Quantum Many-Body System in Presence of Time-Dependent Potential and Electric Field
Energy Technology Data Exchange (ETDEWEB)
Sobhani, Hadi; Hassanabadi, Hassan [Shahrood University of Technology, Shahrood (Iran, Islamic Republic of)
2017-07-15
In this article, a quantum many-body system is considered. Then two time-dependent interactions have been added to the system. Changing of them is assumed in general form. After that, by using algebraic method, time evolution of this many-body system has been investigated. In order to study the time evolution, Lewis-Riesenfeld dynamical invariant and time evolution operator method have been used. Appropriate dynamical invariants are constructed and their Eigenvalues are derived as well as appropriate time evolution operators are constructed. These calculations have been done in general form so there are no limiting assumptions on changing of time-dependent functions.
International Nuclear Information System (INIS)
Appel, H.
2007-05-01
In part I of this work we present a double-pole approximation (DPA) to the response equations of time-dependent density functional theory (TDDFT). The double-pole approximation provides an exact description of systems with two strongly coupled excitations which are isolated from the rest of the spectrum. In contrast to the traditional single-pole approximation of TDDFT the DPA also yields corrections to the Kohn-Sham oscillator strengths. We also demonstrate how to invert the double-pole solution which allows us to predict matrix elements of the exchange-correlation kernel f xc from experimental input. We attempt some first steps towards a time-dependent generalization of reduced density matrix functional theory (RDMFT). In part II we derive equations of motion for natural orbitals and occupation numbers. Using the equation of motion for the occupation numbers we show that an adiabatic extension of presently known ground-state functionals of static RDMFT always leads to occupation numbers which are constant in time. From the stationary conditions of the equations of motion for the N-body correlations (correlated parts of the N-body matrices) we derive a new class of ground-state functionals which can be used in static RDMFT. Applications are presented for a one-dimensional model system where the time-dependent many-body Schroedinger equation can be propagated numerically. We use optimal control theory to find optimized laser pulses for transitions in a model for atomic Helium. From the numerically exact correlated wavefunction we extract the exact time evolution of natural orbitals and occupation numbers for (i) laser-driven Helium and (ii) electron-ion scattering. Part III of this work considers time-dependent quantum transport within TDDFT. We present an algorithm for the calculation of extended eigenstates of single-particle Hamiltonians which is especially tailored to a finite-difference discretization of the Schroedinger equation. We consider the propagation
Energy Technology Data Exchange (ETDEWEB)
Appel, H.
2007-05-15
In part I of this work we present a double-pole approximation (DPA) to the response equations of time-dependent density functional theory (TDDFT). The double-pole approximation provides an exact description of systems with two strongly coupled excitations which are isolated from the rest of the spectrum. In contrast to the traditional single-pole approximation of TDDFT the DPA also yields corrections to the Kohn-Sham oscillator strengths. We also demonstrate how to invert the double-pole solution which allows us to predict matrix elements of the exchange-correlation kernel f{sub xc} from experimental input. We attempt some first steps towards a time-dependent generalization of reduced density matrix functional theory (RDMFT). In part II we derive equations of motion for natural orbitals and occupation numbers. Using the equation of motion for the occupation numbers we show that an adiabatic extension of presently known ground-state functionals of static RDMFT always leads to occupation numbers which are constant in time. From the stationary conditions of the equations of motion for the N-body correlations (correlated parts of the N-body matrices) we derive a new class of ground-state functionals which can be used in static RDMFT. Applications are presented for a one-dimensional model system where the time-dependent many-body Schroedinger equation can be propagated numerically. We use optimal control theory to find optimized laser pulses for transitions in a model for atomic Helium. From the numerically exact correlated wavefunction we extract the exact time evolution of natural orbitals and occupation numbers for (i) laser-driven Helium and (ii) electron-ion scattering. Part III of this work considers time-dependent quantum transport within TDDFT. We present an algorithm for the calculation of extended eigenstates of single-particle Hamiltonians which is especially tailored to a finite-difference discretization of the Schroedinger equation. We consider the
Quantum physics. Vol. 2. From time-dependent dynamics to many-body physics and quantum chaos
International Nuclear Information System (INIS)
Zelevinsky, Vladimir
2011-01-01
This two-volume set can be naturally divided into two semester courses, and contains a full modern graduate course in quantum physics. The idea is to teach graduate students how to practically use quantum physics and theory, presenting the fundamental knowledge, and gradually moving on to applications, including atomic, nuclear and solid state physics, as well as modern subfields, such as quantum chaos and quantum entanglement. The book starts with basic quantum problems, which do not require full quantum formalism but allow the student to gain the necessary experience and elements of quantum thinking. Only then does the fundamental Schrodinger equation appear. The author has included topics that are not usually covered in standard textbooks and has written the book in such a way that every topic contains varying layers of difficulty, so that the instructor can decide where to stop. Although supplementary sources are not required, ''Further reading'' is given for each chapter, including references to scientific journals and publications, and a glossary is also provided. Problems and solutions are integrated throughout the text. (orig.)
Quantum physics. Vol. 2. From time-dependent dynamics to many-body physics and quantum chaos
Energy Technology Data Exchange (ETDEWEB)
Zelevinsky, Vladimir [NSCL Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy
2011-07-01
This two-volume set can be naturally divided into two semester courses, and contains a full modern graduate course in quantum physics. The idea is to teach graduate students how to practically use quantum physics and theory, presenting the fundamental knowledge, and gradually moving on to applications, including atomic, nuclear and solid state physics, as well as modern subfields, such as quantum chaos and quantum entanglement. The book starts with basic quantum problems, which do not require full quantum formalism but allow the student to gain the necessary experience and elements of quantum thinking. Only then does the fundamental Schrodinger equation appear. The author has included topics that are not usually covered in standard textbooks and has written the book in such a way that every topic contains varying layers of difficulty, so that the instructor can decide where to stop. Although supplementary sources are not required, ''Further reading'' is given for each chapter, including references to scientific journals and publications, and a glossary is also provided. Problems and solutions are integrated throughout the text. (orig.)
International Nuclear Information System (INIS)
Masiello, David J.; Reinhardt, William P.
2007-01-01
A time-dependent multiconfigurational self-consistent field theory is presented to describe the many-body dynamics of a gas of identical bosonic atoms confined to an external trapping potential at zero temperature from first principles. A set of generalized evolution equations are developed, through the time-dependent variational principle, which account for the complete and self-consistent coupling between the expansion coefficients of each configuration and the underlying one-body wave functions within a restricted two state Fock space basis that includes the full effects of the condensate's mean field as well as atomic correlation. The resulting dynamical equations are a classical Hamiltonian system and, by construction, form a well-defined initial value problem. They are implemented in an efficient numerical algorithm. An example is presented, highlighting the generality of the theory, in which the ballistic expansion of a fragmented condensate ground state is compared to that of a macroscopic quantum superposition state, taken here to be a highly entangled number state, upon releasing the external trapping potential. Strikingly different many-body matter-wave dynamics emerge in each case, accentuating the role of both atomic correlation and mean-field effects in the two condensate states
CIME School on Quantum Many Body Systems
Rivasseau, Vincent; Solovej, Jan Philip; Spencer, Thomas
2012-01-01
The book is based on the lectures given at the CIME school "Quantum many body systems" held in the summer of 2010. It provides a tutorial introduction to recent advances in the mathematics of interacting systems, written by four leading experts in the field: V. Rivasseau illustrates the applications of constructive Quantum Field Theory to 2D interacting electrons and their relation to quantum gravity; R. Seiringer describes a proof of Bose-Einstein condensation in the Gross-Pitaevski limit and explains the effects of rotating traps and the emergence of lattices of quantized vortices; J.-P. Solovej gives an introduction to the theory of quantum Coulomb systems and to the functional analytic methods used to prove their thermodynamic stability; finally, T. Spencer explains the supersymmetric approach to Anderson localization and its relation to the theory of random matrices. All the lectures are characterized by their mathematical rigor combined with physical insights.
Seniority in quantum many-body systems
International Nuclear Information System (INIS)
Van Isacker, P.
2010-01-01
The use of the seniority quantum number in many-body systems is reviewed. A brief summary is given of its introduction by Racah in the context of atomic spectroscopy. Several extensions of Racah's original idea are discussed: seniority for identical nucleons in a single-j shell, its extension to the case of many, non-degenerate j shells and to systems with neutrons and protons. To illustrate its usefulness to this day, a recent application of seniority is presented in Bose-Einstein condensates of atoms with spin.
Time dependent mean field approximation to the many-body S-matrix
International Nuclear Information System (INIS)
Alhassid, Y.; Koonin, S.E.
1980-01-01
Time-dependent Hartree-Fock (TDHF) calculations are a good description of some inclusive properties of deep inelastic heavy-ion collisions. The first steps toward a mean-field theory that approximates specific elements of the many-body S matrix are presented. A many-body system with pairwise interactions excited by an external, time-dependent one-body field is considered. The methods are used to solve the forced Lipkin model. The moduli of elastic and excitation amplitudes are plotted. 3 figures
Nuclear many-body correlation dynamics--a nonperturbative approach in quantum many-body theory
International Nuclear Information System (INIS)
Wang Shunjin
1996-01-01
Based on the experimental results and theoretical experience in nuclear physics, the article has explored the basic physical ideas and theoretical methods in nuclear and quantum many-body correlation dynamics. The main theoretical results and important applications are introduced briefly. The paper addresses the fundamental ingredients and physical interpretation of theoretical results in a comprehensive way. Recent new results about correlation dynamics in quantum field theories are also presented. The perspectives of further application are viewed. (91 refs.)
Many-body quantum simulation with Rydberg atoms and ions
International Nuclear Information System (INIS)
Mueller, M.
2010-01-01
This thesis presents my work that is located at the interface between the fields of atomic physics, quantum optics and quantum information. The work was performed at the Institute of Theoretical Physics of the University of Innsbruck and the Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences under the supervision of Prof. Peter Zoller. The main topic of this thesis is the investigation of new schemes for quantum simulation of interacting many-body systems. The thesis is divided into three parts, which cover my work on i) chains of trapped Rydberg ions ii) quantum information processing and simulation with Rydberg atoms and iii) quantum simulation with ground state ions. The first part of this thesis is concerned with the study of Rydberg ions trapped in a linear Paul trap. The properties of ionic Rydberg states in the presence of the static and time-dependent electric trapping fields are investigated. First it is analyzed under which conditions laser-excited Rydberg ions can be trapped in a stable configuration. Furthermore, it is shown that strong dipole-dipole interactions among the ions can be achieved by microwave dressing fields. These interactions can give rise to dynamics of Rydberg excitations through the ion crystal, which take place on a nanosecond timescale and can be described by effective spin-models. In addition, it is discussed how to achieve fast two-qubit entangling gates between pairs of Rydberg ions. In the second part of this thesis, novel possibilities of using neutral Rydberg atoms for quantum-information processing and quantum simulation are investigated. A new scheme for a multi-atom quantum gate is proposed and theoretically analyzed. This parallelized gate allows one to entangle a mesoscopic ensemble of atoms with a single control atom in a single step, with high fidelity and on a microsecond time scale. The operation relies on strong and long-ranged interactions between Rydberg atoms triggering a
From few- to many-body quantum systems
Schiulaz, Mauro; Távora, Marco; Santos, Lea F.
2018-01-01
How many particles are necessary to make a many-body quantum system? To answer this question, we take as reference for the many-body limit a quantum system at half-filling and compare its properties with those of a system with $N$ particles, gradually increasing $N$ from 1. We show that the convergence of the static properties of the system with few particles to the many-body limit is fast. For $N \\gtrsim 4$, the density of states is already very close to Gaussian and signatures of many-body ...
Time Dependent Quantum Mechanics
Morrison, Peter G.
2012-01-01
We present a systematic method for dealing with time dependent quantum dynamics, based on the quantum brachistochrone and matrix mechanics. We derive the explicit time dependence of the Hamiltonian operator for a number of constrained finite systems from this formalism. Once this has been achieved we go on to calculate the wavevector as a function of time, in order to demonstrate the use of matrix methods with respect to several concrete examples. Interesting results are derived for elliptic ...
EDITORIAL: Focus on Quantum Information and Many-Body Theory
Eisert, Jens; Plenio, Martin B.
2010-02-01
Quantum many-body models describing natural systems or materials and physical systems assembled piece by piece in the laboratory for the purpose of realizing quantum information processing share an important feature: intricate correlations that originate from the coherent interaction between a large number of constituents. In recent years it has become manifest that the cross-fertilization between research devoted to quantum information science and to quantum many-body physics leads to new ideas, methods, tools, and insights in both fields. Issues of criticality, quantum phase transitions, quantum order and magnetism that play a role in one field find relations to the classical simulation of quantum systems, to error correction and fault tolerance thresholds, to channel capacities and to topological quantum computation, to name but a few. The structural similarities of typical problems in both fields and the potential for pooling of ideas then become manifest. Notably, methods and ideas from quantum information have provided fresh approaches to long-standing problems in strongly correlated systems in the condensed matter context, including both numerical methods and conceptual insights. Focus on quantum information and many-body theory Contents TENSOR NETWORKS Homogeneous multiscale entanglement renormalization ansatz tensor networks for quantum critical systems M Rizzi, S Montangero, P Silvi, V Giovannetti and Rosario Fazio Concatenated tensor network states R Hübener, V Nebendahl and W Dür Entanglement renormalization in free bosonic systems: real-space versus momentum-space renormalization group transforms G Evenbly and G Vidal Finite-size geometric entanglement from tensor network algorithms Qian-Qian Shi, Román Orús, John Ove Fjærestad and Huan-Qiang Zhou Characterizing symmetries in a projected entangled pair state D Pérez-García, M Sanz, C E González-Guillén, M M Wolf and J I Cirac Matrix product operator representations B Pirvu, V Murg, J I Cirac
Time-dependent, many-body scattering theory and nuclear reaction applications
International Nuclear Information System (INIS)
Levin, F.S.
1977-01-01
The channel component state form of the channel coupling array theory of many-body scattering is briefly reviewed. These states obey a non-hermitian matrix equation whose exact solution yields the Schroedinger eigenstates, eigenvalues and scattering amplitudes. A time-dependent formulation of the theory is introduced in analogy to the time-dependent Schrodinger equation and several consequences of the development are noted. These include an interaction picture, a single (matrix) S operator, and the usual connection between the t = 0 time-dependent and the time-independent scattering states. Finally, the channel component states (psi/sub j/) are shown to have the useful property that only psi/sub j/ has (two-body) outgoing waves in channel j: psi/sub m/, m not equal to j, is asymptotically zero in two-body channel j. This formalism is then considered as a means for direct nuclear reaction analysis. Typical bound state approximations are introduced and it is shown that a DWBA amplitude occurs in only one channel. The non-time-reversal invariance of the approximate theory is noted. Results of calculations based on a realistic model for two sets of light-ion induced, one-particle transfer reactions are discussed and compared with the coupled reaction channel (CRC) results using the CRC procedure of Cotanch and Vincent. Angular distributions for the two calculational methods are found to be similar in shape and magnitude. Higher ordercorrections are small as are time-reversal non-invariant effects. Post- and prior-type CRC calculations are seen to differ; the latter are closer to the full CRC results
Mathematical methods of many-body quantum field theory
Lehmann, Detlef
2004-01-01
Mathematical Methods of Many-Body Quantum Field Theory offers a comprehensive, mathematically rigorous treatment of many-body physics. It develops the mathematical tools for describing quantum many-body systems and applies them to the many-electron system. These tools include the formalism of second quantization, field theoretical perturbation theory, functional integral methods, bosonic and fermionic, and estimation and summation techniques for Feynman diagrams. Among the physical effects discussed in this context are BCS superconductivity, s-wave and higher l-wave, and the fractional quantum Hall effect. While the presentation is mathematically rigorous, the author does not focus solely on precise definitions and proofs, but also shows how to actually perform the computations.Presenting many recent advances and clarifying difficult concepts, this book provides the background, results, and detail needed to further explore the issue of when the standard approximation schemes in this field actually work and wh...
Detecting a many-body mobility edge with quantum quenches
Directory of Open Access Journals (Sweden)
Piero Naldesi, Elisa Ercolessi, Tommaso Roscilde
2016-10-01
Full Text Available The many-body localization (MBL transition is a quantum phase transition involving highly excited eigenstates of a disordered quantum many-body Hamiltonian, which evolve from "extended/ergodic" (exhibiting extensive entanglement entropies and fluctuations to "localized" (exhibiting area-law scaling of entanglement and fluctuations. The MBL transition can be driven by the strength of disorder in a given spectral range, or by the energy density at fixed disorder - if the system possesses a many-body mobility edge. Here we propose to explore the latter mechanism by using "quantum-quench spectroscopy", namely via quantum quenches of variable width which prepare the state of the system in a superposition of eigenstates of the Hamiltonian within a controllable spectral region. Studying numerically a chain of interacting spinless fermions in a quasi-periodic potential, we argue that this system has a many-body mobility edge; and we show that its existence translates into a clear dynamical transition in the time evolution immediately following a quench in the strength of the quasi-periodic potential, as well as a transition in the scaling properties of the quasi-stationary state at long times. Our results suggest a practical scheme for the experimental observation of many-body mobility edges using cold-atom setups.
Quantum Markov processes and applications in many-body systems
International Nuclear Information System (INIS)
Temme, P. K.
2010-01-01
This thesis is concerned with the investigation of quantum as well as classical Markov processes and their application in the field of strongly correlated many-body systems. A Markov process is a special kind of stochastic process, which is determined by an evolution that is independent of its history and only depends on the current state of the system. The application of Markov processes has a long history in the field of statistical mechanics and classical many-body theory. Not only are Markov processes used to describe the dynamics of stochastic systems, but they predominantly also serve as a practical method that allows for the computation of fundamental properties of complex many-body systems by means of probabilistic algorithms. The aim of this thesis is to investigate the properties of quantum Markov processes, i.e. Markov processes taking place in a quantum mechanical state space, and to gain a better insight into complex many-body systems by means thereof. Moreover, we formulate a novel quantum algorithm which allows for the computation of the thermal and ground states of quantum many-body systems. After a brief introduction to quantum Markov processes we turn to an investigation of their convergence properties. We find bounds on the convergence rate of the quantum process by generalizing geometric bounds found for classical processes. We generalize a distance measure that serves as the basis for our investigations, the chi-square divergence, to non-commuting probability spaces. This divergence allows for a convenient generalization of the detailed balance condition to quantum processes. We then devise the quantum algorithm that can be seen as the natural generalization of the ubiquitous Metropolis algorithm to simulate quantum many-body Hamiltonians. By this we intend to provide further evidence, that a quantum computer can serve as a fully-fledged quantum simulator, which is not only capable of describing the dynamical evolution of quantum systems, but
Computational Nuclear Quantum Many-Body Problem: The UNEDF Project
Bogner, Scott; Bulgac, Aurel; Carlson, Joseph A.; Engel, Jonathan; Fann, George; Furnstahl, Richard J.; Gandolfi, Stefano; Hagen, Gaute; Horoi, Mihai; Johnson, Calvin W.; Kortelainen, Markus; Lusk, Ewing; Maris, Pieter; Nam, Hai Ah; Navratil, Petr
2013-01-01
The UNEDF project was a large-scale collaborative effort that applied high-performance computing to the nuclear quantum many-body problem. UNEDF demonstrated that close associations among nuclear physicists, mathematicians, and computer scientists can lead to novel physics outcomes built on algorithmic innovations and computational developments. This review showcases a wide range of UNEDF science results to illustrate this interplay.
General many-body formalism for composite quantum particles.
Combescot, M; Betbeder-Matibet, O
2010-05-21
This Letter provides a formalism capable of exactly treating Pauli blocking between n-fermion particles. This formalism is based on an operator algebra made of commutators and anticommutators which contrasts with the usual scalar formalism of Green functions developed half a century ago for elementary quantum particles. We also provide the diagrams which visualize the very specific many-body physics induced by fermion exchanges between composite quantum particles.
The quantum mechanics of many-body systems
Thouless, David James; Brueckner, Keith A
1961-01-01
The Quantum Mechanics of Many-Body Systems provides an introduction to that field of theoretical physics known as """"many-body theory."""" It is concerned with problems that are common to nuclear physics, atomic physics, the electron theory of metals, and to the theories of liquid helium three and four, and it describes the methods which have recently been developed to solve such problems. The aim has been to produce a unified account of the field, rather than to describe all the parallel methods that have been developed; as a result, a number of important papers are not mentioned. The main
Efficient tomography of a quantum many-body system
Lanyon, B. P.; Maier, C.; Holzäpfel, M.; Baumgratz, T.; Hempel, C.; Jurcevic, P.; Dhand, I.; Buyskikh, A. S.; Daley, A. J.; Cramer, M.; Plenio, M. B.; Blatt, R.; Roos, C. F.
2017-12-01
Quantum state tomography is the standard technique for estimating the quantum state of small systems. But its application to larger systems soon becomes impractical as the required resources scale exponentially with the size. Therefore, considerable effort is dedicated to the development of new characterization tools for quantum many-body states. Here we demonstrate matrix product state tomography, which is theoretically proven to allow for the efficient and accurate estimation of a broad class of quantum states. We use this technique to reconstruct the dynamical state of a trapped-ion quantum simulator comprising up to 14 entangled and individually controlled spins: a size far beyond the practical limits of quantum state tomography. Our results reveal the dynamical growth of entanglement and describe its complexity as correlations spread out during a quench: a necessary condition for future demonstrations of better-than-classical performance. Matrix product state tomography should therefore find widespread use in the study of large quantum many-body systems and the benchmarking and verification of quantum simulators and computers.
Classical and quantum simulations of many-body systems
Energy Technology Data Exchange (ETDEWEB)
Murg, Valentin
2008-04-07
This thesis is devoted to recent developments in the fields of classical and quantum simulations of many-body systems. We describe new classical algorithms that overcome problems apparent in conventional renormalization group and Monte Carlo methods. These algorithms make possible the detailed study of finite temperature properties of 2-D classical and 1-D quantum systems, the investigation of ground states of 2-D frustrated or fermionic systems and the analysis of time evolutions of 2-D quantum systems. Furthermore, we propose new 'analog' quantum simulators that are able to realize interesting models such as a Tonks-Girardeau gas or a frustrated spin-1/2 XY model on a trigonal lattice. These quantum simulators make use of optical lattices and trapped ions and are technically feasible. In fact, the Tonks-Girardeau gas has been realized experimentally and we provide a detailed comparison between the experimental data and the theoretical predictions. (orig.)
Classical and quantum simulations of many-body systems
International Nuclear Information System (INIS)
Murg, Valentin
2008-01-01
This thesis is devoted to recent developments in the fields of classical and quantum simulations of many-body systems. We describe new classical algorithms that overcome problems apparent in conventional renormalization group and Monte Carlo methods. These algorithms make possible the detailed study of finite temperature properties of 2-D classical and 1-D quantum systems, the investigation of ground states of 2-D frustrated or fermionic systems and the analysis of time evolutions of 2-D quantum systems. Furthermore, we propose new ''analog'' quantum simulators that are able to realize interesting models such as a Tonks-Girardeau gas or a frustrated spin-1/2 XY model on a trigonal lattice. These quantum simulators make use of optical lattices and trapped ions and are technically feasible. In fact, the Tonks-Girardeau gas has been realized experimentally and we provide a detailed comparison between the experimental data and the theoretical predictions. (orig.)
Experimental statistical signature of many-body quantum interference
Giordani, Taira; Flamini, Fulvio; Pompili, Matteo; Viggianiello, Niko; Spagnolo, Nicolò; Crespi, Andrea; Osellame, Roberto; Wiebe, Nathan; Walschaers, Mattia; Buchleitner, Andreas; Sciarrino, Fabio
2018-03-01
Multi-particle interference is an essential ingredient for fundamental quantum mechanics phenomena and for quantum information processing to provide a computational advantage, as recently emphasized by boson sampling experiments. Hence, developing a reliable and efficient technique to witness its presence is pivotal in achieving the practical implementation of quantum technologies. Here, we experimentally identify genuine many-body quantum interference via a recent efficient protocol, which exploits statistical signatures at the output of a multimode quantum device. We successfully apply the test to validate three-photon experiments in an integrated photonic circuit, providing an extensive analysis on the resources required to perform it. Moreover, drawing upon established techniques of machine learning, we show how such tools help to identify the—a priori unknown—optimal features to witness these signatures. Our results provide evidence on the efficacy and feasibility of the method, paving the way for its adoption in large-scale implementations.
Nonlinear Quantum Metrology of Many-Body Open Systems
Beau, M.; del Campo, A.
2017-07-01
We introduce general bounds for the parameter estimation error in nonlinear quantum metrology of many-body open systems in the Markovian limit. Given a k -body Hamiltonian and p -body Lindblad operators, the estimation error of a Hamiltonian parameter using a Greenberger-Horne-Zeilinger state as a probe is shown to scale as N-[k -(p /2 )], surpassing the shot-noise limit for 2 k >p +1 . Metrology equivalence between initial product states and maximally entangled states is established for p ≥1 . We further show that one can estimate the system-environment coupling parameter with precision N-(p /2 ), while many-body decoherence enhances the precision to N-k in the noise-amplitude estimation of a fluctuating k -body Hamiltonian. For the long-range Ising model, we show that the precision of this parameter beats the shot-noise limit when the range of interactions is below a threshold value.
The mean field in many body quantum physics
International Nuclear Information System (INIS)
Llano, M. de
1984-01-01
As an introduction to the quantum problem of many bodies we present a panoramic view of the most elementary theories called mean field theories. They comprise: i) the fermions ideal gas theory which implies, in a simple manner, the stability of white dwarf stars and of neutron stars, ii) the Hartree-Fock approximation for thermodynamical systems which is presented here in the context of a liquid-crystal phase transition, and iii) the Thomas-Fermi theory which is applied to the total binding energy of neutral atoms. (author)
Computational nuclear quantum many-body problem: The UNEDF project
Bogner, S.; Bulgac, A.; Carlson, J.; Engel, J.; Fann, G.; Furnstahl, R. J.; Gandolfi, S.; Hagen, G.; Horoi, M.; Johnson, C.; Kortelainen, M.; Lusk, E.; Maris, P.; Nam, H.; Navratil, P.; Nazarewicz, W.; Ng, E.; Nobre, G. P. A.; Ormand, E.; Papenbrock, T.; Pei, J.; Pieper, S. C.; Quaglioni, S.; Roche, K. J.; Sarich, J.; Schunck, N.; Sosonkina, M.; Terasaki, J.; Thompson, I.; Vary, J. P.; Wild, S. M.
2013-10-01
The UNEDF project was a large-scale collaborative effort that applied high-performance computing to the nuclear quantum many-body problem. The primary focus of the project was on constructing, validating, and applying an optimized nuclear energy density functional, which entailed a wide range of pioneering developments in microscopic nuclear structure and reactions, algorithms, high-performance computing, and uncertainty quantification. UNEDF demonstrated that close associations among nuclear physicists, mathematicians, and computer scientists can lead to novel physics outcomes built on algorithmic innovations and computational developments. This review showcases a wide range of UNEDF science results to illustrate this interplay.
Quantum simulations and many-body physics with light.
Noh, Changsuk; Angelakis, Dimitris G
2017-01-01
In this review we discuss the works in the area of quantum simulation and many-body physics with light, from the early proposals on equilibrium models to the more recent works in driven dissipative platforms. We start by describing the founding works on Jaynes-Cummings-Hubbard model and the corresponding photon-blockade induced Mott transitions and continue by discussing the proposals to simulate effective spin models and fractional quantum Hall states in coupled resonator arrays (CRAs). We also analyse the recent efforts to study out-of-equilibrium many-body effects using driven CRAs, including the predictions for photon fermionisation and crystallisation in driven rings of CRAs as well as other dynamical and transient phenomena. We try to summarise some of the relatively recent results predicting exotic phases such as super-solidity and Majorana like modes and then shift our attention to developments involving 1D nonlinear slow light setups. There the simulation of strongly correlated phases characterising Tonks-Girardeau gases, Luttinger liquids, and interacting relativistic fermionic models is described. We review the major theory results and also briefly outline recent developments in ongoing experimental efforts involving different platforms in circuit QED, photonic crystals and nanophotonic fibres interfaced with cold atoms.
Quantum theory of many-body systems techniques and applications
Zagoskin, Alexandre
2014-01-01
This text presents a self-contained treatment of the physics of many-body systems from the point of view of condensed matter. The approach, quite traditionally, uses the mathematical formalism of quasiparticles and Green’s functions. In particular, it covers all the important diagram techniques for normal and superconducting systems, including the zero-temperature perturbation theory and the Matsubara, Keldysh and Nambu-Gor'kov formalism, as well as an introduction to Feynman path integrals. This new edition contains an introduction to the methods of theory of one-dimensional systems (bosonization and conformal field theory) and their applications to many-body problems. Intended for graduate students in physics and related fields, the aim is not to be exhaustive, but to present enough detail to enable the student to follow the current research literature, or to apply the techniques to new problems. Many of the examples are drawn from mesoscopic physics, which deals with systems small enough that quantum...
Universality in driven-dissipative quantum many-body systems
International Nuclear Information System (INIS)
Sieberer, L.M.
2015-01-01
Recent experimental investigations of condensation phenomena in driven-dissipative quantum many-body systems raise the question of what kind of novel universal behavior can emerge under non-equilibrium conditions. We explore various aspects of universality in this context. Our results are of relevance for a variety of open quantum systems on the interface of quantum optics and condensed matter physics, ranging from exciton-polariton condensates to cold atomic gases. In Part I we characterize the dynamical critical behavior at the Bose-Einstein condensation phase transition in driven open quantum systems in three spatial dimensions. Although thermodynamic equilibrium conditions are emergent at low frequencies, the approach to this thermalized low-frequency regime is described by a critical exponent which is specific to the non-equilibrium transition, and places the latter beyond the standard classification of equilibrium dynamical critical behavior. Our theoretical approach is based on the functional renormalization group within the framework of Keldysh non-equilibrium field theory, which is equivalent to a microscopic description of the open system dynamics in terms of a many-body quantum master equation. Universal behavior in the coherence properties of driven-dissipative condensates in reduced dimensions is investigated in Part II. We show that driven two-dimensional Bose systems cannot exhibit algebraic order as in thermodynamic equilibrium, unless they are sufficiently anisotropic. However, we find evidence that even isotropic systems may have a finite superfluidity fraction. In one-dimensional systems, non-equilibrium conditions are traceable in the behavior of the autocorrelation function. We obtain these results by mapping the long-wavelength condensate dynamics onto the Kardar-Parisi-Zhang equation. In Part III we show that systems in thermodynamic equilibrium have a specific symmetry, which makes them distinct from generic driven open systems. The novel
Quantum many-body physics in a nutshell
Shuryak, Edward
2018-01-01
This book provides an essential introduction to the physics of quantum many-body systems, which are at the heart of atomic and nuclear physics, condensed matter, and particle physics. Unlike other textbooks on the subject, it covers topics across a broad range of physical fields―phenomena as well as theoretical tools―and does so in a simple and accessible way. Edward Shuryak begins with Feynman diagrams of the quantum and statistical mechanics of a particle―in these applications, the diagrams are easy to calculate and there are no divergencies. He discusses the renormalization group and illustrates its uses and covers systems such as weakly and strongly coupled Bose and Fermi gases, electron gas, nuclear matter, and quark-gluon plasmas. Phenomena include Bose condensation and superfluidity. Shuryak also looks at Cooper pairing and superconductivity for electrons in metals, liquid 3He, nuclear matter, and quark-gluon plasma. A recurring topic throughout is topological matter, ranging from ensembles of q...
Time-dependent restricted-active-space self-consistent-field theory for bosonic many-body systems
International Nuclear Information System (INIS)
Lévêque, Camille; Madsen, Lars Bojer
2017-01-01
We develop an ab initio time-dependent wavefunction based theory for the description of a many-body system of cold interacting bosons. Like the multi-configurational time-dependent Hartree method for bosons (MCTDHB), the theory is based on a configurational interaction Ansatz for the many-body wavefunction with time-dependent self-consistent-field orbitals. The theory generalizes the MCTDHB method by incorporating restrictions on the active space of the orbital excitations. The restrictions are specified based on the physical situation at hand. The equations of motion of this time-dependent restricted-active-space self-consistent-field (TD-RASSCF) theory are derived. The similarity between the formal development of the theory for bosons and fermions is discussed. The restrictions on the active space allow the theory to be evaluated under conditions where other wavefunction based methods due to exponential scaling in the numerical effort cannot, and to clearly identify the excitations that are important for an accurate description, significantly beyond the mean-field approach. For ground state calculations we find it to be important to allow a few particles to have the freedom to move in many orbitals, an insight facilitated by the flexibility of the restricted-active-space Ansatz . Moreover, we find that a high accuracy can be obtained by including only even excitations in the many-body self-consistent-field wavefunction. Time-dependent simulations of harmonically trapped bosons subject to a quenching of their noncontact interaction, show failure of the mean-field Gross-Pitaevskii approach within a fraction of a harmonic oscillation period. The TD-RASSCF theory remains accurate at much reduced computational cost compared to the MCTDHB method. Exploring the effect of changes of the restricted-active-space allows us to identify that even self-consistent-field excitations are mainly responsible for the accuracy of the method. (paper)
Many-Body Quantum Chaos and Entanglement in a Quantum Ratchet
Valdez, Marc Andrew; Shchedrin, Gavriil; Heimsoth, Martin; Creffield, Charles E.; Sols, Fernando; Carr, Lincoln D.
2018-06-01
We uncover signatures of quantum chaos in the many-body dynamics of a Bose-Einstein condensate-based quantum ratchet in a toroidal trap. We propose measures including entanglement, condensate depletion, and spreading over a fixed basis in many-body Hilbert space, which quantitatively identify the region in which quantum chaotic many-body dynamics occurs, where random matrix theory is limited or inaccessible. With these tools, we show that many-body quantum chaos is neither highly entangled nor delocalized in the Hilbert space, contrary to conventionally expected signatures of quantum chaos.
Quantum phase transition in strongly correlated many-body system
You, Wenlong
The past decade has seen a substantial rejuvenation of interest in the study of quantum phase transitions (QPTs), driven by experimental advance on the cuprate superconductors, the heavy fermion materials, organic conductors, Quantum Hall effect, Fe-As based superconductors and other related compounds. It is clear that strong electronic interactions play a crucial role in the systems of current interest, and simple paradigms for the behavior of such systems near quantum critical points remain unclear. Furthermore, the rapid progress in Feshbach resonance and optical lattice provides a flexible platform to study QPT. Quantum Phase Transition (QPT) describes the non-analytic behaviors of the ground-state properties in a many-body system by varying a physical parameter at absolute zero temperature - such as magnetic field or pressure, driven by quantum fluctuations. Such quantum phase transitions can be first-order phase transition or continuous. The phase transition is usually accompanied by a qualitative change in the nature of the correlations in the ground state, and describing this change shall clearly be one of our major interests. We address this issue from three prospects in a few strong correlated many-body systems in this thesis, i.e., identifying the ordered phases, studying the properties of different phases, characterizing the QPT points. In chapter 1, we give an introduction to QPT, and take one-dimensional XXZ model as an example to illustrate the QPT therein. Through this simple example, we would show that when the tunable parameter is varied, the system evolves into different phases, across two quantum QPT points. The distinct phases exhibit very different behaviors. Also a schematic phase diagram is appended. In chapter 2, we are engaged in research on ordered phases. Originating in the work of Landau and Ginzburg on second-order phase transition, the spontaneous symmetry breaking induces nonzero expectation of field operator, e.g., magnetization M
Semiclassical expansion of quantum characteristics for many-body potential scattering problem
International Nuclear Information System (INIS)
Krivoruchenko, M.I.; Fuchs, C.; Faessler, A.
2007-01-01
In quantum mechanics, systems can be described in phase space in terms of the Wigner function and the star-product operation. Quantum characteristics, which appear in the Heisenberg picture as the Weyl's symbols of operators of canonical coordinates and momenta, can be used to solve the evolution equations for symbols of other operators acting in the Hilbert space. To any fixed order in the Planck's constant, many-body potential scattering problem simplifies to a statistical-mechanical problem of computing an ensemble of quantum characteristics and their derivatives with respect to the initial canonical coordinates and momenta. The reduction to a system of ordinary differential equations pertains rigorously at any fixed order in ℎ. We present semiclassical expansion of quantum characteristics for many-body scattering problem and provide tools for calculation of average values of time-dependent physical observables and cross sections. The method of quantum characteristics admits the consistent incorporation of specific quantum effects, such as non-locality and coherence in propagation of particles, into the semiclassical transport models. We formulate the principle of stationary action for quantum Hamilton's equations and give quantum-mechanical extensions of the Liouville theorem on conservation of the phase-space volume and the Poincare theorem on conservation of 2p-forms. The lowest order quantum corrections to the Kepler periodic orbits are constructed. These corrections show the resonance behavior. (Abstract Copyright [2007], Wiley Periodicals, Inc.)
Genuine quantum correlations in quantum many-body systems: a review of recent progress.
De Chiara, Gabriele; Sanpera, Anna
2018-04-19
Quantum information theory has considerably helped in the understanding of quantum many-body systems. The role of quantum correlations and in particular, bipartite entanglement, has become crucial to characterise, classify and simulate quantum many body systems. Furthermore, the scaling of entanglement has inspired modifications to numerical techniques for the simulation of many-body systems leading to the, now established, area of tensor networks. However, the notions and methods brought by quantum information do not end with bipartite entanglement. There are other forms of correlations embedded in the ground, excited and thermal states of quantum many-body systems that also need to be explored and might be utilised as potential resources for quantum technologies. The aim of this work is to review the most recent developments regarding correlations in quantum many-body systems focussing on multipartite entanglement, quantum nonlocality, quantum discord, mutual information but also other non classical measures of correlations based on quantum coherence. Moreover, we also discuss applications of quantum metrology in quantum many-body systems. © 2018 IOP Publishing Ltd.
Many body quantum physics at the condensed matter
International Nuclear Information System (INIS)
Llano, M. de
1981-01-01
The non-relativistic, continuous (as opposed to spin) many-body problem as it relates to condensed matter at absolute zero temperature is reviewed in simple, non-technical terms, mainly from the standpoint of infinite order perturbation theory, for physical systems where all the particles have the same mass but which otherwise interact with arbitrary short- or long-ranged two-body forces. (author)
Many-body physics with circuit quantum electrodynamics
International Nuclear Information System (INIS)
Leib, Martin H.
2015-01-01
We present proposals to simulate many-body physics with superconducting circuits. The ''body'' to work with for superconducting circuits is the microwave photon and interaction is induced by the nonlinearity of the Josephson effect. We present two different approaches to simulate Bose-Hubbard physics, one based on a polariton scheme and another with nonlinear resonators. We also present a Dicke-model like simulator for ultrastrongly coupled Josephson junctions to a resonator and show a scheme for implementing long range interactions.
Characterizing and quantifying frustration in quantum many-body systems.
Giampaolo, S M; Gualdi, G; Monras, A; Illuminati, F
2011-12-23
We present a general scheme for the study of frustration in quantum systems. We introduce a universal measure of frustration for arbitrary quantum systems and we relate it to a class of entanglement monotones via an exact inequality. If all the (pure) ground states of a given Hamiltonian saturate the inequality, then the system is said to be inequality saturating. We introduce sufficient conditions for a quantum spin system to be inequality saturating and confirm them with extensive numerical tests. These conditions provide a generalization to the quantum domain of the Toulouse criteria for classical frustration-free systems. The models satisfying these conditions can be reasonably identified as geometrically unfrustrated and subject to frustration of purely quantum origin. Our results therefore establish a unified framework for studying the intertwining of geometric and quantum contributions to frustration.
Ruelle resonances in quantum many-body dynamics
International Nuclear Information System (INIS)
Prosen, Tomaz
2002-01-01
We define a quantum Perron-Frobenius master operator over a suitable normed space of translationally invariant states adjoint to the quasi-local C* algebra of quantum lattice gasses (e.g. spin chains), whose spectrum determines the exponents of decay of time correlation functions. The theoretical ideas are applied to a generic example of kicked Ising spin 1/2 chains. We show that the 'chaotic eigenmodes' corresponding to leading eigenvalue resonances have fractal structure in the basis of local operators. (letter to the editor)
Quantum Many-Body Virial Theorem And Matsubara Green's Function
International Nuclear Information System (INIS)
Anma, D.; Fukuda, T.; Fujita, M.; Toyoda, T.; Takiuchi, K.
2004-01-01
We discuss the quantum field theoretical formulation of the virial theorem on the basis of the canonical field theory of the generalized coordinate transformation and show the equation of motion of a charged Fermion system coupled to an electromagnetic field. Possible application to Fermion-Boson mixtures is also discussed
Effective evolution equations from many-body quantum mechanics
International Nuclear Information System (INIS)
Benedikter, Niels Patriz
2014-01-01
Systems of interest in physics often consist of a very large number of interacting particles. In certain physical regimes, effective non-linear evolution equations are commonly used as an approximation for making predictions about the time-evolution of such systems. Important examples are Bose-Einstein condensates of dilute Bose gases and degenerate Fermi gases. While the effective equations are well-known in physics, a rigorous justification is very difficult. However, a rigorous derivation is essential to precisely understand the range and the limits of validity and the quality of the approximation. In this thesis, we prove that the time evolution of Bose-Einstein condensates in the Gross-Pitaevskii regime can be approximated by the time-dependent Gross-Pitaevskii equation, a cubic non-linear Schroedinger equation. We then turn to fermionic systems and prove that the evolution of a degenerate Fermi gas can be approximated by the time-dependent Hartree-Fock equation (TDHF) under certain assumptions on the semiclassical structure of the initial data. Finally, we extend the latter result to fermions with relativistic kinetic energy. All our results provide explicit bounds on the error as the number of particles becomes large. A crucial methodical insight on bosonic systems is that correlations can be modeled by Bogolyubov transformations. We construct initial data appropriate for the Gross-Pitaevskii regime using a Bogolyubov transformation acting on a coherent state, which amounts to studying squeezed coherent states. As a crucial insight for fermionic systems, we point out a semiclassical structure in states close to the ground state of fermions in a trap. As a convenient language for studying the dynamics of fermionic systems, we use particle-hole transformations.
Applications of quantum measurement in single and many body systems
International Nuclear Information System (INIS)
Steixner, V.
2010-01-01
This thesis contains a study about the influence of the back action of a signal emitted by a trapped ion onto itself. The continuous measurement signal is used to alter the motional state of the ion, corresponding to classical friction, in order to cool the ion. The quantum mechanical evolution of the ion with the help of stochastic Schroedinger- and master equations is explored, as well as experimental results. A second method of feedback to obtain the momentum necessary for cooling by means of electromagnetically induced transparency is discussed next. This method allows for a theoretical cooling down to the motional ground state. In a second part of the thesis, the measurement of particle currents in optical lattices is discussed. The usual method of measuring spatial correlations in a cold gas, the time-of-flight method, disadvantageously destroys the measured sample. Here a measurement scheme for atoms with an internal Lambda level structure, coupled with lasers as a Raman transition, is used instead. The measured photons are transformed with the help of homodyne detection into a continuous photon current proportional to the particle current. This thesis contains numerical and analytical calculations for this measurement process and the back action on the measured system. As an application example, the measurement of superfluid currents in a ring optical lattice is described, as well as the entanglement of two of these macroscopic quantum objects. (author) [de
Collective motion in quantum many-body systems
Energy Technology Data Exchange (ETDEWEB)
Haemmerling, Jens
2011-06-07
We study the emergence of collective dynamics in the integrable Hamiltonian system of two finite ensembles of coupled harmonic oscillators. After identification of a collective degree of freedom, the Hamiltonian is mapped onto a model of Caldeira-Leggett type, where the collective coordinate is coupled to an internal bath of phonons. In contrast to the usual Caldeira-Leggett model, the bath in the present case is part of the system. We derive an equation of motion for the collective coordinate which takes the form of a damped harmonic oscillator. We show that the distribution of quantum transition strengths induced by the collective mode is determined by its classical dynamics. This allows us to derive the spreading for the collective coordinate from first principles. After that we study the interplay between collective and incoherent single-particle motion in a model of two chains of particles whose interaction comprises a non-integrable part. In the perturbative regime, but for a general form of the interaction, we calculate the Fourier transform of the time correlation for the collective coordinate. We obtain the remarkable result that it always has a unique semi-classical interpretation. We show this by a proper renormalization procedure which also allows us to map the non-integrable system to the integrable model of Caldeira-Leggett-type considered previously in which the bath is part of the system.
DEFF Research Database (Denmark)
Martinez, Jose Ignacio; García Lastra, Juan Maria; Lopez, M. J.
2010-01-01
The optical spectra of sandwich clusters formed by transition metal atoms (titanium, vanadium, and chromium) intercalated between parallel benzene molecules have been studied by time-dependent density functional theory (TDDFT) and many-body perturbation theory. Sandwiches with different number...
Probing quantum and thermal noise in an interacting many-body system
DEFF Research Database (Denmark)
Hofferberth, S.; Lesanovsky, Igor; Schumm, Thorsten
2008-01-01
of the shot-to-shot variations of interference-fringe contrast for pairs of independently created one-dimensional Bose condensates. Analysing different system sizes, we observe the crossover from thermal to quantum noise, reflected in a characteristic change in the distribution functions from poissonian......The probabilistic character of the measurement process is one of the most puzzling and fascinating aspects of quantum mechanics. In many-body systems quantum-mechanical noise reveals non-local correlations of the underlying many-body states. Here, we provide a complete experimental analysis....... Furthermore, our experiments constitute the first analysis of the full distribution of quantum noise in an interacting many-body system....
A quantum information perspective of fermionic quantum many-body systems
Energy Technology Data Exchange (ETDEWEB)
Kraus, Christina V.
2009-11-02
In this Thesis fermionic quantum many-body system are theoretically investigated from a quantum information perspective. Quantum correlations in fermionic many-body systems, though central to many of the most fascinating effects of condensed matter physics, are poorly understood from a theoretical perspective. Even the notion of ''paired'' fermions which is widely used in the theory of superconductivity and has a clear physical meaning there, is not a concept of a systematic and mathematical theory so far. Applying concepts and tools from entanglement theory, we close this gap, developing a pairing theory allowing to unambiguously characterize paired states. We develop methods for the detection and quantification of pairing according to our definition which are applicable to current experimental setups. Pairing is shown to be a quantum correlation distinct from any notion of entanglement proposed for fermionic systems, giving further understanding of the structure of highly correlated quantum states. In addition, we show the resource character of paired states for precision metrology, proving that BCS-states allow phase measurements at the Heisenberg limit. Next, the power of fermionic systems is considered in the context of quantum simulations, where we study the possibility to simulate Hamiltonian time evolutions on a cubic lattice under the constraint of translational invariance. Given a set of translationally invariant local Hamiltonians and short range interactions we determine time evolutions which can and those which can not be simulated. Bosonic and finite-dimensional quantum systems (''spins'') are included in our investigations. Furthermore, we develop new techniques for the classical simulation of fermionic many-body systems. First, we introduce a new family of states, the fermionic Projected Entangled Pair States (fPEPS) on lattices in arbitrary spatial dimension. These are the natural generalization of the PEPS
A quantum information perspective of fermionic quantum many-body systems
International Nuclear Information System (INIS)
Kraus, Christina V.
2009-01-01
In this Thesis fermionic quantum many-body system are theoretically investigated from a quantum information perspective. Quantum correlations in fermionic many-body systems, though central to many of the most fascinating effects of condensed matter physics, are poorly understood from a theoretical perspective. Even the notion of ''paired'' fermions which is widely used in the theory of superconductivity and has a clear physical meaning there, is not a concept of a systematic and mathematical theory so far. Applying concepts and tools from entanglement theory, we close this gap, developing a pairing theory allowing to unambiguously characterize paired states. We develop methods for the detection and quantification of pairing according to our definition which are applicable to current experimental setups. Pairing is shown to be a quantum correlation distinct from any notion of entanglement proposed for fermionic systems, giving further understanding of the structure of highly correlated quantum states. In addition, we show the resource character of paired states for precision metrology, proving that BCS-states allow phase measurements at the Heisenberg limit. Next, the power of fermionic systems is considered in the context of quantum simulations, where we study the possibility to simulate Hamiltonian time evolutions on a cubic lattice under the constraint of translational invariance. Given a set of translationally invariant local Hamiltonians and short range interactions we determine time evolutions which can and those which can not be simulated. Bosonic and finite-dimensional quantum systems (''spins'') are included in our investigations. Furthermore, we develop new techniques for the classical simulation of fermionic many-body systems. First, we introduce a new family of states, the fermionic Projected Entangled Pair States (fPEPS) on lattices in arbitrary spatial dimension. These are the natural generalization of the PEPS known for spin systems, and they
Determinant method and quantum simulations of many-body effects in a single impurity Anderson model
International Nuclear Information System (INIS)
Gubernatis, J.E.; Olson, T.; Scalapino, D.J.; Sugar, R.L.
1985-01-01
A short description is presented of a quantum Monte Carlo technique, often referred to as the determinant method, that has proved useful for simulating many-body effects in systems of interacting fermions at finite temperatures. Preliminary results using this technique on a single impurity Anderson model are reported. Examples of such many-body effects as local moment formation, Kondo behavior, and mixed valence phenomena found in the simulations are shown. 10 refs., 3 figs
Diagonalization and Many-Body Localization for a Disordered Quantum Spin Chain
Imbrie, John Z
2016-01-01
We consider a weakly interacting quantum spin chain with random local interactions. We prove that many-body localization follows from a physically reasonable assumption that limits the extent of level attraction in the statistics of eigenvalues. In a KAM-style construction, a sequence of local unitary transformations is used to diagonalize the Hamiltonian by deforming the initial tensor product basis into a complete set of exact many-body eigenfunctions.
The many-body content of quantum gauge theories and its connection to mass generation mechanisms
International Nuclear Information System (INIS)
Natoli, C.R.; Palumbo, F.
1985-01-01
The aim of the paper is to get more knowledge about many-body systems and their properties, about many-body content of quantum gauge theories and its connection with mass generation mechanisms. The way to achieve this is to perform the galilean limit of the relativistic theory by sending the speed of light c to infinity. This limiting process exposes the low energy behaviour of the relativistic theory
Ultracold atoms in optical lattices simulating quantum many-body systems
Lewenstein, Maciej; Ahufinger, Verònica
2012-01-01
Quantum computers, though not yet available on the market, will revolutionize the future of information processing. Quantum computers for special purposes like quantum simulators are already within reach. The physics of ultracold atoms, ions and molecules offer unprecedented possibilities of control of quantum many body systems and novel possibilities of applications to quantum information processing and quantum metrology. Particularly fascinating is the possibility of usingultracold atoms in lattices to simulate condensed matter or even high energy physics.This book provides a complete and co
Physics in one dimension: theoretical concepts for quantum many-body systems.
Schönhammer, K
2013-01-09
Various sophisticated approximation methods exist for the description of quantum many-body systems. It was realized early on that the theoretical description can simplify considerably in one-dimensional systems and various exact solutions exist. The focus in this introductory paper is on fermionic systems and the emergence of the Luttinger liquid concept.
Nucleon many-body problem using quantum-mechanical few-body technique
International Nuclear Information System (INIS)
Horiuchi, Wataru
2016-01-01
A nucleus is treated as a quantum-mechanical many-body system consisting of protons and neutrons that interact with each other by nuclear force. This paper explains the variational calculation using the correlated basis function as a powerful technique for obtaining the precise solution of Schroedinger equation of many-body, and tries to understand the nucleon many-body system from the viewpoint of a few-body through the application cases of various nuclear systems. It describes the important correlation that characterizes the nucleon many-body system such as the mean field, cluster, and tensor of bound state, and shows that non-bound state is also describable. Since such precise theory is mantic, it is essential for explaining the nature of unknown unstable nuclei, and for determining the nuclear reaction rate under the environment of the stars difficult for experiment. The method is general and flexible, and can be applied to various quantum-mechanical many-body problems. For example, the multi-body calculation of atoms and molecules, hypernuclei, and hadron spectroscopy can be carried out only by changing the potential and particles. (A.O.)
Introduction to modern methods of quantum many-body theory and their applications
Fantoni, Stefano; Krotscheck, Eckhard S
2002-01-01
This invaluable book contains pedagogical articles on the dominant nonstochastic methods of microscopic many-body theories - the methods of density functional theory, coupled cluster theory, and correlated basis functions - in their widest sense. Other articles introduce students to applications of these methods in front-line research, such as Bose-Einstein condensates, the nuclear many-body problem, and the dynamics of quantum liquids. These keynote articles are supplemented by experimental reviews on intimately connected topics that are of current relevance. The book addresses the striking l
Moments of generalized Husimi distributions and complexity of many-body quantum states
International Nuclear Information System (INIS)
Sugita, Ayumu
2003-01-01
We consider generalized Husimi distributions for many-body systems, and show that their moments are good measures of complexity of many-body quantum states. Our construction of the Husimi distribution is based on the coherent state of the single-particle transformation group. Then the coherent states are independent-particle states, and, at the same time, the most localized states in the Husimi representation. Therefore delocalization of the Husimi distribution, which can be measured by the moments, is a sign of many-body correlation (entanglement). Since the delocalization of the Husimi distribution is also related to chaoticity of the dynamics, it suggests a relation between entanglement and chaos. Our definition of the Husimi distribution can be applied not only to systems of distinguishable particles, but also to those of identical particles, i.e., fermions and bosons. We derive an algebraic formula to evaluate the moments of the Husimi distribution
Many-body quantum chaos: Recent developments and applications to nuclei
International Nuclear Information System (INIS)
Gomez, J.M.G.; Kar, K.; Kota, V.K.B.; Molina, R.A.; Relano, A.; Retamosa, J.
2011-01-01
In the last decade, there has been an increasing interest in the analysis of energy level spectra and wave functions of nuclei, particles, atoms and other quantum many-body systems by means of statistical methods and random matrix ensembles. The concept of quantum chaos plays a central role for understanding the universal properties of the energy spectrum of quantum systems. Since these properties concern the whole spectrum, statistical methods become an essential tool. Besides random matrix theory, new theoretical developments making use of information theory, time series analysis, and the merging of thermodynamics and the semiclassical approximation are emphasized. Applications of these methods to quantum systems, especially to atomic nuclei, are reviewed. We focus on recent developments like the study of 'imperfect spectra' to estimate the degree of symmetry breaking or the fraction of missing levels, the existence of chaos remnants in nuclear masses, the onset of chaos in nuclei, and advances in the comprehension of the Hamiltonian structure in many-body systems. Finally, some applications of statistical spectroscopy methods generated by many-body chaos and two-body random matrix ensembles are described, with emphasis on Gamow-Teller strength sums and beta decay rates for stellar evolution and supernovae.
Quasiparticle engineering and entanglement propagation in a quantum many-body system.
Jurcevic, P; Lanyon, B P; Hauke, P; Hempel, C; Zoller, P; Blatt, R; Roos, C F
2014-07-10
The key to explaining and controlling a range of quantum phenomena is to study how information propagates around many-body systems. Quantum dynamics can be described by particle-like carriers of information that emerge in the collective behaviour of the underlying system, the so-called quasiparticles. These elementary excitations are predicted to distribute quantum information in a fashion determined by the system's interactions. Here we report quasiparticle dynamics observed in a quantum many-body system of trapped atomic ions. First, we observe the entanglement distributed by quasiparticles as they trace out light-cone-like wavefronts. Second, using the ability to tune the interaction range in our system, we observe information propagation in an experimental regime where the effective-light-cone picture does not apply. Our results will enable experimental studies of a range of quantum phenomena, including transport, thermalization, localization and entanglement growth, and represent a first step towards a new quantum-optic regime of engineered quasiparticles with tunable nonlinear interactions.
Nonlocality in many-body quantum systems detected with two-body correlators
Energy Technology Data Exchange (ETDEWEB)
Tura, J., E-mail: jordi.tura@icfo.es [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Augusiak, R.; Sainz, A.B. [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Lücke, B.; Klempt, C. [Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover (Germany); Lewenstein, M.; Acín, A. [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); ICREA—Institució Catalana de Recerca i Estudis Avançats, Lluis Campanys 3, 08010 Barcelona (Spain)
2015-11-15
Contemporary understanding of correlations in quantum many-body systems and in quantum phase transitions is based to a large extent on the recent intensive studies of entanglement in many-body systems. In contrast, much less is known about the role of quantum nonlocality in these systems, mostly because the available multipartite Bell inequalities involve high-order correlations among many particles, which are hard to access theoretically, and even harder experimentally. Standard, “theorist- and experimentalist-friendly” many-body observables involve correlations among only few (one, two, rarely three...) particles. Typically, there is no multipartite Bell inequality for this scenario based on such low-order correlations. Recently, however, we have succeeded in constructing multipartite Bell inequalities that involve two- and one-body correlations only, and showed how they revealed the nonlocality in many-body systems relevant for nuclear and atomic physics [Tura et al., Science 344 (2014) 1256]. With the present contribution we continue our work on this problem. On the one hand, we present a detailed derivation of the above Bell inequalities, pertaining to permutation symmetry among the involved parties. On the other hand, we present a couple of new results concerning such Bell inequalities. First, we characterize their tightness. We then discuss maximal quantum violations of these inequalities in the general case, and their scaling with the number of parties. Moreover, we provide new classes of two-body Bell inequalities which reveal nonlocality of the Dicke states—ground states of physically relevant and experimentally realizable Hamiltonians. Finally, we shortly discuss various scenarios for nonlocality detection in mesoscopic systems of trapped ions or atoms, and by atoms trapped in the vicinity of designed nanostructures.
Many-body physics and the capacity of quantum channels with memory
International Nuclear Information System (INIS)
Plenio, M B; Virmani, S
2008-01-01
In most studies of the capacity of quantum channels, it is assumed that the errors in the use of each channel are independent. However, recent work has begun to investigate the effects of memory or correlations in the error, and has led to suggestions that there can be interesting non-analytic behaviour in the capacity of such channels. In a previous paper, we pursued this issue by connecting the study of channel capacities under correlated error to the study of critical behaviour in many-body physics. This connection enables the use of techniques from many-body physics to either completely solve or understand qualitatively a number of interesting models of correlated error with analogous behaviour to associated many-body systems. However, in order for this approach to work rigorously, there are a number of technical properties that need to be established for the lattice systems being considered. In this paper, we discuss these properties in detail, and establish them for some classes of many-body system
Quantum Simulation with Circuit-QED Lattices: from Elementary Building Blocks to Many-Body Theory
Zhu, Guanyu
Recent experimental and theoretical progress in superconducting circuits and circuit QED (quantum electrodynamics) has helped to develop high-precision techniques to control, manipulate, and detect individual mesoscopic quantum systems. A promising direction is hence to scale up from individual building blocks to form larger-scale quantum many-body systems. Although realizing a scalable fault-tolerant quantum computer still faces major barriers of decoherence and quantum error correction, it is feasible to realize scalable quantum simulators with state-of-the-art technology. From the technological point of view, this could serve as an intermediate stage towards the final goal of a large-scale quantum computer, and could help accumulating experience with the control of quantum systems with a large number of degrees of freedom. From the physical point of view, this opens up a new regime where condensed matter systems can be simulated and studied, here in the context of strongly correlated photons and two-level systems. In this thesis, we mainly focus on two aspects of circuit-QED based quantum simulation. First, we discuss the elementary building blocks of the quantum simulator, in particular a fluxonium circuit coupled to a superconducting resonator. We show the interesting properties of the fluxonium circuit as a qubit, including the unusual structure of its charge matrix elements. We also employ perturbation theory to derive the effective Hamiltonian of the coupled system in the dispersive regime, where qubit and the photon frequencies are detuned. The observables predicted with our theory, including dispersive shifts and Kerr nonlinearity, are compared with data from experiments, such as homodyne transmission and two-tone spectroscopy. These studies also relate to the problem of detection in a circuit-QED quantum simulator. Second, we study many-body physics of circuit-QED lattices, serving as quantum simulators. In particular, we focus on two different
Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model
Mukherjee, Sudip; Nag, Sabyasachi; Garg, Arti
2018-04-01
We analyze the many-body localization- (MBL) to-delocalization transition in the Sherrington-Kirkpatrick (SK) model of Ising spin glass in the presence of a transverse field Γ . Based on energy-resolved analysis, which is of relevance for a closed quantum system, we show that the quantum SK model has many-body mobility edges separating the MBL phase, which is nonergodic and nonthermal, from the delocalized phase, which is ergodic and thermal. The range of the delocalized regime increases with an increase in the strength of Γ , and eventually for Γ larger than ΓCP the entire many-body spectrum is delocalized. We show that the Renyi entropy is almost independent of the system size in the MBL phase while the delocalized phase shows extensive Renyi entropy. We further obtain the spin-glass transition curve in the energy density ɛ -Γ plane from the collapse of the eigenstate spin susceptibility. We demonstrate that in most of the parameter regime, the spin-glass transition occurs close to the MBL transition, indicating that the spin-glass phase is nonergodic and nonthermal while the paramagnetic phase is delocalized and thermal.
Enhancement and sign change of magnetic correlations in a driven quantum many-body system
Görg, Frederik; Messer, Michael; Sandholzer, Kilian; Jotzu, Gregor; Desbuquois, Rémi; Esslinger, Tilman
2018-01-01
Periodic driving can be used to control the properties of a many-body state coherently and to realize phases that are not accessible in static systems. For example, exposing materials to intense laser pulses makes it possible to induce metal-insulator transitions, to control magnetic order and to generate transient superconducting behaviour well above the static transition temperature. However, pinning down the mechanisms underlying these phenomena is often difficult because the response of a material to irradiation is governed by complex, many-body dynamics. For static systems, extensive calculations have been performed to explain phenomena such as high-temperature superconductivity. Theoretical analyses of driven many-body Hamiltonians are more challenging, but approaches have now been developed, motivated by recent observations. Here we report an experimental quantum simulation in a periodically modulated hexagonal lattice and show that antiferromagnetic correlations in a fermionic many-body system can be reduced, enhanced or even switched to ferromagnetic correlations (sign reversal). We demonstrate that the description of the many-body system using an effective Floquet-Hamiltonian with a renormalized tunnelling energy remains valid in the high-frequency regime by comparing the results to measurements in an equivalent static lattice. For near-resonant driving, the enhancement and sign reversal of correlations is explained by a microscopic model of the system in which the particle tunnelling and magnetic exchange energies can be controlled independently. In combination with the observed sufficiently long lifetimes of the correlations in this system, periodic driving thus provides an alternative way of investigating unconventional pairing in strongly correlated systems experimentally.
Many-Body Quantum Theory in Condensed Matter Physics-An Introduction
International Nuclear Information System (INIS)
Logan, D E
2005-01-01
This is undoubtedly an ambitious book. It aims to provide a wide ranging, yet self-contained and pedagogical introduction to techniques of quantum many-body theory in condensed matter physics, without losing mathematical 'rigor' (which I hope means rigour), and with an eye on physical insight, motivation and application. The authors certainly bring plenty of experience to the task, the book having grown out of their graduate lectures at the Niels Bohr Institute in Copenhagen over a five year period, with the feedback and refinement this presumably brings. The book is also of course ambitious in another sense, for it competes in the tight market of general graduate/advanced undergraduate texts on many-particle physics. Prospective punters will thus want reasons to prefer it to, or at least give it space beside, well established texts in the field. Subject-wise, the book is a good mix of the ancient and modern, the standard and less so. Obligatory chapters deal with the formal cornerstones of many-body theory, from second quantization, time-dependence in quantum mechanics and linear response theory, to Green's function and Feynman diagrams. Traditional topics are well covered, including two chapters on the electron gas, chapters on phonons and electron-phonon coupling, and a concise account of superconductivity (confined, no doubt judiciously, to the conventional BCS case). Less mandatory, albeit conceptually vital, subjects are also aired. These include a chapter on Fermi liquid theory, from both semi-classical and microscopic perspectives, and a freestanding account of one-dimensional electron gases and Luttinger liquids which, given the enormity of the topic, is about as concise as it could be without sacrificing clarity. Quite naturally, the authors' own interests also influence the choice of material covered. A persistent theme, which brings a healthy topicality to the book, is the area of transport in mesoscopic systems or nanostructures. Two chapters, some
BOOK REVIEW: Many-Body Quantum Theory in Condensed Matter Physics—An Introduction
Logan, D. E.
2005-02-01
This is undoubtedly an ambitious book. It aims to provide a wide ranging, yet self-contained and pedagogical introduction to techniques of quantum many-body theory in condensed matter physics, without losing mathematical `rigor' (which I hope means rigour), and with an eye on physical insight, motivation and application. The authors certainly bring plenty of experience to the task, the book having grown out of their graduate lectures at the Niels Bohr Institute in Copenhagen over a five year period, with the feedback and refinement this presumably brings. The book is also of course ambitious in another sense, for it competes in the tight market of general graduate/advanced undergraduate texts on many-particle physics. Prospective punters will thus want reasons to prefer it to, or at least give it space beside, well established texts in the field. Subject-wise, the book is a good mix of the ancient and modern, the standard and less so. Obligatory chapters deal with the formal cornerstones of many-body theory, from second quantization, time-dependence in quantum mechanics and linear response theory, to Green's function and Feynman diagrams. Traditional topics are well covered, including two chapters on the electron gas, chapters on phonons and electron phonon coupling, and a concise account of superconductivity (confined, no doubt judiciously, to the conventional BCS case). Less mandatory, albeit conceptually vital, subjects are also aired. These include a chapter on Fermi liquid theory, from both semi-classical and microscopic perspectives, and a freestanding account of one-dimensional electron gases and Luttinger liquids which, given the enormity of the topic, is about as concise as it could be without sacrificing clarity. Quite naturally, the authors' own interests also influence the choice of material covered. A persistent theme, which brings a healthy topicality to the book, is the area of transport in mesoscopic systems or nanostructures. Two chapters, some
Experimental quantum simulations of many-body physics with trapped ions.
Schneider, Ch; Porras, Diego; Schaetz, Tobias
2012-02-01
Direct experimental access to some of the most intriguing quantum phenomena is not granted due to the lack of precise control of the relevant parameters in their naturally intricate environment. Their simulation on conventional computers is impossible, since quantum behaviour arising with superposition states or entanglement is not efficiently translatable into the classical language. However, one could gain deeper insight into complex quantum dynamics by experimentally simulating the quantum behaviour of interest in another quantum system, where the relevant parameters and interactions can be controlled and robust effects detected sufficiently well. Systems of trapped ions provide unique control of both the internal (electronic) and external (motional) degrees of freedom. The mutual Coulomb interaction between the ions allows for large interaction strengths at comparatively large mutual ion distances enabling individual control and readout. Systems of trapped ions therefore exhibit a prominent system in several physical disciplines, for example, quantum information processing or metrology. Here, we will give an overview of different trapping techniques of ions as well as implementations for coherent manipulation of their quantum states and discuss the related theoretical basics. We then report on the experimental and theoretical progress in simulating quantum many-body physics with trapped ions and present current approaches for scaling up to more ions and more-dimensional systems.
Simulating local measurements on a quantum many-body system with stochastic matrix product states
DEFF Research Database (Denmark)
Gammelmark, Søren; Mølmer, Klaus
2010-01-01
We demonstrate how to simulate both discrete and continuous stochastic evolutions of a quantum many-body system subject to measurements using matrix product states. A particular, but generally applicable, measurement model is analyzed and a simple representation in terms of matrix product operators...... is found. The technique is exemplified by numerical simulations of the antiferromagnetic Heisenberg spin-chain model subject to various instances of the measurement model. In particular, we focus on local measurements with small support and nonlocal measurements, which induce long-range correlations....
Real-space decoupling transformation for quantum many-body systems.
Evenbly, G; Vidal, G
2014-06-06
We propose a real-space renormalization group method to explicitly decouple into independent components a many-body system that, as in the phenomenon of spin-charge separation, exhibits separation of degrees of freedom at low energies. Our approach produces a branching holographic description of such systems that opens the path to the efficient simulation of the most entangled phases of quantum matter, such as those whose ground state violates a boundary law for entanglement entropy. As in the coarse-graining transformation of Vidal [Phys. Rev. Lett. 99, 220405 (2007).
Many-Body Quantum Chaos: Analytic Connection to Random Matrix Theory
Kos, Pavel; Ljubotina, Marko; Prosen, Tomaž
2018-04-01
A key goal of quantum chaos is to establish a relationship between widely observed universal spectral fluctuations of clean quantum systems and random matrix theory (RMT). Most prominent features of such RMT behavior with respect to a random spectrum, both encompassed in the spectral pair correlation function, are statistical suppression of small level spacings (correlation hole) and enhanced stiffness of the spectrum at large spectral ranges. For single-particle systems with fully chaotic classical counterparts, the problem has been partly solved by Berry [Proc. R. Soc. A 400, 229 (1985), 10.1098/rspa.1985.0078] within the so-called diagonal approximation of semiclassical periodic-orbit sums, while the derivation of the full RMT spectral form factor K (t ) (Fourier transform of the spectral pair correlation function) from semiclassics has been completed by Müller et al. [Phys. Rev. Lett. 93, 014103 (2004), 10.1103/PhysRevLett.93.014103]. In recent years, the questions of long-time dynamics at high energies, for which the full many-body energy spectrum becomes relevant, are coming to the forefront even for simple many-body quantum systems, such as locally interacting spin chains. Such systems display two universal types of behaviour which are termed the "many-body localized phase" and "ergodic phase." In the ergodic phase, the spectral fluctuations are excellently described by RMT, even for very simple interactions and in the absence of any external source of disorder. Here we provide a clear theoretical explanation for these observations. We compute K (t ) in the leading two orders in t and show its agreement with RMT for nonintegrable, time-reversal invariant many-body systems without classical counterparts, a generic example of which are Ising spin-1 /2 models in a periodically kicking transverse field. In particular, we relate K (t ) to partition functions of a class of twisted classical Ising models on a ring of size t ; hence, the leading-order RMT behavior
Identifying the closeness of eigenstates in quantum many-body systems
International Nuclear Information System (INIS)
Li Hai-bin; Yang Yang; Wang Pei; Wang Xiao-guang
2017-01-01
We propose a quantity called modulus fidelity to measure the closeness of two quantum pure states. We use it to investigate the closeness of eigenstates in one-dimensional hard-core bosons. When the system is integrable, eigenstates close to their neighbor or not, which leads to a large fluctuation in the distribution of modulus fidelity. When the system becomes chaos, the fluctuation is reduced dramatically, which indicates all eigenstates become close to each other. It is also found that two kind of closeness, i.e., closeness of eigenstates and closeness of eigenvalues, are not correlated at integrability but correlated at chaos. We also propose that the closeness of eigenstates is the underlying mechanism of eigenstate thermalization hypothesis (ETH) which explains the thermalization in quantum many-body systems. (paper)
Many-body Tunneling and Nonequilibrium Dynamics of Doublons in Strongly Correlated Quantum Dots.
Hou, WenJie; Wang, YuanDong; Wei, JianHua; Zhu, ZhenGang; Yan, YiJing
2017-05-30
Quantum tunneling dominates coherent transport at low temperatures in many systems of great interest. In this work we report a many-body tunneling (MBT), by nonperturbatively solving the Anderson multi-impurity model, and identify it a fundamental tunneling process on top of the well-acknowledged sequential tunneling and cotunneling. We show that the MBT involves the dynamics of doublons in strongly correlated systems. Proportional to the numbers of dynamical doublons, the MBT can dominate the off-resonant transport in the strongly correlated regime. A T 3/2 -dependence of the MBT current on temperature is uncovered and can be identified as a fingerprint of the MBT in experiments. We also prove that the MBT can support the coherent long-range tunneling of doublons, which is well consistent with recent experiments on ultracold atoms. As a fundamental physical process, the MBT is expected to play important roles in general quantum systems.
Many-body effects in transport through a quantum-dot cavity system
Dinu, I. V.; Moldoveanu, V.; Gartner, P.
2018-05-01
We theoretically describe electric transport through an optically active quantum dot embedded in a single-mode cavity, and coupled to source-drain particle reservoirs. The populations of various many-body configurations (e.g., excitons, trions, biexciton) and the photon-number occupancies are calculated from a master equation which is derived in the basis of dressed states. These take into account both the Coulomb and the light-matter interaction. The former is essential in the description of the transport, while for the latter we identify situations in which it can be neglected in the expression of tunneling rates. The fermionic nature of the particle reservoirs plays an important role in the argument. The master equation is numerically solved for the s -shell many-body configurations of disk-shaped quantum dots. If the cavity is tuned to the biexciton-exciton transition, the most efficient optical processes take place in a three-level Λ system. The alternative exciton-ground-state route is inhibited as nonresonant due to the biexciton binding energy. The steady-state current is analyzed as a function of the photon frequency and the coupling to the leads. An unexpected feature appears in its dependence on the cavity loss rate, which turns out to be nonmonotonic.
Directory of Open Access Journals (Sweden)
L. Fusco
2014-08-01
Full Text Available We analyze the nature of the statistics of the work done on or by a quantum many-body system brought out of equilibrium. We show that, for the sudden quench and for an initial state that commutes with the initial Hamiltonian, it is possible to retrieve the whole nonequilibrium thermodynamics via single projective measurements of observables. We highlight, in a physically clear way, the qualitative implications for the statistics of work coming from considering processes described by operators that either commute or do not commute with the unperturbed Hamiltonian of a given system. We consider a quantum many-body system and derive an expression that allows us to give a physical interpretation, for a thermal initial state, to all of the cumulants of the work in the case of quenched operators commuting with the unperturbed Hamiltonian. In the commuting case, the observables that we need to measure have an intuitive physical meaning. Conversely, in the noncommuting case, we show that, although it is possible to operate fully within the single-measurement framework irrespectively of the size of the quench, some difficulties are faced in providing a clear-cut physical interpretation to the cumulants. This circumstance makes the study of the physics of the system nontrivial and highlights the nonintuitive phenomenology of the emergence of thermodynamics from the fully quantum microscopic description. We illustrate our ideas with the example of the Ising model in a transverse field showing the interesting behavior of the high-order statistical moments of the work distribution for a generic thermal state and linking them to the critical nature of the model itself.
Simulation of Quantum Many-Body Dynamics for Generic Strongly-Interacting Systems
Meyer, Gregory; Machado, Francisco; Yao, Norman
2017-04-01
Recent experimental advances have enabled the bottom-up assembly of complex, strongly interacting quantum many-body systems from individual atoms, ions, molecules and photons. These advances open the door to studying dynamics in isolated quantum systems as well as the possibility of realizing novel out-of-equilibrium phases of matter. Numerical studies provide insight into these systems; however, computational time and memory usage limit common numerical methods such as exact diagonalization to relatively small Hilbert spaces of dimension 215 . Here we present progress toward a new software package for dynamical time evolution of large generic quantum systems on massively parallel computing architectures. By projecting large sparse Hamiltonians into a much smaller Krylov subspace, we are able to compute the evolution of strongly interacting systems with Hilbert space dimension nearing 230. We discuss and benchmark different design implementations, such as matrix-free methods and GPU based calculations, using both pre-thermal time crystals and the Sachdev-Ye-Kitaev model as examples. We also include a simple symbolic language to describe generic Hamiltonians, allowing simulation of diverse quantum systems without any modification of the underlying C and Fortran code.
Local Convertibility and the Quantum Simulation of Edge States in Many-Body Systems
Directory of Open Access Journals (Sweden)
Fabio Franchini
2014-11-01
Full Text Available In some many-body systems, certain ground-state entanglement (Rényi entropies increase even as the correlation length decreases. This entanglement nonmonotonicity is a potential indicator of nonclassicality. In this work, we demonstrate that such a phenomenon, known as lack of local convertibility, is due to the edge-state (deconstruction occurring in the system. To this end, we employ the example of the Ising chain, displaying an order-disorder quantum phase transition. Employing both analytical and numerical methods, we compute entanglement entropies for various system bipartitions (A|B and consider ground states with and without Majorana edge states. We find that the thermal ground states, enjoying the Hamiltonian symmetries, show lack of local convertibility if either A or B is smaller than, or of the order of, the correlation length. In contrast, the ordered (symmetry-breaking ground state is always locally convertible. The edge-state behavior explains all these results and could disclose a paradigm to understand local convertibility in other quantum phases of matter. The connection we establish between convertibility and nonlocal, quantum correlations provides a clear criterion of which features a universal quantum simulator should possess to outperform a classical machine.
Polylogs, thermodynamics and scaling functions of one-dimensional quantum many-body systems
International Nuclear Information System (INIS)
Guan, X-W; Batchelor, M T
2011-01-01
We demonstrate that the thermodynamics of one-dimensional Lieb-Liniger bosons can be accurately calculated in analytic fashion using the polylog function in the framework of the thermodynamic Bethe ansatz. The approach does away with the need to numerically solve the thermodynamic Bethe ansatz (Yang-Yang) equation. The expression for the equation of state allows the exploration of Tomonaga-Luttinger liquid physics and quantum criticality in an archetypical quantum system. In particular, the low-temperature phase diagram is obtained, along with the scaling functions for the density and compressibility. It has been shown recently by Guan and Ho (arXiv:1010.1301) that such scaling can be used to map out the criticality of ultracold fermionic atoms in experiments. We show here how to map out quantum criticality for Lieb-Liniger bosons. More generally, the polylog function formalism can be applied to a wide range of Bethe ansatz integrable quantum many-body systems which are currently of theoretical and experimental interest, such as strongly interacting multi-component fermions, spinor bosons and mixtures of bosons and fermions. (fast track communication)
Rotation of quantum impurities in the presence of a many-body environment
Lemeshko, Mikhail; Schmidt, Richard
2015-05-01
Pioneered by the seminal works of Wigner and Racah, the quantum theory of angular momentum evolved into a powerful machinery, commonly used to classify the states of isolated quantum systems and perturbations to their structure due to electromagnetic or crystalline fields. In ``realistic'' experiments, however, quantum systems are almost inevitably coupled to a many-particle environment and a field of elementary excitations associated with it, which is capable of fundamentally altering the physics of the system. We present the first systematic treatment of quantum rotation coupled to a many-particle environment. By using a series of canonical transformations on a generic microscopic Hamiltonian, we single out the conserved quantities of the problem. Using a variational ansatz accounting for an infinite number of many-body excitations, we characterize the spectrum of angular momentum eigenstates and identify the regions of instability, accompanied by emission of angular Cerenkov radiation. The developed technique can be applied to a wide range of systems described by the angular momentum algebra, from Rydberg atoms immersed into BEC's, to cold molecules solvated in helium droplets, to ultracold molecular ions.
Integrable Time-Dependent Quantum Hamiltonians
Sinitsyn, Nikolai A.; Yuzbashyan, Emil A.; Chernyak, Vladimir Y.; Patra, Aniket; Sun, Chen
2018-05-01
We formulate a set of conditions under which the nonstationary Schrödinger equation with a time-dependent Hamiltonian is exactly solvable analytically. The main requirement is the existence of a non-Abelian gauge field with zero curvature in the space of system parameters. Known solvable multistate Landau-Zener models satisfy these conditions. Our method provides a strategy to incorporate time dependence into various quantum integrable models while maintaining their integrability. We also validate some prior conjectures, including the solution of the driven generalized Tavis-Cummings model.
Quantum scaling in many-body systems an approach to quantum phase transitions
Continentino, Mucio
2017-01-01
Quantum phase transitions are strongly relevant in a number of fields, ranging from condensed matter to cold atom physics and quantum field theory. This book, now in its second edition, approaches the problem of quantum phase transitions from a new and unifying perspective. Topics addressed include the concepts of scale and time invariance and their significance for quantum criticality, as well as brand new chapters on superfluid and superconductor quantum critical points, and quantum first order transitions. The renormalisation group in real and momentum space is also established as the proper language to describe the behaviour of systems close to a quantum phase transition. These phenomena introduce a number of theoretical challenges which are of major importance for driving new experiments. Being strongly motivated and oriented towards understanding experimental results, this is an excellent text for graduates, as well as theorists, experimentalists and those with an interest in quantum criticality.
Many-body strategies for multiqubit gates: Quantum control through Krawtchouk-chain dynamics
Groenland, Koen; Schoutens, Kareljan
2018-04-01
We propose a strategy for engineering multiqubit quantum gates. As a first step, it employs an eigengate to map states in the computational basis to eigenstates of a suitable many-body Hamiltonian. The second step employs resonant driving to enforce a transition between a single pair of eigenstates, leaving all others unchanged. The procedure is completed by mapping back to the computational basis. We demonstrate the strategy for the case of a linear array with an even number N of qubits, with specific X X +Y Y couplings between nearest neighbors. For this so-called Krawtchouk chain, a two-body driving term leads to the iSWAPN gate, which we numerically test for N =4 and 6.
Seniority in quantum many-body systems. I. Identical particles in a single shell
Energy Technology Data Exchange (ETDEWEB)
Van Isacker, P., E-mail: isacker@ganil.fr [Grand Accélérateur National d’Ions Lourds, CEA/DSM–CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 5 (France); Heinze, S. [Institut für Kernphysik der Universität zu Köln, 50937 Köln (Germany)
2014-10-15
A discussion of the seniority quantum number in many-body systems is presented. The analysis is carried out for bosons and fermions simultaneously but is restricted to identical particles occupying a single shell. The emphasis of the paper is on the possibility of partial conservation of seniority which turns out to be a peculiar property of spin-9/2 fermions but prevalent in systems of interacting bosons of any spin. Partial conservation of seniority is at the basis of the existence of seniority isomers, frequently observed in semi-magic nuclei, and also gives rise to peculiar selection rules in one-nucleon transfer reactions. - Highlights: • Unified derivation of conditions for the total and partial conservation of seniority. • General analysis of the partial conservation of seniority in boson systems. • Why partial conservation of seniority is crucial for seniority isomers in nuclei. • The effect of partial conservation of seniority on one-nucleon transfer intensities.
Seniority in quantum many-body systems. I. Identical particles in a single shell
International Nuclear Information System (INIS)
Van Isacker, P.; Heinze, S.
2014-01-01
A discussion of the seniority quantum number in many-body systems is presented. The analysis is carried out for bosons and fermions simultaneously but is restricted to identical particles occupying a single shell. The emphasis of the paper is on the possibility of partial conservation of seniority which turns out to be a peculiar property of spin-9/2 fermions but prevalent in systems of interacting bosons of any spin. Partial conservation of seniority is at the basis of the existence of seniority isomers, frequently observed in semi-magic nuclei, and also gives rise to peculiar selection rules in one-nucleon transfer reactions. - Highlights: • Unified derivation of conditions for the total and partial conservation of seniority. • General analysis of the partial conservation of seniority in boson systems. • Why partial conservation of seniority is crucial for seniority isomers in nuclei. • The effect of partial conservation of seniority on one-nucleon transfer intensities
International Nuclear Information System (INIS)
Kuwahara, Tomotaka; Mori, Takashi; Saito, Keiji
2016-01-01
This work explores a fundamental dynamical structure for a wide range of many-body quantum systems under periodic driving. Generically, in the thermodynamic limit, such systems are known to heat up to infinite temperature states in the long-time limit irrespective of dynamical details, which kills all the specific properties of the system. In the present study, instead of considering infinitely long-time scale, we aim to provide a general framework to understand the long but finite time behavior, namely the transient dynamics. In our analysis, we focus on the Floquet–Magnus (FM) expansion that gives a formal expression of the effective Hamiltonian on the system. Although in general the full series expansion is not convergent in the thermodynamics limit, we give a clear relationship between the FM expansion and the transient dynamics. More precisely, we rigorously show that a truncated version of the FM expansion accurately describes the exact dynamics for a certain time-scale. Our theory reveals an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed. We discuss several dynamical phenomena, such as the effect of small integrability breaking, efficient numerical simulation of periodically driven systems, dynamical localization and thermalization. Especially on thermalization, we discuss a generic scenario on the prethermalization phenomenon in periodically driven systems. -- Highlights: •A general framework to describe transient dynamics for periodically driven systems. •The theory is applicable to generic quantum many-body systems including long-range interacting systems. •Physical meaning of the truncation of the Floquet–Magnus expansion is rigorously established. •New mechanism of the prethermalization is proposed. •Revealing an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed.
Energy Technology Data Exchange (ETDEWEB)
Kuwahara, Tomotaka, E-mail: tomotaka.phys@gmail.com [Department of Physics, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); WPI, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Mori, Takashi [Department of Physics, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Saito, Keiji [Department of Physics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522 (Japan)
2016-04-15
This work explores a fundamental dynamical structure for a wide range of many-body quantum systems under periodic driving. Generically, in the thermodynamic limit, such systems are known to heat up to infinite temperature states in the long-time limit irrespective of dynamical details, which kills all the specific properties of the system. In the present study, instead of considering infinitely long-time scale, we aim to provide a general framework to understand the long but finite time behavior, namely the transient dynamics. In our analysis, we focus on the Floquet–Magnus (FM) expansion that gives a formal expression of the effective Hamiltonian on the system. Although in general the full series expansion is not convergent in the thermodynamics limit, we give a clear relationship between the FM expansion and the transient dynamics. More precisely, we rigorously show that a truncated version of the FM expansion accurately describes the exact dynamics for a certain time-scale. Our theory reveals an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed. We discuss several dynamical phenomena, such as the effect of small integrability breaking, efficient numerical simulation of periodically driven systems, dynamical localization and thermalization. Especially on thermalization, we discuss a generic scenario on the prethermalization phenomenon in periodically driven systems. -- Highlights: •A general framework to describe transient dynamics for periodically driven systems. •The theory is applicable to generic quantum many-body systems including long-range interacting systems. •Physical meaning of the truncation of the Floquet–Magnus expansion is rigorously established. •New mechanism of the prethermalization is proposed. •Revealing an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed.
Quantum Many-Body Dynamics with Driven Bose Condensates: Kibble-Zurek Mechanism and Bose Fireworks
Clark, Logan William
In recent years there has been an explosion of interest in the field of quantum many-body physics. Understanding the complex and often unintuitive behavior of systems containing interacting quantum constituents is not only fascinating but also crucial for developing the next generation of quantum technology, including better materials, sensors, and computers. Yet understanding such systems remains a challenge, particularly when considering the dynamics which occur when they are excited far from equilibrium. Ultracold atomic gases provide an ideal system with which to study dynamics by enabling clean, well-controlled experiments at length- and time-scales which allow us to observe the dynamics directly. This thesis describes experiments on the many-body dynamics of ultracold, bosonic cesium atoms. Our apparatus epitomizes the versatility of ultracold atoms by providing extensive control over the quantum gas. In particular, we will discuss our use of a digital micromirror device to project arbitrary, dynamic external potentials onto the gas; our development of a powerful new scheme for optically controlling Feshbach resonances to enable spatiotemporal control of the interactions between atoms; and our use of near-resonant shaking lattices to modify the kinetic energy of atoms. Taking advantage of this flexible apparatus, we have been able to test a longstanding conjecture based on the Kibble-Zurek mechanism, which says that the dynamics of a system crossing a quantum phase transition should obey a universal scaling symmetry of space and time. After accounting for this scaling symmetry, critical dynamics would be essentially independent of the rate at which a system crossed a phase transition. We tested the universal scaling of critical dynamics by using near-resonant shaking to drive Bose-Einstein condensates across an effectively ferromagnetic quantum phase transition. After crossing the phase transition, condensates divide themselves spatially into domains with
Mazziotti, David A.; Erdahl, Robert M.
2001-04-01
For the description of ground-state correlation phenomena an accurate mapping of many-body quantum mechanics onto four particles is developed. The energy for a quantum system with no more than two-particle interactions may be expressed in terms of a two-particle reduced density matrix (2-RDM), but variational optimization of the 2-RDM requires that it corresponds to an N-particle wave function. We derive N-representability conditions on the 2-RDM that guarantee the validity of the uncertainty relations for all operators with two-particle interactions. One of these conditions is shown to be necessary and sufficient to make the RDM solutions of the dispersion condition equivalent to those from the contracted Schrödinger equation (CSE) [Mazziotti, Phys. Rev. A 57, 4219 (1998)]. In general, the CSE is a stronger N-representability condition than the dispersion condition because the CSE implies the dispersion condition as well as additional N-representability constraints from the Hellmann-Feynman theorem. Energy minimization subject to the representability constraints is performed for a boson model with 10, 30, and 75 particles. Even when traditional wave-function methods fail at large perturbations, the present method yields correlation energies within 2%.
Dissipative time-dependent quantum transport theory.
Zhang, Yu; Yam, Chi Yung; Chen, GuanHua
2013-04-28
A dissipative time-dependent quantum transport theory is developed to treat the transient current through molecular or nanoscopic devices in presence of electron-phonon interaction. The dissipation via phonon is taken into account by introducing a self-energy for the electron-phonon coupling in addition to the self-energy caused by the electrodes. Based on this, a numerical method is proposed. For practical implementation, the lowest order expansion is employed for the weak electron-phonon coupling case and the wide-band limit approximation is adopted for device and electrodes coupling. The corresponding hierarchical equation of motion is derived, which leads to an efficient and accurate time-dependent treatment of inelastic effect on transport for the weak electron-phonon interaction. The resulting method is applied to a one-level model system and a gold wire described by tight-binding model to demonstrate its validity and the importance of electron-phonon interaction for the quantum transport. As it is based on the effective single-electron model, the method can be readily extended to time-dependent density functional theory.
International Nuclear Information System (INIS)
Kushnirenko, A.N.
1989-01-01
An attempt was made to substantiate statistical physics from the viewpoint of many-body quantum mechanics in the representation of occupation numbers. This approach enabled to develop the variation method for solution of stationary and nonstationary nonequilibrium problems
Probing correlated quantum many-body systems at the single-particle level
International Nuclear Information System (INIS)
Endres, Manuel
2013-01-01
The detection of correlation and response functions plays a crucial role in the experimental characterization of quantum many-body systems. In this thesis, we present novel techniques for the measurement of such functions at the single-particle level. Specifically, we show the single-atom- and single-site-resolved detection of an ultracold quantum gas in an optical lattice. The quantum gas is described by the Bose-Hubbard model, which features a zero temperature phase transition from a superfluid to a Mott-insulating state, a paradigm example of a quantum phase transition. We used the aforementioned detection techniques to study correlation and response properties across the superfluid-Mott-insulator transition. The single-atom sensitivity of our method is achieved by fluorescence detection of individual atoms with a high signal-to-noise ratio. A high-resolution objective collects the fluorescence light and yields in situ 'snapshots' of the quantum gas that allow for a single-site-resolved reconstruction of the atomic distribution. This allowed us to measure two-site and non-local correlation-functions across the superfluid-Mott-insulator transition. Non-local correlation functions are based on the information of an extended region of the system and play an important role for the characterization of low-dimensional quantum phases. While non-local correlation functions were so far only theoretical tools, our results show that they are actually experimentally accessible. Furthermore, we used a new thermometry scheme, based on the counting of individual thermal excitations, to measure the response of the system to lattice modulation. Using this method, we studied the excitation spectrum of the system across the two-dimensional superfluid-Mott-insulator transition. In particular, we detected a 'Higgs' amplitude mode in the strongly-interacting superfluid close to the transition point where the system is described by an effectively Lorentz-invariant low-energy theory
Probing correlated quantum many-body systems at the single-particle level
Energy Technology Data Exchange (ETDEWEB)
Endres, Manuel
2013-02-27
The detection of correlation and response functions plays a crucial role in the experimental characterization of quantum many-body systems. In this thesis, we present novel techniques for the measurement of such functions at the single-particle level. Specifically, we show the single-atom- and single-site-resolved detection of an ultracold quantum gas in an optical lattice. The quantum gas is described by the Bose-Hubbard model, which features a zero temperature phase transition from a superfluid to a Mott-insulating state, a paradigm example of a quantum phase transition. We used the aforementioned detection techniques to study correlation and response properties across the superfluid-Mott-insulator transition. The single-atom sensitivity of our method is achieved by fluorescence detection of individual atoms with a high signal-to-noise ratio. A high-resolution objective collects the fluorescence light and yields in situ 'snapshots' of the quantum gas that allow for a single-site-resolved reconstruction of the atomic distribution. This allowed us to measure two-site and non-local correlation-functions across the superfluid-Mott-insulator transition. Non-local correlation functions are based on the information of an extended region of the system and play an important role for the characterization of low-dimensional quantum phases. While non-local correlation functions were so far only theoretical tools, our results show that they are actually experimentally accessible. Furthermore, we used a new thermometry scheme, based on the counting of individual thermal excitations, to measure the response of the system to lattice modulation. Using this method, we studied the excitation spectrum of the system across the two-dimensional superfluid-Mott-insulator transition. In particular, we detected a 'Higgs' amplitude mode in the strongly-interacting superfluid close to the transition point where the system is described by an effectively Lorentz
Spectrum of quantum transfer matrices via classical many-body systems
Energy Technology Data Exchange (ETDEWEB)
Gorsky, A. [ITEP,Bolshaya Cheremushkinskaya str. 25, 117218, Moscow (Russian Federation); MIPT,Inststitutskii per. 9, 141700, Dolgoprudny, Moscow region (Russian Federation); Zabrodin, A. [ITEP,Bolshaya Cheremushkinskaya str. 25, 117218, Moscow (Russian Federation); MIPT,Inststitutskii per. 9, 141700, Dolgoprudny, Moscow region (Russian Federation); Institute of Biochemical Physics,Kosygina str. 4, 119991, Moscow (Russian Federation); National Research University Higher School of Economics,Myasnitskaya str. 20, 101000, Moscow (Russian Federation); Zotov, A. [ITEP,Bolshaya Cheremushkinskaya str. 25, 117218, Moscow (Russian Federation); MIPT,Inststitutskii per. 9, 141700, Dolgoprudny, Moscow region (Russian Federation); Steklov Mathematical Institute, RAS,Gubkina str. 8, 119991, Moscow (Russian Federation)
2014-01-15
In this paper we clarify the relationship between inhomogeneous quantum spin chains and classical integrable many-body systems. It provides an alternative (to the nested Bethe ansatz) method for computation of spectra of the spin chains. Namely, the spectrum of the quantum transfer matrix for the inhomogeneous gl{sub n}-invariant XXX spin chain on N sites with twisted boundary conditions can be found in terms of velocities of particles in the rational N-body Ruijsenaars-Schneider model. The possible values of the velocities are to be found from intersection points of two Lagrangian submanifolds in the phase space of the classical model. One of them is the Lagrangian hyperplane corresponding to fixed coordinates of all N particles and the other one is an N-dimensional Lagrangian submanifold obtained by fixing levels of N classical Hamiltonians in involution. The latter are determined by eigenvalues of the twist matrix. To support this picture, we give a direct proof that the eigenvalues of the Lax matrix for the classical Ruijsenaars-Schneider model, where velocities of particles are substituted by eigenvalues of the spin chain Hamiltonians, calculated through the Bethe equations, coincide with eigenvalues of the twist matrix, with certain multiplicities. We also prove a similar statement for the gl{sub n} Gaudin model with N marked points (on the quantum side) and the Calogero-Moser system with N particles (on the classical side). The realization of the results obtained in terms of branes and supersymmetric gauge theories is also discussed.
Quantum optics meets quantum many-body theory: coupled cluster studies of the Rabi Hamiltonian
International Nuclear Information System (INIS)
Davidson, N.J.; Quick, R.M.; Bishop, R.F.; Van der Walt, D.M.
1998-01-01
The Rabi Hamiltonian, which describes the interaction of a single mode of electromagnetic radiation with a two level system, is one of the fundamental models of quantum optics. It is also of wider interest as it provides a generic model for the interaction of bosons and fermions. To allow for a systematic analysis of the strong-coupling behaviour, we have applied the coupled cluster method (CCM) to the Rabi Hamiltonian to calculate its spectrum. We find strong evidence for the existence of a somewhat subtle quantum phase transition. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)
Quantum gases. Observation of many-body dynamics in long-range tunneling after a quantum quench.
Meinert, Florian; Mark, Manfred J; Kirilov, Emil; Lauber, Katharina; Weinmann, Philipp; Gröbner, Michael; Daley, Andrew J; Nägerl, Hanns-Christoph
2014-06-13
Quantum tunneling is at the heart of many low-temperature phenomena. In strongly correlated lattice systems, tunneling is responsible for inducing effective interactions, and long-range tunneling substantially alters many-body properties in and out of equilibrium. We observe resonantly enhanced long-range quantum tunneling in one-dimensional Mott-insulating Hubbard chains that are suddenly quenched into a tilted configuration. Higher-order tunneling processes over up to five lattice sites are observed as resonances in the number of doubly occupied sites when the tilt per site is tuned to integer fractions of the Mott gap. This forms a basis for a controlled study of many-body dynamics driven by higher-order tunneling and demonstrates that when some degrees of freedom are frozen out, phenomena that are driven by small-amplitude tunneling terms can still be observed. Copyright © 2014, American Association for the Advancement of Science.
Beautiful Models: 70 Years of Exactly Solved Quantum Many-Body Problems
International Nuclear Information System (INIS)
Batchelor, M T
2005-01-01
A key element of theoretical physics is the conceptualisation of physical phenomena in terms of models, which are then investigated by the tools at hand. For quantum many-body systems, some models can be exactly solved, i.e., their physical properties can be calculated in an exact fashion. There is often a deep underlying reason why this can be done-the theory of integrability-which manifests itself in many guises. In Beautiful models, Bill Sutherland looks at exactly solved models in quantum many-body systems, a well established field dating back to Bethe's 1931 exact solution of the spin-1/2 Heisenberg chain. This field is enjoying a renaissance due to the ongoing and striking experimental advances in low-dimensional quantum physics, which includes the manufacture of quasi one-dimensional quantum gases. Apart from the intrinsic beauty of the subject material, Beautiful Models is written by a pioneering master of the field. Sutherland has aimed to provide a broad textbook style introduction to the subject for graduate students and interested non-experts. An important point here is the 'language' of the book. In Sutherland's words, the subject of exactly solved models 'belongs to the realm of mathematical physics-too mathematical to be 'respectable' physics, yet not rigorous enough to be 'real' mathematics. ...there are perennial attempts to translate this body of work into either respectable physics or real mathematics; this is not that sort of book.' Rather, Sutherland discusses the models and their solutions in terms of their 'intrinisic' language, which is largely as found in the physics literature. The book begins with a helpful overview of the contents and then moves on to the foundation material, which is the chapter on integrability and non-diffraction. As is shown, these two concepts go hand in hand. The topics covered in later chapters include models with δ-function potentials, the Heisenberg spin chain, the Hubbard model, exchange models, the Calogero
Beautiful Models: 70 Years of Exactly Solved Quantum Many-Body Problems
Energy Technology Data Exchange (ETDEWEB)
Batchelor, M T [Department of Theoretical Physics, RSPSE and Department of Mathematics, MSI, Australian National University, Canberra ACT 0200 (Australia)
2005-04-08
A key element of theoretical physics is the conceptualisation of physical phenomena in terms of models, which are then investigated by the tools at hand. For quantum many-body systems, some models can be exactly solved, i.e., their physical properties can be calculated in an exact fashion. There is often a deep underlying reason why this can be done-the theory of integrability-which manifests itself in many guises. In Beautiful models, Bill Sutherland looks at exactly solved models in quantum many-body systems, a well established field dating back to Bethe's 1931 exact solution of the spin-1/2 Heisenberg chain. This field is enjoying a renaissance due to the ongoing and striking experimental advances in low-dimensional quantum physics, which includes the manufacture of quasi one-dimensional quantum gases. Apart from the intrinsic beauty of the subject material, Beautiful Models is written by a pioneering master of the field. Sutherland has aimed to provide a broad textbook style introduction to the subject for graduate students and interested non-experts. An important point here is the 'language' of the book. In Sutherland's words, the subject of exactly solved models 'belongs to the realm of mathematical physics-too mathematical to be 'respectable' physics, yet not rigorous enough to be 'real' mathematics. ...there are perennial attempts to translate this body of work into either respectable physics or real mathematics; this is not that sort of book.' Rather, Sutherland discusses the models and their solutions in terms of their 'intrinisic' language, which is largely as found in the physics literature. The book begins with a helpful overview of the contents and then moves on to the foundation material, which is the chapter on integrability and non-diffraction. As is shown, these two concepts go hand in hand. The topics covered in later chapters include models with {delta}-function potentials, the
Algorithm for simulation of quantum many-body dynamics using dynamical coarse-graining
International Nuclear Information System (INIS)
Khasin, M.; Kosloff, R.
2010-01-01
An algorithm for simulation of quantum many-body dynamics having su(2) spectrum-generating algebra is developed. The algorithm is based on the idea of dynamical coarse-graining. The original unitary dynamics of the target observables--the elements of the spectrum-generating algebra--is simulated by a surrogate open-system dynamics, which can be interpreted as weak measurement of the target observables, performed on the evolving system. The open-system state can be represented by a mixture of pure states, localized in the phase space. The localization reduces the scaling of the computational resources with the Hilbert-space dimension n by factor n 3/2 (ln n) -1 compared to conventional sparse-matrix methods. The guidelines for the choice of parameters for the simulation are presented and the scaling of the computational resources with the Hilbert-space dimension of the system is estimated. The algorithm is applied to the simulation of the dynamics of systems of 2x10 4 and 2x10 6 cold atoms in a double-well trap, described by the two-site Bose-Hubbard model.
Kuwahara, Tomotaka; Mori, Takashi; Saito, Keiji
2016-04-01
This work explores a fundamental dynamical structure for a wide range of many-body quantum systems under periodic driving. Generically, in the thermodynamic limit, such systems are known to heat up to infinite temperature states in the long-time limit irrespective of dynamical details, which kills all the specific properties of the system. In the present study, instead of considering infinitely long-time scale, we aim to provide a general framework to understand the long but finite time behavior, namely the transient dynamics. In our analysis, we focus on the Floquet-Magnus (FM) expansion that gives a formal expression of the effective Hamiltonian on the system. Although in general the full series expansion is not convergent in the thermodynamics limit, we give a clear relationship between the FM expansion and the transient dynamics. More precisely, we rigorously show that a truncated version of the FM expansion accurately describes the exact dynamics for a certain time-scale. Our theory reveals an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed. We discuss several dynamical phenomena, such as the effect of small integrability breaking, efficient numerical simulation of periodically driven systems, dynamical localization and thermalization. Especially on thermalization, we discuss a generic scenario on the prethermalization phenomenon in periodically driven systems.
Quantum many-body dynamics of ultracold atoms in optical lattices
Energy Technology Data Exchange (ETDEWEB)
Kessler, Stefan
2014-04-15
Ultracold atoms can be trapped in periodic intensity patterns of light created by counterpropagating laser beams, so-called optical lattices. In contrast to its natural counterpart, electrons in a solid state crystal, this man-made setup is very clean and highly isolated from environmental degrees of freedom. Moreover, to a large extent, the experimenter has dynamical control over the relevant system parameters: the interaction between atoms, the tunneling amplitude between lattice sites, and even the dimensionality of the lattice. These advantages render this system a unique platform for the simulation of quantum many-body dynamics for various lattice Hamiltonians as has been demonstrated in several experiments by now. The most significant step in recent times has arguably been the introduction of single-site detection of individual atoms in optical lattices. This technique, based on fluorescence microscopy, opens a new doorway for the study of quantum many-body states: the detection of the microscopic atom configuration. In this thesis, we theoretically explore the dynamics of ultracold atoms in optical lattices for various setups realized in present-day experiments. Our main focus lies on aspects that become experimentally accessible by (realistic extensions of) the novel single-site measurement technique. The first part deals with the expansion of initially confined atoms in a homogeneous lattice, which is one way to create atomic motion in experiments. We analyze the buildup of spatial correlations during the expansion of a finitely extended band insulating state in one dimension. The numerical simulation reveals the creation of remote spin-entangled fermions in the strongly interacting regime. We discuss the experimental observation of such spin-entangled pairs by means of a single-site measurement. Furthermore, we suggest studying the impact of observations on the expansion dynamics for the extreme case of a projective measurement in the spatial occupation
Quantum many-body dynamics of ultracold atoms in optical lattices
International Nuclear Information System (INIS)
Kessler, Stefan
2014-01-01
Ultracold atoms can be trapped in periodic intensity patterns of light created by counterpropagating laser beams, so-called optical lattices. In contrast to its natural counterpart, electrons in a solid state crystal, this man-made setup is very clean and highly isolated from environmental degrees of freedom. Moreover, to a large extent, the experimenter has dynamical control over the relevant system parameters: the interaction between atoms, the tunneling amplitude between lattice sites, and even the dimensionality of the lattice. These advantages render this system a unique platform for the simulation of quantum many-body dynamics for various lattice Hamiltonians as has been demonstrated in several experiments by now. The most significant step in recent times has arguably been the introduction of single-site detection of individual atoms in optical lattices. This technique, based on fluorescence microscopy, opens a new doorway for the study of quantum many-body states: the detection of the microscopic atom configuration. In this thesis, we theoretically explore the dynamics of ultracold atoms in optical lattices for various setups realized in present-day experiments. Our main focus lies on aspects that become experimentally accessible by (realistic extensions of) the novel single-site measurement technique. The first part deals with the expansion of initially confined atoms in a homogeneous lattice, which is one way to create atomic motion in experiments. We analyze the buildup of spatial correlations during the expansion of a finitely extended band insulating state in one dimension. The numerical simulation reveals the creation of remote spin-entangled fermions in the strongly interacting regime. We discuss the experimental observation of such spin-entangled pairs by means of a single-site measurement. Furthermore, we suggest studying the impact of observations on the expansion dynamics for the extreme case of a projective measurement in the spatial occupation
Many-body problem in quantum mechanics and quantum statistical mechanics
International Nuclear Information System (INIS)
Lee, T.D.; Yang, C.N.
1983-01-01
This is a progress report on some work concerning the quantum mechanical calculation of the fugacity coefficients b/sub l/ (which correspond to the classical cluster integrals) of a Bose, a Fermi, and a Boltzmann gas at low temperatures. A binary collision expansion method is developed which allows for the systematic calculation of b/sub l/ as expansions in powers of a/λ, where a represents the parameters of the dimensions of length that characterize the low-energy two-body collision and λ is the thermal wavelength. To any power of (a/λ) the calculation of any specific b/sub l/ is reduced to a finite number of quadratures. The method, therefore, is the low-temperature counterpart of the high-temperature expansion of b/sub l/
Pion propagator in relativistic quantum field theories of the nuclear many-body problem
International Nuclear Information System (INIS)
Matsui, T.; Serot, B.D.
1982-01-01
Pion interactions in the nuclear medium are studied using renormalizable relativistic quantum field theories. Previous studies using pseudoscalar πN coupling encountered difficulties due to the large strength of the πNN vertex. We therefore formulate renormalizable field theories with pseudovector πN coupling using techniques introduced by Weinberg and Schwinger. Calculations are performed for two specific models; the scalar-vector theory of Walecka, extended to include π and rho mesons in a non-chiral fashion, and the linear sigma-model with an additional neutral vector meson. Both models qualitatively reproduce low-energy πN phenomenology and lead to nuclear matter saturation in the relativistic Hartree formalism, which includes baryon vacuum fluctuations. The pions propagator is evaluated in the one-nucleon-loop approximation, which corresponds to a relativistic random-phase approximation built on the Hartree ground state. Virtual NN-bar loops are included, and suitable renormalization techniques are illustrated. The local-density approximation is used to compare the threshold pion self-energy to the s-wave pion-nucleus optical potential. In the non-chiral model, s-wave pion-nucleus scattering is too large in both pseudoscalar and pseudovector calculations, indicating that additional constraints must be imposed on the Lagrangian. In the chiral model, the threshold self-energy vanishes automatically in the pseudovector case, but does so for pseudoscalar coupling only if the baryon effective mass is chosen self-consistently Since extrapolation from free space to nuclear density can lead to large effects, pion propagation in the medium can determine which πN coupling is more suitable for the relativistic nuclear many-body problem. Conversely, pion interactions constrain the model Lagrangian and the nuclear matter equation of state. An approximately chiral model with pseudovector coupling is favored
DEFF Research Database (Denmark)
Houmark-Nielsen, Jakob; Nielsen, Torben Roland; Mørk, Jesper
2009-01-01
an important impact on the slow light properties. In the case of the Lambda and V schemes, the minimum required coupling power to achieve slow light is significantly reduced by many-body interactions. V type schemes are found to be generally preferable due to a favorable redistribution of carriers in energy......We investigate the impact of many-body interactions on group-velocity slowdown achieved via electromagnetically induced transparency in quantum dots using three different coupling-probe schemes (ladder, V, and Lambda, respectively). We find that for all schemes many-body interactions have...
Nuclear quantum many-body dynamics: from collective vibrations to heavy-ion collisions
International Nuclear Information System (INIS)
Simenel, Cedric
2012-01-01
This report gives a summary of my research on nuclear dynamics during the past ten years. The choice of this field has been motivated by the desire to understand the physics of complex systems obeying quantum mechanics. In particular, the interplay between collective motion and single-particle degrees of freedom is a source of complex and fascinating behaviours. For instance, giant resonances are characterised by a collective vibration of many nucleons, but their decay may occur by the emission of a single nucleon. Another example could be taken from the collision of nuclei where the transfer of few nucleons may have a strong impact on the formation of a compound system is non trivial. To describe these complex systems, one needs to solve the quantum many-body problem. The description of the dynamics of composite systems can be very challenging, especially when two such systems interact. An important goal of nuclear physics is to find a unified way to describe the dynamics of nuclear systems. Ultimately, the same theoretical model should be able to describe vibrations, rotations, fission, all the possible outcomes of heavy-ion collisions (elastic and inelastic scattering, particle transfer, fusion, and multifragmentation), and even the dynamics of neutron star crust. This desire for a global approach to nuclear dynamics has strongly influenced my research activities. In particular, all the numerical applications presented in this report have been obtained from few numerical codes solving equations derived from the same variational principle. Beside the quest for a unified model of nuclear dynamics, possible applications of heavy-ion collisions such as the formation of new nuclei is also a strong motivation for the experimental and theoretical studies of reaction mechanisms. This report is not a review article, but should be considered as a reading guide of the main papers my collaborators and myself have published. It also gives the opportunity to detail some
Thermalization and out-of-equilibrium dynamics in open quantum many-body systems
Energy Technology Data Exchange (ETDEWEB)
Buchhold, Michael
2015-06-30
}-T{sub ∞}∝t{sup -η{sub D}} again witnesses the presence of these slow modes. As an immediate indication of thermalization, we determine the time evolution of the fermionic momentum distribution after a quench from non-interacting to interacting fermions. Finally, we consider a bosonic quantum fluid, which is driven away from equilibrium by permanent heating. The origin of the heating is atomic spontaneous emission of laser photons, which are used to create a coherent lattice potential in optical lattice experiments. This process preserves the system's U(1)-invariance, i.e. conserves the global particle number, and the corresponding long-wavelength description is a heated, interacting Luttinger Liquid, for which phonon modes are continuously populated with a momentum dependent rate ∂{sub t}n{sub q} ∝γ vertical stroke q vertical stroke. In the dynamics, we identify a quasi-thermal regime for large momenta, featuring an increasing time-dependent effective temperature. In this regime, due to fast phonon-phonon scattering, detailed balance has been achieved and is expressed by a time-local, increasing temperature. The thermal region emerges locally and spreads in space sub-ballistically according to x{sub t}∝t{sup 4/5}. For larger distances, the system is described by an non-equilibrium phonon distribution n{sub q}∝ vertical stroke q vertical stroke, which leads to a new, non-equilibrium behavior of large distance observables. This new, universal behavior is guaranteed by the U(1) invariant dynamics of the system and is insensitive to further subleading perturbations. The non-equilibrium long-distance behavior can be determined experimentally by measuring the static and dynamic structure factor, both of which clearly indicate the exponents for phonon decay, η=5/3 and for the spreading of thermalization η{sub T}=4/5.
Rispoli, Matthew; Lukin, Alexander; Ma, Ruichao; Preiss, Philipp; Tai, M. Eric; Islam, Rajibul; Greiner, Markus
2015-05-01
Ultracold atoms in optical lattices provide a versatile tool box for observing the emergence of strongly correlated physics in quantum systems. Dynamic control of optical potentials on the single-site level allows us to prepare and probe many-body quantum states through local Hamiltonian engineering. We achieve these high precision levels of optical control through spatial light modulation with a DMD (digital micro-mirror device). This allows for both arbitrary beam shaping and aberration compensation in our imaging system to produce high fidelity optical potentials. We use these techniques to control state initialization, Hamiltonian dynamics, and measurement in experiments investigating low-dimensional many-body physics - from one-dimensional correlated quantum walks to characterizing entanglement.
Many-Body Quantum Spin Dynamics with Monte Carlo Trajectories on a Discrete Phase Space
Directory of Open Access Journals (Sweden)
J. Schachenmayer
2015-02-01
Full Text Available Interacting spin systems are of fundamental relevance in different areas of physics, as well as in quantum information science and biology. These spin models represent the simplest, yet not fully understood, manifestation of quantum many-body systems. An important outstanding problem is the efficient numerical computation of dynamics in large spin systems. Here, we propose a new semiclassical method to study many-body spin dynamics in generic spin lattice models. The method is based on a discrete Monte Carlo sampling in phase space in the framework of the so-called truncated Wigner approximation. Comparisons with analytical and numerically exact calculations demonstrate the power of the technique. They show that it correctly reproduces the dynamics of one- and two-point correlations and spin squeezing at short times, thus capturing entanglement. Our results open the possibility to study the quantum dynamics accessible to recent experiments in regimes where other numerical methods are inapplicable.
Many-body effects in the gain spectra of highly excited quantum-dot lasers
International Nuclear Information System (INIS)
Schneider, H. C.; Chow, W. W.; Koch, S. W.
2001-01-01
Optical gain spectra are computed for quantum dots under high excitation conditions, where there is a non-negligible two-dimensional carrier density surrounding the dots. Using a screened Hartree-Fock theory to describe the influence of the Coulomb interaction, we find different self-energy shifts for the dot and quantum-well transitions. Furthermore, in contrast to the result for quantum-well and bulk systems, the peak gain at the quantum-dot transition computed including Coulomb effects is reduced from its free carrier value
Mazzucchi, Gabriel; Kozlowski, Wojciech; Caballero-Benitez, Santiago F.; Elliott, Thomas J.; Mekhov, Igor B.
2016-02-01
Trapping ultracold atoms in optical lattices enabled numerous breakthroughs uniting several disciplines. Coupling these systems to quantized light leads to a plethora of new phenomena and has opened up a new field of study. Here we introduce an unusual additional source of competition in a many-body strongly correlated system: We prove that quantum backaction of global measurement is able to efficiently compete with intrinsic short-range dynamics of an atomic system. The competition becomes possible due to the ability to change the spatial profile of a global measurement at a microscopic scale comparable to the lattice period without the need of single site addressing. In coherence with a general physical concept, where new competitions typically lead to new phenomena, we demonstrate nontrivial dynamical effects such as large-scale multimode oscillations, long-range entanglement, and correlated tunneling, as well as selective suppression and enhancement of dynamical processes beyond the projective limit of the quantum Zeno effect. We demonstrate both the breakup and protection of strongly interacting fermion pairs by measurement. Such a quantum optical approach introduces into many-body physics novel processes, objects, and methods of quantum engineering, including the design of many-body entangled environments for open systems.
Ziaei, Vafa; Bredow, Thomas
2017-03-17
The reliable calculation of the excited states of charge-transfer (CT) compounds poses a major challenge to the ab initio community because the frequently employed method, time-dependent density functional theory (TD-DFT), massively relies on the underlying density functional, resulting in heavily Hartree-Fock (HF) exchange-dependent excited-state energies. By applying the highly sophisticated many-body perturbation approach, we address the encountered unreliabilities and inconsistencies of not optimally tuned (standard) TD-DFT regarding photo-excited CT phenomena, and present results concerning accurate vertical transition energies and the correct energetic ordering of the CT and the first visible singlet state of a recently synthesized thermodynamically stable large hybrid perylene bisimide-macrocycle complex. This is a large-scale application of the quantum many-body perturbation approach to a chemically relevant CT system, demonstrating the system-size independence of the quality of the many-body-based excitation energies. Furthermore, an optimal tuning of the ωB97X hybrid functional can well reproduce the many-body results, making TD-DFT a suitable choice but at the expense of introducing a range-separation parameter, which needs to be optimally tuned. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Landau-Zener tunneling with many-body quantum effects in crystals of molecular magnets
Fu, Li-Bin; Chen, Shi-Gang; Hu, Bambi
2004-01-01
We present a quantum interpretation of the heights in hysteresis of $Fe_{8}$ molecule at lower temperatures by treating the crystal as an Ising spin system with the dipolar interaction between spins. Then we apply it to two limit cases : rapid and adiabatic regions. Our theoretical analysis is in agreement with the experimental observation in these regions, which indicates that the steps in hysteresis loops of magnetization of Fe$_{8}$ at lower temperatures show a pure quantum process.
Tarighi Ahmadpour, Mahdi; Rostamnejadi, Ali; Hashemifar, S. Javad
2018-04-01
We study the electronic structure and optical properties of a body-centered tetragonal phase of carbon (bct-C4) within the framework of time-dependent density functional theory and Bethe-Salpeter equation. The results indicate that the optical properties of bct-C4 are strongly affected by the electron-hole interaction. It is demonstrated that the long-range corrected exchange-correlation kernels could fairly reproduce the Bethe-Salpeter equation results. The effective carrier number reveals that at energies above 30 eV, the excitonic effects are not dominant any more and that the optical transitions originate mainly from electronic excitations. The emerged peaks in the calculated electron energy loss spectra are discussed in terms of plasmon excitations and interband transitions. The results of the research indicate that bct-C4 is an indirect wide-band-gap semiconductor, which is transparent in the visible region and opaque in the ultraviolet spectral range.
Direct Observation of Dynamical Quantum Phase Transitions in an Interacting Many-Body System.
Jurcevic, P; Shen, H; Hauke, P; Maier, C; Brydges, T; Hempel, C; Lanyon, B P; Heyl, M; Blatt, R; Roos, C F
2017-08-25
The theory of phase transitions represents a central concept for the characterization of equilibrium matter. In this work we study experimentally an extension of this theory to the nonequilibrium dynamical regime termed dynamical quantum phase transitions (DQPTs). We investigate and measure DQPTs in a string of ions simulating interacting transverse-field Ising models. During the nonequilibrium dynamics induced by a quantum quench we show for strings of up to 10 ions the direct detection of DQPTs by revealing nonanalytic behavior in time. Moreover, we provide a link between DQPTs and the dynamics of other quantities such as the magnetization, and we establish a connection between DQPTs and entanglement production.
Direct Observation of Dynamical Quantum Phase Transitions in an Interacting Many-Body System
Jurcevic, P.; Shen, H.; Hauke, P.; Maier, C.; Brydges, T.; Hempel, C.; Lanyon, B. P.; Heyl, M.; Blatt, R.; Roos, C. F.
2017-08-01
The theory of phase transitions represents a central concept for the characterization of equilibrium matter. In this work we study experimentally an extension of this theory to the nonequilibrium dynamical regime termed dynamical quantum phase transitions (DQPTs). We investigate and measure DQPTs in a string of ions simulating interacting transverse-field Ising models. During the nonequilibrium dynamics induced by a quantum quench we show for strings of up to 10 ions the direct detection of DQPTs by revealing nonanalytic behavior in time. Moreover, we provide a link between DQPTs and the dynamics of other quantities such as the magnetization, and we establish a connection between DQPTs and entanglement production.
Determinantal and worldline quantum Monte Carlo methods for many-body systems
International Nuclear Information System (INIS)
Vekic, M.; White, S.R.
1993-01-01
We examine three different quantum Monte Carlo methods for studying systems of interacting particles. The determinantal quantum Monte Carlo method is compared to two different worldline simulations. The first worldline method consists of a simulation carried out in the real-space basis, while the second method is implemented using as basis the eigenstates of the Hamiltonian on blocks of the two-dimensional lattice. We look, in particular, at the Hubbard model on a 4x4 lattice with periodic boundary conditions. The block method is superior to the real-space method in terms of the computational cost of the simulation, but shows a much worse negative sign problem. For larger values of U and away from half-filling it is found that the real-space method can provide results at lower temperatures than the determinantal method. We show that the sign problem in the block method can be slightly improved by an appropriate choice of basis
Many-body spin related phenomena in ultra-low-disorder quantum wires
International Nuclear Information System (INIS)
Reilly, D.J.; Facer, G.R.; Dzurak, A.S.; Kane, B.E.; Clark, R.G.; Stiles, P.J.; O'Brien, J.L.; Lumpkin, N.E.
2000-01-01
Full text: Zero length quantum wires (or point contacts) exhibit unexplained conductance structure close to 0.7 x 2e 2 /h in the absence of an applied magnetic field. We have studied the density- and temperature-dependent conductance of ultra-low-disorder GaAs AlGaAs quantum wires with nominal lengths l=0 and 2μm, fabricated from structures free of the disorder associated with modulation doping. In a direct comparison we observe structure near 0.7 x 2e 2 /h for l=0 whereas the l = 2μm wires show structure evolving with increasing density to 0.5 x 2e 2 /h in zero magnetic field, the value expected for an ideal spin split sub-band. Our results suggest the dominant mechanism through which electrons interact can be strongly affected by the length of the 1D region
Dominant role of many-body effects on the carrier distribution function of quantum dot lasers
Peyvast, Negin; Zhou, Kejia; Hogg, Richard A.; Childs, David T. D.
2016-03-01
The effects of free-carrier-induced shift and broadening on the carrier distribution function are studied considering different extreme cases for carrier statistics (Fermi-Dirac and random carrier distributions) as well as quantum dot (QD) ensemble inhomogeneity and state separation using a Monte Carlo model. Using this model, we show that the dominant factor determining the carrier distribution function is the free carrier effects and not the choice of carrier statistics. By using empirical values of the free-carrier-induced shift and broadening, good agreement is obtained with experimental data of QD materials obtained under electrical injection for both extreme cases of carrier statistics.
A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems
Abanin, Dmitry; De Roeck, Wojciech; Ho, Wen Wei; Huveneers, François
2017-09-01
Prethermalization refers to the transient phenomenon where a system thermalizes according to a Hamiltonian that is not the generator of its evolution. We provide here a rigorous framework for quantum spin systems where prethermalization is exhibited for very long times. First, we consider quantum spin systems under periodic driving at high frequency {ν}. We prove that up to a quasi-exponential time {τ_* ˜ e^{c ν/log^3 ν}}, the system barely absorbs energy. Instead, there is an effective local Hamiltonian {\\widehat D} that governs the time evolution up to {τ_*}, and hence this effective Hamiltonian is a conserved quantity up to {τ_*}. Next, we consider systems without driving, but with a separation of energy scales in the Hamiltonian. A prime example is the Fermi-Hubbard model where the interaction U is much larger than the hopping J. Also here we prove the emergence of an effective conserved quantity, different from the Hamiltonian, up to a time {τ_*} that is (almost) exponential in {U/J}.
Time dependent variational method in quantum mechanics
International Nuclear Information System (INIS)
Torres del Castillo, G.F.
1987-01-01
Using the fact that the solutions to the time-dependent Schodinger equation can be obtained from a variational principle, by restricting the evolution of the state vector to some surface in the corresponding Hilbert space, approximations to the exact solutions can be obtained, which are determined by equations similar to Hamilton's equations. It is shown that, in order for the approximate evolution to be well defined on a given surface, the imaginary part of the inner product restricted to the surface must be non-singular. (author)
Efficient Implementation of Many-body Quantum Chemical Methods on the Intel Xeon Phi Coprocessor
Energy Technology Data Exchange (ETDEWEB)
Apra, Edoardo; Klemm, Michael; Kowalski, Karol
2014-12-01
This paper presents the implementation and performance of the highly accurate CCSD(T) quantum chemistry method on the Intel Xeon Phi coprocessor within the context of the NWChem computational chemistry package. The widespread use of highly correlated methods in electronic structure calculations is contingent upon the interplay between advances in theory and the possibility of utilizing the ever-growing computer power of emerging heterogeneous architectures. We discuss the design decisions of our implementation as well as the optimizations applied to the compute kernels and data transfers between host and coprocessor. We show the feasibility of adopting the Intel Many Integrated Core Architecture and the Intel Xeon Phi coprocessor for developing efficient computational chemistry modeling tools. Remarkable scalability is demonstrated by benchmarks. Our solution scales up to a total of 62560 cores with the concurrent utilization of Intel Xeon processors and Intel Xeon Phi coprocessors.
Adiabatic approximation with exponential accuracy for many-body systems and quantum computation
International Nuclear Information System (INIS)
Lidar, Daniel A.; Rezakhani, Ali T.; Hamma, Alioscia
2009-01-01
We derive a version of the adiabatic theorem that is especially suited for applications in adiabatic quantum computation, where it is reasonable to assume that the adiabatic interpolation between the initial and final Hamiltonians is controllable. Assuming that the Hamiltonian is analytic in a finite strip around the real-time axis, that some number of its time derivatives vanish at the initial and final times, and that the target adiabatic eigenstate is nondegenerate and separated by a gap from the rest of the spectrum, we show that one can obtain an error between the final adiabatic eigenstate and the actual time-evolved state which is exponentially small in the evolution time, where this time itself scales as the square of the norm of the time derivative of the Hamiltonian divided by the cube of the minimal gap.
Tensor Renormalization of Quantum Many-Body Systems Using Projected Entangled Simplex States
Directory of Open Access Journals (Sweden)
Z. Y. Xie
2014-02-01
Full Text Available We propose a new class of tensor-network states, which we name projected entangled simplex states (PESS, for studying the ground-state properties of quantum lattice models. These states extend the pair-correlation basis of projected entangled pair states to a simplex. PESS are exact representations of the simplex solid states, and they provide an efficient trial wave function that satisfies the area law of entanglement entropy. We introduce a simple update method for evaluating the PESS wave function based on imaginary-time evolution and the higher-order singular-value decomposition of tensors. By applying this method to the spin-1/2 antiferromagnetic Heisenberg model on the kagome lattice, we obtain accurate and systematic results for the ground-state energy, which approach the lowest upper bounds yet estimated for this quantity.
International Nuclear Information System (INIS)
Hartono, Albert; Lu, Qingda; Henretty, Thomas; Krishnamoorthy, Sriram; Zhang, Huaijian; Baumgartner, Gerald; Bernholdt, David E.; Nooijen, Marcel; Pitzer, Russell M.; Ramanujam, J.; Sadayappan, Ponnuswamy
2009-01-01
Complex tensor contraction expressions arise in accurate electronic structure models in quantum chemistry, such as the coupled cluster method. This paper addresses two complementary aspects of performance optimization of such tensor contraction expressions. Transformations using algebraic properties of commutativity and associativity can be used to significantly decrease the number of arithmetic operations required for evaluation of these expressions. The identification of common subexpressions among a set of tensor contraction expressions can result in a reduction of the total number of operations required to evaluate the tensor contractions. The first part of the paper describes an effective algorithm for operation minimization with common subexpression identification and demonstrates its effectiveness on tensor contraction expressions for coupled cluster equations. The second part of the paper highlights the importance of data layout transformation in the optimization of tensor contraction computations on modern processors. A number of considerations such as minimization of cache misses and utilization of multimedia vector instructions are discussed. A library for efficient index permutation of multi-dimensional tensors is described and experimental performance data is provided that demonstrates its effectiveness.
International Nuclear Information System (INIS)
Krishnamoorthy, Sriram; Bernholdt, David E.; Pitzer, R.M.; Sadayappan, Ponnuswamy
2009-01-01
Complex tensor contraction expressions arise in accurate electronic structure models in quantum chemistry, such as the coupled cluster method. This paper addresses two complementary aspects of performance optimization of such tensor contraction expressions. Transformations using algebraic properties of commutativity and associativity can be used to significantly decrease the number of arithmetic operations required for evaluation of these expressions. The identification of common subexpressions among a set of tensor contraction expressions can result in a reduction of the total number of operations required to evaluate the tensor contractions. The first part of the paper describes an effective algorithm for operation minimization with common subexpression identification and demonstrates its effectiveness on tensor contraction expressions for coupled cluster equations. The second part of the paper highlights the importance of data layout transformation in the optimization of tensor contraction computations on modern processors. A number of considerations, such as minimization of cache misses and utilization of multimedia vector instructions, are discussed. A library for efficient index permutation of multidimensional tensors is described, and experimental performance data is provided that demonstrates its effectiveness.
Gauging Quantum States: From Global to Local Symmetries in Many-Body Systems
Directory of Open Access Journals (Sweden)
Jutho Haegeman
2015-02-01
Full Text Available We present an operational procedure to transform global symmetries into local symmetries at the level of individual quantum states, as opposed to typical gauging prescriptions for Hamiltonians or Lagrangians. We then construct a compatible gauging map for operators, which preserves locality and reproduces the minimal coupling scheme for simple operators. By combining this construction with the formalism of projected entangled-pair states (PEPS, we can show that an injective PEPS for the matter fields is gauged into a G-injective PEPS for the combined gauge-matter system, which potentially has topological order. We derive the corresponding parent Hamiltonian, which is a frustration-free gauge-theory Hamiltonian closely related to the Kogut-Susskind Hamiltonian at zero coupling constant. We can then introduce gauge dynamics at finite values of the coupling constant by applying a local filtering operation. This scheme results in a low-parameter family of gauge-invariant states of which we can accurately probe the phase diagram, as we illustrate by studying a Z_{2} gauge theory with Higgs matter.
Directory of Open Access Journals (Sweden)
C. Eichler
2015-12-01
Full Text Available Improving the understanding of strongly correlated quantum many-body systems such as gases of interacting atoms or electrons is one of the most important challenges in modern condensed matter physics, materials research, and chemistry. Enormous progress has been made in the past decades in developing both classical and quantum approaches to calculate, simulate, and experimentally probe the properties of such systems. In this work, we use a combination of classical and quantum methods to experimentally explore the properties of an interacting quantum gas by creating experimental realizations of continuous matrix product states—a class of states that has proven extremely powerful as a variational ansatz for numerical simulations. By systematically preparing and probing these states using a circuit quantum electrodynamics system, we experimentally determine a good approximation to the ground-state wave function of the Lieb-Liniger Hamiltonian, which describes an interacting Bose gas in one dimension. Since the simulated Hamiltonian is encoded in the measurement observable rather than the controlled quantum system, this approach has the potential to apply to a variety of models including those involving multicomponent interacting fields. Our findings also hint at the possibility of experimentally exploring general properties of matrix product states and entanglement theory. The scheme presented here is applicable to a broad range of systems exploiting strong and tunable light-matter interactions.
Student Understanding of Time Dependence in Quantum Mechanics
Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.
2015-01-01
The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing…
Introduction to quantum mechanics a time-dependent perspective
Tannor, David J
2007-01-01
"Introduction to Quantum Mechanics" covers quantum mechanics from a time-dependent perspective in a unified way from beginning to end. Intended for upper-level undergraduate and graduate courses this text will change the way people think about and teach quantum mechanics in chemistry and physics departments.
Directory of Open Access Journals (Sweden)
Phillip Weinberg, Marin Bukov
2017-02-01
Full Text Available We present a new open-source Python package for exact diagonalization and quantum dynamics of spin(-photon chains, called QuSpin, supporting the use of various symmetries in 1-dimension and (imaginary time evolution for chains up to 32 sites in length. The package is well-suited to study, among others, quantum quenches at finite and infinite times, the Eigenstate Thermalisation hypothesis, many-body localisation and other dynamical phase transitions, periodically-driven (Floquet systems, adiabatic and counter-diabatic ramps, and spin-photon interactions. Moreover, QuSpin's user-friendly interface can easily be used in combination with other Python packages which makes it amenable to a high-level customisation. We explain how to use QuSpin using four detailed examples: (i Standard exact diagonalisation of XXZ chain (ii adiabatic ramping of parameters in the many-body localised XXZ model, (iii heating in the periodically-driven transverse-field Ising model in a parallel field, and (iv quantised light-atom interactions: recovering the periodically-driven atom in the semi-classical limit of a static Hamiltonian.
Huang, Danhong; Iurov, Andrii; Gao, Fei; Gumbs, Godfrey; Cardimona, D. A.
2018-02-01
The effects of point defects on the loss of either energies of ballistic electron beams or incident photons are studied by using a many-body theory in a multi-quantum-well system. This theory includes the defect-induced vertex correction to a bare polarization function of electrons within the ladder approximation, and the intralayer and interlayer screening of defect-electron interactions is also taken into account in the random-phase approximation. The numerical results of defect effects on both energy-loss and optical-absorption spectra are presented and analyzed for various defect densities, numbers of quantum wells, and wave vectors. The diffusion-reaction equation is employed for calculating distributions of point defects in a layered structure. For completeness, the production rate for Frenkel-pair defects and their initial concentration are obtained based on atomic-level molecular-dynamics simulations. By combining the defect-effect, diffusion-reaction, and molecular-dynamics models with an available space-weather-forecast model, it will be possible in the future to enable specific designing for electronic and optoelectronic quantum devices that will be operated in space with radiation-hardening protection and, therefore, effectively extend the lifetime of these satellite onboard electronic and optoelectronic devices. Specifically, this theory can lead to a better characterization of quantum-well photodetectors not only for high quantum efficiency and low dark current density but also for radiation tolerance or mitigating the effects of the radiation.
The Harmonic Potential Theorem for a Quantum System with Time-Dependent Effective Mass
International Nuclear Information System (INIS)
Lai Meng-Yun; Xiao Duan-Liang; Pan Xiao-Yin
2015-01-01
We investigate the many-body wave function of a quantum system with time-dependent effective mass, confined by a harmonic potential with time-dependent frequency, and perturbed by a time-dependent spatially homogeneous electric field. It is found that the wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. The wave function reduces to that of the harmonic potential theorem wave function when both the effective mass and frequency are static. An example of application is also given. (paper)
Energy Technology Data Exchange (ETDEWEB)
Babichenko, V.S. [RRC Kurchatov Institute, Kurchatov Sq., 1, 123182 Moscow (Russian Federation); Polishchuk, I.Ya., E-mail: iyppolishchuk@gmail.com [RRC Kurchatov Institute, Kurchatov Sq., 1, 123182 Moscow (Russian Federation); Moscow Institute of Physics and Technology, 141700, 9, Institutskii per., Dolgoprudny, Moscow Region (Russian Federation)
2014-11-15
The many-body correlation effects in the spatially separated electron and hole layers in the coupled quantum wells are investigated. A special case of the many-component electron–hole system is considered. It is shown that if the hole mass is much greater than the electron mass, the negative correlation energy is mainly determined by the holes. The ground state of the system is found to be the 2D electron–hole liquid with the energy smaller than the exciton phase. It is shown that the system decays into the spatially separated neutral electron–hole drops if the initially created charge density in the layers is smaller than the certain critical value n{sub eq}.
International Nuclear Information System (INIS)
Tanaka, Toshiaki
2007-01-01
We propose an elegant formulation of parafermionic algebra and parasupersymmetry of arbitrary order in quantum many-body systems without recourse to any specific matrix representation of parafermionic operators and any kind of deformed algebra. Within our formulation, we show generically that every parasupersymmetric quantum system of order p consists of N-fold supersymmetric pairs with N≤p and thus has weak quasi-solvability and isospectral property. We also propose a new type of non-linear supersymmetries, called quasi-parasupersymmetry, which is less restrictive than parasupersymmetry and is different from N-fold supersymmetry even in one-body systems though the conserved charges are represented by higher-order linear differential operators. To illustrate how our formulation works, we construct second-order parafermionic algebra and three simple examples of parasupersymmetric quantum systems of order 2, one is essentially equivalent to the one-body Rubakov-Spiridonov type and the others are two-body systems in which two supersymmetries are folded. In particular, we show that the first model admits a generalized 2-fold superalgebra
Pelissetto, Andrea; Rossini, Davide; Vicari, Ettore
2018-03-01
We investigate the quantum dynamics of many-body systems subject to local (i.e., restricted to a limited space region) time-dependent perturbations. If the system crosses a quantum phase transition, an off-equilibrium behavior is observed, even for a very slow driving. We show that, close to the transition, time-dependent quantities obey scaling laws. In first-order transitions, the scaling behavior is universal, and some scaling functions can be computed exactly. For continuous transitions, the scaling laws are controlled by the standard critical exponents and by the renormalization-group dimension of the perturbation at the transition. Our protocol can be implemented in existing relatively small quantum simulators, paving the way for a quantitative probe of the universal off-equilibrium scaling behavior, without the need to manipulate systems close to the thermodynamic limit.
International Nuclear Information System (INIS)
Niyaz, P.
1993-01-01
Quantum Monte Carlo techniques were used to study two quantum many-body systems, the one-dimensional extended boson-Hubbard Hamiltonian, a model of superfluid-insulator quantum phase transitions, and the two-dimensional Holstein Model, a model for electron-phonon interactions. For the extended boson-Hubbard model, the authors studied the ground state properties at commensurate filling (density = 1) and half-integer filling (density = 1/2). At commensurate filling, the system has two possible insulating phases for strong coupling. If the on-site repulsion dominates, the system freezes into an insulating phase where each site is singly occupied. If the intersite repulsion dominates, doubly occupied and empty sites alternate. At weak coupling, the system becomes a superfluid. The authors investigated the order of phase transitions between these different phases. At half-integer filling, the authors found one strong coupling insulating phase, where singly occupied and empty sites alternate, and a weak coupling superfluid phase. The authors also investigated the possibility of a supersolid phase and found no clear evidence of such a new phase. For the electron-phonon (Holstein) model, the authors focused on the finite temperature phase transition from a metallic state to an insulating charge density wave (CDW) state as the temperature is lowered. The authors present the first calculation of the spectral density from Monte Carlo data for this system. The authors also investigated the formation of a CDW state as a function of various parameters characterizing the electron-phonon interactions. Using these numerical results as benchmarks, the authors then investigated different levels of Migdal approximations. The authors found the solutions of a set of gapped Migdal-Eliashberg equations agreed qualitatively with the Monte Carlo results
Student understanding of time dependence in quantum mechanics
Directory of Open Access Journals (Sweden)
Paul J. Emigh
2015-09-01
Full Text Available [This paper is part of the Focused Collection on Upper Division Physics Courses.] The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing the key role of the energy eigenbasis in determining the time dependence of wave functions. Through analysis of student responses to a set of four interrelated tasks, we categorize some of the difficulties that underlie common errors. The conceptual and reasoning difficulties that have been identified are illustrated through student responses to four sets of questions administered at different points in a junior-level course on quantum mechanics. Evidence is also given that the problems persist throughout undergraduate instruction and into the graduate level.
Donner, Tobias
2015-03-01
A Bose-Einstein condensate whose motional degrees of freedom are coupled to a high-finesse optical cavity via a transverse pump beam constitutes a dissipative quantum many-body system with long range interactions. These interactions can induce a structural phase transition from a flat to a density-modulated state. The transverse pump field simultaneously represents a probe of the atomic density via cavity- enhanced Bragg scattering. By spectrally analyzing the light field leaking out of the cavity, we measure non-destructively the dynamic structure factor of the fluctuating atomic density while the system undergoes the phase transition. An observed asymmetry in the dynamic structure factor is attributed to the coupling to dissipative baths. Critical exponents for both sides of the phase transition can be extracted from the data. We further discuss our progress in adding strong short-range interactions to this system, in order to explore Bose-Hubbard physics with cavity-mediated long-range interactions and self-organization in lower dimensions.
Time-dependent quantum fluid density functional theory of hydrogen ...
Indian Academy of Sciences (India)
A time-dependent generalized non-linear Schrödinger equation (GNLSE) of motion was earlier derived in our laboratory by combining density functional theory and quantum fluid dynamics in threedimensional space. In continuation of the work reported previously, the GNLSE is applied to provide additional knowledge on ...
Time-dependent coupled harmonic oscillators: classical and quantum solutions
International Nuclear Information System (INIS)
Macedo, D.X.; Guedes, I.
2014-01-01
In this work we present the classical and quantum solutions for an arbitrary system of time-dependent coupled harmonic oscillators, where the masses (m), frequencies (ω) and coupling parameter (k) are functions of time. To obtain the classical solutions, we use a coordinate and momentum transformations along with a canonical transformation to write the original Hamiltonian as the sum of two Hamiltonians of uncoupled harmonic oscillators with modified time-dependent frequencies and unitary masses. To obtain the exact quantum solutions we use a unitary transformation and the Lewis and Riesenfeld (LR) invariant method. The exact wave functions are obtained by solving the respective Milne–Pinney (MP) equation for each system. We obtain the solutions for the system with m 1 = m 2 = m 0 e γt , ω 1 = ω 01 e -γt/2 , ω 2 = ω 02 e -γt/2 and k = k 0 . (author)
Time-dependent Kohn-Sham approach to quantum electrodynamics
International Nuclear Information System (INIS)
Ruggenthaler, M.; Mackenroth, F.; Bauer, D.
2011-01-01
We prove a generalization of the van Leeuwen theorem toward quantum electrodynamics, providing the formal foundations of a time-dependent Kohn-Sham construction for coupled quantized matter and electromagnetic fields. We circumvent the symmetry-causality problems associated with the action-functional approach to Kohn-Sham systems. We show that the effective external four-potential and four-current of the Kohn-Sham system are uniquely defined and that the effective four-current takes a very simple form. Further we rederive the Runge-Gross theorem for quantum electrodynamics.
Energy Technology Data Exchange (ETDEWEB)
Canetta, G.; Maino, G.; Magnani, M.; Visparelli, D. [ENEA, Centro Ricerche Ezio Clementel, Bologna (Italy). Dipt. Innovazione
1999-07-01
The interacting boson model (IBM) is a realistic model of nuclear structure, since it allows to cut off in a suitable way the complete space of the shell model states. In such a way, it offers a great simplicity of the numerical computation of the eigenvalue problem for a many-body non-relativistic quantum system, like a nucleus. In particular, the analytical solutions obtained in the case of dynamical symmetries correspond, in the classical limit, to completely integrable systems showing a regular dynamic behaviour. In this report, a detailed analysis is performed of the IBM version 2 (IBM-2), which explicitly introduces the isospin degree of freedom. The different forms of the IBM-2 Hamiltonian usually considered in the literature, are discussed, and the explicit relations existing between them are deduced. Moreover, the semiclassical limit of the most general IBM-2 Hamiltonian is studied in the details. Finally, the expectation of chaotic dynamic behaviour near to regular dynamics, in the IBM, and, in particular, the fact that the latter ones persist more than expected a priori, is shown. Maybe, this behaviour is to adduce to the existence of partial dynamic symmetries. [Italian] Il modello a bosoni interagenti (IBM) rappresenta un modello realistico della struttura nucleare, premettendo di troncare opportunamente lo spazio completo degli stati di modello a shell, e percio' offre una notevole semplicita' computazionale nella risoluzione numerica del problema degli autovalori per un sistema quantico non relativistico a molti corpi, quale e' un nucleo. In particolare, le soluzioni analitiche ottenute nel caso di simmetrie dinamiche corrispondono, nel limite classico, a sistemi completamente integrabili che mostrano un comportamento dinamico regolare. In questo rapporto viene condotta un'analisi dettagliata del modello IBM nella versione (IBM-2), il quale introduce esplicitamente il grado di liberta' di isospin. In particolare, sono
Time-dependent generalized Gibbs ensembles in open quantum systems
Lange, Florian; Lenarčič, Zala; Rosch, Achim
2018-04-01
Generalized Gibbs ensembles have been used as powerful tools to describe the steady state of integrable many-particle quantum systems after a sudden change of the Hamiltonian. Here, we demonstrate numerically that they can be used for a much broader class of problems. We consider integrable systems in the presence of weak perturbations which break both integrability and drive the system to a state far from equilibrium. Under these conditions, we show that the steady state and the time evolution on long timescales can be accurately described by a (truncated) generalized Gibbs ensemble with time-dependent Lagrange parameters, determined from simple rate equations. We compare the numerically exact time evolutions of density matrices for small systems with a theory based on block-diagonal density matrices (diagonal ensemble) and a time-dependent generalized Gibbs ensemble containing only a small number of approximately conserved quantities, using the one-dimensional Heisenberg model with perturbations described by Lindblad operators as an example.
Fröhlich, Jürg; Knowles, Antti; Schlein, Benjamin; Sohinger, Vedran
2017-12-01
We prove that Gibbs measures of nonlinear Schrödinger equations arise as high-temperature limits of thermal states in many-body quantum mechanics. Our results hold for defocusing interactions in dimensions {d =1,2,3}. The many-body quantum thermal states that we consider are the grand canonical ensemble for d = 1 and an appropriate modification of the grand canonical ensemble for {d =2,3}. In dimensions d = 2, 3, the Gibbs measures are supported on singular distributions, and a renormalization of the chemical potential is necessary. On the many-body quantum side, the need for renormalization is manifested by a rapid growth of the number of particles. We relate the original many-body quantum problem to a renormalized version obtained by solving a counterterm problem. Our proof is based on ideas from field theory, using a perturbative expansion in the interaction, organized by using a diagrammatic representation, and on Borel resummation of the resulting series.
Koop, E. J.; Lerescu, A. I.; Liu, J.; van Wees, B. J.; Reuter, D.; Wieck, A. D.; van der Wal, C. H.
The conductance of a quantum point contact (QPC) shows several features that result from many-body electron interactions. The spin degeneracy in zero magnetic field appears to be spontaneously lifted due to the so-called 0.7 anomaly. Further, the g-factor for electrons in the QPC is enhanced, and a
Time-dependent density functional theory of open quantum systems in the linear-response regime.
Tempel, David G; Watson, Mark A; Olivares-Amaya, Roberto; Aspuru-Guzik, Alán
2011-02-21
Time-dependent density functional theory (TDDFT) has recently been extended to describe many-body open quantum systems evolving under nonunitary dynamics according to a quantum master equation. In the master equation approach, electronic excitation spectra are broadened and shifted due to relaxation and dephasing of the electronic degrees of freedom by the surrounding environment. In this paper, we develop a formulation of TDDFT linear-response theory (LR-TDDFT) for many-body electronic systems evolving under a master equation, yielding broadened excitation spectra. This is done by mapping an interacting open quantum system onto a noninteracting open Kohn-Sham system yielding the correct nonequilibrium density evolution. A pseudoeigenvalue equation analogous to the Casida equations of the usual LR-TDDFT is derived for the Redfield master equation, yielding complex energies and Lamb shifts. As a simple demonstration, we calculate the spectrum of a C(2 +) atom including natural linewidths, by treating the electromagnetic field vacuum as a photon bath. The performance of an adiabatic exchange-correlation kernel is analyzed and a first-order frequency-dependent correction to the bare Kohn-Sham linewidth based on the Görling-Levy perturbation theory is calculated.
General time-dependent formulation of quantum scattering theory
International Nuclear Information System (INIS)
Althorpe, Stuart C.
2004-01-01
We derive and explain the key ideas behind a time-dependent formulation of quantum scattering theory, applicable generally to systems with a finite-range scattering potential. The scattering is initiated and probed by plane wave packets, which are localized just outside the range of the potential. The asymptotic limits of conventional scattering theory (initiation in the remote past; detection in the remote future) are not taken. Instead, the differential cross section (DCS) is obtained by projecting the scattered wave packet onto the probe plane wave packets. The projection also yields a time-dependent version of the DCS. Cuts through the wave packet, just as it exits the scattering potential, yield time-dependent and time-independent angular distributions that give a close-up picture of the scattering which complements the DCS. We have previously applied the theory to interpret experimental cross sections of chemical reactions [e.g., S. C. Althorpe, F. Fernandez-Alonso, B. D. Bean, J. D. Ayers, A. E. Pomerantz, R. N. Zare, and E. Wrede, Nature (London) 416, 67 (2002)]. This paper gives the derivation of the theory, and explains its relation to conventional scattering theory. For clarity, the derivation is restricted to spherical-particle scattering, though it may readily be extended to general multichannel systems. We illustrate the theory using a simple application to hard-sphere scattering
Nonequilibrium quantum solvation with a time-dependent Onsager cavity
Kirchberg, H.; Nalbach, P.; Thorwart, M.
2018-04-01
We formulate a theory of nonequilibrium quantum solvation in which parameters of the solvent are explicitly depending on time. We assume in a simplest approach a spherical molecular Onsager cavity with a time-dependent radius. We analyze the relaxation properties of a test molecular point dipole in a dielectric solvent and consider two cases: (i) a shrinking Onsager sphere and (ii) a breathing Onsager sphere. Due to the time-dependent solvent, the frequency-dependent response function of the dipole becomes time-dependent. For a shrinking Onsager sphere, the dipole relaxation is in general enhanced. This is reflected in a temporally increasing linewidth of the absorptive part of the response. Furthermore, the effective frequency-dependent response function shows two peaks in the absorptive part which are symmetrically shifted around the eigenfrequency. By contrast, a breathing sphere reduces damping as compared to the static sphere. Interestingly, we find a non-monotonous dependence of the relaxation rate on the breathing rate and a resonant suppression of damping when both rates are comparable. Moreover, the linewidth of the absorptive part of the response function is strongly reduced for times when the breathing sphere reaches its maximal extension.
Bruno, Patrick
2012-06-01
The (Berry-Aharonov-Anandan) geometric phase acquired during a cyclic quantum evolution of finite-dimensional quantum systems is studied. It is shown that a pure quantum state in a (2J+1)-dimensional Hilbert space (or, equivalently, of a spin-J system) can be mapped onto the partition function of a gas of independent Dirac strings moving on a sphere and subject to the Coulomb repulsion of 2J fixed test charges (the Majorana stars) characterizing the quantum state. The geometric phase may be viewed as the Aharonov-Bohm phase acquired by the Majorana stars as they move through the gas of Dirac strings. Expressions for the geometric connection and curvature, for the metric tensor, as well as for the multipole moments (dipole, quadrupole, etc.), are given in terms of the Majorana stars. Finally, the geometric formulation of the quantum dynamics is presented and its application to systems with exotic ordering such as spin nematics is outlined.
Quantum many-body effects in x-ray spectra efficiently computed using a basic graph algorithm
Liang, Yufeng; Prendergast, David
2018-05-01
The growing interest in using x-ray spectroscopy for refined materials characterization calls for an accurate electronic-structure theory to interpret the x-ray near-edge fine structure. In this work, we propose an efficient and unified framework to describe all the many-electron processes in a Fermi liquid after a sudden perturbation (such as a core hole). This problem has been visited by the Mahan-Noziéres-De Dominicis (MND) theory, but it is intractable to implement various Feynman diagrams within first-principles calculations. Here, we adopt a nondiagrammatic approach and treat all the many-electron processes in the MND theory on an equal footing. Starting from a recently introduced determinant formalism [Phys. Rev. Lett. 118, 096402 (2017), 10.1103/PhysRevLett.118.096402], we exploit the linear dependence of determinants describing different final states involved in the spectral calculations. An elementary graph algorithm, breadth-first search, can be used to quickly identify the important determinants for shaping the spectrum, which avoids the need to evaluate a great number of vanishingly small terms. This search algorithm is performed over the tree-structure of the many-body expansion, which mimics a path-finding process. We demonstrate that the determinantal approach is computationally inexpensive even for obtaining x-ray spectra of extended systems. Using Kohn-Sham orbitals from two self-consistent fields (ground and core-excited state) as input for constructing the determinants, the calculated x-ray spectra for a number of transition metal oxides are in good agreement with experiments. Many-electron aspects beyond the Bethe-Salpeter equation, as captured by this approach, are also discussed, such as shakeup excitations and many-body wave function overlap considered in Anderson's orthogonality catastrophe.
A Solution of Time Dependent Schrodinger Equation by Quantum Walk
International Nuclear Information System (INIS)
Sekino, Hideo; Kawahata, Masayuki; Hamada, Shinji
2012-01-01
Time Dependent Schroedinger Equation (TDSE) with an initial Gaussian distribution, is solved by a discrete time/space Quantum Walk (QW) representing consecutive operations corresponding to a dot product of Pauli matrix and momentum operators. We call it as Schroedinger Walk (SW). Though an Hadamard Walk (HW) provides same dynamics of the probability distribution for delta-function-like initial distributions as that of the SW with a delta-function-like initial distribution, the former with a Gaussian initial distribution leads to a solution for advection of the probability distribution; the initial distribution splits into two distinctive distributions moving in opposite directions. Both mechanisms are analysed by investigating the evolution of the both amplitude components. Decoherence of the oscillating amplitudes in central region is found to be responsible for the splitting of the probability distribution in the HW.
Jaschke, Daniel; Wall, Michael L.; Carr, Lincoln D.
2018-04-01
Numerical simulations are a powerful tool to study quantum systems beyond exactly solvable systems lacking an analytic expression. For one-dimensional entangled quantum systems, tensor network methods, amongst them Matrix Product States (MPSs), have attracted interest from different fields of quantum physics ranging from solid state systems to quantum simulators and quantum computing. Our open source MPS code provides the community with a toolset to analyze the statics and dynamics of one-dimensional quantum systems. Here, we present our open source library, Open Source Matrix Product States (OSMPS), of MPS methods implemented in Python and Fortran2003. The library includes tools for ground state calculation and excited states via the variational ansatz. We also support ground states for infinite systems with translational invariance. Dynamics are simulated with different algorithms, including three algorithms with support for long-range interactions. Convenient features include built-in support for fermionic systems and number conservation with rotational U(1) and discrete Z2 symmetries for finite systems, as well as data parallelism with MPI. We explain the principles and techniques used in this library along with examples of how to efficiently use the general interfaces to analyze the Ising and Bose-Hubbard models. This description includes the preparation of simulations as well as dispatching and post-processing of them.
Quantum physics of light and matter a modern introduction to photons, atoms and many-body systems
Salasnich, Luca
2014-01-01
The book gives an introduction to the field quantization (second quantization) of light and matter with applications to atomic physics. The first chapter briefly reviews the origins of special relativity and quantum mechanics and the basic notions of quantum information theory and quantum statistical mechanics. The second chapter is devoted to the second quantization of the electromagnetic field, while the third chapter shows the consequences of the light field quantization in the description of electromagnetic transitions.In the fourth chapter it is analyzed the spin of the electron, and in particular its derivation from the Dirac equation, while the fifth chapter investigates the effects of external electric and magnetic fields on the atomic spectra (Stark and Zeeman effects). The sixth chapter describes the properties of systems composed by many interacting identical particles by introducing the Hartree-Fock variational method, the density functional theory, and the Born-Oppenheimer approximation. Finally,...
Time-dependent current-density functional theory for generalized open quantum systems.
Yuen-Zhou, Joel; Rodríguez-Rosario, César; Aspuru-Guzik, Alán
2009-06-14
In this article, we prove the one-to-one correspondence between vector potentials and particle and current densities in the context of master equations with arbitrary memory kernels, therefore extending time-dependent current-density functional theory (TD-CDFT) to the domain of generalized many-body open quantum systems (OQS). We also analyse the issue of A-representability for the Kohn-Sham (KS) scheme proposed by D'Agosta and Di Ventra for Markovian OQS [Phys. Rev. Lett. 2007, 98, 226403] and discuss its domain of validity. We suggest ways to expand their scheme, but also propose a novel KS scheme where the auxiliary system is both closed and non-interacting. This scheme is tested numerically with a model system, and several considerations for the future development of functionals are indicated. Our results formalize the possibility of practising TD-CDFT in OQS, hence expanding the applicability of the theory to non-Hamiltonian evolutions.
Czech Academy of Sciences Publication Activity Database
Dittrich, Jaroslav; Inozemtsev, V. I.
2009-01-01
Roč. 14, č. 2 (2009), s. 218-222 ISSN 1560-3547 R&D Projects: GA MŠk(CZ) LC06002; GA MŠk(CZ) LA08002 Institutional research plan: CEZ:AV0Z10480505 Keywords : quantum elliptic spin system * transposition * integrability Subject RIV: BE - Theoretical Physics Impact factor: 0.725, year: 2009
International Nuclear Information System (INIS)
Hubbard, J.
1980-01-01
The evolution of the discipline of many-body theory during the past 25 years is outlined and the developments originated in the Theoretical Physics Division, AERE, are discussed. Topics considered include; the connection between plasma oscillations and the dielectric properties of an electron gas, superconductivity, Fermi levels, ferromagnetism in metals, phase transformations, scaling laws, and quasi-one-dimensional solids. (UK)
Ma, Yue; Hoang, Thai M.; Gong, Ming; Li, Tongcang; Yin, Zhang-qi
2017-08-01
Hybrid spin-mechanical systems have great potential in sensing, macroscopic quantum mechanics, and quantum information science. In order to induce strong coupling between an electron spin and the center-of-mass motion of a mechanical oscillator, a large magnetic gradient usually is required, which is difficult to achieve. Here we show that strong coupling between the electron spin of a nitrogen-vacancy (NV) center and the torsional vibration of an optically levitated nanodiamond can be achieved in a uniform magnetic field. Thanks to the uniform magnetic field, multiple spins can strongly couple to the torsional vibration at the same time. We propose utilizing this coupling mechanism to realize the Lipkin-Meshkov-Glick (LMG) model by an ensemble of NV centers in a levitated nanodiamond. The quantum phase transition in the LMG model and finite number effects can be observed with this system. We also propose generating torsional superposition states and realizing torsional matter-wave interferometry with spin-torsional coupling.
Energy Technology Data Exchange (ETDEWEB)
Haemmerling, Jens; Gutkin, Boris; Guhr, Thomas, E-mail: jens.haemmerling@uni-due.d [Universitaet Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg (Germany)
2010-07-02
We study the emergence of collective dynamics in the integrable Hamiltonian system of two finite ensembles of coupled harmonic oscillators. After identification of a collective degree of freedom, the Hamiltonian is mapped onto a model of Caldeira-Leggett type, where the collective coordinate is coupled to an internal bath of phonons. In contrast to the usual Caldeira-Leggett model, the bath in the present case is part of the system. We derive an equation of motion for the collective coordinate which takes the form of a damped harmonic oscillator. We show that the distribution of quantum transition strengths induced by the collective mode is determined by its classical dynamics.
International Nuclear Information System (INIS)
Haemmerling, Jens; Gutkin, Boris; Guhr, Thomas
2010-01-01
We study the emergence of collective dynamics in the integrable Hamiltonian system of two finite ensembles of coupled harmonic oscillators. After identification of a collective degree of freedom, the Hamiltonian is mapped onto a model of Caldeira-Leggett type, where the collective coordinate is coupled to an internal bath of phonons. In contrast to the usual Caldeira-Leggett model, the bath in the present case is part of the system. We derive an equation of motion for the collective coordinate which takes the form of a damped harmonic oscillator. We show that the distribution of quantum transition strengths induced by the collective mode is determined by its classical dynamics.
Time-dependent problems in quantum-mechanical state reconstruction
International Nuclear Information System (INIS)
Leonhardt, U.; Bardroff, P. J.
1997-01-01
We study the state reconstruction of wave packets that travel in time-dependent potentials. We solve the problem for explicitly time-dependent potentials. We solve the problem for explicitly time-dependent harmonic oscillators and sketch a general adaptive technique for finding the wave function that matches and observed evolution. (authors)
International Nuclear Information System (INIS)
Rihani, J.; Sedrine, N.B.; Sallet, V.; Oueslati, M.; Chtourou, R.
2008-01-01
InAs quantum dots (QDs) on GaAs (0 0 1) substrates were grown by Molecular Beam Epitaxy (MBE) using two growth temperatures. Photoluminescence (PL) pump power dependence measurements at low temperature were carried out for sample grown at higher temperature (520 deg. C). With increasing excitation density, the ground-state transition energy is found to decrease by 8 meV, while the excited-state transition energies exhibit resonance behaviour. The redshift of the ground-state emission was related to the band-gap renomalization (BGR) effect whereas the blueshift of the excited-state emissions was assigned to the compensation between filling of fine structure states and BGR effects. Using a quasi-resonant PL measurement, we have shown that the renormalization of the band-gap had to occur in the QD barrier
International Nuclear Information System (INIS)
Morimoto, T; Yumoto, N; Ujiie, Y; Aoki, N; Ochiai, Y; Bird, J P
2008-01-01
We investigate the behavior of interacting one-dimensional systems using linear (close to equilibrium) and non-linear transport measurements of split-gate quantum wires of varying channel length. Our measurements reveal a remarkable resonance effect in the differential conductance, which exhibits a pronounced peak, for a narrow range of source-drain voltage, at the transition from tunneling to open transport. This peak becomes more pronounced with increase of channel length, but is rapidly suppressed by increase of temperature or (in-plane) magnetic field. We believe that these unique features may arise from the dependence of transport on the electron density of states, and suggest a phenomenological model to account for this transport behavior
Bajaj, Pushp; Wang, Xiao-Gang; Carrington, Tucker; Paesani, Francesco
2018-03-01
Full-dimensional vibrational spectra are calculated for both X-(H2O) and X-(D2O) dimers (X = F, Cl, Br, I) at the quantum-mechanical level. The calculations are carried out on two sets of recently developed potential energy functions (PEFs), namely, Thole-type model energy (TTM-nrg) and many-body energy (MB-nrg), using the symmetry-adapted Lanczos algorithm with a product basis set including all six vibrational coordinates. Although both TTM-nrg and MB-nrg PEFs are derived from coupled-cluster single double triple-F12 data obtained in the complete basis set limit, they differ in how many-body effects are represented at short range. Specifically, while both models describe long-range interactions through the combination of two-body dispersion and many-body classical electrostatics, the relatively simple Born-Mayer functions employed in the TTM-nrg PEFs to represent short-range interactions are replaced in the MB-nrg PEFs by permutationally invariant polynomials to achieve chemical accuracy. For all dimers, the MB-nrg vibrational spectra are in close agreement with the available experimental data, correctly reproducing anharmonic and nuclear quantum effects. In contrast, the vibrational frequencies calculated with the TTM-nrg PEFs exhibit significant deviations from the experimental values. The comparison between the TTM-nrg and MB-nrg results thus reinforces the notion that an accurate representation of both short-range interactions associated with electron density overlap and long-range many-body electrostatic interactions is necessary for a correct description of hydration phenomena at the molecular level.
Quantum Drude friction for time-dependent density functional theory
Neuhauser, Daniel; Lopata, Kenneth
2008-10-01
way to very simple finite grid description of scattering and multistage conductance using time-dependent density functional theory away from the linear regime, just as absorbing potentials and self-energies are useful for noninteracting systems and leads.
Time-dependent quantum fluid density functional theory of hydrogen ...
Indian Academy of Sciences (India)
WINTEC
density functional theory; quantum fluid dynamics. 1. Introduction ... dynamics of strongly non-linear interaction of atoms with intense ... theory and quantum fluid dynamics in real space. .... clear evidence of bond softening since density in the.
Goker, Ali
2011-06-01
A combination of ab initio and many-body calculations is utilized to determine the effects of the bonding in Au electrodes on the time dependent current through a quantum dot suddenly shifted into the Kondo regime by a gate voltage. For an asymmetrically coupled system the instantaneous conductance exhibits fluctuations. The frequencies of the fluctuations turn out to be proportional to the energetic separation between the dominating peaks in the density of states and the Fermi level. The chemical bonding in the electrodes, thus, drastically alters the transient current, which can be accessed by ultrafast pump-probe techniques. © 2011 Elsevier B.V. All rights reserved.
Goker, Ali; Zhu, Zhiyong; Manchon, Aurelien; Schwingenschlö gl, Udo
2011-01-01
A combination of ab initio and many-body calculations is utilized to determine the effects of the bonding in Au electrodes on the time dependent current through a quantum dot suddenly shifted into the Kondo regime by a gate voltage. For an asymmetrically coupled system the instantaneous conductance exhibits fluctuations. The frequencies of the fluctuations turn out to be proportional to the energetic separation between the dominating peaks in the density of states and the Fermi level. The chemical bonding in the electrodes, thus, drastically alters the transient current, which can be accessed by ultrafast pump-probe techniques. © 2011 Elsevier B.V. All rights reserved.
Remarks on time-dependent [current]-density functional theory for open quantum systems.
Yuen-Zhou, Joel; Aspuru-Guzik, Alán
2013-08-14
Time-dependent [current]-density functional theory for open quantum systems (OQS) has emerged as a formalism that can incorporate dissipative effects in the dynamics of many-body quantum systems. Here, we review and clarify some formal aspects of these theories that have been recently questioned in the literature. In particular, we provide theoretical support for the following conclusions: (1) contrary to what we and others had stated before, within the master equation framework, there is in fact a one-to-one mapping between vector potentials and current densities for fixed initial state, particle-particle interaction, and memory kernel; (2) regardless of the first conclusion, all of our recently suggested Kohn-Sham (KS) schemes to reproduce the current and particle densities of the original OQS, and in particular, the use of a KS closed driven system, remains formally valid; (3) the Lindblad master equation maintains the positivity of the density matrix regardless of the time-dependence of the Hamiltonian or the dissipation operators; (4) within the stochastic Schrödinger equation picture, a one-to-one mapping from stochastic vector potential to stochastic current density for individual trajectories has not been proven so far, except in the case where the vector potential is the same for every member of the ensemble, in which case, it reduces to the Lindblad master equation picture; (5) master equations may violate certain desired properties of the density matrix, such as positivity, but they remain as one of the most useful constructs to study OQS when the environment is not easily incorporated explicitly in the calculation. The conclusions support our previous work as formally rigorous, offer new insights into it, and provide a common ground to discuss related theories.
Time-dependent description of quantum interference nanotransistor
International Nuclear Information System (INIS)
Konopka, M.; Bokes, P.
2012-01-01
In this contribution we have presented simulations of electron current response to applied gate potentials in a ring-shaped quantum interference device. Such device could function like a current-switching quantum-interference transistor. We demonstrated capability of our approach to describe this kind of system keeping full quantum coherence in the description for extended periods of time. This have been achieved thanks to the unique feature of our method which allows for explicit simulations of small quantum subsystems with open boundary conditions. Further generalisation of the method is needed to reduce the number of basis set functions required to describe the system. (authors)
Quantum trajectories for time-dependent adiabatic master equations
Yip, Ka Wa; Albash, Tameem; Lidar, Daniel A.
2018-02-01
We describe a quantum trajectories technique for the unraveling of the quantum adiabatic master equation in Lindblad form. By evolving a complex state vector of dimension N instead of a complex density matrix of dimension N2, simulations of larger system sizes become feasible. The cost of running many trajectories, which is required to recover the master equation evolution, can be minimized by running the trajectories in parallel, making this method suitable for high performance computing clusters. In general, the trajectories method can provide up to a factor N advantage over directly solving the master equation. In special cases where only the expectation values of certain observables are desired, an advantage of up to a factor N2 is possible. We test the method by demonstrating agreement with direct solution of the quantum adiabatic master equation for 8-qubit quantum annealing examples. We also apply the quantum trajectories method to a 16-qubit example originally introduced to demonstrate the role of tunneling in quantum annealing, which is significantly more time consuming to solve directly using the master equation. The quantum trajectories method provides insight into individual quantum jump trajectories and their statistics, thus shedding light on open system quantum adiabatic evolution beyond the master equation.
On the measurement of time-dependent quantum phases
International Nuclear Information System (INIS)
Barut, A.O.; Bozic, M.; Klarsfeld, S.; Maric, Z.
1991-11-01
We have evaluated the exact (Pancharatnam) phase differences between the final state l ψ(t) > and various initial states for a spin 1/2-particle in a rotating magnetic field B(t). For the initial states l n; B ef (0) >, which are eigenstates of the spin component along the direction of the initial effective field B ef (0), the exact phase has an energy dependent part, and an energy independent part. It is shown that these states l n; B ef (0) > are cyclic and their corresponding Aharonov-Anandan phases are evaluated. In the adiabatic limit we discuss different choices of time-dependent bases and the relationship between the exact phase, the Born-Fock-Schiff phase and Berry's phase. We propose experiments (neutron) to verify separately the exact and the adiabatic evolution laws, as well as to measure the adiabatic phases associated with different choices of time-dependent basis vectors. (author). 37 refs, 5 figs, 1 tab
Directory of Open Access Journals (Sweden)
Marcos Moshinsky
2008-07-01
Full Text Available For classical canonical transformations, one can, using the Wigner transformation, pass from their representation in Hilbert space to a kernel in phase space. In this paper it will be discussed how the time-dependence of the uncertainties of the corresponding time-dependent quantum problems can be incorporated into this formalism.
Exact solutions of time-dependent Dirac equations and the quantum-classical correspondence
International Nuclear Information System (INIS)
Zhang Zhiguo
2006-01-01
Exact solutions to the Dirac equations with a time-dependent mass and a static magnetic field or a time-dependent linear potential are given. Matrix elements of the coordinate, momentum and velocity operator are calculated. In the large quantum number limit, these matrix elements give the classical solution
Quantum dynamics at finite temperature: Time-dependent quantum Monte Carlo study
Energy Technology Data Exchange (ETDEWEB)
Christov, Ivan P., E-mail: ivan.christov@phys.uni-sofia.bg
2016-08-15
In this work we investigate the ground state and the dissipative quantum dynamics of interacting charged particles in an external potential at finite temperature. The recently devised time-dependent quantum Monte Carlo (TDQMC) method allows a self-consistent treatment of the system of particles together with bath oscillators first for imaginary-time propagation of Schrödinger type of equations where both the system and the bath converge to their finite temperature ground state, and next for real time calculation where the dissipative dynamics is demonstrated. In that context the application of TDQMC appears as promising alternative to the path-integral related techniques where the real time propagation can be a challenge.
Experimental Quantum-Walk Revival with a Time-Dependent Coin
Xue, P.; Zhang, R.; Qin, H.; Zhan, X.; Bian, Z. H.; Li, J.; Sanders, Barry C.
2015-04-01
We demonstrate a quantum walk with time-dependent coin bias. With this technique we realize an experimental single-photon one-dimensional quantum walk with a linearly ramped time-dependent coin flip operation and thereby demonstrate two periodic revivals of the walker distribution. In our beam-displacer interferometer, the walk corresponds to movement between discretely separated transverse modes of the field serving as lattice sites, and the time-dependent coin flip is effected by implementing a different angle between the optical axis of half-wave plate and the light propagation at each step. Each of the quantum-walk steps required to realize a revival comprises two sequential orthogonal coin-flip operators, with one coin having constant bias and the other coin having a time-dependent ramped coin bias, followed by a conditional translation of the walker.
2016-06-03
Scientific conference, Quantum Physics REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8...publications (other than abstracts): Books Number of Manuscripts: 0.00Number of Presentations: Non Peer-Reviewed Conference Proceeding publications...other than abstracts): (d) Manuscripts Received Paper TOTAL: Received Paper TOTAL: Received Paper TOTAL: Received Book TOTAL: Patents Submitted
Introduction to many-body physics
Coleman, Piers
2015-01-01
A modern, graduate-level introduction to many-body physics in condensed matter, this textbook explains the tools and concepts needed for a research-level understanding of the correlated behavior of quantum fluids. Starting with an operator-based introduction to the quantum field theory of many-body physics, this textbook presents the Feynman diagram approach, Green's functions and finite-temperature many body physics before developing the path integral approach to interacting systems. Special chapters are devoted to the concepts of Fermi liquid theory, broken symmetry, conduction in disordered systems, superconductivity and the physics of local-moment metals. A strong emphasis on concepts and numerous exercises make this an invaluable course book for graduate students in condensed matter physics. It will also interest students in nuclear, atomic and particle physics.
Optimal adaptive control for quantum metrology with time-dependent Hamiltonians
Pang, Shengshi; Jordan, Andrew N.
2017-01-01
Quantum metrology has been studied for a wide range of systems with time-independent Hamiltonians. For systems with time-dependent Hamiltonians, however, due to the complexity of dynamics, little has been known about quantum metrology. Here we investigate quantum metrology with time-dependent Hamiltonians to bridge this gap. We obtain the optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and show proper Hamiltonian control is generally necessary to optimize the Fisher information. We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement scheme to attain the optimal Fisher information. In a minimal example of a qubit in a rotating magnetic field, we find a surprising result that the fundamental limit of T2 time scaling of quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches T4 in estimating the rotation frequency of the field. We conclude by considering level crossings in the derivatives of the Hamiltonians, and point out additional control is necessary for that case. PMID:28276428
Optimal adaptive control for quantum metrology with time-dependent Hamiltonians.
Pang, Shengshi; Jordan, Andrew N
2017-03-09
Quantum metrology has been studied for a wide range of systems with time-independent Hamiltonians. For systems with time-dependent Hamiltonians, however, due to the complexity of dynamics, little has been known about quantum metrology. Here we investigate quantum metrology with time-dependent Hamiltonians to bridge this gap. We obtain the optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and show proper Hamiltonian control is generally necessary to optimize the Fisher information. We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement scheme to attain the optimal Fisher information. In a minimal example of a qubit in a rotating magnetic field, we find a surprising result that the fundamental limit of T 2 time scaling of quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches T 4 in estimating the rotation frequency of the field. We conclude by considering level crossings in the derivatives of the Hamiltonians, and point out additional control is necessary for that case.
International Nuclear Information System (INIS)
Brueckner, K.A.
1980-01-01
This paper reviews the major steps in the development of many-body theory since the early 1950's. Very few systems permit an exact solution by selective diagram summation or by exact solution of a truncated Hamiltonian. Formal methods have usually had little success for real physical systems. Examples are all the quantum liquids such as nuclear matter, liquid He 3 , liquid He 4 , superconductors and metallic conductors. Atomic and molecular systems and finite nuclei present additional problems. Many-body theory has probably had its greatest success in the application to atomic properties and the development in recent years is reviewed. (Auth.)
Time-dependent transitions with time–space noncommutativity and its implications in quantum optics
International Nuclear Information System (INIS)
Chandra, Nitin
2012-01-01
We study the time-dependent transitions of a quantum-forced harmonic oscillator in noncommutative R 1,1 perturbatively to linear order in the noncommutativity θ. We show that the Poisson distribution gets modified, and that the vacuum state evolves into a ‘squeezed’ state rather than a coherent state. The time evolutions of uncertainties in position and momentum in vacuum are also studied and imply interesting consequences for modeling nonlinear phenomena in quantum optics. (paper)
Dynamical pruning of static localized basis sets in time-dependent quantum dynamics
McCormack, D.A.
2006-01-01
We investigate the viability of dynamical pruning of localized basis sets in time-dependent quantum wave packet methods. Basis functions that have a very small population at any given time are removed from the active set. The basis functions themselves are time independent, but the set of active
NATO Advanced Research Workshop on Time-Dependent Quantum Molecular Dynamics : Theory and Experiment
Lathouwers, L
1992-01-01
From March 30th to April 3rd, 1992, a NATO Advanced Research workshop entitled "Time Dependent Quantum Molecular Dynamics: Theory and Experiment" was held at Snowbird, Utah. The organizing committee consisted of J. BROECKHOVE (Antwerp, Belgium), L. CEDERBAUM (Heidelberg, Germany), L. LATHOUWERS (Antwerp, Belgium), N. OHRN (Gainesville, Florida) and J. SIMONS (Salt Lake City, Utah). Fifty-two participants from eleven different countries attended the meeting at which thirty-three talks and one poster session were held. Twenty-eight participants submitted contributions to the proceedings of the meeting, which are reproduced in this volume. The workshop brought together experts in different areas 0 f molecular quantum dynamics, all adhering to the time dependent approach. The aim was to discuss and compare methods and applications. The ~amiliarityo~ the aUdience with the concepts o~ time dependent approaches greatly facilitated topical discussions and probing towards new applications. A broad area of subject matt...
International Nuclear Information System (INIS)
Levin, F.S.; Krueger, H.
1977-01-01
We propose in this article that the non-Hermitian equations typical of some many-body scattering theories be used to help solve many-body bound-state problems. The basic idea is to exploit the channel nature of many-body bound states that must exist because bound states are obvious negative-energy extensions of scattering states. Since atomic, molecular, and nuclear systems all display multichannel effects for E > 0, at least through Pauli-principle effects if not through mass-transfer reactions, this use of positive-energy methods for solving bound-state problems could have wide applicability. The development used here is based on the channel-component-state method of the channel-coupling-array theory, recently described in detail for the E > 0 case, and various aspects of the formalism are discussed. Detailed calculations using simple approximations are discussed for H 2 + , one of the simplest systems displaying channel structure. Comparison with the exact, Born-Oppenheimer results of Wind show that the non-Hermitian-equation, channel-component values of the equilibrium separation and total binding energy are accurate to within 2%, while the dissociation energy is accurate to 10%. The resulting wave function is identical to that arising from the simplest MO calculation, for which these numbers are less accurate than the preceding by at least a factor of 3. We also show that identical particle symmetry for the H 2 + case reduces the pair of coupled (two-channel) equations to a single equation with an exchange term. Similar reductions will occur for larger numbers of identical particles, thus suggesting application of the formalism to atomic structure problems. A detailed analysis of the present numerical results, their general implications, and possible applications is also given
A 2D Array of 100's of Ions for Quantum Simulation and Many-Body Physics in a Penning Trap
Bohnet, Justin; Sawyer, Brian; Britton, Joseph; Bollinger, John
2015-05-01
Quantum simulations promise to reveal new materials and phenomena for experimental study, but few systems have demonstrated the capability to control ensembles in which quantum effects cannot be directly computed. One possible platform for intractable quantum simulations may be a system of 100's of 9Be+ ions in a Penning trap, where the valence electron spins are coupled with an effective Ising interaction in a 2D geometry. Here we report on results from a new Penning trap designed for 2D quantum simulations. We characterize the ion crystal stability and describe progress towards bench-marking quantum effects of the spin-spin coupling using a spin-squeezing witness. We also report on the successful photodissociation of BeH+ contaminant molecular ions that impede the use of such crystals for quantum simulation. This work lays the foundation for future experiments such as the observation of spin dynamics under the quantum Ising Hamiltonian with a transverse field. Supported by a NIST-NRC Research Associateship.
Time-dependent resonant tunnelling for parallel-coupled double quantum dots
International Nuclear Information System (INIS)
Dong Bing; Djuric, Ivana; Cui, H L; Lei, X L
2004-01-01
We derive the quantum rate equations for an Aharonov-Bohm interferometer with two vertically coupled quantum dots embedded in each of two arms by means of the nonequilibrium Green function in the sequential tunnelling regime. Based on these equations, we investigate time-dependent resonant tunnelling under a small amplitude irradiation and find that the resonant photon-assisted tunnelling peaks in photocurrent demonstrate a combination behaviour of Fano and Lorentzian resonances due to the interference effect between the two pathways in this parallel configuration, which is controllable by threading the magnetic flux inside this device
Riccati and Ermakov Equations in Time-Dependent and Time-Independent Quantum Systems
Directory of Open Access Journals (Sweden)
Dieter Schuch
2008-05-01
Full Text Available The time-evolution of the maximum and the width of exact analytic wave packet (WP solutions of the time-dependent Schrödinger equation (SE represents the particle and wave aspects, respectively, of the quantum system. The dynamics of the maximum, located at the mean value of position, is governed by the Newtonian equation of the corresponding classical problem. The width, which is directly proportional to the position uncertainty, obeys a complex nonlinear Riccati equation which can be transformed into a real nonlinear Ermakov equation. The coupled pair of these equations yields a dynamical invariant which plays a key role in our investigation. It can be expressed in terms of a complex variable that linearizes the Riccati equation. This variable also provides the time-dependent parameters that characterize the Green's function, or Feynman kernel, of the corresponding problem. From there, also the relation between the classical and quantum dynamics of the systems can be obtained. Furthermore, the close connection between the Ermakov invariant and the Wigner function will be shown. Factorization of the dynamical invariant allows for comparison with creation/annihilation operators and supersymmetry where the partner potentials fulfil (real Riccati equations. This provides the link to a nonlinear formulation of time-independent quantum mechanics in terms of an Ermakov equation for the amplitude of the stationary state wave functions combined with a conservation law. Comparison with SUSY and the time-dependent problems concludes our analysis.
Dynamically induced many-body localization
Choi, Soonwon; Abanin, Dmitry A.; Lukin, Mikhail D.
2018-03-01
We show that a quantum phase transition from ergodic to many-body localized (MBL) phases can be induced via periodic pulsed manipulation of spin systems. Such a transition is enabled by the interplay between weak disorder and slow heating rates. Specifically, we demonstrate that the Hamiltonian of a weakly disordered ergodic spin system can be effectively engineered, by using sufficiently fast coherent controls, to yield a stable MBL phase, which in turn completely suppresses the energy absorption from external control field. Our results imply that a broad class of existing many-body systems can be used to probe nonequilibrium phases of matter for a long time, limited only by coupling to external environment.
Chemical dynamics in the gas phase: Time-dependent quantum mechanics of chemical reactions
Energy Technology Data Exchange (ETDEWEB)
Gray, S.K. [Argonne National Laboratory, IL (United States)
1993-12-01
A major goal of this research is to obtain an understanding of the molecular reaction dynamics of three and four atom chemical reactions using numerically accurate quantum dynamics. This work involves: (i) the development and/or improvement of accurate quantum mechanical methods for the calculation and analysis of the properties of chemical reactions (e.g., rate constants and product distributions), and (ii) the determination of accurate dynamical results for selected chemical systems, which allow one to compare directly with experiment, determine the reliability of the underlying potential energy surfaces, and test the validity of approximate theories. This research emphasizes the use of recently developed time-dependent quantum mechanical methods, i.e. wave packet methods.
Photon Subtraction by Many-Body Decoherence
DEFF Research Database (Denmark)
Murray, C. R.; Mirgorodskiy, I.; Tresp, C.
2018-01-01
We experimentally and theoretically investigate the scattering of a photonic quantum field from another stored in a strongly interacting atomic Rydberg ensemble. Considering the many-body limit of this problem, we derive an exact solution to the scattering-induced spatial decoherence of multiple...... stored photons, allowing for a rigorous understanding of the underlying dissipative quantum dynamics. Combined with our experiments, this analysis reveals a correlated coherence-protection process in which the scattering from one excitation can shield all others from spatial decoherence. We discuss how...... this effect can be used to manipulate light at the quantum level, providing a robust mechanism for single-photon subtraction, and experimentally demonstrate this capability....
Approximations of time-dependent phenomena in quantum mechanics: adiabatic versus sudden processes
International Nuclear Information System (INIS)
Melnichuk, S V; Dijk, W van; Nogami, Y
2005-01-01
By means of a one-dimensional model of a particle in an infinite square-well potential with one wall moving at a constant speed, we examine aspects of time-dependent phenomena in quantum mechanics such as adiabatic and sudden processes. The particle is assumed to be initially in the ground state of the potential with its initial width. The time dependence of the wavefunction of the particle in the well is generally more complicated when the potential well is compressed than when it is expanded. We are particularly interested in the case in which the potential well is suddenly compressed. The so-called sudden approximation is not applicable in this case. We also study the energy of the particle in the changing well as a function of time for expansion and contraction as well as for expansion followed by contraction and vice versa
Many Body Structure of Strongly Interacting Systems
Arenhövel, Hartmuth; Drechsel, Dieter; Friedrich, Jörg; Kaiser, Karl-Heinz; Walcher, Thomas; Symposium on 20 Years of Physics at the Mainz Microtron MAMI
2006-01-01
This carefully edited proceedings volume provides an extensive review and analysis of the work carried out over the past 20 years at the Mainz Microtron (MAMI). This research centered around the application of Quantum Chromodynamics in the strictly nonperturbative regime at hadronic scales of about 1 fm. Due to the many degrees of freedom in hadrons at this scale the leitmotiv of this research is "Many body structure of strongly interacting systems". Further, an outlook on the research with the forthcoming upgrade of MAMI is given. This volume is an authoritative source of reference for everyone interested in the field of the electro-weak probing of the structure of hadrons.
Tempel, David G; Aspuru-Guzik, Alán
2012-01-01
We prove that the theorems of TDDFT can be extended to a class of qubit Hamiltonians that are universal for quantum computation. The theorems of TDDFT applied to universal Hamiltonians imply that single-qubit expectation values can be used as the basic variables in quantum computation and information theory, rather than wavefunctions. From a practical standpoint this opens the possibility of approximating observables of interest in quantum computations directly in terms of single-qubit quantities (i.e. as density functionals). Additionally, we also demonstrate that TDDFT provides an exact prescription for simulating universal Hamiltonians with other universal Hamiltonians that have different, and possibly easier-to-realize two-qubit interactions. This establishes the foundations of TDDFT for quantum computation and opens the possibility of developing density functionals for use in quantum algorithms.
Time-dependent density functional theory for open quantum systems with unitary propagation.
Yuen-Zhou, Joel; Tempel, David G; Rodríguez-Rosario, César A; Aspuru-Guzik, Alán
2010-01-29
We extend the Runge-Gross theorem for a very general class of open quantum systems under weak assumptions about the nature of the bath and its coupling to the system. We show that for Kohn-Sham (KS) time-dependent density functional theory, it is possible to rigorously include the effects of the environment within a bath functional in the KS potential. A Markovian bath functional inspired by the theory of nonlinear Schrödinger equations is suggested, which can be readily implemented in currently existing real-time codes. Finally, calculations on a helium model system are presented.
Quantum transfer energy in the framework of time-dependent dipole-dipole interaction
El-Shishtawy, Reda M.; Haddon, Robert C.; Al-Heniti, Saleh H.; Raffah, Bahaaudin M.; Berrada, K.; Abdel-Khalek, S.; Al-Hadeethi, Yas F.
2018-03-01
In this work, we examine the process of the quantum transfer of energy considering time-dependent dipole-dipole interaction in a dimer system characterized by two-level atom systems. By taking into account the effect of the acceleration and speed of the atoms in the dimer coupling, we demonstrate that the improvement of the probability for a single-excitation transfer energy extremely benefits from the incorporation of atomic motion effectiveness and the energy detuning. We explore the relevance between the population and entanglement during the time-evolution and show that this kind of nonlocal correlation may be generated during the process of the transfer of energy. Our work may provide optimal conditions to implement realistic experimental scenario in the transfer of the quantum energy.
International Nuclear Information System (INIS)
Dong, B; Ding, G H; Lei, X L
2015-01-01
A general theoretical formulation for the effect of a strong on-site Coulomb interaction on the time-dependent electron transport through a quantum dot under the influence of arbitrary time-varying bias voltages and/or external fields is presented, based on slave bosons and the Keldysh nonequilibrium Green's function (GF) techniques. To avoid the difficulties of computing double-time GFs, we generalize the propagation scheme recently developed by Croy and Saalmann to combine the auxiliary-mode expansion with the celebrated Lacroix's decoupling approximation in dealing with the second-order correlated GFs and then establish a closed set of coupled equations of motion, called second-order quantum rate equations (SOQREs), for an exact description of transient dynamics of electron correlated tunneling. We verify that the stationary solution of our SOQREs is able to correctly describe the Kondo effect on a qualitative level. Moreover, a comparison with other methods, such as the second-order von Neumann approach and Hubbard-I approximation, is performed. As illustrations, we investigate the transient current behaviors in response to a step voltage pulse and a harmonic driving voltage, and linear admittance as well, in the cotunneling regime. (paper)
Prethermalization in an isolated many body system
International Nuclear Information System (INIS)
Gring, M.
2012-01-01
Understanding the relaxation dynamics of complex non-equilibrium many-body quantum systems is a fundamental problem, arising in many areas of physics. However, experimental examples of non-equilibrium systems that are both controllable and suitable for detailed study are extremely rare. In this thesis one such example in the form of a coherently split one-dimensional (1d) ultra cold Bose gas in a double-well potential is studied in detail. Typical for the analysis of non-equilibrium systems, the key challenge in this study is the characterization of the complex transient states of the system. In the presented work this task is solved by employing measurements of the time evolution of the full quantum mechanical probability distribution functions (FDFs) of time-of-flight matter-wave interference patterns between the two halves of the split system. The dynamics of the FDFs reveal two distinct regimes of relaxation clearly demonstrating the multi-mode nature of 1d Bose gases. Moreover, after an initial rapid evolution, the FDFs exhibit the approach towards a thermal-like steady state of the system which however does not correspond to the true thermal equilibrium of the system. This surprising behaviour is also predicted by a recent theoretical work which puts the observations in a much broader context and classifies them as an example of prethermalization. Prethermalization is a general concept from relativistic quantum field theory and is currently the subject of intense theoretical research. Accordingly prethermalized states were recently predicted for a series of other many-body quantum systems. The work presented in this thesis represents a direct experimental observation of this phenomenon of prethermalization. (author) [de
PREFACE: The 395th Wilhelm and Else Heraeus Seminar: `Time-dependent phenomena in Quantum Mechanics'
Kleber, Manfred; Kramer, Tobias
2008-03-01
The 395th Wilhelm and Else Heraeus Seminar: `Time-dependent phenomena in Quantum Mechanics' took place at the Heinrich Fabri Institute in Blaubeuren, Germany, 12-16 September 2007. The conference covered a wide range of topics connected with time-dependent phenomena in quantum mechanical systems. The 20 invited talks and 15 short talks with posters at the workshop covered the historical debate between Schrödinger, Dirac and Pauli about the role of time in Quantum Mechanics (the debate was carried out sometimes in footnotes) up to the almost direct observation of electron dynamics on the attosecond time-scale. Semiclassical methods, time-delay, monodromy, variational principles and quasi-resonances are just some of the themes which are discussed in more detail in the papers. Time-dependent methods also shed new light on energy-dependent systems, where the detour of studying the time-evolution of a quantum states allows one to solve previously intractable problems. Additional information is available at the conference webpage http://www.quantumdynamics.de The organizer would like to thank all speakers, contributors, session chairs and referees for their efforts in making the conference a success. We also gratefully acknowledge the generous financial support from the Wilhelm and Else Heraeus Foundation for the conference and the production of this special volume of Journal of Physics: Conference Series. Manfred Kleber Physik Department T30, Technische Universität München, 85747 Garching, Germany mkleber@ph.tum.de Tobias Kramer Institut I: Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany tobias.kramer@physik.uni-regensburg.de Guest Editors Front row (from left): W Schleich, E J Heller, J B Delos, H Friedrich, K Richter, M Kleber, P Kramer, M Man'ko, A del Campo, V Man'ko, M Efremov, A Ruiz, M O Scully Middle row: A Zamora, R Aganoglu, T Kramer, J Eiglsperger, H Cruz, P Raab, I Cirac, G Muga, J Larson, V Dodonov, W Becker Back row: A Eckardt, A
International Nuclear Information System (INIS)
Basler, Mathias; Gindensperger, Etienne; Meyer, Hans-Dieter; Cederbaum, Lorenz S.
2008-01-01
We address the nonadiabatic quantum dynamics of (macro)systems involving a vast number of nuclear degrees of freedom (modes) in the presence of conical intersections. The macrosystem is first decomposed into a system part carrying a few, strongly coupled modes, and an environment, comprising the remaining modes. By successively transforming the modes of the environment, a hierarchy of effective Hamiltonians for the environment can be constructed. Each effective Hamiltonian depends on a reduced number of effective modes, which carry cumulative effects. The environment is described by a few effective modes augmented by a residual environment. In practice, the effective modes can be added to the system's modes and the quantum dynamics of the entire macrosystem can be accurately calculated on a limited time-interval. For longer times, however, the residual environment plays a role. We investigate the possibility to treat fully quantum mechanically the system plus a few effective environmental modes, augmented by the dynamics of the residual environment treated by the time-dependent Hartree (TDH) approximation. While the TDH approximation is known to fail to correctly reproduce the dynamics in the presence of conical intersections, it is shown that its use on top of the effective-mode formalism leads to much better results. Two numerical examples are presented and discussed; one of them is known to be a critical case for the TDH approximation
International Nuclear Information System (INIS)
Ibarra-Sierra, V.G.; Sandoval-Santana, J.C.; Cardoso, J.L.; Kunold, A.
2015-01-01
We discuss the one-dimensional, time-dependent general quadratic Hamiltonian and the bi-dimensional charged particle in time-dependent electromagnetic fields through the Lie algebraic approach. Such method consists in finding a set of generators that form a closed Lie algebra in terms of which it is possible to express a quantum Hamiltonian and therefore the evolution operator. The evolution operator is then the starting point to obtain the propagator as well as the explicit form of the Heisenberg picture position and momentum operators. First, the set of generators forming a closed Lie algebra is identified for the general quadratic Hamiltonian. This algebra is later extended to study the Hamiltonian of a charged particle in electromagnetic fields exploiting the similarities between the terms of these two Hamiltonians. These results are applied to the solution of five different examples: the linear potential which is used to introduce the Lie algebraic method, a radio frequency ion trap, a Kanai–Caldirola-like forced harmonic oscillator, a charged particle in a time dependent magnetic field, and a charged particle in constant magnetic field and oscillating electric field. In particular we present exact analytical expressions that are fitting for the study of a rotating quadrupole field ion trap and magneto-transport in two-dimensional semiconductor heterostructures illuminated by microwave radiation. In these examples we show that this powerful method is suitable to treat quadratic Hamiltonians with time dependent coefficients quite efficiently yielding closed analytical expressions for the propagator and the Heisenberg picture position and momentum operators. -- Highlights: •We deal with the general quadratic Hamiltonian and a particle in electromagnetic fields. •The evolution operator is worked out through the Lie algebraic approach. •We also obtain the propagator and Heisenberg picture position and momentum operators. •Analytical expressions for a
Energy Technology Data Exchange (ETDEWEB)
Ibarra-Sierra, V.G.; Sandoval-Santana, J.C. [Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 México D.F. (Mexico); Cardoso, J.L. [Área de Física Teórica y Materia Condensada, Universidad Autónoma Metropolitana Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas, Azcapotzalco, 02200 México D.F. (Mexico); Kunold, A., E-mail: akb@correo.azc.uam.mx [Área de Física Teórica y Materia Condensada, Universidad Autónoma Metropolitana Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas, Azcapotzalco, 02200 México D.F. (Mexico)
2015-11-15
We discuss the one-dimensional, time-dependent general quadratic Hamiltonian and the bi-dimensional charged particle in time-dependent electromagnetic fields through the Lie algebraic approach. Such method consists in finding a set of generators that form a closed Lie algebra in terms of which it is possible to express a quantum Hamiltonian and therefore the evolution operator. The evolution operator is then the starting point to obtain the propagator as well as the explicit form of the Heisenberg picture position and momentum operators. First, the set of generators forming a closed Lie algebra is identified for the general quadratic Hamiltonian. This algebra is later extended to study the Hamiltonian of a charged particle in electromagnetic fields exploiting the similarities between the terms of these two Hamiltonians. These results are applied to the solution of five different examples: the linear potential which is used to introduce the Lie algebraic method, a radio frequency ion trap, a Kanai–Caldirola-like forced harmonic oscillator, a charged particle in a time dependent magnetic field, and a charged particle in constant magnetic field and oscillating electric field. In particular we present exact analytical expressions that are fitting for the study of a rotating quadrupole field ion trap and magneto-transport in two-dimensional semiconductor heterostructures illuminated by microwave radiation. In these examples we show that this powerful method is suitable to treat quadratic Hamiltonians with time dependent coefficients quite efficiently yielding closed analytical expressions for the propagator and the Heisenberg picture position and momentum operators. -- Highlights: •We deal with the general quadratic Hamiltonian and a particle in electromagnetic fields. •The evolution operator is worked out through the Lie algebraic approach. •We also obtain the propagator and Heisenberg picture position and momentum operators. •Analytical expressions for a
Directory of Open Access Journals (Sweden)
L. Toledo Sesma
2016-01-01
Full Text Available We construct an effective four-dimensional model by compactifying a ten-dimensional theory of gravity coupled with a real scalar dilaton field on a time-dependent torus. This approach is applied to anisotropic cosmological Bianchi type I model for which we study the classical coupling of the anisotropic scale factors with the two real scalar moduli produced by the compactification process. Under this approach, we present an isotropization mechanism for the Bianchi I cosmological model through the analysis of the ratio between the anisotropic parameters and the volume of the Universe which in general keeps constant or runs into zero for late times. We also find that the presence of extra dimensions in this model can accelerate the isotropization process depending on the momenta moduli values. Finally, we present some solutions to the corresponding Wheeler-DeWitt (WDW equation in the context of standard quantum cosmology.
Theoretical treatment of photodissociation of water by time-dependent quantum mechanical methods
International Nuclear Information System (INIS)
Weide, K.
1993-01-01
An algorithm for wavepacket propagation, based on Kosloff's method of expansion of the time evolution operator in terms of Chebychev polynomials, and some details of its implementation are described. With the programs developed, quantum-mechanical calculations for up to three independent molecular coordinates are possible and feasible and therefore photodissociation of non-rotating triatomic molecules can be treated exactly. The angular degree of freedom here is handled by expansion in terms of free diatomic rotor states. The time-dependent wave packet picture is compared with the more traditional view of stationary wave functions, and both are used to interpret computational results where appropriate. Two-dimensional calculations have been performed to explain several experimental observations about water photodissociation. All calculations are based on ab initio potential energy surfaces, and it is explained in each case why it is reasonable to neglect the third degree of freedom. Many experimental results are reproduced quantitatively. (orig.) [de
Quantum effective force and Bohmian approach to time-dependent traps
International Nuclear Information System (INIS)
Mousavi, S V
2014-01-01
Trajectories of a Bohmian particle confined in time-dependent cylindrical and spherical traps are computed for both contracting and expanding boxes. A quantum effective force is considered in arbitrary directions. It is seen that in contrast to the case for the problem of a particle in an infinite rectangular box with one wall in motion, if the particle is initially in an energy eigenstate of a tiny box, the force is zero in all directions. Trajectories of a two-body system confined in the spherical trap are also computed for different statistics types. Computations show that there are situations for which the distance between bosons is greater than that between fermions. However, the results on the average separation of the particles confirm our expectation as regards the statistics
Time-dependent quantum chemistry of laser driven many-electron molecules
International Nuclear Information System (INIS)
Nguyen-Dang, Thanh-Tung; Couture-Bienvenue, Étienne; Viau-Trudel, Jérémy; Sainjon, Amaury
2014-01-01
A Time-Dependent Configuration Interaction approach using multiple Feshbach partitionings, corresponding to multiple ionization stages of a laser-driven molecule, has recently been proposed [T.-T. Nguyen-Dang and J. Viau-Trudel, J. Chem. Phys. 139, 244102 (2013)]. To complete this development toward a fully ab-initio method for the calculation of time-dependent electronic wavefunctions of an N-electron molecule, we describe how tools of multiconfiguration quantum chemistry such as the management of the configuration expansion space using Graphical Unitary Group Approach concepts can be profitably adapted to the new context, that of time-resolved electronic dynamics, as opposed to stationary electronic structure. The method is applied to calculate the detailed, sub-cycle electronic dynamics of BeH 2 , treated in a 3–21G bound-orbital basis augmented by a set of orthogonalized plane-waves representing continuum-type orbitals, including its ionization under an intense λ = 800 nm or λ = 80 nm continuous-wave laser field. The dynamics is strongly non-linear at the field-intensity considered (I ≃ 10 15 W/cm 2 ), featuring important ionization of an inner-shell electron and strong post-ionization bound-electron dynamics
Origin of non-quantum noise and time dependent thermo field dynamics
International Nuclear Information System (INIS)
Umezawa, H.
1991-01-01
Common features and physically profound differences are summarized between various kinds of noise in pure states caused by the Bogoliubov transformation in such diverse phenomena as the squeezed state in quantum optics, Hawking radiation around the eternal black hole, and thermal physics.All the thermal vacua form a set of states degenerate in eigenvalues of the Hamiltonian H-circumflex, i.e., the zero-hat energy states. The presence of these degenerate energy states exhibits the spontaneous breakdown of weak Bogoliubov symmetry. The thermal freedom is the freedom of moving through the states in this degenerate set. Considering a time-dependent movement of a thermal vacuum through the degenerate set, the time-dependent thermal field dynamics are obtained. With this formalism the authors set up a quasi-particle picture and analyze the spectral representation of the Heisenberg two point Green's function and the diagonalization of the quasi-particle Hamiltonian. The formalism will be used in discussion of the appearance of short time intermediate high-temperature states when the initial state is at practically zero temperature. (author). 28 refs
Time-dependent behavior of D-dimensional ideal quantum gases
International Nuclear Information System (INIS)
Oh, Suhk Kun
1985-01-01
The time-dependent behavior of D-dimensional ideal quantum gases is studied within the Mori formalism and its extension by Lee. In the classical limit, the time-dependent behavior is found to be independent of the dimensionality D of the system and is characterized by an extremely damped Gaussian relaxation function. However, at T=0K, it depends on the particular statistics adopted for the system and also on the dimensionality of the system. For the ideal Bose gas at T=0 K, complete Bose condensation is manifested by collapse of the dimensionality of a Hilbert space, spanned by basis vectors fsub(ν), from infinity to two. On the other hand, the dimensional effect for the ideal Fermi gas is exhibited by a change in Hilbert space structure, which is determined by the recurrants Δsub(ν) and the basis vectors fsub(ν) More specifically, the structural form of the recurrants is modified such that the relaxation function becomes more damped as D is increased. (Author)
International Nuclear Information System (INIS)
Dodonov, V.V.
2009-01-01
Conditions of disappearance of different 'nonclassical' properties (usual and high-order squeezing, sub-Poissonian statistics, negativity of s-parametrized quasidistributions) are derived for a quantum oscillator, whose evolution is governed by the standard master equation of quantum optics with arbitrary time-dependent coefficients.
Time-dependent current into and through multilevel parallel quantum dots in a photon cavity
Gudmundsson, Vidar; Abdullah, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei
2017-05-01
We analyze theoretically the charging current into, and the transport current through, a nanoscale two-dimensional electron system with two parallel quantum dots embedded in a short wire placed in a photon cavity. A plunger gate is used to place specific many-body states of the interacting system in the bias window defined by the external leads. We show how the transport phenomena active in the many-level complex central system strongly depend on the gate voltage. We identify a resonant transport through the central system as the two spin components of the one-electron ground state are in the bias window. This resonant transport through the lowest energy electron states seems to a large extent independent of the detuned photon field when judged from the transport current. This could be expected in the small bias regime, but an observation of the occupancy of the states of the system reveals that this picture is not entirely true. The current does not reflect slower photon-active internal transitions bringing the system into the steady state. The number of initially present photons determines when the system reaches the real steady state. With two-electron states in the bias window we observe a more complex situation with intermediate radiative and nonradiative relaxation channels leading to a steady state with a weak nonresonant current caused by inelastic tunneling through the two-electron ground state of the system. The presence of the radiative channels makes this phenomena dependent on the number of photons initially in the cavity.
Exact solution of a quantum forced time-dependent harmonic oscillator
Yeon, Kyu Hwang; George, Thomas F.; Um, Chung IN
1992-01-01
The Schrodinger equation is used to exactly evaluate the propagator, wave function, energy expectation values, uncertainty values, and coherent state for a harmonic oscillator with a time dependent frequency and an external driving time dependent force. These quantities represent the solution of the classical equation of motion for the time dependent harmonic oscillator.
Parametrization of complex absorbing potentials for time-dependent quantum dynamics
International Nuclear Information System (INIS)
Vibok, A.; Balint-Kurti, G.G.
1992-01-01
Five different forms of complex absorbing potentials are examined and compared. Such potentials are needed to absorb wavepackets near the edges of grids in time-dependent quantum dynamical calculations. The extent to which the different potentials transmit or reflect an incident wavepacket is quantified, and optimal potential parameters to minimize both the reflection and transmission for each type of potential are derived. A rigorously derived scaling procedure, which permits the derivation of optimal potential parameters for use with any chosen mass or kinetic energy from those optimized for different conditions, is described. Tables are also presented which permit the immediate selection of the parameters for an absorbing potential of a particular form so as to allow a preselected (very small) degree of transmitted plus reflected probability to be attained. It is always desirable to devote a minimal region to the absorbing potential, while at the same time effectively absorbing all of the wavepacket and neither transmitting nor reflecting any of it. The tables presented here enable the use to easily select the potential parameters he will require to attain these goals. 23 refs., 7 figs., 4 tabs
Farzanehpour, Mehdi; Tokatly, Ilya; Nano-Bio Spectroscopy Group; ETSF Scientific Development Centre Team
2015-03-01
We present a rigorous formulation of the time-dependent density functional theory for interacting lattice electrons strongly coupled to cavity photons. We start with an example of one particle on a Hubbard dimer coupled to a single photonic mode, which is equivalent to the single mode spin-boson model or the quantum Rabi model. For this system we prove that the electron-photon wave function is a unique functional of the electronic density and the expectation value of the photonic coordinate, provided the initial state and the density satisfy a set of well defined conditions. Then we generalize the formalism to many interacting electrons on a lattice coupled to multiple photonic modes and prove the general mapping theorem. We also show that for a system evolving from the ground state of a lattice Hamiltonian any density with a continuous second time derivative is locally v-representable. Spanish Ministry of Economy and Competitiveness (Grant No. FIS2013-46159-C3-1-P), Grupos Consolidados UPV/EHU del Gobierno Vasco (Grant No. IT578-13), COST Actions CM1204 (XLIC) and MP1306 (EUSpec).
Energy Technology Data Exchange (ETDEWEB)
Grasselli, Federico, E-mail: federico.grasselli@unimore.it; Goldoni, Guido, E-mail: guido.goldoni@unimore.it [Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena (Italy); CNR-NANO S3, Institute for Nanoscience, Via Campi 213/a, 41125 Modena (Italy); Bertoni, Andrea, E-mail: andrea.bertoni@nano.cnr.it [CNR-NANO S3, Institute for Nanoscience, Via Campi 213/a, 41125 Modena (Italy)
2015-01-21
We study the unitary propagation of a two-particle one-dimensional Schrödinger equation by means of the Split-Step Fourier method, to study the coherent evolution of a spatially indirect exciton (IX) in semiconductor heterostructures. The mutual Coulomb interaction of the electron-hole pair and the electrostatic potentials generated by external gates and acting on the two particles separately are taken into account exactly in the two-particle dynamics. As relevant examples, step/downhill and barrier/well potential profiles are considered. The space- and time-dependent evolutions during the scattering event as well as the asymptotic time behavior are analyzed. For typical parameters of GaAs-based devices, the transmission or reflection of the pair turns out to be a complex two-particle process, due to comparable and competing Coulomb, electrostatic, and kinetic energy scales. Depending on the intensity and anisotropy of the scattering potentials, the quantum evolution may result in excitation of the IX internal degrees of freedom, dissociation of the pair, or transmission in small periodic IX wavepackets due to dwelling of one particle in the barrier region. We discuss the occurrence of each process in the full parameter space of the scattering potentials and the relevance of our results for current excitronic technologies.
Many body calculations in atomic physics
International Nuclear Information System (INIS)
Kelly, H.P.
1985-01-01
The use of the many-body perturbation theory for atomic calculations are reviewed. The major emphasis is on the use of the linked-cluster many-body perturbation theory derived by Brueckner and Goldstone. Applications of many-body theory to calculations of hyperfine structure are examined. Auger rates and parity violation are discussed. Photoionization is reviewed, and the authors show how many-body perturbation theory can be applied to problems ranging from structural properties such as correlation energies and hyperfine structure to dynamical properties such as transitions induced by weak neutral currents and photoionization cross sections
Many-body physics using cold atoms
Sundar, Bhuvanesh
Advances in experiments on dilute ultracold atomic gases have given us access to highly tunable quantum systems. In particular, there have been substantial improvements in achieving different kinds of interaction between atoms. As a result, utracold atomic gases oer an ideal platform to simulate many-body phenomena in condensed matter physics, and engineer other novel phenomena that are a result of the exotic interactions produced between atoms. In this dissertation, I present a series of studies that explore the physics of dilute ultracold atomic gases in different settings. In each setting, I explore a different form of the inter-particle interaction. Motivated by experiments which induce artificial spin-orbit coupling for cold fermions, I explore this system in my first project. In this project, I propose a method to perform universal quantum computation using the excitations of interacting spin-orbit coupled fermions, in which effective p-wave interactions lead to the formation of a topological superfluid. Motivated by experiments which explore the physics of exotic interactions between atoms trapped inside optical cavities, I explore this system in a second project. I calculate the phase diagram of lattice bosons trapped in an optical cavity, where the cavity modes mediates effective global range checkerboard interactions between the atoms. I compare this phase diagram with one that was recently measured experimentally. In two other projects, I explore quantum simulation of condensed matter phenomena due to spin-dependent interactions between particles. I propose a method to produce tunable spin-dependent interactions between atoms, using an optical Feshbach resonance. In one project, I use these spin-dependent interactions in an ultracold Bose-Fermi system, and propose a method to produce the Kondo model. I propose an experiment to directly observe the Kondo effect in this system. In another project, I propose using lattice bosons with a large hyperfine spin
Directory of Open Access Journals (Sweden)
Jeong Ryeol Choi
2015-01-01
Full Text Available An adiabatic invariant, which is a conserved quantity, is useful for studying quantum and classical properties of dynamical systems. Adiabatic invariants for time-dependent superconducting qubit-oscillator systems and resonators are investigated using the Liouville-von Neumann equation. At first, we derive an invariant for a simple superconducting qubit-oscillator through the introduction of its reduced Hamiltonian. Afterwards, an adiabatic invariant for a nanomechanical resonator linearly interfaced with a superconducting circuit, via a coupling with a time-dependent strength, is evaluated using the technique of unitary transformation. The accuracy of conservation for such invariant quantities is represented in detail. Based on the results of our developments in this paper, perturbation theory is applicable to the research of quantum characteristics of more complicated qubit systems that are described by a time-dependent Hamiltonian involving nonlinear terms.
Kreisbeck, C; Kramer, T; Molina, R A
2017-04-20
We have performed time-dependent wave packet simulations of realistic Aharonov-Bohm (AB) devices with a quantum dot embedded in one of the arms of the interferometer. The AB ring can function as a measurement device for the intrinsic transmission phase through the quantum dot, however, care has to be taken in analyzing the influence of scattering processes in the junctions of the interferometer arms. We consider a harmonic quantum dot and show how the Darwin-Fock spectrum emerges as a unique pattern in the interference fringes of the AB oscillations.
Few-body correlations in many-body physics
Energy Technology Data Exchange (ETDEWEB)
Barth, Marcus
2015-12-01
In this thesis, various systems are analyzed in parameter regimes where the few-body aspects are dominant over the many-body behavior. Using the Operator Product Expansion from Quantum Field Theory, exact relations for observables of the electron gas as well as two-dimensional Fermi gases are derived. In addition, properties of both two-dimensional and three-dimensional cold quantum gases at small to moderate degeneracy are determined by means of a diagrammatic virial expansion.
Ziaei, Vafa; Bredow, Thomas
2018-05-01
An accurate theoretical prediction of ionization potential (IP) and electron affinity (EA) is key in understanding complex photochemical processes in aqueous environments. There have been numerous efforts in literature to accurately predict IP and EA of liquid water, however with often conflicting results depending on the level of theory and the underlying water structures. In a recent study based on hybrid-non-self-consistent many-body perturbation theory (MBPT) Gaiduk et al (2018 Nat. Commun. 9 247) predicted an IP of 10.2 eV and EA of 0.2 eV, resulting in an electronic band gap (i.e. electronic gap (IP-EA) as measured by photoelectron spectroscopy) of about 10 eV, redefining the widely cited experimental gap of 8.7 eV in literature. In the present work, we show that GW self-consistency and an implicit vertex correction in MBPT considerably affect recently reported EA values by Gaiduk et al (2018 Nat. Commun. 9 247) by about 1 eV. Furthermore, the choice of pseudo-potential is critical for an accurate determination of the absolute band positions. Consequently, the self-consistent GW approach with an implicit vertex correction based on projector augmented wave (PAW) method on top of quantum water structures predicts an IP of 10.2, an EA of 1.1, a fundamental gap of 9.1 eV and an exciton binding (Eb) energy of 0.9 eV for the first absorption band of liquid water via the Bethe–Salpeter equation (BSE). Only within such a self-consistent approach a simultanously accurate prediction of IP, EA, Eg, Eb is possible.
International Nuclear Information System (INIS)
Di Ventra, Massimiliano; Pantelides, Sokrates T.
2000-01-01
The conventional Hellmann-Feynman theorem for the definition of forces on nuclei is not directly applicable to quantum time-dependent and transport problems. We present a rigorous derivation of a general Hellmann-Feynman-like theorem that applies to all quantum mechanical systems and reduces to well-known results for ground-state problems. It provides a rigorous definition of forces in time-dependent and transport problems. Explicit forms of Pulay-like forces are derived and the conditions for them to be zero are identified. A practical scheme for ab initio calculations of current-induced forces is described and the study of the transfer of a Si atom between two electrodes is presented as an example. (c) 2000 The American Physical Society
Directory of Open Access Journals (Sweden)
Jeong Ryeol eChoi
2014-08-01
Full Text Available Quantum characteristics of a charged particle traveling under the influence of an external time-dependent magnetic field in ionized plasma are investigated using the invariant operator method. The Hamiltonian that gives the radial part of the classical equation of motion for the charged particle is dependent on time. The corresponding invariant operator that satisfies Liouville-von Neumann equation is constructed using fundamental relations. The exact radial wave functions are derived by taking advantage of the eigenstates of the invariant operator. Quantum properties of the system is studied using these wave functions. Especially, the time behavior of the radial component of the quantized energy is addressed in detail.
Directory of Open Access Journals (Sweden)
Muhammad Mus-’ab Anas
2015-01-01
Full Text Available This paper presents a systematic study of the absorption spectrum of various sizes of small hydrogenated silicon quantum dots of quasi-spherical symmetry using the time-dependent density functional theory (TDDFT. In this study, real-time and real-space implementation of TDDFT involving full propagation of the time-dependent Kohn-Sham equations were used. The experimental results for SiH4 and Si5H12 showed good agreement with other earlier calculations and experimental data. Then these calculations were extended to study larger hydrogenated silicon quantum dots with diameter up to 1.6 nm. It was found that, for small quantum dots, the absorption spectrum is atomic-like while, for relatively larger (1.6 nm structure, it shows bulk-like behavior with continuous plateau with noticeable peak. This paper also studied the absorption coefficient of silicon quantum dots as a function of their size. Precisely, the dependence of dot size on the absorption threshold is elucidated. It was found that the silicon quantum dots exhibit direct transition of electron from HOMO to LUMO states; hence this theoretical contribution can be very valuable in discerning the microscopic processes for the future realization of optoelectronic devices.
Thermalization dynamics in a quenched many-body state
Kaufman, Adam; Preiss, Philipp; Tai, Eric; Lukin, Alex; Rispoli, Matthew; Schittko, Robert; Greiner, Markus
2016-05-01
Quantum and classical many-body systems appear to have disparate behavior due to the different mechanisms that govern their evolution. The dynamics of a classical many-body system equilibrate to maximally entropic states and quickly re-thermalize when perturbed. The assumptions of ergodicity and unbiased configurations lead to a successful framework of describing classical systems by a sampling of thermal ensembles that are blind to the system's microscopic details. By contrast, an isolated quantum many-body system is governed by unitary evolution: the system retains memory of past dynamics and constant global entropy. However, even with differing characteristics, the long-term behavior for local observables in quenched, non-integrable quantum systems are often well described by the same thermal framework. We explore the onset of this convergence in a many-body system of bosonic atoms in an optical lattice. Our system's finite size allows us to verify full state purity and measure local observables. We observe rapid growth and saturation of the entanglement entropy with constant global purity. The combination of global purity and thermalized local observables agree with the Eigenstate Thermalization Hypothesis in the presence of a near-volume law in the entanglement entropy.
Entanglement between noncomplementary parts of many-body systems
International Nuclear Information System (INIS)
Wichterich, Hannu Christian
2011-01-01
This thesis investigates the structure and behaviour of entanglement, the purely quantum mechanical part of correlations, in many-body systems, employing both numerical and analytical techniques at the interface of condensed matter theory and quantum information theory. Entanglement can be seen as a precious resource which, for example, enables the noiseless and instant transmission of quantum information, provided the communicating parties share a sufficient ''amount'' of it. Furthermore, measures of entanglement of a quantum mechanical state are perceived as useful probes of collective properties of many-body systems. For instance, certain measures are capable of detecting and classifying ground-state phases and, particularly, transition (or critical) points separating such phases. Chapters 2 and 3 focus on entanglement in many-body systems and its use as a potential resource for communication protocols. They address the questions of how a substantial amount of entanglement can be established between distant subsystems, and how efficiently this entanglement could be ''harvested'' by way of measurements. The subsequent chapters 4 and 5 are devoted to universality of entanglement between large collections of particles undergoing a quantum phase transition, where, despite the enormous complexity of these systems, collective properties including entanglement no longer depend crucially on the microscopic details. (orig.)
Time-dependent perturbation of a two-state quantum mechanical system
Dion, D. R.
1974-01-01
A two- (nondegenerate) level quantum system interacting with a classical monochromatic radiation field is described. The existing work on this problem is reviewed and some novel aspects of the problems are presented.
The relativistic atomic many-body problem
International Nuclear Information System (INIS)
Brown, G.E.
1987-01-01
Problems connected with the infinite negative energy sea of electrons in the atomic many-body problem are discussed. It is shown that as long as one works in mean-field approximations, wave functions do not need to suffer from continuum dissociation. Various effects from virtual pairs in the wave functions are discussed. (orig.)
Many body perturbation calculations of photoionization
International Nuclear Information System (INIS)
Kelly, H.P.
1979-01-01
The application of many body perturbation theory to the calculation of atomic photoionization cross sections is reviewed. The choice of appropriate potential for the single-particle state is discussed and results are presented for several atoms including resonance structure. In addition to single photoionization, the process of double photoionization is considered and is found to be significant. (Auth.)
Review of many-body calculations
International Nuclear Information System (INIS)
Kelly, H.P.
1981-01-01
A brief review is given of many-body perturbation theory and its application to atomic physics. Particular attention is given to the choice of single-particle potential used to generate excited states. Applications to many atomic properties are discussed including hyperfine structure, photoabsorption including multiple processes, and parity non-conserving transitions in heavy atoms
International Nuclear Information System (INIS)
Kotler, Z.; Neria, E.; Nitzan, A.
1991-01-01
The use of the time-dependent self-consistent field approximation (TDSCF) in the numerical solution of quantum curve crossing and tunneling dynamical problems is investigated. Particular emphasis is given to multiconfiguration TDSCF (MCTDSCF) approximations, which are shown to perform considerably better with only a small increase in computational effort. We investigate a number of simple models in which a 'system' characterized by two electronic potential surfaces evolves while interacting with a 'bath' mode described by an harmonic oscillator, and compare exact numerical solutions to one- and two-configuration TDSCF approximations. We also introduce and investigate a semiclassical approximation in which the 'bath' mode is described by semiclassical wavepackets (one for each electronic state) and show that for all models investigated this scheme works very well in comparison with the fully quantum MCTDSCF approximation. This provides a potentially very useful method to simulate strongly quantum systems coupled to an essentially classical environment. (orig.)
Compact versus noncompact quantum dynamics of time-dependent su(1,1)-valued Hamiltonians
International Nuclear Information System (INIS)
Penna, V.
1996-01-01
We consider the Schroedinger problem for time-dependent (TD) Hamiltonians represented by a linear combination of the compact generator and the hyperbolic generator of su(1,1). Several types of transitions, characterized by different time initial conditions on the generator coefficients, are analyzed by resorting to the harmonic oscillator model with a frequency vanishing for t→+∞. We provide examples that point out how the TD states of the transitions can be constructed either by the compact eigenvector basis or by the noncompact eigenvector basis depending on the initial conditions characterizing the frequency time behavior. Copyright copyright 1996 Academic Press, Inc
Unitarity Bounds and RG Flows in Time Dependent Quantum Field Theory
Energy Technology Data Exchange (ETDEWEB)
Dong, Xi; Horn, Bart; Silverstein, Eva; Torroba, Gonzalo; /Stanford U., ITP /Stanford U., Phys. Dept. /SLAC
2012-04-05
We generalize unitarity bounds on operator dimensions in conformal field theory to field theories with spacetime dependent couplings. Below the energy scale of spacetime variation of the couplings, their evolution can strongly affect the physics, effectively shifting the infrared operator scaling and unitarity bounds determined from correlation functions in the theory. We analyze this explicitly for large-N double-trace flows, and connect these to UV complete field theories. One motivating class of examples comes from our previous work on FRW holography, where this effect explains the range of flavors allowed in the dual, time dependent, field theory.
Exactly solvable quantum state reduction models with time-dependent coupling
International Nuclear Information System (INIS)
Brody, Dorje C; Constantinou, Irene C; Dear, James D C; Hughston, Lane P
2006-01-01
A closed-form solution to the energy-based stochastic Schroedinger equation with a time-dependent coupling is obtained. The solution is algebraic in character, and is expressed directly in terms of independent random data. The data consist of (i) a random variable H which has the distribution P(H=E i ) = π i , where π i is the transition probability vertical bar (ψ 0 vertical bar Φ i ) vertical bar 2 from the initial state vertical bar ψ 0 ) to the Lueders state vertical bar Φ i ) with energy E i , and (ii) an independent P-Brownian motion, where P is the physical probability measure associated with the dynamics of the reduction process. When the coupling is time independent, it is known that state reduction occurs asymptotically-that is to say, over an infinite time horizon. In the case of a time-dependent coupling, we show that if the magnitude of the coupling decreases sufficiently rapidly, then the energy variance will be reduced under the dynamics, but the state need not reach an energy eigenstate. This situation corresponds to the case of a 'partial' or 'incomplete' measurement of the energy. We also construct an example of a model where the opposite situation prevails, in which complete state reduction is achieved after the passage of a finite period of time
Universal Properties of Many-Body Delocalization Transitions
Directory of Open Access Journals (Sweden)
Andrew C. Potter
2015-09-01
Full Text Available We study the dynamical melting of “hot” one-dimensional many-body localized systems. As disorder is weakened below a critical value, these nonthermal quantum glasses melt via a continuous dynamical phase transition into classical thermal liquids. By accounting for collective resonant tunneling processes, we derive and numerically solve an effective model for such quantum-to-classical transitions and compute their universal critical properties. Notably, the classical thermal liquid exhibits a broad regime of anomalously slow subdiffusive equilibration dynamics and energy transport. The subdiffusive regime is characterized by a continuously evolving dynamical critical exponent that diverges with a universal power at the transition. Our approach elucidates the universal long-distance, low-energy scaling structure of many-body delocalization transitions in one dimension, in a way that is transparently connected to the underlying microscopic physics. We discuss experimentally testable signatures of the predicted scaling properties.
Many-body dynamics with cold atoms and molecules in optical lattices
International Nuclear Information System (INIS)
Schachenmayer, J.
2012-01-01
Systems of cold atoms or molecules, trapped in a periodic potential formed from standing waves of laser light, provide an experimental possibility to study strongly correlated many-body lattice models, which are traditionally used in condensed matter physics. Due to the relatively weak energy scales in these ''optical lattices'' (next-neighbor tunneling energies are typically on the order of tens of Hertz), the time-scales of the dynamics in these systems is relatively slow and can be observed in experiments. Furthermore, the microscopic parameters of the models can be very well controlled by lattice laser intensities and external fields. Thus, optical lattices provide an excellent framework to study many-body quantum non-equilibrium dynamics, which on the theoretical level is the topic of this thesis. This thesis contains a study of many-body dynamics in optical lattices for both idealized isolated models and realistic models with imperfections. It is centered around four main topics: The first two topics are studies of coherent many-body dynamics. This contains explicitly: (i) an analysis of the possibility to dynamically prepare crystalline states of Rydberg atoms or polar molecules by adiabatically tuning laser parameters; and (ii) a study of the collapses and revivals of the momentum-distribution of a Bose-Einstein condensate with a fixed number of atoms, which is suddenly loaded into a deep optical lattice. The third main topic is entanglement and specifically the dynamical growth of entanglement between portions of an optical lattice in quench experiments. A method to create and measure large-scale entanglement is presented in this thesis. The fourth main topic addresses classical noise. Specifically, a system of atoms in an optical lattice, which is created from lasers with intensity fluctuations, is analyzed in this work. The noisy evolution of many-body correlation functions is studied and a method to cancel this noise in a realistic experimental setup is
International Nuclear Information System (INIS)
Scully, M O
2008-01-01
The time dependent Schrodinger equation is frequently 'derived' by postulating the energy E → i h-bar (∂/∂t) and momentum p-vector → ( h-bar /i)∇ operator relations. In the present paper we review the quantum field theoretic route to the Schrodinger wave equation which treats time and space as parameters, not operators. Furthermore, we recall that a classical (nonlinear) wave equation can be derived from the classical action via Hamiltonian-Jacobi theory. By requiring the wave equation to be linear we again arrive at the Schrodinger equation, without postulating operator relations. The underlying philosophy is operational: namely 'a particle is what a particle detector detects.' This leads us to a useful physical picture combining the wave (field) and particle paradigms which points the way to the time-dependent Schrodinger equation
International Nuclear Information System (INIS)
Nikitin, N. V.; Sotnikov, V.P.; Toms, K. S.
2015-01-01
A radically new class of Bell inequalities in Wigner’s form was obtained on the basis of Kolmorov’s axiomatization of probability theory and the hypothesis of locality. These inequalities take explicitly into account the dependence on time (time-dependent Bell inequalities in Wigner’s form). By using these inequalities, one can propose a means for experimentally testing Bohr’ complementarity principle in the relativistic region. The inequalities in question open broad possibilities for studying correlations of nonrelativistic and relativistic quantum systems in external fields. The violation of the time-dependent inequalities in quantum mechanics was studied by considering the behavior of a pair of anticorrelated spins in a constant external magnetic field and oscillations of neutral pseudoscalar mesons. The decay of a pseudoscalar particle to a fermion–antifermion pair is considered within quantum field theory. In order to test experimentally the inequalities proposed in the present study, it is not necessary to perform dedicated noninvasive measurements required in the Leggett–Garg approach, for example
Energy Technology Data Exchange (ETDEWEB)
Nikitin, N. V., E-mail: nnikit@mail.cern.ch; Sotnikov, V.P., E-mail: sotnikov@physics.msu.ru [Moscow State University, Faculty of Physics (Russian Federation); Toms, K. S., E-mail: ktoms@mail.cern.ch [The University of New Mexico, Department of Physics and Astronomy (United States)
2015-10-15
A radically new class of Bell inequalities in Wigner’s form was obtained on the basis of Kolmorov’s axiomatization of probability theory and the hypothesis of locality. These inequalities take explicitly into account the dependence on time (time-dependent Bell inequalities in Wigner’s form). By using these inequalities, one can propose a means for experimentally testing Bohr’ complementarity principle in the relativistic region. The inequalities in question open broad possibilities for studying correlations of nonrelativistic and relativistic quantum systems in external fields. The violation of the time-dependent inequalities in quantum mechanics was studied by considering the behavior of a pair of anticorrelated spins in a constant external magnetic field and oscillations of neutral pseudoscalar mesons. The decay of a pseudoscalar particle to a fermion–antifermion pair is considered within quantum field theory. In order to test experimentally the inequalities proposed in the present study, it is not necessary to perform dedicated noninvasive measurements required in the Leggett–Garg approach, for example.
Theory of many-body localization in periodically driven systems
International Nuclear Information System (INIS)
Abanin, Dmitry A.; De Roeck, Wojciech; Huveneers, François
2016-01-01
We present a theory of periodically driven, many-body localized (MBL) systems. We argue that MBL persists under periodic driving at high enough driving frequency: The Floquet operator (evolution operator over one driving period) can be represented as an exponential of an effective time-independent Hamiltonian, which is a sum of quasi-local terms and is itself fully MBL. We derive this result by constructing a sequence of canonical transformations to remove the time-dependence from the original Hamiltonian. When the driving evolves smoothly in time, the theory can be sharpened by estimating the probability of adiabatic Landau–Zener transitions at many-body level crossings. In all cases, we argue that there is delocalization at sufficiently low frequency. We propose a phase diagram of driven MBL systems.
Efficient numerical simulations of many-body localized systems
Energy Technology Data Exchange (ETDEWEB)
Pollmann, Frank [Max-Planck-Institut fuer Physik komplexer Systeme, 01187 Dresden (Germany); Khemani, Vedika; Sondhi, Shivaji [Physics Department, Princeton University, Princeton, NJ 08544 (United States)
2016-07-01
Many-body localization (MBL) occurs in isolated quantum systems when Anderson localization persists in the presence of finite interactions. To understand this phenomenon, the development of new, efficient numerical methods to find highly excited eigenstates is essential. We introduce a variant of the density-matrix renormalization group (DMRG) method that obtains individual highly excited eigenstates of MBL systems to machine precision accuracy at moderate-large disorder. This method explicitly takes advantage of the local spatial structure characterizing MBL eigenstates.
Entanglement replication in driven dissipative many-body systems.
Zippilli, S; Paternostro, M; Adesso, G; Illuminati, F
2013-01-25
We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks.
Chiral symmetry and many-body forces in nuclei
International Nuclear Information System (INIS)
Nyman, E.M.; Rho, M.
1976-01-01
It is demonstrated that when quantum corrections are added, chiral Lagrangians need not generate strong many-body forces as they do in tree approximation. It is suggested that a physically reasonable procedure is to adjust the sigma-model parameters so as not to conflict with the current status of nuclear theory. As a consequence, the equilibrium density of abnormal states could be pushed up further, and the binding energy be considerably reduced. (Auth.)
Many-body orthogonal polynomial systems
International Nuclear Information System (INIS)
Witte, N.S.
1997-03-01
The fundamental methods employed in the moment problem, involving orthogonal polynomial systems, the Lanczos algorithm, continued fraction analysis and Pade approximants has been combined with a cumulant approach and applied to the extensive many-body problem in physics. This has yielded many new exact results for many-body systems in the thermodynamic limit - for the ground state energy, for excited state gaps, for arbitrary ground state avenges - and are of a nonperturbative nature. These results flow from a confluence property of the three-term recurrence coefficients arising and define a general class of many-body orthogonal polynomials. These theorems constitute an analytical solution to the Lanczos algorithm in that they are expressed in terms of the three-term recurrence coefficients α and β. These results can also be applied approximately for non-solvable models in the form of an expansion, in a descending series of the system size. The zeroth order order this expansion is just the manifestation of the central limit theorem in which a Gaussian measure and hermite polynomials arise. The first order represents the first non-trivial order, in which classical distribution functions like the binomial distributions arise and the associated class of orthogonal polynomials are Meixner polynomials. Amongst examples of systems which have infinite order in the expansion are q-orthogonal polynomials where q depends on the system size in a particular way. (author)
Probing many-body interactions in an optical lattice clock
Energy Technology Data Exchange (ETDEWEB)
Rey, A.M., E-mail: arey@jilau1.colorado.edu [JILA, NIST and University of Colorado, Department of Physics, Boulder, CO 80309 (United States); Gorshkov, A.V. [Joint Quantum Institute, NIST and University of Maryland, Department of Physics, College Park, MD 20742 (United States); Kraus, C.V. [Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck (Austria); Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck (Austria); Martin, M.J. [JILA, NIST and University of Colorado, Department of Physics, Boulder, CO 80309 (United States); Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125 (United States); Bishof, M.; Swallows, M.D.; Zhang, X.; Benko, C.; Ye, J. [JILA, NIST and University of Colorado, Department of Physics, Boulder, CO 80309 (United States); Lemke, N.D.; Ludlow, A.D. [National Institute of Standards and Technology, Boulder, CO 80305 (United States)
2014-01-15
We present a unifying theoretical framework that describes recently observed many-body effects during the interrogation of an optical lattice clock operated with thousands of fermionic alkaline earth atoms. The framework is based on a many-body master equation that accounts for the interplay between elastic and inelastic p-wave and s-wave interactions, finite temperature effects and excitation inhomogeneity during the quantum dynamics of the interrogated atoms. Solutions of the master equation in different parameter regimes are presented and compared. It is shown that a general solution can be obtained by using the so called Truncated Wigner Approximation which is applied in our case in the context of an open quantum system. We use the developed framework to model the density shift and decay of the fringes observed during Ramsey spectroscopy in the JILA {sup 87}Sr and NIST {sup 171}Yb optical lattice clocks. The developed framework opens a suitable path for dealing with a variety of strongly-correlated and driven open-quantum spin systems. -- Highlights: •Derived a theoretical framework that describes many-body effects in a lattice clock. •Validated the analysis with recent experimental measurements. •Demonstrated the importance of beyond mean field corrections in the dynamics.
International Nuclear Information System (INIS)
Castro, A; Gross, E K U
2014-01-01
We derive the fundamental equations of an optimal control theory for systems containing both quantum electrons and classical ions. The system is modeled with Ehrenfest dynamics, a non-adiabatic variant of molecular dynamics. The general formulation, that needs the fully correlated many-electron wavefunction, can be simplified by making use of time-dependent density-functional theory. In this case, the optimal control equations require some modifications that we will provide. The abstract general formulation is complemented with the simple example of the H 2 + molecule in the presence of a laser field. (paper)
From localized to extended states in a time-dependent quantum model
International Nuclear Information System (INIS)
Jose, J.V.
1986-01-01
The problem of a particle inside a rigid box with one of the walls oscillating periodically in time is studied quantum mechanically. In the classical limit, this model was introduced by Fermi in the context of cosmic ray physics. The classical solutions can go from being quasiperiodic to chaotic, as a function of the amplitude of the wall oscillation. In the quantum case, the authors calculate the spectral properties of the corresponding evolution operator, i.e.: the quasi-energy eigenvalues and eigenvectors. The specific form of the wall oscillation, e.g. iota(t) = √ 1 + 2δabsolute value of t, with absolute value of t ≤ 1/2, and iota(t + 1) = iota(t), is essential to the solutions presented here. It is found that as h increases with δ fixed, the nearest neighbor separation between quasi-energy eigenvalues changes from showing no energy level repulsion to energy level repulsion. This transition, from Poisson-like statistics to Gaussian-Orthogonal-Ensemble-like statistics is tested by looking at the distribution of quasi-energy level nearest neighbor separations and the Δ/sub e/(L) statistics. these results are also correlated to a transition between localized to extended states in energy space. The possible relevance of the results presented here to experiments in quasi-one-dimensional atoms is also discussed
International Nuclear Information System (INIS)
Hebenstreit, F.; Alkofer, R.; Gies, H.
2010-01-01
The nonperturbative electron-positron pair production (Schwinger effect) is considered for space- and time-dependent electric fields E-vector(x-vector,t). Based on the Dirac-Heisenberg-Wigner formalism, we derive a system of partial differential equations of infinite order for the 16 irreducible components of the Wigner function. In the limit of spatially homogeneous fields the Vlasov equation of quantum kinetic theory is rediscovered. It is shown that the quantum kinetic formalism can be exactly solved in the case of a constant electric field E(t)=E 0 and the Sauter-type electric field E(t)=E 0 sech 2 (t/τ). These analytic solutions translate into corresponding expressions within the Dirac-Heisenberg-Wigner formalism and allow to discuss the effect of higher derivatives. We observe that spatial field variations typically exert a strong influence on the components of the Wigner function for large momenta or for late times.
Elizaga Navascués, Beatriz; Martín de Blas, Daniel; Mena Marugán, Guillermo A.
2018-02-01
Loop quantum cosmology has recently been applied in order to extend the analysis of primordial perturbations to the Planck era and discuss the possible effects of quantum geometry on the cosmic microwave background. Two approaches to loop quantum cosmology with admissible ultraviolet behavior leading to predictions that are compatible with observations are the so-called hybrid and dressed metric approaches. In spite of their similarities and relations, we show in this work that the effective equations that they provide for the evolution of the tensor and scalar perturbations are somewhat different. When backreaction is neglected, the discrepancy appears only in the time-dependent mass term of the corresponding field equations. We explain the origin of this difference, arising from the distinct quantization procedures. Besides, given the privileged role that the big bounce plays in loop quantum cosmology, e.g. as a natural instant of time to set initial conditions for the perturbations, we also analyze the positivity of the time-dependent mass when this bounce occurs. We prove that the mass of the tensor perturbations is positive in the hybrid approach when the kinetic contribution to the energy density of the inflaton dominates over its potential, as well as for a considerably large sector of backgrounds around that situation, while this mass is always nonpositive in the dressed metric approach. Similar results are demonstrated for the scalar perturbations in a sector of background solutions that includes the kinetically dominated ones; namely, the mass then is positive for the hybrid approach, whereas it typically becomes negative in the dressed metric case. More precisely, this last statement is strictly valid when the potential is quadratic for values of the inflaton mass that are phenomenologically favored.
Thermodynamical and Green function many-body Wick theorems
International Nuclear Information System (INIS)
Westwanski, B.
1987-01-01
The thermodynamical and Green function many-body reduction theorems of Wick type are proved for the arbitrary mixtures of the fermion, boson and spin systems. ''Many-body'' means that the operators used are the products of the arbitrary number of one-body standard basis operators [of the fermion or (and) spin types] with different site (wave vector) indices, but having the same ''time'' (in the interaction representation). The method of proving is based on'' 1) the first-order differential equation of Schwinger type for: 1a) anti T-product of operators; 1b) its average value; 2) KMS boundary conditions for this average. It is shown that the fermion, boson and spin systems can be unified in the many-body formulation (bosonification of the fermion systems). It is impossible in the one-body approach. Both of the many-body versions of the Wick theorem have the recurrent feature: nth order moment diagrams for the free energy or Green functions can be expressed by the (n-1)th order ones. This property corresponds to the automatic realization of: (i) summations over Bose-Einstein or (and) Fermi-Dirac frequencies; (ii) elimination of Bose-Einstein or (and) Fermi-Dirac distributions. The procedures (i) and (ii), being the results of using the Green function one-body reduction theorem, have constituted the significant difficulty up to now in the treatment of quantum systems. (orig.)
Nuclear, particle and many body physics
Morse, Philip M; Feshbach, Herman
2013-01-01
Nuclear, Particle and Many Body Physics, Volume II, is the second of two volumes dedicated to the memory of physicist Amos de-Shalit. The contributions in this volume are a testament to the respect he earned as a physicist and of the warm and rich affection he commanded as a personal friend. The book contains 41 chapters and begins with a study on the renormalization of rational Lagrangians. Separate chapters cover the scattering of high energy protons by light nuclei; approximation of the dynamics of proton-neutron systems; the scattering amplitude for the Gaussian potential; Coulomb excitati
Kim, Ilki; von Spakovsky, Michael R.
2017-08-01
Quantum systems driven by time-dependent Hamiltonians are considered here within the framework of steepest-entropy-ascent quantum thermodynamics (SEAQT) and used to study the thermodynamic characteristics of such systems. In doing so, a generalization of the SEAQT framework valid for all such systems is provided, leading to the development of an ab initio physically relevant expression for the intrarelaxation time, an important element of this framework and one that had as of yet not been uniquely determined as an integral part of the theory. The resulting expression for the relaxation time is valid as well for time-independent Hamiltonians as a special case and makes the description provided by the SEAQT framework more robust at the fundamental level. In addition, the SEAQT framework is used to help resolve a fundamental issue of thermodynamics in the quantum domain, namely, that concerning the unique definition of process-dependent work and heat functions. The developments presented lead to the conclusion that this framework is not just an alternative approach to thermodynamics in the quantum domain but instead one that uniquely sheds new light on various fundamental but as of yet not completely resolved questions of thermodynamics.
Non-equilibrium many body dynamics
International Nuclear Information System (INIS)
Creutz, M.; Gyulassy, M.
1997-01-01
This Riken BNL Research Center Symposium on Non-Equilibrium Many Body Physics was held on September 23-25, 1997 as part of the official opening ceremony of the Center at Brookhaven National Lab. A major objective of theoretical work at the center is to elaborate on the full spectrum of strong interaction physics based on QCD, including the physics of confinement and chiral symmetry breaking, the parton structure of hadrons and nuclei, and the phenomenology of ultra-relativistic nuclear collisions related to the up-coming experiments at RHIC. The opportunities and challenges of nuclear and particle physics in this area naturally involve aspects of the many body problem common to many other fields. The aim of this symposium was to find common theoretical threads in the area of non-equilibrium physics and modern transport theories. The program consisted of invited talks on a variety topics from the fields of atomic, condensed matter, plasma, astrophysics, cosmology, and chemistry, in addition to nuclear and particle physics. Separate abstracts have been indexed into the database for contributions to this workshop
Non-equilibrium many body dynamics
Energy Technology Data Exchange (ETDEWEB)
Creutz, M.; Gyulassy, M.
1997-09-22
This Riken BNL Research Center Symposium on Non-Equilibrium Many Body Physics was held on September 23-25, 1997 as part of the official opening ceremony of the Center at Brookhaven National Lab. A major objective of theoretical work at the center is to elaborate on the full spectrum of strong interaction physics based on QCD, including the physics of confinement and chiral symmetry breaking, the parton structure of hadrons and nuclei, and the phenomenology of ultra-relativistic nuclear collisions related to the up-coming experiments at RHIC. The opportunities and challenges of nuclear and particle physics in this area naturally involve aspects of the many body problem common to many other fields. The aim of this symposium was to find common theoretical threads in the area of non-equilibrium physics and modern transport theories. The program consisted of invited talks on a variety topics from the fields of atomic, condensed matter, plasma, astrophysics, cosmology, and chemistry, in addition to nuclear and particle physics. Separate abstracts have been indexed into the database for contributions to this workshop.
Solvable Family of Driven-Dissipative Many-Body Systems
Foss-Feig, Michael; Young, Jeremy T.; Albert, Victor V.; Gorshkov, Alexey V.; Maghrebi, Mohammad F.
2017-11-01
Exactly solvable models have played an important role in establishing the sophisticated modern understanding of equilibrium many-body physics. Conversely, the relative scarcity of solutions for nonequilibrium models greatly limits our understanding of systems away from thermal equilibrium. We study a family of nonequilibrium models, some of which can be viewed as dissipative analogues of the transverse-field Ising model, in that an effectively classical Hamiltonian is frustrated by dissipative processes that drive the system toward states that do not commute with the Hamiltonian. Surprisingly, a broad and experimentally relevant subset of these models can be solved efficiently. We leverage these solutions to compute the effects of decoherence on a canonical trapped-ion-based quantum computation architecture, and to prove a no-go theorem on steady-state phase transitions in a many-body model that can be realized naturally with Rydberg atoms or trapped ions.
International Nuclear Information System (INIS)
Amusia, M Ya
2011-01-01
Contrary to common wisdom, not everything is clear and simple in the structure of many-electron atoms. Complexity in atoms is mainly a result of interelectron interaction that leads to rather unusual behaviour. Most transparently this is manifested in photo-ionization processes of many-electron atoms and some multi-atomic objects e.g. endohedrals. Particular attention will be given to the approach describing the interaction of photons with many-electron atoms in the frame of the many-body theory based on the Feynman diagrams technique. As a suitable one-electron approximation the Hartree - Fock (HF) approach will be presented. On its ground we will include the so-called electron correlation effects and discuss the frequently used Random Phase Approximation with Exchange - RPAE. Some results of recent calculations will be presented.
Energy Technology Data Exchange (ETDEWEB)
Amusia, M Ya, E-mail: amusia@vms.huji.ac.il [Racah Institute of Physics, The Hebrew University, Jerusalem (Israel); Ioffe Physical-technical Institute, RAS, St. Petersburg (Russian Federation)
2011-09-16
Contrary to common wisdom, not everything is clear and simple in the structure of many-electron atoms. Complexity in atoms is mainly a result of interelectron interaction that leads to rather unusual behaviour. Most transparently this is manifested in photo-ionization processes of many-electron atoms and some multi-atomic objects e.g. endohedrals. Particular attention will be given to the approach describing the interaction of photons with many-electron atoms in the frame of the many-body theory based on the Feynman diagrams technique. As a suitable one-electron approximation the Hartree - Fock (HF) approach will be presented. On its ground we will include the so-called electron correlation effects and discuss the frequently used Random Phase Approximation with Exchange - RPAE. Some results of recent calculations will be presented.
Intermittent many-body dynamics at equilibrium
Danieli, C.; Campbell, D. K.; Flach, S.
2017-06-01
The equilibrium value of an observable defines a manifold in the phase space of an ergodic and equipartitioned many-body system. A typical trajectory pierces that manifold infinitely often as time goes to infinity. We use these piercings to measure both the relaxation time of the lowest frequency eigenmode of the Fermi-Pasta-Ulam chain, as well as the fluctuations of the subsequent dynamics in equilibrium. The dynamics in equilibrium is characterized by a power-law distribution of excursion times far off equilibrium, with diverging variance. Long excursions arise from sticky dynamics close to q -breathers localized in normal mode space. Measuring the exponent allows one to predict the transition into nonergodic dynamics. We generalize our method to Klein-Gordon lattices where the sticky dynamics is due to discrete breathers localized in real space.
Current algebras and many-body physics
International Nuclear Information System (INIS)
Albertin, U.K.
1989-01-01
Several applications of current algebras in many body physics are examined. The first is the interacting Bose gas in three dimensions. Theories for phonons, vortices and rotons are all described within the current algebra formalism. Next the one dimensional electron gas is examined within the approximation of linear dispersion so that relativistic current algebra techniques may be used. The relation with Thirring strings and compactified boson models is examined, and points of enhanced symmetry in the compactified boson models are shown to lie on phase transition lines for the electron gas. Finally, mathematical aspects of the current algebra are studied. The theory of induced representations of the diffeomorphism group are used to describe the Aharanov-Bohm effect, the thermodynamics of the Bose gas, and the Bose gas in the presence of vortex filaments
Interferometric probes of many-body localization.
Serbyn, M; Knap, M; Gopalakrishnan, S; Papić, Z; Yao, N Y; Laumann, C R; Abanin, D A; Lukin, M D; Demler, E A
2014-10-03
We propose a method for detecting many-body localization (MBL) in disordered spin systems. The method involves pulsed coherent spin manipulations that probe the dephasing of a given spin due to its entanglement with a set of distant spins. It allows one to distinguish the MBL phase from a noninteracting localized phase and a delocalized phase. In particular, we show that for a properly chosen pulse sequence the MBL phase exhibits a characteristic power-law decay reflecting its slow growth of entanglement. We find that this power-law decay is robust with respect to thermal and disorder averaging, provide numerical simulations supporting our results, and discuss possible experimental realizations in solid-state and cold-atom systems.
Many-body approaches to nuclear physics
International Nuclear Information System (INIS)
Hjorth-Jensen, M.
1993-10-01
This thesis deals with applications of perturbative many-body theories to selected nuclear systems at low and intermediate energies. Examples are the properties of neutron stars, the calculation of shell-model effective interactions and the microscopic derivation of the optical-model potential for finite nuclei. The line of research leans on the microscopic approach, i.e. an approach which aims at describing nuclear properties from the underlying free interaction between the various hadrons where parameters like meson coupling constants define the Lagrangians. The emphasis is on the behavior of the various components of the free interaction in different nuclear media in order to understand how these components are affected by the studied nuclear correlations. 159 refs
Energy Technology Data Exchange (ETDEWEB)
Kotler, Z.; Neria, E.; Nitzan, A. (Tel Aviv Univ. (Israel). School of Chemistry)
1991-02-01
The use of the time-dependent self-consistent field approximation (TDSCF) in the numerical solution of quantum curve crossing and tunneling dynamical problems is investigated. Particular emphasis is given to multiconfiguration TDSCF (MCTDSCF) approximations, which are shown to perform considerably better with only a small increase in computational effort. We investigate a number of simple models in which a 'system' characterized by two electronic potential surfaces evolves while interacting with a 'bath' mode described by an harmonic oscillator, and compare exact numerical solutions to one- and two-configuration TDSCF approximations. We also introduce and investigate a semiclassical approximation in which the 'bath' mode is described by semiclassical wavepackets (one for each electronic state) and show that for all models investigated this scheme works very well in comparison with the fully quantum MCTDSCF approximation. This provides a potentially very useful method to simulate strongly quantum systems coupled to an essentially classical environment. (orig.).
The mathematical description of resonances in many-body systems
International Nuclear Information System (INIS)
Orth, A.
1985-01-01
We introduce a characterization for quantum-mechanical resonance and use it in order to detect for certain distinct physical states an especially slow decay behaviour. We apply these results to a model of the quantum-mechanical many-body problem and obtain so a mathematical description of the Auger effect (self-ionization of atoms). The class of the interaction potentials admitted for our theory is compared with other theories on resonances extremely large. We establish differentiability conditions and conditions on the fading behaviour in the infinite. Especially the Coulomb potential and the Yukawa potential belong to our class but also non-spherical-symmetric and non-analytic potentials with a Coulomb-like singularity in the origin, two- to threefold differentiable which tend to zero at the infinite. In the introduction we discuss extensively also by means of some examples the problematics of the quantum-mechanical resonance. (orig.) [de
Exactly solvable models in many-body theory
March, N H
2016-01-01
The book reviews several theoretical, mostly exactly solvable, models for selected systems in condensed states of matter, including the solid, liquid, and disordered states, and for systems of few or many bodies, both with boson, fermion, or anyon statistics. Some attention is devoted to models for quantum liquids, including superconductors and superfluids. Open problems in relativistic fields and quantum gravity are also briefly reviewed.The book ranges almost comprehensively, but concisely, across several fields of theoretical physics of matter at various degrees of correlation and at different energy scales, with relevance to molecular, solid-state, and liquid-state physics, as well as to phase transitions, particularly for quantum liquids. Mostly exactly solvable models are presented, with attention also to their numerical approximation and, of course, to their relevance for experiments.
Many-body formalism for fermions: The partition function
Watson, D. K.
2017-09-01
The partition function, a fundamental tenet in statistical thermodynamics, contains in principle all thermodynamic information about a system. It encapsulates both microscopic information through the quantum energy levels and statistical information from the partitioning of the particles among the available energy levels. For identical particles, this statistical accounting is complicated by the symmetry requirements of the allowed quantum states. In particular, for Fermi systems, the enforcement of the Pauli principle is typically a numerically demanding task, responsible for much of the cost of the calculations. The interplay of these three elements—the structure of the many-body spectrum, the statistical partitioning of the N particles among the available levels, and the enforcement of the Pauli principle—drives the behavior of mesoscopic and macroscopic Fermi systems. In this paper, we develop an approach for the determination of the partition function, a numerically difficult task, for systems of strongly interacting identical fermions and apply it to a model system of harmonically confined, harmonically interacting fermions. This approach uses a recently introduced many-body method that is an extension of the symmetry-invariant perturbation method (SPT) originally developed for bosons. It uses group theory and graphical techniques to avoid the heavy computational demands of conventional many-body methods which typically scale exponentially with the number of particles. The SPT application of the Pauli principle is trivial to implement since it is done "on paper" by imposing restrictions on the normal-mode quantum numbers at first order in the perturbation. The method is applied through first order and represents an extension of the SPT method to excited states. Our method of determining the partition function and various thermodynamic quantities is accurate and efficient and has the potential to yield interesting insight into the role played by the Pauli
Atomic many-body theory of giant resonances
International Nuclear Information System (INIS)
Kelly, H.P.; Altun, Z.
1987-01-01
In this paper the use of many-body perturbation theory (MBPT) to include effects of electron correlations is discussed. The various physical processes contributing to the broad photoionization cross sections of the rare gases are studied in terms of the relevant many-body diagrams. Use of the random phase approximation with exchange (RPAE) is discussed by Amusia and Cherepkov. Calculations using the relativistic RPAE are reviewed by Johnson. In addition, many-body perturbation theory (MBPT) is used to study resonances which are due to excitation of bound states degenerate with the continuum. Very interesting giant resonance structure can occur when an inner shell electron is excited into a vacant open-shell orbital of the same principal quantum number. A particular example which is studied is the neutral manganese atom 3p 6 3d 5 4s 2 ( 6 S), in which the spins of the five 3d electrons are aligned. A very large resonance occurs in the 3d and 4s cross sections due to 3p → 3d excitation near 51 eV, and calculations of this resonance by MBPT and RPAE are discussed. A second example of this type of resonance occurs in open-shell rare-earth atoms with configurations 4d 10 4f/sup n/5s 2 5p 6 s 2 . Calculations and experimental results will be discussed for the case of europium with a half-filled sub-shell 4f 7 . 71 references, 15 figures
Probing many-body localization with neural networks
Schindler, Frank; Regnault, Nicolas; Neupert, Titus
2017-06-01
We show that a simple artificial neural network trained on entanglement spectra of individual states of a many-body quantum system can be used to determine the transition between a many-body localized and a thermalizing regime. Specifically, we study the Heisenberg spin-1/2 chain in a random external field. We employ a multilayer perceptron with a single hidden layer, which is trained on labeled entanglement spectra pertaining to the fully localized and fully thermal regimes. We then apply this network to classify spectra belonging to states in the transition region. For training, we use a cost function that contains, in addition to the usual error and regularization parts, a term that favors a confident classification of the transition region states. The resulting phase diagram is in good agreement with the one obtained by more conventional methods and can be computed for small systems. In particular, the neural network outperforms conventional methods in classifying individual eigenstates pertaining to a single disorder realization. It allows us to map out the structure of these eigenstates across the transition with spatial resolution. Furthermore, we analyze the network operation using the dreaming technique to show that the neural network correctly learns by itself the power-law structure of the entanglement spectra in the many-body localized regime.
Yao, Yao; Sun, Ke-Wei; Luo, Zhen; Ma, Haibo
2018-01-18
The accurate theoretical interpretation of ultrafast time-resolved spectroscopy experiments relies on full quantum dynamics simulations for the investigated system, which is nevertheless computationally prohibitive for realistic molecular systems with a large number of electronic and/or vibrational degrees of freedom. In this work, we propose a unitary transformation approach for realistic vibronic Hamiltonians, which can be coped with using the adaptive time-dependent density matrix renormalization group (t-DMRG) method to efficiently evolve the nonadiabatic dynamics of a large molecular system. We demonstrate the accuracy and efficiency of this approach with an example of simulating the exciton dissociation process within an oligothiophene/fullerene heterojunction, indicating that t-DMRG can be a promising method for full quantum dynamics simulation in large chemical systems. Moreover, it is also shown that the proper vibronic features in the ultrafast electronic process can be obtained by simulating the two-dimensional (2D) electronic spectrum by virtue of the high computational efficiency of the t-DMRG method.
Many-body perturbation theory for ab initio nuclear structure
International Nuclear Information System (INIS)
Tichai, Alexander
2017-01-01
The solution of the quantum many-body problem for medium-mass nuclei using realistic nuclear interactions poses a superbe challenge for nuclear structure research. Because an exact solution can only be provided for the lightest nuclei, one has to rely on approximate solutions when proceeding to heavier systems. Over the past years, tremendous progress has been made in the development and application of systematically improvable expansion methods and an accurate description of nuclear observables has become viable up to mass number A ∼ 100. While closed-shell systems are consistently described via a plethora of different many-body methods, the extension to genuine open-shell systems still remains a major challenge and up to now there is no ab initio many-body method which applies equally well to systems with even and odd mass numbers. The goal of this thesis is the development and implementation of innovative perturbative approaches with genuine open-shell capabilities. This requires the extension of well-known single-reference approaches to more general vacua. In this work we choose two complementary routes for the usage of generalized reference states. First, we derive a new ab initio approach based on multi-configurational reference states that are conveniently derived from a prior no-core shell model calculation. Perturbative corrections are derived via second-order many-body perturbation theory, thus, merging configuration interaction and many-body perturbation theory. The generality of this ansatz enables for a treatment of medium-mass systems with arbitrary mass number, as well as the extension to low-lying excited states such that ground and excited states are treated on an equal footing. In a complementary approach, we use reference states that break a symmetry of the underlying Hamiltonian. In the simplest case this corresponds to the expansion around a particle-number-broken Hartree-Fock-Bogolyubov vacuum which is obtained from a mean-field calculation
Time-dependent pH sensing phenomena using CdSe/ZnS quantum dots in EIS structure.
Kumar, Pankaj; Maikap, Siddheswar; Prakash, Amit; Tien, Ta-Chang
2014-04-12
Time-dependent pH sensing phenomena of the core-shell CdSe/ZnS quantum dot (QD) sensors in EIS (electrolyte insulator semiconductor) structure have been investigated for the first time. The quantum dots are immobilized by chaperonin GroEL protein, which are observed by both atomic force microscope and scanning electron microscope. The diameter of one QD is approximately 6.5 nm. The QDs are not oxidized over a long time and core-shell CdSe/ZnS are confirmed by X-ray photon spectroscopy. The sensors are studied for sensing of hydrogen ions concentration in different buffer solutions at broad pH range of 2 to 12. The QD sensors show improved sensitivity (38 to 55 mV/pH) as compared to bare SiO2 sensor (36 to 23 mV/pH) with time period of 0 to 24 months, owing to the reduction of defects in the QDs. Therefore, the differential sensitivity of the QD sensors with respect to the bare SiO2 sensors is improved from 2 to 32 mV/pH for the time period of 0 to 24 months. After 24 months, the sensitivity of the QD sensors is close to ideal Nernstian response with good linearity of 99.96%. Stability and repeatability of the QD sensors show low drift (10 mV for 10 cycles) as well as small hysteresis characteristics (sensor is very useful for future human disease diagnostics.
Fliller, Raymond P; Hartung, Walter
2005-01-01
A system was developed at INFN Milano for preparing cesium telluride photo-cathodes and transferring them into an RF gun under ultra-high vacuum. This system has been in use at the Fermilab NICADD Photo-Injector Laboratory (FNPL) since 1997. A similar load-lock system is used at the TeSLA Test Facility at DESY-Hamburg. Two 1.625-cell high duty cycle RF guns have been fabricated for the project. Studies of the photo-emission and field emission ("dark current") behavior of both RF guns have been carried out. Unexpected phenomena were observed in one of the RF guns. In situ changes in the cathode's quantum efficiency and dark current with time were seen during operation of the photo-injector. These changes were correlated with the magnetostatic field at the cathode.* In addition, multipacting is observed in the RF guns under certain conditions. Recent measurements indicate a correlation between multipacting, anomalous photo-emission behavior, and anomalous field emission behavior. Results will be presented.
Tian, Heng; Chen, GuanHua
2013-10-01
Going beyond the limitations of our earlier works [X. Zheng, F. Wang, C.Y. Yam, Y. Mo, G.H. Chen, Phys. Rev. B 75, 195127 (2007); X. Zheng, G.H. Chen, Y. Mo, S.K. Koo, H. Tian, C.Y. Yam, Y.J. Yan, J. Chem. Phys. 133, 114101 (2010)], we propose, in this manuscript, a new alternative approach to simulate time-dependent quantum transport phenomenon from first-principles. This new practical approach, still retaining the formal exactness of HEOM framework, does not rely on any intractable parametrization scheme and the pole structure of Fermi distribution function, thus, can seamlessly incorporated into first-principles simulation and treat transient response of an open electronic systems to an external bias voltage at both zero and finite temperatures on the equal footing. The salient feature of this approach is surveyed, and its time complexity is analysed. As a proof-of-principle of this approach, simulation of the transient current of one dimensional tight-binding chain, driven by some direct external voltages, is demonstrated.
Chiral Floquet Phases of Many-Body Localized Bosons
Directory of Open Access Journals (Sweden)
Hoi Chun Po
2016-12-01
Full Text Available We construct and classify chiral topological phases in driven (Floquet systems of strongly interacting bosons, with finite-dimensional site Hilbert spaces, in two spatial dimensions. The construction proceeds by introducing exactly soluble models with chiral edges, which in the presence of many-body localization (MBL in the bulk are argued to lead to stable chiral phases. These chiral phases do not require any symmetry and in fact owe their existence to the absence of energy conservation in driven systems. Surprisingly, we show that they are classified by a quantized many-body index, which is well defined for any MBL Floquet system. The value of this index, which is always the logarithm of a positive rational number, can be interpreted as the entropy per Floquet cycle pumped along the edge, formalizing the notion of quantum-information flow. We explicitly compute this index for specific models and show that the nontrivial topology leads to edge thermalization, which provides an interesting link between bulk topology and chaos at the edge. We also discuss chiral Floquet phases in interacting fermionic systems and their relation to chiral bosonic phases.
Relativistic many-body XMCD theory including core degenerate effects
Fujikawa, Takashi
2009-11-01
A many-body relativistic theory to analyze X-ray Magnetic Circular Dichroism (XMCD) spectra has been developed on the basis of relativistic quantum electrodynamic (QED) Keldysh Green's function approach. This theoretical framework enables us to handle relativistic many-body effects in terms of correlated nonrelativistic Green's function and relativistic correction operator Q, which naturally incorporates radiation field screening and other optical field effects in addition to electron-electron interactions. The former can describe the intensity ratio of L2/L3 which deviates from the statistical weight (branching ratio) 1/2. In addition to these effects, we consider the degenerate or nearly degenerate effects of core levels from which photoelectrons are excited. In XPS spectra, for example in Rh 3d sub level excitations, their peak shapes are quite different: This interesting behavior is explained by core-hole moving after the core excitation. We discuss similar problems in X-ray absorption spectra in particular excitation from deep 2p sub levels which are degenerate in each sub levels and nearly degenerate to each other in light elements: The hole left behind is not frozen there. We derive practical multiple scattering formulas which incorporate all those effects.
Dynamical stability of a many-body Kapitza pendulum
Energy Technology Data Exchange (ETDEWEB)
Citro, Roberta, E-mail: citro@sa.infn.it [Dipartimento di Fisica “E. R. Caianiello” and Spin-CNR, Universita’ degli Studi di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (Italy); Dalla Torre, Emanuele G., E-mail: emanuele.dalla-torre@biu.ac.il [Department of Physics, Bar Ilan University, Ramat Gan 5290002 (Israel); Department of Physics, Harvard University, Cambridge, MA 02138 (United States); D’Alessio, Luca [Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States); Department of Physics, Boston University, Boston, MA 02215 (United States); Polkovnikov, Anatoli [Department of Physics, Boston University, Boston, MA 02215 (United States); Babadi, Mehrtash [Department of Physics, Harvard University, Cambridge, MA 02138 (United States); Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125 (United States); Oka, Takashi [Department of Applied Physics, University of Tokyo, Tokyo, 113-8656 (Japan); Demler, Eugene [Department of Physics, Harvard University, Cambridge, MA 02138 (United States)
2015-09-15
We consider a many-body generalization of the Kapitza pendulum: the periodically-driven sine–Gordon model. We show that this interacting system is dynamically stable to periodic drives with finite frequency and amplitude. This finding is in contrast to the common belief that periodically-driven unbounded interacting systems should always tend to an absorbing infinite-temperature state. The transition to an unstable absorbing state is described by a change in the sign of the kinetic term in the Floquet Hamiltonian and controlled by the short-wavelength degrees of freedom. We investigate the stability phase diagram through an analytic high-frequency expansion, a self-consistent variational approach, and a numeric semiclassical calculation. Classical and quantum experiments are proposed to verify the validity of our results.
Nuclear collision theory with many-body correlations, 1
International Nuclear Information System (INIS)
Kurihara, Yukio.
1984-11-01
A generalized many-body correlation operator is introduced, following the Feshbach's formalism. Especially, the many-body correlation induced by the strong repulsion and attraction of the realistic NN interaction is concerned and the Feshbach's formalism is reformulated to describe such a many-body correlation well. And a method to estimate the many-body correlation operator is given from the multiple-scattering picture. The present formalism is compared with the resonating-group method. (author)
Another New Solvable Many-Body Model of Goldfish Type
Directory of Open Access Journals (Sweden)
Francesco Calogero
2012-07-01
Full Text Available A new solvable many-body problem is identified. It is characterized by nonlinear Newtonian equations of motion (''acceleration equal force'' featuring one-body and two-body velocity-dependent forces ''of goldfish type'' which determine the motion ofan arbitrary number $N$ of unit-mass point-particles in a plane. The $N$ (generally complex values $z_{n}(t$ at time $t$ ofthe $N$ coordinates of these moving particles are given by the $N$eigenvalues of a time-dependent $Nimes N$ matrix $U(t$explicitly known in terms of the $2N$ initial data $z_{n}(0$and $dot{z}_{n}(0 $. This model comes in two dif/ferentvariants, one featuring 3 arbitrary coupling constants, the other only 2; for special values of these parameters all solutions are completely periodic with the same period independent of the initial data (''isochrony''; for other special values of these parameters this property holds up to corrections vanishing exponentially as $tightarrow infty$ (''asymptotic isochrony''. Other isochronous variants of these models are also reported. Alternative formulations, obtained by changing the dependent variables from the $N$ zeros of a monic polynomial of degree $N$ to its $N$ coefficients, are also exhibited. Some mathematical findings implied by some of these results - such as Diophantine properties of the zeros of certain polynomials - are outlined, but their analysis is postponed to a separate paper.
Huo, Ming-Xia; Li, Ying
2017-12-01
Quantum error correction is important to quantum information processing, which allows us to reliably process information encoded in quantum error correction codes. Efficient quantum error correction benefits from the knowledge of error rates. We propose a protocol for monitoring error rates in real time without interrupting the quantum error correction. Any adaptation of the quantum error correction code or its implementation circuit is not required. The protocol can be directly applied to the most advanced quantum error correction techniques, e.g. surface code. A Gaussian processes algorithm is used to estimate and predict error rates based on error correction data in the past. We find that using these estimated error rates, the probability of error correction failures can be significantly reduced by a factor increasing with the code distance.
Quantum many-body systems in one dimension
Ha, N C Zachary
1996-01-01
The main theme of the book focuses on the intimate connection between the two families of exactly solvable models: the inverse-square exchange (ISE) and the nearest-neighbour exchange (NNE) models. Topics discussed include the Luttinger liquid concept and fractional statistics.
General coordinate invariance in quantum many-body systems
Czech Academy of Sciences Publication Activity Database
Brauner, Tomáš; Endlich, S.; Monin, A.; Penco, R.
2014-01-01
Roč. 90, č. 10 (2014), s. 105016 ISSN 1550-7998 Institutional support: RVO:61389005 Keywords : Chiral Perturbation-Theory * Planar Galilei Group * Lagrangians Subject RIV: BE - Theoretical Physics Impact factor: 4.643, year: 2014
Effective Lagrangians for quantum many-body systems
Czech Academy of Sciences Publication Activity Database
Andersen, J. O.; Brauner, Tomáš; Hofmann, C. P.; Vuorinen, A.
2014-01-01
Roč. 2014, č. 8 (2014), 088 ISSN 1029-8479 Institutional support: RVO:61389005 Keywords : spontaneous symmetry breaking * chiral lagrangian s * global symmetries Subject RIV: BE - Theoretical Physics Impact factor: 6.111, year: 2014
International Nuclear Information System (INIS)
Revai, Janos.
1988-10-01
A model was attempted to construct which, on one hand, is flexible enough to imitate certain physical properties of real systems and, on the other hand, allows exact solution of its time dependent dynamics. This double goal is proposed to achieve by using separable interactions. A particle moving in an external field consisting of a stationary attractive and a time dependent repulsive part is proposed for the model in question. Due to the use of separable interactions, the time evolution dynamics can be solved exactly, and the model can be applied for studying time evolution of quasi-stationary states. (R.P.) 7 figs
Relativistic many-body theory of high density matter
International Nuclear Information System (INIS)
Chin, S.A.
1977-01-01
A fully relativistic quantum many-body theory is applied to the study of high-density matter. The latter is identified with the zero-temperature ground state of a system of interacting baryons. In accordance with the observed short-range repulsive and long-range attractive character of the nucleon--nucleon force, baryons are described as interacting with each other via a massive scalar and a massive vector meson exchange. In the Hartree approximation, the theory yields the same result as the mean-field theory, but with additional vacuum fluctuation corrections. The resultant equation of state for neutron matter is used to determine properties of neutron stars. The relativistic exchange energy, its corresponding single-particle excitation spectrum, and its effect on the neutron matter equation of state, are calculated. The correlation energy from summing the set of ring diagrams is derived directly from the energy-momentum tensor, with renormalization carried out by adding counterterms to the original Lagrangian and subtracting purely vacuum expectation values. Terms of order g 4 lng 2 are explicitly given. Effects of scalar-vector mixing are discussed. Collective modes corresponding to macroscopic density fluctuation are investigated. Two basic modes are found, a plasma-like mode and zero sound, with the latter dominant at high density. The stability and damping of these modes are studied. Last, the effect of vacuum polarization in high-density matter is examined
Petascale Many Body Methods for Complex Correlated Systems
Pruschke, Thomas
2012-02-01
Correlated systems constitute an important class of materials in modern condensed matter physics. Correlation among electrons are at the heart of all ordering phenomena and many intriguing novel aspects, such as quantum phase transitions or topological insulators, observed in a variety of compounds. Yet, theoretically describing these phenomena is still a formidable task, even if one restricts the models used to the smallest possible set of degrees of freedom. Here, modern computer architectures play an essential role, and the joint effort to devise efficient algorithms and implement them on state-of-the art hardware has become an extremely active field in condensed-matter research. To tackle this task single-handed is quite obviously not possible. The NSF-OISE funded PIRE collaboration ``Graduate Education and Research in Petascale Many Body Methods for Complex Correlated Systems'' is a successful initiative to bring together leading experts around the world to form a virtual international organization for addressing these emerging challenges and educate the next generation of computational condensed matter physicists. The collaboration includes research groups developing novel theoretical tools to reliably and systematically study correlated solids, experts in efficient computational algorithms needed to solve the emerging equations, and those able to use modern heterogeneous computer architectures to make then working tools for the growing community.
Computational complexity of time-dependent density functional theory
International Nuclear Information System (INIS)
Whitfield, J D; Yung, M-H; Tempel, D G; Aspuru-Guzik, A; Boixo, S
2014-01-01
Time-dependent density functional theory (TDDFT) is rapidly emerging as a premier method for solving dynamical many-body problems in physics and chemistry. The mathematical foundations of TDDFT are established through the formal existence of a fictitious non-interacting system (known as the Kohn–Sham system), which can reproduce the one-electron reduced probability density of the actual system. We build upon these works and show that on the interior of the domain of existence, the Kohn–Sham system can be efficiently obtained given the time-dependent density. We introduce a V-representability parameter which diverges at the boundary of the existence domain and serves to quantify the numerical difficulty of constructing the Kohn-Sham potential. For bounded values of V-representability, we present a polynomial time quantum algorithm to generate the time-dependent Kohn–Sham potential with controllable error bounds. (paper)
The proceedings of the 9th international conference on recent progress in many-body theories
International Nuclear Information System (INIS)
Neilson, D.; Bishop, R. F.
1998-01-01
This inaugural volume in this new World Scientific Publications series, 'Advances in Quantum Many-Body Theory' records the invited and contributed papers given at the Ninth International Conference on Recent Progress in Many-Body Theories. This conference was held in the School of Physics at The University of New South Wales in Sydney in July, 1997. The conference was also the seventh in the University's series of Gordon Godfrey International Workshop on Theoretical Physics. The style and format of the conference followed the accepted pattern for the series, focusing on the development, refinement, and important applications of many-body methods. A major aim of the series has been to foster an exchange of ideas among physicists working in such diverse areas as nuclear and subnuclear physics, quantum chemistry, complex systems, quantum field theory, strongly correlated electronic systems, magnetism, quantum fluids and condensed matter physics. A special feature of this ninth conference was a session devoted to theories for many-electron systems in zero dimensions (quantum dots), one dimension (quantum wires) and two dimensions (electron layers). These new systems are now firmly established as fertile sources of novel and challenging many-body phenomena
Simulation of non-equilibrium many body electrons in RTD
Directory of Open Access Journals (Sweden)
A. H. Rezvani
2001-06-01
Full Text Available We inspected the exact solution of double barrier quantum well. The choice of proper boundary conditions has been taken into account. We eveluated the mechanism of resonant in this device. The density correlation matrix was calculated by using the exact solution of the time-dependent generalized nonlinear Schrodinger equation in the presence of electron-electron interaction. The result shows that there is no correlation dependence among the electrons at the equilibrium between contact regions. After biasing, we have calculated the density correlation matrix in the transient and steady state. The results of our calculations show the oscillatory plasmon current in the state of transient, while in the steaby state the correlation among the phase of electrons observed to be oscillatory in the whole region of the device.
Typical Relaxation of Isolated Many-Body Systems Which Do Not Thermalize
Balz, Ben N.; Reimann, Peter
2017-05-01
We consider isolated many-body quantum systems which do not thermalize; i.e., expectation values approach an (approximately) steady longtime limit which disagrees with the microcanonical prediction of equilibrium statistical mechanics. A general analytical theory is worked out for the typical temporal relaxation behavior in such cases. The main prerequisites are initial conditions which appreciably populate many energy levels and do not give rise to significant spatial inhomogeneities on macroscopic scales. The theory explains very well the experimental and numerical findings in a trapped-ion quantum simulator exhibiting many-body localization, in ultracold atomic gases, and in integrable hard-core boson and X X Z models.
A semiclassical approach to many-body interference in Fock-space
Energy Technology Data Exchange (ETDEWEB)
Engl, Thomas
2015-11-01
Many-body systems draw ever more physicists' attention. Such an increase of interest often comes along with the development of new theoretical methods. In this thesis, a non-perturbative semiclassical approach is developed, which allows to analytically study many-body interference effects both in bosonic and fermionic Fock space and is expected to be applicable to many research areas in physics ranging from Quantum Optics and Ultracold Atoms to Solid State Theory and maybe even High Energy Physics. After the derivation of the semiclassical approximation, which is valid in the limit of large total number of particles, first applications manifesting the presence of many-body interference effects are shown. Some of them are confirmed numerically thus verifying the semiclassical predictions. Among these results are coherent back-/forward-scattering in bosonic and fermionic Fock space as well as a many-body spin echo, to name only the two most important ones.
Time-dependent density-functional theory concepts and applications
Ullrich, Carsten A
2011-01-01
Time-dependent density-functional theory (TDDFT) describes the quantum dynamics of interacting electronic many-body systems formally exactly and in a practical and efficient manner. TDDFT has become the leading method for calculating excitation energies and optical properties of large molecules, with accuracies that rival traditional wave-function based methods, but at a fraction of the computational cost.This book is the first graduate-level text on the concepts and applications of TDDFT, including many examples and exercises, and extensive coverage of the literature. The book begins with a s
International Nuclear Information System (INIS)
Fu Chuanji; Zhu Qinsheng; Wu Shaoyi
2010-01-01
Based on algebraic dynamics and the concept of the concurrence of the entanglement, we investigate the evolutive properties of the two-qubit entanglement that formed by Heisenberg XXX models under a time-depending external held. For this system, the property of the concurrence that is only dependent on the coupling constant J and total values of the external field is proved. Furthermore, we found that the thermal concurrence of the system under a static random external field is a function of the coupling constant J, temperature T, and the magnitude of external held. (general)
Koole, R.; Schapotschnikow, P.Z.; de Mello Donega, C.; Vlugt, T.J.H.; Meijerink, A.
2008-01-01
The exchange kinetics of native ligands that passivate CdSe quantum dots (hexadecylamine (HDA), trioctylphosphine oxide (TOPO), and trioctylphosphine (TOP)) by thiols is followed in situ. This is realized by measuring, in real-time, the decrease in emission intensity of the QDs upon addition of
Many-body localization from one particle density matrix
Energy Technology Data Exchange (ETDEWEB)
Bera, Soumya; Bardarson, Jens [Max Planck Institute for the Physics of Complex Systems, Dresden (Germany); Schomerus, Henning [Lancaster University, Lancaster (United Kingdom); Heidrich-Meisner, Fabian [Ludwig-Maximilians-Universitaet Muenchen (Germany)
2016-07-01
We show that the one-particle density matrix ρ can be used to characterize the interaction-driven many-body localization transition in isolated fermionic systems. The natural orbitals (the eigenstates) are localized in the many-body localized phase and spread out when one enters the delocalized phase, while the occupation spectrum (the set of eigenvalues) reveals the distinctive Fock- space structure of the many-body eigenstates, exhibiting a step-like discontinuity in the localized phase. The associated one-particle occupation entropy is small in the localized phase and large in the delocalized phase, with diverging fluctuations at the transition.
Stochastic many-body perturbation theory for anharmonic molecular vibrations
Energy Technology Data Exchange (ETDEWEB)
Hermes, Matthew R. [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); Hirata, So, E-mail: sohirata@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)
2014-08-28
A new quantum Monte Carlo (QMC) method for anharmonic vibrational zero-point energies and transition frequencies is developed, which combines the diagrammatic vibrational many-body perturbation theory based on the Dyson equation with Monte Carlo integration. The infinite sums of the diagrammatic and thus size-consistent first- and second-order anharmonic corrections to the energy and self-energy are expressed as sums of a few m- or 2m-dimensional integrals of wave functions and a potential energy surface (PES) (m is the vibrational degrees of freedom). Each of these integrals is computed as the integrand (including the value of the PES) divided by the value of a judiciously chosen weight function evaluated on demand at geometries distributed randomly but according to the weight function via the Metropolis algorithm. In this way, the method completely avoids cumbersome evaluation and storage of high-order force constants necessary in the original formulation of the vibrational perturbation theory; it furthermore allows even higher-order force constants essentially up to an infinite order to be taken into account in a scalable, memory-efficient algorithm. The diagrammatic contributions to the frequency-dependent self-energies that are stochastically evaluated at discrete frequencies can be reliably interpolated, allowing the self-consistent solutions to the Dyson equation to be obtained. This method, therefore, can compute directly and stochastically the transition frequencies of fundamentals and overtones as well as their relative intensities as pole strengths, without fixed-node errors that plague some QMC. It is shown that, for an identical PES, the new method reproduces the correct deterministic values of the energies and frequencies within a few cm{sup −1} and pole strengths within a few thousandths. With the values of a PES evaluated on the fly at random geometries, the new method captures a noticeably greater proportion of anharmonic effects.
International Nuclear Information System (INIS)
Sarkar, P.; Bhattacharyya, S.P.
1995-01-01
The effects of quartic anharmonicity on the quantum dynamics of a linear oscillator with time-dependent force constant (K) or harmonic frequency (ω) are studied both perturbatively and numerically by the time-dependent Fourier grid Hamiltonian method. In the absence of anharmonicity, the ground-state population decreases and the population of an accessible excited state (k = 2.4, 6 ... ) increases with time. However, when anharmonicity is introduced, both the ground- and excited-state populations show typical oscillations. For weak coupling, the population of an accessible excited state at a certain instant of time (short) turns out to be a parabolic function of the anharmonic coupling constant (λ), when all other parameters of the system are kept fixed. This parabolic nature of the excited-state population vs. the λ profile is independent of the specific form of the time dependence of the force constant, K t . However, it depends upon the rate at which K t relaxes. For small anharmonic coupling strength and short time scales, the numerical results corroborate expectations based on the first-order time-dependent perturbative analysis, using a suitably repartitioned Hamiltonian that makes H 0 time-independent. Some of the possible experimental implications of our observations are analyzed, especially in relation to intensity oscillations observed in some charge-transfer spectra in systems in which the dephasing rates are comparable with the time scale of the electron transfer. 21 refs., 7 figs., 1 tab
Aspects of Strongly Correlated Many-Body Fermi Systems
Porter, William J., III
which we use to characterize the entanglement properties of the two-body sector across a broad range of attractive couplings. In the many-body case, we determine universal scaling properties of this system, and for the two-body case, we compute the entanglement spectrum exactly, successfully characterizing a vast range of entanglement behavior across the BCS-BEC crossover.
Understanding many-body physics in one dimension from the Lieb–Liniger model
International Nuclear Information System (INIS)
Jiang Yu-Zhu; Chen Yang-Yang; Guan Xi-Wen
2015-01-01
This article presents an elementary introduction on various aspects of the prototypical integrable model the Lieb–Liniger Bose gas ranging from the cooperative to the collective features of many-body phenomena. In 1963, Lieb and Liniger first solved this quantum field theory many-body problem using Bethe’s hypothesis, i.e., a particular form of wavefunction introduced by Bethe in solving the one-dimensional Heisenberg model in 1931. Despite the Lieb–Liniger model is arguably the simplest exactly solvable model, it exhibits rich quantum many-body physics in terms of the aspects of mathematical integrability and physical universality. Moreover, the Yang–Yang grand canonical ensemble description for the model provides us with a deep understanding of quantum statistics, thermodynamics, and quantum critical phenomena at the many-body physical level. Recently, such fundamental physics of this exactly solved model has been attracting growing interest in experiments. Since 2004, there have been more than 20 experimental papers that reported novel observations of different physical aspects of the Lieb–Liniger model in the laboratory. So far the observed results are in excellent agreement with results obtained using the analysis of this simplest exactly solved model. Those experimental observations reveal the unique beauty of integrability. (topical review)
Head-Marsden, Kade; Mazziotti, David A
2015-02-07
For an open, time-dependent quantum system, Lindblad derived the most general modification of the quantum Liouville equation in the Markovian approximation that models environmental effects while preserving the non-negativity of the system's density matrix. While Lindblad's modification is correct for N-electron density matrices, solution of the Liouville equation with a Lindblad operator causes the one-electron reduced density matrix (1-RDM) to violate the Pauli exclusion principle. Consequently, after a short time, the 1-RDM is not representable by an ensemble N-electron density matrix (not ensemble N-representable). In this communication, we derive the necessary and sufficient constraints on the Lindbladian matrix within the Lindblad operator to ensure that the 1-RDM remains N-representable for all time. The theory is illustrated by considering the relaxation of an excitation in several molecules F2, N2, CO, and BeH2 subject to environmental noise.
Exact many-body dynamics with stochastic one-body density matrix evolution
International Nuclear Information System (INIS)
Lacroix, D.
2004-05-01
In this article, we discuss some properties of the exact treatment of the many-body problem with stochastic Schroedinger equation (SSE). Starting from the SSE theory, an equivalent reformulation is proposed in terms of quantum jumps in the density matrix space. The technical details of the derivation a stochastic version of the Liouville von Neumann equation are given. It is shown that the exact Many-Body problem could be replaced by an ensemble of one-body density evolution, where each density matrix evolves according to its own mean-field augmented by a one-body noise. (author)
Nonlinear field theories and non-Gaussian fluctuations for near-critical many-body systems
International Nuclear Information System (INIS)
Tuszynski, J.A.; Dixon, J.M.; Grundland, A.M.
1994-01-01
This review article outlines a number of efforts made over the past several decades to understand the physics of near critical many-body systems. Beginning with the phenomenological theories of Landau and Ginzburg the paper discusses the two main routes adopted in the past. The first approach is based on statistical calculations while the second investigates the underlying nonlinear field equations. In the last part of the paper we outline a generalisation of these methods which combines classical and quantum properties of the many-body systems studied. (orig.)
Local conservation laws and the structure of the many-body localized states.
Serbyn, Maksym; Papić, Z; Abanin, Dmitry A
2013-09-20
We construct a complete set of local integrals of motion that characterize the many-body localized (MBL) phase. Our approach relies on the assumption that local perturbations act locally on the eigenstates in the MBL phase, which is supported by numerical simulations of the random-field XXZ spin chain. We describe the structure of the eigenstates in the MBL phase and discuss the implications of local conservation laws for its nonequilibrium quantum dynamics. We argue that the many-body localization can be used to protect coherence in the system by suppressing relaxation between eigenstates with different local integrals of motion.
Relativistic many-body theory of atomic transitions: the relativistic equation-of-motion approach
International Nuclear Information System (INIS)
Huang, K.N.
1981-01-01
An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated using techniques of quantum field theory. To reduce the equation of motion to a tractable form which is appropriate for numerical calculations, a graphical method is employed to resolve the complication arising from the antisymmetrization and angular momentum coupling. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation
Many-body-localization: strong disorder perturbative approach for the local integrals of motion
Monthus, Cécile
2018-05-01
For random quantum spin models, the strong disorder perturbative expansion of the local integrals of motion around the real-spin operators is revisited. The emphasis is on the links with other properties of the many-body-localized phase, in particular the memory in the dynamics of the local magnetizations and the statistics of matrix elements of local operators in the eigenstate basis. Finally, this approach is applied to analyze the many-body-localization transition in a toy model studied previously from the point of view of the entanglement entropy.
Vortex matter stabilized by many-body interactions
Wolf, S.; Vagov, A.; Shanenko, A. A.; Axt, V. M.; Aguiar, J. Albino
2017-10-01
This work investigates interactions of vortices in superconducting materials between standard types I and II, in the domain of the so-called intertype (IT) superconductivity. Contrary to common expectations, the many-body (many-vortex) contribution is not a correction to the pair-vortex interaction here but plays a crucial role in the formation of the IT vortex matter. In particular, the many-body interactions stabilize vortex clusters that otherwise could not exist. Furthermore, clusters with large numbers of vortices become more stable when approaching the boundary between the intertype domain and type I. This indicates that IT superconductors develop a peculiar unconventional type of the vortex matter governed by the many-body interactions of vortices.
Short history of nuclear many-body problem
International Nuclear Information System (INIS)
Köhler, H.S.
2014-01-01
This is a very short presentation regarding developments in the theory of nuclear many-body problems, as seen and experienced by the author during the past 60 years with particular emphasis on the contributions of Gerry Brown and his research-group. Much of his work was based on Brueckner's formulation of the nuclear many-body problem. It is reviewed briefly together with the Moszkowski–Scott separation method that was an important part of his early work. The core polarisation and his work related to effective interactions in general are also addressed
PREFACE: 17th International Conference on Recent Progress in Many-Body Theories (MBT17)
Reinholz, Heidi; Boronat, Jordi
2014-08-01
These are the proceedings of the XVII International Conference on Recent Progress in Many-Body Theories, which was held from 8-13 September 2013 in Rostock, Germany. The conference continued the triennial series initiated in Trieste in 1978 and was devoted to new developments in the field of many-body theories. The conference series encourages the exchange of ideas between physicists working in such diverse areas as nuclear physics, quantum chemistry, lattice Hamiltonians or quantum uids. Many-body theories are an integral part in different fields of theoretical physics such as condensed matter, nuclear matter and field theory. Phase transitions and macroscopic quantum effects such as magnetism, Bose-Einstein condensation, super uidity or superconductivity have been investigated within ultra-cold gases, finite systems or various nanomaterials. The conference series on Recent Progress in Many-Body Theories is devoted to foster the interaction and to cross-fertilize between different fields and to discuss future lines of research. The topics of the 17th meeting were Cluster Physics Cold Gases High Energy Density Matter and Intense Lasers Magnetism New Developments in Many-Body Techniques Nuclear Many-Body and Relativistic Theories Quantum Fluids and Solids Quantum Phase Transitions Topological Insulators and Low Dimensional Systems. 109 participants from 20 countries participated. 44 talks and 61 posters werde presented. As a particular highlight of the conference, The Eugene Feenberg Memorial Medal for outstanding results in the field of many-body theory and The Hermann Kümmel Early Achievement Award in Many-Body Physics for young scientists in that field were awarded. The Feenberg Medal went jointly to Patrick Lee (MIT, USA) for his fundamental contributions to condensed-matter theory, especially in regard to the quantum Hall effect, to universal conductance uctuations, and to the Kondo effect in quantum dots, and Douglas Scalapino (UC Santa Barbara, USA) for his
Many-body localization of bosons in optical lattices
Sierant, Piotr; Zakrzewski, Jakub
2018-04-01
Many-body localization for a system of bosons trapped in a one-dimensional lattice is discussed. Two models that may be realized for cold atoms in optical lattices are considered. The model with a random on-site potential is compared with previously introduced random interactions model. While the origin and character of the disorder in both systems is different they show interesting similar properties. In particular, many-body localization appears for a sufficiently large disorder as verified by a time evolution of initial density wave states as well as using statistical properties of energy levels for small system sizes. Starting with different initial states, we observe that the localization properties are energy-dependent which reveals an inverted many-body localization edge in both systems (that finding is also verified by statistical analysis of energy spectrum). Moreover, we consider computationally challenging regime of transition between many body localized and extended phases where we observe a characteristic algebraic decay of density correlations which may be attributed to subdiffusion (and Griffiths-like regions) in the studied systems. Ergodicity breaking in the disordered Bose–Hubbard models is compared with the slowing-down of the time evolution of the clean system at large interactions.
Many body effects in the van der Waals force
International Nuclear Information System (INIS)
Perez, P.; Claro, F.
1985-08-01
A classical model of fluctuating dipoles is proposed for the evaluation of many-body effects in the van der Waals force between neutral polarizable particles. The method is applied to solid xenon giving the correct low temperature stable structure, unlike the usual two-body potential result. (author)
Properties of exponential many-body interatomic potentials
Czech Academy of Sciences Publication Activity Database
Ostapovets, Andrej; Paidar, Václav
2009-01-01
Roč. 47, č. 3 (2009), s. 193-199 ISSN 0023-432X R&D Projects: GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z10100520 Keywords : many-body potentials * elastic constants * multilayer surface relaxations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.345, year: 2007
Q-deformed algebras and many-body physics
Energy Technology Data Exchange (ETDEWEB)
Galetti, D; Lunardi, J T; Pimentel, B M [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Lima, C L [Sao Paulo Univ., SP (Brazil). Inst. de Fisica
1995-11-01
A review is presented of some applications of q-deformed algebras to many-body systems. The rotational and pairing nuclear problems will be discussed in the context of q-deformed algebras, before presenting a more microscopically based application of q-deformed concepts to many-fermion systems. (author). 30 refs., 5 figs.
Many-body forces in nuclear shell-model
International Nuclear Information System (INIS)
Rath, P.K.
1985-01-01
In the microscopic derivation of the effective Hamiltonian for the nuclear shell model many-body forces between the valence nucleons occur. These many-body forces can be discriminated in ''real'' many-body forces, which can be related to mesonic and internal degrees of freedom of the nucleons, and ''effective'' many-body forces, which arise by the confinement of the nucleonic Hilbert space to the finite-dimension shell-model space. In the present thesis the influences of such three-body forces on the spectra of sd-shell nuclei are studied. For this the two common techniques for shell-model calculations (Oak Ridge-Rochester and Glasgow representation) are extended in such way that a general three-body term in the Hamiltonian can be regarded. The studies show that the repulsive contributions of the considered three-nucleon forces become more important with increasing number of valence nucleons. By this the particle-number dependence of empirical two-nucleon forces can be qualitatively explained. A special kind of effective many-body force occurs in the folded diagram expansion of the energy-dependent effective Hamiltonian for the shell model. Thereby it is shown that the contributions of the folded diagrams with three nucleons are just as important as those with two nucleons. Thus it is to be suspected that the folded diagram expansion contains many-particle terms with arbitrary particle number. The present studies however show that four nucleon effects are neglegible so that the folded diagram expansion can be confined to two- and three-particle terms. In shell-model calculations which extend over several main shells the influences of the spurious center-of-mass motion must be regarded. A procedure is discussed by which these spurious degrees of freedom can be exactly separated. (orig.) [de
Medders, Gregory R; Paesani, Francesco
2015-03-10
Vibrational spectroscopy is a powerful technique to probe the structure and dynamics of water. However, deriving an unambiguous molecular-level interpretation of the experimental spectral features remains a challenge due to the complexity of the underlying hydrogen-bonding network. In this contribution, we present an integrated theoretical and computational framework (named many-body molecular dynamics or MB-MD) that, by systematically removing uncertainties associated with existing approaches, enables a rigorous modeling of vibrational spectra of water from quantum dynamical simulations. Specifically, we extend approaches used to model the many-body expansion of interaction energies to develop many-body representations of the dipole moment and polarizability of water. The combination of these "first-principles" representations with centroid molecular dynamics simulations enables the simulation of infrared and Raman spectra of liquid water under ambient conditions that, without relying on any ad hoc parameters, are in good agreement with the corresponding experimental results. Importantly, since the many-body energy, dipole, and polarizability surfaces employed in the simulations are derived independently from accurate fits to correlated electronic structure data, MB-MD allows for a systematic analysis of the calculated spectra in terms of both electronic and dynamical contributions. The present analysis suggests that, while MB-MD correctly reproduces both the shifts and the shapes of the main spectroscopic features, an improved description of quantum dynamical effects possibly combined with a dissociable water potential may be necessary for a quantitative representation of the OH stretch band.
Many-body localization proximity effects in platforms of coupled spins and bosons
Marino, J.; Nandkishore, R. M.
2018-02-01
We discuss the onset of many-body localization in a one-dimensional system composed of a XXZ quantum spin chain and a Bose-Hubbard model linearly coupled together. We consider two complementary setups, depending whether spatial disorder is initially imprinted on spins or on bosons; in both cases, we explore the conditions for the disordered portion of the system to localize by proximity of the other clean half. Assuming that the dynamics of one of the two parts develops on shorter time scales than the other, we can adiabatically eliminate the fast degrees of freedom, and derive an effective Hamiltonian for the system's remainder using projection operator techniques. Performing a locator expansion on the strength of the many-body interaction term or on the hopping amplitude of the effective Hamiltonian thus derived, we present results on the stability of the many-body localized phases induced by proximity effect. We also briefly comment on the feasibility of the proposed model through modern quantum optics architectures, with the long-term perspective to realize experimentally, in composite open systems, Anderson or many-body localization proximity effects.
Relativistic Many-Body Theory A New Field-Theoretical Approach
Lindgren, Ingvar
2011-01-01
Relativistic Many-Body Theory treats — for the first time — the combination of relativistic atomic many-body theory with quantum-electrodynamics (QED) in a unified manner. This book can be regarded as a continuation of the book by Lindgren and Morrison, Atomic Many-Body Theory (Springer 1986), which deals with the non-relativistic theory of many-electron systems, describing several means of treating the electron correlation to essentially all orders of perturbation theory. The treatment of the present book is based upon quantum-field theory, and demonstrates that when the procedure is carried to all orders of perturbation theory, two-particle systems are fully compatible with the relativistically covariant Bethe-Salpeter equation. This procedure can be applied to arbitrary open-shell systems, in analogy with the standard many-body theory, and it is also applicable to systems with more than two particles. Presently existing theoretical procedures for treating atomic systems are, in several cases, insuffici...
International Nuclear Information System (INIS)
Krönke, Sven; Cao, Lushuai; Schmelcher, Peter; Vendrell, Oriol
2013-01-01
We develop and apply the multi-layer multi-configuration time-dependent Hartree method for bosons, which represents an ab initio method for investigating the non-equilibrium quantum dynamics of multi-species bosonic systems. Its multi-layer feature allows for tailoring the wave function ansatz to describe intra- and inter-species correlations accurately and efficiently. To demonstrate the beneficial scaling and efficiency of the method, we explored the correlated tunneling dynamics of two species with repulsive intra- and inter-species interactions, to which a third species with vanishing intra-species interaction was weakly coupled. The population imbalances of the first two species can feature a temporal equilibration and their time evolution significantly depends on the coupling to the third species. Bosons of the first and second species exhibit a bunching tendency, whose strength can be influenced by their coupling to the third species. (paper)
Many-Body Localization Dynamics from Gauge Invariance
Brenes, Marlon; Dalmonte, Marcello; Heyl, Markus; Scardicchio, Antonello
2018-01-01
We show how lattice gauge theories can display many-body localization dynamics in the absence of disorder. Our starting point is the observation that, for some generic translationally invariant states, the Gauss law effectively induces a dynamics which can be described as a disorder average over gauge superselection sectors. We carry out extensive exact simulations on the real-time dynamics of a lattice Schwinger model, describing the coupling between U(1) gauge fields and staggered fermions. Our results show how memory effects and slow, double-logarithmic entanglement growth are present in a broad regime of parameters—in particular, for sufficiently large interactions. These findings are immediately relevant to cold atoms and trapped ion experiments realizing dynamical gauge fields and suggest a new and universal link between confinement and entanglement dynamics in the many-body localized phase of lattice models.
Almost conserved operators in nearly many-body localized systems
Pancotti, Nicola; Knap, Michael; Huse, David A.; Cirac, J. Ignacio; Bañuls, Mari Carmen
2018-03-01
We construct almost conserved local operators, that possess a minimal commutator with the Hamiltonian of the system, near the many-body localization transition of a one-dimensional disordered spin chain. We collect statistics of these slow operators for different support sizes and disorder strengths, both using exact diagonalization and tensor networks. Our results show that the scaling of the average of the smallest commutators with the support size is sensitive to Griffiths effects in the thermal phase and the onset of many-body localization. Furthermore, we demonstrate that the probability distributions of the commutators can be analyzed using extreme value theory and that their tails reveal the difference between diffusive and subdiffusive dynamics in the thermal phase.
Quasiparticle many-body dynamics of the Anderson model
International Nuclear Information System (INIS)
Kuzemskij, A.L.
1996-01-01
The paper addresses the many-body quasiparticle dynamics of the Anderson impurity model at finite temperatures in the framework of the equation-of-motion method. We find a new exact identity relating the one-particle and many-particle Green's Functions. Using this identity we present a consistent and general scheme for a construction of generalised mean fields (elastic scattering corrections) and self-energy (inelastic scattering) in terms of the Dyson equation. A new approach for the complex expansion for the single-particle propagator in terms of the Coulomb repulsion U and hybridization V is proposed. Using the exact identity, the essentially new many-body dynamical solution of SIAM has been derived. This approach offers a new way for the systematic construction of the approximative interpolating dynamical solutions of the strongly correlated electron systems. 47 refs
Integrals of motion in the many-body localized phase
Directory of Open Access Journals (Sweden)
V. Ros
2015-02-01
Full Text Available We construct a complete set of quasi-local integrals of motion for the many-body localized phase of interacting fermions in a disordered potential. The integrals of motion can be chosen to have binary spectrum {0,1}, thus constituting exact quasiparticle occupation number operators for the Fermi insulator. We map the problem onto a non-Hermitian hopping problem on a lattice in operator space. We show how the integrals of motion can be built, under certain approximations, as a convergent series in the interaction strength. An estimate of its radius of convergence is given, which also provides an estimate for the many-body localization–delocalization transition. Finally, we discuss how the properties of the operator expansion for the integrals of motion imply the presence or absence of a finite temperature transition.
Many-body interactions in quasi-freestanding graphene
Energy Technology Data Exchange (ETDEWEB)
Siegel, David; Park, Cheol-Hwan; Hwang, Choongyu; Deslippe, Jack; Fedorov, Alexei; Louie, Steven; Lanzara, Alessandra
2011-06-03
The Landau-Fermi liquid picture for quasiparticles assumes that charge carriers are dressed by many-body interactions, forming one of the fundamental theories of solids. Whether this picture still holds for a semimetal such as graphene at the neutrality point, i.e., when the chemical potential coincides with the Dirac point energy, is one of the long-standing puzzles in this field. Here we present such a study in quasi-freestanding graphene by using high-resolution angle-resolved photoemission spectroscopy. We see the electron-electron and electron-phonon interactions go through substantial changes when the semimetallic regime is approached, including renormalizations due to strong electron-electron interactions with similarities to marginal Fermi liquid behavior. These findings set a new benchmark in our understanding of many-body physics in graphene and a variety of novel materials with Dirac fermions.
Auger recombination in Dirac materials: A tangle of many-body effects
Alymov, Georgy; Vyurkov, Vladimir; Ryzhii, Victor; Satou, Akira; Svintsov, Dmitry
2018-05-01
The peculiar electron dispersion in Dirac materials makes lowest-order Auger processes prohibited or marginally prohibited by energy and momentum conservation laws. Thus, Auger recombination (AR) in these materials is very sensitive to many-body effects. We incorporate them at the level of the G W approximation into the nonequilibrium Green's functions approach to AR and study the role of dynamic screening, spectrum broadening, and renormalization in the case of weakly pumped undoped graphene. We find that incorrect treatment of many-body effects can lead to an order-of-magnitude error in the recombination rate. We show that the AR time depends weakly (sublinearly) on the background dielectric constant, which limits the possibility to control recombination by the choice of substrate. However, the AR time can be considerably prolonged by placing graphene under a metal gate or by introducing a band gap. With carrier cooling taken into account, our results comply with experiments on photoexcited graphene.
International Nuclear Information System (INIS)
Griffin, J.J.; Lichtner, P.C.; Dworzecka, M.; Kan, K.K.
1979-01-01
The restrictions implied for the time dependent many-body reaction theory by the (TDHF) single determinantal assumption are explored by constructive analysis. A restructured TD-S-HF reaction theory is modelled, not after the initial-value form of the Schroedinger reaction theory, but after the (fully equivalent) S-matrix form, under the conditions that only self-consistent TDHF solutions occur in the theory, every wave function obeys the fundamental statistical interpretation of quantum mechanics, and the theory reduces to the exact Schroedinger theory for exact solutions which are single determinantal. All of these conditions can be accomodated provided that the theory is interpreted on a time-averaged basis, i.e., physical constants of the Schroedinger theory which are time-dependent in the TDHF theory, are interpreted in TD-S-HF in terms of their time averaged values. The resulting reaction theory, although formulated heuristically, prescribes a well defined and unambiguous calculational program which, although somewhat more demanding technically than the conventional initial-value TDHF method, is nevertheless more consonant with first principles, structurally and mechanistically. For its physical predictions do not depend upon the precise location of the distant measuring apparatus, and are in no way influenced by the spurious cross channel correlations which arise whenever the description of many reaction channels is imposed upon one single-determinantal solution. For nuclear structure physics, the TDHF-eigenfunctions provide the first plausible description of exact eigenstates in the time-dependent framework; moreover, they are unencumbered by any restriction to small amplitudes. 14 references
Many-Body Coulomb Gauge Exotic and Charmed Hybrids
Llanes-Estrada, Felipe J.; Cotanch, Stephen R.
2000-01-01
Utilizing a QCD Coulomb gauge Hamiltonian with linear confinement specified by lattice, we report a relativistic many-body calculation for the light exotic and charmed hybrid mesons. The Hamiltonian successfully describes both quark and gluon sectors, with vacuum and quasiparticle properties generated by a BCS transformation and more elaborate TDA and RPA diagonalizations for the meson ($q\\bar{q}$) and glueball ($gg$) masses. Hybrids entail a computationally intense relativistic three quasipa...
On nonequilibrium many-body systems III: nonlinear transport theory
International Nuclear Information System (INIS)
Luzzi, R.; Vasconcellos, A.R.; Algarte, A.C.S.
1986-01-01
A nonlinear transport theory for many-body systems arbitrarily away from equilibrium, based on the nonequilibrium statistical operator (NSO) method, is presented. Nonlinear transport equations for a basis set of dynamical quantities are derived using two equivalent treatments that may be considered far reaching generalizations of the Hilbert-Chapman-Enskog method and Mori's generalized Langevin equations method. The first case is considered in some detail and the general characteristics of the theory are discussed. (Author) [pt
Many-body perturbation theory using the density-functional concept: beyond the GW approximation.
Bruneval, Fabien; Sottile, Francesco; Olevano, Valerio; Del Sole, Rodolfo; Reining, Lucia
2005-05-13
We propose an alternative formulation of many-body perturbation theory that uses the density-functional concept. Instead of the usual four-point integral equation for the polarizability, we obtain a two-point one, which leads to excellent optical absorption and energy-loss spectra. The corresponding three-point vertex function and self-energy are then simply calculated via an integration, for any level of approximation. Moreover, we show the direct impact of this formulation on the time-dependent density-functional theory. Numerical results for the band gap of bulk silicon and solid argon illustrate corrections beyond the GW approximation for the self-energy.
Many-body perturbation theory using the density-functional concept: beyond the GW approximation
Bruneval, Fabien; Sottile, Francesco; Olevano, Valerio; Del Sole, Rodolfo; Reining, Lucia
2005-01-01
We propose an alternative formulation of Many-Body Perturbation Theory that uses the density-functional concept. Instead of the usual four-point integral equation for the polarizability, we obtain a two-point one, that leads to excellent optical absorption and energy loss spectra. The corresponding three-point vertex function and self-energy are then simply calculated via an integration, for any level of approximation. Moreover, we show the direct impact of this formulation on the time-depend...
Construction of exact constants of motion and effective models for many-body localized systems
Goihl, M.; Gluza, M.; Krumnow, C.; Eisert, J.
2018-04-01
One of the defining features of many-body localization is the presence of many quasilocal conserved quantities. These constants of motion constitute a cornerstone to an intuitive understanding of much of the phenomenology of many-body localized systems arising from effective Hamiltonians. They may be seen as local magnetization operators smeared out by a quasilocal unitary. However, accurately identifying such constants of motion remains a challenging problem. Current numerical constructions often capture the conserved operators only approximately, thus restricting a conclusive understanding of many-body localization. In this work, we use methods from the theory of quantum many-body systems out of equilibrium to establish an alternative approach for finding a complete set of exact constants of motion which are in addition guaranteed to represent Pauli-z operators. By this we are able to construct and investigate the proposed effective Hamiltonian using exact diagonalization. Hence, our work provides an important tool expected to further boost inquiries into the breakdown of transport due to quenched disorder.
Density functional and many-body theories of Hydrogen plasmas
International Nuclear Information System (INIS)
Perrot, F.; Dharma-Wardana, M.W.C.
1983-11-01
This work is an attempt to go beyond the standard description of hot condensed matter using the well-known ''average atom model''. The first part describes a static model using ''Density functional theory'' to calculate self-consistent coupled electron and ion density profiles of the plasma not restricted to a single average atomic sphere. In a second part, the results are used as ingredients for a many-body approach to electronic properties: the one-particle Green-function self-energy is calculated, from which shifted levels, populations and level-widths are deduced. Results for the Hydrogen plasma are reported, with emphasis on the 1s bound state
Neural network models: from biology to many - body phenomenology
International Nuclear Information System (INIS)
Clark, J.W.
1993-01-01
Theoretical work in neural networks has a strange feel for most physicists. In some cases the aspect of design becomes paramount. More comfortable ground at least for many body theorists may be found in realistic biological simulation, although the complexity of most problems is so awesome that incisive results will be hard won. It has also shown the impressive capabilities of artificial networks in pattern recognition and classification may be exploited to solve management problems in experimental physics and for discovery of radically new theoretical description of physical systems. This advance represents an important step towards the ultimate goal of neuro biological paradigm. (A.B.)
Many-Body Mean-Field Equations: Parallel implementation
International Nuclear Information System (INIS)
Vallieres, M.; Umar, S.; Chinn, C.; Strayer, M.
1993-01-01
We describe the implementation of Hartree-Fock Many-Body Mean-Field Equations on a Parallel Intel iPSC/860 hypercube. We first discuss the Nuclear Mean-Field approach in physical terms. Then we describe our parallel implementation of this approach on the Intel iPSC/860 hypercube. We discuss and compare the advantages and disadvantages of the domain partition versus the Hilbert space partition for this problem. We conclude by discussing some timing experiments on various computing platforms
Many-Body Green Function of Degenerate Systems
International Nuclear Information System (INIS)
Brouder, Christian; Panati, Gianluca; Stoltz, Gabriel
2009-01-01
A rigorous nonperturbative adiabatic approximation of the evolution operator in the many-body physics of degenerate systems is derived. This approximation is used to solve the long-standing problem of the choice of the initial states of H 0 leading to eigenstates of H 0 +V for degenerate systems. These initial states are eigenstates of P 0 VP 0 , where P 0 is the projection onto a degenerate eigenspace of H 0 . This result is used to give the proper definition of the Green function, the statistical Green function and the nonequilibrium Green function of degenerate systems. The convergence of these Green functions is established.
Many-Body Theory for Positronium-Atom Interactions
Green, D. G.; Swann, A. R.; Gribakin, G. F.
2018-05-01
A many-body-theory approach has been developed to study positronium-atom interactions. As first applications, we calculate the elastic scattering and momentum-transfer cross sections and the pickoff annihilation rate 1Zeff for Ps collisions with He and Ne. For He the cross section is in agreement with previous coupled-state calculations, while comparison with experiment for both atoms highlights discrepancies between various sets of measured data. In contrast, the calculated 1Zeff (0.13 and 0.26 for He and Ne, respectively) are in excellent agreement with the measured values.
Porter-Thomas distribution in unstable many-body systems
International Nuclear Information System (INIS)
Volya, Alexander
2011-01-01
We use the continuum shell model approach to explore the resonance width distribution in unstable many-body systems. The single-particle nature of a decay, the few-body character of the interaction Hamiltonian, and the collectivity that emerges in nonstationary systems due to the coupling to the continuum of reaction states are discussed. Correlations between the structures of the parent and daughter nuclear systems in the common Fock space are found to result in deviations of decay width statistics from the Porter-Thomas distribution.
Correlation functions for Hermitian many-body systems: Necessary conditions
International Nuclear Information System (INIS)
Brown, E.B.
1994-01-01
Lee [Phys. Rev. B 47, 8293 (1993)] has shown that the odd-numbered derivatives of the Kubo autocorrelation function vanish at t=0. We show that this condition is based on a more general property of nondiagonal Kubo correlation functions. This general property provides that certain functional forms (e.g., simple exponential decay) are not admissible for any symmetric or antisymmetric Kubo correlation function in a Hermitian many-body system. Lee's result emerges as a special case of this result. Applications to translationally invariant systems and systems with rotational symmetries are also demonstrated
Many-Body Potentials For Binary Immiscible liquid Metal Alloys
International Nuclear Information System (INIS)
Karaguelle, H.
2004-01-01
The modified analytic embedded atom method (MAEAM) type many- body potentials have been constructed for three binary liquid immiscible alloy systems: Al-Pb, Ag-Ni, Ag- Cu. The MAEAM potential functions are fitted to both solid and liquid state properties for only liquid pure metals which consist the immiscible alloy. In order to test the reliability of the constructed MAEAM effective potentials, partial structure factors and pair distribution functions of these binary liquid metal alloys have been calculated using the thermodynamically self-consistent variational modified hypernetted chain (VMHNC) theory of liquids. A good agreement with the available experimental data for structure has
International Nuclear Information System (INIS)
Girardeau, M.D.; Oregon Univ., Eugene
1981-01-01
Many problems in several areas of physics and chemistry involve many-body systems of interacting composite particles, in regimes where their internal transitions and/or reactive collisions (breakup, recombination, rearrangement) are important. Standard many-body Green's function and quantum field theoretic techniques are not well adapted to such situations. I discuss generalized representations which allow application of standard techniques to more complicated systems of interacting composite particles and their constituents. (orig./HSI)
Scalar meson field and many-body forces. Chapter 23
International Nuclear Information System (INIS)
Nyman, E.M.
1979-01-01
In applications of field theory to the theory of the nuclear forces, one has frequently assumed that there is a scalar meson. It will then be responsible for most of the medium-range attraction between the nucleons. According to current ideas, however, it is possible to account for the medium-range attraction without an elementary sigma meson. This approach requires a careful treatment of the exchange of interacting pairs of π mesons, such as to include those ππ interactions which are responsible for the formation and decay of the sigma meson. Recently, the scalar field in the nuclear many-body problem has begun to receive more attention. There are two reasons for this change of philosophy. One reason is the discovery of neutron stars. In neutron stars, the nucleon number density can be much higher than in nuclei. One therefore wants to derive the equation of state from a relativistic many-body theory. This forces one to deal explicitly with a set of mesons, such that in the non-relativistic limit one recovers the one-boson-exchange potential. (Auth.)
Wave function for time-dependent harmonically confined electrons in a time-dependent electric field.
Li, Yu-Qi; Pan, Xiao-Yin; Sahni, Viraht
2013-09-21
The many-body wave function of a system of interacting particles confined by a time-dependent harmonic potential and perturbed by a time-dependent spatially homogeneous electric field is derived via the Feynman path-integral method. The wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. The wave function reduces to that of the Harmonic Potential Theorem wave function for the case of the time-independent harmonic confining potential.
Fifth International Conference on Recent Progress in Many-Body Theories
Pajanne, E; Bishop, R; Recent Progress in MANY-BODY THEORIES
1988-01-01
The present volume contains the texts of the invited talks delivered at the Fifth International Conference on Recent Progress in Many-Body Theories held in Oulu, Finland during the period 3-8 August 1987. The general format and style of the meeting followed closely those which had evolved from the earlier conferences in the series: Trieste 1978, Oaxtepec 1981, Altenberg 1983 and San Francisco 1985. Thus, the conferences in this series are in tended, as far as is practicable, to cover in a broad and balanced fashion both the entire spectrum of theoretical tools developed to tackle the quan tum many-body problem, and their major fields of· application. One of the major aims of the series is to foster the exchange of ideas and techniques among physicists working in such diverse areas of application of many-body theories as nucleon-nucleon interactions, nuclear physics, astronomy, atomic and molecular physics, quantum chemistry, quantum fluids and plasmas, and solid-state and condensed matter physics. A spec...
PREFACE: Advanced many-body and statistical methods in mesoscopic systems
Anghel, Dragos Victor; Sabin Delion, Doru; Sorin Paraoanu, Gheorghe
2012-02-01
It has increasingly been realized in recent times that the borders separating various subfields of physics are largely artificial. This is the case for nanoscale physics, physics of lower-dimensional systems and nuclear physics, where the advanced techniques of many-body theory developed in recent times could provide a unifying framework for these disciplines under the general name of mesoscopic physics. Other fields, such as quantum optics and quantum information, are increasingly using related methods. The 6-day conference 'Advanced many-body and statistical methods in mesoscopic systems' that took place in Constanta, Romania, between 27 June and 2 July 2011 was, we believe, a successful attempt at bridging an impressive list of topical research areas: foundations of quantum physics, equilibrium and non-equilibrium quantum statistics/fractional statistics, quantum transport, phases and phase transitions in mesoscopic systems/superfluidity and superconductivity, quantum electromechanical systems, quantum dissipation, dephasing, noise and decoherence, quantum information, spin systems and their dynamics, fundamental symmetries in mesoscopic systems, phase transitions, exactly solvable methods for mesoscopic systems, various extension of the random phase approximation, open quantum systems, clustering, decay and fission modes and systematic versus random behaviour of nuclear spectra. This event brought together participants from seventeen countries and five continents. Each of the participants brought considerable expertise in his/her field of research and, at the same time, was exposed to the newest results and methods coming from the other, seemingly remote, disciplines. The talks touched on subjects that are at the forefront of topical research areas and we hope that the resulting cross-fertilization of ideas will lead to new, interesting results from which everybody will benefit. We are grateful for the financial and organizational support from IFIN-HH, Ovidius
Many-body optimization using an ab initio monte carlo method.
Haubein, Ned C; McMillan, Scott A; Broadbelt, Linda J
2003-01-01
Advances in computing power have made it possible to study solvated molecules using ab initio quantum chemistry. Inclusion of discrete solvent molecules is required to determine geometric information about solute/solvent clusters. Monte Carlo methods are well suited to finding minima in many-body systems, and ab initio methods are applicable to the widest range of systems. A first principles Monte Carlo (FPMC) method was developed to find minima in many-body systems, and emphasis was placed on implementing moves that increase the likelihood of finding minimum energy structures. Partial optimization and molecular interchange moves aid in finding minima and overcome the incomplete sampling that is unavoidable when using ab initio methods. FPMC was validated by studying the boron trifluoride-water system, and then the method was used to examine the methyl carbenium ion in water to demonstrate its application to solvation problems.
Relativistic many-body theory of atomic transitions. The relativistic equation-of-motion approach
International Nuclear Information System (INIS)
Huang, K.
1982-01-01
An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated with the use of techniques of quantum-field theory. To reduce the equations of motion to a tractable form which is appropriate for numerical calculations, a graphical method to resolve the complication arising from the antisymmetrization and angular-momentum coupling is employed. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation
Nonlinear many-body reaction theories from nuclear mean field approximations
International Nuclear Information System (INIS)
Griffin, J.J.
1983-01-01
Several methods of utilizing nonlinear mean field propagation in time to describe nuclear reaction have been studied. The property of physical asymptoticity is analyzed in this paper, which guarantees that the prediction by a reaction theory for the physical measurement of internal fragment properties shall not depend upon the precise location of the measuring apparatus. The physical asymptoticity is guaranteed in the Schroedinger collision theory of a scuttering system with translationally invariant interaction by the constancy of the S-matrix elements and by the translational invariance of the internal motion for well-separated fragments. Both conditions are necessary for the physical asymptoticity. The channel asymptotic single-determinantal propagation can be described by the Dirac-TDHF (time dependent Hartree-Fock) time evolution. A new asymptotic Hartree-Fock stationary phase (AHFSP) description together with the S-matrix time-dependent Hartree-Fock (TD-S-HF) theory constitute the second example of a physically asymptotic nonlinear many-body reaction theory. A review of nonlinear mean field many-body reaction theories shows that initial value TDHF is non-asymptotic. The TD-S-HF theory is asymptotic by the construction. The gauge invariant periodic quantized solution of the exact Schroedinger problem has been considered to test whether it includes all of the exact eigenfunctions as it ought to. It did, but included as well an infinity of all spurions solutions. (Kato, T.)
International Nuclear Information System (INIS)
Zhong, Xinxin; Zhao, Yi; Cao, Jianshu
2014-01-01
The time-dependent wavepacket diffusion method for carrier quantum dynamics (Zhong and Zhao 2013 J. Chem. Phys. 138 014111), a truncated version of the stochastic Schrödinger equation/wavefunction approach that approximately satisfies the detailed balance principle and scales well with the size of the system, is applied to investigate the carrier transport in one-dimensional systems including both the static and dynamic disorders on site energies. The predicted diffusion coefficients with respect to temperature successfully bridge from band-like to hopping-type transport. As demonstrated in paper I (Moix et al 2013 New J. Phys. 15 085010), the static disorder tends to localize the carrier, whereas the dynamic disorder induces carrier dynamics. For the weak dynamic disorder, the diffusion coefficients are temperature-independent (band-like property) at low temperatures, which is consistent with the prediction from the Redfield equation, and a linear dependence of the coefficient on temperature (hopping-type property) only appears at high temperatures. In the intermediate regime of dynamic disorder, the transition from band-like to hopping-type transport can be easily observed at relatively low temperatures as the static disorder increases. When the dynamic disorder becomes strong, the carrier motion can follow the hopping-type mechanism even without static disorder. Furthermore, it is found that the memory time of dynamic disorder is an important factor in controlling the transition from the band-like to hopping-type motions. (paper)
International Nuclear Information System (INIS)
Vikas
2011-01-01
Evolution of the helium atom in a strong time-dependent (TD) magnetic field (B) of strength up to 10 11 G is investigated through a quantum fluid dynamics (QFD) based current-density functional theory (CDFT). The TD-QFD-CDFT computations are performed through numerical solution of a single generalized nonlinear Schroedinger equation employing vector exchange-correlation potentials and scalar exchange-correlation density functionals that depend both on the electronic charge-density and the current-density. The results are compared with that obtained from a B-TD-QFD-DFT approach (based on conventional TD-DFT) under similar numerical constraints but employing only scalar exchange-correlation potential dependent on electronic charge-density only. The B-TD-QFD-DFT approach, at a particular TD magnetic field-strength, yields electronic charge- and current-densities as well as exchange-correlation potential resembling with that obtained from the time-independent studies involving static (time-independent) magnetic fields. However, TD-QFD-CDFT electronic charge- and current-densities along with the exchange-correlation potential and energy differ significantly from that obtained using B-TD-QFD-DFT approach, particularly at field-strengths >10 9 G, representing dynamical effects of a TD field. The work concludes that when a helium atom is subjected to a strong TD magnetic field of order >10 9 G, the conventional TD-DFT based approach differs 'dynamically' from the CDFT based approach under similar computational constraints. (author)
Kishi, Ryohei; Nakano, Masayoshi
2011-04-21
A novel method for the calculation of the dynamic polarizability (α) of open-shell molecular systems is developed based on the quantum master equation combined with the broken-symmetry (BS) time-dependent density functional theory within the Tamm-Dancoff approximation, referred to as the BS-DFTQME method. We investigate the dynamic α density distribution obtained from BS-DFTQME calculations in order to analyze the spatial contributions of electrons to the field-induced polarization and clarify the contributions of the frontier orbital pair to α and its density. To demonstrate the performance of this method, we examine the real part of dynamic α of singlet 1,3-dipole systems having a variety of diradical characters (y). The frequency dispersion of α, in particular in the resonant region, is shown to strongly depend on the exchange-correlation functional as well as on the diradical character. Under sufficiently off-resonant condition, the dynamic α is found to decrease with increasing y and/or the fraction of Hartree-Fock exchange in the exchange-correlation functional, which enhances the spin polarization, due to the decrease in the delocalization effects of π-diradical electrons in the frontier orbital pair. The BS-DFTQME method with the BHandHLYP exchange-correlation functional also turns out to semiquantitatively reproduce the α spectra calculated by a strongly correlated ab initio molecular orbital method, i.e., the spin-unrestricted coupled-cluster singles and doubles.
Wang, Mengmeng; Wang, Jilong; Sun, Hubo; Han, Sihai; Feng, Shuai; Shi, Lu; Meng, Peijun; Li, Jiayi; Huang, Peili; Sun, Zhiwei
2016-01-01
A complete understanding of the toxicological behavior of quantum dots (QDs) in vivo is of great importance and a prerequisite for their application in humans. In contrast with the numerous cytotoxicity studies investigating QDs, only a few in vivo studies of QDs have been reported, and the issue remains controversial. Our study aimed to understand QD-mediated toxicity across different time points and to explore the roles of free cadmium ions (Cd(2+)) and hydroxyl radicals (·OH) in tissue damage. Male ICR mice were administered a single intravenous dose (1.5 µmol/kg) of CdTe QDs, and liver and kidney function and morphology were subsequently examined at 1, 7, 14, and 28 days. Furthermore, ·OH production in the tissue was quantified by trapping · OH with salicylic acid (SA) as 2,3-dihydroxybenzoic acid (DHBA) and detecting it using a high-performance liquid chromatography fluorescence method. We used the induction of tissue metallothionein levels and 2,3-DHBA:SA ratios as markers for elevated Cd(2+) from the degradation of QDs and ·OH generation in the tissue, respectively. Our experimental results revealed that the QD-induced histopathological changes were time-dependent with elevated Cd(2+) and ·OH, and could recover after a period of time. The Cd(2+) and ·OH exhibited delayed effects in terms of histopathological abnormalities. Histological assessments performed at multiple time points might facilitate the evaluation of the biological safety of QDs.
Neural network models: from biology to many - body phenomenology
International Nuclear Information System (INIS)
Clark, J.W.
1993-01-01
The current surge of research on practical side of neural networks and their utility in memory storage/recall, pattern recognition and classification is given in this article. The initial attraction of neural networks as dynamical and statistical system has been investigated. From the view of many-body theorist, the neurons may be thought of as particles, and the weighted connection between the units, as the interaction between these particles. Finally, the author has seen the impressive capabilities of artificial neural networks in pattern recognition and classification may be exploited to solve data management problems in experimental physics and the discovery of radically new theoretically description of physical problems and neural networks can be used in physics. (A.B.)
Modified potentials in many-body perturbation theory
International Nuclear Information System (INIS)
Silver, D.M.; Bartlett, R.J.
1976-01-01
Many-body perturbation-theory calculations of the pair-correlation energy within the regime of various finite expansions in two-center Slater-type basis sets are performed using a wide variety of modified potentials for the determination of unoccupied orbitals. To achieve meaningful convergence, it appears that the perturbation series must be carried through third order, using shifted denominators to include contributions from various higher-order diagrams. Moreover, certain denominator shifts are found necessary to ensure that a negative-definite resolvent accompanies the perturbation scheme when an arbitrary modified potential is employed. Through third order with denominator shifts, well-behaved modified potentials are found to give results that are equivalent, within 1 kcal/mole, to those obtained for pair-correlation energies with the standard self-consistent-field-V/sup N/ potential
Structure of the many-body wavefunction for scattering
International Nuclear Information System (INIS)
L'Huillier, M.; Redish, E.F.; Tandy, P.C.
1978-01-01
We show that the scattered part of the many-body wavefunction initiated by two incoming clusters is given by a fully connected operator acting on the initial channel state. The structure of this operator suggests a division of the full wavefunction into two-cluster components. A set of coupled equations in both the differential and integral form is then derived for these components. These equations have structure and properties similar to the three-body equations of Faddeev. We demonstrate that each component has outgoing waves in a unique two-cluster partition. The transition amplitude for any final arrangement can therefore be extracted directly from the outgoing waves in the relevant components
The partition function of an interacting many body system
International Nuclear Information System (INIS)
Rummel, C.; Ankerhold, J.
2002-01-01
Based on the path integral approach the partition function of a many body system with separable two body interaction is calculated in the sense of a semiclassical approximation. The commonly used Gaussian type of approximation, known as the perturbed static path approximation (PSPA), breaks down near a crossover temperature due to instabilities of the classical mean field solution. It is shown how the PSPA is systematically improved within the crossover region by taking into account large non-Gaussian fluctuation and an approximation applicable down to very low temperatures is carried out. These findings are tested against exact results for the archetypical cases of a particle moving in a one dimensional double well and the exactly solvable Lipkin-Meshkov-Glick model. The extensions should have applications in finite systems at low temperatures as in nuclear physics and mesoscopic systems, e. g. for gap fluctuations in nano-scale superconducting devices previously studied within a PSPA type of approximation. (author)
Nuclear collision theory with many-body correlations, 2
International Nuclear Information System (INIS)
Kurihara, Yukio.
1984-12-01
A nuclear collision theory, in which the many-body correlation induced by the strong short-ranged repulsion and medium-ranged attraction of the realistic NN interaction is explicitly included, is applied to the deuteron+deuteron elastic scattering at low energies. Pair correlation functions calculated by the present theory are very different from the Hackenbroich et al. 's one. They contain not only the short-ranged suppressive correlation, but also the medium-ranged enhancing correlation. The former changes the shape of the d-d potential from the wine-bottle one. And the latter makes the d-d potential much more attractive. This effect is necessary for reproducing a bump around thatesub(cm)=90 0 in the experimental elastic differential cross section. The phase shifts evaluated by the present theory are compared with those from the resonating-group method. (author)
Resonating-group method for nuclear many-body problems
International Nuclear Information System (INIS)
Tang, Y.C.; LeMere, M.; Thompson, D.R.
1977-01-01
The resonating-group method is a microscopic method which uses fully antisymmetric wave functions, treats correctly the motion of the total center of mass, and takes cluster correlation into consideration. In this review, the formulation of this method is discussed for various nuclear many-body problems, and a complex-generator-coordinate technique which has been employed to evaluate matrix elements required in resonating-group calculations is described. Several illustrative examples of bound-state, scattering, and reaction calculations, which serve to demonstrate the usefulness of this method, are presented. Finally, by utilization of the results of these calculations, the role played by the Pauli principle in nuclear scattering and reaction processes is discussed. 21 figures, 2 tables, 185 references
Relativistic many-body theory of atomic structures
International Nuclear Information System (INIS)
Cheng, K.T.
1983-01-01
The main objective of this program is to improve our understanding of the effect of relativity and electron correlations on atomic processes. Current efforts include hyperfine structure (hfs) studies using the multiconfiguration Dirac-Fock (MCDF) technique. Atomic hfs are known to be sensitive to relativity and electron correlations, and provide important tests of relativistic atomic many-body theories. Preliminary results on the hfs of the 4f 12 3 H ground state of 68 Er 167 are shown and are in good agreement with experiment. This shows that the MCDF technique can be an efficient and powerful method for atomic hfs studies. Further tests of this method are in progress. We are also studying the absorption spectra for Xe-like ions in the region of 4d → nf, epsilonf transitions
Many-body theory and Energy Density Functionals
Energy Technology Data Exchange (ETDEWEB)
Baldo, M. [INFN, Catania (Italy)
2016-07-15
In this paper a method is first presented to construct an Energy Density Functional on a microscopic basis. The approach is based on the Kohn-Sham method, where one introduces explicitly the Nuclear Matter Equation of State, which can be obtained by an accurate many-body calculation. In this way it connects the functional to the bare nucleon-nucleon interaction. It is shown that the resulting functional can be performing as the best Gogny force functional. In the second part of the paper it is shown how one can go beyond the mean-field level and the difficulty that can appear. The method is based on the particle-vibration coupling scheme and a formalism is presented that can handle the correct use of the vibrational degrees of freedom within a microscopic approach. (orig.)
Many-body physics with alkaline-earth Rydberg lattices
Energy Technology Data Exchange (ETDEWEB)
Mukherjee, R; Nath, R; Pohl, T [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187 Dresden (Germany); Millen, J; Jones, M P A, E-mail: rick@pks.mpg.de [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom)
2011-09-28
We explore the prospects for confining alkaline-earth Rydberg atoms in an optical lattice via optical dressing of the secondary core-valence electron. Focussing on the particular case of strontium, we identify experimentally accessible magic wavelengths for simultaneous trapping of ground and Rydberg states. A detailed analysis of relevant loss mechanisms shows that the overall lifetime of such a system is limited only by the spontaneous decay of the Rydberg state, and is not significantly affected by photoionization or autoionization. The van der Waals C{sub 6} coefficients for the Sr(5sns {sup 1}S{sub 0}) Rydberg series are calculated, and we find that the interactions are attractive. Finally we show that the combination of magic-wavelength lattices and attractive interactions could be exploited to generate many-body Greenberger-Horne-Zeilinger states.
Communication: Random phase approximation renormalized many-body perturbation theory
International Nuclear Information System (INIS)
Bates, Jefferson E.; Furche, Filipp
2013-01-01
We derive a renormalized many-body perturbation theory (MBPT) starting from the random phase approximation (RPA). This RPA-renormalized perturbation theory extends the scope of single-reference MBPT methods to small-gap systems without significantly increasing the computational cost. The leading correction to RPA, termed the approximate exchange kernel (AXK), substantially improves upon RPA atomization energies and ionization potentials without affecting other properties such as barrier heights where RPA is already accurate. Thus, AXK is more balanced than second-order screened exchange [A. Grüneis et al., J. Chem. Phys. 131, 154115 (2009)], which tends to overcorrect RPA for systems with stronger static correlation. Similarly, AXK avoids the divergence of second-order Møller-Plesset (MP2) theory for small gap systems and delivers a much more consistent performance than MP2 across the periodic table at comparable cost. RPA+AXK thus is an accurate, non-empirical, and robust tool to assess and improve semi-local density functional theory for a wide range of systems previously inaccessible to first-principles electronic structure calculations
Many-body delocalization with random vector potentials
Cheng, Chen; Mondaini, Rubem
In this talk we present the ergodic properties of excited states in a model of interacting fermions in quasi-one dimensional chains subjected to a random vector potential. In the non-interacting limit, we show that arbitrarily small values of this complex off-diagonal disorder triggers localization for the whole spectrum; the divergence of the localization length in the single particle basis is characterized by a critical exponent ν which depends on the energy density being investigated. However, when short-ranged interactions are included, the localization is lost and the system is ergodic regardless of the magnitude of disorder in finite chains. Our numerical results suggest a delocalization scheme for arbitrary small values of interactions. This finding indicates that the standard scenario of the many-body localization cannot be obtained in a model with random gauge fields. This research is financially supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. U1530401 and 11674021). RM also acknowledges support from NSFC (Grant No. 11650110441).
Detecting many-body-localization lengths with cold atoms
Guo, Xuefei; Li, Xiaopeng
2018-03-01
Considering ultracold atoms in optical lattices, we propose experimental protocols to study many-body-localization (MBL) length and criticality in quench dynamics. Through numerical simulations with exact diagonalization, we show that in the MBL phase the perturbed density profile following a local quench remains exponentially localized in postquench dynamics. The size of this density profile after long-time-dynamics defines a localization length, which tends to diverge at the MBL-to-ergodic transition as we increase the system size. The determined localization transition point agrees with previous exact diagonalization calculations using other diagnostics. Our numerical results provide evidence for violation of the Harris-Chayes bound for the MBL criticality. The critical exponent ν can be extracted from our proposed dynamical procedure, which can then be used directly in experiments to determine whether the Harris-Chayes-bound holds for the MBL transition. These proposed protocols to detect localization criticality are justified by benchmarking to the well-established results for the noninteracting three-dimensional Anderson localization.
Nuclear many-body problem with repulsive hard core interactions
Energy Technology Data Exchange (ETDEWEB)
Haddad, L M
1965-07-01
The nuclear many-body problem is considered using the perturbation-theoretic approach of Brueckner and collaborators. This approach is outlined with particular attention paid to the graphical representation of the terms in the perturbation expansion. The problem is transformed to centre-of-mass coordinates in configuration space and difficulties involved in ordinary methods of solution of the resulting equation are discussed. A new technique, the 'reference spectrum method', devised by Bethe, Brandow and Petschek in an attempt to simplify the numerical work in presented. The basic equations are derived in this approximation and considering the repulsive hard core part of the interaction only, the effective mass is calculated at high momentum (using the same energy spectrum for both 'particle' and 'hole' states). The result of 0.87m is in agreement with that of Bethe et al. A more complete treatment using the reference spectrum method in introduced and a self-consistent set of equations is established for the reference spectrum parameters again for the case of hard core repulsions. (author)
Many-body problem in one-dimension
International Nuclear Information System (INIS)
Emery, V.J.
1979-11-01
This work attempts to give a qualitative feeling for the more important physical ideas involved with the study of many-body systems in one dimension, and considers a particular strong-coupling model. This model provides an excellent description of the chains of mercury ions in Hg/sub 3-delta/AsF 6 ; some of the predictions of the theory can be checked by x-ray and neutron diffraction. Much of the physics of nearly one-dimensional materials is concerned with understanding the possible types of phase transition that may take place, and establishing the conditions in which one or another will be predominant. The most significant feature of purely one-dimensional systems is the dominant effect of fluctuations. The paper is organized as follows: introduction; qualitative aspects of one-dimensional systems (general survey, mathematical model, qualitative discussion of strong coupling - strong attractive U, strong repulsive U, large V); strong coupling between parallel spins (independent spin systems, coupling between opposite spins); mercury chains; electrons with arbitrary coupling; boson representations of operators; and classical Coulomb gas
Spectral statistics of chaotic many-body systems
International Nuclear Information System (INIS)
Dubertrand, Rémy; Müller, Sebastian
2016-01-01
We derive a trace formula that expresses the level density of chaotic many-body systems as a smooth term plus a sum over contributions associated to solutions of the nonlinear Schrödinger (or Gross–Pitaevski) equation. Our formula applies to bosonic systems with discretised positions, such as the Bose–Hubbard model, in the semiclassical limit as well as in the limit where the number of particles is taken to infinity. We use the trace formula to investigate the spectral statistics of these systems, by studying interference between solutions of the nonlinear Schrödinger equation. We show that in the limits taken the statistics of fully chaotic many-particle systems becomes universal and agrees with predictions from the Wigner–Dyson ensembles of random matrix theory. The conditions for Wigner–Dyson statistics involve a gap in the spectrum of the Frobenius–Perron operator, leaving the possibility of different statistics for systems with weaker chaotic properties. (paper)
Many-body theory of effective mass in degenerate semiconductors
Tripathi, G. S.; Shadangi, S. K.
2018-03-01
We derive the many-body theory of the effective mass in the effective mass representation (EMR). In the EMR, we need to solve the equation of motion of an electron in the presence of electron-electron interactions, where the wavefunction is expanded over a complete set of Luttinger-Kohn wavefunctions. We use the Luttinger-Ward thermodynamic potential and the Green’s function perturbation to derive an expression for the band effective mass by taking into account the electron-electron interactions. Both quasi-particle and the correlation contributions are considered. We show that had we considered only the quasi-particle contribution, we would have missed important cancellations. Thus the correlated motion of electrons has important effects in the renormalization of the effective mass. Considering the exchange self-energy in the band model, we derive a tractable expression for the band effective mass. We apply the theory to n-type degenerate semiconductors, PbTe and SnTe, and analyze the impact of the theory on the anisotropic effective mass of the conduction bands in these systems.
From Discrete Breathers to Many Body Localization and Flatbands
Flach, Sergej
Discrete breathers (DB) and intrinsic localized modes (ILM) are synonymic dynamical states on nonlinear lattices - periodic in time and localized in space, and widely observed in many applications. I will discuss the connections between DBs and many-body localization (MBL) and the properties of DBs on flatband networks. A dense quantized gas of strongly excited DBs can lead to a MBL phase in a variety of different lattice models. Its classical counterpart corresponds to a 'nonergodic metal' in the MBL language, or to a nonGibbsean selftrapped state in the language of nonlinear dynamics. Flatband networks are lattices with small amplitude waves exhibiting macroscopic degeneracy in their band structure due to local symmetries, destructive interference, compact localized eigenstates and horizontal flat bands. DBs can preserve the compactness of localization in the presence of nonlinearity with properly tuned internal phase relationships, making them promising tools for control of the phase coherence of waves. Also at New Zealand Institute of Advanced Study, Massey University, Auckland, New Zealand.
Many body effects in nuclear matter QCD sum rules
Drukarev, E. G.; Ryskin, M. G.; Sadovnikova, V. A.
2017-12-01
We calculate the single-particle nucleon characteristics in symmetric nuclear matter with inclusion of the 3N and 4N interactions. We calculated the contribution of the 3N interactions earlier, now we add that of the 4N ones. The contribution of the 4N forces to nucleon self energies is expressed in terms of the nonlocal scalar condensate (d = 3) and of the configurations of the vector-scalar and the scalar-scalar quark condensates (d = 6) in which two diquark operators act on two different nucleons of the matter.These four-quark condensates are obtained in the model-independent way. The density dependence of the nucleon effective mass, of the vector self energy and of the single-particle potential energy are obtained. We traced the dependence of the nucleon characteristics on the actual value of the pion-nucleon sigma term. We obtained also the nucleon characteristics in terms of the quasifree nucleons, with the noninteracting nucleons surrounded by their pion clouds as the starting point. This approach leads to strict hierarchy of the many body forces.
Workshop on Kadanoff-Baym Equations : Progress and Perspectives for Many-Body Physics
2000-01-01
Equilibrium and nonequilibrium properties of correlated many-body systems are of growing interest in many fields of physics, including condensed matter, dense plasmas, nuclear matter and particles. The most powerful and general method which applies equally to all these areas is given by quantum field theory.Written by the leading experts and understandable to non-specialists, this book provides an overview on the basic ideas and concepts of the method of nonequilibrium Green's functions. It is complemented by modern applications of the method to a variety of topics, such as optics and transpor
First-principles many-body theory for ultra-cold atoms
International Nuclear Information System (INIS)
Drummond, Peter D.; Hu Hui; Liu Xiaji
2010-01-01
Recent breakthroughs in the creation of ultra-cold atoms in the laboratory have ushered in unprecedented changes in physical science. These enormous changes in the coldest temperatures available in the laboratory mean that many novel experiments are possible. There is unprecedented control and simplicity in these novel systems, meaning that quantum many-body theory is now facing severe challenges in quantitatively understanding these new results. We discuss some of the new experiments and recently developed theoretical techniques required to predict the results obtained.
Off-shell effects and consistency of many-body treatments of dense matter
International Nuclear Information System (INIS)
Krippa, Boris; Birse, Michael C.; McGovern, Judith A.; Walet, Niels R.
2003-01-01
Effective field theory requires all observables to be independent of the representation used for the quantum field operators. It means that off-shell properties of the interactions should not lead to any observable effects. We analyze this issue in the context of many-body approaches to nuclear matter, where it should be possible to shift the contributions of lowest order in purely off-shell two-body interactions into three-body forces. We show that none of the commonly used truncations of the two-body scattering amplitude such as the ladder, Brueckner-Hartree-Fock, or parquet approximations respect this requirement
Directory of Open Access Journals (Sweden)
Wang M
2016-05-01
Full Text Available Mengmeng Wang,1,2,* Jilong Wang,1,2,* Hubo Sun,1,2 Sihai Han,3 Shuai Feng,1 Lu Shi,1 Peijun Meng,1,2 Jiayi Li,1,2 Peili Huang,1,2 Zhiwei Sun1,2 1Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, 2Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 3College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, People’s Republic of China *These authors contributed equally to this work Abstract: A complete understanding of the toxicological behavior of quantum dots (QDs in vivo is of great importance and a prerequisite for their application in humans. In contrast with the numerous cytotoxicity studies investigating QDs, only a few in vivo studies of QDs have been reported, and the issue remains controversial. Our study aimed to understand QD-mediated toxicity across different time points and to explore the roles of free cadmium ions (Cd2+ and hydroxyl radicals (·OH in tissue damage. Male ICR mice were administered a single intravenous dose (1.5 µmol/kg of CdTe QDs, and liver and kidney function and morphology were subsequently examined at 1, 7, 14, and 28 days. Furthermore, ·OH production in the tissue was quantified by trapping ·OH with salicylic acid (SA as 2,3-dihydroxybenzoic acid (DHBA and detecting it using a high-performance liquid chromatography fluorescence method. We used the induction of tissue metallothionein levels and 2,3-DHBA:SA ratios as markers for elevated Cd2+ from the degradation of QDs and ·OH generation in the tissue, respectively. Our experimental results revealed that the QD-induced histopathological changes were time-dependent with elevated Cd2+ and ·OH, and could recover after a period of time. The Cd2+ and ·OH exhibited delayed effects in terms of histopathological abnormalities. Histological assessments performed at multiple time points might facilitate the evaluation of the biological safety of
Electromagnetic interactions in relativistic systems of many bodies
International Nuclear Information System (INIS)
Cook, A.H.
1987-09-01
In a previous report (Cook, 1986, 1987) on a formulation of a quasi-relativistic quantum mechanical equation of motion for many particles, little was said of the electromagnetic interactions that keep a set of particles in a bound state. That omission is to some extent repaired in this report. (author). 3 refs
Holographic Duality with a View Toward Many-Body Physics
Directory of Open Access Journals (Sweden)
John McGreevy
2010-01-01
Full Text Available These are notes based on a series of lectures given at the KITP workshop Quantum Criticality and the AdS/CFT Correspondence in July, 2009. The goal of the lectures was to introduce condensed matter physicists to the AdS/CFT correspondence. Discussion of string theory and of supersymmetry is avoided to the extent possible.
Highly Enhanced Many-Body Interactions in Anisotropic 2D Semiconductors.
Sharma, Ankur; Yan, Han; Zhang, Linglong; Sun, Xueqian; Liu, Boqing; Lu, Yuerui
2018-05-15
Atomically thin two-dimensional (2D) semiconductors have presented a plethora of opportunities for future optoelectronic devices and photonics applications, made possible by the strong light matter interactions at the 2D quantum limit. Many body interactions between fundamental particles in 2D semiconductors are strongly enhanced compared with those in bulk semiconductors because of the reduced dimensionality and, thus, reduced dielectric screening. These enhanced many body interactions lead to the formation of robust quasi-particles, such as excitons, trions, and biexcitons, which are extremely important for the optoelectronics device applications of 2D semiconductors, such as light emitting diodes, lasers, and optical modulators, etc. Recently, the emerging anisotropic 2D semiconductors, such as black phosphorus (termed as phosphorene) and phosphorene-like 2D materials, such as ReSe 2 , 2D-perovskites, SnS, etc., show strong anisotropic optical and electrical properties, which are different from conventional isotropic 2D semiconductors, such as transition metal dichalcogenide (TMD) monolayers. This anisotropy leads to the formation of quasi-one-dimensional (quasi-1D) excitons and trions in a 2D system, which results in even stronger many body interactions in anisotropic 2D materials, arising from the further reduced dimensionality of the quasi-particles and thus reduced dielectric screening. Many body interactions have been heavily investigated in TMD monolayers in past years, but not in anisotropic 2D materials yet. The quasi-particles in anisotropic 2D materials have fractional dimensionality which makes them perfect candidates to serve as a platform to study fundamental particle interactions in fractional dimensional space. In this Account, we present our recent progress related to 2D phosphorene, a 2D system with quasi-1D excitons and trions. Phosphorene, because of its unique anisotropic properties, provides a unique 2D platform for investigating the
Density functional approach to many-body effects in the optical response of atoms
International Nuclear Information System (INIS)
Zangwill, A.
1981-01-01
The purpose of this work is to present a new method for calculating the optical response of finite electronic system which is accurate, computationally simple, and lends itself to a ready physical interpretation of the results. This work is concerned with the so-called many-body effects which render an independent particle calculation inappropriate for comparison with experimental photoabsorption and photoemission cross sections. Polarization effects are included which describe the response of the system to an external probe and self-energy effects, which describe the dynamics and decay of a single particle state. This work, which essentially reintroduces the residual Coulomb interactions among the electrons, is confined to atoms. The method is a time-dependent local density approximation (TDLDA) and represents a natural generalization of the usual local density approximation to the ground state properties of a many electron system. Using standard first-order time-dependent perturbation theory, a self-consistent mean field theory is derived for an effective field which replaces the external field in the dipole matrix elements of the Golden Rule for photoabsorption. This effective field includes a contribution from an induced classical Coulomb field as well as an induced exchange-correlation field. This work successfully demonstrates the applicability of time-dependent generalization of the local density approximation to the practical calculation of the photo-response of atoms. For the rare gases, barium, cerium and copper are obtained cross sections in quantitative agreement with recent experiments
Engineering Topological Many-Body Materials in Microwave Cavity Arrays
Directory of Open Access Journals (Sweden)
Brandon M. Anderson
2016-12-01
Full Text Available We present a scalable architecture for the exploration of interacting topological phases of photons in arrays of microwave cavities, using established techniques from cavity and circuit quantum electrodynamics. A time-reversal symmetry-breaking (nonreciprocal flux is induced by coupling the microwave cavities to ferrites, allowing for the production of a variety of topological band structures including the α=1/4 Hofstadter model. To induce photon-photon interactions, the cavities are coupled to superconducting qubits; we find these interactions are sufficient to stabilize a ν=1/2 bosonic Laughlin puddle. Exact diagonalization studies demonstrate that this architecture is robust to experimentally achievable levels of disorder. These advances provide an exciting opportunity to employ the quantum circuit toolkit for the exploration of strongly interacting topological materials.
On nonequilibrium many-body systems V: ultrafast transport phenomena
International Nuclear Information System (INIS)
Freire, V.N.; Vasconcellos, A.R.; Luzzi, R.
1989-01-01
The monequilibrium statistical operator method and its accompanying nonlinear quantum transport theory, are used to perform an analytical study of the ultrafast mobility transient of central-valley photoinjected carriers in direct-gap polar semiconductors. Expressions for the time-resolved mobility of the hot carriers are derived. A brief discussion of the carriers' diffusion coefficient is done. (A.C.A.S.) [pt
A New Class of Solvable Many-Body Problems
Directory of Open Access Journals (Sweden)
Francesco Calogero
2012-10-01
Full Text Available A new class of solvable N-body problems is identified. They describe N unit-mass point particles whose time-evolution, generally taking place in the complex plane, is characterized by Newtonian equations of motion ''of goldfish type'' (acceleration equal force, with specific velocity-dependent one-body and two-body forces featuring several arbitrary coupling constants. The corresponding initial-value problems are solved by finding the eigenvalues of a time-dependent N×N matrix U(t explicitly defined in terms of the initial positions and velocities of the N particles. Some of these models are asymptotically isochronous, i.e. in the remote future they become completely periodic with a period T independent of the initial data (up to exponentially vanishing corrections. Alternative formulations of these models, obtained by changing the dependent variables from the N zeros of a monic polynomial of degree N to its N coefficients, are also exhibited.
New formalism for determining excitation spectra of many-body systems
International Nuclear Information System (INIS)
Saito, S.; Zhang, S.B.; Louie, S.G.; Cohen, M.L.
1990-01-01
We present a new general formalism for determining the excitation spectrum of interacting many-body systems. The basic assumption is that the number of the excitations is equal to the number of sites. Within this approximation, it is shown that the density-density response functions with two different pure-imaginary energies determine the excitation spectrum. The method is applied to the valence electrons of sodium clusters of differing sizes in the time-dependent local-density approximation (TDLDA). A jellium-sphere background model is used for the ion cores. The excitation spectra obtained in this way represent well the excitation spectra given by the full TDLDA calculation along the real energy axis. Important collective modes are reproduced very well
Introduction to integrable many-body systems II
International Nuclear Information System (INIS)
Samaj, L.
2010-01-01
This is the second part of a three-volume introductory course about integrable systems of interacting bodies. The models of interest are quantum spin chains with nearest-neighbor interactions between spin operators, in particular Heisenberg spin- 2 models. The Ising model in a transverse field, expressible as a quadratic fermion form by using the Jordan-Wigner transformation, is the subject of Sect. 12. The derivation of the coordinate Bethe ansatz for the XXZ Heisenberg chain and the determination of its absolute ground state in various regions of the anisotropy parameter are presented in Sect. 13. The magnetic properties of the ground state are explained in Sect. 14. Sect. 15 concerns excited states and the zero-temperature thermodynamics of the XXZ model. The thermodynamics of the XXZ Heisenberg chain is derived on the basis of the string hypothesis in Sect. 16; the thermodynamic Bethe ansatz equations are analyzed in high-temperature and low-temperature limits. An alternative derivation of the thermodynamics without using strings, leading to a non-linear integral equation determining the free energy, is the subject of Sect. 17. A nontrivial application of the Quantum Inverse Scattering method to the fully anisotropic XYZ Heisenberg chain is described in Section 18. Section 19 deals with integrable cases of isotropic spin chains with an arbitrary spin. (Author)
Parallel implementation of many-body mean-field equations
International Nuclear Information System (INIS)
Chinn, C.R.; Umar, A.S.; Vallieres, M.; Strayer, M.R.
1994-01-01
We describe the numerical methods used to solve the system of stiff, nonlinear partial differential equations resulting from the Hartree-Fock description of many-particle quantum systems, as applied to the structure of the nucleus. The solutions are performed on a three-dimensional Cartesian lattice. Discretization is achieved through the lattice basis-spline collocation method, in which quantum-state vectors and coordinate-space operators are expressed in terms of basis-spline functions on a spatial lattice. All numerical procedures reduce to a series of matrix-vector multiplications and other elementary operations, which we perform on a number of different computing architectures, including the Intel Paragon and the Intel iPSC/860 hypercube. Parallelization is achieved through a combination of mechanisms employing the Gram-Schmidt procedure, broadcasts, global operations, and domain decomposition of state vectors. We discuss the approach to the problems of limited node memory and node-to-node communication overhead inherent in using distributed-memory, multiple-instruction, multiple-data stream parallel computers. An algorithm was developed to reduce the communication overhead by pipelining some of the message passing procedures
Basic and heavy ion scattering in time dependent Hartree-Fock Theory
International Nuclear Information System (INIS)
Weiss, M.S.
1984-01-01
Time Dependent Hartree-Fock theory, TDHF, is the most sophisticated, microscopic approach to nuclear dynamics yet practiced. Although it is far from a description of nature it does allow us to examine multiply interactive many-body systems semi quantum mechanically and to visualize otherwise covert processes. Some of the properties of the TDHF equations are stated leaving the interested reader to one of several excellent review articles for the derivations. Some of the applications to the collision of heavy ions are briefly described
Inglesfield, J. E.
2007-01-01
A method of solving the time-dependent Schr\\"odinger equation is presented, in which a finite region of space is treated explicitly, with the boundary conditions for matching the wave-functions on to the rest of the system replaced by an embedding term added on to the Hamiltonian. This time-dependent embedding term is derived from the Fourier transform of the energy-dependent embedding potential, which embeds the time-independent Schr\\"odinger equation. Results are presented for a one-dimensi...
Many-body problems in high temperature superconductivity
International Nuclear Information System (INIS)
Yu Lu.
1991-10-01
In this brief review the basic experimental facts about high T c superconductors are outlined. The superconducting properties of these superconductors are not very different from those of the ordinary superconductors. However, their normal state properties cannot be described by the standard Fermi liquid (FL) theory. Our current understanding of the strongly correlated models is summarized. In one dimension these systems behave like a ''Luttinger liquid'', very much distinct from the FL. In spite of the enormous efforts made in two-dimensional studies, the question of FL vs non-FL behaviour is still open. The numerical results as well as various approximation schemes are discussed. Both the single hole problem in a quantum antiferromagnet and finite doping regime are considered. (author). 104 refs, 9 figs
Relativistic many-body bound systems. Monograph report
International Nuclear Information System (INIS)
Danos, M.; Gillet, V.
1975-04-01
The principles and the mathematical details of a fully relativistic nuclear theory are given. Since the concept of nuclear forces is a strictly non-relativistic construct, it must be abandoned, and the forces must be replaced explicitly by their physical origin, i.e., by the interaction between nucleons and mesons. Thus, in this monograph the description of a nucleus has been formulated as a problem of relativistic quantum field theory which is solved by nuclear physics methods; to wit: the physics is described by specifying a Lagrangian which is a functional of the constituent fields (= of the parton fields); the solutions for the physical systems then are obtained in a time-independent treatment as expansions in the parton fields: both particles and nuclei are composite systems, made up of parton configurations, which define a representation of the Hamiltonian (associated with the specified Lagrangian)
Introduction to integrable many-body systems III
International Nuclear Information System (INIS)
Bajnok, Z.; Samaj, L.
2011-01-01
This is the third part of a three-volume introductory course about integrable systems of interacting bodies. The emphasis is put onto the method of Thermodynamic Bethe Ansatz. Two kinds of integrable models are studied. Systems of itinerant electrons, forming a part of Condensed Matter Physics, involve the Hubbard lattice model of electrons with short-ranged one-site interactions (Sect. 20) and the s-d exchange Kondo model (Sect. 21), describing the scattering of conduction electrons on a spin-s impurity. Methods and basic concepts used in Quantum Field Theory are explained on the integrable (1 + 1)-dimensional sine-Gordon model. We start with the classical description of the model in Sect. 22, analyze its finite energy field configurations (soliton, anti-soliton and breathers) and show its classical integrability. The model is quantized by using two schemes: the conformal (Sect. 23) and Lagrangian (Sect. 24) quantizations. The scattering matrix of the sine-Gordon theory is derived at the full quantum level in the bootstrap scheme and is compared to its classical limit in Sect. 25. The parameters of the scattering matrix are related to those of the Lagrangian by calculating the ground-state energy in an applied magnetic field in two ways: Conformal perturbation theory and Thermodynamic Bethe Ansatz (Sect. 26). The relation of the sine-Gordon theory to the XXZ Heisenberg model, which provides a complete solution of the sine-Gordon model in a finite volume, is pointed out in Sect. 27. The obtained results are applied in Sect. 28. to the derivation of the exact thermodynamics for the (symmetric) two-component Coulomb gas; this is the first classical two-dimensional fluid with exactly solvable thermodynamics (Authors)
The use of many-body expansions and geometry optimizations in fragment-based methods.
Fedorov, Dmitri G; Asada, Naoya; Nakanishi, Isao; Kitaura, Kazuo
2014-09-16
Conspectus Chemists routinely work with complex molecular systems: solutions, biochemical molecules, and amorphous and composite materials provide some typical examples. The questions one often asks are what are the driving forces for a chemical phenomenon? How reasonable are our views of chemical systems in terms of subunits, such as functional groups and individual molecules? How can one quantify the difference in physicochemical properties of functional units found in a different chemical environment? Are various effects on functional units in molecular systems additive? Can they be represented by pairwise potentials? Are there effects that cannot be represented in a simple picture of pairwise interactions? How can we obtain quantitative values for these effects? Many of these questions can be formulated in the language of many-body effects. They quantify the properties of subunits (fragments), referred to as one-body properties, pairwise interactions (two-body properties), couplings of two-body interactions described by three-body properties, and so on. By introducing the notion of fragments in the framework of quantum chemistry, one obtains two immense benefits: (a) chemists can finally relate to quantum chemistry, which now speaks their language, by discussing chemically interesting subunits and their interactions and (b) calculations become much faster due to a reduced computational scaling. For instance, the somewhat academic sounding question of the importance of three-body effects in water clusters is actually another way of asking how two hydrogen bonds affect each other, when they involve three water molecules. One aspect of this is the many-body charge transfer (CT), because the charge transfers in the two hydrogen bonds are coupled to each other (not independent). In this work, we provide a generalized view on the use of many-body expansions in fragment-based methods, focusing on the general aspects of the property expansion and a contraction of a
Souto, R Seoane; Martín-Rodero, A; Yeyati, A Levy
2016-12-23
We analyze the quantum quench dynamics in the formation of a phase-biased superconducting nanojunction. We find that in the absence of an external relaxation mechanism and for very general conditions the system gets trapped in a metastable state, corresponding to a nonequilibrium population of the Andreev bound states. The use of the time-dependent full counting statistics analysis allows us to extract information on the asymptotic population of even and odd many-body states, demonstrating that a universal behavior, dependent only on the Andreev state energy, is reached in the quantum point contact limit. These results shed light on recent experimental observations on quasiparticle trapping in superconducting atomic contacts.
Sous, John; Grant, Edward
2018-03-01
We argue that the quenched ultracold plasma presents an experimental platform for studying the quantum many-body physics of disordered systems in the long-time and finite energy-density limits. We consider an experiment that quenches a plasma of nitric oxide to an ultracold system of Rydberg molecules, ions, and electrons that exhibits a long-lived state of arrested relaxation. The qualitative features of this state fail to conform with classical models. Here, we develop a microscopic quantum description for the arrested phase based on an effective many-body spin Hamiltonian that includes both dipole-dipole and van der Waals interactions. This effective model appears to offer a way to envision the essential quantum disordered nonequilibrium physics of this system.
Exploring one-particle orbitals in large many-body localized systems
Villalonga, Benjamin; Yu, Xiongjie; Luitz, David J.; Clark, Bryan K.
2018-03-01
Strong disorder in interacting quantum systems can give rise to the phenomenon of many-body localization (MBL), which defies thermalization due to the formation of an extensive number of quasilocal integrals of motion. The one-particle operator content of these integrals of motion is related to the one-particle orbitals (OPOs) of the one-particle density matrix and shows a strong signature across the MBL transition as recently pointed out by Bera et al. [Phys. Rev. Lett. 115, 046603 (2015), 10.1103/PhysRevLett.115.046603; Ann. Phys. 529, 1600356 (2017), 10.1002/andp.201600356]. We study the properties of the OPOs of many-body eigenstates of an MBL system in one dimension. Using shift-and-invert MPS, a matrix product state method to target highly excited many-body eigenstates introduced previously [Phys. Rev. Lett. 118, 017201 (2017), 10.1103/PhysRevLett.118.017201], we are able to obtain accurate results for large systems of sizes up to L =64 . We find that the OPOs drawn from eigenstates at different energy densities have high overlap and their occupations are correlated with the energy of the eigenstates. Moreover, the standard deviation of the inverse participation ratio of these orbitals is maximal at the nose of the mobility edge. Also, the OPOs decay exponentially in real space, with a correlation length that increases at low disorder. In addition, we find that the probability distribution of the strength of the large-range coupling constants of the number operators generated by the OPOs approach a log-uniform distribution at strong disorder.
Energy Technology Data Exchange (ETDEWEB)
Padmanabhan, Pramod [Fields, Gravity & Strings, CTPU, Institute for Basic Science,Daejeon 34037 (Korea, Republic of); Rey, Soo-Jong [Fields, Gravity & Strings, CTPU, Institute for Basic Science,Daejeon 34037 (Korea, Republic of); School of Physics and Astronomy & Center for Theoretical Physics, Seoul National University,Seoul 06544 (Korea, Republic of); Department of Basic Sciences, University of Science and Technology, Daejeon 34113 (Korea, Republic of); Teixeira, Daniel; Trancanelli, Diego [Institute of Physics, University of São Paulo, 05314-970 São Paulo (Brazil)
2017-05-25
Partial symmetries are described by generalized group structures known as symmetric inverse semigroups. We use the algebras arising from these structures to realize supersymmetry in (0+1) dimensions and to build many-body quantum systems on a chain. This construction consists in associating appropriate supercharges to chain sites, in analogy to what is done in spin chains. For simple enough choices of supercharges, we show that the resulting states have a finite non-zero Witten index, which is invariant under perturbations, therefore defining supersymmetric phases of matter protected by the index. The Hamiltonians we obtain are integrable and display a spectrum containing both product and entangled states. By introducing disorder and studying the out-of-time-ordered correlators (OTOC), we find that these systems are in the many-body localized phase and do not thermalize. Finally, we reformulate a theorem relating the growth of the second Rényi entropy to the OTOC on a thermal state in terms of partial symmetries.
Relativistic many-body theory a new field-theoretical approach
Lindgren, Ingvar
2016-01-01
This revised second edition of the author’s classic text offers readers a comprehensively updated review of relativistic atomic many-body theory, covering the many developments in the field since the publication of the original title. In particular, a new final section extends the scope to cover the evaluation of QED effects for dynamical processes. The treatment of the book is based upon quantum-field theory, and demonstrates that when the procedure is carried to all orders of perturbation theory, two-particle systems are fully compatible with the relativistically covariant Bethe-Salpeter equation. This procedure can be applied to arbitrary open-shell systems, in analogy with the standard many-body theory, and it is also applicable to systems with more than two particles. Presently existing theoretical procedures for treating atomic systems are, in several cases, insufficient to explain the accurate experimental data recently obtained, particularly for highly charged ions. The main text is divided into...
Many-body localization transition: Schmidt gap, entanglement length, and scaling
Gray, Johnnie; Bose, Sougato; Bayat, Abolfazl
2018-05-01
Many-body localization has become an important phenomenon for illuminating a potential rift between nonequilibrium quantum systems and statistical mechanics. However, the nature of the transition between ergodic and localized phases in models displaying many-body localization is not yet well understood. Assuming that this is a continuous transition, analytic results show that the length scale should diverge with a critical exponent ν ≥2 in one-dimensional systems. Interestingly, this is in stark contrast with all exact numerical studies which find ν ˜1 . We introduce the Schmidt gap, new in this context, which scales near the transition with an exponent ν >2 compatible with the analytical bound. We attribute this to an insensitivity to certain finite-size fluctuations, which remain significant in other quantities at the sizes accessible to exact numerical methods. Additionally, we find that a physical manifestation of the diverging length scale is apparent in the entanglement length computed using the logarithmic negativity between disjoint blocks.
Density-density functionals and effective potentials in many-body electronic structure calculations
International Nuclear Information System (INIS)
Reboredo, Fernando A.; Kent, Paul R.
2008-01-01
We demonstrate the existence of different density-density functionals designed to retain selected properties of the many-body ground state in a non-interacting solution starting from the standard density functional theory ground state. We focus on diffusion quantum Monte Carlo applications that require trial wave functions with optimal Fermion nodes. The theory is extensible and can be used to understand current practices in several electronic structure methods within a generalized density functional framework. The theory justifies and stimulates the search of optimal empirical density functionals and effective potentials for accurate calculations of the properties of real materials, but also cautions on the limits of their applicability. The concepts are tested and validated with a near-analytic model.
Many-body dynamics of driven-dissipative Rydberg cavity polaritons
Pistorius, Tim; Fan, Jingtao; Weimer, Hendrik
2017-04-01
The usage of photons as long-range information carriers has greatly increased the interest in systems with nonlinear optical properties in recent years. The nonlinearity is easily achievable in Rydberg mediums through the strong van der Waals interaction which makes them one of the best candidates for such a system. Here, we propose a way to analyze the steady state solutions of a Rydberg medium in a cavity through the combination of the variational principle for open quantum systems and the P-distribution of the density matrix. To get a better understanding of the many-body-dynamics a transformation into the polariton picture is performed and investigated. Volkswagen Foundation, Deutsche Forschungsgemeinschaft.
Stochastic evaluation of second-order many-body perturbation energies.
Willow, Soohaeng Yoo; Kim, Kwang S; Hirata, So
2012-11-28
With the aid of the Laplace transform, the canonical expression of the second-order many-body perturbation correction to an electronic energy is converted into the sum of two 13-dimensional integrals, the 12-dimensional parts of which are evaluated by Monte Carlo integration. Weight functions are identified that are analytically normalizable, are finite and non-negative everywhere, and share the same singularities as the integrands. They thus generate appropriate distributions of four-electron walkers via the Metropolis algorithm, yielding correlation energies of small molecules within a few mE(h) of the correct values after 10(8) Monte Carlo steps. This algorithm does away with the integral transformation as the hotspot of the usual algorithms, has a far superior size dependence of cost, does not suffer from the sign problem of some quantum Monte Carlo methods, and potentially easily parallelizable and extensible to other more complex electron-correlation theories.
Time-dependent nonequilibrium soft x-ray response during a spin crossover
van Veenendaal, Michel
2018-03-01
A theoretical framework is developed for better understanding the time-dependent soft-x-ray response of dissipative quantum many-body systems. It is shown how x-ray absorption and resonant inelastic x-ray scattering (RIXS) at transition-metal L edges can provide insight into ultrafast intersystem crossings of importance for energy conversion, ultrafast magnetism, and catalysis. The photoinduced doublet-to-quartet spin crossover on cobalt in Fe-Co Prussian blue analogs is used as a model system to demonstrate how the x-ray response is affected by the nonequilibrium dynamics on a femtosecond time scale. Changes in local spin and symmetry and the underlying mechanism are reflected in strong broadenings, a collapse of clear selection rules during the intersystem crossing, fluctuations in the isotropic branching ratio in x-ray absorption, crystal-field collapse and/or oscillations, and time-dependent anti-Stokes processes in RIXS.
Time dependent drift Hamiltonian
International Nuclear Information System (INIS)
Boozer, A.H.
1982-04-01
The motion of individual charged particles in a given magnetic and an electric fields is discussed. An idea of a guiding center distribution function f is introduced. The guiding center distribution function is connected to the asymptotic Hamiltonian through the drift kinetic equation. The general non-stochastic magnetic field can be written in a contravariant and a covariant forms. The drift Hamiltonian is proposed, and the canonical gyroradius is presented. The proposed drift Hamiltonian agrees with Alfven's drift velocity to lowest non-vanishing order in the gyroradius. The relation between the exact, time dependent equations of motion and the guiding center equation is clarified by a Lagrangian analysis. The deduced Lagrangian represents the drift motion. (Kato, T.)
International Nuclear Information System (INIS)
Martinez, Rodrigo; Sierra, Jose Daniel; Gray, Stephen K.; Gonzalez, Miguel
2006-01-01
The time dependent real wave packet method using the helicity decoupling approximation was used to calculate the cross section evolution with collision energy (excitation function) of the O + +H 2 (v=0,j=0)→OH + +H reaction and its isotopic variants with D 2 and HD, using the best available ab initio analytical potential energy surface. The comparison of the calculated excitation functions with exact quantum results and experimental data showed that the present quantum dynamics approach is a very useful tool for the study of the selected and related systems, in a quite wide collision energy interval (approximately 0.0-1.1 eV), involving a much lower computational cost than the quantum exact methods and without a significant loss of accuracy in the cross sections
Long-distance entanglement in many-body atomic and optical systems
Energy Technology Data Exchange (ETDEWEB)
Giampaolo, Salvatore M; Illuminati, Fabrizio [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano, SA (Italy)], E-mail: illuminati@sa.infn.it
2010-02-15
We discuss the phenomenon of long-distance entanglement (LDE) in the ground state of quantum spin models, its use in high-fidelity and robust quantum communication, and its realization in many-body systems of ultracold atoms in optical lattices and in arrays of coupled optical cavities. We investigate XX quantum spin models on one-dimensional lattices with open ends and different patterns of site-dependent interaction couplings, singling out two general settings: patterns that allow for perfect LDE in the ground state of the system, namely such that the end-to-end entanglement remains finite in the thermodynamic limit, and patterns of quasi-long-distance entanglement (QLDE) in the ground state of the system, namely such that the end-to-end entanglement vanishes with a very slow power-law decay as the length of the spin chain is increased. We discuss physical realizations of these models in ensembles of ultracold bosonic atoms loaded in optical lattices. We show how, using either suitably engineered super-lattice structures or exploiting the presence of edge impurities in lattices with single periodicity, it is possible to realize models endowed with nonvanishing LDE or QLDE. We then study how to realize models that optimize the robustness of QLDE at finite temperature and in the presence of imperfections using suitably engineered arrays of coupled optical cavities. For both cases the numerical estimates of the end-to-end entanglement in the actual physical systems are thoroughly compared with the analytical results obtained for the spin model systems. We finally introduce LDE-based schemes of long-distance quantum teleportation in linear arrays of coupled cavities, and show that they allow for high-fidelity and high success rates even at moderately high temperatures.
Long-distance entanglement in many-body atomic and optical systems
International Nuclear Information System (INIS)
Giampaolo, Salvatore M; Illuminati, Fabrizio
2010-01-01
We discuss the phenomenon of long-distance entanglement (LDE) in the ground state of quantum spin models, its use in high-fidelity and robust quantum communication, and its realization in many-body systems of ultracold atoms in optical lattices and in arrays of coupled optical cavities. We investigate XX quantum spin models on one-dimensional lattices with open ends and different patterns of site-dependent interaction couplings, singling out two general settings: patterns that allow for perfect LDE in the ground state of the system, namely such that the end-to-end entanglement remains finite in the thermodynamic limit, and patterns of quasi-long-distance entanglement (QLDE) in the ground state of the system, namely such that the end-to-end entanglement vanishes with a very slow power-law decay as the length of the spin chain is increased. We discuss physical realizations of these models in ensembles of ultracold bosonic atoms loaded in optical lattices. We show how, using either suitably engineered super-lattice structures or exploiting the presence of edge impurities in lattices with single periodicity, it is possible to realize models endowed with nonvanishing LDE or QLDE. We then study how to realize models that optimize the robustness of QLDE at finite temperature and in the presence of imperfections using suitably engineered arrays of coupled optical cavities. For both cases the numerical estimates of the end-to-end entanglement in the actual physical systems are thoroughly compared with the analytical results obtained for the spin model systems. We finally introduce LDE-based schemes of long-distance quantum teleportation in linear arrays of coupled cavities, and show that they allow for high-fidelity and high success rates even at moderately high temperatures.
International Nuclear Information System (INIS)
Arvieu, R.; Carbonell, J.; Gignoux, C.; Mangin-Brinet, M.; Rozmej, P.
1997-01-01
The time evolution of coherent rotational wave packets associated to a diatomic molecule or to a deformed nucleus has been studied. Assuming a rigid body dynamics the J(J+1) law leads to a mechanism of cloning: the way function is divided into wave packets identical to the initial one at specific time. Applications are studied for a nuclear wave packed formed by Coulomb excitation. Exact boundary conditions at finite distance for the solution of the time-dependent Schroedinger equation are derived. A numerical scheme based on Crank-Nicholson method is proposed to illustrate its applicability in several examples. (authors)
Importance-truncated no-core shell model for fermionic many-body systems
Energy Technology Data Exchange (ETDEWEB)
Spies, Helena
2017-03-15
The exact solution of quantum mechanical many-body problems is only possible for few particles. Therefore, numerical methods were developed in the fields of quantum physics and quantum chemistry for larger particle numbers. Configuration Interaction (CI) methods or the No-Core Shell Model (NCSM) allow ab initio calculations for light and intermediate-mass nuclei, without resorting to phenomenology. An extension of the NCSM is the Importance-Truncated No-Core Shell Model, which uses an a priori selection of the most important basis states. The importance truncation was first developed and applied in quantum chemistry in the 1970s and latter successfully applied to models of light and intermediate mass nuclei. Other numerical methods for calculations for ultra-cold fermionic many-body systems are the Fixed-Node Diffusion Monte Carlo method (FN-DMC) and the stochastic variational approach with Correlated Gaussian basis functions (CG). There are also such method as the Coupled-Cluster method, Green's Function Monte Carlo (GFMC) method, et cetera, used for calculation of many-body systems. In this thesis, we adopt the IT-NCSM for the calculation of ultra-cold Fermi gases at unitarity. Ultracold gases are dilute, strongly correlated systems, in which the average interparticle distance is much larger than the range of the interaction. Therefore, the detailed radial dependence of the potential is not resolved, and the potential can be replaced by an effective contact interaction. At low energy, s-wave scattering dominates and the interaction can be described by the s-wave scattering length. If the scattering length is small and negative, Cooper-pairs are formed in the Bardeen-Cooper-Schrieffer (BCS) regime. If the scattering length is small and positive, these Cooper-pairs become strongly bound molecules in a Bose-Einstein-Condensate (BEC). In between (for large scattering lengths) is the unitary limit with universal properties. Calculations of the energy spectra
Many-body excitations and deexcitations in trapped ultracold bosonic clouds
Theisen, Marcus; Streltsov, Alexej I.
2016-11-01
We employ the multiconfigurational time-dependent Hartree for bosons (MCTDHB) method to study excited states of interacting Bose-Einstein condensates confined by harmonic and double-well trap potentials. Two approaches to access excitations, one static and the other dynamic, are investigated and contrasted. In static simulations the low-lying excitations are computed by utilizing a linear-response theory constructed on top of a static MCTDHB solution (LR-MCTDHB). Complimentarily, we propose two dynamic protocols that address excitations by propagating the MCTDHB wave function. In particular, we investigate dipolelike oscillations induced by shifting the origin of the confining potential and breathinglike excitations by quenching the frequency of a parabolic part of the trap. To contrast static predictions and dynamic results we compute the time evolution and regard the respective Fourier transform of several local and nonlocal observables. Namely, we study the expectation value of the position operator , its variance Var [x (t )] , and a local density computed at selected positions. We find that the variance is the most sensitive and informative quantity: Along with excitations it contains information about deexcitations even in a linear regime of the induced dynamics. The dynamic protocols are found to access the many-body excitations predicted by the static LR-MCTDHB approach.
Many-body theory of electrical, thermal and optical response of molecular heterojunctions
Bergfield, Justin Phillip
In this work, we develop a many-body theory of electronic transport through single molecule junctions based on nonequilibrium Green's functions (NEGFs). The central quantity of this theory is the Coulomb self-energy matrix of the junction SigmaC. SigmaC is evaluated exactly in the sequential-tunneling limit, and the correction due to finite lead-molecule tunneling is evaluated using a conserving approximation based on diagrammatic perturbation theory on the Keldysh contour. In this way, tunneling processes are included to infinite order, meaning that any approximation utilized is a truncation in the physical processes considered rather than in the order of those processes. Our theory reproduces the key features of both the Coulomb blockade and coherent transport regimes simultaneously in a single unified theory. Nonperturbative effects of intramolecular correlations are included, which are necessary to accurately describe the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap, essential for a quantitative theory of transport. This work covers four major topics related to transport in single-molecule junctions. First, we use our many-body theory to calculate the nonlinear electrical response of the archetypal Au-1,4-benzenedithiol-Au junction and find irregularly shaped 'molecular diamonds' which have been experimentally observed in some larger molecules but which are inaccessible to existing theoretical approaches. Next, we extend our theory to include heat transport and develop an exact expression for the heat current in an interacting nanostructure. Using this result, we discover that quantum coherence can strongly enhance the thermoelectric response of a device, a result with a number of technological applications. We then develop the formalism to include multi-orbital lead-molecule contacts and multi-channel leads, both of which strongly affect the observable transport. Lastly, we include a dynamic screening correction to
Mosquera, Martín A.
2017-10-01
Provided the initial state, the Runge-Gross theorem establishes that the time-dependent (TD) external potential of a system of non-relativistic electrons determines uniquely their TD electronic density, and vice versa (up to a constant in the potential). This theorem requires the TD external potential and density to be Taylor-expandable around the initial time of the propagation. This paper presents an extension without this restriction. Given the initial state of the system and evolution of the density due to some TD scalar potential, we show that a perturbative (not necessarily weak) TD potential that induces a non-zero divergence of the external force-density, inside a small spatial subset and immediately after the initial propagation time, will cause a change in the density within that subset, implying that the TD potential uniquely determines the TD density. In this proof, we assume unitary evolution of wavefunctions and first-order differentiability (which does not imply analyticity) in time of the internal and external force-densities, electronic density, current density, and their spatial derivatives over the small spatial subset and short time interval.
Reddy, Araveeti Eswar; Rao, S. Srinivasa; Gopi, Chandu V. V. M.; Anitha, Tarugu; Thulasi-Varma, Chebrolu Venkata; Punnoose, Dinah; Kim, Hee-Je
2017-11-01
Cobalt sulfide (CoS) agglomerated nanoparticle thin films obtained by a facile chemical bath method at different deposition times. The CoS counter electrode (CE) deposited at 3 h deposition time (CC-3h) based quantum dot sensitized solar cells (QDSSCs) achieves higher power conversion efficiency (η) of 3.67% than those of CC-2h (1.83%), CC-4h (2.52%), and Pt (1.48%) CEs, under one sun illumination (100 mW cm-2, AM 1.5 G). The electrochemical analysis revealed that CC-3h CE shows a smaller charge transfer resistance (9.22 Ω) at the CE/electrolyte interface than the CC-2h (23.34 Ω), CC-4h (19.73 Ω) and Pt (139.92 Ω) CEs, respectively.
Energy Technology Data Exchange (ETDEWEB)
Zakharov, A.Yu., E-mail: Anatoly.Zakharov@novsu.ru; Zakharov, M.A., E-mail: ma_zakharov@list.ru
2016-01-28
The exact equations of motion for microscopic density of classical many-body system with account of inter-particle retarded interactions is derived. It is shown that interactions retardation leads to irreversible behavior of many-body systems. - Highlights: • A new form of equation of motion of classical many-body system is proposed. • Interactions retardation as one of the mechanisms of many-body system irreversibility. • Irreversibility and determinism without probabilities. • The possible way to microscopic foundation of thermodynamics.
Rivero Santamaría, Alejandro; Dayou, Fabrice; Rubayo-Soneira, Jesus; Monnerville, Maurice
2017-03-02
The dynamics of the Si( 3 P) + OH(X 2 Π) → SiO(X 1 Σ + ) + H( 2 S) reaction is investigated by means of the time-dependent wave packet (TDWP) approach using an ab initio potential energy surface recently developed by Dayou et al. ( J. Chem. Phys. 2013 , 139 , 204305 ) for the ground X 2 A' electronic state. Total reaction probabilities have been calculated for the first 15 rotational states j = 0-14 of OH(v=0,j) at a total angular momentum J = 0 up to a collision energy of 1 eV. Integral cross sections and state-selected rate constants for the temperature range 10-500 K were obtained within the J-shifting approximation. The reaction probabilities display highly oscillatory structures indicating the contribution of long-lived quasibound states supported by the deep SiOH/HSiO wells. The cross sections behave with collision energies as expected for a barrierless reaction and are slightly sensitive to the initial rotational excitation of OH. The thermal rate constants show a marked temperature dependence below 200 K with a maximum value around 15 K. The TDWP results globally agree with the results of earlier quasi-classical trajectory (QCT) calculations carried out by Rivero-Santamaria et al. ( Chem. Phys. Lett. 2014 , 610-611 , 335 - 340 ) with the same potential energy surface. In particular, the thermal rate constants display a similar temperature dependence, with TDWP values smaller than the QCT ones over the whole temperature range.
Comment on "Many-body localization in Ising models with random long-range interactions"
Maksymov, Andrii O.; Rahman, Noah; Kapit, Eliot; Burin, Alexander L.
2017-11-01
This Comment is dedicated to the investigation of many-body localization in a quantum Ising model with long-range power-law interactions r-α, relevant for a variety of systems ranging from electrons in Anderson insulators to spin excitations in chains of cold atoms. It has earlier been argued [arXiv:cond-mat/0611387 (2005); Phys. Rev. B 91, 094202 (2015), 10.1103/PhysRevB.91.094202] that this model obeys the dimensional constraint suggesting the delocalization of all finite-temperature states in the thermodynamic limit for α ≤2 d in a d -dimensional system. This expectation conflicts with the recent numerical studies of the specific interacting spin model of Li et al. [Phys. Rev. A 94, 063625 (2016), 10.1103/PhysRevA.94.063625]. To resolve this controversy we reexamine the model of Li et al. [Phys. Rev. A 94, 063625 (2016), 10.1103/PhysRevA.94.063625] and demonstrate that the infinite-temperature states there obey the dimensional constraint. The earlier developed scaling theory for the critical system size required for delocalization is extended to small exponents 0 ≤α ≤d . The disagreements between the two works are explained by the nonstandard selection of investigated states in the ordered phase in the work of Li et al. [Phys. Rev. A 94, 063625 (2016)type="doi" specific-use="suppress-display">10.1103/PhysRevA.94.063625].
Many-body dispersion effects in the binding of adsorbates on metal surfaces
Energy Technology Data Exchange (ETDEWEB)
Maurer, Reinhard J. [Department of Chemistry, Yale University, New Haven, Connecticut 06520 (United States); Ruiz, Victor G.; Tkatchenko, Alexandre [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany)
2015-09-14
A correct description of electronic exchange and correlation effects for molecules in contact with extended (metal) surfaces is a challenging task for first-principles modeling. In this work, we demonstrate the importance of collective van der Waals dispersion effects beyond the pairwise approximation for organic–inorganic systems on the example of atoms, molecules, and nanostructures adsorbed on metals. We use the recently developed many-body dispersion (MBD) approach in the context of density-functional theory [Tkatchenko et al., Phys. Rev. Lett. 108, 236402 (2012) and Ambrosetti et al., J. Chem. Phys. 140, 18A508 (2014)] and assess its ability to correctly describe the binding of adsorbates on metal surfaces. We briefly review the MBD method and highlight its similarities to quantum-chemical approaches to electron correlation in a quasiparticle picture. In particular, we study the binding properties of xenon, 3,4,9,10-perylene-tetracarboxylic acid, and a graphene sheet adsorbed on the Ag(111) surface. Accounting for MBD effects, we are able to describe changes in the anisotropic polarizability tensor, improve the description of adsorbate vibrations, and correctly capture the adsorbate–surface interaction screening. Comparison to other methods and experiment reveals that inclusion of MBD effects improves adsorption energies and geometries, by reducing the overbinding typically found in pairwise additive dispersion-correction approaches.
The transformation of elementary particle physics into many-body physics
International Nuclear Information System (INIS)
Hove, L. van
1986-01-01
The author illustrates the domains of particle physics where the theoretical problems and methods have much in common with many-body and condensed-matter physics. The multitude of diverse physical systems accessible to experimentation in condensed-matter physics, and the numerous concepts developed for their theoretical understanding provide a rich store of ideas and analogies to the particle physicist. This can help him to overcome the great handicap that in his own discipline the experimental facts are very hard to come by and are often extremely incomplete. On the other hand, particle physics brought us such truly fundamental advances as non-Abelian gauge theories, electroweak unification with the heavy weak bosons, and quantum chromodynamics with the confinement principle for the field quanta. As our understanding of these novel schemes deepens, possibly with further progress toward unification, one can expect that they will slowly have an impact on the rest of physics, just as the concepts and techniques of Abelian field theories have gradually invaded most of condensed-matter physics. (Auth.)
Light-Cone and Diffusive Propagation of Correlations in a Many-Body Dissipative System.
Bernier, Jean-Sébastien; Tan, Ryan; Bonnes, Lars; Guo, Chu; Poletti, Dario; Kollath, Corinna
2018-01-12
We analyze the propagation of correlations after a sudden interaction change in a strongly interacting quantum system in contact with an environment. In particular, we consider an interaction quench in the Bose-Hubbard model, deep within the Mott-insulating phase, under the effect of dephasing. We observe that dissipation effectively speeds up the propagation of single-particle correlations while reducing their coherence. In contrast, for two-point density correlations, the initial ballistic propagation regime gives way to diffusion at intermediate times. Numerical simulations, based on a time-dependent matrix product state algorithm, are supplemented by a quantitatively accurate fermionic quasiparticle approach providing an intuitive description of the initial dynamics in terms of holon and doublon excitations.
Photoionization cross sections and Auger rates calculated by many-body perturbation theory
International Nuclear Information System (INIS)
Kelly, H.P.
1976-01-01
Methods for applying the many body perturbation theory to atomic calculations are discussed with particular emphasis on calculation of photoionization cross sections and Auger rates. Topics covered include: Rayleigh--Schroedinger theory; many body perturbation theory; calculations of photoionization cross sections; and Auger rates
Effective linear two-body method for many-body problems in atomic and nuclear physics
International Nuclear Information System (INIS)
Kim, Y.E.; Zubarev, A.L.
2000-01-01
We present an equivalent linear two-body method for the many body problem, which is based on an approximate reduction of the many-body Schroedinger equation by the use of a variational principle. The method is applied to several problems in atomic and nuclear physics. (author)
Three-body interactions in many-body effective field theory
International Nuclear Information System (INIS)
Furnstahl, R.J.
2004-01-01
This contribution is an advertisement for applying effective field theory (EFT) to many-body problems, including nuclei and cold atomic gases. Examples involving three-body interactions are used to illustrate how EFT's quantify and systematically eliminate model dependence, and how they make many-body calculations simpler and more powerful
Monthus, Cécile
2018-03-01
For the many-body-localized phase of random Majorana models, a general strong disorder real-space renormalization procedure known as RSRG-X (Pekker et al 2014 Phys. Rev. X 4 011052) is described to produce the whole set of excited states, via the iterative construction of the local integrals of motion (LIOMs). The RG rules are then explicitly derived for arbitrary quadratic Hamiltonians (free-fermions models) and for the Kitaev chain with local interactions involving even numbers of consecutive Majorana fermions. The emphasis is put on the advantages of the Majorana language over the usual quantum spin language to formulate unified RSRG-X rules.
PREFACE: Many-body correlations from dilute to dense nuclear systems
Otsuka, Takaharu; Urban, Michael; Yamada, Taiichi
2011-09-01
The International EFES-IN2P3 conference on "Many body correlations from dilute to dense nuclear systems" was held at the Institut Henri Poincaré (IHP), Paris, France, from 15-18 February 2011, on the occasion of the retirement of our colleague Peter Schuck. Correlations play a decisive role in various many-body systems such as nuclear systems, condensed matter and quantum gases. Important examples include: pairing correlations (Cooper pairs) which give rise to nuclear superfluidity (analogous to superconductivity in condensed matter); particle-hole (RPA) correlations in the description of the ground state beyond mean-field theory; clusters; and α-particle correlations in certain nuclei. Also, the nucleons themselves can be viewed as clusters of three quarks. During the past few years, researchers have started to study how the character of these correlations changes with the variation of the density. For instance, the Cooper pairs in dense matter can transform into a Bose-Einstein condensate (BEC) of true bound states at low density (this is the BCS-BEC crossover studied in ultracold Fermi gases). Similar effects play a role in neutron matter at low density, e.g., in the "neutron skin" of exotic nuclei. The α-cluster correlation becomes particularly important at lower density, such as in the excited states of some nuclei (e.g., the α-condensate-like structure in the Hoyle state of 12C) or in the formation of compact stars. In addition to nuclear physics, topics from astrophysics (neutron stars), condensed matter, and quantum gases were discussed in 48 talks and 19 posters, allowing the almost 90 participants from different communities to exchange their ideas, experiences and methods. The conference dinner took place at the Musée d'Orsay, and all the participants enjoyed the very pleasant atmosphere. One session of the conference was dedicated to the celebration of Peter's retirement. We would like to take this opportunity to wish Peter all the best and we hope
Ballistic near-field heat transport in dense many-body systems
Latella, Ivan; Biehs, Svend-Age; Messina, Riccardo; Rodriguez, Alejandro W.; Ben-Abdallah, Philippe
2018-01-01
Radiative heat transport mediated by near-field interactions is known to be superdiffusive in dilute, many-body systems. Here we use a generalized Landauer theory of radiative heat transfer in many-body planar systems to demonstrate a nonmonotonic transition from superdiffusive to ballistic transport in dense systems. We show that such a transition is associated to a change of the polarization of dominant modes. Our findings are complemented by a quantitative study of the relaxation dynamics of the system in the different regimes of heat transport. This result could have important consequences on thermal management at nanoscale of many-body systems.
Applications of the random-state approach to quantum many-body dynamics
Zhao, Peiliang
2017-01-01
The work described in the thesis focuses on computer simulation algorithms to compute the electronic properties of exotic materials such as graphene. The effects of disorder on the electronic properties of these materials are studied and the fingerprints of the different kinds of disorder are
Topological interactions of Nambu-Goldstone bosons in quantum many-body systems
Czech Academy of Sciences Publication Activity Database
Brauner, Tomáš; Moroz, S.
2014-01-01
Roč. 90, č. 12 (2014), s. 121701 ISSN 1550-7998 Institutional support: RVO:61389005 Keywords : Chiral Perturbation-theory * hall ferromagnets * Lagrangians Subject RIV: BE - Theoretical Physics Impact factor: 4.643, year: 2014
2013-07-31
to drive stimulated Raman transitions [41, 42]. At the ion chain, the beam R1 with frequency ωL per- 4 pendicularly intersects a multi-colored beam R2...1996). [17] E. Farhi et al., Science 292, 472 (2001). [18] J. I. Cirac and P. Zoller, Nat. Phys. 8, 264 (2012). [19] K. Kim et al., Nature 465, 590
Scaling of the polarization amplitude in quantum many-body systems in one dimension
Kobayashi, Ryohei; Nakagawa, Yuya O.; Fukusumi, Yoshiki; Oshikawa, Masaki
2018-04-01
Resta proposed a definition of the electric polarization in one-dimensional systems in terms of the ground-state expectation value of the large gauge transformation operator. Vanishing of the expectation value in the thermodynamic limit implies that the system is a conductor. We study Resta's polarization amplitude (expectation value) in the S =1 /2 XXZ chain and its several generalizations, in the gapless conducting Tomonaga-Luttinger liquid phase. We obtain an analytical expression in the lowest-order perturbation theory about the free fermion point (XY chain) and an exact result for the Haldane-Shastry model with long-range interactions. We also obtain numerical results, mostly using the exact diagonalization method. We find that the amplitude exhibits a power-law scaling in the system size (chain length) and vanishes in the thermodynamic limit. On the other hand, the exponent depends on the model even when the low-energy limit is described by the Tomonaga-Luttinger liquid with the same Luttinger parameter. We find that a change in the exponent occurs when the Umklapp term(s) are eliminated, suggesting the importance of the Umklapp terms.
Spontaneous Symmetry Breaking and Nambu-Goldstone Bosons in Quantum Many-Body Systems
Czech Academy of Sciences Publication Activity Database
Brauner, Tomáš
2010-01-01
Roč. 2, č. 2 (2010), s. 609-657 ISSN 2073-8994 Institutional support: RVO:61389005 Keywords : spontaneous symmetry breaking * Nambu-Goldstone bosons * effective field theory Subject RIV: BE - Theoretical Physics
Spontaneous Symmetry Breaking and Nambu–Goldstone Bosons in Quantum Many-Body Systems
Directory of Open Access Journals (Sweden)
Tomáš Brauner
2010-04-01
Full Text Available Spontaneous symmetry breaking is a general principle that constitutes the underlying concept of a vast number of physical phenomena ranging from ferromagnetism and superconductivity in condensed matter physics to the Higgs mechanism in the standard model of elementary particles. I focus on manifestations of spontaneously broken symmetries in systems that are not Lorentz invariant, which include both nonrelativistic systems as well as relativistic systems at nonzero density, providing a self-contained review of the properties of spontaneously broken symmetries specific to such theories. Topics covered include: (i Introduction to the mathematics of spontaneous symmetry breaking and the Goldstone theorem. (ii Minimization of Higgs-type potentials for higher-dimensional representations. (iii Counting rules for Nambu–Goldstone bosons and their dispersion relations. (iv Construction of effective Lagrangians. Specific examples in both relativistic and nonrelativistic physics are worked out in detail.
Energy Technology Data Exchange (ETDEWEB)
Brics, Martins
2016-12-09
Intense, ultra-short laser pulses interacting with atoms, molecules, clusters, and solids give rise to many new fascinating phenomena, not at all accessible to quantum mechanics textbook perturbation theory. A full numerical solution of the time-dependent Schr¨odinger equation (TDSE) for such strong-field problems is also impossible for more than two electrons. Hence, powerful time-dependent quantum many-body approaches need to be developed. Unfortunately, efficient methods such as time-dependent density functional theory (TDDFT) fail in reproducing experimental observations, in particular if strong correlations are involved. In TDDFT, the approximation not only lies in the so-called exchange correlation potential but also in the density functionals for the observables of interest. In fact, with just the single-particle density alone it is unclear how to calculate, e.g., multiple-ionization probabilities or photoelectron spectra, or, even worse, correlated photoelectron spectra, as measured in nowadays experiments. In general, the simple structure of the time-dependent many-body Schroedinger equation for a highly-dimensional many-body wavefunction can only be traded for more complicated equations of motion for simpler quantities. In this thesis, a theory is examined that goes one step beyond TDDFT as far as the complexity of the propagated quantity is concerned. In time-dependent renormalized natural orbital theory (TDRNOT), the basic quantities that are propagated in time are the eigenvalues and eigenstates of the one-body reduced density matrix (1-RDM). The eigenstates are called natural orbitals (NOs), the eigenvalues are the corresponding occupation numbers (ONs). Compared to TDDFT, the knowledge of the NOs and the ONs relax the problem of calculating observables in practice because they can be used to construct the 1-RDM and the two-body reduced density matrix (2-RDM). After the derivation of the equations of motion for a combination of NOs and ONs, the so
International Nuclear Information System (INIS)
Brics, Martins
2016-01-01
Intense, ultra-short laser pulses interacting with atoms, molecules, clusters, and solids give rise to many new fascinating phenomena, not at all accessible to quantum mechanics textbook perturbation theory. A full numerical solution of the time-dependent Schr¨odinger equation (TDSE) for such strong-field problems is also impossible for more than two electrons. Hence, powerful time-dependent quantum many-body approaches need to be developed. Unfortunately, efficient methods such as time-dependent density functional theory (TDDFT) fail in reproducing experimental observations, in particular if strong correlations are involved. In TDDFT, the approximation not only lies in the so-called exchange correlation potential but also in the density functionals for the observables of interest. In fact, with just the single-particle density alone it is unclear how to calculate, e.g., multiple-ionization probabilities or photoelectron spectra, or, even worse, correlated photoelectron spectra, as measured in nowadays experiments. In general, the simple structure of the time-dependent many-body Schroedinger equation for a highly-dimensional many-body wavefunction can only be traded for more complicated equations of motion for simpler quantities. In this thesis, a theory is examined that goes one step beyond TDDFT as far as the complexity of the propagated quantity is concerned. In time-dependent renormalized natural orbital theory (TDRNOT), the basic quantities that are propagated in time are the eigenvalues and eigenstates of the one-body reduced density matrix (1-RDM). The eigenstates are called natural orbitals (NOs), the eigenvalues are the corresponding occupation numbers (ONs). Compared to TDDFT, the knowledge of the NOs and the ONs relax the problem of calculating observables in practice because they can be used to construct the 1-RDM and the two-body reduced density matrix (2-RDM). After the derivation of the equations of motion for a combination of NOs and ONs, the so
On the basis of molecular orbitals for relativistic bound systems of many bodies
International Nuclear Information System (INIS)
Cook, A.H.
1987-09-01
The quasi-relativistic Hamiltonian for bound states of many bodies proposed in previous articles (Cook, 1986, 1987a) is shown to provide a basis for the molecular orbital scheme of constructing wavefunctions and calculating eigenenergies. (author). 5 refs
Heuristic method for determining outgoing waves in many-body wave functions
International Nuclear Information System (INIS)
Redish, E.F.; Tandy, P.C.; L'Huillier, M.
1975-12-01
A new and simple method is proposed for determining the kinds of outgoing waves present in a given many-body wave function. Whether any particular wave function contains ''hidden'' rearrangement components can be determined. 1 figure
Theory of many-body radiative heat transfer without the constraint of reciprocity
Zhu, Linxiao; Guo, Yu; Fan, Shanhui
2018-03-01
Using a self-consistent scattered field approach based on fluctuational electrodynamics, we develop compact formulas for radiative heat transfer in many-body systems without the constraint of reciprocity. The formulas allow for efficient numerical calculation for a system consisting of a large number of bodies, and are in principle exact. As a demonstration, for a nonreciprocal many-body system, we investigate persistent heat current at thermal equilibrium and directional heat transfer when the system is away from thermal equilibrium.
Many-body effects in X-ray photoemission spectroscopy and electronic properties of solids
International Nuclear Information System (INIS)
Kohiki, S.
1999-01-01
Photoemission from a solid is evidently a many-body process since the motion of each electron cannot be independent of the motions of other electrons. In this article we review the reported many-body effects in X-ray photoemission such as extra-atomic relaxation energy, charge transfer satellite and energy loss structure which are informative in relation to the characteristics of solids. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)
Correlated electron dynamics and memory in time-dependent density functional theory
International Nuclear Information System (INIS)
Thiele, Mark
2009-01-01
Time-dependent density functional theory (TDDFT) is an exact reformulation of the time-dependent many-electron Schroedinger equation, where the problem of many interacting electrons is mapped onto the Kohn-Sham system of noninteracting particles which reproduces the exact electronic density. In the Kohn-Sham system all non-classical many-body effects are incorporated in the exchange-correlation potential which is in general unknown and needs to be approximated. It is the goal of this thesis to investigate the connection between memory effects and correlated electron dynamics in strong and weak fields. To this end one-dimensional two-electron singlet systems are studied. At the same time these systems include the onedimensional helium atom model, which is an established system to investigate the crucial effects of correlated electron dynamics in external fields. The studies presented in this thesis show that memory effects are negligible for typical strong field processes. Here the approximation of the spatial nonlocality is of primary importance. For the photoabsorption spectra on the other hand the neglect of memory effects leads to qualitative and quantitative errors, which are shown to be connected to transitions of double excitation character. To develop a better understanding of the conditions under which memory effects become important quantum fluid dynamics has been found to be especially suitable. It represents a further exact reformulation of the quantum mechanic many-body problem which is based on hydrodynamic quantities such as density and velocity. Memory effects are shown to be important whenever the velocity field develops strong gradients and dissipative effects contribute. (orig.)
Correlated electron dynamics and memory in time-dependent density functional theory
Energy Technology Data Exchange (ETDEWEB)
Thiele, Mark
2009-07-28
Time-dependent density functional theory (TDDFT) is an exact reformulation of the time-dependent many-electron Schroedinger equation, where the problem of many interacting electrons is mapped onto the Kohn-Sham system of noninteracting particles which reproduces the exact electronic density. In the Kohn-Sham system all non-classical many-body effects are incorporated in the exchange-correlation potential which is in general unknown and needs to be approximated. It is the goal of this thesis to investigate the connection between memory effects and correlated electron dynamics in strong and weak fields. To this end one-dimensional two-electron singlet systems are studied. At the same time these systems include the onedimensional helium atom model, which is an established system to investigate the crucial effects of correlated electron dynamics in external fields. The studies presented in this thesis show that memory effects are negligible for typical strong field processes. Here the approximation of the spatial nonlocality is of primary importance. For the photoabsorption spectra on the other hand the neglect of memory effects leads to qualitative and quantitative errors, which are shown to be connected to transitions of double excitation character. To develop a better understanding of the conditions under which memory effects become important quantum fluid dynamics has been found to be especially suitable. It represents a further exact reformulation of the quantum mechanic many-body problem which is based on hydrodynamic quantities such as density and velocity. Memory effects are shown to be important whenever the velocity field develops strong gradients and dissipative effects contribute. (orig.)
Time-dependent nonequilibrium soft x-ray response during a spin crossover
Energy Technology Data Exchange (ETDEWEB)
van Veenendaal, Michel
2018-03-01
The rapid development of high-brilliance pulsed X-ray sources with femtosecond time resolution has created a need for a better theoretical understanding of the time-dependent soft-X-ray response of dissipative many-body quantum systems. It is demonstrated how soft-X-ray spectroscopies, such as X-ray absorption and resonant inelastic X-ray scattering at transition-metal L-edges, can provide insight into intersystem crossings, such as a spin crossover. The photoinduced doublet-to-quartet spin crossover on cobalt in Fe-Co Prussian blue analogues is used as an example to demonstrate how the X-ray response is affected by the dissipative nonequilibrium dynamics. The time-dependent soft-X-ray spectra provide a wealth of information that reflect the changes in the nonequilibrium initial state via continuously changing spectral lineshapes that cannot be decomposed into initial photoexcited and final metastable spectra, strong broadenings, a collapse of clear selection rules during the intersystem crossing, strong fluctuations in the isotropic branching ratio in X-ray absorption, and crystal-field collapse/oscillations and strongly time-dependent anti-Stokes processes in RIXS.
Quantum mean-field theory of collective dynamics and tunneling
International Nuclear Information System (INIS)
Negele, J.W.; Massachusetts Inst. of Tech., Cambridge
1981-01-01
In collaboration with Shimon Levit and Zvi Paltiel, significant progress has been made recently in formulating the quantum many-body problem in terms of an expansion about solutions to time-dependent mean-field equations. The essential ideas, principal results, and illustrative examples will be summarized here. (orig./HSI)
On the initial conditions of time-dependent mean-field equations of evolution. Pt. 2
International Nuclear Information System (INIS)
Troudet, T.; Paris-11 Univ., 91 - Orsay
1986-01-01
We analyze the problem so far untouched of determining the initial mean-field wavefunction in the context of zero-temperature mean-field descriptions of time-dependent expectation values and quantum fluctuations of nuclear observables. The nucleus, at zero temperature, is taken to be in a low-lying excited many-body eigenstate and is approximated by the corresponding RPA wavefunction as a continuous superposition of coherent states (i.e. Slater determinants). A generating function Gsub(A)(lambda) for time-dependent expectation values and quantum fluctuations is constructed within the formalism of functional integration. By applying the saddle-point method to the functional action of Gsub(A)(lambda) and then taking its lambda-derivatives, we recover the well-known TDHF theory and propose a simple determination of the initial Slater determinant for an appropriate mean-field description of time-dependent expectation values. The analog mean-field description of quadratic-quantum fluctuations proceeds similarly and in addition includes the contribution of the uncorrelated TDHF-RPA phonons coupled to collective excitations of the initial (static) mean-field configuration. When the collective TDHF-RPA excitations are solely taken into account, we obtain an improved version of the Balian-Veneroni dispersion formula by showing how to determine the initial mean-field wavefunction. By first taking the lambda-derivatives of Gsub(A)(lambda) before applying the saddle-point method, the initial mean-field wavefunction is found to be non-linearly coupled to the mean-field dynamics themselves. In return, and in contrast to the first quantization scheme, these both depend non-trivially upon the observable A being measured so that approximations must be proposed to simplify the resulting mean-field equations. (orig.)
International Nuclear Information System (INIS)
Shore, B.W.; Eberly, J.H.
1983-01-01
The definition of a time-dependent spectrum registered by an idealized spectrometer responding to a time-varying electromagnetic field as proposed by Eberly and Wodkiewicz and subsequently applied to the spectrum of laser-induced fluorescence by Eberly, Kunasz, and Wodkiewicz is here extended to allow a stochastically fluctuating (interruption model) environment: we provide an algorithm for numerical determination of the time-dependent fluorescence spectrum of an atom subject to excitation by an intense noisy laser and interruptive relaxation
Many-body Anderson localization of strongly interacting bosons in random lattices
International Nuclear Information System (INIS)
Katzer, Roman
2015-05-01
In the present work, we investigate the problem of many-body localization of strongly interacting bosons in random lattices within the disordered Bose-Hubbard model. This involves treating both the local Mott-Hubbard physics as well as the non-local quantum interference processes, which give rise to the phenomenon of Anderson localization, within the same theory. In order to determine the interaction induced transition to the Mott insulator phase, it is necessary to treat the local particle interaction exactly. Therefore, here we use a mean-field approach that approximates only the kinetic term of the Hamiltonian. This way, the full problem of interacting bosons on a random lattice is reduced to a local problem of a single site coupled to a particle bath, which has to be solved self-consistently. In accordance to previous works, we find that a finite disorder width leads to a reduced size of the Mott insulating regions. The transition from the superfluid phase to the Bose glass phase is driven by the non-local effect of Anderson localization. In order to describe this transition, one needs to work within a theory that is non-local as well. Therefore, here we introduce a new approach to the problem. Based on the results for the local excitation spectrum obtained within the mean-field theory, we reduce the full, interacting model to an effective, non-interacting model by applying a truncation scheme to the Hilbert space. Evaluating the long-ranged current density within this approximation, we identify the transition from the Bose glass to the superfluid phase with the Anderson transition of the effective model. Resolving this transition using the self-consistent theory of localization, we obtain the full phase diagram of the disordered Bose-Hubbard model in the regime of strong interaction and larger disorder. In accordance to the theorem of inclusions, we find that the Mott insulator and the superfluid phase are always separated by the compressible, but insulating
Time dependent resonating Hartree-Bogoliubov theory
International Nuclear Information System (INIS)
Nishiyama, Seiya; Fukutome, Hideo.
1989-01-01
Very recently, we have developed a theory of excitations in superconducting Fermion systems with large quantum fluctuations that can be described by resonance of time dependent non-orthogonal Hartree-Bogoliubov (HB) wave functions with different correlation structures. We have derived a new kind of variation equation called the time dependent Resonating HB equation, in order to determine both the time dependent Resonating HB wave functions and coefficients of a superposition of the HB wave functions. Further we have got a new approximation for excitations from time dependent small fluctuations of the Resonating HB ground state, i.e., the Resonating HB RPA. The Res HB RPA equation is represented in a given single particle basis. It, however, has drawbacks that the constraints for the Res HB RPA amplitudes are not taken into account and the equation contains equations which are not independent. We shall derive another form of the Res HB RPA equation eliminating these drawbacks. The Res HB RPA gives a unified description of the vibrons and resonons and their interactions. (author)
Time-dependent potential-functional embedding theory
International Nuclear Information System (INIS)
Huang, Chen; Libisch, Florian; Peng, Qing; Carter, Emily A.
2014-01-01
We introduce a time-dependent potential-functional embedding theory (TD-PFET), in which atoms are grouped into subsystems. In TD-PFET, subsystems can be propagated by different suitable time-dependent quantum mechanical methods and their interactions can be treated in a seamless, first-principles manner. TD-PFET is formulated based on the time-dependent quantum mechanics variational principle. The action of the total quantum system is written as a functional of the time-dependent embedding potential, i.e., a potential-functional formulation. By exploiting the Runge-Gross theorem, we prove the uniqueness of the time-dependent embedding potential under the constraint that all subsystems share a common embedding potential. We derive the integral equation that such an embedding potential needs to satisfy. As proof-of-principle, we demonstrate TD-PFET for a Na 4 cluster, in which each Na atom is treated as one subsystem and propagated by time-dependent Kohn-Sham density functional theory (TDDFT) using the adiabatic local density approximation (ALDA). Our results agree well with a direct TDDFT calculation on the whole Na 4 cluster using ALDA. We envision that TD-PFET will ultimately be useful for studying ultrafast quantum dynamics in condensed matter, where key regions are solved by highly accurate time-dependent quantum mechanics methods, and unimportant regions are solved by faster, less accurate methods
Relativistic many-body perturbation-theory calculations based on Dirac-Fock-Breit wave functions
International Nuclear Information System (INIS)
Ishikawa, Y.; Quiney, H.M.
1993-01-01
A relativistic many-body perturbation theory based on the Dirac-Fock-Breit wave functions has been developed and implemented by employing analytic basis sets of Gaussian-type functions. The instantaneous Coulomb and low-frequency Breit interactions are treated using a unified formalism in both the construction of the Dirac-Fock-Breit self-consistent-field atomic potential and in the evaluation of many-body perturbation-theory diagrams. The relativistic many-body perturbation-theory calculations have been performed on the helium atom and ions of the helium isoelectronic sequence up to Z=50. The contribution of the low-frequency Breit interaction to the relativistic correlation energy is examined for the helium isoelectronic sequence
Paradeisos: A perfect hashing algorithm for many-body eigenvalue problems
Jia, C. J.; Wang, Y.; Mendl, C. B.; Moritz, B.; Devereaux, T. P.
2018-03-01
We describe an essentially perfect hashing algorithm for calculating the position of an element in an ordered list, appropriate for the construction and manipulation of many-body Hamiltonian, sparse matrices. Each element of the list corresponds to an integer value whose binary representation reflects the occupation of single-particle basis states for each element in the many-body Hilbert space. The algorithm replaces conventional methods, such as binary search, for locating the elements of the ordered list, eliminating the need to store the integer representation for each element, without increasing the computational complexity. Combined with the "checkerboard" decomposition of the Hamiltonian matrix for distribution over parallel computing environments, this leads to a substantial savings in aggregate memory. While the algorithm can be applied broadly to many-body, correlated problems, we demonstrate its utility in reducing total memory consumption for a series of fermionic single-band Hubbard model calculations on small clusters with progressively larger Hilbert space dimension.
Many-body calculations with deuteron based single-particle bases and their associated natural orbits
Puddu, G.
2018-06-01
We use the recently introduced single-particle states obtained from localized deuteron wave-functions as a basis for nuclear many-body calculations. We show that energies can be substantially lowered if the natural orbits (NOs) obtained from this basis are used. We use this modified basis for {}10{{B}}, {}16{{O}} and {}24{{Mg}} employing the bare NNLOopt nucleon–nucleon interaction. The lowering of the energies increases with the mass. Although in principle NOs require a full scale preliminary many-body calculation, we found that an approximate preliminary many-body calculation, with a marginal increase in the computational cost, is sufficient. The use of natural orbits based on an harmonic oscillator basis leads to a much smaller lowering of the energies for a comparable computational cost.
Numerical methods for strongly correlated many-body systems with bosonic degrees of freedom
International Nuclear Information System (INIS)
Dorfner, Florian Guenter
2017-01-01
dimension also during time evolution. For the polaron problem on an infinite chain Krylov-space time evolution in a limited functional space has been shown to be very efficient. We adapt this algorithm to periodic boundary conditions and show that it is the most efficient method compared to standard Krylov space time evolution and the time-evolving block decimation method. We also study the properties of the local reduced density matrix as a function of model parameters and under non-equilibrium conditions in three different models: the Bose-Bose resonance model, the Holstein model and the Hubbard-Holstein model. It was shown for fermionic and spin models that the single-site von Neumann entropy is an indicator for phase transitions. In the Bose-Bose resonance model we find that both, the local von Neumann entropy and the eigenstates of the local reduced density matrix show features in the vicinity of a phase boundary. Also, we find that the eigenstates of the local reduced density matrix depend on time in quantum quench dynamics. Further, we study the relaxation dynamics of a single electron coupled to Holstein phonons in all parameter regimes. In the adiabatic case a net energy transfer from electron to phonons happens and we provide an analytic formula for the relaxation time in the weak-coupling adiabatic regime. Another main topic in this thesis is thermalization in closed quantum many-body systems. Our first example is the temporal decay of Neel order in the one-dimensional Fermi-Hubbard model. We find evidence that the relaxation dynamics of spin-related quantities are, in the long-time regime, controlled by spin excitations. Further, we study the thermalization of the double occupancy in the framework of the eigenstate thermalization hypothesis and find that it does not thermalize due to integrability of the model. As a second example, we consider many-body localization in a one-dimensional system of spinless fermions with attractive interactions. It is known for
Numerical methods for strongly correlated many-body systems with bosonic degrees of freedom
Energy Technology Data Exchange (ETDEWEB)
Dorfner, Florian Guenter
2017-02-23
dimension also during time evolution. For the polaron problem on an infinite chain Krylov-space time evolution in a limited functional space has been shown to be very efficient. We adapt this algorithm to periodic boundary conditions and show that it is the most efficient method compared to standard Krylov space time evolution and the time-evolving block decimation method. We also study the properties of the local reduced density matrix as a function of model parameters and under non-equilibrium conditions in three different models: the Bose-Bose resonance model, the Holstein model and the Hubbard-Holstein model. It was shown for fermionic and spin models that the single-site von Neumann entropy is an indicator for phase transitions. In the Bose-Bose resonance model we find that both, the local von Neumann entropy and the eigenstates of the local reduced density matrix show features in the vicinity of a phase boundary. Also, we find that the eigenstates of the local reduced density matrix depend on time in quantum quench dynamics. Further, we study the relaxation dynamics of a single electron coupled to Holstein phonons in all parameter regimes. In the adiabatic case a net energy transfer from electron to phonons happens and we provide an analytic formula for the relaxation time in the weak-coupling adiabatic regime. Another main topic in this thesis is thermalization in closed quantum many-body systems. Our first example is the temporal decay of Neel order in the one-dimensional Fermi-Hubbard model. We find evidence that the relaxation dynamics of spin-related quantities are, in the long-time regime, controlled by spin excitations. Further, we study the thermalization of the double occupancy in the framework of the eigenstate thermalization hypothesis and find that it does not thermalize due to integrability of the model. As a second example, we consider many-body localization in a one-dimensional system of spinless fermions with attractive interactions. It is known for
Energy Technology Data Exchange (ETDEWEB)
Sakmann, Kaspar
2010-07-21
In this thesis, the physics of trapped, interacting Bose-Einstein condensates is analyzed by solving the many-body Schroedinger equation. Particular emphasis is put on coherence, fragmentation and reduced density matrices. First, the ground state of a trapped Bose-Einstein condensate and its correlation functions are obtained. Then the dynamics of a bosonic Josephson junction is investigated by solving the time-dependent many-body Schroedinger equation numerically exactly. These are the first exact results in literature in this context. It is shown that the standard approximations of the field, Gross-Pitaevskii theory and the Bose-Hubbard model fail at weak interaction strength and within their range of expected validity. For stronger interactions the dynamics becomes strongly correlated and a new equilibration phenomenon is discovered. By comparison with exact results it is shown that a symmetry of the Bose- Hubbard model between attractive and repulsive interactions must be considered an artefact of the model. A conceptual innovation of this thesis are time-dependent Wannier functions. Equations of motion for time-dependent Wannier functions are derived from the variational principle. By comparison with exact results it is shown that lattice models can be greatly improved at little computational cost by letting the Wannier functions of a lattice model become time-dependent. (orig.)
Efficient molecular dynamics simulations with many-body potentials on graphics processing units
Fan, Zheyong; Chen, Wei; Vierimaa, Ville; Harju, Ari
2017-09-01
Graphics processing units have been extensively used to accelerate classical molecular dynamics simulations. However, there is much less progress on the acceleration of force evaluations for many-body potentials compared to pairwise ones. In the conventional force evaluation algorithm for many-body potentials, the force, virial stress, and heat current for a given atom are accumulated within different loops, which could result in write conflict between different threads in a CUDA kernel. In this work, we provide a new force evaluation algorithm, which is based on an explicit pairwise force expression for many-body potentials derived recently (Fan et al., 2015). In our algorithm, the force, virial stress, and heat current for a given atom can be accumulated within a single thread and is free of write conflicts. We discuss the formulations and algorithms and evaluate their performance. A new open-source code, GPUMD, is developed based on the proposed formulations. For the Tersoff many-body potential, the double precision performance of GPUMD using a Tesla K40 card is equivalent to that of the LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) molecular dynamics code running with about 100 CPU cores (Intel Xeon CPU X5670 @ 2.93 GHz).
N=2 superconformal Newton-Hooke algebra and many-body mechanics
International Nuclear Information System (INIS)
Galajinsky, Anton
2009-01-01
A representation of the conformal Newton-Hooke algebra on a phase space of n particles in arbitrary dimension which interact with one another via a generic conformal potential and experience a universal cosmological repulsion or attraction is constructed. The minimal N=2 superconformal extension of the Newton-Hooke algebra and its dynamical realization in many-body mechanics are studied.
On the many-body foundation of the nuclear field theory
International Nuclear Information System (INIS)
Bes, D.R.; Dussel, G.G.; Liotta, R.J.; Perazzo, R.P.J.; Broglia, R.A.
1976-01-01
The equivalence between the description of the many-body finite nuclear system in terms of Feynman diagrams involving only the fermion degrees of freedom and of Feynman diagrams involving fermion and phonon degrees of freedom is proved for intermediate states in the case of a general two-body residual interaction. (Auth.)
Moores, Brad A.; Sletten, Lucas R.; Viennot, Jeremie; Lehnert, K. W.
Man-made systems of interacting qubits are a promising and powerful way of exploring many-body spin physics beyond classical computation. Although transmon qubits are perhaps the most advanced quantum computing technology, building a system of such qubits designed to emulate a system of many interacting spins is hindered by the mismatch of scales between the transmons and the electromagnetic modes that couple them. We propose a strategy to overcome this mismatch by using surface acoustic waves, which couple to qubits piezoelectrically and have micron wavelengths at GHz frequencies. In this talk, we will present characterizations of transmon qubits fabricated on a piezoelectric material, and show that their coherence properties are sufficient to explore acoustically mediated qubit interactions.
Universal many-body response of heavy impurities coupled to a Fermi sea: a review of recent progress
Schmidt, Richard; Knap, Michael; Ivanov, Dmitri A.; You, Jhih-Shih; Cetina, Marko; Demler, Eugene
2018-02-01
In this report we discuss the dynamical response of heavy quantum impurities immersed in a Fermi gas at zero and at finite temperature. Studying both the frequency and the time domain allows one to identify interaction regimes that are characterized by distinct many-body dynamics. From this theoretical study a picture emerges in which impurity dynamics is universal on essentially all time scales, and where the high-frequency few-body response is related to the long-time dynamics of the Anderson orthogonality catastrophe by Tan relations. Our theoretical description relies on different and complementary approaches: functional determinants give an exact numerical solution for time- and frequency-resolved responses, bosonization provides accurate analytical expressions at low temperatures, and the theory of Toeplitz determinants allows one to analytically predict response up to high temperatures. Using these approaches we predict the thermal decoherence rate of the fermionic system and prove that within the considered model the fastest rate of long-time decoherence is given by γ=π k_BT/4 . We show that Feshbach resonances in cold atomic systems give access to new interaction regimes where quantum effects can prevail even in the thermal regime of many-body dynamics. The key signature of this phenomenon is a crossover between different exponential decay rates of the real-time Ramsey signal. It is shown that the physics of the orthogonality catastrophe is experimentally observable up to temperatures T/T_F≲ 0.2 where it leaves its fingerprint in a power-law temperature dependence of thermal spectral weight and we review how this phenomenon is related to the physics of heavy ions in liquid {\\hspace{0pt}}3 He and the formation of Fermi polarons. The presented results are in excellent agreement with recent experiments on LiK mixtures, and we predict several new phenomena that can be tested using currently available experimental technology.
Calvi, Marta
2011-01-01
This review reports preliminary results of time-dependent measurements of decays of $B^0$ mesons and $B^0_s$ mesons coming from the analysis of about 36 pb$^{-1}$ of data collected by the LHCb experiment during the 2010 run of the Large Hadron Collider at $\\sqrt{s}$ = 7 TeV.
Calvi, Marta; Collaboration, for the LHCb
2011-01-01
This review reports preliminary results of time-dependent measurements of decays of B^0 mesons and B^0_s mesons coming from the analysis of about 36 pb^-1 of data collected by the LHCb experiment during the 2010 run of the Large Hadron Collider at sqrt(s)=7 TeV.
Time dependent view factor methods
International Nuclear Information System (INIS)
Kirkpatrick, R.C.
1998-03-01
View factors have been used for treating radiation transport between opaque surfaces bounding a transparent medium for several decades. However, in recent years they have been applied to problems involving intense bursts of radiation in enclosed volumes such as in the laser fusion hohlraums. In these problems, several aspects require treatment of time dependence
Carleo, Giuseppe; Cevolani, Lorenzo; Sanchez-Palencia, Laurent; Holzmann, Markus
2017-07-01
We introduce the time-dependent variational Monte Carlo method for continuous-space Bose gases. Our approach is based on the systematic expansion of the many-body wave function in terms of multibody correlations and is essentially exact up to adaptive truncation. The method is benchmarked by comparison to an exact Bethe ansatz or existing numerical results for the integrable Lieb-Liniger model. We first show that the many-body wave function achieves high precision for ground-state properties, including energy and first-order as well as second-order correlation functions. Then, we study the out-of-equilibrium, unitary dynamics induced by a quantum quench in the interaction strength. Our time-dependent variational Monte Carlo results are benchmarked by comparison to exact Bethe ansatz results available for a small number of particles, and are also compared to quench action results available for noninteracting initial states. Moreover, our approach allows us to study large particle numbers and general quench protocols, previously inaccessible beyond the mean-field level. Our results suggest that it is possible to find correlated initial states for which the long-term dynamics of local density fluctuations is close to the predictions of a simple Boltzmann ensemble.
How should we understand non-equilibrium many-body steady states?
Maghrebi, Mohammad; Gorshkov, Alexey
: Many-body systems with both coherent dynamics and dissipation constitute a rich class of models which are nevertheless much less explored than their dissipationless counterparts. The advent of numerous experimental platforms that simulate such dynamics poses an immediate challenge to systematically understand and classify these models. In particular, nontrivial many-body states emerge as steady states under non-equilibrium dynamics. In this talk, I use a field-theoretic approach based on the Keldysh formalism to study nonequilibrium phases and phase transitions in such models. I show that an effective temperature generically emerges as a result of dissipation, and the universal behavior including the dynamics near the steady state is described by a thermodynamic universality class. In the end, I will also discuss possibilities that go beyond the paradigm of an effective thermodynamic behavior.
In-Medium Similarity Renormalization Group Approach to the Nuclear Many-Body Problem
Hergert, Heiko; Bogner, Scott K.; Lietz, Justin G.; Morris, Titus D.; Novario, Samuel J.; Parzuchowski, Nathan M.; Yuan, Fei
We present a pedagogical discussion of Similarity Renormalization Group (SRG) methods, in particular the In-Medium SRG (IMSRG) approach for solving the nuclear many-body problem. These methods use continuous unitary transformations to evolve the nuclear Hamiltonian to a desired shape. The IMSRG, in particular, is used to decouple the ground state from all excitations and solve the many-body Schrödinger equation. We discuss the IMSRG formalism as well as its numerical implementation, and use the method to study the pairing model and infinite neutron matter. We compare our results with those of Coupled cluster theory (Chap. 8), Configuration-Interaction Monte Carlo (Chap. 9), and the Self-Consistent Green's Function approach discussed in Chap. 11 The chapter concludes with an expanded overview of current research directions, and a look ahead at upcoming developments.
Bell Correlations in a Many-Body System with Finite Statistics
Wagner, Sebastian; Schmied, Roman; Fadel, Matteo; Treutlein, Philipp; Sangouard, Nicolas; Bancal, Jean-Daniel
2017-10-01
A recent experiment reported the first violation of a Bell correlation witness in a many-body system [Science 352, 441 (2016)]. Following discussions in this Letter, we address here the question of the statistics required to witness Bell correlated states, i.e., states violating a Bell inequality, in such experiments. We start by deriving multipartite Bell inequalities involving an arbitrary number of measurement settings, two outcomes per party and one- and two-body correlators only. Based on these inequalities, we then build up improved witnesses able to detect Bell correlated states in many-body systems using two collective measurements only. These witnesses can potentially detect Bell correlations in states with an arbitrarily low amount of spin squeezing. We then establish an upper bound on the statistics needed to convincingly conclude that a measured state is Bell correlated.
Lattice Methods and the Nuclear Few- and Many-Body Problem
Lee, Dean
This chapter builds upon the review of lattice methods and effective field theory of the previous chapter. We begin with a brief overview of lattice calculations using chiral effective field theory and some recent applications. We then describe several methods for computing scattering on the lattice. After that we focus on the main goal, explaining the theory and algorithms relevant to lattice simulations of nuclear few- and many-body systems. We discuss the exact equivalence of four different lattice formalisms, the Grassmann path integral, transfer matrix operator, Grassmann path integral with auxiliary fields, and transfer matrix operator with auxiliary fields. Along with our analysis we include several coding examples and a number of exercises for the calculations of few- and many-body systems at leading order in chiral effective field theory.
Coupled-channel equations and off-shell transformations in many-body scattering
International Nuclear Information System (INIS)
Cattapan, G.; Vanzani, V.
1977-01-01
The general structure and the basic features of several many-body coupled-channel integral equations, obtained by means of the channel coupling array device, are studied in a systematic way. Particular attention is paid to the employment of symmetric transition operators. The connection between different formulations has been clarified and the role played by some off-shell transformations for many-body transition operators has been discussed. Specific choices of the coupling scheme are considered and the corresponding coupled equations are compared with similar equations previously derived. Several sets of linear relations between transition operators have also been presented and used in a three-body context to derive uncoupled integral equations with connected kernel
Many-body effects in the mesoscopic x-ray edge problem
International Nuclear Information System (INIS)
Hentschel, Martina; Roeder, Georg; Ullmo, Denis
2007-01-01
Many-body phenomena, a key interest in the investigation of bulk solid state systems, are studied here in the context of the x-ray edge problem for mesoscopic systems. We investigate the many-body effects associated with the sudden perturbation following the x-ray exciton of a core electron into the conduction band. For small systems with dimensions at the nanoscale we find considerable deviations from the well-understood metallic case where Anderson orthogonality catastrophe and the Mahan-Nozieres-DeDominicis response cause characteristic deviations of the photoabsorption cross section from the naive expectation. Whereas the K-edge is typically rounded in metallic systems, we find a slightly peaked K-edge in generic mesoscopic systems with chaotic-coherent electron dynamics. Thus the behavior of the photoabsorption cross section at threshold depends on the system size and is different for the metallic and the mesoscopic case. (author)
Diagrammatic many-body perturbation expansion for atoms and molecules. Pt. 6
International Nuclear Information System (INIS)
Moncrieff, D.; Baker, D.J.; Wilson, S.
1989-01-01
The efficient evaluation of the second-order expression in the many-body perturbation theory expansion for the correlation energy on vector processing and parallel processing computers is discussed. It is argued that the linked diagram theorem not only leads to the well known theoretical advantages of the many-body perturbation theory approach which allows the calculation of correlation energies for large (i.e. extended molecules or species containing heavy atoms) systems but also decouples the many-electron problem allowing efficient implementation on parallel processing machines. Furthermore, the computation associated with each of the resulting subproblems is very well suited to vector processing machines. Timing tests are reported for the CRAY 1 and CDC Cyber 205 vector processors, for a 1 processor implementation on the CRAY X-MP/48 and the ETA-10E, and for a 4 processor implementation on the Cray X-MP/48. (orig.)
Morphology of Laplacian growth processes and statistics of equivalent many-body systems
International Nuclear Information System (INIS)
Blumenfeld, R.
1994-01-01
The authors proposes a theory for the nonlinear evolution of two dimensional interfaces in Laplacian fields. The growing region is conformally mapped onto the unit disk, generating an equivalent many-body system whose dynamics and statistics are studied. The process is shown to be Hamiltonian, with the Hamiltonian being the imaginary part of the complex electrostatic potential. Surface effects are introduced through the Hamiltonian as an external field. An extension to a continuous density of particles is presented. The results are used to study the morphology of the interface using statistical mechanics for the many-body system. The distribution of the curvature and the moments of the growth probability along the interface are calculated exactly from the distribution of the particles. In the dilute limit, the distribution of the curvature is shown to develop algebraic tails, which may, for the first time, explain the origin of fractality in diffusion controlled processes
Method for the Direct Solve of the Many-Body Schrödinger Wave Equation
Jerke, Jonathan; Tymczak, C. J.; Poirier, Bill
We report on theoretical and computational developments towards a computationally efficient direct solve of the many-body Schrödinger wave equation for electronic systems. This methodology relies on two recent developments pioneered by the authors: 1) the development of a Cardinal Sine basis for electronic structure calculations; and 2) the development of a highly efficient and compact representation of multidimensional functions using the Canonical tensor rank representation developed by Belykin et. al. which we have adapted to electronic structure problems. We then show several relevant examples of the utility and accuracy of this methodology, scaling with system size, and relevant convergence issues of the methodology. Method for the Direct Solve of the Many-Body Schrödinger Wave Equation.
Reconstructing time-dependent dynamics
Clemson, Philip; Lancaster, Gemma; Stefanovska, Aneta
2016-01-01
The usefulness of the information extracted from biomedical data relies heavily on the underlying theory of the methods used in its extraction. The assumptions of stationarity and autonomicity traditionally applied to dynamical systems break down when considering living systems, due to their inherent time-variability. Living systems are thermodynamically open, and thus constantly interacting with their environment. This results in highly nonlinear, time-dependent dynamics. The aim of signal a...
The closed time-path Green function formalism in many-body theory
International Nuclear Information System (INIS)
Guang-zhao Zhou; Zhao-bin Su; Bai-lin Hao; Lu Yu.
1983-09-01
The closed time-path Green function formalism, developed by our group during recent years, is briefly reviewed. The generating functional technique, the coupled equations for the order parameter and the elementary excitations as well as the systematic loop expansion are outlined. The applications to critical dynamics, quenched random systems, nonlinear response theory, superconductivity, laser system and quasi-one-dimensional conductors are described. The theoretical approach developed can be applied to both equilibrium and non-equilibrium many-body systems. (author)
Many-body theory of charge transfer in hyperthermal atomic scattering
International Nuclear Information System (INIS)
Marston, J.B.; Andersson, D.R.; Behringer, E.R.; Cooper, B.H.; DiRubio, C.A.; Kimmel, G.A.; Richardson, C.
1993-01-01
We use the Newns-Anderson Hamiltonian to describe many-body electronic processes that occur when hyperthermal alkali atoms scatter off metallic surfaces. Following Brako and Newns, we expand the electronic many-body wave function in the number of particle-hole pairs (we keep terms up to and including a single particle-hole pair). We extend their earlier work by including level crossings, excited neutrals, and negative ions. The full set of equations of motion is integrated numerically, without further approximations, to obtain the many-body amplitudes as a function of time. The velocity and work-function dependence of final-state quantities such as the distribution of ion charges and excited atomic occupancies are compared with experiment. In particular, experiments that scatter alkali ions off clean Cu(001) surfaces in the energy range 5--1600 eV constrain the theory quantitatively. The neutralization probability of Na + ions shows a minimum at intermediate velocity in agreement with the theory. This behavior contrasts with that of K + , which shows virtually no neutralization, and with Li + , which exhibits a monotonically increasing neutral fraction with decreasing velocity. Particle-hole excitations are left behind in the metal during a fraction of the collision events; this dissipated energy is predicted to be quite small (on the order of tenths of an electron volt). Indeed, classical trajectory simulations of the surface dynamics account well for the observed energy loss, and thus provide some justification for our truncation of the equations of motion at the single particle-hole pair level. Li + scattering experiments off low work-function surfaces provide qualitative information on the importance of many-body effects. At sufficiently low work function, the negative ions predicted to occur are in fact observed
One-dimensional classical many-body system having a normal thermal conductivity
International Nuclear Information System (INIS)
Casati, G.; Ford, J.; Vivaldi, F.; Visscher, W.M.
1984-01-01
By numerically computing orbits for a chaotic, one-dimensional, many-body system placed between two thermal reservoirs, we verify directly that its energy transport obeys the Fourier heat law and we determine its thermal conductivity K. The same value of K is independently obtained by use of the Green-Kubo formalism. These numerical studies verify that chaos is the essential ingredient of diffusive energy transport, and they validate the Green-Kubo formalism
Spin-dependent electron many-body effects in GaAs
Nemec, P.; Kerachian, Y.; van Driel, H. M.; Smirl, Arthur L.
2005-12-01
Time- and polarization-resolved differential transmission measurements employing same and oppositely circularly polarized 150fs optical pulses are used to investigate spin characteristics of conduction band electrons in bulk GaAs at 295K . Electrons and holes with densities in the 2×1016cm-3-1018cm-3 range are generated and probed with pulses whose center wavelength is between 865 and 775nm . The transmissivity results can be explained in terms of the spin sensitivity of both phase-space filling and many-body effects (band-gap renormalization and screening of the Coulomb enhancement factor). For excitation and probing at 865nm , just above the band-gap edge, the transmissivity changes mainly reflect spin-dependent phase-space filling which is dominated by the electron Fermi factors. However, for 775nm probing, the influence of many-body effects on the induced transmission change are comparable with those from reduced phase space filling, exposing the spin dependence of the many-body effects. If one does not take account of these spin-dependent effects one can misinterpret both the magnitude and time evolution of the electron spin polarization. For suitable measurements we find that the electron spin relaxation time is 130ps .
Many-body localization dynamics from a one-particle perspective
Energy Technology Data Exchange (ETDEWEB)
Lezama Mergold Love, Talia; Bera, Soumya; Bardarson, Jens Hjorleifur [Max Planck Institute for the Physics of Complex Systems, Dresden (Germany)
2016-07-01
Systems exhibiting many-body localization (Anderson insulators in the presence of interactions) present a novel class of nonergodic phases of matter. The study of entanglement, in terms of both exact eigenstates and its time evolution after quenches, has been useful to reveal the salient signatures of these systems. Similarly to the entanglement entropy of exact eigenstates, the one-particle density matrix can be used as a tool to characterize the many-body localization transition with its eigenvalues showing a Fermi-liquid like step discontinuity in the localized phase. However, this analysis distinguishes the Fock-space structure of the eigenstates from the real space. Here, we present numerical evidence for dynamical signatures of the many-body localized phase for a closed fermionic system, using the one-particle density matrix and its time evolution after a global quench. We discuss and compare our results with the well-known logarithmic spreading of entanglement (a dynamical signature of this phase, absent in the Anderson insulator).
Calculation of the hyperfine interaction using an effective-operator form of many-body theory
International Nuclear Information System (INIS)
Garpman, S.; Lindgren, I.; Lindgren, J.; Morrison, J.
1975-01-01
The effective-operator form of many-body theory is reviewed and applied to the calculation of the hyperfine structure. Numerical results are given for the 2p, 3p, and 4p excited states of Li and the 3p state of Na. This is the first complete calculation of the hyperfine structure using an effective-operator form of perturbation theory. As in the Brueckner-Goldstone form of many-body theory, the various terms in the perturbation expansion are represented by Feynman diagrams which correspond to basic physical processes. The angular part of the perturbation diagrams are evaluated by taking advantage of the formal analogy between the Feynman diagrams and the angular-momentum diagrams, introduced by Jucys et al. The radial part of the diagrams is calculated by solving one- and two-particle equations for the particular linear combination of excited states that contribute to the Feynman diagrams. In this way all second- and third-order effects are accurately evaluated without explicitly constructing the excited orbitals. For the 2p state of Li our results are in agreement with the calculations of Nesbet and of Hameed and Foley. However, our quadrupole calculation disagrees with the work of Das and co-workers. The many-body results for Li and Na are compared with semiempirical methods for evaluating the quadrupole moment from the hyperfine interaction, and a new quadrupole moment of 23 Na is given
Functional integral representation of the nuclear many-body grand partition function
International Nuclear Information System (INIS)
Kerman, A.K.; Troudet, T.
1984-01-01
A local functional integral formulation of the nuclear many-body problem is proposed which is a generalization of the method previously developed. Its most interesting feature is that it allows an expansion of the many-body evolution operator around any arbitrary mean-field which takes into account the pairing correlations between the nucleons. This is explicitly illustrated for the nuclear many-body grand partition function for which special attention is paid to the static temperature-dependent Hartree-Fock-Bogolyubov (H.F.B.) approximation. Indeed, the temperature-dependent H.F.B. configuration appears to be the optimal choice from a variational point of view among all the possible independent quasi-particle motion approximations. An analytic approximation of the energy level density rho (E,A) is given using explicitly the arbitrariness in the choice of the mean-field and a possible numerical application is proposed. Finally, a new compact formulation of our functional integral that might be useful for future Monte Carlo calculations is proposed
2007 Time_Dependent Density-Functional Therory (July 15-20, 2007 Colby College, Maine)
Energy Technology Data Exchange (ETDEWEB)
Ullrich Carsten
2008-09-19
Time-dependent density-functional theory (TDDFT) provides an efficient, elegant, and formally exact way of describing the dynamics of interacting many-body quantum systems, circumventing the need for solving the full time-dependent Schroedinger equation. In the 20 years since it was first rigorously established in 1984, the field of TDDFT has made rapid and significant advances both formally as well as in terms of successful applications in chemistry, physics and materials science. Today, TDDFT has become the method of choice for calculating excitation energies of complex molecules, and is becoming increasingly popular for describing optical and spectroscopic properties of a variety of materials such as bulk solids, clusters and nanostructures. Other growing areas of applications of TDDFT are nonlinear dynamics of strongly excited electronic systems and molecular electronics. The purpose and scope of this Gordon Research Conference is to provide a platform for discussing the current state of the art of the rapidly progressing, highly interdisciplinary field of TDDFT, to identify and debate open questions, and to point out new promising research directions. The conference will bring together experts with a diverse background in chemistry, physics, and materials science.
General variational many-body theory with complete self-consistency for trapped bosonic systems
International Nuclear Information System (INIS)
Streltsov, Alexej I.; Alon, Ofir E.; Cederbaum, Lorenz S.
2006-01-01
In this work we develop a complete variational many-body theory for a system of N trapped bosons interacting via a general two-body potential. The many-body solution of this system is expanded over orthogonal many-body basis functions (configurations). In this theory both the many-body basis functions and the respective expansion coefficients are treated as variational parameters. The optimal variational parameters are obtained self-consistently by solving a coupled system of noneigenvalue--generally integro-differential--equations to get the one-particle functions and by diagonalizing the secular matrix problem to find the expansion coefficients. We call this theory multiconfigurational Hartree theory for bosons or MCHB(M), where M specifies explicitly the number of one-particle functions used to construct the configurations. General rules for evaluating the matrix elements of one- and two-particle operators are derived and applied to construct the secular Hamiltonian matrix. We discuss properties of the derived equations. We show that in the limiting cases of one configuration the theory boils down to the well-known Gross-Pitaevskii and the recently developed multi-orbital mean fields. The invariance of the complete solution with respect to unitary transformations of the one-particle functions is utilized to find the solution with the minimal number of contributing configurations. In the second part of our work we implement and apply the developed theory. It is demonstrated that for any practical computation where the configurational space is restricted, the description of trapped bosonic systems strongly depends on the choice of the many-body basis set used, i.e., self-consistency is of great relevance. As illustrative examples we consider bosonic systems trapped in one- and two-dimensional symmetric and asymmetric double well potentials. We demonstrate that self-consistency has great impact on the predicted physical properties of the ground and excited states
Selfsimilar time dependent shock structures
International Nuclear Information System (INIS)
Beck, R.; Drury, L.O.
1985-01-01
Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The same argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions
Selfsimilar time dependent shock structures
Beck, R.; Drury, L. O.
1985-01-01
Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The ame argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions.
Many-body forces and stability of the alkaline-earth tetramers
International Nuclear Information System (INIS)
Diaz-Torrejon, C.C.; Kaplan, Ilya G.
2011-01-01
Graphical abstract: Many-body forces effect. In a three-particle system, the two-body interaction energies depend upon coordinates of all three particles. The comparative study of the interaction energy and its many-body decomposition for alkaline-earths tetramers Be 4 , Mg 4 , and Ca 4 at the all-electron CCSD(T)/aug-cc-pVQZ level is performed. For study of dependence of the binding energy and the orbital population on the cluster size the corresponding dimers and trimers were also calculated at the same level of theory. In comparison with weakly bound dimers, the binding energy in trimers and, especially, in tetramers drastically increases; e.g., E b /N in Be 3 is 7 times larger and in Be 4 is 18.4 times larger than in Be 2 . This sharp increase is explained as a manifestation of many-body forces. The trimers and tetramers are stabilized by the three-body forces, whereas the two- and four-body forces are repulsive. The attractive contribution to the three-body forces has a three-atom electron exchange origin. The natural bond orbital (NBO) population analysis reveals a relatively large np-population in trimers and tetramers. The population of the valence np-orbitals leads to the sp-hybridization providing the covalent bonding. Research highlights: → The alkaline-earths trimers and tetramers are stabilized by the three-body forces. → Two- and four-body forces are repulsive for trimers and tetramers. → The attractive contribution to the three-body forces has a three-atom electron exchange origin. → The population of the np-orbitals leads to the sp-hybridization providing the covalent bonding. - Abstract: The comparative study of the interaction energy and its many-body decomposition for Be 4 , Mg 4 , and Ca 4 at the all-electron CCSD(T)/aug-cc-pVQZ level is performed. For study of dependence of the binding energy and the orbital population on the cluster size the corresponding dimers and trimers were also calculated at the same level of theory. In
Self-consistent RPA based on a many-body vacuum
International Nuclear Information System (INIS)
Jemaï, M.; Schuck, P.
2011-01-01
Self-Consistent RPA is extended in a way so that it is compatible with a variational ansatz for the ground-state wave function as a fermionic many-body vacuum. Employing the usual equation-of-motion technique, we arrive at extended RPA equations of the Self-Consistent RPA structure. In principle the Pauli principle is, therefore, fully respected. However, the correlation functions entering the RPA matrix can only be obtained from a systematic expansion in powers of some combinations of RPA amplitudes. We demonstrate for a model case that this expansion may converge rapidly.
Theoretical approaches to many-body perturbation theory and the challenges
International Nuclear Information System (INIS)
Barrett, Bruce R
2005-01-01
A brief review of the history of many-body perturbation theory (MBPT) and its applications in nuclear physics is given. Problems regarding its application to nuclear-structure calculations are discussed and analysed. It is concluded that the usefulness of nuclear MBPT in terms of an expansion in the nuclear reaction matrix G for the calculation of effective interactions in shell-model investigations is severely challenged and restricted by the problems and uncertainties connected with this approach. New methods based on unitary transformation approaches have proven to be more accurate and reliable, particularly for light nuclei
The Lanczos algorithm for extensive many-body systems in the thermodynamic limit
International Nuclear Information System (INIS)
Witte, N.S.; Bessis, D.
1999-01-01
We establish rigorously the scaling properties of the Lanczos process applied to an arbitrary extensive Many-Body System which is carried to convergence n → ∞ and the thermodynamic limit N → ∞ taken. In this limit the solution for the limiting Lanczos coefficients are found exactly and generally through two equivalent sets of equations, given initial knowledge of the exact cumulant generating function. The measure and the Orthogonal Polynomial System associated with the Lanczos process in this regime are also given explicitly. Some important representations of these Lanczos functions are provided, including Taylor series expansions, and the theorems controlling their general properties are proven. (authors)
Energy Distributions from Three-Body Decaying Many-Body Resonances
International Nuclear Information System (INIS)
Alvarez-Rodriguez, R.; Jensen, A. S.; Fedorov, D. V.; Fynbo, H. O. U.; Garrido, E.
2007-01-01
We compute energy distributions of three particles emerging from decaying many-body resonances. We reproduce the measured energy distributions from decays of two archetypal states chosen as the lowest 0 + and 1 + resonances in 12 C populated in β decays. These states are dominated by sequential, through the 8 Be ground state, and direct decays, respectively. These decay mechanisms are reflected in the ''dynamic'' evolution from small, cluster or shell-model states, to large distances, where the coordinate or momentum space continuum wave functions are accurately computed
Gritsev, Vladimir; Demler, Eugene; Lukin, Mikhail; Polkovnikov, Anatoli
2007-11-16
We study the problem of rapid change of the interaction parameter (quench) in a many-body low-dimensional system. It is shown that, measuring the correlation functions after the quench, the information about a spectrum of collective excitations in a system can be obtained. This observation is supported by analysis of several integrable models and we argue that it is valid for nonintegrable models as well. Our conclusions are supplemented by performing exact numerical simulations on finite systems. We propose that measuring the power spectrum in a dynamically split 1D Bose-Einsten condensate into two coupled condensates can be used as an experimental test of our predictions.
Exploring excited eigenstates of many-body systems using the functional renormalization group
Klöckner, Christian; Kennes, Dante Marvin; Karrasch, Christoph
2018-05-01
We introduce approximate, functional renormalization group based schemes to obtain correlation functions in pure excited eigenstates of large fermionic many-body systems at arbitrary energies. The algorithms are thoroughly benchmarked and their strengths and shortcomings are documented using a one-dimensional interacting tight-binding chain as a prototypical testbed. We study two "toy applications" from the world of Luttinger liquid physics: the survival of power laws in lowly excited states as well as the spectral function of high-energy "block" excitations, which feature several single-particle Fermi edges.
Proceedings of the fifth symposium on simulation of hadronic many-body system
Energy Technology Data Exchange (ETDEWEB)
Chiba, Satoshi; Maruyama, Toshiki [eds.
1998-07-01
The fifth symposium on Simulation of Hadronic Many-Body System, organized by the Research Group for Hadron Transport Theory, Advanced Science Research Center, was held at Tokai Research Establishment of JAERI on March 3 and 4, 1998. The symposium was devoted for discussion and presentation of research results on light- and heavy-ion induced nuclear reactions in terms of microscopic simulation method, while wide variety of other topics were also presented such as nuclear structure, properties of nuclear matter and high-energy multi-fragmentation experiments. The 17 of the presented papers are indexed individually. (J.P.N.)
On nonequilibrium many-body systems. 1: The nonequilibrium statistical operator method
International Nuclear Information System (INIS)
Algarte, A.C.S.; Vasconcellos, A.R.; Luzzi, R.; Sampaio, A.J.C.
1985-01-01
The theoretical aspects involved in the treatment of many-body systems strongly departed from equilibrium are discussed. The nonequilibrium statistical operator (NSO) method is considered in detail. Using Jaynes' maximum entropy formalism complemented with an ad hoc hypothesis a nonequilibrium statistical operator is obtained. This approach introduces irreversibility from the outset and we recover statistical operators like those of Green-Mori and Zubarev as particular cases. The connection with Generalized Thermodynamics and the construction of nonlinear transport equations are briefly described. (Author) [pt
Two novel classes of solvable many-body problems of goldfish type with constraints
Energy Technology Data Exchange (ETDEWEB)
Calogero, F [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , 00185 Rome (Italy); Gomez-Ullate, D [Departamento de Fisica Teorica II, Universidad Complutense, 28040 Madrid (Spain)
2007-05-18
Two novel classes of many-body models with nonlinear interactions 'of goldfish type' are introduced. They are solvable provided the initial data satisfy a single constraint (in one case; in the other, two constraints), i.e., for such initial data the solution of their initial-value problem can be achieved via algebraic operations, such as finding the eigenvalues of given matrices or equivalently the zeros of known polynomials. Entirely isochronous versions of some of these models are also exhibited, i.e., versions of these models whose nonsingular solutions are all completely periodic with the same period.
Watching excitons move: the time-dependent transition density matrix
Ullrich, Carsten
2012-02-01
Time-dependent density-functional theory allows one to calculate excitation energies and the associated transition densities in principle exactly. The transition density matrix (TDM) provides additional information on electron-hole localization and coherence of specific excitations of the many-body system. We have extended the TDM concept into the real-time domain in order to visualize the excited-state dynamics in conjugated molecules. The time-dependent TDM is defined as an implicit density functional, and can be approximately obtained from the time-dependent Kohn-Sham orbitals. The quality of this approximation is assessed in simple model systems. A computational scheme for real molecular systems is presented: the time-dependent Kohn-Sham equations are solved with the OCTOPUS code and the time-dependent Kohn-Sham TDM is calculated using a spatial partitioning scheme. The method is applied to show in real time how locally created electron-hole pairs spread out over neighboring conjugated molecular chains. The coupling mechanism, electron-hole coherence, and the possibility of charge separation are discussed.
Betweenness in time dependent networks
International Nuclear Information System (INIS)
Alsayed, Ahmad; Higham, Desmond J.
2015-01-01
The concept of betweenness has given rise to a very useful class of network centrality measures. Loosely, betweenness quantifies the level of importance of a node in terms of its propensity to act as an intermediary when messages are passed around the network. In this work we generalize a walk-based betweenness measure to the case of time-dependent networks, such as those arising in telecommunications and on-line social media. We also introduce a new kind of betweenness measure, temporal betweenness, which quantifies the importance of a time-point. We illustrate the effectiveness of these new measures on synthetic examples, and also give results on real data sets involving voice call, email and Twitter
Model many-body Stoner Hamiltonian for binary FeCr alloys
Nguyen-Manh, D.; Dudarev, S. L.
2009-09-01
We derive a model tight-binding many-body d -electron Stoner Hamiltonian for FeCr binary alloys and investigate the sensitivity of its mean-field solutions to the choice of hopping integrals and the Stoner exchange parameters. By applying the local charge-neutrality condition within a self-consistent treatment we show that the negative enthalpy-of-mixing anomaly characterizing the alloy in the low chromium concentration limit is due entirely to the presence of the on-site exchange Stoner terms and that the occurrence of this anomaly is not specifically related to the choice of hopping integrals describing conventional chemical bonding between atoms in the alloy. The Bain transformation pathway computed, using the proposed model Hamiltonian, for the Fe15Cr alloy configuration is in excellent agreement with ab initio total-energy calculations. Our investigation also shows how the parameters of a tight-binding many-body model Hamiltonian for a magnetic alloy can be derived from the comparison of its mean-field solutions with other, more accurate, mean-field approximations (e.g., density-functional calculations), hence stimulating the development of large-scale computational algorithms for modeling radiation damage effects in magnetic alloys and steels.
Dynamics of many-body localization in the presence of particle loss
van Nieuwenburg, EPL; Yago Malo, J.; Daley, AJ; Fischer, MH
2018-01-01
At long times, residual couplings to the environment become relevant even in the most isolated experiments, a crucial difficulty for the study of fundamental aspects of many-body dynamics. A particular example is many-body localization in a cold-atom setting, where incoherent photon scattering introduces both dephasing and particle loss. Whereas dephasing has been studied in detail and is known to destroy localization already on the level of non-interacting particles, the effect of particle loss is less well understood. A difficulty arises due to the ‘non-local’ nature of the loss process, complicating standard numerical tools using matrix product decomposition. Utilizing symmetries of the Lindbladian dynamics, we investigate the particle loss on both the dynamics of observables, as well as the structure of the density matrix and the individual states. We find that particle loss in the presence of interactions leads to dissipation and a strong suppression of the (operator space) entanglement entropy. Our approach allows for the study of the interplay of dephasing and loss for pure and mixed initial states to long times, which is important for future experiments using controlled coupling of the environment.
Many-Body Effects on the Thermodynamics of Fluids, Mixtures, and Nanoconfined Fluids.
Desgranges, Caroline; Delhommelle, Jerome
2015-11-10
Using expanded Wang-Landau simulations, we show that taking into account the many-body interactions results in sharp changes in the grand-canonical partition functions of single-component systems, binary mixtures, and nanoconfined fluids. The many-body contribution, modeled with a 3-body Axilrod-Teller-Muto term, results in shifts toward higher chemical potentials of the phase transitions from low-density phases to high-density phases and accounts for deviations of more than, e.g., 20% of the value of the partition function for a single-component liquid. Using the statistical mechanics formalism, we analyze how this contribution has a strong impact on some properties (e.g., pressure, coexisting densities, and enthalpy) and a moderate impact on others (e.g., Gibbs or Helmholtz free energies). We also characterize the effect of the 3-body terms on adsorption isotherms and adsorption thermodynamic properties, thereby providing a full picture of the effect of the 3-body contribution on the thermodynamics of nanoconfined fluids.
Simulation of time-dependent Heisenberg models in one dimension
DEFF Research Database (Denmark)
Volosniev, A. G.; Hammer, H. -W.; Zinner, N. T.
2016-01-01
In this Letter, we provide a theoretical analysis of strongly interacting quantum systems confined by a time-dependent external potential in one spatial dimension. We show that such systems can be used to simulate spin chains described by Heisenberg Hamiltonians in which the exchange coupling...... constants can be manipulated by time-dependent driving of the shape of the external confinement. As illustrative examples, we consider a harmonic trapping potential with a variable frequency and an infinite square well potential with a time-dependent barrier in the middle....
Many-body formation and dissociation of a dipolar chain crystal
International Nuclear Information System (INIS)
You, Jhih-Shih; Wang, Daw-Wei
2014-01-01
We propose an experimental scheme to effectively assemble chains of dipolar gases with a uniform length in a multi-layer system. The obtained dipolar chains can form a chain crystal with the system temperature easily controlled by the initial lattice potential and the external field strength during processing. When the density of chains increases, we further observe a second order quantum phase transition for the chain crystal to be dissociated toward layers of 2D crystal, where the quantum fluctuation dominates the classical energy and the compressibility diverges at the phase boundary. The experimental implication of such a dipolar chain crystal and its quantum phase transition is also discussed. (paper)
Evidence of tensor correlations in the nuclear many-body system using a modern NN potential
International Nuclear Information System (INIS)
Fiase, J.O.; Nkoma, J.S.; Sharmaand, L.K.; Hosaka, A.
2003-01-01
In this paper we show evidence of the importance of tensor correlations in the nuclear many-body system by calculating the effective two-body nuclear matrix elements in the frame work of the Lowest-Order Constrained Variational (LOCV) technique with two-body correlation functions using the Reid93 potential. We have achieved this by switching on and off the strength of the tensor correlations, α k . We have found that in order to obtain reasonable agreement with earlier calculations based on the G-matrix theory, we must turn on the strength of the tensor correlations especially in the triplet even (TE) and tensor even (TNE) channels to take the value of approximately, 0.05. As an application, we have estimated the value of the Landau - Migdal parameter, g' NN which we found to be g' NN = 0.65. This compares favorably with the G-matrix calculated value of g' NN = 0.54. (author)
Towards predictive many-body calculations of phonon-limited carrier mobilities in semiconductors
Poncé, Samuel; Margine, Elena R.; Giustino, Feliciano
2018-03-01
We probe the accuracy limit of ab initio calculations of carrier mobilities in semiconductors, within the framework of the Boltzmann transport equation. By focusing on the paradigmatic case of silicon, we show that fully predictive calculations of electron and hole mobilities require many-body quasiparticle corrections to band structures and electron-phonon matrix elements, the inclusion of spin-orbit coupling, and an extremely fine sampling of inelastic scattering processes in momentum space. By considering all these factors we obtain excellent agreement with experiment, and we identify the band effective masses as the most critical parameters to achieve predictive accuracy. Our findings set a blueprint for future calculations of carrier mobilities, and pave the way to engineering transport properties in semiconductors by design.
The electronic structure of molecules by a many-body approach. Pt. 1
International Nuclear Information System (INIS)
Niessen, W. von; Cederbaum, L.S.; Kraemer, W.P.
1976-01-01
The ionization potentials of benzene are studied by an ab initio many-body approach which includes the effects of electron correlation and reorganization beyond the one-particle approximation. The calculations confirm the assignment of the photoelectron spectrum experimentally proposed by Jonsson and Lindholm: 1esub(1g)(π), 2esub(2g), 1asub(2u)(π), 2esub(1u), 1bsub(2u), 1bsub(1u), 2asub(1g), 1esub(2g) in order of increasing binding energy. To definitely establish the ordering of the ionization potentials in the second band, which has been very controversial, the corresponding vibrational structure has been calculated. A number of one-electron properties are calculated in the one-particle approximation and compared to experimental work and other theoretical calculations. (orig.) [de
Probing the electronic structure of liquid water with many-body perturbation theory
Pham, Tuan Anh; Zhang, Cui; Schwegler, Eric; Galli, Giulia
2014-03-01
We present a first-principles investigation of the electronic structure of liquid water based on many-body perturbation theory (MBPT), within the G0W0 approximation. The liquid quasiparticle band gap and the position of its valence band maximum and conduction band minimum with respect to vacuum were computed and it is shown that the use of MBPT is crucial to obtain results that are in good agreement with experiment. We found that the level of theory chosen to generate molecular dynamics trajectories may substantially affect the electronic structure of the liquid, in particular, the relative position of its band edges and redox potentials. Our results represent an essential step in establishing a predictive framework for computing the relative position of water redox potentials and the band edges of semiconductors and insulators. Work supported by DOE/BES (Grant No. DE-SC0008938). Work at LLNL was performed under Contract DE-AC52-07NA27344.
Ab Initio Many-Body Calculations Of Nucleon-Nucleus Scattering
Energy Technology Data Exchange (ETDEWEB)
Quaglioni, S; Navratil, P
2008-12-17
We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and Pauli principle. We outline technical details and present phase shift results for neutron scattering on {sup 3}H, {sup 4}He and {sup 10}Be and proton scattering on {sup 3,4}He, using realistic nucleon-nucleon (NN) potentials. Our A = 4 scattering results are compared to earlier ab initio calculations. We find that the CD-Bonn NN potential in particular provides an excellent description of nucleon-{sup 4}He S-wave phase shifts. We demonstrate that a proper treatment of the coupling to the n-{sup 10}Be continuum is successful in explaining the parity-inverted ground state in {sup 11}Be.
Excitons and Cooper pairs two composite bosons in many-body physics
Combescot, Monique
2015-01-01
This book bridges a gap between two major communities of Condensed Matter Physics, Semiconductors and Superconductors, that have thrived independently. Through an original perspective that their key particles, excitons and Cooper pairs, are composite bosons, the authors raise fundamental questions of current interest: how does the Pauli exclusion principle wield its power on the fermionic components of bosonic particles at a microscopic level and how this affects the macroscopic physics? What can we learn from Wannier and Frenkel excitons and from Cooper pairs that helps us understand "bosonic condensation" of composite bosons and its difference from Bose-Einstein condensation of elementary bosons? The authors start from solid mathematical and physical foundation to derive excitons and Cooper pairs. They further introduce Shiva diagrams as a graphic support to grasp the many-body physics induced by fermion exchange - a novel mechanism not visualized by standard Feynman diagrams. Advanced undergraduate or grad...
Collective many-body dynamics in the vicinity of nuclear driplines
International Nuclear Information System (INIS)
Volya, Alexander; Zelevinsky, Vladimir
2007-01-01
The Continuum Shell Model is a powerful theoretical tool for analysis of many-body dynamics embedded in the continuum. Here we formulate the method and use an example of a realistic shell model calculation for oxygen isotopes to demonstrate the seamless transition from bound states to resonances and cross sections in continuum within the same framework. The coupled dynamics of intrinsic states and continuum is traced further to the regime of continuum dominance that implies the decay width collectivization and onset of super-radiance. The coexistence and interplay of internal collective motion, such as giant resonances, and decay are of particular interest. Schematic and realistic calculations illustrate changes in the strength distribution and the natural appearance of the so-called pygmy mode
Lee, Tsung-Han
Strongly correlated materials are a class of materials that cannot be properly described by the Density Functional Theory (DFT), which is a single-particle approximation to the original many-body electronic Hamiltonian. These systems contain d or f orbital electrons, i.e., transition metals, actinides, and lanthanides compounds, for which the electron-electron interaction (correlation) effects are too strong to be described by the single-particle approximation of DFT. Therefore, complementary many-body methods have been developed, at the model Hamiltonians level, to describe these strong correlation effects. Dynamical Mean Field Theory (DMFT) and Rotationally Invariant Slave-Boson (RISB) approaches are two successful methods that can capture the correlation effects for a broad interaction strength. However, these many-body methods, as applied to model Hamiltonians, treat the electronic structure of realistic materials in a phenomenological fashion, which only allow to describe their properties qualitatively. Consequently, the combination of DFT and many body methods, e.g., Local Density Approximation augmented by RISB and DMFT (LDA+RISB and LDA+DMFT), have been recently proposed to combine the advantages of both methods into a quantitative tool to analyze strongly correlated systems. In this dissertation, we studied the possible improvements of these approaches, and tested their accuracy on realistic materials. This dissertation is separated into two parts. In the first part, we studied the extension of DMFT and RISB in three directions. First, we extended DMFT framework to investigate the behavior of the domain wall structure in metal-Mott insulator coexistence regime by studying the unstable solution describing the domain wall. We found that this solution, differing qualitatively from both the metallic and the insulating solutions, displays an insulating-like behavior in resistivity while carrying a weak metallic character in its electronic structure. Second, we
Many-Body Energy Decomposition with Basis Set Superposition Error Corrections.
Mayer, István; Bakó, Imre
2017-05-09
The problem of performing many-body decompositions of energy is considered in the case when BSSE corrections are also performed. It is discussed that the two different schemes that have been proposed go back to the two different interpretations of the original Boys-Bernardi counterpoise correction scheme. It is argued that from the physical point of view the "hierarchical" scheme of Valiron and Mayer should be preferred and not the scheme recently discussed by Ouyang and Bettens, because it permits the energy of the individual monomers and all the two-body, three-body, etc. energy components to be free of unphysical dependence on the arrangement (basis functions) of other subsystems in the cluster.
On the acceleration of convergence of many-body perturbation theory. Pt. 2
International Nuclear Information System (INIS)
Dietz, K.; Schmidt, C.; Warken, M.; Hess, B.A.
1992-07-01
We employ the method developed in a previous paper to small systems-Be, LiH, H 2 -where full CI-calculations are available for monitoring convergence of many-body perturbation theory. It is shown that divergent series, in particular for excited states, can be transformed into fast converging ones. In essence our method consists in performing infinite subsummations of perturbation series in order to improve convergence: coupling constants are redefined such that singularities are incorporated in a non-perturbative manner and remaining correlations can be expanded in a larger domain of the complex coupling constant plane. It is in this way that the notion of 'improved convergence' has a well defined meaning. (orig.)
Regimes of heating and dynamical response in driven many-body localized systems
Gopalakrishnan, Sarang; Knap, Michael; Demler, Eugene
2016-09-01
We explore the response of many-body localized (MBL) systems to periodic driving of arbitrary amplitude, focusing on the rate at which they exchange energy with the drive. To this end, we introduce an infinite-temperature generalization of the effective "heating rate" in terms of the spread of a random walk in energy space. We compute this heating rate numerically and estimate it analytically in various regimes. When the drive amplitude is much smaller than the frequency, this effective heating rate is given by linear response theory with a coefficient that is proportional to the optical conductivity; in the opposite limit, the response is nonlinear and the heating rate is a nontrivial power law of time. We discuss the mechanisms underlying this crossover in the MBL phase. We comment on implications for the subdiffusive thermal phase near the MBL transition, and for response in imperfectly isolated MBL systems.
Graphene-induced band gap renormalization in polythiophene: a many-body perturbation study
Marsusi, F.; Fedorov, I. A.; Gerivani, S.
2018-01-01
Density functional theory and many-body perturbation theory at the G0W0 level are employed to study the electronic properties of polythiophene (PT) adsorbed on the graphene surface. Analysis of the charge density difference shows that substrate-adsorbate interaction leads to a strong physisorption and interfacial electric dipole moment formation. The electrostatic potential displays a -0.19 eV shift in the graphene work function from its initial value of 4.53 eV, as the result of the interaction. The LDA band gap of the polymer does not show any change. However, the band structure exhibits weak orbital hybridizations resulting from slight overlapping between the polymer and graphene states wave functions. The interfacial polarization effects on the band gap and levels alignment are investigated at the G0W0 level and show a notable reduction of PT band gap compared to that of the isolated chain.