Energy Technology Data Exchange (ETDEWEB)
Zahariev, Federico; Gordon, Mark S., E-mail: mark@si.msg.chem.iastate.edu [Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States)
2014-05-14
This work presents an extension of the linear response TDDFT/EFP method to the nonlinear-response regime together with the implementation of nonlinear-response TDDFT/EFP in the quantum-chemistry computer package GAMESS. Included in the new method is the ability to calculate the two-photon absorption cross section and to incorporate solvent effects via the EFP method. The nonlinear-response TDDFT/EFP method is able to make correct qualitative predictions for both gas phase values and aqueous solvent shifts of several important nonlinear properties.
Time-dependent potential-functional embedding theory
International Nuclear Information System (INIS)
Huang, Chen; Libisch, Florian; Peng, Qing; Carter, Emily A.
2014-01-01
We introduce a time-dependent potential-functional embedding theory (TD-PFET), in which atoms are grouped into subsystems. In TD-PFET, subsystems can be propagated by different suitable time-dependent quantum mechanical methods and their interactions can be treated in a seamless, first-principles manner. TD-PFET is formulated based on the time-dependent quantum mechanics variational principle. The action of the total quantum system is written as a functional of the time-dependent embedding potential, i.e., a potential-functional formulation. By exploiting the Runge-Gross theorem, we prove the uniqueness of the time-dependent embedding potential under the constraint that all subsystems share a common embedding potential. We derive the integral equation that such an embedding potential needs to satisfy. As proof-of-principle, we demonstrate TD-PFET for a Na 4 cluster, in which each Na atom is treated as one subsystem and propagated by time-dependent Kohn-Sham density functional theory (TDDFT) using the adiabatic local density approximation (ALDA). Our results agree well with a direct TDDFT calculation on the whole Na 4 cluster using ALDA. We envision that TD-PFET will ultimately be useful for studying ultrafast quantum dynamics in condensed matter, where key regions are solved by highly accurate time-dependent quantum mechanics methods, and unimportant regions are solved by faster, less accurate methods
Solitary wave dynamics in time-dependent potentials
International Nuclear Information System (INIS)
Abou Salem, Walid K.
2008-01-01
The long time dynamics of solitary wave solutions of the nonlinear Schroedinger equation in time-dependent external potentials is rigorously studied. To set the stage, the well-posedness of the Cauchy problem for a generalized nonautonomous nonlinear Schroedinger equation with time-dependent nonlinearities and potential is established. Afterward, the dynamics of NLS solitary waves in time-dependent potentials is studied. It is shown that in the space-adiabatic regime where the external potential varies slowly in space compared to the size of the soliton, the dynamics of the center of the soliton is described by Hamilton's equations, plus terms due to radiation damping. Finally, two physical applications are discussed: the first is adiabatic transportation of solitons and the second is the Mathieu instability of trapped solitons due to time-periodic perturbations
The evolution of streams in a time-dependent potential
Buist, Hans J. T.; Helmi, Amina
2015-01-01
We study the evolution of streams in a time-dependent spherical gravitational potential. Our goal is to establish what are the imprints of this time evolution on the properties of streams as well as their observability. To this end, we have performed a suite of test-particle experiments for a host
Path integral solution for some time-dependent potential
International Nuclear Information System (INIS)
Storchak, S.N.
1989-12-01
The quantum-mechanical problem with a time-dependent potential is solved by the path integral method. The solution is obtained by the application of the previously derived general formula for rheonomic homogeneous point transformation and reparametrization in the path integral. (author). 4 refs
Exact wavefunctions for a time-dependent Coulomb potential
International Nuclear Information System (INIS)
Menouar, S; Maamache, M; Saadi, Y; Choi, J R
2008-01-01
The one-dimensional Schroedinger equation associated with a time-dependent Coulomb potential is studied. The invariant operator method (Lewis and Riesenfeld) and unitary transformation approach are employed to derive quantum solutions of the system. We obtain an ordinary second-order differential equation whose analytical exact solution has been unknown. It is confirmed that the form of this equation is similar to the radial Schroedinger equation for the hydrogen atom in a (arbitrary) strong magnetic field. The qualitative properties for the eigenstates spectrum are described separately for the different values of the parameter ω 0 appearing in the x 2 term, x being the position, i.e., ω 0 > 0, ω 0 0 = 0. For the ω 0 = 0 case, the eigenvalue equation of invariant operator reduces to a solvable form and, consequently, we have provided exact eigenstates of the time-dependent Hamiltonian system
Filter frequency response of time dependent signal using Laplace transform
Energy Technology Data Exchange (ETDEWEB)
Shestakov, Aleksei I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2018-01-16
We analyze the effect a filter has on a time dependent signal x(t). If X(s) is the Laplace transform of x and H (s) is the filter Transfer function, the response in frequency space is X (s) H (s). Consequently, in real space, the response is the convolution (x*h) (t), where hi is the Laplace inverse of H. Effects are analyzed and analytically for functions such as (t/t_{c})^{2} e^{-t/t$_c$}, where t_{c} = const. We consider lowpass, highpass and bandpass filters.
Van Meer, R.; Gritsenko, O. V.; Baerends, E. J.
2017-01-01
Straightforward interpretation of excitations is possible if they can be described as simple single orbital-to-orbital (or double, etc.) transitions. In linear response time-dependent density functional theory (LR-TDDFT), the (ground state) Kohn-Sham orbitals prove to be such an orbital basis. In
Time-dependent image potential at a metal surface
International Nuclear Information System (INIS)
Alducin, M.; Diez Muino, R.; Juaristi, J.I.
2003-01-01
Transient effects in the image potential induced by a point charge suddenly created in front of a metal surface are studied. The time evolution of the image potential is calculated using linear response theory. Two different time scales are defined: (i) the time required for the creation of the image potential and (ii) the time it takes to converge to its stationary value. Their dependence on the distance of the charge to the surface is discussed. The effect of the electron gas damping is also analyzed. For a typical metallic density, the order of magnitude of the creation time is 0.1 fs, whereas for a charge created close to the surface the convergence time is around 1-2 fs
Chaos in Time-Dependent Space-Charge Potentials
Betzel, Gregory T; Sideris, Ioannis V
2005-01-01
We consider a spherically symmetric, homologously breathing, space-charge-dominated beam bunch in the spirit of the particle-core model. The question we ask is: How does the time dependence influence the population of chaotic orbits? The static beam has zero chaotic orbits; the equation of particle motion is integrable up to quadrature. This is generally not true once the bunch is set into oscillation. We quantify the population of chaotic orbits as a function of space charge and oscillation amplitude (mismatch). We also apply a newly developed measure of chaos, one that distinguishes between regular, sticky, and wildly chaotic orbits, to characterize the phase space in detail. We then introduce colored noise into the system and show how its presence modifies the dynamics. One finding is that, despite the presence of a sizeable population of chaotic orbits, halo formation in the homologously breathing beam is much less prevalent than in an envelope-matched counterpart wherein an internal collective mode is ex...
The grounds for time dependent market potentials from dealers' dynamics
Yamada, K.; Takayasu, H.; Takayasu, M.
2008-06-01
We apply the potential force estimation method to artificial time series of market price produced by a deterministic dealer model. We find that dealers’ feedback of linear prediction of market price based on the latest mean price changes plays the central role in the market’s potential force. When markets are dominated by dealers with positive feedback the resulting potential force is repulsive, while the effect of negative feedback enhances the attractive potential force.
Time dependent response of equatorial ionospheric electric fieldsto magnetospheric disturbances
Fejer, Bela G.; Scherliess, L.
1995-01-01
We use extensive radar measurements of F region vertical plasma drifts and auroral electrojet indices to determine the storm time dependence of equatorial zonal electric fields. These disturbance drifts result from the prompt penetration of high latitude electric fields and from the dynamo action of storm time winds which produce largest perturbations a few hours after the onset of magnetic activity. The signatures of the equatorial disturbance electric fields change significantly depending o...
International Nuclear Information System (INIS)
Yuece, Cem
2003-01-01
In this paper, the problem of the charged harmonic plus an inverse harmonic oscillator with time-dependent mass and frequency in a time-dependent electromagnetic field is investigated. It is reduced to the problem of the inverse harmonic oscillator with time-independent parameters and the exact wave function is obtained
Exact time-dependent exchange-correlation potentials for strong-field electron dynamics
International Nuclear Information System (INIS)
Lein, Manfred; Kuemmel, Stephan
2005-01-01
By solving the time-dependent Schroedinger equation and inverting the time-dependent Kohn-Sham scheme we obtain the exact time-dependent exchange-correlation potential of density-functional theory for the strong-field dynamics of a correlated system. We demonstrate that essential features of the exact exchange-correlation potential can be related to derivative discontinuities in stationary density-functional theory. Incorporating the discontinuity in a time-dependent density-functional calculation greatly improves the description of the ionization process
The Harmonic Potential Theorem for a Quantum System with Time-Dependent Effective Mass
International Nuclear Information System (INIS)
Lai Meng-Yun; Xiao Duan-Liang; Pan Xiao-Yin
2015-01-01
We investigate the many-body wave function of a quantum system with time-dependent effective mass, confined by a harmonic potential with time-dependent frequency, and perturbed by a time-dependent spatially homogeneous electric field. It is found that the wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. The wave function reduces to that of the harmonic potential theorem wave function when both the effective mass and frequency are static. An example of application is also given. (paper)
Davydov–Chaban Hamiltonian in presence of time-dependent potential
Energy Technology Data Exchange (ETDEWEB)
Sobhani, Hadi; Hassanabadi, Hassan, E-mail: h.hassanabadi@shahroodut.ac.ir
2016-09-10
In this article, we have investigated collective effects of atomic nuclei in presence of a time-dependent potential in Davydov–Chaban Hamiltonian. Since such potential has an explicit time-dependency, in order to obtain the wave function of considered system, we should face with time-dependent Schrödinger equation. Obtaining the wave function could be possible using Lewis–Riesenfeld dynamical invariant method. Appropriate dynamical invariant has been constructed after determining the wave functions and values, the wave function will obtain.
A Realization of a Quasi-Random Walk for Atoms in Time-Dependent Optical Potentials
Directory of Open Access Journals (Sweden)
Torsten Hinkel
2015-09-01
Full Text Available We consider the time dependent dynamics of an atom in a two-color pumped cavity, longitudinally through a side mirror and transversally via direct driving of the atomic dipole. The beating of the two driving frequencies leads to a time dependent effective optical potential that forces the atom into a non-trivial motion, strongly resembling a discrete random walk behavior between lattice sites. We provide both numerical and analytical analysis of such a quasi-random walk behavior.
Wave packet dynamics and photofragmentation in time-dependent quadratic potentials
DEFF Research Database (Denmark)
Møller, Klaus Braagaard; Henriksen, Niels Engholm
1996-01-01
We study the dynamics of generalized harmonic oscillator states in time-dependent quadratic potentials and derive analytical expressions for the momentum space and the Wigner phase space representation of these wave packets. Using these results we consider a model for the rotational excitation...
Finster, Felix; Murro, Simone; Röken, Christian
2016-07-01
We give a non-perturbative construction of the fermionic projector in Minkowski space coupled to a time-dependent external potential which is smooth and decays faster than quadratically for large times. The weak and strong mass oscillation properties are proven. We show that the integral kernel of the fermionic projector is of the Hadamard form, provided that the time integral of the spatial sup-norm of the potential satisfies a suitable bound. This gives rise to an algebraic quantum field theory of Dirac fields in an external potential with a distinguished pure quasi-free Hadamard state.
International Nuclear Information System (INIS)
Finster, Felix; Murro, Simone; Röken, Christian
2016-01-01
We give a non-perturbative construction of the fermionic projector in Minkowski space coupled to a time-dependent external potential which is smooth and decays faster than quadratically for large times. The weak and strong mass oscillation properties are proven. We show that the integral kernel of the fermionic projector is of the Hadamard form, provided that the time integral of the spatial sup-norm of the potential satisfies a suitable bound. This gives rise to an algebraic quantum field theory of Dirac fields in an external potential with a distinguished pure quasi-free Hadamard state.
Energy Technology Data Exchange (ETDEWEB)
Finster, Felix, E-mail: finster@ur.de, E-mail: simone.murro@ur.de, E-mail: Christian.Roeken@mathematik.ur.de; Murro, Simone, E-mail: finster@ur.de, E-mail: simone.murro@ur.de, E-mail: Christian.Roeken@mathematik.ur.de; Röken, Christian, E-mail: finster@ur.de, E-mail: simone.murro@ur.de, E-mail: Christian.Roeken@mathematik.ur.de [Fakultät für Mathematik, Universität Regensburg, D-93040 Regensburg (Germany)
2016-07-15
We give a non-perturbative construction of the fermionic projector in Minkowski space coupled to a time-dependent external potential which is smooth and decays faster than quadratically for large times. The weak and strong mass oscillation properties are proven. We show that the integral kernel of the fermionic projector is of the Hadamard form, provided that the time integral of the spatial sup-norm of the potential satisfies a suitable bound. This gives rise to an algebraic quantum field theory of Dirac fields in an external potential with a distinguished pure quasi-free Hadamard state.
International Nuclear Information System (INIS)
Schwarzer, N
2014-01-01
In order to understand the principle differences between rheological or simple stress tests like the uniaxial tensile test to contact mechanical tests and the differences between quasistatic contact experiments and oscillatory ones, this study resorts to effective first principles. This study will show how relatively simple models simulating bond interactions in solids using effective potentials like Lennard-Jones and Morse can be used to investigate the effect of time dependent stress-induced softening or stiffening of these solids. The usefulness of the current study is in the possibility of deriving relatively simple dependences of the bulk-modulus B on time, shear and pressure P with time t. In cases where it is possible to describe, or at least partially describe a material by Lennard-Jones potential approaches, the above- mentioned dependences are even completely free of microscopic material parameters. Instead of bond energies and length, only specific integral parameters like Young’s modulus and Poisson’s ratio are required. However, in the case of time dependent (viscose) material behavior the parameters are not constants anymore. They themselves depend on time and the actual stress field, especially the shear field. A body completely consisting of so called standard linear solid interacting particles will then phenomenologically show a completely different and usually much more complicated mechanical behavior. The influence of the time dependent pressure-shear-induced Young’s modulus change is discussed with respect to mechanical contact experiments and their analysis in the case of viscose materials. (papers)
DEFF Research Database (Denmark)
Wiwie, Christian; Rauch, Alexander; Haakonsson, Anders
2018-01-01
, no methods exist to integrate time series data with networks, thus preventing the identification of time-dependent systems biology responses. We close this gap with Time Course Network Enrichment (TiCoNE). It combines a new kind of human-augmented clustering with a novel approach to network enrichment...
The genomic response of Ishikawa cells to bisphenol A exposure is dose- and time-dependent
International Nuclear Information System (INIS)
Naciff, Jorge M.; Khambatta, Zubin S.; Reichling, Timothy D.; Carr, Gregory J.; Tiesman, Jay P.; Singleton, David W.; Khan, Sohaib A.; Daston, George P.
2010-01-01
A reliable in vitro model to determine the potential estrogenic activity of chemicals of interest is still unavailable. To further investigate the usefulness of a human-derived cell line, we determined the transcriptional changes induced by bisphenol A (BPA) in Ishikawa cells at various doses (1 nM, 100 nM, 10 μM, and 100 μM) and time points (8, 24 and 48 h) by comparing the response of approximately 38,500 human genes and ESTs between treatment groups and controls (vehicle-treated). By trend analysis, we determined that the expression of 2794 genes was modified by BPA in a dose- and time-dependent manner (p ≤ 0.0001). However, the majority of gene expression changes induced in Ishikawa cells were elicited by the highest doses of BPA evaluated (10-100 μM), while the genomic response of the cells exposed to low doses of BPA was essentially negligible. By comparing the Ishikawa cells' response to BPA vs.17α-ethynyl estradiol we determined that the change in the expression of 307 genes was identical in the direction of the change, although the magnitude of the change for some genes was different. Further, the response of Ishikawa cells to high doses of BPA shared similarities to the estrogenic response of the rat uterus, specifically, 362 genes were regulated in a similar manner in vivo as well as in vitro. Gene ontology analysis indicated that BPA results in changes to multiple molecular pathways affecting various biological processes particularly associated with cell organization and biogenesis, regulation of translation, cell proliferation, and intracellular transport; processes also affected by estrogen exposure in the uterus of the rat. These results indicate that Ishikawa cells are capable of generating a biologically relevant estrogenic response after exposure to chemicals with varied estrogenic activity, and offer an in vitro model to assess this mode of action.
Josephson-like currents in graphene for arbitrary time-dependent potential barriers
Savel'ev, Sergey E.; Hausler, Wolfgang; Hanggi, Peter
2011-01-01
From the exact solution of the Dirac-Weyl equation we find unusual currents j_y running in y-direction parallel to a time-dependent scalar potential barrier W(x,t) placed upon a monolayer of graphene, even for vanishing momentum component p_y. In their sine-like dependence on the phase difference of wave functions, describing left and right moving Dirac fermions, these currents resemble Josephson currents in superconductors, including the occurance of Shapiro steps at certain frequencies of p...
Dynamical properties of a particle in a time-dependent double-well potential
International Nuclear Information System (INIS)
Leonel, Edson D; McClintock, P V E
2004-01-01
Some chaotic properties of a classical particle interacting with a time-dependent double-square-well potential are studied. The dynamics of the system is characterized using a two-dimensional nonlinear area-preserving map. Scaling arguments are used to study the chaotic sea in the low-energy domain. It is shown that the distributions of successive reflections and of corresponding successive reflection times obey power laws with the same exponent. If one or both wells move randomly, the particle experiences the phenomenon of Fermi acceleration in the sense that it has unlimited energy growth
Exact Time-Dependent Exchange-Correlation Potential in Electron Scattering Processes
Suzuki, Yasumitsu; Lacombe, Lionel; Watanabe, Kazuyuki; Maitra, Neepa T.
2017-12-01
We identify peak and valley structures in the exact exchange-correlation potential of time-dependent density functional theory that are crucial for time-resolved electron scattering in a model one-dimensional system. These structures are completely missed by adiabatic approximations that, consequently, significantly underestimate the scattering probability. A recently proposed nonadiabatic approximation is shown to correctly capture the approach of the electron to the target when the initial Kohn-Sham state is chosen judiciously, and it is more accurate than standard adiabatic functionals but ultimately fails to accurately capture reflection. These results may explain the underestimation of scattering probabilities in some recent studies on molecules and surfaces.
Time-dependent nonequilibrium soft x-ray response during a spin crossover
van Veenendaal, Michel
2018-03-01
A theoretical framework is developed for better understanding the time-dependent soft-x-ray response of dissipative quantum many-body systems. It is shown how x-ray absorption and resonant inelastic x-ray scattering (RIXS) at transition-metal L edges can provide insight into ultrafast intersystem crossings of importance for energy conversion, ultrafast magnetism, and catalysis. The photoinduced doublet-to-quartet spin crossover on cobalt in Fe-Co Prussian blue analogs is used as a model system to demonstrate how the x-ray response is affected by the nonequilibrium dynamics on a femtosecond time scale. Changes in local spin and symmetry and the underlying mechanism are reflected in strong broadenings, a collapse of clear selection rules during the intersystem crossing, fluctuations in the isotropic branching ratio in x-ray absorption, crystal-field collapse and/or oscillations, and time-dependent anti-Stokes processes in RIXS.
Parametrization of complex absorbing potentials for time-dependent quantum dynamics
International Nuclear Information System (INIS)
Vibok, A.; Balint-Kurti, G.G.
1992-01-01
Five different forms of complex absorbing potentials are examined and compared. Such potentials are needed to absorb wavepackets near the edges of grids in time-dependent quantum dynamical calculations. The extent to which the different potentials transmit or reflect an incident wavepacket is quantified, and optimal potential parameters to minimize both the reflection and transmission for each type of potential are derived. A rigorously derived scaling procedure, which permits the derivation of optimal potential parameters for use with any chosen mass or kinetic energy from those optimized for different conditions, is described. Tables are also presented which permit the immediate selection of the parameters for an absorbing potential of a particular form so as to allow a preselected (very small) degree of transmitted plus reflected probability to be attained. It is always desirable to devote a minimal region to the absorbing potential, while at the same time effectively absorbing all of the wavepacket and neither transmitting nor reflecting any of it. The tables presented here enable the use to easily select the potential parameters he will require to attain these goals. 23 refs., 7 figs., 4 tabs
Time-dependent nonequilibrium soft x-ray response during a spin crossover
Energy Technology Data Exchange (ETDEWEB)
van Veenendaal, Michel
2018-03-01
The rapid development of high-brilliance pulsed X-ray sources with femtosecond time resolution has created a need for a better theoretical understanding of the time-dependent soft-X-ray response of dissipative many-body quantum systems. It is demonstrated how soft-X-ray spectroscopies, such as X-ray absorption and resonant inelastic X-ray scattering at transition-metal L-edges, can provide insight into intersystem crossings, such as a spin crossover. The photoinduced doublet-to-quartet spin crossover on cobalt in Fe-Co Prussian blue analogues is used as an example to demonstrate how the X-ray response is affected by the dissipative nonequilibrium dynamics. The time-dependent soft-X-ray spectra provide a wealth of information that reflect the changes in the nonequilibrium initial state via continuously changing spectral lineshapes that cannot be decomposed into initial photoexcited and final metastable spectra, strong broadenings, a collapse of clear selection rules during the intersystem crossing, strong fluctuations in the isotropic branching ratio in X-ray absorption, and crystal-field collapse/oscillations and strongly time-dependent anti-Stokes processes in RIXS.
Dey, Sudip; Karmakar, Amit
2014-02-01
This paper presents the time dependent response of multiple delaminated angle-ply composite pretwisted conical shells subjected to low velocity normal impact. The finite element formulation is based on Mindlin's theory incorporating rotary inertia and effects of transverse shear deformation. An eight-noded isoparametric plate bending element is employed to satisfy the compatibility of deformation and equilibrium of resultant forces and moments at the delamination crack front. A multipoint constraint algorithm is incorporated which leads to asymmetric stiffness matrices. The modified Hertzian contact law which accounts for permanent indentation is utilized to compute the contact force, and the time dependent equations are solved by Newmark's time integration algorithm. Parametric studies are conducted with respect to triggering parameters like laminate configuration, location of delamination, angle of twist, velocity of impactor, and impactor's displacement for centrally impacted shells.
Tailoring of motional states in double-well potentials by time-dependent processes
International Nuclear Information System (INIS)
Haerkoenen, Kari; Kaerki, Ollijuhani; Suominen, Kalle-Antti
2006-01-01
We show that the vibrational state tailoring method developed for molecular systems can be applied for cold atoms in optical lattices. The original method is based on a three-level model interacting with two strong laser pulses in a counterintuitive sequence [M. Rodriguez et al., Phys. Rev. A 62, 053413 (2000)]. Here we outline the conditions for achieving similar dynamics with single time-dependent potential surfaces. It is shown that guided switching between diabatic and adiabatic evolution has an essential role in this system. We also show that efficient and precise tailoring of motional states in optical lattices can be achieved, for instance, simply by superimposing two lattices and moving them with respect to each other
Global, finite energy, weak solutions for the NLS with rough, time-dependent magnetic potentials
Antonelli, Paolo; Michelangeli, Alessandro; Scandone, Raffaele
2018-04-01
We prove the existence of weak solutions in the space of energy for a class of nonlinear Schrödinger equations in the presence of a external, rough, time-dependent magnetic potential. Under our assumptions, it is not possible to study the problem by means of usual arguments like resolvent techniques or Fourier integral operators, for example. We use a parabolic regularisation, and we solve the approximating Cauchy problem. This is achieved by obtaining suitable smoothing estimates for the dissipative evolution. The total mass and energy bounds allow to extend the solution globally in time. We then infer sufficient compactness properties in order to produce a global-in-time finite energy weak solution to our original problem.
Sequential double excitations from linear-response time-dependent density functional theory
Energy Technology Data Exchange (ETDEWEB)
Mosquera, Martín A.; Ratner, Mark A.; Schatz, George C., E-mail: g-schatz@northwestern.edu [Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208 (United States); Chen, Lin X. [Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208 (United States); Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Ave., Lemont, Illinois 60439 (United States)
2016-05-28
Traditional UV/vis and X-ray spectroscopies focus mainly on the study of excitations starting exclusively from electronic ground states. However there are many experiments where transitions from excited states, both absorption and emission, are probed. In this work we develop a formalism based on linear-response time-dependent density functional theory to investigate spectroscopic properties of excited states. We apply our model to study the excited-state absorption of a diplatinum(II) complex under X-rays, and transient vis/UV absorption of pyrene and azobenzene.
International Nuclear Information System (INIS)
Appel, H.
2007-05-01
In part I of this work we present a double-pole approximation (DPA) to the response equations of time-dependent density functional theory (TDDFT). The double-pole approximation provides an exact description of systems with two strongly coupled excitations which are isolated from the rest of the spectrum. In contrast to the traditional single-pole approximation of TDDFT the DPA also yields corrections to the Kohn-Sham oscillator strengths. We also demonstrate how to invert the double-pole solution which allows us to predict matrix elements of the exchange-correlation kernel f xc from experimental input. We attempt some first steps towards a time-dependent generalization of reduced density matrix functional theory (RDMFT). In part II we derive equations of motion for natural orbitals and occupation numbers. Using the equation of motion for the occupation numbers we show that an adiabatic extension of presently known ground-state functionals of static RDMFT always leads to occupation numbers which are constant in time. From the stationary conditions of the equations of motion for the N-body correlations (correlated parts of the N-body matrices) we derive a new class of ground-state functionals which can be used in static RDMFT. Applications are presented for a one-dimensional model system where the time-dependent many-body Schroedinger equation can be propagated numerically. We use optimal control theory to find optimized laser pulses for transitions in a model for atomic Helium. From the numerically exact correlated wavefunction we extract the exact time evolution of natural orbitals and occupation numbers for (i) laser-driven Helium and (ii) electron-ion scattering. Part III of this work considers time-dependent quantum transport within TDDFT. We present an algorithm for the calculation of extended eigenstates of single-particle Hamiltonians which is especially tailored to a finite-difference discretization of the Schroedinger equation. We consider the propagation
Energy Technology Data Exchange (ETDEWEB)
Appel, H.
2007-05-15
In part I of this work we present a double-pole approximation (DPA) to the response equations of time-dependent density functional theory (TDDFT). The double-pole approximation provides an exact description of systems with two strongly coupled excitations which are isolated from the rest of the spectrum. In contrast to the traditional single-pole approximation of TDDFT the DPA also yields corrections to the Kohn-Sham oscillator strengths. We also demonstrate how to invert the double-pole solution which allows us to predict matrix elements of the exchange-correlation kernel f{sub xc} from experimental input. We attempt some first steps towards a time-dependent generalization of reduced density matrix functional theory (RDMFT). In part II we derive equations of motion for natural orbitals and occupation numbers. Using the equation of motion for the occupation numbers we show that an adiabatic extension of presently known ground-state functionals of static RDMFT always leads to occupation numbers which are constant in time. From the stationary conditions of the equations of motion for the N-body correlations (correlated parts of the N-body matrices) we derive a new class of ground-state functionals which can be used in static RDMFT. Applications are presented for a one-dimensional model system where the time-dependent many-body Schroedinger equation can be propagated numerically. We use optimal control theory to find optimized laser pulses for transitions in a model for atomic Helium. From the numerically exact correlated wavefunction we extract the exact time evolution of natural orbitals and occupation numbers for (i) laser-driven Helium and (ii) electron-ion scattering. Part III of this work considers time-dependent quantum transport within TDDFT. We present an algorithm for the calculation of extended eigenstates of single-particle Hamiltonians which is especially tailored to a finite-difference discretization of the Schroedinger equation. We consider the
Analytical solution for beam with time-dependent boundary conditions versus response spectrum
International Nuclear Information System (INIS)
Gou, P.F.; Panahi, K.K.
2001-01-01
This paper studies the responses of a uniform simple beam for which the supports are subjected to time-dependent conditions. Analytical solution in terms of series was presented for two cases: (1) Two supports of a simple beam are subjected to a harmonic motion, and (2) One of the two supports is stationary while the other is subjected to a harmonic motion. The results of the analytical solution were investigated and compared with the results of conventional response spectrum method using the beam finite element model. One of the applications of the results presented in this paper can be used to assess the adequacy and accuracy of the engineering approaches such as response spectra methods. It has been found that, when the excitation frequency equals the fundamental frequency of the beam, the results from response spectrum method are in good agreement with the exact calculation. The effects of initial conditions on the responses are also examined. It seems that the non-zero initial velocity has pronounced effects on the displacement time histories but it has no effect on the maximum accelerations. (author)
Time-dependent changes in rat lymphocyte activity in response to isolation
International Nuclear Information System (INIS)
Jessop, J.J.; Bayer, B.M.
1986-01-01
The authors have found that isolation of rats, previously adapted to group-housing conditions, resulted in time-dependent changes in mitogenic and cytolytic responses of lymphocytes. A depression (40-60%) of the uptake of 3 H-thymidine by splenic and blood lymphocytes stimulated with either phytohemagglutinin (PHA) or lipopolysaccharide (LPS) was observed during the first 48 hours after transfer of the animals to individual cages. Within 4 days the mitogenic response increased and was comparable to that of animals which had been continuously group-housed. The response continued to increase and by 10 days was enhanced by 2 to 4 fold and remained elevated for at least 8 weeks. Similar changes in activity were observed with both splenic and blood lymphocytes, however, thymic lymphocytes taken from isolated animals demonstrated no change in reactivity to PHA. As with mitogenic responses, the cytolytic activity of splenic lymphocytes was also depressed during the initial days of isolation and as isolation continued, the activity returned to normal and was significantly enhanced (80%) within 5 weeks. These data show that changes in lymphocyte activity are dependent on the duration of exposure to isolated housing conditions and may be a part of the acute, adaptive and chronic phases of the response of rats to the stress of isolation
Quantum Many-Body System in Presence of Time-Dependent Potential and Electric Field
Energy Technology Data Exchange (ETDEWEB)
Sobhani, Hadi; Hassanabadi, Hassan [Shahrood University of Technology, Shahrood (Iran, Islamic Republic of)
2017-07-15
In this article, a quantum many-body system is considered. Then two time-dependent interactions have been added to the system. Changing of them is assumed in general form. After that, by using algebraic method, time evolution of this many-body system has been investigated. In order to study the time evolution, Lewis-Riesenfeld dynamical invariant and time evolution operator method have been used. Appropriate dynamical invariants are constructed and their Eigenvalues are derived as well as appropriate time evolution operators are constructed. These calculations have been done in general form so there are no limiting assumptions on changing of time-dependent functions.
Exact results on diffusion in a piecewise linear potential with a time-dependent sink
Energy Technology Data Exchange (ETDEWEB)
Diwaker, E-mail: diwakerphysics@gmail.com [Central University of Himachal Pradesh, School of Physical and Astronomical Sciences (India); Chakraborty, Aniruddha [Indian Institute of Technology Mandi (India)
2016-02-15
The Smoluchowski equation with a time-dependent sink term is solved exactly. In this method, knowing the probability distribution P(0, s) at the origin, allows deriving the probability distribution P(x, s) at all positions. Exact solutions of the Smoluchowski equation are also provided in different cases where the sink term has linear, constant, inverse, and exponential variation in time.
International Nuclear Information System (INIS)
Abadi, Mohammad Tahaye
2015-01-01
A recursive solution method is derived for the transient response of one-dimensional structures subjected to the general form of time dependent boundary conditions. Unlike previous solution methods that assumed the separation of variables, the present method involves formulating and solving the dynamic problems using the summation of two single-argument functions satisfying the motion equation. Based on boundary and initial conditions, a recursive procedure is derived to determine the single-argument functions. Such a procedure is applied to the general form of boundary conditions, and an analytical solution is derived by solving the recursive equation. The present solution method is implemented for base excitation problems, and the results are compared with those of the previous analytical solution and the Finite element (FE) analysis. The FE results converge to the present analytical solution, although considerable error is found in predicting a solution method on the basis of the separation of variables. The present analytical solution predicts the transient response for wave propagation problems in broadband excitation frequencies.
Energy Technology Data Exchange (ETDEWEB)
Abadi, Mohammad Tahaye [Aerospace Research Institute, Tehran (Iran, Islamic Republic of)
2015-10-15
A recursive solution method is derived for the transient response of one-dimensional structures subjected to the general form of time dependent boundary conditions. Unlike previous solution methods that assumed the separation of variables, the present method involves formulating and solving the dynamic problems using the summation of two single-argument functions satisfying the motion equation. Based on boundary and initial conditions, a recursive procedure is derived to determine the single-argument functions. Such a procedure is applied to the general form of boundary conditions, and an analytical solution is derived by solving the recursive equation. The present solution method is implemented for base excitation problems, and the results are compared with those of the previous analytical solution and the Finite element (FE) analysis. The FE results converge to the present analytical solution, although considerable error is found in predicting a solution method on the basis of the separation of variables. The present analytical solution predicts the transient response for wave propagation problems in broadband excitation frequencies.
Time dependency of morphological remodeling of endothelial cells in response to substrate stiffness
Goli-Malekabadi, Zahra; Tafazzoli-shadpour, Mohammad; Tamayol, Ali; Seyedjafari, Ehsan
2017-01-01
Introduction: Substrate stiffness regulates cellular behavior as cells experience different stiffness values of tissues in the body. For example, endothelial cells (ECs) covering the inner layer of blood vessels are exposed to different stiffness values due to various pathologic and physiologic conditions. Despite numerous studies, cells by time span sense mechanical properties of the substrate, but the response is not well understood. We hypothesized that time is a major determinant influencing the behavior of cells seeded on substrates of varying stiffness. Methods: We monitored cell spreading, internal structure, 3D topography, and the viability of ECs over 24 hours of culture on polydimethylsiloxane (PDMS) substrates with two different degrees of elastic modulus. Results: Despite significant differences in cell spreading after cell seeding, cells showed a similar shape and internal structure after 24 hours of culture on both soft and stiff substrates. However, 3D topographical images confirmed existence of rich lamellipodia and filopodia around the cells cultured on stiffer PDMS substrates. Conclusion: It was concluded that the response of ECs to the substrate stiffness was time dependent with initial enhanced cellular spreading and viability on stiffer substrates. Results can provide a better comprehension of cell mechanotransduction for tissue engineering applications. PMID:28546952
Time-dependent local potential in a Tomonaga-Luttinger liquid
Kamar, Naushad Ahmad; Giamarchi, Thierry
2017-12-01
We study the energy deposition in a one-dimensional interacting quantum system with a pointlike potential modulated in amplitude. The pointlike potential at position x =0 has a constant part and a small oscillation in time with a frequency ω . We use bosonization, renormalization group, and linear response theory to calculate the corresponding energy deposition. It exhibits a power law behavior as a function of the frequency that reflects the Tomonaga-Luttinger liquid (TLL) nature of the system. Depending on the interactions in the system, characterized by the TLL parameter K of the system, a crossover between weak and strong coupling for the backscattering due to the potential is possible. We compute the frequency scale ω*, at which such crossover exists. We find that the energy deposition due to the backscattering shows different exponents for K >1 and K <1 . We discuss possible experimental consequences, in the context of cold atomic gases, of our theoretical results.
International Nuclear Information System (INIS)
Mundt, Michael; Kuemmel, Stephan
2006-01-01
The integral equation for the time-dependent optimized effective potential (TDOEP) in time-dependent density-functional theory is transformed into a set of partial-differential equations. These equations only involve occupied Kohn-Sham orbitals and orbital shifts resulting from the difference between the exchange-correlation potential and the orbital-dependent potential. Due to the success of an analog scheme in the static case, a scheme that propagates orbitals and orbital shifts in real time is a natural candidate for an exact solution of the TDOEP equation. We investigate the numerical stability of such a scheme. An approximation beyond the Krieger-Li-Iafrate approximation for the time-dependent exchange-correlation potential is analyzed
Brink, van den P.J.; Braak, ter C.J.F.
1999-01-01
In this paper a novel multivariate method is proposed for the analysis of community response data from designed experiments repeatedly sampled in time. The long-term effects of the insecticide chlorpyrifos on the invertebrate community and the dissolved oxygen (DO)–pH–alkalinity–conductivity
Wavelet-based linear-response time-dependent density-functional theory
Natarajan, Bhaarathi; Genovese, Luigi; Casida, Mark E.; Deutsch, Thierry; Burchak, Olga N.; Philouze, Christian; Balakirev, Maxim Y.
2012-06-01
Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BIGDFT and results are compared against those obtained with the all-electron Gaussian-type orbital program DEMON2K for the calculation of electronic absorption spectra of N2 using the TD local density approximation (LDA). The two programs give comparable excitation energies and absorption spectra once suitably extensive basis sets are used. Convergence of LDA density orbitals and orbital energies to the basis-set limit is significantly faster for BIGDFT than for DEMON2K. However the number of virtual orbitals used in TD-DFT calculations is a parameter in BIGDFT, while all virtual orbitals are included in TD-DFT calculations in DEMON2K. As a reality check, we report the X-ray crystal structure and the measured and calculated absorption spectrum (excitation energies and oscillator strengths) of the small organic molecule N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1, 2-a]pyridin-3-amine.
Dose- and Time-Dependent Response of Human Leukemia (HL-60 Cells to Arsenic Trioxide Treatment
Directory of Open Access Journals (Sweden)
Paul B. Tchounwou
2006-06-01
Full Text Available The treatment of acute promyelocytic leukemia (APL has been based on the administration of all-trans retinoic acid plus anthracycline chemotherapy, which is very effective as first line therapy; however 25 to 30% of patients will relapse with their disease becoming refractory to conventional therapy. Recently, studies have shown arsenic trioxide to be effective in the treatment of acute promyelocytic leukemia. In this study, we used the human leukemia (HL-60 cell line as a model to evaluate the cytoxicity of arsenic trioxide based on the MTT assay. Data obtained from this assay indicated that arsenic trioxide significantly reduced the viability of HL-60 cells, showing LD50 values of 14.26 + 0.5ÃŽÂ¼g/mL, 12.54 + 0.3ÃŽÂ¼g/mL, and 6.4 + 0.6ÃŽÂ¼g/mL upon 6, 12, and 24 hours of exposure, respectively; indicating a dose- and time-dependent response relationship. Findings from the present study indicate that arsenic trioxide is highly cytotoxic to human leukemia (HL-60 cells, supporting its use as an effective therapeutic agent in the management of acute promyelocytic leukemia.
Time-dependent density functional theory of open quantum systems in the linear-response regime.
Tempel, David G; Watson, Mark A; Olivares-Amaya, Roberto; Aspuru-Guzik, Alán
2011-02-21
Time-dependent density functional theory (TDDFT) has recently been extended to describe many-body open quantum systems evolving under nonunitary dynamics according to a quantum master equation. In the master equation approach, electronic excitation spectra are broadened and shifted due to relaxation and dephasing of the electronic degrees of freedom by the surrounding environment. In this paper, we develop a formulation of TDDFT linear-response theory (LR-TDDFT) for many-body electronic systems evolving under a master equation, yielding broadened excitation spectra. This is done by mapping an interacting open quantum system onto a noninteracting open Kohn-Sham system yielding the correct nonequilibrium density evolution. A pseudoeigenvalue equation analogous to the Casida equations of the usual LR-TDDFT is derived for the Redfield master equation, yielding complex energies and Lamb shifts. As a simple demonstration, we calculate the spectrum of a C(2 +) atom including natural linewidths, by treating the electromagnetic field vacuum as a photon bath. The performance of an adiabatic exchange-correlation kernel is analyzed and a first-order frequency-dependent correction to the bare Kohn-Sham linewidth based on the Görling-Levy perturbation theory is calculated.
Energy Technology Data Exchange (ETDEWEB)
Vecharynski, Eugene [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Brabec, Jiri [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Shao, Meiyue [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Govind, Niranjan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab.; Yang, Chao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division
2017-12-01
We present two efficient iterative algorithms for solving the linear response eigen- value problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into a product eigenvalue problem that is self-adjoint with respect to a K-inner product. This product eigenvalue problem can be solved efficiently by a modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. However, the other component of the eigenvector can be easily recovered in a postprocessing procedure. Therefore, the algorithms we present here are more efficient than existing algorithms that try to approximate both components of the eigenvectors simultaneously. The efficiency of the new algorithms is demonstrated by numerical examples.
International Nuclear Information System (INIS)
Goedert, J.; Lewis, H.R.
1984-01-01
A momentum-resonance ansatz of Lewis and Leach was used to study exact invariants for time-dependent, one-dimensional potentials. This ansatz provides a framework for finding invariants admitted by a larger class of time-dependent potentials that was known previously. For a potential that admits an exact invariant in this resonance form, we have shown how to construct the invariant as a functional of the potential in terms of the solution of a definite linear algebraic system of equations. We have found a necessary and sufficient condition on the potential for the existence of an invariant with a given number of resonances. There exist more potentials that admit invariants with two resonances than were previously known and we have found an example in parametric form of such a potential. We have also found examples of potentials that admit invariants with three resonances
Time-Dependent Response Versus Scan Angle for MODIS Reflective Solar Bands
Sun, Junqiang; Xiong, Xiaoxiong; Angal, Amit; Chen, Hongda; Wu, Aisheng; Geng, Xu
2014-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments currently operate onboard the National Aeronautics and Space Administration (NASA's) Terra and Aqua spacecraft, launched on December 18, 1999 and May 4, 2002, respectively. MODIS has 36 spectral bands, among which 20 are reflective solar bands (RSBs) covering a spectral range from 0.412 to 2.13 µm. The RSBs are calibrated on orbit using a solar diffuser (SD) and an SD stability monitor and with additional measurements from lunar observations via a space view (SV) port. Selected pseudo-invariant desert sites are also used to track the RSB on-orbit gain change, particularly for short-wavelength bands. MODIS views the Earth surface, SV, and the onboard calibrators using a two-sided scan mirror. The response versus scan angle (RVS) of the scan mirror was characterized prior to launch, and its changes are tracked using observations made at different angles of incidence from onboard SD, lunar, and Earth view (EV) measurements. These observations show that the optical properties of the scan mirror have experienced large wavelength-dependent degradation in both the visible and near infrared spectral regions. Algorithms have been developed to track the on-orbit RVS change using the calibrators and the selected desert sites. These algorithms have been applied to both Terra and Aqua MODIS Level 1B (L1B) to improve the EV data accuracy since L1B Collection 4, refined in Collection 5, and further improved in the latest Collection 6 (C6). In C6, two approaches have been used to derive the time-dependent RVS for MODIS RSB. The first approach relies on data collected from sensor onboard calibrators and mirror side ratios from EV observations. The second approach uses onboard calibrators and EV response trending from selected desert sites. This approach is mainly used for the bands with much larger changes in their time-dependent RVS, such as the Terra MODIS bands 1-4, 8, and 9 and the Aqua MODIS bands 8- and 9
Wavelet-based linear-response time-dependent density-functional theory
International Nuclear Information System (INIS)
Natarajan, Bhaarathi; Genovese, Luigi; Casida, Mark E.; Deutsch, Thierry; Burchak, Olga N.
2012-01-01
Highlights: ► We has been implemented LR-TD-DFT in the pseudopotential wavelet-based program. ► We have compared the results against all-electron Gaussian-type program. ► Orbital energies converges significantly faster for BigDFT than for DEMON2K. ► We report the X-ray crystal structure of the small organic molecule flugi6. ► Measured and calculated absorption spectrum of flugi6 is also reported. - Abstract: Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BIGDFT and results are compared against those obtained with the all-electron Gaussian-type orbital program DEMON2K for the calculation of electronic absorption spectra of N 2 using the TD local density approximation (LDA). The two programs give comparable excitation energies and absorption spectra once suitably extensive basis sets are used. Convergence of LDA density orbitals and orbital energies to the basis-set limit is significantly faster for BIGDFT than for DEMON2K. However the number of virtual orbitals used in TD-DFT calculations is a parameter in BIGDFT, while all virtual orbitals are included in TD-DFT calculations in DEMON2K. As a reality check, we report the X-ray crystal structure and the measured and calculated absorption spectrum (excitation energies and oscillator strengths) of the small organic molecule N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1, 2-a]pyridin-3-amine.
Time-dependent non-equilibrium dielectric response in QM/continuum approaches
Energy Technology Data Exchange (ETDEWEB)
Ding, Feizhi; Lingerfelt, David B.; Li, Xiaosong, E-mail: benedetta.mennucci@unipi.it, E-mail: li@chem.washington.edu [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States); Mennucci, Benedetta, E-mail: benedetta.mennucci@unipi.it, E-mail: li@chem.washington.edu [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, 56126 Pisa (Italy)
2015-01-21
The Polarizable Continuum Models (PCMs) are some of the most inexpensive yet successful methods for including the effects of solvation in quantum-mechanical calculations of molecular systems. However, when applied to the electronic excitation process, these methods are restricted to dichotomously assuming either that the solvent has completely equilibrated with the excited solute charge density (infinite-time limit), or that it retains the configuration that was in equilibrium with the solute prior to excitation (zero-time limit). This renders the traditional PCMs inappropriate for resolving time-dependent solvent effects on non-equilibrium solute electron dynamics like those implicated in the instants following photoexcitation of a solvated molecular species. To extend the existing methods to this non-equilibrium regime, we herein derive and apply a new formalism for a general time-dependent continuum embedding method designed to be propagated alongside the solute’s electronic degrees of freedom in the time domain. Given the frequency-dependent dielectric constant of the solvent, an equation of motion for the dielectric polarization is derived within the PCM framework and numerically integrated simultaneously with the time-dependent Hartree fock/density functional theory equations. Results for small molecular systems show the anticipated dipole quenching and electronic state dephasing/relaxation resulting from out-of-phase charge fluctuations in the dielectric and embedded quantum system.
Tunnelling in a time dependent quartic potential: Possible implications for cosmology
International Nuclear Information System (INIS)
Kabir, R; Mukherjee, A
2014-01-01
The theory of a real scalar field with an arbitrary potential plays an important role in cosmology, particularly in the context of inflationary scenarios. However, in most applications, the potential is treated as independent of time, whereas in an evolving universe, for example, before the onset of inflation, the potential is actually likely to be changing with time. As pointed out by Berry in the context of single-particle quantum mechanics, the existence of multiple time scales can lead to results that are qualitatively different from those obtained with a static potential. The present paper reports on numerical investigations in a scalar field theory with a double-well potential that depends explicitly on time. The transition rate per unit volume for the decay of the false vacuum is found to depend strongly on time. Possible implications for old inflation are discussed
Energy Technology Data Exchange (ETDEWEB)
Kato, Tsuyoshi; Ide, Yoshihiro; Yamanouchi, Kaoru [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo Bunkyo-ku, Tokyo, 113-0033 (Japan)
2015-12-31
We first calculate the ground-state molecular wave function of 1D model H{sub 2} molecule by solving the coupled equations of motion formulated in the extended multi-configuration time-dependent Hartree-Fock (MCTDHF) method by the imaginary time propagation. From the comparisons with the results obtained by the Born-Huang (BH) expansion method as well as with the exact wave function, we observe that the memory size required in the extended MCTDHF method is about two orders of magnitude smaller than in the BH expansion method to achieve the same accuracy for the total energy. Second, in order to provide a theoretical means to understand dynamical behavior of the wave function, we propose to define effective adiabatic potential functions and compare them with the conventional adiabatic electronic potentials, although the notion of the adiabatic potentials is not used in the extended MCTDHF approach. From the comparison, we conclude that by calculating the effective potentials we may be able to predict the energy differences among electronic states even for a time-dependent system, e.g., time-dependent excitation energies, which would be difficult to be estimated within the BH expansion approach.
International Nuclear Information System (INIS)
Paretzke, H.G.; Jacob, P.; Mueller, H.; Proehl, G.
1989-01-01
After major releases of radionuclides into the atmosphere fast reaction of authorities will be necessary to inform the public of potential consequences and to consider and optimize mitigating actions. These activities require availability of well designed computer models, adequate and fast measurements and prior training of responsible persons. The quantitative assessment models should be capable of taking into account of actual atmospheric dispersion conditions, actual deposition situation (dry, rain, snow, fog), seasonal status of the agriculture, food processing and distribution pathways, etc. In this paper the usefulness of such models will be discussed, their limitations, the relative importance of exposure pathways and a selection of important methods to decrease the activity in food products after an accident. Real-time reactor accident consequence models should be considered as a condition sine qua non for responsible use of nuclear power for electricity production
International Nuclear Information System (INIS)
Blocki, J.; Skalski, J.; Swiatecki, W.J.
1995-01-01
A systematic numerical investigation of the excitation of a classical or quantal gas of non-interacting particles in a time-dependent potential well is described. The excitation energy was followed in time for one oscillation around the sphere for six types of deformation: spheroidal shapes and Legendre polynomial ripples P 2 , P 3 , P 4 , P 5 , P 6 , with relative rms amplitudes of 0.2. Ten different speeds of deformation and eleven different values of the diffuseness of the potential well were studied, making altogether 660 quantal and 660 classical time-dependent calculations. In the upper range of deformation speeds the quantal results for the non-integrable shapes P 3 -P 6 agree approximately with the wall formula for dissipation, the deviations being largely accounted for by the wave-mechanical suppression factor of Koonin et al. For low deformation speeds the dissipation becomes dominated by one or two avoided level crossings. (orig.)
Chaves, Andrey; da Costa, D. R.; de Sousa, G. O.; Pereira, J. M.; Farias, G. A.
2015-09-01
We investigate the scattering of a wave packet describing low-energy electrons in graphene by a time-dependent finite-step potential barrier. Our results demonstrate that, after Klein tunneling through the barrier, the electron acquires an extra energy which depends on the rate of change of the barrier height with time. If this rate is negative, the electron loses energy and ends up as a valence band state after leaving the barrier, which effectively behaves as a positively charged quasiparticle.
Time-dependent leaf proteome alterations of Brachypodium distachyon in response to drought stress.
Tatli, Ozge; Sogutmaz Ozdemir, Bahar; Dinler Doganay, Gizem
2017-08-01
For the first time, a comprehensive proteome analysis was conducted on Brachypodium leaves under drought stress. Gradual changes in response to drought stress were monitored. Drought is one of the major stress factors that dramatically affect the agricultural productivity worldwide. Improving the yield under drought is an urgent challenge in agriculture. Brachypodium distachyon is a model species for monocot plants such as wheat, barley and several potential biofuel grasses. In the current study, a comprehensive proteome analysis was conducted on Brachypodium leaves under different levels of drought application. To screen gradual changes upon drought, Brachypodium leaves subjected to drought for 4, 8 and 12 days were collected for each treatment day and relative water content of the leaves was measured for each time point. Cellular responses of Brachypodium were investigated through a proteomic approach involving two dimensional difference gel electrophoresis (2D-DIGE) and mass spectrometry (MS). Among 497 distinct spots in Brachypodium protein repertoire, a total of 13 differentially expressed proteins (DEPs) were identified as responsive to drought by mass spectrometry and classified according to their functions using bioinformatics tools. The biological functions of DEPs included roles in photosynthesis, protein folding, antioxidant mechanism and metabolic processes, which responded differentially at each time point of drought treatment. To examine further transcriptional expression of the genes that code identified protein, quantitative real time PCR (qRT-PCR) was performed. Identified proteins will contribute to the studies involving development of drought-resistant crop species and lead to the delineation of molecular mechanisms in drought response.
Plug-and-Play Multicellular Circuits with Time-Dependent Dynamic Responses.
Urrios, Arturo; Gonzalez-Flo, Eva; Canadell, David; de Nadal, Eulàlia; Macia, Javier; Posas, Francesc
2018-04-20
Synthetic biology studies aim to develop cellular devices for biomedical applications. These devices, based on living instead of electronic or electromechanic technology, might provide alternative treatments for a wide range of diseases. However, the feasibility of these devices depends, in many cases, on complex genetic circuits that must fulfill physiological requirements. In this work, we explored the potential of multicellular architectures to act as an alternative to complex circuits for implementation of new devices. As a proof of concept, we developed specific circuits for insulin or glucagon production in response to different glucose levels. Here, we show that fundamental features, such as circuit's affinity or sensitivity, are dependent on the specific configuration of the multicellular consortia, providing a method for tuning these properties without genetic engineering. As an example, we have designed and built circuits with an incoherent feed-forward loop architecture (FFL) that can be easily adjusted to generate single pulse responses. Our results might serve as a blueprint for future development of cellular devices for glycemia regulation in diabetic patients.
International Nuclear Information System (INIS)
Wang Jiangxue; Liu Ying; Jiao Fang; Lao Fang; Li Wei; Gu Yiqun; Li Yufeng; Ge Cuicui; Zhou Guoqiang; Li Bai; Zhao Yuliang; Chai Zhifang; Chen Chunying
2008-01-01
Nanoparticles can be administered via nasal, oral, intraocular, intratracheal (pulmonary toxicity), tail vein and other routes. Here, we focus on the time-dependent translocation and potential damage of TiO 2 nanoparticles on central nervous system (CNS) through intranasal instillation. Size and structural properties are important to assess biological effects of TiO 2 nanoparticles. In present study, female mice were intranasally instilled with two types of well-characterized TiO 2 nanoparticles (i.e. 80 nm, rutile and 155 nm, anatase; purity > 99%) every other day. Pure water instilled mice were served as controls. The brain tissues were collected and evaluated for accumulation and distribution of TiO 2 , histopathology, oxidative stress, and inflammatory markers at post-instillation time points of 2, 10, 20 and 30 days. The titanium contents in the sub-brain regions including olfactory bulb, cerebral cortex, hippocampus, and cerebellum were determined by inductively coupled plasma mass spectrometry (ICP-MS). Results indicated that the instilled TiO 2 directly entered the brain through olfactory bulb in the whole exposure period, especially deposited in the hippocampus region. After exposure for 30 days, the pathological changes were observed in the hippocampus and olfactory bulb using Nissl staining and transmission electron microscope. The oxidative damage expressed as lipid peroxidation increased significantly, in particular in the exposed group of anatase TiO 2 particles at 30 days postexposure. Exposure to anatase TiO 2 particles also produced higher inflammation responses, in association with the significantly increased tumor necrosis factor alpha (TNF-α) and interleukin (IL-1β) levels. We conclude that subtle differences in responses to anatase TiO 2 particles versus the rutile ones could be related to crystal structure. Thus, based on these results, rutile ultrafine-TiO 2 particles are expected to have a little lower risk potential for producing adverse
Dynamical response of the Ising model to the time dependent magnetic field with white noise
Akıncı, Ümit
2018-03-01
The effect of the white noise in time dependent magnetic field on the dynamic behavior of the Ising model has been investigated within the effective field theory based on Glauber type of stochastic process. Discrete white noise has been chosen from both Gaussian and uniform probability distributions. Detailed investigation on probability distribution of dynamical order parameter results that, both type of noise distributions yield the same probability distribution related to the dynamical order parameter, namely Gaussian probability distribution. The variation of the parameters that describe the probability distribution of dynamical order parameter (mean value and standard deviation) with temperature and strength of the noise have been inspected. Also, it has been shown that, rising strength of the noise can induce dynamical phase transition in the system.
International Nuclear Information System (INIS)
Lankadurai, Brian P.; Wolfe, David M.; Simpson, Andre J.; Simpson, Myrna J.
2011-01-01
1 H NMR-based metabolomics was used to examine the response of the earthworm Eisenia fetida after exposure to sub-lethal concentrations of phenanthrene over time. Earthworms were exposed to 0.025 mg/cm 2 of phenanthrene (1/64th of the LC 50 ) via contact tests over four days. Earthworm tissues were extracted using a mixture of chloroform, methanol and water, resulting in polar and non-polar fractions that were analyzed by 1 H NMR after one, two, three and four days. NMR-based metabolomic analyses revealed heightened E. fetida responses with longer phenanthrene exposure times. Amino acids alanine and glutamate, the sugar maltose, the lipids cholesterol and phosphatidylcholine emerged as potential indicators of phenanthrene exposure. The conversion of succinate to fumarate in the Krebs cycle was also interrupted by phenanthrene. Therefore, this study shows that NMR-based metabolomics is a powerful tool for elucidating time-dependent relationships in addition to the mode of toxicity of phenanthrene in earthworm exposure studies. - Highlights: → NMR-based earthworm metabolomic analysis of the mode of action of phenanthrene is presented. → The earthworm species E. fetida were exposed to sub-lethal phenanthrene concentrations. → Both polar and non-polar metabolites of E. fetida tissue extracts were analyzed by 1 H NMR. → Longer phenanthrene exposure times resulted in heightened earthworm responses. → An interruption of the Krebs cycle was also observed due to phenanthrene exposure. - 1 H NMR metabolomics is used to determine the relationship between phenanthrene exposure and the metabolic response of the earthworm E. fetida over time and also to elucidate the phenanthrene mode of toxicity.
Time-dependent responses of rat troponin I and cardiac injury following isoproterenol administration
Directory of Open Access Journals (Sweden)
Sabaheta Hasić
2011-02-01
Full Text Available Aim To develop a rat model of myocardial infarction induced by isoproterenol (ISO. We investigated a type of histological myocardial changes and cardiac troponin I (TnI kinetic. Methods The study has used adult, male, Wistar strain rats. Rats were distributed in ISO and control groups. Rats treated with ISO were divided into groups according to the time of cTnI and myocardial lesion analyses: ISO I (30’, ISO II (60’, ISO III (120’ and ISO IV (240’. We determined cTnI (Life Diagnostics Inc. West Chester PA, USA in the serum by ELISA method. We performed histological analysis on the specimens of left ventricular wall stained by hematoxillin-eosin (HE method. Results The irst statistically signiicant rise of cTnI was noted 30 minutes after the ISO administration. There was no statistically signiicant difference between cTnI mean values among the ISO groups. Observed myocardial histological changes were time dependent. Conclusions This model can be suitable for cardioprotective and cardiotoxicity supstance investigations followed by cTnI measurement in blood. The similarity between induced myocardial lesion on animal model in our study and human myocardial lesion in ischemia give us suficient impulse for further preclinical researches of new cardiac markers.
Energy Technology Data Exchange (ETDEWEB)
Labonte, G
1973-01-01
We study the time description of the motion of relativistic particles in both the dependent and time independent potentials. The differential equations of motion considered are the standard linear spin zero and one half equations. They are always meaningful in the sense that, at all times, unique well defined operator valued distributions in the three space variables are determined. We discuss the problem of determining which set of creation and annihilation operators is relevant in a given problem. We examine the implementation of certain simple requirements which seem to be necessary in order for the mathematical formalism to be able to describe a physical system. We show that whenever the equation of motion is homogeneous, the study of all physical requirements reduces to studying Bogoliubov transformations between creation and annihilation operators. We study such transformations where we obtain some new important results concerning their general properties. We examine in detail a quantized field in presence of an external source, electrons and positrons acted upon by a plane electromagnetic wave, Dirac fields acted upon by potentials of the form A(x) delta (t) and A(x) THETA (t-t/sub 0/). We study Dirac fields in presence of potentials which have time dependences which can be represented by sequences of step functions. We then discuss the limiting case where the time dependence is continuous. We prove that the requirements that there exists a unitary evolution operator or that physical particles can be described are exactly equivalent. (auth)
Energy Technology Data Exchange (ETDEWEB)
Mohamadou, Alidou [Condensed Matter Laboratory, Department of Physics, Faculty of Science, University of Douala, P.O. Box 24157, Douala (Cameroon); Abdus Salam International Centre for Theoretical Physics, P.O. Box 538, Strada Costiera 11, I-34014 Trieste (Italy); Wamba, Etienne; Kofane, Timoleon C. [Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde (Cameroon); Doka, Serge Y. [Higher Teacher Training College, University of Maroua, P.O. Box 55, Maroua (Cameroon); Ekogo, Thierry B. [Departement de Physique, Universite des Sciences et Techniques de Masuku, B.P. 943, Franceville (Gabonese Republic)
2011-08-15
We examine the generation of bright matter-wave solitons in the Gross-Pitaevskii equation describing Bose-Einstein condensates with a time-dependent complex potential, which is composed of a repulsive parabolic background potential and a gravitational field. By performing a modified lens-type transformation, an explicit expression for the growth rate of a purely growing modulational instability is presented and analyzed. We point out the effects of the gravitational field, as well as of the parameter related to the feeding or loss of atoms in the condensate, on the instability growth rate. It is evident from numerical simulations that the feeding with atoms and the magnetic trap have opposite effects on the dynamics of the system. It is shown that the feeding or loss parameter can be well used to control the instability domain. Our study shows that the gravitational field changes the condensate trail of the soliton trains during the propagation. We also perform a numerical analysis to solve the Gross-Pitaevskii equation with a time-dependent complicated potential. The numerical results on the effect of both the gravitational field and the parameter of feeding or loss of atoms in the condensate agree well with predictions of the linear stability analysis. Another result of the present work is the modification of the background wave function in the Thomas-Fermi approximation during the numerical simulations.
Enhanced responses to tumor immunization following total body irradiation are time-dependent.
Directory of Open Access Journals (Sweden)
Adi Diab
Full Text Available The development of successful cancer vaccines is contingent on the ability to induce effective and persistent anti-tumor immunity against self-antigens that do not typically elicit immune responses. In this study, we examine the effects of a non-myeloablative dose of total body irradiation on the ability of tumor-naïve mice to respond to DNA vaccines against melanoma. We demonstrate that irradiation followed by lymphocyte infusion results in a dramatic increase in responsiveness to tumor vaccination, with augmentation of T cell responses to tumor antigens and tumor eradication. In irradiated mice, infused CD8(+ T cells expand in an environment that is relatively depleted in regulatory T cells, and this correlates with improved CD8(+ T cell functionality. We also observe an increase in the frequency of dendritic cells displaying an activated phenotype within lymphoid organs in the first 24 hours after irradiation. Intriguingly, both the relative decrease in regulatory T cells and increase in activated dendritic cells correspond with a brief window of augmented responsiveness to immunization. After this 24 hour window, the numbers of dendritic cells decline, as does the ability of mice to respond to immunizations. When immunizations are initiated within the period of augmented dendritic cell activation, mice develop anti-tumor responses that show increased durability as well as magnitude, and this approach leads to improved survival in experiments with mice bearing established tumors as well as in a spontaneous melanoma model. We conclude that irradiation can produce potent immune adjuvant effects independent of its ability to induce tumor ablation, and that the timing of immunization and lymphocyte infusion in the irradiated host are crucial for generating optimal anti-tumor immunity. Clinical strategies using these approaches must therefore optimize such parameters, as the correct timing of infusion and vaccination may mean the difference
Chaturvedi, K.; Willenborg, B.; Sindram, M.; Kolbe, T. H.
2017-10-01
Semantic 3D city models play an important role in solving complex real-world problems and are being adopted by many cities around the world. A wide range of application and simulation scenarios directly benefit from the adoption of international standards such as CityGML. However, most of the simulations involve properties, whose values vary with respect to time, and the current generation semantic 3D city models do not support time-dependent properties explicitly. In this paper, the details of solar potential simulations are provided operating on the CityGML standard, assessing and estimating solar energy production for the roofs and facades of the 3D building objects in different ways. Furthermore, the paper demonstrates how the time-dependent simulation results are better-represented inline within 3D city models utilizing the so-called Dynamizer concept. This concept not only allows representing the simulation results in standardized ways, but also delivers a method to enhance static city models by such dynamic property values making the city models truly dynamic. The dynamizer concept has been implemented as an Application Domain Extension of the CityGML standard within the OGC Future City Pilot Phase 1. The results are given in this paper.
Banerjee, A.; Meredith, R.M.; Rodriguez-Moreno, A.; Mierau, S.B.; Auberson, Y.P.; Paulsen, O.
2009-01-01
Spike timing-dependent plasticity (STDP) is a strong candidate for an N-methyl-D-aspartate (NMDA) receptor-dependent form of synaptic plasticity that could underlie the development of receptive field properties in sensory neocortices. Whilst induction of timing-dependent long-term potentiation
Inglesfield, J. E.
2007-01-01
A method of solving the time-dependent Schr\\"odinger equation is presented, in which a finite region of space is treated explicitly, with the boundary conditions for matching the wave-functions on to the rest of the system replaced by an embedding term added on to the Hamiltonian. This time-dependent embedding term is derived from the Fourier transform of the energy-dependent embedding potential, which embeds the time-independent Schr\\"odinger equation. Results are presented for a one-dimensi...
TIMOC-ESP, Time-Dependent Response Function by Monte-Carlo with Interface to Program TIMOC-72
International Nuclear Information System (INIS)
Jaarsma, R.; Perlando, J.M.; Rief, H.
1981-01-01
1 - Description of problem or function: TIMOC-ESP is an 'Event Scanning Program' to analyse the events (collision or boundary crossing parameters) of Monte Carlo particle transport problems. It is a modular program and belongs to the TIMOC code system. Whilst TIMOC-72 deals with stationary problems, the time-dependence is dealt with in ESP. TIMOC-ESP is primarily designed to calculate the time-dependent response functions such as energy-dependent fluxes and currents at interfaces. 2 - Method of solution: The output of TIMOC-72 is transferred to TIMOC-ESP using a data set which acts as an interface between the two programs. Time dependent transport events are sampled at each crossing of any specified boundary in TIMOC. TIMOC-72 provides the parameters for ESP which are: - time of the event; - neutron weight; - cosine of the angle between the flight direction and the normal to the surface; - the indices of both regions; - the history number. Fundamentally, three time options are permitted by ESP, which give the current, the angular flux and the time-integrated flux functions between two specified regions. An eventual extension to other quantities is simple and straight- forward - ESP will accept input data for other options such as the calculation of the point flux, the collision density and the flux derived from this estimator, but the coding required for these calculations has yet to be implemented (1977). 3 - Restrictions on the complexity of the problem: The number of parameters must be between 5 and 50. The number of time intervals is at most 50
Spetz, Johan; Rudqvist, Nils; Langen, Britta; Parris, Toshima Z; Dalmo, Johanna; Schüler, Emil; Wängberg, Bo; Nilsson, Ola; Helou, Khalil; Forssell-Aronsson, Eva
2018-05-01
Patients with neuroendocrine tumors expressing somatostatin receptors are often treated with 177 Lu[Lu]-octreotate. Despite being highly effective in animal models, 177 Lu[Lu]-octreotate-based therapies in the clinical setting can be optimized further. The aims of the study were to identify and elucidate possible optimization venues for 177 Lu[Lu]-octreotate tumor therapy by characterizing transcriptional responses in the GOT1 small intestine neuroendocrine tumor model in nude mice. GOT1-bearing female BALB/c nude mice were intravenously injected with 15 MBq 177 Lu[Lu]-octreotate (non-curative amount) or mock-treated with saline solution. Animals were killed 1, 3, 7 or 41 d after injection. Total RNA was extracted from the tumor samples and profiled using Illumina microarray expression analysis. Differentially expressed genes were identified (treated vs. control) and pathway analysis was performed. Distribution of differentially expressed transcripts indicated a time-dependent treatment response in GOT1 tumors after 177 Lu[Lu]-octreotate administration. Regulation of CDKN1A, BCAT1 and PAM at 1 d after injection was compatible with growth arrest as the initial response to treatment. Upregulation of APOE and BAX at 3 d, and ADORA2A, BNIP3, BNIP3L and HSPB1 at 41 d after injection suggests first activation and then inhibition of the intrinsic apoptotic pathway during tumor regression and regrowth, respectively. Transcriptional analysis showed radiation-induced apoptosis as an early response after 177 Lu[Lu]-octreotate administration, followed by pro-survival transcriptional changes in the tumor during the regrowth phase. Time-dependent changes in cell cycle and apoptosis-related processes suggest different time points after radionuclide therapy when tumor cells may be more susceptible to additional treatment, highlighting the importance of timing when administering multiple therapeutic agents. Copyright © 2018 The Authors. Published by Elsevier Inc. All
Panholzer, Martin; Gatti, Matteo; Reining, Lucia
2018-04-01
The charge-density response of extended materials is usually dominated by the collective oscillation of electrons, the plasmons. Beyond this feature, however, intriguing many-body effects are observed. They cannot be described by one of the most widely used approaches for the calculation of dielectric functions, which is time-dependent density functional theory (TDDFT) in the adiabatic local density approximation (ALDA). Here, we propose an approximation to the TDDFT exchange-correlation kernel which is nonadiabatic and nonlocal. It is extracted from correlated calculations in the homogeneous electron gas, where we have tabulated it for a wide range of wave vectors and frequencies. A simple mean density approximation allows one to use it in inhomogeneous materials where the density varies on a scale of 1.6 rs or faster. This kernel contains effects that are completely absent in the ALDA; in particular, it correctly describes the double plasmon in the dynamic structure factor of sodium, and it shows the characteristic low-energy peak that appears in systems with low electronic density. It also leads to an overall quantitative improvement of spectra.
International Nuclear Information System (INIS)
Castro, L. B.; Castro, A. S. de
2010-01-01
It is shown that the paper 'Wave functions for a Duffin-Kemmer-Petiau particle in a time-dependent potential' by Merad and Bensaid [J. Math. Phys. 48, 073515 (2007)] is not correct in using inadvertently a non-Hermitian Hamiltonian in a formalism that does require Hermitian Hamiltonians.
Komoto, Keenan T; Kowalczyk, Tim
2016-10-06
To support the development and characterization of chromophores with targeted photophysical properties, excited-state electronic structure calculations should rapidly and accurately predict how derivatization of a chromophore will affect its excitation and emission energies. This paper examines whether a time-independent excited-state density functional theory (DFT) approach meets this need through a case study of BODIPY chromophore photophysics. A restricted open-shell Kohn-Sham (ROKS) treatment of the S 1 excited state of BODIPY dyes is contrasted with linear-response time-dependent density functional theory (TDDFT). Vertical excitation energies predicted by the two approaches are remarkably different due to overestimation by TDDFT and underestimation by ROKS relative to experiment. Overall, ROKS with a standard hybrid functional provides the more accurate description of the S 1 excited state of BODIPY dyes, but excitation energies computed by the two methods are strongly correlated. The two approaches also make similar predictions of shifts in the excitation energy upon functionalization of the chromophore. TDDFT and ROKS models of the S 1 potential energy surface are then examined in detail for a representative BODIPY dye through molecular dynamics sampling on both model surfaces. We identify the most significant differences in the sampled surfaces and analyze these differences along selected normal modes. Differences between ROKS and TDDFT descriptions of the S 1 potential energy surface for this BODIPY derivative highlight the continuing need for validation of widely used approximations in excited state DFT through experimental benchmarking and comparison to ab initio reference data.
Directory of Open Access Journals (Sweden)
Ma Q
2012-04-01
concentration (500 ng/mL of FGF2 immobilization exhibited improved HGF functions such as cellular attachment, proliferation, and extracellular matrix-related gene expression. Moreover, significant bidirectional as well as concentration- and time-dependent bioactivity was observed.Conclusion: Synergism of the FGF2-impregnated titanium dioxide nanotubular surface revealed good gingival-implant integration, indicating that these materials might have promising applications in dentistry and other biomedical devices.Keywords: dental implants, titanium dioxide nanotube, fibroblast growth factor 2, extracellular matrix, real-time polymerase chain reaction
Leroy, Felix; Brann, David H; Meira, Torcato; Siegelbaum, Steven A
2017-08-30
Input-timing-dependent plasticity (ITDP) is a circuit-based synaptic learning rule by which paired activation of entorhinal cortical (EC) and Schaffer collateral (SC) inputs to hippocampal CA1 pyramidal neurons (PNs) produces a long-term enhancement of SC excitation. We now find that paired stimulation of EC and SC inputs also induces ITDP of SC excitation of CA2 PNs. However, whereas CA1 ITDP results from long-term depression of feedforward inhibition (iLTD) as a result of activation of CB1 endocannabinoid receptors on cholecystokinin-expressing interneurons, CA2 ITDP results from iLTD through activation of δ-opioid receptors on parvalbumin-expressing interneurons. Furthermore, whereas CA1 ITDP has been previously linked to enhanced specificity of contextual memory, we find that CA2 ITDP is associated with enhanced social memory. Thus, ITDP may provide a general synaptic learning rule for distinct forms of hippocampal-dependent memory mediated by distinct hippocampal regions. Copyright © 2017 Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Bowman, David N. [Department of Chemistry; Supercomputing Institute and Chemical Theory Center; University of Minnesota; Minneapolis; USA; Asher, Jason C. [Department of Chemistry; Supercomputing Institute and Chemical Theory Center; University of Minnesota; Minneapolis; USA; Fischer, Sean A. [William R. Wiley Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratory; P.O. Box 999; Richland; USA; Cramer, Christopher J. [Department of Chemistry; Supercomputing Institute and Chemical Theory Center; University of Minnesota; Minneapolis; USA; Govind, Niranjan [William R. Wiley Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratory; P.O. Box 999; Richland; USA
2017-01-01
Three
International Nuclear Information System (INIS)
Winey, J. M.; Gupta, Y. M.
2014-01-01
Understanding and modeling the response of hcp metals to high stress impulsive loading is challenging because the lower crystal symmetry, compared to cubic metals, results in a significantly more complex material response. To gain insight into the inelastic deformation of hcp metals subjected to high dynamic stresses, shock wave compression of single crystals provides a useful approach because different inelastic deformation mechanisms can be examined selectively by shock compression along different crystal orientations. As a representative example, we report, here, on wave propagation simulations for beryllium (Be) single crystals shocked along the c-axis, a-axis, and several low-symmetry directions to peak stresses reaching 7 GPa. The simulations utilized a time-dependent, anisotropic material model that incorporated dislocation dynamics, deformation twinning, and shear cracking based descriptions of inelastic deformation. The simulation results showed good overall agreement with measured wave profiles for all the different crystal orientations examined [Pope and Johnson, J. Appl. Phys. 46, 720 (1975)], including features arising from wave mode coupling due to the highly anisotropic inelastic response of Be. This good agreement demonstrates that the measured profiles can be understood in terms of dislocation slip along basal, prismatic, and pyramidal planes, together with deformation twinning along (101 ¯ 2) planes. Our results show that the response of shocked Be single crystals involves the simultaneous operation of multiple, distinct inelastic deformation mechanisms for all orientations except the c-axis. For shocked c-axis Be, the measured wave profiles do not provide good discrimination between pyramidal slip and other inelastic deformation mechanisms, such as shear cracking. The findings presented here provide insight into the complex inelastic deformation response of shocked Be single crystals and are expected to be useful for other hcp crystals. More
Quaedflieg, Conny W E M; Schwabe, Lars; Meyer, Thomas; Smeets, Tom
2013-12-01
Stress can exert profound effects on memory encoding. Here, we investigated whether (sub)cortical information processing during encoding and memory retrieval at a 24 h delayed test are affected by the temporal proximity between stress and memory encoding. Sixty-four participants engaged in the Maastricht Acute Stress Test (MAST) or a no-stress control condition either immediately before (i.e., proximate condition) or 30 min before (i.e., distant condition) a picture encoding task. In general, stress decreased the number of freely recalled and recognized pictures and increased the number of false alarms. However, timing of stress exposure did not differentially affect picture recall, recognition or selective attention processes (i.e., LPP). Nevertheless, stress-induced cortisol responses and correctly recognized neutral pictures were positively associated within the proximate stress condition but negatively associated within the distant stress condition. These findings suggest that the time at which a stressor is applied might differentially impact the association between stress-induced cortisol elevations and memory formation and indicate the need for a finer delineation of the time window during which glucocorticoids affect memory formation processes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Time Dependent Quantum Mechanics
Morrison, Peter G.
2012-01-01
We present a systematic method for dealing with time dependent quantum dynamics, based on the quantum brachistochrone and matrix mechanics. We derive the explicit time dependence of the Hamiltonian operator for a number of constrained finite systems from this formalism. Once this has been achieved we go on to calculate the wavevector as a function of time, in order to demonstrate the use of matrix methods with respect to several concrete examples. Interesting results are derived for elliptic ...
Energy Technology Data Exchange (ETDEWEB)
Lankadurai, Brian P.; Wolfe, David M.; Simpson, Andre J. [Department of Chemistry, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4 Canada (Canada); Simpson, Myrna J., E-mail: myrna.simpson@utoronto.ca [Department of Chemistry, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4 Canada (Canada)
2011-10-15
{sup 1}H NMR-based metabolomics was used to examine the response of the earthworm Eisenia fetida after exposure to sub-lethal concentrations of phenanthrene over time. Earthworms were exposed to 0.025 mg/cm{sup 2} of phenanthrene (1/64th of the LC{sub 50}) via contact tests over four days. Earthworm tissues were extracted using a mixture of chloroform, methanol and water, resulting in polar and non-polar fractions that were analyzed by {sup 1}H NMR after one, two, three and four days. NMR-based metabolomic analyses revealed heightened E. fetida responses with longer phenanthrene exposure times. Amino acids alanine and glutamate, the sugar maltose, the lipids cholesterol and phosphatidylcholine emerged as potential indicators of phenanthrene exposure. The conversion of succinate to fumarate in the Krebs cycle was also interrupted by phenanthrene. Therefore, this study shows that NMR-based metabolomics is a powerful tool for elucidating time-dependent relationships in addition to the mode of toxicity of phenanthrene in earthworm exposure studies. - Highlights: > NMR-based earthworm metabolomic analysis of the mode of action of phenanthrene is presented. > The earthworm species E. fetida were exposed to sub-lethal phenanthrene concentrations. > Both polar and non-polar metabolites of E. fetida tissue extracts were analyzed by {sup 1}H NMR. > Longer phenanthrene exposure times resulted in heightened earthworm responses. > An interruption of the Krebs cycle was also observed due to phenanthrene exposure. - {sup 1}H NMR metabolomics is used to determine the relationship between phenanthrene exposure and the metabolic response of the earthworm E. fetida over time and also to elucidate the phenanthrene mode of toxicity.
Banerjee, Abhishek; Meredith, Rhiannon M; Rodríguez-Moreno, Antonio; Mierau, Susanna B; Auberson, Yves P; Paulsen, Ole
2009-12-01
Spike timing-dependent plasticity (STDP) is a strong candidate for an N-methyl-D-aspartate (NMDA) receptor-dependent form of synaptic plasticity that could underlie the development of receptive field properties in sensory neocortices. Whilst induction of timing-dependent long-term potentiation (t-LTP) requires postsynaptic NMDA receptors, timing-dependent long-term depression (t-LTD) requires the activation of presynaptic NMDA receptors at layer 4-to-layer 2/3 synapses in barrel cortex. Here we investigated the developmental profile of t-LTD at layer 4-to-layer 2/3 synapses of mouse barrel cortex and studied their NMDA receptor subunit dependence. Timing-dependent LTD emerged in the first postnatal week, was present during the second week and disappeared in the adult, whereas t-LTP persisted in adulthood. An antagonist at GluN2C/D subunit-containing NMDA receptors blocked t-LTD but not t-LTP. Conversely, a GluN2A subunit-preferring antagonist blocked t-LTP but not t-LTD. The GluN2C/D subunit requirement for t-LTD appears to be synapse specific, as GluN2C/D antagonists did not block t-LTD at horizontal cross-columnar layer 2/3-to-layer 2/3 synapses, which was blocked by a GluN2B antagonist instead. These data demonstrate an NMDA receptor subunit-dependent double dissociation of t-LTD and t-LTP mechanisms at layer 4-to-layer 2/3 synapses, and suggest that t-LTD is mediated by distinct molecular mechanisms at different synapses on the same postsynaptic neuron.
Fu, Yuan; Zhang, Da-peng; Xie, Xi-lin
2018-04-01
In this study, a vorticity vector-potential method for two-dimensional viscous incompressible rotating driven flows is developed in the time-dependent curvilinear coordinates. The method is applicable in both inertial and non-inertial frames of reference with the advantage of a fixed and regular calculation domain. The numerical method is applied to triangle and curved triangle configurations in constant and varying rotational angular velocity cases respectively. The evolutions of flow field are studied. The geostrophic effect, unsteady effect and curvature effect on the evolutions are discussed.
Benguigui, Madeleine; Alishekevitz, Dror; Timaner, Michael; Shechter, Dvir; Raviv, Ziv; Benzekry, Sebastien; Shaked, Yuval
2018-01-05
It has recently been suggested that pro-tumorigenic host-mediated processes induced in response to chemotherapy counteract the anti-tumor activity of therapy, and thereby decrease net therapeutic outcome. Here we use experimental data to formulate a mathematical model describing the host response to different doses of paclitaxel (PTX) chemotherapy as well as the duration of the response. Three previously described host-mediated effects are used as readouts for the host response to therapy. These include the levels of circulating endothelial progenitor cells in peripheral blood and the effect of plasma derived from PTX-treated mice on migratory and invasive properties of tumor cells in vitro . A first set of mathematical models, based on basic principles of pharmacokinetics/pharmacodynamics, did not appropriately describe the dose-dependence and duration of the host response regarding the effects on invasion. We therefore provide an alternative mathematical model with a dose-dependent threshold, instead of a concentration-dependent one, that describes better the data. This model is integrated into a global model defining all three host-mediated effects. It not only precisely describes the data, but also correctly predicts host-mediated effects at different doses as well as the duration of the host response. This mathematical model may serve as a tool to predict the host response to chemotherapy in cancer patients, and therefore may be used to design chemotherapy regimens with improved therapeutic outcome by minimizing host mediated effects.
Energy Technology Data Exchange (ETDEWEB)
Zheng, Jia-Lang, E-mail: zhengjialang@aliyun.com; Yuan, Shuang-Shuang; Wu, Chang-Wen; Lv, Zhen-Ming; Zhu, Ai-Yi
2017-01-15
Highlights: • Gene changed at mRNA, protein and activity levels between exposure time points. • ROS mediated antioxidant and inflammatory responses by Nrf2 and NF-κB. • The effect of time of day on Cd-induced toxicity should not be neglected in fish. - Abstract: Up to date, little information is available on effects of circadian rhythm on metal-induced toxicity in fish. In this study, zebrafish were acutely exposed to 0.97 mg L{sup −1} cadmium for 12 h either at ZT0 (the light intensity began to reached maximum) or at ZT12 (light intensity began to reached minimum) to evaluate the temporal sensitivity of oxidative stress and inflammatory responses in the brain of zebrafish. Profiles of responses of some genes at mRNA, protein and activity levels were different between ZT0 and ZT12 in the normal water. Exposure to Cd induced contrary antioxidant responses and similar inflammatory responses between ZT0 and ZT12. However, the number of inflammatory genes which were up-regulated was significantly greater at ZT12 than at ZT0. And, the up-regulated inflammatory genes were more responsive at ZT12 than at ZT0. At ZT12, antioxidant genes were down-regulated at mRNA, protein and activity levels. Contrarily, antioxidant genes were not affected at mRNA levels but activated at the protein and/or activity levels at ZT0. Reactive oxygen species (ROS) sharply increased and remained relatively stable when fish were exposed to Cd at ZT12 and ZT0, respectively. Positive correlations between ROS levels and mRNA levels of nuclear transcription factor κB (NF-κB) and between mRNA levels of NF-κB and its target genes were observed, suggesting that ROS may play an essential role in regulating the magnitude of inflammatory responses. Taken together, oxidative stress and immunotoxicity in the brain were more serious when fish were exposed to Cd in the evening than in the morning, highlighting the importance of circadian rhythm in Cd-induced neurotoxicity in fish.
International Nuclear Information System (INIS)
Zheng, Jia-Lang; Yuan, Shuang-Shuang; Wu, Chang-Wen; Lv, Zhen-Ming; Zhu, Ai-Yi
2017-01-01
Highlights: • Gene changed at mRNA, protein and activity levels between exposure time points. • ROS mediated antioxidant and inflammatory responses by Nrf2 and NF-κB. • The effect of time of day on Cd-induced toxicity should not be neglected in fish. - Abstract: Up to date, little information is available on effects of circadian rhythm on metal-induced toxicity in fish. In this study, zebrafish were acutely exposed to 0.97 mg L"−"1 cadmium for 12 h either at ZT0 (the light intensity began to reached maximum) or at ZT12 (light intensity began to reached minimum) to evaluate the temporal sensitivity of oxidative stress and inflammatory responses in the brain of zebrafish. Profiles of responses of some genes at mRNA, protein and activity levels were different between ZT0 and ZT12 in the normal water. Exposure to Cd induced contrary antioxidant responses and similar inflammatory responses between ZT0 and ZT12. However, the number of inflammatory genes which were up-regulated was significantly greater at ZT12 than at ZT0. And, the up-regulated inflammatory genes were more responsive at ZT12 than at ZT0. At ZT12, antioxidant genes were down-regulated at mRNA, protein and activity levels. Contrarily, antioxidant genes were not affected at mRNA levels but activated at the protein and/or activity levels at ZT0. Reactive oxygen species (ROS) sharply increased and remained relatively stable when fish were exposed to Cd at ZT12 and ZT0, respectively. Positive correlations between ROS levels and mRNA levels of nuclear transcription factor κB (NF-κB) and between mRNA levels of NF-κB and its target genes were observed, suggesting that ROS may play an essential role in regulating the magnitude of inflammatory responses. Taken together, oxidative stress and immunotoxicity in the brain were more serious when fish were exposed to Cd in the evening than in the morning, highlighting the importance of circadian rhythm in Cd-induced neurotoxicity in fish.
Carluccio, Giuseppe; Bruno, Mary; Collins, Christopher M
2016-05-01
Present a novel method for rapid prediction of temperature in vivo for a series of pulse sequences with differing levels and distributions of specific energy absorption rate (SAR). After the temperature response to a brief period of heating is characterized, a rapid estimate of temperature during a series of periods at different heating levels is made using a linear heat equation and impulse-response (IR) concepts. Here the initial characterization and long-term prediction for a complete spine exam are made with the Pennes' bioheat equation where, at first, core body temperature is allowed to increase and local perfusion is not. Then corrections through time allowing variation in local perfusion are introduced. The fast IR-based method predicted maximum temperature increase within 1% of that with a full finite difference simulation, but required less than 3.5% of the computation time. Even higher accelerations are possible depending on the time step size chosen, with loss in temporal resolution. Correction for temperature-dependent perfusion requires negligible additional time and can be adjusted to be more or less conservative than the corresponding finite difference simulation. With appropriate methods, it is possible to rapidly predict temperature increase throughout the body for actual MR examinations. © 2015 Wiley Periodicals, Inc.
Time-dependent, non-monotonic response of warm convective cloud fields to changes in aerosol loading
Directory of Open Access Journals (Sweden)
G. Dagan
2017-06-01
Full Text Available Large eddy simulations (LESs with bin microphysics are used here to study cloud fields' sensitivity to changes in aerosol loading and the time evolution of this response. Similarly to the known response of a single cloud, we show that the mean field properties change in a non-monotonic trend, with an optimum aerosol concentration for which the field reaches its maximal water mass or rain yield. This trend is a result of competition between processes that encourage cloud development versus those that suppress it. However, another layer of complexity is added when considering clouds' impact on the field's thermodynamic properties and how this is dependent on aerosol loading. Under polluted conditions, rain is suppressed and the non-precipitating clouds act to increase atmospheric instability. This results in warming of the lower part of the cloudy layer (in which there is net condensation and cooling of the upper part (net evaporation. Evaporation at the upper part of the cloudy layer in the polluted simulations raises humidity at these levels and thus amplifies the development of the next generation of clouds (preconditioning effect. On the other hand, under clean conditions, the precipitating clouds drive net warming of the cloudy layer and net cooling of the sub-cloud layer due to rain evaporation. These two effects act to stabilize the atmospheric boundary layer with time (consumption of the instability. The evolution of the field's thermodynamic properties affects the cloud properties in return, as shown by the migration of the optimal aerosol concentration toward higher values.
Mosquera, Martín A.
2017-10-01
Provided the initial state, the Runge-Gross theorem establishes that the time-dependent (TD) external potential of a system of non-relativistic electrons determines uniquely their TD electronic density, and vice versa (up to a constant in the potential). This theorem requires the TD external potential and density to be Taylor-expandable around the initial time of the propagation. This paper presents an extension without this restriction. Given the initial state of the system and evolution of the density due to some TD scalar potential, we show that a perturbative (not necessarily weak) TD potential that induces a non-zero divergence of the external force-density, inside a small spatial subset and immediately after the initial propagation time, will cause a change in the density within that subset, implying that the TD potential uniquely determines the TD density. In this proof, we assume unitary evolution of wavefunctions and first-order differentiability (which does not imply analyticity) in time of the internal and external force-densities, electronic density, current density, and their spatial derivatives over the small spatial subset and short time interval.
International Nuclear Information System (INIS)
Liang, Z.X.; Zhang, Z.D.; Liu, W.M.
2005-01-01
We present a family of exact solutions of the one-dimensional nonlinear Schroedinger equation which describes the dynamics of a bright soliton in Bose-Einstein condensates with the time-dependent interatomic interaction in an expulsive parabolic potential. Our results show that, under a safe range of parameters, the bright soliton can be compressed into very high local matter densities by increasing the absolute value of the atomic scattering length, which can provide an experimental tool for investigating the range of validity of the one-dimensional Gross-Pitaevskii equation. We also find that the number of atoms in the bright soliton keeps dynamic stability: a time-periodic atomic exchange is formed between the bright soliton and the background
Time dependent drift Hamiltonian
International Nuclear Information System (INIS)
Boozer, A.H.
1982-04-01
The motion of individual charged particles in a given magnetic and an electric fields is discussed. An idea of a guiding center distribution function f is introduced. The guiding center distribution function is connected to the asymptotic Hamiltonian through the drift kinetic equation. The general non-stochastic magnetic field can be written in a contravariant and a covariant forms. The drift Hamiltonian is proposed, and the canonical gyroradius is presented. The proposed drift Hamiltonian agrees with Alfven's drift velocity to lowest non-vanishing order in the gyroradius. The relation between the exact, time dependent equations of motion and the guiding center equation is clarified by a Lagrangian analysis. The deduced Lagrangian represents the drift motion. (Kato, T.)
Silaev, A. A.; Romanov, A. A.; Vvedenskii, N. V.
2018-03-01
In the numerical solution of the time-dependent Schrödinger equation by grid methods, an important problem is the reflection and wrap-around of the wave packets at the grid boundaries. Non-optimal absorption of the wave function leads to possible large artifacts in the results of numerical simulations. We propose a new method for the construction of the complex absorbing potentials for wave suppression at the grid boundaries. The method is based on the use of the multi-hump imaginary potential which contains a sequence of smooth and symmetric humps whose widths and amplitudes are optimized for wave absorption in different spectral intervals. We show that this can ensure a high efficiency of absorption in a wide range of de Broglie wavelengths, which includes wavelengths comparable to the width of the absorbing layer. Therefore, this method can be used for high-precision simulations of various phenomena where strong spreading of the wave function takes place, including the phenomena accompanying the interaction of strong fields with atoms and molecules. The efficiency of the proposed method is demonstrated in the calculation of the spectrum of high-order harmonics generated during the interaction of hydrogen atoms with an intense infrared laser pulse.
Directory of Open Access Journals (Sweden)
Yan Li
2014-01-01
Full Text Available Isoprene, a possible carcinogen, is a petrochemical and a natural product being primarily produced by plants. It is biotransformed to 2-ethenyl-2-methyloxirane (IP-1,2-O and 2-(1-methylethenyloxirane (IP-3,4-O, both of which can be further metabolized to 2-methyl-2,2′-bioxirane (MBO. MBO is mutagenic, but IP-1,2-O and IP-3,4-O are not. While IP-1,2-O has been reported being genotoxic, the genotoxicity of IP-3,4-O and MBO, and the cross-linking potential of MBO have not been examined. In the present study, we used the comet assay to investigate the concentration- and time-dependent genotoxicity profiles of the three metabolites and the cross-linking potential of MBO in human hepatocyte L02 cells. For the incubation time of 1 h, all metabolites showed positive concentration-dependent profiles with a potency rank order of IP-3,4-O > MBO > IP-1,2-O. In human hepatocellular carcinoma (HepG2 and human leukemia (HL60 cells, IP-3,4-O was still more potent in inducing DNA breaks than MBO at high concentrations (>200 μM, although at low concentrations (≤200 μM IP-3,4-O exhibited slightly lower or similar potency to MBO. Interestingly, their time-dependent genotoxicity profiles (0.5–4 h in L02 cells were different from each other: IP-1,2-O and MBO (200 μM exhibited negative and positive profiles, respectively, with IP-3,4-O lying in between, namely, IP-3,4-O-caused DNA breaks did not change over the exposure time. Further experiments demonstrated that hydrolysis of IP-1,2-O contributed to the negative profile and MBO induced cross-links at high concentrations and long incubation times. Collectively, the results suggested that IP-3,4-O might play a significant role in the toxicity of isoprene.
Landau, Arie
2013-07-07
This paper presents a new method for calculating spectroscopic properties in the framework of response theory utilizing a sequence of similarity transformations (STs). The STs are preformed using the coupled cluster (CC) and Fock-space coupled cluster operators. The linear and quadratic response functions of the new similarity transformed CC response (ST-CCR) method are derived. The poles of the linear response yield excitation-energy (EE) expressions identical to the ones in the similarity transformed equation-of-motion coupled cluster (STEOM-CC) approach. ST-CCR and STEOM-CC complement each other, in analogy to the complementarity of CC response (CCR) and equation-of-motion coupled cluster (EOM-CC). ST-CCR/STEOM-CC and CCR/EOM-CC yield size-extensive and size-intensive EEs, respectively. Other electronic-properties, e.g., transition dipole strengths, are also size-extensive within ST-CCR, in contrast to STEOM-CC. Moreover, analysis suggests that in comparison with CCR, the ST-CCR expressions may be confined to a smaller subspace, however, the precise scope of the truncation can only be determined numerically. In addition, reformulation of the time-independent STEOM-CC using the same parameterization as in ST-CCR, as well as an efficient truncation scheme, is presented. The shown convergence of the time-dependent and time-independent expressions displays the completeness of the presented formalism.
Energy Technology Data Exchange (ETDEWEB)
Schönborn, Jan Boyke; Saalfrank, Peter; Klamroth, Tillmann, E-mail: klamroth@uni-potsdam.de [Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm (Germany)
2016-01-28
We combine the stochastic pulse optimization (SPO) scheme with the time-dependent configuration interaction singles method in order to control the high frequency response of a simple molecular model system to a tailored femtosecond laser pulse. For this purpose, we use H{sub 2} treated in the fixed nuclei approximation. The SPO scheme, as similar genetic algorithms, is especially suited to control highly non-linear processes, which we consider here in the context of high harmonic generation. Here, we will demonstrate that SPO can be used to realize a “non-harmonic” response of H{sub 2} to a laser pulse. Specifically, we will show how adding low intensity side frequencies to the dominant carrier frequency of the laser pulse and stochastically optimizing their contribution can create a high-frequency spectral signal of significant intensity, not harmonic to the carrier frequency. At the same time, it is possible to suppress the harmonic signals in the same spectral region, although the carrier frequency is kept dominant during the optimization.
Wave function for time-dependent harmonically confined electrons in a time-dependent electric field.
Li, Yu-Qi; Pan, Xiao-Yin; Sahni, Viraht
2013-09-21
The many-body wave function of a system of interacting particles confined by a time-dependent harmonic potential and perturbed by a time-dependent spatially homogeneous electric field is derived via the Feynman path-integral method. The wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. The wave function reduces to that of the Harmonic Potential Theorem wave function for the case of the time-independent harmonic confining potential.
International Nuclear Information System (INIS)
Shore, B.W.; Eberly, J.H.
1983-01-01
The definition of a time-dependent spectrum registered by an idealized spectrometer responding to a time-varying electromagnetic field as proposed by Eberly and Wodkiewicz and subsequently applied to the spectrum of laser-induced fluorescence by Eberly, Kunasz, and Wodkiewicz is here extended to allow a stochastically fluctuating (interruption model) environment: we provide an algorithm for numerical determination of the time-dependent fluorescence spectrum of an atom subject to excitation by an intense noisy laser and interruptive relaxation
Time-dependent problems in quantum-mechanical state reconstruction
International Nuclear Information System (INIS)
Leonhardt, U.; Bardroff, P. J.
1997-01-01
We study the state reconstruction of wave packets that travel in time-dependent potentials. We solve the problem for explicitly time-dependent potentials. We solve the problem for explicitly time-dependent harmonic oscillators and sketch a general adaptive technique for finding the wave function that matches and observed evolution. (authors)
Calvi, Marta
2011-01-01
This review reports preliminary results of time-dependent measurements of decays of $B^0$ mesons and $B^0_s$ mesons coming from the analysis of about 36 pb$^{-1}$ of data collected by the LHCb experiment during the 2010 run of the Large Hadron Collider at $\\sqrt{s}$ = 7 TeV.
Calvi, Marta; Collaboration, for the LHCb
2011-01-01
This review reports preliminary results of time-dependent measurements of decays of B^0 mesons and B^0_s mesons coming from the analysis of about 36 pb^-1 of data collected by the LHCb experiment during the 2010 run of the Large Hadron Collider at sqrt(s)=7 TeV.
Time dependent view factor methods
International Nuclear Information System (INIS)
Kirkpatrick, R.C.
1998-03-01
View factors have been used for treating radiation transport between opaque surfaces bounding a transparent medium for several decades. However, in recent years they have been applied to problems involving intense bursts of radiation in enclosed volumes such as in the laser fusion hohlraums. In these problems, several aspects require treatment of time dependence
Janesko, Benjamin G.
2018-02-01
Parameter-free atomistic simulations of entangled solid-state paramagnetic defects may aid in the rational design of devices for quantum information science. This work applies time-dependent density functional theory (TDDFT) embedded-cluster simulations to a prototype entangled-defect system, namely two adjacent singlet-coupled F color centers in lithium fluoride. TDDFT calculations accurately reproduce the experimental visible absorption of both isolated and coupled F centers. The most accurate results are obtained by combining spin symmetry breaking to simulate strong correlation, a large fraction of exact (Hartree-Fock-like) exchange to minimize the defect electrons' self-interaction error, and a standard semilocal approximation for dynamical correlations between the defect electrons and the surrounding ionic lattice. These results motivate application of two-reference correlated ab initio approximations to the M-center, and application of TDDFT in parameter-free simulations of more complex entangled paramagnetic defect architectures.
Hartree--Fock time-dependent problem
Energy Technology Data Exchange (ETDEWEB)
Bove, A; Fano, G [Bologna Univ. (Italy). Istituto di Fisica; Istituto Nazionale di Fisica Nucleare, Bologna (Italy)); Da Prato, G [Rome Univ. (Italy). Istituto di Matematica
1976-06-01
A previous result is generalized. An existence and uniqueness theorem is proved for the Hartree--Fock time-dependent problem in the case of a finite Fermi system interacting via a two body potential which is supposed to be dominated by the kinetic energy part of the one-particle Hamiltonian.
Boumaza, R.; Bencheikh, K.
2017-12-01
Using the so-called operator product expansion to lowest order, we extend the work in Campbell et al (2015 Phys. Rev. Lett 114 125302) by deriving a simple analytical expression for the long-time asymptotic one-body reduced density matrix during free expansion for a one-dimensional system of bosons with large atom number interacting through a repulsive delta potential initially confined by a potential well. This density matrix allows direct access to the momentum distribution and also to the mass current density. For initially confining power-law potentials we give explicit expressions, in the limits of very weak and very strong interaction, for the current density distributions during the free expansion. In the second part of the work we consider the expansion of ultracold gas from a confining harmonic trap to another harmonic trap with a different frequency. For the case of a quantum impenetrable gas of bosons (a Tonks-Girardeau gas) with a given atom number, we present an exact analytical expression for the mass current distribution (mass transport) after release from one harmonic trap to another harmonic trap. It is shown that, for a harmonically quenched Tonks-Girardeau gas, the current distribution is a suitable collective observable and under the weak quench regime, it exhibits oscillations at the same frequencies as those recently predicted for the peak momentum distribution in the breathing mode. The analysis is extended to other possible quenched systems.
Reconstructing time-dependent dynamics
Clemson, Philip; Lancaster, Gemma; Stefanovska, Aneta
2016-01-01
The usefulness of the information extracted from biomedical data relies heavily on the underlying theory of the methods used in its extraction. The assumptions of stationarity and autonomicity traditionally applied to dynamical systems break down when considering living systems, due to their inherent time-variability. Living systems are thermodynamically open, and thus constantly interacting with their environment. This results in highly nonlinear, time-dependent dynamics. The aim of signal a...
Energy Technology Data Exchange (ETDEWEB)
Keim, M.
2005-07-01
In the present thesis response effects in interatomic collisions with two active electrons are studied in the range of non-relativistic collision energies. The starting point is the mapping of the time-dependent interacting many-electron sytem on an effective one-particle picture on the base of the time-dependent density functional theory (TDDFT). By means of the basis generator method the one-particle equations aring in the framework of the TDDFT concept are solved in a finite-dimensional model space. In the study of ionization cross section in the collisional systeem anti p+He it is shown that by response effects an essential diminuishing of the cross sections in comparison to the no-response case is reached. Analoguously the ionization cross sections for the collisional systems p-He, He{sup 2+}-He, Li{sup 3+}-He and p-Li{sup +} behave.
The Electromagnetic Field of Elementary Time-Dependent Toroidal Sources
International Nuclear Information System (INIS)
Afanas'ev, G.N.; Stepanovskij, Yu.P.
1994-01-01
The radiation field of toroidal-like time-dependent current configurations is investigated. Time-dependent charge-current sources are found outside which the electromagnetic strengths disappear but the potentials survive. This can be used to carry out time-dependent Aharonov-Bohm-like experiments and the information transfer. Using the Neumann-Helmholtz parametrization of the current density we present the time-dependent electromagnetic field in a form convenient for applications. 17 refs
Ming, Louise; Byrne, Niall M; Camac, Sarah Nicole; Mitchell, Christopher A; Ward, Claire; Waugh, David J; McKeown, Stephanie R; Worthington, Jenny
2013-03-15
Androgen withdrawal induces hypoxia in androgen-sensitive tissue; this is important as in the tumour microenvironment, hypoxia is known to drive malignant progression. Our study examined the time-dependent effect of androgen deprivation therapy (ADT) on tumour oxygenation and investigated the role of ADT-induced hypoxia on malignant progression in prostate tumours. LNCaP xenografted tumours were treated with anti-androgens and tumour oxygenation measured. Dorsal skin fold (DSF) chambers were used to image tumour vasculature in vivo. Quantitative PCR (QPCR) identified differential gene expression following treatment with bicalutamide. Bicalutamide-treated and vehicle-only-treated tumours were re-established in vitro, and invasion and sensitivity to docetaxel were measured. Tumour growth delay was calculated following treatment with bicalutamide combined with the bioreductive drug AQ4N. Tumour oxygenation measurements showed a precipitate decrease following initiation of ADT. A clinically relevant dose of bicalutamide (2 mg/kg/day) decreased tumour oxygenation by 45% within 24 hr, reaching a nadir of 0.09% oxygen (0.67 ± 0.06 mmHg) by Day 7; this persisted until Day 14 when it increased up to Day 28. Using DSF chambers, LNCaP tumours treated with bicalutamide showed loss of small vessels at Days 7 and 14 with revascularisation occurring by Day 21. QPCR showed changes in gene expression consistent with the vascular changes and malignant progression. Cells from bicalutamide-treated tumours were more malignant than vehicle-treated controls. Combining bicalutamide with AQ4N (50 mg/kg, single dose) caused greater tumour growth delay than bicalutamide alone. Our study shows that bicalutamide-induced hypoxia selects for cells that show malignant progression; targeting hypoxic cells may provide greater clinical benefit. Copyright © 2012 UICC.
DEFF Research Database (Denmark)
Bagi, Per
2002-01-01
(beta) are time constants. The size and velocity of dilation, as well as the degree of distension before dilation, proved of significance for the magnitude of the pressure response. The characteristics of the pressure response are given by the properties of the periluminal structures strained during dilation......, and are thus predominantly determined of elastic, collagen, muscular, and glandular components. However, a high degree of relaxation after straining, and a modest stiffness, indicates that the muscular component dominates the response. The significance of the prostatic tissues remains unclear....
On the time-dependent Aharonov–Bohm effect
Directory of Open Access Journals (Sweden)
Jian Jing
2017-11-01
Full Text Available The Aharonov–Bohm effect in the background of a time-dependent vector potential is re-examined for both non-relativistic and relativistic cases. Based on the solutions to the Schrodinger and Dirac equations which contain the time-dependent magnetic vector potential, we find that contrary to the conclusions in a recent paper (Singleton and Vagenas 2013 [4], the interference pattern will be altered with respect to time because of the time-dependent vector potential.
Selfsimilar time dependent shock structures
International Nuclear Information System (INIS)
Beck, R.; Drury, L.O.
1985-01-01
Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The same argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions
Selfsimilar time dependent shock structures
Beck, R.; Drury, L. O.
1985-01-01
Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The ame argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions.
DEFF Research Database (Denmark)
Bagi, Per; Bøtker-Rasmussen; Kristensen, Jørgen Kvist
2002-01-01
The significance of the anatomical location and age on the urethral response to a sudden forced dilation was studied in 30 healthy males aged 23-85 years. The pressure decay after dilation was fitted with a double exponential function of the form: P(t) = P(equ) + P(alpha)e(-t/tau(alpha) + P...
Diniz, Cassiano R A F; Casarotto, Plínio C; Joca, Sâmia R L
2016-07-01
Hodological and genetic differences between dorsal (DH) and ventral (VH) hippocampus may convey distinct behavioral roles. DH is responsible for mediating cognitive process, such as learning and memory, while VH modulates neuroendocrine and emotional-motivational responses to stress. Manipulating glutamatergic NMDA receptors and nitric oxide (NO) systems of the hippocampus induces important changes in behavioral responses to stress. Nevertheless, there is no study concerning functional differences between DH and VH in the modulation of behavioral responses induced by stress models predictive of antidepressant effects. Thus, this study showed that reversible blockade of the DH or VH of animals submitted to the forced swimming test (FST), by using cobalt chloride (calcium-dependent synaptic neurotransmission blocker), was not able to change immobility time. Afterwards, the NMDA-NO system was evaluated in the FST by means of intra-DH or intra-VH administration of NMDA receptor antagonist (AP7), NOS1 and sGC inhibitors (N-PLA and ODQ, respectively). Bilateral intra-DH injections after pretest or before test were able to induce antidepressant-like effects in the FST. On the other hand, bilateral VH administration of AP-7, N-PLA and ODQ induced antidepressant-like effects only when injected before the test. Administration of NO scavenger (C-PTIO) intra-DH, after pretest and before test, or intra-VH before test induced similar results. Increased NOS1 levels was associated to stress exposure in the DH. These results suggest that the glutamatergic-NO system of the DH and VH are both able to modulate behavioral responses in the FST, albeit with differential participation along time after stress exposure. Copyright © 2016 Elsevier B.V. All rights reserved.
Betweenness in time dependent networks
International Nuclear Information System (INIS)
Alsayed, Ahmad; Higham, Desmond J.
2015-01-01
The concept of betweenness has given rise to a very useful class of network centrality measures. Loosely, betweenness quantifies the level of importance of a node in terms of its propensity to act as an intermediary when messages are passed around the network. In this work we generalize a walk-based betweenness measure to the case of time-dependent networks, such as those arising in telecommunications and on-line social media. We also introduce a new kind of betweenness measure, temporal betweenness, which quantifies the importance of a time-point. We illustrate the effectiveness of these new measures on synthetic examples, and also give results on real data sets involving voice call, email and Twitter
McClellan, Gene; Coleman, Margaret; Crary, David; Thurman, Alec; Thran, Brandolyn
2018-04-25
Military health risk assessors, medical planners, operational planners, and defense system developers require knowledge of human responses to doses of biothreat agents to support force health protection and chemical, biological, radiological, nuclear (CBRN) defense missions. This article reviews extensive data from 118 human volunteers administered aerosols of the bacterial agent Francisella tularensis, strain Schu S4, which causes tularemia. The data set includes incidence of early-phase febrile illness following administration of well-characterized inhaled doses of F. tularensis. Supplemental data on human body temperature profiles over time available from de-identified case reports is also presented. A unified, logically consistent model of early-phase febrile illness is described as a lognormal dose-response function for febrile illness linked with a stochastic time profile of fever. Three parameters are estimated from the human data to describe the time profile: incubation period or onset time for fever; rise time of fever; and near-maximum body temperature. Inhaled dose-dependence and variability are characterized for each of the three parameters. These parameters enable a stochastic model for the response of an exposed population through incorporation of individual-by-individual variability by drawing random samples from the statistical distributions of these three parameters for each individual. This model provides risk assessors and medical decisionmakers reliable representations of the predicted health impacts of early-phase febrile illness for as long as one week after aerosol exposures of human populations to F. tularensis. © 2018 Society for Risk Analysis.
Wave Functions for Time-Dependent Dirac Equation under GUP
Zhang, Meng-Yao; Long, Chao-Yun; Long, Zheng-Wen
2018-04-01
In this work, the time-dependent Dirac equation is investigated under generalized uncertainty principle (GUP) framework. It is possible to construct the exact solutions of Dirac equation when the time-dependent potentials satisfied the proper conditions. In (1+1) dimensions, the analytical wave functions of the Dirac equation under GUP have been obtained for the two kinds time-dependent potentials. Supported by the National Natural Science Foundation of China under Grant No. 11565009
Time-Dependent Mechanical Response of APbX3 (A = Cs, CH3NH3; X = I, Br) Single Crystals
Reyes-Martinez, Marcos A.; Abdelhady, Ahmed L.; Saidaminov, Makhsud I.; Chung, Duck Young; Bakr, Osman; Kanatzidis, Mercouri G.; Soboyejo, Wole O.; Loo, Yueh-Lin
2017-01-01
The ease of processing hybrid organic-inorganic perovskite (HOIPs) films, belonging to a material class with composition ABX3 , from solution and at mild temperatures promises their use in deformable technologies, including flexible photovoltaic devices, sensors, and displays. To successfully apply these materials in deformable devices, knowledge of their mechanical response to dynamic strain is necessary. The authors elucidate the time- and rate-dependent mechanical properties of HOIPs and an inorganic perovskite (IP) single crystal by measuring nanoindentation creep and stress relaxation. The observation of pop-in events and slip bands on the surface of the indented crystals demonstrate dislocation-mediated plastic deformation. The magnitudes of creep and relaxation of both HOIPs and IPs are similar, negating prior hypothesis that the presence of organic A-site cations alters the mechanical response of these materials. Moreover, these samples exhibit a pronounced increase in creep, and stress relaxation as a function of indentation rate whose magnitudes reflect differences in the rates of nucleation and propagation of dislocations within the crystal structures of HOIPs and IP. This contribution provides understanding that is critical for designing perovskite devices capable of withstanding mechanical deformations.
Time-Dependent Mechanical Response of APbX3 (A = Cs, CH3NH3; X = I, Br) Single Crystals
Reyes-Martinez, Marcos A.
2017-05-02
The ease of processing hybrid organic-inorganic perovskite (HOIPs) films, belonging to a material class with composition ABX3 , from solution and at mild temperatures promises their use in deformable technologies, including flexible photovoltaic devices, sensors, and displays. To successfully apply these materials in deformable devices, knowledge of their mechanical response to dynamic strain is necessary. The authors elucidate the time- and rate-dependent mechanical properties of HOIPs and an inorganic perovskite (IP) single crystal by measuring nanoindentation creep and stress relaxation. The observation of pop-in events and slip bands on the surface of the indented crystals demonstrate dislocation-mediated plastic deformation. The magnitudes of creep and relaxation of both HOIPs and IPs are similar, negating prior hypothesis that the presence of organic A-site cations alters the mechanical response of these materials. Moreover, these samples exhibit a pronounced increase in creep, and stress relaxation as a function of indentation rate whose magnitudes reflect differences in the rates of nucleation and propagation of dislocations within the crystal structures of HOIPs and IP. This contribution provides understanding that is critical for designing perovskite devices capable of withstanding mechanical deformations.
Energy Technology Data Exchange (ETDEWEB)
Cazemajou, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1965-07-01
In this paper, a new formulation of the spatial dependent impulse response of a subcritical reactor in a cylindrical geometry is proposed. An expression of the transfer function between a point source at the center of coordinates and the flux at a given point (r,z) is obtained by solving: by means of Laplace transform, the one group diffusion equation. In this transfer function, variables r and p (p being the Laplace variable) remain linked within a modified Bessel function. Taking the inverse Laplace transform is done by two different ways: - using the Mellin-Fourier method which separates variables r and t. This method makes it possible to establish that there is identity between the classical formulation and the new one. - using an inverse Laplace transform which keeps variables r and t linked. This method requires to approximate the inverse Laplace transform of the end factor. It is then possible to replace the radial harmonics modes series of the classical expression by a single function. This new formulation seems to be of particular interest when dealing with reactors of large size and lifetime. It is also interesting each time the harmonics play an important role. (author) [French] Dans le present rapport, on propose une nouvelle formulation de la reponse impulsionnelle spatio-temporelle d'un reacteur sous-critique, en geometrie cylindrique. Une expression de la fonction de transfert entre une source ponctuelle placee au centre des coordonnees et le flux au point courant (r,z) est obtenue en resolvant, par transformation de Laplace, l'equation de la diffusion a un seul groupe d'energie. Dans cette fonction de transfert, les variables r et p (variable de Laplace) demeurent groupees dans une fonction de Bessel modifiee. Le retour a l'original est effectue de deux manieres: - la methode de Mellin-Fourier qui separe les variables r et t, permet d'etablir l'identite entre la nouvelle formulation et la formulation classique. - un original conservant les variables
Time-dependent onshore tsunami response
Apotsos, Alex; Gelfenbaum, Guy R.; Jaffe, Bruce E.
2012-01-01
While bulk measures of the onshore impact of a tsunami, including the maximum run-up elevation and inundation distance, are important for hazard planning, the temporal evolution of the onshore flow dynamics likely controls the extent of the onshore destruction and the erosion and deposition of sediment that occurs. However, the time-varying dynamics of actual tsunamis are even more difficult to measure in situ than the bulk parameters. Here, a numerical model based on the non-linear shallow water equations is used to examine the effects variations in the wave characteristics, bed slope, and bottom roughness have on the temporal evolution of the onshore flow. Model results indicate that the onshore flow dynamics vary significantly over the parameter space examined. For example, the flow dynamics over steep, smooth morphologies tend to be temporally symmetric, with similar magnitude velocities generated during the run-up and run-down phases of inundation. Conversely, on shallow, rough onshore topographies the flow dynamics tend to be temporally skewed toward the run-down phase of inundation, with the magnitude of the flow velocities during run-up and run-down being significantly different. Furthermore, for near-breaking tsunami waves inundating over steep topography, the flow velocity tends to accelerate almost instantaneously to a maximum and then decrease monotonically. Conversely, when very long waves inundate over shallow topography, the flow accelerates more slowly and can remain steady for a period of time before beginning to decelerate. These results indicate that a single set of assumptions concerning the onshore flow dynamics cannot be applied to all tsunamis, and site specific analyses may be required.
Time-dependent Autler-Townes spectroscopy
International Nuclear Information System (INIS)
Qamar, Sajid; Zhu, S.-Y.; Zubairy, M Suhail
2003-01-01
Autler-Townes spontaneous emission spectroscopy is revisited for a time-dependent case. We report the results of spontaneous emission spectra for nonstationary scattered light signals using the definition of the time-dependent physical spectrum. This is a rare example of problems where time-dependent spectra can be calculated exactly
Time-dependent Autler-Townes spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Qamar, Sajid [Institute for Quantum Studies, Department of Physics, Texas A and M University, College Station, TX 77843-4242 (United States); Zhu, S.-Y. [Institute for Quantum Studies, Department of Physics, Texas A and M University, College Station, TX 77843-4242 (United States); Zubairy, M Suhail [Institute for Quantum Studies, Department of Physics, Texas A and M University, College Station, TX 77843-4242 (United States)
2003-04-01
Autler-Townes spontaneous emission spectroscopy is revisited for a time-dependent case. We report the results of spontaneous emission spectra for nonstationary scattered light signals using the definition of the time-dependent physical spectrum. This is a rare example of problems where time-dependent spectra can be calculated exactly.
Simulation of time-dependent Heisenberg models in one dimension
DEFF Research Database (Denmark)
Volosniev, A. G.; Hammer, H. -W.; Zinner, N. T.
2016-01-01
In this Letter, we provide a theoretical analysis of strongly interacting quantum systems confined by a time-dependent external potential in one spatial dimension. We show that such systems can be used to simulate spin chains described by Heisenberg Hamiltonians in which the exchange coupling...... constants can be manipulated by time-dependent driving of the shape of the external confinement. As illustrative examples, we consider a harmonic trapping potential with a variable frequency and an infinite square well potential with a time-dependent barrier in the middle....
Holographic complexity for time-dependent backgrounds
Energy Technology Data Exchange (ETDEWEB)
Momeni, Davood, E-mail: davoodmomeni78@gmail.com [Eurasian International Center for Theoretical Physics and Department of General Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Faizal, Mir, E-mail: mirfaizalmir@googlemail.com [Irving K. Barber School of Arts and Sciences, University of British Columbia, Okanagan, 3333 University Way, Kelowna, British Columbia V1V 1V7 (Canada); Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta, T1K 3M4 (Canada); Bahamonde, Sebastian, E-mail: sebastian.beltran.14@ucl.ac.uk [Department of Mathematics, University College London, Gower Street, London, WC1E 6BT (United Kingdom); Myrzakulov, Ratbay [Eurasian International Center for Theoretical Physics and Department of General Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan)
2016-11-10
In this paper, we will analyze the holographic complexity for time-dependent asymptotically AdS geometries. We will first use a covariant zero mean curvature slicing of the time-dependent bulk geometries, and then use this co-dimension one spacelike slice of the bulk spacetime to define a co-dimension two minimal surface. The time-dependent holographic complexity will be defined using the volume enclosed by this minimal surface. This time-dependent holographic complexity will reduce to the usual holographic complexity for static geometries. We will analyze the time-dependence as a perturbation of the asymptotically AdS geometries. Thus, we will obtain time-dependent asymptotically AdS geometries, and we will calculate the holographic complexity for such time-dependent geometries.
Time dependent fracture and cohesive zones
Knauss, W. G.
1993-01-01
This presentation is concerned with the fracture response of materials which develop cohesive or bridging zones at crack tips. Of special interest are concerns regarding crack stability as a function of the law which governs the interrelation between the displacement(s) or strain across these zones and the corresponding holding tractions. It is found that for some materials unstable crack growth can occur, even before the crack tip has experienced a critical COD or strain across the crack, while for others a critical COD will guarantee the onset of fracture. Also shown are results for a rate dependent nonlinear material model for the region inside of a craze for exploring time dependent crack propagation of rate sensitive materials.
Being a potentially responsible party
International Nuclear Information System (INIS)
Ronan, J.T.
1989-01-01
This paper reports on CERCLA II- ability for the unlucky potentially responsible parties (PRPs) which is a Draconian form of strict, joint and several liability with limited statutory defenses that in most cases are impossible to establish. CERCLA vigorously employs these legal concepts, stretching a PRP's financial exposure to the limits necessary to meet the enormous financial costs of remediation
Propagators for the time-dependent Kohn-Sham equations
International Nuclear Information System (INIS)
Castro, Alberto; Marques, Miguel A. L.; Rubio, Angel
2004-01-01
In this paper we address the problem of the numerical integration of the time-dependent Schroedinger equation i∂ t φ=Hφ. In particular, we are concerned with the important case where H is the self-consistent Kohn-Sham Hamiltonian that stems from time-dependent functional theory. As the Kohn-Sham potential depends parametrically on the time-dependent density, H is in general time dependent, even in the absence of an external time-dependent field. The present analysis also holds for the description of the excited state dynamics of a many-electron system under the influence of arbitrary external time-dependent electromagnetic fields. Our discussion is separated in two parts: (i) First, we look at several algorithms to approximate exp(A), where A is a time-independent operator [e.g., A=-iΔtH(τ) for some given time τ]. In particular, polynomial expansions, projection in Krylov subspaces, and split-operator methods are investigated. (ii) We then discuss different approximations for the time-evolution operator, such as the midpoint and implicit rules, and Magnus expansions. Split-operator techniques can also be modified to approximate the full time-dependent propagator. As the Hamiltonian is time dependent, problem (ii) is not equivalent to (i). All these techniques have been implemented and tested in our computer code OCTOPUS, but can be of general use in other frameworks and implementations
Plötner, Jürgen; Tozer, David J; Dreuw, Andreas
2010-08-10
Time-dependent density functional theory (TDDFT) with standard GGA or hybrid exchange-correlation functionals is not capable of describing the potential energy surface of the S1 state of Pigment Yellow 101 correctly; an additional local minimum is observed at a twisted geometry with substantial charge transfer (CT) character. To investigate the influence of nonlocal exact orbital (Hartree-Fock) exchange on the shape of the potential energy surface of the S1 state in detail, it has been computed along the twisting coordinate employing the standard BP86, B3LYP, and BHLYP xc-functionals as well as the long-range separated (LRS) exchange-correlation (xc)-functionals LC-BOP, ωB97X, ωPBE, and CAM-B3LYP and compared to RI-CC2 benchmark results. Additionally, a recently suggested Λ-parameter has been employed that measures the amount of CT in an excited state by calculating the spatial overlap of the occupied and virtual molecular orbitals involved in the transition. Here, the error in the calculated S1 potential energy curves at BP86, B3LYP, and BHLYP can be clearly related to the Λ-parameter, i.e., to the extent of charge transfer. Additionally, it is demonstrated that the CT problem is largely alleviated when the BHLYP xc-functional is employed, although it still exhibits a weak tendency to underestimate the energy of CT states. The situation improves drastically when LRS-functionals are employed within TDDFT excited state calculations. All tested LRS-functionals give qualitatively the correct potential energy curves of the energetically lowest excited states of P. Y. 101 along the twisting coordinate. While LC-BOP and ωB97X overcorrect the CT problem and now tend to give too large excitation energies compared to other non-CT states, ωPBE and CAM-B3LYP are in excellent agreement with the RI-CC2 results, with respect to both the correct shape of the potential energy curve as well as the absolute values of the calculated excitation energies.
Time-dependent behavior of concrete
International Nuclear Information System (INIS)
Pfeiffer, P.A.; Tanabe, Tada-aki
1992-01-01
This paper is a condensed version of the material presented at the International Workshop on Finite Element Analysis of Reinforced Concrete, Session 4 -- Time Dependent Behavior, held at Columbia University, New York on June 3--6, 1991. Dr. P.A. Pfeiffer presented recent developments in time-dependent behavior of concrete and Professor T. Tanabe presented a review of research in Japan on time-dependent behavior of concrete. The paper discusses the recent research of time-dependent behavior of concrete in the past few years. 6 refs
Ghosh, Sandip; Mukherjee, Saikat; Mukherjee, Bijit; Mandal, Souvik; Sharma, Rahul; Chaudhury, Pinaki; Adhikari, Satrajit
2017-08-21
The workability of beyond Born-Oppenheimer theory to construct diabatic potential energy surfaces (PESs) of a charge transfer atom-diatom collision process has been explored by performing scattering calculations to extract accurate integral cross sections (ICSs) and rate constants for comparison with most recent experimental quantities. We calculate non-adiabatic coupling terms among the lowest three singlet states of H 3 + system (1 1 A ' , 2 1 A ' , and 3 1 A ' ) using MRCI level of calculation and solve the adiabatic-diabatic transformation equation to formulate the diabatic Hamiltonian matrix of the same process [S. Mukherjee et al., J. Chem. Phys. 141, 204306 (2014)] for the entire region of nuclear configuration space. The nonadiabatic effects in the D + + H 2 reaction has been studied by implementing the coupled 3D time-dependent wave packet formalism in hyperspherical coordinates [S. Adhikari and A. J. C. Varandas, Comput. Phys. Commun. 184, 270 (2013)] with zero and non-zero total angular momentum (J) on such newly constructed accurate (ab initio) diabatic PESs of H 3 + . We have depicted the convergence profiles of reaction probabilities for the reactive non-charge transfer, non-reactive charge transfer, and reactive charge transfer processes for different collisional energies with respect to the helicity (K) and total angular momentum (J) quantum numbers. Finally, total and state-to-state ICSs are calculated as a function of collision energy for the initial rovibrational state (v = 0, j = 0) of the H 2 molecule, and consequently, those quantities are compared with previous theoretical and experimental results.
Time-dependent friction and solvation time correlation function
International Nuclear Information System (INIS)
Samanta, Alok; Ali, Sk Musharaf; Ghosh, Swapan K
2005-01-01
We have derived a new relation between the time-dependent friction and solvation time correlation function (STCF) for non-polar fluids. The friction values calculated using this relation and simulation results on STCF for a Lennard-Jones fluid are shown to have excellent agreement with the same obtained through mode-coupling theory. Also derived is a relation between the time-dependent dielectric friction and STCF for polar fluids. Routes are thus provided to obtain the time-dependent friction (non-polar as well as dielectric) from an experimentally measured quantity like STCF, even if the interparticle interaction potential is not known
Ziegler, Tom; Krykunov, Mykhaylo; Autschbach, Jochen
2014-09-09
The random phase approximation (RPA) equation of adiabatic time dependent density functional ground state response theory (ATDDFT) has been used extensively in studies of excited states. It extracts information about excited states from frequency dependent ground state response properties and avoids, thus, in an elegant way, direct Kohn-Sham calculations on excited states in accordance with the status of DFT as a ground state theory. Thus, excitation energies can be found as resonance poles of frequency dependent ground state polarizability from the eigenvalues of the RPA equation. ATDDFT is approximate in that it makes use of a frequency independent energy kernel derived from the ground state functional. It is shown in this study that one can derive the RPA equation of ATDDFT from a purely variational approach in which stationary states above the ground state are located using our constricted variational DFT (CV-DFT) method and the ground state functional. Thus, locating stationary states above the ground state due to one-electron excitations with a ground state functional is completely equivalent to solving the RPA equation of TDDFT employing the same functional. The present study is an extension of a previous work in which we demonstrated the equivalence between ATDDFT and CV-DFT within the Tamm-Dancoff approximation.
Zheng, Xiao; Yam, ChiYung; Wang, Fan; Chen, GuanHua
2011-08-28
We present the time-dependent holographic electron density theorem (TD-HEDT), which lays the foundation of time-dependent density-functional theory (TDDFT) for open electronic systems. For any finite electronic system, the TD-HEDT formally establishes a one-to-one correspondence between the electron density inside any finite subsystem and the time-dependent external potential. As a result, any electronic property of an open system in principle can be determined uniquely by the electron density function inside the open region. Implications of the TD-HEDT on the practicality of TDDFT are also discussed.
Timing intervals using population synchrony and spike timing dependent plasticity
Directory of Open Access Journals (Sweden)
Wei Xu
2016-12-01
Full Text Available We present a computational model by which ensembles of regularly spiking neurons can encode different time intervals through synchronous firing. We show that a neuron responding to a large population of convergent inputs has the potential to learn to produce an appropriately-timed output via spike-time dependent plasticity. We explain why temporal variability of this population synchrony increases with increasing time intervals. We also show that the scalar property of timing and its violation at short intervals can be explained by the spike-wise accumulation of jitter in the inter-spike intervals of timing neurons. We explore how the challenge of encoding longer time intervals can be overcome and conclude that this may involve a switch to a different population of neurons with lower firing rate, with the added effect of producing an earlier bias in response. Experimental data on human timing performance show features in agreement with the model’s output.
Competing risks and time-dependent covariates
DEFF Research Database (Denmark)
Cortese, Giuliana; Andersen, Per K
2010-01-01
Time-dependent covariates are frequently encountered in regression analysis for event history data and competing risks. They are often essential predictors, which cannot be substituted by time-fixed covariates. This study briefly recalls the different types of time-dependent covariates......, as classified by Kalbfleisch and Prentice [The Statistical Analysis of Failure Time Data, Wiley, New York, 2002] with the intent of clarifying their role and emphasizing the limitations in standard survival models and in the competing risks setting. If random (internal) time-dependent covariates...
Time-dependent Bragg diffraction and short-pulse reflection by one-dimensional photonic crystals
International Nuclear Information System (INIS)
André, Jean-Michel; Jonnard, Philippe
2015-01-01
The time-dependence of the Bragg diffraction by one-dimensional photonic crystals and its influence on the short pulse reflection are studied in the framework of the coupled-wave theory. The indicial response of the photonic crystal is calculated and it appears that it presents a time-delay effect with a transient time conditioned by the extinction length. A numerical simulation is presented for a Bragg mirror in the x-ray domain and a pulse envelope modelled by a sine-squared shape. The potential consequences of the time-delay effect in time-dependent optics of short-pulses are emphasized. (paper)
Time-dependent, Bianchi II, rotating universe
International Nuclear Information System (INIS)
Reboucas, M.J.
1981-01-01
An exact cosmological solution of Einstein's equations which has time-dependent rotation is presented. The t-constant sections are of Bianchi type II. The source of this geometry is a fluid which has not been thermalized. (Author) [pt
Topic 5: Time-Dependent Behavior
International Nuclear Information System (INIS)
Pfeiffer, P.A.; Tanabe, Tada-aki
1991-01-01
This chapter is a report of the material presented at the International Workshop on Finite Element Analysis of Reinforced Concrete, Session 4 -- Time Dependent Behavior, held at Columbia University, New York on June 3--6, 1991. Dr. P.A. Pfeiffer presented recent developments in time-dependent behavior of concrete and Professor T. Tanabe presented a review of research in Japan on time-dependent behavior of concrete. The chapter discusses the recent research of time-dependent behavior of concrete in the past few years in both the USA-European and Japanese communities. The author appreciates the valuable information provided by Zdenek P. Bazant in preparing the USA-European Research section
Decay of hollow states in time-dependent density functional theory
Energy Technology Data Exchange (ETDEWEB)
Kapoor, Varun; Bauer, Dieter [Institut fuer Physik, Wismarsche Str. 43-45, Universitaet Rostock, Rostock-18051 (Germany)
2012-07-01
Hollow or multiply excited states are inaccessible in time dependent density functional theory (TDDFT) using adiabatic Kohn-Sham potentials. We determine the exact Kohn Sham (KS) potential for doubly excited states in an exactly solvable model Helium atom. The exact single-particle density corresponds to the energetically lowest quasi-stationary state in the exact KS potential. We describe how this exact potential controls the decay by a barrier whose origin is traced back to phase of the exact KS orbital. The potential controls the barrier height and width in order for the density to tunnel out and decay with the same rate as the doubly excited state in the ab initio time-dependent Schroedinger calculation. Instead, adiabatic KS potentials only show direct photoionization but no autoionization. A frequency-dependent linear response kernel would be necessary in order to capture the decay of autoionizing states.
Time dependent convection electric fields and plasma injection
International Nuclear Information System (INIS)
Kaye, S.M.; Kivelson, M.G.
1979-01-01
Large-scale electric fields associated with storms or substorms are responsible for inward convection and energization of plasma sheet plasma. Calculations based on steady state convection theory show that the response to such electric fields qualitatively accounts for many features of the injected particle distribution, but quantitative agreement with the theory has not yet been obtained. It is known that the predictions can be improved by introducing the concept of convection in response to a time dependent electric field. On the other hand, time dependent calculations are sensitive to the choice of initial conditions, and most models have failed to incorporate these conditions in a realistic and self-consistent manner. In this paper we present a more complete model consisting of realisic initial conditions and time dependent convection to explain a typical substorm-associated electron injection event. We find very good agreement between the observed electron flux changes and those predicted by our model
Exponential integrators in time-dependent density-functional calculations
Kidd, Daniel; Covington, Cody; Varga, Kálmán
2017-12-01
The integrating factor and exponential time differencing methods are implemented and tested for solving the time-dependent Kohn-Sham equations. Popular time propagation methods used in physics, as well as other robust numerical approaches, are compared to these exponential integrator methods in order to judge the relative merit of the computational schemes. We determine an improvement in accuracy of multiple orders of magnitude when describing dynamics driven primarily by a nonlinear potential. For cases of dynamics driven by a time-dependent external potential, the accuracy of the exponential integrator methods are less enhanced but still match or outperform the best of the conventional methods tested.
Computational complexity of time-dependent density functional theory
International Nuclear Information System (INIS)
Whitfield, J D; Yung, M-H; Tempel, D G; Aspuru-Guzik, A; Boixo, S
2014-01-01
Time-dependent density functional theory (TDDFT) is rapidly emerging as a premier method for solving dynamical many-body problems in physics and chemistry. The mathematical foundations of TDDFT are established through the formal existence of a fictitious non-interacting system (known as the Kohn–Sham system), which can reproduce the one-electron reduced probability density of the actual system. We build upon these works and show that on the interior of the domain of existence, the Kohn–Sham system can be efficiently obtained given the time-dependent density. We introduce a V-representability parameter which diverges at the boundary of the existence domain and serves to quantify the numerical difficulty of constructing the Kohn-Sham potential. For bounded values of V-representability, we present a polynomial time quantum algorithm to generate the time-dependent Kohn–Sham potential with controllable error bounds. (paper)
Integrable Time-Dependent Quantum Hamiltonians
Sinitsyn, Nikolai A.; Yuzbashyan, Emil A.; Chernyak, Vladimir Y.; Patra, Aniket; Sun, Chen
2018-05-01
We formulate a set of conditions under which the nonstationary Schrödinger equation with a time-dependent Hamiltonian is exactly solvable analytically. The main requirement is the existence of a non-Abelian gauge field with zero curvature in the space of system parameters. Known solvable multistate Landau-Zener models satisfy these conditions. Our method provides a strategy to incorporate time dependence into various quantum integrable models while maintaining their integrability. We also validate some prior conjectures, including the solution of the driven generalized Tavis-Cummings model.
Fermions in interaction with time dependent fields
International Nuclear Information System (INIS)
Falkensteiner, P.; Grosse, H.
1988-01-01
We solve a two dimensional model describing the interaction of fermions with time dependent external fields. We work out the second quantized formulation and obtain conditions for equivalence of representations at different times. This implies the existence of sectors which describe charged states. We obtain the time dependence of charges and observe that charge differences become integer for unitary equivalent states. For scattering we require the equivalence of in- and out-representations; nevertheless charged sectors may be reached by suitable interactions and ionization is possible. 20 refs. (Author)
Investigations of Low Temperature Time Dependent Cracking
Energy Technology Data Exchange (ETDEWEB)
Van der Sluys, W A; Robitz, E S; Young, B A; Bloom, J
2002-09-30
The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity. The resultant data was integrated into current available life prediction tools.
Time dependent resonating Hartree-Bogoliubov theory
International Nuclear Information System (INIS)
Nishiyama, Seiya; Fukutome, Hideo.
1989-01-01
Very recently, we have developed a theory of excitations in superconducting Fermion systems with large quantum fluctuations that can be described by resonance of time dependent non-orthogonal Hartree-Bogoliubov (HB) wave functions with different correlation structures. We have derived a new kind of variation equation called the time dependent Resonating HB equation, in order to determine both the time dependent Resonating HB wave functions and coefficients of a superposition of the HB wave functions. Further we have got a new approximation for excitations from time dependent small fluctuations of the Resonating HB ground state, i.e., the Resonating HB RPA. The Res HB RPA equation is represented in a given single particle basis. It, however, has drawbacks that the constraints for the Res HB RPA amplitudes are not taken into account and the equation contains equations which are not independent. We shall derive another form of the Res HB RPA equation eliminating these drawbacks. The Res HB RPA gives a unified description of the vibrons and resonons and their interactions. (author)
Time-dependent Dyson orbital theory
Gritsenko, O.V.; Baerends, E.J.
2016-01-01
Although time-dependent density functional theory (TDDFT) has become the tool of choice for real-time propagation of the electron density ρN(t) of N-electron systems, it also encounters problems in this application. The first problem is the neglect of memory effects stemming from the, in TDDFT
Biological repair with time-dependent irradiation
International Nuclear Information System (INIS)
Broyles, A.A.; Shapiro, C.S.
1985-01-01
Recent experiments have provided new data that explore the effectiveness of biological repair in assessing damage due to exposures from ionizing radiation. These data are mainly from experiments conducted at constant dose rates, to study the effectiveness per unit dose of different dose rates. Here, we develop new formulae to estimate the effectiveness of an arbitrary time-dependent dose rate exposure
Scheduling with time-dependent execution times
Woeginger, G.J.
1995-01-01
We consider systems of tasks where the task execution times are time-dependent and where all tasks have some common deadline. We describe how to compute in polynomial time a schedule that minimizes the number of late tasks. This answers a question raised in a recent paper by Ho, Leung and Wei.
Time-dependent Bragg diffraction by multilayer gratings
International Nuclear Information System (INIS)
André, Jean-Michel; Jonnard, Philippe
2016-01-01
Time-dependent Bragg diffraction by multilayer gratings working by reflection or by transmission is investigated. The study is performed by generalizing the time-dependent coupled-wave theory previously developed for one-dimensional photonic crystals (André J-M and Jonnard P 2015 J. Opt. 17 085609) and also by extending the Takagi–Taupin approach of the dynamical theory of diffraction. The indicial response is calculated. It presents a time delay with a transient time that is a function of the extinction length for reflection geometry and of the extinction length combined with the thickness of the grating for transmission geometry. (paper)
The Feynman integral for time-dependent anharmonic oscillators
International Nuclear Information System (INIS)
Grothaus, M.; Khandekar, D.C.; da Silva, J.L.; Streit, L.
1997-01-01
We review some basic notions and results of white noise analysis that are used in the construction of the Feynman integrand as a generalized white noise functional. We show that the Feynman integrand for the time-dependent harmonic oscillator in an external potential is a Hida distribution. copyright 1997 American Institute of Physics
Time-dependent massless Dirac fermions in graphene
Energy Technology Data Exchange (ETDEWEB)
Khantoul, Boubakeur, E-mail: bobphys@gmail.com [Department of Mathematics, City University London, Northampton Square, London EC1V 0HB (United Kingdom); Department of Physics, University of Jijel, BP 98, Ouled Aissa, 18000 Jijel (Algeria); Fring, Andreas, E-mail: a.fring@city.ac.uk [Department of Mathematics, City University London, Northampton Square, London EC1V 0HB (United Kingdom)
2015-10-30
Using the Lewis–Riesenfeld method of invariants we construct explicit analytical solutions for the massless Dirac equation in 2+1 dimensions describing quasi-particles in graphene. The Hamiltonian of the system considered contains some explicit time-dependence in addition to one resulting from being minimally coupled to a time-dependent vector potential. The eigenvalue equations for the two spinor components of the Lewis–Riesenfeld invariant are found to decouple into a pair of supersymmetric invariants in a similar fashion as the known decoupling for the time-independent Dirac Hamiltonians. - Highlights: • An explicit analytical solution for a massless 2+1 dimensional time-dependent Dirac equation is found. • All steps of the Lewis–Riesenfeld method have been carried out.
Time-dependent 2-stream particle transport
International Nuclear Information System (INIS)
Corngold, Noel
2015-01-01
Highlights: • We consider time-dependent transport in the 2-stream or “rod” model via an attractive matrix formalism. • After reviewing some classical problems in homogeneous media we discuss transport in materials with whose density may vary. • There we achieve a significant contraction of the underlying Telegrapher’s equation. • We conclude with a discussion of stochastics, treated by the “first-order smoothing approximation.” - Abstract: We consider time-dependent transport in the 2-stream or “rod” model via an attractive matrix formalism. After reviewing some classical problems in homogeneous media we discuss transport in materials whose density may vary. There we achieve a significant contraction of the underlying Telegrapher’s equation. We conclude with a discussion of stochastics, treated by the “first-order smoothing approximation.”
Time-dependent scattering in resonance lines
International Nuclear Information System (INIS)
Kunasz, P.B.
1983-01-01
A numerical finite-difference method is presented for the problem of time-dependent line transfer in a finite slab in which material density is sufficiently low that the time of flight between scatterings greatly exceeds the relaxation time of the upper state of the scattering transition. The medium is assumed to scatter photons isotropically, with complete frequency redistribution. Numerical solutions are presented for a homogeneous, time-independent slab illuminated by an externally imposed radiation field which enters the slab at t = 0. Graphical results illustrate relaxation to steady state of trapped internal radiation, emergent energy, and emergent profiles. A review of the literature is also given in which the time-dependent line transfer problem is discussed in the context of recent analytical work
Time dependent policy-based access control
DEFF Research Database (Denmark)
Vasilikos, Panagiotis; Nielson, Flemming; Nielson, Hanne Riis
2017-01-01
also on other attributes of the environment such as the time. In this paper, we use systems of Timed Automata to model distributed systems and we present a logic in which one can express time-dependent policies for access control. We show how a fragment of our logic can be reduced to a logic......Access control policies are essential to determine who is allowed to access data in a system without compromising the data's security. However, applications inside a distributed environment may require those policies to be dependent on the actual content of the data, the flow of information, while...... that current model checkers for Timed Automata such as UPPAAL can handle and we present a translator that performs this reduction. We then use our translator and UPPAAL to enforce time-dependent policy-based access control on an example application from the aerospace industry....
Simulating transient dynamics of the time-dependent time fractional Fokker–Planck systems
Energy Technology Data Exchange (ETDEWEB)
Kang, Yan-Mei, E-mail: ymkang@mail.xjtu.edu.cn
2016-09-16
For a physically realistic type of time-dependent time fractional Fokker–Planck (FP) equation, derived as the continuous limit of the continuous time random walk with time-modulated Boltzmann jumping weight, a semi-analytic iteration scheme based on the truncated (generalized) Fourier series is presented to simulate the resultant transient dynamics when the external time modulation is a piece-wise constant signal. At first, the iteration scheme is demonstrated with a simple time-dependent time fractional FP equation on finite interval with two absorbing boundaries, and then it is generalized to the more general time-dependent Smoluchowski-type time fractional Fokker–Planck equation. The numerical examples verify the efficiency and accuracy of the iteration method, and some novel dynamical phenomena including polarized motion orientations and periodic response death are discussed. - Highlights: • An iteration method is proposed for the transient dynamics of time-dependent time fractional Fokker–Planck equations. • The method is based on Fourier Series solution and the multi-step transition probability formula. • With the time-modulated subdiffusion on finite interval as example, the polarized motion orientation is disclosed. • With the time-modulated subdiffusion within a confined potential as example, the death of dynamic response is observed.
Simulating transient dynamics of the time-dependent time fractional Fokker–Planck systems
International Nuclear Information System (INIS)
Kang, Yan-Mei
2016-01-01
For a physically realistic type of time-dependent time fractional Fokker–Planck (FP) equation, derived as the continuous limit of the continuous time random walk with time-modulated Boltzmann jumping weight, a semi-analytic iteration scheme based on the truncated (generalized) Fourier series is presented to simulate the resultant transient dynamics when the external time modulation is a piece-wise constant signal. At first, the iteration scheme is demonstrated with a simple time-dependent time fractional FP equation on finite interval with two absorbing boundaries, and then it is generalized to the more general time-dependent Smoluchowski-type time fractional Fokker–Planck equation. The numerical examples verify the efficiency and accuracy of the iteration method, and some novel dynamical phenomena including polarized motion orientations and periodic response death are discussed. - Highlights: • An iteration method is proposed for the transient dynamics of time-dependent time fractional Fokker–Planck equations. • The method is based on Fourier Series solution and the multi-step transition probability formula. • With the time-modulated subdiffusion on finite interval as example, the polarized motion orientation is disclosed. • With the time-modulated subdiffusion within a confined potential as example, the death of dynamic response is observed.
Time-dependent problems and difference methods
Gustafsson, Bertil; Oliger, Joseph
2013-01-01
Praise for the First Edition "". . . fills a considerable gap in the numerical analysis literature by providing a self-contained treatment . . . this is an important work written in a clear style . . . warmly recommended to any graduate student or researcher in the field of the numerical solution of partial differential equations."" -SIAM Review Time-Dependent Problems and Difference Methods, Second Edition continues to provide guidance for the analysis of difference methods for computing approximate solutions to partial differential equations for time-de
Dissipative time-dependent quantum transport theory.
Zhang, Yu; Yam, Chi Yung; Chen, GuanHua
2013-04-28
A dissipative time-dependent quantum transport theory is developed to treat the transient current through molecular or nanoscopic devices in presence of electron-phonon interaction. The dissipation via phonon is taken into account by introducing a self-energy for the electron-phonon coupling in addition to the self-energy caused by the electrodes. Based on this, a numerical method is proposed. For practical implementation, the lowest order expansion is employed for the weak electron-phonon coupling case and the wide-band limit approximation is adopted for device and electrodes coupling. The corresponding hierarchical equation of motion is derived, which leads to an efficient and accurate time-dependent treatment of inelastic effect on transport for the weak electron-phonon interaction. The resulting method is applied to a one-level model system and a gold wire described by tight-binding model to demonstrate its validity and the importance of electron-phonon interaction for the quantum transport. As it is based on the effective single-electron model, the method can be readily extended to time-dependent density functional theory.
Time-dependent Hartree approximation and time-dependent harmonic oscillator model
International Nuclear Information System (INIS)
Blaizot, J.P.
1982-01-01
We present an analytically soluble model for studying nuclear collective motion within the framework of the time-dependent Hartree (TDH) approximation. The model reduces the TDH equations to the Schroedinger equation of a time-dependent harmonic oscillator. Using canonical transformations and coherent states we derive a few properties of the time-dependent harmonic oscillator which are relevant for applications. We analyse the role of the normal modes in the time evolution of a system governed by TDH equations. We show how these modes couple together due to the anharmonic terms generated by the non-linearity of the theory. (orig.)
Constitutive model with time-dependent deformations
DEFF Research Database (Denmark)
Krogsbøll, Anette
1998-01-01
are common in time as well as size. This problem is adressed by means of a new constitutive model for soils. It is able to describe the behavior of soils at different deformation rates. The model defines time-dependent and stress-related deformations separately. They are related to each other and they occur...... was the difference in time scale between the geological process of deposition (millions of years) and the laboratory measurements of mechanical properties (minutes or hours). In addition, the time scale relevant to the production history of the oil field was interesting (days or years)....
Time dependent variational method in quantum mechanics
International Nuclear Information System (INIS)
Torres del Castillo, G.F.
1987-01-01
Using the fact that the solutions to the time-dependent Schodinger equation can be obtained from a variational principle, by restricting the evolution of the state vector to some surface in the corresponding Hilbert space, approximations to the exact solutions can be obtained, which are determined by equations similar to Hamilton's equations. It is shown that, in order for the approximate evolution to be well defined on a given surface, the imaginary part of the inner product restricted to the surface must be non-singular. (author)
Time-dependent angularly averaged inverse transport
International Nuclear Information System (INIS)
Bal, Guillaume; Jollivet, Alexandre
2009-01-01
This paper concerns the reconstruction of the absorption and scattering parameters in a time-dependent linear transport equation from knowledge of angularly averaged measurements performed at the boundary of a domain of interest. Such measurement settings find applications in medical and geophysical imaging. We show that the absorption coefficient and the spatial component of the scattering coefficient are uniquely determined by such measurements. We obtain stability results on the reconstruction of the absorption and scattering parameters with respect to the measured albedo operator. The stability results are obtained by a precise decomposition of the measurements into components with different singular behavior in the time domain
Time dependent black holes and thermal equilibration
International Nuclear Information System (INIS)
Bak, Dongsu; Gutperle, Michael; Karch, Andreas
2007-01-01
We study aspects of a recently proposed exact time dependent black hole solution of IIB string theory using the AdS/CFT correspondence. The dual field theory is a thermal system in which initially a vacuum density for a non-conserved operator is turned on. We can see that in agreement with general thermal field theory expectation the system equilibrates: the expectation value of the non-conserved operator goes to zero exponentially and the entropy increases. In the field theory the process can be described quantitatively in terms of a thermofield state and exact agreement with the gravity answers is found
Nonequilibrium quantum solvation with a time-dependent Onsager cavity
Kirchberg, H.; Nalbach, P.; Thorwart, M.
2018-04-01
We formulate a theory of nonequilibrium quantum solvation in which parameters of the solvent are explicitly depending on time. We assume in a simplest approach a spherical molecular Onsager cavity with a time-dependent radius. We analyze the relaxation properties of a test molecular point dipole in a dielectric solvent and consider two cases: (i) a shrinking Onsager sphere and (ii) a breathing Onsager sphere. Due to the time-dependent solvent, the frequency-dependent response function of the dipole becomes time-dependent. For a shrinking Onsager sphere, the dipole relaxation is in general enhanced. This is reflected in a temporally increasing linewidth of the absorptive part of the response. Furthermore, the effective frequency-dependent response function shows two peaks in the absorptive part which are symmetrically shifted around the eigenfrequency. By contrast, a breathing sphere reduces damping as compared to the static sphere. Interestingly, we find a non-monotonous dependence of the relaxation rate on the breathing rate and a resonant suppression of damping when both rates are comparable. Moreover, the linewidth of the absorptive part of the response function is strongly reduced for times when the breathing sphere reaches its maximal extension.
Transcriptional dynamics with time-dependent reaction rates
Nandi, Shubhendu; Ghosh, Anandamohan
2015-02-01
Transcription is the first step in the process of gene regulation that controls cell response to varying environmental conditions. Transcription is a stochastic process, involving synthesis and degradation of mRNAs, that can be modeled as a birth-death process. We consider a generic stochastic model, where the fluctuating environment is encoded in the time-dependent reaction rates. We obtain an exact analytical expression for the mRNA probability distribution and are able to analyze the response for arbitrary time-dependent protocols. Our analytical results and stochastic simulations confirm that the transcriptional machinery primarily act as a low-pass filter. We also show that depending on the system parameters, the mRNA levels in a cell population can show synchronous/asynchronous fluctuations and can deviate from Poisson statistics.
Transcriptional dynamics with time-dependent reaction rates
International Nuclear Information System (INIS)
Nandi, Shubhendu; Ghosh, Anandamohan
2015-01-01
Transcription is the first step in the process of gene regulation that controls cell response to varying environmental conditions. Transcription is a stochastic process, involving synthesis and degradation of mRNAs, that can be modeled as a birth–death process. We consider a generic stochastic model, where the fluctuating environment is encoded in the time-dependent reaction rates. We obtain an exact analytical expression for the mRNA probability distribution and are able to analyze the response for arbitrary time-dependent protocols. Our analytical results and stochastic simulations confirm that the transcriptional machinery primarily act as a low-pass filter. We also show that depending on the system parameters, the mRNA levels in a cell population can show synchronous/asynchronous fluctuations and can deviate from Poisson statistics. (paper)
Student understanding of time dependence in quantum mechanics
Directory of Open Access Journals (Sweden)
Paul J. Emigh
2015-09-01
Full Text Available [This paper is part of the Focused Collection on Upper Division Physics Courses.] The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing the key role of the energy eigenbasis in determining the time dependence of wave functions. Through analysis of student responses to a set of four interrelated tasks, we categorize some of the difficulties that underlie common errors. The conceptual and reasoning difficulties that have been identified are illustrated through student responses to four sets of questions administered at different points in a junior-level course on quantum mechanics. Evidence is also given that the problems persist throughout undergraduate instruction and into the graduate level.
Mukwaya, Anthony; Lennikov, Anton; Xeroudaki, Maria; Mirabelli, Pierfrancesco; Lachota, Mieszko; Jensen, Lasse; Peebo, Beatrice; Lagali, Neil
2018-05-01
Inflammation in the normally immune-privileged cornea can initiate a pathologic angiogenic response causing vision-threatening corneal neovascularization. Inflammatory pathways, however, are numerous, complex and are activated in a time-dependent manner. Effective resolution of inflammation and associated angiogenesis in the cornea requires knowledge of these pathways and their time dependence, which has, to date, remained largely unexplored. Here, using a model of endogenous resolution of inflammation-induced corneal angiogenesis, we investigate the time dependence of inflammatory genes in effecting capillary regression and the return of corneal transparency. Endogenous capillary regression was characterized by a progressive thinning and remodeling of angiogenic capillaries and inflammatory cell retreat in vivo in the rat cornea. By whole-genome longitudinal microarray analysis, early suppression of VEGF ligand-receptor signaling and inflammatory pathways preceded an unexpected later-phase preferential activation of LXR/RXR, PPARα/RXRα and STAT3 canonical pathways, with a concurrent attenuation of LPS/IL-1 inhibition of RXR function and Wnt/β-catenin signaling pathways. Potent downstream inflammatory cytokines such as Cxcl5, IL-1β, IL-6 and Ccl2 were concomitantly downregulated during the remodeling phase. Upstream regulators of the inflammatory pathways included Socs3, Sparc and ApoE. A complex and coordinated time-dependent interplay between pro- and anti-inflammatory signaling pathways highlights a potential anti-inflammatory role of LXR/RXR, PPARα/RXRα and STAT3 signaling pathways in resolving inflammatory corneal angiogenesis.
Hesselmann, Andreas; Görling, Andreas
2011-01-21
A recently introduced time-dependent exact-exchange (TDEXX) method, i.e., a response method based on time-dependent density-functional theory that treats the frequency-dependent exchange kernel exactly, is reformulated. In the reformulated version of the TDEXX method electronic excitation energies can be calculated by solving a linear generalized eigenvalue problem while in the original version of the TDEXX method a laborious frequency iteration is required in the calculation of each excitation energy. The lowest eigenvalues of the new TDEXX eigenvalue equation corresponding to the lowest excitation energies can be efficiently obtained by, e.g., a version of the Davidson algorithm appropriate for generalized eigenvalue problems. Alternatively, with the help of a series expansion of the new TDEXX eigenvalue equation, standard eigensolvers for large regular eigenvalue problems, e.g., the standard Davidson algorithm, can be used to efficiently calculate the lowest excitation energies. With the help of the series expansion as well, the relation between the TDEXX method and time-dependent Hartree-Fock is analyzed. Several ways to take into account correlation in addition to the exact treatment of exchange in the TDEXX method are discussed, e.g., a scaling of the Kohn-Sham eigenvalues, the inclusion of (semi)local approximate correlation potentials, or hybrids of the exact-exchange kernel with kernels within the adiabatic local density approximation. The lowest lying excitations of the molecules ethylene, acetaldehyde, and pyridine are considered as examples.
The Time-Dependent Structure of the Electron Reconnection Layer
Hesse, Michael; Zenitani, Seiji; Kuznetsova, Masha; Klimas, Alex
2009-01-01
Collisionless magnetic reconnection is often associated with time-dependent behavior. Specifically, current layers in the diffusion region can become unstable to tearing-type instabilities on one hand, or to instabilities with current-aligned wave vectors on the other. In the former case, the growth of tearing instabilities typically leads to the production of magnetic islands, which potentially provide feedback on the reconnection process itself, as well as on the rate of reconnection. The second class of instabilities tend to modulate the current layer along the direction of the current flow, for instance generating kink-type perturbations, or smaller-scale turbulence with the potential to broaden the current layer. All of these processes contribute to rendering magnetic reconnection time-dependent. In this presentation, we will provide a summary of these effects, and a discussion of how much they contribute to the overall magnetic reconnection rate.
Attainable conditions and exact invariant for the time-dependent harmonic oscillator
Energy Technology Data Exchange (ETDEWEB)
Guasti, Manuel Fernandez [Lab. de Optica Cuantica, Dep. de Fisica, Universidad A. Metropolitana, Unidad Iztapalapa, Mexico DF, Ap. Post. 55-534 (Mexico)
2006-09-22
The time-dependent oscillator equation is solved numerically for various trajectories in amplitude and phase variables. The solutions exhibit a finite time-dependent parameter whenever the squared amplitude times the derivative of the phase is invariant. If the invariant relationship does not hold, the time-dependent parameter has divergent singularities. These observations lead to the proposition that the harmonic oscillator equation with finite time-dependent parameter must have amplitude and phase solutions fulfilling the invariant relationship. Since the time-dependent parameter or the potential must be finite for any real oscillator implementation, the invariant must hold for any such physically realizable system.
Attainable conditions and exact invariant for the time-dependent harmonic oscillator
International Nuclear Information System (INIS)
Guasti, Manuel Fernandez
2006-01-01
The time-dependent oscillator equation is solved numerically for various trajectories in amplitude and phase variables. The solutions exhibit a finite time-dependent parameter whenever the squared amplitude times the derivative of the phase is invariant. If the invariant relationship does not hold, the time-dependent parameter has divergent singularities. These observations lead to the proposition that the harmonic oscillator equation with finite time-dependent parameter must have amplitude and phase solutions fulfilling the invariant relationship. Since the time-dependent parameter or the potential must be finite for any real oscillator implementation, the invariant must hold for any such physically realizable system
General time-dependent formulation of quantum scattering theory
International Nuclear Information System (INIS)
Althorpe, Stuart C.
2004-01-01
We derive and explain the key ideas behind a time-dependent formulation of quantum scattering theory, applicable generally to systems with a finite-range scattering potential. The scattering is initiated and probed by plane wave packets, which are localized just outside the range of the potential. The asymptotic limits of conventional scattering theory (initiation in the remote past; detection in the remote future) are not taken. Instead, the differential cross section (DCS) is obtained by projecting the scattered wave packet onto the probe plane wave packets. The projection also yields a time-dependent version of the DCS. Cuts through the wave packet, just as it exits the scattering potential, yield time-dependent and time-independent angular distributions that give a close-up picture of the scattering which complements the DCS. We have previously applied the theory to interpret experimental cross sections of chemical reactions [e.g., S. C. Althorpe, F. Fernandez-Alonso, B. D. Bean, J. D. Ayers, A. E. Pomerantz, R. N. Zare, and E. Wrede, Nature (London) 416, 67 (2002)]. This paper gives the derivation of the theory, and explains its relation to conventional scattering theory. For clarity, the derivation is restricted to spherical-particle scattering, though it may readily be extended to general multichannel systems. We illustrate the theory using a simple application to hard-sphere scattering
Time-dependent Cooling in Photoionized Plasma
Energy Technology Data Exchange (ETDEWEB)
Gnat, Orly, E-mail: orlyg@phys.huji.ac.il [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)
2017-02-01
I explore the thermal evolution and ionization states in gas cooling from an initially hot state in the presence of external photoionizing radiation. I compute the equilibrium and nonequilibrium cooling efficiencies, heating rates, and ion fractions for low-density gas cooling while exposed to the ionizing metagalactic background radiation at various redshifts ( z = 0 − 3), for a range of temperatures (10{sup 8}–10{sup 4} K), densities (10{sup −7}–10{sup 3} cm{sup −3}), and metallicities (10{sup −3}–2 times solar). The results indicate the existence of a threshold ionization parameter, above which the cooling efficiencies are very close to those in photoionization equilibrium (so that departures from equilibrium may be neglected), and below which the cooling efficiencies resemble those in collisional time-dependent gas cooling with no external radiation (and are thus independent of density).
Time-dependent dilatancy for brittle rocks
Directory of Open Access Journals (Sweden)
Jie Li
2017-12-01
Full Text Available This paper presents a theoretical study on time-dependent dilatancy behaviors for brittle rocks. The theory employs a well-accepted postulation that macroscopically observed dilatancy originates from the expansion of microcracks. The mechanism and dynamic process that microcracks initiate from local stress concentration and grow due to localized tensile stress are analyzed. Then, by generalizing the results from the analysis of single cracks, a parameter and associated equations for its evolution are developed to describe the behaviors of the microcracks. In this circumstance, the relationship between microcracking and dilatancy can be established, and the theoretical equations for characterizing the process of rock dilatancy behaviors are derived. Triaxial compression and creep tests are conducted to validate the developed theory. With properly chosen model parameters, the theory yields a satisfactory accuracy in comparison with the experimental results.
Cosmologies with a time dependent vacuum
International Nuclear Information System (INIS)
Sola, Joan
2011-01-01
The idea that the cosmological term Λ should be a time dependent quantity in cosmology is a most natural one. It is difficult to conceive an expanding universe with a strictly constant vacuum energy density, ρ Λ = Λ/(8π G), namely one that has remained immutable since the origin of time. A smoothly evolving vacuum energy density ρ Λ = ρ Λ (ξ(t)) that inherits its time-dependence from cosmological functions ξ = ξ(t), such as the Hubble rate H(t) or the scale factor a(t), is not only a qualitatively more plausible and intuitive idea, but is also suggested by fundamental physics, in particular by quantum field theory (QFT) in curved space-time. To implement this notion, is not strictly necessary to resort to ad hoc scalar fields, as usually done in the literature (e.g. in quintessence formulations and the like). A 'running' Λ term can be expected on very similar grounds as one expects (and observes) the running of couplings and masses with a physical energy scale in QFT. Furthermore, the experimental evidence that the equation of state (EOS) of the dark energy (DE) could be evolving with time/redshift (including the possibility that it might currently behave phantom-like) suggests that a time-variable Λ = Λ(t) term (possibly accompanied by a variable Newton's gravitational coupling too, G = G(t)) could account in a natural way for all these features. Remarkably enough, a class of these models (the 'new cosmon') could even be the clue for solving the old cosmological constant problem, including the coincidence problem.
Time-Dependent Variations of Accretion Disk
Directory of Open Access Journals (Sweden)
Hye-Weon Na
1987-06-01
Full Text Available In dward nova we assume the primary star as a white dwarf and the secondary as the late type star which filled Roche lobe. Mass flow from the secondary star leads to the formation of thin accretion disk around the white dwarf. We use the α parameter as viscosity to maintain the disk form and propose that the outburst in dwarf nova cause the steep increase of source term. With these assumptions we solve the basic equations of stellar structure using Newton-Raphson method. We show the physical parameters like temperature, density, pressure, opacity, surface density, height and flux to the radius of disk. Changing the value of α, we compare several parameters when mass flow rate is constant with those of when luminosity of disk is brightest. At the same time, we obtain time-dependent variations of luminosity and mass of disk. We propose the suitable range of α is 0.15-0.18 to the difference of luminosity. We compare several parameters of disk with those of the normal late type stars which have the same molecular weight of disk is lower. Maybe the outburst in dwarf nova is due to the variation of the α value instead of increment of mass flow from the secondary star.
Time dependent mean-field games
Gomes, Diogo A.
2014-01-06
We consider time dependent mean-field games (MFG) with a local power-like dependence on the measure and Hamiltonians satisfying both sub and superquadratic growth conditions. We establish existence of smooth solutions under a certain set of conditions depending both on the growth of the Hamiltonian as well as on the dimension. In the subquadratic case this is done by combining a Gagliardo-Nirenberg type of argument with a new class of polynomial estimates for solutions of the Fokker-Planck equation in terms of LrLp- norms of DpH. These techniques do not apply to the superquadratic case. In this setting we recur to a delicate argument that combines the non-linear adjoint method with polynomial estimates for solutions of the Fokker-Planck equation in terms of L1L1-norms of DpH. Concerning the subquadratic case, we substantially improve and extend the results previously obtained. Furthermore, to the best of our knowledge, the superquadratic case has not been addressed in the literature yet. In fact, it is likely that our estimates may also add to the current understanding of Hamilton-Jacobi equations with superquadratic Hamiltonians.
Time-dependent EQPET analysis of TSC
International Nuclear Information System (INIS)
Takahashi, Akito
2006-01-01
Time-dependent fusion rates for 2D and 4D reactions are calculated for squeezing of tetrahedral symmetric condensate (TSC) from about 100 pm size to its minimum size (about 10 fm), within about 75 fs squeezing motion. Life time of the minimum TSC state is yet to be studied. Time-averaged fusion rates are given by assuming the life time of minimum TSC state is negligible. Time-averaged 2D fusion rate was given as 2.9x10 -25 f/s/pair, and time-averaged 4D fusion rate was 5.5x10 -8 f/s/cl. These values are compared with 1.0x10 -20 f/s/pair for 2D and 1.0x10 -9 f/s/cl for 4D, respectively, of previously estimated values by electronic quasi-particle expansion theory/TSC models. Effective fusion time by the TSC squeezing motion was estimated as 0.014 fs: namely fusions may happen in very short time interval. (author)
Deformation aspects of time dependent fracture
International Nuclear Information System (INIS)
Li, C.Y.; Turner, A.P.L.; Diercks, D.R.; Laird, C.; Langdon, T.G.; Nix, W.D.; Swindeman, R.; Wolfer, W.G.; Woodford, D.A.
1979-01-01
For all metallic materials, particularly at elevated temperatures, deformation plays an important role in fracture. On the macro-continuum level, the inelastic deformation behavior of the material determines how stress is distributed in the body and thus determines the driving force for fracture. At the micro-continuum level, inelastic deformation alters the elastic stress singularity at the crack tip and so determines the local environment in which crack advance takes place. At the microscopic and mechanistic level, there are many possibilities for the mechanisms of deformation to be related to those for crack initiation and growth. At elevated temperatures, inelastic deformation in metallic systems is time dependent so that the distribution of stress in a body will vary with time, affecting conditions for crack initiation and propagation. Creep deformation can reduce the tendency for fracture by relaxing the stresses at geometric stress concentrations. It can also, under suitable constraints, cause a concentration of stresses at specific loading points as a result of relaxation elsewhere in the body. A combination of deformation and unequal heating, as in welding, can generate large residual stress which cannot be predicted from the external loads on the body. Acceleration of deformation by raising the temperature can be an effective way to relieve such residual stresses
System reliability time-dependent models
International Nuclear Information System (INIS)
Debernardo, H.D.
1991-06-01
A probabilistic methodology for safety system technical specification evaluation was developed. The method for Surveillance Test Interval (S.T.I.) evaluation basically means an optimization of S.T.I. of most important system's periodically tested components. For Allowed Outage Time (A.O.T.) calculations, the method uses system reliability time-dependent models (A computer code called FRANTIC III). A new approximation, which was called Independent Minimal Cut Sets (A.C.I.), to compute system unavailability was also developed. This approximation is better than Rare Event Approximation (A.E.R.) and the extra computing cost is neglectible. A.C.I. was joined to FRANTIC III to replace A.E.R. on future applications. The case study evaluations verified that this methodology provides a useful probabilistic assessment of surveillance test intervals and allowed outage times for many plant components. The studied system is a typical configuration of nuclear power plant safety systems (two of three logic). Because of the good results, these procedures will be used by the Argentine nuclear regulatory authorities in evaluation of technical specification of Atucha I and Embalse nuclear power plant safety systems. (Author) [es
Time-dependent correlations in electricity markets
International Nuclear Information System (INIS)
Alvarez-Ramirez, Jose; Escarela-Perez, Rafael
2010-01-01
In the last years, many electricity markets were subjected to deregulated operation where prices are set by the action of market participants. In this form, producers and consumers rely on demand and price forecasts to decide their bidding strategies, allocate assets, negotiate bilateral contracts, hedge risks, and plan facility investments. A basic feature of efficient market hypothesis is the absence of correlations between price increments over any time scale leading to random walk-type behavior of prices, so arbitrage is not possible. However, recent studies have suggested that this is not the case and correlations are present in the behavior of diverse electricity markets. In this paper, a temporal quantification of electricity market correlations is made by means of detrended fluctuation and Allan analyses. The approach is applied to two Canadian electricity markets, Ontario and Alberta. The results show the existence of correlations in both demand and prices, exhibiting complex time-dependent behavior with lower correlations in winter while higher in summer. Relatively steady annual cycles in demand but unstable cycles in prices are detected. On the other hand, the more significant nonlinear effects (measured in terms of a multifractality index) are found for winter months, while the converse behavior is displayed during the summer period. In terms of forecasting models, our results suggest that nonlinear recursive models (e.g., feedback NNs) should be used for accurate day-ahead price estimation. In contrast, linear models can suffice for demand forecasting purposes. (author)
Time-dependent crashworthiness of polyurethane foam
Basit, Munshi Mahbubul; Cheon, Seong Sik
2018-05-01
Time-dependent stress-strain relationship as well as crashworthiness of polyurethane foam was investigated under constant impact energy with different velocities, considering inertia and strain-rate effects simultaneously during the impact testing. Even though the impact energies were same, the percentage in increase in densification strain due to higher impact velocities was found, which yielded the wider plateau region, i.e. growth in crashworthiness. This phenomenon is analyzed by the microstructure of polyurethane foam obtained from scanning electron microscopy. The equations, coupled with the Sherwood-Frost model and the impulse-momentum theory, were employed to build the constitutive equation of the polyurethane foam and calculate energy absorption capacity of the foam. The nominal stress-strain curves obtained from the constitutive equation were compared with results from impact tests and were found to be in good agreement. This study is dedicated to guiding designer use polyurethane foam in crashworthiness structures such as an automotive bumper system by providing crashworthiness data, determining the crush mode, and addressing a mathematical model of the crashworthiness.
Time-dependent radioactivity distribution in MAFF
International Nuclear Information System (INIS)
Nebel, F.; Zech, E.; Faestermann, T.; Kruecken, R.; Maier-Komor, P.; Assmann, W.; Szerypo, J.; Gross, M.; Kester, O.; Thirolf, P.G.; Groetzschel, R.
2006-01-01
The Munich Accelerator for Fission Fragments is planned to be installed at the FRM II in Garching. It will operate a uranium-carbide-loaded graphite matrix as a target for neutron-induced fission. The radioactive reaction fragments leave the ion source as both, atoms and ions. For radiation safety it is imperative to have a basic understanding of the fragment distribution within the beam line. Atoms leaving the graphite matrix will spread like a gas and stick to surfaces depending on their species. A probabilistic Monte-Carlo approach is used to predict the surface coating of internal surfaces of the beam line for all fission nuclides. To decrease calculation time, the problem is reduced to two dimensions with the surface areas being a measure for the probability, that they are hit by a particle. The program is completely time dependent to implement radioactive decay. Ions leaving the fission ion source are transported by electrostatic means towards the mass pre-separator, a low-resolution dipole magnet with a complex slit system in the focal plane. All unwanted ions are stopped at the slits, resulting in a high level of radioactive contamination. While it is advantageous for shielding purposes to have the majority of the contamination in one point, precautions must be taken to ensure that it stays that way. Material corrosion caused by sputtering will release previously implanted radionuclides. To reduce this effect, different methods are under investigation, one of which is changing the slit geometry. The considered designs will be described and experimental results will be shown
Inflection point inflation and time dependent potentials in string theory
International Nuclear Information System (INIS)
Itzhaki, Nissan; Kovetz, Ely D.
2007-01-01
We consider models of inflection point inflation. The main drawback of such models is that they suffer from the overshoot problem. Namely the initial condition should be fine tuned to be near the inflection point for the universe to inflate. We show that stringy realizations of inflection point inflation are common and offer a natural resolution to the overshoot problem
Estimation of time-dependent input from neuronal membrane potential
Czech Academy of Sciences Publication Activity Database
Kobayashi, R.; Shinomoto, S.; Lánský, Petr
2011-01-01
Roč. 23, č. 12 (2011), s. 3070-3093 ISSN 0899-7667 R&D Projects: GA MŠk(CZ) LC554; GA ČR(CZ) GAP103/11/0282 Institutional research plan: CEZ:AV0Z50110509 Keywords : neuronal coding * statistical estimation * Bayes method Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.884, year: 2011
Time-dependent Kohn-Sham approach to quantum electrodynamics
International Nuclear Information System (INIS)
Ruggenthaler, M.; Mackenroth, F.; Bauer, D.
2011-01-01
We prove a generalization of the van Leeuwen theorem toward quantum electrodynamics, providing the formal foundations of a time-dependent Kohn-Sham construction for coupled quantized matter and electromagnetic fields. We circumvent the symmetry-causality problems associated with the action-functional approach to Kohn-Sham systems. We show that the effective external four-potential and four-current of the Kohn-Sham system are uniquely defined and that the effective four-current takes a very simple form. Further we rederive the Runge-Gross theorem for quantum electrodynamics.
Lee, Kyung Min; Tondiglia, Vincent P.; Bunning, Timothy J.; White, Timothy J.
2017-02-01
Recently, we reported direct current (DC) field controllable electro-optic (EO) responses of negative dielectric anisotropy polymer stabilized cholesteric liquid crystals (PSCLCs). A potential mechanism is: Ions in the liquid crystal mixtures are trapped in/on the polymer network during the fast photopolymerization process, and the movement of ions by the application of the DC field distorts polymer network toward the negative electrode, inducing pitch variation through the cell thickness, i.e., pitch compression on the negative electrode side and pitch expansion on positive electrode side. As the DC voltage is directly applied to a target voltage, charged polymer network is deformed and the reflection band is tuned. Interestingly, the polymer network deforms further (red shift of reflection band) with time when constantly applied DC voltage, illustrating DC field induced time dependent deformation of polymer network (creep-like behavior). This time dependent reflection band changes in PSCLCs are investigated by varying the several factors, such as type and concentration of photoinitiators, liquid crystal monomer content, and curing condition (UV intensity and curing time). In addition, simple linear viscoelastic spring-dashpot models, such as 2-parameter Kelvin and 3-parameter linear models, are used to investigate the time-dependent viscoelastic behaviors of polymer networks in PSCLC.
Exact solutions of time-dependent Dirac equations and the quantum-classical correspondence
International Nuclear Information System (INIS)
Zhang Zhiguo
2006-01-01
Exact solutions to the Dirac equations with a time-dependent mass and a static magnetic field or a time-dependent linear potential are given. Matrix elements of the coordinate, momentum and velocity operator are calculated. In the large quantum number limit, these matrix elements give the classical solution
Time Dependent Data Mining in RAVEN
Energy Technology Data Exchange (ETDEWEB)
Cogliati, Joshua Joseph [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chen, Jun [Idaho National Lab. (INL), Idaho Falls, ID (United States); Patel, Japan Ketan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Maljovec, Daniel Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Talbot, Paul William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2016-09-01
RAVEN is a generic software framework to perform parametric and probabilistic analysis based on the response of complex system codes. The goal of this type of analyses is to understand the response of such systems in particular with respect their probabilistic behavior, to understand their predictability and drivers or lack of thereof. Data mining capabilities are the cornerstones to perform such deep learning of system responses. For this reason static data mining capabilities were added last fiscal year (FY 15). In real applications, when dealing with complex multi-scale, multi-physics systems it seems natural that, during transients, the relevance of the different scales, and physics, would evolve over time. For these reasons the data mining capabilities have been extended allowing their application over time. In this writing it is reported a description of the new RAVEN capabilities implemented with several simple analytical tests to explain their application and highlight the proper implementation. The report concludes with the application of those newly implemented capabilities to the analysis of a simulation performed with the Bison code.
Exponential time-dependent perturbation theory in rotationally inelastic scattering
International Nuclear Information System (INIS)
Cross, R.J.
1983-01-01
An exponential form of time-dependent perturbation theory (the Magnus approximation) is developed for rotationally inelastic scattering. A phase-shift matrix is calculated as an integral in time over the anisotropic part of the potential. The trajectory used for this integral is specified by the diagonal part of the potential matrix and the arithmetic average of the initial and final velocities and the average orbital angular momentum. The exponential of the phase-shift matrix gives the scattering matrix and the various cross sections. A special representation is used where the orbital angular momentum is either treated classically or may be frozen out to yield the orbital sudden approximation. Calculations on Ar+N 2 and Ar+TIF show that the theory generally gives very good agreement with accurate calculations, even where the orbital sudden approximation (coupled-states) results are seriously in error
Romero-Oliva, Claudia Suseth; Contardo-Jara, Valeska; Pflugmacher, Stephan
2015-06-01
Microcystins (MCs) produced by cyanobacteria in natural environments are a potential risk to the integrity of ecosystems. In this study, the effects of cyanobacterial cell-free crude extracts from a Microcystis aeruginosa bloom containing three MC-congeners MC-LR, -RR, and -YR at environmental relevant concentrations of 49.3±2.9, 49.8±5.9, and 6.9±3.8μg/L, respectively, were evaluated on Ceratophyllum demersum (L.), Egeria densa (Planch.), and Hydrilla verticillata (L.f.). Effects on photosynthetic pigments (total chlorophyll (chl), chl a, chl b, and carotenoids), enzymatic defense led by catalase (CAT), peroxidase (POD) and glutathione reductase (GR), and biotransformation enzyme glutathione S-transferase (GST) were measured after 1, 4, and 8h and after 1, 3, 7, and 14 days of exposure. Results show that in all exposed macrophytes, photosynthetic pigments were negatively affected. While chl a and total chl decreased with increasing exposure time, a parallel increase in chl b was observed after 8h. Concomitant increase of ∼5, 16, and 34% of antioxidant carotenoid concentration in exposed C. demersum, E. densa, and H. verticillata, respectively, was also displayed. Enzymatic antioxidant defense systems in all exposed macrophytes were initiated within the first hour of exposure. In exposed E. densa, highest values of CAT and GR activities were observed after 4 and 8h, respectively, while in exposed H. verticillata highest value of POD activity was observed after 8h. An early induction with a significant increase of biotransformation enzyme GST was observed in E. densa after 4h and in C. demersum and H. verticillata after 8h. These results are the first to show rapid induction of stress and further possible MC biotransformation (based on the activation of GST enzymatic activity included in MC metabolization during the biotransformation mechanism) in macrophytes exposed to crude extract containing a mixture of MCs. Copyright © 2015 Elsevier B.V. All rights
Some notes on time dependent Thomas Fermi approximation
International Nuclear Information System (INIS)
Holzwarth, G.
1979-01-01
The successful use of effective density-dependent potentials in static Hartree-Fock calculations for nuclear ground-state properties has led to the question whether it is possible to obtain significant further simplification by approximating also the kinetic energy part of the ground state energy by a functional of the local density alone. The great advantage of such an approach is that its complexity is independent of particle number; the size of the system enters only through parameters, Z and N. The simple 'extended Thomas Fermi' functionals are based on the assumption of a spherically symmetric local Fermi surface throughout the nucleus and they represent the 'liquid drop' part of the static total energy. Given this static formalism which is solved directly for the local density without considering individual particles one might ask for a possible dynamical extension in the same sense as TDHF is a dynamical extension of the static HF approach. The aim of such a Time Dependent Thomas Fermi (TDTF) approximation would be to determine directly the time-dependent local single-particle density from given initial conditions and the single-particle current density without following each particle on its individual orbit
FRANTIC: a computer code for time dependent unavailability analysis
International Nuclear Information System (INIS)
Vesely, W.E.; Goldberg, F.F.
1977-03-01
The FRANTIC computer code evaluates the time dependent and average unavailability for any general system model. The code is written in FORTRAN IV for the IBM 370 computer. Non-repairable components, monitored components, and periodically tested components are handled. One unique feature of FRANTIC is the detailed, time dependent modeling of periodic testing which includes the effects of test downtimes, test overrides, detection inefficiencies, and test-caused failures. The exponential distribution is used for the component failure times and periodic equations are developed for the testing and repair contributions. Human errors and common mode failures can be included by assigning an appropriate constant probability for the contributors. The output from FRANTIC consists of tables and plots of the system unavailability along with a breakdown of the unavailability contributions. Sensitivity studies can be simply performed and a wide range of tables and plots can be obtained for reporting purposes. The FRANTIC code represents a first step in the development of an approach that can be of direct value in future system evaluations. Modifications resulting from use of the code, along with the development of reliability data based on operating reactor experience, can be expected to provide increased confidence in its use and potential application to the licensing process
Development of constitutive model for composites exhibiting time dependent properties
International Nuclear Information System (INIS)
Pupure, L; Joffe, R; Varna, J; Nyström, B
2013-01-01
Regenerated cellulose fibres and their composites exhibit highly nonlinear behaviour. The mechanical response of these materials can be successfully described by the model developed by Schapery for time-dependent materials. However, this model requires input parameters that are experimentally determined via large number of time-consuming tests on the studied composite material. If, for example, the volume fraction of fibres is changed we have a different material and new series of experiments on this new material are required. Therefore the ultimate objective of our studies is to develop model which determines the composite behaviour based on behaviour of constituents of the composite. This paper gives an overview of problems and difficulties, associated with development, implementation and verification of such model
Time-Dependent Topology of Railway Prestressed Concrete Sleepers
Li, Dan; Ngamkhanong, Chayut; Kaewunruen, Sakdirat
2017-10-01
The railway sleepers are very important component of railway track structure. The sleepers can be manufactured by using timber, concrete, steel or other engineered materials. Nowadays, prestressed concrete has become most commonly used type of sleepers. Prestressed concrete sleepers have longer life-cycle and lower maintenance cost than reinforced concrete sleepers. They are expected to withstand high dynamic loads and harsh environments. However, durability and long-term performance of prestressed concrete sleepers are largely dependent on creep and shrinkage responses. This study investigates the long-term behaviours of prestressed concrete sleepers and proposes the shortening and deflection diagrams. Comparison between design codes of Eurocode 2 and AS3600-2009 provides the insight into the time-dependent performance of prestressed concrete sleepers. The outcome of this paper will improve the rail maintenance and inspection criteria in order to establish appropriate sensible remote track condition monitor network in practice.
A Solution of Time Dependent Schrodinger Equation by Quantum Walk
International Nuclear Information System (INIS)
Sekino, Hideo; Kawahata, Masayuki; Hamada, Shinji
2012-01-01
Time Dependent Schroedinger Equation (TDSE) with an initial Gaussian distribution, is solved by a discrete time/space Quantum Walk (QW) representing consecutive operations corresponding to a dot product of Pauli matrix and momentum operators. We call it as Schroedinger Walk (SW). Though an Hadamard Walk (HW) provides same dynamics of the probability distribution for delta-function-like initial distributions as that of the SW with a delta-function-like initial distribution, the former with a Gaussian initial distribution leads to a solution for advection of the probability distribution; the initial distribution splits into two distinctive distributions moving in opposite directions. Both mechanisms are analysed by investigating the evolution of the both amplitude components. Decoherence of the oscillating amplitudes in central region is found to be responsible for the splitting of the probability distribution in the HW.
Benchmarking time-dependent neutron problems with Monte Carlo codes
International Nuclear Information System (INIS)
Couet, B.; Loomis, W.A.
1990-01-01
Many nuclear logging tools measure the time dependence of a neutron flux in a geological formation to infer important properties of the formation. The complex geometry of the tool and the borehole within the formation does not permit an exact deterministic modelling of the neutron flux behaviour. While this exact simulation is possible with Monte Carlo methods the computation time does not facilitate quick turnaround of results useful for design and diagnostic purposes. Nonetheless a simple model based on the diffusion-decay equation for the flux of neutrons of a single energy group can be useful in this situation. A combination approach where a Monte Carlo calculation benchmarks a deterministic model in terms of the diffusion constants of the neutrons propagating in the media and their flux depletion rates thus offers the possibility of quick calculation with assurance as to accuracy. We exemplify this approach with the Monte Carlo benchmarking of a logging tool problem, showing standoff and bedding response. (author)
A gauge invariant theory for time dependent heat current
International Nuclear Information System (INIS)
Chen, Jian; ShangGuan, Minhui; Wang, Jian
2015-01-01
In this work, we develop a general gauge-invariant theory for AC heat current through multi-probe systems. Using the non-equilibrium Green’s function, a general expression for time-dependent electrothermal admittance is obtained where we include the internal potential due to the Coulomb interaction explicitly. We show that the gauge-invariant condition is satisfied for heat current if the self-consistent Coulomb interaction is considered. It is known that the Onsager relation holds for dynamic charge conductance. We show in this work that the Onsager relation for electrothermal admittance is violated, except for a special case of a quantum dot system with a single energy level. We apply our theory to a nano capacitor where the Coulomb interaction plays an essential role. We find that, to the first order in frequency, the heat current is related to the electrochemical capacitance as well as the phase accumulated in the scattering event. (paper)
TIME-DEPENDENT COROTATION RESONANCE IN BARRED GALAXIES
Energy Technology Data Exchange (ETDEWEB)
Wu, Yu-Ting; Taam, Ronald E. [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan (China); Pfenniger, Daniel, E-mail: ytwu@asiaa.sinica.edu.tw, E-mail: daniel.pfenniger@unige.ch, E-mail: taam@asiaa.sinica.edu.tw [Geneva Observatory, University of Geneva, CH-1290 Sauverny (Switzerland)
2016-10-20
The effective potential neighboring the corotation resonance region in barred galaxies is shown to be strongly time-dependent in any rotating frame, due to the competition of nearby perturbations of similar strengths with differing rotation speeds. Contrary to the generally adopted assumption that in the bar rotating frame the corotation region should possess four stationary equilibrium points (Lagrange points), with high quality N -body simulations, we localize the instantaneous equilibrium points (EPs) and find that they circulate or oscillate broadly in azimuth with respect to the pattern speeds of the inner or outer perturbations. This implies that at the particle level the Jacobi integral is not well conserved around the corotation radius. That is, angular momentum exchanges decouple from energy exchanges, enhancing the chaotic diffusion of stars through the corotation region.
Parametric Resonance in a Time-Dependent Harmonic Oscillator
Directory of Open Access Journals (Sweden)
P. N. Nesterov
2013-01-01
Full Text Available In this paper, we study the phenomenon of appearance of new resonances in a timedependent harmonic oscillator under an oscillatory decreasing force. The studied equation belongs to the class of adiabatic oscillators and arises in connection with the spectral problem for the one-dimensional Schr¨odinger equation with Wigner–von Neumann type potential. We use a specially developed method for asymptotic integration of linear systems of differential equations with oscillatory decreasing coefficients. This method uses the ideas of the averaging method to simplify the initial system. Then we apply Levinson’s fundamental theorem to get the asymptotics for its solutions. Finally, we analyze the features of a parametric resonance phenomenon. The resonant frequencies of perturbation are found and the pointwise type of the parametric resonance phenomenon is established. In conclusion, we construct an example of a time-dependent harmonic oscillator (adiabatic oscillator in which the parametric resonances, mentioned in the paper, may occur.
Stirring inertia in time-dependent low Reynolds number flows
Yecko, Philip; Luchtenburg, Dirk Martin (Mark); Forgoston, Eric; Billings, Lora
2017-11-01
Diagnosis of a kinematic flow and its transport using Lagrangian coherent structures (LCS) based on finite-time Lyapunov exponents (FTLE) neglects dynamical effects, such as pressure, as well as dynamically important constraints, such as potential vorticity conservation. Chaotic advection, on the other hand, often neglects inertial effects, which are prominent in LCS. We present results for very low Reynolds number laboratory flows, including a Stokes double gyre, vertically sheared strain and a four roll mill. Images of tracer (dye) and FTLE fields computed from particle image velocimetry (PIV) reveal complementary sets of flow structures, giving a more complete picture of transport in these flows. We confirm by computing FTLE of an exact time-dependent Stokes flow solution and present implications of these findings for inertial object transport in flows. Support of NSF DMS-1418956 is gratefully acknoweldged.
Dynamical control of matter-wave splitting using time-dependent optical lattices
DEFF Research Database (Denmark)
Park, Sung Jong; Andersen, Henrik Kjær; Mai, Sune
2012-01-01
We report on measurements of splitting Bose-Einstein condensates (BEC) by using a time-dependent optical lattice potential. First, we demonstrate the division of a BEC into a set of equally populated components by means of time-dependent control of Landau-Zener tunneling in a vertical lattice....... Finally, a combination of multiple Bragg reflections and Landau-Zener tunneling allows for the generation of macroscopic arrays of condensates with potential applications in atom optics and atom interferometry....
Exact-exchange time-dependent density-functional theory for static and dynamic polarizabilities
International Nuclear Information System (INIS)
Hirata, So; Ivanov, Stanislav; Bartlett, Rodney J.; Grabowski, Ireneusz
2005-01-01
Time-dependent density-functional theory (TDDFT) employing the exact-exchange functional has been formulated on the basis of the optimized-effective-potential (OEP) method of Talman and Shadwick for second-order molecular properties and implemented into a Gaussian-basis-set, trial-vector algorithm. The only approximation involved, apart from the lack of correlation effects and the use of Gaussian-type basis functions, was the consistent use of the adiabatic approximation in the exchange kernel and in the linear response function. The static and dynamic polarizabilities and their anisotropy predicted by the TDDFT with exact exchange (TDOEP) agree accurately with the corresponding values from time-dependent Hartree-Fock theory, the exact-exchange counterpart in the wave function theory. The TDOEP is free from the nonphysical asymptotic decay of the exchange potential of most conventional density functionals or from any other manifestations of the incomplete cancellation of the self-interaction energy. The systematic overestimation of the absolute values and dispersion of polarizabilities that plagues most conventional TDDFT cannot be seen in the TDOEP
Prospects for time-dependent asymmetries at LHCb
INSPIRE-00260500
2012-01-01
LHCb is already providing leading measurements of time-dependent CP asymmetries with 1 fb$^{-1}$ of data. With the LHCb detector, and further one with the LHCb upgrade, very high-precision time-dependent CP measurements are expected to stringently test the CKM paradigm and to the search for possible small NP effects. A review of the current precision and the prospects for these time-dependent quantities with the LHCb and LHCb upgraded detectors are summarised in this paper.
Introduction to numerical methods for time dependent differential equations
Kreiss, Heinz-Otto
2014-01-01
Introduces both the fundamentals of time dependent differential equations and their numerical solutions Introduction to Numerical Methods for Time Dependent Differential Equations delves into the underlying mathematical theory needed to solve time dependent differential equations numerically. Written as a self-contained introduction, the book is divided into two parts to emphasize both ordinary differential equations (ODEs) and partial differential equations (PDEs). Beginning with ODEs and their approximations, the authors provide a crucial presentation of fundamental notions, such as the t
A Generalized Time-Dependent Harmonic Oscillator at Finite Temperature
International Nuclear Information System (INIS)
Majima, H.; Suzuki, A.
2006-01-01
We show how a generalized time-dependent harmonic oscillator (GTHO) is extended to a finite temperature case by using thermo field dynamics (TFD). We derive the general time-dependent annihilation and creation operators for the system, and obtain the time-dependent quasiparticle annihilation and creation operators for the GTHO by using the temperature-dependent Bogoliubov transformation of TFD. We also obtain the thermal state as a two-mode squeezed vacuum state in the time-dependent case as well as in the time-independent case. The general formula is derived to calculate the thermal expectation value of operators
Spike-timing dependent plasticity in the striatum
Directory of Open Access Journals (Sweden)
Elodie Fino
2010-06-01
Full Text Available The striatum is the major input nucleus of basal ganglia, an ensemble of interconnected sub-cortical nuclei associated with fundamental processes of action-selection and procedural learning and memory. The striatum receives afferents from the cerebral cortex and the thalamus. In turn, it relays the integrated information towards the basal ganglia output nuclei through which it operates a selected activation of behavioral effectors. The striatal output neurons, the GABAergic medium-sized spiny neurons (MSNs, are in charge of the detection and integration of behaviorally relevant information. This property confers to the striatum the ability to extract relevant information from the background noise and select cognitive-motor sequences adapted to environmental stimuli. As long-term synaptic efficacy changes are believed to underlie learning and memory, the corticostriatal long-term plasticity provides a fundamental mechanism for the function of the basal ganglia in procedural learning. Here, we reviewed the different forms of spike-timing dependent plasticity (STDP occurring at corticostriatal synapses. Most of the studies have focused on MSNs and their ability to develop long-term plasticity. Nevertheless, the striatal interneurons (the fast-spiking GABAergic, the NO synthase and cholinergic interneurons also receive monosynaptic afferents from the cortex and tightly regulated corticostriatal information processing. Therefore, it is important to take into account the variety of striatal neurons to fully understand the ability of striatum to develop long-term plasticity. Corticostriatal STDP with various spike-timing dependence have been observed depending on the neuronal sub-populations and experimental conditions. This complexity highlights the extraordinary potentiality in term of plasticity of the corticostriatal pathway.
International Nuclear Information System (INIS)
1984-12-01
Reviews are presented firstly of potential events and processes which may affect the evolution of the disposal environments of low and intermediate level radioactive wastes in Britain and secondly of previous studies carried out worldwide in the field of time dependent effects. From the latter review available methodologies for incorporating time dependence into radiological assessments are identified. Finally, proposals are presented for the design and development of a time dependent effects model, based on the existing far field state model (FFSM) developed for ONWI in USA. (author)
Critique of the foundations of time-dependent density-functional theory
International Nuclear Information System (INIS)
Schirmer, J.; Dreuw, A.
2007-01-01
The general expectation that, in principle, the time-dependent density-functional theory (TDDFT) is an exact formulation of the time evolution of an interacting N-electron system is critically reexamined. It is demonstrated that the previous TDDFT foundation, resting on four theorems by Runge and Gross (RG) [Phys. Rev. Lett. 52, 997 (1984)], is invalid because undefined phase factors corrupt the RG action integral functionals. Our finding confirms much of a previous analysis by van Leeuwen [Int. J. Mod. Phys. B 15, 1969 (2001)]. To analyze the RG theorems and other aspects of TDDFT, an utmost simplification of the Kohn-Sham (KS) concept has been introduced, in which the ground-state density is obtained from a single KS equation for one spatial (spinless) orbital. The time-dependent (TD) form of this radical Kohn-Sham (rKS) scheme, which has the same validity status as the ordinary KS version, has proved to be a valuable tool for analysis. The rKS concept is used to clarify also the alternative nonvariational formulation of TD KS theory. We argue that it is just a formal theory, allowing one to reproduce but not predict the time development of the exact density of the interacting N-electron system. Besides the issue of the formal exactness of TDDFT, it is shown that both the static and time-dependent KS linear response equations neglect the particle-particle (p-p) and hole-hole (h-h) matrix elements of the perturbing operator. For a local (multiplicative) operator this does not lead to a loss of information due to a remarkable general property of local operators. Accordingly, no logical inconsistency arises with respect to DFT, because DFT requires any external potential to be local. For a general nonlocal operator the error resulting from the neglected matrix elements is of second order in the electronic repulsion
Coherent states for certain time-dependent systems
International Nuclear Information System (INIS)
Pedrosa, I.A.
1989-01-01
Hartley and Ray have constructed and studied coherent states for the time-dependent oscillator. Here we show how to construct states for more general time-dependent systems. We also show that these states are equivalent to the well-known squeezed states. (author) [pt
Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole
2018-03-01
We calculate the frequency-dependent equilibrium noise of a mesoscopic capacitor in time-dependent density functional theory (TDDFT). The capacitor is modeled as a single-level quantum dot with on-site Coulomb interaction and tunnel coupling to a nearby reservoir. The noise spectra are derived from linear-response conductances via the fluctuation-dissipation theorem. Thereby, we analyze the performance of a recently derived exchange-correlation potential with time-nonlocal density dependence in the finite-frequency linear-response regime. We compare our TDDFT noise spectra with real-time perturbation theory and find excellent agreement for noise frequencies below the reservoir temperature.
Karim, Mohammad Ehsanul; Petkau, John; Gustafson, Paul; Platt, Robert W; Tremlett, Helen
2018-06-01
In longitudinal studies, if the time-dependent covariates are affected by the past treatment, time-dependent confounding may be present. For a time-to-event response, marginal structural Cox models are frequently used to deal with such confounding. To avoid some of the problems of fitting marginal structural Cox model, the sequential Cox approach has been suggested as an alternative. Although the estimation mechanisms are different, both approaches claim to estimate the causal effect of treatment by appropriately adjusting for time-dependent confounding. We carry out simulation studies to assess the suitability of the sequential Cox approach for analyzing time-to-event data in the presence of a time-dependent covariate that may or may not be a time-dependent confounder. Results from these simulations revealed that the sequential Cox approach is not as effective as marginal structural Cox model in addressing the time-dependent confounding. The sequential Cox approach was also found to be inadequate in the presence of a time-dependent covariate. We propose a modified version of the sequential Cox approach that correctly estimates the treatment effect in both of the above scenarios. All approaches are applied to investigate the impact of beta-interferon treatment in delaying disability progression in the British Columbia Multiple Sclerosis cohort (1995-2008).
Neuromodulated Spike-Timing-Dependent Plasticity and Theory of Three-Factor Learning Rules
Directory of Open Access Journals (Sweden)
Wulfram eGerstner
2016-01-01
Full Text Available Classical Hebbian learning puts the emphasis on joint pre- and postsynaptic activity, but neglects the potential role of neuromodulators. Since neuromodulators convey information about novelty or reward, the influence of neuromodulatorson synaptic plasticity is useful not just for action learning in classical conditioning, but also to decide 'when' to create new memories in response to a flow of sensory stimuli.In this review, we focus on timing requirements for pre- and postsynaptic activity in conjunction with one or several phasic neuromodulatory signals. While the emphasis of the text is on conceptual models and mathematical theories, we also discusssome experimental evidence for neuromodulation of Spike-Timing-Dependent Plasticity.We highlight the importance of synaptic mechanisms in bridging the temporal gap between sensory stimulation and neuromodulatory signals, and develop a framework for a class of neo-Hebbian three-factor learning rules that depend on presynaptic activity, postsynaptic variables as well as the influence of neuromodulators.
Time-dependent reliability sensitivity analysis of motion mechanisms
International Nuclear Information System (INIS)
Wei, Pengfei; Song, Jingwen; Lu, Zhenzhou; Yue, Zhufeng
2016-01-01
Reliability sensitivity analysis aims at identifying the source of structure/mechanism failure, and quantifying the effects of each random source or their distribution parameters on failure probability or reliability. In this paper, the time-dependent parametric reliability sensitivity (PRS) analysis as well as the global reliability sensitivity (GRS) analysis is introduced for the motion mechanisms. The PRS indices are defined as the partial derivatives of the time-dependent reliability w.r.t. the distribution parameters of each random input variable, and they quantify the effect of the small change of each distribution parameter on the time-dependent reliability. The GRS indices are defined for quantifying the individual, interaction and total contributions of the uncertainty in each random input variable to the time-dependent reliability. The envelope function method combined with the first order approximation of the motion error function is introduced for efficiently estimating the time-dependent PRS and GRS indices. Both the time-dependent PRS and GRS analysis techniques can be especially useful for reliability-based design. This significance of the proposed methods as well as the effectiveness of the envelope function method for estimating the time-dependent PRS and GRS indices are demonstrated with a four-bar mechanism and a car rack-and-pinion steering linkage. - Highlights: • Time-dependent parametric reliability sensitivity analysis is presented. • Time-dependent global reliability sensitivity analysis is presented for mechanisms. • The proposed method is especially useful for enhancing the kinematic reliability. • An envelope method is introduced for efficiently implementing the proposed methods. • The proposed method is demonstrated by two real planar mechanisms.
Energy Technology Data Exchange (ETDEWEB)
Kapoor, Varun; Brics, Martins; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)
2013-07-01
Autoionizing states are inaccessible to time-dependent density functional theory (TDDFT) using known, adiabatic Kohn-Sham (KS) potentials. We determine the exact KS potential for a numerically exactly solvable model Helium atom interacting with a laser field that is populating an autoionizing state. The exact single-particle density of the population in the autoionizing state corresponds to that of the energetically lowest quasi-stationary state in the exact KS potential. We describe how this exact potential controls the decay by a barrier whose height and width allows for the density to tunnel out and decay with the same rate as in the ab initio time-dependent Schroedinger calculation. However, devising a useful exchange-correlation potential that is capable of governing such a scenario in general and in more complex systems is hopeless. As an improvement over TDDFT, time-dependent reduced density matrix functional theory has been proposed. We are able to obtain for the above described autoionization process the exact time-dependent natural orbitals (i.e., the eigenfunctions of the exact, time-dependent one-body reduced density matrix) and study the potentials that appear in the equations of motion for the natural orbitals and the structure of the two-body density matrix expanded in them.
Time-dependent anisotropic distributed source capability in transient 3-d transport code tort-TD
International Nuclear Information System (INIS)
Seubert, A.; Pautz, A.; Becker, M.; Dagan, R.
2009-01-01
The transient 3-D discrete ordinates transport code TORT-TD has been extended to account for time-dependent anisotropic distributed external sources. The extension aims at the simulation of the pulsed neutron source in the YALINA-Thermal subcritical assembly. Since feedback effects are not relevant in this zero-power configuration, this offers a unique opportunity to validate the time-dependent neutron kinetics of TORT-TD with experimental data. The extensions made in TORT-TD to incorporate a time-dependent anisotropic external source are described. The steady state of the YALINA-Thermal assembly and its response to an artificial square-wave source pulse sequence have been analysed with TORT-TD using pin-wise homogenised cross sections in 18 prompt energy groups with P 1 scattering order and 8 delayed neutron groups. The results demonstrate the applicability of TORT-TD to subcritical problems with a time-dependent external source. (authors)
Time-dependent transport in interacting and noninteracting resonant-tunneling systems
DEFF Research Database (Denmark)
Jauho, Antti-Pekka; Wingreen, Ned S.; Meir, Yigal
1994-01-01
noninteracting resonant-tunneling system are presented. Due to the coherence between the leads and the resonant site, the current does not follow the driving signal adiabatically: a ''ringing'' current is found as a response to a voltage pulse, and a complex time dependence results in the case of harmonic......We consider a mesoscopic region coupled to two leads under the influence of external time-dependent voltages. The time dependence is coupled to source and drain contacts, the gates controlling the tunnel-barrier heights, or to the gates that define the mesoscopic region. We derive, with the Keldysh...... nonequilibrium-Green-function technique, a formal expression for the fully nonlinear, time-dependent current through the system. The analysis admits arbitrary interactions in the mesoscopic region, but the leads are treated as noninteracting. For proportionate coupling to the leads, the time-averaged current...
Time-dependent deterministic transport on parallel architectures using PARTISN
International Nuclear Information System (INIS)
Alcouffe, R.E.; Baker, R.S.
1998-01-01
In addition to the ability to solve the static transport equation, the authors have also incorporated time dependence into the parallel S N code PARTISN. Using a semi-implicit scheme, PARTISN is capable of performing time-dependent calculations for both fissioning and pure source driven problems. They have applied this to various types of problems such as shielding and prompt fission experiments. This paper describes the form of the time-dependent equations implemented, their solution strategies in PARTISN including iteration acceleration, and the strategies used for time-step control. Results are presented for a iron-water shielding calculation and a criticality excursion in a uranium solution configuration
Time-dependent behavior of positrons in noble gases
International Nuclear Information System (INIS)
Wadehra, J.M.
1990-01-01
Both equilibrium and nonequilibrium behaviors of positrons in several noble gases are reviewed. Our novel procedure for obtaining the time-dependent behavior of various swarm parameters -- such as the positron drift velocity, average positron energy, positron annihilation rate (or equivalently Z eff ) etc. -- for positrons in pure ambient gases subjected to external electrostatic fields is described. Summaries of time-dependent as well as electric field-dependent results for positron swarms in various noble gases are presented. New time-dependent results for positron swarms in neon are also described in detail. 36 refs., 4 figs., 3 tabs
Evaluation of Time-Dependent Behavior of Soils
DEFF Research Database (Denmark)
Augustesen, Anders; Liingaard, Morten; Lade, Poul V.
2004-01-01
The time-dependent behavior of soils has been investigated extensively through one-dimensional and triaxial test conditions. Most of the observations in literature have focused on the determination of the time-dependent behavior of clayey soils, whereas the reported experimental studies of granular...... situation for soils. That is whether the time-dependent behavior can be characterized as isotach or nonisotach. It seems that the isotach behavior is adequate for describing the time effects in clays in most situations. But for sand, the isotach description is inadequate. Further, the phenomenon...
Physical implementation of pair-based spike timing dependent plasticity
International Nuclear Information System (INIS)
Azghadi, M.R.; Al-Sarawi, S.; Iannella, N.; Abbott, D.
2011-01-01
Full text: Objective Spike-timing-dependent plasticity (STOP) is one of several plasticity rules which leads to learning and memory in the brain. STOP induces synaptic weight changes based on the timing of the pre- and post-synaptic neurons. A neural network which can mimic the adaptive capability of biological brains in the temporal domain, requires the weight of single connections to be altered by spike timing. To physically realise this network into silicon, a large number of interconnected STOP circuits on the same substrate is required. This imposes two significant limitations in terms of power and area. To cover these limitations, very large scale integrated circuit (VLSI) technology provides attractive features in terms of low power and small area requirements. An example is demonstrated by (lndiveli et al. 2006). The objective of this paper is to present a new implementation of the STOP circuit which demonstrates better power and area in comparison to previous implementations. Methods The proposed circuit uses complementary metal oxide semiconductor (CMOS) technology as depicted in Fig. I. The synaptic weight can be stored on a capacitor and charging/discharging current can lead to potentiation and depression. HSpice simulation results demonstrate that the average power, peak power, and area of the proposed circuit have been reduced by 6, 8 and 15%, respectively, in comparison with Indiveri's implementation. These improvements naturally lead to packing more STOP circuits onto the same substrate, when compared to previous proposals. Hence, this new implementation is quite interesting for real-world large neural networks.
K shortest paths in stochastic time-dependent networks
DEFF Research Database (Denmark)
Nielsen, Lars Relund; Pretolani, Daniele; Andersen, Kim Allan
2004-01-01
A substantial amount of research has been devoted to the shortest path problem in networks where travel times are stochastic or (deterministic and) time-dependent. More recently, a growing interest has been attracted by networks that are both stochastic and time-dependent. In these networks, the ...... present a computational comparison of time-adaptive and a priori route choices, pointing out the effect of travel time and cost distributions. The reported results show that, under realistic distributions, our solution methods are effective.......A substantial amount of research has been devoted to the shortest path problem in networks where travel times are stochastic or (deterministic and) time-dependent. More recently, a growing interest has been attracted by networks that are both stochastic and time-dependent. In these networks...
Skinner-Rusk approach to time-dependent mechanics
Cortés, Jorge; Martínez, Sonia; Cantrijn, Frans
2002-01-01
The geometric approach to autonomous classical mechanical systems in terms of a canonical first-order system on the Whitney sum of the tangent and cotangent bundle, developed by Skinner and Rusk, is extended to the time-dependent framework.
Ambiguities in the Lagrangians formalism: the time-dependent case
International Nuclear Information System (INIS)
Moreira, D.T.
1986-01-01
An intrinsic formulation of the equivalence problem for time-dependent Lagrangians is given. A new demostration of a theorem derived by Henneaux (1982) is obtained. The relationship to transformation groups is discussed. (Author) [pt
The accuracy of time dependent transport equation ergodic approximation
International Nuclear Information System (INIS)
Stancic, V.
1995-01-01
In order to predict the accuracy of the ergodic approximation for solving the time dependent transport equation, a comparison with respect to multiple collision and time finite difference methods, has been considered. (author)
Construction of an exact solution of time-dependent Ginzburg ...
Indian Academy of Sciences (India)
time-dependent Ginzburg–Landau (TDGL) equations we have calculated the ... The prototype of such equations is the parabolic reaction diffusion equation [7,8] ..... It may be possible to compare the above results with suitable experiments, ...
Time-dependent pseudo-reciprocity relations in neutronics
International Nuclear Information System (INIS)
Modak, R.S.; Sahni, D.C.
2002-01-01
Earlier, certain reciprocity-like relations have been shown to hold in some restricted steady state cases in neutron diffusion and transport theories. Here, the possibility of existence of similar relations in time-dependent situations is investigated
Time-dependent density-functional theory in the projector augmented-wave method
DEFF Research Database (Denmark)
Walter, Michael; Häkkinen, Hannu; Lehtovaara, Lauri
2008-01-01
We present the implementation of the time-dependent density-functional theory both in linear-response and in time-propagation formalisms using the projector augmented-wave method in real-space grids. The two technically very different methods are compared in the linear-response regime where we...
Geometry and dynamics with time-dependent constraints
Evans, Jonathan M.; Jonathan M Evans; Philip A Tuckey
1995-01-01
We describe how geometrical methods can be applied to a system with explicitly time-dependent second-class constraints so as to cast it in Hamiltonian form on its physical phase space. Examples of particular interest are systems which require time-dependent gauge fixing conditions in order to reduce them to their physical degrees of freedom. To illustrate our results we discuss the gauge-fixing of relativistic particles and strings moving in arbitrary background electromagnetic and antisymmetric tensor fields.
Relativistic Photoionization Computations with the Time Dependent Dirac Equation
2016-10-12
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6795--16-9698 Relativistic Photoionization Computations with the Time Dependent Dirac... Photoionization Computations with the Time Dependent Dirac Equation Daniel F. Gordon and Bahman Hafizi Naval Research Laboratory 4555 Overlook Avenue, SW...Unclassified Unlimited Unclassified Unlimited 22 Daniel Gordon (202) 767-5036 Tunneling Photoionization Ionization of inner shell electrons by laser
Stationary solution of a time dependent density matrix formalism
International Nuclear Information System (INIS)
Tohyama, Mitsuru
1994-01-01
A stationary solution of a time-dependent density-matrix formalism, which is an extension of the time-dependent Hartree-Fock theory to include the effects of two-body correlations, is obtained for the Lipkin model hamiltonian, using an adiabatic treatment of the two-body interaction. It is found that the obtained result is a reasonable approximation for the exact solution of the model. (author)
International Nuclear Information System (INIS)
Lo, C.F.
2009-01-01
By applying the standard analytical techniques of solving partial differential equations, we have obtained the exact solution in terms of the Fourier sine series to the time-dependent Schroedinger equation describing a quantum one-dimensional harmonic oscillator of time-dependent frequency confined in an infinite square well with the two walls moving along some parametric trajectories. Based upon the orthonormal basis of quasi-stationary wave functions, the exact propagator of the system has also been analytically derived. Special cases like (i) a confined free particle, (ii) a confined time-independent harmonic oscillator, and (iii) an aging oscillator are examined, and the corresponding time-dependent wave functions are explicitly determined. Besides, the approach has been extended to solve the case of a confined generalized time-dependent harmonic oscillator for some parametric moving boundaries as well. (general)
Time-dependent field equations for paraxial relativistic electron beams: Beam Research Program
International Nuclear Information System (INIS)
Sharp, W.M.; Yu, S.S.; Lee, E.P.
1987-01-01
A simplified set of field equations for a paraxial relativistic electron beam is presented. These equations for the beam electrostatic potential phi and pinch potential Phi identical to A/sub z/ - phi retain previously neglected time-dependent terms and for axisymmetric beams reduce exactly to Maxwell's equations
Time-dependent reliability analysis of flood defences
International Nuclear Information System (INIS)
Buijs, F.A.; Hall, J.W.; Sayers, P.B.; Gelder, P.H.A.J.M. van
2009-01-01
This paper describes the underlying theory and a practical process for establishing time-dependent reliability models for components in a realistic and complex flood defence system. Though time-dependent reliability models have been applied frequently in, for example, the offshore, structural safety and nuclear industry, application in the safety-critical field of flood defence has to date been limited. The modelling methodology involves identifying relevant variables and processes, characterisation of those processes in appropriate mathematical terms, numerical implementation, parameter estimation and prediction. A combination of stochastic, hierarchical and parametric processes is employed. The approach is demonstrated for selected deterioration mechanisms in the context of a flood defence system. The paper demonstrates that this structured methodology enables the definition of credible statistical models for time-dependence of flood defences in data scarce situations. In the application of those models one of the main findings is that the time variability in the deterioration process tends to be governed the time-dependence of one or a small number of critical attributes. It is demonstrated how the need for further data collection depends upon the relevance of the time-dependence in the performance of the flood defence system.
Watching excitons move: the time-dependent transition density matrix
Ullrich, Carsten
2012-02-01
Time-dependent density-functional theory allows one to calculate excitation energies and the associated transition densities in principle exactly. The transition density matrix (TDM) provides additional information on electron-hole localization and coherence of specific excitations of the many-body system. We have extended the TDM concept into the real-time domain in order to visualize the excited-state dynamics in conjugated molecules. The time-dependent TDM is defined as an implicit density functional, and can be approximately obtained from the time-dependent Kohn-Sham orbitals. The quality of this approximation is assessed in simple model systems. A computational scheme for real molecular systems is presented: the time-dependent Kohn-Sham equations are solved with the OCTOPUS code and the time-dependent Kohn-Sham TDM is calculated using a spatial partitioning scheme. The method is applied to show in real time how locally created electron-hole pairs spread out over neighboring conjugated molecular chains. The coupling mechanism, electron-hole coherence, and the possibility of charge separation are discussed.
Semiclassical approximation to time-dependent Hartree--Fock theory
International Nuclear Information System (INIS)
Dworzecka, M.; Poggioli, R.
1976-01-01
Working within a time-dependent Hartree-Fock framework, one develops a semiclassical approximation appropriate for large systems. It is demonstrated that the standard semiclassical approach, the Thomas-Fermi approximation, is inconsistent with Hartree-Fock theory when the basic two-body interaction is short-ranged (as in nuclear systems, for example). However, by introducing a simple extension of the Thomas-Fermi approximation, one overcomes this problem. One also discusses the infinite nuclear matter problem and point out that time-dependent Hartree-Fock theory yields collective modes of the zero sound variety instead of ordinary hydrodynamic (first) sound. One thus emphasizes that one should be extremely circumspect when attempting to cast the equations of motion of time-dependent Hartree-Fock theory into a hydrodynamic-like form
Quadratic time dependent Hamiltonians and separation of variables
Anzaldo-Meneses, A.
2017-06-01
Time dependent quantum problems defined by quadratic Hamiltonians are solved using canonical transformations. The Green's function is obtained and a comparison with the classical Hamilton-Jacobi method leads to important geometrical insights like exterior differential systems, Monge cones and time dependent Gaussian metrics. The Wei-Norman approach is applied using unitary transformations defined in terms of generators of the associated Lie groups, here the semi-direct product of the Heisenberg group and the symplectic group. A new explicit relation for the unitary transformations is given in terms of a finite product of elementary transformations. The sequential application of adequate sets of unitary transformations leads naturally to a new separation of variables method for time dependent Hamiltonians, which is shown to be related to the Inönü-Wigner contraction of Lie groups. The new method allows also a better understanding of interacting particles or coupled modes and opens an alternative way to analyze topological phases in driven systems.
Considering Time-Dependency of Social Vulnerability in Crisis Modeling and Management
Aubrecht, C.; Steinnocher, K.; Freire, S.; Loibl, W.; Peters-Anders, J.; Ungar, J.
2012-04-01
Crisis and disaster management is much more than the immediate first-response actions following an incident. In many projects the main focus has been on the phase starting at the point when an unwanted event happens and lasting until the activities return to normal routines (i.e., ad hoc reaction rather than proactive mitigation). There has been less emphasis on the other phases of the disaster management cycle such as prevention, preparedness, recovery and reconstruction, even though those phases have a strong influence on the general status of a society and its citizens. Especially the potential of a crisis to escalate into a large-scale disaster is heavily dependent on the overall level of preparedness as well as on the planning of mitigation and response actions and their timely execution. There is a need for improved decision-making support that enables modeling of different crisis scenarios and their impacts according to chosen prevention and response actions. Vulnerability describing the status of a society with respect to an imposed hazard or potential impact is considered a strongly multidisciplinary concept. A central objective of vulnerability assessment is to provide indications where and how people - and more specifically, what kind of people - might be affected by a certain impact. Results should provide decision- and policy-makers with supporting information to target response and mitigation actions adequately. For assessment of the social dimension of vulnerability, population exposure mapping is usually considered the starting point. Integration of social structure and varying aspects of resilience further differentiate situation-specific vulnerability patterns on a local scale. In a disaster risk management context, assessment of human vulnerability has generally been lagging behind hazard analysis efforts. Accurately estimating population exposure is a key component of catastrophe loss modeling, one element of effective integrated risk analysis
International Nuclear Information System (INIS)
Afanas'ev, G.N.; Stepanovskij, Yu.P.
1994-01-01
We investigate how the choice of the magnetization distribution inside the sample affects its interaction with the external electromagnetic field. The strong selectivity to the time dependence of the external electromagnetic field arises for the particular magnetizations. This can be used for the storage and ciphering of information. We propose a time-dependent Aharonov-Bohm-like experiment in which the phase of the wave function is changed by the time-dependent vector magnetic potential. The arising time-dependent interference picture may be viewed as a new channel for the information transfer. 15 refs., 4 figs
Vacuum radiation induced by time dependent electric field
Directory of Open Access Journals (Sweden)
Bo Zhang
2017-04-01
Full Text Available Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.
Characterization of Models for Time-Dependent Behavior of Soils
DEFF Research Database (Denmark)
Liingaard, Morten; Augustesen, Anders; Lade, Poul V.
2004-01-01
Different classes of constitutive models have been developed to capture the time-dependent viscous phenomena ~ creep, stress relaxation, and rate effects ! observed in soils. Models based on empirical, rheological, and general stress-strain-time concepts have been studied. The first part....... Special attention is paid to elastoviscoplastic models that combine inviscid elastic and time-dependent plastic behavior. Various general elastoviscoplastic models can roughly be divided into two categories: Models based on the concept of overstress and models based on nonstationary flow surface theory...
Vacuum radiation induced by time dependent electric field
Energy Technology Data Exchange (ETDEWEB)
Zhang, Bo, E-mail: zhangbolfrc@caep.cn [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Zhang, Zhi-meng; Hong, Wei; He, Shu-Kai; Teng, Jian [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Gu, Yu-qiu, E-mail: yqgu@caep.cn [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China)
2017-04-10
Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED) will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.
Time dependent density matrix theory and effective interaction
Energy Technology Data Exchange (ETDEWEB)
Tohyama, Mitsuru [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine
1998-07-01
A correlated ground state of {sup 16}O and an E2 giant resonance built on it are calculated using an extended version of the time-dependent Hartree-Fock theory called the time-dependent density-matrix theory (TDDM). The Skyrme force is used in the calculation of both a mean field and two-body correlations. It is found that TDDM gives reasonable ground-state correlations and a large spreading width of the E2 giant resonance when single-particle states in the continuum are treated appropriately. (author)
Time-dependent mechanical behavior of human amnion: Macroscopic and microscopic characterization
2014-01-01
© 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. Characterizing the mechanical response of the human amnion is essential to understand and to eventually prevent premature rupture of fetal membranes. In this study a large set of macroscopic and microscopic mechanical tests have been carried out on fresh unfixed amnion to gain insight into the time dependent material response and the underlying mechanisms. Creep and relaxation responses of amnion were characterized in...
Thyroid status affects the rat cardiac beta-adrenoceptor system transiently and time-dependently
Zwaveling, J.; Batink, H. D.; Taguchi, K.; de Jong, J.; Michel, M. C.; Pfaffendorf, M.; van Zwieten, A.
1998-01-01
1. The aim of this study was to investigate the time-dependency of the influence of dysthyroid states on the beta-adrenoceptor system in rat heart left ventricle. Therefore, the influence of acute and chronic hyper- and hypothyroidism on beta-adrenoceptor-induced left ventricular responses,
Delay differential equations and the dose-time dependence of early radiotherapy reactions
International Nuclear Information System (INIS)
Fenwick, John D.
2006-01-01
The dose-time dependence of early radiotherapy reactions impacts on the design of accelerated fractionation schedules--oral mucositis, for example, can be dose limiting for short treatments designed to avoid tumor repopulation. In this paper a framework for modeling early reaction dose-time dependence is developed. Variation of stem cell number with time after the start of a radiation schedule is modeled using a first-order delay differential equation (DDE), motivated by experimental observations linking the speed of compensatory proliferation in early reacting tissues to the degree of tissue damage. The modeling suggests that two types of early reaction radiation response are possible, stem cell numbers either monotonically approaching equilibrium plateau levels or overshooting before returning to equilibrium. Several formulas have been derived from the delay differential equation, predicting changes in isoeffective total radiation dose with schedule duration for different types of fractionation scheme. The formulas have been fitted to a wide range of published animal early reaction data, the fits all implying a degree of overshoot. Results are presented illustrating the scope of the delay differential model: most of the data are fitted well, although the model struggles with a few datasets measured for schedules with distinctive dose-time patterns. Ways of extending the current model to cope with these particular dose-time patterns are briefly discussed. The DDE approach is conceptually more complex than earlier descriptive dose-time models but potentially more powerful. It can be used to study issues not addressed by simpler models, such as the likely effects of increasing or decreasing the dose-per-day over time, or of splitting radiation courses into intense segments separated by gaps. It may also prove useful for modeling the effects of chemoirradiation
Delay differential equations and the dose-time dependence of early radiotherapy reactions.
Fenwick, John D
2006-09-01
The dose-time dependence of early radiotherapy reactions impacts on the design of accelerated fractionation schedules--oral mucositis, for example, can be dose limiting for short treatments designed to avoid tumor repopulation. In this paper a framework for modeling early reaction dose-time dependence is developed. Variation of stem cell number with time after the start of a radiation schedule is modeled using a first-order delay differential equation (DDE), motivated by experimental observations linking the speed of compensatory proliferation in early reacting tissues to the degree of tissue damage. The modeling suggests that two types of early reaction radiation response are possible, stem cell numbers either monotonically approaching equilibrium plateau levels or overshooting before returning to equilibrium. Several formulas have been derived from the delay differential equation, predicting changes in isoeffective total radiation dose with schedule duration for different types of fractionation scheme. The formulas have been fitted to a wide range of published animal early reaction data, the fits all implying a degree of overshoot. Results are presented illustrating the scope of the delay differential model: most of the data are fitted well, although the model struggles with a few datasets measured for schedules with distinctive dose-time patterns. Ways of extending the current model to cope with these particular dose-time patterns are briefly discussed. The DDE approach is conceptually more complex than earlier descriptive dose-time models but potentially more powerful. It can be used to study issues not addressed by simpler models, such as the likely effects of increasing or decreasing the dose-per-day over time, or of splitting radiation courses into intense segments separated by gaps. It may also prove useful for modeling the effects of chemoirradiation.
Jin, Jingyu; Song, Dongxing; Geng, Jiafeng; Jing, Dengwei
2018-02-01
Ferrofluids can exhibit the anisotropic thermodynamic properties under magnetic fields. The dynamic optical properties of ferrofluids in the presence of magnetic fields are of particular interest due to their potential application as various optical devices. Although time-dependent light scattering by ferrofluids have been extensively studied, the effect of wavelength of incident light have been rarely considered. Here, for the first time, we investigated both the time- and wavelength-dependent light scattering in water based ferrofluids containing Fe3O4 nanoparticles under an external magnetic field. The field-induced response behavior of the prepared ferrofluid samples was determined and verified first by thermal conductivity measurement and numerical simulation. Double-beam UV-Vis spectrophotometer was employed to record the temporal evolution of transmitted intensity of incident light of various wavelengths passing through the ferrofluid sample and propagating parallel to the applied field. As expected, the light intensity decreases to a certain value right after the field is turned on due to the thermal fluctuation induced disorder inside the flexible particle chains. Then the light intensity further decreases with time until the appearance of a minimum at time τ0 followed by an inversed increase before finally reaches equilibrium at a particular time. More importantly, the characteristic inversion time τ0 was found to follow a power law increase with the wavelength of incident light (τ0 ∼ λα, where α = 2.07). A quantitative explanation for the wavelength dependence of characteristic time was proposed based on the finite-difference time-domain (FDTD) method. The simulation results are in good agreement with our experimental observations. The time-dependent light scattering in ferrofluids under different incident wavelengths was rationalized by considering both the coarsening process of the particle chains and the occurrence of resonance within the
Student Understanding of Time Dependence in Quantum Mechanics
Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.
2015-01-01
The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing…
Vehicle routing with stochastic time-dependent travel times
Lecluyse, C.; Woensel, van T.; Peremans, H.
2009-01-01
Assigning and scheduling vehicle routes in a stochastic time-dependent environment is a crucial management problem. The assumption that in a real-life environment everything goes according to an a priori determined static schedule is unrealistic. Our methodology builds on earlier work in which the
Thermal state of the general time-dependent harmonic oscillator
Indian Academy of Sciences (India)
Taking advantage of dynamical invariant operator, we derived quantum mechanical solution of general time-dependent harmonic oscillator. The uncertainty relation of the system is always larger than ħ=2 not only in number but also in the thermal state as expected. We used the diagonal elements of density operator ...
Ranking paths in stochastic time-dependent networks
DEFF Research Database (Denmark)
Nielsen, Lars Relund; Andersen, Kim Allan; Pretolani, Daniele D.
2014-01-01
In this paper we address optimal routing problems in networks where travel times are both stochastic and time-dependent. In these networks, the best route choice is not necessarily a path, but rather a time-adaptive strategy that assigns successors to nodes as a function of time. Nevertheless, in...
Review of time-dependent fatigue behaviour of structural alloys
International Nuclear Information System (INIS)
Greenstreet, W.L.
1978-01-01
A review and assessment of time-dependent fatigue was needed to provide an understanding of time-dependent fatigue processes, to define the limits of our present knowledge, and to establish bases for the development of verified design methods for structural components and systems for operation at elevated temperatures. This report reviews the present state of understanding of that phenomena, commonly called 'creep fatigue', and separates it into crack-initiation and crack propagation processes. Criteria for describing material behavior for each of these processes are discussed and described within the extent of present knowledge, which is limited largely to experience with one-dimensional loading. Behaviors of types 304 and 316 stainless steel are emphasized. Much of the treatment of time-dependent failure present here is new and of a developing nature; areas of agreement and areas requiring further resolution are enumerated'. These words are from the abstract of the report on a comprehensive study of time-dependent fatigue. This paper briefly reviews some of the contents and discusses important conclusions reached, especially in terms of current status and needs for additional work. (Auth.)
Quantifying Time Dependent Moisture Storage and Transport Properties
DEFF Research Database (Denmark)
Peuhkuri, Ruut H
2003-01-01
This paper describes an experimental and numerical approach to quantify the time dependence of sorption mechanisms for some hygroscopic building - mostly insulation - materials. Some investigations of retarded sorption and non-Fickian phenomena, mostly on wood, have given inspiration to the present...
Simulation of compressible viscous flow in time-dependent domains
Czech Academy of Sciences Publication Activity Database
Česenek, J.; Feistauer, M.; Horáček, Jaromír; Kučera, V.; Prokopova, J.
2013-01-01
Roč. 219, č. 13 (2013), s. 7139-7150 ISSN 0096-3003 R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional support: RVO:61388998 Keywords : time dependent domain * ALE method * semi-implicit time discretization * shock indicator Subject RIV: BI - Acoustics Impact factor: 1.600, year: 2013
Cumulative Beam Breakup with Time-Dependent Parameters
Delayen, J R
2004-01-01
A general analytical formalism developed recently for cumulative beam breakup (BBU) in linear accelerators with arbitrary beam current profile and misalignments [1] is extended to include time-dependent parameters such as energy chirp or rf focusing in order to reduce BBU-induced instabilities and emittance growth. Analytical results are presented and applied to practical accelerator configurations.
Unit-time scheduling problems with time dependent resources
Tautenhahn, T.; Woeginger, G.
1997-01-01
We investigate the computational complexity of scheduling problems, where the operations consume certain amounts of renewable resources which are available in time-dependent quantities. In particular, we consider unit-time open shop problems and unit-time scheduling problems with identical parallel
Quadratic time dependent Hamiltonians and separation of variables
International Nuclear Information System (INIS)
Anzaldo-Meneses, A.
2017-01-01
Time dependent quantum problems defined by quadratic Hamiltonians are solved using canonical transformations. The Green’s function is obtained and a comparison with the classical Hamilton–Jacobi method leads to important geometrical insights like exterior differential systems, Monge cones and time dependent Gaussian metrics. The Wei–Norman approach is applied using unitary transformations defined in terms of generators of the associated Lie groups, here the semi-direct product of the Heisenberg group and the symplectic group. A new explicit relation for the unitary transformations is given in terms of a finite product of elementary transformations. The sequential application of adequate sets of unitary transformations leads naturally to a new separation of variables method for time dependent Hamiltonians, which is shown to be related to the Inönü–Wigner contraction of Lie groups. The new method allows also a better understanding of interacting particles or coupled modes and opens an alternative way to analyze topological phases in driven systems. - Highlights: • Exact unitary transformation reducing time dependent quadratic quantum Hamiltonian to zero. • New separation of variables method and simultaneous uncoupling of modes. • Explicit examples of transformations for one to four dimensional problems. • New general evolution equation for quadratic form in the action, respectively Green’s function.
Investment horizons : A time-dependent measure of asset performance
Ingve Simonsen; Anders Johansen; Mogens H. Jensen
2005-01-01
We review a resent {\\em time-dependent} performance measure for economical time series -- the (optimal) investment horizon approach. For stock indices, the approach shows a pronounced gain-loss asymmetry that is {\\em not} observed for the individual stocks that comprise the index. This difference may hint towards an synchronize of the draw downs of the stocks.
Multicomponent density-functional theory for time-dependent systems
Butriy, O.; Ebadi, H.; de Boeij, P. L.; van Leeuwen, R.; Gross, E. K. U.
2007-01-01
We derive the basic formalism of density functional theory for time-dependent electron-nuclear systems. The basic variables of this theory are the electron density in body-fixed frame coordinates and the diagonal of the nuclear N-body density matrix. The body-fixed frame transformation is carried
Propagator of a time-dependent unbound quadratic Hamiltonian system
International Nuclear Information System (INIS)
Yeon, K.H.; Kim, H.J.; Um, C.I.; George, T.F.; Pandey, L.N.
1996-01-01
The propagator for a time-dependent unbound quadratic Hamiltonian system is explicitly evaluated using the path integral method. Two time-invariant quantities of the system are found where these invariants determine whether or not the system is bound. Several examples are considered to illustrate that the propagator obtained for the unbound systems is correct
Measuring time-dependent deformations in metallic MEMS
Bergers, L.I.J.C.; Hoefnagels, J.P.M.; Delhey, N.K.R.; Geers, M.G.D.
2011-01-01
The reliability of metallic microelectromechanical systems (MEMS) depends on time-dependent deformation such as creep. Key to this process is the interaction between microstructural length scales and dimensional length scales, so-called size-effects. As a first critical step towards studying these
Construction of time-dependent dynamical invariants: A new approach
International Nuclear Information System (INIS)
Bertin, M. C.; Pimentel, B. M.; Ramirez, J. A.
2012-01-01
We propose a new way to obtain polynomial dynamical invariants of the classical and quantum time-dependent harmonic oscillator from the equations of motion. We also establish relations between linear and quadratic invariants, and discuss how the quadratic invariant can be related to the Ermakov invariant.
Time-dependent quantum fluid density functional theory of hydrogen ...
Indian Academy of Sciences (India)
A time-dependent generalized non-linear Schrödinger equation (GNLSE) of motion was earlier derived in our laboratory by combining density functional theory and quantum fluid dynamics in threedimensional space. In continuation of the work reported previously, the GNLSE is applied to provide additional knowledge on ...
Distributional curvature of time-dependent cosmic strings
Wilson, J P
1997-01-01
Colombeau's theory of generalised functions is used to calculate the contributions, at the rotation axis, to the distributional curvature for a time-dependent radiating cosmic string, and hence the mass per unit length of the string source. This mass per unit length is compared with the mass at null infinity, giving evidence for a global energy conservation law.
Introduction to quantum mechanics a time-dependent perspective
Tannor, David J
2007-01-01
"Introduction to Quantum Mechanics" covers quantum mechanics from a time-dependent perspective in a unified way from beginning to end. Intended for upper-level undergraduate and graduate courses this text will change the way people think about and teach quantum mechanics in chemistry and physics departments.
Inhibitory Synaptic Plasticity - Spike timing dependence and putative network function.
Directory of Open Access Journals (Sweden)
Tim P Vogels
2013-07-01
Full Text Available While the plasticity of excitatory synaptic connections in the brain has been widely studied, the plasticity of inhibitory connections is much less understood. Here, we present recent experimental and theoretical □ndings concerning the rules of spike timing-dependent inhibitory plasticity and their putative network function. This is a summary of a workshop at the COSYNE conference 2012.
Asymptotic time dependent neutron transport in multidimensional systems
International Nuclear Information System (INIS)
Nagy, M.E.; Sawan, M.E.; Wassef, W.A.; El-Gueraly, L.A.
1983-01-01
A model which predicts the asymptotic time behavior of the neutron distribution in multi-dimensional systems is presented. The model is based on the kernel factorization method used for stationary neutron transport in a rectangular parallelepiped. The accuracy of diffusion theory in predicting the asymptotic time dependence is assessed. The use of neutron pulse experiments for predicting the diffusion parameters is also investigated
Time-Dependent Natural Convection Couette Flow of Heat ...
African Journals Online (AJOL)
Time-Dependent Natural Convection Couette Flow of Heat Generating/Absorbing Fluid between Vertical Parallel Plates Filled With Porous Material. ... The numerical simulation conducted for some saturated liquids reveled that at t ≥ Pr the steady and unsteady state velocities (as well as the temperature of the fluid) ...
Vehicle routing with stochastic time-dependent travel times
Lecluyse, C.; Woensel, van T.; Peremans, H.
2007-01-01
Assigning and scheduling vehicle routes in a stochastic time-dependent environment is a crucial management problem. The assumption that in a real-life environment everything goes according to an a priori determined static schedule is unrealistic. Our methodology builds on earlier work in which the
Coherent states of general time-dependent harmonic oscillator
Indian Academy of Sciences (India)
Abstract. By introducing an invariant operator, we obtain exact wave functions for a general time-dependent quadratic harmonic oscillator. The coherent states, both in x- and p-spaces, are calculated. We confirm that the uncertainty product in coherent state is always larger than Η/2 and is equal to the minimum of the ...
Examining the time dependence of DAMA's modulation amplitude
Kelso, Chris; Savage, Christopher; Sandick, Pearl; Freese, Katherine; Gondolo, Paolo
2018-03-01
If dark matter is composed of weakly interacting particles, Earth's orbital motion may induce a small annual variation in the rate at which these particles interact in a terrestrial detector. The DAMA collaboration has identified at a 9.3σ confidence level such an annual modulation in their event rate over two detector iterations, DAMA/NaI and DAMA/LIBRA, each with ˜ 7 years of observations. This data is well fit by a constant modulation amplitude for the two iterations of the experiment. We statistically examine the time dependence of the modulation amplitudes, which "by eye" appear to be decreasing with time in certain energy ranges. We perform a chi-squared goodness of fit test of the average modulation amplitudes measured by the two detector iterations which rejects the hypothesis of a consistent modulation amplitude at greater than 80, 96, and 99.6% for the 2-4, 2-5 and 2-6 keVee energy ranges, respectively. We also find that among the 14 annual cycles there are three ≳ 3σ departures from the average in our estimated data in the 5-6 keVee energy range. In addition, we examined several phenomenological models for the time dependence of the modulation amplitude. Using a maximum likelihood test, we find that descriptions of the modulation amplitude as decreasing with time are preferred over a constant modulation amplitude at anywhere between 1σ and 3σ , depending on the phenomenological model for the time dependence and the signal energy range considered. A time dependent modulation amplitude is not expected for a dark matter signal, at least for dark matter halo morphologies consistent with the DAMA signal. New data from DAMA/LIBRA-phase2 will certainly aid in determining whether any apparent time dependence is a real effect or a statistical fluctuation.
Simulating transient dynamics of the time-dependent time fractional Fokker-Planck systems
Kang, Yan-Mei
2016-09-01
For a physically realistic type of time-dependent time fractional Fokker-Planck (FP) equation, derived as the continuous limit of the continuous time random walk with time-modulated Boltzmann jumping weight, a semi-analytic iteration scheme based on the truncated (generalized) Fourier series is presented to simulate the resultant transient dynamics when the external time modulation is a piece-wise constant signal. At first, the iteration scheme is demonstrated with a simple time-dependent time fractional FP equation on finite interval with two absorbing boundaries, and then it is generalized to the more general time-dependent Smoluchowski-type time fractional Fokker-Planck equation. The numerical examples verify the efficiency and accuracy of the iteration method, and some novel dynamical phenomena including polarized motion orientations and periodic response death are discussed.
Time-dependent anisotropic external sources in transient 3-D transport code TORT-TD
International Nuclear Information System (INIS)
Seubert, A.; Pautz, A.; Becker, M.; Dagan, R.
2009-01-01
This paper describes the implementation of a time-dependent distributed external source in TORT-TD by explicitly considering the external source in the ''fixed-source'' term of the implicitly time-discretised 3-D discrete ordinates transport equation. Anisotropy of the external source is represented by a spherical harmonics series expansion similar to the angular fluxes. The YALINA-Thermal subcritical assembly serves as a test case. The configuration with 280 fuel rods has been analysed with TORT-TD using cross sections in 18 energy groups and P1 scattering order generated by the KAPROS code system. Good agreement is achieved concerning the multiplication factor. The response of the system to an artificial time-dependent source consisting of two square-wave pulses demonstrates the time-dependent external source capability of TORT-TD. The result is physically plausible as judged from validation calculations. (orig.)
Modeling Time-Dependent Association in Longitudinal Data: A Lag as Moderator Approach
Selig, James P.; Preacher, Kristopher J.; Little, Todd D.
2012-01-01
We describe a straightforward, yet novel, approach to examine time-dependent association between variables. The approach relies on a measurement-lag research design in conjunction with statistical interaction models. We base arguments in favor of this approach on the potential for better understanding the associations between variables by…
The time-dependent Hartree-Fock equations with Coulomb two-body interaction
International Nuclear Information System (INIS)
Chadam, J.M.; Glassey, R.T.
1975-06-01
The existence and uniqueness of global solutions to the Cauchy problem is proved in the space of ''smooth'' density matrices for the time-dependent Hartree-Fock equations describing the motion of finite Fermi systems interacting via a Coulomb two-body potential [fr
Time-dependent approach to collisional ionization using exterior complex scaling
International Nuclear Information System (INIS)
McCurdy, C. William; Horner, Daniel A.; Rescigno, Thomas N.
2002-01-01
We present a time-dependent formulation of the exterior complex scaling method that has previously been used to treat electron-impact ionization of the hydrogen atom accurately at low energies. The time-dependent approach solves a driven Schroedinger equation, and scales more favorably with the number of electrons than the original formulation. The method is demonstrated in calculations for breakup processes in two dimensions (2D) and three dimensions for systems involving short-range potentials and in 2D for electron-impact ionization in the Temkin-Poet model for electron-hydrogen atom collisions
Form-preserving Transformations for the Time-dependent Schroedinger Equation in (n + 1) Dimensions
International Nuclear Information System (INIS)
Schulze-Halberg, Axel
2006-01-01
We define a form-preserving transformation (also called point canonical transformation) for the time-dependent Schroedinger equation (TDSE) in (n+1) dimensions. The form-preserving transformation is shown to be invertible and to preserve L 2 -normalizability. We give a class of time-dependent TDSEs that can be mapped onto stationary Schroedinger equations by our form-preserving transformation. As an example, we generate a solvable, time-dependent potential of Coulombic ring-shaped type together with the corresponding exact solution of the TDSE in (3+1) dimensions. We further consider TDSEs with position-dependent (effective) masses and show that there is no form-preserving transformation between them and the conventional TDSEs, if the spatial dimension of the system is higher than one
Quantum Drude friction for time-dependent density functional theory
Neuhauser, Daniel; Lopata, Kenneth
2008-10-01
way to very simple finite grid description of scattering and multistage conductance using time-dependent density functional theory away from the linear regime, just as absorbing potentials and self-energies are useful for noninteracting systems and leads.
Spike-timing-dependent plasticity in the human dorso-lateral prefrontal cortex.
Casula, Elias Paolo; Pellicciari, Maria Concetta; Picazio, Silvia; Caltagirone, Carlo; Koch, Giacomo
2016-12-01
Changes in the synaptic strength of neural connections are induced by repeated coupling of activity of interconnected neurons with precise timing, a phenomenon known as spike-timing-dependent plasticity (STDP). It is debated if this mechanism exists in large-scale cortical networks in humans. We combined transcranial magnetic stimulation (TMS) with concurrent electroencephalography (EEG) to directly investigate the effects of two paired associative stimulation (PAS) protocols (fronto-parietal and parieto-frontal) of pre and post-synaptic inputs within the human fronto-parietal network. We found evidence that the dorsolateral prefrontal cortex (DLPFC) has the potential to form robust STDP. Long-term potentiation/depression of TMS-evoked cortical activity is prompted after that DLPFC stimulation is followed/preceded by posterior parietal stimulation. Such bidirectional changes are paralleled by sustained increase/decrease of high-frequency oscillatory activity, likely reflecting STDP responsivity. The current findings could be important to drive plasticity of damaged cortical circuits in patients with cognitive or psychiatric disorders. Copyright Â© 2016 Elsevier Inc. All rights reserved.
Spike-Timing Dependent Plasticity in Unipolar Silicon Oxide RRAM Devices.
Zarudnyi, Konstantin; Mehonic, Adnan; Montesi, Luca; Buckwell, Mark; Hudziak, Stephen; Kenyon, Anthony J
2018-01-01
Resistance switching, or Resistive RAM (RRAM) devices show considerable potential for application in hardware spiking neural networks (neuro-inspired computing) by mimicking some of the behavior of biological synapses, and hence enabling non-von Neumann computer architectures. Spike-timing dependent plasticity (STDP) is one such behavior, and one example of several classes of plasticity that are being examined with the aim of finding suitable algorithms for application in many computing tasks such as coincidence detection, classification and image recognition. In previous work we have demonstrated that the neuromorphic capabilities of silicon-rich silicon oxide (SiO x ) resistance switching devices extend beyond plasticity to include thresholding, spiking, and integration. We previously demonstrated such behaviors in devices operated in the unipolar mode, opening up the question of whether we could add plasticity to the list of features exhibited by our devices. Here we demonstrate clear STDP in unipolar devices. Significantly, we show that the response of our devices is broadly similar to that of biological synapses. This work further reinforces the potential of simple two-terminal RRAM devices to mimic neuronal functionality in hardware spiking neural networks.
Adiabatic theorem for the time-dependent wave operator
International Nuclear Information System (INIS)
Viennot, David; Jolicard, Georges; Killingbeck, John P.; Perrin, Marie-Yvonne
2005-01-01
The application of time-dependent wave operator theory to the development of a quantum adiabatic perturbation theory is treated both theoretically and numerically, with emphasis on the description of field-matter interactions which involve short laser pulses. It is first shown that the adiabatic limit of the time-dependent wave operator corresponds to a succession of instantaneous static Bloch wave operators. Wave operator theory is then shown to be compatible with the two-time Floquet theory of light-matter interaction, thus allowing the application of Floquet theory to cases which require the use of a degenerate active space. A numerical study of some problems shows that the perturbation strength associated with nonadiabatic processes can be reduced by using multidimensional active spaces and illustrates the capacity of the wave operator approach to produce a quasiadiabatic treatment of a nominally nonadiabatic Floquet dynamical system
Nonlinear time-dependent simulation of helix traveling wave tubes
International Nuclear Information System (INIS)
Peng Wei-Feng; Yang Zhong-Hai; Hu Yu-Lu; Li Jian-Qing; Lu Qi-Ru; Li Bin
2011-01-01
A one-dimensional nonlinear time-dependent theory for helix traveling wave tubes is studied. A generalized electromagnetic field is applied to the expression of the radio frequency field. To simulate the variations of the high frequency structure, such as the pitch taper and the effect of harmonics, the spatial average over a wavelength is substituted by a time average over a wave period in the equation of the radio frequency field. Under this assumption, the space charge field of the electron beam can be treated by a space charge wave model along with the space charge coefficient. The effects of the radio frequency and the space charge fields on the electrons are presented by the equations of the electron energy and the electron phase. The time-dependent simulation is compared with the frequency-domain simulation for a helix TWT, which validates the availability of this theory. (interdisciplinary physics and related areas of science and technology)
Considerations on assessment of different time depending models adequacy
International Nuclear Information System (INIS)
Constantinescu, C.
2015-01-01
The operating period of nuclear power plants can be prolonged if it can be shown that their safety has remained on a high level, and for this, it is necessary to estimate how the aged systems, structures and components (SSCs) influence the NPP reliability and safety. To emphasize the ageing aspects the case study presented in this paper will assess different time depending models for rate of occurrence of failures with the goal to obtain the best fitting model. A sensitivity analysis for the impact of burn-in failures was performed to improve the result of the goodness of fit test. Based on the analysis results, a conclusion about the existence or the absence of an ageing trend could be developed. A sensitivity analysis regarding of the reliability parameters was performed, and the results were used to observe the impact over the time-dependent rate of occurrence of failures. (authors)
Theoretical information measurement in nonrelativistic time-dependent approach
Najafizade, S. A.; Hassanabadi, H.; Zarrinkamar, S.
2018-02-01
The information-theoretic measures of time-dependent Schrödinger equation are investigated via the Shannon information entropy, variance and local Fisher quantities. In our calculations, we consider the two first states n = 0,1 and obtain the position Sx (t) and momentum Sp (t) Shannon entropies as well as Fisher information Ix (t) in position and momentum Ip (t) spaces. Using the Fourier transformed wave function, we obtain the results in momentum space. Some interesting features of the information entropy densities ρs (x,t) and γs (p,t), as well as the probability densities ρ (x,t) and γ (p,t) for time-dependent states are demonstrated. We establish a general relation between variance and Fisher's information. The Bialynicki-Birula-Mycielski inequality is tested and verified for the states n = 0,1.
Time-dependent generalized Gibbs ensembles in open quantum systems
Lange, Florian; Lenarčič, Zala; Rosch, Achim
2018-04-01
Generalized Gibbs ensembles have been used as powerful tools to describe the steady state of integrable many-particle quantum systems after a sudden change of the Hamiltonian. Here, we demonstrate numerically that they can be used for a much broader class of problems. We consider integrable systems in the presence of weak perturbations which break both integrability and drive the system to a state far from equilibrium. Under these conditions, we show that the steady state and the time evolution on long timescales can be accurately described by a (truncated) generalized Gibbs ensemble with time-dependent Lagrange parameters, determined from simple rate equations. We compare the numerically exact time evolutions of density matrices for small systems with a theory based on block-diagonal density matrices (diagonal ensemble) and a time-dependent generalized Gibbs ensemble containing only a small number of approximately conserved quantities, using the one-dimensional Heisenberg model with perturbations described by Lindblad operators as an example.
Non-Perturbative Formulation of Time-Dependent String Solutions
Alexandre, J; Mavromatos, Nikolaos E; Alexandre, Jean; Ellis, John; Mavromatos, Nikolaos E.
2006-01-01
We formulate here a new world-sheet renormalization-group technique for the bosonic string, which is non-perturbative in the Regge slope alpha' and based on a functional method for controlling the quantum fluctuations, whose magnitudes are scaled by the value of alpha'. Using this technique we exhibit, in addition to the well-known linear-dilaton cosmology, a new, non-perturbative time-dependent background solution. Using the reparametrization invariance of the string S-matrix, we demonstrate that this solution is conformally invariant to alpha', and we give a heuristic inductive argument that conformal invariance can be maintained to all orders in alpha'. This new time-dependent string solution may be applicable to primordial cosmology or to the exit from linear-dilaton cosmology at large times.
Induced voltage due to time-dependent magnetisation textures
International Nuclear Information System (INIS)
Kudtarkar, Santosh Kumar; Dhadwal, Renu
2010-01-01
We determine the induced voltage generated by spatial and temporal magnetisation textures (inhomogeneities) in metallic ferromagnets due to the spin diffusion of non-equilibrium electrons. Using time dependent semi-classical theory as formulated in Zhang and Li and the drift-diffusion model of transport it is shown that the voltage generated depends critically on the difference in the diffusion constants of up and down spins. Including spin relaxation results in a crucial contribution to the induced voltage. We also show that the presence of magnetisation textures results in the modification of the conductivity of the system. As an illustration, we calculate the voltage generated due to a time dependent field driven helimagnet by solving the Landau-Lifshitz equation with Gilbert damping and explicitly calculate the dependence on the relaxation and damping parameters.
Time-dependent nonlinear cosmic ray shocks confirming abstract
International Nuclear Information System (INIS)
Dorfi, E.A.
1985-01-01
Numerical studies of time dependent cosmic ray shock structures in planar geometry are interesting because analytical time-independent solutions are available which include the non-linear reactions on the plasma flow. A feature of these time asymptotic solutions is that for higher Mach numbers (M approximately 5) and for a low cosmic ray upstream pressure the solution is not uniquely determined by the usual conservation laws of mass, momentum and energy. These numerical solutions clearly indicate that much work needs to be done before we understand shock acceleration as a time dependent process. The slowness of the process is possibly due to the fact that there is a diffusive flux into the downstream region in addition to the usual advective losses. Analytic investigations of this phenomenon are required
Tokamak power reactor ignition and time dependent fractional power operation
International Nuclear Information System (INIS)
Vold, E.L.; Mau, T.K.; Conn, R.W.
1986-06-01
A flexible time-dependent and zero-dimensional plasma burn code with radial profiles was developed and employed to study the fractional power operation and the thermal burn control options for an INTOR-sized tokamak reactor. The code includes alpha thermalization and a time-dependent transport loss which can be represented by any one of several currently popular scaling laws for energy confinement time. Ignition parameters were found to vary widely in density-temperature (n-T) space for the range of scaling laws examined. Critical ignition issues were found to include the extent of confinement time degradation by alpha heating, the ratio of ion to electron transport power loss, and effect of auxiliary heating on confinement. Feedback control of the auxiliary power and ion fuel sources are shown to provide thermal stability near the ignition curve
Time-dependent coupled harmonic oscillators: classical and quantum solutions
International Nuclear Information System (INIS)
Macedo, D.X.; Guedes, I.
2014-01-01
In this work we present the classical and quantum solutions for an arbitrary system of time-dependent coupled harmonic oscillators, where the masses (m), frequencies (ω) and coupling parameter (k) are functions of time. To obtain the classical solutions, we use a coordinate and momentum transformations along with a canonical transformation to write the original Hamiltonian as the sum of two Hamiltonians of uncoupled harmonic oscillators with modified time-dependent frequencies and unitary masses. To obtain the exact quantum solutions we use a unitary transformation and the Lewis and Riesenfeld (LR) invariant method. The exact wave functions are obtained by solving the respective Milne–Pinney (MP) equation for each system. We obtain the solutions for the system with m 1 = m 2 = m 0 e γt , ω 1 = ω 01 e -γt/2 , ω 2 = ω 02 e -γt/2 and k = k 0 . (author)
Time dependent non-extinction probability for prompt critical systems
International Nuclear Information System (INIS)
Gregson, M. W.; Prinja, A. K.
2009-01-01
The time dependent non-extinction probability equation is presented for slab geometry. Numerical solutions are provided for a nested inner/outer iteration routine where the fission terms (both linear and non-linear) are updated and then held fixed over the inner scattering iteration. Time dependent results are presented highlighting the importance of the injection position and angle. The iteration behavior is also described as the steady state probability of initiation is approached for both small and large time steps. Theoretical analysis of the nested iteration scheme is shown and highlights poor numerical convergence for marginally prompt critical systems. An acceleration scheme for the outer iterations is presented to improve convergence of such systems. Theoretical analysis of the acceleration scheme is also provided and the associated decrease in computational run time addressed. (authors)
Time-dependent delayed signatures from energetic photon interrogations
International Nuclear Information System (INIS)
Norman, Daren R.; Jones, James L.; Blackburn, Brandon W.; Haskell, Kevin J.; Johnson, James T.; Watson, Scott M.; Hunt, Alan W.; Spaulding, Randy; Harmon, Frank
2007-01-01
Pulsed photonuclear interrogation environments generated by 8-24 MeV electron linac are rich with time-dependent, material-specific, radiation signatures. Nitrogen-based explosives and nuclear materials can be detected by exploiting these signatures in different delayed-time regions. Numerical and experimental results presented in this paper show the unique time and energy dependence of these signatures. It is shown that appropriate delayed-time windows are essential to acquire material-specific signatures in pulsed photonuclear assessment environments. These developments demonstrate that pulsed, high-energy, photon-inspection environments can be exploited for time-dependent, material-specific signatures through the proper operation of specialized detectors and detection methods
Time-dependent phase error correction using digital waveform synthesis
Doerry, Armin W.; Buskirk, Stephen
2017-10-10
The various technologies presented herein relate to correcting a time-dependent phase error generated as part of the formation of a radar waveform. A waveform can be pre-distorted to facilitate correction of an error induced into the waveform by a downstream operation/component in a radar system. For example, amplifier power droop effect can engender a time-dependent phase error in a waveform as part of a radar signal generating operation. The error can be quantified and an according complimentary distortion can be applied to the waveform to facilitate negation of the error during the subsequent processing of the waveform. A time domain correction can be applied by a phase error correction look up table incorporated into a waveform phase generator.
Spectral methods for time dependent partial differential equations
Gottlieb, D.; Turkel, E.
1983-01-01
The theory of spectral methods for time dependent partial differential equations is reviewed. When the domain is periodic Fourier methods are presented while for nonperiodic problems both Chebyshev and Legendre methods are discussed. The theory is presented for both hyperbolic and parabolic systems using both Galerkin and collocation procedures. While most of the review considers problems with constant coefficients the extension to nonlinear problems is also discussed. Some results for problems with shocks are presented.
Time-dependent crack growth and fracture in concrete
International Nuclear Information System (INIS)
Zhou Fan Ping.
1992-02-01
The objectives of this thesis are to study time-dependent fracture behaviour in concrete. The thesis consists of an experimental study, costitutive modelling and numerical analysis. The experimental study was undertaken to investigate the influences of time on material properties for the fracture process zone and on crack growth and fracture in plain concrete structures. The experiments include tensile relaxation tests, bending tests on notched beams to determine fracture energy at varying deflection rates, and sustained bending and compact tensile tests. From the tensile relaxation tests, the envelope of the σ-w relation does not seem to be influenced by holding periods, though some local detrimental effect does occur. Fracture energy seems to decrease as rates become slower. In the sustained loading tests, deformation (deflection or CMOD) growth curves display three stages, as usually observed in a creep rupture test. The secondary stage dominates the whole failure lifetime, and the secondary deformation rate appears to have good correlation with the failure lifetime. A crack model for time-dependent fracture is proposed, by applying the idea of the Fictitious Crack Model. In this model, a modified Maxwell model is introduced for the fracture process zone incorporated with the static σ-w curve as a failure criterion, based on the observation of the tensile relaxation tests. The time-dependent σ-w curve is expressed in an incremental law. The proposed model has been implemented in a finite element program and applied to simulating sustained flexural and compact tensile tests. Numerical analysis includes simulations of crack growth, load-CMOD curves, stress-failure lifetime curves, size effects on failure life etc. The numerical results indicate that the model seems to be able to properly predict the main features of time-dependent fracture behaviour in concrete, as compared with the experimental results. 97 refs
Time-dependent histamine release from stored human blood products
DEFF Research Database (Denmark)
Nielsen, Hans Jørgen; Edvardsen, L; Vangsgaard, K
1996-01-01
.0 (range 176.0-910.0) nmol/l in whole blood and 475.0 (range 360.0-1560.0) nmol/l in plasma-reduced whole blood, while it was undetectable in SAGM blood. Spontaneous histamine release increased in a time-dependent manner from a median of 6.7 (range 2.2-17.4) nmol/l at the time of storage to 175.0 (range 33...
Distributed Scheduling in Time Dependent Environments: Algorithms and Analysis
Shmuel, Ori; Cohen, Asaf; Gurewitz, Omer
2017-01-01
Consider the problem of a multiple access channel in a time dependent environment with a large number of users. In such a system, mostly due to practical constraints (e.g., decoding complexity), not all users can be scheduled together, and usually only one user may transmit at any given time. Assuming a distributed, opportunistic scheduling algorithm, we analyse the system's properties, such as delay, QoS and capacity scaling laws. Specifically, we start with analyzing the performance while \\...
Relating Time-Dependent Acceleration and Height Using an Elevator
Kinser, Jason M.
2015-01-01
A simple experiment in relating a time-dependent linear acceleration function to height is explored through the use of a smartphone and an elevator. Given acceleration as a function of time, a(t), the velocity function and position functions are determined through integration as in v(t)=? a(t) dt (1) and x(t)=? v(t) dt. Mobile devices such as…
Time dependence of the pH of rain
John A. Kadlecek; Volkar A. Mohnen
1976-01-01
Standard procedures for determining the pH of rain samples usually involve substantial delays from the time of rainfall to the time of analysis. This assumes that no change in pH occurs during the storage period. We have found that this is not always true. We have determined that individual rain water samples possess a time dependent pH which can be correlated with the...
Analysis of multimedian problems on time dependent networks
Salman, F Sibel
1994-01-01
Ankara : The Department of Industrial Engineering and the Institute of Enginering and Science of Bilkent Univ., 1994. Thesis (Master's) -- Bilkent University, 1994. Includes bibliographical references leaves 81-85. Time dependency arises in transportation and computer-communication networks due to factors such as time varying demand, traffic intensity, and road conditions. This necessitates a locational decision to be based on an analysis involving a time horizon. In this st...
Time-dependent effects of cardiovascular exercise on memory
DEFF Research Database (Denmark)
Roig, Marc; Thomas, Richard; Mang, Cameron S
2016-01-01
We present new evidence supporting the hypothesis that the effects of cardiovascular exercise on memory can be regulated in a time-dependent manner. When the exercise stimulus is temporally coupled with specific phases of the memory formation process, a single bout of cardiovascular exercise may...... be sufficient to improve memory. SUMMARY: The timing of exercise in relation to the information to be remembered is critical to maximize the effects of acute cardiovascular exercise on memory....
Time dependent temperature distribution in pulsed Ti:sapphire lasers
Buoncristiani, A. Martin; Byvik, Charles E.; Farrukh, Usamah O.
1988-01-01
An expression is derived for the time dependent temperature distribution in a finite solid state laser rod for an end-pumped beam of arbitrary shape. The specific case of end pumping by circular (constant) or Gaussian beam is described. The temperature profile for a single pump pulse and for repetitive pulse operation is discussed. The particular case of the temperature distribution in a pulsed titanium:sapphire rod is considered.
Time-dependent diffusive acceleration of test particles at shocks
Energy Technology Data Exchange (ETDEWEB)
Drury, L.O' C. (Dublin Inst. for Advanced Studies (Ireland))
1991-07-15
The acceleration of test particles at a steady plane non-relativistic shock is considered. Analytic expressions are found for the mean and the variance of the acceleration time distribution in the case where the diffusion coefficient has an arbitrary dependence on position and momentum. These expressions are used as the basis for an approximation scheme which is shown, by comparison with numerical solutions, to give an excellent representation of the time-dependent spectrum. (author).
Time-dependent diffusive acceleration of test particles at shocks
International Nuclear Information System (INIS)
Drury, L.O'C.
1991-01-01
The acceleration of test particles at a steady plane non-relativistic shock is considered. Analytic expressions are found for the mean and the variance of the acceleration time distribution in the case where the diffusion coefficient has an arbitrary dependence on position and momentum. These expressions are used as the basis for an approximation scheme which is shown, by comparison with numerical solutions, to give an excellent representation of the time-dependent spectrum. (author)
Stochastic Landau equation with time-dependent drift
International Nuclear Information System (INIS)
Swift, J.B.; Hohenberg, P.C.; Ahlers, G.
1991-01-01
The stochastic differential equation τ 0 ∂ tA =ε(t)A-g 3 A 3 +bar f(t), where bar f(t) is Gaussian white noise, is studied for arbitrary time dependence of ε(t). In particular, cases are considered where ε(t) goes through the bifurcation of the deterministic system, which occurs at ε=0. In the limit of weak noise an approximate analytic expression generalizing earlier work of Suzuki [Phys. Lett. A 67, 339 (1978); Prog. Theor. Phys. (Kyoto) Suppl. 64, 402 (1978)] is obtained for the time-dependent distribution function P(A,t). The results compare favorably with a numerical simulation of the stochastic equation for the case of a linear ramp (both increasing and decreasing) and for a periodic time dependence of ε(t). The procedure can be generalized to an arbitrary deterministic part ∂ tA =D(A,t)+bar f(t), but the deterministic equation may then have to be solved numerically
Algebraic time-dependent variational approach to dynamical calculations
International Nuclear Information System (INIS)
Shi, S.; Rabitz, H.
1988-01-01
A set of time-dependent basis states is obtained with a group of unitary transformations generated by a Lie algebra. Applying the time-dependent variational principle to the trial function subspace constructed from the linear combination of the time-dependent basis states gives rise to a set of ''classical'' equations of motion for the group parameters and the expansion coefficients from which the time evolution of the system state can be determined. The formulation is developed for a general Lie algebra as well as for the commonly encountered algebra containing homogeneous polynominal products of the coordinate Q and momentum P operators (or equivalently the boson creation a/sup dagger/ and annihilation a operators) of order 0, 1, and 2. Explicit expressions for the transition amplitudes are derived by virtue of the cannonical transformation properties of the unitary transformation. The applicability of the present formalism in a variety of problems is implied by two illustrative examples: (a) a parametric amplifier; (b) the collinear collision of an atom with a Morse oscillator
Neutrino flavor instabilities in a time-dependent supernova model
Directory of Open Access Journals (Sweden)
Sajad Abbar
2015-12-01
Full Text Available A dense neutrino medium such as that inside a core-collapse supernova can experience collective flavor conversion or oscillations because of the neutral-current weak interaction among the neutrinos. This phenomenon has been studied in a restricted, stationary supernova model which possesses the (spatial spherical symmetry about the center of the supernova and the (directional axial symmetry around the radial direction. Recently it has been shown that these spatial and directional symmetries can be broken spontaneously by collective neutrino oscillations. In this letter we analyze the neutrino flavor instabilities in a time-dependent supernova model. Our results show that collective neutrino oscillations start at approximately the same radius in both the stationary and time-dependent supernova models unless there exist very rapid variations in local physical conditions on timescales of a few microseconds or shorter. Our results also suggest that collective neutrino oscillations can vary rapidly with time in the regimes where they do occur which need to be studied in time-dependent supernova models.
Neutrino flavor instabilities in a time-dependent supernova model
Energy Technology Data Exchange (ETDEWEB)
Abbar, Sajad; Duan, Huaiyu, E-mail: duan@unm.edu
2015-12-17
A dense neutrino medium such as that inside a core-collapse supernova can experience collective flavor conversion or oscillations because of the neutral-current weak interaction among the neutrinos. This phenomenon has been studied in a restricted, stationary supernova model which possesses the (spatial) spherical symmetry about the center of the supernova and the (directional) axial symmetry around the radial direction. Recently it has been shown that these spatial and directional symmetries can be broken spontaneously by collective neutrino oscillations. In this letter we analyze the neutrino flavor instabilities in a time-dependent supernova model. Our results show that collective neutrino oscillations start at approximately the same radius in both the stationary and time-dependent supernova models unless there exist very rapid variations in local physical conditions on timescales of a few microseconds or shorter. Our results also suggest that collective neutrino oscillations can vary rapidly with time in the regimes where they do occur which need to be studied in time-dependent supernova models.
Time-dependent fatigue--phenomenology and life prediction
International Nuclear Information System (INIS)
Coffin, L.F.
1979-01-01
The time-dependent fatigue behavior of materials used or considered for use in present and advanced systems for power generation is outlined. A picture is first presented to show how basic mechanisms and phenomenological information relate to the performance of the component under consideration through the so-called local strain approach. By this means life prediction criteria and design rules can be formulated utilizing laboratory test information which is directly translated to predicting the performance of a component. The body of phenomenological information relative to time-dependent fatigue is reviewed. Included are effects of strain range, strain rate and frequency, environment and wave shape, all of which are shown to be important in developing both an understanding and design base for time dependent fatigue. Using this information, some of the current methods being considered for the life prediction of components are reviewed. These include the current ASME code case, frequency-modified fatigue equations, strain range partitioning, the damage function method, frequency separation and damage rate equations. From this review, it is hoped that a better perspective on future directions for basic material science at high temperature can be achieved
Time-Dependent-Asymmetric-Linear-Parsimonious Ancestral State Reconstruction.
Didier, Gilles
2017-10-01
The time-dependent-asymmetric-linear parsimony is an ancestral state reconstruction method which extends the standard linear parsimony (a.k.a. Wagner parsimony) approach by taking into account both branch lengths and asymmetric evolutionary costs for reconstructing quantitative characters (asymmetric costs amount to assuming an evolutionary trend toward the direction with the lowest cost). A formal study of the influence of the asymmetry parameter shows that the time-dependent-asymmetric-linear parsimony infers states which are all taken among the known states, except for some degenerate cases corresponding to special values of the asymmetry parameter. This remarkable property holds in particular for the Wagner parsimony. This study leads to a polynomial algorithm which determines, and provides a compact representation of, the parametric reconstruction of a phylogenetic tree, that is for all the unknown nodes, the set of all the possible reconstructed states associated with the asymmetry parameters leading to them. The time-dependent-asymmetric-linear parsimony is finally illustrated with the parametric reconstruction of the body size of cetaceans.
Approximations of time-dependent phenomena in quantum mechanics: adiabatic versus sudden processes
International Nuclear Information System (INIS)
Melnichuk, S V; Dijk, W van; Nogami, Y
2005-01-01
By means of a one-dimensional model of a particle in an infinite square-well potential with one wall moving at a constant speed, we examine aspects of time-dependent phenomena in quantum mechanics such as adiabatic and sudden processes. The particle is assumed to be initially in the ground state of the potential with its initial width. The time dependence of the wavefunction of the particle in the well is generally more complicated when the potential well is compressed than when it is expanded. We are particularly interested in the case in which the potential well is suddenly compressed. The so-called sudden approximation is not applicable in this case. We also study the energy of the particle in the changing well as a function of time for expansion and contraction as well as for expansion followed by contraction and vice versa
Simulating time-dependent energy transfer between crossed laser beams in an expanding plasma
International Nuclear Information System (INIS)
Hittinger, J.A.F.; Dorr, M.R.; Berger, R.L.; Williams, E.A.
2005-01-01
A coupled mode system is derived to investigate a three-wave parametric instability leading to energy transfer between co-propagating laser beams crossing in a plasma flow. The model includes beams of finite width refracting in a prescribed transverse plasma flow with spatial and temporal gradients in velocity and density. The resulting paraxial light equations are discretized spatially with a Crank-Nicholson-type scheme, and these algebraic constraints are nonlinearly coupled with ordinary differential equations in time that describe the ion acoustic response. The entire nonlinear differential-algebraic system is solved using an adaptive, backward-differencing method coupled with Newton's method. A numerical study is conducted in two dimensions that compares the intensity gain of the fully time-dependent coupled mode system with the gain computed under the further assumption of a strongly damped ion acoustic response. The results demonstrate a time-dependent gain suppression when the beam diameter is commensurate with the velocity gradient scale length. The gain suppression is shown to depend on time-dependent beam refraction and is interpreted as a time-dependent frequency shift
Progress Report on Alloy 617 Time Dependent Allowables
Energy Technology Data Exchange (ETDEWEB)
Wright, Julie Knibloe [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-06-01
Time dependent allowable stresses are required in the ASME Boiler and Pressure Vessel Code for design of components in the temperature range where time dependent deformation (i.e., creep) is expected to become significant. There are time dependent allowable stresses in Section IID of the Code for use in the non-nuclear construction codes, however, there are additional criteria that must be considered in developing time dependent allowables for nuclear components. These criteria are specified in Section III NH. St is defined as the lesser of three quantities: 100% of the average stress required to obtain a total (elastic, plastic, primary and secondary creep) strain of 1%; 67% of the minimum stress to cause rupture; and 80% of the minimum stress to cause the initiation of tertiary creep. The values are reported for a range of temperatures and for time increments up to 100,000 hours. These values are determined from uniaxial creep tests, which involve the elevated temperature application of a constant load which is relatively small, resulting in deformation over a long time period prior to rupture. The stress which is the minimum resulting from these criteria is the time dependent allowable stress St. In this report data from a large number of creep and creep-rupture tests on Alloy 617 are analyzed using the ASME Section III NH criteria. Data which are used in the analysis are from the ongoing DOE sponsored high temperature materials program, form Korea Atomic Energy Institute through the Generation IV VHTR Materials Program and historical data from previous HTR research and vendor data generated in developing the alloy. It is found that the tertiary creep criterion determines St at highest temperatures, while the stress to cause 1% total strain controls at low temperatures. The ASME Section III Working Group on Allowable Stress Criteria has recommended that the uncertainties associated with determining the onset of tertiary creep and the lack of significant
International Nuclear Information System (INIS)
Ibarra-Sierra, V.G.; Sandoval-Santana, J.C.; Cardoso, J.L.; Kunold, A.
2015-01-01
We discuss the one-dimensional, time-dependent general quadratic Hamiltonian and the bi-dimensional charged particle in time-dependent electromagnetic fields through the Lie algebraic approach. Such method consists in finding a set of generators that form a closed Lie algebra in terms of which it is possible to express a quantum Hamiltonian and therefore the evolution operator. The evolution operator is then the starting point to obtain the propagator as well as the explicit form of the Heisenberg picture position and momentum operators. First, the set of generators forming a closed Lie algebra is identified for the general quadratic Hamiltonian. This algebra is later extended to study the Hamiltonian of a charged particle in electromagnetic fields exploiting the similarities between the terms of these two Hamiltonians. These results are applied to the solution of five different examples: the linear potential which is used to introduce the Lie algebraic method, a radio frequency ion trap, a Kanai–Caldirola-like forced harmonic oscillator, a charged particle in a time dependent magnetic field, and a charged particle in constant magnetic field and oscillating electric field. In particular we present exact analytical expressions that are fitting for the study of a rotating quadrupole field ion trap and magneto-transport in two-dimensional semiconductor heterostructures illuminated by microwave radiation. In these examples we show that this powerful method is suitable to treat quadratic Hamiltonians with time dependent coefficients quite efficiently yielding closed analytical expressions for the propagator and the Heisenberg picture position and momentum operators. -- Highlights: •We deal with the general quadratic Hamiltonian and a particle in electromagnetic fields. •The evolution operator is worked out through the Lie algebraic approach. •We also obtain the propagator and Heisenberg picture position and momentum operators. •Analytical expressions for a
Energy Technology Data Exchange (ETDEWEB)
Ibarra-Sierra, V.G.; Sandoval-Santana, J.C. [Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 México D.F. (Mexico); Cardoso, J.L. [Área de Física Teórica y Materia Condensada, Universidad Autónoma Metropolitana Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas, Azcapotzalco, 02200 México D.F. (Mexico); Kunold, A., E-mail: akb@correo.azc.uam.mx [Área de Física Teórica y Materia Condensada, Universidad Autónoma Metropolitana Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas, Azcapotzalco, 02200 México D.F. (Mexico)
2015-11-15
We discuss the one-dimensional, time-dependent general quadratic Hamiltonian and the bi-dimensional charged particle in time-dependent electromagnetic fields through the Lie algebraic approach. Such method consists in finding a set of generators that form a closed Lie algebra in terms of which it is possible to express a quantum Hamiltonian and therefore the evolution operator. The evolution operator is then the starting point to obtain the propagator as well as the explicit form of the Heisenberg picture position and momentum operators. First, the set of generators forming a closed Lie algebra is identified for the general quadratic Hamiltonian. This algebra is later extended to study the Hamiltonian of a charged particle in electromagnetic fields exploiting the similarities between the terms of these two Hamiltonians. These results are applied to the solution of five different examples: the linear potential which is used to introduce the Lie algebraic method, a radio frequency ion trap, a Kanai–Caldirola-like forced harmonic oscillator, a charged particle in a time dependent magnetic field, and a charged particle in constant magnetic field and oscillating electric field. In particular we present exact analytical expressions that are fitting for the study of a rotating quadrupole field ion trap and magneto-transport in two-dimensional semiconductor heterostructures illuminated by microwave radiation. In these examples we show that this powerful method is suitable to treat quadratic Hamiltonians with time dependent coefficients quite efficiently yielding closed analytical expressions for the propagator and the Heisenberg picture position and momentum operators. -- Highlights: •We deal with the general quadratic Hamiltonian and a particle in electromagnetic fields. •The evolution operator is worked out through the Lie algebraic approach. •We also obtain the propagator and Heisenberg picture position and momentum operators. •Analytical expressions for a
Time-dependent description of quantum interference nanotransistor
International Nuclear Information System (INIS)
Konopka, M.; Bokes, P.
2012-01-01
In this contribution we have presented simulations of electron current response to applied gate potentials in a ring-shaped quantum interference device. Such device could function like a current-switching quantum-interference transistor. We demonstrated capability of our approach to describe this kind of system keeping full quantum coherence in the description for extended periods of time. This have been achieved thanks to the unique feature of our method which allows for explicit simulations of small quantum subsystems with open boundary conditions. Further generalisation of the method is needed to reduce the number of basis set functions required to describe the system. (authors)
Oil supply security: the emergency response potential of IEA countries
International Nuclear Information System (INIS)
1995-01-01
This work deals with the oil supply security and more particularly with the emergency response potential of International Energy Agency (IEA) countries. The first part describes the changing pattern of IEA emergency response requirements. It begins with the experience from the past, then gives the energy outlook to 2010 and ends with the emergency response policy issues for the future. The second part is an overview on the IEA emergency response potential which includes the organisation, the emergency reserves, the demand restraint and the other response mechanisms. The third part gives the response potential of individual IEA countries. The last part deals with IEA emergency response in practice and more particularly with the gulf crisis of 1990-1991. It includes the initial problems raised by the gulf crisis, the adjustment and preparation and the onset of military action with the IEA response.(O.L.). 7 figs., 85 tabs
Characterizing time-dependent mechanics in metallic MEMS
Directory of Open Access Journals (Sweden)
Geers M.G.D.
2010-06-01
Full Text Available Experiments for characterization of time-dependent material properties in free-standing metallic microelectromechanical system (MEMS pose challenges: e.g. fabrication and handling (sub-μm sized specimens, control and measurement of sub-μN loads and sub-μm displacements over long periods and various temperatures [1]. A variety of experimental setups have been reported each having their pros and cons. One example is a micro-tensile tester with an ingenious electro-static specimen gripping system [2] aiding simple specimen design giving good results at μN and sub-μm levels, but without in-situ full-field observations. Other progressive examples assimilate the specimen, MEMS actuators and load cells on a single chip [3,4] yielding significant results at nN and nm levels with in-situ TEM/SEM observability, though not without complications: complex load actuator/sensor calibration per chip, measures to reduce fabrication failure and unfeasible cofabrication on wafers with commercial metallic MEMS. This work aims to overcome these drawbacks by developing experimental methods with high sensitivity, precision and in-situ full-field observation capabilities. Moreover, these should be applicable to simple free-standing metallic MEMS that can be co-fabricated with commercial devices. These methods will then serve in systematic studies into size-effects in time-dependent material properties. First a numeric-experimental method is developed. It characterizes bending deformation of onwafer μm-sized aluminum cantilevers. A specially designed micro-clamp is used to mechanically apply a constant precise deflection of the beam (zres <50 nm for a prolonged period, see fig. 1. After this period, the deflection by the micro-clamp is removed. Full-field height maps with the ensuing deformation are measured over time with confocal optical profilometry (COP. This yields the tip deflection as function of time with ~3 nm precision, see fig.2. To extract material
Time-Dependent Neutron and Photon Dose-Field Analysis
Energy Technology Data Exchange (ETDEWEB)
Wooten, Hasani Omar [Georgia Inst. of Technology, Atlanta, GA (United States)
2005-08-01
A unique tool is developed that allows the user to model physical representations of complicated glovebox facilities in two dimensions and determine neutral-particle flux and ambient dose-equivalent fields throughout that geometry. The Pandemonium code, originally designed to determine flux and dose-rates only, is improved to include realistic glovebox geometries, time-dependent source and detector positions, time-dependent shielding thickness calculations, time-integrated doses, a representative criticality accident scenario based on time-dependent reactor kinetics, and more rigorous photon treatment. A primary benefit of this work has been an extensive analysis and improvement of the photon model that is not limited to the application described in this thesis. The photon model has been extended in energy range to 10 MeV to include photons from fission and new photon buildup factors have been included that account for the effects of photon buildup at slant-path thicknesses as a function of angle, where the mean free path thickness has been preserved. The overall system of codes is user-friendly and it is directly applicable to facilities such as the plutonium facility at Los Alamos National Laboratory, where high-intensity neutron and photon emitters are regularly used. The codes may be used to determine a priori doses for given work scenarios in an effort to supply dose information to process models which will in turn assist decision makers on ensuring as low as reasonably achievable (ALARA) compliance. In addition, coupling the computational results of these tools with the process model visualization tools will help to increase worker safety and radiological safety awareness.
Simulating Excitons in MoS2 with Time-Dependent Density Functional Theory
Flamant, Cedric; Kolesov, Grigory; Kaxiras, Efthimios
Monolayer molybdenum disulfide, owing to its graphene-like two-dimensional geometry whilst still having a finite bandgap, is a material of great interest in condensed matter physics and for potential application in electronic devices. In particular, MoS2 exhibits significant excitonic effects, a desirable quality for fundamental many-body research. Time-dependent density functional theory (TD-DFT) allows us to simulate dynamical effects as well as temperature-based effects in a natural way given the direct treatment of the time evolution of the system. We present a TD-DFT study of monolayer MoS2 exciton dynamics, examining various qualitative and quantitative predictions in pure samples and in the presence of defects. In particular, we generate an absorption spectrum through simulated pulse excitation for comparison to experiment and also analyze the response of the exciton in an external electric field.In this work we also discuss the electronic structure of the exciton in MoS2 with and without vacancies.
To Rabi Hamiltonian through their Time Dependent Terms can be Reckons as Fractals
Rosary-Oyong, Se, Glory
2016-03-01
For light-matters interactions, ever replies by theLate HE. Mr. Prof M. Barmawi through Bose-Einstein condensates matter-waves ever retrieves [Boyce & DiPrima, 2015] instead of Richard Courant cq HE. Mr. Prof. Sudjoko Danusubroto's LKTM, Lustrum VI ITB, March 2, 1984. Follows ``Modified kernel to Quantum systems thorough Laplace inverse transformation'' whereas ``karyon'' in prokaryotes/eukaryotes meant as well as `kernel' , have been sought for `growth curve' & `potential of proton to other protons' the time dependent terms cos (ωt)exp[-iωot] whose integration y = sin ωt + c proves to be fractals h. 3 guided by Rabi Hamiltonian from Isidor Isaac Rabi,1944. Accompanying ``the Theory of Scale Relativity'' from Laurent Nottale/LUTH, the proofs of considerances whereas `time also are fractals', from Norways for Infra OMAN soughts a benchmark portfolio from Kjell Storvik, 2004: ``Socially Responsible Investment Strategies for the Norwegian Petroleum Fund'' whereas the Rabi frequency ? = 2 ɛ.deg/h can be relatively in comparisons expressed of capacitive [E.d/h]. Acknowledgment to HE. Mr. AUGUST PARENGKUAN if accepts 1995-2005 Invoicing & Fulfillments to ``KOMPAS'' cq the Prodi of Physics ITB.
Trajectory-based nonadiabatic dynamics with time-dependent density functional theory.
Curchod, Basile F E; Rothlisberger, Ursula; Tavernelli, Ivano
2013-05-10
Understanding the fate of an electronically excited molecule constitutes an important task for theoretical chemistry, and practical implications range from the interpretation of atto- and femtosecond spectroscopy to the development of light-driven molecular machines, the control of photochemical reactions, and the possibility of capturing sunlight energy. However, many challenging conceptual and technical problems are involved in the description of these phenomena such as 1) the failure of the well-known Born-Oppenheimer approximation; 2) the need for accurate electronic properties such as potential energy surfaces, excited nuclear forces, or nonadiabatic coupling terms; and 3) the necessity of describing the dynamics of the photoexcited nuclear wavepacket. This review provides an overview of the current methods to address points 1) and 3) and shows how time-dependent density functional theory (TDDFT) and its linear-response extension can be used for point 2). First, the derivation of Ehrenfest dynamics and nonadiabatic Bohmian dynamics is discussed and linked to Tully's trajectory surface hopping. Second, the coupling of these trajectory-based nonadiabatic schemes with TDDFT is described in detail with special emphasis on the derivation of the required electronic structure properties. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Time Dependent Hartree Fock Equation: Gateway to Nonequilibrium Plasmas
International Nuclear Information System (INIS)
Dufty, James W.
2007-01-01
This is the Final Technical Report for DE-FG02-2ER54677 award 'Time Dependent Hartree Fock Equation - Gateway to Nonequilibrium Plasmas'. Research has focused on the nonequilibrium dynamics of electrons in the presence of ions, both via basic quantum theory and via semi-classical molecular dynamics (MD) simulation. In addition, fundamental notions of dissipative dynamics have been explored for models of grains and dust, and for scalar fields (temperature) in turbulent edge plasmas. The specific topics addressed were Quantum Kinetic Theory for Metallic Clusters, Semi-classical MD Simulation of Plasmas , and Effects of Dissipative Dynamics.
Noether symmetries and integrability in time-dependent Hamiltonian mechanics
Directory of Open Access Journals (Sweden)
Jovanović Božidar
2016-01-01
Full Text Available We consider Noether symmetries within Hamiltonian setting as transformations that preserve Poincaré-Cartan form, i.e., as symmetries of characteristic line bundles of nondegenerate 1-forms. In the case when the Poincaré-Cartan form is contact, the explicit expression for the symmetries in the inverse Noether theorem is given. As examples, we consider natural mechanical systems, in particular the Kepler problem. Finally, we prove a variant of the theorem on complete (non-commutative integrability in terms of Noether symmetries of time-dependent Hamiltonian systems.
Time-dependent asymmetries in Bs decays at LHCb
Blouw, Johan
2007-01-01
The LHCb experiment will search for New Physics in Bs mixing. The Bs mixing phase will be extracted from the measurement of the time-dependent CP asymmetry in exclusive Bs decays governed by the $b \\to c\\bar{c}s$ quark level transition. Large New Physics effects can be discovered or excluded with the data collected during the very first physics run of LHC. Based on Monte Carlo simulations of the LHCb detector, the expected sensitivity with 2 fb$^{-1}$ on the CP-violation parameter $\\phi_s$, is $\\sigma(\\phi_s)$ = 0.022.
Signal restoration for NMR imaging using time-dependent gradients
International Nuclear Information System (INIS)
Frahm, J.; Haenicke, W.
1984-01-01
NMR imaging experiments that employ linear but time-dependent gradients for encoding spatial information in the time-domain signals result in distorted images when treated with conventional image reconstruction techniques. It is shown here that the phase and amplitude distortions can be entirely removed if the timeshape of the gradient is known. The method proposed is of great theoretical and experimental simplicity. It consists of a retransformation of the measured time-domain signal and corresponds to synchronisation of the signal sampling with the time-development of the gradient field strength. The procedure complements other treatments of periodically oscillating gradients in NMR imaging. (author)
Frictional Heating with Time-Dependent Specific Power of Friction
Directory of Open Access Journals (Sweden)
Topczewska Katarzyna
2017-06-01
Full Text Available In this paper analytical solutions of the thermal problems of friction were received. The appropriate boundary-value problems of heat conduction were formulated and solved for a homogeneous semi–space (a brake disc heated on its free surface by frictional heat fluxes with different and time-dependent intensities. Solutions were obtained in dimensionless form using Duhamel's theorem. Based on received solutions, evolution and spatial distribution of the dimensionless temperature were analyzed using numerical methods. The numerical results allowed to determine influence of the time distribution of friction power on the spatio-temporal temperature distribution in brake disc.
Perspective: Fundamental aspects of time-dependent density functional theory
Energy Technology Data Exchange (ETDEWEB)
Maitra, Neepa T. [Department of Physics and Astronomy, Hunter College and the Physics Program at the Graduate Center of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States)
2016-06-14
In the thirty-two years since the birth of the foundational theorems, time-dependent density functional theory has had a tremendous impact on calculations of electronic spectra and dynamics in chemistry, biology, solid-state physics, and materials science. Alongside the wide-ranging applications, there has been much progress in understanding fundamental aspects of the functionals and the theory itself. This Perspective looks back to some of these developments, reports on some recent progress and current challenges for functionals, and speculates on future directions to improve the accuracy of approximations used in this relatively young theory.
Time-dependent coolant velocity measurements in an operating BWR
International Nuclear Information System (INIS)
Luebbesmeyer, D.; Crowe, R.D.
1980-01-01
A method to measure time-dependent fluid velocities in BWR-bundle elements by noise analysis of the incore-neutron-detector signals is shown. Two application examples of the new method are given. The time behaviour of the fluid velocity in the bundle element during a scheduled power excursion of the plant. The change of power was performed by changing the coolant flow through the core The apparent change of the fluid velocity due to thermal elongation of the helix-drive of the TIP-system. A simplified mathematical model was derived for this elongation to use as a reference to check the validity of the new method. (author)
Optimal moving grids for time-dependent partial differential equations
Wathen, A. J.
1992-01-01
Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of PDE solutions in the least-squares norm are reported.
Scattering theory for explicitely time-dependent interactions
International Nuclear Information System (INIS)
Perusch, M.
1982-01-01
Multiple ionization of hydrogen atoms has got increased attention in recent years in connection with high-power lasers. Due to the strong external electromagnetic fields, perturbation theory is no longer valid. The expression for the multiple ionization probability contains the projections of the time-dependent Hamilton operators and the Moeller operators. The main point of the present work is a proof of existence and completeness of the Moeller operators. The proof of existence and completeness is given. The final chapter contains a physical interpretation and discussion of the multiple ionization probability. (G.Q.)
Shapes and dynamics from the time-dependent mean field
International Nuclear Information System (INIS)
Stevenson, P.D.; Goddard, P.M.; Rios, A.
2015-01-01
Explaining observed properties in terms of underlying shape degrees of freedom is a well-established prism with which to understand atomic nuclei. Self-consistent mean-field models provide one tool to understand nuclear shapes, and their link to other nuclear properties and observables. We present examples of how the time-dependent extension of the mean-field approach can be used in particular to shed light on nuclear shape properties, particularly looking at the giant resonances built on deformed nuclear ground states, and at dynamics in highly-deformed fission isomers. Example calculations are shown of 28 Si in the first case, and 240 Pu in the latter case
Time-dependent density-functional theory concepts and applications
Ullrich, Carsten A
2011-01-01
Time-dependent density-functional theory (TDDFT) describes the quantum dynamics of interacting electronic many-body systems formally exactly and in a practical and efficient manner. TDDFT has become the leading method for calculating excitation energies and optical properties of large molecules, with accuracies that rival traditional wave-function based methods, but at a fraction of the computational cost.This book is the first graduate-level text on the concepts and applications of TDDFT, including many examples and exercises, and extensive coverage of the literature. The book begins with a s
MINARET: Towards a time-dependent neutron transport parallel solver
International Nuclear Information System (INIS)
Baudron, A.M.; Lautard, J.J.; Maday, Y.; Mula, O.
2013-01-01
We present the newly developed time-dependent 3D multigroup discrete ordinates neutron transport solver that has recently been implemented in the MINARET code. The solver is the support for a study about computing acceleration techniques that involve parallel architectures. In this work, we will focus on the parallelization of two of the variables involved in our equation: the angular directions and the time. This last variable has been parallelized by a (time) domain decomposition method called the para-real in time algorithm. (authors)
On particle creation by a time-dependent scalar field
International Nuclear Information System (INIS)
Dolgov, A.D.; Kirilova, D.P.
1989-01-01
The probability of particles creation by a homogeneous scalar field Χ (t) is calculated. Explicit analytical expressions are obtained in two limiting cases in the quasiclassical approximation and in the framework of perturbation theory. In the case when the mass of the created particles is defined by the time-dependent field Χ (t) according to the expression g Χ (t) Ψ-barΨ, where Χ (t) =Χ 0 cos (ωt), it is shown that the creation probability is suppresed not exponentially, but as ω 1/2 . Some cosmological consequences of the results are discussed. 13 refs
Time-Dependent Mean-Field Games with Logarithmic Nonlinearities
Gomes, Diogo A.; Pimentel, Edgard
2015-01-01
In this paper, we prove the existence of classical solutions for time-dependent mean-field games with a logarithmic nonlinearity and subquadratic Hamiltonians. Because the logarithm is unbounded from below, this nonlinearity poses substantial mathematical challenges that have not been addressed in the literature. Our result is proven by recurring to a delicate argument which combines Lipschitz regularity for the Hamilton-Jacobi equation with estimates for the nonlinearity in suitable Lebesgue spaces. Lipschitz estimates follow from an application of the nonlinear adjoint method. These are then combined with a priori bounds for solutions of the Fokker-Planck equation and a concavity argument for the nonlinearity.
Evaluation of design safety factors for time-dependent buckling
International Nuclear Information System (INIS)
Stone, C.M.; Nickell, R.E.
1977-02-01
The ASME Boiler and Pressure Vessel Code rules concerning time-dependent (creep) buckling for Class 1 nuclear components have recently been changed. Previous requirements for a factor of ten on service life have been replaced with a factor of safety of 1.5 on loading for load-controlled buckling. This report examines the supposed equivalence of the two rules from the standpoint of materials behavior--specifically, the secondary creep strain rate exponent. The comparison is made using results obtained numerically for an axially-loaded, cylindrical shell with varying secondary creep exponents. A computationally efficient scheme for analyzing creep buckling problems is also presented
Fitting a function to time-dependent ensemble averaged data
DEFF Research Database (Denmark)
Fogelmark, Karl; Lomholt, Michael A.; Irbäck, Anders
2018-01-01
Time-dependent ensemble averages, i.e., trajectory-based averages of some observable, are of importance in many fields of science. A crucial objective when interpreting such data is to fit these averages (for instance, squared displacements) with a function and extract parameters (such as diffusion...... method, weighted least squares including correlation in error estimation (WLS-ICE), to particle tracking data. The WLS-ICE method is applicable to arbitrary fit functions, and we provide a publically available WLS-ICE software....
Time-Dependent Mean-Field Games with Logarithmic Nonlinearities
Gomes, Diogo A.
2015-10-06
In this paper, we prove the existence of classical solutions for time-dependent mean-field games with a logarithmic nonlinearity and subquadratic Hamiltonians. Because the logarithm is unbounded from below, this nonlinearity poses substantial mathematical challenges that have not been addressed in the literature. Our result is proven by recurring to a delicate argument which combines Lipschitz regularity for the Hamilton-Jacobi equation with estimates for the nonlinearity in suitable Lebesgue spaces. Lipschitz estimates follow from an application of the nonlinear adjoint method. These are then combined with a priori bounds for solutions of the Fokker-Planck equation and a concavity argument for the nonlinearity.
The time-dependent prize-collecting arc routing problem
DEFF Research Database (Denmark)
Black, Dan; Eglese, Richard; Wøhlk, Sanne
2013-01-01
with the time of day. Two metaheuristic algorithms, one based on Variable Neighborhood Search and one based on Tabu Search, are proposed and tested for a set of benchmark problems, generated from real road networks and travel time information. Both algorithms are capable of finding good solutions, though......A new problem is introduced named the Time-Dependent Prize-Collecting Arc Routing Problem (TD-PARP). It is particularly relevant to situations where a transport manager has to choose between a number of full truck load pick-ups and deliveries on a road network where travel times change...
Radiation effects on time-dependent deformation: Creep and growth
International Nuclear Information System (INIS)
Simonen, E.P.
1989-03-01
Observations of irradiation creep strain as well as irradiation growth strain and related microstructures are reviewed and compared to mechanisms for radiation effects on time-dependent deformation. Composition, microstructure, stress and temperature affect irradiation creep less than thermal creep. Irradiation creep rates can often dominate thermal creep rates, particularly at low temperatures and low stresses. Irradiation creep mechanisms are classified in two general categories: (1) stress-induced preferential absorption and (2) climb-glide. In the former, creep results from dislocation climb, whereas in the latter, creep results from dislocation glide. The effects of irradiation creep on failure modes in nuclear environments are discussed. 53 refs., 18 figs., 1 tab
International Nuclear Information System (INIS)
Barhen, J.; Bjerke, M.A.; Cacuci, D.G.; Mullins, C.B.; Wagschal, G.G.
1982-01-01
An advanced methodology for performing systematic uncertainty analysis of time-dependent nonlinear systems is presented. This methodology includes a capability for reducing uncertainties in system parameters and responses by using Bayesian inference techniques to consistently combine prior knowledge with additional experimental information. The determination of best estimates for the system parameters, for the responses, and for their respective covariances is treated as a time-dependent constrained minimization problem. Three alternative formalisms for solving this problem are developed. The two ''off-line'' formalisms, with and without ''foresight'' characteristics, require the generation of a complete sensitivity data base prior to performing the uncertainty analysis. The ''online'' formalism, in which uncertainty analysis is performed interactively with the system analysis code, is best suited for treatment of large-scale highly nonlinear time-dependent problems. This methodology is applied to the uncertainty analysis of a transient upflow of a high pressure water heat transfer experiment. For comparison, an uncertainty analysis using sensitivities computed by standard response surface techniques is also performed. The results of the analysis indicate the following. Major reduction of the discrepancies in the calculation/experiment ratios is achieved by using the new methodology. Incorporation of in-bundle measurements in the uncertainty analysis significantly reduces system uncertainties. Accuracy of sensitivities generated by response-surface techniques should be carefully assessed prior to using them as a basis for uncertainty analyses of transient reactor safety problems
Directory of Open Access Journals (Sweden)
Yong Wu
2015-12-01
Full Text Available Failure of loose gully deposits under the effect of rainfall contributes to the potential risk of debris flow. In the past decades, researches on hydraulic mechanism and time-dependent characteristics of loose deposits failure are frequently reported, however adequate measures for reducing debris flow are not available practically. In this context, a time-dependent model was established to determine the changes of water table of loose deposits using hydraulic and topographic theories. In addition, the variation in water table with elapsed time was analyzed. The formulas for calculating hydrodynamic and hydrostatic pressures on each strip and block unit of deposit were proposed, and the slope stability and failure risk of the loose deposits were assessed based on the time-dependent hydraulic characteristics of established model. Finally, the failure mechanism of deposits based on infinite slope theory was illustrated, with an example, to calculate sliding force, anti-sliding force and residual sliding force applied to each slice. The results indicate that failure of gully deposits under the effect of rainfall is the result of continuously increasing hydraulic pressure and water table. The time-dependent characteristics of loose deposit failure are determined by the factors of hydraulic properties, drainage area of interest, rainfall pattern, rainfall duration and intensity.
Entanglement entropy with a time-dependent Hamiltonian
Sivaramakrishnan, Allic
2018-03-01
The time evolution of entanglement tracks how information propagates in interacting quantum systems. We study entanglement entropy in CFT2 with a time-dependent Hamiltonian. We perturb by operators with time-dependent source functions and use the replica trick to calculate higher-order corrections to entanglement entropy. At first order, we compute the correction due to a metric perturbation in AdS3/CFT2 and find agreement on both sides of the duality. Past first order, we find evidence of a universal structure of entanglement propagation to all orders. The central feature is that interactions entangle unentangled excitations. Entanglement propagates according to "entanglement diagrams," proposed structures that are motivated by accessory spacetime diagrams for real-time perturbation theory. To illustrate the mechanisms involved, we compute higher-order corrections to free fermion entanglement entropy. We identify an unentangled operator, one which does not change the entanglement entropy to any order. Then, we introduce an interaction and find it changes entanglement entropy by entangling the unentangled excitations. The entanglement propagates in line with our conjecture. We compute several entanglement diagrams. We provide tools to simplify the computation of loop entanglement diagrams, which probe UV effects in entanglement propagation in CFT and holography.
Time-dependent methodology for fault tree evaluation
International Nuclear Information System (INIS)
Vesely, W.B.
1976-01-01
Any fault tree may be evaluated applying the method called the kinetic theory of fault trees. The basic feature of this method as presented here is in that any information on primary failure, type failure or peak failure is derived from three characteristics: probability of existence, failure intensity and failure density. The determination of the said three characteristics for a given phenomenon yields the remaining probabilistic information on the individual aspects of the failure and on their totality for the whole observed period. The probabilistic characteristics are determined by applying the analysis of phenomenon probability. The total time dependent information on the peak failure is obtained by using the type failures (critical paths) of the fault tree. By applying the said process the total time dependent information is obtained for every primary failure and type failure of the fault tree. In the application of the method of the kinetic theory of fault trees represented by the PREP and KITT programmes, the type failures are first obtained using the deterministic testing method or using the Monte Carlo simulation (PREP programme). The respective characteristics are then determined using the kinetic theory of fault trees (KITT programmes). (Oy)
Rayleigh-Taylor mixing with time-dependent acceleration
Abarzhi, Snezhana
2016-10-01
We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a time-dependent acceleration. The acceleration is a power-law function of time, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical regimes of self-similar RT mixing-acceleration-driven Rayleigh-Taylor-type and dissipation-driven Richtymer-Meshkov-type with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with time-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.
Interacting particle systems in time-dependent geometries
Ali, A.; Ball, R. C.; Grosskinsky, S.; Somfai, E.
2013-09-01
Many complex structures and stochastic patterns emerge from simple kinetic rules and local interactions, and are governed by scale invariance properties in combination with effects of the global geometry. We consider systems that can be described effectively by space-time trajectories of interacting particles, such as domain boundaries in two-dimensional growth or river networks. We study trajectories embedded in time-dependent geometries, and the main focus is on uniformly expanding or decreasing domains for which we obtain an exact mapping to simple fixed domain systems while preserving the local scale invariance properties. This approach was recently introduced in Ali et al (2013 Phys. Rev. E 87 020102(R)) and here we provide a detailed discussion on its applicability for self-affine Markovian models, and how it can be adapted to self-affine models with memory or explicit time dependence. The mapping corresponds to a nonlinear time transformation which converges to a finite value for a large class of trajectories, enabling an exact analysis of asymptotic properties in expanding domains. We further provide a detailed discussion of different particle interactions and generalized geometries. All our findings are based on exact computations and are illustrated numerically for various examples, including Lévy processes and fractional Brownian motion.
Smooth time-dependent receiver operating characteristic curve estimators.
Martínez-Camblor, Pablo; Pardo-Fernández, Juan Carlos
2018-03-01
The receiver operating characteristic curve is a popular graphical method often used to study the diagnostic capacity of continuous (bio)markers. When the considered outcome is a time-dependent variable, two main extensions have been proposed: the cumulative/dynamic receiver operating characteristic curve and the incident/dynamic receiver operating characteristic curve. In both cases, the main problem for developing appropriate estimators is the estimation of the joint distribution of the variables time-to-event and marker. As usual, different approximations lead to different estimators. In this article, the authors explore the use of a bivariate kernel density estimator which accounts for censored observations in the sample and produces smooth estimators of the time-dependent receiver operating characteristic curves. The performance of the resulting cumulative/dynamic and incident/dynamic receiver operating characteristic curves is studied by means of Monte Carlo simulations. Additionally, the influence of the choice of the required smoothing parameters is explored. Finally, two real-applications are considered. An R package is also provided as a complement to this article.
Time-dependent patterns in quasivertical cylindrical binary convection
Alonso, Arantxa; Mercader, Isabel; Batiste, Oriol
2018-02-01
This paper reports on numerical investigations of the effect of a slight inclination α on pattern formation in a shallow vertical cylindrical cell heated from below for binary mixtures with a positive value of the Soret coefficient. By using direct numerical simulation of the three-dimensional Boussinesq equations with Soret effect in cylindrical geometry, we show that a slight inclination of the cell in the range α ≈0.036 rad =2∘ strongly influences pattern selection. The large-scale shear flow (LSSF) induced by the small tilt of gravity overcomes the squarelike arrangements observed in noninclined cylinders in the Soret regime, stratifies the fluid along the direction of inclination, and produces an enhanced separation of the two components of the mixture. The competition between shear effects and horizontal and vertical buoyancy alters significantly the dynamics observed in noninclined convection. Additional unexpected time-dependent patterns coexist with the basic LSSF. We focus on an unsual periodic state recently discovered in an experiment, the so-called superhighway convection state (SHC), in which ascending and descending regions of fluid move in opposite directions. We provide numerical confirmation that Boussinesq Navier-Stokes equations with standard boundary conditions contain the essential ingredients that allow for the existence of such a state. Also, we obtain a persistent heteroclinic structure where regular oscillations between a SHC pattern and a state of nearly stationary longitudinal rolls take place. We characterize numerically these time-dependent patterns and investigate the dynamics around the threshold of convection.
Time-dependent behavior of rough discontinuities under shearing conditions
Wang, Zhen; Shen, Mingrong; Ding, Wenqi; Jang, Boan; Zhang, Qingzhao
2018-02-01
The mechanical properties of rocks are generally controlled by their discontinuities. In this study, the time-dependent behavior of rough artificial joints under shearing conditions was investigated. Based on Barton’s standard profile lines, samples with artificial joint surfaces were prepared and used to conduct the shear and creep tests. The test results showed that the shear strength of discontinuity was linearly related to roughness, and subsequently an empirical equation was established. The long-term strength of discontinuity can be identified using the inflection point of the isocreep-rate curve, and it was linearly related to roughness. Furthermore, the ratio of long-term and instantaneous strength decreased with the increase of roughness. The shear-stiffness coefficient increased with the increase of shear rate, and the influence of shear rate on the shear stiffness coefficient decreased with the decrease of roughness. Further study of the mechanism revealed that these results could be attributed to the different time-dependent behavior of intact and joint rocks.
Time-dependent crack growth in steam generator tube leakage
International Nuclear Information System (INIS)
Chung, H.D.; Lee, J.H.; Park, Y.W.; Choi, Y.H.
2006-01-01
In general, cracks found in steam generator tubes have semi-elliptical shapes and it is assumed to be rectangular shape for conservatism after crack penetration. Hence, the leak and crack growth behavior has not been clearly understood after the elliptical crack penetrates the tube wall. Several experimental results performed by Argonne Nation Laboratory exhibited time-dependent crack growth behavior of rectangular flaws as well as trapezoidal flaws under constant pressure. The crack growth faster than expected was observed in both cases, which is likely attributed to time-dependent crack growth accompanied by fatigue sources such as the interaction between active jet and crack. The stress intensity factor, K 1 , is necessary for the prediction of the observed fatigue crack growth behavior. However, no K 1 solution is available for a trapezoidal flaw. The objective of this study is to develop the stress intensity factor which can be used for the fatigue analysis of a trapezoidal crack. To simplify the analysis, the crack is assumed to be a symmetric trapezoidal shape. A new K 1 formula for axial trapezoidal through-wall cracks was proposed based on the FEM results. (author)
Time-dependent Models of Magnetospheric Accretion onto Young Stars
Energy Technology Data Exchange (ETDEWEB)
Robinson, C. E.; Espaillat, C. C. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Owen, J. E. [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Adams, F. C., E-mail: connorr@bu.edu [Physics Department, University of Michigan, Ann Arbor, MI 48109 (United States)
2017-04-01
Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that if the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.
Time-dependent Models of Magnetospheric Accretion onto Young Stars
International Nuclear Information System (INIS)
Robinson, C. E.; Espaillat, C. C.; Owen, J. E.; Adams, F. C.
2017-01-01
Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that if the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.
On the measurement of time-dependent quantum phases
International Nuclear Information System (INIS)
Barut, A.O.; Bozic, M.; Klarsfeld, S.; Maric, Z.
1991-11-01
We have evaluated the exact (Pancharatnam) phase differences between the final state l ψ(t) > and various initial states for a spin 1/2-particle in a rotating magnetic field B(t). For the initial states l n; B ef (0) >, which are eigenstates of the spin component along the direction of the initial effective field B ef (0), the exact phase has an energy dependent part, and an energy independent part. It is shown that these states l n; B ef (0) > are cyclic and their corresponding Aharonov-Anandan phases are evaluated. In the adiabatic limit we discuss different choices of time-dependent bases and the relationship between the exact phase, the Born-Fock-Schiff phase and Berry's phase. We propose experiments (neutron) to verify separately the exact and the adiabatic evolution laws, as well as to measure the adiabatic phases associated with different choices of time-dependent basis vectors. (author). 37 refs, 5 figs, 1 tab
Time-dependent strains and stresses in a pumpkin balloon
Gerngross, T.; Xu, Y.; Pellegrino, S.
This paper presents a study of pumpkin-shaped superpressure balloons consisting of gores made from a thin polymeric film attached to high stiffness meridional tendons This type of design is being used for the NASA ULDB balloons The gore film shows considerable time-dependent stress relaxation whereas the behaviour of the tendons is essentially time-independent Upon inflation and pressurization the instantaneous i e linear-elastic strain and stress distributions in the film show significantly higher values in the meridional direction However over time and due to the biaxial visco-elastic stress relaxation of the the gore material the em hoop strains increase and the em meridional stresses decrease whereas the em remaining strain and stress components remain substantially unchanged These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission both in terms of the material performance and the overall stability of the shape of the balloon An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter 48 gore pumpkin balloon is presented The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature The results show good correlation with a numerical study using the ABAQUS finite-element package that includes a widely used model of
Time-dependent simulation of organic light-emitting diodes
International Nuclear Information System (INIS)
Sharifi, M J
2009-01-01
Several methods to simulate the behavior of organic light-emitting diodes (OLEDs) have been proposed in the past. In this paper, we develop a previous method, based on the master equation, in order to allow the simulation of time-dependent behavior and transient states. The calculation algorithm of the program that we have written is described. The time-dependent behaviors of two simple monolayer devices and of a more complicated three-layer device were simulated by means of this program, and the results are discussed. The results show that the turn-off speed of an OLED might be very slow, especially in the case of a multilayer device. This behavior is related to the low mobility of the organic material in weak electric fields. An interesting feature of the time behavior is pointed out, whereby the recombination rate may become considerably larger after the falling edge of an applied voltage pulse. Moreover, the validity of the transient electro-luminescent method for measuring carrier mobility in organic material has been examined by means of simulation. The results show that there is some inconsistency especially in high electric fields
A method for untriggered time-dependent searches for multiple flares from neutrino point sources
International Nuclear Information System (INIS)
Gora, D.; Bernardini, E.; Cruz Silva, A.H.
2011-04-01
A method for a time-dependent search for flaring astrophysical sources which can be potentially detected by large neutrino experiments is presented. The method uses a time-clustering algorithm combined with an unbinned likelihood procedure. By including in the likelihood function a signal term which describes the contribution of many small clusters of signal-like events, this method provides an effective way for looking for weak neutrino flares over different time-scales. The method is sensitive to an overall excess of events distributed over several flares which are not individually detectable. For standard cases (one flare) the discovery potential of the method is worse than a standard time-dependent point source analysis with unknown duration of the flare by a factor depending on the signal-to-background level. However, for flares sufficiently shorter than the total observation period, the method is more sensitive than a time-integrated analysis. (orig.)
A method for untriggered time-dependent searches for multiple flares from neutrino point sources
Energy Technology Data Exchange (ETDEWEB)
Gora, D. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Institute of Nuclear Physics PAN, Cracow (Poland); Bernardini, E.; Cruz Silva, A.H. [Institute of Nuclear Physics PAN, Cracow (Poland)
2011-04-15
A method for a time-dependent search for flaring astrophysical sources which can be potentially detected by large neutrino experiments is presented. The method uses a time-clustering algorithm combined with an unbinned likelihood procedure. By including in the likelihood function a signal term which describes the contribution of many small clusters of signal-like events, this method provides an effective way for looking for weak neutrino flares over different time-scales. The method is sensitive to an overall excess of events distributed over several flares which are not individually detectable. For standard cases (one flare) the discovery potential of the method is worse than a standard time-dependent point source analysis with unknown duration of the flare by a factor depending on the signal-to-background level. However, for flares sufficiently shorter than the total observation period, the method is more sensitive than a time-integrated analysis. (orig.)
Pair production in an electric field in a time-dependent gauge
International Nuclear Information System (INIS)
Barut, A.O.; Duru, I.H.
1989-07-01
A new nonperturbative method of calculation of the pair production in a constant electric field is presented in which the propagator is evaluated entirely by path-integration in a time-dependent potential. This gauge and the path integration correctly define all the normalizations. As a by-product we get also the Unruh formula since the constant electric field provides an accelerated frame. (author). 11 refs
International Nuclear Information System (INIS)
Judson, R.S.; McGarrah, D.B.; Sharafeddin, O.A.; Kouri, D.J.; Hoffman, D.K.
1991-01-01
We compare three time-dependent wave packet methods for performing elastic scattering calculations from screened Coulomb potentials. The three methods are the time-dependent amplitude density method (TDADM), what we term a Cayley-transform method (CTM), and the Chebyshev propagation method of Tal-Ezer and Kosloff. Both the TDADM and the CTM are based on a time-dependent integral equation for the wave function. In the first, we propagate the time-dependent amplitude density, |ζ(t)right-angle=U|ψ(t)right-angle, where U is the interaction potential and |ψ(t)right-angle is the usual time-dependent wave function. In the other two, the wave function is propagated. As a numerical example, we calculate phase shifts and cross sections using a screened Coulomb, Yukawa type potential over the range 200--1000 eV. One of the major advantages of time-dependent methods such as these is that we get scattering information over this entire range of energies from one propagation. We find that in most cases, all three methods yield comparable accuracy and are about equally efficient computationally. However for l=0, where the Coulomb well is not screened by the centrifugal potential, the TDADM requires smaller grid spacings to maintain accuracy
Integrating speech in time depends on temporal expectancies and attention.
Scharinger, Mathias; Steinberg, Johanna; Tavano, Alessandro
2017-08-01
Sensory information that unfolds in time, such as in speech perception, relies on efficient chunking mechanisms in order to yield optimally-sized units for further processing. Whether or not two successive acoustic events receive a one-unit or a two-unit interpretation seems to depend on the fit between their temporal extent and a stipulated temporal window of integration. However, there is ongoing debate on how flexible this temporal window of integration should be, especially for the processing of speech sounds. Furthermore, there is no direct evidence of whether attention may modulate the temporal constraints on the integration window. For this reason, we here examine how different word durations, which lead to different temporal separations of sound onsets, interact with attention. In an Electroencephalography (EEG) study, participants actively and passively listened to words where word-final consonants were occasionally omitted. Words had either a natural duration or were artificially prolonged in order to increase the separation of speech sound onsets. Omission responses to incomplete speech input, originating in left temporal cortex, decreased when the critical speech sound was separated from previous sounds by more than 250 msec, i.e., when the separation was larger than the stipulated temporal window of integration (125-150 msec). Attention, on the other hand, only increased omission responses for stimuli with natural durations. We complemented the event-related potential (ERP) analyses by a frequency-domain analysis on the stimulus presentation rate. Notably, the power of stimulation frequency showed the same duration and attention effects than the omission responses. We interpret these findings on the background of existing research on temporal integration windows and further suggest that our findings may be accounted for within the framework of predictive coding. Copyright © 2017 Elsevier Ltd. All rights reserved.
Time-dependent theoretical treatments of the dynamics of electrons and nuclei in molecular systems
International Nuclear Information System (INIS)
Deumens, E.; Diz, A.; Longo, R.; Oehrn, Y.
1994-01-01
An overview is presented of methods for time-dependent treatments of molecules as systems of electrons and nuclei. The theoretical details of these methods are reviewed and contrasted in the light of a recently developed time-dependent method called electron-nuclear dynamics. Electron-nuclear dynamics (END) is a formulation of the complete dynamics of electrons and nuclei of a molecular system that eliminates the necessity of constructing potential-energy surfaces. Because of its general formulation, it encompasses many aspects found in other formulations and can serve as a didactic device for clarifying many of the principles and approximations relevant in time-dependent treatments of molecular systems. The END equations are derived from the time-dependent variational principle applied to a chosen family of efficiently parametrized approximate state vectors. A detailed analysis of the END equations is given for the case of a single-determinantal state for the electrons and a classical treatment of the nuclei. The approach leads to a simple formulation of the fully nonlinear time-dependent Hartree-Fock theory including nuclear dynamics. The nonlinear END equations with the ab initio Coulomb Hamiltonian have been implemented at this level of theory in a computer program, ENDyne, and have been shown feasible for the study of small molecular systems. Implementation of the Austin Model 1 semiempirical Hamiltonian is discussed as a route to large molecular systems. The linearized END equations at this level of theory are shown to lead to the random-phase approximation for the coupled system of electrons and nuclei. The qualitative features of the general nonlinear solution are analyzed using the results of the linearized equations as a first approximation. Some specific applications of END are presented, and the comparison with experiment and other theoretical approaches is discussed
Time dependent variation of carrying capacity of prestressed precast beam
Le, Tuan D.; Konečný, Petr; Matečková, Pavlína
2018-04-01
The article deals with the evaluation of the precast concrete element time dependent carrying capacity. The variation of the resistance is inherited property of laboratory as well as in-situ members. Thus the specification of highest, yet possible, laboratory sample resistance is important with respect to evaluation of laboratory experiments based on the test machine loading capabilities. The ultimate capacity is evaluated through the bending moment resistance of a simply supported prestressed concrete beam. The probabilistic assessment is applied. Scatter of random variables of compressive strength of concrete and effective height of the cross section is considered. Monte Carlo simulation technique is used to investigate the performance of the cross section of the beam with changes of tendons’ positions and compressive strength of concrete.
On the time-dependent radiative transfer in photospheric plasmas
International Nuclear Information System (INIS)
Schultz, A.L.; Schweizer, M.A.
1987-01-01
The paper is the second of a series investigating time-dependent radiative transfer processes of x-rays in photospheric plasmas. A quantitative discussion is presented of analytical results derived earlier along with a comparison with Monte Carlo simulations. The geometry considered is a homogeneous plasma ball with radius R. The source is concentrated on a concentric shell with radius r 0 < R. Point sources at the centre of the ball or semi-infinite geometries are discussed as limiting cases. Diffusion profiles are given for every scattering order and the total profile appears as the sum over these individual profiles. The comparison with Monte Carlo results is used to test the accuracy of the analytical approach and to adjust the time profiles of the first few scattering orders. The analytical theory yields good results over a wide range of situations. (author)
Light pressure of time-dependent fields in plasmas
International Nuclear Information System (INIS)
Zeidler, A.; Schnabl, H.; Mulser, P.
1985-01-01
An expression of the light pressure Pi is derived for the case of a nearly monochromatic electromagnetic wave with arbitrarily time-dependent amplitude. Thereby Pi is defined as the time-averaged force density exerted on a plasma by the wave. The resulting equations are valid for both transverse and longitudinal waves. The light pressure turns out to consist of two components: the well-known gradient-type term and a new nonstationary solenoidal term. This is true for warm as well as cold plasmas. The importance of the new term for the generation of static magnetic fields is shown, and a model in which shear forces may result is given. Formulas for the nonstationary light pressure developed previously are discussed
Histogram bin width selection for time-dependent Poisson processes
International Nuclear Information System (INIS)
Koyama, Shinsuke; Shinomoto, Shigeru
2004-01-01
In constructing a time histogram of the event sequences derived from a nonstationary point process, we wish to determine the bin width such that the mean squared error of the histogram from the underlying rate of occurrence is minimized. We find that the optimal bin widths obtained for a doubly stochastic Poisson process and a sinusoidally regulated Poisson process exhibit different scaling relations with respect to the number of sequences, time scale and amplitude of rate modulation, but both diverge under similar parametric conditions. This implies that under these conditions, no determination of the time-dependent rate can be made. We also apply the kernel method to these point processes, and find that the optimal kernels do not exhibit any critical phenomena, unlike the time histogram method
Histogram bin width selection for time-dependent Poisson processes
Energy Technology Data Exchange (ETDEWEB)
Koyama, Shinsuke; Shinomoto, Shigeru [Department of Physics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)
2004-07-23
In constructing a time histogram of the event sequences derived from a nonstationary point process, we wish to determine the bin width such that the mean squared error of the histogram from the underlying rate of occurrence is minimized. We find that the optimal bin widths obtained for a doubly stochastic Poisson process and a sinusoidally regulated Poisson process exhibit different scaling relations with respect to the number of sequences, time scale and amplitude of rate modulation, but both diverge under similar parametric conditions. This implies that under these conditions, no determination of the time-dependent rate can be made. We also apply the kernel method to these point processes, and find that the optimal kernels do not exhibit any critical phenomena, unlike the time histogram method.
The time-dependent Aharonov–Casher effect
Energy Technology Data Exchange (ETDEWEB)
Singleton, Douglas, E-mail: dougs@csufresno.edu [Department of Physics, California State University Fresno, Fresno, CA 93740-8031 (United States); ICTP South American Institute for Fundamental Research, UNESP – Univ. Estadual Paulista, Rua Dr. Bento T. Ferraz 271, 01140-070, São Paulo, SP (Brazil); Ulbricht, Jaryd, E-mail: julbrich@ucsc.edu [Physics Department, University of California Santa Cruz, Santa Cruz, CA 95064 (United States); Department of Physics, California State University Fresno, Fresno, CA 93740-8031 (United States)
2016-02-10
In this paper we give a covariant expression for Aharonov–Casher phase. This expression is a combination of the canonical electric field, Aharonov–Casher phase plus a magnetic field phase shift. We use this covariant expression for the Aharonov–Casher phase to investigate the case of a neutral particle with a non-zero magnetic moment moving in the time dependent electric and magnetic fields of a plane electromagnetic wave background. We focus on the case where the magnetic moment of the particle is oriented so that both the electric and magnetic fields lead to non-zero phases, and we look at the interplay between these electric and magnetic phases.
The time-dependent density matrix renormalisation group method
Ma, Haibo; Luo, Zhen; Yao, Yao
2018-04-01
Substantial progress of the time-dependent density matrix renormalisation group (t-DMRG) method in the recent 15 years is reviewed in this paper. By integrating the time evolution with the sweep procedures in density matrix renormalisation group (DMRG), t-DMRG provides an efficient tool for real-time simulations of the quantum dynamics for one-dimensional (1D) or quasi-1D strongly correlated systems with a large number of degrees of freedom. In the illustrative applications, the t-DMRG approach is applied to investigate the nonadiabatic processes in realistic chemical systems, including exciton dissociation and triplet fission in polymers and molecular aggregates as well as internal conversion in pyrazine molecule.
Study of Time-Dependent Properties of Thermoplastics
Directory of Open Access Journals (Sweden)
Bolchoun A.
2010-06-01
Full Text Available Simple tests carried out with a common tension/compression testing machine are used to obtain timedependent properties of non-reinforced thermoplastics. These tests include ramp loadings as well as relaxation and creep tests. Two materials (PBT Celanex 2002-2 and POM Hostaform C9021, Ticona GmbH, Kelsterbach were taken for the experiments. The experiments show that an adequate description of the long-term material properties can be obtained from the short-time tests, namely from tests with constant traverse speed $L^.$. Below a model for the time-dependent mechanical behavior is presented and fitted to the obtained measured data. For the evaluation of the fitting quality long-term tests are used. Especially creep and relaxation tests with ”jumps”, i.e. rapid change of loading, are important for this purpose.
Fundamental Constants in Physics and their Time Dependence
CERN. Geneva
2008-01-01
In the Standard Model of Particle Physics we are dealing with 28 fundamental constants. In the experiments these constants can be measured, but theoretically they are not understood. I will discuss these constants, which are mostly mass parameters. Astrophysical measurements indicate that the finestructure constant is not a real constant, but depends on time. Grand unification then implies also a time variation of the QCD scale. Thus the masses of the atomic nuclei and the magnetic moments of the nuclei will depend on time. I proposed an experiment, which is currently done by Prof. Haensch in Munich and his group. The first results indicate a time dependence of the QCD scale. I will discuss the theoretical implications.
Observation of Broadband Time-Dependent Rabi Shifting in Microplasmas
International Nuclear Information System (INIS)
Compton, Ryan; Filin, Alex; Romanov, Dmitri A.; Levis, Robert J.
2009-01-01
Coherent broadband radiation in the form of Rabi sidebands is observed when a ps probe laser propagates through a weakly ionized, electronically excited microplasma generated in the focus of an intense pump beam. The sidebands arise from the interaction of the probe beam with pairs of excited states of a constituent neutral atom via the probe-induced Rabi oscillation. Sideband shifting of >90 meV from the probe carrier frequency results in an effective bandwidth of 200 meV. The sidebands are controlled by the intensity and temporal profile of the probe pulse; with amplitude and shift in agreement with the predictions of a time-dependent generalized Rabi cycling model.
Two-dimensional time dependent Riemann solvers for neutron transport
International Nuclear Information System (INIS)
Brunner, Thomas A.; Holloway, James Paul
2005-01-01
A two-dimensional Riemann solver is developed for the spherical harmonics approximation to the time dependent neutron transport equation. The eigenstructure of the resulting equations is explored, giving insight into both the spherical harmonics approximation and the Riemann solver. The classic Roe-type Riemann solver used here was developed for one-dimensional problems, but can be used in multidimensional problems by treating each face of a two-dimensional computation cell in a locally one-dimensional way. Several test problems are used to explore the capabilities of both the Riemann solver and the spherical harmonics approximation. The numerical solution for a simple line source problem is compared to the analytic solution to both the P 1 equation and the full transport solution. A lattice problem is used to test the method on a more challenging problem
Sensitivity analysis of time-dependent laminar flows
International Nuclear Information System (INIS)
Hristova, H.; Etienne, S.; Pelletier, D.; Borggaard, J.
2004-01-01
This paper presents a general sensitivity equation method (SEM) for time dependent incompressible laminar flows. The SEM accounts for complex parameter dependence and is suitable for a wide range of problems. The formulation is verified on a problem with a closed form solution obtained by the method of manufactured solution. Systematic grid convergence studies confirm the theoretical rates of convergence in both space and time. The methodology is then applied to pulsatile flow around a square cylinder. Computations show that the flow starts with symmetrical vortex shedding followed by a transition to the traditional Von Karman street (alternate vortex shedding). Simulations show that the transition phase manifests itself earlier in the sensitivity fields than in the flow field itself. Sensitivities are then demonstrated for fast evaluation of nearby flows and uncertainty analysis. (author)
Time-dependent perturbation theory for nonequilibrium lattice models
International Nuclear Information System (INIS)
Jensen, I.; Dickman, R.
1993-01-01
The authors develop a time-dependent perturbation theory for nonequilibrium interacting particle systems. They focus on models such as the contact process which evolve via destruction and autocatalytic creation of particles. At a critical value of the destruction rate there is a continuous phase transition between an active steady state and the vacuum state, which is absorbing. They present several methods for deriving series for the evolution starting from a single seed particle, including expansions for the ultimate survival probability in the super- and subcritical regions, expansions for the average number of particles in the subcritical region, and short-time expansions. Algorithms for computer generation of the various expansions are presented. Rather long series (24 terms or more) and precise estimates of critical parameters are presented. 45 refs., 4 figs., 9 tabs
Monolayer phosphorene under time-dependent magnetic field
Nascimento, J. P. G.; Aguiar, V.; Guedes, I.
2018-02-01
We obtain the exact wave function of a monolayer phosphorene under a low-intensity time-dependent magnetic field using the dynamical invariant method. We calculate the quantum-mechanical energy expectation value and the transition probability for a constant and an oscillatory magnetic field. For the former we observe that the Landau level energy varies linearly with the quantum numbers n and m and the magnetic field intensity B0. No transition takes place. For the latter, we observe that the energy oscillates in time, increasing linearly with the Landau level n and m and nonlinearly with the magnetic field. The (k , l) →(n , m) transitions take place only for l = m. We investigate the (0,0) →(n , 0) and (1 , l) and (2 , l) probability transitions.
Time-dependent reliability analysis and condition assessment of structures
International Nuclear Information System (INIS)
Ellingwood, B.R.
1997-01-01
Structures generally play a passive role in assurance of safety in nuclear plant operation, but are important if the plant is to withstand the effect of extreme environmental or abnormal events. Relative to mechanical and electrical components, structural systems and components would be difficult and costly to replace. While the performance of steel or reinforced concrete structures in service generally has been very good, their strengths may deteriorate during an extended service life as a result of changes brought on by an aggressive environment, excessive loading, or accidental loading. Quantitative tools for condition assessment of aging structures can be developed using time-dependent structural reliability analysis methods. Such methods provide a framework for addressing the uncertainties attendant to aging in the decision process
Translation invariant time-dependent solutions to massive gravity II
Mourad, J.; Steer, D. A.
2014-06-01
This paper is a sequel to JCAP 12 (2013) 004 and is also devoted to translation-invariant solutions of ghost-free massive gravity in its moving frame formulation. Here we consider a mass term which is linear in the vielbein (corresponding to a β3 term in the 4D metric formulation) in addition to the cosmological constant. We determine explicitly the constraints, and from the initial value formulation show that the time-dependent solutions can have singularities at a finite time. Although the constraints give, as in the β1 case, the correct number of degrees of freedom for a massive spin two field, we show that the lapse function can change sign at a finite time causing a singular time evolution. This is very different to the β1 case where time evolution is always well defined. We conclude that the β3 mass term can be pathological and should be treated with care.
New applications with time-dependent thermochemical simulation
Energy Technology Data Exchange (ETDEWEB)
Koukkari, P. [VTT Chemical Technology, Espoo (Finland); Laukkanen, L. [VTT Automation, Espoo (Finland); Penttilae, K. [Kemira Engineering Oy, Helsinki (Finland)
1996-12-31
A new method (RATEMIX) to calculate multicomponent chemical reaction mixtures as a series of sequential thermochemical states was recently introduced. The procedure combines multicomponent thermodynamics with chemical kinetics and may be used to simulate the multicomponent reactors as a thermochemical natural process. The method combines the desired reaction rates sequentially with constrained Gibbs energy minimization. The reactant concentrations are determined by the experimental (Arrhenius) rate laws. During the course of the given reaction the subsequent side reactions are supposed to occur reversibly. At every sequential stage of the given reaction the temperature and composition of the reaction mixture are calculated by a thermodynamic subroutine, which minimizes the Gibbs energy of the system and takes into account the heat transfer between the system and its surroundings. The extents of reaction are included as algorithmic constraints in the Gibbs energy minimization procedure. Initially, the reactants are introduced to the system as inert copies to match both the mass and energy balance of the reactive system. During the calculation the copies are sequentially interchanged to the actual reactants which allows one to simulate the time-dependent reaction route by using the thermochemical procedure. For each intermediate stage, the temperature and composition are calculated and as well numerical estimates of the thermodynamic functions are obtained. The method is applicable in processes where the core thermodynamic and kinetic data of the system are known and the time-dependent heat transfer data can either be measured or estimated by calculation. The method has been used to simulate e.g. high temperature flame reactions, zinc vapour oxidation and a counter-current rotary drum with chemical reactions. The procedure has today been tested with SOLGASMIX, CHEMSAGE and HSC programs. (author)
Time-dependent source model of the Lusi mud volcano
Shirzaei, M.; Rudolph, M. L.; Manga, M.
2014-12-01
The Lusi mud eruption, near Sidoarjo, East Java, Indonesia, began erupting in May 2006 and continues to erupt today. Previous analyses of surface deformation data suggested an exponential decay of the pressure in the mud source, but did not constrain the geometry and evolution of the source(s) from which the erupting mud and fluids ascend. To understand the spatiotemporal evolution of the mud and fluid sources, we apply a time-dependent inversion scheme to a densely populated InSAR time series of the surface deformation at Lusi. The SAR data set includes 50 images acquired on 3 overlapping tracks of the ALOS L-band satellite between May 2006 and April 2011. Following multitemporal analysis of this data set, the obtained surface deformation time series is inverted in a time-dependent framework to solve for the volume changes of distributed point sources in the subsurface. The volume change distribution resulting from this modeling scheme shows two zones of high volume change underneath Lusi at 0.5-1.5 km and 4-5.5km depth as well as another shallow zone, 7 km to the west of Lusi and underneath the Wunut gas field. The cumulative volume change within the shallow source beneath Lusi is ~2-4 times larger than that of the deep source, whilst the ratio of the Lusi shallow source volume change to that of Wunut gas field is ~1. This observation and model suggest that the Lusi shallow source played a key role in eruption process and mud supply, but that additional fluids do ascend from depths >4 km on eruptive timescales.
New applications with time-dependent thermochemical simulation
Energy Technology Data Exchange (ETDEWEB)
Koukkari, P [VTT Chemical Technology, Espoo (Finland); Laukkanen, L [VTT Automation, Espoo (Finland); Penttilae, K [Kemira Engineering Oy, Helsinki (Finland)
1997-12-31
A new method (RATEMIX) to calculate multicomponent chemical reaction mixtures as a series of sequential thermochemical states was recently introduced. The procedure combines multicomponent thermodynamics with chemical kinetics and may be used to simulate the multicomponent reactors as a thermochemical natural process. The method combines the desired reaction rates sequentially with constrained Gibbs energy minimization. The reactant concentrations are determined by the experimental (Arrhenius) rate laws. During the course of the given reaction the subsequent side reactions are supposed to occur reversibly. At every sequential stage of the given reaction the temperature and composition of the reaction mixture are calculated by a thermodynamic subroutine, which minimizes the Gibbs energy of the system and takes into account the heat transfer between the system and its surroundings. The extents of reaction are included as algorithmic constraints in the Gibbs energy minimization procedure. Initially, the reactants are introduced to the system as inert copies to match both the mass and energy balance of the reactive system. During the calculation the copies are sequentially interchanged to the actual reactants which allows one to simulate the time-dependent reaction route by using the thermochemical procedure. For each intermediate stage, the temperature and composition are calculated and as well numerical estimates of the thermodynamic functions are obtained. The method is applicable in processes where the core thermodynamic and kinetic data of the system are known and the time-dependent heat transfer data can either be measured or estimated by calculation. The method has been used to simulate e.g. high temperature flame reactions, zinc vapour oxidation and a counter-current rotary drum with chemical reactions. The procedure has today been tested with SOLGASMIX, CHEMSAGE and HSC programs. (author)
Time dependent patient no-show predictive modelling development.
Huang, Yu-Li; Hanauer, David A
2016-05-09
Purpose - The purpose of this paper is to develop evident-based predictive no-show models considering patients' each past appointment status, a time-dependent component, as an independent predictor to improve predictability. Design/methodology/approach - A ten-year retrospective data set was extracted from a pediatric clinic. It consisted of 7,291 distinct patients who had at least two visits along with their appointment characteristics, patient demographics, and insurance information. Logistic regression was adopted to develop no-show models using two-thirds of the data for training and the remaining data for validation. The no-show threshold was then determined based on minimizing the misclassification of show/no-show assignments. There were a total of 26 predictive model developed based on the number of available past appointments. Simulation was employed to test the effective of each model on costs of patient wait time, physician idle time, and overtime. Findings - The results demonstrated the misclassification rate and the area under the curve of the receiver operating characteristic gradually improved as more appointment history was included until around the 20th predictive model. The overbooking method with no-show predictive models suggested incorporating up to the 16th model and outperformed other overbooking methods by as much as 9.4 per cent in the cost per patient while allowing two additional patients in a clinic day. Research limitations/implications - The challenge now is to actually implement the no-show predictive model systematically to further demonstrate its robustness and simplicity in various scheduling systems. Originality/value - This paper provides examples of how to build the no-show predictive models with time-dependent components to improve the overbooking policy. Accurately identifying scheduled patients' show/no-show status allows clinics to proactively schedule patients to reduce the negative impact of patient no-shows.
Implicit time-dependent finite different algorithm for quench simulation
International Nuclear Information System (INIS)
Koizumi, Norikiyo; Takahashi, Yoshikazu; Tsuji, Hiroshi
1994-12-01
A magnet in a fusion machine has many difficulties in its application because of requirement of a large operating current, high operating field and high breakdown voltage. A cable-in-conduit (CIC) conductor is the best candidate to overcome these difficulties. However, there remained uncertainty in a quench event in the cable-in-conduit conductor because of a difficulty to analyze a fluid dynamics equation. Several scientists, then, developed the numerical code for the quench simulation. However, most of them were based on an explicit time-dependent finite difference scheme. In this scheme, a discrete time increment is strictly restricted by CFL (Courant-Friedrichs-Lewy) condition. Therefore, long CPU time was consumed for the quench simulation. Authors, then, developed a new quench simulation code, POCHI1, which is based on an implicit time dependent scheme. In POCHI1, the fluid dynamics equation is linearlized according to a procedure applied by Beam and Warming and then, a tridiagonal system can be offered. Therefore, no iteration is necessary to solve the fluid dynamics equation. This leads great reduction of the CPU time. Also, POCHI1 can cope with non-linear boundary condition. In this study, comparison with experimental results was carried out. The normal zone propagation behavior was investigated in two samples of CIC conductors which had different hydraulic diameters. The measured and simulated normal zone propagation length showed relatively good agreement. However, the behavior of the normal voltage shows a little disagreement. These results indicate necessity to improve the treatment of the heat transfer coefficient in the turbulent flow region and the electric resistivity of the copper stabilizer in high temperature and high field region. (author)
Study of calculated and measured time dependent delayed neutron yields
International Nuclear Information System (INIS)
Waldo, R.W.
1980-05-01
Time-dependent delayed neutron emission is of interest in reactor design, reactor dynamics, and nuclear physics studies. The delayed neutrons from neutron-induced fission of 232 U, 237 Np, 238 Pu, 241 Am, /sup 242m/Am, 245 Cm, and 249 Cf were studied for the first time. The delayed neutron emission from 232 Th, 233 U, 235 U, 238 U, 239 Pu, 241 Pu, and 242 Pu were measured as well. The data were used to develop an empirical expression for the total delayed neutron yield. The expression gives accurate results for a large variety of nuclides from 232 Th to 252 Cf. The data measuring the decay of delayed neutrons with time were used to derive another empirical expression predicting the delayed neutron emission with time. It was found that nuclides with similar mass-to-charge ratios have similar decay patterns. Thus the relative decay pattern of one nuclide can be established by any measured nuclide with a similar mass-to-charge ratio. A simple fission product yield model was developed and applied to delayed neutron precursors. It accurately predicts observed yield and decay characteristics. In conclusion, it is possible to not only estimate the total delayed neutron yield for a given nuclide but the time-dependent nature of the delayed neutrons as well. Reactors utilizing recycled fuel or burning actinides are likely to have inventories of fissioning nuclides that have not been studied until now. The delayed neutrons from these nuclides can now be incorporated so that their influence on the stability and control of reactors can be delineated. 8 figures, 39 tables
RAPTOR. I. Time-dependent radiative transfer in arbitrary spacetimes
Bronzwaer, T.; Davelaar, J.; Younsi, Z.; Mościbrodzka, M.; Falcke, H.; Kramer, M.; Rezzolla, L.
2018-05-01
Context. Observational efforts to image the immediate environment of a black hole at the scale of the event horizon benefit from the development of efficient imaging codes that are capable of producing synthetic data, which may be compared with observational data. Aims: We aim to present RAPTOR, a new public code that produces accurate images, animations, and spectra of relativistic plasmas in strong gravity by numerically integrating the equations of motion of light rays and performing time-dependent radiative transfer calculations along the rays. The code is compatible with any analytical or numerical spacetime. It is hardware-agnostic and may be compiled and run both on GPUs and CPUs. Methods: We describe the algorithms used in RAPTOR and test the code's performance. We have performed a detailed comparison of RAPTOR output with that of other radiative-transfer codes and demonstrate convergence of the results. We then applied RAPTOR to study accretion models of supermassive black holes, performing time-dependent radiative transfer through general relativistic magneto-hydrodynamical (GRMHD) simulations and investigating the expected observational differences between the so-called fast-light and slow-light paradigms. Results: Using RAPTOR to produce synthetic images and light curves of a GRMHD model of an accreting black hole, we find that the relative difference between fast-light and slow-light light curves is less than 5%. Using two distinct radiative-transfer codes to process the same data, we find integrated flux densities with a relative difference less than 0.01%. Conclusions: For two-dimensional GRMHD models, such as those examined in this paper, the fast-light approximation suffices as long as errors of a few percent are acceptable. The convergence of the results of two different codes demonstrates that they are, at a minimum, consistent. The public version of RAPTOR is available at the following URL: http://https://github.com/tbronzwaer/raptor
Fundamentals of time-dependent density functional theory
International Nuclear Information System (INIS)
Marques, Miguel A.L.; Rubio, Angel
2012-01-01
There have been many significant advances in time-dependent density functional theory over recent years, both in enlightening the fundamental theoretical basis of the theory, as well as in computational algorithms and applications. This book, as successor to the highly successful volume Time-Dependent Density Functional Theory (Lect. Notes Phys. 706, 2006) brings together for the first time all recent developments in a systematic and coherent way. First, a thorough pedagogical presentation of the fundamental theory is given, clarifying aspects of the original proofs and theorems, as well as presenting fresh developments that extend the theory into new realms such as alternative proofs of the original Runge-Gross theorem, open quantum systems, and dispersion forces to name but a few. Next, all of the basic concepts are introduced sequentially and building in complexity, eventually reaching the level of open problems of interest. Contemporary applications of the theory are discussed, from real-time coupled-electron-ion dynamics, to excited-state dynamics and molecular transport. Last but not least, the authors introduce and review recent advances in computational implementation, including massively parallel architectures and graphical processing units. Special care has been taken in editing this volume as a multi-author textbook, following a coherent line of thought, and making all the relevant connections between chapters and concepts consistent throughout. As such it will prove to be the text of reference in this field, both for beginners as well as expert researchers and lecturers teaching advanced quantum mechanical methods to model complex physical systems, from molecules to nanostructures, from biocomplexes to surfaces, solids and liquids. (orig.)
Time-dependent theoretical model of the polar wind: Preliminary results
International Nuclear Information System (INIS)
Gombosi, T.I.; Cravens, T.E.; Nagy, A.F.
1985-01-01
The coupled time dependent continuity, momentum and energy equations of a two ion (O + and H + ) quasineutral plasma were solved in order to extend our understanding of polar wind behavior. This numerical code allows studies of the time dependent behavior of polar wind-type flows into and out of the ionosphere. Initial studies indicate that the typical time constants for electron and ion temperature changes are of the order of minutes and tens of minutes, respectively. The response time of the minor high altitude ion O + is less than an hour, whereas that of the major ion, H + , is many hours. The initial test runs also demonstrate the fact that temporary supersonic flows of both O + and H + are possible, especially in the presence of significant ion heating
Hutter, Jürg
2003-03-01
An efficient formulation of time-dependent linear response density functional theory for the use within the plane wave basis set framework is presented. The method avoids the transformation of the Kohn-Sham matrix into the canonical basis and references virtual orbitals only through a projection operator. Using a Lagrangian formulation nuclear derivatives of excited state energies within the Tamm-Dancoff approximation are derived. The algorithms were implemented into a pseudo potential/plane wave code and applied to the calculation of adiabatic excitation energies, optimized geometries and vibrational frequencies of three low lying states of formaldehyde. An overall good agreement with other time-dependent density functional calculations, multireference configuration interaction calculations and experimental data was found.
Hydrodynamic perspective on memory in time-dependent density-functional theory
International Nuclear Information System (INIS)
Thiele, M.; Kuemmel, S.
2009-01-01
The adiabatic approximation of time-dependent density-functional theory is studied in the context of nonlinear excitations of two-electron singlet systems. We compare the exact time evolution of these systems to the adiabatically exact one obtained from time-dependent Kohn-Sham calculations relying on the exact ground-state exchange-correlation potential. Thus, we can show under which conditions the adiabatic approximation breaks down and memory effects become important. The hydrodynamic formulation of quantum mechanics allows us to interpret these results and relate them to dissipative effects in the Kohn-Sham system. We show how the breakdown of the adiabatic approximation can be inferred from the rate of change of the ground-state noninteracting kinetic energy.
Time-dependent density functional theory for many-electron systems interacting with cavity photons.
Tokatly, I V
2013-06-07
Time-dependent (current) density functional theory for many-electron systems strongly coupled to quantized electromagnetic modes of a microcavity is proposed. It is shown that the electron-photon wave function is a unique functional of the electronic (current) density and the expectation values of photonic coordinates. The Kohn-Sham system is constructed, which allows us to calculate the above basic variables by solving self-consistent equations for noninteracting particles. We suggest possible approximations for the exchange-correlation potentials and discuss implications of this approach for the theory of open quantum systems. In particular we show that it naturally leads to time-dependent density functional theory for systems coupled to the Caldeira-Leggett bath.
Time-dependent crack growth in Alloy 718: An interim assessment
International Nuclear Information System (INIS)
James, L.A.
1982-08-01
Previous results on the time-dependent nature of fatigue-crack propagation (FCP) in Alloy 718 at elevated temperatures were reviewed. Additional experiments were conducted to further define certain aspects of the time-dependent crack growth behavior. it was found that loading waveform influenced FCP behavior, with tensile hold-times producing higher growth rates than continuous cycling at the same frequency. Crack growth rates under hold-time conditions tended to increase with decreasing grain size. Finally, experiments were conducted which tended to cast some doubt upon the ability of linear-elastic fracture mechanics (LEFM) techniques to characterize cracking behavior in this alloy under hold-time conditions. However, since a superior correlating parameter has not yet been proven, it is suggested that LEFM methods be used in the interim with appropriate safety factors to account for the potential errors. 34 refs., 10 figs., 4 tabs
Unitary relation for the time-dependent SU(1,1) systems
International Nuclear Information System (INIS)
Song, Dae-Yup
2003-01-01
The system whose Hamiltonian is a linear combination of the generators of SU(1,1) group with time-dependent coefficients is studied. It is shown that there is a unitary relation between the system and a system whose Hamiltonian is simply proportional to the generator of the compact subgroup of SU(1,1). The unitary relation is described by the classical solutions of a time-dependent (harmonic) oscillator. Making use of the relation, the wave functions satisfying the Schroedinger equation are given, for a general unitary representation, in terms of the matrix elements of a finite group transformation (Bargmann function). The wave functions of the harmonic oscillator with an inverse-square potential is studied in detail, and it is shown that through an integral, the model provides a way of deriving the Bargmann function for the representation of positive discrete series of SU(1,1)
Time-dependent spectrum analysis of high power gyrotrons
International Nuclear Information System (INIS)
Schlaich, Andreas
2015-01-01
In this work, an investigation of vacuum electronic oscillators capable of generating multi-megawatt continuous wave output power in the millimeter-wave range (so-called gyrotrons) through spectral measurements is presented. The centerpiece is the development of a measurement system with a high dynamic range (50-60 dB) for time-dependent spectrum analysis, covering the frequency range 100-170 GHz with instantaneous bandwidths of 6-12 GHz. Despite relying on heterodyne reception through harmonic mixers, the Pulse Spectrum Analysis (PSA) system maintains RF unambiguity in the spectrogram output through the application of a novel RF reconstruction technique. Using the new possibilities, a wide range of spectral phenomena in gyrotrons has been investigated, such as cavity mode jumps, lowfrequency modulation, frequency tuning in long pulses and the spectral behavior during the presence of an RF window arc. A dedicated investigation on parasitic RF oscillations in W7-X gyrotrons combining several analysis techniques led to the conclusion that after-cavity oscillations can be physical reality in high power gyrotrons, and are the probable cause for the undesired signals observed. Apart from systematic parameter sweeps using the PSA system, an analytical dispersion analysis in the Brillouin diagram was applied, and numerical gyrotron interaction simulations of unprecedented extent were conducted. Furthermore, the improved frequency measurement capabilities were employed to analyze the frequency tuning through thermal expansion and electrostatic neutralization caused by ionization inside the tube in long-pulse operation. By macroscopically modeling the gas dynamics and ionization processes in combination with a fitting process, the time dependences of the two processes could be investigated. In doing so, indication was found that the neutralization in W7-X gyrotrons amounts to only 60% of the electrostatic depression voltage, instead of 100% as widely believed for
Time-dependent spectrum analysis of high power gyrotrons
Energy Technology Data Exchange (ETDEWEB)
Schlaich, Andreas
2015-07-01
In this work, an investigation of vacuum electronic oscillators capable of generating multi-megawatt continuous wave output power in the millimeter-wave range (so-called gyrotrons) through spectral measurements is presented. The centerpiece is the development of a measurement system with a high dynamic range (50-60 dB) for time-dependent spectrum analysis, covering the frequency range 100-170 GHz with instantaneous bandwidths of 6-12 GHz. Despite relying on heterodyne reception through harmonic mixers, the Pulse Spectrum Analysis (PSA) system maintains RF unambiguity in the spectrogram output through the application of a novel RF reconstruction technique. Using the new possibilities, a wide range of spectral phenomena in gyrotrons has been investigated, such as cavity mode jumps, lowfrequency modulation, frequency tuning in long pulses and the spectral behavior during the presence of an RF window arc. A dedicated investigation on parasitic RF oscillations in W7-X gyrotrons combining several analysis techniques led to the conclusion that after-cavity oscillations can be physical reality in high power gyrotrons, and are the probable cause for the undesired signals observed. Apart from systematic parameter sweeps using the PSA system, an analytical dispersion analysis in the Brillouin diagram was applied, and numerical gyrotron interaction simulations of unprecedented extent were conducted. Furthermore, the improved frequency measurement capabilities were employed to analyze the frequency tuning through thermal expansion and electrostatic neutralization caused by ionization inside the tube in long-pulse operation. By macroscopically modeling the gas dynamics and ionization processes in combination with a fitting process, the time dependences of the two processes could be investigated. In doing so, indication was found that the neutralization in W7-X gyrotrons amounts to only 60% of the electrostatic depression voltage, instead of 100% as widely believed for
Responses of hadrons to the chemical potential at finite temperature
International Nuclear Information System (INIS)
Choe, S.; Liu, Y.; Miyamura, O.; Forcrand, Ph. de; Garcia Perez, M.; Hioki, S.; Matsufuru, H.; Nakamura, A.; Stamatescu, I.-O.; Takaishi, T.; Umeda, T.
2002-01-01
We present a framework to compute the responses of hadron masses to the chemical potential in lattice QCD simulations. As a first trial, the screening mass of the pseudoscalar meson and its first and second responses are evaluated. We present results on a 16x8 2 x4 lattice with two flavors of staggered quarks below and above T c . The responses to both the isoscalar and isovector chemical potentials are obtained. They show different behavior in the low and the high temperature phases, which may be explained as a consequence of chiral symmetry breaking and restoration, respectively
submitter Time-dependent CP violation in charm mesons
Inguglia, Gianluca
CP violation is a well established phenomenon for B and K mesons, but for D0 mesons, bound states made up of a quark-antiquark pair containing a charm quark, a conclusive answer to the question whether there is CP vio- lation or not, has yet to be determined. I show here the phenomenology of time-dependent CP asymmetries in charm decays, and discuss the implica- tions of experimental tests aimed at the measurement of CP violation in the interference between mixing and decays of charm mesons, in particular when studying the decay channels D0 ! h+h (h = K; ). The decay channels considered can also be used to constrain quantities that are poorly measured or still to be investigated, such as MIX and c;eff , provided that the e ects of penguin pollution are ignored. I considered correlated production of D0 mesons at the SuperB experiment and its planned asymmetric run at the charm threshold and performed a study of simulated events, nding that a boost factor = 0:28 would not be su cient to produce competitive re- ...
Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity.
Pecevski, Dejan; Maass, Wolfgang
2016-01-01
Numerous experimental data show that the brain is able to extract information from complex, uncertain, and often ambiguous experiences. Furthermore, it can use such learnt information for decision making through probabilistic inference. Several models have been proposed that aim at explaining how probabilistic inference could be performed by networks of neurons in the brain. We propose here a model that can also explain how such neural network could acquire the necessary information for that from examples. We show that spike-timing-dependent plasticity in combination with intrinsic plasticity generates in ensembles of pyramidal cells with lateral inhibition a fundamental building block for that: probabilistic associations between neurons that represent through their firing current values of random variables. Furthermore, by combining such adaptive network motifs in a recursive manner the resulting network is enabled to extract statistical information from complex input streams, and to build an internal model for the distribution p (*) that generates the examples it receives. This holds even if p (*) contains higher-order moments. The analysis of this learning process is supported by a rigorous theoretical foundation. Furthermore, we show that the network can use the learnt internal model immediately for prediction, decision making, and other types of probabilistic inference.
Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity123
Pecevski, Dejan
2016-01-01
Abstract Numerous experimental data show that the brain is able to extract information from complex, uncertain, and often ambiguous experiences. Furthermore, it can use such learnt information for decision making through probabilistic inference. Several models have been proposed that aim at explaining how probabilistic inference could be performed by networks of neurons in the brain. We propose here a model that can also explain how such neural network could acquire the necessary information for that from examples. We show that spike-timing-dependent plasticity in combination with intrinsic plasticity generates in ensembles of pyramidal cells with lateral inhibition a fundamental building block for that: probabilistic associations between neurons that represent through their firing current values of random variables. Furthermore, by combining such adaptive network motifs in a recursive manner the resulting network is enabled to extract statistical information from complex input streams, and to build an internal model for the distribution p* that generates the examples it receives. This holds even if p* contains higher-order moments. The analysis of this learning process is supported by a rigorous theoretical foundation. Furthermore, we show that the network can use the learnt internal model immediately for prediction, decision making, and other types of probabilistic inference. PMID:27419214
Effects of time-dependent photoionization on interstellar pickup atoms
International Nuclear Information System (INIS)
Isenberg, P.A.; Lee, M.A.
1995-01-01
We present an analytical model for the density variations of interstellar pickup ions in the solar wind due to a time-dependent variation in the photoionization rate, our model predicts a pickup ion density enhancement lasting for a time of the order of the duration of the increase plus the solar wind convection time to the observation point. If the photoionization rate returns to its initial value, this enhancement is followed by a decreased pickup ion density resulting from a depleted interstellar neutral particle density. In the absence of further variations in the photoionization rate, the pickup ion density recovers on a time which scales as the radial position of the observation point divided by the inflow speed of the neutral particles. Gradual variations in the photoionization rate result in a pickup ion density which tends to track the ionization rate, though the density variations are smoothed and delayed in time due to the solar wind convection of ions picked up at points closer to the Sun. 27 refs., 4 figs
Time-dependent efficacy of longitudinal biomarker for clinical endpoint.
Kolamunnage-Dona, Ruwanthi; Williamson, Paula R
2018-06-01
Joint modelling of longitudinal biomarker and event-time processes has gained its popularity in recent years as they yield more accurate and precise estimates. Considering this modelling framework, a new methodology for evaluating the time-dependent efficacy of a longitudinal biomarker for clinical endpoint is proposed in this article. In particular, the proposed model assesses how well longitudinally repeated measurements of a biomarker over various time periods (0,t) distinguish between individuals who developed the disease by time t and individuals who remain disease-free beyond time t. The receiver operating characteristic curve is used to provide the corresponding efficacy summaries at various t based on the association between longitudinal biomarker trajectory and risk of clinical endpoint prior to each time point. The model also allows detecting the time period over which a biomarker should be monitored for its best discriminatory value. The proposed approach is evaluated through simulation and illustrated on the motivating dataset from a prospective observational study of biomarkers to diagnose the onset of sepsis.
Time-Dependent Liquid Transport on a Biomimetic Topological Surface.
Yu, Cunlong; Li, Chuxin; Gao, Can; Dong, Zhichao; Wu, Lei; Jiang, Lei
2018-05-02
Liquid drops impacting on a solid surface is a familiar phenomenon. On rainy days, it is quite important for leaves to drain off impacting raindrops. Water can bounce off or flow down a water-repellent leaf easily, but with difficulty on a hydrophilic leaf. Here, we show an interesting phenomenon in which impacting drops on the hydrophilic pitcher rim of Nepenthes alata can spread outward to prohibit water filling the pitcher tank. We mimic the peristome surface through a designed 3D printing and replicating way and report a time-dependently switchable liquid transport based on biomimetic topological structures, where surface curvature can work synergistically with the surface microtextures to manipulate the switchable spreading performance. Motived by this strange behavior, we construct a large-scaled peristome-mimetic surface in a 3D profile, demonstrating the ability to reduce the need to mop or to squeegee drops that form during the drop impacting process on pipes or other curved surfaces in food processing, moisture transfer, heat management, etc.
Time-dependent, multimode interaction analysis of the gyroklystron amplifier
Energy Technology Data Exchange (ETDEWEB)
Swati, M. V., E-mail: swati.mv.ece10@iitbhu.ac.in; Chauhan, M. S.; Jain, P. K. [Department of Electronics Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005 (India)
2016-08-15
In this paper, a time-dependent multimode nonlinear analysis for the gyroklystron amplifier has been developed by extending the analysis of gyrotron oscillators by employing the self-consistent approach. The nonlinear analysis developed here has been validated by taking into account the reported experimental results for a 32.3 GHz, three cavity, second harmonic gyroklystron operating in the TE{sub 02} mode. The analysis has been used to estimate the temporal RF growth in the operating mode as well as the nearby competing modes. Device gain and bandwidth have been computed for different drive powers and frequencies. The effect of various beam parameters, such as beam voltage, beam current, and pitch factor, has also been studied. The computational results have estimated the gyroklystron saturated RF power ∼319 kW at 32.3 GHz with efficiency ∼23% and gain ∼26.3 dB with device bandwidth ∼0.027% (8 MHz) for a 70 kV, 20 A electron beam. The computed results are found to be in agreement with the experimental values within 10%.
Fitting a function to time-dependent ensemble averaged data.
Fogelmark, Karl; Lomholt, Michael A; Irbäck, Anders; Ambjörnsson, Tobias
2018-05-03
Time-dependent ensemble averages, i.e., trajectory-based averages of some observable, are of importance in many fields of science. A crucial objective when interpreting such data is to fit these averages (for instance, squared displacements) with a function and extract parameters (such as diffusion constants). A commonly overlooked challenge in such function fitting procedures is that fluctuations around mean values, by construction, exhibit temporal correlations. We show that the only available general purpose function fitting methods, correlated chi-square method and the weighted least squares method (which neglects correlation), fail at either robust parameter estimation or accurate error estimation. We remedy this by deriving a new closed-form error estimation formula for weighted least square fitting. The new formula uses the full covariance matrix, i.e., rigorously includes temporal correlations, but is free of the robustness issues, inherent to the correlated chi-square method. We demonstrate its accuracy in four examples of importance in many fields: Brownian motion, damped harmonic oscillation, fractional Brownian motion and continuous time random walks. We also successfully apply our method, weighted least squares including correlation in error estimation (WLS-ICE), to particle tracking data. The WLS-ICE method is applicable to arbitrary fit functions, and we provide a publically available WLS-ICE software.
Radiation induced time dependent attenuation in a fiber
International Nuclear Information System (INIS)
Kelly, R.E.; Lyons, P.B.; Looney, L.D.
1985-01-01
Characteristics describing the time dependent attenuation coefficient of an optical fiber during and following a very short and intense radiation pulse are analyzed. This problem is important for transmission applications when the fiber is subjected to gamma, electron, or neutron beams. Besides time, the attenuation coefficient is a function of temperature, dose rate, dose, nature of the radiation (n, e, γ), fiber composition and purity, pre-existing solid state defects, and wavelength of the transmitted signal. The peak attenuation for a given fiber is mainly determined by the dose rate and pulse length, but temperature and strain (or athermal) annealing also contribute to a partial recovery during the pulse duration. The peak attenuation per unit dose appears to be smaller at high doses, perhaps caused by particle track overlap, which produces a saturation effect. After pulse termination, the attenuation coefficient tends to recover towards its pre-radiation value at different rates, depending upon the factors mentioned above. In particular, ionized electrons relax back to the positive lattice ions at a rate which depends upon initial separation distance and temperature. The initial separation distance is a function of beam energy. Some electrons will encounter a trap in the lattice and may recombine by quantum mechanical tunneling or be removed by photons (hence, absorption). Besides ionization, radiation may induce lattice displacements which in turn produce additional absorption centers. The displacement contribution has a different time constant than that associated with ionization. These topics, as they influence fiber characteristics, are discussed, along with supporting experimental data
Time-dependent Fracture Behaviour of Polyampholyte Hydrogels
Sun, Tao Lin; Luo, Feng; Nakajima, Tasuku; Kurokawa, Takayuki; Gong, Jian Ping
Recently, we report that polyampholytes, polymers bearing randomly dispersed cationic and anionic repeat groups, form tough and self-healing hydrogels with excellent multiple mechanical functions. The randomness makes ionic bonds with a wide distribution of strength, via inter and intra chain complexation. As the breaking and reforming of ionic bonds are time dependent, the hydrogels exhibit rate dependent mechanical behaviour. We systematically studied the tearing energy by tearing test with various tearing velocity under different temperature, and the linear viscoelastic behaviour over a wide range of frequency and temperature. Results have shown that the tearing energy markedly increase with the crack velocity and decrease with the measured temperature. In accordance with the prediction of Williams, Landel, and Ferry (WLF) rate-temperature equivalence, a master curve of tearing energy dependence of crack velocity can be well constructed using the same shift factor from the linear viscoelastic data. The scaling relation of tearing energy as a function of crack velocity can be predicted well by the rheological data according to the developed linear fracture mechanics.
Complexities in gauging time-dependency of proliferation resistance
International Nuclear Information System (INIS)
Avens, L.R.; Eller, P.G.; Stanbro, W.D.
2004-01-01
To a considerable extent, policy decisions on nuclear fuel cycle issues depend upon how decision makers recognize and weigh 'long-term' and 'short-term' nuclear proliferation risk factors. Priorities and structures of advanced fuel cycle and safeguards research and development programs are affected similarly. Unfortunately, there is a diversity of understanding of the precise meanings of these proliferation risk terms, leading to lack of precision in their usage. In addition, proliferation risk evaluation fundamentally involves value judgments on the relative importance of time-dependent risks. Poor communication and diverse conclusions often result. This paper explores some complexities in gauging 'long-term' and 'short-term' proliferation risk in the context of advanced nuclear fuel cycles. A convenient vehicle for this purpose is a commonly used notional plot of some proliferation resistance attribute of spent fuel or separated plutonium versus years from reactor discharge, often overlain with similar notional curves denoting multiple fuel irradiation and recycle. A common basis for misuse of such plots is failure to clearly define the range of proliferation threats being evaluated, as illustrated by several common examples of such omissions. Partial arguments of this type can be misleading and provide a disservice to policy makers who must have a clear picture of the tradeoffs being made. This paper concludes with a call for much greater care to avoid overly simplistic interpretations of notional proliferation-related concepts and greater precision in general in use of proliferation-related terminology.
Multiscale time-dependent density functional theory: Demonstration for plasmons.
Jiang, Jiajian; Abi Mansour, Andrew; Ortoleva, Peter J
2017-08-07
Plasmon properties are of significant interest in pure and applied nanoscience. While time-dependent density functional theory (TDDFT) can be used to study plasmons, it becomes impractical for elucidating the effect of size, geometric arrangement, and dimensionality in complex nanosystems. In this study, a new multiscale formalism that addresses this challenge is proposed. This formalism is based on Trotter factorization and the explicit introduction of a coarse-grained (CG) structure function constructed as the Weierstrass transform of the electron wavefunction. This CG structure function is shown to vary on a time scale much longer than that of the latter. A multiscale propagator that coevolves both the CG structure function and the electron wavefunction is shown to bring substantial efficiency over classical propagators used in TDDFT. This efficiency follows from the enhanced numerical stability of the multiscale method and the consequence of larger time steps that can be used in a discrete time evolution. The multiscale algorithm is demonstrated for plasmons in a group of interacting sodium nanoparticles (15-240 atoms), and it achieves improved efficiency over TDDFT without significant loss of accuracy or space-time resolution.
Recovery of time-dependent volatility in option pricing model
Deng, Zui-Cha; Hon, Y. C.; Isakov, V.
2016-11-01
In this paper we investigate an inverse problem of determining the time-dependent volatility from observed market prices of options with different strikes. Due to the non linearity and sparsity of observations, an analytical solution to the problem is generally not available. Numerical approximation is also difficult to obtain using most of the existing numerical algorithms. Based on our recent theoretical results, we apply the linearisation technique to convert the problem into an inverse source problem from which recovery of the unknown volatility function can be achieved. Two kinds of strategies, namely, the integral equation method and the Landweber iterations, are adopted to obtain the stable numerical solution to the inverse problem. Both theoretical analysis and numerical examples confirm that the proposed approaches are effective. The work described in this paper was partially supported by a grant from the Research Grant Council of the Hong Kong Special Administrative Region (Project No. CityU 101112) and grants from the NNSF of China (Nos. 11261029, 11461039), and NSF grants DMS 10-08902 and 15-14886 and by Emylou Keith and Betty Dutcher Distinguished Professorship at the Wichita State University (USA).
Time-dependent motor properties of multipedal molecular spiders.
Samii, Laleh; Blab, Gerhard A; Bromley, Elizabeth H C; Linke, Heiner; Curmi, Paul M G; Zuckermann, Martin J; Forde, Nancy R
2011-09-01
Molecular spiders are synthetic biomolecular walkers that use the asymmetry resulting from cleavage of their tracks to bias the direction of their stepping motion. Using Monte Carlo simulations that implement the Gillespie algorithm, we investigate the dependence of the biased motion of molecular spiders, along with binding time and processivity, on tunable experimental parameters, such as number of legs, span between the legs, and unbinding rate of a leg from a substrate site. We find that an increase in the number of legs increases the spiders' processivity and binding time but not their mean velocity. However, we can increase the mean velocity of spiders with simultaneous tuning of the span and the unbinding rate of a spider leg from a substrate site. To study the efficiency of molecular spiders, we introduce a time-dependent expression for the thermodynamic efficiency of a molecular motor, allowing us to account for the behavior of spider populations as a function of time. Based on this definition, we find that spiders exhibit transient motor function over time scales of many hours and have a maximum efficiency on the order of 1%, weak compared to other types of molecular motors.
Time-dependent simulations of disk-embedded planetary atmospheres
Stökl, A.; Dorfi, E. A.
2014-03-01
At the early stages of evolution of planetary systems, young Earth-like planets still embedded in the protoplanetary disk accumulate disk gas gravitationally into planetary atmospheres. The established way to study such atmospheres are hydrostatic models, even though in many cases the assumption of stationarity is unlikely to be fulfilled. Furthermore, such models rely on the specification of a planetary luminosity, attributed to a continuous, highly uncertain accretion of planetesimals onto the surface of the solid core. We present for the first time time-dependent, dynamic simulations of the accretion of nebula gas into an atmosphere around a proto-planet and the evolution of such embedded atmospheres while integrating the thermal energy budget of the solid core. The spherical symmetric models computed with the TAPIR-Code (short for The adaptive, implicit RHD-Code) range from the surface of the rocky core up to the Hill radius where the surrounding protoplanetary disk provides the boundary conditions. The TAPIR-Code includes the hydrodynamics equations, gray radiative transport and convective energy transport. The results indicate that diskembedded planetary atmospheres evolve along comparatively simple outlines and in particular settle, dependent on the mass of the solid core, at characteristic surface temperatures and planetary luminosities, quite independent on numerical parameters and initial conditions. For sufficiently massive cores, this evolution ultimately also leads to runaway accretion and the formation of a gas planet.
Time-dependent histamine release from stored human blood products
DEFF Research Database (Denmark)
Nielsen, Hans Jørgen; Edvardsen, L; Vangsgaard, K
1996-01-01
storage. Whole blood (six units), plasma-reduced whole blood (six units), and plasma- and buffy coat-reduced (saline-adenine-glucose-mannitol) (SAGM) blood (six units) from unpaid healthy donors were stored in the blood bank for 35 days at 4 degrees C. Plasma histamine and total cell-bound histamine......Perioperative transfusion of whole blood has been shown to amplify trauma-induced immunosuppression, which could be attenuated by perioperative administration of histamine2 receptor antagonists. Supernatants from different blood products were, therefore, analysed for histamine content during.......0 (range 176.0-910.0) nmol/l in whole blood and 475.0 (range 360.0-1560.0) nmol/l in plasma-reduced whole blood, while it was undetectable in SAGM blood. Spontaneous histamine release increased in a time-dependent manner from a median of 6.7 (range 2.2-17.4) nmol/l at the time of storage to 175.0 (range 33...
Time-dependent effect in green synthesis of silver nanoparticles
Directory of Open Access Journals (Sweden)
Darroudi M
2011-04-01
Full Text Available Majid Darroudi1,2, Mansor Bin Ahmad3, Reza Zamiri4, AK Zak5, Abdul Halim Abdullah1,3, Nor Azowa Ibrahim31Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA, Universiti Putra Malaysia, Selangor, Malaysia; 2Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; 3Department of Chemistry, 4Department of Physics, Faculty of Science, Universiti Putra Malaysia, Selangor, Malaysia; 5Low Dimensional Materials Research Center, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur, MalaysiaAbstract: The application of “green” chemistry rules to nanoscience and nanotechnology is very important in the preparation of various nanomaterials. In this work, we successfully developed an eco-friendly chemistry method for preparing silver nanoparticles (Ag-NPs in natural polymeric media. The colloidal Ag-NPs were synthesized in an aqueous solution using silver nitrate, gelatin, and glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag-NPs were studied at different reaction times. The ultraviolet-visible (UV-vis spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM and their size distributions. The prepared samples were also characterized by X-ray diffraction (XRD and atomic force microscopy (AFM. The use of eco-friendly reagents, such as gelatin and glucose, provides green and economic attributes to this work.Keywords: silver nanoparticles, gelatin, green chemistry, time-dependent effect, ultraviolet-visible spectra
Residual distribution for general time-dependent conservation laws
International Nuclear Information System (INIS)
Ricchiuto, Mario; Csik, Arpad; Deconinck, Herman
2005-01-01
We consider the second-order accurate numerical solution of general time-dependent hyperbolic conservation laws over unstructured grids in the framework of the Residual Distribution method. In order to achieve full conservation of the linear, monotone and first-order space-time schemes of (Csik et al., 2003) and (Abgrall et al., 2000), we extend the conservative residual distribution (CRD) formulation of (Csik et al., 2002) to prismatic space-time elements. We then study the design of second-order accurate and monotone schemes via the nonlinear mapping of the local residuals of linear monotone schemes. We derive sufficient and necessary conditions for the well-posedness of the mapping. We prove that the schemes obtained with the CRD formulation satisfy these conditions by construction. Thus the nonlinear schemes proposed in this paper are always well defined. The performance of the linear and nonlinear schemes are evaluated on a series of test problems involving the solution of the Euler equations and of a two-phase flow model. We consider the resolution of strong shocks and complex interacting flow structures. The results demonstrate the robustness, accuracy and non-oscillatory character of the proposed schemes. d schemes
Transient fluctuation relations for time-dependent particle transport
Altland, Alexander; de Martino, Alessandro; Egger, Reinhold; Narozhny, Boris
2010-09-01
We consider particle transport under the influence of time-varying driving forces, where fluctuation relations connect the statistics of pairs of time-reversed evolutions of physical observables. In many “mesoscopic” transport processes, the effective many-particle dynamics is dominantly classical while the microscopic rates governing particle motion are of quantum-mechanical origin. We here employ the stochastic path-integral approach as an optimal tool to probe the fluctuation statistics in such applications. Describing the classical limit of the Keldysh quantum nonequilibrium field theory, the stochastic path integral encapsulates the quantum origin of microscopic particle exchange rates. Dynamically, it is equivalent to a transport master equation which is a formalism general enough to describe many applications of practical interest. We apply the stochastic path integral to derive general functional fluctuation relations for current flow induced by time-varying forces. We show that the successive measurement processes implied by this setup do not put the derivation of quantum fluctuation relations in jeopardy. While in many cases the fluctuation relation for a full time-dependent current profile may contain excessive information, we formulate a number of reduced relations, and demonstrate their application to mesoscopic transport. Examples include the distribution of transmitted charge, where we show that the derivation of a fluctuation relation requires the combined monitoring of the statistics of charge and work.
Erratic time dependence of orbits of topologically mixing maps
International Nuclear Information System (INIS)
Xiong Jincheng.
1988-11-01
In the present paper we show that for a topologically mixing map there are considerably many points in the domain whose orbits display highly erratic time dependence, i.e., if f: X→X is a topologically mixing map where X is a compact metric space then for any increasing sequence {q i } of positive integers and any countable subset S dense in X there exists everywhere an uncountable subset C of X satisfying the conditions of (1) for any s is an element of S. There exists a subsequence {p i } of the sequence {q i } such that lim i→∞ f P 1 (y)=s for every y is an element of C, and (2) for any n>0, any n distinct points y 1 ,y 2 ,...,y n of C and any n points x 1 ,x 2 ,...,x n of X there exists a subsequence {t i } of the sequence {q i } such that lim i→∞ f t i (y j )=x j for every j=1,2,...n. (author). 4 refs
Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole
2018-04-01
We simulate the dynamics of a single-electron source, modeled as a quantum dot with on-site Coulomb interaction and tunnel coupling to an adjacent lead in time-dependent density-functional theory. Based on this system, we develop a time-nonlocal exchange-correlation potential by exploiting analogies with quantum-transport theory. The time nonlocality manifests itself in a dynamical potential step. We explicitly link the time evolution of the dynamical step to physical relaxation timescales of the electron dynamics. Finally, we discuss prospects for simulations of larger mesoscopic systems.
Time-dependent weak values and their intrinsic phases of evolution
International Nuclear Information System (INIS)
Parks, A D
2008-01-01
The equation of motion for a time-dependent weak value of a quantum-mechanical observable is known to contain a complex valued energy factor (the weak energy of evolution) that is defined by the dynamics of the pre-selected and post-selected states which specify the observable's weak value. In this paper, the mechanism responsible for the creation of this energy is identified and it is shown that the cumulative effect over time of this energy is manifested as dynamical phases and pure geometric phases (the intrinsic phases of evolution) which govern the evolution of the weak value during its measurement process. These phases are simply related to a Pancharatnam phase and Fubini-Study metric distance defined by the Hilbert space evolution of the associated pre-selected and post-selected states. A characterization of time-dependent weak value evolution as Pancharatnam phase angle rotations and Fubini-Study distance scalings of a vector in the Argand plane is discussed as an application of this relationship. The theory of weak values is also reviewed and simple 'gedanken experiments' are used to illustrate both the time-independent and the time-dependent versions of the theory. It is noted that the direct experimental observation of the weak energy of evolution would strongly support the time-symmetric paradigm of quantum mechanics and it is suggested that weak value equations of motion represent a new category of nonlocal equations of motion
Time-Dependent Behavior of High-Strength Kevlar and Vectran Webbing
Jones, Thomas C.; Doggett, William R.
2014-01-01
High-strength Kevlar and Vectran webbings are currently being used by both NASA and industry as the primary load-bearing structure in inflatable space habitation modules. The time-dependent behavior of high-strength webbing architectures is a vital area of research that is providing critical material data to guide a more robust design process for this class of structures. This paper details the results of a series of time-dependent tests on 1-inch wide webbing including an initial set of comparative tests between specimens that underwent realtime and accelerated creep at 65 and 70% of their ultimate tensile strength. Variability in the ultimate tensile strength of the webbings is investigated and compared with variability in the creep life response. Additional testing studied the effects of load and displacement rate, specimen length and the time-dependent effects of preconditioning the webbings. The creep test facilities, instrumentation and test procedures are also detailed. The accelerated creep tests display consistently longer times to failure than their real-time counterparts; however, several factors were identified that may contribute to the observed disparity. Test setup and instrumentation, grip type, loading scheme, thermal environment and accelerated test postprocessing along with material variability are among these factors. Their effects are discussed and future work is detailed for the exploration and elimination of some of these factors in order to achieve a higher fidelity comparison.
Network evolution induced by asynchronous stimuli through spike-timing-dependent plasticity.
Directory of Open Access Journals (Sweden)
Wu-Jie Yuan
Full Text Available In sensory neural system, external asynchronous stimuli play an important role in perceptual learning, associative memory and map development. However, the organization of structure and dynamics of neural networks induced by external asynchronous stimuli are not well understood. Spike-timing-dependent plasticity (STDP is a typical synaptic plasticity that has been extensively found in the sensory systems and that has received much theoretical attention. This synaptic plasticity is highly sensitive to correlations between pre- and postsynaptic firings. Thus, STDP is expected to play an important role in response to external asynchronous stimuli, which can induce segregative pre- and postsynaptic firings. In this paper, we study the impact of external asynchronous stimuli on the organization of structure and dynamics of neural networks through STDP. We construct a two-dimensional spatial neural network model with local connectivity and sparseness, and use external currents to stimulate alternately on different spatial layers. The adopted external currents imposed alternately on spatial layers can be here regarded as external asynchronous stimuli. Through extensive numerical simulations, we focus on the effects of stimulus number and inter-stimulus timing on synaptic connecting weights and the property of propagation dynamics in the resulting network structure. Interestingly, the resulting feedforward structure induced by stimulus-dependent asynchronous firings and its propagation dynamics reflect both the underlying property of STDP. The results imply a possible important role of STDP in generating feedforward structure and collective propagation activity required for experience-dependent map plasticity in developing in vivo sensory pathways and cortices. The relevance of the results to cue-triggered recall of learned temporal sequences, an important cognitive function, is briefly discussed as well. Furthermore, this finding suggests a potential
Riccati and Ermakov Equations in Time-Dependent and Time-Independent Quantum Systems
Directory of Open Access Journals (Sweden)
Dieter Schuch
2008-05-01
Full Text Available The time-evolution of the maximum and the width of exact analytic wave packet (WP solutions of the time-dependent Schrödinger equation (SE represents the particle and wave aspects, respectively, of the quantum system. The dynamics of the maximum, located at the mean value of position, is governed by the Newtonian equation of the corresponding classical problem. The width, which is directly proportional to the position uncertainty, obeys a complex nonlinear Riccati equation which can be transformed into a real nonlinear Ermakov equation. The coupled pair of these equations yields a dynamical invariant which plays a key role in our investigation. It can be expressed in terms of a complex variable that linearizes the Riccati equation. This variable also provides the time-dependent parameters that characterize the Green's function, or Feynman kernel, of the corresponding problem. From there, also the relation between the classical and quantum dynamics of the systems can be obtained. Furthermore, the close connection between the Ermakov invariant and the Wigner function will be shown. Factorization of the dynamical invariant allows for comparison with creation/annihilation operators and supersymmetry where the partner potentials fulfil (real Riccati equations. This provides the link to a nonlinear formulation of time-independent quantum mechanics in terms of an Ermakov equation for the amplitude of the stationary state wave functions combined with a conservation law. Comparison with SUSY and the time-dependent problems concludes our analysis.
Dose- and time-dependent pharmacokinetics of apigenin trimethyl ether.
Elhennawy, Mai Gamal; Lin, Hai-Shu
2018-06-15
Apigenin trimethyl ether (5,7,4'-trimethoxyflavone, ATE), one of the key polymethoxyflavones present in black ginger (rhizome of Kaempferia parviflora) possesses various health-promoting activities. To optimize its medicinal application, the pharmacokinetics of ATE was assessed in Sprague-Dawley rats with emphases to identify the impacts from dose and repeated dosing on its major pharmacokinetic parameters. Plasma ATE levels were monitored by liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Upon single intravenous administration (2 mg/kg), plasma levels of ATE declined through an apparent first-order process while dose-escalation to 4 and 8 mg/kg led to its non-linear disposition, which could be described by the Michaelis-Menten model. Similarly, dose-dependent oral pharmacokinetics was confirmed and when the dose was escalated from 5 to 15 and 45 mg/kg, much longer mean residence time (MRT 0→last ), higher dose-normalized maximal plasma concentration (C max /Dose) and exposure (AUC/Dose) were observed at 15 and/or 45 mg/kg. One-week daily oral administration of ATE at 15 mg/kg caused its accelerated elimination and the plasma exposure (AUC) after intravenous (2 mg/kg) and oral administration (15 mg/kg) dropped ~40 and 60%, respectively. As ATE displayed both dose- and time-dependent pharmacokinetics, caution is needed in the medicinal applications of ATE and/or black ginger. Copyright © 2018 Elsevier B.V. All rights reserved.
A simple shear limited, single size, time dependent flocculation model
Kuprenas, R.; Tran, D. A.; Strom, K.
2017-12-01
This research focuses on the modeling of flocculation of cohesive sediment due to turbulent shear, specifically, investigating the dependency of flocculation on the concentration of cohesive sediment. Flocculation is important in larger sediment transport models as cohesive particles can create aggregates which are orders of magnitude larger than their unflocculated state. As the settling velocity of each particle is determined by the sediment size, density, and shape, accounting for this aggregation is important in determining where the sediment is deposited. This study provides a new formulation for flocculation of cohesive sediment by modifying the Winterwerp (1998) flocculation model (W98) so that it limits floc size to that of the Kolmogorov micro length scale. The W98 model is a simple approach that calculates the average floc size as a function of time. Because of its simplicity, the W98 model is ideal for implementing into larger sediment transport models; however, the model tends to over predict the dependency of the floc size on concentration. It was found that the modification of the coefficients within the original model did not allow for the model to capture the dependency on concentration. Therefore, a new term within the breakup kernel of the W98 formulation was added. The new formulation results is a single size, shear limited, and time dependent flocculation model that is able to effectively capture the dependency of the equilibrium size of flocs on both suspended sediment concentration and the time to equilibrium. The overall behavior of the new model is explored and showed align well with other studies on flocculation. Winterwerp, J. C. (1998). A simple model for turbulence induced flocculation of cohesive sediment. .Journal of Hydraulic Research, 36(3):309-326.
Spike-timing dependent plasticity and the cognitive map
Directory of Open Access Journals (Sweden)
Daniel eBush
2010-10-01
Full Text Available Since the discovery of place cells – single pyramidal neurons that encode spatial location – it has been hypothesised that the hippocampus may act as a cognitive map of known environments. This putative function has been extensively modelled using auto-associative networks, which utilise rate-coded synaptic plasticity rules in order to generate strong bi-directional connections between concurrently active place cells that encode for neighbouring place fields. However, empirical studies using hippocampal cultures have demonstrated that the magnitude and direction of changes in synaptic strength can also be dictated by the relative timing of pre- and post- synaptic firing according to a spike-timing dependent plasticity (STDP rule. Furthermore, electrophysiology studies have identified persistent ‘theta-coded’ temporal correlations in place cell activity in vivo, characterised by phase precession of firing as the corresponding place field is traversed. It is not yet clear if STDP and theta-coded neural dynamics are compatible with cognitive map theory and previous rate-coded models of spatial learning in the hippocampus. Here, we demonstrate that an STDP rule based on empirical data obtained from the hippocampus can mediate rate-coded Hebbian learning when pre- and post- synaptic activity is stochastic and has no persistent sequence bias. We subsequently demonstrate that a spiking recurrent neural network that utilises this STDP rule, alongside theta-coded neural activity, allows the rapid development of a cognitive map during directed or random exploration of an environment of overlapping place fields. Hence, we establish that STDP and phase precession are compatible with rate-coded models of cognitive map development.
Spike-timing dependent plasticity and the cognitive map.
Bush, Daniel; Philippides, Andrew; Husbands, Phil; O'Shea, Michael
2010-01-01
Since the discovery of place cells - single pyramidal neurons that encode spatial location - it has been hypothesized that the hippocampus may act as a cognitive map of known environments. This putative function has been extensively modeled using auto-associative networks, which utilize rate-coded synaptic plasticity rules in order to generate strong bi-directional connections between concurrently active place cells that encode for neighboring place fields. However, empirical studies using hippocampal cultures have demonstrated that the magnitude and direction of changes in synaptic strength can also be dictated by the relative timing of pre- and post-synaptic firing according to a spike-timing dependent plasticity (STDP) rule. Furthermore, electrophysiology studies have identified persistent "theta-coded" temporal correlations in place cell activity in vivo, characterized by phase precession of firing as the corresponding place field is traversed. It is not yet clear if STDP and theta-coded neural dynamics are compatible with cognitive map theory and previous rate-coded models of spatial learning in the hippocampus. Here, we demonstrate that an STDP rule based on empirical data obtained from the hippocampus can mediate rate-coded Hebbian learning when pre- and post-synaptic activity is stochastic and has no persistent sequence bias. We subsequently demonstrate that a spiking recurrent neural network that utilizes this STDP rule, alongside theta-coded neural activity, allows the rapid development of a cognitive map during directed or random exploration of an environment of overlapping place fields. Hence, we establish that STDP and phase precession are compatible with rate-coded models of cognitive map development.
Pharmacokinetics: time-dependent changes--autoinduction of carbamazepine epoxidation
International Nuclear Information System (INIS)
Bertilsson, L.; Tomson, T.; Tybring, G.
1986-01-01
Drugs labeled with stable isotopes have been useful to study time-dependent changes in kinetics. Early studies suggested that carbamazepine (CBZ) may induce its own metabolism, but this could not be proved until tetradeuterium-labeled CBZ (CBZ-D4) was synthesized and then given to patients. CBZ-D4 was administered to three children during long-term treatment of epilepsy with CBZ. After 17 to 32 days of treatment, the plasma clearance of CBZ-D4 was doubled, but during the next four months, there was no further increase, indicating that autoinduction was complete within one month. Two patients with chronic alcoholism were treated with CBZ for five days. Half of the first dose of 600 mg was comprised of CBZ-D4. The half-life of this CBZ-D4 dose in the two patients (20 and 26 hr, respectively) was similar to the post-steady-state half-life of CBZ (23 hr in both patients) measured later. A single dose of CBZ given one week after the last maintenance dose had a longer half-life (46 and 45 hr, respectively), which probably is close to the disposition of the drug before starting the treatment with CBZ. This shows that autoinduction of CBZ metabolism was completed during the very first doses of CBZ. Autoinduction also disappeared rapidly after stopping the treatment. We have shown that it is mainly the epoxide-diol pathway that is induced, both during autoinduction and after induction with other antiepileptic agents
Time dependence of microsecond intense electron beam transport in gases
International Nuclear Information System (INIS)
Lucey, R.F. Jr.; Gilgenback, R.M.; Tucker, J.E.; Brake, M.L.; Enloe, C.L.; Repetti, T.E.
1987-01-01
The authors present results of long-pulse (0.5 μs) electron beam propagation in the ion focused regime (IFR). Electron beam parameters are 800 kV with several hundred amperes injected current. For injection into air (from 0.7 mTorr to 75 mTorr) and helium (from 14 mTorr to 227 mTorr) the authors observe a ''time-dependent propagation window'' in which efficient (up to 100%) propagation starts at a time comparable to the electron impact ionization time needed to achieve n/sub i/ -- (1/γ/sup 2/)n/sub eb/. The transport goes abruptly to zero about 50-150 ns after this initial propagation. This is followed by erratic propagation often consisting of numerous narrower pulses 10-40 ns wide. In these pulses the transported current can be 100% of the injected current, but is generally lower. As the fill pressure is increased, there are differences in the propagated beam pulse, which can be summarized as follows: 1) the temporal occurrence of the beam propagation window shifts to earlier times, 2) the propagated beam current has much faster risetimes, 3) a larger portion of the injected beam is propagated. Similar results are observed when the electron beam is propagated in helium. However, at a given pressure, the beam transport window occurs at later times and exhibits a slower risetime. These effects are consistent with electron beam-induced ionization. Experiments are being performed to determine if the observed beam instability is due to the ion hose instability or streaming instability
Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions.
Zeebe, Richard E
2013-08-20
Climate sensitivity measures the response of Earth's surface temperature to changes in forcing. The response depends on various climate processes that feed back on the initial forcing on different timescales. Understanding climate sensitivity is fundamental to reconstructing Earth's climatic history as well as predicting future climate change. On timescales shorter than centuries, only fast climate feedbacks including water vapor, lapse rate, clouds, and snow/sea ice albedo are usually considered. However, on timescales longer than millennia, the generally higher Earth system sensitivity becomes relevant, including changes in ice sheets, vegetation, ocean circulation, biogeochemical cycling, etc. Here, I introduce the time-dependent climate sensitivity, which unifies fast-feedback and Earth system sensitivity. I show that warming projections, which include a time-dependent climate sensitivity, exhibit an enhanced feedback between surface warming and ocean CO2 solubility, which in turn leads to higher atmospheric CO2 levels and further warming. Compared with earlier studies, my results predict a much longer lifetime of human-induced future warming (23,000-165,000 y), which increases the likelihood of large ice sheet melting and major sea level rise. The main point regarding the legacy of anthropogenic greenhouse gas emissions is that, even if the fast-feedback sensitivity is no more than 3 K per CO2 doubling, there will likely be additional long-term warming from slow climate feedbacks. Time-dependent climate sensitivity also helps explaining intense and prolonged warming in response to massive carbon release as documented for past events such as the Paleocene-Eocene Thermal Maximum.
Random walk in degree space and the time-dependent Watts-Strogatz model
Grande, H. L. Casa; Cotacallapa, M.; Hase, M. O.
2016-01-01
In this work, we propose a scheme that provides an analytical estimate for the time-dependent degree distribution of some networks. This scheme maps the problem into a random walk in degree space, and then we choose the paths that are responsible for the dominant contributions. The method is illustrated on the dynamical versions of the Erd\\"os-R\\'enyi and Watts-Strogatz graphs, which were introduced as static models in the original formulation. We have succeeded in obtaining an analytical for...
Random walk in degree space and the time-dependent Watts-Strogatz model
Casa Grande, H. L.; Cotacallapa, M.; Hase, M. O.
2017-01-01
In this work, we propose a scheme that provides an analytical estimate for the time-dependent degree distribution of some networks. This scheme maps the problem into a random walk in degree space, and then we choose the paths that are responsible for the dominant contributions. The method is illustrated on the dynamical versions of the Erdős-Rényi and Watts-Strogatz graphs, which were introduced as static models in the original formulation. We have succeeded in obtaining an analytical form for the dynamics Watts-Strogatz model, which is asymptotically exact for some regimes.
Time-dependent Hartree-Fock studies of the dynamical fusion threshold
Directory of Open Access Journals (Sweden)
Nakatsukasa Takashi
2012-12-01
Full Text Available A microscopic description of dynamical fusion threshold in heavy ion collisions is performed in the framework of time-dependent Hartree-Fock (TDHF theory using Skyrme energy density functional (EDF. TDHF fusion threshold is in a better agreement with experimental fusion barrier. We find that the onset of extra push lies at the effective fissility 33, which is consistent with the prediction of Swiateckis macroscopic model. The extra push energy in our TDHF simulation is systematically smaller than the prediction in macroscopic model. The important dynamical effects and the way to fit the parameter might be responsible for the different results.
Time-dependent density functional theory description of total photoabsorption cross sections
Tenorio, Bruno Nunes Cabral; Nascimento, Marco Antonio Chaer; Rocha, Alexandre Braga
2018-02-01
The time-dependent version of the density functional theory (TDDFT) has been used to calculate the total photoabsorption cross section of a number of molecules, namely, benzene, pyridine, furan, pyrrole, thiophene, phenol, naphthalene, and anthracene. The discrete electronic pseudo-spectra, obtained in a L2 basis set calculation were used in an analytic continuation procedure to obtain the photoabsorption cross sections. The ammonia molecule was chosen as a model system to compare the results obtained with TDDFT to those obtained with the linear response coupled cluster approach in order to make a link with our previous work and establish benchmarks.
Directory of Open Access Journals (Sweden)
Robert R Kerr
Full Text Available Learning rules, such as spike-timing-dependent plasticity (STDP, change the structure of networks of neurons based on the firing activity. A network level understanding of these mechanisms can help infer how the brain learns patterns and processes information. Previous studies have shown that STDP selectively potentiates feed-forward connections that have specific axonal delays, and that this underlies behavioral functions such as sound localization in the auditory brainstem of the barn owl. In this study, we investigate how STDP leads to the selective potentiation of recurrent connections with different axonal and dendritic delays during oscillatory activity. We develop analytical models of learning with additive STDP in recurrent networks driven by oscillatory inputs, and support the results using simulations with leaky integrate-and-fire neurons. Our results show selective potentiation of connections with specific axonal delays, which depended on the input frequency. In addition, we demonstrate how this can lead to a network becoming selective in the amplitude of its oscillatory response to this frequency. We extend this model of axonal delay selection within a single recurrent network in two ways. First, we show the selective potentiation of connections with a range of both axonal and dendritic delays. Second, we show axonal delay selection between multiple groups receiving out-of-phase, oscillatory inputs. We discuss the application of these models to the formation and activation of neuronal ensembles or cell assemblies in the cortex, and also to missing fundamental pitch perception in the auditory brainstem.
Langevin synchronization in a time-dependent, harmonic basin: An exact solution in 1D
Cadilhe, A.; Voter, Arthur F.
2018-02-01
The trajectories of two particles undergoing Langevin dynamics while sharing a common noise sequence can merge into a single (master) trajectory. Here, we present an exact solution for a particle undergoing Langevin dynamics in a harmonic, time-dependent potential, thus extending the idea of synchronization to nonequilibrium systems. We calculate the synchronization level, i.e., the mismatch between two trajectories sharing a common noise sequence, in the underdamped, critically damped, and overdamped regimes. Finally, we provide asymptotic expansions in various limiting cases and compare to the time independent case.
Angular distribution of scission neutrons studied with time-dependent Schrödinger equation
Wada, Takahiro; Asano, Tomomasa; Carjan, Nicolae
2018-03-01
We investigate the angular distribution of scission neutrons taking account of the effects of fission fragments. The time evolution of the wave function of the scission neutron is obtained by integrating the time-dependent Schrodinger equation numerically. The effects of the fission fragments are taken into account by means of the optical potentials. The angular distribution is strongly modified by the presence of the fragments. In the case of asymmetric fission, it is found that the heavy fragment has stronger effects. Dependence on the initial distribution and on the properties of fission fragments is discussed. We also discuss on the treatment of the boundary to avoid artificial reflections
Time-dependent density functional theory for open quantum systems with unitary propagation.
Yuen-Zhou, Joel; Tempel, David G; Rodríguez-Rosario, César A; Aspuru-Guzik, Alán
2010-01-29
We extend the Runge-Gross theorem for a very general class of open quantum systems under weak assumptions about the nature of the bath and its coupling to the system. We show that for Kohn-Sham (KS) time-dependent density functional theory, it is possible to rigorously include the effects of the environment within a bath functional in the KS potential. A Markovian bath functional inspired by the theory of nonlinear Schrödinger equations is suggested, which can be readily implemented in currently existing real-time codes. Finally, calculations on a helium model system are presented.
Time-Dependent Risk Estimation and Cost-Benefit Analysis for Mitigation Actions
van Stiphout, T.; Wiemer, S.; Marzocchi, W.
2009-04-01
Earthquakes strongly cluster in space and time. Consequently, the most dangerous time is right after a moderate earthquake has happened, because their is a ‘high' (i.e., 2-5 percent) probability that this event will be followed by a subsequent aftershock which happens to be as large or larger than the initiating event. The seismic hazard during this time-period exceeds the background probability significantly and by several orders of magnitude. Scientists have developed increasingly accurate forecast models that model this time-dependent hazard, and such models are currently being validated in prospective testing. However, this probabilistic information in the hazard space is difficult to digest for decision makers, the media and general public. Here, we introduce a possible bridge between seismology and decision makers (authorities, civil defense) by proposing a more objective way to estimate time-dependent risk assessment. Short Term Earthquake Risk assessment (STEER) combines aftershock hazard and loss assessments. We use site-specific information on site effects and building class distribution and combine this with existing loss models to compute site specific time-dependent risk curves (probability of exceedance for fatalities, injuries, damages etc). We show the effect of uncertainties in the different components using Monte Carlo Simulations of the input parameters. This time-dependent risk curves can act as a decision support. We extend the STEER approach by introducing a Cost-Benefit approach for certain mitigation actions after a medium-sized earthquake. Such Cost-Benefit approaches have been recently developed for volcanic risk assessment to rationalize precautionary evacuations in densely inhabitated areas threatened by volcanoes. Here we extend the concept to time-dependent probabilistic seismic risk assessment. For the Cost-Benefit analysis of mitigation actions we calculate the ratio between the cost for the mitigation actions and the cost of the
TEMPS, 1-Group Time-Dependent Pulsed Source Neutron Transport
International Nuclear Information System (INIS)
Ganapol, B.D.
1988-01-01
1 - Description of program or function: TEMPS numerically determines the scalar flux as given by the one-group neutron transport equation with a pulsed source in an infinite medium. Standard plane, point, and line sources are considered as well as a volume source in the negative half-space in plane geometry. The angular distribution of emitted neutrons can either be isotropic or mono-directional (beam) in plane geometry and isotropic in spherical and cylindrical geometry. A general anisotropic scattering Kernel represented in terms of Legendre polynomials can be accommodated with a time- dependent number of secondaries given by c(t)=c 0 (t/t 0 ) β , where β is greater than -1 and less than infinity. TEMPS is designed to provide the flux to a high degree of accuracy (4-5 digits) for use as a benchmark to which results from other numerical solutions or approximations can be compared. 2 - Method of solution: A semi-analytic Method of solution is followed. The main feature of this approach is that no discretization of the transport or scattering operators is employed. The numerical solution involves the evaluation of an analytical representation of the solution by standard numerical techniques. The transport equation is first reformulated in terms of multiple collisions with the flux represented by an infinite series of collisional components. Each component is then represented by an orthogonal Legendre series expansion in the variable x/t where the distance x and time t are measured in terms of mean free path and mean free time, respectively. The moments in the Legendre reconstruction are found from an algebraic recursion relation obtained from Legendre expansion in the direction variable mu. The multiple collision series is evaluated first to a prescribed relative error determined by the number of digits desired in the scalar flux. If the Legendre series fails to converge in the plane or point source case, an accelerative transformation, based on removing the
Superovulation response and in vivo embryo production potential of ...
African Journals Online (AJOL)
Boran (n=25) and Boran*Holstein (n=11) cows were superovullatedFSH with three doses level (300, 250 and 200IU) divided in to morning and afternoon decreasing doses over 4 daysto study the superovulatory response and embryo production potential. Time to estrus, duration of estrus, and CL count were used to ...
Time-dependent effects of corticosteroids on human amygdala processing
Henckens, M.J.A.G.; van Wingen, G.A.; Joëls, M.; Fernández, G.
2010-01-01
Acute stress is associated with a sensitized amygdala. Corticosteroids, released in response to stress, are suggested to restore homeostasis by normalizing/desensitizing brain processing in the aftermath of stress. Here, we investigated the effects of corticosteroids on amygdala processing using
Andrade, Xavier; Alberdi-Rodriguez, Joseba; Strubbe, David A; Oliveira, Micael J T; Nogueira, Fernando; Castro, Alberto; Muguerza, Javier; Arruabarrena, Agustin; Louie, Steven G; Aspuru-Guzik, Alán; Rubio, Angel; Marques, Miguel A L
2012-06-13
Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures.
Time-dependent resilience assessment and improvement of urban infrastructure systems
Ouyang, Min; Dueñas-Osorio, Leonardo
2012-09-01
This paper introduces an approach to assess and improve the time-dependent resilience of urban infrastructure systems, where resilience is defined as the systems' ability to resist various possible hazards, absorb the initial damage from hazards, and recover to normal operation one or multiple times during a time period T. For different values of T and its position relative to current time, there are three forms of resilience: previous resilience, current potential resilience, and future potential resilience. This paper mainly discusses the third form that takes into account the systems' future evolving processes. Taking the power transmission grid in Harris County, Texas, USA as an example, the time-dependent features of resilience and the effectiveness of some resilience-inspired strategies, including enhancement of situational awareness, management of consumer demand, and integration of distributed generators, are all simulated and discussed. Results show a nonlinear nature of resilience as a function of T, which may exhibit a transition from an increasing function to a decreasing function at either a threshold of post-blackout improvement rate, a threshold of load profile with consumer demand management, or a threshold number of integrated distributed generators. These results are further confirmed by studying a typical benchmark system such as the IEEE RTS-96. Such common trends indicate that some resilience strategies may enhance infrastructure system resilience in the short term, but if not managed well, they may compromise practical utility system resilience in the long run.
Andrade, Xavier; Alberdi-Rodriguez, Joseba; Strubbe, David A.; Oliveira, Micael J. T.; Nogueira, Fernando; Castro, Alberto; Muguerza, Javier; Arruabarrena, Agustin; Louie, Steven G.; Aspuru-Guzik, Alán; Rubio, Angel; Marques, Miguel A. L.
2012-06-01
Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures.
International Nuclear Information System (INIS)
Andrade, Xavier; Aspuru-Guzik, Alán; Alberdi-Rodriguez, Joseba; Rubio, Angel; Strubbe, David A; Louie, Steven G; Oliveira, Micael J T; Nogueira, Fernando; Castro, Alberto; Muguerza, Javier; Arruabarrena, Agustin; Marques, Miguel A L
2012-01-01
Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures. (topical review)
Time-dependent density functional theory for multi-component systems
International Nuclear Information System (INIS)
Tiecheng Li; Peiqing Tong
1985-10-01
The Runge-Gross version of Hohenberg-Kohn-Sham's density functional theory is generalized to multi-component systems, both for arbitrary time-dependent pure states and for arbitrary time-dependent ensembles. (author)
Distorted eikonal cross sections: A time-dependent view
International Nuclear Information System (INIS)
Turner, R.E.
1982-01-01
For Hamiltonians with two potentials, differential cross sections are written as time-correlation functions of reference and distorted transition operators. Distorted eikonal differential cross sections are defined in terms of straight-line and reference classical trajectories. Both elastic and inelastic results are obtained. Expressions for the inelastic cross sections are presented in terms of time-ordered cosine and sine memory functions through the use of the Zwanzig-Feshbach projection-operator method
Modeling time-dependent corrosion fatigue crack propagation in 7000 series aluminum alloys
Mason, Mark E.; Gangloff, Richard P.
1994-01-01
Stress corrosion cracking and corrosion fatigue experiments were conducted with the susceptible S-L orientation of AA7075-T651, immersed in acidified and inhibited NaCl solution, to provide a basis for incorporating environmental effects into fatigue crack propagation life prediction codes such as NASA FLAGRO. This environment enhances da/dN by five to ten-fold compared to fatigue in moist air. Time-based crack growth rates from quasi-static load experiments are an order of magnitude too small for accurate linear superposition prediction of da/dN for loading frequencies above 0.001 Hz. Alternate methods of establishing da/dt, based on rising-load or ripple-load-enhanced crack tip strain rate, do not increase da/dt and do not improve linear superposition. Corrosion fatigue is characterized by two regimes of frequency dependence; da/dN is proportional to f(exp -1) below 0.001 Hz and to F(exp 0) to F(exp -0.1) for higher frequencies. Da/dN increases mildly both with increasing hold-time at K(sub max) and with increasing rise-time for a range of loading waveforms. The mild time-dependence is due to cycle-time-dependent corrosion fatigue growth. This behavior is identical for S-L nd L-T crack orientations. The frequency response of environmental fatigue in several 7000 series alloys is variable and depends on undefined compositional or microstructural variables. Speculative explanations are based on the effect of Mg on occluded crack chemistry and embritting hydrogen uptake, or on variable hydrogen diffusion in the crack tip process zone. Cracking in the 7075/NaCl system is adequately described for life prediction by linear superposition for prolonged load-cycle periods, and by a time-dependent upper bound relationship between da/dN and delta K for moderate loading times.
The time-dependent simplified P2 equations: Asymptotic analyses and numerical experiments
International Nuclear Information System (INIS)
Shin, U.; Miller, W.F. Jr.
1998-01-01
Using an asymptotic expansion, the authors found that the modified time-dependent simplified P 2 (SP 2 ) equations are robust, high-order, asymptotic approximations to the time-dependent transport equation in a physical regime in which the conventional time-dependent diffusion equation is the leading-order approximation. Using diffusion limit analysis, they also asymptotically compared three competitive time-dependent equations (the telegrapher's equation, the time-dependent SP 2 equations, and the time-dependent simplified even-parity equation). As a result, they found that the time-dependent SP 2 equations contain higher-order asymptotic approximations to the time-dependent transport equation than the other competitive equations. The numerical results confirm that, in the vast majority of cases, the time-dependent SP 2 solutions are significantly more accurate than the time-dependent diffusion and the telegrapher's solutions. They have also shown that the time-dependent SP 2 equations have excellent characteristics such as rotational invariance (which means no ray effect), good diffusion limit behavior, guaranteed positivity in diffusive regimes, and significant accuracy, even in deep-penetration problems. Through computer-running-time tests, they have shown that the time-dependent SP 2 equations can be solved with significantly less computational effort than the conventionally used, time-dependent S N equations (for N > 2) and almost as fast as the time-dependent diffusion equation. From all these results, they conclude that the time-dependent SP 2 equations should be considered as an important competitor for an improved approximately transport equations solver. Such computationally efficient time-dependent transport models are important for problems requiring enhanced computational efficiency, such as neutronics/fluid-dynamics coupled problems that arise in the analyses of hypothetical nuclear reactor accidents
Simultaneous specimen current and time-dependent cathodoluminescence measurements on gallium nitride
Energy Technology Data Exchange (ETDEWEB)
Campo, E. M., E-mail: e.campo@bangor.ac.uk; Hopkins, L. [School of Electronic Engineering, Bangor University, Gwynedd LL57 1UT (United Kingdom); Pophristic, M. [Department of Chemistry and Biochemistry, University of the Science, Philadelphia, Pennsylvania 19104 (United States); Ferguson, I. T. [Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409 (United States)
2016-06-28
Time-dependent cathodoluminescence (CL) and specimen current (SC) are monitored to evaluate trapping behavior and evolution of charge storage. Examination of CL and SC suggests that the near band edge emission in GaN is reduced primarily by the activation of traps upon irradiation, and Gallium vacancies are prime candidates. At the steady state, measurement of the stored charge by empiric-analytical methods suggests that all available traps within the interaction volume have been filled, and that additional charge is being stored interstitially, necessarily beyond the interaction volume. Once established, the space charge region is responsible for the steady state CL emission and, prior to build up, it is responsible for the generation of diffusion currents. Since the non-recombination effects resulting from diffusion currents that develop early on are analogous to those leading to device failure upon aging, this study is fundamental toward a holistic insight into optical properties in GaN.
Plasticity resembling spike-timing dependent synaptic plasticity: the evidence in human cortex
Directory of Open Access Journals (Sweden)
Florian Müller-Dahlhaus
2010-07-01
Full Text Available Spike-timing dependent plasticity (STDP has been studied extensively in a variety of animal models during the past decade but whether it can be studied at the systems level of the human cortex has been a matter of debate. Only recently newly developed non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS have made it possible to induce and assess timing dependent plasticity in conscious human subjects. This review will present a critical synopsis of these experiments, which suggest that several of the principal characteristics and molecular mechanisms of TMS-induced plasticity correspond to those of STDP as studied at a cellular level. TMS combined with a second phasic stimulation modality can induce bidirectional long-lasting changes in the excitability of the stimulated cortex, whose polarity depends on the order of the associated stimulus-evoked events within a critical time window of tens of milliseconds. Pharmacological evidence suggests an NMDA receptor mediated form of synaptic plasticity. Studies in human motor cortex demonstrated that motor learning significantly modulates TMS-induced timing dependent plasticity, and, conversely, may be modulated bidirectionally by prior TMS-induced plasticity, providing circumstantial evidence that long-term potentiation-like mechanisms may be involved in motor learning. In summary, convergent evidence is being accumulated for the contention that it is now possible to induce STDP-like changes in the intact human central nervous system by means of TMS to study and interfere with synaptic plasticity in neural circuits in the context of behaviour such as learning and memory.
On the underlying micromechanisms in time-dependent anelasticity in Al-(1 wt%)Cu thin films
Bergers, L.I.J.C.; Hoefnagels, J.P.M.; Geers, M.G.D.
2017-01-01
This paper reveals potential micro mechanisms underlying time-dependent anelasticity observed in Al-(1 wt%)Cu thin films. The analyzed deformation mechanisms involve dislocation motion and interaction with solute diffusion, grain boundaries and precipitates. In order to investigate the role of these
Exact solution of a quantum forced time-dependent harmonic oscillator
Yeon, Kyu Hwang; George, Thomas F.; Um, Chung IN
1992-01-01
The Schrodinger equation is used to exactly evaluate the propagator, wave function, energy expectation values, uncertainty values, and coherent state for a harmonic oscillator with a time dependent frequency and an external driving time dependent force. These quantities represent the solution of the classical equation of motion for the time dependent harmonic oscillator.
Radiating star with a time-dependent Karmarkar condition
Energy Technology Data Exchange (ETDEWEB)
Naidu, Nolene Ferrari; Maharaj, Sunil D. [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa); Govender, Megandhren [Durban University of Technology, Department of Mathematics, Faculty of Applied Sciences, Durban (South Africa)
2018-01-15
In this paper we employ the Karmarkar condition (Proc Indian Acad Sci A 27:56, 1948) to model a spherically symmetric radiating star undergoing dissipative gravitational collapse in the form of a radial heat flux. A particular solution of the boundary condition renders the Karmarkar condition independent of time which allows us to fully specify the spatial behaviour of the gravitational potentials. The interior solution is smoothly matched to Vaidya's outgoing solution across a time-like hypersurface which yields the temporal behaviour of the model. Physical analysis of the matter and thermodynamical variables show that the model is well-behaved. (orig.)
Maitra-Burke example of initial-state dependence in time-dependent density-functional theory
International Nuclear Information System (INIS)
Holas, A.; Balawender, R.
2002-01-01
In a recent paper, Maitra and Burke [Phys. Rev. A 63, 042501 (2001); 64, 039901(E) (2001)] have given an interesting and instructive example that illustrates a specific feature of the time-dependent density-functional theory--the dependence of the reconstructed time-dependent potential not only on the electron density, but also on the initial state of the system. However, a concise form of its presentation by these authors is insufficient to reveal all its peculiarities. Our paper represents a very detailed study of this valuable example, intended to facilitate a better understanding and appreciation
Demand response in Germany: Technical potential, benefits and regulatory challenges
Stede, Jan
2016-01-01
An increased flexibility of the electricity demand side through demand response (DR) is an opportunity to support the integration of renewable energies. By optimising the use of the generation, transmission and distribution infrastructure, DR reduces the need for costly investments and contributes to system security. There is a significant technical DR potential for load reduction from industrial production processes in Germany, as well as from cross-cutting technologies in industry and the t...
Benchmark calculations in multigroup and multidimensional time-dependent transport
International Nuclear Information System (INIS)
Ganapol, B.D.; Musso, E.; Ravetto, P.; Sumini, M.
1990-01-01
It is widely recognized that reliable benchmarks are essential in many technical fields in order to assess the response of any approximation to the physics of the problem to be treated and to verify the performance of the numerical methods used. The best possible benchmarks are analytical solutions to paradigmatic problems where no approximations are actually introduced and the only error encountered is connected to the limitations of computational algorithms. Another major advantage of analytical solutions is that they allow a deeper understanding of the physical features of the model, which is essential for the intelligent use of complicated codes. In neutron transport theory, the need for benchmarks is particularly great. In this paper, the authors propose to establish accurate numerical solutions to some problems concerning the migration of neutron pulses. Use will be made of the space asymptotic theory, coupled with a Laplace transformation inverted by a numerical technique directly evaluating the inversion integral
Derivation of an adiabatic time-dependent Hartree-Fock formalism from a variational principle
International Nuclear Information System (INIS)
Brink, D.M.; Giannoni, M.J.; Veneroni, M.
1975-10-01
A derivation of the adiabatic time-dependent Hartree-Fock formalism is given, which is based on a variational principle analogous to Hamilton's principle in classical mechanics. The method leads to a Hamiltonian for collective motion which separates into a potential and a kinetic energy and gives mass and potential parameters in terms of the nucleon-nucleon interaction. The adiabatic approximation assumes slow motion but not small amplitudes and can therefore describe anharmonic effects. The RPA is a limiting case where both amplitudes and velocities are small. The variational approach provides a consistent way of extracting coordinated and momenta from the density matrix and of obtaining equations of motion when particular trial forms for this density matrix are chosen. One such choice leads to Thouless-Valatin formula. An other choice leads to irrotational hydrodynamics [fr
Spike-timing dependent plasticity in a transistor-selected resistive switching memory
International Nuclear Information System (INIS)
Ambrogio, S; Balatti, S; Nardi, F; Facchinetti, S; Ielmini, D
2013-01-01
In a neural network, neuron computation is achieved through the summation of input signals fed by synaptic connections. The synaptic activity (weight) is dictated by the synchronous firing of neurons, inducing potentiation/depression of the synaptic connection. This learning function can be supported by the resistive switching memory (RRAM), which changes its resistance depending on the amplitude, the pulse width and the bias polarity of the applied signal. This work shows a new synapse circuit comprising a MOS transistor as a selector and a RRAM as a variable resistance, displaying spike-timing dependent plasticity (STDP) similar to the one originally experienced in biological neural networks. We demonstrate long-term potentiation and long-term depression by simulations with an analytical model of resistive switching. Finally, the experimental demonstration of the new STDP scheme is presented. (paper)
TWODEE-2/MOD3, 2-D Time-Dependent Fuel Elements Thermal Analysis after PWR LOCA
International Nuclear Information System (INIS)
Lauben, G. N.
2001-01-01
1 - Description of problem or function: WREM-TOODEE2 is a two- dimensional, time-dependent, fuel-element thermal analysis program. Its primary purpose is to evaluate fuel-element thermal response during post-LOCA refill and reflood in a pressurized water reactor (PWR). 2 - Method of solution: TOODEE2 calculations are carried out in a two-dimensional mesh region defined in slab or cylindrical geometry by orthogonal grid lines. Coordinates which form order pairs are labeled x-y in slab geometry, and those in cylindrical geometry are labeled r-z for the axisymmetric case and r-theta for the polar case. Conduction and radiation are the only heat transfer mechanisms assumed within the boundaries of the mesh region. Convective and boiling heat transfer mechanisms are assumed at the boundaries. The program numerically solves the two-dimensional, time-dependent, heat conduction equation within the mesh region. 3 - Restrictions on the complexity of the problem: WREM-TOODEE2 considers only axisymmetric geometry although the equations for slab and polar geometry are included in the program
Existence of a time-dependent heat flux-related ponderomotive effect
International Nuclear Information System (INIS)
Schamel, H.; Sack, C.
1980-01-01
The existence of a new ponderomotive effect associated with high-frequency waves is pointed out. It originates when time-dependency, mean velocities, or divergent heat fluxes are involved and it supplements the two effects known previously, namely, the ponderomotive force and fake heating. Two proofs are presented; the first is obtained by establishing the momentum equations generalized by including radiation effects and the second by solving the quasi-linear-type diffusion equation explicitly. For a time-dependent wave packet the solution exhibits a new contribution in terms of an integral over previous states. Owing to this term, the plasma has a memory which leads to a breaking of the time symmetry of the plasma response. The range, influenced by the localized wave packet, expands during the course of time due to streamers emanating from the wave active region. Perturbations, among which is the heat flux, are carried to remote positions and, consequently, the region accessible to wave heating is increased. The density dip appears to be less pronounced at the center, and its generation and decay are delayed. The analysis includes a self-consistent action of high-frequency waves as well as the case of traveling wave packets. In order to establish the existence of this new effect, the analytical results are compared with recent microwave experiments. The possibility of generating fast particles by this new ponderomotive effect is emphasized
Relativistic time-dependent local-density approximation theory and applications to atomic physics
International Nuclear Information System (INIS)
Parpia, F.Z.
1984-01-01
A time-dependent linear-response theory appropriate to the relativistic local-density approximation (RLDA) to quantum electrodynamics (QED) is developed. The resulting theory, the relativistic time-dependent local-density approximation (RTDLDA) is specialized to the treatment of electric excitations in closed-shell atoms. This formalism is applied to the calculation of atomic photoionization parameters in the dipole approximation. The static-field limit of the RTDLDA is applied to the calculation of dipole polarizabilities. Extensive numerical calculations of the photoionization parameters for the rare gases neon, argon, krypton, and xenon, and for mercury from the RTDLDA are presented and compared in detail with the results of other theories, in particular the relativistic random-phase approximation (RRPA), and with experimental measurements. The predictions of the RTDLDA are comparable with the RRPA calculations made to date. This is remarkable in that the RTDLDA entails appreciably less computational effort. Finally, the dipole polarizabilities predicted by the static-field RTDLDA are compared with other determinations of these quantities. In view of its simplicity, the static-field RTDLDA demonstrates itself to be one of the most powerful theories available for the calculation of dipole polarizabilities
Effects of Time-Dependent Inflow Perturbations on Turbulent Flow in a Street Canyon
Duan, G.; Ngan, K.
2017-12-01
Urban flow and turbulence are driven by atmospheric flows with larger horizontal scales. Since building-resolving computational fluid dynamics models typically employ steady Dirichlet boundary conditions or forcing, the accuracy of numerical simulations may be limited by the neglect of perturbations. We investigate the sensitivity of flow within a unit-aspect-ratio street canyon to time-dependent perturbations near the inflow boundary. Using large-eddy simulation, time-periodic perturbations to the streamwise velocity component are incorporated via the nudging technique. Spatial averages of pointwise differences between unperturbed and perturbed velocity fields (i.e., the error kinetic energy) show a clear dependence on the perturbation period, though spatial structures are largely insensitive to the time-dependent forcing. The response of the error kinetic energy is maximized for perturbation periods comparable to the time scale of the mean canyon circulation. Frequency spectra indicate that this behaviour arises from a resonance between the inflow forcing and the mean motion around closed streamlines. The robustness of the results is confirmed using perturbations derived from measurements of roof-level wind speed.
Time dependency in the mechanical properties of crystalline rocks. A literature survey
International Nuclear Information System (INIS)
Hagros, A.; Johansson, E.; Hudson, J.A.
2008-09-01
Because of the long design life, elevated temperatures, and the location at depth (high stresses), time-dependent aspects of the mechanical properties of crystalline rock are potentially important for the design and the long term safety of the radioactive waste repository at Olkiluoto. However, time-dependent effects in rock mechanics are still one of the least understood aspects of the physical behaviour of rock masses, this being partly due to the fact that it is difficult to conduct long-term experimental tests - either in the laboratory or in situ. Yet, the time-dependent mechanical behaviour needs to be characterised so that it can be included in the modelling studies supporting repository design. The Introduction explains the background to the literature survey and includes definitions of the terms 'creep' (increasing strain at constant stress) and 'stress relaxation' (decreasing stress at constant strain). Moreover, it is noted that the rock around an in situ excavation is loaded by the adjacent rock elements and so the timedependent behaviour will depend on the unloading stiffness of these and hence will not actually be either pure creep or pure stress relaxation. The Appendix contains the results of the literature survey of reported time-dependent research as it applies to crystalline rock. A summary of each of the 38 literature items is presented in tabular form covering document number, subject area, document reference, subject matter, objectives, methodology, highlighted figures, conclusions and comments. It is concluded that the time-dependent failure strength of all rocks observed may be interpreted by sub-critical crack growth assisted by the stress corrosion mechanism. Also, certain parameters are known to affect the long-term properties: mineralogy, grain size, water/water chemistry, confining stress and loading history. At some point in the loading history of rock, the state of crack development reaches a point whereby the continued generation of
Yin, Jian; Wang, Ai-Ping; Li, Wan-Fang; Shi, Rui; Jin, Hong-Tao; Wei, Jin-Feng
2018-01-01
The present work aims to explore the time-response (from 24 h to 96 h) characteristic and identify early potential sensitive biomarkers of copper (Cu) (as copper chloride dihydrate), cadmium (Cd) (as cadmium acetate), lead (Pb) (as lead nitrate) and chromium (Cr) (as potassium dichromate) exposure in adult zebrafish, focusing on reactive oxygen species (ROS), SOD activity, lipid peroxidation and gene expression related to oxidative stress and inflammatory response. Furthermore, the survival rate decreased apparently by a concentration-dependent manner after Cu, Cr, Cd and Pb exposure, and we selected non-lethal concentrations 0.05 mg/L for Cu, 15 mg/L for Cr, 3 mg/L for Cd and 93.75μg/L for Pb to test the effect on the following biological indicators. Under non-lethal concentration, the four heavy metals have no apparent histological change in adult zebrafish gills. Similar trends in ROS production, MDA level and SOD activity were up-regulated by the four heavy metals, while MDA level responded more sensitive to Pb by time-dependent manner than the other three heavy metals. In addition, mRNA levels related to antioxidant system (SOD1, SOD2 and Nrf2) were up-regulated by non-lethal concentration Cu, Cr, Cd and Pb exposure. MDA level and SOD1 gene have a more delayed response to heavy metals. Genes related to immunotoxicity were increased significantly after heavy metals exposure at non-lethal concentrations. TNF-α and IL-1β gene have similar sensibility to the four heavy metals, while IL-8 gene was more responsive to Cr, Cd and Pb exposure at 48 h groups and IFN-γ gene showed more sensitivity to Cu at 48 h groups than the other heavy metals. In conclusion, the present works have suggested that the IFN-γ gene may applied as early sensitive biomarker to identify Cu-induced toxicity, while MDA content and IL-8 gene may use as early sensitive biomarkers for evaluating the risk of Pb exposure. Moreover, IL-8 and IFN-γ gene were more responsive to heavy
Constitutive modeling for uniaxial time-dependent ratcheting of SS304 stainless steel
International Nuclear Information System (INIS)
Kan Qianhua; Kang Guozheng; Zhang Juan
2007-01-01
Based on the experimental results of uniaxial time-dependent ratcheting behavior of SS304 stainless steel at room temperature and 973K, a new time-dependent constitutive model was proposed. The model describes the time-dependent ratcheting by adding a static/thermal recovery into the Abdel-Karim-Ohno non-linear kinematic hardening rule. The capability of the model to describe the time-dependent ratcheting was discussed by comparing the simulations with the corresponding experimental results. It is shown that the revised unified viscoplastic model can simulate the time-dependent ratcheting reasonably both at room and high temperatures. (authors)
Variational derivation of a time-dependent Hartree-Fock Hamiltonian
International Nuclear Information System (INIS)
Lichtner, P.C.; Griffin, J.J.; Schultheis, H.; Schultheis, R.; Volkov, A.B.
1979-01-01
The variational derivation of the time-dependent Hartree-Fock equation is reviewed. When norm-violating variations are included, a unique time-dependent Hartree-Fock Hamiltonian, which differs from that customarily used in time-dependent Hartree-Fock analyses, is implied. This variationally ''true'' Hartree-Fock Hamiltonian has the same expectation value as the exact Hamiltonian, equal to the average energy of the system. Since this quantity remains constant under time-dependent Hartree-Fock time evolution, we suggest the label ''constant '' for this form of time-dependent Hartree-Fock theory
Hayashi, K.
2013-11-01
We present a model of a time-dependent three-dimensional magnetohydrodynamics simulation of the sub-Alfvenic solar corona and super-Alfvenic solar wind with temporally varying solar-surface boundary magnetic field data. To (i) accommodate observational data with a somewhat arbitrarily evolving solar photospheric magnetic field as the boundary value and (ii) keep the divergence-free condition, we developed a boundary model, here named Confined Differential Potential Field model, that calculates the horizontal components of the magnetic field, from changes in the vertical component, as a potential field confined in a thin shell. The projected normal characteristic method robustly simulates the solar corona and solar wind, in response to the temporal variation of the boundary Br. We conduct test MHD simulations for two periods, from Carrington Rotation number 2009 to 2010 and from Carrington Rotation 2074 to 2075 at solar maximum and minimum of Cycle 23, respectively. We obtained several coronal features that a fixed boundary condition cannot yield, such as twisted magnetic field lines at the lower corona and the transition from an open-field coronal hole to a closed-field streamer. We also obtained slight improvements of the interplanetary magnetic field, including the latitudinal component, at Earth.
Nonperturbative Time Dependent Solution of a Simple Ionization Model
Costin, Ovidiu; Costin, Rodica D.; Lebowitz, Joel L.
2018-02-01
We present a non-perturbative solution of the Schrödinger equation {iψ_t(t,x)=-ψ_{xx}(t,x)-2(1 +α sinω t) δ(x)ψ(t,x)} , written in units in which \\hbar=2m=1, describing the ionization of a model atom by a parametric oscillating potential. This model has been studied extensively by many authors, including us. It has surprisingly many features in common with those observed in the ionization of real atoms and emission by solids, subjected to microwave or laser radiation. Here we use new mathematical methods to go beyond previous investigations and to provide a complete and rigorous analysis of this system. We obtain the Borel-resummed transseries (multi-instanton expansion) valid for all values of α, ω, t for the wave function, ionization probability, and energy distribution of the emitted electrons, the latter not studied previously for this model. We show that for large t and small α the energy distribution has sharp peaks at energies which are multiples of ω, corresponding to photon capture. We obtain small α expansions that converge for all t, unlike those of standard perturbation theory. We expect that our analysis will serve as a basis for treating more realistic systems revealing a form of universality in different emission processes.
International Nuclear Information System (INIS)
Faulin, Javier; Juan, Angel A.; Serrat, Carles; Bargueno, Vicente
2008-01-01
In this paper, we propose the use of discrete-event simulation (DES) as an efficient methodology to obtain estimates of both survival and availability functions in time-dependent real systems-such as telecommunication networks or distributed computer systems. We discuss the use of DES in reliability and availability studies, not only as an alternative to the use of analytical and probabilistic methods, but also as a complementary way to: (i) achieve a better understanding of the system internal behavior and (ii) find out the relevance of each component under reliability/availability considerations. Specifically, this paper describes a general methodology and two DES algorithms, called SAEDES, which can be used to analyze a wide range of time-dependent complex systems, including those presenting multiple states, dependencies among failure/repair times or non-perfect maintenance policies. These algorithms can provide valuable information, specially during the design stages, where different scenarios can be compared in order to select a system design offering adequate reliability and availability levels. Two case studies are discussed, using a C/C++ implementation of the SAEDES algorithms, to show some potential applications of our approach
A simplified time-dependent recovery model as applied to RCP seal LOCAs
International Nuclear Information System (INIS)
Kohut, P.; Bozoki, G.; Fitzpatrick, R.
1991-01-01
In Westinghouse-designed reactors, the reactor coolant pump (RCP) seals constantly require a modest amount of cooling. This cooling function depends on the service water (SW) system. Upon the loss of the cooling function due to the unavailability of the SW, component cooling water system or electrical power (station blackout), the RCP seals may degrade, resulting in a loss-of-coolant accident (LOCA). Recent studies indicate that the frequency of the loss of SW initiating events is higher than previously thought. This change significantly increases the core damage frequency contribution from RCP seal failure. The most critical/dominant element in the loss of SW events was found to be the SW-induced RCP seal failure. For these potential accident scenarios, there are large uncertainties regarding the actual frequency of RCP seal LOCA, the resulting leakage rate, and time-dependent behavior. The roles of various recovery options based on the time evolution of the seal LOCA have been identified and taken into account in recent NUREG-1150 probabilistic risk assessment PRA analyses. In this paper, a consistent time-dependent recovery model is described that takes into account the effects of various recovery actions based on explicit considerations given to a spectrum of time- and flow-rate dependencies. The model represents a simplified approach but is especially useful when extensive seal leak rate and core uncovery information is unavailable
Energy Technology Data Exchange (ETDEWEB)
Faulin, Javier [Department of Statistics and Operations Research, Los Magnolios Building, First Floor, Campus Arrosadia, Public University of Navarre, 31006 Pamplona, Navarre (Spain)], E-mail: javier.faulin@unavarra.es; Juan, Angel A. [Department of Applied Mathematics I, Av. Doctor Maranon 44-50, Technical University of Catalonia, 08028 Barcelona (Spain)], E-mail: angel.alejandro.juan@upc.edu; Serrat, Carles [Department of Applied Mathematics I, Av. Doctor Maranon 44-50, Technical University of Catalonia, 08028 Barcelona (Spain)], E-mail: carles.serrat@upc.edu; Bargueno, Vicente [Department of Applied Mathematics I, ETS Ingenieros Industriales, Universidad Nacional de Educacion a Distancia, 28080 Madrid (Spain)], E-mail: vbargueno@ind.uned.es
2008-11-15
In this paper, we propose the use of discrete-event simulation (DES) as an efficient methodology to obtain estimates of both survival and availability functions in time-dependent real systems-such as telecommunication networks or distributed computer systems. We discuss the use of DES in reliability and availability studies, not only as an alternative to the use of analytical and probabilistic methods, but also as a complementary way to: (i) achieve a better understanding of the system internal behavior and (ii) find out the relevance of each component under reliability/availability considerations. Specifically, this paper describes a general methodology and two DES algorithms, called SAEDES, which can be used to analyze a wide range of time-dependent complex systems, including those presenting multiple states, dependencies among failure/repair times or non-perfect maintenance policies. These algorithms can provide valuable information, specially during the design stages, where different scenarios can be compared in order to select a system design offering adequate reliability and availability levels. Two case studies are discussed, using a C/C++ implementation of the SAEDES algorithms, to show some potential applications of our approach.
Improved time-dependent harmonic oscillator method for vibrationally inelastic collisions
International Nuclear Information System (INIS)
DePristo, A.E.
1985-01-01
A quantal solution to vibrationally inelastic collisions is presented based upon a linear expansion of the interaction potential around the time-dependent classical positions of all translational and vibrational degrees of freedom. The full time-dependent wave function is a product of a Gaussian translational wave packet and a multidimensional harmonic oscillator wave function, both centered around the appropriate classical position variables. The computational requirements are small since the initial vibrational coordinates are the equilibrium values in the classical trajectory (i.e., phase space sampling does not occur). Different choices of the initial width of the translational wave packet and the initial classical translational momenta are possible, and two combinations are investigated. The first involves setting the initial classical momenta equal to the quantal expectation value, and varying the width to satisfy normalization of the transition probability matrix. The second involves adjusting the initial classical momenta to ensure detailed balancing for each set of transitions, i→f and f→i, and varying the width to satisfy normalization. This choice illustrates the origin of the empirical correction of using the arithmetic average momenta as the initial classical momenta in the forced oscillator approximation. Both methods are tested for the collinear collision systems CO 2 --(He, Ne), and are found to be accurate except for near-resonant vibration--vibration exchange at low initial kinetic energies
Time-dependent chemo-electro-mechanical behavior of hydrogel-based structures
Leichsenring, Peter; Wallmersperger, Thomas
2018-03-01
Charged hydrogels are ionic polymer gels and belong to the class of smart materials. These gels are multiphasic materials which consist of a solid phase, a fluid phase and an ionic phase. Due to the presence of bound charges these materials are stimuli-responsive to electrical or chemical loads. The application of electrical or chemical stimuli as well as mechanical loads lead to a viscoelastic response. On the macroscopic scale, the response is governed by a local reversible release or absorption of water which, in turn, leads to a local decrease or increase of mass and a respective volume change. Furthermore, the chemo-electro-mechanical equilibrium of a hydrogel depends on the chemical composition of the gel and the surrounding solution bath. Due to the presence of bound charges in the hydrogel, this system can be understood as an osmotic cell where differences in the concentration of mobile ions in the gel and solution domain lead to an osmotic pressure difference. In the present work, a continuum-based numerical model is presented in order to describe the time-dependent swelling behavior of hydrogels. The numerical model is based on the Theory of Porous Media and captures the fluid-solid, fluid-ion and ion-ion interactions. As a direct consequence of the chemo-electro-mechanical equilibrium, the corresponding boundary conditions are defined following the equilibrium conditions. For the interaction of the hydrogel with surrounding mechanical structures, also respective jump condtions are formulated. Finaly, numerical results of the time-dependent behavior of a hydrogel-based chemo-sensor will be presented.
The Time-Dependency of Deformation in Porous Carbonate Rocks
Kibikas, W. M.; Lisabeth, H. P.; Zhu, W.
2016-12-01
Porous carbonate rocks are natural reservoirs for freshwater and hydrocarbons. More recently, due to their potential for geothermal energy generation as well as carbon sequestration, there are renewed interests in better understanding of the deformation behavior of carbonate rocks. We conducted a series of deformation experiments to investigate the effects of strain rate and pore fluid chemistry on rock strength and transport properties of porous limestones. Indiana limestone samples with initial porosity of 16% are deformed at 25 °C under effective pressures of 10, 30, and 50 MPa. Under nominally dry conditions, the limestone samples are deformed under 3 different strain rates, 1.5 x 10-4 s-1, 1.5 x 10-5 s-1 and 1.5 x 10-6 s-1 respectively. The experimental results indicate that the mechanical behavior is both rate- and pressure-dependent. At low confining pressures, post-yielding deformation changes from predominantly strain softening to strain hardening as strain rate decreases. At high confining pressures, while all samples exhibit shear-enhanced compaction, decreasing strain rate leads to an increase in compaction. Slower strain rates enhance compaction at all confining pressure conditions. The rate-dependence of deformation behaviors of porous carbonate rocks at dry conditions indicates there is a strong visco-elastic coupling for the degradation of elastic modulus with increasing plastic deformation. In fluid saturated samples, inelastic strain of limestone is partitioned among low temperature plasticity, cataclasis and solution transport. Comparison of inelastic behaviors of samples deformed with distilled water and CO2-saturated aqueous solution as pore fluids provide experimental constraints on the relative activities of the various mechanisms. Detailed microstructural analysis is conducted to take into account the links between stress, microstructure and the inelastic behavior and failure mechanisms.
Treatment-time-dependence models of early and delayed radiation injury in rat small intestine
International Nuclear Information System (INIS)
Denham, James W.; Hauer-Jensen, Martin; Kron, Tomas; Langberg, Carl W.
2000-01-01
Background: The present study modeled data from a large series of experiments originally designed to investigate the influence of time, dose, and fractionation on early and late pathologic endpoints in rat small intestine after localized irradiation. The objective was to obtain satisfactory descriptions of the regenerative response to injury together with the possible relationships between early and late endpoints. Methods: Two- and 26-week pathologic radiation injury data in groups of Sprague-Dawley rats irradiated with 27 different fractionation schedules were modeled using the incomplete repair (IR) version of the linear-quadratic model with or without various time correction models. The following time correction models were tested: (1) No time correction; (2) A simple exponential (SE) regenerative response beginning at an arbitrary time after starting treatment; and (3) A bi-exponential response with its commencement linked to accumulated cellular depletion and fraction size (the 'intelligent response model' [INTR]). Goodness of fit of the various models was assessed by correlating the predicted biological effective dose for each dose group with the observed radiation injury score. Results: (1) The incomplete repair model without time correction did not provide a satisfactory description of either the 2- or 26-week data. (2) The models using SE time correction performed better, providing modest descriptions of the data. (3) The INTR model provided reasonable descriptions of both the 2- and 26-week data, confirming a treatment time dependence of both early and late pathological endpoints. (4) The most satisfactory descriptions of the data by the INTR model were obtained when the regenerative response was assumed to cease 2 weeks after irradiation rather than at the end of irradiation. A fraction-size-dependent delay of the regenerative response was also suggested in the best fitting models. (5) Late endpoints were associated with low-fractionation sensitivity
Energy Technology Data Exchange (ETDEWEB)
Tare, U.A.; Mody, F.K.; Mese, A.I. [Halliburton Energy Services, Cairo (Egypt)
2000-11-01
Experimental studies were conducted to explain the concept of a real-time wellbore (in)stability logging methodology. The role of the chemical potential of drilling fluids on transient pore pressure and time-dependent rock property alterations of shale formations was examined by providing details about a pore pressure transmission (PPT) test. The PPT experiments exposed formation (shale) cores under simulated downhole conditions to various salt solutions and drilling fluids. The main objective was to translate the results of the PPT tests to actual drilling conditions. A 20 per cent w/w calcium chloride solution was exposed to a Pierre II shale under high pressure in the PPT apparatus. The PPT test was used to estimate the impact of a drilling fluid on shale pore pressure. The efficiency of the salt solution/shale system was also estimated. Estimates of the dynamic rock properties were made based on the obtained acoustic data. It was determined that in order to accurately model time-dependent wellbore (in)stability in the field, it is important to calibrate representative shale core response to drilling fluids under realistic in-situ conditions. The 20 per cent w/w calcium chloride solution showed very low membrane efficiency of 4.45 per cent. It was concluded that changes in the shale dynamic rock properties as a function of test fluid exposure can be obtained from the simultaneous acquisition of sonic compression and shear wave velocity data. 12 refs., 5 figs.
Remarks on time-dependent [current]-density functional theory for open quantum systems.
Yuen-Zhou, Joel; Aspuru-Guzik, Alán
2013-08-14
Time-dependent [current]-density functional theory for open quantum systems (OQS) has emerged as a formalism that can incorporate dissipative effects in the dynamics of many-body quantum systems. Here, we review and clarify some formal aspects of these theories that have been recently questioned in the literature. In particular, we provide theoretical support for the following conclusions: (1) contrary to what we and others had stated before, within the master equation framework, there is in fact a one-to-one mapping between vector potentials and current densities for fixed initial state, particle-particle interaction, and memory kernel; (2) regardless of the first conclusion, all of our recently suggested Kohn-Sham (KS) schemes to reproduce the current and particle densities of the original OQS, and in particular, the use of a KS closed driven system, remains formally valid; (3) the Lindblad master equation maintains the positivity of the density matrix regardless of the time-dependence of the Hamiltonian or the dissipation operators; (4) within the stochastic Schrödinger equation picture, a one-to-one mapping from stochastic vector potential to stochastic current density for individual trajectories has not been proven so far, except in the case where the vector potential is the same for every member of the ensemble, in which case, it reduces to the Lindblad master equation picture; (5) master equations may violate certain desired properties of the density matrix, such as positivity, but they remain as one of the most useful constructs to study OQS when the environment is not easily incorporated explicitly in the calculation. The conclusions support our previous work as formally rigorous, offer new insights into it, and provide a common ground to discuss related theories.
Resonance phenomena in a time-dependent, three-dimensional model of an idealized eddy
Rypina, I. I.; Pratt, L. J.; Wang, P.; Äe; -zgökmen, T. M.; Mezic, I.
2015-08-01
We analyze the geometry of Lagrangian motion and material barriers in a time-dependent, three-dimensional, Ekman-driven, rotating cylinder flow, which serves as an idealization for an isolated oceanic eddy and other overturning cells with cylindrical geometry in the ocean and atmosphere. The flow is forced at the top through an oscillating upper lid, and the response depends on the frequency and amplitude of lid oscillations. In particular, the Lagrangian geometry changes near the resonant tori of the unforced flow, whose frequencies are rationally related to the forcing frequencies. Multi-scale analytical expansions are used to simplify the flow in the vicinity of resonant trajectories and to investigate the resonant flow geometries. The resonance condition and scaling can be motivated by simple physical argument. The theoretically predicted flow geometries near resonant trajectories have then been confirmed through numerical simulations in a phenomenological model and in a full solution of the Navier-Stokes equations.
Convective instability in a time-dependent buoyancy driven boundary layer
Energy Technology Data Exchange (ETDEWEB)
Brooker, A.M.H.; Patterson, J.C.; Graham, T.; Schoepf, W. [University of Western Australia, Nedlands (Australia). Centre for Water Research
2000-01-01
The stability of the parallel time-dependent boundary layer adjacent to a suddenly heated vertical wall is described. The flow is investigated through experiments in water, through direct numerical simulation and also through linear stability analysis. The full numerical simulation of the flow shows that small perturbations to the wall boundary conditions, that are also present in the experimental study, are responsible for triggering the instability. As a result, oscillatory behaviour in the boundary layer is observed well before the transition to a steady two-dimensional flow begins. The properties of the observed oscillations are compared with those predicted by a linear stability analysis of the unsteady boundary layer using a quasi-stationary assumption and also using non-stationary assumptions by the formulation of parabolized equations (PSE). (Author)
Shaping charge excitations in chiral edge states with a time-dependent gate voltage
Misiorny, Maciej; Fève, Gwendal; Splettstoesser, Janine
2018-02-01
We study a coherent conductor supporting a single edge channel in which alternating current pulses are created by local time-dependent gating and sent on a beam-splitter realized by a quantum point contact. The current response to the gate voltage in this setup is intrinsically linear. Based on a fully self-consistent treatment employing a Floquet scattering theory, we analyze the effect of different voltage shapes and frequencies, as well as the role of the gate geometry on the injected signal. In particular, we highlight the impact of frequency-dependent screening on the process of shaping the current signal. The feasibility of creating true single-particle excitations with this method is confirmed by investigating the suppression of excess noise, which is otherwise created by additional electron-hole pair excitations in the current signal.
Multicomponent Time-Dependent Density Functional Theory: Proton and Electron Excitation Energies.
Yang, Yang; Culpitt, Tanner; Hammes-Schiffer, Sharon
2018-04-05
The quantum mechanical treatment of both electrons and protons in the calculation of excited state properties is critical for describing nonadiabatic processes such as photoinduced proton-coupled electron transfer. Multicomponent density functional theory enables the consistent quantum mechanical treatment of more than one type of particle and has been implemented previously for studying ground state molecular properties within the nuclear-electronic orbital (NEO) framework, where all electrons and specified protons are treated quantum mechanically. To enable the study of excited state molecular properties, herein the linear response multicomponent time-dependent density functional theory (TDDFT) is derived and implemented within the NEO framework. Initial applications to FHF - and HCN illustrate that NEO-TDDFT provides accurate proton and electron excitation energies within a single calculation. As its computational cost is similar to that of conventional electronic TDDFT, the NEO-TDDFT approach is promising for diverse applications, particularly nonadiabatic proton transfer reactions, which may exhibit mixed electron-proton vibronic excitations.
International Nuclear Information System (INIS)
Liu Dan-Dan; Zhang Hong
2011-01-01
We report theoretical studies on the plasmon resonances in linear Au atomic chains by using ab initio time-dependent density functional theory. The dipole responses are investigated each as a function of chain length. They converge into a single resonance in the longitudinal mode but split into two transverse modes. As the chain length increases, the longitudinal plasmon mode is redshifted in energy while the transverse modes shift in the opposite direction (blueshifts). In addition, the energy gap between the two transverse modes reduces with chain length increasing. We find that there are unique characteristics, different from those of other metallic chains. These characteristics are crucial to atomic-scale engineering of single-molecule sensing, optical spectroscopy, and so on. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
On particle emission in the time-dependent Hartree-Fock approximation
International Nuclear Information System (INIS)
Maedler, P.
1984-01-01
Investigations of fast particle emission in the time-dependent Hartree-Fock mean-field approximation (TDHF) have been performed for one-dimensional slab collisions. For a fixed target mass number and incident velocity the total yields of PEP exhibit pronounced srtructures as a function of the pro ectile mass number, which strongly correcate with the binding energy of the last nucleon in the projectnle. This is in explicit disagreement with experiment. The conclusion has been drawn that the Fermi-jet mechanism cannot be responsible for most of the fast particles observed in experiment, even if quantum diffraction is taken into account (as in TDHF). After PEP emission large amplitude density oscillations, which are the only possible modes in the slab geometry, are found to be damped by further particle emission
Junginger, Andrej; Duvenbeck, Lennart; Feldmaier, Matthias; Main, Jörg; Wunner, Günter; Hernandez, Rigoberto
2017-08-14
In chemical or physical reaction dynamics, it is essential to distinguish precisely between reactants and products for all times. This task is especially demanding in time-dependent or driven systems because therein the dividing surface (DS) between these states often exhibits a nontrivial time-dependence. The so-called transition state (TS) trajectory has been seen to define a DS which is free of recrossings in a large number of one-dimensional reactions across time-dependent barriers and thus, allows one to determine exact reaction rates. A fundamental challenge to applying this method is the construction of the TS trajectory itself. The minimization of Lagrangian descriptors (LDs) provides a general and powerful scheme to obtain that trajectory even when perturbation theory fails. Both approaches encounter possible breakdowns when the overall potential is bounded, admitting the possibility of returns to the barrier long after the trajectories have reached the product or reactant wells. Such global dynamics cannot be captured by perturbation theory. Meanwhile, in the LD-DS approach, it leads to the emergence of additional local minima which make it difficult to extract the optimal branch associated with the desired TS trajectory. In this work, we illustrate this behavior for a time-dependent double-well potential revealing a self-similar structure of the LD, and we demonstrate how the reflections and side-minima can be addressed by an appropriate modification of the LD associated with the direct rate across the barrier.
Energy Technology Data Exchange (ETDEWEB)
Sissay, Adonay [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Lopata, Kenneth, E-mail: klopata@lsu.edu [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)
2016-09-07
Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.
International Nuclear Information System (INIS)
Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J.; Lopata, Kenneth
2016-01-01
Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.
International Nuclear Information System (INIS)
Ritchie, A.B.; Riley, M.E.
1997-06-01
The authors have found that the conventional exponentiated split operator procedure is subject to difficulties in energy conservation when solving the time-dependent Schrodinger equation for Coulombic systems. By rearranging the kinetic and potential energy terms in the temporal propagator of the finite difference equations, one can find a propagation algorithm for three dimensions that looks much like the Crank-Nicholson and alternating direction implicit methods for one- and two-space-dimensional partial differential equations. They report comparisons of this novel implicit split operator procedure with the conventional exponentiated split operator procedure on hydrogen atom solutions. The results look promising for a purely numerical approach to certain electron quantum mechanical problems
Quantum dynamics at finite temperature: Time-dependent quantum Monte Carlo study
Energy Technology Data Exchange (ETDEWEB)
Christov, Ivan P., E-mail: ivan.christov@phys.uni-sofia.bg
2016-08-15
In this work we investigate the ground state and the dissipative quantum dynamics of interacting charged particles in an external potential at finite temperature. The recently devised time-dependent quantum Monte Carlo (TDQMC) method allows a self-consistent treatment of the system of particles together with bath oscillators first for imaginary-time propagation of Schrödinger type of equations where both the system and the bath converge to their finite temperature ground state, and next for real time calculation where the dissipative dynamics is demonstrated. In that context the application of TDQMC appears as promising alternative to the path-integral related techniques where the real time propagation can be a challenge.
Theoretical treatment of photodissociation of water by time-dependent quantum mechanical methods
International Nuclear Information System (INIS)
Weide, K.
1993-01-01
An algorithm for wavepacket propagation, based on Kosloff's method of expansion of the time evolution operator in terms of Chebychev polynomials, and some details of its implementation are described. With the programs developed, quantum-mechanical calculations for up to three independent molecular coordinates are possible and feasible and therefore photodissociation of non-rotating triatomic molecules can be treated exactly. The angular degree of freedom here is handled by expansion in terms of free diatomic rotor states. The time-dependent wave packet picture is compared with the more traditional view of stationary wave functions, and both are used to interpret computational results where appropriate. Two-dimensional calculations have been performed to explain several experimental observations about water photodissociation. All calculations are based on ab initio potential energy surfaces, and it is explained in each case why it is reasonable to neglect the third degree of freedom. Many experimental results are reproduced quantitatively. (orig.) [de
Dynamically Switching among Bundled and Single Tickets with Time-Dependent Demand Rates
Directory of Open Access Journals (Sweden)
Serhan Duran
2012-01-01
Full Text Available The most important market segmentation in sports and entertainment industry is the competition between customers that buy bundled and single tickets. A common selling practice is starting the selling season with bundled ticket sales and switching to selling single tickets later on. The aim of this practice is to increase the number of customers that buy bundles, which in return increases the load factor of the events with low demand. In this paper, we investigate the effect of time dependent demand on dynamic switching times from bundled to single ticket sales and the potential revenue gain over the case where the demand rate of events is assumed to be constant with time.
Time-dependent current-density functional theory for generalized open quantum systems.
Yuen-Zhou, Joel; Rodríguez-Rosario, César; Aspuru-Guzik, Alán
2009-06-14
In this article, we prove the one-to-one correspondence between vector potentials and particle and current densities in the context of master equations with arbitrary memory kernels, therefore extending time-dependent current-density functional theory (TD-CDFT) to the domain of generalized many-body open quantum systems (OQS). We also analyse the issue of A-representability for the Kohn-Sham (KS) scheme proposed by D'Agosta and Di Ventra for Markovian OQS [Phys. Rev. Lett. 2007, 98, 226403] and discuss its domain of validity. We suggest ways to expand their scheme, but also propose a novel KS scheme where the auxiliary system is both closed and non-interacting. This scheme is tested numerically with a model system, and several considerations for the future development of functionals are indicated. Our results formalize the possibility of practising TD-CDFT in OQS, hence expanding the applicability of the theory to non-Hamiltonian evolutions.
Chemical dynamics in the gas phase: Time-dependent quantum mechanics of chemical reactions
Energy Technology Data Exchange (ETDEWEB)
Gray, S.K. [Argonne National Laboratory, IL (United States)
1993-12-01
A major goal of this research is to obtain an understanding of the molecular reaction dynamics of three and four atom chemical reactions using numerically accurate quantum dynamics. This work involves: (i) the development and/or improvement of accurate quantum mechanical methods for the calculation and analysis of the properties of chemical reactions (e.g., rate constants and product distributions), and (ii) the determination of accurate dynamical results for selected chemical systems, which allow one to compare directly with experiment, determine the reliability of the underlying potential energy surfaces, and test the validity of approximate theories. This research emphasizes the use of recently developed time-dependent quantum mechanical methods, i.e. wave packet methods.
Zhu, Hong-Ming; Chen, Jin-Wang; Pan, Xiao-Yin; Sahni, Viraht
2014-01-14
We derive via the interaction "representation" the many-body wave function for harmonically confined electrons in the presence of a magnetostatic field and perturbed by a spatially homogeneous time-dependent electric field-the Generalized Kohn Theorem (GKT) wave function. In the absence of the harmonic confinement - the uniform electron gas - the GKT wave function reduces to the Kohn Theorem wave function. Without the magnetostatic field, the GKT wave function is the Harmonic Potential Theorem wave function. We further prove the validity of the connection between the GKT wave function derived and the system in an accelerated frame of reference. Finally, we provide examples of the application of the GKT wave function.
Unsupervised learning by spike timing dependent plasticity in phase change memory (PCM synapses
Directory of Open Access Journals (Sweden)
Stefano eAmbrogio
2016-03-01
Full Text Available We present a novel one-transistor/one-resistor (1T1R synapse for neuromorphic networks, based on phase change memory (PCM technology. The synapse is capable of spike-timing dependent plasticity (STDP, where gradual potentiation relies on set transition, namely crystallization, in the PCM, while depression is achieved via reset or amorphization of a chalcogenide active volume. STDP characteristics are demonstrated by experiments under variable initial conditions and number of pulses. Finally, we support the applicability of the 1T1R synapse for learning and recognition of visual patterns by simulations of fully connected neuromorphic networks with 2 or 3 layers with high recognition efficiency. The proposed scheme provides a feasible low-power solution for on-line unsupervised machine learning in smart reconfigurable sensors.
The excitation of an independent-particle gas by a time dependent potential well
Directory of Open Access Journals (Sweden)
J. P. Błocki
2010-09-01
Full Text Available The order-to-chaos transition in the dynamics of independent classical particles gas was studied by means of the numerical simulations. The excitation of the gas for containers whose surfaces are rippled according to Legendre polynomials P2 , P3, P4 , P5 , P6 was followed for ten periods of oscillations. Spheroidal deformations were also considered. Poincare sections and Lyapunov exponents have been calculated showing different degrees of chaoticity depending on the shape and amplitude of oscillations. For 2 P polynomial the reaction of a gas to the periodic container deformation is mostly elastic as 2 P deformation especially for not very big deformations is almost like an integrable spheroid. For other polynomials the situation is more or less chaotic with a chaoticity increasing with the increasing order of the polynomial.