, Ningning; Han, Jiaguang; He, Mingxia; Wu, Liang; Zhang, Weili

    2016-01-01

    THz wave has been increasingly applied in engineering practice. One of its outstanding advantages is the penetrability through certain optically opaque materials, whose interior properties could be therefore obtained. In this report, we develop an experimental method to determine the plane stress state of optically opaque materials based on the stress-optical law using terahertz time-domain spectroscopy (THz-TDS). In this method, two polarizers are combined into the conventional THz-TDS system to sense and adjust the polarization state of THz waves and a theoretical model is established to describe the relationship between phase delay of the received THz wave and the plane stress applied on the specimen. Three stress parameters that represent the plane stress state are finally determined through an error function of THz wave phase-delay. Experiments were conducted on polytetrafluoroethylene (PTFE) specimen and a reasonably good agreement was found with measurement using traditional strain gauges. The presented results validate the effectiveness of the proposed method. The proposed method could be further used in nondestructive tests for a wide range of optically opaque materials. PMID:27824112

  10. Dynamic Analysis of Partially Embedded Structures Considering Soil-Structure Interaction in Time Domain

    Directory of Open Access Journals (Sweden)

    Sanaz Mahmoudpour

    2011-01-01

    Full Text Available Analysis and design of structures subjected to arbitrary dynamic loadings especially earthquakes have been studied during past decades. In practice, the effects of soil-structure interaction on the dynamic response of structures are usually neglected. In this study, the effect of soil-structure interaction on the dynamic response of structures has been examined. The substructure method using dynamic stiffness of soil is used to analyze soil-structure system. A coupled model based on finite element method and scaled boundary finite element method is applied. Finite element method is used to analyze the structure, and scaled boundary finite element method is applied in the analysis of unbounded soil region. Due to analytical solution in the radial direction, the radiation condition is satisfied exactly. The material behavior of soil and structure is assumed to be linear. The soil region is considered as a homogeneous half-space. The analysis is performed in time domain. A computer program is prepared to analyze the soil-structure system. Comparing the results with those in literature shows the exactness and competency of the proposed method.

  11. Numerical dispersion and stability characteristics of time-domain methods on nonorthogonal meshes

    International Nuclear Information System (INIS)

    Ray, S.L.

    1993-01-01

    The familiar finite-difference, time-domain method for discretizing Maxwell's curl equations on orthogonal grids has been extended to nonorthogonal grids by a number of researchers. While it is difficult to determine the dispersion and stability characteristics of these methods when applied on arbitrary grids, analysis of the idealized but representative case of a uniform skewed mesh proves to be quite tractable in 2-D. This analysis demonstrates that numerical dispersion errors are small for well-resolved spatial wavelengths and that these methods converge to the continuous-space solution in the limit as the cell and time step sizes vanish. Grid anisotropy (variations in wave propagation speed as a function of the propagation angle relative to the mesh coordinates) increases as the mesh is skewed. In spite of this, there exist some angles where waves propagate through the skewed mesh with virtually no dispersion. This analysis also provides a stability limit for the time step size in terms of geometrical mesh quantities

  12. Monitoring plant drought stress response using terahertz time-domain spectroscopy.

    Science.gov (United States)

    Born, Norman; Behringer, David; Liepelt, Sascha; Beyer, Sarah; Schwerdtfeger, Michael; Ziegenhagen, Birgit; Koch, Martin

    2014-04-01

    We present a novel measurement setup for monitoring changes in leaf water status using nondestructive terahertz time-domain spectroscopy (THz-TDS). Previous studies on a variety of plants showed the principal applicability of THz-TDS. In such setups, decreasing leaf water content directly correlates with increasing THz transmission. Our new system allows for continuous, nondestructive monitoring of the water status of multiple individual plants each at the same constant leaf position. It overcomes previous drawbacks, which were mainly due to the necessity of relocating the plants. Using needles of silver fir (Abies alba) seedlings as test subjects, we show that the transmission varies along the main axis of a single needle due to a variation in thickness. Therefore, the relocation of plants during the measuring period, which was necessary in the previous THz-TDS setups, should be avoided. Furthermore, we show a highly significant correlation between gravimetric water content and respective THz transmission. By monitoring the relative change in transmission, we were able to narrow down the permanent wilting point of the seedlings. Thus, we established groups of plants with well-defined levels of water stress that could not be detected visually. This opens up the possibility for a broad range of genetic and physiological experiments.

  13. Monitoring Plant Drought Stress Response Using Terahertz Time-Domain Spectroscopy[C][W

    Science.gov (United States)

    Born, Norman; Behringer, David; Liepelt, Sascha; Beyer, Sarah; Schwerdtfeger, Michael; Ziegenhagen, Birgit; Koch, Martin

    2014-01-01

    We present a novel measurement setup for monitoring changes in leaf water status using nondestructive terahertz time-domain spectroscopy (THz-TDS). Previous studies on a variety of plants showed the principal applicability of THz-TDS. In such setups, decreasing leaf water content directly correlates with increasing THz transmission. Our new system allows for continuous, nondestructive monitoring of the water status of multiple individual plants each at the same constant leaf position. It overcomes previous drawbacks, which were mainly due to the necessity of relocating the plants. Using needles of silver fir (Abies alba) seedlings as test subjects, we show that the transmission varies along the main axis of a single needle due to a variation in thickness. Therefore, the relocation of plants during the measuring period, which was necessary in the previous THz-TDS setups, should be avoided. Furthermore, we show a highly significant correlation between gravimetric water content and respective THz transmission. By monitoring the relative change in transmission, we were able to narrow down the permanent wilting point of the seedlings. Thus, we established groups of plants with well-defined levels of water stress that could not be detected visually. This opens up the possibility for a broad range of genetic and physiological experiments. PMID:24501000

  14. Miniaturized pulsed laser source for time-domain diffuse optics routes to wearable devices

    Science.gov (United States)

    Di Sieno, Laura; Nissinen, Jan; Hallman, Lauri; Martinenghi, Edoardo; Contini, Davide; Pifferi, Antonio; Kostamovaara, Juha; Mora, Alberto Dalla

    2017-08-01

    We validate a miniaturized pulsed laser source for use in time-domain (TD) diffuse optics, following rigorous and shared protocols for performance assessment of this class of devices. This compact source (12×6 mm2) has been previously developed for range finding applications and is able to provide short, high energy (˜100 ps, ˜0.5 nJ) optical pulses at up to 1 MHz repetition rate. Here, we start with a basic level laser characterization with an analysis of suitability of this laser for the diffuse optics application. Then, we present a TD optical system using this source and its performances in both recovering optical properties of tissue-mimicking homogeneous phantoms and in detecting localized absorption perturbations. Finally, as a proof of concept of in vivo application, we demonstrate that the system is able to detect hemodynamic changes occurring in the arm of healthy volunteers during a venous occlusion. Squeezing the laser source in a small footprint removes a key technological bottleneck that has hampered so far the realization of a miniaturized TD diffuse optics system, able to compete with already assessed continuous-wave devices in terms of size and cost, but with wider performance potentialities, as demonstrated by research over the last two decades.

  15. A wavelet-based PWTD algorithm-accelerated time domain surface integral equation solver

    KAUST Repository

    Liu, Yang

    2015-10-26

    © 2015 IEEE. The multilevel plane-wave time-domain (PWTD) algorithm allows for fast and accurate analysis of transient scattering from, and radiation by, electrically large and complex structures. When used in tandem with marching-on-in-time (MOT)-based surface integral equation (SIE) solvers, it reduces the computational and memory costs of transient analysis from equation and equation to equation and equation, respectively, where Nt and Ns denote the number of temporal and spatial unknowns (Ergin et al., IEEE Trans. Antennas Mag., 41, 39-52, 1999). In the past, PWTD-accelerated MOT-SIE solvers have been applied to transient problems involving half million spatial unknowns (Shanker et al., IEEE Trans. Antennas Propag., 51, 628-641, 2003). Recently, a scalable parallel PWTD-accelerated MOT-SIE solver that leverages a hiearchical parallelization strategy has been developed and successfully applied to the transient problems involving ten million spatial unknowns (Liu et. al., in URSI Digest, 2013). We further enhanced the capabilities of this solver by implementing a compression scheme based on local cosine wavelet bases (LCBs) that exploits the sparsity in the temporal dimension (Liu et. al., in URSI Digest, 2014). Specifically, the LCB compression scheme was used to reduce the memory requirement of the PWTD ray data and computational cost of operations in the PWTD translation stage.

  16. Towards the use of bioresorbable fibers in time-domain diffuse optics.

    Science.gov (United States)

    Di Sieno, Laura; Boetti, Nadia G; Dalla Mora, Alberto; Pugliese, Diego; Farina, Andrea; Konugolu Venkata Sekar, Sanathana; Ceci-Ginistrelli, Edoardo; Janner, Davide; Pifferi, Antonio; Milanese, Daniel

    2018-01-01

    In the last years bioresorbable materials are gaining increasing interest for building implantable optical components for medical devices. In this work we show the fabrication of bioresorbable optical fibers designed for diffuse optics applications, featuring large core diameter (up to 200 μm) and numerical aperture (0.17) to maximize the collection efficiency of diffused light. We demonstrate the suitability of bioresorbable fibers for time-domain diffuse optical spectroscopy firstly checking the intrinsic performances of the setup by acquiring the instrument response function. We then validate on phantoms the use of bioresorbable fibers by applying the MEDPHOT protocol to assess the performance of the system in measuring optical properties (namely, absorption and scattering coefficients) of homogeneous media. Further, we show an ex-vivo validation on a chicken breast by measuring the absorption and scattering spectra in the 500-1100 nm range using interstitially inserted bioresorbable fibers. This work represents a step toward a new way to look inside the body using optical fibers that can be implanted in patients. These fibers could be useful either for diagnostic (e. g. for monitoring the evolution after surgical interventions) or treatment (e. g. photodynamic therapy) purposes. Picture: Microscopy image of the 100 μm core bioresorbable fiber. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Features of a time domain simulation tool for rigid riser design

    Energy Technology Data Exchange (ETDEWEB)

    Morooka, Celso K.; Brandt, Dustin M. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Petroleo; Matt, Cyntia G.C.; Franciss, Ricardo [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2008-07-01

    This paper present a number of numerical implementations designed for the analysis of rigid riser's static and dynamic behavior that includes the effects of vortex induced vibrations (VIV) and marine hydrodynamic loads in time domain. Features include the ability to consider pipe with a free-span utilizing a soil/riser interaction model. An implementation of a numerical coupling scheme to couple the vertical riser and platform dynamics was developed to allow prediction of the sub sea Blow-Out Preventer (BOP) re-entry into a sub sea petroleum well when drilling different phases of deep and ultra-deep wells. The developments contains support for the consideration of the Self Standing Hybrid Riser (SSHR) configuration which has been shown to be a promising riser configuration in deep and ultra-deep waters. A graphical interface was also created to better grasp the results and aid in the modeling, processing and to help analyze the numerical simulations, contributing to enhance agility and quality of the riser design and analysis processes. (author)

  18. Optimal methodologies for terahertz time-domain spectroscopic analysis of traditional pigments in powder form

    Science.gov (United States)

    Ha, Taewoo; Lee, Howon; Sim, Kyung Ik; Kim, Jonghyeon; Jo, Young Chan; Kim, Jae Hoon; Baek, Na Yeon; Kang, Dai-ill; Lee, Han Hyoung

    2017-05-01

    We have established optimal methods for terahertz time-domain spectroscopic analysis of highly absorbing pigments in powder form based on our investigation of representative traditional Chinese pigments, such as azurite [blue-based color pigment], Chinese vermilion [red-based color pigment], and arsenic yellow [yellow-based color pigment]. To accurately extract the optical constants in the terahertz region of 0.1 - 3 THz, we carried out transmission measurements in such a way that intense absorption peaks did not completely suppress the transmission level. This required preparation of pellet samples with optimized thicknesses and material densities. In some cases, mixing the pigments with polyethylene powder was required to minimize absorption due to certain peak features. The resulting distortion-free terahertz spectra of the investigated set of pigment species exhibited well-defined unique spectral fingerprints. Our study will be useful to future efforts to establish non-destructive analysis methods of traditional pigments, to construct their spectral databases, and to apply these tools to restoration of cultural heritage materials.

  19. Signals features extraction in liquid-gas flow measurements using gamma densitometry. Part 1: time domain

    Directory of Open Access Journals (Sweden)

    Hanus Robert

    2016-01-01

    Full Text Available The paper presents an application of the gamma-absorption method to study a gas-liquid two-phase flow in a horizontal pipeline. In the tests on laboratory installation two 241Am radioactive sources and scintillation probes with NaI(Tl crystals have been used. The experimental set-up allows recording of stochastic signals, which describe instantaneous content of the stream in the particular cross-section of the flow mixture. The analyses of these signals by statistical methods allow to determine the mean velocity of the gas phase. Meanwhile, the selected features of signals provided by the absorption set, can be applied to recognition of the structure of the flow. In this work such three structures of air-water flow as: plug, bubble, and transitional plug – bubble one were considered. The recorded raw signals were analyzed in time domain and several features were extracted. It was found that following features of signals as the mean, standard deviation, root mean square (RMS, variance and 4th moment are most useful to recognize the structure of the flow.

  20. Non-local effect in Brillouin optical time-domain analyzer based on Raman amplification

    International Nuclear Information System (INIS)

    Jia Xinhong; Rao Yunjiang; Wang Zinan; Zhang Weili; Ran Zengling; Deng Kun; Yang Zixin

    2012-01-01

    Compared with conventional Brillouin optical time-domain analyzer (BOTDA), the BOTDA based on Raman amplification allows longer sensing range, higher signal-to-noise ratio and higher measurement accuracy. However, the non-local effect induced by pump depletion significantly restricts the probe optical power injected to sensing fiber, thereby limiting the further extension for sensing distance. In this paper, the coupled equations including the interaction of probe light, Brillouin and Raman pumps are applied to the study on the non-local characteristics of BOTDA based on Raman amplification. The results show that, the system error induced by non-local effect worsens with increased powers of probe wave and Raman pump. The frequency-division-multiplexing (cascading the fibers with various Brillouin frequency shifts) and time-division-multiplexing (modulating both of the Brillouin pump and probe lights) technologies are efficient approaches to suppress the non-local effect, through shortening the effective interaction range between Brillouin pump and probe lights. (authors)

  1. An all-NbN time domain reflectometer chip functional above 8K

    International Nuclear Information System (INIS)

    Whiteley, S.R.; Kuo, F.; Radparvar, M.; Faris, S.M.

    1989-01-01

    The compound niobium nitride has a superconducting transition temperature nearly twice that of niobium. As this compound can be readily deposited in thin-film form at low temperatures, it shows promise in electronics applications, allowing circuits to operate within the temperature range of relatively inexpensive closed-cycle refrigerators. A 5 ps time domain reflectometer chip based on NbN technology has been designed, fabricated, and tested. The circuit is operable up to 9 K. The NbN process and limitations are discussed in the NbN Process section, pointing out present drawbacks in the junction fabrication method. Electrical properties are discussed in the following section. In the Circuit Description section, the circuit operation is described, and simulations are presented, based on model parameters extracted from device measurements. The actual output of the circuit is presented in the Measurements section as evidence of basic functionality. This is the first demonstration of a functional high-speed circuit based entirely on a compound superconductor technology and operable at temperatures above 8 K

  2. Rapid quantitation of lipid in microalgae by time-domain nuclear magnetic resonance.

    Science.gov (United States)

    Gao, Chunfang; Xiong, Wei; Zhang, Yiliang; Yuan, Wenqiao; Wu, Qingyu

    2008-12-01

    A specific strain of Chlorella protothecoides has been studied in heterotrophic fermentation for increasing cell growth rate and lipid content for biodiesel production. For optimizing the process of fermentation to reduce costs of alga-based biodiesel production, rapid determination of lipid content in microalgal cells is critical. Nile Red (NR) staining and time-domain nuclear magnetic resonance (TD-NMR) have been investigated to quantitate the lipid content in C. protothecoides. Both methods were found feasible and simpler than gravimetric methods that are commonly employed. The TD-NMR method showed better agreement (R(2)=0.9973) with the measured values from lipid extraction experiments than the NR staining method (R(2)=0.9067). Additionally, the smaller standard deviations of the samples (< or =0.36) analyzed by TD-NMR revealed that the method is accurate and reproducible. The application of TD-NMR for lipid quantitation in C. protothecoides opens up the possibility of determining lipid content in algal fermentation precisely and quickly.

  3. Signals features extraction in liquid-gas flow measurements using gamma densitometry. Part 1: time domain

    Science.gov (United States)

    Hanus, Robert; Zych, Marcin; Petryka, Leszek; Jaszczur, Marek; Hanus, Paweł

    2016-03-01

    The paper presents an application of the gamma-absorption method to study a gas-liquid two-phase flow in a horizontal pipeline. In the tests on laboratory installation two 241Am radioactive sources and scintillation probes with NaI(Tl) crystals have been used. The experimental set-up allows recording of stochastic signals, which describe instantaneous content of the stream in the particular cross-section of the flow mixture. The analyses of these signals by statistical methods allow to determine the mean velocity of the gas phase. Meanwhile, the selected features of signals provided by the absorption set, can be applied to recognition of the structure of the flow. In this work such three structures of air-water flow as: plug, bubble, and transitional plug - bubble one were considered. The recorded raw signals were analyzed in time domain and several features were extracted. It was found that following features of signals as the mean, standard deviation, root mean square (RMS), variance and 4th moment are most useful to recognize the structure of the flow.

  4. Comparative study of boson peak in normal and secondary alcohols with terahertz time-domain spectroscopy

    International Nuclear Information System (INIS)

    Yomogida, Yoshiki; Sato, Yuki; Nozaki, Ryusuke; Mishina, Tomobumi; Nakahara, Jun'ichiro

    2010-01-01

    Using terahertz (THz) time-domain spectroscopy, we measured the complex permittivity of some normal (1-propanol, 1-butanol, and 1-pentanol) and secondary alcohols (2-propanol, 2-butanol, and 2-pentanol) in the frequency ranges from 0.2 to 2.5 THz at temperatures from 253 to 323 K. For all the samples, the complex permittivity in the THz region includes the following three components: (i) a high frequency side of dielectric relaxation processes, (ii) a broad mode around 1 THz, and (iii) a low frequency side of an intermolecular vibration mode located above 2.5 THz. The mode around 1 THz is recognized as a boson peak which is related to the local structure of disordered materials. The intensity of the boson peak in secondary alcohols is higher than that in normal alcohols. On the other hand, the number of carbon atoms slightly affects the appearance of the boson peak. These observations indicate that the position of an OH group in a molecule has a profound effect on the local structures in monohydric alcohols.

  5. Measurement of multi-bunch transfer functions using time-domain data and Fourier analysis

    International Nuclear Information System (INIS)

    Hindi, H.; Sapozhnikov, L.; Fox, J.; Prabhakar, S.; Oxoby, G.; Linscott, I.; Drago, A.

    1993-12-01

    Multi-bunch transfer functions are principal ingredients in understanding both the behavior of high-current storage rings as well as control of their instabilities. The measurement of transfer functions on a bunch-by-bunch basis is particularly important in the design of active feedback systems. Traditional methods of network analysis that work well in the single bunch case become difficult to implement for many bunches. We have developed a method for obtaining empirical estimates of the multi-bunch longitudinal transfer functions from the time-domain measurements of the bunches' phase oscillations. This method involves recording the response of the bunch of interest to a white-noise excitation. The transfer function can then be computed as the ratio of the fast Fourier transforms (FFTs) of the response and excitation sequences, averaged over several excitations. The calculation is performed off-line on bunch-phase data and is well-suited to the multi-bunch case. A description of this method and an analysis of its performance is presented with results obtained using the longitudinal quick prototype feedback system developed at SLAC

  6. Time domain localization technique with sparsity constraint for imaging acoustic sources

    Science.gov (United States)

    Padois, Thomas; Doutres, Olivier; Sgard, Franck; Berry, Alain

    2017-09-01

    This paper addresses source localization technique in time domain for broadband acoustic sources. The objective is to accurately and quickly detect the position and amplitude of noise sources in workplaces in order to propose adequate noise control options and prevent workers hearing loss or safety risk. First, the generalized cross correlation associated with a spherical microphone array is used to generate an initial noise source map. Then a linear inverse problem is defined to improve this initial map. Commonly, the linear inverse problem is solved with an l2 -regularization. In this study, two sparsity constraints are used to solve the inverse problem, the orthogonal matching pursuit and the truncated Newton interior-point method. Synthetic data are used to highlight the performances of the technique. High resolution imaging is achieved for various acoustic sources configurations. Moreover, the amplitudes of the acoustic sources are correctly estimated. A comparison of computation times shows that the technique is compatible with quasi real-time generation of noise source maps. Finally, the technique is tested with real data.

  7. Determination of soluble solids content in apple products by terahertz time-domain spectroscopy

    Science.gov (United States)

    Hao, Guohui; Liu, Jianjun; Hong, Zhi

    2011-08-01

    Soluble solids content is an important index for fruit quality. One of the traditional methods in determining soluble solids content of fruits is refractometry which measures the refractive index in visible or near infrared. Here we reported the use of terahertz time-domain transmission spectroscopy (THz-TDTS) technique for the determination of soluble solids content in apple products. Not only the refractive index, but also the absorption coefficient is used in regression model. In method one, sucrose solutions were for the calibration set , root mean square of validation set (RMSEP) was 0.168% for absorption coefficient model, 0.741% for refractive index model. In method two, apple products were for the calibration set, RMSEP was 0.143% for absorption coefficient model, 0.648% for refractive index model. Less absolute error of 0.2% between predicted and refractometer value has been both obtained from two methods with absorption coefficient model. This result proved the THz-TDS technique is quite potential for nondestructive detection on food quality.

  8. Time-domain prefilter design for enhanced tracking and vibration suppression in machine motion control

    Science.gov (United States)

    Cole, Matthew O. T.; Shinonawanik, Praween; Wongratanaphisan, Theeraphong

    2018-05-01

    Structural flexibility can impact negatively on machine motion control systems by causing unmeasured positioning errors and vibration at locations where accurate motion is important for task execution. To compensate for these effects, command signal prefiltering may be applied. In this paper, a new FIR prefilter design method is described that combines finite-time vibration cancellation with dynamic compensation properties. The time-domain formulation exploits the relation between tracking error and the moment values of the prefilter impulse response function. Optimal design solutions for filters having minimum H2 norm are derived and evaluated. The control approach does not require additional actuation or sensing and can be effective even without complete and accurate models of the machine dynamics. Results from implementation and testing on an experimental high-speed manipulator having a Delta robot architecture with directionally compliant end-effector are presented. The results show the importance of prefilter moment values for tracking performance and confirm that the proposed method can achieve significant reductions in both peak and RMS tracking error, as well as settling time, for complex motion patterns.

  9. Terahertz time domain interferometry of a SIS tunnel junction and a quantum point contact

    Energy Technology Data Exchange (ETDEWEB)

    Karadi, Chandu [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1995-09-01

    The author has applied the Terahertz Time Domain Interferometric (THz-TDI) technique to probe the ultrafast dynamic response of a Superconducting-Insulating-Superconducting (SIS) tunnel junction and a Quantum Point Contact (QPC). The THz-TDI technique involves monitoring changes in the dc current induced by interfering two picosecond electrical pulses on the junction as a function of time delay between them. Measurements of the response of the Nb/AlOxNb SIS tunnel junction from 75--200 GHz are in full agreement with the linear theory for photon-assisted tunneling. Likewise, measurements of the induced current in a QPC as a function of source-drain voltage, gate voltage, frequency, and magnetic field also show strong evidence for photon-assisted transport. These experiments together demonstrate the general applicability of the THz-TDI technique to the characterization of the dynamic response of any micron or nanometer scale device that exhibits a non-linear I-V characteristic.

  10. Memory-optimized shift operator alternating direction implicit finite difference time domain method for plasma

    Science.gov (United States)

    Song, Wanjun; Zhang, Hou

    2017-11-01

    Through introducing the alternating direction implicit (ADI) technique and the memory-optimized algorithm to the shift operator (SO) finite difference time domain (FDTD) method, the memory-optimized SO-ADI FDTD for nonmagnetized collisional plasma is proposed and the corresponding formulae of the proposed method for programming are deduced. In order to further the computational efficiency, the iteration method rather than Gauss elimination method is employed to solve the equation set in the derivation of the formulae. Complicated transformations and convolutions are avoided in the proposed method compared with the Z transforms (ZT) ADI FDTD method and the piecewise linear JE recursive convolution (PLJERC) ADI FDTD method. The numerical dispersion of the SO-ADI FDTD method with different plasma frequencies and electron collision frequencies is analyzed and the appropriate ratio of grid size to the minimum wavelength is given. The accuracy of the proposed method is validated by the reflection coefficient test on a nonmagnetized collisional plasma sheet. The testing results show that the proposed method is advantageous for improving computational efficiency and saving computer memory. The reflection coefficient of a perfect electric conductor (PEC) sheet covered by multilayer plasma and the RCS of the objects coated by plasma are calculated by the proposed method and the simulation results are analyzed.

  11. Time Domain View of Liquid-like Screening and Large Polaron Formation in Lead Halide Perovskites

    Science.gov (United States)

    Joshi, Prakriti Pradhan; Miyata, Kiyoshi; Trinh, M. Tuan; Zhu, Xiaoyang

    The structural softness and dynamic disorder of lead halide perovskites contributes to their remarkable optoelectronic properties through efficient charge screening and large polaron formation. Here we provide a direct time-domain view of the liquid-like structural dynamics and polaron formation in single crystal CH3NH3PbBr3 and CsPbBr3 using femtosecond optical Kerr effect spectroscopy in conjunction with transient reflectance spectroscopy. We investigate structural dynamics as function of pump energy, which enables us to examine the dynamics in the absence and presence of charge carriers. In the absence of charge carriers, structural dynamics are dominated by over-damped picosecond motions of the inorganic PbBr3- sub-lattice and these motions are strongly coupled to band-gap electronic transitions. Carrier injection from across-gap optical excitation triggers additional 0.26 ps dynamics in CH3NH3PbBr3 that can be attributed to the formation of large polarons. In comparison, large polaron formation is slower in CsPbBr3 with a time constant of 0.6 ps. We discuss how such dynamic screening protects charge carriers in lead halide perovskites. US Department of Energy, Office of Science - Basic Energy Sciences.

  12. Time-domain comparisons of power law attenuation in causal and noncausal time-fractional wave equations

    Science.gov (United States)

    Zhao, Xiaofeng; McGough, Robert J.

    2016-01-01

    The attenuation of ultrasound propagating in human tissue follows a power law with respect to frequency that is modeled by several different causal and noncausal fractional partial differential equations. To demonstrate some of the similarities and differences that are observed in three related time-fractional partial differential equations, time-domain Green's functions are calculated numerically for the power law wave equation, the Szabo wave equation, and for the Caputo wave equation. These Green's functions are evaluated for water with a power law exponent of y = 2, breast with a power law exponent of y = 1.5, and liver with a power law exponent of y = 1.139. Simulation results show that the noncausal features of the numerically calculated time-domain response are only evident very close to the source and that these causal and noncausal time-domain Green's functions converge to the same result away from the source. When noncausal time-domain Green's functions are convolved with a short pulse, no evidence of noncausal behavior remains in the time-domain, which suggests that these causal and noncausal time-fractional models are equally effective for these numerical calculations. PMID:27250193

  13. Evidence of Convective Redistribution of Carbon Monoxide in Aura Tropospheric Emission Sounder (TES) and Microwave Limb Sounder (MLS) Observations

    Science.gov (United States)

    Manyin, Michael; Douglass, Anne; Schoeberl, Mark

    2010-01-01

    Vertical convective transport is a key element of the tropospheric circulation. Convection lofts air from the boundary layer into the free troposphere, allowing surface emissions to travel much further, and altering the rate of chemical processes such as ozone production. This study uses satellite observations to focus on the convective transport of CO from the boundary layer to the mid and upper troposphere. Our hypothesis is that strong convection associated with high rain rate regions leads to a correlation between mid level and upper level CO amounts. We first test this hypothesis using the Global Modeling Initiative (GMI) chemistry and transport model. We find the correlation is robust and increases as the precipitation rate (the strength of convection) increases. We next examine three years of CO profiles from the Tropospheric Emission Sounder (TES) and Microwave Limb Sounder (MLS) instruments aboard EOS Aura. Rain rates are taken from the Tropical Rainfall Measuring Mission (TRMM) 3B-42 multi-satellite product. Again we find a correlation between mid-level and upper tropospheric CO, which increases with rain rate. Our result shows the critical importance of tropical convection in coupling vertical levels of the troposphere in the transport of trace gases. The effect is seen most clearly in strong convective regions such as the Inter-tropical Convergence Zone.

  14. Engineering electromagnetics

    CERN Document Server

    Thomas, David T; Hartnett, James P; Hughes, William F

    1973-01-01

    The applications involving electromagnetic fields are so pervasive that it is difficult to estimate their contribution to the industrial output: generation of electricity, power transmission lines, electric motors, actuators, relays, radio, TV and microwave transmission and reception, magnetic storage, and even the mundane little magnet used to hold a paper note on the refrigerator are all electromagnetic in nature. One would be hard pressed to find a device that works without relaying on any electromagnetic principle or effect. This text provides a good theoretical understanding of the electromagnetic field equations but also treats a large number of applications. In fact, no topic is presented unless it is directly applicable to engineering design or unless it is needed for the understanding of another topic. In electrostatics, for example, the text includes discussions of photocopying, ink-jet printing, electrostatic separation and deposition, sandpaper production, paint spraying, and powder coating. In ma...

  15. Electromagnetic Landscape

    DEFF Research Database (Denmark)

    Cermak, Daniel; Okutsu, Ayaka; Jørgensen, Stina Marie Hasse

    2015-01-01

    Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015.......Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015....

  16. Time-domain analytic solutions of two-wire transmission line excited by a plane-wave field

    International Nuclear Information System (INIS)

    Ni Guyan; Yan Li; Yuan Naichang

    2008-01-01

    This paper reports that an analytic method is used to calculate the load responses of the two-wire transmission line excited by a plane-wave directly in the time domain. By the frequency-domain Baum–Liu–Tesche (BLT) equation, the time-domain analytic solutions are obtained and expressed in an infinite geometric series. Moreover, it is shown that there exist only finite nonzero terms in the infinite geometric series if the time variate is at a finite interval. In other word, the time-domain analytic solutions are expanded in a finite geometric series indeed if the time variate is at a finite interval. The computed results are subsequently compared with transient responses obtained by using the frequency-domain BLT equation via a fast Fourier transform, and the agreement is excellent. (the physics of elementary particles and fields)

  17. Mapping geological structures in bedrock via large-scale direct current resistivity and time-domain induced polarization tomography

    DEFF Research Database (Denmark)

    Rossi, Matteo; Olsson, Per-Ivar; Johansson, Sara

    2017-01-01

    An investigation of geological conditions is always a key point for planning infrastructure constructions. Bedrock surface and rock quality must be estimated carefully in the designing process of infrastructures. A large direct-current resistivity and time-domain induced-polarization survey has......, there are northwest-trending Permian dolerite dykes that are less deformed. Four 2D direct-current resistivity and time-domain induced-polarization profiles of about 1-km length have been carefully pre-processed to retrieve time-domain induced polarization responses and inverted to obtain the direct......-current resistivity distribution of the subsoil and the phase of the complex conductivity using a constant-phase angle model. The joint interpretation of electrical resistivity and induced-polarization models leads to a better understanding of complex three-dimensional subsoil geometries. The results have been...

  18. Water percolation estimated with time domain reflectometry (TDR in drainage lysimeters

    Directory of Open Access Journals (Sweden)

    Alisson Jadavi Pereira da Silva

    2013-08-01

    Full Text Available Due to the difficulty of estimating water percolation in unsaturated soils, the purpose of this study was to estimate water percolation based on time-domain reflectometry (TDR. In two drainage lysimeters with different soil textures TDR probes were installed, forming a water monitoring system consisting of different numbers of probes. The soils were saturated and covered with plastic to prevent evaporation. Tests of internal drainage were carried out using a TDR 100 unit with constant dielectric readings (every 15 min. To test the consistency of TDR-estimated percolation levels in comparison with the observed leachate levels in the drainage lysimeters, the combined null hypothesis was tested at 5 % probability. A higher number of probes in the water monitoring system resulted in an approximation of the percolation levels estimated from TDR - based moisture data to the levels measured by lysimeters. The definition of the number of probes required for water monitoring to estimate water percolation by TDR depends on the soil physical properties. For sandy clay soils, three batteries with four probes installed at depths of 0.20, 0.40, 0.60, and 0.80 m, at a distance of 0.20, 0.40 and 0.6 m from the center of lysimeters were sufficient to estimate percolation levels equivalent to the observed. In the sandy loam soils, the observed and predicted percolation levels were not equivalent even when using four batteries with four probes each, at depths of 0.20, 0.40, 0.60, and 0.80 m.

  19. An Investigation Into Time Domain Features of Surface Electromyography to Estimate the Elbow Joint Angle

    Directory of Open Access Journals (Sweden)

    Triwiyanto Triwiyanto

    2017-01-01

    Full Text Available In literature, it is well established that feature extraction and pattern classification algorithms play essential roles in accurate estimation of the elbow joint angle. The problem with these algorithms, however, is that they require a learning stage to recognize the pattern as well as capture the variability associated with every subject when estimating the elbow joint angle. As EMG signals can be used to represent motion, we developed a non-pattern recognition method to estimate the elbow joint angle based on twelve time-domain features extracted from EMG signals recorded from bicep muscles alone. The extracted features were smoothed using a second order Butterworth low pass filter to produce the estimation. The accuracy of the estimated angles was evaluated by using the Pearson’s Correlation Coefficient (PCC and Root Mean Square Error (RMSE.The regression parameters (Euclidean distance, R^2 and slope were calculated to observe the response of the features to the elbow-joint angle. From the investigation, we found, in the period of motion 10s, MYOP features have the best accuracy: 0.97±0.02 (Mean±SD and 11.37±3.04˚ (Mean±SD for correlation coefficient and RMSE respectively. MYOP features also showed the highest R^2 and slope value 0.986±0.0083 (Mean±SD and 0.746±0.17 (Mean±SD respectively for flexion and extension motion and all periods of motion.

  20. Discontinuous Galerkin Time-Domain Analysis of Power-Ground Planes Taking Into Account Decoupling Capacitors

    KAUST Repository

    Li, Ping

    2017-03-22

    In this paper, a discontinuous Galerkin time-domain (DGTD) method is developed to analyze the power-ground planes taking into account the decoupling capacitors. In the presence of decoupling capacitors, the whole physical system can be split into two subsystems: 1) the field subsystem that is governed by Maxwell\\'s equations that will be solved by the DGTD method, and 2) the circuit subsystem including the capacitor and its parasitic inductor and resistor, which is going to be characterized by the modified nodal analysis algorithm constructed circuit equations. With the aim to couple the two subsystems together, a lumped port is defined over a coaxial surface between the via barrel and the ground plane. To reach the coupling from the field to the circuit subsystem, a lumped voltage source calculated by the integration of electric field along the radial direction is introduced. On the other hand, to facilitate the coupling from the circuit to field subsystem, a lumped port current source calculated from the circuit equation is introduced, which serves as an impressed current source for the field subsystem. With these two auxiliary terms, a hybrid field-circuit matrix equation is established, which enables the field and circuit subsystems are solved in a synchronous scheme. Furthermore, the arbitrarily shaped antipads are considered by enforcing the proper wave port excitation using the magnetic surface current source derived from the antipads supported electric eigenmodes. In this way, the S-parameters corresponding to different modes can be conveniently extracted. To further improve the efficiency of the proposed algorithm in handling multiscale meshes, the local time-stepping marching scheme is applied. The proposed algorithm is verified by several representative examples.