Potter, William J.
2018-01-01
Blazar jets are renowned for their rapid violent variability and multiwavelength flares, however, the physical processes responsible for these flares are not well understood. In this paper, we develop a time-dependent inhomogeneous fluid jet emission model for blazars. We model optically thick radio flares for the first time and show that they are delayed with respect to the prompt optically thin emission by ∼months to decades, with a lag that increases with the jet power and observed wavelength. This lag is caused by a combination of the travel time of the flaring plasma to the optically thin radio emitting sections of the jet and the slow rise time of the radio flare. We predict two types of flares: symmetric flares - with the same rise and decay time, which occur for flares whose duration is shorter than both the radiative lifetime and the geometric path-length delay time-scale; extended flares - whose luminosity tracks the power of particle acceleration in the flare, which occur for flares with a duration longer than both the radiative lifetime and geometric delay. Our model naturally produces orphan X-ray and γ-ray flares. These are caused by flares that are only observable above the quiescent jet emission in a narrow band of frequencies. Our model is able to successfully fit to the observed multiwavelength flaring spectra and light curves of PKS1502+106 across all wavelengths, using a transient flaring front located within the broad-line region.
International Nuclear Information System (INIS)
Staff, Jan E.; Niebergal, Brian P.; Ouyed, Rachid; Pudritz, Ralph E.; Cai, Kai
2010-01-01
We perform state-of-the-art, three-dimensional, time-dependent simulations of magnetized disk winds, carried out to simulation scales of 60 AU, in order to confront optical Hubble Space Telescope observations of protostellar jets. We 'observe' the optical forbidden line emission produced by shocks within our simulated jets and compare these with actual observations. Our simulations reproduce the rich structure of time-varying jets, including jet rotation far from the source, an inner (up to 400 km s -1 ) and outer (less than 100 km s -1 ) component of the jet, and jet widths of up to 20 AU in agreement with observed jets. These simulations when compared with the data are able to constrain disk wind models. In particular, models featuring a disk magnetic field with a modest radial spatial variation across the disk are favored.
System reliability time-dependent models
International Nuclear Information System (INIS)
Debernardo, H.D.
1991-06-01
A probabilistic methodology for safety system technical specification evaluation was developed. The method for Surveillance Test Interval (S.T.I.) evaluation basically means an optimization of S.T.I. of most important system's periodically tested components. For Allowed Outage Time (A.O.T.) calculations, the method uses system reliability time-dependent models (A computer code called FRANTIC III). A new approximation, which was called Independent Minimal Cut Sets (A.C.I.), to compute system unavailability was also developed. This approximation is better than Rare Event Approximation (A.E.R.) and the extra computing cost is neglectible. A.C.I. was joined to FRANTIC III to replace A.E.R. on future applications. The case study evaluations verified that this methodology provides a useful probabilistic assessment of surveillance test intervals and allowed outage times for many plant components. The studied system is a typical configuration of nuclear power plant safety systems (two of three logic). Because of the good results, these procedures will be used by the Argentine nuclear regulatory authorities in evaluation of technical specification of Atucha I and Embalse nuclear power plant safety systems. (Author) [es
Dynamic acoustics for the STAR-100. [computer algorithms for time dependent sound waves in jet
Bayliss, A.; Turkel, E.
1979-01-01
An algorithm is described to compute time dependent acoustic waves in a jet. The method differs from previous methods in that no harmonic time dependence is assumed, thus permitting the study of nonharmonic acoustical behavior. Large grids are required to resolve the acoustic waves. Since the problem is nonstiff, explicit high order schemes can be used. These have been adapted to the STAR-100 with great efficiencies and permitted the efficient solution of problems which would not be feasible on a scalar machine.
Time dependent viscous string cloud cosmological models
Tripathy, S. K.; Nayak, S. K.; Sahu, S. K.; Routray, T. R.
2009-09-01
Bianchi type-I string cosmological models are studied in Saez-Ballester theory of gravitation when the source for the energy momentum tensor is a viscous string cloud coupled to gravitational field. The bulk viscosity is assumed to vary with time and is related to the scalar expansion. The relationship between the proper energy density ρ and string tension density λ are investigated from two different cosmological models.
Time-dependent intranuclear cascade model
International Nuclear Information System (INIS)
Barashenkov, V.S.; Kostenko, B.F.; Zadorogny, A.M.
1980-01-01
An intranuclear cascade model with explicit consideration of the time coordinate in the Monte Carlo simulation of the development of a cascade particle shower has been considered. Calculations have been performed using a diffuse nuclear boundary without any step approximation of the density distribution. Changes in the properties of the target nucleus during the cascade development have been taken into account. The results of these calculations have been compared with experiment and with the data which had been obtained by means of a time-independent cascade model. The consideration of time improved agreement between experiment and theory particularly for high-energy shower particles; however, for low-energy cascade particles (with grey and black tracks in photoemulsion) a discrepancy remains at T >= 10 GeV. (orig.)
Characterization of Models for Time-Dependent Behavior of Soils
DEFF Research Database (Denmark)
Liingaard, Morten; Augustesen, Anders; Lade, Poul V.
2004-01-01
developed for metals and steel but are, to some extent, used to characterize time effects in geomaterials. The third part is a review of constitutive laws that describe not only viscous effects but also the inviscid ( rate-independent) behavior of soils, in principle, under any possible loading condition...... Different classes of constitutive models have been developed to capture the time-dependent viscous phenomena ~ creep, stress relaxation, and rate effects ! observed in soils. Models based on empirical, rheological, and general stress-strain-time concepts have been studied. The first part....... Special attention is paid to elastoviscoplastic models that combine inviscid elastic and time-dependent plastic behavior. Various general elastoviscoplastic models can roughly be divided into two categories: Models based on the concept of overstress and models based on nonstationary flow surface theory...
Chromospheric extents predicted by time-dependent acoustic wave models
Cuntz, Manfred
1990-01-01
Theoretical models for chromospheric structures of late-type giant stars are computed, including the time-dependent propagation of acoustic waves. Models with short-period monochromatic shock waves as well as a spectrum of acoustic waves are discussed, and the method is applied to the stars Arcturus, Aldebaran, and Betelgeuse. Chromospheric extent, defined as the monotonic decrease with height of the time-averaged electron densities, are found to be 1.12, 1.13, and 1.22 stellar radii for the three stars, respectively; this corresponds to a time-averaged electron density of 10 to the 7th/cu cm. Predictions of the extended chromospheric obtained using a simple scaling law agree well with those obtained by the time-dependent wave models; thus, the chromospheres of all stars for which the scaling law is valid consist of the same number of pressure scale heights.
Chromospheric extents predicted by time-dependent acoustic wave models
Energy Technology Data Exchange (ETDEWEB)
Cuntz, M. (Joint Institute for Laboratory Astrophysics, Boulder, CO (USA) Heidelberg Universitaet (Germany, F.R.))
1990-01-01
Theoretical models for chromospheric structures of late-type giant stars are computed, including the time-dependent propagation of acoustic waves. Models with short-period monochromatic shock waves as well as a spectrum of acoustic waves are discussed, and the method is applied to the stars Arcturus, Aldebaran, and Betelgeuse. Chromospheric extent, defined as the monotonic decrease with height of the time-averaged electron densities, are found to be 1.12, 1.13, and 1.22 stellar radii for the three stars, respectively; this corresponds to a time-averaged electron density of 10 to the 7th/cu cm. Predictions of the extended chromospheric obtained using a simple scaling law agree well with those obtained by the time-dependent wave models; thus, the chromospheres of all stars for which the scaling law is valid consist of the same number of pressure scale heights. 74 refs.
Neutrino flavor instabilities in a time-dependent supernova model
Directory of Open Access Journals (Sweden)
Sajad Abbar
2015-12-01
Full Text Available A dense neutrino medium such as that inside a core-collapse supernova can experience collective flavor conversion or oscillations because of the neutral-current weak interaction among the neutrinos. This phenomenon has been studied in a restricted, stationary supernova model which possesses the (spatial spherical symmetry about the center of the supernova and the (directional axial symmetry around the radial direction. Recently it has been shown that these spatial and directional symmetries can be broken spontaneously by collective neutrino oscillations. In this letter we analyze the neutrino flavor instabilities in a time-dependent supernova model. Our results show that collective neutrino oscillations start at approximately the same radius in both the stationary and time-dependent supernova models unless there exist very rapid variations in local physical conditions on timescales of a few microseconds or shorter. Our results also suggest that collective neutrino oscillations can vary rapidly with time in the regimes where they do occur which need to be studied in time-dependent supernova models.
Time dependent modeling of non-LTE plasmas: Final report
International Nuclear Information System (INIS)
1988-06-01
During the period of performance of this contract Science Applications International Corporation (SAIC) has aided Lawrence Livermore National Laboratory (LLNL) in the development of an unclassified modeling tool for studying time evolution of high temperature ionizing and recombining plasmas. This report covers the numerical code developed, (D)ynamic (D)etailed (C)onfiguration (A)ccounting (DDCA), which was written to run on the National Magnetic Fusion Energy Computing Center (NMFECC) network as well as the classified Livermore Computer Center (OCTOPUS) network. DDCA is a One-Dimensional (1D) time dependent hydrodynamic model which makes use of the non-LTE detailed atomic physics ionization model DCA. 5 refs
TIME-DEPENDENT MODELS OF FLARES FROM SAGITTARIUS A*
International Nuclear Information System (INIS)
Dodds-Eden, Katie; Genzel, Reinhard; Gillessen, Stefan; Eisenhauer, Frank; Sharma, Prateek; Quataert, Eliot; Porquet, Delphine
2010-01-01
The emission from Sgr A*, the supermassive black hole in the Galactic Center, shows order of magnitude variability ('flares') a few times a day that is particularly prominent in the near-infrared (NIR) and X-rays. We present a time-dependent model for these flares motivated by the hypothesis that dissipation of magnetic energy powers the flares. We show that episodic magnetic reconnection can occur near the last stable circular orbit in time-dependent magnetohydrodynamic simulations of black hole accretion-the timescales and energetics of these events are broadly consistent with the flares from Sgr A*. Motivated by these results, we present a spatially one-zone time-dependent model for the electron distribution function in flares, including energy loss due to synchrotron cooling and adiabatic expansion. Synchrotron emission from transiently accelerated particles can explain the NIR/X-ray light curves and spectra of a luminous flare observed on 2007 April 4. A significant decrease in the magnetic field strength during the flare (coincident with the electron acceleration) is required to explain the simultaneity and symmetry of the simultaneous light curves. Our models predict that the NIR and X-ray spectral indices are related by Δα ≅ 0.5 (where νF ν ∝ ν α ) and that there is only modest variation in the spectral index during flares. We also explore implications of this model for longer wavelength (radio-submillimeter) emission seemingly associated with X-ray and NIR flares; we argue that a few hour decrease in the submillimeter emission is a more generic consequence of large-scale magnetic reconnection than delayed radio emission from adiabatic expansion.
Development of constitutive model for composites exhibiting time dependent properties
International Nuclear Information System (INIS)
Pupure, L; Joffe, R; Varna, J; Nyström, B
2013-01-01
Regenerated cellulose fibres and their composites exhibit highly nonlinear behaviour. The mechanical response of these materials can be successfully described by the model developed by Schapery for time-dependent materials. However, this model requires input parameters that are experimentally determined via large number of time-consuming tests on the studied composite material. If, for example, the volume fraction of fibres is changed we have a different material and new series of experiments on this new material are required. Therefore the ultimate objective of our studies is to develop model which determines the composite behaviour based on behaviour of constituents of the composite. This paper gives an overview of problems and difficulties, associated with development, implementation and verification of such model
DEFF Research Database (Denmark)
Gillet, N.; Jault, D.; Finlay, Chris
2015-01-01
We report a calculation of time-dependent quasi-geostrophic core flows for 1940–2010. Inverting recursively for an ensemble of solutions, we evaluate the main source of uncertainties, namely, the model errors arising from interactions between unresolved core surface motions and magnetic fields...... between the magnetic field and subdecadal nonzonal motions within the fluid outer core. Both the zonal and the more energetic nonzonal interannual motions were particularly intense close to the equator (below 10∘ latitude) between 1995 and 2010. We revise down the amplitude of the decade fluctuations...... of the planetary-scale circulation and find that electromagnetic core-mantle coupling is not the main mechanism for angular momentum exchanges on decadal time scales if mantle conductance is 3 × 108 S or lower....
Fuzzy economic production quantity model with time dependent demand rate
Directory of Open Access Journals (Sweden)
Susanta Kumar Indrajitsingha
2016-09-01
Full Text Available Background: In this paper, an economic production quantity model is considered under a fuzzy environment. Both the demand cost and holding cost are considered using fuzzy pentagonal numbers. The Signed Distance Method is used to defuzzify the total cost function. Methods: The results obtained by these methods are compared with the help of a numerical example. Sensitivity analysis is also carried out to explore the effect of changes in the values of some of the system parameters. Results and conclusions: The fuzzy EPQ model with time dependent demand rate was presented together with the possible implementation. The behavior of changes in parameters was analyzed. The possible extension of the implementation of this method was presented.
Simulation of time-dependent Heisenberg models in one dimension
DEFF Research Database (Denmark)
Volosniev, A. G.; Hammer, H. -W.; Zinner, N. T.
2016-01-01
constants can be manipulated by time-dependent driving of the shape of the external confinement. As illustrative examples, we consider a harmonic trapping potential with a variable frequency and an infinite square well potential with a time-dependent barrier in the middle.......In this Letter, we provide a theoretical analysis of strongly interacting quantum systems confined by a time-dependent external potential in one spatial dimension. We show that such systems can be used to simulate spin chains described by Heisenberg Hamiltonians in which the exchange coupling...
Fossati, Giovanni
This proposal aims at fully exploiting the large body of X-ray and multiwavelength observational data on TeV gamma-ray bright blazars for a detailed comparison with state- of-the art blazar radiation transfer simulations. The aim of this investigation is to develop diagnostics on critical jet parameters and shock physics, such as the magnetic field, the kinetic energy content in the jets, the characteristics of the shock acceleration mechanisms, and the detailed influence on geometry on the observed spectral variability features. Our project will comprises a systematic, uniform re-analysis of the relevant (in particular, X-ray) data sets. We will extract time-dependent spectral energy distributions, light curves, and intra-band as well as inter-band time lags from the available data. The modeling tasks will start with a quick sweep through parameter space using a semi- analytical internal-shock model. This will help to narrow down parameters such as the Lorentz factors of interacting emission regions, the overall energy requirements, the characteristics of the electron distributions accelerated at internal shocks, and the magnetic field. The parameters of this semi-analytical internal-shock model that allow for a representation of time-dependent SEDs, light curves and inter-band time lags, will form the starting point for our detailed modeling using our state-of-the-art time-dependent multi-zone Monte-Carlo simulation code. Using that code, we will explore in more detail the characteristics of the particle acceleration in active regions and the influence of various geometries on the observable features. By capitalizing on archival data of several NASA space astrophysics missions our proposal is in agreement with the NASA ADAP research objective, "the analysis io NASA space astrophysics data that are archived in the public domain at the time of submission", as stated in the NASA Research announcement.
International Nuclear Information System (INIS)
Por, G.
1999-08-01
A program package was developed to estimate the time dependent auto-correlation function (ACF) from the time signals of soft X-ray records taken along the various lines-of-sights in JET-SHOTS, and also to estimate the time dependent Decay Ratio (DR) from that. On the basis of ACF the time dependent auto-power spectral density (APSD) was also calculated. The steps and objectives of this work were: eliminating the white detection noise, trends and slow variation from the time signals, since ordinary methods can give good estimate of the time dependent ACF and DR only for 'nearly' stationary signals, developing an automatic algorithm for finding the maxima and minima of ACF, since they are the basis for DR estimation, evaluating and testing different DR estimators for JET-SHOT, with the aim of finding parts of the signals, where the oscillating character is strong, estimating time dependent ACF and APSD that can follow the relatively fast variation in the time signal. The methods that we have developed for data processing of transient signals are: White detection noise removal and preparation for trend removal - weak components, white detection noise and high frequency components are filtered from the signal using the so-called soft-threshold wavelet filter. Removal of trends and slow variation - Three-point differentiation of the pre-filtered signal is used to remove trends and slow variation. Here we made use of the DERIV function of IDL program language. This leads to a filtered signal that has zero mean value in each time step. Calculation of the time dependent ACF - The signal treated by the two previous steps is used as the input. Calculated ACF value is added in each new time step, but the previously accumulated ACF value is multiplied by a weighting factor. Thus the new sample has 100% contribution, while the contributions from the previous samples are forgotten quickly. DR calculation - DR is a measure of the decay of oscillating ACF. This parameter was shown
Recovery of time-dependent volatility in option pricing model
Deng, Zui-Cha; Hon, Y. C.; Isakov, V.
2016-11-01
In this paper we investigate an inverse problem of determining the time-dependent volatility from observed market prices of options with different strikes. Due to the non linearity and sparsity of observations, an analytical solution to the problem is generally not available. Numerical approximation is also difficult to obtain using most of the existing numerical algorithms. Based on our recent theoretical results, we apply the linearisation technique to convert the problem into an inverse source problem from which recovery of the unknown volatility function can be achieved. Two kinds of strategies, namely, the integral equation method and the Landweber iterations, are adopted to obtain the stable numerical solution to the inverse problem. Both theoretical analysis and numerical examples confirm that the proposed approaches are effective. The work described in this paper was partially supported by a grant from the Research Grant Council of the Hong Kong Special Administrative Region (Project No. CityU 101112) and grants from the NNSF of China (Nos. 11261029, 11461039), and NSF grants DMS 10-08902 and 15-14886 and by Emylou Keith and Betty Dutcher Distinguished Professorship at the Wichita State University (USA).
A congested and dwell time dependent transit corridor assignment model
Alonso Oreña, Borja; Muñoz, Juan Carlos; Ibeas Portilla, Ángel; Moura Berodia, José Luis
2016-01-01
This research proposes an equilibrium assignment model for congested public transport corridors in urban areas. In this model, journey times incorporate the effect of bus queuing on travel times and boarding and alighting passengers on dwell times at stops. The model also considers limited bus capacity leading to longer waiting times and more uncomfortable journeys. The proposed model is applied to an example network, and the results are compared with those obtained in a recent study. This is...
Evaluation of Digital Model Accuracy and Time-dependent ...
African Journals Online (AJOL)
2017-10-26
Oct 26, 2017 ... Objectives: The aim of this study was to evaluate the accuracy of digital models produced with the three-dimensional dental scanner, and to test the dimensional stability of alginate impressions for durations of immediately (T0), 1 day (T1), and 2 days (T2). Materials and Methods: A total of sixty impressions ...
Nonperturbative Time Dependent Solution of a Simple Ionization Model
Costin, Ovidiu; Costin, Rodica D.; Lebowitz, Joel L.
2018-02-01
We present a non-perturbative solution of the Schrödinger equation {iψ_t(t,x)=-ψ_{xx}(t,x)-2(1 +α sinω t) δ(x)ψ(t,x)} , written in units in which \\hbar=2m=1, describing the ionization of a model atom by a parametric oscillating potential. This model has been studied extensively by many authors, including us. It has surprisingly many features in common with those observed in the ionization of real atoms and emission by solids, subjected to microwave or laser radiation. Here we use new mathematical methods to go beyond previous investigations and to provide a complete and rigorous analysis of this system. We obtain the Borel-resummed transseries (multi-instanton expansion) valid for all values of α, ω, t for the wave function, ionization probability, and energy distribution of the emitted electrons, the latter not studied previously for this model. We show that for large t and small α the energy distribution has sharp peaks at energies which are multiples of ω, corresponding to photon capture. We obtain small α expansions that converge for all t, unlike those of standard perturbation theory. We expect that our analysis will serve as a basis for treating more realistic systems revealing a form of universality in different emission processes.
Time dependent optimal switching controls in online selling models
Energy Technology Data Exchange (ETDEWEB)
Bradonjic, Milan [Los Alamos National Laboratory; Cohen, Albert [MICHIGAN STATE UNIV
2010-01-01
We present a method to incorporate dishonesty in online selling via a stochastic optimal control problem. In our framework, the seller wishes to maximize her average wealth level W at a fixed time T of her choosing. The corresponding Hamilton-Jacobi-Bellmann (HJB) equation is analyzed for a basic case. For more general models, the admissible control set is restricted to a jump process that switches between extreme values. We propose a new approach, where the optimal control problem is reduced to a multivariable optimization problem.
Mathematical model of SPOC with a time dependent reactive field
Energy Technology Data Exchange (ETDEWEB)
Ohtaki, Masako [Department of Physics, School of Science and Engineering, Waseda University, Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan)
2006-03-21
In general the muscle is in one of the two state possible states, relaxation or contraction. These contractions result from relative sliding of myosin and actin in the sarcomere, which is the contraction structure unit of skeletal muscle. The switching between two states is depending on the Ca2{sup +} concentrations. However another state has been detected between these two states. In the third state, that is SPontaneous Oscillatory Contraction (SPOC), sarcomere repeats contraction and extension spontaneously. Muscle fibers are composed of hundreds of sarcomeres in series and one sarcomea also is composed of hundreds of myosin. In microscopic, the force generated by actin and myosin interaction occurs stochastically. SPOC, however, is macroscopically observable and there are regular oscillations. To understand SPOC mechanism, we propose a model for SPOC based on chemical reaction including mechanical process.
Modelling time-dependent mechanical behaviour of softwood using deformation kinetics
DEFF Research Database (Denmark)
Engelund, Emil Tang; Svensson, Staffan
2010-01-01
The time-dependent mechanical behaviour (TDMB) of softwood is relevant, e.g., when wood is used as building material where the mechanical properties must be predicted for decades ahead. The established mathematical models should be able to predict the time-dependent behaviour. However, these models...
Time Dependent Leptonic and Lepto-Hadronic Modeling of Blazar Emission
DIltz, Christopher S.
2016-08-01
Active galactic nuclei (AGN) are known to exhibit multi-wavelength variability across the whole electromagnetic spectrum. In the context of blazars, the variability timescale can be as short as a few minutes. Correlated variability has been seen in different bands of the electromagnetic spectrum: from radio wavelengths to high energy gamma-rays. This correlated variability in different wavelength bands can put constraints on the particle content, acceleration mechanisms and radiative properties of the relativistic jets that produce blazar emission. Two models are typically invoked to explain the origin of the broadband emission across the electromagnetic spectrum: Leptonic and Hadronic Modeling. Both models have had success in reproducing the broadband spectral energy distributions (SEDs) of blazar emission with different input parameters, making the origin of the emission difficult to determine. However, flaring events cause the spectral components that produce the SED to evolve on different timescales, producing different light curve behavior for both models. My Ph.D. research involves developing one-zone time dependent leptonic and lepto-hadronic codes to reproduce the broadband SEDs of blazars and then model flaring scenarios in order to find distinct differences between the two models. My lepto-hadronic code also considers the time dependent evolution of the radiation emitted by secondary particles (pions and muons) generated from photo-hadronic interactions between the photons and protons in the emission region. I present fits to the broadband SEDs of the flat spectrum radio quasars (FSRQs) 3C 273 and 3C 279 using my one-zone leptonic and lepto-hadronic model, respectively. I showed that by considering perturbations of any one of the selected input parameters for both models: magnetic field, particle injection luminosity, particle spectral index, and stochastic acceleration time scale, distinct differences arise in the light curves for the optical, X-ray and
Adjoint-based sensitivities and data assimilation with a time-dependent marine ice sheet model
Goldberg, Dan; Heimbach, Patrick
2013-04-01
To date, assimilation of observational data using large-scale ice models has consisted only of time-dependent inversions of surface velocities for basal traction, bed elevation, or ice stiffness. These inversions are for the most part based on control methods (Macayeal D R, 1992, A tutorial on the use of control methods in ice sheet modeling), which involve generating and solving the adjoint of the ice model. Quite a lot has been learned about the fast-flowing parts of the Antarctic Ice Sheet from such inversions. Still, there are limitations to these "snapshot" inversions. For instance, they cannot capture time-dependent dynamics, such as propagation of perturbations through the ice sheet. They cannot assimilate time-dependent observations, such as surface elevation changes. And they are problematic for initializing time-dependent ice sheet models, as such initializations may contain considerable model drift. We have developed an adjoint for a time-dependent land ice model, with which we will address such issues. The land ice model implements a hybrid shallow shelf-shallow ice stress balance and can represent the floating, fast-sliding, and frozen bed regimes of a marine ice sheet. The adjoint is generated by a combination of analytic methods and the use of automated differentiation (AD) software. Experiments with idealized geometries have been carried out; adjoint sensitivities reveal the "vulnerable" regions of ice shelves, and preliminary inversions of "synthetic" observations (e.g. simultaneous inversion of basal traction and topography) yield encouraging results.
Time-Dependent Networks as Models to Achieve Fast Exact Time-Table Queries
DEFF Research Database (Denmark)
Brodal, Gert Stølting; Jacob, Rico
2003-01-01
We consider efficient algorithms for exact time-table queries, i.e. algorithms that find optimal itineraries for travelers using a train system. We propose to use time-dependent networks as a model and show advantages of this approach over space-time networks as models.......We consider efficient algorithms for exact time-table queries, i.e. algorithms that find optimal itineraries for travelers using a train system. We propose to use time-dependent networks as a model and show advantages of this approach over space-time networks as models....
Time-dependent Networks as Models to Achieve Fast Exact Time-table Queries
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Jacob, Rico
2001-01-01
We consider efficient algorithms for exact time-table queries, i.e. algorithms that find optimal itineraries. We propose to use time-dependent networks as a model and show advantages of this approach over space-time networks as models.......We consider efficient algorithms for exact time-table queries, i.e. algorithms that find optimal itineraries. We propose to use time-dependent networks as a model and show advantages of this approach over space-time networks as models....
Time-dependent model of the Martian atmosphere for use in orbit lifetime and sustenance studies
Culp, R. D.; Stewart, A. I.
1984-01-01
A time-dependent model of the Martian atmosphere suitable for calculation of long-term aerodynamic effects on low altitude satellites is presented. The atmospheric model is both position dependent, through latitude and longitude effects, and time dependent. The time dependency includes diurnal and seasonal effects, effects of annual motion, long and short term solar activity effects, and periodic dust storm effects. Nine constituent gases are included in the model. Uncertainties in exospheric temperature, turbidity, and turbopause altitude are used to produce bounds on the expected density. A computer model - a Fortran subroutine which, when given the Julian date, Cartesian position of the sun and the spacecraft in aerocentric coordinates, returns the local values of mass density, temperature, scale height, and upper and lower bounds on the mass density is presented.
Time-dependent model of the Martian atmosphere for use in orbit lifetime and sustenance studies
Culp, R. D.; Stewart, A. I.
1984-09-01
A time-dependent model of the Martian atmosphere suitable for calculation of long-term aerodynamic effects on low altitude satellites is presented. The atmospheric model is both position dependent, through latitude and longitude effects, and time dependent. The time dependency includes diurnal and seasonal effects, effects of annual motion, long and short term solar activity effects, and periodic dust storm effects. Nine constituent gases are included in the model. Uncertainties in exospheric temperature, turbidity, and turbopause altitude are used to produce bounds on the expected density. A computer model - a Fortran subroutine which, when given the Julian date, Cartesian position of the sun and the spacecraft in aerocentric coordinates, returns the local values of mass density, temperature, scale height, and upper and lower bounds on the mass density is presented.
Long-lifetime Martian orbit selection using a time-dependent model of the Martian atmosphere
Culp, R. D.; Stewart, A. I.; Chow, C.-C.; Uphoff, C.
1984-01-01
A mathematical model of the time-dependent Martian atmosphere has been developed in order to accurately calculate the effects of aerodynamic drag on a low altitude satellite. The time-dependent properties of the model include solar activity effects, dust storm effects, seasonal and diurnal variations, and annual motion effects. Position effects are accounted for through Martian latitude and longitude. Expected values of mass density, temperature, scale height, and the estimated standard deviation of the mass density are provided. An example of the use of the model in selecting an orbit for the Mars Geochemical/Climatology Orbiter is given.
Long-lifetime Martian orbit selection using a time-dependent model of the Martian atmosphere
Culp, R. D.; Stewart, A. I.; Chow, C.-C.; Uphoff, C.
1984-08-01
A mathematical model of the time-dependent Martian atmosphere has been developed in order to accurately calculate the effects of aerodynamic drag on a low altitude satellite. The time-dependent properties of the model include solar activity effects, dust storm effects, seasonal and diurnal variations, and annual motion effects. Position effects are accounted for through Martian latitude and longitude. Expected values of mass density, temperature, scale height, and the estimated standard deviation of the mass density are provided. An example of the use of the model in selecting an orbit for the Mars Geochemical/Climatology Orbiter is given.
Stochastic time-dependent vehicle routing problem: Mathematical models and ant colony algorithm
Directory of Open Access Journals (Sweden)
Zhengyu Duan
2015-11-01
Full Text Available This article addresses the stochastic time-dependent vehicle routing problem. Two mathematical models named robust optimal schedule time model and minimum expected schedule time model are proposed for stochastic time-dependent vehicle routing problem, which can guarantee delivery within the time windows of customers. The robust optimal schedule time model only requires the variation range of link travel time, which can be conveniently derived from historical traffic data. In addition, the robust optimal schedule time model based on robust optimization method can be converted into a time-dependent vehicle routing problem. Moreover, an ant colony optimization algorithm is designed to solve stochastic time-dependent vehicle routing problem. As the improvements in initial solution and transition probability, ant colony optimization algorithm has a good performance in convergence. Through computational instances and Monte Carlo simulation tests, robust optimal schedule time model is proved to be better than minimum expected schedule time model in computational efficiency and coping with the travel time fluctuations. Therefore, robust optimal schedule time model is applicable in real road network.
Modelling Faculty Replacement Strategies Using a Time-Dependent Finite Markov-Chain Process.
Hackett, E. Raymond; Magg, Alexander A.; Carrigan, Sarah D.
1999-01-01
Describes the use of a time-dependent Markov-chain model to develop faculty-replacement strategies within a college at a research university. The study suggests that a stochastic modelling approach can provide valuable insight when planning for personnel needs in the immediate (five-to-ten year) future. (MSE)
The Limit Behavior of a Stochastic Logistic Model with Individual Time-Dependent Rates
Directory of Open Access Journals (Sweden)
Yilun Shang
2013-01-01
Full Text Available We investigate a variant of the stochastic logistic model that allows individual variation and time-dependent infection and recovery rates. The model is described as a heterogeneous density dependent Markov chain. We show that the process can be approximated by a deterministic process defined by an integral equation as the population size grows.
Time-dependent reliability analysis of nuclear reactor operators using probabilistic network models
International Nuclear Information System (INIS)
Oka, Y.; Miyata, K.; Kodaira, H.; Murakami, S.; Kondo, S.; Togo, Y.
1987-01-01
Human factors are very important for the reliability of a nuclear power plant. Human behavior has essentially a time-dependent nature. The details of thinking and decision making processes are important for detailed analysis of human reliability. They have, however, not been well considered by the conventional methods of human reliability analysis. The present paper describes the models for the time-dependent and detailed human reliability analysis. Recovery by an operator is taken into account and two-operators models are also presented
Little rip cosmological models with quadratic equation of state with time dependent parameters
Shelote, R. D.; Khadekar, G. S.
2018-02-01
We have studied flat FRW cosmological model of the universe filled with an ideal fluid with quadratic equation of state (EOS) with time dependent parameters ω(t) and Λ(t). We found the equation of the state parameter ω(t) is less than -1 and also found Little Rip (LR) and Pseudo Rip (PR) behavior for dark energy.
A Bimodal Hybrid Model for Time-Dependent Probabilistic Seismic Hazard Analysis
Yaghmaei-Sabegh, Saman; Shoaeifar, Nasser; Shoaeifar, Parva
2018-03-01
The evaluation of evidence provided by geological studies and historical catalogs indicates that in some seismic regions and faults, multiple large earthquakes occur in cluster. Then, the occurrences of large earthquakes confront with quiescence and only the small-to-moderate earthquakes take place. Clustering of large earthquakes is the most distinguishable departure from the assumption of constant hazard of random occurrence of earthquakes in conventional seismic hazard analysis. In the present study, a time-dependent recurrence model is proposed to consider a series of large earthquakes that occurs in clusters. The model is flexible enough to better reflect the quasi-periodic behavior of large earthquakes with long-term clustering, which can be used in time-dependent probabilistic seismic hazard analysis with engineering purposes. In this model, the time-dependent hazard results are estimated by a hazard function which comprises three parts. A decreasing hazard of last large earthquake cluster and an increasing hazard of the next large earthquake cluster, along with a constant hazard of random occurrence of small-to-moderate earthquakes. In the final part of the paper, the time-dependent seismic hazard of the New Madrid Seismic Zone at different time intervals has been calculated for illustrative purpose.
Interplay between chaotic and regular motion in a time-dependent barred galaxy model
Manos, T.; Bountis, T.; Skokos, Ch
2013-06-01
We study the distinction and quantification of chaotic and regular motion in a time-dependent Hamiltonian barred galaxy model. Recently, a strong correlation was found between the strength of the bar and the presence of chaotic motion in this system, as models with relatively strong bars were shown to exhibit stronger chaotic behavior compared to those having a weaker bar component. Here, we attempt to further explore this connection by studying the interplay between chaotic and regular behavior of star orbits when the parameters of the model evolve in time. This happens for example when one introduces linear time dependence in the mass parameters of the model to mimic, in some general sense, the effect of self-consistent interactions of the actual N-body problem. We thus observe, in this simple time-dependent model also, that the increase of the bar’s mass leads to an increase of the system’s chaoticity. We propose a new way of using the generalized alignment index (GALI) method as a reliable criterion to estimate the relative fraction of chaotic versus regular orbits in such time-dependent potentials, which proves to be much more efficient than the computation of Lyapunov exponents. In particular, GALI is able to capture subtle changes in the nature of an orbit (or ensemble of orbits) even for relatively small time intervals, which makes it ideal for detecting dynamical transitions in time-dependent systems. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’.
Modelling the time-dependent rheological behaviour of heterogeneous brittle rocks
Xu, Tao; Tang, Chun-an; Zhao, Jian; Li, Lianchong; Heap, M. J.
2012-06-01
A 2-D numerical model for brittle creep and stress relaxation is proposed for the time-dependent brittle deformation of heterogeneous brittle rock under uniaxial loading conditions. The model accounts for material heterogeneity through a stochastic local failure stress field, and local material degradation using an exponential material softening law. Importantly, the model introduces the concept of a mesoscopic renormalization to capture the co-operative interaction between microcracks in the transition from distributed to localized damage. The model also describes the temporal and spatial evolution of acoustic emissions, including their size (energy released), in the medium during the progressive damage process. The model is first validated using previously published experimental data and is then used to simulate brittle creep and stress relaxation experiments. The model accurately reproduces the classic trimodal behaviour (primary, secondary and tertiary creep) seen in laboratory brittle creep (constant stress) experiments and the decelerating stress during laboratory stress relaxation (constant strain) experiments. Brittle creep simulations also show evidence of a 'critical level of damage' before the onset of tertiary creep and the initial stages of localization can be seen as early as the start of the secondary creep phase, both of which have been previously observed in experiments. Stress relaxation simulations demonstrate that the total amount of stress relaxation increases when the level of constant axial strain increases, also corroborating with previously published experimental data. Our approach differs from previously adopted macroscopic approaches, based on constitutive laws, and microscopic approaches that focus on fracture propagation. The model shows that complex macroscopic time-dependent behaviour can be explained by the small-scale interaction of elements and material degradation. The fact that the simulations are able to capture a similar time-dependent
Time-Dependent Testing Evaluation and Modeling for Rubber Stopper Seal Performance.
Zeng, Qingyu; Zhao, Xia
2018-01-01
Sufficient rubber stopper sealing performance throughout the entire sealed product life cycle is essential for maintaining container closure integrity in the parenteral packaging industry. However, prior publications have lacked systematic considerations for the time-dependent influence on sealing performance that results from the viscoelastic characteristics of the rubber stoppers. In this paper, we report results of an effort to study these effects by applying both compression stress relaxation testing and residual seal force testing for time-dependent experimental data collection. These experiments were followed by modeling fit calculations based on the Maxwell-Wiechert theory modified with the Kohlrausch-Williams-Watts stretched exponential function, resulting in a nonlinear, time-dependent sealing force model. By employing both testing evaluations and modeling calculations, an in-depth understanding of the time-dependent effects on rubber stopper sealing force was developed. Both testing and modeling data show good consistency, demonstrating that the sealing force decays exponentially over time and eventually levels off because of the viscoelastic nature of the rubber stoppers. The nonlinearity of stress relaxation derives from the viscoelastic characteristics of the rubber stoppers coupled with the large stopper compression deformation into restrained geometry conditions. The modeling fit with capability to handle actual testing data can be employed as a tool to calculate the compression stress relaxation and residual seal force throughout the entire sealed product life cycle. In addition to being time-dependent, stress relaxation is also experimentally shown to be temperature-dependent. The present work provides a new, integrated methodology framework and some fresh insights to the parenteral packaging industry for practically and proactively considering, designing, setting up, controlling, and managing stopper sealing performance throughout the entire
International Nuclear Information System (INIS)
Sarler, B.
1987-01-01
The basic principles of the boundary element method numerical treatment of the radial flow heat diffusion equation are presented. The algorithm copes the time dependent Dirichlet and Neumann boundary conditions, temperature dependent material properties and regions from different materials in thermal contact. It is verified on the several analytically obtained test cases. The developed method is used for the modelling of unsteady radial heat flow in pressurized water reactor fuel rod. (author)
Inventory Model for Deteriorating Items with Quadratic Time Dependent Demand under Trade Credits
Directory of Open Access Journals (Sweden)
Rakesh Tripathi
2016-02-01
Full Text Available In this paper, an EOQ model is developed for a deteriorating item with quadratic time dependent demand rate under trade credit. Mathematical models are also derived under two different situations i.e. Case I; the credit period is less than the cycle time for settling the account and Case II; the credit period is greater than or equal to the cycle time for settling the account. The numerical examples are also given to validate the proposed model. Sensitivity analysis is given to study the effect of various parameters on ordering policy and optimal total profit. Mathematica 7.1 software is used for finding optimal numerical solutions.
An economic production model for time dependent demand with rework and multiple production setups
Directory of Open Access Journals (Sweden)
S.R. Singh
2014-04-01
Full Text Available In this paper, we present a model for time dependent demand with multiple productions and rework setups. Production is demand dependent and greater than the demand rate. Production facility produces items in m production setups and one rework setup (m, 1 policy. The major reason of reverse logistic and green supply chain is rework, so it reduces the cost of production and other ecological problems. Most of the researchers developed a rework model without deteriorating items. A numerical example and sensitivity analysis is shown to describe the model.
EBT time-dependent point model code: description and user's guide
International Nuclear Information System (INIS)
Roberts, J.F.; Uckan, N.A.
1977-07-01
A D-T time-dependent point model has been developed to assess the energy balance in an EBT reactor plasma. Flexibility is retained in the model to permit more recent data to be incorporated as they become available from the theoretical and experimental studies. This report includes the physics models involved, the program logic, and a description of the variables and routines used. All the files necessary for execution are listed, and the code, including a post-execution plotting routine, is discussed
Tenkès, Lucille-Marie; Hollerbach, Rainer; Kim, Eun-jin
2017-12-01
A probabilistic description is essential for understanding growth processes in non-stationary states. In this paper, we compute time-dependent probability density functions (PDFs) in order to investigate stochastic logistic and Gompertz models, which are two of the most popular growth models. We consider different types of short-correlated multiplicative and additive noise sources and compare the time-dependent PDFs in the two models, elucidating the effects of the additive and multiplicative noises on the form of PDFs. We demonstrate an interesting transition from a unimodal to a bimodal PDF as the multiplicative noise increases for a fixed value of the additive noise. A much weaker (leaky) attractor in the Gompertz model leads to a significant (singular) growth of the population of a very small size. We point out the limitation of using stationary PDFs, mean value and variance in understanding statistical properties of the growth in non-stationary states, highlighting the importance of time-dependent PDFs. We further compare these two models from the perspective of information change that occurs during the growth process. Specifically, we define an infinitesimal distance at any time by comparing two PDFs at times infinitesimally apart and sum these distances in time. The total distance along the trajectory quantifies the total number of different states that the system undergoes in time, and is called the information length. We show that the time-evolution of the two models become more similar when measured in units of the information length and point out the merit of using the information length in unifying and understanding the dynamic evolution of different growth processes.
Directory of Open Access Journals (Sweden)
Pengpeng Jiao
2014-01-01
Full Text Available Time-dependent turning movement flows are very important input data for intelligent transportation systems but are impossible to be detected directly through current traffic surveillance systems. Existing estimation models have proved to be not accurate and reliable enough during all intervals. An improved way to address this problem is to develop a combined model framework that can integrate multiple submodels running simultaneously. This paper first presents a back propagation neural network model to estimate dynamic turning movements, as well as the self-adaptive learning rate approach and the gradient descent with momentum method for solving. Second, this paper develops an efficient Kalman filtering model and designs a revised sequential Kalman filtering algorithm. Based on the Bayesian method using both historical data and currently estimated results for error calibration, this paper further integrates above two submodels into a Bayesian combined model framework and proposes a corresponding algorithm. A field survey is implemented at an intersection in Beijing city to collect both time series of link counts and actual time-dependent turning movement flows, including historical and present data. The reported estimation results show that the Bayesian combined model is much more accurate and stable than other models.
Wiegand, Cornelia; Fink, Sarah; Beier, Oliver; Horn, Kerstin; Pfuch, Andreas; Schimanski, Arnd; Grünler, Bernd; Hipler, Uta-Christina; Elsner, Peter
2016-01-01
Application of cold atmospheric pressure plasmas (CAPs) in or on the human body was termed 'plasma medicine'. So far, plasmas were utilized for sterilization of implants, other heat-sensitive products, or employed for chemical surface modifications. By now, CAPs are further used effectively for wound treatment. The present study analyses the effect of a plasma jet with air or nitrogen as process gas, previously evaluated for antimicrobial efficacy, on human cells using a 3D skin model. CAP treatment of 3D skin models consisting of a keratinocyte-containing epidermal layer and a fibroblast/collagen dermal matrix was performed using the Tigres plasma MEF technology. To evaluate the effects on the 3D skin models, the following plasma parameters were varied: process gas, input power, and treatment time. Low CAP doses exhibited good cell compatibility. Increasing input power or elongating treatment intervals led to detrimental effects on 3D skin model morphology as well as to release of inflammatory cytokines. It was further observed that air as process gas was more damaging compared to nitrogen. Treatment of 3D skin models with the plasma MEF nozzle using air or nitrogen is reported. A clearly dose- and time-dependent effect of CAPs could be observed in which the CAP based on nitrogen exhibited higher cell compatibility than the CAP generated from air. These settings might be recommended for medical in vivo applications such as wound decontamination. © 2016 S. Karger AG, Basel.
Classification of transient behaviours in a time-dependent toggle switch model.
Verd, Berta; Crombach, Anton; Jaeger, Johannes
2014-04-04
Waddington's epigenetic landscape is an intuitive metaphor for the developmental and evolutionary potential of biological regulatory processes. It emphasises time-dependence and transient behaviour. Nowadays, we can derive this landscape by modelling a specific regulatory network as a dynamical system and calculating its so-called potential surface. In this sense, potential surfaces are the mathematical equivalent of the Waddingtonian landscape metaphor. In order to fully capture the time-dependent (non-autonomous) transient behaviour of biological processes, we must be able to characterise potential landscapes and how they change over time. However, currently available mathematical tools focus on the asymptotic (steady-state) behaviour of autonomous dynamical systems, which restricts how biological systems are studied. We present a pragmatic first step towards a methodology for dealing with transient behaviours in non-autonomous systems. We propose a classification scheme for different kinds of such dynamics based on the simulation of a simple genetic toggle-switch model with time-variable parameters. For this low-dimensional system, we can calculate and explicitly visualise numerical approximations to the potential landscape. Focussing on transient dynamics in non-autonomous systems reveals a range of interesting and biologically relevant behaviours that would be missed in steady-state analyses of autonomous systems. Our simulation-based approach allows us to identify four qualitatively different kinds of dynamics: transitions, pursuits, and two kinds of captures. We describe these in detail, and illustrate the usefulness of our classification scheme by providing a number of examples that demonstrate how it can be employed to gain specific mechanistic insights into the dynamics of gene regulation. The practical aim of our proposed classification scheme is to make the analysis of explicitly time-dependent transient behaviour tractable, and to encourage the wider
Time-dependent evolution of rock slopes by a multi-modelling approach
Bozzano, F.; Della Seta, M.; Martino, S.
2016-06-01
This paper presents a multi-modelling approach that incorporates contributions from morpho-evolutionary modelling, detailed engineering-geological modelling and time-dependent stress-strain numerical modelling to analyse the rheological evolution of a river valley slope over approximately 102 kyr. The slope is located in a transient, tectonically active landscape in southwestern Tyrrhenian Calabria (Italy), where gravitational processes drive failures in rock slopes. Constraints on the valley profile development were provided by a morpho-evolutionary model based on the correlation of marine and river strath terraces. Rock mass classes were identified through geomechanical parameters that were derived from engineering-geological surveys and outputs of a multi-sensor slope monitoring system. The rock mass classes were associated to lithotechnical units to obtain a high-resolution engineering-geological model along a cross section of the valley. Time-dependent stress-strain numerical modelling reproduced the main morpho-evolutionary stages of the valley slopes. The findings demonstrate that a complex combination of eustatism, uplift and Mass Rock Creep (MRC) deformations can lead to first-time failures of rock slopes when unstable conditions are encountered up to the generation of stress-controlled shear zones. The multi-modelling approach enabled us to determine that such complex combinations may have been sufficient for the first-time failure of the S. Giovanni slope at approximately 140 ka (MIS 7), even without invoking any trigger. Conversely, further reactivations of the landslide must be related to triggers such as earthquakes, rainfall and anthropogenic activities. This failure involved a portion of the slope where a plasticity zone resulted from mass rock creep that evolved with a maximum strain rate of 40% per thousand years, after the formation of a river strath terrace. This study demonstrates that the multi-modelling approach presented herein is a useful
Directory of Open Access Journals (Sweden)
L. Toledo Sesma
2016-01-01
Full Text Available We construct an effective four-dimensional model by compactifying a ten-dimensional theory of gravity coupled with a real scalar dilaton field on a time-dependent torus. This approach is applied to anisotropic cosmological Bianchi type I model for which we study the classical coupling of the anisotropic scale factors with the two real scalar moduli produced by the compactification process. Under this approach, we present an isotropization mechanism for the Bianchi I cosmological model through the analysis of the ratio between the anisotropic parameters and the volume of the Universe which in general keeps constant or runs into zero for late times. We also find that the presence of extra dimensions in this model can accelerate the isotropization process depending on the momenta moduli values. Finally, we present some solutions to the corresponding Wheeler-DeWitt (WDW equation in the context of standard quantum cosmology.
Model of canonical profiles for time-dependent problems with variation of the total current
International Nuclear Information System (INIS)
Dnestrovskii, Yu.D.; Lysenko, S.E.
1992-01-01
The regimes in which the current varies in TFTR, JET, and ASDEX are analyzed. It is shown that the principle of profile consistency holds at the periphery of the plasma column, and the shape of the canonical profile is determined by the value of the safety factor q in the gradient region. A modified transport model is developed for the canonical profiles, which allows the time lag of the energy content of the plasma with relative to the current variation to be explained reasonably. 9 refs., 8 figs
An advanced time-dependent collisional-radiative model of helium plasma discharges
Claustre, J.; Boukandou-Mombo, C.; Margot, J.; Matte, J.-P.; Vidal, F.
2017-10-01
A new spatially averaged time-dependent collisional-radiative model for helium plasmas, coupled to the electron Boltzmann equation (EBE), has been developed. Its main novelties are: (1) full time dependence for both the multi-species kinetics and the EBE. It is shown that this is necessary to correctly simulate discharges where the parameters vary on nanoseconds-microsecond timescales. (2) All electron processes are accounted for accurately. In particular, for the various ionization and recombination processes, free electrons are added or removed at the appropriate energy, with the appropriate interpolation on the energy grid. (3) The energy dependence of the electron loss by ambipolar diffusion is taken into account approximately. (4) All of the processes which are known to be important in helium discharges for pressure P≤slant 760 Torr are included, and 42 energy levels up to n = 6, where n is the main quantum number, are taken into account. Atomic and molecular ions, as well as excimers, are also included. (5) The gas temperature is calculated self-consistently. The model is validated through comparisons with known numerical steady-state results of Santos et al (2014 J. Phys. D. 47 265201) which they compared to their experimental results, and good agreement is obtained for their measured quantities. It is then applied to post-discharge decay cases with very short power decay times. The time evolution of the population densities and reaction rates are analyzed in detail with emphasis on the observed large increase of the metastable density.
A GIS-based time-dependent seismic source modeling of Northern Iran
Hashemi, Mahdi; Alesheikh, Ali Asghar; Zolfaghari, Mohammad Reza
2017-01-01
The first step in any seismic hazard study is the definition of seismogenic sources and the estimation of magnitude-frequency relationships for each source. There is as yet no standard methodology for source modeling and many researchers have worked on this topic. This study is an effort to define linear and area seismic sources for Northern Iran. The linear or fault sources are developed based on tectonic features and characteristic earthquakes while the area sources are developed based on spatial distribution of small to moderate earthquakes. Time-dependent recurrence relationships are developed for fault sources using renewal approach while time-independent frequency-magnitude relationships are proposed for area sources based on Poisson process. GIS functionalities are used in this study to introduce and incorporate spatial-temporal and geostatistical indices in delineating area seismic sources. The proposed methodology is used to model seismic sources for an area of about 500 by 400 square kilometers around Tehran. Previous researches and reports are studied to compile an earthquake/fault catalog that is as complete as possible. All events are transformed to uniform magnitude scale; duplicate events and dependent shocks are removed. Completeness and time distribution of the compiled catalog is taken into account. The proposed area and linear seismic sources in conjunction with defined recurrence relationships can be used to develop time-dependent probabilistic seismic hazard analysis of Northern Iran.
Reyes, Jonathan; Shadwick, B. A.
2016-10-01
Modeling the evolution of a short, intense laser pulse propagating through an underdense plasma is of particular interest in the physics of laser-plasma interactions. Numerical models are typically created by first discretizing the equations of motion and then imposing boundary conditions. Using the variational principle of Chen and Sudan, we spatially discretize the Lagrangian density to obtain discrete equations of motion and a discrete energy conservation law which is exactly satisfied regardless of the spatial grid resolution. Modifying the derived equations of motion (e.g., enforcing boundary conditions) generally ruins energy conservation. However, time-dependent terms can be added to the Lagrangian which force the equations of motion to have the desired boundary conditions. Although some foresight is needed to choose these time-dependent terms, this approach provides a mechanism for energy to exit the closed system while allowing the conservation law to account for the loss. An appropriate time discretization scheme is selected based on stability analysis and resolution requirements. We present results using this variational approach in a co-moving coordinate system and compare such results to those using traditional second-order methods. This work was supported by the U. S. Department of Energy under Contract No. DE-SC0008382 and by the National Science Foundation under Contract No. PHY- 1104683.
Evaluation of digital model accuracy and time-dependent deformation of alginate impressions.
Cesur, M G; Omurlu, I K; Ozer, T
2017-09-01
The aim of this study was to evaluate the accuracy of digital models produced with the three-dimensional dental scanner, and to test the dimensional stability of alginate impressions for durations of immediately (T0), 1 day (T1), and 2 days (T2). A total of sixty impressions were taken from a master model with an alginate, and were poured into plaster models in three different storage periods. Twenty impressions were directly scanned (negative digital models), after which plaster models were poured and scanned (positive digital models) immediately. The remaining 40 impressions were poured after 1 and 2 days. In total, 9 points and 11 linear measurements were used to analyze the plaster models, and negative and positive digital models. Time-dependent deformation of the alginate impressions and the accuracy of the conventional plaster models and digital models were evaluated separately. Plaster models, negative and positive digital models showed significant differences in nearly all measurements at T (0), T (1), and T (2) times (P 0.05), but they demonstrated statistically significant differences at T (2) time (P impressions is practicable method for orthodontists.
Numerical modelling of the time-dependent mechanical behaviour of softwood
DEFF Research Database (Denmark)
Engelund, Emil Tang
2010-01-01
When using wood as a structural material it is important to consider its time-dependent mechanical behaviour and to predict this behaviour for decades ahead. For this purpose, several rheological mathematical models, spanning from fairly simple to very complex ones, have been developed over...... mechanisms causing the observed mechanical behaviour. In this study, the mechanical behaviour of softwood tracheids is described using numerical modelling. The basic composition and orientation of the tracheid constituents is incorporated by establishing a local coordinate system aligned...... originates from simple physical processes. However, the interaction between the sliding of the microfibrils on the microscale (local coordinate system) and the orientation of the microfibrils in the tracheid becomes complex on the macroscale. An example of the simplicity of the current numerical model...
Energy Technology Data Exchange (ETDEWEB)
Ren, W
2001-08-24
Time-dependent deformation behavior of a polymeric composite with chopped-glass-fiber reinforcement was investigated for automotive applications, The material under stress was exposed to representative automobile service environments. Results show that environment has substantial effects on time-dependent deformation behavior of the material. The data were analyzed and experimentally-based models developed for the time-dependent deformation behavior as a basis for automotive structural durability design criteria.
International Nuclear Information System (INIS)
Ren, W
2001-01-01
Time-dependent deformation behavior of a polymeric composite with chopped-glass-fiber reinforcement was investigated for automotive applications, The material under stress was exposed to representative automobile service environments. Results show that environment has substantial effects on time-dependent deformation behavior of the material. The data were analyzed and experimentally-based models developed for the time-dependent deformation behavior as a basis for automotive structural durability design criteria
A time-dependent neutron transport model and its coupling to thermal-hydraulics
International Nuclear Information System (INIS)
Pautz, A.
2001-01-01
A new neutron transport code for time-dependent analyses of nuclear systems has been developed. The code system is based on the well-known Discrete Ordinates code DORT, which solves the steady-state neutron/photon transport equation in two dimensions for an arbitrary number of energy groups and the most common regular geometries. For the implementation of time-dependence a fully implicit first-order scheme was employed to minimize errors due to temporal discretization. This requires various modifications to the transport equation as well as the extensive use of elaborated acceleration mechanisms. The convergence criteria for fluxes, fission rates etc. had to be strongly tightened to ensure the reliability of results. To perform coupled analyses, an interface to the GRS system code ATHLET has been developed. The nodal power densities from the neutron transport code are passed to ATHLET to calculate thermal-hydraulic system parameters, e.g. fuel and coolant temperatures. These are in turn used to generate appropriate nuclear cross sections by interpolation of pre-calculated data sets for each time step. Finally, to demonstrate the transient capabilities of the coupled code system, the research reactor FRM-II has been analysed. Several design basis accidents were modelled, like the loss of off site power, loss of secondary heat sink and unintended control rod withdrawal. (author)
Exactly solvable quantum state reduction models with time-dependent coupling
International Nuclear Information System (INIS)
Brody, Dorje C; Constantinou, Irene C; Dear, James D C; Hughston, Lane P
2006-01-01
A closed-form solution to the energy-based stochastic Schroedinger equation with a time-dependent coupling is obtained. The solution is algebraic in character, and is expressed directly in terms of independent random data. The data consist of (i) a random variable H which has the distribution P(H=E i ) = π i , where π i is the transition probability vertical bar (ψ 0 vertical bar Φ i ) vertical bar 2 from the initial state vertical bar ψ 0 ) to the Lueders state vertical bar Φ i ) with energy E i , and (ii) an independent P-Brownian motion, where P is the physical probability measure associated with the dynamics of the reduction process. When the coupling is time independent, it is known that state reduction occurs asymptotically-that is to say, over an infinite time horizon. In the case of a time-dependent coupling, we show that if the magnitude of the coupling decreases sufficiently rapidly, then the energy variance will be reduced under the dynamics, but the state need not reach an energy eigenstate. This situation corresponds to the case of a 'partial' or 'incomplete' measurement of the energy. We also construct an example of a model where the opposite situation prevails, in which complete state reduction is achieved after the passage of a finite period of time
Modeling Seismic Wave Propagation Using Time-Dependent Cauchy-Navier Splines
Kammann, P.
2005-12-01
Our intention is the modeling of seismic wave propagation from displacement measurements by seismographs at the Earth's surface. The elastic behaviour of the Earth is usually described by the Cauchy-Navier equation. A system of fundamental solutions for the Fourier transformed Cauchy-Navier equation are the Hansen vectors L, M and N. We apply an inverse Fourier transform to obtain an orthonormal function system depending on time and space. By means of this system we construct certain splines, which are then used for interpolating the given data. Compared to polynomial interpolation, splines have the advantage that they minimize some curvature measure and are, therefore, smoother. First, we test this method on a synthetic wave function. Afterwards, we apply it to realistic earthquake data. (P. Kammann, Modelling Seismic Wave Propagation Using Time-Dependent Cauchy-Navier Splines, Diploma Thesis, Geomathematics Group, Department of Mathematics, University of Kaiserslautern, 2005)
International Nuclear Information System (INIS)
Christian-Frear, T.; Freeze, G.
1997-01-01
Underground excavations produce damaged zones surrounding the excavations which have disturbed hydrologic and geomechanical properties. Prediction of fluid flow in these zones must consider both the mechanical and fluid flow processes. Presented here is a methodology which utilizes a mechanical model to predict damage and disturbed rock zone (DRZ) development around the excavation and then uses the predictions to develop time-dependent DRZ porosity relationships. These relationships are then used to adjust the porosity of the DRZ in the fluid flow model based upon the time and distance from the edge of the excavation. The application of this methodology is presented using a site-specific example from the Waste Isolation Pilot Plant, a US Department of Energy facility in bedded salts being evaluated for demonstration of the safe underground disposal of transuranic waste from US defense-related activities
Directory of Open Access Journals (Sweden)
Akanda Md. Abdus Salam
2017-03-01
Full Text Available Individual heterogeneity in capture probabilities and time dependence are fundamentally important for estimating the closed animal population parameters in capture-recapture studies. A generalized estimating equations (GEE approach accounts for linear correlation among capture-recapture occasions, and individual heterogeneity in capture probabilities in a closed population capture-recapture individual heterogeneity and time variation model. The estimated capture probabilities are used to estimate animal population parameters. Two real data sets are used for illustrative purposes. A simulation study is carried out to assess the performance of the GEE estimator. A Quasi-Likelihood Information Criterion (QIC is applied for the selection of the best fitting model. This approach performs well when the estimated population parameters depend on the individual heterogeneity and the nature of linear correlation among capture-recapture occasions.
Time-Dependent Diffusion MRI in Cancer: Tissue Modeling and Applications
Directory of Open Access Journals (Sweden)
Olivier Reynaud
2017-11-01
Full Text Available In diffusion weighted imaging (DWI, the apparent diffusion coefficient (ADC has been recognized as a useful and sensitive surrogate for cell density, paving the way for non-invasive tumor staging, and characterization of treatment efficacy in cancer. However, microstructural parameters, such as cell size, density and/or compartmental diffusivities affect diffusion in various fashions, making of conventional DWI a sensitive but non-specific probe into changes happening at cellular level. Alternatively, tissue complexity can be probed and quantified using the time dependence of diffusion metrics, sometimes also referred to as temporal diffusion spectroscopy when only using oscillating diffusion gradients. Time-dependent diffusion (TDD is emerging as a strong candidate for specific and non-invasive tumor characterization. Despite the lack of a general analytical solution for all diffusion times/frequencies, TDD can be probed in various regimes where systems simplify in order to extract relevant information about tissue microstructure. The fundamentals of TDD are first reviewed (a in the short time regime, disentangling structural and diffusive tissue properties, and (b near the tortuosity limit, assuming weakly heterogeneous media near infinitely long diffusion times. Focusing on cell bodies (as opposed to neuronal tracts, a simple but realistic model for intracellular diffusion can offer precious insight on diffusion inside biological systems, at all times. Based on this approach, the main three geometrical models implemented so far (IMPULSED, POMACE, VERDICT are reviewed. Their suitability to quantify cell size, intra- and extracellular spaces (ICS and ECS and diffusivities are assessed. The proper modeling of tissue membrane permeability—hardly a newcomer in the field, but lacking applications—and its impact on microstructural estimates are also considered. After discussing general issues with tissue modeling and microstructural parameter
A viscoplastic model including anisotropic damage for the time dependent behaviour of rock
Pellet, F.; Hajdu, A.; Deleruyelle, F.; Besnus, F.
2005-08-01
This paper presents a new constitutive model for the time dependent mechanical behaviour of rock which takes into account both viscoplastic behaviour and evolution of damage with respect to time. This model is built by associating a viscoplastic constitutive law to the damage theory. The main characteristics of this model are the account of a viscoplastic volumetric strain (i.e. contractancy and dilatancy) as well as the anisotropy of damage. The latter is described by a second rank tensor. Using this model, it is possible to predict delayed rupture by determining time to failure, in creep tests for example. The identification of the model parameters is based on experiments such as creep tests, relaxation tests and quasi-static tests. The physical meaning of these parameters is discussed and comparisons with lab tests are presented. The ability of the model to reproduce the delayed failure observed in tertiary creep is demonstrated as well as the sensitivity of the mechanical response to the rate of loading. The model could be used to simulate the evolution of the excavated damage zone around underground openings.
The time-dependent Ginzburg—Landau equation for the two-velocity difference model
International Nuclear Information System (INIS)
Wu Shu-Zhen; Ge Hong-Xia; Cheng Rong-Jun
2011-01-01
A thermodynamic theory is formulated to describe the phase transition and critical phenomenon in traffic flow. Based on the two-velocity difference model, the time-dependent Ginzburg—Landau (TDGL) equation under certain condition is derived to describe the traffic flow near the critical point through the nonlinear analytical method. The corresponding two solutions, the uniform and the kink solutions, are given. The coexisting curve, spinodal line and critical point are obtained by the first and second derivatives of the thermodynamic potential. The modified Korteweg de Vries (mKdV) equation around the critical point is derived by using the reductive perturbation method and its kink—antikink solution is also obtained. The relation between the TDGL equation and the mKdV equation is shown. The simulation result is consistent with the nonlinear analytical result. (general)
Dynamical response of the Ising model to the time dependent magnetic field with white noise
Akıncı, Ümit
2018-03-01
The effect of the white noise in time dependent magnetic field on the dynamic behavior of the Ising model has been investigated within the effective field theory based on Glauber type of stochastic process. Discrete white noise has been chosen from both Gaussian and uniform probability distributions. Detailed investigation on probability distribution of dynamical order parameter results that, both type of noise distributions yield the same probability distribution related to the dynamical order parameter, namely Gaussian probability distribution. The variation of the parameters that describe the probability distribution of dynamical order parameter (mean value and standard deviation) with temperature and strength of the noise have been inspected. Also, it has been shown that, rising strength of the noise can induce dynamical phase transition in the system.
Time-dependent 2-D modeling of edge plasma transport with high intermittency due to blobs
International Nuclear Information System (INIS)
Pigarov, A. Yu.; Krasheninnikov, S. I.; Rognlien, T. D.
2012-01-01
The results on time-dependent 2-D fluid modeling of edge plasmas with non-diffusive intermittent transport across the magnetic field (termed cross-field) based on the novel macro-blob approach are presented. The capability of this approach to simulate the long temporal evolution (∼0.1 s) of the background plasma and simultaneously the fast spatiotemporal dynamics of blobs (∼10 −4 s) is demonstrated. An analysis of a periodic sequence of many macro-blobs (PSMB) is given showing that the resulting plasma attains a dynamic equilibrium. Plasma properties in the dynamic equilibrium are discussed. In PSMB modeling, the effect of macro-blob generation frequency on edge plasma parameters is studied. Comparison between PSMB modeling and experimental profile data is given. The calculations are performed for the same plasma discharge using two different models for anomalous cross-field transport: time-average convection and PSMB. Parametric analysis of edge plasma variation with transport coefficients in these models is presented. The capability of the models to accurately simulate enhanced transport due to blobs is compared. Impurity dynamics in edge plasma with macro-blobs is also studied showing strong impact of macro-blob on profiles of impurity charge states caused by enhanced outward transport of high-charge states and simultaneous inward transport of low-charge states towards the core. Macro-blobs cause enhancement of sputtering rates, increase radiation and impurity concentration in plasma, and change erosion/deposition patterns.
Alnaggar, Mohammed; Di Luzio, Giovanni; Cusatis, Gianluca
2017-04-28
Alkali Silica Reaction (ASR) is known to be a serious problem for concrete worldwide, especially in high humidity and high temperature regions. ASR is a slow process that develops over years to decades and it is influenced by changes in environmental and loading conditions of the structure. The problem becomes even more complicated if one recognizes that other phenomena like creep and shrinkage are coupled with ASR. This results in synergistic mechanisms that can not be easily understood without a comprehensive computational model. In this paper, coupling between creep, shrinkage and ASR is modeled within the Lattice Discrete Particle Model (LDPM) framework. In order to achieve this, a multi-physics formulation is used to compute the evolution of temperature, humidity, cement hydration, and ASR in both space and time, which is then used within physics-based formulations of cracking, creep and shrinkage. The overall model is calibrated and validated on the basis of experimental data available in the literature. Results show that even during free expansions (zero macroscopic stress), a significant degree of coupling exists because ASR induced expansions are relaxed by meso-scale creep driven by self-equilibriated stresses at the meso-scale. This explains and highlights the importance of considering ASR and other time dependent aging and deterioration phenomena at an appropriate length scale in coupled modeling approaches.
Zhang, Wei; Wang, Jun
2017-09-01
In attempt to reproduce price dynamics of financial markets, a stochastic agent-based financial price model is proposed and investigated by stochastic exclusion process. The exclusion process, one of interacting particle systems, is usually thought of as modeling particle motion (with the conserved number of particles) in a continuous time Markov process. In this work, the process is utilized to imitate the trading interactions among the investing agents, in order to explain some stylized facts found in financial time series dynamics. To better understand the correlation behaviors of the proposed model, a new time-dependent intrinsic detrended cross-correlation (TDI-DCC) is introduced and performed, also, the autocorrelation analyses are applied in the empirical research. Furthermore, to verify the rationality of the financial price model, the actual return series are also considered to be comparatively studied with the simulation ones. The comparison results of return behaviors reveal that this financial price dynamics model can reproduce some correlation features of actual stock markets.
Lalonde, Trent L; Wilson, Jeffrey R; Yin, Jianqiong
2014-11-30
When analyzing longitudinal data, it is essential to account both for the correlation inherent from the repeated measures of the responses as well as the correlation realized on account of the feedback created between the responses at a particular time and the predictors at other times. As such one can analyze these data using generalized estimating equation with the independent working correlation. However, because it is essential to include all the appropriate moment conditions as you solve for the regression coefficients, we explore an alternative approach using a generalized method of moments for estimating the coefficients in such data. We develop an approach that makes use of all the valid moment conditions necessary with each time-dependent and time-independent covariate. This approach does not assume that feedback is always present over time, or if present occur at the same degree. Further, we make use of continuously updating generalized method of moments in obtaining estimates. We fit the generalized method of moments logistic regression model with time-dependent covariates using SAS PROC IML and also in R. We used p-values adjusted for multiple correlated tests to determine the appropriate moment conditions for determining the regression coefficients. We examined two datasets for illustrative purposes. We looked at re-hospitalization taken from a Medicare database. We also revisited data regarding the relationship between the body mass index and future morbidity among children in the Philippines. We conducted a simulated study to compare the performances of extended classifications. Copyright © 2014 John Wiley & Sons, Ltd.
Modelling long term rockslide displacements with non-linear time-dependent relationships
De Caro, Mattia; Volpi, Giorgio; Castellanza, Riccardo; Crosta, Giovanni; Agliardi, Federico
2015-04-01
Rockslides undergoing rapid changes in behaviour pose major risks in alpine areas, and require careful characterization and monitoring both for civil protection and mitigation activities. In particular, these instabilities can undergo very slow movement with occasional and intermittent acceleration/deceleration stages of motion potentially leading to collapse. Therefore, the analysis of such instabilities remains a challenging issue. Rockslide displacements are strongly conditioned by hydrologic factors as suggested by correlations with groundwater fluctuations, snowmelt, with a frequently observed delay between perturbation and system reaction. The aim of this work is the simulation of the complex time-dependent behaviour of two case studies for which also a 2D transient hydrogeological simulation has been performed: Vajont rockslide (1960 to 1963) and the recent Mt. de La Saxe rockslide (2009 to 2012). Non-linear time-dependent constitutive relationships have been used to describe long-term creep deformation. Analyses have been performed using a "rheological-mechanical" approach that fits idealized models (e.g. viscoelastic, viscoplastic, elasto-viscoplastic, Burgers, nonlinear visco-plastic) to the experimental behaviour of specific materials by means of numerical constants. Bidimensional simulations were carried out using the finite difference code FLAC. Displacements time-series, available for the two landslides, show two superimposed deformation mechanisms: a creep process, leading to movements under "steady state" conditions (e.g. constant groundwater level), and a "dynamic" process, leading to an increase in displacement rate due to changes of external loads (e.g. groundwater level). For both cases sliding mass is considered as an elasto-plastic body subject to its self-weight, inertial and seepage forces varying with time according to water table fluctuation (due to snowmelt or changing in reservoir level) and derived from the previous hydrogeological
Jackson, B. V.; Yu, H. S.; Hick, P. P.; Buffington, A.; Odstrcil, D.; Kim, T. K.; Pogorelov, N. V.; Tokumaru, M.; Bisi, M. M.; Kim, J.; Yun, J.
2017-12-01
The University of California, San Diego has developed an iterative remote-sensing time-dependent three-dimensional (3-D) reconstruction technique which provides volumetric maps of density, velocity, and magnetic field. We have applied this technique in near real time for over 15 years with a kinematic model approximation to fit data from ground-based interplanetary scintillation (IPS) observations. Our modeling concept extends volumetric data from an inner boundary placed above the Alfvén surface out to the inner heliosphere. We now use this technique to drive 3-D MHD models at their inner boundary and generate output 3-D data files that are fit to remotely-sensed observations (in this case IPS observations), and iterated. These analyses are also iteratively fit to in-situ spacecraft measurements near Earth. To facilitate this process, we have developed a traceback from input 3-D MHD volumes to yield an updated boundary in density, temperature, and velocity, which also includes magnetic-field components. Here we will show examples of this analysis using the ENLIL 3D-MHD and the University of Alabama Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS) heliospheric codes. These examples help refine poorly-known 3-D MHD variables (i.e., density, temperature), and parameters (gamma) by fitting heliospheric remotely-sensed data between the region near the solar surface and in-situ measurements near Earth.
Considering Time-Dependency of Social Vulnerability in Crisis Modeling and Management
Aubrecht, C.; Steinnocher, K.; Freire, S.; Loibl, W.; Peters-Anders, J.; Ungar, J.
2012-04-01
and emergency management. The vulnerability of each relevant element at risk, including human beings and society in general and its time-dependent variation is characterized both by its pre-event status and by its possible evolution during a crisis. Particularly in metropolitan areas, the spatial distribution of population is highly time-dependent due to human activities and mobility. Identifying distinct day-/nighttime population distribution characteristics is a major improvement compared to standard residence-based models, but does however only display part of reality. New technologies and data processing capabilities allow moving into the field of real-time representation of human movement. The focus of this contribution will be on illustrating, through project examples and by putting it in an emergency and crisis management context, two main categories, (1) the mapping of cell phone user activity, and (2) the use of volunteered geographic information (VGI).
Modeling and analysis of time-dependent processes in a chemically reactive mixture
Ramos, M. P.; Ribeiro, C.; Soares, A. J.
2018-01-01
In this paper, we study the propagation of sound waves and the dynamics of local wave disturbances induced by spontaneous internal fluctuations in a reactive mixture. We consider a non-diffusive, non-heat conducting and non-viscous mixture described by an Eulerian set of evolution equations. The model is derived from the kinetic theory in a hydrodynamic regime of a fast chemical reaction. The reactive source terms are explicitly computed from the kinetic theory and are built in the model in a proper way. For both time-dependent problems, we first derive the appropriate dispersion relation, which retains the main effects of the chemical process, and then investigate the influence of the chemical reaction on the properties of interest in the problems studied here. We complete our study by developing a rather detailed analysis using the Hydrogen-Chlorine system as reference. Several numerical computations are included illustrating the behavior of the phase velocity and attenuation coefficient in a low-frequency regime and describing the spectrum of the eigenmodes in the small wavenumber limit.
Mellem, Daniel; Fischer, Frank; Jaspers, Sören; Wenck, Horst; Rübhausen, Michael
2016-01-01
Mitochondria are essential for the energy production of eukaryotic cells. During aging mitochondria run through various processes which change their quality in terms of activity, health and metabolic supply. In recent years, many of these processes such as fission and fusion of mitochondria, mitophagy, mitochondrial biogenesis and energy consumption have been subject of research. Based on numerous experimental insights, it was possible to qualify mitochondrial behaviour in computational simulations. Here, we present a new biophysical model based on the approach of Figge et al. in 2012. We introduce exponential decay and growth laws for each mitochondrial process to derive its time-dependent probability during the aging of cells. All mitochondrial processes of the original model are mathematically and biophysically redefined and additional processes are implemented: Mitochondrial fission and fusion is separated into a metabolic outer-membrane part and a protein-related inner-membrane part, a quality-dependent threshold for mitophagy and mitochondrial biogenesis is introduced and processes for activity-dependent internal oxidative stress as well as mitochondrial repair mechanisms are newly included. Our findings reveal a decrease of mitochondrial quality and a fragmentation of the mitochondrial network during aging. Additionally, the model discloses a quality increasing mechanism due to the interplay of the mitophagy and biogenesis cycle and the fission and fusion cycle of mitochondria. It is revealed that decreased mitochondrial repair can be a quality saving process in aged cells. Furthermore, the model finds strategies to sustain the quality of the mitochondrial network in cells with high production rates of reactive oxygen species due to large energy demands. Hence, the model adds new insights to biophysical mechanisms of mitochondrial aging and provides novel understandings of the interdependency of mitochondrial processes.
Directory of Open Access Journals (Sweden)
Daniel Mellem
Full Text Available Mitochondria are essential for the energy production of eukaryotic cells. During aging mitochondria run through various processes which change their quality in terms of activity, health and metabolic supply. In recent years, many of these processes such as fission and fusion of mitochondria, mitophagy, mitochondrial biogenesis and energy consumption have been subject of research. Based on numerous experimental insights, it was possible to qualify mitochondrial behaviour in computational simulations. Here, we present a new biophysical model based on the approach of Figge et al. in 2012. We introduce exponential decay and growth laws for each mitochondrial process to derive its time-dependent probability during the aging of cells. All mitochondrial processes of the original model are mathematically and biophysically redefined and additional processes are implemented: Mitochondrial fission and fusion is separated into a metabolic outer-membrane part and a protein-related inner-membrane part, a quality-dependent threshold for mitophagy and mitochondrial biogenesis is introduced and processes for activity-dependent internal oxidative stress as well as mitochondrial repair mechanisms are newly included. Our findings reveal a decrease of mitochondrial quality and a fragmentation of the mitochondrial network during aging. Additionally, the model discloses a quality increasing mechanism due to the interplay of the mitophagy and biogenesis cycle and the fission and fusion cycle of mitochondria. It is revealed that decreased mitochondrial repair can be a quality saving process in aged cells. Furthermore, the model finds strategies to sustain the quality of the mitochondrial network in cells with high production rates of reactive oxygen species due to large energy demands. Hence, the model adds new insights to biophysical mechanisms of mitochondrial aging and provides novel understandings of the interdependency of mitochondrial processes.
Chyczewski, Thomas Stanley, Jr.
A national interest in High Speed Civil Transports (HSCT) coupled with strict airport noise regulations has prompted the scientific community to investigate new and improved noise prediction strategies. Meeting these airport regulations is considered to be a major design challenge for the HSCT. In light of this effort, a direct simulation strategy for predicting supersonic jet noise is developed in this thesis. Direct simulations are quickly becoming the method of choice due to their generality and ever decreasing expense associated with the development of parallel processors. Supersonic jet noise is known to be dominated by the growth and decay of large scale turbulent structures. The direct simulation approach used here consists of solving the full Navier Stokes equations using high order finite difference techniques to simulate the evolution of these structures and the noise they radiate to the acoustic near field. This near field solution is then extrapolated to the far field using a Kirchhoff method. The numerical algorithm uses a fourth order Runge -Kutta method for the time integration. The spatial derivatives are approximated by a sixth order central scheme. A sixth order filter is used at each interior mesh point to damp frequencies that cannot be resolved by the spatial scheme. Second order filtering is provided only where required for stability. It is found to be confined to specific locations in the jet core and should have no effect on the acoustic solution. Characteristic based nonreflecting conditions are used to minimize reflections at the far field boundaries and have proven to be effective. Additional boundary conditions are required in the form of it model for the nozzle exit flow. The characteristics of the nozzle exit flow can have a significant impact on the noise radiation. This dependence is unfortunate since comprehensive experimental data is not available in this region of the jet. A model is developed here that addresses a variety of
Magy: Time dependent, multifrequency, self-consistent code for modeling electron beam devices
International Nuclear Information System (INIS)
Botton, M.; Antonsen, T.M.; Levush, B.
1997-01-01
A new MAGY code is being developed for three dimensional modeling of electron beam devices. The code includes a time dependent multifrequency description of the electromagnetic fields and a self consistent analysis of the electrons. The equations of motion are solved with the electromagnetic fields as driving forces and the resulting trajectories are used as current sources for the fields. The calculations of the electromagnetic fields are based on the waveguide modal representation, which allows the solution of relatively small number of coupled one dimensional partial differential equations for the amplitudes of the modes, instead of the full solution of Maxwell close-quote s equations. Moreover, the basic time scale for updating the electromagnetic fields is the cavity fill time and not the high frequency of the fields. In MAGY, the coupling among the various modes is determined by the waveguide non-uniformity, finite conductivity of the walls, and the sources due to the electron beam. The equations of motion of the electrons are solved assuming that all the electrons traverse the cavity in less than the cavity fill time. Therefore, at each time step, a set of trajectories are calculated with the high frequency and other external fields as the driving forces. The code includes a verity of diagnostics for both electromagnetic fields and particles trajectories. It is simple to operate and requires modest computing resources, thus expected to serve as a design tool. copyright 1997 American Institute of Physics
Time-dependent modeling of dust injection in semi-detached ITER divertor plasma
Smirnov, Roman; Krasheninnikov, Sergei
2017-10-01
At present, it is generally understood that dust related issues will play important role in operation of the next step fusion devices, i.e. ITER, and in the development of future fusion reactors. Recent progress in research on dust in magnetic fusion devises has outlined several topics of particular concern: a) degradation of fusion plasma performance; b) impairment of in-vessel diagnostic instruments; and c) safety issues related to dust reactivity and tritium retention. In addition, observed dust events in fusion edge plasmas are highly irregular and require consideration of temporal evolution of both the dust and the fusion plasma. In order to address the dust-related fusion performance issues, we have coupled the dust transport code DUSTT and the edge plasma transport code UEDGE in time-dependent manner, allowing modeling of transient dust-induced phenomena in fusion edge plasmas. Using the coupled codes we simulate burst-like injection of tungsten dust into ITER divertor plasma in semi-detached regime, which is considered as preferable ITER divertor operational mode based on the plasma and heat load control restrictions. Analysis of transport of the dust and the dust-produced impurities, and of dynamics of the ITER divertor and edge plasma in response to the dust injection will be presented. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-06ER54852.
Energy Technology Data Exchange (ETDEWEB)
Pleasant, J C; McDowell-Boyer, L M; Killough, G G
1982-06-01
RAGBEEF is a FORTRAN IV program that calculates radionuclide concentrations in beef as a result of ingestion of contaminated feeds, pasture, and pasture soil by beef cattle. The model implemented by RAGBEEF is dynamic in nature, allowing the user to consider age- and season-dependent aspects of beef cattle management in estimating concentrations in beef. It serves as an auxiliary code to RAGTIME, previously documented by the authors, which calculates radionuclide concentrations in agricultural crops in a dynamic manner, but evaluates concentrations in beef for steady-state conditions only. The time-dependent concentrations in feeds, pasture, and pasture soil generated by RAGTIME are used as input to the RAGBEEF code. RAGBEEF, as presently implemented, calculates radionuclide concentrations in the muscle of age-based cohorts in a beef cattle herd. Concentrations in the milk of lactating cows are also calculated, but are assumed age-dependent as in RAGTIME. Radionuclide concentrations in beef and milk are described in RAGBEEF by a system of ordinary linear differential equations in which the transfer rate of radioactivity between compartments is proportional to the inventory of radioactivity in the source compartment. This system is solved by use of the GEAR package for solution of systems of ordinary differential equations. The accuracy of this solution is monitored at various check points by comparison with explicit solutions of Bateman-type equations. This report describes the age- and season-dependent considerations making up the RAGBEEF model, as well as presenting the equations which describe the model and a documentation of the associated computer code. Listings of the RAGBEEF and updated RAGTIME codes are provided in appendices, as are the results of a sample run of RAGBEEF and a description of recent modifications to RAGTIME.
International Nuclear Information System (INIS)
Pleasant, J.C.; McDowell-Boyer, L.M; Killough, G.G.
1982-06-01
RAGBEEF is a FORTRAN IV program that calculates radionuclide concentrations in beef as a result of ingestion of contaminated feeds, pasture, and pasture soil by beef cattle. The model implemented by RAGBEEF is dynamic in nature, allowing the user to consider age- and season-dependent aspects of beef cattle management in estimating concentrations in beef. It serves as an auxiliary code to RAGTIME, previously documented by the authors, which calculates radionuclide concentrations in agricultural crops in a dynamic manner, but evaluates concentrations in beef for steady-state conditions only. The time-dependent concentrations in feeds, pasture, and pasture soil generated by RAGTIME are used as input to the RAGBEEF code. RAGBEEF, as presently implemented, calculates radionuclide concentrations in the muscle of age-based cohorts in a beef cattle herd. Concentrations in the milk of lactating cows are also calculated, but are assumed age-dependent as in RAGTIME. Radionuclide concentrations in beef and milk are described in RAGBEEF by a system of ordinary linear differential equations in which the transfer rate of radioactivity between compartments is proportional to the inventory of radioactivity in the source compartment. This system is solved by use of the GEAR package for solution of systems of ordinary differential equations. The accuracy of this solution is monitored at various check points by comparison with explicit solutions of Bateman-type equations. This report describes the age- and season-dependent considerations making up the RAGBEEF model, as well as presenting the equations which describe the model and a documentation of the associated computer code. Listings of the RAGBEEF and updated RAGTIME codes are provided in appendices, as are the results of a sample run of RAGBEEF and a description of recent modifications to RAGTIME
Multiscale Modeling of Astrophysical Jets
Directory of Open Access Journals (Sweden)
James H. Beall
2014-12-01
Full Text Available We are developing the capability for a multi-scale code to model the energy deposition rate and momentum transfer rate of an astrophysical jet which generates strong plasma turbulence in its interaction with the ambient medium through which it propagates. We start with a highly parallelized version of the VH-1 Hydrodynamics Code (Coella and Wood 1984, and Saxton et al., 2005. We are also considering the PLUTO code (Mignone et al. 2007 to model the jet in the magnetohydrodynamic (MHD and relativistic, magnetohydrodynamic (RMHD regimes. Particle-in-Cell approaches are also being used to benchmark a wave-population models of the two-stream instability and associated plasma processes in order to determine energy deposition and momentum transfer rates for these modes of jet-ambient medium interactions. We show some elements of the modeling of these jets in this paper, including energy loss and heating via plasma processes, and large scale hydrodynamic and relativistic hydrodynamic simulations. A preliminary simulation of a jet from the galactic center region is used to lend credence to the jet as the source of the so-called the Fermi Bubble (see, e.g., Su, M. & Finkbeiner, D. P., 2012*It is with great sorrow that we acknowledge the loss of our colleague and friend of more than thirty years, Dr. John Ural Guillory, to his battle with cancer.
Energy Technology Data Exchange (ETDEWEB)
Kanagawa, Y.; Murakami, S.; Mizobe, T. [Nagoya University, Nagoya (Japan). Faculty of Engineering; Fujii, T. [Daihatsu Motor Co. Ltd., Osaka (Japan)
1997-07-15
A constitutive model for describing the inelastic deformation of unidirectional and symmetric angle-ply CFRP (Carbon Fiber Reinforced Plastics) laminates is developed. The kinematic hardening creep flow law of Malinin and Khadjinsky and the evolution equation of Armstrong and Frederick are extended to describe the creep deformation of anisotropic materials. In order to express anisotropic hardening, back stress taking account of anisotropic inelastic strain sensitivity is incorporated into the creep constitutive equation. Then, the resulting model is applied to analyze the time-dependent inelastic deformation of symmetric angle-ply laminates. Comparison between the prediction and the experimental observation shows that the present model can describe well the time-dependent inelastic behavior under different loadings. 12 refs., 10 figs.
A time-dependent Green's function-based model for stream ...
African Journals Online (AJOL)
DRINIE
2003-07-03
Jul 3, 2003 ... Because the ratio of the depth to lateral dimensions of most aquifers is extremely small, this assumption is ... problem in a novel way that accommodates medium heterogeneity, varying bedrock profile, and point .... has been developed on the basis of Eq. (11), incorporating the time- dependent fundamental ...
3D time-dependent flow computations using a molecular stress function model with constraint release
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz
2002-01-01
The numerical simulation of time dependent viscoelastic flow (in three dimensions) is of interest in connection with a variety of polymer processing operations. The application of the numerical simulation techniques is in the analysis and design of polymer processing problems. This is operations,...
Numerical modelling of softwood time-dependent behaviour based on microstructure
DEFF Research Database (Denmark)
Engelund, Emil Tang
2010-01-01
The time-dependent mechanical behaviour of softwood such as creep or relaxation can be predicted, from knowledge of the microstructural arrangement of the cell wall, by applying deformation kinetics. This has been done several times before; however, often without considering the constraints defined...
3D time dependent thermo-fluid dynamic model of ground deformation at Campi Flegrei caldera
Castaldo, R.; Tizzani, P.; Manconi, A.; Manzo, M.; Pepe, S.; Pepe, A.; Lanari, R.
2012-04-01
In active volcanic areas deformation signals are generally characterized by non-linear spatial and temporal variations [Tizzani P. et al., 2007]. This behaviour has been revealed in the last two decades by the so-called advanced DInSAR processing algorithms, developed to analyze surface deformation phenomena [Berardino P. et al., 2002; Ferretti C. et al., 2001]. Notwithstanding, most of the inverse modelling attempts to characterize the evolution of the volcanic sources are based on the assumption that the Earth's crust behaves as a homogeneous linear elastic material. However, the behaviour of the upper lithosphere in thermally anomalous regions (as active volcanoes are) might be well described as a non-Newtonian fluid, where some of the material proprieties of the rocks (i.e., apparent viscosities) can change over time [Pinkerton H. et al., 1995]. In this context, we considered the thermal proprieties and mechanical heterogeneities of the upper crust in order to develop a new 3D time dependent thermo-fluid dynamic model of Campi Flegrei (CF) caldera, Southern Italy. More specifically, according to Tizzani P. et al. (2010), we integrated in a FEM environment geophysical information (gravimetric, seismic, and borehole data) available for the considered area and performed two FEM optimization procedures to constrain the 3D distribution of unknown physical parameters (temperature and viscosity distributions) that might help explaining the data observed at surface (geothermal wells and DInSAR measurements). First, we searched for the heat production, the volume source distribution and surface emissivity parameters providing the best-fit of the geothermal profiles data measured at six boreholes [Agip ESGE, 1986], by solving the Fourier heat equation over time (about 40 kys). The 3D thermal field resulting from this optimization was used to calculate the 3D brittle-ductile transition. This analysis revealed the presence of a ductile region, located beneath the centre of
Directory of Open Access Journals (Sweden)
Keiji Sawada
2016-12-01
Full Text Available A novel rovibrationally resolved collisional-radiative model of molecular hydrogen that includes 4,133 rovibrational levels for electronic states whose united atom principal quantum number is below six is developed. The rovibrational X 1 Σ g + population distribution in a SlimCS fusion demo detached divertor plasma is investigated by solving the model time dependently with an initial 300 K Boltzmann distribution. The effective reaction rate coefficients of molecular assisted recombination and of other processes in which atomic hydrogen is produced are calculated using the obtained time-dependent population distribution.
Avendaño-Valencia, Luis David; Fassois, Spilios D.
2017-12-01
The problem of vibration-based damage diagnosis in structures characterized by time-dependent dynamics under significant environmental and/or operational uncertainty is considered. A stochastic framework consisting of a Gaussian Mixture Random Coefficient model of the uncertain time-dependent dynamics under each structural health state, proper estimation methods, and Bayesian or minimum distance type decision making, is postulated. The Random Coefficient (RC) time-dependent stochastic model with coefficients following a multivariate Gaussian Mixture Model (GMM) allows for significant flexibility in uncertainty representation. Certain of the model parameters are estimated via a simple procedure which is founded on the related Multiple Model (MM) concept, while the GMM weights are explicitly estimated for optimizing damage diagnostic performance. The postulated framework is demonstrated via damage detection in a simple simulated model of a quarter-car active suspension with time-dependent dynamics and considerable uncertainty on the payload. Comparisons with a simpler Gaussian RC model based method are also presented, with the postulated framework shown to be capable of offering considerable improvement in diagnostic performance.
A COKOSNUT code for the control of the time-dependent Kohn-Sham model
Sprengel, M.; Ciaramella, G.; Borzì, A.
2017-05-01
Optimal control of multi-electron systems is considered in the framework of the time-dependent density functional theory. For this purpose, the MATLAB package COKOSNUT is presented that aims at solving optimal quantum control problems governed by the Kohn-Sham equation. This package includes a robust globalized nonlinear conjugate gradient scheme and an efficient splitting procedure for the numerical integration of the nonlinear Kohn-Sham equations in two dimensions. Results of numerical experiments demonstrate the ability of the COKOSNUT code in computing accurate optimal controls.
Zhai, G.; Shirzaei, M.
2014-12-01
The Kilauea volcano, Hawaii Island, is one of the most active volcanoes worldwide. Its complex system including magma reservoirs and rift zones, provides a unique opportunity to investigate the dynamics of magma transport and supply. The relatively shallow magma reservoir beneath the caldera stores magma prior to eruption at the caldera or migration to the rift zones. Additionally, the temporally variable pressure in the magma reservoir causes changes in the stress field, driving dike propagation and occasional intrusions at the eastern rift zone. Thus constraining the time-dependent evolution of the magma reservoir plays an important role in understanding magma processes such as supply, storage, transport and eruption. The recent development of space-based monitoring technology, InSAR (Interferometric synthetic aperture radar), allows the detection of subtle deformation of the surface at high spatial resolution and accuracy. In order to understand the dynamics of the magma chamber at Kilauea summit area and the associated stress field, we explored SAR data sets acquired in two overlapping tracks of Envisat SAR data during period 2003-2010. The combined InSAR time series includes 100 samples measuring summit deformation at unprecedented spatiotemporal resolutions. To investigate the source of the summit deformation field, we propose a novel time-dependent inverse modelling approach to constrain the dynamics of the reservoir volume change within the summit magma reservoir in three dimensions. In conjunction with seismic and gas data sets, the obtained time-dependent model could resolve the temporally variable relation between shallow and deep reservoirs, as well as their connection to the rift zone via stress changes. The data and model improve the understanding of the Kilauea plumbing system, physics of eruptions, mechanics of rift intrusions, and enhance eruption forecast models.
Smirnova, Alexandra; deCamp, Linda; Chowell, Gerardo
2017-05-02
Deterministic and stochastic methods relying on early case incidence data for forecasting epidemic outbreaks have received increasing attention during the last few years. In mathematical terms, epidemic forecasting is an ill-posed problem due to instability of parameter identification and limited available data. While previous studies have largely estimated the time-dependent transmission rate by assuming specific functional forms (e.g., exponential decay) that depend on a few parameters, here we introduce a novel approach for the reconstruction of nonparametric time-dependent transmission rates by projecting onto a finite subspace spanned by Legendre polynomials. This approach enables us to effectively forecast future incidence cases, the clear advantage over recovering the transmission rate at finitely many grid points within the interval where the data are currently available. In our approach, we compare three regularization algorithms: variational (Tikhonov's) regularization, truncated singular value decomposition (TSVD), and modified TSVD in order to determine the stabilizing strategy that is most effective in terms of reliability of forecasting from limited data. We illustrate our methodology using simulated data as well as case incidence data for various epidemics including the 1918 influenza pandemic in San Francisco and the 2014-2015 Ebola epidemic in West Africa.
Performance Analysis of High-Order Numerical Methods for Time-Dependent Acoustic Field Modeling
Moy, Pedro Henrique Rocha
2012-07-01
The discretization of time-dependent wave propagation is plagued with dispersion in which the wavefield is perceived to travel with an erroneous velocity. To remediate the problem, simulations are run on dense and computationally expensive grids yielding plausible approximate solutions. This work introduces an error analysis tool which can be used to obtain optimal simulation parameters that account for mesh size, orders of spatial and temporal discretizations, angles of propagation, temporal stability conditions (usually referred to as CFL conditions), and time of propagation. The classical criteria of 10-15 nodes per wavelength for second-order finite differences, and 4-5 nodes per wavelength for fourth-order spectral elements are shown to be unrealistic and overly-optimistic simulation parameters for different propagation times. This work analyzes finite differences, spectral elements, optimally-blended spectral elements, and isogeometric analysis.
Browning, G. L.; Tzur, I.; Roble, R. G.
1987-01-01
A time-dependent model is introduced that can be used to simulate the interaction of a thunderstorm with its global electrical environment. The model solves the continuity equation of the Maxwell current, which is assumed to be composed of the conduction, displacement, and source currents. Boundary conditions which can be used in conjunction with the continuity equation to form a well-posed initial-boundary value problem are determined. Properties of various components of solutions of the initial-boundary value problem are analytically determined. The results indicate that the problem has two time scales, one determined by the background electrical conductivity and the other by the time variation of the source function. A numerical method for obtaining quantitative results is introduced, and its properties are studied. Some simulation results on the evolution of the displacement and conduction currents during the electrification of a storm are presented.
Directory of Open Access Journals (Sweden)
Rakesh Prakash Tripathi
2014-05-01
Full Text Available In paper (2004 Chang studied an inventory model under a situation in which the supplier provides the purchaser with a permissible delay of payments if the purchaser orders a large quantity. Tripathi (2011 also studied an inventory model with time dependent demand rate under which the supplier provides the purchaser with a permissible delay in payments. This paper is motivated by Chang (2004 and Tripathi (2011 paper extending their model for exponential time dependent demand rate. This study develops an inventory model under which the vendor provides the purchaser with a credit period; if the purchaser orders large quantity. In this chapter, demand rate is taken as exponential time dependent. Shortages are not allowed and effect of the inflation rate has been discussed. We establish an inventory model for deteriorating items if the order quantity is greater than or equal to a predetermined quantity. We then obtain optimal solution for finding optimal order quantity, optimal cycle time and optimal total relevant cost. Numerical examples are given for all different cases. Sensitivity of the variation of different parameters on the optimal solution is also discussed. Mathematica 7 software is used for finding numerical examples.
A Time-dependent Heliospheric Model Driven by Empirical Boundary Conditions
Kim, T. K.; Arge, C. N.; Pogorelov, N. V.
2017-12-01
Consisting of charged particles originating from the Sun, the solar wind carries the Sun's energy and magnetic field outward through interplanetary space. The solar wind is the predominant source of space weather events, and modeling the solar wind propagation to Earth is a critical component of space weather research. Solar wind models are typically separated into coronal and heliospheric parts to account for the different physical processes and scales characterizing each region. Coronal models are often coupled with heliospheric models to propagate the solar wind out to Earth's orbit and beyond. The Wang-Sheeley-Arge (WSA) model is a semi-empirical coronal model consisting of a potential field source surface model and a current sheet model that takes synoptic magnetograms as input to estimate the magnetic field and solar wind speed at any distance above the coronal region. The current version of the WSA model takes the Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model as input to provide improved time-varying solutions for the ambient solar wind structure. When heliospheric MHD models are coupled with the WSA model, density and temperature at the inner boundary are treated as free parameters that are tuned to optimal values. For example, the WSA-ENLIL model prescribes density and temperature assuming momentum flux and thermal pressure balance across the inner boundary of the ENLIL heliospheric MHD model. We consider an alternative approach of prescribing density and temperature using empirical correlations derived from Ulysses and OMNI data. We use our own modeling software (Multi-scale Fluid-kinetic Simulation Suite) to drive a heliospheric MHD model with ADAPT-WSA input. The modeling results using the two different approaches of density and temperature prescription suggest that the use of empirical correlations may be a more straightforward, consistent method.
Effect of colored noise on the critical dynamics of the Time-Dependent Landau-Ginzburg Model A
International Nuclear Information System (INIS)
Korutcheva, E.; Rubia, J. de la
1999-08-01
By using the dynamical renormalization-group method, we show that the introduction of an additive colored noise with weak long-range correlations in the Time-Dependent Landau-Ginzburg Model A, does not give perturbative corrections for the dynamical critical exponent at least up to order O(ε 2 ). This result differs for a system with random quenched impurities, where a similar type of impurity correlation leads to corrections even of order O(ε). (author)
A marginal structural model for recurrent events in the presence of time-dependent confounding
DEFF Research Database (Denmark)
Jensen, Aksel K. G.; Ravn, Henrik; Sørup, Signe
2016-01-01
Using a Danish register-based study on childhood vaccination and hospitalisation as motivation, a marginal structural model for recurrent events is studied. The model addresses a number of challenges which may be seen more generally in large register-based cohort studies. One is to adjust for a t...
Energy Technology Data Exchange (ETDEWEB)
Zachary M. Prince; Jean C. Ragusa; Yaqi Wang
2016-02-01
Because of the recent interest in reactor transient modeling and the restart of the Transient Reactor (TREAT) Facility, there has been a need for more efficient, robust methods in computation frameworks. This is the impetus of implementing the Improved Quasi-Static method (IQS) in the RATTLESNAKE/MOOSE framework. IQS has implemented with CFEM diffusion by factorizing flux into time-dependent amplitude and spacial- and weakly time-dependent shape. The shape evaluation is very similar to a flux diffusion solve and is computed at large (macro) time steps. While the amplitude evaluation is a PRKE solve where the parameters are dependent on the shape and is computed at small (micro) time steps. IQS has been tested with a custom one-dimensional example and the TWIGL ramp benchmark. These examples prove it to be a viable and effective method for highly transient cases. More complex cases are intended to be applied to further test the method and its implementation.
A note on inventory model for ameliorating items with time dependent second order demand rate
Directory of Open Access Journals (Sweden)
Gobinda Chandra Panda
2013-03-01
Full Text Available Background: This paper is concerned with the development of ameliorating inventory models. The ameliorating inventory is the inventory of goods whose utility increases over the time by ameliorating activation. Material and Methods: This study is performed according to two areas: one is an economic order quantity (EOQ model for the items whose utility is ameliorating in accordance with Weibull distribution, and the other is a partial selling quantity (PSQ model developed for selling the surplus inventory accumulated by ameliorating activation with linear demand. The aim of this paper was to develop a mathematical model for inventory type concerned in the paper. Numerical examples were presented show the effect of ameliorating rate on inventory polices. Results and Conclusions: The inventory model for items with Weibull ameliorating is developed. For the case of small ameliorating rate (less than linear demand rate, EOQ model is developed, and for the case where ameliorating rate is greater than linear demand rate, PSQ model is developed. .
A Zero Dimensional Time-Dependent Model of High-Pressure Ablative Capillary Discharge (Preprint)
National Research Council Canada - National Science Library
Pekker, Leonid
2008-01-01
... plasma core and the ablative capillary walls. The model includes the thermodynamics of partially ionized plasmas and non-ideal effects taking place in the high density plasma and assumes local thermodynamic equilibrium (LTE...
International Nuclear Information System (INIS)
Paretzke, H.G.; Jacob, P.; Mueller, H.; Proehl, G.
1989-01-01
After major releases of radionuclides into the atmosphere fast reaction of authorities will be necessary to inform the public of potential consequences and to consider and optimize mitigating actions. These activities require availability of well designed computer models, adequate and fast measurements and prior training of responsible persons. The quantitative assessment models should be capable of taking into account of actual atmospheric dispersion conditions, actual deposition situation (dry, rain, snow, fog), seasonal status of the agriculture, food processing and distribution pathways, etc. In this paper the usefulness of such models will be discussed, their limitations, the relative importance of exposure pathways and a selection of important methods to decrease the activity in food products after an accident. Real-time reactor accident consequence models should be considered as a condition sine qua non for responsible use of nuclear power for electricity production
A martingale analysis of first passage times of time-dependent Wiener diffusion models.
Srivastava, Vaibhav; Feng, Samuel F; Cohen, Jonathan D; Leonard, Naomi Ehrich; Shenhav, Amitai
2017-04-01
Research in psychology and neuroscience has successfully modeled decision making as a process of noisy evidence accumulation to a decision bound. While there are several variants and implementations of this idea, the majority of these models make use of a noisy accumulation between two absorbing boundaries. A common assumption of these models is that decision parameters, e.g., the rate of accumulation (drift rate), remain fixed over the course of a decision, allowing the derivation of analytic formulas for the probabilities of hitting the upper or lower decision threshold, and the mean decision time. There is reason to believe, however, that many types of behavior would be better described by a model in which the parameters were allowed to vary over the course of the decision process. In this paper, we use martingale theory to derive formulas for the mean decision time, hitting probabilities, and first passage time (FPT) densities of a Wiener process with time-varying drift between two time-varying absorbing boundaries. This model was first studied by Ratcliff (1980) in the two-stage form, and here we consider the same model for an arbitrary number of stages (i.e. intervals of time during which parameters are constant). Our calculations enable direct computation of mean decision times and hitting probabilities for the associated multistage process. We also provide a review of how martingale theory may be used to analyze similar models employing Wiener processes by re-deriving some classical results. In concert with a variety of numerical tools already available, the current derivations should encourage mathematical analysis of more complex models of decision making with time-varying evidence.
Two-dimensional time dependent hurricane overwash and erosion modeling at Santa Rosa Island
McCall, R.T.; Van Theil de Vries, J. S. M.; Plant, N.G.; Van Dongeren, A. R.; Roelvink, J.A.; Thompson, D.M.; Reniers, A.J.H.M.
2010-01-01
A 2DH numerical, model which is capable of computing nearshore circulation and morphodynamics, including dune erosion, breaching and overwash, is used to simulate overwash caused by Hurricane Ivan (2004) on a barrier island. The model is forced using parametric wave and surge time series based on field data and large-scale numerical model results. The model predicted beach face and dune erosion reasonably well as well as the development of washover fans. Furthermore, the model demonstrated considerable quantitative skill (upwards of 66% of variance explained, maximum bias - 0.21 m) in hindcasting the post-storm shape and elevation of the subaerial barrier island when a sheet flow sediment transport limiter was applied. The prediction skill ranged between 0.66 and 0.77 in a series of sensitivity tests in which several hydraulic forcing parameters were varied. The sensitivity studies showed that the variations in the incident wave height and wave period affected the entire simulated island morphology while variations in the surge level gradient between the ocean and back barrier bay affected the amount of deposition on the back barrier and in the back barrier bay. The model sensitivity to the sheet flow sediment transport limiter, which served as a proxy for unknown factors controlling the resistance to erosion, was significantly greater than the sensitivity to the hydraulic forcing parameters. If no limiter was applied the simulated morphological response of the barrier island was an order of magnitude greater than the measured morphological response.
Cheng-Wu, Li; Hong-Lai, Xue; Cheng, Guan; Wen-biao, Liu
2018-04-01
Statistical analysis shows that in the coal matrix, the diffusion coefficient for methane is time-varying, and its integral satisfies the formula μt κ /(1 + β κ ). Therefore, a so-called dynamic diffusion coefficient model (DDC model) is developed. To verify the suitability and accuracy of the DDC model, a series of gas diffusion experiments were conducted using coal particles of different sizes. The results show that the experimental data can be accurately described by the DDC and bidisperse models, but the fit to the DDC model is slightly better. For all coal samples, as time increases, the effective diffusion coefficient first shows a sudden drop, followed by a gradual decrease before stabilizing at longer times. The effective diffusion coefficient has a negative relationship with the size of the coal particle. Finally, the relationship between the constants of the DDC model and the effective diffusion coefficient is discussed. The constant α (μ/R 2 ) denotes the effective coefficient at the initial time, and the constants κ and β control the attenuation characteristic of the effective diffusion coefficient.
Energy Technology Data Exchange (ETDEWEB)
Brics, Martins
2016-12-09
-called renormalized natural orbitals (RNOs), TDRNOT is benchmarked with the help of a numerically exactly solvable model helium atom in laser fields. In the special case of time-dependent two-electron systems the two-particle density matrix in terms of ONs and NOs is known exactly. Hence, in this case TDRNOT is exact, apart from the unavoidable truncation of the number of RNOs per particle taken into account in the simulation. It is shown that, unlike TDDFT, TDRNOT is able to describe doubly-excited states, Fano profiles in electron and absorption spectra, auto-ionization, Rabi oscillations, high harmonic generation, non-sequential ionization, and single-photon double ionization in excellent agreement with the corresponding TDSE results.
Time-Dependent Cryospheric Longwave Surface Emissivity Feedback in the Community Earth System Model
Kuo, Chaincy; Feldman, Daniel R.; Huang, Xianglei; Flanner, Mark; Yang, Ping; Chen, Xiuhong
2018-01-01
Frozen and unfrozen surfaces exhibit different longwave surface emissivities with different spectral characteristics, and outgoing longwave radiation and cooling rates are reduced for unfrozen scenes relative to frozen ones. Here physically realistic modeling of spectrally resolved surface emissivity throughout the coupled model components of the Community Earth System Model (CESM) is advanced, and implications for model high-latitude biases and feedbacks are evaluated. It is shown that despite a surface emissivity feedback amplitude that is, at most, a few percent of the surface albedo feedback amplitude, the inclusion of realistic, harmonized longwave, spectrally resolved emissivity information in CESM1.2.2 reduces wintertime Arctic surface temperature biases from -7.2 ± 0.9 K to -1.1 ± 1.2 K, relative to observations. The bias reduction is most pronounced in the Arctic Ocean, a region for which Coupled Model Intercomparison Project version 5 (CMIP5) models exhibit the largest mean wintertime cold bias, suggesting that persistent polar temperature biases can be lessened by including this physically based process across model components. The ice emissivity feedback of CESM1.2.2 is evaluated under a warming scenario with a kernel-based approach, and it is found that emissivity radiative kernels exhibit water vapor and cloud cover dependence, thereby varying spatially and decreasing in magnitude over the course of the scenario from secular changes in atmospheric thermodynamics and cloud patterns. Accounting for the temporally varying radiative responses can yield diagnosed feedbacks that differ in sign from those obtained from conventional climatological feedback analysis methods.
Magnetic Local Time dependency in modeling of the Earth radiation belts
Herrera, Damien; Maget, Vincent; Bourdarie, Sébastien; Rolland, Guy
2017-04-01
For many years, ONERA has been at the forefront of the modeling of the Earth radiation belts thanks to the Salammbô model, which accurately reproduces their dynamics over a time scale of the particles' drift period. This implies that we implicitly assume an homogeneous repartition of the trapped particles along a given drift shell. However, radiation belts are inhomogeneous in Magnetic Local Time (MLT). So, we need to take this new coordinate into account to model rigorously the dynamical structures, particularly induced during a geomagnetic storm. For this purpose, we are working on both the numerical resolution of the Fokker-Planck diffusion equation included in the model and on the MLT dependency of physic-based processes acting in the Earth radiation belts. The aim of this talk is first to present the 4D-equation used and the different steps we used to build Salammbô 4D model before focusing on physical processes taken into account in the Salammbô code, specially transport due to convection electric field. Firstly, we will briefly introduce the Salammbô 4D code developped by talking about its numerical scheme and physic-based processes modeled. Then, we will focus our attention on the impact of the outer boundary condition (localisation and spectrum) at lower L∗ shell by comparing modeling performed with geosynchronous data from LANL-GEO satellites. Finally, we will discuss the prime importance of the convection electric field to the radial and drift transport of low energy particles around the Earth.
Time-dependent greenhouse warming computations with a coupled ocean-atmosphere model
Cubasch, Ulrich; Hasselmann, Klaus; Höck, Heinke; Maier-Reimer, Ernst; Mikolajewicz, Uwe; Santer, Benjamin D.; Sausen, Robert
1992-12-01
Climate changes during the next 100 years caused by anthropogenic emissions of greenhouse gases have been simulated for the Intergovernmental Panel on Climate Change Scenarios A (“business as usual”) and D (“accelerated policies”) using a coupled ocean-atmosphere general circulation model. In the global average, the near-surface temperature rises by 2.6 K in Scenario A and by 0.6 K in Scenario D. The global patterns of climate change for both IPCC scenarios and for a third step-function 2 x CO2 experiment were found to be very similar. The warming delay over the oceans is larger than found in simulations with atmospheric general circulation models coupled to mixed-layer models, leading to a more pronounced land-sea contrast and a weaker warming (and in some regions even an initial cooling) in the Southern Ocean. During the first forty years, the global warming and sea level rise due to the thermal expansion of the ocean are significantly slower than estimated previously from box-diffusion-upwelling models, but the major part of this delay can be attributed to the previous warming history prior to the start of present coupled ocean-atmosphere model integration (cold start).
A full 3D time-dependent electromagnetic model for Roebel cables
DEFF Research Database (Denmark)
Rodriguez Zermeno, Victor Manuel; Grilli, Francesco; Sirois, Frederic
2013-01-01
High temperature superconductor Roebel cables are well known for their large current capacity and low AC losses. For this reason they have become attractive candidates for many power applications. The continuous transposition of their strands reduces the coupling losses while ensuring better...... current sharing among them. However, since Roebel cables have a true 3D structure and are made of several high aspect ratio coated conductors, modelling and simulation of their electromagnetic properties is very challenging. Therefore, a realistic model taking into account the actual layout of the cable...... layout, this work represents a further step into achieving 3D simulation of superconducting devices for real applications....
Time-dependent excitation and ionization modelling of absorption-line variability due to GRB080310
DEFF Research Database (Denmark)
Vreeswijk, P.M.; De Cia, A.; Jakobsson, P.
2013-01-01
We model the time-variable absorption of Feii, Feiii, Siii, Cii and Crii detected in Ultraviolet and Visual Echelle Spectrograph (UVES) spectra of gamma-ray burst (GRB) 080310, with the afterglow radiation exciting and ionizing the interstellar medium in the host galaxy at a redshift of z = 2.427...
Energy Technology Data Exchange (ETDEWEB)
Novello, M [Centro Brasileiro de Pesquisas Fisicas, Rua Dr Xavier Sigaud 150, Urca 22290-180 Rio de Janeiro, RJ (Brazil); Barcelos-Neto, J [Instituto de Fisica, Universidade Federal do Rio de Janeiro, RJ (Brazil); Salim, J M [Centro Brasileiro de Pesquisas Fisicas, Rua Dr Xavier Sigaud 150, Urca 22290-180 Rio de Janeiro, RJ (Brazil)
2002-06-07
We use a model where the cosmological term can be related to the chiral gauge anomaly of a possible quantum scenario of the initial evolution of the universe. We show that this term is compatible with the Friedmann behaviour of the present universe.
GEMFLOW: A time dependent model to assess responses to natural gas supply crises
International Nuclear Information System (INIS)
Szikszai, A.; Monforti, F.
2011-01-01
The January 2009 gas dispute, followed by the biggest gas supply crisis ever, called for significant changes at the community level. In line with other measures (e.g. a new regulation to ensure security of gas supply), a new tool is needed that will help decision-makers react properly in such a situation. Based on Monte-Carlo modeling principles, this new tool is being developed to take the first step towards a comprehensive model. This model could be of great support to common European efforts in order to assess the possible outcomes of a supply disruption beforehand and minimize losses during an emergency by finding the optimal distribution of flows. Naturally, the described model cannot serve at present as hydraulic software that is currently used by the national system operators, but it is able to draw significant conclusions from the European gas system's capabilities. - Highlights: → Use of storages at maximum in case of supply shortfall is not necessarily the best solution. → The ratio of withdrawal capacity to storage space is crucial in the withdrawal utilization. → Combination of reverse flows and storages affects the success of disruption management. → Definition of lowest consumption level is inevitable for appropriate disruption management.
Using time-dependent models to investigate body condition and growth rate of the giant gartersnake
Coates, P.S.; Wylie, G.D.; Halstead, B.J.; Casazza, Michael L.
2009-01-01
Identifying links between phenotypic attributes and fitness is a primary goal of reproductive ecology. Differences in within-year patterns of body condition between sexes of gartersnakes in relation to reproduction and growth are not fully understood. We conducted an 11-year field study of body condition and growth rate of the giant gartersnake Thamnophis gigas across 13 study areas in the Central Valley of California, USA. We developed a priori mixed effects models of body condition index (BCI), which included covariates of time, sex and snout-vent length and reported the best-approximating models using an information theoretic approach. Also, we developed models of growth rate index (GRI) using covariates of sex and periods based on reproductive behavior. The largest difference in BCI between sexes, as predicted by a non-linear (cubic) time model, occurred during the mating period when female body condition (0.014??0.001 se) was substantially greater than males (-0.027??0.002 se). Males likely allocated energy to search for mates, while females likely stored energy for embryonic development. We also provided evidence that males use more body energy reserves than females during hibernation, perhaps because of different body temperatures between sexes. We found GRI of male snakes was substantially lower during the mating period than during a non-mating period, which indicated that a trade-off existed between searching for mates and growth. These findings contribute to our understanding of snake ecology in a Mediterranean climate. ?? 2009 The Zoological Society of London.
Viscoplastic discontinuum model of time-dependent fracture and seismicity effects in brittle rock
CSIR Research Space (South Africa)
Napier, JAL
1997-10-01
Full Text Available and the length of fractures mobilized in a random mesh of cracks around the opening. The modelled closure between the excavation roof and floor, as a function of time, is also shown to be quantitatively similar to the observed field movements. A final example...
A Time-Dependent Λ and G Cosmological Model Consistent with Cosmological Constraints
Directory of Open Access Journals (Sweden)
L. Kantha
2016-01-01
Full Text Available The prevailing constant Λ-G cosmological model agrees with observational evidence including the observed red shift, Big Bang Nucleosynthesis (BBN, and the current rate of acceleration. It assumes that matter contributes 27% to the current density of the universe, with the rest (73% coming from dark energy represented by the Einstein cosmological parameter Λ in the governing Friedmann-Robertson-Walker equations, derived from Einstein’s equations of general relativity. However, the principal problem is the extremely small value of the cosmological parameter (~10−52 m2. Moreover, the dark energy density represented by Λ is presumed to have remained unchanged as the universe expanded by 26 orders of magnitude. Attempts to overcome this deficiency often invoke a variable Λ-G model. Cosmic constraints from action principles require that either both G and Λ remain time-invariant or both vary in time. Here, we propose a variable Λ-G cosmological model consistent with the latest red shift data, the current acceleration rate, and BBN, provided the split between matter and dark energy is 18% and 82%. Λ decreases (Λ~τ-2, where τ is the normalized cosmic time and G increases (G~τn with cosmic time. The model results depend only on the chosen value of Λ at present and in the far future and not directly on G.
A time-dependent Green's function-based model for stream ...
African Journals Online (AJOL)
DRINIE
2003-07-03
Jul 3, 2003 ... rainfall is low and erratic, and droughts are common. Modelling of flow when there is interaction between an unconfined aquifer and a stream has .... those quantities are evaluated at the centroid of the element. The fundamental solution of the auxiliary equation. 1 ∂G. ∇2G = = δ(r - ri; t - τ), given by. D ∂t.
Analysis of a microcrack model and constitutive equations for time-dependent dilatancy of rocks
Chen, Zuan
2003-11-01
Based on experimental observations and theoretical analyses, the author introduces an ideal microcrack model in which an array of cracks with the same shape and initial size is distributed evenly in rocks. The mechanism of creep dilatancy for rocks is analysed theoretically. Initiation, propagation and linkage of pre-existing microcracks during creep are well described. Also, the relationship between the velocity of microcrack growth and the duration of the creep process is derived numerically. The relationship agrees well with the character of typical experimental creep curves, and includes three stages of creep. Then the damage constitutive equations and damage evolution equations, which describe the dilatant behaviour of rocks, are presented. Because the dilatant estimated value is taken as the damage variable, the relationship between the microscopic model and the macroscopic constitutive equations is established. In this way the mechanical behaviour of rocks can be predicted.
International Nuclear Information System (INIS)
Hernandez-Tenorio, C.; Belyaeva, T.L.; Serkin, V.N.
2007-01-01
The dynamics of nonlinear solitary waves is studied in the framework of the nonlinear Schroedinger equation model with time-dependent harmonic oscillator potential. The model allows one to analyse on general basis a variety of nonlinear phenomena appearing both in Bose-Einstein condensate, condensed matter physics, nonlinear optics, and biophysics. The soliton parametric resonance is investigated by using two complementary methods: the adiabatic perturbation theory and direct numerical experiments. Conditions for reversible and irreversible denaturation of soliton bound states are also considered
Vieira, R. G.; Carciofi, A. C.; Bjorkman, J. E.; Rivinius, Th.; Baade, D.; Rímulo, L. R.
2017-01-01
We apply the viscous decretion disc (VDD) model to interpret the infrared disc continuum emission of 80 Be stars observed in different epochs. In this way, we determined 169 specific disc structures, namely their density scale, ρ0, and exponent, n. We found that the n values range mainly between 1.5 and 3.5, and ρ0 varies between 10-12 and 10-10 g cm-3, with a peak close to the lower value. Our large sample also allowed us to firmly establish that the discs around early-type stars are denser than in late-type stars. Additionally, we estimated the disc mass decretion rates and found that they range between 10-12 and 10-9 M⊙ yr-1. These values are compatible with recent stellar evolution models of fast-rotating stars. One of the main findings of this work is a correlation between the ρ0 and n values. In order to find out whether these relations can be traced back to the evolution of discs or have some other origin, we used the VDD model to calculate temporal sequences under different assumptions for the time profile of the disc mass injection. The results support the hypothesis that the observed distribution of disc properties is due to a common evolutionary path. In particular, our results suggest that the time-scale for disc growth, during which the disc is being actively fed by mass injection episodes, is shorter than the time-scale for disc dissipation, when the disc is no longer fed by the star and dissipates as a result of the viscous diffusion of the disc material.
Spike solutions in Gierer#x2013;Meinhardt model with a time dependent anomaly exponent
Nec, Yana
2018-01-01
Experimental evidence of complex dispersion regimes in natural systems, where the growth of the mean square displacement in time cannot be characterised by a single power, has been accruing for the past two decades. In such processes the exponent γ(t) in ⟨r2⟩ ∼ tγ(t) at times might be approximated by a piecewise constant function, or it can be a continuous function. Variable order differential equations are an emerging mathematical tool with a strong potential to model these systems. However, variable order differential equations are not tractable by the classic differential equations theory. This contribution illustrates how a classic method can be adapted to gain insight into a system of this type. Herein a variable order Gierer-Meinhardt model is posed, a generic reaction- diffusion system of a chemical origin. With a fixed order this system possesses a solution in the form of a constellation of arbitrarily situated localised pulses, when the components' diffusivity ratio is asymptotically small. The pattern was shown to exist subject to multiple step-like transitions between normal diffusion and sub-diffusion, as well as between distinct sub-diffusive regimes. The analytical approximation obtained permits qualitative analysis of the impact thereof. Numerical solution for typical cross-over scenarios revealed such features as earlier equilibration and non-monotonic excursions before attainment of equilibrium. The method is general and allows for an approximate numerical solution with any reasonably behaved γ(t).
Rutigliano, M.; Zazza, C.; Sanna, N.; Pieretti, A.; Mancini, G.; Barone, V.; Cacciatore, M.
2009-10-01
The adsorption dynamics of atomic oxygen on a model β-cristobalite silica surface has been studied by combining ab initio electronic structure calculations with a molecular dynamics semiclassical approach. We have evaluated the interaction potential of atomic and molecular oxygen interacting with an active Si site of a model β-cristobalite surface by performing DFT electronic structure calculations. As expected, O is strongly chemisorbed, Eb = 5.57 eV, whereas molecular oxygen can be weakly adsorbed with a high-energy barrier to the adsorption state of ˜2 eV. The binding energies calculated for silica clusters of different sizes have revealed the local nature of the O,O2-silica interaction. Semiclassical collision dynamic calculations show that O is mainly adsorbed in single-bounce collisions, with a smaller probability for adsorption via a multicollision mechanism. The probability for adsorption/desorption (reflected) collisions at the three impact energies is small but not negligible at the higher energy considered in the trajectory calculations, about Pr = 0.2 at Ekin = 0.8 eV. The calculations give evidence of a complex multiphonon excitation-deexcitation mechanism underlying the dynamics of stable adsorption and inelastic reflection collisions.
Time-dependent modelling of environmental change: the effect of quaternary glaciations
International Nuclear Information System (INIS)
Boulton, G.S.
1990-01-01
The dominant amplitudes and frequencies of global climatic change over the last three million years can now be reconstructed with great precision. Extrapolations from this can then be used to simulate the future course of climatic change. Correlation between long oceanic records of global change and relatively brief, terrestrial geological records of regional and local changes, can be used to reconstruct long regional and local records. The precise evolution of many environmental processes driven by these local changes is inherently indeterminate, but by using the evidence from sediments produced by these changes as constraints on process models, it is possible to correlate regional climatic changes with regional process responses. Thus simulated climatic futures can be used to assess the character and magnitudes of processes which are important for waste disposal sites. 21 refs., 8 figs
DEFF Research Database (Denmark)
Christensen, E; Altman, D G; Neuberger, J
1993-01-01
immunoglobulin (Ig)M also indicated a poor prognosis. The survival predicted by the models agreed well with the survival observed in the independent PBC patients. The time-dependent models predicted better than our previously published time-fixed model. CONCLUSIONS: Using the time-dependent Cox models, one can...
Chaturvedi, K.; Willenborg, B.; Sindram, M.; Kolbe, T. H.
2017-10-01
Semantic 3D city models play an important role in solving complex real-world problems and are being adopted by many cities around the world. A wide range of application and simulation scenarios directly benefit from the adoption of international standards such as CityGML. However, most of the simulations involve properties, whose values vary with respect to time, and the current generation semantic 3D city models do not support time-dependent properties explicitly. In this paper, the details of solar potential simulations are provided operating on the CityGML standard, assessing and estimating solar energy production for the roofs and facades of the 3D building objects in different ways. Furthermore, the paper demonstrates how the time-dependent simulation results are better-represented inline within 3D city models utilizing the so-called Dynamizer concept. This concept not only allows representing the simulation results in standardized ways, but also delivers a method to enhance static city models by such dynamic property values making the city models truly dynamic. The dynamizer concept has been implemented as an Application Domain Extension of the CityGML standard within the OGC Future City Pilot Phase 1. The results are given in this paper.
Kinetic Ising model in a time-dependent oscillating external magnetic field: effective-field theory
International Nuclear Information System (INIS)
Deviren, Bayram; Canko, Osman; Keskin, Mustafa
2010-01-01
Recently, Shi et al. [2008 Phys. Lett. A 372 5922] have studied the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field and presented the dynamic phase diagrams by using an effective-field theory (EFT) and a mean-field theory (MFT). The MFT results are in conflict with those of the earlier work of Tomé and de Oliveira, [1990 Phys. Rev. A 41 4251]. We calculate the dynamic phase diagrams and find that our results are similar to those of the earlier work of Tomé and de Oliveira; hence the dynamic phase diagrams calculated by Shi et al. are incomplete within both theories, except the low values of frequencies for the MFT calculation. We also investigate the influence of external field frequency (ω) and static external field amplitude (h 0 ) for both MFT and EFT calculations. We find that the behaviour of the system strongly depends on the values of ω and h 0 . (general)
Time-dependence of the radiocaesium contamination of roe deer: measurement and modelling
Energy Technology Data Exchange (ETDEWEB)
Zibold, G. E-mail: zibold@fbp.fh-weingarten.de; Drissner, J.; Kaminski, S.; Klemt, E.; Miller, R
2001-07-01
In spruce forest and peat bog, the migration of {sup 137}Cs from soil to plants, fungi, roe deer and consumers has been surveyed. In spruce forest the {sup 137}Cs activity concentration in roe deer decreases slowly with time and has superimposed periodic maxima in autumn which are correlated with the mushroom season. The decrease with time can be described by an effective half-life of 3.5 yr caused by a fraction of the {sup 137}Cs in the soil becoming unavailable for green grazing plants with time. The additional transfer of {sup 137}Cs into roe deer meat during the mushroom season depends on precipitation in July, August and September which also determines the yield of fungi in autumn. Our model confirms the assumption that fungi also have access to a fraction of the {sup 137}Cs in the soil which is unavailable for green plants. On peat bog the {sup 137}Cs activity concentration in roe deer is higher than in spruce forest and its effective half-life is about 17 yr, due to reversible binding of {sup 137}Cs to organic matter in the peat bog.
Time-dependence of the radiocaesium contamination of roe deer: measurement and modelling
International Nuclear Information System (INIS)
Zibold, G.; Drissner, J.; Kaminski, S.; Klemt, E.; Miller, R.
2001-01-01
In spruce forest and peat bog, the migration of 137 Cs from soil to plants, fungi, roe deer and consumers has been surveyed. In spruce forest the 137 Cs activity concentration in roe deer decreases slowly with time and has superimposed periodic maxima in autumn which are correlated with the mushroom season. The decrease with time can be described by an effective half-life of 3.5 yr caused by a fraction of the 137 Cs in the soil becoming unavailable for green grazing plants with time. The additional transfer of 137 Cs into roe deer meat during the mushroom season depends on precipitation in July, August and September which also determines the yield of fungi in autumn. Our model confirms the assumption that fungi also have access to a fraction of the 137 Cs in the soil which is unavailable for green plants. On peat bog the 137 Cs activity concentration in roe deer is higher than in spruce forest and its effective half-life is about 17 yr, due to reversible binding of 137 Cs to organic matter in the peat bog
A Quantitative, Time-Dependent Model of Oxygen Isotopes in the Solar Nebula: Step one
Nuth, J. A.; Paquette, J. A.; Farquhar, A.; Johnson, N. M.
2011-01-01
The remarkable discovery that oxygen isotopes in primitive meteorites were fractionated along a line of slope I rather than along the typical slope 0,52 terrestrial fractionation line occurred almost 40 years ago, However, a satisfactory, quantitative explanation for this observation has yet to be found, though many different explanations have been proposed, The first of these explanations proposed that the observed line represented the final product produced by mixing molecular cloud dust with a nucleosynthetic component, rich in O-16, possibly resulting from a nearby supernova explosion, Donald Clayton suggested that Galactic Chemical Evolution would gradually change the oxygen isotopic composition of the interstellar grain population by steadily producing O-16 in supernovae, then producing the heavier isotopes as secondary products in lower mass stars, Thiemens and collaborators proposed a chemical mechanism that relied on the availability of additional active rotational and vibrational states in otherwise-symmetric molecules, such as CO2, O3 or SiO2, containing two different oxygen isotopes and a second, photochemical process that suggested that differential photochemical dissociation processes could fractionate oxygen , This second line of research has been pursued by several groups, though none of the current models is quantitative,
International Nuclear Information System (INIS)
King-Clayton, L.; Smith, Paul
1996-10-01
The report details the methodology and preliminary results from the modelling of radionuclide transport from a hypothetical repository based at the Aespoe site in Sweden. The work complements and utilizes the results from regional-scale, variable density flow modelling by Provost, in which the groundwater flow field is time dependent, reflecting the impact of climate evolution over the next 130,000 years. The climate evolution include development of permafrost conditions and ice sheet advance and retreat. The results indicate that temporal changes in flow conditions owing to future climate changes have a significant effect on the transport of radionuclides from a repository. In all cases modelled with time-dependent boundary conditions, the greatest radionuclide fluxes occur towards the end of the main glacial periods, and correspond to periods of high groundwater discharge at the margin of the modelled ice sheets. Fluxes to the biosphere may, for limited periods (2000 years or less), be three times higher than those from the near field. The study provides a quantitative way of illustrating the possible effects of future glaciations on radionuclide transport from the repository. Such effects are likely to be significant in any potential siting area predicted to be affected by future periods of ice cover. 8 refs, 22 tabs, 119 figs
Valdés, Julio J; Bonham-Carter, Graeme
2006-03-01
A computational intelligence approach is used to explore the problem of detecting internal state changes in time dependent processes; described by heterogeneous, multivariate time series with imprecise data and missing values. Such processes are approximated by collections of time dependent non-linear autoregressive models represented by a special kind of neuro-fuzzy neural network. Grid and high throughput computing model mining procedures based on neuro-fuzzy networks and genetic algorithms, generate: (i) collections of models composed of sets of time lag terms from the time series, and (ii) prediction functions represented by neuro-fuzzy networks. The composition of the models and their prediction capabilities, allows the identification of changes in the internal structure of the process. These changes are associated with the alternation of steady and transient states, zones with abnormal behavior, instability, and other situations. This approach is general, and its sensitivity for detecting subtle changes of state is revealed by simulation experiments. Its potential in the study of complex processes in earth sciences and astrophysics is illustrated with applications using paleoclimate and solar data.
Antunes, Gabriela; da Silva, Samuel F Faria; de Souza, Fabio M Simoes
2017-11-28
Mirror neurons fire action potentials both when the agent performs a certain behavior and watches someone performing a similar action. Here, we present an original mirror neuron model based on the spike-timing-dependent plasticity (STDP) between two morpho-electrical models of neocortical pyramidal neurons. Both neurons fired spontaneously with basal firing rate that follows a Poisson distribution, and the STDP between them was modeled by the triplet algorithm. Our simulation results demonstrated that STDP is sufficient for the rise of mirror neuron function between the pairs of neocortical neurons. This is a proof of concept that pairs of neocortical neurons associating sensory inputs to motor outputs could operate like mirror neurons. In addition, we used the mirror neuron model to investigate whether channelopathies associated with autism spectrum disorder could impair the modeled mirror function. Our simulation results showed that impaired hyperpolarization-activated cationic currents (Ih) affected the mirror function between the pairs of neocortical neurons coupled by STDP.
An Operational Model for the Prediction of Jet Blast
2012-01-09
This paper presents an operational model for the prediction of jet blast. The model was : developed based upon three modules including a jet exhaust model, jet centerline decay : model and aircraft motion model. The final analysis was compared with d...
Moreno-Betancur, Margarita; Carlin, John B; Brilleman, Samuel L; Tanamas, Stephanie K; Peeters, Anna; Wolfe, Rory
2017-10-12
Modern epidemiological studies collect data on time-varying individual-specific characteristics, such as body mass index and blood pressure. Incorporation of such time-dependent covariates in time-to-event models is of great interest, but raises some challenges. Of specific concern are measurement error, and the non-synchronous updating of covariates across individuals, due for example to missing data. It is well known that in the presence of either of these issues the last observation carried forward (LOCF) approach traditionally used leads to bias. Joint models of longitudinal and time-to-event outcomes, developed recently, address these complexities by specifying a model for the joint distribution of all processes and are commonly fitted by maximum likelihood or Bayesian approaches. However, the adequate specification of the full joint distribution can be a challenging modeling task, especially with multiple longitudinal markers. In fact, most available software packages are unable to handle more than one marker and offer a restricted choice of survival models. We propose a two-stage approach, Multiple Imputation for Joint Modeling (MIJM), to incorporate multiple time-dependent continuous covariates in the semi-parametric Cox and additive hazard models. Assuming a primary focus on the time-to-event model, the MIJM approach handles the joint distribution of the markers using multiple imputation by chained equations, a computationally convenient procedure that is widely available in mainstream statistical software. We developed an R package "survtd" that allows MIJM and other approaches in this manuscript to be applied easily, with just one call to its main function. A simulation study showed that MIJM performs well across a wide range of scenarios in terms of bias and coverage probability, particularly compared with LOCF, simpler two-stage approaches, and a Bayesian joint model. The Framingham Heart Study is used to illustrate the approach. © The Author 2017
Lutsenko, N. A.; Fetsov, S. S.
2017-10-01
Mathematical model and numerical method are proposed for investigating the one-dimensional time-dependent gas flows through a packed bed of encapsulated Phase Change Material (PCM). The model is based on the assumption of interacting interpenetrating continua and includes equations of state, continuity, momentum conservation and energy for PCM and gas. The advantage of the method is that it does not require predicting the location of phase transition zone and can define it automatically as in a usual shock-capturing method. One of the applications of the developed numerical model is the simulation of novel Adiabatic Compressed Air Energy Storage system (A-CAES) with Thermal Energy Storage subsystem (TES) based on using the encapsulated PCM in packed bed. Preliminary test calculations give hope that the method can be effectively applied in the future for modelling the charge and discharge processes in such TES with PCM.
Directory of Open Access Journals (Sweden)
Niklas Hübel
2014-12-01
Full Text Available The classical Hodgkin-Huxley (HH model neglects the time-dependence of ion concentrations in spiking dynamics. The dynamics is therefore limited to a time scale of milliseconds, which is determined by the membrane capacitance multiplied by the resistance of the ion channels, and by the gating time constants. We study slow dynamics in an extended HH framework that includes time-dependent ion concentrations, pumps, and buffers. Fluxes across the neuronal membrane change intra- and extracellular ion concentrations, whereby the latter can also change through contact to reservoirs in the surroundings. Ion gain and loss of the system is identified as a bifurcation parameter whose essential importance was not realized in earlier studies. Our systematic study of the bifurcation structure and thus the phase space structure helps to understand activation and inhibition of a new excitability in ion homeostasis which emerges in such extended models. Also modulatory mechanisms that regulate the spiking rate can be explained by bifurcations. The dynamics on three distinct slow times scales is determined by the cell volume-to-surface-area ratio and the membrane permeability (seconds, the buffer time constants (tens of seconds, and the slower backward buffering (minutes to hours. The modulatory dynamics and the newly emerging excitable dynamics corresponds to pathological conditions observed in epileptiform burst activity, and spreading depression in migraine aura and stroke, respectively.
Hübel, Niklas; Dahlem, Markus A
2014-12-01
The classical Hodgkin-Huxley (HH) model neglects the time-dependence of ion concentrations in spiking dynamics. The dynamics is therefore limited to a time scale of milliseconds, which is determined by the membrane capacitance multiplied by the resistance of the ion channels, and by the gating time constants. We study slow dynamics in an extended HH framework that includes time-dependent ion concentrations, pumps, and buffers. Fluxes across the neuronal membrane change intra- and extracellular ion concentrations, whereby the latter can also change through contact to reservoirs in the surroundings. Ion gain and loss of the system is identified as a bifurcation parameter whose essential importance was not realized in earlier studies. Our systematic study of the bifurcation structure and thus the phase space structure helps to understand activation and inhibition of a new excitability in ion homeostasis which emerges in such extended models. Also modulatory mechanisms that regulate the spiking rate can be explained by bifurcations. The dynamics on three distinct slow times scales is determined by the cell volume-to-surface-area ratio and the membrane permeability (seconds), the buffer time constants (tens of seconds), and the slower backward buffering (minutes to hours). The modulatory dynamics and the newly emerging excitable dynamics corresponds to pathological conditions observed in epileptiform burst activity, and spreading depression in migraine aura and stroke, respectively.
Directory of Open Access Journals (Sweden)
Tripathi R.P.
2013-01-01
Full Text Available This study develops an inventory model for determining an optimal ordering policy for non-deteriorating items and time-dependent holding cost with delayed payments permitted by the supplier under inflation and time-discounting. The discounted cash flows approach is applied to study the problem analysis. Mathematical models have been derived under two different situations i.e. case I: The permissible delay period is less than cycle time for settling the account and case II: The permissible delay period is greater than or equal to cycle time for settling the account. An algorithm is used to obtain minimum total present value of the costs over the time horizon H. Finally, numerical example and sensitivity analysis demonstrate the applicability of the proposed model. The main purpose of this paper is to investigate the optimal cycle time and optimal payment time for an item so that annual total relevant cost is minimized.
Steady-state and time-dependent modelling of parallel transport in the scrape-off layer
DEFF Research Database (Denmark)
Havlickova, E.; Fundamenski, W.; Naulin, Volker
2011-01-01
temperature calculated in SOLF1D is compared with the approximative model used in the turbulence code ESEL both for steady-state and turbulent SOL. Dynamics of the parallel transport are investigated for a simple transient event simulating the propagation of particles and energy to the targets from a blob......The one-dimensional fluid code SOLF1D has been used for modelling of plasma transport in the scrape-off layer (SOL) along magnetic field lines, both in steady state and under transient conditions that arise due to plasma turbulence. The presented work summarizes results of SOLF1D with attention...... given to transient parallel transport which reveals two distinct time scales due to the transport mechanisms of convection and diffusion. Time-dependent modelling combined with the effect of ballooning shows propagation of particles along the magnetic field line with Mach number up to M ≈ 1...
Omi, Takahiro; Hirata, Yoshito; Aihara, Kazuyuki
2017-07-01
A Hawkes process model with a time-varying background rate is developed for analyzing the high-frequency financial data. In our model, the logarithm of the background rate is modeled by a linear model with a relatively large number of variable-width basis functions, and the parameters are estimated by a Bayesian method. Our model can capture not only the slow time variation, such as in the intraday seasonality, but also the rapid one, which follows a macroeconomic news announcement. By analyzing the tick data of the Nikkei 225 mini, we find that (i) our model is better fitted to the data than the Hawkes models with a constant background rate or a slowly varying background rate, which have been commonly used in the field of quantitative finance; (ii) the improvement in the goodness-of-fit to the data by our model is significant especially for sessions where considerable fluctuation of the background rate is present; and (iii) our model is statistically consistent with the data. The branching ratio, which quantifies the level of the endogeneity of markets, estimated by our model is 0.41, suggesting the relative importance of exogenous factors in the market dynamics. We also demonstrate that it is critically important to appropriately model the time-dependent background rate for the branching ratio estimation.
Omi, Takahiro; Hirata, Yoshito; Aihara, Kazuyuki
2017-07-01
A Hawkes process model with a time-varying background rate is developed for analyzing the high-frequency financial data. In our model, the logarithm of the background rate is modeled by a linear model with a relatively large number of variable-width basis functions, and the parameters are estimated by a Bayesian method. Our model can capture not only the slow time variation, such as in the intraday seasonality, but also the rapid one, which follows a macroeconomic news announcement. By analyzing the tick data of the Nikkei 225 mini, we find that (i) our model is better fitted to the data than the Hawkes models with a constant background rate or a slowly varying background rate, which have been commonly used in the field of quantitative finance; (ii) the improvement in the goodness-of-fit to the data by our model is significant especially for sessions where considerable fluctuation of the background rate is present; and (iii) our model is statistically consistent with the data. The branching ratio, which quantifies the level of the endogeneity of markets, estimated by our model is 0.41, suggesting the relative importance of exogenous factors in the market dynamics. We also demonstrate that it is critically important to appropriately model the time-dependent background rate for the branching ratio estimation.
Polidoro, B.; Iervolino, I.; Chioccarelli, E.; Giorgio, M.
2012-04-01
Probabilistic seismic hazard is usually computed trough a homogeneous Poisson process that even though it is a time-independent process it is widely used for its very convenient properties. However, when a single fault is of concern and/or the time scale is different from that of the long term, time-dependent processes are required. In this paper, different time-dependent models are reviewed with working examples. In fact, the Paganica fault (in central Italy) has been considered to compute both the probability of occurrence of at least one event in the lifespan of the structure, as well as the seismic hazard expressed in terms of probability of exceedance of an intensity value in a given time frame causing the collapse of the structure. Several models, well known or novel application to engineering hazard have been considered, limitation and issues in their applications are also discussed. The Brownian Passage Time (BPT) model is based on a stochastic modification of the deterministic stick-slip oscillator model for characteristic earthquakes; i.e., based on the addition of random perturbations (a Gaussian white noise) to the deterministic load path predicted by elastic rebound theory. This model assumes that the load state is at some ground level immediately after an event, increases steadly over time, reaches a failure threshold and relaxes instantaneously back to the ground level. For this model also a variable threshold has been considered to take into account the uncertainty of the threshold value. For the slip-predictable model it is assumed that the stress accumulates at a constant rate starting from some initial stress level. Stress is assumed to accumulate for a random period of time until an earthquake occurs. The size of the earthquake is governed by the stress release and it is a function of the elapsed time since the last event. In the time-predictable model stress buildup occurs at a constant rate until the accumulated stress reaches a threshold
Goren, Liran
2016-10-01
The fluvial response time dictates the duration of fluvial channel adjustment in response to changing climatic and tectonic conditions. However, when these conditions vary continuously, the channel cannot equilibrate and the response time is not well defined. Here I develop an analytical solution to the linear stream power model of fluvial incision that predicts the channel topography as a function of time-dependent climatic and tectonic conditions. From this solution, a general definition of the fluvial response time emerges: the duration over which the tectonic history needs to be known to evaluate channel topography. This new definition is used in linear inversion schemes for inferring climatic or tectonic histories from river long profiles. The analytic solution further reveals that high-frequency climatic oscillations, such as Milankovitch cycles, are not expected to leave significant fingerprints on the long profiles of fluvially incised detachment-limited rivers.
Kinetics of the spin-2 Blume-Capel model under a time-dependent oscillating external field
International Nuclear Information System (INIS)
Keskin, M.; Canko, O.; Ertas, M.
2007-01-01
Within a mean-field approach and using the Glauber-type stochastic dynamics, we study the kinetics of the spin-2 Blume-Capel model in the presence of a time-varying (sinusoidal) magnetic field. We investigate the time dependence of the average order parameter and the behavior of the average order parameter in a period, which is also called the dynamic order parameter, as a function of the reduced temperature. The nature (continuous and discontinuous) of the transition is characterized by the dynamic order parameter. The dynamic phase transition points are obtained and the phase diagrams are presented in the reduced magnetic field amplitude and reduced temperature plane. The phase diagrams exhibit one dynamic tricritical point; besides a disordered and an ordered phases, there are three phase coexistence regions that are strongly dependent on the interaction parameter
Murase, Masayuki; Irwan, Meilano; Kariya, Shinichi; Tabei, Takao; Okuda, Takashi; Miyajima, Rikio; Oikawa, Jun; Watanabe, Hidefumi; Kato, Teruyuki; Nakao, Shigeru; Ukawa, Motoo; Fujita, Eisuke; Okayama, Muneo; Kimata, Fumiaki; Fujii, Naoyuki
2006-02-01
A time-dependent model of magma intrusion is presented for the Miyake-Kozu Island area in central Japan based on global positioning system (GPS) measurements at 28 sites recorded between June 27 and August 27, 2000. A model derived from a precise hypocenter distribution map indicates the presence of three dikes between Miyake and Kozu Islands. Other dike intrusion models, including a dike with aseismic creep and a dike associated with a deep deflation source are also discussed. The optimal parameters for each model are estimated using a genetic algorithm (GA) approach. Using Akaike's information criteria (AIC), the three-dike model is shown to provide the best solution for the observed deformation. Volume changes in spherical inflation and deflation sources, as well as three dikes, are calculated for seven discretized periods after GA optimization of the dike geometry. The optimization suggests a concentration of dike expansion near Miyake Island in the period from June 27 to July 1 associated with large deflation at a depth of about 7 km below Miyake volcano, indicating magma supply from depth below Miyake Island. In the period from July 9 to August 10, a huge dike intrusion near Kozu Island is inferred, accompanied by expansion of the lower parts of a central dike, suggesting magma supply from depth in the region between Miyake and Kozu Islands.
Directory of Open Access Journals (Sweden)
Jinzhu Li
2014-01-01
Full Text Available To describe the time-dependent behavior of soft clay, this paper extended one-dimensional Nishihara model to three-dimensional stress state based on the framework of Perzyna’s overstress theory and modified cam-clay model. The yield criterion of modified cam-clay model was used to describe the plastic properties of soft clay, and the overstress theory was used to describe the strain rate effect. Triaxial rheological tests were carried out on Ningbo soft clay and the rheological characteristics were studied. Based on laboratory results, the parameters of proposed model were determined by curve fitting, which show that this model is suitable for the rheological characteristics of Ningbo soft clay. The analysis of parameters shows that, the value of parameters changes slightly with different deviatoric stress when the confining pressure was constant, but changes notably with the increase of confining pressure. A user material subroutine of the proposed constitutive mode was coded on the platform of the FEM software ABAQUS and verified by triaxial compression of soil column. A plain strain problem was computed to analyze the rheological consolidation properties of soft clay, in which the rheological effect and the finite strain effect were considered.
Directory of Open Access Journals (Sweden)
Shu San Gan
2015-12-01
Full Text Available In this study we develop a model that optimizes the price for new and remanufactured short life-cycle products where demands are time-dependent and price sensitive. While there has been very few published works that attempt to model remanufacturing decisions for products with short life cycle, we believe that there are many situations where remanufacturing short life cycle products is rewarding economically as well as environmentally. The system that we model consists of a retailer, a manufacturer, and a collector of used product from the end customers. Two different scenarios are evaluated for the system. The first is the independent situation where each party attempts to maximize his/her own total profit and the second is the joint profit model where we optimize the combined total profit for all three members of the supply chain. Manufacturer acts as the Stackelberg leader in the independently optimized scenario, while in the other the intermediate prices are determined by coordinated pricing policy. The results suggest that (i reducing the price of new products during the decline phase does not give better profit for the whole system, (ii the total profit obtained from optimizing each player is lower than the total profit of the integrated model, and (iii speed of change in demand influences the robustness of the prices as well as the total profit gained.
Strupczewski, Witold G.; Bogdanowich, Ewa; Debele, Sisay
2016-04-01
Under Polish climate conditions the series of Annual Maxima (AM) flows are usually a mixture of peak flows of thaw- and rainfall- originated floods. The northern, lowland regions are dominated by snowmelt floods whilst in mountainous regions the proportion of rainfall floods is predominant. In many stations the majority of AM can be of snowmelt origin, but the greatest peak flows come from rainfall floods or vice versa. In a warming climate, precipitation is less likely to occur as snowfall. A shift from a snow- towards a rain-dominated regime results in a decreasing trend in mean and standard deviations of winter peak flows whilst rainfall floods do not exhibit any trace of non-stationarity. That is why a simple form of trends (i.e. linear trends) are more difficult to identify in AM time-series than in Seasonal Maxima (SM), usually winter season time-series. Hence it is recommended to analyse trends in SM, where a trend in standard deviation strongly influences the time -dependent upper quantiles. The uncertainty associated with the extrapolation of the trend makes it necessary to apply a relationship for trend which has time derivative tending to zero, e.g. we can assume a new climate equilibrium epoch approaching, or a time horizon is limited by the validity of the trend model. For both winter and summer SM time series, at least three distributions functions with trend model in the location, scale and shape parameters are estimated by means of the GAMLSS package using the ML-techniques. The resulting trend estimates in mean and standard deviation are mutually compared to the observed trends. Then, using AIC measures as weights, a multi-model distribution is constructed for each of two seasons separately. Further, assuming a mutual independence of the seasonal maxima, an AM model with time-dependent parameters can be obtained. The use of a multi-model approach can alleviate the effects of different and often contradictory trends obtained by using and identifying
OL-DEC-MDP Model for Multiagent Online Scheduling with a Time-Dependent Probability of Success
Directory of Open Access Journals (Sweden)
Cheng Zhu
2014-01-01
Full Text Available Focusing on the on-line multiagent scheduling problem, this paper considers the time-dependent probability of success and processing duration and proposes an OL-DEC-MDP (opportunity loss-decentralized Markov Decision Processes model to include opportunity loss into scheduling decision to improve overall performance. The success probability of job processing as well as the process duration is dependent on the time at which the processing is started. The probability of completing the assigned job by an agent would be higher when the process is started earlier, but the opportunity loss could also be high due to the longer engaging duration. As a result, OL-DEC-MDP model introduces a reward function considering the opportunity loss, which is estimated based on the prediction of the upcoming jobs by a sampling method on the job arrival. Heuristic strategies are introduced in computing the best starting time for an incoming job by each agent, and an incoming job will always be scheduled to the agent with the highest reward among all agents with their best starting policies. The simulation experiments show that the OL-DEC-MDP model will improve the overall scheduling performance compared with models not considering opportunity loss in heavy-loading environment.
Xu, T.; Zhou, G. L.; Heap, Michael J.; Zhu, W. C.; Chen, C. F.; Baud, Patrick
2017-09-01
An understanding of the influence of temperature on brittle creep in granite is important for the management and optimization of granitic nuclear waste repositories and geothermal resources. We propose here a two-dimensional, thermo-mechanical numerical model that describes the time-dependent brittle deformation (brittle creep) of low-porosity granite under different constant temperatures and confining pressures. The mesoscale model accounts for material heterogeneity through a stochastic local failure stress field, and local material degradation using an exponential material softening law. Importantly, the model introduces the concept of a mesoscopic renormalization to capture the co-operative interaction between microcracks in the transition from distributed to localized damage. The mesoscale physico-mechanical parameters for the model were first determined using a trial-and-error method (until the modeled output accurately captured mechanical data from constant strain rate experiments on low-porosity granite at three different confining pressures). The thermo-physical parameters required for the model, such as specific heat capacity, coefficient of linear thermal expansion, and thermal conductivity, were then determined from brittle creep experiments performed on the same low-porosity granite at temperatures of 23, 50, and 90 °C. The good agreement between the modeled output and the experimental data, using a unique set of thermo-physico-mechanical parameters, lends confidence to our numerical approach. Using these parameters, we then explore the influence of temperature, differential stress, confining pressure, and sample homogeneity on brittle creep in low-porosity granite. Our simulations show that increases in temperature and differential stress increase the creep strain rate and therefore reduce time-to-failure, while increases in confining pressure and sample homogeneity decrease creep strain rate and increase time-to-failure. We anticipate that the
3-D time-dependent numerical model of flow patterns within a large-scale Czochralski system
Nam, Phil-Ouk; O, Sang-Kun; Yi, Kyung-Woo
2008-04-01
Silicon single crystals grown through the Czochralski (Cz) method have increased in size to 300 mm, resulting in the use of larger crucibles. The objective of this study is to investigate the continuous Cz method in a large crucible (800 mm), which is performed by inserting a polycrystalline silicon rod into the melt. The numerical model is based on a time-dependent and three-dimensional standard k- ɛ turbulent model using the analytical software package CFD-ACE+, version 2007. Wood's metal melt, which has a low melting point ( Tm=70 °C), was used as the modeling fluid. Crystal rotation given in the clockwise direction with rotation rates varying from 0 to 15 rpm, while the crucible was rotated counter-clockwise, with rotation rates between 0 and 3 rpm. The results show that asymmetrical phenomena of fluid flow arise as results of crystal and crucible rotation, and that these phenomena move with the passage of time. Near the crystal, the flow moves towards the crucible at the pole of the asymmetrical phenomena. Away from the poles, a vortex begins to form, which is strongly pronounced in the region between the poles.
Directory of Open Access Journals (Sweden)
Mastichiadis Apostolos
2013-12-01
Full Text Available We apply a recently developed time-dependent one-zone leptohadronic model to study the emission of the blazar Mrk 421. Both processes involving proton-photon interactions, i.e. photopair (Bethe-Heitler and photopion, have been modeled in great detail using the results of Monte Carlo simulations, like the SOPHIA event generator, in a self-consistent scheme that couples energy losses and secondary injection. We find that TeV gamma-rays can be attributed to synchrotron radiation either from relativistic protons or, alternatively, from secondary leptons produced via photohadronic processes. We also study the variability patterns that each scenario predicts and we find that while the former is more energetically favored, it is the latter that produces, in a more natural way, the usual quadratic behavior between X-rays and TeV gamma-rays. We also use the obtained SEDs to calculate in detail the expected neutron and neutrino fluxes that each model predicts.
Murase, M.; Irwan, M.; Kariya, S.; Tabei, T.; Okuda, T.; Miyajima, R.; Kimata, F.; Fujii, N.
2004-12-01
We discuss a time dependent model of magma intrusion in and around Miyake and Kozu Islands, Central Japan from GPS measurements at 28 sites in Miyake Island, Kozu Island and their surrounding islands in the period from June 27 to August 27, 2000. A dike complex model of three sheets is assumed between Miyake and Kozu Islands, suggested from the precise hypocenter distribution map (Sakai et al., 2003). Other dike intrusion models, a dike with an aseismic creep model (Nishimura et al.,2001; Furuya et al.,2003) and a dike with a deep deflation source model (Yamaoka et al., submitted) , are also discussed. Akaike's Information Criteria (AIC) value of optimal parameters of a dike complex model indicates lower than that of other two models. After fixing the geometry of three dikes using a genetic algorithm (GA), the amounts of dike openings of top, inside, and bottom of each dike are estimated by GA for seven time periods. In the period from June 27 to July 8, dike opening is concentrated in the dike near Miyake Island, and a large deflation is also estimated at a depth of 5 km of Miyake Volcano. It suggests that magma is supplied from the depths of Miyake Island. In next period until August 10, a huge dike intrusion is characterized in the dike near Kozu Island and the lower parts of dike in central and near Miyake Island. This suggests that magma is supplied from depth between Miyake and Kozu Islands. In the period of August 10 to 27, a huge deflation is estimated at a depth of 10 km under Miyake Volcano, and dike opening is limited
Directory of Open Access Journals (Sweden)
Quan Wang
2017-08-01
Full Text Available The ability to learn sequential behaviors is a fundamental property of our brains. Yet a long stream of studies including recent experiments investigating motor sequence learning in adult human subjects have produced a number of puzzling and seemingly contradictory results. In particular, when subjects have to learn multiple action sequences, learning is sometimes impaired by proactive and retroactive interference effects. In other situations, however, learning is accelerated as reflected in facilitation and transfer effects. At present it is unclear what the underlying neural mechanism are that give rise to these diverse findings. Here we show that a recently developed recurrent neural network model readily reproduces this diverse set of findings. The self-organizing recurrent neural network (SORN model is a network of recurrently connected threshold units that combines a simplified form of spike-timing dependent plasticity (STDP with homeostatic plasticity mechanisms ensuring network stability, namely intrinsic plasticity (IP and synaptic normalization (SN. When trained on sequence learning tasks modeled after recent experiments we find that it reproduces the full range of interference, facilitation, and transfer effects. We show how these effects are rooted in the network's changing internal representation of the different sequences across learning and how they depend on an interaction of training schedule and task similarity. Furthermore, since learning in the model is based on fundamental neuronal plasticity mechanisms, the model reveals how these plasticity mechanisms are ultimately responsible for the network's sequence learning abilities. In particular, we find that all three plasticity mechanisms are essential for the network to learn effective internal models of the different training sequences. This ability to form effective internal models is also the basis for the observed interference and facilitation effects. This suggests that
Wang, Quan; Rothkopf, Constantin A; Triesch, Jochen
2017-08-01
The ability to learn sequential behaviors is a fundamental property of our brains. Yet a long stream of studies including recent experiments investigating motor sequence learning in adult human subjects have produced a number of puzzling and seemingly contradictory results. In particular, when subjects have to learn multiple action sequences, learning is sometimes impaired by proactive and retroactive interference effects. In other situations, however, learning is accelerated as reflected in facilitation and transfer effects. At present it is unclear what the underlying neural mechanism are that give rise to these diverse findings. Here we show that a recently developed recurrent neural network model readily reproduces this diverse set of findings. The self-organizing recurrent neural network (SORN) model is a network of recurrently connected threshold units that combines a simplified form of spike-timing dependent plasticity (STDP) with homeostatic plasticity mechanisms ensuring network stability, namely intrinsic plasticity (IP) and synaptic normalization (SN). When trained on sequence learning tasks modeled after recent experiments we find that it reproduces the full range of interference, facilitation, and transfer effects. We show how these effects are rooted in the network's changing internal representation of the different sequences across learning and how they depend on an interaction of training schedule and task similarity. Furthermore, since learning in the model is based on fundamental neuronal plasticity mechanisms, the model reveals how these plasticity mechanisms are ultimately responsible for the network's sequence learning abilities. In particular, we find that all three plasticity mechanisms are essential for the network to learn effective internal models of the different training sequences. This ability to form effective internal models is also the basis for the observed interference and facilitation effects. This suggests that STDP, IP, and SN
Energy Technology Data Exchange (ETDEWEB)
Javier Ortensi; Abderrafi M Ougouag
2009-07-01
The Doppler feedback mechanism is a major contributor to the passive safety of gas-cooled, graphite-moderated high temperature reactors that use fuel based on Tristructural-Isotropic coated particles. It follows that the correct prediction of the magnitude and time-dependence of this feedback effect is essential to the conduct of safety analyses for these reactors. We present a fuel conduction model for obtaining better estimates of the temperature feedback during moderate and fast transients. The fuel model has been incorporated in the CYNOD-THERMIX-KONVEK suite of coupled codes as a single TRISO particle within each calculation cell. The heat generation rate is scaled down from the neutronic solution and a Dirichlet boundary condition is imposed as the bulk graphite temperature from the thermal-hydraulic solution. This simplified approach yields similar results to those obtained with more complex methods, requiring multi-TRISO calculations within one control volume, but with much less computational effort. We provide an analysis of the hypothetical total control ejection event in the PBMR-400 design that clearly depicts the improvement in the predictions of the fuel temperature.
Wynant, Willy; Abrahamowicz, Michal
2014-08-30
Cox's proportional hazards (PH) model assumes constant-over-time covariate effects. Furthermore, most applications assume linear effects of continuous covariates on the logarithm of the hazard. Yet, many prognostic factors have time-dependent (TD) and/or nonlinear (NL) effects, that is, violate these conventional assumptions. Detection of such complex effects could affect prognosis and clinical decisions. However, assessing the effects of each of the multiple, often correlated, covariates in flexible multivariable analyses is challenging. In simulations, we investigated the impact of the approach used to build the flexible multivariable model on inference about the TD and NL covariate effects. Results demonstrate that the conclusions regarding the statistical significance of the TD/NL effects depend heavily on the strategy used to decide which effects of the other covariates should be adjusted for. Both a failure to adjust for true TD and NL effects of relevant covariates and inclusion of spurious effects of covariates that conform to the PH and linearity assumptions increase the risk of incorrect conclusions regarding other covariates. In this context, iterative backward elimination of nonsignificant NL and TD effects from the multivariable model, which initially includes all these effects, may help discriminate between true and spurious effects. The practical importance of these issues was illustrated in an example that reassessed the predictive ability of selected biomarkers for survival in advanced non-small-cell lung cancer. In conclusion, a careful model-building strategy and flexible modeling of multivariable survival data can yield new insights about predictors' roles and improve the validity of analyses. Copyright © 2014 John Wiley & Sons, Ltd.
Forward modeling of JET polarimetry diagnostic
International Nuclear Information System (INIS)
Ford, Oliver; Svensson, J.; Boboc, A.; McDonald, D. C.
2008-01-01
An analytical Bayesian inversion of the JET interferometry line integrated densities into density profiles and associated uncertainty information, is demonstrated. These are used, with a detailed model of plasma polarimetry, to predict the rotation and ellipticity for the JET polarimeter. This includes the lateral channels, for over 45,000 time points over 1313 JET pulses. Good agreement with measured values is shown for a number of channels. For the remaining channels, the requirement of a more detailed model of the diagnostic is demonstrated. A commonly used approximation for the Cotton-Mouton effect on the lateral channels is also evaluated.
Directory of Open Access Journals (Sweden)
Saito Ayumu
2010-04-01
Full Text Available Abstract Background With an accumulation of in silico data obtained by simulating large-scale biological networks, a new interest of research is emerging for elucidating how living organism functions over time in cells. Investigating the dynamic features of current computational models promises a deeper understanding of complex cellular processes. This leads us to develop a method that utilizes structural properties of the model over all simulation time steps. Further, user-friendly overviews of dynamic behaviors can be considered to provide a great help in understanding the variations of system mechanisms. Results We propose a novel method for constructing and analyzing a so-called active state transition diagram (ASTD by using time-course simulation data of a high-level Petri net. Our method includes two new algorithms. The first algorithm extracts a series of subnets (called temporal subnets reflecting biological components contributing to the dynamics, while retaining positive mathematical qualities. The second one creates an ASTD composed of unique temporal subnets. ASTD provides users with concise information allowing them to grasp and trace how a key regulatory subnet and/or a network changes with time. The applicability of our method is demonstrated by the analysis of the underlying model for circadian rhythms in Drosophila. Conclusions Building ASTD is a useful means to convert a hybrid model dealing with discrete, continuous and more complicated events to finite time-dependent states. Based on ASTD, various analytical approaches can be applied to obtain new insights into not only systematic mechanisms but also dynamics.
Supersonic induction plasma jet modeling
International Nuclear Information System (INIS)
Selezneva, S.E.; Boulos, M.I.
2001-01-01
Numerical simulations have been applied to study the argon plasma flow downstream of the induction plasma torch. It is shown that by means of the convergent-divergent nozzle adjustment and chamber pressure reduction, a supersonic plasma jet can be obtained. We investigate the supersonic and a more traditional subsonic plasma jets impinging onto a normal substrate. Comparing to the subsonic jet, the supersonic one is narrower and much faster. Near-substrate velocity and temperature boundary layers are thinner, so the heat flux near the stagnation point is higher in the supersonic jet. The supersonic plasma jet is characterized by the electron overpopulation and the domination of the recombination over the dissociation, resulting into the heating of the electron gas. Because of these processes, the supersonic induction plasma permits to separate spatially different functions (dissociation and ionization, transport and deposition) and to optimize each of them. The considered configuration can be advantageous in some industrial applications, such as plasma-assisted chemical vapor deposition of diamond and polymer-like films and in plasma spraying of nanoscaled powders
Supersonic induction plasma jet modeling
Energy Technology Data Exchange (ETDEWEB)
Selezneva, S.E. E-mail: svetlana2@hermes.usherbS_Selezneva2@hermes.usherb; Boulos, M.I
2001-06-01
Numerical simulations have been applied to study the argon plasma flow downstream of the induction plasma torch. It is shown that by means of the convergent-divergent nozzle adjustment and chamber pressure reduction, a supersonic plasma jet can be obtained. We investigate the supersonic and a more traditional subsonic plasma jets impinging onto a normal substrate. Comparing to the subsonic jet, the supersonic one is narrower and much faster. Near-substrate velocity and temperature boundary layers are thinner, so the heat flux near the stagnation point is higher in the supersonic jet. The supersonic plasma jet is characterized by the electron overpopulation and the domination of the recombination over the dissociation, resulting into the heating of the electron gas. Because of these processes, the supersonic induction plasma permits to separate spatially different functions (dissociation and ionization, transport and deposition) and to optimize each of them. The considered configuration can be advantageous in some industrial applications, such as plasma-assisted chemical vapor deposition of diamond and polymer-like films and in plasma spraying of nanoscaled powders.
Vasilyev, V.; Ludwig, H.-G.; Freytag, B.; Lemasle, B.; Marconi, M.
2018-03-01
Context. Standard spectroscopic analyses of variable stars are based on hydrostatic 1D model atmospheres. This quasi-static approach has not been theoretically validated. Aim. We aim at investigating the validity of the quasi-static approximation for Cepheid variables. We focus on the spectroscopic determination of the effective temperature Teff, surface gravity log g, microturbulent velocity ξt, and a generic metal abundance log A, here taken as iron. Methods: We calculated a grid of 1D hydrostatic plane-parallel models covering the ranges in effective temperature and gravity that are encountered during the evolution of a 2D time-dependent envelope model of a Cepheid computed with the radiation-hydrodynamics code CO5BOLD. We performed 1D spectral syntheses for artificial iron lines in local thermodynamic equilibrium by varying the microturbulent velocity and abundance. We fit the resulting equivalent widths to corresponding values obtained from our dynamical model for 150 instances in time, covering six pulsational cycles. In addition, we considered 99 instances during the initial non-pulsating stage of the temporal evolution of the 2D model. In the most general case, we treated Teff, log g, ξt, and log A as free parameters, and in two more limited cases, we fixed Teff and log g by independent constraints. We argue analytically that our approach of fitting equivalent widths is closely related to current standard procedures focusing on line-by-line abundances. Results: For the four-parametric case, the stellar parameters are typically underestimated and exhibit a bias in the iron abundance of ≈-0.2 dex. To avoid biases of this type, it is favorable to restrict the spectroscopic analysis to photometric phases ϕph ≈ 0.3…0.65 using additional information to fix the effective temperature and surface gravity. Conclusions: Hydrostatic 1D model atmospheres can provide unbiased estimates of stellar parameters and abundances of Cepheid variables for particular
International Nuclear Information System (INIS)
Rehman, Nasir; Shashiashvili, Malkhaz
2009-01-01
The classical Garman-Kohlhagen model for the currency exchange assumes that the domestic and foreign currency risk-free interest rates are constant and the exchange rate follows a log-normal diffusion process.In this paper we consider the general case, when exchange rate evolves according to arbitrary one-dimensional diffusion process with local volatility that is the function of time and the current exchange rate and where the domestic and foreign currency risk-free interest rates may be arbitrary continuous functions of time. First non-trivial problem we encounter in time-dependent case is the continuity in time argument of the value function of the American put option and the regularity properties of the optimal exercise boundary. We establish these properties based on systematic use of the monotonicity in volatility for the value functions of the American as well as European options with convex payoffs together with the Dynamic Programming Principle and we obtain certain type of comparison result for the value functions and corresponding exercise boundaries for the American puts with different strikes, maturities and volatilities.Starting from the latter fact that the optimal exercise boundary curve is left continuous with right-hand limits we give a mathematically rigorous and transparent derivation of the significant early exercise premium representation for the value function of the American foreign exchange put option as the sum of the European put option value function and the early exercise premium.The proof essentially relies on the particular property of the stochastic integral with respect to arbitrary continuous semimartingale over the predictable subsets of its zeros. We derive from the latter the nonlinear integral equation for the optimal exercise boundary which can be studied by numerical methods
Salditch, L.; Brooks, E. M.; Stein, S.; Spencer, B. D.; Campbell, M. R.
2017-12-01
A challenge for earthquake hazard assessment is that geologic records often show large earthquakes occurring in temporal clusters separated by periods of quiescence. For example, in Cascadia, a paleoseismic record going back 10,000 years shows four to five clusters separated by approximately 1,000 year gaps. If we are still in the cluster that began 1700 years ago, a large earthquake is likely to happen soon. If the cluster has ended, a great earthquake is less likely. For a Gaussian distribution of recurrence times, the probability of an earthquake in the next 50 years is six times larger if we are still in the most recent cluster. Earthquake hazard assessments typically employ one of two recurrence models, neither of which directly incorporate clustering. In one, earthquake probability is time-independent and modeled as Poissonian, so an earthquake is equally likely at any time. The fault has no "memory" because when a prior earthquake occurred has no bearing on when the next will occur. The other common model is a time-dependent earthquake cycle in which the probability of an earthquake increases with time until one happens, after which the probability resets to zero. Because the probability is reset after each earthquake, the fault "remembers" only the last earthquake. This approach can be used with any assumed probability density function for recurrence times. We propose an alternative, Long-Term Fault Memory (LTFM), a modified earthquake cycle model where the probability of an earthquake increases with time until one happens, after which it decreases, but not necessarily to zero. Hence the probability of the next earthquake depends on the fault's history over multiple cycles, giving "long-term memory". Physically, this reflects an earthquake releasing only part of the elastic strain stored on the fault. We use the LTFM to simulate earthquake clustering along the San Andreas Fault and Cascadia. In some portions of the simulated earthquake history, events would
2010-12-21
... Airworthiness Directives; DASSAULT AVIATION Model Falcon 10 Airplanes; Model FAN JET FALCON, FAN JET FALCON.... (1) DASSAULT AVIATION Model Falcon 10 airplanes, Model FAN JET FALCON, FAN JET FALCON SERIES C, D, E... airplanes Inspection threshold (whichever occurs later) Inspection interval Model FAN JET FALCON, FAN JET...
Development of a generalized integral jet model
DEFF Research Database (Denmark)
Duijm, Nijs Jan; Kessler, A.; Markert, Frank
2017-01-01
model is needed to describe the rapid combustion of the flammable part of the plume (flash fire) and a third model has to be applied for the remaining jet fire. The objective of this paper is to describe the first steps of the development of an integral-type model describing the transient development...
Dorner, Reinhard
2014-05-01
We will discuss experimental studies of ICD in van der Vaals dimers of rare gas atoms and small molecules using the COLTRIMS technique. The talk will cover ICD after resonant Auger excitation (Nature 505, 664 (2014)) and two studies unveiling the time dependence of ICD in the energy (PRL 111, 233004 (2013)) and in the time domain (PRL 111, 093401 (2013)). A new technique to make ultrafast movies without the use of short pulses will be discussed.
International Nuclear Information System (INIS)
Jonas, M.; Olendrzynski, K.; Elzen, M. den
1991-10-01
The Intergovernmental Panel on Climate Change (IPCC) is placing increasing emphasis on the use of time-dependent impact models that are linked with energy-emission accounting frameworks and models that predict in a time-dependent fashion important variables such as atmospheric concentrations of greenhouse gases, surface temperature and precipitation. Integrating these tools (greenhouse gas emission strategies, atmospheric processes, ecological impacts) into what is called an integrated assessment model will assist policymakers in the IPCC and elsewhere to assess the impacts of a wide variety of emission strategies. The Integrated Model to Assess the Greenhouse Effect (IMAGE; developed at RIVM) represents such an integrated assessment model which already calculates historical and future effects of greenhouse gas emissions on global surface temperature, sea level rise and other ecological and socioeconomic impacts. However, to be linked to environmental impact models such as the Global Vegetation Model and the Timber Assessment Model, both of which are under development at RIVM and IIASA, IMAGE needs to be regionalized in terms of temperature and precipitation output. These key parameters will then enable the above environmental impact models to be run in a time-dependent mode. In this paper we lay the scientific and numerical basis for a two-dimensional Energy Balance Model (EBM) to be integrated into the climate module of IMAGE which will ultimately provide scenarios of surface temperature and precipitation, resolved with respect to latitude and height. This paper will deal specifically with temperature; following papers will deal with precipitation. So far, the relatively simple EBM set up in this paper resolves mean annual surface temperatures on a regional scale defined by 10 deg latitude bands. In addition, we can concentrate on the implementation of the EBM into IMAGE, i.e., on the steering mechanism itself. Both reasons justify the time and effort put into
Cfd modeling of a synthetic jet actuator
International Nuclear Information System (INIS)
Dghim, Marouane; Ben Chiekh, Maher; Ben Nasrallah, Sassi
2009-01-01
Synthetic jet actuators show good promise as an enabling technology for innovative boundary layer flow control applied to external surfaces, like airplane wings, and to internal flows, like those occurring in a curved engine inlet. The appealing characteristics of a synthetic jet are zero-net-mass flux operation and an efficient control effect that takes advantages of unsteady fluid phenomena. The formation of a synthetic jet in a quiescent external air flow is only beginning to be understood and a rational understanding of these devices is necessary before they can be applied to the control of flows outside of the laboratory. The synthetic jet flow generated by a planar orifice is investigated here using computational approach. Computations of the 2D synthetic jet are performed with unsteady RANS modeled with the Realizable κ - ε turbulence model available in FLUENT environment. In this present work, the ability of the first order turbulence model, employed in our computations, to model the formation of the counter-rotating-vortex pair (CVP) that appears in the flow-field was investigated. Computational results were in good agreement with experimental measurements. The effectiveness of such control actuator was tested on separated boundary layer. Preliminary investigation were presented and discussed
2015-06-30
pressure Green’s function) is determined from the CASS/GRAB model. The similitude source is based on the work of Hopkinson,9 Arons ,10 Cole,11 and...Swisdak.12 Arons , Cole, and Swisdak summarized most underwater explosive results after World War II. Most work on similitude is based on experimental...Academic Press, 2000. 10. A. B. Arons , “Underwater Explosions Shock Wave Parameters at Large Distances from the Charge,” The Journal of
Shiyko, Mariya P; Burkhalter, Jack; Li, Runze; Park, Bernard J
2014-10-01
The goal of this article is to introduce to social and behavioral scientists the generalized time-varying effect model (TVEM), a semiparametric approach for investigating time-varying effects of a treatment. The method is best suited for data collected intensively over time (e.g., experience sampling or ecological momentary assessments) and addresses questions pertaining to effects of treatment changing dynamically with time. Thus, of interest is the description of timing, magnitude, and (nonlinear) patterns of the effect. Our presentation focuses on practical aspects of the model. A step-by-step demonstration is presented in the context of an empirical study designed to evaluate effects of surgical treatment on quality of life among early stage lung cancer patients during posthospitalization recovery (N = 59; 61% female, M age = 66.1 years). Frequency and level of distress associated with physical symptoms were assessed twice daily over a 2-week period, providing a total of 1,544 momentary assessments. Traditional analyses (analysis of covariance [ANCOVA], repeated-measures ANCOVA, and multilevel modeling) yielded findings of no group differences. In contrast, generalized TVEM identified a pattern of the effect that varied in time and magnitude. Group differences manifested after Day 4. Generalized TVEM is a flexible statistical approach that offers insight into the complexity of treatment effects and allows modeling of nonnormal outcomes. The practical demonstration, shared syntax, and availability of a free set of macros aim to encourage researchers to apply TVEM to complex data and stimulate important scientific discoveries. PsycINFO Database Record (c) 2014 APA, all rights reserved.
International Nuclear Information System (INIS)
Menouar, Salah; Maamache, Mustapha; Choi, Jeong Ryeol
2010-01-01
The dynamics of the time-dependent coupled oscillator model for the motion of a charged particle subjected to a time-dependent external magnetic field is investigated. We use the canonical transformation approach for the classical treatment of the system, whereas the unitary transformation approach is used in managing the system in the framework of quantum mechanics. For both approaches, the original system is transformed into a much more simple system that is the sum of two independent harmonic oscillators with time-dependent frequencies. We therefore easily identify the wavefunctions in the transformed system with the help of an invariant operator of the system. The full wavefunctions in the original system are derived from the inverse unitary transformation of the wavefunctions associated with the transformed system.
Wavepacket models for supersonic jet noise
Sinha, Aniruddha; Rodríguez, Daniel; Brès, Guillaume A.; Colonius, Tim
2014-01-01
Gudmundsson and Colonius (J. Fluid Mech., vol. 689, 2011, pp. 97–128) have recently shown that the average evolution of low-frequency, low-azimuthal modal large-scale structures in the near field of subsonic jets are remarkably well predicted as linear instability waves of the turbulent mean flow using parabolized stability equations. In this work, we extend this modelling technique to an isothermal and a moderately heated Mach 1.5 jet for which the mean flow fields are obtained from a high-f...
2010-07-27
... Model Falcon 10 Airplanes; Model FAN JET FALCON, FAN JET FALCON SERIES C, D, E, F, and G Airplanes.... Since that NPRM was issued, we have determined that Model FAN JET FALCON SERIES C, D, E, F, and G..., Model FAN JET FALCON, FAN JET FALCON SERIES C, D, E, F, and G airplanes, and Model MYSTERE-FALCON 20-C5...
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz
2000-01-01
A new technique for the numerical 3D simulation of time dependent flow of viscoelastic fluid is presented. The technique is based on a Lagrangian kinematics description of the fluid flow. The fluid is described by the Rivlin Sawyer integral constitutive equation. The method (referred to as the 3D...... Lagrangian Integral Method) is a finite element method where Galerkons method is used for solving the governing equation in rectangular coordinates numerically. In the present implementation the velocity and pressure fields are approximated with tri-linear and constant shape functions, respectivly.The 3D LIM......) and polymeric solutions. Secondly, the 3D-LIM has also been applied to calculate the inflation of a thick sheet of a polymeric melt into a elliptic cylinder. These problems all include free surfaces. As the governing equations are solved for the particle positions, the motion of surfaces can be followed easily...
Nonlinear interaction model of subsonic jet noise.
Sandham, Neil D; Salgado, Adriana M
2008-08-13
Noise generation in a subsonic round jet is studied by a simplified model, in which nonlinear interactions of spatially evolving instability modes lead to the radiation of sound. The spatial mode evolution is computed using linear parabolized stability equations. Nonlinear interactions are found on a mode-by-mode basis and the sound radiation characteristics are determined by solution of the Lilley-Goldstein equation. Since mode interactions are computed explicitly, it is possible to find their relative importance for sound radiation. The method is applied to a single stream jet for which experimental data are available. The model gives Strouhal numbers of 0.45 for the most amplified waves in the jet and 0.19 for the dominant sound radiation. While in near field axisymmetric and the first azimuthal modes are both important, far-field sound is predominantly axisymmetric. These results are in close correspondence with experiment, suggesting that the simplified model is capturing at least some of the important mechanisms of subsonic jet noise.
Time-dependent change of in vivo optical imaging of oxidative stress in a mouse stroke model.
Nakano, Yumiko; Yamashita, Toru; Li, Qian; Sato, Kota; Ohta, Yasuyuki; Morihara, Ryuta; Hishikawa, Nozomi; Abe, Koji
2017-10-01
Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in cellular defense against oxidative stress damage after ischemic stroke. In the present study, we examined the time-dependent change of in vivo optical imaging of oxidative stress after stroke with Keap1-dependent oxidative stress detector (OKD) mice. OKD mice were subjected to transient middle cerebral artery occlusion (tMCAO) for 45 min, and in vivo optical signals were detected during the pre-operative period, 12 h, 1 d, 3 d, and 7 d after tMCAO. Ex vivo imaging was performed immediately after obtaining in vivo optical signals at 1 d after tMCAO. Immunohistochemical analyses and infarct volume were also examined after in vivo imaging at each period. The in vivo signals showed a peak at 1 d after tMCAO that was slightly correlated to infarct volume. The strong ex vivo signals, which were detected in the peri-ischemic area, corresponded to endogenous Nrf2 expression. Moreover, endogenous Nrf2 expression was detected mainly in neurons followed by oligodendrocytes and pericytes, but only slightly in astrocytes, microglia, endothelial cells. The present study successfully demonstrated the temporal change of in vivo imaging of oxidative stress after tMCAO, which is consistent with strong expression of endogenous Nrf2 in the peri-ischemic area with a similar time course. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Koo, Shigeru; Inagaki, Manabu
2010-06-01
In the high-level radioactive waste (HLW) disposal system, numerical evaluation for radionuclide transport with the time-dependent parameters is necessary to evaluate various scenarios. In H12 report, numerical calculation code MESHNOTE and TIGER were used for the evaluation of some natural phenomena scenarios that had to handle the time-dependent parameters. In the future, the necessity of handling the time-dependent parameters will be expected to increase, and more efficient calculation and improvement of quality control of input/output parameters will be required. Therefore, for the purpose of corresponding this requirement, a radionuclide transport model has been developed on the GoldSim platform. The GoldSim is a general simulation software, that was used for the computation modeling of Yucca Mountain Project. The conceptual model, the mathematical model and the verification of the GoldSim model are described in this report. In the future, application resources on this report will be able to upgrade for perturbation scenarios analysis model and other conceptual models. (author)
Modelling of isotope exchange experiments in JET
International Nuclear Information System (INIS)
Ehrenberg, J.
1987-01-01
Isotope exchange experiments from hydrogen to deuterium in JET are theoretically described by employing a simple global isotope exchange model. Experimental results for discharges with limiter temperature around 250 0 C can be approximated by this model if an additional slow diffusion process of hydrogen in the limiter bulk is assumed. In discharges where thermal desorption occurs due to higher limiter temperatures (> or approx. 1000 0 C) (post carbonisation discharges) the change over process seems to be predominantly governed by thermal processes. (orig.)
Multi-matrix models from jet coefficients
International Nuclear Information System (INIS)
Apfeldorf, K.M.; California Univ., Berkeley, CA
1991-01-01
We present a very natural framework in which to discuss multi-matrix models of two-dimensional quantum gravity. Multi-matrix model actions, string equations, and other quantities can be compactly expressed in terms of the jets of the resolvents of the relevant differential operators. This allows one to write down equations describing minimal matter coupled to two-dimensional quantum gravity directly in terms of known functionals. (orig.)
Twin Jet Effects on Noise of Round and Rectangular Jets: Experiment and Model
Bozak, Rick
2014-01-01
Many subsonic and supersonic aircraft concepts proposed by NASA's Fundamental Aeronautics Program have asymmetric, integrated propulsion systems. The asymmetries in the exhaust of these propulsion systems create an asymmetric acoustic field. The asymmetries investigated in the current study are from twin jets and rectangular nozzles. Each effect produces its own variation of the acoustic field. An empirical model was developed to predict the acoustic field variation from round twin jets with twin jet spacing from 2.6 to 5.6, where s is the center-to-center spacing over the jet diameter. The model includes parameters to account for the effects of twin jet spacing, jet static temperature ratio, flight Mach number, frequency, and observer angle (both polar and azimuthal angles). The model was then applied to twin 2:1 and 8:1 aspect ratio nozzles to determine the impact of jet aspect ratio. For the round and rectangular jets, the use of the model reduces the average magnitude of the error over all frequencies, observation angles, and jet spacings by approximately 0.5dB when compared against the assumption of adding two jets incoherently.
Frank, Till D; Kiyatkin, Anatoly; Cheong, Alex; Kholodenko, Boris N
2017-06-01
Signal integration determines cell fate on the cellular level, affects cognitive processes and affective responses on the behavioural level, and is likely to be involved in psychoneurobiological processes underlying mood disorders. Interactions between stimuli may subjected to time effects. Time-dependencies of interactions between stimuli typically lead to complex cell responses and complex responses on the behavioural level. We show that both three-factor models and time series models can be used to uncover such time-dependencies. However, we argue that for short longitudinal data the three factor modelling approach is more suitable. In order to illustrate both approaches, we re-analysed previously published short longitudinal data sets. We found that in human embryonic kidney 293 cells cells the interaction effect in the regulation of extracellular signal-regulated kinase (ERK) 1 signalling activation by insulin and epidermal growth factor is subjected to a time effect and dramatically decays at peak values of ERK activation. In contrast, we found that the interaction effect induced by hypoxia and tumour necrosis factor-alpha for the transcriptional activity of the human cyclo-oxygenase-2 promoter in HEK293 cells is time invariant at least in the first 12-h time window after stimulation. Furthermore, we applied the three-factor model to previously reported animal studies. In these studies, memory storage was found to be subjected to an interaction effect of the beta-adrenoceptor agonist clenbuterol and certain antagonists acting on the alpha-1-adrenoceptor / glucocorticoid-receptor system. Our model-based analysis suggests that only if the antagonist drug is administer in a critical time window, then the interaction effect is relevant. © The authors 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
Directory of Open Access Journals (Sweden)
Kundu Antara
2013-01-01
Full Text Available The present paper deals with an economic order quantity (EOQ model of an inventory problem with alternating demand rate: (i For a certain period, the demand rate is a non linear function of the instantaneous inventory level. (ii For the rest of the cycle, the demand rate is time dependent. The time at which demand rate changes, may be deterministic or uncertain. The deterioration rate of the item is time dependent. The holding cost and shortage cost are taken as a linear function of time. The total cost function per unit time is obtained. Finally, the model is solved using a gradient based non-linear optimization technique (LINGO and is illustrated by a numerical example.
Maurya, Dinesh Chandra
In the present paper, we have been investigated a new dark energy model in anisotropic Bianchi-type-I (B-I) space-time with redshift-dependent equation of state (EoS) parameter. The Einstein’s field equations have been solved by applying a variation-law for hyperbolic scale factor a(t) = [sinh(αt)] 1 n which provides a time-dependent deceleration parameter and time-dependent EoS parameter. We also have been found the redshift-dependent EoS parameter. The existing range of the dark energy EoS parameter ω for derived model is found to be in good agreement with the recent observations. The cosmological constant Λ is found to be a decreasing function of time and it approaches a small positive value at the present epoch which is collaborated by results from recent supernovae Ia observations. It has also been suggested that the dark energy that explains the observed accelerating universe may arise due to the contribution to the vacuum energy of the EoS in a time-dependent background. Geometric and Kinematic properties of the model and the behavior of the anisotropy of the dark energy have been discussed.
Energy Technology Data Exchange (ETDEWEB)
Verley, Jason C.; Axness, Carl L.; Hembree, Charles Edward; Keiter, Eric Richard; Kerr, Bert (New Mexico Institute of Mining and Technology, Socorro, NM)
2012-04-01
Photocurrent generated by ionizing radiation represents a threat to microelectronics in radiation environments. Circuit simulation tools such as SPICE [1] can be used to analyze these threats, and typically rely on compact models for individual electrical components such as transistors and diodes. Compact models consist of a handful of differential and/or algebraic equations, and are derived by making simplifying assumptions to any of the many semiconductor transport equations. Historically, many photocurrent compact models have suffered from accuracy issues due to the use of qualitative approximation, rather than mathematically correct solutions to the ambipolar diffusion equation. A practical consequence of this inaccuracy is that a given model calibration is trustworthy over only a narrow range of operating conditions. This report describes work to produce improved compact models for photocurrent. Specifically, an analytic model is developed for epitaxial diode structures that have a highly doped subcollector. The analytic model is compared with both numerical TCAD calculations, as well as the compact model described in reference [2]. The new analytic model compares well against TCAD over a wide range of operating conditions, and is shown to be superior to the compact model from reference [2].
DEFF Research Database (Denmark)
Garcia-Aymerich, J.; Lange, P.; Serra, I.
2008-01-01
PURPOSE: Results from longitudinal studies about the association between physical activity and chronic obstructive pulmonary disease (COPD) may have been biased because they did not properly adjust for time-dependent confounders. Marginal structural models (MSMs) have been proposed to address...... this type of confounding. We sought to assess the presence of time-dependent confounding in the association between physical activity and COPD development and course by comparing risk estimates between standard statistical methods and MSMs. METHODS: By using the population-based cohort Copenhagen City Heart.......007) and in the MSM analysis (OR 0.79, p = 0.025). In the subgroup with COPD (n = 2,226), high physical activity was associated with a reduced risk of COPD admissions during follow-up (standard, incidence rate ratio, 0.74; p = 0.096; MSM, 0.68, p = 0.044), and with a reduced risk of mortality (standard, hazard ratio...
DEFF Research Database (Denmark)
Garcia-Aymerich, Judith; Lange, Peter; Serra, Ignasi
2008-01-01
Study, 6,568 subjects selected from the general population in 1976 were followed up until 2004 with three repeated examinations. RESULTS: Moderate to high compared with low physical activity was associated with a reduced risk of developing COPD both in the standard analysis (odds ratio [OR] 0.76, p = 0......PURPOSE: Results from longitudinal studies about the association between physical activity and chronic obstructive pulmonary disease (COPD) may have been biased because they did not properly adjust for time-dependent confounders. Marginal structural models (MSMs) have been proposed to address...... this type of confounding. We sought to assess the presence of time-dependent confounding in the association between physical activity and COPD development and course by comparing risk estimates between standard statistical methods and MSMs. METHODS: By using the population-based cohort Copenhagen City Heart...
Directory of Open Access Journals (Sweden)
Vinod Kumar Mishra
2013-06-01
Full Text Available Purpose: The purpose of this paper to develop an inventory model for instantaneous deteriorating items with the consideration of the facts that the deterioration rate can be controlled by using the preservation technology (PT and the holding cost & demand rate both are linear function of time which was treated as constant in most of the deteriorating inventory model. Design/methodology/approach: Developed the mathematical equation of deterministic deteriorating inventory model in which demand rate and holding cost both is linear function of time, deterioration rate is constant, backlogging rate is variable and depend on the length of the next replenishment, shortages are allowed and partially backlogged and obtain an analytical solution which optimizes the total cost of the proposed inventory model. Findings: The model can be applied for optimizing the total inventory cost of deteriorating items inventory for such business enterprises where they use the preservation technology to control the deterioration rate under other assumptions of the model. Originality/value: The inventory system for deteriorating items has been an object of study for a long time, but little is known about the effect of investing in reducing the rate of product deterioration and their significant impact in the business. The proposed model is effective as well as efficient for the business organization that uses the preservation technology to reduce the deterioration rate of the instantaneous deteriorating items of the inventory.
International Nuclear Information System (INIS)
Bernhardt, P.A.
1979-01-01
A time-varying model of neutral gas expansion in a nonuniform environment is developed. The model includes diffusion in a multicomponent atmosphere, chemical reactions between the diffusing gases and the atmosphere, thermal diffusion effects, and transport due to altitude-dependent winds. The three-dimensional diffusion equation governing the neutral gas flow is solved numerically using Fourier transform and finite difference techniques. Examples of H 2 , OH, and CO 2 diffusion illustrate the effects of chemical reactions and wind shears on the neutral expansion. The model may be applied to chemical releases which produce ionospheric depletions or luminescent trails
Kim, Myung-Hee Y.; Nounu, Hatem N.; Ponomarev, Artem L.; Cucinotta, Francis A.
2011-01-01
A new computer model, the GCR Event-based Risk Model code (GERMcode), was developed to describe biophysical events from high-energy protons and heavy ions that have been studied at the NASA Space Radiation Laboratory (NSRL) [1] for the purpose of simulating space radiation biological effects. In the GERMcode, the biophysical description of the passage of heavy ions in tissue and shielding materials is made with a stochastic approach that includes both ion track structure and nuclear interactions. The GERMcode accounts for the major nuclear interaction processes of importance for describing heavy ion beams, including nuclear fragmentation, elastic scattering, and knockout-cascade processes by using the quantum multiple scattering fragmentation (QMSFRG) model [2]. The QMSFRG model has been shown to be in excellent agreement with available experimental data for nuclear fragmentation cross sections
Benguigui, Madeleine; Alishekevitz, Dror; Timaner, Michael; Shechter, Dvir; Raviv, Ziv; Benzekry, Sebastien; Shaked, Yuval
2018-01-05
It has recently been suggested that pro-tumorigenic host-mediated processes induced in response to chemotherapy counteract the anti-tumor activity of therapy, and thereby decrease net therapeutic outcome. Here we use experimental data to formulate a mathematical model describing the host response to different doses of paclitaxel (PTX) chemotherapy as well as the duration of the response. Three previously described host-mediated effects are used as readouts for the host response to therapy. These include the levels of circulating endothelial progenitor cells in peripheral blood and the effect of plasma derived from PTX-treated mice on migratory and invasive properties of tumor cells in vitro . A first set of mathematical models, based on basic principles of pharmacokinetics/pharmacodynamics, did not appropriately describe the dose-dependence and duration of the host response regarding the effects on invasion. We therefore provide an alternative mathematical model with a dose-dependent threshold, instead of a concentration-dependent one, that describes better the data. This model is integrated into a global model defining all three host-mediated effects. It not only precisely describes the data, but also correctly predicts host-mediated effects at different doses as well as the duration of the host response. This mathematical model may serve as a tool to predict the host response to chemotherapy in cancer patients, and therefore may be used to design chemotherapy regimens with improved therapeutic outcome by minimizing host mediated effects.
Time-dependent transport phenomena
Stefanucci, Gianluca; Kurth, S.; Gross, E. K. U.; Rubio, Angel
2007-01-01
This chapter describes the ab initio theory of quantum transport. The Cini scheme can be combined with time-dependent density functional theory (TDDFT). In this theory, the time-dependent density of an interacting system moving in an external, time-dependent local potential can be calculated via a fictitious system of non-interacting electrons moving in a local, effective, and time-dependent potential. Therefore this theory is well suited for the treatment of non-equilibrium transport problem...
Directory of Open Access Journals (Sweden)
Zhilei He
2016-01-01
Full Text Available Based on mineral components and the creep experimental studies of Three Gorges granite and Beishan granite from different regions of China at various temperatures, the strength and creep property of two types of granites are compared and analyzed. Considering the damage evolution process, a new creep constitutive model is proposed to describe the creep property of granite at different temperatures based on fractional derivative. The parameters of the new creep model are determined on the basis of the experimental results of the two granites. In addition, a sensitivity study is carried out, showing effects of stress level, fractional derivative order, and the exponent m. The results indicate that the proposed creep model can describe the three creep stages of granite at different temperatures and contribute to further research on the creep property of granite.
Meier, D.; Lukin, G.; Thieme, N.; Bönisch, P.; Dadzis, K.; Büttner, L.; Pätzold, O.; Czarske, J.; Stelter, M.
2017-03-01
This paper describes novel equipment for model experiments designed for detailed studies on electromagnetically driven flows as well as solidification and melting processes with low-melting metals in a square-based container. Such model experiments are relevant for a validation of numerical flow simulation, in particular in the field of directional solidification of multi-crystalline photovoltaic silicon ingots. The equipment includes two square-shaped electromagnetic coils and a melt container with a base of 220×220 mm2 and thermostat-controlled heat exchangers at top and bottom. A system for dual-plane, spatial- and time-resolved flow measurements as well as for in-situ tracking of the solid-liquid interface is developed on the basis of the ultrasound Doppler velocimetry. The parameters of the model experiment are chosen to meet the scaling laws for a transfer of experimental results to real silicon growth processes. The eutectic GaInSn alloy and elemental gallium with melting points of 10.5 °C and 29.8 °C, respectively, are used as model substances. Results of experiments for testing the equipment are presented and discussed.
CSIR Research Space (South Africa)
Bernhardi, EH
2008-01-01
Full Text Available that determines the temperature and the thermally induced stresses in isotropic rods is presented. Even though the model is developed for isotropic rods, it is shown that it can also be used to accurately estimate the thermal effects in anisotropic rods...
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz
2000-01-01
convected Maxwell fluid to a fluid described by an integral constitutive equation of the Rivlin-Sawyers type. This includes the K-BKZ model. The convergence of the method is demonstrated on the axisymmetric problem of the inflation of a polymeric membrane only restricted by a clamping ring....
Machine learning, computer vision, and probabilistic models in jet physics
CERN. Geneva; NACHMAN, Ben
2015-01-01
In this talk we present recent developments in the application of machine learning, computer vision, and probabilistic models to the analysis and interpretation of LHC events. First, we will introduce the concept of jet-images and computer vision techniques for jet tagging. Jet images enabled the connection between jet substructure and tagging with the fields of computer vision and image processing for the first time, improving the performance to identify highly boosted W bosons with respect to state-of-the-art methods, and providing a new way to visualize the discriminant features of different classes of jets, adding a new capability to understand the physics within jets and to design more powerful jet tagging methods. Second, we will present Fuzzy jets: a new paradigm for jet clustering using machine learning methods. Fuzzy jets view jet clustering as an unsupervised learning task and incorporate a probabilistic assignment of particles to jets to learn new features of the jet structure. In particular, we wi...
Florea, Cristina; Tanska, Petri; Mononen, Mika E; Qu, Chengjuan; Lammi, Mikko J; Laasanen, Mikko S; Korhonen, Rami K
2017-02-01
Cellular responses to mechanical stimuli are influenced by the mechanical properties of cells and the surrounding tissue matrix. Cells exhibit viscoelastic behavior in response to an applied stress. This has been attributed to fluid flow-dependent and flow-independent mechanisms. However, the particular mechanism that controls the local time-dependent behavior of cells is unknown. Here, a combined approach of experimental AFM nanoindentation with computational modeling is proposed, taking into account complex material behavior. Three constitutive models (porohyperelastic, viscohyperelastic, poroviscohyperelastic) in tandem with optimization algorithms were employed to capture the experimental stress relaxation data of chondrocytes at 5 % strain. The poroviscohyperelastic models with and without fluid flow allowed through the cell membrane provided excellent description of the experimental time-dependent cell responses (normalized mean squared error (NMSE) of 0.003 between the model and experiments). The viscohyperelastic model without fluid could not follow the entire experimental data that well (NMSE = 0.005), while the porohyperelastic model could not capture it at all (NMSE = 0.383). We also show by parametric analysis that the fluid flow has a small, but essential effect on the loading phase and short-term cell relaxation response, while the solid viscoelasticity controls the longer-term responses. We suggest that the local time-dependent cell mechanical response is determined by the combined effects of intrinsic viscoelasticity of the cytoskeleton and fluid flow redistribution in the cells, although the contribution of fluid flow is smaller when using a nanosized probe and moderate indentation rate. The present approach provides new insights into viscoelastic responses of chondrocytes, important for further understanding cell mechanobiological mechanisms in health and disease.
Tempel, David G.; Aspuru-Guzik, Alán
2011-11-01
The dissipative dynamics of many-electron systems interacting with a thermal environment has remained a long-standing challenge within time-dependent density functional theory (TDDFT). Recently, the formal foundations of open quantum systems time-dependent density functional theory (OQS-TDDFT) within the master equation approach were established. It was proven that the exact time-dependent density of a many-electron open quantum system evolving under a master equation can be reproduced with a closed (unitarily evolving) and non-interacting Kohn-Sham system. This potentially offers a great advantage over previous approaches to OQS-TDDFT, since with suitable functionals one could obtain the dissipative open-systems dynamics by simply propagating a set of Kohn-Sham orbitals as in usual TDDFT. However, the properties and exact conditions of such open-systems functionals are largely unknown. In the present article, we examine a simple and exactly-solvable model open quantum system: one electron in a harmonic well evolving under the Lindblad master equation. We examine two different representitive limits of the Lindblad equation (relaxation and pure dephasing) and are able to deduce a number of properties of the exact OQS-TDDFT functional. Challenges associated with developing approximate functionals for many-electron open quantum systems are also discussed.
Directory of Open Access Journals (Sweden)
Fuchs Regina
2017-01-01
Full Text Available The early-stage sintering of thin layers of micron-sized polystyrene (PS particles, at sintering temperatures near and above the glass transition temperature Tg (~ 100°C, is studied utilizing 3D tomography, nanoindentation and confocal microscopy. Our experimental results confirm the existence of a critical particle radius (rcrit ~ 1 μm below which surface forces need to be considered as additional driving force, on top of the usual surfacetension driven viscous flow sintering mechanism. Both sintering kinetics and mechanical properties of particles smaller than rcrit are dominated by contact deformation due to surface forces, so that sintering of larger particles is generally characterized by viscous flow. Consequently, smaller particles require shorter sintering. These experimental observations are supported by discrete particle simulations that are based on analytical models: for small particles, if only viscous sintering is considered, the model under-predicts the neck radius during early stage sintering, which confirms the need for an additional driving mechanism like elastic-plastic repulsion and surface forces that are both added to the DEM model.
Uthayakumar, R.; Tharani, S.
2017-12-01
Recently, much emphasis has given to study the control and maintenance of production inventories of the deteriorating items. Rework is one of the main issues in reverse logistic and green supply chain, since it can reduce production cost and the environmental problem. Many researchers have focused on developing rework model, but few of them have developed model for deteriorating items. Due to this fact, we take up productivity and rework with deterioration as the major concern in this paper. In this paper, a production-inventory model with deteriorative items in which one cycle has n production setups and one rework setup (n, 1) policy is considered for deteriorating items with stock-dependent demand in case 1 and exponential demand in case 2. An effective iterative solution procedure is developed to achieve optimal time, so that the total cost of the system is minimized. Numerical and sensitivity analyses are discussed to examine the outcome of the proposed solution procedure presented in this research.
Polidori, G; Marreiro, A; Pron, H; Lestriez, P; Boyer, F C; Quinart, H; Tourbah, A; Taïar, R
2016-11-01
This article establishes the basics of a theoretical model for the constitutive law that describes the skin temperature and thermolysis heat losses undergone by a subject during a session of whole-body cryotherapy (WBC). This study focuses on the few minutes during which the human body is subjected to a thermal shock. The relationship between skin temperature and thermolysis heat losses during this period is still unknown and have not yet been studied in the context of the whole human body. The analytical approach here is based on the hypothesis that the skin thermal shock during a WBC session can be thermally modelled by the sum of both radiative and free convective heat transfer functions. The validation of this scientific approach and the derivation of temporal evolution thermal laws, both on skin temperature and dissipated thermal power during the thermal shock open many avenues of large scale studies with the aim of proposing individualized cryotherapy protocols as well as protocols intended for target populations. Furthermore, this study shows quantitatively the substantial imbalance between human metabolism and thermolysis during WBC, the explanation of which remains an open question. Copyright © 2016 Elsevier Ltd. All rights reserved.
Miller, M. M.; Shirzaei, M.
2014-12-01
Alluvial basins in Phoenix experience surface deformation due to large volumes of fluid withdrawn and added to aquifers. The spatiotemporal pattern of deformation is controlled by pumping and recharge rates, hydraulic boundaries, and properties such as diffusivity, transmissivity, and hydraulic conductivity. Land subsidence can cause damages to structures, earth fissures, and a permanent loss of aquifer storage; effects are often apparent after the onset of sustained events. Improving our understanding of the source and mechanisms of deformation is important for risk management and future planning. Monitoring subsidence and uplift using InSAR allows for detailed, dense spatial coverage with less than one cm measurement precision. Envisat data acquired from 2003-11 includes 38 ascending and 53 descending SAR images forming 239 and 423 coherent interferograms respectively. Displacement is separated into vertical and horizontal components by accounting for the satellite look angle and combining ascending and descending line of sight (LOS) data. Vertical velocity from Envisat reveals subsidence reaching -1.84 cm/yr and 0.60 cm/yr uplift. ERS 1&2 satellites delivered useful data from 1992-97, comprised of 6 ascending and 12 descending SAR images. Ascending images form 7 interferograms with LOS velocity from -1.23 to 1.65 cm/yr; descending images produce 25 interferograms with LOS velocity rates from -1.40 to 0.75 cm/yr. InSAR time series are compared with hydraulic head levels from 33 observation wells. Wavelet decomposition is used to separate the long-term, inelastic components from cyclic, elastic signals in InSAR and well level data. The specific storage coefficient, a parameter used in poroelastic models, is estimated as the ratio of cyclic vertical deformation to the equivalent component of the well level time series. Poroelastic theory assumes that pore pressure and fluid mass within the aquifer change during fluid withdrawal, while the relatively impermeable
Selles, Nathan; King, Andrew; Proudhon, Henry; Saintier, Nicolas; Laiarinandrasana, Lucien
2017-08-01
Double notched round bars made of semi-crystalline polymer polyamide 6 (PA6) were submitted to monotonic tensile and creep tests. The two notches had a root radius of 0.45 mm, which imposes a multiaxial stress state and a state of high triaxiality in the net (minimal) section of the specimens. Tests were carried out until the failure occurred from one of the notches. The other one, unbroken but deformed under steady strain rate or steady load, was inspected using the Synchrotron Radiation Computed Tomography (SRCT) technique. These 3D through thickness inspections allowed the study of microstructural evolution at the peak stress for the monotonic tensile test and at the beginning of the tertiary creep for the creep tests. Cavitation features were assessed with a micrometre resolution within the notched region. Spatial distributions of void volume fraction ( Vf) and void morphology were studied. Voiding mechanisms were similar under steady strain rates and steady loads. The maximum values of Vf were located between the axis of revolution of the specimens and the notch surface and voids were considered as flat cylinders with a circular basis perpendicular to the loading direction. A model, based on porous plasticity, was used to simulate the mechanical response of this PA6 material under high stress triaxiality. Both macroscopic behaviour (loading curves) and voiding micro-mechanisms (radial distributions of void volume fraction) were accurately predicted using finite element simulations.
Time-dependent simulation of oblique MHD cosmic-ray shocks using the two-fluid model
Frank, Adam; Jones, T. W.; Ryu, Dongsu
1995-01-01
Using a new, second-order accurate numerical method we present dynamical simulations of oblique MHD cosmic-ray (CR)-modified plane shock evolution. Most of the calculations are done with a two-fluid model for diffusive shock acceleration, but we provide also comparisons between a typical shock computed that way against calculations carried out using the more complete, momentum-dependent, diffusion-advection equation. We also illustrate a test showing that these simulations evolve to dynamical equilibria consistent with previously published steady state analytic calculations for such shocks. In order to improve understanding of the dynamical role of magnetic fields in shocks modified by CR pressure we have explored for time asymptotic states the parameter space of upstream fast mode Mach number, M(sub f), and plasma beta. We compile the results into maps of dynamical steady state CR acceleration efficiency, epsilon(sub c). We have run simulations using constant, and nonisotropic, obliquity (and hence spatially) dependent forms of the diffusion coefficient kappa. Comparison of the results shows that while the final steady states achieved are the same in each case, the history of CR-MHD shocks can be strongly modified by variations in kappa and, therefore, in the acceleration timescale. Also, the coupling of CR and MHD in low beta, oblique shocks substantially influences the transient density spike that forms in strongly CR-modified shocks. We find that inside the density spike a MHD slow mode wave can be generated that eventually steepens into a shock. A strong layer develops within the density spike, driven by MHD stresses. We conjecture that currents in the shear layer could, in nonplanar flows, results in enhanced particle accretion through drift acceleration.
DEFF Research Database (Denmark)
Demetrescu, Crisan; Wilhelm, H.; Tumanian, M.
2007-01-01
The time-dependent heat budget, thermal evolution and rheology of the lithosphere in the last 13Myr, along a 120 km long profile in the foreland of the Eastern Carpathians bend is presented. The study area, a complex tectonic environment in the vicinity of the wellknown intermediate-depth seism...... The time-dependent heat budget, thermal evolution and rheology of the lithosphere in the last 13Myr, along a 120 km long profile in the foreland of the Eastern Carpathians bend is presented. The study area, a complex tectonic environment in the vicinity of the wellknown intermediate...... and geological information on structure, lithology and time evolution of the sedimentary pile have been used to model the thermal evolution by means of a 2-D finite element model which includes sedimentation history, sediment compaction, lateral and vertical variation of thermal properties of sediments...... and consolidated crust. Modelling results have been compared to measured temperatures, corrected for palaeoclimate effects, in a trial and error iterative approach. Sedimentation, palaeoclimate, undercompaction and heat refraction effects on one hand, and the heat generated in the upper crust, on the other...
Directory of Open Access Journals (Sweden)
Amir Hakimhashemi
2010-11-01
Full Text Available We apply here a forecasting model to the Italian region for the spatio-temporal distribution of seismicity based on a smoothing Kernel function, Coulomb stress variations, and a rate-and-state friction law. We tested the feasibility of this approach, and analyzed the importance of introducing time-dependency in forecasting future events. The change in seismicity rate as a function of time was estimated by calculating the Coulomb stress change imparted by large earthquakes. We applied our approach to the region of Italy, and used all of the cataloged earthquakes that occurred up to 2006 to generate the reference seismicity rate. For calculation of the time-dependent seismicity rate changes, we estimated the rate-and-state stress transfer imparted by all of the ML≥4.0 earthquakes that occurred during 2007 and 2008. To validate the results, we first compared the reference seismicity rate with the distribution of ML≥1.8 earthquakes since 2007, using both a non-declustered and a declustered catalog. A positive correlation was found, and all of the forecast earthquakes had locations within 82% and 87% of the study area with the highest seismicity rate, respectively. Furthermore, 95% of the forecast earthquakes had locations within 27% and 47% of the study area with the highest seismicity rate, respectively. For the time-dependent seismicity rate changes, the number of events with locations in the regions with a seismicity rate increase was 11% more than in the regions with a seismicity rate decrease.
Directory of Open Access Journals (Sweden)
Khalid Ahmed Joudi
2017-01-01
Full Text Available This paper presents a computer simulation model of a thermally activated roof (TAR to cool a room using cool water from a wet cooling tower. Modeling was achieved using a simplified 1-D resistance-capacitance thermal network (RC model for an infinite slab. Heat transfer from the cooling pipe network was treated as 2-D heat flow. Only a limited number of nodes were required to obtain reliable results. The use of 6th order RC-thermal model produced a set of ordinary differential equations that were solved using MATLAB - R2012a. The computer program was written to cover all possible initial conditions, material properties, TAR system geometry and hourly solar radiation. The cool water supply was considered time dependent with the variation of the ambient wet bulb temperature. Results from RC-thermal modeling were compared with experimental measurements for a second story room measuring 5.5 m x 4 m x 3 m at Amarah city/ Iraq (31.865 ˚N, 47.128 ˚E for 21 July, 2013. The roof was constructed of 200 mm concrete slab, 150 mm turf and 50 mm insulation. Galvanized 13 mm steel pipe coils were buried in the roof slab with a pipe occupation ratio of 0.12. The walls were constructed of 240 mm common brick with 10mm cement plaster on the inside and outside surfaces and 20 mm Styrofoam insulation on the inside surface and covered with PVC panel. Thermistors were used to measure the indoor and outdoor temperatures, TAR system water inlet and outlet temperatures and temperature distribution inside the concrete slab. The effect of pipe spacing and water mass flow rate were evaluated. Agreement was good between the experimental and RC-thermal model. Concrete core temperature reaches the supply water temperature faster for lower pipe spacing. Heat extracted from the space increased with water mass flow rate to an optimum of 0.0088 kg/s.m².
Jet browser model accelerated by GPUs
Directory of Open Access Journals (Sweden)
Forster Richárd
2016-12-01
Full Text Available In the last centuries the experimental particle physics began to develop thank to growing capacity of computers among others. It is allowed to know the structure of the matter to level of quark gluon. Plasma in the strong interaction. Experimental evidences supported the theory to measure the predicted results. Since its inception the researchers are interested in the track reconstruction. We studied the jet browser model, which was developed for 4π calorimeter. This method works on the measurement data set, which contain the components of interaction points in the detector space and it allows to examine the trajectory reconstruction of the final state particles. We keep the total energy in constant values and it satisfies the Gauss law. Using GPUs the evaluation of the model can be drastically accelerated, as we were able to achieve up to 223 fold speedup compared to a CPU based parallel implementation.
Kengne, E; Lakhssassi, A; Liu, W M
2017-08-01
A lossless nonlinear LC transmission network is considered. With the use of the reductive perturbation method in the semidiscrete limit, we show that the dynamics of matter-wave solitons in the network can be modeled by a one-dimensional Gross-Pitaevskii (GP) equation with a time-dependent linear potential in the presence of a chemical potential. An explicit expression for the growth rate of a purely growing modulational instability (MI) is presented and analyzed. We find that the potential parameter of the GP equation of the system does not affect the different regions of the MI. Neglecting the chemical potential in the GP equation, we derive exact analytical solutions which describe the propagation of both bright and dark solitary waves on continuous-wave (cw) backgrounds. Using the found exact analytical solutions of the GP equation, we investigate numerically the transmission of both bright and dark solitary voltage signals in the network. Our numerical studies show that the amplitude of a bright solitary voltage signal and the depth of a dark solitary voltage signal as well as their width, their motion, and their behavior depend on (i) the propagation frequencies, (ii) the potential parameter, and (iii) the amplitude of the cw background. The GP equation derived in this paper with a time-dependent linear potential opens up different ideas that may be of considerable theoretical interest for the management of matter-wave solitons in nonlinear LC transmission networks.
Fukagawa, Masafumi; Kido, Ryo; Komaba, Hirotaka; Onishi, Yoshihiro; Yamaguchi, Takuhiro; Hasegawa, Takeshi; Kurita, Noriaki; Fukuma, Shingo; Akizawa, Tadao; Fukuhara, Shunichi
2014-06-01
Hemodialysis patients with mineral and bone disorders (MBDs) have an abnormally high relative risk of death, but their absolute risk of death is unknown. Further, previous studies have not accounted for possible time-dependent confounding of the association between MBD markers and death due to the effect of markers of MBD on treatments, which subsequently may affect MBD markers. Multicenter, 3-year, prospective, case-cohort study. 8,229 hemodialysis patients with secondary hyperparathyroidism (parathyroid hormone level ≥180 pg/mL and/or receiving vitamin D receptor activators) at 86 facilities in Japan. Serum phosphorus, calcium, and parathyroid hormone levels. All-cause mortality. Marginal structural models were used to compute absolute differences in all-cause mortality associated with different levels of predictors while accounting for time-dependent confounding. The association between phosphorus level and mortality appeared U-shaped, although only higher phosphorus level categories reached statistical significance: compared to those with phosphorus levels of 5.0-5.9 mg/dL (1.61-1.93 mmol/L), patients with the highest (≥9.0 mg/dL [≥2.90 mmol/L]) phosphorus levels had 9.4 excess deaths/100 person-years (rate ratio, 2.79 [95% CI, 1.26-6.15]), whereas no association was found for the lowest phosphorus category (secondary hyperparathyroidism. Copyright © 2014 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Jet propagation within a Linearized Boltzmann Transport model
Energy Technology Data Exchange (ETDEWEB)
Luo, Tan; He, Yayun [Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Wang, Xin-Nian [Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Nuclear Science Division, Mailstop 70R0319, Lawrence Berkeley National Laboratory, Berkeley, CA 94740 (United States); Zhu, Yan [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, E-15706 Santiago de Compostela, Galicia (Spain)
2014-12-15
A Linearized Boltzmann Transport (LBT) model has been developed for the study of parton propagation inside quark–gluon plasma. Both leading and thermal recoiled partons are tracked in order to include the effect of jet-induced medium excitation. In this talk, we present a study within the LBT model in which we implement the complete set of elastic parton scattering processes. We investigate elastic parton energy loss and their energy and length dependence. We further investigate energy loss and transverse shape of reconstructed jets. Contributions from the recoiled thermal partons and jet-induced medium excitations are found to have significant influences on the jet energy loss and transverse profile.
Fawzy, Diaa E.; Stȩpień, K.
2018-03-01
In the current study we present ab initio numerical computations of the generation and propagation of longitudinal waves in magnetic flux tubes embedded in the atmospheres of late-type stars. The interaction between convective turbulence and the magnetic structure is computed and the obtained longitudinal wave energy flux is used in a self-consistent manner to excite the small-scale magnetic flux tubes. In the current study we reduce the number of assumptions made in our previous studies by considering the full magnetic wave energy fluxes and spectra as well as time-dependent ionization (TDI) of hydrogen, employing multi-level Ca II atomic models, and taking into account departures from local thermodynamic equilibrium. Our models employ the recently confirmed value of the mixing-length parameter α=1.8. Regions with strong magnetic fields (magnetic filling factors of up to 50%) are also considered in the current study. The computed Ca II emission fluxes show a strong dependence on the magnetic filling factors, and the effect of time-dependent ionization (TDI) turns out to be very important in the atmospheres of late-type stars heated by acoustic and magnetic waves. The emitted Ca II fluxes with TDI included into the model are decreased by factors that range from 1.4 to 5.5 for G0V and M0V stars, respectively, compared to models that do not consider TDI. The results of our computations are compared with observations. Excellent agreement between the observed and predicted basal flux is obtained. The predicted trend of Ca II emission flux with magnetic filling factor and stellar surface temperature also agrees well with the observations but the calculated maximum fluxes for stars of different spectral types are about two times lower than observations. Though the longitudinal MHD waves considered here are important for chromosphere heating in high activity stars, additional heating mechanism(s) are apparently present.
Solar Coronal Jets: Observations, Theory, and Modeling
Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; Devore, C. R.; Archontis, V.;
2016-01-01
Chromospheric and coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of signicant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of nominal solar ares and Coronal Mass Ejections (CMEs), jets share many common properties with these major phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients closeor at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broadrange of solar-heliospheric problems.
Studies of Monte Carlo Modelling of Jets at ATLAS
Kar, Deepak; The ATLAS collaboration
2017-01-01
The predictions of different Monte Carlo generators for QCD jet production, both in multijets and for jets produced in association with other objects, are presented. Recent improvements in showering Monte Carlos provide new tools for assessing systematic uncertainties associated with these jets. Studies of the dependence of physical observables on the choice of shower tune parameters and new prescriptions for assessing systematic uncertainties associated with the choice of shower model and tune are presented.
Time-dependent multimode structure
International Nuclear Information System (INIS)
Edgu, E.
1991-01-01
In a previous paper, the authors sought to display the multimode kinetics structure and step changes were considered. In this paper, a similar study is undertaken in which ramp changes are considered. Throughout the previous study, a rather simple model of a bare, cylindrical, initially critical nuclear system was the focus. This system had a central region into which a control rod was suddenly inserted, or from which a control rod was suddenly ejected. (A rod follower concept was then adopted.) The mentioned transients were modeled by a two-mode synthesis approach that displayed, rather rigorously, the space-dependency behavior of the time- and space-dependent flux in question. It is useful to complete the picture previously drawn by a study within the authors' framework, where time-dependent changes now take place instead of step changes. In this paper, they consider a ramp rod drop in a bare cylindrical nuclear system as well as a ramp rod ejection from this system (still with a rod follower concept). The effect of a feedback mechanism is not taken into account
Head-Marsden, Kade; Mazziotti, David A
2015-02-07
For an open, time-dependent quantum system, Lindblad derived the most general modification of the quantum Liouville equation in the Markovian approximation that models environmental effects while preserving the non-negativity of the system's density matrix. While Lindblad's modification is correct for N-electron density matrices, solution of the Liouville equation with a Lindblad operator causes the one-electron reduced density matrix (1-RDM) to violate the Pauli exclusion principle. Consequently, after a short time, the 1-RDM is not representable by an ensemble N-electron density matrix (not ensemble N-representable). In this communication, we derive the necessary and sufficient constraints on the Lindbladian matrix within the Lindblad operator to ensure that the 1-RDM remains N-representable for all time. The theory is illustrated by considering the relaxation of an excitation in several molecules F2, N2, CO, and BeH2 subject to environmental noise.
International Nuclear Information System (INIS)
Menouar, Salah; Maamache, Mustapha; Choi, Jeong Ryeol
2010-01-01
The quantum states of time-dependent coupled oscillator model for charged particles subjected to variable magnetic field are investigated using the invariant operator methods. To do this, we have taken advantage of an alternative method, so-called unitary transformation approach, available in the framework of quantum mechanics, as well as a generalized canonical transformation method in the classical regime. The transformed quantum Hamiltonian is obtained using suitable unitary operators and is represented in terms of two independent harmonic oscillators which have the same frequencies as that of the classically transformed one. Starting from the wave functions in the transformed system, we have derived the full wave functions in the original system with the help of the unitary operators. One can easily take a complete description of how the charged particle behaves under the given Hamiltonian by taking advantage of these analytical wave functions.
Directory of Open Access Journals (Sweden)
Bartosz Szczesny
Full Text Available Severe thermal injury induces a pathophysiological response that affects most of the organs within the body; liver, heart, lung, skeletal muscle among others, with inflammation and hyper-metabolism as a hallmark of the post-burn damage. Oxidative stress has been implicated as a key component in development of inflammatory and metabolic responses induced by burn. The goal of the current study was to evaluate several critical mitochondrial functions in a mouse model of severe burn injury. Mitochondrial bioenergetics, measured by Extracellular Flux Analyzer, showed a time dependent, post-burn decrease in basal respiration and ATP-turnover but enhanced maximal respiratory capacity in mitochondria isolated from the liver and lung of animals subjected to burn injury. Moreover, we detected a tissue-specific degree of DNA damage, particularly of the mitochondrial DNA, with the most profound effect detected in lungs and hearts of mice subjected to burn injury. Increased mitochondrial biogenesis in lung tissue in response to burn injury was also observed. Burn injury also induced time dependent increases in oxidative stress (measured by amount of malondialdehyde and neutrophil infiltration (measured by myeloperoxidase activity, particularly in lung and heart. Tissue mononuclear cell infiltration was also confirmed by immunohistochemistry. The amount of poly(ADP-ribose polymers decreased in the liver, but increased in the heart in later time points after burn. All of these biochemical changes were also associated with histological alterations in all three organs studied. Finally, we detected a significant increase in mitochondrial DNA fragments circulating in the blood immediately post-burn. There was no evidence of systemic bacteremia, or the presence of bacterial DNA fragments at any time after burn injury. The majority of the measured parameters demonstrated a sustained elevation even at 20-40 days post injury suggesting a long-lasting effect of thermal
Network-timing-dependent plasticity
Directory of Open Access Journals (Sweden)
Vincent eDelattre
2015-06-01
Full Text Available Bursts of activity in networks of neurons are thought to convey salient information and drive synaptic plasticity. Here we report that network bursts also exert a profound effect on Spike-Timing-Dependent Plasticity (STDP. In acute slices of juvenile rat somatosensory cortex we paired a network burst, which alone induced long-term depression (LTD, with STDP-induced long-term potentiation and depression (LTP and LTD. We observed that STDP-induced LTP was either unaffected, blocked or flipped into LTD by the network burst, and that STDP-induced LTD was either saturated or flipped into LTP, depending on the relative timing of the network burst with respect to spike coincidences of the STDP event. We hypothesized that network bursts flip STDP-induced LTP to LTD by depleting resources needed for LTP and therefore developed a resource-dependent STDP learning rule. In a model neural network under the influence of the proposed resource-dependent STDP rule, we found that excitatory synaptic coupling was homeostatically regulated to produce power law distributed burst amplitudes reflecting self-organized criticality, a state that ensures optimal information coding.
Mallios, Sotirios A.
on the overall current system. We extend the model to include the whole domain of the GEC. We investigate different types of boundary conditions for the proper modeling of the global current flow in the presence of a single storm and the resulting potential difference that is created. We compare this model in the steady state limit with a static model that has been developed in previous published studies. We apply the model to a case of an experimentally measured thunderstorm. We investigate the Wilson current that flows from its top towards the ionosphere as a function of a sequence of different types of lightning discharges, the flash rate and the conductivity distribution. We compare the results with the measurements and we make conclusions regarding the validity of the modeling concept. We develop a time-dependent fluid model that is able to calculate self consistently the time dynamics of the conductivity distribution along with the time dynamics of the thunderstorm electrical properties. This model takes into account several atmospheric processes such as the ionization due to the galactic cosmic rays radiation, the ion-ion recombination, and the attachment of ions to cloud particles. We study the regimes at which the previous models that assume constant conductivity over time are valid and we quantify the similarities and differences between these two models. Finally, we model the lightning discharge channel using a three-dimensional cartesian fractal model. The purpose of this model is to simulate several types of lightning discharges that occur in realistic thunderstorms and calculate the amount of charge that is removed or neutralized from each thunderstorm. At the same time we used this model to quantify the potential differences produced in a developing IC lightning discharge for given thunderstorm electric configurations. We present a case of a +IC lightning discharge in a realistic thunderstorm configuration that leads to a very high (˜300 MV) potential
Modeling the Emission from Turbulent Relativistic Jets in Active ...
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... We present a numerical model developed to calculate observed fluxes of relativistic jets in active galactic nuclei. The observed flux of each turbulent eddy is dependent upon its variable Doppler boosting factor, computed as a function of the relativistic sum of the individual eddy and bulk jet velocities, and ...
Directory of Open Access Journals (Sweden)
A.K. Bhunia
2013-04-01
Full Text Available This paper deals with a deterministic inventory model developed for deteriorating items having two separate storage facilities (owned and rented warehouses due to limited capacity of the existing storage (owned warehouse with linear time dependent demand (increasing over a fixed finite time horizon. The model is formulated with infinite replenishment and the successive replenishment cycle lengths are in arithmetic progression. Partially backlogged shortages are allowed. The stocks of rented warehouse (RW are transported to the owned warehouse (OW in continuous release pattern. For this purpose, the model is formulated as a constrained non-linear mixed integer programming problem. For solving the problem, an advanced genetic algorithm (GA has been developed. This advanced GA is based on ranking selection, elitism, whole arithmetic crossover and non-uniform mutation dependent on the age of the population. Our objective is to determine the optimal replenishment number, lot-size of two-warehouses (OW and RW by maximizing the profit function. The model is illustrated with four numerical examples and sensitivity analyses of the optimal solution are performed with respect to different parameters.
International Nuclear Information System (INIS)
Pirouzmand, Ahmad; Hadad, Kamal; Suh, Kune Y.
2011-01-01
This paper considers the concept of analog computing based on a cellular neural network (CNN) paradigm to simulate nuclear reactor dynamics using a time-dependent second order form of the neutron transport equation. Instead of solving nuclear reactor dynamic equations numerically, which is time-consuming and suffers from such weaknesses as vulnerability to transient phenomena, accumulation of round-off errors and floating-point overflows, use is made of a new method based on a cellular neural network. The state-of-the-art shows the CNN as being an alternative solution to the conventional numerical computation method. Indeed CNN is an analog computing paradigm that performs ultra-fast calculations and provides accurate results. In this study use is made of the CNN model to simulate the space-time response of scalar flux distribution in steady state and transient conditions. The CNN model also is used to simulate step perturbation in the core. The accuracy and capability of the CNN model are examined in 2D Cartesian geometry for two fixed source problems, a mini-BWR assembly, and a TWIGL Seed/Blanket problem. We also use the CNN model concurrently for a typical small PWR assembly to simulate the effect of temperature feedback, poisons, and control rods on the scalar flux distribution
Modeling Polarized Emission from Black Hole Jets: Application to M87 Core Jet
Directory of Open Access Journals (Sweden)
Monika Mościbrodzka
2017-09-01
Full Text Available We combine three-dimensional general-relativistic numerical models of hot, magnetized Advection Dominated Accretion Flows around a supermassive black hole and the corresponding outflows from them with a general relativistic polarized radiative transfer model to produce synthetic radio images and spectra of jet outflows. We apply the model to the underluminous core of M87 galaxy. The assumptions and results of the calculations are discussed in context of millimeter observations of the M87 jet launching zone. Our ab initio polarized emission and rotation measure models allow us to address the constrains on the mass accretion rate onto the M87 supermassive black hole.
Murase, Masayuki; Ono, Koji; Ito, Takeo; Miyajima, Rikio; Mori, Hitoshi; Aoyama, Hiroshi; Oshima, Hiromitu; Yoshida, Yuka; Terada, Akihiko; Koyama, Eturo; Takeda, Toyotarou; Watanabe, Hidefumi; Kimata, Fumiaki; Fujii, Naoyuki
2007-07-01
A time-dependent model for volume changes in pressure sources at Asama volcano is developed from precise leveling data collected since 1902. The optimal source model is determined by comparing five different models (a model with three types of spherical sources, single dike, and dike with a spherical source) during three periods: 1935 to 1939, 1939 to 1950/1953, and 1990 to November 2004. The optimal parameters for each model are estimated by employing a genetic algorithm (GA). The model with two spherical sources was selected as the optimal model. In this model, one of the sources was estimated to be located at a depth of approximately 6 km beneath Kurofu volcano; the other source was estimated to be located close to Maekake volcano at a depth of approximately 2 km. The volume changes in the two spherical sources are calculated using the Akaike's Bayesian information criterion (ABIC) for the period from 1902 to 2005. During the period from 1902 to 1943, a large inflation was estimated in a source at a depth of approximately 6 km beneath Kurofu volcano, which is an older volcano at the base of Asama. After 1943, a rapid deflation continued until 1967. This rapid deflation changed to a marginal inflation that continued from 1967 until 2005. The temporal change in the pressure source beneath Kurofu volcano exhibits a strong positive correlation with the eruption frequency. The leveling data does not suggest a significant volume change in the source beneath Kurofu volcano during the quiet period between 1962 and 2005. During the 20th century, magma appears to have been episodically supplied beneath Asama volcano. In particular, the inflation of the source beneath Kurofu volcano, and probably the magma supply, reached a peak from 1930 to 1940.
Directory of Open Access Journals (Sweden)
Hayder Mohammed Salim Al-Maamori
2018-04-01
Full Text Available Effects of time-dependent deformation (TDD on a tunnel constructed using the micro-tunneling technique in Queenston shale (QS are investigated employing the finite element method. The TDD and strength parameters of the QS were measured from tests conducted on QS specimens soaked in water and lubricant fluids (LFs used in micro-tunneling such as bentonite and polymer solutions. The numerical model was verified using the results of TDD tests performed on QS samples, field measurements of some documented projects, and the closed-form solutions to circular tunnels in swelling rock. The verified model was then employed to conduct a parametric study considering important micro-tunneling design parameters, such as depth and diameter of the tunnel, in situ stress ratio (Ko, and the time lapse prior to replacing LFs with permanent cement grout around the tunnel. It was revealed that the time lapse plays a vital role in controlling deformations and associated stresses developed in the tunnel lining. The critical case of a pipe or tunnel in which the maximum tensile stress develops at its springline occurs when it is constructed at shallow depths in the QS layer. The results of the parametric study were used to suggest recommendations for the construction of tunnels in QS employing micro-tunneling. Keywords: Numerical model, Micro-tunneling, Queenston shale (QS, Lubricant fluids (LFs
ATLAS Standard Model Measurements Using Jet Grooming and Substructure
Ucchielli, Giulia; The ATLAS collaboration
2017-01-01
Boosted topologies allow to explore Standard Model processes in kinematical regimes never tested before. In such LHC challenging environments, standard reconstruction techniques quickly hit the wall. Targeting hadronic final states means to properly reconstruct energy and multiplicity of the jets in the event. In order to be able to identify the decay product of boosted objects, i.e. W bosons, $t\\bar{t}$ pairs or Higgs produced in association with $t\\bar{t}$ pairs, ATLAS experiment is currently exploiting several algorithms using jet grooming and jet substructure. This contribution will mainly cover the following ATLAS measurements: $t\\bar{t}$ differential cross section production and jet mass using the soft drop procedure. Standard Model measurements offer the perfect field to test the performances of new jet tagging techniques which will become even more important in the search for new physics in highly boosted topologies.”
Integral bubble and jet models with pressure forces
Vulfson, A. N.; Nikolaev, P. V.
2017-07-01
Modifications of integral bubble and jet models including the pressure force are proposed. Exact solutions are found for the modified model of a stationary convective jet from a point source of buoyancy and momentum. The exact solutions are compared against analytical solutions of the integral models for a stationary jet that are based on the approximation of the vertical boundary layer. It is found that the modified integral models of convective jets retain the power-law dependences on the altitude for the vertical velocity and buoyancy obtained in classical models. For a buoyant jet in a neutrally stratified atmosphere, the inclusion of the pressure force increases the amplitude of buoyancy and decreases the amplitude of vertical velocity. The total amplitude change is about 10%. It is shown that in this model there is a dynamic invariant expressing the law of a uniform distribution of the potential and kinetic energy along the jet axis. For a spontaneous jet rising in an unstably stratified atmosphere, the inclusion of the pressure force retains the amplitude of buoyancy and increases the amplitude of vertical velocity by about 15%. It is shown that in the model of a spontaneous jet there is a dynamic invariant expressing the law of a uniform distribution of the available potential and kinetic energy along the jet axis. The results are of interest for the problems of anthropogenic pollution diffusion in the air and water environments and the formulation of models for statistical and stochastic ensembles of thermals in a mass-flux parameterization of turbulent moments.
Quasi-Similarity Model of Synthetic Jets
Czech Academy of Sciences Publication Activity Database
Tesař, Václav; Kordík, Jozef
2009-01-01
Roč. 149, č. 2 (2009), s. 255-265 ISSN 0924-4247 R&D Projects: GA AV ČR IAA200760705; GA ČR GA101/07/1499 Institutional research plan: CEZ:AV0Z20760514 Keywords : jets * synthetic jets * similarity solution Subject RIV: BK - Fluid Dynamics Impact factor: 1.674, year: 2009 http://www.sciencedirect.com
Directory of Open Access Journals (Sweden)
Bell Iris R
2012-10-01
Full Text Available Abstract Background This paper proposes a novel model for homeopathic remedy action on living systems. Research indicates that homeopathic remedies (a contain measurable source and silica nanoparticles heterogeneously dispersed in colloidal solution; (b act by modulating biological function of the allostatic stress response network (c evoke biphasic actions on living systems via organism-dependent adaptive and endogenously amplified effects; (d improve systemic resilience. Discussion The proposed active components of homeopathic remedies are nanoparticles of source substance in water-based colloidal solution, not bulk-form drugs. Nanoparticles have unique biological and physico-chemical properties, including increased catalytic reactivity, protein and DNA adsorption, bioavailability, dose-sparing, electromagnetic, and quantum effects different from bulk-form materials. Trituration and/or liquid succussions during classical remedy preparation create “top-down” nanostructures. Plants can biosynthesize remedy-templated silica nanostructures. Nanoparticles stimulate hormesis, a beneficial low-dose adaptive response. Homeopathic remedies prescribed in low doses spaced intermittently over time act as biological signals that stimulate the organism’s allostatic biological stress response network, evoking nonlinear modulatory, self-organizing change. Potential mechanisms include time-dependent sensitization (TDS, a type of adaptive plasticity/metaplasticity involving progressive amplification of host responses, which reverse direction and oscillate at physiological limits. To mobilize hormesis and TDS, the remedy must be appraised as a salient, but low level, novel threat, stressor, or homeostatic disruption for the whole organism. Silica nanoparticles adsorb remedy source and amplify effects. Properly-timed remedy dosing elicits disease-primed compensatory reversal in direction of maladaptive dynamics of the allostatic network, thus promoting
Competing risks and time-dependent covariates
DEFF Research Database (Denmark)
Cortese, Giuliana; Andersen, Per K
2010-01-01
cumulative incidences at different subintervals of the entire study period. The final strategy is to extend the competing risks model by considering all the possible combinations between internal covariate levels and cause-specific events as final states. In all of those proposals, it is possible to estimate......Time-dependent covariates are frequently encountered in regression analysis for event history data and competing risks. They are often essential predictors, which cannot be substituted by time-fixed covariates. This study briefly recalls the different types of time-dependent covariates......, as classified by Kalbfleisch and Prentice [The Statistical Analysis of Failure Time Data, Wiley, New York, 2002] with the intent of clarifying their role and emphasizing the limitations in standard survival models and in the competing risks setting. If random (internal) time-dependent covariates...
Numerical simulation of slurry jets using mixture model
Directory of Open Access Journals (Sweden)
Wen-xin Huai
2013-01-01
Full Text Available Slurry jets in a static uniform environment were simulated with a two-phase mixture model in which flow-particle interactions were considered. A standard k-ε turbulence model was chosen to close the governing equations. The computational results were in agreement with previous laboratory measurements. The characteristics of the two-phase flow field and the influences of hydraulic and geometric parameters on the distribution of the slurry jets were analyzed on the basis of the computational results. The calculated results reveal that if the initial velocity of the slurry jet is high, the jet spreads less in the radial direction. When the slurry jet is less influenced by the ambient fluid (when the Stokes number St is relatively large, the turbulent kinetic energy k and turbulent dissipation rate ε, which are relatively concentrated around the jet axis, decrease more rapidly after the slurry jet passes through the nozzle. For different values of St, the radial distributions of streamwise velocity and particle volume fraction are both self-similar and fit a Gaussian profile after the slurry jet fully develops. The decay rate of the particle velocity is lower than that of water velocity along the jet axis, and the axial distributions of the centerline particle streamwise velocity are self-similar along the jet axis. The pattern of particle dispersion depends on the Stokes number St. When St = 0.39, the particle dispersion along the radial direction is considerable, and the relative velocity is very low due to the low dynamic response time. When St = 3.08, the dispersion of particles along the radial direction is very little, and most of the particles have high relative velocities along the streamwise direction.
Brown, David G.; Wilson, Gordon R.; Horwitz, James L.; Gallagher, Dennis L.
1991-01-01
We describe initial results from a time-dependent, semi-kinetic model of plasma outflow incorporating wave-particle interactions along current-carrying auroral field lines. Electrostatic waves are generated by the current driven ion cyclotron instability (CDICI), causing perpendicular velocity diffusion of ions plus electron heating via anomalous resistivity when and where the relative drift between electrons and ions exceeds certain critical velocities. Using the local bulk parameters we calculate these critical velocities, and so are able to self-consistently switch on and off the heating of the various particle species. Due to the dependence of these critical velocities on the bulk parameters of the species the heating effects exhibit quite complex spatial and temporal variations. A wide range of ion distribution functions are observed in these simulations, including conics with energies of a few electron volts and 'ring' distributions. The rings are seen to be a natural result of transverse heating and velocity filter effects and do not require coherent acceleration processes. We also observe the formation of a density depletion in hydrogen and enhanced oxygen densities at high altitudes.
Kuo, Ching-Wen
2010-06-01
Modern military aircraft jet engines are designed with variable geometry nozzles to provide optimum thrust in different operating conditions within the flight envelope. However, the acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometry of these nozzles. Thus the present effort at The Pennsylvania State University and the NASA Glenn Research Center, in partnership with GE Aviation, is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles. An equally important objective is to develop a scaling methodology for using data obtained from small- and moderate-scale experiments which exhibits the independence of the jet sizes to the measured noise levels. The experimental results presented in this thesis have shown reasonable agreement between small-scale and moderate-scale jet acoustic data, as well as between heated jets and heat-simulated ones. As the scaling methodology is validated, it will be extended to using acoustic data measured with small-scale supersonic model jets to the prediction of the most important components of full-scale engine noise. When comparing the measured acoustic spectra with a microphone array set at different radial locations, the characteristics of the jet noise source distribution may induce subtle inaccuracies, depending on the conditions of jet operation. A close look is taken at the details of the noise generation region in order to better understand the mismatch between spectra measured at various acoustic field radial locations. A processing methodology was developed to correct the effect of the noise source distribution and efficiently compare near-field and far-field spectra with unprecedented accuracy. This technique then demonstrates that the measured noise levels in the physically restricted space of an anechoic chamber can be appropriately
International Nuclear Information System (INIS)
1983-04-01
VISCOT is a non-linear, transient, thermal-stress finite-element code designed to determine the viscoelastic, fiscoplastic, or elastoplastic deformation of a rock mass due to mechanical and thermal loading. The numerical solution of the nonlinear incremental equilibrium equations within VISCOT is performed by using an explicit Euler time-stepping scheme. The rock mass may be modeled as a viscoplastic or viscoelastic material. The viscoplastic material model can be described by a Tresca, von Mises, Drucker-Prager or Mohr-Coulomb yield criteria (with or without strain hardening) with an associated flow rule which can be a power or an exponential law. The viscoelastic material model within VISCOT is a temperature- and stress-dependent law which has been developed specifically for salt rock masses by Pfeifle, Mellegard and Senseny in ONWI-314 topical report (1981). Site specific parameters for this creep law at the Richton, Permian, Paradox and Vacherie salt sites have been calculated and are given in ONWI-314 topical report (1981). A major application of VISCOT (in conjunction with a SCEPTER heat transfer code such as DOT) is the thermomechanical analysis of a rock mass such as salt in which significant time-dependent nonlinear deformations are expected to occur. Such problems include room- and canister-scale studies during the excavation, operation, and long-term post-closure stages in a salt repository. In Section 1.5 of this document the code custodianship and control is described along with the status of verification, validation and peer review of this report
Casalderrey-Solana, Jorge; Milhano, Jose Guilherme; Pablos, Daniel; Rajagopal, Krishna
2016-06-11
We confront a hybrid strong/weak coupling model for jet quenching to data from LHC heavy ion collisions. The model combines the perturbative QCD physics at high momentum transfer and the strongly coupled dynamics of non- abelian gauge theories plasmas in a phenomenological way. By performing a full Monte Carlo simulation, and after fitting one single parameter, we successfully describe several jet observables at the LHC, including dijet and photon jet measurements. Within current theoretical and experimental uncertainties, we find that such observables show little sensitivity to the specifics of the microscopic energy loss mechanism. We also present a new observable, the ratio of the fragmentation function of inclusive jets to that of the associated jets in dijet pairs, which can discriminate among different medium models. Finally, we discuss the importance of plasma response to jet passage in jet shapes.
Computer modeling of jet mixing in INEL waste tanks
International Nuclear Information System (INIS)
Meyer, P.A.
1994-01-01
The objective of this study is to examine the feasibility of using submerged jet mixing pumps to mobilize and suspend settled sludge materials in INEL High Level Radioactive Waste Tanks. Scenarios include removing the heel (a shallow liquid and sludge layer remaining after tank emptying processes) and mobilizing and suspending solids in full or partially full tanks. The approach used was to (1) briefly review jet mixing theory, (2) review erosion literature in order to identify and estimate important sludge characterization parameters (3) perform computer modeling of submerged liquid mixing jets in INEL tank geometries, (4) develop analytical models from which pump operating conditions and mixing times can be estimated, and (5) analyze model results to determine overall feasibility of using jet mixing pumps and make design recommendations
ePLAS Development for Jet Modeling and Applications
International Nuclear Information System (INIS)
Mason, Rodney J.
2011-01-01
Plasma jets provide an alternate approach to the creation of high energy density laboratory plasmas (HEDLP). For the Plasma Liner Experiment (PLX), typically 30 partially ionized argon jets, produced with mini-rail guns, will be focused into a central volume for subsequent magnetic compression into high density plasma liners that can reach high (0.1 Mbar) peak pressures upon stagnation. The jets are typically 2.5 cm in radius traveling at Mach number 30. Ultimate success will require optimized tuning of the rail configurations, the nozzles injecting the gases, and the careful implementation of pre-ionization. The modeling of plasma jet transport is particularly challenging, due the large space (100 sq cm) and time scales (microseconds) involved. Even traditional implicit methods are insufficient, due to the usual need to track electrons explicitly on the mesh. Wall emission and chemistry must be managed, as must ionization of the jet plasma. Ions in the jets are best followed as particles to account properly for collisions upon jet merger. This Phase I Project developed the code ePLAS to attack and successfully surmount many of these challenges. It invented a new 'super implicit' electromagnetic scheme, using implicit electron moment currents that allowed for modeling of jets over multi-cm and multi-picoseconds on standard, single processor 2 GHz PCs. It enabled merger studies of two jets, in preparation for the multi-jet merger problem. The Project explored particle modeling for the ions, and prepared for the future addition of a grid-base jet ion collision model. Access was added to tabular equations of state for the study of ionization effects in merging jets. The improved code was discussed at the primary plasma meetings (IEEE and APS) during the Project period. Collaborations with National Laboratory and industrial partners were nurtured. Code improvements were made to facilitate code use. See: http://www.researchapplicationscorp.com. The ePLAS code enjoys EAR
Miller, M. M.; Shirzaei, M.
2015-12-01
Poroelastic theory suggests that long-term aquifer deformation is linearly proportional to changes in pore pressure. Land subsidence is the surface expression of deformation occurring at depth that is observed with dense, detailed, and high precision interferometric SAR data. In earlier work, Miller & Shirzaei [2015] identified zones of subsidence and uplift across the Phoenix valley caused by pumping and artificial recharge operations. we combined ascending and descending Envisat InSAR datasets to estimate vertical and horizontal displacement time series from 2003-2010. Next, wavelet decomposition was used to extract and compare the elastic components of vertical deformation and hydraulic head data to estimate aquifer storage coefficients. In the following, we present the results from elastic aquifer modeling using a 3D array of triangular dislocations, extending from depth of 0.5 to 3.5 km. We employ a time-dependent modeling scheme to invert the InSAR displacement time series, solving for the spatiotemporal distribution of the aquifer-aquitard compaction. Such models are used to calculate strain and stress fields and forecast the location of extensional cracks and earth fissures, useful for urban planning and management. Later, applying the framework suggested by Burbey [1999], the optimum compaction model is used to estimate the 3D distribution of hydraulic conductivities as a function of time. These estimates are verified using in-situ and laboratory observations and provide unique evidence to investigate the stress-dependence of the hydraulic conductivity and its variations due to pumping, recharge, and injection. The estimates will also be used in groundwater flow models, enhancing water management in the valley and elsewhere. References Burby, T. J. (1999), Effects of horizontal strain in estimating specific storage and compaction in confined and leaky aquifer systems, Hydrogeology Journal, 7(6), 521-532, doi:10.1007/s100400050225. Miller, M. M., and M
A modified stratified model for the 3C 273 jet
International Nuclear Information System (INIS)
Liu Wenpo; Shen Zhiqiang
2009-01-01
We present a modified stratified jet model to interpret the observed spectral energy distributions of knots in the 3C 273 jet. Based on the hypothesis of the single index of the particle energy spectrum at injection and identical emission processes among all the knots, the observed difference of spectral shape among different 3C 273 knots can be understood as a manifestation of the deviation of the equivalent Doppler factor of stratified emission regions in an individual knot from a characteristic one. The summed spectral energy distributions of all ten knots in the 3C 273 jet can be well fitted by two components: a low-energy component (radio to optical) dominated by synchrotron radiation and a high-energy component (UV, X-ray and γ-ray) dominated by inverse Compton scattering of the cosmic microwave background. This gives a consistent spectral index of α = 0.88 (S v ∝ v -α ) and a characteristic Doppler factor of 7.4. Assuming the average of the summed spectrum as the characteristic spectrum of each knot in the 3C 273 jet, we further get a distribution of Doppler factors. We discuss the possible implications of these results for the physical properties in the 3C 273 jet. Future GeV observations with GLAST could separate the γ-ray emission of 3C 273 from the large scale jet and the small scale jet (i.e. the core) through measuring the GeV spectrum.
Mathematical Model of the Jet Engine Fuel System
Directory of Open Access Journals (Sweden)
Klimko Marek
2015-01-01
Full Text Available The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator will be described, with respect to advanced predetermined simplifications.
Mathematical Model of the Jet Engine Fuel System
Klimko Marek
2015-01-01
The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor) engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator) will be described, with respect to advanced predetermined simplifications.
Mathematical Model of the Jet Engine Fuel System
Klimko, Marek
2015-05-01
The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor) engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator) will be described, with respect to advanced predetermined simplifications.
DEFF Research Database (Denmark)
Garcia-Aymerich, J.; Lange, P.; Serra, I.
2008-01-01
this type of confounding. We sought to assess the presence of time-dependent confounding in the association between physical activity and COPD development and course by comparing risk estimates between standard statistical methods and MSMs. METHODS: By using the population-based cohort Copenhagen City Heart...
Modeling jet and outflow feedback during star cluster formation
Energy Technology Data Exchange (ETDEWEB)
Federrath, Christoph [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, VIC 3800 (Australia); Schrön, Martin [Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, D-04318 Leipzig (Germany); Banerjee, Robi [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany); Klessen, Ralf S., E-mail: christoph.federrath@monash.edu [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany)
2014-08-01
Powerful jets and outflows are launched from the protostellar disks around newborn stars. These outflows carry enough mass and momentum to transform the structure of their parent molecular cloud and to potentially control star formation itself. Despite their importance, we have not been able to fully quantify the impact of jets and outflows during the formation of a star cluster. The main problem lies in limited computing power. We would have to resolve the magnetic jet-launching mechanism close to the protostar and at the same time follow the evolution of a parsec-size cloud for a million years. Current computer power and codes fall orders of magnitude short of achieving this. In order to overcome this problem, we implement a subgrid-scale (SGS) model for launching jets and outflows, which demonstrably converges and reproduces the mass, linear and angular momentum transfer, and the speed of real jets, with ∼1000 times lower resolution than would be required without the SGS model. We apply the new SGS model to turbulent, magnetized star cluster formation and show that jets and outflows (1) eject about one-fourth of their parent molecular clump in high-speed jets, quickly reaching distances of more than a parsec, (2) reduce the star formation rate by about a factor of two, and (3) lead to the formation of ∼1.5 times as many stars compared to the no-outflow case. Most importantly, we find that jets and outflows reduce the average star mass by a factor of ∼ three and may thus be essential for understanding the characteristic mass of the stellar initial mass function.
Sepehry-Fard, F.; Coulthard, Maurice H.
1995-01-01
The process of predicting the values of maintenance time dependent variable parameters such as mean time between failures (MTBF) over time must be one that will not in turn introduce uncontrolled deviation in the results of the ILS analysis such as life cycle costs, spares calculation, etc. A minor deviation in the values of the maintenance time dependent variable parameters such as MTBF over time will have a significant impact on the logistics resources demands, International Space Station availability and maintenance support costs. There are two types of parameters in the logistics and maintenance world: a. Fixed; b. Variable Fixed parameters, such as cost per man hour, are relatively easy to predict and forecast. These parameters normally follow a linear path and they do not change randomly. However, the variable parameters subject to the study in this report such as MTBF do not follow a linear path and they normally fall within the distribution curves which are discussed in this publication. The very challenging task then becomes the utilization of statistical techniques to accurately forecast the future non-linear time dependent variable arisings and events with a high confidence level. This, in turn, shall translate in tremendous cost savings and improved availability all around.
Betweenness in time dependent networks
International Nuclear Information System (INIS)
Alsayed, Ahmad; Higham, Desmond J.
2015-01-01
The concept of betweenness has given rise to a very useful class of network centrality measures. Loosely, betweenness quantifies the level of importance of a node in terms of its propensity to act as an intermediary when messages are passed around the network. In this work we generalize a walk-based betweenness measure to the case of time-dependent networks, such as those arising in telecommunications and on-line social media. We also introduce a new kind of betweenness measure, temporal betweenness, which quantifies the importance of a time-point. We illustrate the effectiveness of these new measures on synthetic examples, and also give results on real data sets involving voice call, email and Twitter
Time dependent policy-based access control
DEFF Research Database (Denmark)
Vasilikos, Panagiotis; Nielson, Flemming; Nielson, Hanne Riis
2017-01-01
Access control policies are essential to determine who is allowed to access data in a system without compromising the data's security. However, applications inside a distributed environment may require those policies to be dependent on the actual content of the data, the flow of information, while...... also on other attributes of the environment such as the time. In this paper, we use systems of Timed Automata to model distributed systems and we present a logic in which one can express time-dependent policies for access control. We show how a fragment of our logic can be reduced to a logic...... that current model checkers for Timed Automata such as UPPAAL can handle and we present a translator that performs this reduction. We then use our translator and UPPAAL to enforce time-dependent policy-based access control on an example application from the aerospace industry....
Time-dependent 2-stream particle transport
International Nuclear Information System (INIS)
Corngold, Noel
2015-01-01
Highlights: • We consider time-dependent transport in the 2-stream or “rod” model via an attractive matrix formalism. • After reviewing some classical problems in homogeneous media we discuss transport in materials with whose density may vary. • There we achieve a significant contraction of the underlying Telegrapher’s equation. • We conclude with a discussion of stochastics, treated by the “first-order smoothing approximation.” - Abstract: We consider time-dependent transport in the 2-stream or “rod” model via an attractive matrix formalism. After reviewing some classical problems in homogeneous media we discuss transport in materials whose density may vary. There we achieve a significant contraction of the underlying Telegrapher’s equation. We conclude with a discussion of stochastics, treated by the “first-order smoothing approximation.”
Temperature-Corrected Model of Turbulence in Hot Jet Flows
Abdol-Hamid, Khaled S.; Pao, S. Paul; Massey, Steven J.; Elmiligui, Alaa
2007-01-01
An improved correction has been developed to increase the accuracy with which certain formulations of computational fluid dynamics predict mixing in shear layers of hot jet flows. The CFD formulations in question are those derived from the Reynolds-averaged Navier-Stokes equations closed by means of a two-equation model of turbulence, known as the k-epsilon model, wherein effects of turbulence are summarized by means of an eddy viscosity. The need for a correction arises because it is well known among specialists in CFD that two-equation turbulence models, which were developed and calibrated for room-temperature, low Mach-number, plane-mixing-layer flows, underpredict mixing in shear layers of hot jet flows. The present correction represents an attempt to account for increased mixing that takes place in jet flows characterized by high gradients of total temperature. This correction also incorporates a commonly accepted, previously developed correction for the effect of compressibility on mixing.
Ravagli, Enrico; Grandi, Elena; Rovatti, Paolo; Severi, Stefano
2016-11-11
Hollow fiber models describe the exchange of solutes between blood and dialysate across the membrane of a single fiber of the hemodialysis filter (hemodialyzer). This work aims to develop a new approach to simulate the solute exchange in a hollow fiber in a dynamic and realistic way. Sodium was chosen as our solute of interest due to its importance in hemodialysis as an osmotic regulator. A 2-dimensional (2D) hollow fiber model based on the finite element method (FEM) is coupled to a simple blood pool model to dynamically update the concentration of the solute entering the dialyzer. The resulting coupled model maintains the geometrical detail of the 2D fiber representation and gains a dynamic, blood-side inlet solute concentration. In vitro dialysis sessions were carried out for model validation, by implementing a combination of blood volume loss and/or sodium concentration steps. Plasmatic sodium concentration was recorded by blood gas sampling. Dialysate inlet and outlet conductivities were continuously recorded. Simulated plasmatic sodium concentration was compared with data from the blood gas samples. A mean error of 1.76 ± 1.03 mM was found for the complete dataset, along with a 3.87 mM maximum error. The simulated outlet dialysate sodium concentration was compared with the recorded outlet dialysate conductivity: a very high correlation was found on the whole dataset (R2 = 0.992). Coupling our FEM hollow fiber model to a simple blood pool model proved to be an effective approach for dynamical analysis of the properties of the hemodialyzer.
DEFF Research Database (Denmark)
Wiesen, S.; Fundamenski, W.; Wischmeier, M.
2011-01-01
A revised formulation of the perpendicular diffusive transport model in 2D multi-fluid edge codes is proposed. Based on theoretical predictions and experimental observations a dependence on collisionality is introduced into the transport model of EDGE2D–EIRENE. The impact on time-dependent JET gas...... fuelled ramp-up scenario modelling of the full transient from attached divertor into the high-recycling regime, following a target flux roll over into divertor detachment, ultimately ending in a density limit is presented. A strong dependence on divertor geometry is observed which can mask features...... of the new transport model: a smoothly decaying target recycling flux roll over, an asymmetric drop of temperature and pressure along the field lines as well as macroscopic power dependent plasma oscillations near the density limit which had been previously observed also experimentally. The latter effect...
A simple-source model of military jet aircraft noise
Morgan, Jessica; Gee, Kent L.; Neilsen, Tracianne; Wall, Alan T.
2010-10-01
The jet plumes produced by military jet aircraft radiate significant amounts of noise. A need to better understand the characteristics of the turbulence-induced aeroacoustic sources has motivated the present study. The purpose of the study is to develop a simple-source model of jet noise that can be compared to the measured data. The study is based off of acoustic data collected near a tied-down F-22 Raptor. The simplest model consisted of adjusting the origin of a monopole above a rigid planar reflector until the locations of the predicted and measured interference nulls matched. The model has developed into an extended Rayleigh distribution of partially correlated monopoles which fits the measured data from the F-22 significantly better. The results and basis for the model match the current prevailing theory that jet noise consists of both correlated and uncorrelated sources. In addition, this simple-source model conforms to the theory that the peak source location moves upstream with increasing frequency and lower engine conditions.
Physical simulation of dry microburst using impinging jet model with ...
African Journals Online (AJOL)
In this work, an attempt has been made to simulate the dry microburst (microburst not accompanied by rain) experimentally using the impinging jet model for investigating the macroflow dynamics and scale (Reynolds number) dependency of the downburst flow. Flow visualization is done using a smoke generator for ...
Miyamoto, Yoshiyuki; Zhang, Hong; Cheng, Xinlu; Rubio, Angel
2017-09-01
We use time-dependent density functional theory to study laser-pulse induced decomposition of H2O molecules above the two-dimensional (2D) materials graphene, hexagonal boron nitride, and graphitic carbon nitride. We examine femtosecond-laser pulses with a full width at half maximum of 10 or 20 fs for laser-field intensity and wavelengths of 800 or 400 nm by varying the intensity of the laser field from 5 to 9 V/Å, with the corresponding range of fluence per pulse up to 10.7 J /cm2 . For a H2O molecule above the graphitic sheets, the threshold for laser-field H2O decomposition is reduced by more than 20% compared with that of an isolated H2O molecule. We also show that hole doping enhances the water adsorption energy above graphene. The present results indicate that the graphitic materials should support laser-induced chemistry and that other 2D materials that can enhance laser-induced H2O decomposition should be investigated.
Energy Technology Data Exchange (ETDEWEB)
Casalderrey-Solana, Jorge [Departament d' Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Gulhan, Doga Can [Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Milhano, José Guilherme [CENTRA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Physics Department, Theory Unit, CERN, CH-1211 Genève 23 (Switzerland); Pablos, Daniel [Departament d' Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Rajagopal, Krishna [Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)
2016-12-15
Within a hybrid strong/weak coupling model for jets in strongly coupled plasma, we explore jet modifications in ultra-relativistic heavy ion collisions. Our approach merges the perturbative dynamics of hard jet evolution with the strongly coupled dynamics which dominates the soft exchanges between the fast partons in the jet shower and the strongly coupled plasma itself. We implement this approach in a Monte Carlo, which supplements the DGLAP shower with the energy loss dynamics as dictated by holographic computations, up to a single free parameter that we fit to data. We then augment the model by incorporating the transverse momentum picked up by each parton in the shower as it propagates through the medium, at the expense of adding a second free parameter. We use this model to discuss the influence of the transverse broadening of the partons in a jet on intra-jet observables. In addition, we explore the sensitivity of such observables to the back-reaction of the plasma to the passage of the jet.
Van Kuiken, Benjamin E; Valiev, Marat; Daifuku, Stephanie L; Bannan, Caitlin; Strader, Matthew L; Cho, Hana; Huse, Nils; Schoenlein, Robert W; Govind, Niranjan; Khalil, Munira
2013-05-30
Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of Ru(II) and Ru(III) complexes in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6](4-) and Ru(II) polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5M(II)-CN-Ru(III)(NH3)5](-) (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.
Time-dependent Autler-Townes spectroscopy
Qamar, S; Zubairy, M S
2003-01-01
Autler-Townes spontaneous emission spectroscopy is revisited for a time-dependent case. We report the results of spontaneous emission spectra for nonstationary scattered light signals using the definition of the time-dependent physical spectrum. This is a rare example of problems where time-dependent spectra can be calculated exactly.
Time dependent analysis of concrete in SAP2000
Varona Moya, Francisco de Borja
2018-01-01
This document presents an example of time-dependent analysis of a concrete column using SAP2000. In order to understand the parameters required by the software to run the analysis, the formulation of time dependent properties of concrete according to Model Code 1990 is included.
García, María C; Mora, Manuel; Esquivel, Dolores; Foster, John E; Rodero, Antonio; Jiménez-Sanchidrián, César; Romero-Salguero, Francisco J
2017-08-01
The degradation of methylene blue in aqueous solution as a model dye using a non thermal microwave (2.45 GHz) plasma jet at atmospheric pressure has been investigated. Argon has been used as feed gas and aqueous solutions with different concentrations of the dye were treated using the effluent from plasma jet in a remote exposure. The removal efficiency increased as the dye concentration decreased from 250 to 5 ppm. Methylene blue degrades after different treatment times, depending on the experimental plasma conditions. Thus, kinetic constants up to 0.177 min -1 were obtained. The higher the Ar flow, the faster the degradation rate. Optical emission spectroscopy (OES) was used to gather information about the species present in the gas phase, specifically excited argon atoms. Argon excited species and hydrogen peroxide play an important role in the degradation of the dye. In fact, the conversion of methylene blue was directly related to the density of argon excited species in the gas phase and the concentration of hydrogen peroxide in the aqueous liquid phase. Values of energy yield at 50% dye conversion of 0.296 g/kWh were achieved. Also, the use of two plasma applicators in parallel has been proven to improve energy efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
Holographic complexity for time-dependent backgrounds
Energy Technology Data Exchange (ETDEWEB)
Momeni, Davood, E-mail: davoodmomeni78@gmail.com [Eurasian International Center for Theoretical Physics and Department of General Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Faizal, Mir, E-mail: mirfaizalmir@googlemail.com [Irving K. Barber School of Arts and Sciences, University of British Columbia, Okanagan, 3333 University Way, Kelowna, British Columbia V1V 1V7 (Canada); Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta, T1K 3M4 (Canada); Bahamonde, Sebastian, E-mail: sebastian.beltran.14@ucl.ac.uk [Department of Mathematics, University College London, Gower Street, London, WC1E 6BT (United Kingdom); Myrzakulov, Ratbay [Eurasian International Center for Theoretical Physics and Department of General Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan)
2016-11-10
In this paper, we will analyze the holographic complexity for time-dependent asymptotically AdS geometries. We will first use a covariant zero mean curvature slicing of the time-dependent bulk geometries, and then use this co-dimension one spacelike slice of the bulk spacetime to define a co-dimension two minimal surface. The time-dependent holographic complexity will be defined using the volume enclosed by this minimal surface. This time-dependent holographic complexity will reduce to the usual holographic complexity for static geometries. We will analyze the time-dependence as a perturbation of the asymptotically AdS geometries. Thus, we will obtain time-dependent asymptotically AdS geometries, and we will calculate the holographic complexity for such time-dependent geometries.
Lattice Boltzmann modeling and simulation of liquid jet breakup
Saito, Shimpei; Abe, Yutaka; Koyama, Kazuya
2017-07-01
A three-dimensional color-fluid lattice Boltzmann model for immiscible two-phase flows is developed in the framework of a three-dimensional 27-velocity (D3Q27) lattice. The collision operator comprises the D3Q27 versions of three suboperators: a multiple-relaxation-time (MRT) collision operator, a generalized Liu-Valocchi-Kang perturbation operator, and a Latva-Kokko-Rothman recoloring operator. A D3Q27 version of an enhanced equilibrium distribution function is also incorporated into this model to improve the Galilean invariance. Three types of numerical tests, namely, a static droplet, an oscillating droplet, and the Rayleigh-Taylor instability, show a good agreement with analytical solutions and numerical simulations. Following these numerical tests, this model is applied to liquid-jet-breakup simulations. The simulation conditions are matched to the conditions of the previous experiments. In this case, numerical stability is maintained throughout the simulation, although the kinematic viscosity for the continuous phase is set as low as 1.8 ×10-4 , in which case the corresponding Reynolds number is 3.4 ×103 ; the developed lattice Boltzmann model based on the D3Q27 lattice enables us to perform the simulation with parameters directly matched to the experiments. The jet's liquid column transitions from an asymmetrical to an axisymmetrical shape, and entrainment occurs from the side of the jet. The measured time history of the jet's leading-edge position shows a good agreement with the experiments. Finally, the reproducibility of the regime map for liquid-liquid systems is assessed. The present lattice Boltzmann simulations well reproduce the characteristics of predicted regimes, including varicose breakup, sinuous breakup, and atomization.
Modeling axisymmetric flows dynamics of films, jets, and drops
Middleman, Stanley
1995-01-01
This concise book is intended to fulfill two purposes: to provide an important supplement to classic texts by carrying fluid dynamics students on into the realm of free boundary flows; and to demonstrate the art of mathematical modeling based on knowledge, intuition, and observation. In the authors words, the overall goal is make the complex simple, without losing the essence--the virtue--of the complexity.Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops is the first book to cover the topics of axisymmetric laminar flows; free-boundary flows; and dynamics of drops, jets, and films. The text also features comparisons of models to experiments, and it includes a large selection of problems at the end of each chapter.Key Features* Contains problems at the end of each chapter* Compares real-world experimental data to theory* Provides one of the first comprehensive examinations of axisymmetric laminar flows, free-boundary flows, and dynamics of drops, jets, and films* Includes development of basic eq...
Directory of Open Access Journals (Sweden)
Hok Pan Yuen
2016-10-01
Full Text Available Joint modelling has emerged to be a potential tool to analyse data with a time-to-event outcome and longitudinal measurements collected over a series of time points. Joint modelling involves the simultaneous modelling of the two components, namely the time-to-event component and the longitudinal component. The main challenges of joint modelling are the mathematical and computational complexity. Recent advances in joint modelling have seen the emergence of several software packages which have implemented some of the computational requirements to run joint models. These packages have opened the door for more routine use of joint modelling. Through simulations and real data based on transition to psychosis research, we compared joint model analysis of time-to-event outcome with the conventional Cox regression analysis. We also compared a number of packages for fitting joint models. Our results suggest that joint modelling do have advantages over conventional analysis despite its potential complexity. Our results also suggest that the results of analyses may depend on how the methodology is implemented.
The Composition of GRB Jets and the ICMART Model
Energy Technology Data Exchange (ETDEWEB)
Zhang, Bing [University of Nevada, Las Vegas; Guo, Fan [Los Alamos National Laboratory
2015-07-16
Models of gamma ray bursts (GRBs) are drawn from observations of light curves, spectra, and spectral evolution. The ICMART (Internal Collision-induced MAgnetic Reconnection & Turbulence) model and some of its features are presented. Increasing evidence points towards Poynting-flux-dominated jets in at least some (even a good fraction of) GRBs. The main emission component (Band) is of a synchrotron emission origin, produced by electrons accelerated in the emission region. The data seem to require that magnetic reconnection in the moderately-high sigma regime is the mechanism to accelerate particles. Extensive numerical simulations are needed to verify physical details of such a model, and some encouraging results have been obtained.
Numerical modelling of the jet nozzle enrichment process
International Nuclear Information System (INIS)
Vercelli, P.
1983-01-01
A numerical model was developed for the simulation of the isotopic enrichment produced by the jet nozzle process. The flow was considered stationary and under ideal gas conditions. The model calculates, for any position of the skimmer piece: (a) values of radial mass concentration profiles for each isotopic species and (b) values of elementary separation effect (Σ sub(A)) and uranium cut (theta). The comparison of the numerical results obtained with the experimental values given in the literature proves the validity of the present work as an initial step in the modelling of the process. (Author) [pt
Source Term Model for Steady Micro Jets in a Navier-Stokes Computer Code
Waithe, Kenrick A.
2005-01-01
A source term model for steady micro jets was implemented into a non-proprietary Navier-Stokes computer code, OVERFLOW. The source term models the mass flow and momentum created by a steady blowing micro jet. The model is obtained by adding the momentum and mass flow created by the jet to the Navier-Stokes equations. The model was tested by comparing with data from numerical simulations of a single, steady micro jet on a flat plate in two and three dimensions. The source term model predicted the velocity distribution well compared to the two-dimensional plate using a steady mass flow boundary condition, which was used to simulate a steady micro jet. The model was also compared to two three-dimensional flat plate cases using a steady mass flow boundary condition to simulate a steady micro jet. The three-dimensional comparison included a case with a grid generated to capture the circular shape of the jet and a case without a grid generated for the micro jet. The case without the jet grid mimics the application of the source term. The source term model compared well with both of the three-dimensional cases. Comparisons of velocity distribution were made before and after the jet and Mach and vorticity contours were examined. The source term model allows a researcher to quickly investigate different locations of individual or several steady micro jets. The researcher is able to conduct a preliminary investigation with minimal grid generation and computational time.
Directory of Open Access Journals (Sweden)
Laura Facchini
2017-10-01
Full Text Available Cell oxygenation and nutrition is vitally important for human and animal life. Oxygen and nutrients are transported by the blood stream and cross microvessel walls to penetrate the cell’s membrane. Pathological alterations in the transport of oxygen, and other nutrition elements, across microvessel walls may have serious consequences to cell life, possibly leading to localized cell necrosis. We present a transient model of plasma filtration and solute transport across microvessel walls by coupling flow and transport equations, the latter being non-linear in solute concentration. The microvessel wall is modeled through the superimposition of two or more membranes with different physical properties, representing key structural elements. With this model, the combined effect of the endothelial cells, the glycocalyx and other coating membranes specific of certain microvessels, can be analyzed. We investigate the role of transient external pressures in the study of trans-vascular filtration and solute exchange during the drop of blood capillary pressure due to the pathological decrease of blood volume called hypovolaemia, as well as hemorrhage. We discuss the advantage of using a multi-layered model, rather than a model considering the microvessel wall as a single and homogeneous membrane.
Time-dependent behavior of concrete
International Nuclear Information System (INIS)
Pfeiffer, P.A.; Tanabe, Tada-aki
1992-01-01
This paper is a condensed version of the material presented at the International Workshop on Finite Element Analysis of Reinforced Concrete, Session 4 -- Time Dependent Behavior, held at Columbia University, New York on June 3--6, 1991. Dr. P.A. Pfeiffer presented recent developments in time-dependent behavior of concrete and Professor T. Tanabe presented a review of research in Japan on time-dependent behavior of concrete. The paper discusses the recent research of time-dependent behavior of concrete in the past few years. 6 refs
The use of models for estimating emissions from products beyond the timeframe of an emissions test is a means of managing the time and expenses associated with product emissions certification. This paper presents a discussion of (1) the impact of uncertainty in test chamber emiss...
Kasper, Joseph M; Lestrange, Patrick J; Stetina, Torin F; Li, Xiaosong
2018-03-29
X-ray absorption spectroscopy is a powerful technique to probe local electronic and nuclear structure. There has been extensive theoretical work modeling K-edge spectra from first principles. However, modeling L-edge spectra directly with density functional theory poses a unique challenge requiring further study. Spin-orbit coupling must be included in the model, and a noncollinear density functional theory is required. Using the real-time exact two-component method, we are able to variationally include one-electron spin-orbit coupling terms when calculating the absorption spectrum. The abilities of different basis sets and density functionals to model spectra for both closed- and open-shell systems are investigated using SiCl 4 and three transition metal complexes, TiCl 4 , CrO 2 Cl 2 , and [FeCl 6 ] 3- . Although we are working in the real-time framework, individual molecular orbital transitions can still be recovered by projecting the density onto the ground state molecular orbital space and separating contributions to the time evolving dipole moment.
Sommer, Harriet; Wolkewitz, Martin; Schumacher, Martin
2017-07-01
A variety of primary endpoints are used in clinical trials treating patients with severe infectious diseases, and existing guidelines do not provide a consistent recommendation. We propose to study simultaneously two primary endpoints, cure and death, in a comprehensive multistate cure-death model as starting point for a treatment comparison. This technique enables us to study the temporal dynamic of the patient-relevant probability to be cured and alive. We describe and compare traditional and innovative methods suitable for a treatment comparison based on this model. Traditional analyses using risk differences focus on one prespecified timepoint only. A restricted logrank-based test of treatment effect is sensitive to ordered categories of responses and integrates information on duration of response. The pseudo-value regression provides a direct regression model for examination of treatment effect via difference in transition probabilities. Applied to a topical real data example and simulation scenarios, we demonstrate advantages and limitations and provide an insight into how these methods can handle different kinds of treatment imbalances. The cure-death model provides a suitable framework to gain a better understanding of how a new treatment influences the time-dynamic cure and death process. This might help the future planning of randomised clinical trials, sample size calculations, and data analyses. Copyright © 2017 John Wiley & Sons, Ltd.
Schalge, Bernd; Rihani, Jehan; Haese, Barbara; Baroni, Gabriele; Erdal, Daniel; Haefliger, Vincent; Lange, Natascha; Neuweiler, Insa; Hendricks-Franssen, Harrie-Jan; Geppert, Gernot; Ament, Felix; Kollet, Stefan; Cirpka, Olaf; Saavedra, Pablo; Han, Xujun; Attinger, Sabine; Kunstmann, Harald; Vereecken, Harry; Simmer, Clemens
2017-04-01
Currently, an integrated approach to simulating the earth system is evolving where several compartment models are coupled to achieve the best possible physically consistent representation. We used the model TerrSysMP, which fully couples subsurface, land surface and atmosphere, in a synthetic study that mimicked the Neckar catchment in Southern Germany. A virtual reality run at a high resolution of 400m for the land surface and subsurface and 1.1km for the atmosphere was made. Ensemble runs at a lower resolution (800m for the land surface and subsurface) were also made. The ensemble was generated by varying soil and vegetation parameters and lateral atmospheric forcing among the different ensemble members in a systematic way. It was found that the ensemble runs deviated for some variables and some time periods largely from the virtual reality reference run (the reference run was not covered by the ensemble), which could be related to the different model resolutions. This was for example the case for river discharge in the summer. We also analyzed the spread of model states as function of time and found clear relations between the spread and the time of the year and weather conditions. For example, the ensemble spread of latent heat flux related to uncertain soil parameters was larger under dry soil conditions than under wet soil conditions. Another example is that the ensemble spread of atmospheric states was more influenced by uncertain soil and vegetation parameters under conditions of low air pressure gradients (in summer) than under conditions with larger air pressure gradients in winter. The analysis of the ensemble of fully coupled model simulations provided valuable insights in the dynamics of land-atmosphere feedbacks which we will further highlight in the presentation.
DEFF Research Database (Denmark)
Demetrescu, Crisan; Wilhelm, H.; Tumanian, M.
2007-01-01
in establishing the temperature field in the depth range of geothermal measurements. The lateral variation of the palaeoclimatically corrected surface heat flux from the centre of the Focsani Depression (40 mW m-2) to its margin and the foreland platform (70 mW m-2) is mainly the result of the lateral variation...... words: Carpathians foreland, geothermics, heat flow, lithosphere rheology, sedimentation, thermal modelling. ...
Laboratory Plasma Source as an MHD Model for Astrophysical Jets
Mayo, Robert M.
1997-01-01
The significance of the work described herein lies in the demonstration of Magnetized Coaxial Plasma Gun (MCG) devices like CPS-1 to produce energetic laboratory magneto-flows with embedded magnetic fields that can be used as a simulation tool to study flow interaction dynamic of jet flows, to demonstrate the magnetic acceleration and collimation of flows with primarily toroidal fields, and study cross field transport in turbulent accreting flows. Since plasma produced in MCG devices have magnetic topology and MHD flow regime similarity to stellar and extragalactic jets, we expect that careful investigation of these flows in the laboratory will reveal fundamental physical mechanisms influencing astrophysical flows. Discussion in the next section (sec.2) focuses on recent results describing collimation, leading flow surface interaction layers, and turbulent accretion. The primary objectives for a new three year effort would involve the development and deployment of novel electrostatic, magnetic, and visible plasma diagnostic techniques to measure plasma and flow parameters of the CPS-1 device in the flow chamber downstream of the plasma source to study, (1) mass ejection, morphology, and collimation and stability of energetic outflows, (2) the effects of external magnetization on collimation and stability, (3) the interaction of such flows with background neutral gas, the generation of visible emission in such interaction, and effect of neutral clouds on jet flow dynamics, and (4) the cross magnetic field transport of turbulent accreting flows. The applicability of existing laboratory plasma facilities to the study of stellar and extragalactic plasma should be exploited to elucidate underlying physical mechanisms that cannot be ascertained though astrophysical observation, and provide baseline to a wide variety of proposed models, MHD and otherwise. The work proposed herin represents a continued effort on a novel approach in relating laboratory experiments to
Equipartition Jet Model for the Seyfert 1 Galaxy 3C120
Directory of Open Access Journals (Sweden)
Siek Hyung
2003-09-01
Full Text Available The motion of 3C120 Jet relative to the core is reasonably uniform and the VLBI scale jet connects outwards to a VLA ˜ 100 kpc scale. We measured the jet width variation from the center and found some indication of a power law which indicates the jet expands roughly with a constant opening angle and a constant flow velocity, Vf \\cong c, from subparsec scales to ˜ 100 kpc. With such a constant flow velocity and based on other physical parameters deduced from observed emission characteristics of the jet, we have established an equipartition jet model which might accommodate the basic parameters of the jet on subparsec scales, with which one can fit the radio intensities over all the scale of the jet even to ˜ 100 kpc.
A Model for Straight and Helical Solar Jets: II. Parametric Study of the Plasma Beta
Pariat, E.; Dalmasse, K.; DeVore, C. R.; Antiochos, S. K.; Karpen, J. T.
2016-01-01
Context. Jets are dynamic, impulsive, well-collimated plasma events that develop at many different scales and in different layers of the solar atmosphere. Aims. Jets are believed to be induced by magnetic reconnection, a process central to many astrophysical phenomena. Within the solar atmosphere, jet-like events develop in many different environments, e.g. in the vicinity of active regions as well as in coronal holes, and at various scales, from small photospheric spicules to large coronal jets. In all these events, signatures of helical structure and/or twisting/rotating motions are regularly observed. The present study aims to establish that a single model can generally reproduce the observed properties of these jet-like events. Methods. In this study, using our state-of-the-art numerical solver ARMS, we present a parametric study of a numerical tridimensional magnetohydrodynamic (MHD) model of solar jet-like events. Within the MHD paradigm, we study the impact of varying the atmospheric plasma beta on the generation and properties of solar-like jets. Results. The parametric study validates our model of jets for plasma beta ranging from 10(sup 3) to 1, typical of the different layers and magnetic environments of the solar atmosphere. Our model of jets can robustly explain the generation of helical solar jet-like events at various beta less than or equal to 1. We show that the plasma beta modifies the morphology of the helical jet, explaining the different observed shapes of jets at different scales and in different layers of the solar atmosphere. Conclusions. Our results allow us to understand the energisation, triggering, and driving processes of jet-like events. Our model allows us to make predictions of the impulsiveness and energetics of jets as determined by the surrounding environment, as well as the morphological properties of the resulting jets.
Wahab, Rizwan; Khan, Farheen; Kaushik, Nagendra Kumar; Musarrat, Javed; Al-Khedhairy, Abdulaziz A.
2017-01-01
In this paper, chemically synthesized copper oxide nanoparticles (CuO-NPs), were employed for two processes: one is photocatalytic degradation and second one adsorption for the sorption of safranine (SA) dye in an aqueous medium at pH = 12.01. The optimized analytes amount (nano-adsorbent = 0.10 g, conc. range of SA dye 56.13 ppm to 154.37 ppm, pH = 12.01, temperature 303 K) reached to equilibrium point in 80 min, which acquired for chemical adsorption-degradation reactions. The degredated SA dye data’s recorded by UV-visible spectroscopy for the occurrence of TMO-NMs of CuO-NPs at anticipated period of interval. The feasible performance of CuO-NPs was admirable, shows good adsorption capacity qm = 53.676 mg g−1 and most convenient to best fitted results establish by linear regression equation, corresponded for selected kinetic model (pseudo second order (R2 = 0.9981), equilibrium isotherm models (Freundlich, Langmuir, Dubnin-Radushkevich (D-R), Temkin, H-J and Halsey), and thermodynamic parameters (∆H° = 75461.909 J mol−1, ∆S° = 253.761 J mol−1, ∆G° = −1427.93 J mol−1, Ea = 185.142 J mol−1) with error analysis. The statistical study revealed that CuO-NPs was an effective adsorbent certified photocatalytic efficiency (η = 84.88%) for degradation of SA dye, exhibited more feasibility and good affinity toward adsorbate, the sorption capacity increases with increased temperature at equilibrium point. PMID:28195174
Abrasive slurry jet cutting model based on fuzzy relations
Qiang, C. H.; Guo, C. W.
2017-12-01
The cutting process of pre-mixed abrasive slurry or suspension jet (ASJ) is a complex process affected by many factors, and there is a highly nonlinear relationship between the cutting parameters and cutting quality. In this paper, guided by fuzzy theory, the fuzzy cutting model of ASJ was developed. In the modeling of surface roughness, the upper surface roughness prediction model and the lower surface roughness prediction model were established respectively. The adaptive fuzzy inference system combines the learning mechanism of neural networks and the linguistic reasoning ability of the fuzzy system, membership functions, and fuzzy rules are obtained by adaptive adjustment. Therefore, the modeling process is fast and effective. In this paper, the ANFIS module of MATLAB fuzzy logic toolbox was used to establish the fuzzy cutting model of ASJ, which is found to be quite instrumental to ASJ cutting applications.
Time-dependent fracture of cementitious materials
Van Zijl, G.P.A.G.; De Borst, R.; Rots, J.G.
2000-01-01
The response of cementitious materials is highly time dependent. On the one hand, it can lead to delayed collapse of structures fabricated of such materials. On the other hand, the time dependence is associated with the relaxation of peak stresses, which avoids, or postpones damage. A finite element
Descriptive models for single-jet sluicing of sludge waste
International Nuclear Information System (INIS)
Erian, F.F.; Mahoney, L.A.; Terrones, G.
1997-12-01
Mobilization of sludge waste stored in underground storage tanks can be achieved safely and reliably by sluicing. In the project discussed in this report, the waste in Hanford single-shell Tank 241-C-106 will be mobilized by sluicing, retrieved by a slurry retrieval pump, and transferred via an 1800-ft slurry pipeline to Tank 241-AY-102. A sluicing strategy must be developed that ensures efficient use of the deployed configuration of the sluicing system: the nozzle(s) and the retrieval pump(s). Given a sluicing system configuration in a particular tank, it is desirable to prescribe the sequential locations at which the sludge will be mobilized and retrieved and the rate at which these mobilization and retrieval processes take place. In addition, it is necessary to know whether the retrieved waste slurry meets the requirements for cross-site slurry transport. Some of the physical phenomena that take place during mobilization and retrieval and certain aspects of the sluicing process are described in this report. First, a mathematical model gives (1) an idealized geometrical representation of where, within the confines of a storage tank containing a certain amount of settled waste, sludge can be removed and mobilized; and (2) a quantitative measure of the amount of sludge that can be removed during a sluicing campaign. A model describing an idealized water jet issuing from a circular nozzle located at a given height above a flat surface is also presented in this report. This dynamic water-jet model provides the basis for improving the geometrical sluicing model presented next. In this model the authors assume that the water jet follows a straight trajectory toward a target point on a flat surface. However, the water jet does not follow a straight line in the actual tank, and using the true trajectory will allow a more accurate estimate of the amount of disturbed material. Also, the authors hope that developing accurate force and pressure fields will lead to a better
Henderson, Brenda
2016-01-01
The presentation highlights NASA's jet noise research for 2016. Jet-noise modeling efforts, jet-surface interactions results, acoustic characteristics of multi-stream jets, and N+2 Supersonic Aircraft system studies are presented.
Yokogawa, D.
2016-09-01
Theoretical approach to design bright bio-imaging molecules is one of the most progressing ones. However, because of the system size and computational accuracy, the number of theoretical studies is limited to our knowledge. To overcome the difficulties, we developed a new method based on reference interaction site model self-consistent field explicitly including spatial electron density distribution and time-dependent density functional theory. We applied it to the calculation of indole and 5-cyanoindole at ground and excited states in gas and solution phases. The changes in the optimized geometries were clearly explained with resonance structures and the Stokes shift was correctly reproduced.
Simple Scaling of Mulit-Stream Jet Plumes for Aeroacoustic Modeling
Bridges, James
2016-01-01
When creating simplified, semi-empirical models for the noise of simple single-stream jets near surfaces it has proven useful to be able to generalize the geometry of the jet plume. Having a model that collapses the mean and turbulent velocity fields for a range of flows allows the problem to become one of relating the normalized jet field and the surface. However, most jet flows of practical interest involve jets of two or more coannular flows for which standard models for the plume geometry do not exist. The present paper describes one attempt to relate the mean and turbulent velocity fields of multi-stream jets to that of an equivalent single-stream jet. The normalization of single-stream jets is briefly reviewed, from the functional form of the flow model to the results of the modeling. Next, PIV data from a number of multi-stream jets is analyzed in a similar fashion. The results of several single-stream approximations of the multi-stream jet plume are demonstrated, with a best approximation determined and the shortcomings of the model highlighted.
Simple Scaling of Multi-Stream Jet Plumes for Aeroacoustic Modeling
Bridges, James
2015-01-01
When creating simplified, semi-empirical models for the noise of simple single-stream jets near surfaces it has proven useful to be able to generalize the geometry of the jet plume. Having a model that collapses the mean and turbulent velocity fields for a range of flows allows the problem to become one of relating the normalized jet field and the surface. However, most jet flows of practical interest involve jets of two or more co-annular flows for which standard models for the plume geometry do not exist. The present paper describes one attempt to relate the mean and turbulent velocity fields of multi-stream jets to that of an equivalent single-stream jet. The normalization of single-stream jets is briefly reviewed, from the functional form of the flow model to the results of the modeling. Next, PIV (Particle Image Velocimetry) data from a number of multi-stream jets is analyzed in a similar fashion. The results of several single-stream approximations of the multi-stream jet plume are demonstrated, with a 'best' approximation determined and the shortcomings of the model highlighted.
Time-dependent correlations in electricity markets
International Nuclear Information System (INIS)
Alvarez-Ramirez, Jose; Escarela-Perez, Rafael
2010-01-01
In the last years, many electricity markets were subjected to deregulated operation where prices are set by the action of market participants. In this form, producers and consumers rely on demand and price forecasts to decide their bidding strategies, allocate assets, negotiate bilateral contracts, hedge risks, and plan facility investments. A basic feature of efficient market hypothesis is the absence of correlations between price increments over any time scale leading to random walk-type behavior of prices, so arbitrage is not possible. However, recent studies have suggested that this is not the case and correlations are present in the behavior of diverse electricity markets. In this paper, a temporal quantification of electricity market correlations is made by means of detrended fluctuation and Allan analyses. The approach is applied to two Canadian electricity markets, Ontario and Alberta. The results show the existence of correlations in both demand and prices, exhibiting complex time-dependent behavior with lower correlations in winter while higher in summer. Relatively steady annual cycles in demand but unstable cycles in prices are detected. On the other hand, the more significant nonlinear effects (measured in terms of a multifractality index) are found for winter months, while the converse behavior is displayed during the summer period. In terms of forecasting models, our results suggest that nonlinear recursive models (e.g., feedback NNs) should be used for accurate day-ahead price estimation. In contrast, linear models can suffice for demand forecasting purposes. (author)
Angular Structure of Jet Quenching Within a Hybrid Strong/Weak Coupling Model
Casalderrey-Solana, Jorge; Milhano, Guilherme; Pablos, Daniel; Rajagopal, Krishna
2017-01-01
Within the context of a hybrid strong/weak coupling model of jet quenching, we study the modification of the angular distribution of the energy within jets in heavy ion collisions, as partons within jet showers lose energy and get kicked as they traverse the strongly coupled plasma produced in the collision. To describe the dynamics transverse to the jet axis, we add the effects of transverse momentum broadening into our hybrid construction, introducing a parameter $K\\equiv \\hat q/T^3$ that governs its magnitude. We show that, because of the quenching of the energy of partons within a jet, even when $K\
Quark fragmentation functions in NJL-jet model
Bentz, Wolfgang; Matevosyan, Hrayr; Thomas, Anthony
2014-09-01
We report on our studies of quark fragmentation functions in the Nambu-Jona-Lasinio (NJL) - jet model. The results of Monte-Carlo simulations for the fragmentation functions to mesons and nucleons, as well as to pion and kaon pairs (dihadron fragmentation functions) are presented. The important role of intermediate vector meson resonances for those semi-inclusive deep inelastic production processes is emphasized. Our studies are very relevant for the extraction of transverse momentum dependent quark distribution functions from measured scattering cross sections. We report on our studies of quark fragmentation functions in the Nambu-Jona-Lasinio (NJL) - jet model. The results of Monte-Carlo simulations for the fragmentation functions to mesons and nucleons, as well as to pion and kaon pairs (dihadron fragmentation functions) are presented. The important role of intermediate vector meson resonances for those semi-inclusive deep inelastic production processes is emphasized. Our studies are very relevant for the extraction of transverse momentum dependent quark distribution functions from measured scattering cross sections. Supported by Grant in Aid for Scientific Research, Japanese Ministry of Education, Culture, Sports, Science and Technology, Project No. 20168769.
Topic 5: Time-Dependent Behavior
International Nuclear Information System (INIS)
Pfeiffer, P.A.; Tanabe, Tada-aki
1991-01-01
This chapter is a report of the material presented at the International Workshop on Finite Element Analysis of Reinforced Concrete, Session 4 -- Time Dependent Behavior, held at Columbia University, New York on June 3--6, 1991. Dr. P.A. Pfeiffer presented recent developments in time-dependent behavior of concrete and Professor T. Tanabe presented a review of research in Japan on time-dependent behavior of concrete. The chapter discusses the recent research of time-dependent behavior of concrete in the past few years in both the USA-European and Japanese communities. The author appreciates the valuable information provided by Zdenek P. Bazant in preparing the USA-European Research section
Modeling relativistic jets and cosmic-ray acceleration processes
International Nuclear Information System (INIS)
Globus, Noemie
2011-01-01
This thesis explores various issues related to relativistic jets associated with black holes. Their formation as well as the acceleration and collimation processes, are studied using a fluid approximation within a global description of the flow. The general relativistic magnetohydrodynamic equations can be integrated using the 3+1 formalism, and the covariant equations can be transposed to a vectorial form, where the physical vectorial quantities are measured by an Eulerian observer comoving with the rotation, the so-called zero angular momentum observer. This formalism allows us to study the physics of the magnetosphere surrounding a Kerr black hole, i.e., the physics of a strongly magnetized plasma in differential rotation in curved space-time. This formalism enabled me to develop a self-similar meridional model in the Kerr metric that allows us to obtain relativistic jet solutions, and to describe the dynamics, and the geometry of the flow close to the rotational axis. In particular, I have investigated how the rotation of the black hole affects the collimation process. I have found solutions for T Tauri stars in the Newtonian approximation in order to study magnetic braking, and to compare them with their generalization in the Kerr metric. Relativistic jets could also be the seat of high-energy corpuscular and photon emission. In particular, gamma-ray bursts could be possible sources of ultra-high-energy cosmic rays. This problem requires the use of a local description of the flow. Finally, we have investigated the propagation of ultra high energy cosmic rays in these shocks, taking into account the competition between relativistic Fermi acceleration and energy loss due to interaction with the gamma ray background, in order to ascertain whether the observed energies can be obtained in this way. (author)
Jeong, Chan-Yong; Kim, Hee-Joong; Hong, Sae-Young; Song, Sang-Hun; Kwon, Hyuck-In
2017-08-01
In this study, we show that the two-stage unified stretched-exponential model can more exactly describe the time-dependence of threshold voltage shift (ΔV TH) under long-term positive-bias-stresses compared to the traditional stretched-exponential model in amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). ΔV TH is mainly dominated by electron trapping at short stress times, and the contribution of trap state generation becomes significant with an increase in the stress time. The two-stage unified stretched-exponential model can provide useful information not only for evaluating the long-term electrical stability and lifetime of the a-IGZO TFT but also for understanding the stress-induced degradation mechanism in a-IGZO TFTs.
Time-dependent rheological behaviour of bacterial cellulose hydrogel.
Gao, Xing; Shi, Zhijun; Kuśmierczyk, Piotr; Liu, Changqing; Yang, Guang; Sevostianov, Igor; Silberschmidt, Vadim V
2016-01-01
This work focuses on time-dependent rheological behaviour of bacterial cellulose (BC) hydrogel. Due to its ideal biocompatibility, BC hydrogel could be employed in biomedical applications. Considering the complexity of loading conditions in human body environment, time-dependent behaviour under relevant conditions should be understood. BC specimens are produced by Gluconacetobacter xylinus ATCC 53582 at static-culture conditions. Time-dependent behaviour of specimens at several stress levels is experimentally determined by uniaxial tensile creep tests. We use fraction-exponential operators to model the rheological behaviour. Such a representation allows combination of good accuracy in analytical description of viscoelastic behaviour of real materials and simplicity in solving boundary value problems. The obtained material parameters allow us to identify time-dependent behaviour of BC hydrogel at high stress level with sufficient accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.
Polko, P.; Meier, D.L.; Markoff, S.
2014-01-01
We present a new, semi-analytic formalism to model the acceleration and collimation of relativistic jets in a gravitational potential. The gravitational energy density includes the kinetic, thermal and electromagnetic mass contributions. The solutions are close to self-similar throughout the
How well do CMIP5 models simulate the low-level jet in western Colombia?
Sierra, Juan P.; Arias, Paola A.; Vieira, Sara C.; Agudelo, Jhoana
2017-11-01
The Choco jet is an important atmospheric feature of Colombian and northern South America hydro-climatology. This work assesses the ability of 26 coupled and 11 uncoupled (AMIP) global climate models (GCMs) included in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) archive to simulate the climatological basic features (annual cycle, spatial distribution and vertical structure) of this jet. Using factor and cluster analysis, we objectively classify models in Best, Worst, and Intermediate groups. Despite the coarse resolution of the GCMs, this study demonstrates that nearly all models can represent the existence of the Choco low-level jet. AMIP and Best models present a more realistic simulation of jet. Worst models exhibit biases such as an anomalous southward location of the Choco jet during the whole year and a shallower jet. The model skill to represent this jet comes from their ability to reproduce some of its main causes, such as the temperature and pressure differences between particular regions in the eastern Pacific and western Colombian lands, which are non-local features. Conversely, Worst models considerably underestimate temperature and pressure differences between these key regions. We identify a close relationship between the location of the Choco jet and the Inter-tropical Convergence Zone (ITCZ), and CMIP5 models are able to represent such relationship. Errors in Worst models are related with bias in the location of the ITCZ over the eastern tropical Pacific Ocean, as well as the representation of the topography and the horizontal resolution.
Time-dependent reliability analysis of flood defences
International Nuclear Information System (INIS)
Buijs, F.A.; Hall, J.W.; Sayers, P.B.; Gelder, P.H.A.J.M. van
2009-01-01
This paper describes the underlying theory and a practical process for establishing time-dependent reliability models for components in a realistic and complex flood defence system. Though time-dependent reliability models have been applied frequently in, for example, the offshore, structural safety and nuclear industry, application in the safety-critical field of flood defence has to date been limited. The modelling methodology involves identifying relevant variables and processes, characterisation of those processes in appropriate mathematical terms, numerical implementation, parameter estimation and prediction. A combination of stochastic, hierarchical and parametric processes is employed. The approach is demonstrated for selected deterioration mechanisms in the context of a flood defence system. The paper demonstrates that this structured methodology enables the definition of credible statistical models for time-dependence of flood defences in data scarce situations. In the application of those models one of the main findings is that the time variability in the deterioration process tends to be governed the time-dependence of one or a small number of critical attributes. It is demonstrated how the need for further data collection depends upon the relevance of the time-dependence in the performance of the flood defence system.
Casalderrey-Solana, Jorge; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna
2016-01-01
We have previously introduced a hybrid strong/weak coupling model for jet quenching in heavy ion collisions that describes the production and fragmentation of jets at weak coupling, using PYTHIA, and describes the rate at which each parton in the jet shower loses energy as it propagates through the strongly coupled plasma, dE/dx, using an expression computed holographically at strong coupling. The model has a single free parameter that we fit to a single experimental measurement. We then confront our model with experimental data on many other jet observables, focusing here on boson-jet observables, finding that it provides a good description of present jet data. Next, we provide the predictions of our hybrid model for many measurements to come, including those for inclusive jet, dijet, photon-jet and Z-jet observables in heavy ion collisions with energy $\\sqrt{s}=5.02$ ATeV coming soon at the LHC. As the statistical uncertainties on near-future measurements of photon-jet observables are expected to be much sm...
Aerodynamic testing model guided missiles with jets simulations in the T-35 wind tunnel
Directory of Open Access Journals (Sweden)
Ocokoljić Goran J.
2014-01-01
Full Text Available Testing of the Anti-Tank Missile with jets simulations in the T-35 wind tunnel is part of the development program of short range anti-tank system. The main task of this experiment was to provide an experimental data base for estimation of real jets influence. Analysis was presented for Mach number 0.2, model configurations with and without jets, and three jet tabs positions: tabs out of the jets, upper or lower tabs in the jets. Missile model designed that instead of the products of combustion through nozzles allow high pressure air corresponding mass flow. In additional to the wind tunnel test results the paper, also presents the results of CFD simulations. The results are presented by normal force and pitching moment coefficients.
Numerical investigation of time-dependent cloud cavitating flow around a hydrofoil
Directory of Open Access Journals (Sweden)
Zhang De-Sheng
2016-01-01
Full Text Available Time-dependent cloud cavitation around the 2-D Clark-Y hydrofoil was investigated in this paper based on an improved filter based model and a density correction method. The filter-scale in filter based model simulation was discussed and validated according to the grid size. Numerical results show that in the transition from sheet cavitation to cloud cavitation, the sheet cavity grows slowly to the maximum length during the re-entrant jet develops. The mild shedding bubble cluster convects downwards the hydrofoil and continues to grow up after detaching from the suction surface of hydrofoil, and a bubble cluster introduced at the rear part of hydrofoil. While the sheet cavity generates, the bubble cluster breakups.
Time-dependent search for neutrino emission from X-ray binaries with the ANTARES telescope
Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.
2017-04-01
ANTARES is currently the largest neutrino telescope operating in the Northern Hemisphere, aiming at the detection of high-energy neutrinos from astrophysical sources. Neutrino telescopes constantly monitor at least one complete hemisphere of the sky, and are thus well-suited to detect neutrinos produced in transient astrophysical sources. A time-dependent search has been applied to a list of 33 X-ray binaries undergoing high flaring activities in satellite data (RXTE/ASM, MAXI and Swift/BAT) and during hardness transition states in the 2008-2012 period. The background originating from interactions of charged cosmic rays in the Earth's atmosphere is drastically reduced by requiring a directional and temporal coincidence with astrophysical phenomena. The results of this search are presented together with comparisons between the neutrino flux upper limits and the neutrino flux predictions from astrophysical models. The neutrino flux upper limits resulting from this search limit the jet parameter space for some astrophysical models.
Golubev, Vladimir; Mankbadi, Reda R.; Dahl, Milo D.; Kiraly, L. James (Technical Monitor)
2002-01-01
This paper provides preliminary results of the study of the acoustic radiation from the source model representing spatially-growing instability waves in a round jet at high speeds. The source model is briefly discussed first followed by the analysis of the produced acoustic directivity pattern. Two integral surface techniques are discussed and compared for prediction of the jet acoustic radiation field.
An Empirical Jet-Surface Interaction Noise Model with Temperature and Nozzle Aspect Ratio Effects
Brown, Cliff
2015-01-01
An empirical model for jet-surface interaction (JSI) noise produced by a round jet near a flat plate is described and the resulting model evaluated. The model covers unheated and hot jet conditions (1 less than or equal to jet total temperature ratio less than or equal to 2.7) in the subsonic range (0.5 less than or equal to M(sub a) less than or equal to 0.9), surface lengths 0.6 less than or equal to (axial distance from jet exit to surface trailing edge (inches)/nozzle exit diameter) less than or equal to 10, and surface standoff distances (0 less than or equal to (radial distance from jet lipline to surface (inches)/axial distance from jet exit to surface trailing edge (inches)) less than or equal to 1) using only second-order polynomials to provide predictable behavior. The JSI noise model is combined with an existing jet mixing noise model to produce exhaust noise predictions. Fit quality metrics and comparisons to between the predicted and experimental data indicate that the model is suitable for many system level studies. A first-order correction to the JSI source model that accounts for the effect of nozzle aspect ratio is also explored. This correction is based on changes to the potential core length and frequency scaling associated with rectangular nozzles up to 8:1 aspect ratio. However, more work is needed to refine these findings into a formal model.
Development of the VESUVIUS module. Molten jet breakup modeling and model verification
Energy Technology Data Exchange (ETDEWEB)
Vierow, K. [Nuclear Power Engineering Corp., Tokyo (Japan); Nagano, Katsuhiro; Araki, Kazuhiro
1998-01-01
With the in-vessel vapor explosion issue ({alpha}-mode failure) now considered to pose an acceptably small risk to the safety of a light water reactor, ex-vessel vapor explosions are being given considerable attention. Attempts are being made to analytically model breakup of continuous-phase jets, however uncertainty exists regarding the basic phenomena. In addition, the conditions upon reactor vessel failure, which determine the starting point of the ex-vessel vapor explosion process, are difficult to quantify. Herein, molten jet ejection from the reactor pressure vessel is characterized. Next, the expected mode of jet breakup is determined and the current state of analytical modeling is reviewed. A jet breakup model for ex-vessel scenarios, with the primary breakup mechanism being the Kelvin-Helmholtz instability, is described. The model has been incorporated into the VESUVIUS module and comparisons of VESUVIUS calculations against FARO L-06 experimental data show differences, particularly in the pressure curve and amount of jet breakup. The need for additional development to resolve these differences is discussed. (author)
Investigations of Low Temperature Time Dependent Cracking
Energy Technology Data Exchange (ETDEWEB)
Van der Sluys, W A; Robitz, E S; Young, B A; Bloom, J
2002-09-30
The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity. The resultant data was integrated into current available life prediction tools.
Energy Technology Data Exchange (ETDEWEB)
Mackey, Lester [Department of Statistics, Stanford University,Stanford, CA 94305 (United States); Nachman, Benjamin [Department of Physics, Stanford University,Stanford, CA 94305 (United States); SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Schwartzman, Ariel [SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Stansbury, Conrad [Department of Physics, Stanford University,Stanford, CA 94305 (United States)
2016-06-01
Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets. To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets, are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variables in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.
Pathak, Savita; Mondal, Seema Sarkar
2010-10-01
A multi-objective inventory model of deteriorating item has been developed with Weibull rate of decay, time dependent demand, demand dependent production, time varying holding cost allowing shortages in fuzzy environments for non- integrated and integrated businesses. Here objective is to maximize the profit from different deteriorating items with space constraint. The impreciseness of inventory parameters and goals for non-integrated business has been expressed by linear membership functions. The compromised solutions are obtained by different fuzzy optimization methods. To incorporate the relative importance of the objectives, the different cardinal weights crisp/fuzzy have been assigned. The models are illustrated with numerical examples and results of models with crisp/fuzzy weights are compared. The result for the model assuming them to be integrated business is obtained by using Generalized Reduced Gradient Method (GRG). The fuzzy integrated model with imprecise inventory cost is formulated to optimize the possibility necessity measure of fuzzy goal of the objective function by using credibility measure of fuzzy event by taking fuzzy expectation. The results of crisp/fuzzy integrated model are illustrated with numerical examples and results are compared.
Angular structure of jet quenching within a hybrid strong/weak coupling model
Energy Technology Data Exchange (ETDEWEB)
Casalderrey-Solana, Jorge [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom); Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos (ICC),Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Gulhan, Doga Can [CERN, EP Department,CH-1211 Geneva 23 (Switzerland); Milhano, José Guilherme [CENTRA, Instituto Superior Técnico, Universidade de Lisboa,Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Laboratório de Instrumentação e Física Experimental de Partículas (LIP),Av. Elias Garcia 14-1, P-1000-149 Lisboa (Portugal); Theoretical Physics Department, CERN,Geneva (Switzerland); Pablos, Daniel [Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos (ICC),Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Rajagopal, Krishna [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)
2017-03-27
Within the context of a hybrid strong/weak coupling model of jet quenching, we study the modification of the angular distribution of the energy within jets in heavy ion collisions, as partons within jet showers lose energy and get kicked as they traverse the strongly coupled plasma produced in the collision. To describe the dynamics transverse to the jet axis, we add the effects of transverse momentum broadening into our hybrid construction, introducing a parameter K≡q̂/T{sup 3} that governs its magnitude. We show that, because of the quenching of the energy of partons within a jet, even when K≠0 the jets that survive with some specified energy in the final state are narrower than jets with that energy in proton-proton collisions. For this reason, many standard observables are rather insensitive to K. We propose a new differential jet shape ratio observable in which the effects of transverse momentum broadening are apparent. We also analyze the response of the medium to the passage of the jet through it, noting that the momentum lost by the jet appears as the momentum of a wake in the medium. After freezeout this wake becomes soft particles with a broad angular distribution but with net momentum in the jet direction, meaning that the wake contributes to what is reconstructed as a jet. This effect must therefore be included in any description of the angular structure of the soft component of a jet. We show that the particles coming from the response of the medium to the momentum and energy deposited in it leads to a correlation between the momentum of soft particles well separated from the jet in angle with the direction of the jet momentum, and find qualitative but not quantitative agreement with experimental data on observables designed to extract such a correlation. More generally, by confronting the results that we obtain upon introducing transverse momentum broadening and the response of the medium to the jet with available jet data, we highlight the
Time dependent critical state in disks and rings
Hemmes, Herman K.; Kuper, A.R.; Kuper, A.R.; van de Klundert, L.J.M.; van de Klundert, L.J.M.
1991-01-01
The authors have developed a model to calculate the response of the current distribution in disks and rings to a time-dependent applied magnetic field. In the model, the ring (or disk) is divided into concentric segments. The segments are assumed to be inductively coupled to each other and to the
Asymptotic time dependent neutron transport in multidimensional systems
International Nuclear Information System (INIS)
Nagy, M.E.; Sawan, M.E.; Wassef, W.A.; El-Gueraly, L.A.
1983-01-01
A model which predicts the asymptotic time behavior of the neutron distribution in multi-dimensional systems is presented. The model is based on the kernel factorization method used for stationary neutron transport in a rectangular parallelepiped. The accuracy of diffusion theory in predicting the asymptotic time dependence is assessed. The use of neutron pulse experiments for predicting the diffusion parameters is also investigated
The nonlinear time-dependent response of isotactic polypropylene
DEFF Research Database (Denmark)
Drozdov, Aleksey D.; Christiansen, Jesper de Claville
2002-01-01
Tensile creep tests, tensile relaxation tests and a tensile test with a constant strain rate are performed on injection-molded isotactic polypropylene at room temperature. A constitutive model is derived for the time-dependent behavior of semicrystalline polymers. A polymer is treated as an equiv......Tensile creep tests, tensile relaxation tests and a tensile test with a constant strain rate are performed on injection-molded isotactic polypropylene at room temperature. A constitutive model is derived for the time-dependent behavior of semicrystalline polymers. A polymer is treated...
Time-dependent Dyson orbital theory
Gritsenko, O.V.; Baerends, E.J.
2016-01-01
Although time-dependent density functional theory (TDDFT) has become the tool of choice for real-time propagation of the electron density ρN(t) of N-electron systems, it also encounters problems in this application. The first problem is the neglect of memory effects stemming from the, in TDDFT
Time dependent resonating Hartree-Bogoliubov theory
International Nuclear Information System (INIS)
Nishiyama, Seiya; Fukutome, Hideo.
1989-01-01
Very recently, we have developed a theory of excitations in superconducting Fermion systems with large quantum fluctuations that can be described by resonance of time dependent non-orthogonal Hartree-Bogoliubov (HB) wave functions with different correlation structures. We have derived a new kind of variation equation called the time dependent Resonating HB equation, in order to determine both the time dependent Resonating HB wave functions and coefficients of a superposition of the HB wave functions. Further we have got a new approximation for excitations from time dependent small fluctuations of the Resonating HB ground state, i.e., the Resonating HB RPA. The Res HB RPA equation is represented in a given single particle basis. It, however, has drawbacks that the constraints for the Res HB RPA amplitudes are not taken into account and the equation contains equations which are not independent. We shall derive another form of the Res HB RPA equation eliminating these drawbacks. The Res HB RPA gives a unified description of the vibrons and resonons and their interactions. (author)
Test of colour reconnection models using three-jet events in hadronic Z decays
International Nuclear Information System (INIS)
Schael, S.; Barate, R.; Bruneliere, R.; De Bonis, I.; Decamp, D.; Goy, C.; Jezequel, S.; Lees, J.-P.; Martin, F.; Merle, E.; Minard, M.-N.; Pietrzyk, B.; Trocme, B.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Martinez, M.; Pacheco, A.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Barklow, T.; Buchmueller, O.; Cattaneo, M.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Hansen, J.B.; Harvey, J.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, L.; Schlatter, D.; Teubert, F.; Valassi, A.; Videau, I.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J.M.; Perret, P.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Kraan, A.C.; Nilsson, B.S.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.-C.; Machefert, F.; Rouge, A.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bossi, F.; Capon, G.; Cerutti, F.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, G.P.; Passalacqua, L.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Putzer, A.; Stenzel, H.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Marinelli, N.; Nowell, J.; Rutherford, S.A.; Sedgbeer, J.K.; Thompson, J.C.; White, R.; Ghete, V.M.; Girtler, P.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Smizanska, M.; van der Aa, O.; Delaere, C.; Leibenguth, G.; Lemaitre, V.; Blumenschein, U.; Hoelldorfer, F.; Jakobs, K.; Kayser, F.; Mueller, A.-S.; Renk, B.; Sander, H.-G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Payre, P.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huettmann, K.; Luetjens, G.; Maenner, W.; Moser, H.-G.; Settles, R.; Villegas, M.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, P.; Jacholkowska, A.; Serin, L.; Veillet, J.-J.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Spagnolo, P.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Ward, J.J.; Bloch-Devaux, B.; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Rander, J.; Tuchming, B.; Vallage, B.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Boehrer, A.; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Berkelman, K.; Cranmer, K.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara III, P.A.; Nielsen, J.; Pan, Y.B.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, S.L.; Wu, X.; Zobernig, G.
2006-01-01
Hadronic Z decays into three jets are used to test QCD models of colour reconnection (CR). A sensitive quantity is the rate of gluon jets with a gap in the particle rapidity distribution and zero jet charge. Gluon jets are identified by either energy-ordering or by tagging two b-jets. The rates predicted by two string-based tunable CR models, one implemented in JETSET (the GAL model), the other in ARIADNE, are too high and disfavoured by the data, whereas the rates from the corresponding non-CR standard versions of these generators are too low. The data can be described by the GAL model assuming a small value for the R 0 parameter in the range 0.01-0.02. (orig.)
Modeling of mixing and interaction of multi-cathode spot vacuum arc jets
Directory of Open Access Journals (Sweden)
Lijun Wang
2016-12-01
Full Text Available Vacuum arc consists of cathode spot and mixing zone, arc column and anode zone. The separate jets and the mixing zone should be considered in the model of diffuse arc. Moreover, the interaction between the plasma jets in multi-cathode spot vacuum arc also is very important. In this paper, mixing and interaction of multi-cathode spot vacuum arc jets were studied through simulation. To completely investigate the mixing and interaction of vacuum arc jets, a steady 3D Magneto-Hydro-Dynamic (MHD modeling was established. In order to find out the influence of different parameters on mixing and interaction of vacuum arc jets, simulations with different parameters such as currents, angel of vacuum arc jets, with or without electromagnetic equations, tilted jets and different height of mixing zone were conducted. The simulation results show that the densities of ion number and plasma pressure as well as ion temperature increase with the increase of arc current, while the plasma velocity decreases. The jet center is more deviated from the cathode center with the increase of angle of tilted jets.
Numerical modelling of unsteady flow behaviour in the rectangular jets with oblique opening
Directory of Open Access Journals (Sweden)
James T. Hart
2016-09-01
Full Text Available Vortex shedding in a bank of three rectangular burner-jets was investigated using a CFD model. The jets were angled to the wall and the whole burner was recessed into a cavity in the wall; the ratio of velocities between the jets varied from 1 to 3. The model was validated against experimentally measured velocity profiles and wall pressure tapings from a physical model of the same burner geometry, and was generally found to reproduce the mean flow field faithfully. The CFD model showed that vortex shedding was induced by a combination of an adverse pressure gradient, resulting from the diffuser-like geometry of the recess, and the entrainment of fluid into the spaces separating the jets. The asymmetry of the burner, a consequence of being angled to the wall, introduced a cross-stream component into the adverse pressure gradient that forced the jets to bend away from their geometric axes, the extent of which depended upon the jet velocity. The vortex shedding was also found to occur in different jets depending on the jet velocity ratio.
Toy Model of Frame-Dragging Magnetosphere for the M87 Jet
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... We make a toy model for M87 jet to interpret its parabolic structure and acceleration in the apparent speeds, according to observations in milli-arcsecond to arcsecond scales upstream of HST-1. The outermost layer of jet is driven by the frame-dragging effect in the Kerr spacetime with a slowly to moderately ...
Zhou, C; Li, J H; Duan, J A; Deng, G L
2015-12-16
In order to develop jetting technologies of glue in LED and microelectronics packaging, giant-magnetostrictive-material (GMM) is firstly applied to increase jetting response, and a new magnifying device including a lever and a flexible hinge is designed to improve jetting characteristics. Physical models of the jetting system are derived from the magnifying structure and working principle, which involves circuit model, electro-magneto-displacement model, dynamic model and fluid-solid coupling model. The system model is established by combining mathematical models with Matlab-Simulink. The effectiveness of the GMM-based dispenser is confirmed by simulation and experiments. The jetting frequency significantly increases to 250 Hz, and dynamic behaviors jetting needle are evaluated that the velocity and displacement of the jetting needle reaches to 320 mm•s-1 and 0.11 mm respectively. With the increasing of the filling pressure or the amplitude of the current, the dot size will become larger. The dot size and working frequency can be easily adjusted.
Improvement on reaction model for sodium-water reaction jet code and application analysis
International Nuclear Information System (INIS)
Itooka, Satoshi; Saito, Yoshinori; Okabe, Ayao; Fujimata, Kazuhiro; Murata, Shuuichi
2000-03-01
In selecting the reasonable DBL on steam generator (SG), it is necessary to improve analytical method for estimating the sodium temperature on failure propagation due to overheating. Improvement on sodium-water reaction (SWR) jet code (LEAP-JET ver.1.30) and application analysis to the water injection tests for confirmation of code propriety were performed. On the improvement of the code, a gas-liquid interface area density model was introduced to develop a chemical reaction model with a little dependence on calculation mesh size. The test calculation using the improved code (LEAP-JET ver.1.40) were carried out with conditions of the SWAT-3·Run-19 test and an actual scale SG. It is confirmed that the SWR jet behavior on the results and the influence to analysis result of a model are reasonable. For the application analysis to the water injection tests, water injection behavior and SWR jet behavior analyses on the new SWAT-1 (SWAT-1R) and SWAT-3 (SWAT-3R) tests were performed using the LEAP-BLOW code and the LEAP-JET code. In the application analysis of the LEAP-BLOW code, parameter survey study was performed. As the results, the condition of the injection nozzle diameter needed to simulate the water leak rate was confirmed. In the application analysis of the LEAP-JET code, temperature behavior of the SWR jet was investigated. (author)
Evolution in time-dependent fitness landscapes
Wilke, Claus O.
1998-01-01
Evolution in changing environments is an important, but little studied aspect of the theory of evolution. The idea of adaptive walks in fitness landscapes has triggered a vast amount of research and has led to many important insights about the progress of evolution. Nevertheless, the small step to time-dependent fitness landscapes has most of the time not been taken. In this work, some elements of a theory of adaptive walks on changing fitness landscapes are proposed, and are subsequently app...
Time-dependent problems and difference methods
Gustafsson, Bertil; Oliger, Joseph
2013-01-01
Praise for the First Edition "". . . fills a considerable gap in the numerical analysis literature by providing a self-contained treatment . . . this is an important work written in a clear style . . . warmly recommended to any graduate student or researcher in the field of the numerical solution of partial differential equations."" -SIAM Review Time-Dependent Problems and Difference Methods, Second Edition continues to provide guidance for the analysis of difference methods for computing approximate solutions to partial differential equations for time-de
Analysis of a turbulent buoyant confined jet modeled using realizable k-ε model
El-Amin, Mohamed
2010-06-13
Through this paper, analyses of components of the unheated/heated turbulent confined jet are introduced and some models to describe them are developed. Turbulence realizable k-ε model is used to model the turbulence of this problem. Numerical simulations of 2D axisymmetric vertical hot water confined jet into a cylindrical tank have been done. Solutions are obtained for unsteady flow while velocity, pressure, temperature and turbulence distributions inside the water tank are analyzed. For seeking verification, an experiment was conducted for measuring of the temperature of the same system, and comparison between the measured and simulated temperature shows a good agreement. Using the simulated results, some models are developed to describe axial velocity, centerline velocity, radial velocity, dynamic pressure, mass flux, momentum flux and buoyancy flux for both unheated (non-buoyant) and heated (buoyant) jet. Finally, the dynamics of the heated jet in terms of the plume function which is a universal quantity and the source parameter are studied and therefore the maximum velocity can be predicted theoretically. © 2010 Springer-Verlag.
Time-dependent projected Hartree-Fock.
Tsuchimochi, Takashi; Van Voorhis, Troy
2015-03-28
Projected Hartree-Fock (PHF) has recently emerged as an alternative approach to describing degenerate systems where static correlation is abundant, when the spin-symmetry is projected. Here, we derive a set of linearized time-dependent equations for PHF in order to be able to access excited states. The close connection of such linear-response time-dependent PHF (TDPHF) to the stability condition of a PHF wave function is discussed. Expanding this analysis also makes it possible to give analytical expressions for the projected coupling terms of Hamiltonian and overlaps between excited Slater determinants. TDPHF with spin-projection (TDSUHF) and its Tamm-Dancoff approximation are benchmarked for several electronically degenerate molecules including the dissociating H2, F2 and O3 at equilibrium, and the distorted ethylene. It is shown that they give consistently better descriptions of excited states than does time-dependent HF (TDHF). Furthermore, we demonstrate that they offer not only singly but also doubly excited states, which naturally arise upon spin-projection. We also address the thermodynamic limit of TDSUHF, using non-interacting He gas. While TDPHF singly excited states tend to converge to those of HF with the size of the system due to the lack of size-extensivity of PHF, doubly excited states remain reasonable even at the thermodynamic limit. We find that the overall performance of our method is systematically better than the regular TDHF in many cases at the same computational scaling.
Time-dependent fracture toughness of cornea.
Tonsomboon, Khaow; Koh, Ching Theng; Oyen, Michelle L
2014-06-01
The fracture and time-dependent properties of cornea are very important for the development of corneal scaffolds and prostheses. However, there has been no systematic study of cornea fracture; time-dependent behavior of cornea has never been investigated in a fracture context. In this work, fracture toughness of cornea was characterized by trouser tear tests, and time-dependent properties of cornea were examined by stress-relaxation and uniaxial tensile tests. Control experiments were performed on a photoelastic rubber sheet. Corneal fracture resistance was found to be strain-rate dependent, with values ranging from 3.39±0.57 to 5.40±0.48kJm(-2) over strain rates from 3 to 300mmmin(-1). Results from stress-relaxation tests confirmed that cornea is a nonlinear viscoelastic material. The cornea behaved closer to a viscous fluid at small strain but became relatively more elastic at larger strain. Although cornea properties are greatly dependent on time, the stress-strain responses of cornea were found to be insensitive to the strain rate when subjected to tensile loading. Copyright © 2014 Elsevier Ltd. All rights reserved.
Modeling of Carbon Migration During JET Injection Experiments
Energy Technology Data Exchange (ETDEWEB)
Strachan, J. D.; Likonen, J.; Coad, P.; Rubel, M.; Widdowson, A.; Airila, M.; Andrew, P.; Brezinsek, S.; Corrigan, G.; Esser, H. G.; Jachmich, S.; Kallenbach, A.; Kirschner, A.; Kreter, A.; Matthews, G. F.; Philipps, V.; Pitts, R. A.; Spence, J.; Stamp, M.; Wiesen, S.
2008-10-15
JET has performed two dedicated carbon migration experiments on the final run day of separate campaigns (2001 and 2004) using {sup 13}CH{sub 4} methane injected into repeated discharges. The EDGE2D/NIMBUS code modelled the carbon migration in both experiments. This paper describes this modelling and identifies a number of important migration pathways: (1) deposition and erosion near the injection location, (2) migration through the main chamber SOL, (3) migration through the private flux region aided by E x B drifts, and (4) neutral migration originating near the strike points. In H-Mode, type I ELMs are calculated to influence the migration by enhancing erosion during the ELM peak and increasing the long-range migration immediately following the ELM. The erosion/re-deposition cycle along the outer target leads to a multistep migration of {sup 13}C towards the separatrix which is called 'walking'. This walking created carbon neutrals at the outer strike point and led to {sup 13}C deposition in the private flux region. Although several migration pathways have been identified, quantitative analyses are hindered by experimental uncertainty in divertor leakage, and the lack of measurements at locations such as gaps and shadowed regions.
Numerical modeling of normal turbulent plane jet impingement on solid wall
Energy Technology Data Exchange (ETDEWEB)
Guo, C.Y.; Maxwell, W.H.C.
1984-10-01
Attention is given to a numerical turbulence model for the impingement of a well developed normal plane jet on a solid wall, by means of which it is possible to express different jet impingement geometries in terms of different boundary conditions. Examples of these jets include those issuing from VTOL aircraft, chemical combustors, etc. The two-equation, turbulent kinetic energy-turbulent dissipation rate model is combined with the continuity equation and the transport equation of vorticity, using an iterative finite difference technique in the computations. Peak levels of turbulent kinetic energy occur not only in the impingement zone, but also in the intermingling zone between the edges of the free jet and the wall jet. 20 references.
Hamilton, H. B.; Strangas, E.
1980-01-01
The time dependent solution of the magnetic field is introduced as a method for accounting for the variation, in time, of the machine parameters in predicting and analyzing the performance of the electrical machines. The method of time dependent finite element was used in combination with an also time dependent construction of a grid for the air gap region. The Maxwell stress tensor was used to calculate the airgap torque from the magnetic vector potential distribution. Incremental inductances were defined and calculated as functions of time, depending on eddy currents and saturation. The currents in all the machine circuits were calculated in the time domain based on these inductances, which were continuously updated. The method was applied to a chopper controlled DC series motor used for electric vehicle drive, and to a salient pole sychronous motor with damper bars. Simulation results were compared to experimentally obtained ones.
Modeling of tangential synthetic jet actuators used for pitching control on an airfoil
Lopez, Omar; Moser, Robert
2008-11-01
Pitching moment control in an airfoil can be achieved by trapping concentrations of vorticity close to the trailing edge. Experimental work has shown that synthetic jet actuators can be used to manipulate and control this trapped vorticity. Two different approaches are used to model the action of tangential-blowing synthetic jet actuators mounted near the trailing edge of the airfoil: a detailed model and Reynolds stress synthetic jet (RSSJ) model. The detailed model resolves the synthetic jet dynamics in time while the RSSJ model tries to capture the major effects of the synthetic jet by modeling the changes in the Reynolds stress induced by the actuator, based on experimental PIV data and numerical results from the detailed model. Both models along with the CFD computations in which they are embedded are validated against experimental data. The synthetic jet models have been developed to simulate closed loop flow control of the pitching and plunging of the airfoil, and to this end the RSSJ model is particularly useful since it reduces (by an order of magnitude) the cost of simulating the long-term evolution of the system under control.
Guo, Jian; Zhou, Diansong; Li, Yan; Khanh, Bui H
2015-11-01
4-{(R)-(3-Aminophenyl)[4-(4-fluorobenzyl)-piperazin-1-yl]methyl}-N,N-diethylbenzamide (AZD2327) is a highly potent and selective agonist of the δ-opioid receptor. AZD2327 and N-deethylated AZD2327 (M1) are substrates of cytochrome P450 3A (CYP3A4) and comprise a complex multiple inhibitory system that causes competitive and time-dependent inhibition of CYP3A4. The aim of the current work was to develop a physiologically based pharmacokinetic (PBPK) model to predict quantitatively the magnitude of CYP3A4 mediated drug-drug interaction with midazolam as the substrate. Integrating in silico, in vitro and in vivo PK data, a PBPK model was successfully developed to simulate the clinical accumulation of AZD2327 and its primary metabolite. The inhibition of CYP3A4 by AZD2327, using midazolam as a probe drug, was reasonably predicted. The predicted maximum concentration (Cmax) and area under the concentration-time curve (AUC) for midazolam were increased by 1.75 and 2.45-fold, respectively, after multiple dosing of AZD2327, indicating no or low risk for clinically relevant drug-drug interactions (DDI). These results are in agreement with those obtained in a clinical trial with a 1.4 and 1.5-fold increase in Cmax and AUC of midazolam, respectively. In conclusion, this model simulated DDI with less than a two-fold error, indicating that complex clinical DDI associated with multiple mechanisms, pathways and inhibitors (parent and metabolite) can be predicted using a well-developed PBPK model. Copyright © 2015 John Wiley & Sons, Ltd.
Modeling the plasma chemistry of stratospheric Blue Jet streamers
Winkler, Holger; Notholt, Justus
2014-05-01
Stratospheric Blue Jets (SBJs) are upward propagating discharges in the altitude range 15-40 km above thunderstorms. The currently most accepted theory associates SBJs to the development of the streamer zone of a leader. The streamers emitted from the leader can travel for a few tens of kilometers predominantly in the vertical direction (Raizer et al., 2007). The strong electric fields at the streamer tips cause ionisation, dissociation, and excitation, and give rise to chemical perturbations. While in recent years the effects of electric discharges occurring in the mesosphere (sprites) have been investigated in a number of model studies, there are only a few studies on the impact of SBJs. However, chemical perturbations due to SBJs are of interest as they might influence the stratospheric ozone layer. We present results of detailed plasma chemistry simulations of SBJ streamers for both day-time and night-time conditions. Any effects of the subsequent leader are not considered. The model accounts for more than 500 reactions and calculates the evolution of the 88 species under the influence of the breakdown electric fields at the streamer tip. As the SBJ dynamics is outside the scope of this study, the streamer parameters are prescribed. For this purpose, electric field parameters based on Raizer et al. (2007) are used. The model is applied to the typical SBJ altitude range 15-40 km. The simulations indicate that SBJ streamers cause significant chemical perturbations. In particular, the liberation of atomic oxygen during the discharge leads to a formation of ozone. At the same time, reactive nitrogen and hydrogen radicals are produced which will cause catalytic ozone destruction. Reference: Raizer et al. (2007), J. Atmos. Solar-Terr. Phys., 69 (8), 925-938.
The Possibility of jet Modelling at the CMS Test Beam Experiments
Abramov, Victor
1997-01-01
The problem of a jet modelling at the CMS test beam experiments has been studied using GEANT 3.21 package. A simple experimental set-up consisting of an active target and a hodoscope in the forward hemisphere is proposed to separate spectator jets from single particles which passed the target without interaction. The rejection factor of proposed algorithm for single particles is better then 1000 in the energy range from 10 to 1000 GeV. Efficiency of jet detection in the same energy range is about 70% or better. The proposed algorithm of jet selection allows one to study response of calorimeters and other detectors on jets and single particles using existing test beams.
Evidence for the Magnetic Breakout Model in an Equatorial Coronal-hole Jet
Kumar, Pankaj; Karpen, Judith T.; Antiochos, Spiro K.; Wyper, Peter F.; DeVore, C. Richard; DeForest, Craig E.
2018-02-01
Small, impulsive jets commonly occur throughout the solar corona, but are especially visible in coronal holes. Evidence is mounting that jets are part of a continuum of eruptions that extends to much larger coronal mass ejections and eruptive flares. Because coronal-hole jets originate in relatively simple magnetic structures, they offer an ideal testbed for theories of energy buildup and release in the full range of solar eruptions. We analyzed an equatorial coronal-hole jet observed by the Solar Dynamics Observatory (SDO)/AIA on 2014 January 9 in which the magnetic-field structure was consistent with the embedded-bipole topology that we identified and modeled previously as an origin of coronal jets. In addition, this event contained a mini-filament, which led to important insights into the energy storage and release mechanisms. SDO/HMI magnetograms revealed footpoint motions in the primary minority-polarity region at the eruption site, but show negligible flux emergence or cancellation for at least 16 hr before the eruption. Therefore, the free energy powering this jet probably came from magnetic shear concentrated at the polarity inversion line within the embedded bipole. We find that the observed activity sequence and its interpretation closely match the predictions of the breakout jet model, strongly supporting the hypothesis that the breakout model can explain solar eruptions on a wide range of scales.
Time-dependent studies of multiphoton processes
International Nuclear Information System (INIS)
Kulander, K.C.; Schafer, K.J.; Krause, J.L.
1992-01-01
Interest in intense-field laser-atom interactions has undergone very rapid growth over the past decade due to a number of very surprising observations made during short-pulse (much-lt 1 ns) excitation of atoms and molecules. Extensive results have been reported for electron and photon emission from atoms subject to high-intensity lasers. This wealth of data has greatly increased our detailed knowledge of the effects of electromagnetic radiation on the electrons in these systems. The richness of these results has encouraged the development of new theoretical methods to provide an understanding of the observations. This paper reports that one of the major techniques being used to study the dynamics of excitation and ionization is the direct solution of the time-dependent Schrodinger equation for an atom or molecule in a pulse laser field. The time-dependent methods allow the exact calculation of above-threshold ionization (ATI) spectra for real (three-dimensional) hydrogenic systems and of photon emission from atoms excited by lasers. Recently the possibility of high-frequency, high-intensity suppression of ionization has also been addressed
Energy Technology Data Exchange (ETDEWEB)
Cline, M.C.
1981-08-01
VNAP2 is a computer program for calculating turbulent (as well as laminar and inviscid), steady, and unsteady flow. VNAP2 solves the two-dimensional, time-dependent, compressible Navier-Stokes equations. The turbulence is modeled with either an algebraic mixing-length model, a one-equation model, or the Jones-Launder two-equation model. The geometry may be a single- or a dual-flowing stream. The interior grid points are computed using the unsplit MacCormack scheme. Two options to speed up the calculations for high Reynolds number flows are included. The boundary grid points are computed using a reference-plane-characteristic scheme with the viscous terms treated as source functions. An explicit artificial viscosity is included for shock computations. The fluid is assumed to be a perfect gas. The flow boundaries may be arbitrary curved solid walls, inflow/outflow boundaries, or free-jet envelopes. Typical problems that can be solved concern nozzles, inlets, jet-powered afterbodies, airfoils, and free-jet expansions. The accuracy and efficiency of the program are shown by calculations of several inviscid and turbulent flows. The program and its use are described completely, and six sample cases and a code listing are included.
Numerically calibrated model for propagation of a relativistic unmagnetized jet in dense media
Harrison, Richard; Gottlieb, Ore; Nakar, Ehud
2018-03-01
Relativistic jets reside in high-energy astrophysical systems of all scales. Their interaction with the surrounding media is critical as it determines the jet evolution, observable signature, and feedback on the environment. During its motion the interaction of the jet with the ambient media inflates a highly pressurized cocoon, which under certain conditions collimates the jet and strongly affects its propagation. Recently, Bromberg et al. (2011b) derived a general simplified (semi)analytic solution for the evolution of the jet and the cocoon in case of an unmagnetized jet that propagates in a medium with a range of density profiles. In this work we use a large suite of 2D and 3D relativistic hydrodynamic simulations in order to test the validity and accuracy of this model. We discuss the similarities and differences between the analytic model and numerical simulations and also, to some extent, between 2D and 3D simulations. Our main finding is that although the analytic model is highly simplified, it properly predicts the evolution of the main ingredients of the jet-cocoon system, including its temporal evolution and the transition between various regimes (e.g., collimated to uncollimated). The analytic solution predicts a jet head velocity that is faster by a factor of about 3 compared to the simulations, as long as the head velocity is Newtonian. We use the results of the simulations to calibrate the analytic model which significantly increases its accuracy. We provide an applet that calculates semi-analytically the propagation of a jet in an arbitrary density profile defined by the user at http://www.astro.tau.ac.il/ ore/propagation.html.
Leon, L; Kasereka, S; Barin, F; Larsen, C; Weill-Barillet, L; Pascal, X; Chevaliez, S; Pillonel, J; Jauffret-Roustide, M; LE Strat, Y
2017-04-01
Hepatitis C virus (HCV) infection is a public health issue worldwide. Injecting drug use remains the major mode of transmission in developed countries. Monitoring the HCV transmission dynamic over time is crucial, especially to assess the effect of harm reduction measures in drug users (DU). Our objective was to estimate the prevalence and incidence of HCV infection in DU in France using data from a repeated cross-sectional survey conducted in 2004 and 2011. Age- and time-dependent HCV prevalence was estimated through logistic regression models adjusted for HIV serostatus or injecting practices. HCV incidence was estimated from a mathematical model linking prevalence and incidence. HCV prevalence decreased from 58·2% [95% confidence interval (CI) 49·7-66·8] in 2004 to 43·2% (95% CI 38·8-47·7) in 2011. HCV incidence decreased from 7·9/100 person-years (95% CI 6·4-9·4) in 2004 to 4·4/100 person-years (95% CI 3·3-5·9) in 2011. HCV prevalence and incidence were significantly associated with age, calendar time, HIV serostatus and injecting practices. In 2011, the highest estimated incidence was in active injecting DU (11·2/100 person-years). Given the forthcoming objective of generalizing access to new direct antiviral agents for HCV infection, our results contribute to decision-making and policy development regarding treatment scale-up and disease prevention in the DU population.
Examining the time dependence of DAMA's modulation amplitude
Kelso, Chris; Savage, Christopher; Sandick, Pearl; Freese, Katherine; Gondolo, Paolo
2018-03-01
If dark matter is composed of weakly interacting particles, Earth's orbital motion may induce a small annual variation in the rate at which these particles interact in a terrestrial detector. The DAMA collaboration has identified at a 9.3σ confidence level such an annual modulation in their event rate over two detector iterations, DAMA/NaI and DAMA/LIBRA, each with ˜ 7 years of observations. This data is well fit by a constant modulation amplitude for the two iterations of the experiment. We statistically examine the time dependence of the modulation amplitudes, which "by eye" appear to be decreasing with time in certain energy ranges. We perform a chi-squared goodness of fit test of the average modulation amplitudes measured by the two detector iterations which rejects the hypothesis of a consistent modulation amplitude at greater than 80, 96, and 99.6% for the 2-4, 2-5 and 2-6 keVee energy ranges, respectively. We also find that among the 14 annual cycles there are three ≳ 3σ departures from the average in our estimated data in the 5-6 keVee energy range. In addition, we examined several phenomenological models for the time dependence of the modulation amplitude. Using a maximum likelihood test, we find that descriptions of the modulation amplitude as decreasing with time are preferred over a constant modulation amplitude at anywhere between 1σ and 3σ , depending on the phenomenological model for the time dependence and the signal energy range considered. A time dependent modulation amplitude is not expected for a dark matter signal, at least for dark matter halo morphologies consistent with the DAMA signal. New data from DAMA/LIBRA-phase2 will certainly aid in determining whether any apparent time dependence is a real effect or a statistical fluctuation.
International Nuclear Information System (INIS)
Debbarma, Ajoy; Pandey, Krishna Murari
2016-01-01
Numerical investigation of the rewetting of single sector fuel assembly of Advanced Heavy Water Reactor (AHWR) has been carried out to exhibit the effect of coolant jet diameters (2, 3 and 4 mm) and jet directions (Model: M, X and X2). The rewetting phenomena with various jet models are compared on the basis of rewetting temperature and wetting delay. Temperature-time curve have been evaluated from rods surfaces at different circumference, radial and axial locations of rod bundle. The cooling curve indicated the presence of vapor in respected location, where it prevents the contact between the firm and fluid phases. The peak wall temperature represents as rewetting temperature. The time period observed between initial to rewetting temperature point is wetting delay. It was noted that as improved in various jet models, rewetting temperature and wetting delay reduced, which referred the coolant stipulation in the rod bundle dominant vapor formation.
The time-dependent simplified P2 equations: Asymptotic analyses and numerical experiments
International Nuclear Information System (INIS)
Shin, U.; Miller, W.F. Jr.
1998-01-01
Using an asymptotic expansion, the authors found that the modified time-dependent simplified P 2 (SP 2 ) equations are robust, high-order, asymptotic approximations to the time-dependent transport equation in a physical regime in which the conventional time-dependent diffusion equation is the leading-order approximation. Using diffusion limit analysis, they also asymptotically compared three competitive time-dependent equations (the telegrapher's equation, the time-dependent SP 2 equations, and the time-dependent simplified even-parity equation). As a result, they found that the time-dependent SP 2 equations contain higher-order asymptotic approximations to the time-dependent transport equation than the other competitive equations. The numerical results confirm that, in the vast majority of cases, the time-dependent SP 2 solutions are significantly more accurate than the time-dependent diffusion and the telegrapher's solutions. They have also shown that the time-dependent SP 2 equations have excellent characteristics such as rotational invariance (which means no ray effect), good diffusion limit behavior, guaranteed positivity in diffusive regimes, and significant accuracy, even in deep-penetration problems. Through computer-running-time tests, they have shown that the time-dependent SP 2 equations can be solved with significantly less computational effort than the conventionally used, time-dependent S N equations (for N > 2) and almost as fast as the time-dependent diffusion equation. From all these results, they conclude that the time-dependent SP 2 equations should be considered as an important competitor for an improved approximately transport equations solver. Such computationally efficient time-dependent transport models are important for problems requiring enhanced computational efficiency, such as neutronics/fluid-dynamics coupled problems that arise in the analyses of hypothetical nuclear reactor accidents
Generalization of DT Equations for Time Dependent Sources
Neri, Lorenzo; Tudisco, Salvatore; Musumeci, Francesco; Scordino, Agata; Fallica, Giorgio; Mazzillo, Massimo; Zimbone, Massimo
2010-01-01
New equations for paralyzable, non paralyzable and hybrid DT models, valid for any time dependent sources are presented. We show how such new equations include the equations already used for constant rate sources, and how it’s is possible to correct DT losses in the case of time dependent sources. Montecarlo simulations were performed to compare the equations behavior with the three DT models. Excellent accordance between equations predictions and Montecarlo simulation was found. We also obtain good results in the experimental validation of the new hybrid DT equation. Passive quenched SPAD device was chosen as a device affected by hybrid DT losses and active quenched SPAD with 50 ns DT was used as DT losses free device. PMID:22163500
Generalization of DT Equations for Time Dependent Sources
Directory of Open Access Journals (Sweden)
Massimo Mazzillo
2010-12-01
Full Text Available New equations for paralyzable, non paralyzable and hybrid DT models, valid for any time dependent sources are presented. We show how such new equations include the equations already used for constant rate sources, and how it’s is possible to correct DT losses in the case of time dependent sources. Montecarlo simulations were performed to compare the equations behavior with the three DT models. Excellent accordance between equations predictions and Montecarlo simulation was found. We also obtain good results in the experimental validation of the new hybrid DT equation. Passive quenched SPAD device was chosen as a device affected by hybrid DT losses and active quenched SPAD with 50 ns DT was used as DT losses free device.
A multiple-scales model of the shock-cell structure of imperfectly expanded supersonic jets
Tam, C. K. W.; Jackson, J. A.; Seiner, J. M.
1985-01-01
The present investigation is concerned with the development of an analytical model of the quasi-periodic shock-cell structure of an imperfectly expanded supersonic jet. The investigation represents a part of a program to develop a mathematical theory of broadband shock-associated noise of supersonic jets. Tam and Tanna (1982) have suggested that this type of noise is generated by the weak interaction between the quasi-periodic shock cells and the downstream-propagating large turbulence structures in the mixing layer of the jet. In the model developed in this paper, the effect of turbulence in the mixing layer of the jet is simulated by the addition of turbulent eddy-viscosity terms to the momentum equation. Attention is given to the mean-flow profile and the numerical solution, and a comparison of the numerical results with experimental data.
Energy Technology Data Exchange (ETDEWEB)
Cheung, C.C.; /KIPAC, Menlo Park; Stawarz, L.; /Heidelberg Observ.; Siemiginowska, A.; /Harvard-Smithsonian Ctr. Astrophys.
2006-06-28
A newly identified kiloparsec-scale X-ray jet in the high-redshift z=3.89 quasar 1745+624 is studied with multi-frequency Very Large Array, Hubble Space Telescope, and Chandra X-ray imaging data. This is only the third large-scale X-ray jet beyond z > 3 known and is further distinguished as being the most luminous relativistic jet observed at any redshift, exceeding 10{sup 45} erg/s in both the radio and X-ray bands. Apart from the jet's extreme redshift, luminosity, and high inferred equipartition magnetic field (in comparison to local analogues), its basic properties such as X-ray/radio morphology and radio polarization are similar to lower-redshift examples. Its resolved linear structure and the convex broad-band spectral energy distributions of three distinct knots are also a common feature among known powerful X-ray jets at lower-redshift. Relativistically beamed inverse Compton and ''non-standard'' synchrotron models have been considered to account for such excess X-ray emission in other jets; both models are applicable to this high-redshift example but with differing requirements for the underlying jet physical properties, such as velocity, energetics, and electron acceleration processes. One potentially very important distinguishing characteristic between the two models is their strongly diverging predictions for the X-ray/radio emission with increasing redshift. This is considered, though with the limited sample of three z > 3 jets it is apparent that future studies targeted at very high-redshift jets are required for further elucidation of this issue. Finally, from the broad-band jet emission we estimate the jet kinetic power to be no less than 10{sup 46} erg/s, which is about 10% of the Eddington luminosity corresponding to this galaxy's central supermassive black hole mass M{sub BH} {approx}> 10{sup 9} M{sub {circle_dot}} estimated here via the virial relation. The optical luminosity of the quasar core is about ten times
Evaluation and Modeling of Camel Thorn (Alhagi Maurorum Weed Cutting by Water Jet
Directory of Open Access Journals (Sweden)
M Naghipour Zade Mahani
2014-04-01
Full Text Available Due to the importance of weed control and the limitations of mechanical methods in some places, in this research the water jet cutting for weed control was investigated. The cutting tests were performed on camel thorn weed in Shahid Bahonar university of Kerman. The water jet pressure of 90 bars was achieved with the aid of a suitable pump. The cutting time was studied in a completely randomized factorial design experiment (CRD with five replications. Factors of experiments are: stem diameter in 2 levels (smaller and larger than 5 mm, distance of spraying jet from weeds in 3 levels (10, 20 and 30 cm and two types of plant holders: blade and plate. The results showed that stem diameter and jet distance from the weed stem had significant effects on cutting time (at the 1%. The mean comparison of parameters showed that with increase of stem diameter the cutting time increased and any increase in jet distance from the weeds decreased the cutting time linearly with R2=0.96 and R2=0.99 for small and large diameter weeds, respectively. The minimum cutting time was measured at 30 cm of the jet from small diameter of stems. A multivariate linear regression model was also proposed for cutting weed parameters. It can be concluded that due to the flexibility of water jet cutting for restricted places, hydrodynamic control of weeds is proposed as a complementary method and sometimes a competing substitute method.
Time Dependent Geoid Constraints Upon Mantle Viscosity Stratification
Harlow, C.; Peltier, W. R.
2004-12-01
The global measurement of the time dependence of geoid height that is being provided by the GRACE satellite system that is now in space will eventually provide the basis for considerably more accurate inversions for mantle viscosity structure than are now possible. However, existing data on the time dependence of geoid height based upon the results of satellite laser ranging already provide very strong constraints upon the effective viscosity of the of the deepest mantle, especially when these are conbined with observations of the spectrum of relaxation times that characterize the process of glacial isostatic adjustment (GIA). Such data, by themselves, very tightly constrain the viscosity structure in the upper mantle and transition zone. We will describe a series of new analyses of the expected global pattern of geoid height time dependence based upon the recently published refined model of the GIA process denoted ICE-5G(VM2), a model based upon a significant refinement of the ICE-4G(VM2) precursor ( see W.R. Peltier, Ann. Rev. Earth and Planet. Sci., 32, 111-149, 2004). The impact of the new model of surface loading upon the mantle viscosity inverse problem turns out to be both interesting and significant.
Tunable Time-Dependent Colloidal Interactions
Bergman, Andrew M.; Rogers, W. Benjamin; Manoharan, Vinothan N.
Self-assembly of colloidal particles can be driven by changes in temperature, density, or the concentration of solutes, and it is even possible to program the thermal response and equilibrium phase transitions of such systems. It is still difficult, however, to tune how the self-assembly process varies in time. We demonstrate control over the time-dependence of colloidal interactions, using DNA-functionalized colloidal particles with binding energies that are set by the concentration of a free linker strand in solution. We control the rate at which this free strand is consumed using a catalytic DNA reaction, whose rate is governed by the concentration of a catalyst strand. Varying the concentration of the linker, its competitor, and the catalyst at a fixed temperature, we can tune the rate and degree of the formation of colloidal aggregates and their following disassembly. Close to the colloidal melting point, the timescales of these out-of-equilibrium assembly and disassembly processes are determined by the rate of the catalytic reaction. Far below the colloidal melting point, however, the effects from varying our linker and competitor concentrations dominate.
Time-Dependent Variations of Accretion Disk
Directory of Open Access Journals (Sweden)
Hye-Weon Na
1987-06-01
Full Text Available In dward nova we assume the primary star as a white dwarf and the secondary as the late type star which filled Roche lobe. Mass flow from the secondary star leads to the formation of thin accretion disk around the white dwarf. We use the α parameter as viscosity to maintain the disk form and propose that the outburst in dwarf nova cause the steep increase of source term. With these assumptions we solve the basic equations of stellar structure using Newton-Raphson method. We show the physical parameters like temperature, density, pressure, opacity, surface density, height and flux to the radius of disk. Changing the value of α, we compare several parameters when mass flow rate is constant with those of when luminosity of disk is brightest. At the same time, we obtain time-dependent variations of luminosity and mass of disk. We propose the suitable range of α is 0.15-0.18 to the difference of luminosity. We compare several parameters of disk with those of the normal late type stars which have the same molecular weight of disk is lower. Maybe the outburst in dwarf nova is due to the variation of the α value instead of increment of mass flow from the secondary star.
Time dependent mean-field games
Gomes, Diogo A.
2014-01-06
We consider time dependent mean-field games (MFG) with a local power-like dependence on the measure and Hamiltonians satisfying both sub and superquadratic growth conditions. We establish existence of smooth solutions under a certain set of conditions depending both on the growth of the Hamiltonian as well as on the dimension. In the subquadratic case this is done by combining a Gagliardo-Nirenberg type of argument with a new class of polynomial estimates for solutions of the Fokker-Planck equation in terms of LrLp- norms of DpH. These techniques do not apply to the superquadratic case. In this setting we recur to a delicate argument that combines the non-linear adjoint method with polynomial estimates for solutions of the Fokker-Planck equation in terms of L1L1-norms of DpH. Concerning the subquadratic case, we substantially improve and extend the results previously obtained. Furthermore, to the best of our knowledge, the superquadratic case has not been addressed in the literature yet. In fact, it is likely that our estimates may also add to the current understanding of Hamilton-Jacobi equations with superquadratic Hamiltonians.
The improvement of the heat transfer model for sodium-water reaction jet code
International Nuclear Information System (INIS)
Hashiguchi, Yoshirou; Yamamoto, Hajime; Kamoshida, Norio; Murata, Shuuichi
2001-02-01
For confirming the reasonable DBL (Design Base Leak) on steam generator (SG), it is necessary to evaluate phenomena of sodium-water reaction (SWR) in an actual steam generator realistically. The improvement of a heat transfer model on sodium-water reaction (SWR) jet code (LEAP-JET ver.1.40) and application analysis to the water injection tests for confirmation of propriety for the code were performed. On the improvement of the code, the heat transfer model between a inside fluid and a tube wall was introduced instead of the prior model which was heat capacity model including both heat capacity of the tube wall and inside fluid. And it was considered that the fluid of inside the heat exchange tube was able to treat as water or sodium and typical heat transfer equations used in SG design were also introduced in the new heat transfer model. Further additional work was carried out in order to improve the stability of the calculation for long calculation time. The test calculation using the improved code (LEAP-JET ver.1.50) were carried out with conditions of the SWAT-IR·Run-HT-2 test. It was confirmed that the SWR jet behavior on the result and the influence to the result of the heat transfer model were reasonable. And also on the improved code (LEAP-JET ver.1.50), user's manual was revised with additional I/O manual and explanation of the heat transfer model and new variable name. (author)
Energy Technology Data Exchange (ETDEWEB)
Cheung, Mark C. M.; Pontieu, B. De; Tarbell, T. D.; Fu, Y.; Martínez-Sykora, J.; Boerner, P.; Wülser, J. P.; Lemen, J.; Title, A. M.; Hurlburt, N. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street Bldg. 252, Palo Alto, CA 94304 (United States); Tian, H.; Testa, P.; Reeves, K. K.; Golub, L.; McKillop, S.; Saar, S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kleint, L. [University of Applied Sciences and Arts Northwestern Switzerland, Bahnhofstr. 6, 5210 Windisch (Switzerland); Kankelborg, C.; Jaeggli, S. [Department of Physics, Montana State University, Bozeman, P.O. Box 173840, Bozeman, MT 59717 (United States); Carlsson, M., E-mail: cheung@lmsal.com [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); and others
2015-03-10
We report on observations of recurrent jets by instruments on board the Interface Region Imaging Spectrograph, Solar Dynamics Observatory (SDO), and Hinode spacecraft. Over a 4 hr period on 2013 July 21, recurrent coronal jets were observed to emanate from NOAA Active Region 11793. Far-ultraviolet spectra probing plasma at transition region temperatures show evidence of oppositely directed flows with components reaching Doppler velocities of ±100 km s{sup −1}. Raster Doppler maps using a Si iv transition region line show all four jets to have helical motion of the same sense. Simultaneous observations of the region by SDO and Hinode show that the jets emanate from a source region comprising a pore embedded in the interior of a supergranule. The parasitic pore has opposite polarity flux compared to the surrounding network field. This leads to a spine-fan magnetic topology in the coronal field that is amenable to jet formation. Time-dependent data-driven simulations are used to investigate the underlying drivers for the jets. These numerical experiments show that the emergence of current-carrying magnetic field in the vicinity of the pore supplies the magnetic twist needed for recurrent helical jet formation.
Modeling Sound Propagation Through Non-Axisymmetric Jets
Leib, Stewart J.
2014-01-01
A method for computing the far-field adjoint Green's function of the generalized acoustic analogy equations under a locally parallel mean flow approximation is presented. The method is based on expanding the mean-flow-dependent coefficients in the governing equation and the scalar Green's function in truncated Fourier series in the azimuthal direction and a finite difference approximation in the radial direction in circular cylindrical coordinates. The combined spectral/finite difference method yields a highly banded system of algebraic equations that can be efficiently solved using a standard sparse system solver. The method is applied to test cases, with mean flow specified by analytical functions, corresponding to two noise reduction concepts of current interest: the offset jet and the fluid shield. Sample results for the Green's function are given for these two test cases and recommendations made as to the use of the method as part of a RANS-based jet noise prediction code.
A semi-implicit, second-order-accurate numerical model for multiphase underexpanded volcanic jets
Directory of Open Access Journals (Sweden)
S. Carcano
2013-11-01
Full Text Available An improved version of the PDAC (Pyroclastic Dispersal Analysis Code, Esposti Ongaro et al., 2007 numerical model for the simulation of multiphase volcanic flows is presented and validated for the simulation of multiphase volcanic jets in supersonic regimes. The present version of PDAC includes second-order time- and space discretizations and fully multidimensional advection discretizations in order to reduce numerical diffusion and enhance the accuracy of the original model. The model is tested on the problem of jet decompression in both two and three dimensions. For homogeneous jets, numerical results are consistent with experimental results at the laboratory scale (Lewis and Carlson, 1964. For nonequilibrium gas–particle jets, we consider monodisperse and bidisperse mixtures, and we quantify nonequilibrium effects in terms of the ratio between the particle relaxation time and a characteristic jet timescale. For coarse particles and low particle load, numerical simulations well reproduce laboratory experiments and numerical simulations carried out with an Eulerian–Lagrangian model (Sommerfeld, 1993. At the volcanic scale, we consider steady-state conditions associated with the development of Vulcanian and sub-Plinian eruptions. For the finest particles produced in these regimes, we demonstrate that the solid phase is in mechanical and thermal equilibrium with the gas phase and that the jet decompression structure is well described by a pseudogas model (Ogden et al., 2008. Coarse particles, on the other hand, display significant nonequilibrium effects, which associated with their larger relaxation time. Deviations from the equilibrium regime, with maximum velocity and temperature differences on the order of 150 m s−1 and 80 K across shock waves, occur especially during the rapid acceleration phases, and are able to modify substantially the jet dynamics with respect to the homogeneous case.
Revisiting the EC/CMB model for extragalactic large scale jets
Lucchini, M.; Tavecchio, F.; Ghisellini, G.
2017-04-01
One of the most outstanding results of the Chandra X-ray Observatory was the discovery that AGN jets are bright X-ray emitters on very large scales, up to hundreds of kpc. Of these, the powerful and beamed jets of flat-spectrum radio quasars are particularly interesting, as the X-ray emission cannot be explained by an extrapolation of the lower frequency synchrotron spectrum. Instead, the most common model invokes inverse Compton scattering of photons of the cosmic microwave background (EC/CMB) as the mechanism responsible for the high-energy emission. The EC/CMB model has recently come under criticism, particularly because it should predict a significant steady flux in the MeV-GeV band which has not been detected by the Fermi/LAT telescope for two of the best studied jets (PKS 0637-752 and 3C273). In this work, we revisit some aspects of the EC/CMB model and show that electron cooling plays an important part in shaping the spectrum. This can solve the overproduction of γ-rays by suppressing the high-energy end of the emitting particle population. Furthermore, we show that cooling in the EC/CMB model predicts a new class of extended jets that are bright in X-rays but silent in the radio and optical bands. These jets are more likely to lie at intermediate redshifts and would have been missed in all previous X-ray surveys due to selection effects.
Hasan, M. I.; Bradley, J. W.
2015-11-01
Using a time-dependent two-dimensional axisymmetric fluid model the interaction of a plasma jet with a dielectric surface has been studied. The model is solved for two consecutive periods of a positive unipolar pulsed waveform. The study concentrates on determining the fluxes of the main oxygen ion species, \\text{O}2+ , \\text{O}2- and the total accumulated charge on the surface. Approaching the dielectric surface, the streamer head is seen to divert its direction of propagation, spreading out radially approximately 0.2 mm above the dielectric surface. For \\text{O}2+ generated near the streamer head, this leads to a maximum in their flux to the surface which moves radially outwards with the streamer propagation, driven by the applied electric field in pulse on-time. In the off-time, the flux of \\text{O}2+ drops by at least two orders of magnitude. As a result, the total number of \\text{O}2+ ions arriving at the surface over one entire pulse period (fluence) has an annular shape limited by the effective contact area of the streamer on the surface. In contrast \\text{O}2- ions generated in the pulse on-time do not reach the surface due to the direction of the applied electric field. In the off-time, \\text{O}2- ions generated at the edges of the deformed streamer are pushed by the accumulated surface charge outwards. As a result, the \\text{O}2- fluence has an annular structure with its maximum being outside the area of the dielectric surface covered by the plasma channel. Solving for the second pulse period shows small changes in the predicted fluences, with largest difference seen with \\text{O}2- . We see that increasing the flow rate (by a factor of three) shifts the position of the maximum fluence of \\text{O}2+ outwards, and decreasing the \\text{O}2- fluence in the second pulse period.
Time-Dependent Neutron and Photon Dose-Field Analysis
Energy Technology Data Exchange (ETDEWEB)
Wooten, Hasani Omar [Georgia Inst. of Technology, Atlanta, GA (United States)
2005-08-01
A unique tool is developed that allows the user to model physical representations of complicated glovebox facilities in two dimensions and determine neutral-particle flux and ambient dose-equivalent fields throughout that geometry. The Pandemonium code, originally designed to determine flux and dose-rates only, is improved to include realistic glovebox geometries, time-dependent source and detector positions, time-dependent shielding thickness calculations, time-integrated doses, a representative criticality accident scenario based on time-dependent reactor kinetics, and more rigorous photon treatment. A primary benefit of this work has been an extensive analysis and improvement of the photon model that is not limited to the application described in this thesis. The photon model has been extended in energy range to 10 MeV to include photons from fission and new photon buildup factors have been included that account for the effects of photon buildup at slant-path thicknesses as a function of angle, where the mean free path thickness has been preserved. The overall system of codes is user-friendly and it is directly applicable to facilities such as the plutonium facility at Los Alamos National Laboratory, where high-intensity neutron and photon emitters are regularly used. The codes may be used to determine a priori doses for given work scenarios in an effort to supply dose information to process models which will in turn assist decision makers on ensuring as low as reasonably achievable (ALARA) compliance. In addition, coupling the computational results of these tools with the process model visualization tools will help to increase worker safety and radiological safety awareness.
Sob'yanin, Denis Nikolaevich
2017-11-01
New high-resolution Very Long Baseline Interferometer observations of the prominent jet in the M87 radio galaxy show a persistent triple-ridge structure of the transverse 15-GHz profile with a previously unobserved ultra-narrow central ridge. This radio structure can reflect the intrinsic structure of the jet, so that the jet as a whole consists of two embedded coaxial jets. A relativistic magnetohydrodynamic model is considered in which an inner jet is placed inside a hollow outer jet and the electromagnetic fields, pressures and other physical quantities are found. The entire jet is connected to the central engine that plays the role of a unipolar inductor generating voltage between the jets and providing opposite electric currents, and the charge neutrality and current closure together with the electromagnetic fields between the jets can contribute to the jet stabilization. The constant voltage is responsible for the similar widening laws observed for the inner and outer jets. This jet-in-jet structure can indicate simultaneous operation of two different jet-launching mechanisms, one relating to the central supermassive black hole and the other to the surrounding accretion disc. An inferred magnetic field of 80 G at the base is sufficient to provide the observed jet luminosity.
Lectures on perturbative QCD, jets and the standard model: collider phenomenology
International Nuclear Information System (INIS)
Ellis, S.D.
1988-01-01
Applications of the Standard Model to the description of physics at hadron colliders are discussed. Particular attention is paid to the use of jets to characterize this physics. The issue of identifying physics beyond the Standard Model is also discussed. 59 refs., 6 figs., 4 tabs
Integrated modelling of H-mode pedestal and confinement in JET-ILW
Saarelma, S.; Challis, C. D.; Garzotti, L.; Frassinetti, L.; Maggi, C. F.; Romanelli, M.; Stokes, C.; Contributors, JET
2018-01-01
A pedestal prediction model Europed is built on the existing EPED1 model by coupling it with core transport simulation using a Bohm-gyroBohm transport model to self-consistently predict JET-ILW power scan for hybrid plasmas that display weaker power degradation than the IPB98(y, 2) scaling of the energy confinement time. The weak power degradation is reproduced in the coupled core-pedestal simulation. The coupled core-pedestal model is further tested for a 3.0 MA plasma with the highest stored energy achieved in JET-ILW so far, giving a prediction of the stored plasma energy within the error margins of the measured experimental value. A pedestal density prediction model based on the neutral penetration is tested on a JET-ILW database giving a prediction with an average error of 17% from the experimental data when a parameter taking into account the fuelling rate is added into the model. However the model fails to reproduce the power dependence of the pedestal density implying missing transport physics in the model. The future JET-ILW deuterium campaign with increased heating power is predicted to reach plasma energy of 11 MJ, which would correspond to 11–13 MW of fusion power in equivalent deuterium–tritium plasma but with isotope effects on pedestal stability and core transport ignored.
DEFF Research Database (Denmark)
Schneider, M.; Johnson, T.; Dumont, R.
2016-01-01
Recent JET experiments have been dedicated to the studies of fusion reactions between deuterium (D) and Helium-3 (3He) ions using neutral beam injection (NBI) in synergy with third harmonic ion cyclotron radio-frequency heating (ICRH) of the beam. This scenario generates a fast ion deuterium tail...... enhancing DD and D3He fusion reactions. Modelling and measuring the fast deuterium tail accurately is essential for quantifying the fusion products. This paper presents the modelling of the D distribution function resulting from the NBI+ICRF heating scheme, reinforced by a comparison with dedicated JET fast...
Including Finite Surface Span Effects in Empirical Jet-Surface Interaction Noise Models
Brown, Clifford A.
2016-01-01
The effect of finite span on the jet-surface interaction noise source and the jet mixing noise shielding and reflection effects is considered using recently acquired experimental data. First, the experimental setup and resulting data are presented with particular attention to the role of surface span on far-field noise. These effects are then included in existing empirical models that have previously assumed that all surfaces are semi-infinite. This extended abstract briefly describes the experimental setup and data leaving the empirical modeling aspects for the final paper.
Sinha, Neeraj
2014-01-01
This Phase II project validated a state-of-the-art LES model, coupled with a Ffowcs Williams-Hawkings (FW-H) far-field acoustic solver, to support the development of advanced engine concepts. These concepts include innovative flow control strategies to attenuate jet noise emissions. The end-to-end LES/ FW-H noise prediction model was demonstrated and validated by applying it to rectangular nozzle designs with a high aspect ratio. The model also was validated against acoustic and flow-field data from a realistic jet-pylon experiment, thereby significantly advancing the state of the art for LES.
Time-dependent search for neutrino emission from X-ray binaries with the ANTARES telescope
Energy Technology Data Exchange (ETDEWEB)
Albert, A. [GRPHE—Université de Haute Alsace—Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit, BP 50568, Colmar, 68008 France (France); André, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposició, Vilanova i la Geltrú, Barcelona, 08800 Spain (Spain); Anton, G. [Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, Erlangen, 91058 Germany (Germany); Ardid, M. [Institut d' Investigació per a la Gestió Integrada de les Zones Costaneres (IGIC), Universitat Politècnica de València, C/ Paranimf 1, Gandia, 46730 Spain (Spain); Aubert, J.-J. [Aix-Marseille Université, CNRS/IN2P3, CPPM UMR 7346, Marseille, 13288 France (France); Avgitas, T.; Baret, B. [APC, Université Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité, Paris, 75205 France (France); Barrios-Martí, J., E-mail: antares.spokesperson@in2p3.fr [IFIC—Instituto de Física Corpuscular (CSIC—Universitat de València), c/ Catedrático José Beltrán, 2, Paterna, Valencia, E-46980 Spain (Spain); and others
2017-04-01
ANTARES is currently the largest neutrino telescope operating in the Northern Hemisphere, aiming at the detection of high-energy neutrinos from astrophysical sources. Neutrino telescopes constantly monitor at least one complete hemisphere of the sky, and are thus well-suited to detect neutrinos produced in transient astrophysical sources. A time-dependent search has been applied to a list of 33 X-ray binaries undergoing high flaring activities in satellite data (RXTE/ASM, MAXI and Swift/BAT) and during hardness transition states in the 2008–2012 period. The background originating from interactions of charged cosmic rays in the Earth's atmosphere is drastically reduced by requiring a directional and temporal coincidence with astrophysical phenomena. The results of this search are presented together with comparisons between the neutrino flux upper limits and the neutrino flux predictions from astrophysical models. The neutrino flux upper limits resulting from this search limit the jet parameter space for some astrophysical models.
Experimental and kinetic modeling study of 3-methylheptane in a jet-stirred reactor
Karsenty, Florent
2012-08-16
Improving the combustion of conventional and alternative fuels in practical applications requires the fundamental understanding of large hydrocarbon combustion chemistry. The focus of the present study is on a high-molecular-weight branched alkane, namely, 3-methylheptane, oxidized in a jet-stirred reactor. This fuel, along with 2-methylheptane, 2,5-dimethylhexane, and n-octane, are candidate surrogate components for conventional diesel fuels derived from petroleum, synthetic Fischer-Tropsch diesel and jet fuels derived from coal, natural gas, and/or biomass, and renewable diesel and jet fuels derived from the thermochemical treatment of bioderived fats and oils. This study presents new experimental results along with a low- and high-temperature chemical kinetic model for the oxidation of 3-methylheptane. The proposed model is validated against these new experimental data from a jet-stirred reactor operated at 10 atm, over the temperature range of 530-1220 K, and for equivalence ratios of 0.5, 1, and 2. Significant effort is placed on the understanding of the effects of methyl substitution on important combustion properties, such as fuel reactivity and species formation. It was found that 3-methylheptane reacts more slowly than 2-methylheptane at both low and high temperatures in the jet-stirred reactor. © 2012 American Chemical Society.
Vysotskii, Vladimir I.; Pinchuk, Anatoliy O.; Kornilova, Alla A.; Samoylenko, Igor I.
2001-12-01
The time-dependent dynamics of the formation, relaxation and auto-repairing of double breaks of DNA macromolecules at the combined radiation action and non-radiation processes of degradation (e.g. by free radicals) were considered. The auto-repairing of DNA double breaks is connected with the peculiarities of long-range interaction of nucleotide charges, atoms and molecules in the intracellular milieu. The properties of intracellular liquid and the characteristics of force interaction between the end-pairs of nucleotides in the area of DNA break in response to radiation are changed. Each kind of radiation is characterized by a certain effectiveness of the double DNA break formation but simultaneously one creates the conditions for their liquidation. On the basis of the analysis and correlation of these processes the time-dependent theory for DNA degradation was created, including hormesis phenomenon, radiation antagonism, the validity of anomaly influence of low and large doses at sharp and chronic radiation and other effects. The qualitative and quantitative correspondences of the theory and experimental results of radiation biology were obtained.
Shapes and dynamics from the time-dependent mean field
International Nuclear Information System (INIS)
Stevenson, P.D.; Goddard, P.M.; Rios, A.
2015-01-01
Explaining observed properties in terms of underlying shape degrees of freedom is a well-established prism with which to understand atomic nuclei. Self-consistent mean-field models provide one tool to understand nuclear shapes, and their link to other nuclear properties and observables. We present examples of how the time-dependent extension of the mean-field approach can be used in particular to shed light on nuclear shape properties, particularly looking at the giant resonances built on deformed nuclear ground states, and at dynamics in highly-deformed fission isomers. Example calculations are shown of 28 Si in the first case, and 240 Pu in the latter case
Time Dependent Hartree Fock Equation: Gateway to Nonequilibrium Plasmas
International Nuclear Information System (INIS)
Dufty, James W.
2007-01-01
This is the Final Technical Report for DE-FG02-2ER54677 award 'Time Dependent Hartree Fock Equation - Gateway to Nonequilibrium Plasmas'. Research has focused on the nonequilibrium dynamics of electrons in the presence of ions, both via basic quantum theory and via semi-classical molecular dynamics (MD) simulation. In addition, fundamental notions of dissipative dynamics have been explored for models of grains and dust, and for scalar fields (temperature) in turbulent edge plasmas. The specific topics addressed were Quantum Kinetic Theory for Metallic Clusters, Semi-classical MD Simulation of Plasmas , and Effects of Dissipative Dynamics.
Time dependent deformation in prestressed concrete girder: Measurement and prediction
Sokal, Y. J.; Tyrer, P.
1981-11-01
Prestressed concrete girders which are intended for composite construction in bridges and other similar structures are often stored unloaded for some time before being placed in their final positions where top deck is being poured over. During that free storage the girders are subjected to creep and shrinkage which manifests itself through increased upward deformation usually defined as camber. The analytical estimation of this deformation is important as it controls the minimum thickness of the top deck. An attempt was made to correlate on site measurements with continuous computer modeling of the time-dependent behavior using data from recently adopted international standard for concrete structures.
Portyankina, Ganna; Esposito, Larry W.; Aye, Klaus-Michael; Hansen, Candice J.
2015-11-01
One of the most spectacular discoveries of the Cassini mission is jets emitting from the southern pole of Saturn’s moon Enceladus. The composition of the jets is water vapor and salty ice grains with traces of organic compounds. Jets, merging into a wide plume at a distance, are observed by multiple instruments on Cassini. Recent observations of the visible dust plume by the Cassini Imaging Science Subsystem (ISS) identified as many as 98 jet sources located along “tiger stripes” [Porco et al. 2014]. There is a recent controversy on the question if some of these jets are “optical illusion” caused by geometrical overlap of continuous source eruptions along the “tiger stripes” in the field of view of ISS [Spitale et al. 2015]. The Cassini’s Ultraviolet Imaging Spectrograph (UVIS) observed occultations of several stars and the Sun by the water vapor plume of Enceladus. During the solar occultation separate collimated gas jets were detected inside the background plume [Hansen et al., 2006 and 2011]. These observations directly provide data about water vapor column densities along the line of sight of the UVIS instrument and could help distinguish between the presence of only localized or also continuous sources. We use Monte Carlo simulations and Direct Simulation Monte Carlo (DSMC) to model the plume of Enceladus with multiple (or continuous) jet sources. The models account for molecular collisions, gravitational and Coriolis forces. The models result in the 3-D distribution of water vapor density and surface deposition patterns. Comparison between the simulation results and column densities derived from UVIS observations provide constraints on the physical characteristics of the plume and jets. The specific geometry of the UVIS observations helps to estimate the production rates and velocity distribution of the water molecules emitted by the individual jets.Hansen, C. J. et al., Science 311:1422-1425 (2006); Hansen, C. J. et al, GRL 38:L11202 (2011
Queues with waiting time dependent service
DEFF Research Database (Denmark)
Bekker, R.; Koole, G. M.; Nielsen, Bo Friis
2011-01-01
Motivated by service levels in terms of the waiting-time distribution seen, for instance, in call centers, we consider two models for systems with a service discipline that depends on the waiting time. The first model deals with a single server that continuously adapts its service rate based...... on the waiting time of the first customer in line. In the second model, one queue is served by a primary server which is supplemented by a secondary server when the waiting of the first customer in line exceeds a threshold. Using level crossings for the waiting-time process of the first customer in line, we...
Time-dependent constrained Hamiltonian systems and Dirac brackets
Energy Technology Data Exchange (ETDEWEB)
Leon, Manuel de [Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Madrid (Spain); Marrero, Juan C. [Departamento de Matematica Fundamental, Facultad de Matematicas, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands (Spain); Martin de Diego, David [Departamento de Economia Aplicada Cuantitativa, Facultad de Ciencias Economicas y Empresariales, UNED, Madrid (Spain)
1996-11-07
In this paper the canonical Dirac formalism for time-dependent constrained Hamiltonian systems is globalized. A time-dependent Dirac bracket which reduces to the usual one for time-independent systems is introduced. (author)
Evidence for the Magnetic Breakout Model in AN Equatorial Coronal-Hole Jet
Kumar, P.; Karpen, J.; Antiochos, S. K.; Wyper, P. F.; DeVore, C. R.; DeForest, C. E.
2017-12-01
We analyzed an equatorial coronal-hole jet observed by Solar Dynamic Observatory (SDO)/AtmosphericImaging Assembly (AIA). The source-region magnetic field structure is consistent withthe embedded-bipole topology that we identified and modeled previously as a source of coronal jets. Theinitial brightening was observed below a sigmoid structure about 25 min before the onset of an untwisting jet.A circular magnetic flux rope with a mini-filament rose slowly at the speed of ˜15 km/s , then accelerated(˜126 km/s) during the onset of explosive breakout reconnection. Multiple plasmoids, propagating upward(˜135 km/s) and downward (˜55 km/s ), were detected behind the rising flux rope shortly before andduring explosive breakout reconnection. The jet was triggered when the rising flux rope interacted with theoverlying magnetic structures near the outer spine. This event shows a clear evidence of reconnection not onlybelow the flux rope but also a breakout reconnection above the flux rope. During the breakout reconnection,we observed heating of the flux rope, deflection of loops near the spine, and formation of multiple ribbons.The explosive breakout reconnection destroyed the flux rope that produced an untwisting jet with a speed of˜380 km/s . HMI magnetograms reveal the shear motion at theeruption site, but do not show any significant flux emergence or cancellation during or 2 hours before theeruption. Therefore, the free energy powering this jet most likely originated in magnetic shear concentratedat the polarity inversion line within the embedded bipole-a mini-filament channel-possibly created by helicitycondensation. The result of of a statistical study of multiple jets will also be discussed.
Directory of Open Access Journals (Sweden)
C. H. Li
2013-01-01
Full Text Available Solid nano particles were added in minimum quantity lubrication (MQL fluid medium to make nanofluids, that is, after the mixing and atomization of nanoparticle, lubricants and high pressure gas, to inject solid nano particle in the grinding zone with the form of jet flow. The mathematical model of two-phase flow pressure field of grinding zone with nanoparticle jet flow of MQL was established, and the simulation study was conducted. The results show that pressures in the grinding zone increased with the acceleration of grinding wheel, sharply decreased with the increased minimum clearance, and increased with the acceleration of jet flow. At three spraying angles of nozzles, when the nozzle angle was 15°, the pressure of grinding zone along the speed of grinding wheel was larger than the rest two angles. On the experimental platform built by KP-36 precision grinder and nanoparticle jet flow feed way, CY3018 pressure sensor was used to test the regularities of pressure field variations. The impact of the speed of grinding wheel, the gap between workpiece and grinding wheel, jet flow velocity, and spraying angles of nozzles on the pressure field of grinding zone was explored. The experimental result was generally consistent with the theoretical simulation, which verified the accuracy of the theoretical analysis.
Modelling the helium plasma jet delivery of reactive species into a 3D cancer tumour
Szili, Endre J.; Oh, Jun-Seok; Fukuhara, Hideo; Bhatia, Rishabh; Gaur, Nishtha; Nguyen, Cuong K.; Hong, Sung-Ha; Ito, Satsuki; Ogawa, Kotaro; Kawada, Chiaki; Shuin, Taro; Tsuda, Masayuki; Furihata, Mutsuo; Kurabayashi, Atsushi; Furuta, Hiroshi; Ito, Masafumi; Inoue, Keiji; Hatta, Akimitsu; Short, Robert D.
2018-01-01
Cold atmospheric plasmas have attracted significant worldwide attention for their potential beneficial effects in cancer therapy. In order to further improve the effectiveness of plasma in cancer therapy, it is important to understand the generation and transport of plasma reactive species into tissue fluids, tissues and cells, and moreover the rates and depths of delivery, particularly across physical barriers such as skin. In this study, helium (He) plasma jet treatment of a 3D cancer tumour, grown on the back of a live mouse, induced apoptosis within the tumour to a depth of 2.8 mm. The He plasma jet was shown to deliver reactive oxygen species through the unbroken skin barrier before penetrating through the entire depth of the tumour. The depth and rate of transport of He plasma jet generated H2O2, NO3 ‑ and NO2 ‑, as well as aqueous oxygen [O2(aq)], was then tracked in an agarose tissue model. This provided an approximation of the H2O2, NO3 ‑, NO2 ‑ and O2(aq) concentrations that might have been generated during the He plasma jet treatment of the 3D tumour. It is proposed that the He plasma jet can induce apoptosis within a tumour by the ‘deep’ delivery of H2O2, NO3 ‑ and NO2 ‑ coupled with O2(aq); the latter raising oxygen tension in hypoxic tissue.
Interacting particle systems in time-dependent geometries
International Nuclear Information System (INIS)
Ali, A; Ball, R C; Grosskinsky, S; Somfai, E
2013-01-01
Many complex structures and stochastic patterns emerge from simple kinetic rules and local interactions, and are governed by scale invariance properties in combination with effects of the global geometry. We consider systems that can be described effectively by space–time trajectories of interacting particles, such as domain boundaries in two-dimensional growth or river networks. We study trajectories embedded in time-dependent geometries, and the main focus is on uniformly expanding or decreasing domains for which we obtain an exact mapping to simple fixed domain systems while preserving the local scale invariance properties. This approach was recently introduced in Ali et al (2013 Phys. Rev. E 87 020102(R)) and here we provide a detailed discussion on its applicability for self-affine Markovian models, and how it can be adapted to self-affine models with memory or explicit time dependence. The mapping corresponds to a nonlinear time transformation which converges to a finite value for a large class of trajectories, enabling an exact analysis of asymptotic properties in expanding domains. We further provide a detailed discussion of different particle interactions and generalized geometries. All our findings are based on exact computations and are illustrated numerically for various examples, including Lévy processes and fractional Brownian motion. (paper)
FRANTIC: a computer code for time dependent unavailability analysis
International Nuclear Information System (INIS)
Vesely, W.E.; Goldberg, F.F.
1977-03-01
The FRANTIC computer code evaluates the time dependent and average unavailability for any general system model. The code is written in FORTRAN IV for the IBM 370 computer. Non-repairable components, monitored components, and periodically tested components are handled. One unique feature of FRANTIC is the detailed, time dependent modeling of periodic testing which includes the effects of test downtimes, test overrides, detection inefficiencies, and test-caused failures. The exponential distribution is used for the component failure times and periodic equations are developed for the testing and repair contributions. Human errors and common mode failures can be included by assigning an appropriate constant probability for the contributors. The output from FRANTIC consists of tables and plots of the system unavailability along with a breakdown of the unavailability contributions. Sensitivity studies can be simply performed and a wide range of tables and plots can be obtained for reporting purposes. The FRANTIC code represents a first step in the development of an approach that can be of direct value in future system evaluations. Modifications resulting from use of the code, along with the development of reliability data based on operating reactor experience, can be expected to provide increased confidence in its use and potential application to the licensing process
Time-dependent radiation dose estimations during interplanetary space flights
Dobynde, M. I.; Shprits, Y.; Drozdov, A.
2015-12-01
Time-dependent radiation dose estimations during interplanetary space flights 1,2Dobynde M.I., 2,3Drozdov A.Y., 2,4Shprits Y.Y.1Skolkovo institute of science and technology, Moscow, Russia 2University of California Los Angeles, Los Angeles, USA 3Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics, Moscow, Russia4Massachusetts Institute of Technology, Cambridge, USASpace radiation is the main restriction for long-term interplanetary space missions. It induces degradation of external components and propagates inside providing damage to internal environment. Space radiation particles and induced secondary particle showers can lead to variety of damage to astronauts in short- and long- term perspective. Contribution of two main sources of space radiation- Sun and out-of-heliosphere space varies in time in opposite phase due to the solar activity state. Currently the only habituated mission is the international interplanetary station that flights on the low Earth orbit. Besides station shell astronauts are protected with the Earth magnetosphere- a natural shield that prevents significant damage for all humanity. Current progress in space exploration tends to lead humanity out of magnetosphere bounds. With the current study we make estimations of spacecraft parameters and astronauts damage for long-term interplanetary flights. Applying time dependent model of GCR spectra and data on SEP spectra we show the time dependence of the radiation in a human phantom inside the shielding capsule. We pay attention to the shielding capsule design, looking for an optimal geometry parameters and materials. Different types of particles affect differently on the human providing more or less harm to the tissues. Incident particles provide a large amount of secondary particles while propagating through the shielding capsule. We make an attempt to find an optimal combination of shielding capsule parameters, namely material and thickness, that will effectively decrease
Simulation of the Low-Level-Jet by general circulation models
Energy Technology Data Exchange (ETDEWEB)
Ghan, S.J. [Pacific Northwest National Lab., Richland, WA (United States)
1996-04-01
To what degree is the low-level jet climatology and it`s impact on clouds and precipitation being captured by current general circulation models? It is hypothesised that a need for a pramaterization exists. This paper describes this parameterization need.
Donnell, K.O.; Schober, S.; Stolk, M.; Marzocca, P.; De Breuker, R.; Abdalla, M.; Nicolini, E.; Gürdal, Z.
2007-01-01
This paper discusses modeling, simulations and experimental aspects of active aeroelastic control on aircraft wings by using Synthetic Jet Actuators (SJAs). SJAs, a particular class of zero-net mass-flux actuators, have shown very promising results in numerous aeronautical applications, such as
Vortex wake investigation behind a wing-flap model with jet simulations
Veldhuis, L.L.M.; De Kat, R.
2008-01-01
To get a better insight in the effect of jets on vortex development and decay, stereo-PIV measurements were performed in a towing tank behind a flapped aircraft model. The experimental data set yields the wake vortex behavior in a range that extends from the vortex formation stage up to the
International Nuclear Information System (INIS)
Anderson, A.; Eriksson, L.G.; Lisak, M.
1986-01-01
The present report summarizes the work performed within the contract JT4/9008, the aim of which is to derive analytical models for ion velocity distributions resulting from ICRF heating on JET. The work has been performed over a two-year-period ending in August 1986 and has involved a total effort of 2.4 man years. (author)
A time-dependent search for high-energy neutrinos from bright GRBs with ANTARES
Directory of Open Access Journals (Sweden)
Celli Silvia
2017-01-01
Full Text Available Astrophysical point-like neutrino sources, like Gamma-Ray Bursts (GRBs, are one of the main targets for neutrino telescopes, since they are among the best candidates for Ultra-High-Energy Cosmic Ray (UHECR acceleration. From the interaction between the accelerated protons and the intense radiation fields of the source jet, charged mesons are produced, which then decay into neutrinos. The methods and the results of a search for high-energy neutrinos in spatial and temporal correlation with the detected gamma-ray emission are presented for four bright GRBs observed between 2008 and 2013: a time-dependent analysis, optimised for each flare of the selected bursts, is performed to predict detailed neutrino spectra. The internal shock scenario of the fireball model is investigated, relying on the neutrino spectra computed through the numerical code NeuCosmA. The analysis is optimized on a per burst basis, through the maximization of the signal discovery probability. Since no events in ANTARES data passed the optimised cuts, 90% C.L. upper limits are derived on the expected neutrino fluences.
Time Dependent Relative Risks in Life Insurance Medical Underwriting.
Kneepkens, Robert F
2015-01-01
Introduction .- Life insurance medicine focuses on mortality hazards in specified periods. People are free to insure their lives for shorter or longer terms. Because the chosen terms range from 1 year to a life time, life insurers have to take into account the fact that the predictive value of risk indicators can and will change over time. The time a risk indicator keeps its predictive value, will be dependent on its biological effects, volatility, and treatability. For a given applicant this implies that the relative hazard (RH) calculated for his/her medical condition should be dependent on the term of the insurance. The main objective of this study is to determine if some commonly used risk indicators - previously used to study age dependency of relative risks - have a predictive value that increases with the observation period. (1) Methods .- This population-based cohort study uses NHANES-data files from the Third National Health and Nutrition Examination Survey (NHANES III) and the NHANES Linked Mortality Files 2010. Only participants aged 20 to 69 that were examined in mobile examination centers, without a history of some prevalent high risk diseases were included. The observed mortality was compared to the expected mortality in a Generalized Linear Model (GLM) with Poisson error structure with two reference populations, which both can serve as preferred reference for life insurers: The United States Life Tables 2008 (USLT) and the 2008 Valuation Basic Tables (VBT) based on the insured population of 35 US Life insurers. The time dependency of the RHs of the systolic blood pressure (SBP), aspartate aminotransferase (ASAT), lactate dehydrogenase (LDH), serum albumin and albuminuria, was assessed, with correction for ethnicity, household income, history of diabetes mellitus, BMI and serum cholesterol. To be able to compare the results with the results of the Age Dependency Study (ADS), the same data, risk indicators, statistical analysis method, and the
Characterizing time-dependent mechanics in metallic MEMS
Directory of Open Access Journals (Sweden)
Geers M.G.D.
2010-06-01
parameters describing the time-dependent behavior, the experiments are simulated with FEM using a standardsolid material model and the exact test-structure geometry. Although this method is simple, yet precise, it lacks direct determination of stress and strain. Therefore a second method is designed: measuring time-dependent tensile behavior of these cantilevers with a custom nano-tensile stage. The wafer with specimen is fixed to and manipulated with nano-precision by piezos stacked on micro-manipulators. The piezos also serve as load actuators. The stage has a custom multirange load cell providing a load range of 0-100 mN at a minimum resolution of 10 nN. An electro-static force is generated between the top flat of the specimen’s free end and a mating flat on the load cell. Full-field displacement measurements through SEM/AFM/COP are enabled by a compact design. A final addition is a heating element allowing testing up to 150°. In short, the work will first discuss the performance of the numeric-experimental method for timedependent bending deformation characterization. Secondly, it will present the performance of the time-dependent tensile testing method along with preliminary measurements of time-dependent material behaviour.
A time dependent search for neutrino emission from micro-quasars with the ANTARES telescope
International Nuclear Information System (INIS)
Galata, S.
2012-01-01
The ANTARES collaboration has successfully built, deployed and is currently operating an underwater Cherenkov detector dedicated to high energy neutrino astronomy. The primary aim of the experiment is to detect cosmic sources of neutrinos in order to reveal the production sites of cosmic rays. Among the sources likely to be significant sources of neutrinos are those accelerating relativistic jets, like gamma ray bursts, active galactic nuclei and micro-quasars. Micro-quasars are binary systems formed by a compact object accreting mass from a companion star. The mass transfer causes the emission of X-rays, whereas the onset of magnetic forces in the accreting plasma can cause the acceleration of relativistic jets, which are observed by radio telescopes via their non-thermal synchrotron emission. In some systems, a correlation between X-ray and radio light curves indicates an interplay between accretion and ejection respectively. Some micro-quasars are also high energy and very high energy gamma ray emitters. In this thesis, a time dependent search for neutrino emission from micro-quasars was performed with a multi-messenger approach (photon/neutrino). The data from the X-ray monitors RXTE/ASM and SWIFT/BAT, and the gamma-ray telescope FERMI/LAT were used to select transient events in which the source was supposed to accelerate relativistic jets. The restriction of the analysis to the ejection periods allows a drastic reduction of atmospheric muon and neutrino background, and thus to increase the chances of a discovery. The search was performed with the ANTARES data taken between 2007 and 2010. Statistical analysis was carried out using an un-binned likelihood method based on a likelihood ratio test. The cuts for the event selection were optimized in order to maximize the chance of a discovery. As no neutrino signal was observed in correlation with these micro-quasars, upper limits on the neutrino fluxes of the micro-quasars under study were calculated and compared
Time-dependent generalized polynomial chaos
International Nuclear Information System (INIS)
Gerritsma, Marc; Steen, Jan-Bart van der; Vos, Peter; Karniadakis, George
2010-01-01
Generalized polynomial chaos (gPC) has non-uniform convergence and tends to break down for long-time integration. The reason is that the probability density distribution (PDF) of the solution evolves as a function of time. The set of orthogonal polynomials associated with the initial distribution will therefore not be optimal at later times, thus causing the reduced efficiency of the method for long-time integration. Adaptation of the set of orthogonal polynomials with respect to the changing PDF removes the error with respect to long-time integration. In this method new stochastic variables and orthogonal polynomials are constructed as time progresses. In the new stochastic variable the solution can be represented exactly by linear functions. This allows the method to use only low order polynomial approximations with high accuracy. The method is illustrated with a simple decay model for which an analytic solution is available and subsequently applied to the three mode Kraichnan-Orszag problem with favorable results.
Time-dependent strains and stresses in a pumpkin balloon
Gerngross, T.; Xu, Y.; Pellegrino, S.
This paper presents a study of pumpkin-shaped superpressure balloons consisting of gores made from a thin polymeric film attached to high stiffness meridional tendons This type of design is being used for the NASA ULDB balloons The gore film shows considerable time-dependent stress relaxation whereas the behaviour of the tendons is essentially time-independent Upon inflation and pressurization the instantaneous i e linear-elastic strain and stress distributions in the film show significantly higher values in the meridional direction However over time and due to the biaxial visco-elastic stress relaxation of the the gore material the em hoop strains increase and the em meridional stresses decrease whereas the em remaining strain and stress components remain substantially unchanged These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission both in terms of the material performance and the overall stability of the shape of the balloon An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter 48 gore pumpkin balloon is presented The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature The results show good correlation with a numerical study using the ABAQUS finite-element package that includes a widely used model of
Time-dependent penetrative mixed convection in a porous layer
International Nuclear Information System (INIS)
Jendoubi, S.; Kulacki, F.A.
1997-01-01
In the last few decades, heat and mass transfer in porous media have been studied extensively by many investigators. The main motivations behind these studies were the wide range of applications and the interaction of multiple processes. Examples include geothermal energy production, drying of porous media, high level nuclear waste disposal, and energy-related engineering technologies. Here, a general two-dimensional, time-dependent model has been developed to investigate the transfer of heat and mass in a liquid saturated porous layer locally heated from above. Both free and mixed convection are considered. For mixed convection an eternal flow is assumed to enter the two-dimensional domain in the horizontal direction. At a finite segment of the top wall, two types of heat sources are applied: a constant flux heat source and a time varying heat, constant flux source. The latter is a representation of heat released by spent nuclear fuel in a mined repository located above the layer. Both time-dependent and steady solutions of the flow and temperature fields are obtained. For natural convection, the effects of Rayleigh number on the Nusselt number are obtained. For mixed convection, the effects of both Rayleigh and Peclet numbers are studied. In addition, the effects of the aspect ratio, as well as the length of the heated zone are examined
Mixing by turbulent buoyant jets in slender containers
International Nuclear Information System (INIS)
Voropayev, S.I.; Nath, C.; Fernando, H.J.S.
2012-01-01
A turbulent buoyant jet injected vertically into a slender cylinder containing a stratified fluid is investigated experimentally. The working fluid is water, and salt is used to change its density to obtain either a positively or negatively buoyant jet. The interest is the vertical density distribution in container and its dependence on time and other parameters. For each case (lighter or heavier jet) the experimental data could be collapsed into a ‘universal’ time dependent behavior, when properly non-dimensionalized. A theoretical model is advanced to explain the results. Possible applications include refilling of crude oil into U.S. strategic petroleum reserves caverns. -- Highlights: ► We addresses a critical issue on refill of Strategic Petroleum Reserves. ► We conduct experiments on negatively/positively buoyant turbulent jets in long cavern. ► Basing on results of experiments we developed theoretical model for refill operations.
The North Pacific Summer Jet and Climate Extremes Over North America: Mechanisms and Model Biases
Schubert, S. D.; Wang, H.; Chang, Y.; Koster, R. D.; Molod, A.
2017-12-01
The North Pacific summer jet (NPSJ) plays a critical role as a waveguide for weather systems and other sub-seasonal Rossby waves entering North America and therefore has a controlling influence on the warm season weather and climate extremes over much of the continent. In particular, much of the warm season precipitation that occurs over the central United States depends on subseasonal transients that are able to tap moisture from the Gulf of Mexico as they propagate across the continent. The GEOS-5 atmospheric general circulation model (AGCM), like many AGCMs, is deficient in the simulation of the NPSJ. It is shown that the deficiency is composed of: 1) a stunted jet in which the strongest winds are confined to the Asian continent, failing to extend across the North Pacific into the Gulf of Alaska as observed, and 2) a zonally symmetric poleward shift in the jet. These biases combine to impede the eastward propagation of the weather systems into the continent (the stunted jet), and deprive those systems that do enter the continent access to the moisture from the Gulf (the northward shift), leading to a dry bias over the central US. It is shown that the stunted jet bias is the result of too strong heating that occurs just south of the jet core over and near Tibet. Furthermore, it is shown that the poleward shift of the NPSJ can be corrected in the current GEOS-5 AGCM by increasing the vertical resolution. The implications of these results for improving warm season forecasts of extreme events will be discussed.
Schwaller, Pedro; Weiler, Andreas
2015-01-01
In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilit...
Voitsekhovitch, I.; Belo, da Silva Ares; Citrin, J.; Fable, E.; Ferreira, J.; Garcia, J.; Garzotti, L.; Hobirk, J.; Hogeweij, G. M. D.; Joffrin, E.; Kochl, F.; Litaudon, X.; Moradi, S.; Nabais, F.; JET-EFDA Contributors,; EU-ITM ITER Scenario Modelling group,
2014-01-01
The E × B shear stabilization of anomalous transport in JET hybrid discharges is studied via self-consistent predictive modelling of electron and ion temperature, ion density and toroidal rotation velocity performed with the GLF23 model. The E × B shear
Wind Tunnel Model Design for Sonic Boom Studies of Nozzle Jet Flows with Shock Interactions
Cliff, Susan E.; Denison, Marie; Moini-Yekta, Shayan; Morr, Donald E.; Durston, Donald A.
2016-01-01
NASA and the U.S. aerospace industry are performing studies of supersonic aircraft concepts with low sonic boom pressure signatures. The computational analyses of modern aircraft designs have matured to the point where there is confidence in the prediction of the pressure signature from the front of the vehicle, but uncertainty remains in the aft signatures due to boundary layer and nozzle exhaust jet effects. Wind tunnel testing without inlet and nozzle exhaust jet effects at lower Reynolds numbers than in-flight make it difficult to accurately assess the computational solutions of flight vehicles. A wind tunnel test in the NASA Ames 9- by 7-Foot Supersonic Wind Tunnel is planned for February 2016 to address the nozzle jet effects on sonic boom. The experiment will provide pressure signatures of test articles that replicate waveforms from aircraft wings, tails, and aft fuselage (deck) components after passing through cold nozzle jet plumes. The data will provide a variety of nozzle plume and shock interactions for comparison with computational results. A large number of high-fidelity numerical simulations of a variety of shock generators were evaluated to define a reduced collection of suitable test models. The computational results of the candidate wind tunnel test models as they evolved are summarized, and pre-test computations of the final designs are provided.
Jet mixing in a down-scaled model of a rotary kiln
Larsson, Sofia; Johansson, Simon
2015-11-01
Rotary kilns are large, cylindrical, rotating ovens with a burner in one end that are used in various industrial processes to heat up materials to high temperatures. Kiln burners are characterized by long diffusion flames where the combustion process is largely controlled by turbulent diffusion mixing between the burner fuel jet and the surrounding combustion air. The combustion air flow patterns have a significant effect on the mixing and hence the combustion efficiency and flame shape, motivating a systematic study of the kiln aerodynamics and the mixing characteristics. In this work, a downscaled, isothermal model of a rotary kiln is investigated experimentally through simultaneous particle image velocimetry and planar laser-induced fluorescence measurements. The kiln is modeled as a cylinder with three inlets in one end; two semicircular-shaped inlets for what is called the secondary fluid divided by a wall in between, called the back plate, where the burner nozzle is located. Three momentum flux ratios of the secondary fluid are investigated, and the interaction with the burner jet is scrutinized. It is found that the burner jet characteristics, its mixing with the secondary fluid and the resulting flow field surrounding the jet are dependent on the momentum flux ratio.
A Shock-Refracted Acoustic Wave Model for the Prediction of Screech Amplitude in Supersonic Jets
Kandula, Max
2007-01-01
A physical model is proposed for the estimation of the screech amplitude in underexpanded supersonic jets. The model is based on the hypothesis that the interaction of a plane acoustic wave with stationary shock waves provides amplification of the transmitted acoustic wave upon traversing the shock. Powell's discrete source model for screech incorporating a stationary array of acoustic monopoles is extended to accommodate variable source strength. The proposed model reveals that the acoustic sources are of increasing strength with downstream distance. It is shown that the screech amplitude increases with the fuiiy expanded jet Mach number. Comparisons of predicted screech amplitude with available test data show satisfactory agreement. The effect of variable source strength on directivity of the fundamental (first harmonic, lowest frequency mode) and the second harmonic (overtone) is found to be unimportant with regard to the principal lobe (main or major lobe) of considerable relative strength, and is appreciable only in the secondary or minor lobes (of relatively weaker strength
A combustion model for studying the effects of ideal gas properties on jet noise
Jacobs, Jerin; Tinney, Charles
2016-11-01
A theoretical combustion model is developed to simulate the influence of ideal gas effects on various aeroacoustic parameters over a range of equivalence ratios. The motivation is to narrow the gap between laboratory and full-scale jet noise testing. The combustion model is used to model propane combustion in air and kerosene combustion in air. Gas properties from the combustion model are compared to real lab data acquired at the National Center for Physical Acoustics at the University of Mississippi as well as outputs from NASA's Chemical Equilibrium Analysis code. Different jet properties are then studied over a range of equivalence ratios and pressure ratios for propane combustion in air, kerosene combustion in air and heated air. The findings reveal negligible differences between the three constituents where the density and sound speed ratios are concerned. Albeit, the area ratio required for perfectly expanded flow is shown to be more sensitive to gas properties, relative to changes in the temperature ratio.
Bayesian modelling of the emission spectrum of the JET Li-BES system
Kwak, Sehyun; Svensson, J.; Brix, M.; Ghim, Y. -c.; Contributors, JET
2015-01-01
A Bayesian model of the emission spectrum of the JET lithium beam has been developed to infer the intensity of the Li I (2p-2s) line radiation and associated uncertainties. The detected spectrum for each channel of the lithium beam emission spectroscopy (Li-BES) system is here modelled by a single Li line modified by an instrumental function, Bremsstrahlung background, instrumental offset, and interference filter curve. Both the instrumental function and the interference filter curve are mode...
Energy Technology Data Exchange (ETDEWEB)
Van Kuiken, Benjamin E.; Valiev, Marat; Daifuku, Stephanie L.; Bannan, Caitlin; Strader, Matthew L.; Cho, Hana; Huse, Nils; Schoenlein, Robert W.; Govind, Niranjan; Khalil, Munira
2013-05-30
Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of RuII and RuIII complexes in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6]4- and RuII polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5MII-CN-RuIII(NH3)5] (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.
On the time-dependent Aharonov–Bohm effect
Directory of Open Access Journals (Sweden)
Jian Jing
2017-11-01
Full Text Available The Aharonov–Bohm effect in the background of a time-dependent vector potential is re-examined for both non-relativistic and relativistic cases. Based on the solutions to the Schrodinger and Dirac equations which contain the time-dependent magnetic vector potential, we find that contrary to the conclusions in a recent paper (Singleton and Vagenas 2013 [4], the interference pattern will be altered with respect to time because of the time-dependent vector potential.
Circular Polarization in Turbulent Blazar Jets
Directory of Open Access Journals (Sweden)
Nicholas Roy MacDonald
2017-11-01
Full Text Available Circular polarization (CP provides an invaluable probe into the underlying plasma content of relativistic jets. CP can be generated within the jet through a physical process known as linear birefringence. This is a physical mechanism through which initially linearly polarized emission produced in one region of the jet is attenuated by Faraday rotation as it passes through other regions of the jet with distinct magnetic field orientations. Marscher developed the turbulent extreme multi-zone (TEMZ model of blazar emission which mimics these types of magnetic geometries with collections of thousands of plasma cells passing through a standing conical shock. I have recently developed a radiative transfer algorithm to generate synthetic images of the time-dependent circularly polarized intensity emanating from the TEMZ model at different radio frequencies. In this study, we produce synthetic multi-epoch observations that highlight the temporal variability in the circular polarization produced by the TEMZ model. We also explore the effect that different plasma compositions within the jet have on the resultant levels of CP.
Energy Technology Data Exchange (ETDEWEB)
Mezel, C; Hallo, L [Centre Lasers Intenses et Applications, UMR 5107 Universite Bordeaux 1-CNRS-CEA, 33405 Talence, Cedex (France); Souquet, A; Guillemot, F, E-mail: mezel@celia.u-bordeaux1.f [Institut National de la Sante et de la Recherche Medicale, Universite Bordeaux 2 - UMR 577, 146 Rue Leo Saignat, 33076 Bordeaux Cedex (France)
2010-03-15
In this paper, a nanosecond LIFT process is analyzed both from experimental and modeling points of view. Experimental results are first presented and compared to simple estimates obtained from physical analysis, i.e. energy balance, jump relations and analytical pocket dynamics. Then a self-consistent 2D axisymmetric modeling strategy is presented. It is shown that data accessible from experiments, i.e. jet diameter and velocity, can be reproduced. Moreover, some specific mechanisms involved in the rear-surface deformation and jet formation may be described by some scales of hydrodynamic process, i.e. shock waves propagation and expansion waves, as a consequence of the laser heating. It shows that the LIFT process is essentially driven by hydrodynamics and thermal transfer, and that a coupled approach including self-consistent laser energy deposition, heating by thermal conduction and specific models for matter is required.
Mézel, C; Souquet, A; Hallo, L; Guillemot, F
2010-03-01
In this paper, a nanosecond LIFT process is analyzed both from experimental and modeling points of view. Experimental results are first presented and compared to simple estimates obtained from physical analysis, i.e. energy balance, jump relations and analytical pocket dynamics. Then a self-consistent 2D axisymmetric modeling strategy is presented. It is shown that data accessible from experiments, i.e. jet diameter and velocity, can be reproduced. Moreover, some specific mechanisms involved in the rear-surface deformation and jet formation may be described by some scales of hydrodynamic process, i.e. shock waves propagation and expansion waves, as a consequence of the laser heating. It shows that the LIFT process is essentially driven by hydrodynamics and thermal transfer, and that a coupled approach including self-consistent laser energy deposition, heating by thermal conduction and specific models for matter is required.
Heat pulse analysis in JET and relation to local energy transport models
International Nuclear Information System (INIS)
Haas, J.C.M. de; Lopes Cardozo, N.J.; Han, W.; Sack, C.; Taroni, A.
1989-01-01
The evolution of a perturbation T e of the electron temperature depends on the linearised expression of the heat flux q e and may be not simply related to the local value of the electron heat conductivity χ e . It is possible that local heat transport models predicting similar temperature profiles and global energy confinement properties, imply a different propagation of heat pulses. We investigate here this possibility for the case of two models developed at JET. We also present results obtained at JET on a set of discharges covering the range of currents from 2 to 5 MA. Only L-modes, limiter discharges are considered here. Experimental results on the scaling of χ HP , the value of χ e related to heat pulse propagation, are compared with those of χ HP derived from the models. (author) 7 refs., 2 figs., 2 tabs
Fundamental Constants in Physics and their Time Dependence
CERN. Geneva
2008-01-01
In the Standard Model of Particle Physics we are dealing with 28 fundamental constants. In the experiments these constants can be measured, but theoretically they are not understood. I will discuss these constants, which are mostly mass parameters. Astrophysical measurements indicate that the finestructure constant is not a real constant, but depends on time. Grand unification then implies also a time variation of the QCD scale. Thus the masses of the atomic nuclei and the magnetic moments of the nuclei will depend on time. I proposed an experiment, which is currently done by Prof. Haensch in Munich and his group. The first results indicate a time dependence of the QCD scale. I will discuss the theoretical implications.
Observation of Broadband Time-Dependent Rabi Shifting in Microplasmas
International Nuclear Information System (INIS)
Compton, Ryan; Filin, Alex; Romanov, Dmitri A.; Levis, Robert J.
2009-01-01
Coherent broadband radiation in the form of Rabi sidebands is observed when a ps probe laser propagates through a weakly ionized, electronically excited microplasma generated in the focus of an intense pump beam. The sidebands arise from the interaction of the probe beam with pairs of excited states of a constituent neutral atom via the probe-induced Rabi oscillation. Sideband shifting of >90 meV from the probe carrier frequency results in an effective bandwidth of 200 meV. The sidebands are controlled by the intensity and temporal profile of the probe pulse; with amplitude and shift in agreement with the predictions of a time-dependent generalized Rabi cycling model.
Origin of the spike-timing-dependent plasticity rule
Cho, Myoung Won; Choi, M. Y.
2016-08-01
A biological synapse changes its efficacy depending on the difference between pre- and post-synaptic spike timings. Formulating spike-timing-dependent interactions in terms of the path integral, we establish a neural-network model, which makes it possible to predict relevant quantities rigorously by means of standard methods in statistical mechanics and field theory. In particular, the biological synaptic plasticity rule is shown to emerge as the optimal form for minimizing the free energy. It is further revealed that maximization of the entropy of neural activities gives rise to the competitive behavior of biological learning. This demonstrates that statistical mechanics helps to understand rigorously key characteristic behaviors of a neural network, thus providing the possibility of physics serving as a useful and relevant framework for probing life.
One-dimensional numerical modeling of Blue Jet and its impact on stratospheric chemistry
Duruisseau, F.; Thiéblemont, R.; Huret, N.
2011-12-01
In the stratosphere the ozone layer is very sensitive to the NOx abundance. The ionisation of N2 and O2 molecules by TLE's (Transient Luminous Events) is a source of NOx which is currently not well quantified and could act as a loss of ozone. In this study a one dimensional explicit parameterization of a Blue-Jet propagation based on that proposed by Raizer et al. (2006 and 2007) has been developed. This parameterization considers Blue-Jet as a streamer initiated by a bidirectional leader discharge, emerging from the anvil and sustained by moderate cloud charge. The streamer growth varies with the electrical field induced by initial cloud charge and the initial altitude. This electrical parameterization and the chemical mechanisms associated with the discharge have been implemented into a detailed chemical model of stratospheric ozone including evolution of nitrogen, chlorine and bromine species. We will present several tests performed to validate the electrical code and evaluate the propagation velocity and the maximum altitude attains by the blue jet as a function of electrical parameters. The results obtained giving the spatiotemporal evolution of the electron density are then used to initiate the specific chemistry associated with the Blue Jet. Preliminary results on the impact of such discharge on the ozone content and the whole stratospheric system will be presented.
International Nuclear Information System (INIS)
Bogey, Christophe; Bailly, Christophe
2006-01-01
Large eddy simulations (LES) of round free jets at Mach number M = 0.9 with Reynolds numbers over the range 2.5 x 10 3 ≤ Re D ≤ 4 x 10 5 are performed using explicit selective/high-order filtering with or without dynamic Smagorinsky model (DSM). Features of the flows and of the turbulent kinetic energy budgets in the turbulent jets are reported. The contributions of molecular viscosity, filtering and DSM to energy dissipation are also presented. Using filtering alone, the results are independent of the filtering strength, and the effects of the Reynolds number on jet development are successfully calculated. Using DSM, the effective jet Reynolds number is found to be artificially decreased by the eddy viscosity. The results are also not appreciably modified when subgrid-scale kinetic energy is used. Moreover, unlike filtering which does not significantly affect the larger computed scales, the eddy viscosity is shown to dissipate energy through all the turbulent scales, in the same way as molecular viscosity at lower Reynolds numbers
Energy Technology Data Exchange (ETDEWEB)
Bogey, Christophe [Laboratoire de Mecanique des Fluides et d' Acoustique, UMR CNRS 5509, Ecole Centrale de Lyon, 69134 Ecully Cedex (France)]. E-mail: christophe.bogey@ec-lyon.fr; Bailly, Christophe [Laboratoire de Mecanique des Fluides et d' Acoustique, UMR CNRS 5509, Ecole Centrale de Lyon, 69134 Ecully Cedex (France)]. E-mail: christophe.baily@ec-lyon.fr
2006-08-15
Large eddy simulations (LES) of round free jets at Mach number M = 0.9 with Reynolds numbers over the range 2.5 x 10{sup 3} {<=} Re {sub D} {<=} 4 x 10{sup 5} are performed using explicit selective/high-order filtering with or without dynamic Smagorinsky model (DSM). Features of the flows and of the turbulent kinetic energy budgets in the turbulent jets are reported. The contributions of molecular viscosity, filtering and DSM to energy dissipation are also presented. Using filtering alone, the results are independent of the filtering strength, and the effects of the Reynolds number on jet development are successfully calculated. Using DSM, the effective jet Reynolds number is found to be artificially decreased by the eddy viscosity. The results are also not appreciably modified when subgrid-scale kinetic energy is used. Moreover, unlike filtering which does not significantly affect the larger computed scales, the eddy viscosity is shown to dissipate energy through all the turbulent scales, in the same way as molecular viscosity at lower Reynolds numbers.
International Nuclear Information System (INIS)
1984-12-01
Reviews are presented firstly of potential events and processes which may affect the evolution of the disposal environments of low and intermediate level radioactive wastes in Britain and secondly of previous studies carried out worldwide in the field of time dependent effects. From the latter review available methodologies for incorporating time dependence into radiological assessments are identified. Finally, proposals are presented for the design and development of a time dependent effects model, based on the existing far field state model (FFSM) developed for ONWI in USA. (author)
Kori, Hiroshi; Yamaguchi, Yoshiaki; Okamura, Hitoshi
2017-04-01
The endogenous circadian clock drives oscillations that are completely synchronized with the environmental day-night rhythms with a period of approximately 24 hours. Temporal misalignment between one’s internal circadian clock and the external solar time often occurs in shift workers and long-distance travelers; such misalignments are accompanied by sleep disturbances and gastrointestinal distress. Repeated exposure to jet lag and rotating shift work increases the risk of lifestyle-related diseases, such as cardiovascular complaints and metabolic insufficiencies. However, the mechanism behind the disruption of one’s internal clock is not well understood. In this paper, we therefore present a new theoretical concept called “jet lag separatrix” to understand circadian clock disruption and slow recovery from jet lag based on the mathematical model describing the hierarchical structure of the circadian clock. To demonstrate the utility of our theoretical study, we applied it to predict that re-entrainment via a two-step jet lag in which a four-hour shift of the light-dark cycle is given in the span of two successive days requires fewer days than when given as a single eight-hour shift. We experimentally verified the feasibility of our theory in C57BL/6 strain mice, with results indicating that this pre-exposure of jet lag is indeed beneficial.
Very forward jet, Mueller Navelet jets and jet gap jet measurements in CMS
Cerci, Salim
2018-01-01
The measurements of very forward jet, Mueller-Navelet jets and jet-gap-jet events are presented for different collision energies. The analyses are based on data collected with the CMS detector at the LHC. Jets are defined through the anti-$k_\\mathrm{t}$ clustering algorithm for different cone sizes. Jet production studies provide stringent tests of quantum chromodynamics (QCD) and contribute to tune Monte Carlo (MC) simulations and phenomenological models. The measurements are compared to predictions from various Monte Carlo event generators.
National Research Council Canada - National Science Library
Jolliff, Jason K; Kindle, John C
2007-01-01
A modeling system has been constructed that combines ecological element cycling, photochemical processes, and bio-optical processes into a single simulation that may be coupled to hydrodynamic models...
A Model of Polarisation Rotations in Blazars from Kink Instabilities in Relativistic Jets
Directory of Open Access Journals (Sweden)
Krzysztof Nalewajko
2017-10-01
Full Text Available This paper presents a simple model of polarisation rotation in optically thin relativistic jets of blazars. The model is based on the development of helical (kink mode of current-driven instability. A possible explanation is suggested for the observational connection between polarisation rotations and optical/gamma-ray flares in blazars, if the current-driven modes are triggered by secular increases of the total jet power. The importance of intrinsic depolarisation in limiting the amplitude of coherent polarisation rotations is demonstrated. The polarisation rotation amplitude is thus very sensitive to the viewing angle, which appears to be inconsistent with the observational estimates of viewing angles in blazars showing polarisation rotations. Overall, there are serious obstacles to explaining large-amplitude polarisation rotations in blazars in terms of current-driven kink modes.
Thermal state of the general time-dependent harmonic oscillator
Indian Academy of Sciences (India)
Harmonic oscillator that has time-dependent mass or frequency may be a good example of time-dependent Hamiltonian systems. Although a large number of dynamical systems have been investigated using approximation and perturbation method in the literature [2,3], we confine our concern to the exact quantum solution ...
Time-Dependent Rock Failure in a Heterogeneous Limestone
Roth, K.; Kemeny, J.
2015-12-01
Time-dependent rock failure is an important aspect in the analysis of long-term rock stability for slopes, dam and bridge foundations, and underground storage facilities. An on-going project at the University of Arizona is using Kartchner Caverns in Benson, Arizona as a natural analog to study such failure by reconstructing the process of natural cave breakdown with subcritical crack growth modeling. Breakdown is thought to occur along joints through the time-dependent failure of rock bridges: sections of intact rock separating discontinuities in a rock mass. The Escabrosa limestone composing the caverns ranges from a more homogenous, even-grained texture to a more heterogeneous texture consisting of coarse-grained veins and solution cavities set in a fine-grained matrix. To determine if the veined regions are more susceptible to fracturing and act as the nuclei of rock bridge failure, fracture toughness tests were conducted for both textures. The subcritical crack growth parameters were calculated using the constant stress-rate method. Results indicate that the more heterogeneous limestone has a higher fracture strength, fracture toughness, and subcritical crack growth index n than the more homogeneous limestone. This is in agreement with previous studies which found that a more complex and heterogeneous microstructure produces a larger microcrack process zone, leading to higher fracture energies and lower susceptibility to subcritical crack growth. Thus, despite their solution cavities, the calcite veins do not localize failure or act as planes of weakness; instead, rock bridges fail through the more homogeneous limestone matrix.
Modelling resonant field amplification due to low-n peeling modes in JET
Energy Technology Data Exchange (ETDEWEB)
Liu Yueqiang; Saarelma, S; Gryaznevich, M P; Hender, T C; Howell, D F, E-mail: yueqiang.liu@ukaea.org.u [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)
2010-04-15
The MHD code MARS-F is used to model low-n, low-frequency, large-amplitude resonant field amplification peaks observed in JET low-pressure plasmas. The resonant response of a marginally stable, n = 1 ideal peeling mode is offered as a candidate to explain the experimental observation. It is found that, unlike the response of a stable resistive wall mode, the peeling mode response is not sensitive to the plasma rotation, nor to the kinetic effects.
Energy Technology Data Exchange (ETDEWEB)
Berthoud, G.; Crecy, F. de; Meignen, R.; Valette, M. [CEA-G, DRN/DTP/SMTH, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)
1998-01-01
The premixing phase of a molten fuel-coolant interaction is studied by the way of mechanistic multidimensional calculation. Beside water and steam, corium droplet flow and continuous corium jet flow are calculated independent. The 4-field MC3D code and a detailed hot jet fragmentation model are presented. MC3D calculations are compared to the FARO L14 experiment results and are found to give satisfactory results; heat transfer and jet fragmentation models are still to be improved to predict better final debris size values. (author)
Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity123
Pecevski, Dejan
2016-01-01
Abstract Numerous experimental data show that the brain is able to extract information from complex, uncertain, and often ambiguous experiences. Furthermore, it can use such learnt information for decision making through probabilistic inference. Several models have been proposed that aim at explaining how probabilistic inference could be performed by networks of neurons in the brain. We propose here a model that can also explain how such neural network could acquire the necessary information for that from examples. We show that spike-timing-dependent plasticity in combination with intrinsic plasticity generates in ensembles of pyramidal cells with lateral inhibition a fundamental building block for that: probabilistic associations between neurons that represent through their firing current values of random variables. Furthermore, by combining such adaptive network motifs in a recursive manner the resulting network is enabled to extract statistical information from complex input streams, and to build an internal model for the distribution p* that generates the examples it receives. This holds even if p* contains higher-order moments. The analysis of this learning process is supported by a rigorous theoretical foundation. Furthermore, we show that the network can use the learnt internal model immediately for prediction, decision making, and other types of probabilistic inference. PMID:27419214
Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity.
Pecevski, Dejan; Maass, Wolfgang
2016-01-01
Numerous experimental data show that the brain is able to extract information from complex, uncertain, and often ambiguous experiences. Furthermore, it can use such learnt information for decision making through probabilistic inference. Several models have been proposed that aim at explaining how probabilistic inference could be performed by networks of neurons in the brain. We propose here a model that can also explain how such neural network could acquire the necessary information for that from examples. We show that spike-timing-dependent plasticity in combination with intrinsic plasticity generates in ensembles of pyramidal cells with lateral inhibition a fundamental building block for that: probabilistic associations between neurons that represent through their firing current values of random variables. Furthermore, by combining such adaptive network motifs in a recursive manner the resulting network is enabled to extract statistical information from complex input streams, and to build an internal model for the distribution p (*) that generates the examples it receives. This holds even if p (*) contains higher-order moments. The analysis of this learning process is supported by a rigorous theoretical foundation. Furthermore, we show that the network can use the learnt internal model immediately for prediction, decision making, and other types of probabilistic inference.
Wind Tunnel Model Design for Sonic Boom Studies of Nozzle Jet with Shock Interactions
Cliff, Susan E.; Denison, Marie; Sozer, Emre; Moini-Yekta, Shayan
2016-01-01
NASA and Industry are performing vehicle studies of configurations with low sonic boom pressure signatures. The computational analyses of modern configuration designs have matured to the point where there is confidence in the prediction of the pressure signature from the front of the vehicle, but uncertainty in the aft signatures with often greater boundary layer effects and nozzle jet pressures. Wind tunnel testing at significantly lower Reynolds numbers than in flight and without inlet and nozzle jet pressures make it difficult to accurately assess the computational solutions of flight vehicles. A wind tunnel test in the NASA Ames 9- by 7-Foot Supersonic Wind Tunnel from Mach 1.6 to 2.0 will be used to assess the effects of shocks from components passing through nozzle jet plumes on the sonic boom pressure signature and provide datasets for comparison with CFD codes. A large number of high-fidelity numerical simulations of wind tunnel test models with a variety of shock generators that simulate horizontal tails and aft decks have been studied to provide suitable models for sonic boom pressure measurements using a minimally intrusive pressure rail in the wind tunnel. The computational results are presented and the evolution of candidate wind tunnel models is summarized and discussed in this paper.
Numerical Modeling and Combustion Studies of Scram Jet Simulation
2014-12-01
National Bureau of Standards, June 1974. [26] Ronald K. Hanson Mirko Gamba, M. Godfrey Mungal. Oh plif imaging of the reaction zone in combusting...A flamelet-based model for supersonic combustion. Annual Research Briefs, 2009. [45] M. G. Godfrey Mungal Victor Miller, Mirko Gamba and Ronald K
Time-dependent potential-functional embedding theory
International Nuclear Information System (INIS)
Huang, Chen; Libisch, Florian; Peng, Qing; Carter, Emily A.
2014-01-01
We introduce a time-dependent potential-functional embedding theory (TD-PFET), in which atoms are grouped into subsystems. In TD-PFET, subsystems can be propagated by different suitable time-dependent quantum mechanical methods and their interactions can be treated in a seamless, first-principles manner. TD-PFET is formulated based on the time-dependent quantum mechanics variational principle. The action of the total quantum system is written as a functional of the time-dependent embedding potential, i.e., a potential-functional formulation. By exploiting the Runge-Gross theorem, we prove the uniqueness of the time-dependent embedding potential under the constraint that all subsystems share a common embedding potential. We derive the integral equation that such an embedding potential needs to satisfy. As proof-of-principle, we demonstrate TD-PFET for a Na 4 cluster, in which each Na atom is treated as one subsystem and propagated by time-dependent Kohn-Sham density functional theory (TDDFT) using the adiabatic local density approximation (ALDA). Our results agree well with a direct TDDFT calculation on the whole Na 4 cluster using ALDA. We envision that TD-PFET will ultimately be useful for studying ultrafast quantum dynamics in condensed matter, where key regions are solved by highly accurate time-dependent quantum mechanics methods, and unimportant regions are solved by faster, less accurate methods
Koupelis, Theodoros
1994-01-01
We discuss the significance of the assumptions of infinite conductivity and time independence in the context of an ideal MHD model for constant opening angle jets. The model is developed by projecting the MHD equations onto the jet axis. We find that for initially sub-Alfvenic flows (i.e., flows emanating from active galactic nuclei and neutron stars) wind-type solutions exist only when the field lines at the origin are wound up in a direction opposite to the direction of rotation of the compact source. We discuss the possibility that the time evolution of these outflows may be a cycle between breeze- and wind-type solutions as a result of continuous changes in the boundary conditions at the origin due to accretion. We propose that such cycles may explain the apparent one-sideness of some jets, especially the ones for which we cannot use arguments of relativistic beaming. We examine the dependence of the wind-type solutions on the following parameters describing the outflow at the origin: the degree of winding of the field lines, the value of the gas pressure, the polytropic index, the strength of the magnetic field, the value of the rotational velocity, the gravitational potential of the compact object, and the injection velocity. We compare results with results obtained previously, and discuss briefly the qualitative features and physical interpretation of the solutions for outflows emanating from neutron stars and protostars.
Numerical and experimental investigation on static electric charge model at stable cone-jet region
Hashemi, Ali Reza; Pishevar, Ahmad Reza; Valipouri, Afsaneh; Pǎrǎu, Emilian I.
2018-03-01
In a typical electro-spinning process, the steady stretching process of the jet beyond the Taylor cone has a significant effect on the dimensions of resulting nanofibers. Also, it sets up the conditions for the onset of the bending instability. The focus of this work is the modeling and simulation of the initial stable jet phase seen during the electro-spinning process. The perturbation method was applied to solve hydrodynamic equations, and the electrostatic equation was solved by a boundary integral method. These equations were coupled with the stress boundary conditions derived appropriate at the fluid-fluid interface. Perturbation equations were discretized by the second-order finite difference method, and the Newton method was implemented to solve the discretized nonlinear system. Also, the boundary element method was utilized to solve the electrostatic equation. In the theoretical study, the fluid is described as a leaky dielectric with charges only on the jet surface in dielectric air. In this study, electric charges were modeled as static. Comparison of numerical and experimental results shows that at low flow rates and high electric field, good agreement was achieved because of the superior importance of the charge transport by conduction rather than convection and charge concentration. In addition, the effect of unevenness of the electric field around the nozzle tip was experimentally studied through plate-plate geometry as well as point-plate geometry.
Time-dependent reliability sensitivity analysis of motion mechanisms
International Nuclear Information System (INIS)
Wei, Pengfei; Song, Jingwen; Lu, Zhenzhou; Yue, Zhufeng
2016-01-01
Reliability sensitivity analysis aims at identifying the source of structure/mechanism failure, and quantifying the effects of each random source or their distribution parameters on failure probability or reliability. In this paper, the time-dependent parametric reliability sensitivity (PRS) analysis as well as the global reliability sensitivity (GRS) analysis is introduced for the motion mechanisms. The PRS indices are defined as the partial derivatives of the time-dependent reliability w.r.t. the distribution parameters of each random input variable, and they quantify the effect of the small change of each distribution parameter on the time-dependent reliability. The GRS indices are defined for quantifying the individual, interaction and total contributions of the uncertainty in each random input variable to the time-dependent reliability. The envelope function method combined with the first order approximation of the motion error function is introduced for efficiently estimating the time-dependent PRS and GRS indices. Both the time-dependent PRS and GRS analysis techniques can be especially useful for reliability-based design. This significance of the proposed methods as well as the effectiveness of the envelope function method for estimating the time-dependent PRS and GRS indices are demonstrated with a four-bar mechanism and a car rack-and-pinion steering linkage. - Highlights: • Time-dependent parametric reliability sensitivity analysis is presented. • Time-dependent global reliability sensitivity analysis is presented for mechanisms. • The proposed method is especially useful for enhancing the kinematic reliability. • An envelope method is introduced for efficiently implementing the proposed methods. • The proposed method is demonstrated by two real planar mechanisms.
Time-Dependent Damage Investigation of Rock Mass in an In Situ Experimental Tunnel
Jiang, Quan; Cui, Jie; Chen, Jing
2012-01-01
In underground tunnels or caverns, time-dependent deformation or failure of rock mass, such as extending cracks, gradual rock falls, etc., are a costly irritant and a major safety concern if the time-dependent damage of surrounding rock is serious. To understand the damage evolution of rock mass in underground engineering, an in situ experimental testing was carried out in a large belowground tunnel with a scale of 28.5 m in width, 21 m in height and 352 m in length. The time-dependent damage of rock mass was detected in succession by an ultrasonic wave test after excavation. The testing results showed that the time-dependent damage of rock mass could last a long time, i.e., nearly 30 days. Regression analysis of damage factors defined by wave velocity, resulted in the time-dependent evolutional damage equation of rock mass, which corresponded with logarithmic format. A damage viscoelastic-plastic model was developed to describe the exposed time-dependent deterioration of rock mass by field test, such as convergence of time-dependent damage, deterioration of elastic modules and logarithmic format of damage factor. Furthermore, the remedial measures for damaged surrounding rock were discussed based on the measured results and the conception of damage compensation, which provides new clues for underground engineering design.
Instabilities of continuously stratified zonal equatorial jets in a periodic channel model
Directory of Open Access Journals (Sweden)
S. Masina
Full Text Available Several numerical experiments are performed in a nonlinear, multi-level periodic channel model centered on the equator with different zonally uniform background flows which resemble the South Equatorial Current (SEC. Analysis of the simulations focuses on identifying stability criteria for a continuously stratified fluid near the equator. A 90 m deep frontal layer is required to destabilize a zonally uniform, 10° wide, westward surface jet that is symmetric about the equator and has a maximum velocity of 100 cm/s. In this case, the phase velocity of the excited unstable waves is very similar to the phase speed of the Tropical Instability Waves (TIWs observed in the eastern Pacific Ocean. The vertical scale of the baroclinic waves corresponds to the frontal layer depth and their phase speed increases as the vertical shear of the jet is doubled. When the westward surface parabolic jet is made asymmetric about the equator, in order to simulate more realistically the structure of the SEC in the eastern Pacific, two kinds of instability are generated. The oscillations that grow north of the equator have a baroclinic nature, while those generated on and very close to the equator have a barotropic nature.
This study shows that the potential for baroclinic instability in the equatorial region can be as large as at mid-latitudes, if the tendency of isotherms to have a smaller slope for a given zonal velocity, when the Coriolis parameter vanishes, is compensated for by the wind effect.
Key words. Oceanography: general (equatorial oceanography; numerical modeling – Oceanography: physics (fronts and jets
Instabilities of continuously stratified zonal equatorial jets in a periodic channel model
Directory of Open Access Journals (Sweden)
S. Masina
2002-05-01
Full Text Available Several numerical experiments are performed in a nonlinear, multi-level periodic channel model centered on the equator with different zonally uniform background flows which resemble the South Equatorial Current (SEC. Analysis of the simulations focuses on identifying stability criteria for a continuously stratified fluid near the equator. A 90 m deep frontal layer is required to destabilize a zonally uniform, 10° wide, westward surface jet that is symmetric about the equator and has a maximum velocity of 100 cm/s. In this case, the phase velocity of the excited unstable waves is very similar to the phase speed of the Tropical Instability Waves (TIWs observed in the eastern Pacific Ocean. The vertical scale of the baroclinic waves corresponds to the frontal layer depth and their phase speed increases as the vertical shear of the jet is doubled. When the westward surface parabolic jet is made asymmetric about the equator, in order to simulate more realistically the structure of the SEC in the eastern Pacific, two kinds of instability are generated. The oscillations that grow north of the equator have a baroclinic nature, while those generated on and very close to the equator have a barotropic nature. This study shows that the potential for baroclinic instability in the equatorial region can be as large as at mid-latitudes, if the tendency of isotherms to have a smaller slope for a given zonal velocity, when the Coriolis parameter vanishes, is compensated for by the wind effect.Key words. Oceanography: general (equatorial oceanography; numerical modeling – Oceanography: physics (fronts and jets
Time-dependent deterministic transport on parallel architectures using PARTISN
International Nuclear Information System (INIS)
Alcouffe, R.E.; Baker, R.S.
1998-01-01
In addition to the ability to solve the static transport equation, the authors have also incorporated time dependence into the parallel S N code PARTISN. Using a semi-implicit scheme, PARTISN is capable of performing time-dependent calculations for both fissioning and pure source driven problems. They have applied this to various types of problems such as shielding and prompt fission experiments. This paper describes the form of the time-dependent equations implemented, their solution strategies in PARTISN including iteration acceleration, and the strategies used for time-step control. Results are presented for a iron-water shielding calculation and a criticality excursion in a uranium solution configuration
Directory of Open Access Journals (Sweden)
Zidouni Kendil Faiza
2010-01-01
Full Text Available The main purpose of the current study is to numerically investigate, through computational fluid dynamics modeling, a water jet injected vertically downward through a straight circular pipe into a water bath. The study also aims to obtain a better understanding of jet behavior, air entrainment and the dispersion of bubbles in the developing flow region. For these purposes, three dimensional air and water flows were modeled using the volume of fluid technique. The equations in question were formulated using the density and viscosity of a 'gas-liquid mixture', described in terms of the phase volume fraction. Three turbulence models with a high Reynolds number have been considered i. e. the standard k-e model, realizable k-e model, and Reynolds stress model. The predicted flow patterns for the realizable k-e model match well with experimental measurements found in available literature. Nevertheless, some discrepancies regarding velocity relaxation and turbulent momentum distribution in the pool are still observed for both the standard k-e and the Reynolds stress model.
A Model for Jet-Surface Interaction Noise Using Physically Realizable Upstream Turbulence Conditions
Afsar, Mohammed Z.; Leib, Stewart J.; Bozak, Richard F.
2016-01-01
This paper is a continuation of previous work in which a generalized Rapid Distortion Theory (RDT) formulation was used to model low-frequency trailing-edge noise. The research was motivated by proposed next-generation aircraft configurations where the exhaust system is tightly integrated with the airframe. Data from recent experiments at NASA on the interaction between high-Reynolds-number subsonic jet flows and an external flat plate showed that the power spectral density (PSD) of the far-field pressure underwent considerable amplification at low frequencies. For example, at the 90deg observation angle, the low-frequency noise could be as much as 10 dB greater than the jet noise itself. In this paper, we present predictions of the noise generated by the interaction of a rectangular jet with the trailing edge of a semi-infinite flat plate. The calculations are based on a formula for the acoustic spectrum of this noise source derived from an exact formal solution of the linearized Euler equations involving (in this case) one arbitrary convected scalar quantity and a Rayleigh equation Green's function. A low-frequency asymptotic approximation for the Green's function based on a two-dimensional mean flow is used in the calculations along with a physically realizable upstream turbulence spectrum, which includes a finite decorrelation region. Numerical predictions of the sound field, based on three-dimensional RANS solutions to determine the mean flow, turbulent kinetic energy and turbulence length and time scales, for a range of subsonic acoustic Mach number jets and nozzle aspect ratios are compared with experimental data. Comparisons of the RANS results with flow data are also presented for selected cases. We find that a finite decorrelation region in the turbulence spectrum increases the low-frequency algebraic decay (the low frequency "roll-off") of the acoustic spectrum with angular frequency thereby producing much closer agreement with noise data for Strouhal
Energy Technology Data Exchange (ETDEWEB)
Baudry, C
2003-11-15
This work is devoted to the tri-dimensional time-dependent modeling of the arc behavior in a plasma spray torch. It has been carried out in the fame of a collaboration with the Thermal Spray Laboratory of CEA-DAM, Le Ripault and the laboratory of Fluid Mechanics and Heat Transfers of EDF. After a summary of the operation modes of a DC plasma torch and the effect of anode erosion on the torch working, the structure of an electric arc is depicted as well as the main models of non-transferred electric arcs proposed in the literature. This review allows the determination of the main assumption and boundary conditions for a 'realistic' model of the electric arc. Then, the equations, assumptions and boundary conditions of the model we have developed are presented and, the CFD code ESTET 3.4 used to solve the model equations. The model is based on a specific value of the local electric field to predict the breakdown of the arc while its re-striking is favored by a hot gas column at the spot where the highest value of the electric field is calculated. This model gives a realistic prediction of the time-dependent arc behavior according to the plasma-forming gas nature and of the temperature and velocity of the gas flow at the nozzle exit. However, it overestimates the torch voltage and dimensions of the anode arc root attachment spot. (author)
Functional differentiability in time-dependent quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Penz, Markus, E-mail: markus.penz@uibk.ac.at; Ruggenthaler, Michael, E-mail: michael.ruggenthaler@uibk.ac.at [Institut für Theoretische Physik, Universität Innsbruck, 6020 Innsbruck (Austria)
2015-03-28
In this work, we investigate the functional differentiability of the time-dependent many-body wave function and of derived quantities with respect to time-dependent potentials. For properly chosen Banach spaces of potentials and wave functions, Fréchet differentiability is proven. From this follows an estimate for the difference of two solutions to the time-dependent Schrödinger equation that evolve under the influence of different potentials. Such results can be applied directly to the one-particle density and to bounded operators, and present a rigorous formulation of non-equilibrium linear-response theory where the usual Lehmann representation of the linear-response kernel is not valid. Further, the Fréchet differentiability of the wave function provides a new route towards proving basic properties of time-dependent density-functional theory.
Ambiguities in the Lagrangians formalism: the time-dependent case
International Nuclear Information System (INIS)
Moreira, D.T.
1986-01-01
An intrinsic formulation of the equivalence problem for time-dependent Lagrangians is given. A new demostration of a theorem derived by Henneaux (1982) is obtained. The relationship to transformation groups is discussed. (Author) [pt
Skinner-Rusk approach to time-dependent mechanics
Cortés, Jorge; Martínez, Sonia; Cantrijn, Frans
2002-01-01
The geometric approach to autonomous classical mechanical systems in terms of a canonical first-order system on the Whitney sum of the tangent and cotangent bundle, developed by Skinner and Rusk, is extended to the time-dependent framework.
Time dependent density functional calculation of plasmon response in clusters
Wang, Feng; Zhang, Feng-Shou; Eric, Suraud
2003-02-01
We have introduced a theoretical scheme for the efficient description of the optical response of a cluster based on the time-dependent density functional theory. The practical implementation is done by means of the fully fledged time-dependent local density approximation scheme, which is solved directly in the time domain without any linearization. As an example we consider the simple Na2 cluster and compute its surface plasmon photoabsorption cross section, which is in good agreement with the experiments.
Dihadron fragmentation functions in the quark-jet model: Transversely polarized quarks
Matevosyan, Hrayr H.; Kotzinian, Aram; Thomas, Anthony W.
2018-01-01
Within the most recent extension of the quark-jet hadronization framework, we explore the transverse-polarization-dependent dihadron fragmentation functions (DiFFs) H1∢ and H1⊥ of a quark into π+π- pairs. Monte Carlo (MC) simulations are employed to model polarized quark hadronization and calculate the corresponding number densities. These, in turn, are used to extract the Fourier cosine moments of the DiFFs H1∢ and H1⊥. A notable finding is that there are previously unnoticed apparent discrepancies between the definitions of the so-called interference DiFF (IFF) H1∢ , entering the cross sections for two-hadron semi-inclusive electroproduction, and those involved in the production of two pairs of hadrons from back-to-back jets in electron-positron annihilation. This manuscript completes the studies of all four leading-twist DiFFs for unpolarized hadron pairs within the quark-jet framework, following our previous work on the helicity-dependent DiFF G1⊥.
Integrated modelling of material migration and target plate power handling at JET
International Nuclear Information System (INIS)
Coster, D.P.; Bonnin, X.; Chankin, A.
2005-01-01
The complexity of the tokamak edge and scrape-off layer (SOL) region is such that extrapolation to ITER requires modelling to be pursued through the integration of a number of edge codes, each of which must be thoroughly tested against results from present day machines. This contribution demonstrates how the edge modelling effort at JET is focused on such an approach by considering two examples, target power loading and material erosion and migration, the understanding of which are crucial issues for ITER. (author)
Ku, Jerry C.; Tong, Li; Greenberg, Paul S.
1996-01-01
This is a computational and experimental study for soot formation and radiative heat transfer in jet diffusion flames under normal gravity (1-g) and microgravity (0-g) conditions. Instantaneous soot volume fraction maps are measured using a full-field imaging absorption technique developed by the authors. A compact, self-contained drop rig is used for microgravity experiments in the 2.2-second drop tower facility at NASA Lewis Research Center. On modeling, we have coupled flame structure and soot formation models with detailed radiation transfer calculations. Favre-averaged boundary layer equations with a k-e-g turbulence model are used to predict the flow field, and a conserved scalar approach with an assumed Beta-pdf are used to predict gaseous species mole fraction. Scalar transport equations are used to describe soot volume fraction and number density distributions, with formation and oxidation terms modeled by one-step rate equations and thermophoretic effects included. An energy equation is included to couple flame structure and radiation analyses through iterations, neglecting turbulence-radiation interactions. The YIX solution for a finite cylindrical enclosure is used for radiative heat transfer calculations. The spectral absorption coefficient for soot aggregates is calculated from the Rayleigh solution using complex refractive index data from a Drude- Lorentz model. The exponential-wide-band model is used to calculate the spectral absorption coefficient for H20 and C02. It is shown that when compared to results from true spectral integration, the Rosseland mean absorption coefficient can provide reasonably accurate predictions for the type of flames studied. The soot formation model proposed by Moss, Syed, and Stewart seems to produce better fits to experimental data and more physically sound than the simpler model by Khan et al. Predicted soot volume fraction and temperature results agree well with published data for a normal gravity co-flow laminar
Zheng, Xiao; Yam, ChiYung; Wang, Fan; Chen, GuanHua
2011-08-28
We present the time-dependent holographic electron density theorem (TD-HEDT), which lays the foundation of time-dependent density-functional theory (TDDFT) for open electronic systems. For any finite electronic system, the TD-HEDT formally establishes a one-to-one correspondence between the electron density inside any finite subsystem and the time-dependent external potential. As a result, any electronic property of an open system in principle can be determined uniquely by the electron density function inside the open region. Implications of the TD-HEDT on the practicality of TDDFT are also discussed.
International Nuclear Information System (INIS)
Buschman, Francis X.; Aumiller, David L.
2017-01-01
Highlights: • Direct contact condensation data on liquid jets up to 1.7 MPa in pure steam and in the presence of noncondensable gas. • Identified a pressure effect on the impact of noncondensables to suppress condensation heat transfer not captured in existing data or correlations. • Pure steam data is used to develop a new correlation for condensation heat transfer on subcooled liquid jets. • Noncondensable data used to develop a modification to the renewal time estimate used in the Young and Bajorek correlation for condensation suppression in the presence of noncondensables. • A jet injection boundary condition, using a sub-grid jet condensation model, is developed for COBRA-IE which provides a more detailed estimate of the condensation rate on the liquid jet and allows the use of jet specific closure relationships. - Abstract: Condensation on liquid jets is an important phenomenon for many different facets of nuclear power plant transients and analyses such as containment spray cooling. An experimental facility constructed at the Pennsylvania State University, the High Pressure Liquid Jet Condensation Heat Transfer facility (HPLJCHT), has been used to perform steady-state condensation heat transfer experiments in which the temperature of the liquid jet is measured at different axial locations allowing the condensation rate to be determined over the jet length. Test data have been obtained in a pure steam environment and with varying concentrations of noncondensable gas. This data extends the available jet condensation data from near atmospheric pressure up to a pressure of 1.7 MPa. An empirical correlation for the liquid side condensation heat transfer coefficient has been developed based on the data obtained in pure steam. The data obtained with noncondensable gas were used to develop a correlation for the renewal time as used in the condensation suppression model developed by Young and Bajorek. This paper describes a new sub-grid liquid jet
Residual distribution for general time-dependent conservation laws
International Nuclear Information System (INIS)
Ricchiuto, Mario; Csik, Arpad; Deconinck, Herman
2005-01-01
We consider the second-order accurate numerical solution of general time-dependent hyperbolic conservation laws over unstructured grids in the framework of the Residual Distribution method. In order to achieve full conservation of the linear, monotone and first-order space-time schemes of (Csik et al., 2003) and (Abgrall et al., 2000), we extend the conservative residual distribution (CRD) formulation of (Csik et al., 2002) to prismatic space-time elements. We then study the design of second-order accurate and monotone schemes via the nonlinear mapping of the local residuals of linear monotone schemes. We derive sufficient and necessary conditions for the well-posedness of the mapping. We prove that the schemes obtained with the CRD formulation satisfy these conditions by construction. Thus the nonlinear schemes proposed in this paper are always well defined. The performance of the linear and nonlinear schemes are evaluated on a series of test problems involving the solution of the Euler equations and of a two-phase flow model. We consider the resolution of strong shocks and complex interacting flow structures. The results demonstrate the robustness, accuracy and non-oscillatory character of the proposed schemes. d schemes
Deviren, Bayram; Keskin, Mustafa; Canko, Osman
2008-03-01
We extend our recent paper [O. Canko, B. Deviren, M. Keskin, J. Phys.: Condens. Mater 118 (2006) 6635] to present a study, within a mean-field approach, the stationary states of the kinetic spin-3/2 Blume-Emery-Griffiths model with repulsive biquadratic interaction under the presence of a time varying (sinusoidal) magnetic field. We found that the dynamic phase diagrams of the present work exhibit more complex, richer and more topological different types of phase diagrams than our recent paper. Especially, the obtained dynamic phase diagrams show the ferrimagnetic ( i) phase in addition to the ferromagnetic ±3/2 ( f), ferromagnetic ±1/2 ( f), antiquadrupolar or staggered ( a) and disordered ( d) phases, and the f+i, f+d, i+d, f+i+d, a+d and/or f+i+a coexistence regions in addition to the f+f, f+d, f+a, f+d and/or f+a+d coexistence regions, depending on interaction parameters. Moreover, the phase diagrams exhibit dynamic zero-temperature critical, critical end, double critical end, multicritical, and/or pentacritical special points in addition to the dynamic tricritical, double critical end point, triple, quadruple and/or tetracritical special points that depending on the interaction parameters.
Dissecting jets and missing energy searches using n-body extended simplified models
Energy Technology Data Exchange (ETDEWEB)
Cohen, Timothy [Institute of Theoretical Science, University of Oregon, Eugene, OR 97403 (United States); Dolan, Matthew J. [ARC Centre of Excellence for Particle Physics at the Terascale,School of Physics, University of Melbourne, 3010 (Australia); Hedri, Sonia El [Institut fur Physik (THEP) Johannes Gutenberg-Universitat,D-55099, Mainz (Germany); Hirschauer, James; Tran, Nhan; Whitbeck, Andrew [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States)
2016-08-04
Simplified Models are a useful way to characterize new physics scenarios for the LHC. Particle decays are often represented using non-renormalizable operators that involve the minimal number of fields required by symmetries. Generalizing to a wider class of decay operators allows one to model a variety of final states. This approach, which we dub the n-body extension of Simplified Models, provides a unifying treatment of the signal phase space resulting from a variety of signals. In this paper, we present the first application of this framework in the context of multijet plus missing energy searches. The main result of this work is a global performance study with the goal of identifying which set of observables yields the best discriminating power against the largest Standard Model backgrounds for a wide range of signal jet multiplicities. Our analysis compares combinations of one, two and three variables, placing emphasis on the enhanced sensitivity gain resulting from non-trivial correlations. Utilizing boosted decision trees, we compare and classify the performance of missing energy, energy scale and energy structure observables. We demonstrate that including an observable from each of these three classes is required to achieve optimal performance. This work additionally serves to establish the utility of n-body extended Simplified Models as a diagnostic for unpacking the relative merits of different search strategies, thereby motivating their application to new physics signatures beyond jets and missing energy.
Bayesian modeling of JET Li-BES for edge electron density profiles using Gaussian processes
Kwak, Sehyun; Svensson, Jakob; Brix, Mathias; Ghim, Young-Chul; JET Contributors Collaboration
2015-11-01
A Bayesian model for the JET lithium beam emission spectroscopy (Li-BES) system has been developed to infer edge electron density profiles. The 26 spatial channels measure emission profiles with ~15 ms temporal resolution and ~1 cm spatial resolution. The lithium I (2p-2s) line radiation in an emission spectrum is calculated using a multi-state model, which expresses collisions between the neutral lithium beam atoms and the plasma particles as a set of differential equations. The emission spectrum is described in the model including photon and electronic noise, spectral line shapes, interference filter curves, and relative calibrations. This spectral modeling gets rid of the need of separate background measurements for calculating the intensity of the line radiation. Gaussian processes are applied to model both emission spectrum and edge electron density profile, and the electron temperature to calculate all the rate coefficients is obtained from the JET high resolution Thomson scattering (HRTS) system. The posterior distributions of the edge electron density profile are explored via the numerical technique and the Markov chain Monte Carlo (MCMC) samplings. See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy Conference 2014, Saint Petersburg, Russia.
Directory of Open Access Journals (Sweden)
Wojtas Krzysztof
2015-06-01
Full Text Available Simulations of turbulent mixing in two types of jet mixers were carried out using two CFD models, large eddy simulation and κ-ε model. Modelling approaches were compared with experimental data obtained by the application of particle image velocimetry and planar laser-induced fluorescence methods. Measured local microstructures of fluid velocity and inert tracer concentration can be used for direct validation of numerical simulations. Presented results show that for higher tested values of jet Reynolds number both models are in good agreement with the experiments. Differences between models were observed for lower Reynolds numbers when the effects of large scale inhomogeneity are important.
Low-energy fusion dynamics of weakly bound nuclei: A time dependent perspective
Directory of Open Access Journals (Sweden)
Diaz-Torres A.
2016-01-01
Full Text Available Recent dynamical fusion models for weakly bound nuclei at low incident energies, based on a time-dependent perspective, are briefly presented. The main features of both the PLATYPUS model and a new quantum approach are highlighted. In contrast to existing timedependent quantum models, the present quantum approach separates the complete and incomplete fusion from the total fusion. Calculations performed within a toy model for 6Li + 209Bi at near-barrier energies show that converged excitation functions for total, complete and incomplete fusion can be determined with the time-dependent wavepacket dynamics.
Low-energy fusion dynamics of weakly bound nuclei: A time dependent perspective
Diaz-Torres, A.; Boselli, M.
2016-05-01
Recent dynamical fusion models for weakly bound nuclei at low incident energies, based on a time-dependent perspective, are briefly presented. The main features of both the PLATYPUS model and a new quantum approach are highlighted. In contrast to existing timedependent quantum models, the present quantum approach separates the complete and incomplete fusion from the total fusion. Calculations performed within a toy model for 6Li + 209Bi at near-barrier energies show that converged excitation functions for total, complete and incomplete fusion can be determined with the time-dependent wavepacket dynamics.
Spike-timing dependent plasticity and the cognitive map
Directory of Open Access Journals (Sweden)
Daniel eBush
2010-10-01
Full Text Available Since the discovery of place cells – single pyramidal neurons that encode spatial location – it has been hypothesised that the hippocampus may act as a cognitive map of known environments. This putative function has been extensively modelled using auto-associative networks, which utilise rate-coded synaptic plasticity rules in order to generate strong bi-directional connections between concurrently active place cells that encode for neighbouring place fields. However, empirical studies using hippocampal cultures have demonstrated that the magnitude and direction of changes in synaptic strength can also be dictated by the relative timing of pre- and post- synaptic firing according to a spike-timing dependent plasticity (STDP rule. Furthermore, electrophysiology studies have identified persistent ‘theta-coded’ temporal correlations in place cell activity in vivo, characterised by phase precession of firing as the corresponding place field is traversed. It is not yet clear if STDP and theta-coded neural dynamics are compatible with cognitive map theory and previous rate-coded models of spatial learning in the hippocampus. Here, we demonstrate that an STDP rule based on empirical data obtained from the hippocampus can mediate rate-coded Hebbian learning when pre- and post- synaptic activity is stochastic and has no persistent sequence bias. We subsequently demonstrate that a spiking recurrent neural network that utilises this STDP rule, alongside theta-coded neural activity, allows the rapid development of a cognitive map during directed or random exploration of an environment of overlapping place fields. Hence, we establish that STDP and phase precession are compatible with rate-coded models of cognitive map development.
van Meer, R; Gritsenko, O V; Baerends, E J
2017-01-28
Straightforward interpretation of excitations is possible if they can be described as simple single orbital-to-orbital (or double, etc.) transitions. In linear response time-dependent density functional theory (LR-TDDFT), the (ground state) Kohn-Sham orbitals prove to be such an orbital basis. In contrast, in a basis of natural orbitals (NOs) or Hartree-Fock orbitals, excitations often employ many orbitals and are accordingly hard to characterize. We demonstrate that it is possible in these cases to transform to natural excitation orbitals (NEOs) which resemble very closely the KS orbitals and afford the same simple description of excitations. The desired transformation has been obtained by diagonalization of a submatrix in the equations of linear response time-dependent 1-particle reduced density matrix functional theory (LR-TDDMFT) for the NO transformation, and that of a submatrix in the linear response time-dependent Hartree-Fock (LR-TDHF) equations for the transformation of HF orbitals. The corresponding submatrix is already diagonal in the KS basis in the LR-TDDFT equations. While the orbital shapes of the NEOs afford the characterization of the excitations as (mostly) simple orbital-to-orbital transitions, the orbital energies provide a fair estimate of excitation energies.
Time-adaptive and history-adaptive multicriterion routing in stochastic, time-dependent networks
DEFF Research Database (Denmark)
Pretolani, Daniele; Nielsen, Lars Relund; Andersen, Kim Allan
2009-01-01
We compare two different models for multicriterion routing in stochastic time-dependent networks: the classic "time-adaptive'' model and the more flexible "history-adaptive'' one. We point out several properties of the sets of efficient solutions found under the two models. We also devise a metho...
Energy Technology Data Exchange (ETDEWEB)
Gan, Zhaoming; Yuan, Feng [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Li, Hui; Li, Shengtai, E-mail: zmgan@shao.ac.cn, E-mail: fyuan@shao.ac.cn, E-mail: hli@lanl.gov, E-mail: sli@lanl.gov [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2017-04-10
The distinctive morphology of head–tail radio galaxies reveals strong interactions between the radio jets and their intra-cluster environment, the general consensus on the morphology origin of head–tail sources is that radio jets are bent by violent intra-cluster weather. We demonstrate in this paper that such strong interactions provide a great opportunity to study the jet properties and also the dynamics of the intra-cluster medium (ICM). By three-dimensional magnetohydrodynamical simulations, we analyze the detailed bending process of a magnetically dominated jet, based on the magnetic tower jet model. We use stratified atmospheres modulated by wind/shock to mimic the violent intra-cluster weather. Core sloshing is found to be inevitable during the wind-cluster core interaction, which induces significant shear motion and could finally drive ICM turbulence around the jet, making it difficult for the jet to survive. We perform a detailed comparison between the behavior of pure hydrodynamical jets and the magnetic tower jet and find that the jet-lobe morphology could not survive against the violent disruption in all of our pure hydrodynamical jet models. On the other hand, the head–tail morphology is well reproduced by using a magnetic tower jet model bent by wind, in which hydrodynamical instabilities are naturally suppressed and the jet could always keep its integrity under the protection of its internal magnetic fields. Finally, we also check the possibility for jet bending by shock only. We find that shock could not bend the jet significantly, and thus could not be expected to explain the observed long tails in head–tail radio galaxies.
Modelling the Evaporation Rate in an Impingement Jet Dryer with Multiple Nozzles
Directory of Open Access Journals (Sweden)
Anna-Lena Ljung
2017-01-01
Full Text Available Impinging jets are often used in industry to dry, cool, or heat items. In this work, a two-dimensional Computational Fluid Dynamics model is created to model an impingement jet dryer with a total of 9 pairs of nozzles that dries sheets of metal. Different methods to model the evaporation rate are studied, as well as the influence of recirculating the outlet air. For the studied conditions, the simulations show that the difference in evaporation rate between single- and two-component treatment of moist air is only around 5%, hence indicating that drying can be predicted with a simplified model where vapor is included as a nonreacting scalar. Furthermore, the humidity of the inlet air, as determined from the degree of recirculating outlet air, has a strong effect on the water evaporation rate. Results show that the metal sheet is dry at the exit if 85% of the air is recirculated, while approximately only 60% of the water has evaporated at a recirculation of 92,5%.
A Hydrogen Peroxide Hot-Jet Simulator for Wind-Tunnel Tests of Turbojet-Exit Models
Runckel, Jack F.; Swihart, John M.
1959-01-01
A turbojet-engine-exhaust simulator which utilizes a hydrogen peroxide gas generator has been developed for powered-model testing in wind tunnels with air exchange. Catalytic decomposition of concentrated hydrogen peroxide provides a convenient and easily controlled method of providing a hot jet with characteristics that correspond closely to the jet of a gas turbine engine. The problems associated with simulation of jet exhausts in a transonic wind tunnel which led to the selection of a liquid monopropellant are discussed. The operation of the jet simulator consisting of a thrust balance, gas generator, exit nozzle, and auxiliary control system is described. Static-test data obtained with convergent nozzles are presented and shown to be in good agreement with ideal calculated values.
Estimation of k-ε parameters using surrogate models and jet-in-crossflow data
Energy Technology Data Exchange (ETDEWEB)
Lefantzi, Sophia [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Ray, Jaideep [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Arunajatesan, Srinivasan [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Dechant, Lawrence [Sandia National Lab. (SNL-CA), Livermore, CA (United States)
2014-11-01
We demonstrate a Bayesian method that can be used to calibrate computationally expensive 3D RANS (Reynolds Av- eraged Navier Stokes) models with complex response surfaces. Such calibrations, conditioned on experimental data, can yield turbulence model parameters as probability density functions (PDF), concisely capturing the uncertainty in the parameter estimates. Methods such as Markov chain Monte Carlo (MCMC) estimate the PDF by sampling, with each sample requiring a run of the RANS model. Consequently a quick-running surrogate is used instead to the RANS simulator. The surrogate can be very difficult to design if the model's response i.e., the dependence of the calibration variable (the observable) on the parameter being estimated is complex. We show how the training data used to construct the surrogate can be employed to isolate a promising and physically realistic part of the parameter space, within which the response is well-behaved and easily modeled. We design a classifier, based on treed linear models, to model the "well-behaved region". This classifier serves as a prior in a Bayesian calibration study aimed at estimating 3 k - ε parameters ( C _{μ}, C _{ε2} , C _{ε1} ) from experimental data of a transonic jet-in-crossflow interaction. The robustness of the calibration is investigated by checking its predictions of variables not included in the cal- ibration data. We also check the limit of applicability of the calibration by testing at off-calibration flow regimes. We find that calibration yield turbulence model parameters which predict the flowfield far better than when the nomi- nal values of the parameters are used. Substantial improvements are still obtained when we use the calibrated RANS model to predict jet-in-crossflow at Mach numbers and jet strengths quite different from those used to generate the ex- perimental (calibration) data. Thus the primary reason for poor predictive skill of RANS, when using nominal
Fring, Andreas; Frith, Thomas
2017-01-01
We propose a procedure to obtain exact analytical solutions to the time-dependent Schrödinger equations involving explicit time-dependent Hermitian Hamiltonians from solutions to time-independent non-Hermitian Hamiltonian systems and the time-dependent Dyson relation, together with the time-dependent quasi-Hermiticity relation. We illustrate the working of this method for a simple Hermitian Rabi-type model by relating it to a non-Hermitian time-independent system corresponding to the one-site lattice Yang-Lee model.
Integrated predictive modelling of JET H-mode plasma with type-I ELMs
International Nuclear Information System (INIS)
Parail, V.; Bateman, G.; Becoulet, M.
2003-01-01
Edge plasma parameters influence plasma performance in many different ways (profile stiffness is probably one of the best known examples). In ELMy H-mode, a thin region with improved transport characteristics (Edge Transport Barrier) links the core and the scrape-off layer. There is a strong coupling between these three areas, so that even a modest variation of plasma parameters in one region can lead to a dramatic change in the overall plasma performance. Systematic MHD stability analysis and self-consistent integrated predictive modelling of a series of JET ELMy H-mode plasmas, including scans in gas fuelling and triangularity are presented. (author)
LOFT test support branch data abstract report: one-sixth scale model BWR jet pump test
International Nuclear Information System (INIS)
Crapo, H.S.
1979-01-01
Pump performance data are presented for a 1/6 scale model jet pump in tests conducted at the LOFT Test Support Blowdown Facility. Steady-state subcooled pump characterization tests were performed over a wide range of forward and reverse flow conditions, both at room temperature, and at elevated temperature (555 0 K). Blowdown tests were also performed to obtain two-phase performance data in configurations simulating the flow patterns in the intact and broken loops of a BWR during a recirculation line break transient
Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kramer, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija
2004-01-01
Gluon jets with a mean energy of 22 GeV and purity of 95% are selected from hadronic Z0 decay events produced in e+e- annihilations. A subsample of these jets is identified which exhibits a large gap in the rapidity distribution of particles within the jet. After imposing the requirement of a rapidity gap, the gluon jet purity is 86%. These jets are observed to demonstrate a high degree of sensitivity to the presence of color reconnection, i.e. higher order QCD processes affecting the underlying color structure. We use our data to test three QCD models which include a simulation of color reconnection: one in the Ariadne Monte Carlo, one in the Herwig Monte Carlo, and the other by Rathsman in the Pythia Monte Carlo. We find the Rathsman and Ariadne color reconnection models can describe our gluon jet measurements only if very large values are used for the cutoff parameters which serve to terminate the parton showers, and that the description of inclusive Z0 data is significantly degraded in this case. We concl...
Cabanes, S.; Spiga, A.; Guerlet, S.; Aurnou, J. M.; Favier, B.; Le Bars, M.
2017-12-01
The strong zonal (i.e. east-west) jet flows on the gas giants, Jupiter and Saturn, have persisted for hundreds of years. Zonal jets are large-scale features ubiquitous in planetary atmosphere and result from multi-scales interactions in rapidly rotating turbulent flows. Here we use a new Saturn Global Climate Model (GCM) coupling seasonal radiative model tailored for Saturn with a new hydrodynamical solver, developed in Laboratoire de Météorology Dynamique, which uses an original icosahedral mapping of the planetary sphere to ensure excellent conservation and scalability properties in massively parallel computing resources. Strong and quasi-steady Saturn jets are reproduced in our GCM simulations with both unprecedented horizontal resolutions (reference at 1/2 ° latitude/longitude, and tests at 1/4 ° and 1/8 ° ), integrated time (up to ten simulated Saturn years), and large vertical extent (from the troposphere to the stratosphere). We perform statistical analysis on the resulting flows to explore scales interactions and kinetic energy distribution at all scale. It appears that horizontal resolution as well as subgrid-scale (unresolved) dissipation, included as an additional hyperdiffusion term, strongly affect jets' intensity and statistical properties. In parallel, we set the first laboratory device capable to achieve the relevant regime to form planetary like zonal jets. We report that in a rapidly rotating cylindrical container, turbulent laboratory flow naturally generate multiple, alternating jets that share basic properties of the one observed on gas planets. By performing similar statistical analysis we directly confront flow properties of laboratory versus GCM generated jets and point out the effect of limited numerical resolution and subgrid-scale assumptions on atmospheric dynamics at large/jets scale.
Semiclassical approximation to time-dependent Hartree--Fock theory
International Nuclear Information System (INIS)
Dworzecka, M.; Poggioli, R.
1976-01-01
Working within a time-dependent Hartree-Fock framework, one develops a semiclassical approximation appropriate for large systems. It is demonstrated that the standard semiclassical approach, the Thomas-Fermi approximation, is inconsistent with Hartree-Fock theory when the basic two-body interaction is short-ranged (as in nuclear systems, for example). However, by introducing a simple extension of the Thomas-Fermi approximation, one overcomes this problem. One also discusses the infinite nuclear matter problem and point out that time-dependent Hartree-Fock theory yields collective modes of the zero sound variety instead of ordinary hydrodynamic (first) sound. One thus emphasizes that one should be extremely circumspect when attempting to cast the equations of motion of time-dependent Hartree-Fock theory into a hydrodynamic-like form
Towards quality by design in pharmaceutical manufacturing: modelling and control of air jet mills
Directory of Open Access Journals (Sweden)
Bhonsale Satyajeet
2017-01-01
Full Text Available Milling is an important step in pharmaceutical manufacturing as it not only determines the final formulation of the drug product, but also influences the bioavailability and dissolution rate of the active pharmaceutical ingredient (API. In this respect, the air jet mill (AJM is most commonly used in the pharmaceutical industry as it is a non-contaminating and non-degrading self-classifying process capable of delivering narrow particle size distributions (PSD. Keeping the principles of Quality by Design in mind, the Critical Process Parameters (CPPs of the AJM have been identified to be the pressures at the grinding nozzles, and the feed rate which affect the PSD, surface charge and the morphology of the product (i.e. the Critical Material Attributes (CMAs. For the purpose of this research, the PSD is considered to be the only relevant CMA. A population balance based model is proposed to simulate the dynamics milling operation by utilizing the concept of breakage functions. This model agrees qualitatively with experimental observations of the air jet mill unit present at Janssen Pharmaceutica but further steps for model validation need to be carried out.
Towards quality by design in pharmaceutical manufacturing: modelling and control of air jet mills
Bhonsale, Satyajeet; Telen, Dries; Stokbroekx, Bard; Van Impe, Jan
2017-06-01
Milling is an important step in pharmaceutical manufacturing as it not only determines the final formulation of the drug product, but also influences the bioavailability and dissolution rate of the active pharmaceutical ingredient (API). In this respect, the air jet mill (AJM) is most commonly used in the pharmaceutical industry as it is a non-contaminating and non-degrading self-classifying process capable of delivering narrow particle size distributions (PSD). Keeping the principles of Quality by Design in mind, the Critical Process Parameters (CPPs) of the AJM have been identified to be the pressures at the grinding nozzles, and the feed rate which affect the PSD, surface charge and the morphology of the product (i.e. the Critical Material Attributes (CMAs)). For the purpose of this research, the PSD is considered to be the only relevant CMA. A population balance based model is proposed to simulate the dynamics milling operation by utilizing the concept of breakage functions. This model agrees qualitatively with experimental observations of the air jet mill unit present at Janssen Pharmaceutica but further steps for model validation need to be carried out.
Directory of Open Access Journals (Sweden)
Srinath Reddy N.
2018-09-01
Full Text Available Abrasive Water Jet Machining is one of the novel nontraditional cutting processes found diverse applications in machining different kinds of difficult-to-machine materials. Process parameters play an important role in finding the economics of machining process at good quality. This research focused on the predictive models for explaining the functional relationship between input and output parameters of AWJ machining process. No single set of parametric combination of machining variables can suggest the better responses concurrently, due to its conflicting nature. Hence, an approach of Multi-objective has been attempted for the best combination of process parameters by modelling AWJM process using of ANN. It served a set of optimal process parameters to AWJ machining process, which shows a development with an enhanced productivity. Wide set of trail experiments have been considered with a broader range of machining parameters for modelling and, then, for validating. The model is capable of predicting optimized responses.
Adaptive control of a jet turboshaft engine driving a variable pitch propeller using multiple models
Ahmadian, Narjes; Khosravi, Alireza; Sarhadi, Pouria
2017-08-01
In this paper, a multiple model adaptive control (MMAC) method is proposed for a gas turbine engine. The model of a twin spool turbo-shaft engine driving a variable pitch propeller includes various operating points. Variations in fuel flow and propeller pitch inputs produce different operating conditions which force the controller to be adopted rapidly. Important operating points are three idle, cruise and full thrust cases for the entire flight envelope. A multi-input multi-output (MIMO) version of second level adaptation using multiple models is developed. Also, stability analysis using Lyapunov method is presented. The proposed method is compared with two conventional first level adaptation and model reference adaptive control techniques. Simulation results for JetCat SPT5 turbo-shaft engine demonstrate the performance and fidelity of the proposed method.
Vacuum radiation induced by time dependent electric field
Directory of Open Access Journals (Sweden)
Bo Zhang
2017-04-01
Full Text Available Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.
Vacuum radiation induced by time dependent electric field
Energy Technology Data Exchange (ETDEWEB)
Zhang, Bo, E-mail: zhangbolfrc@caep.cn [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Zhang, Zhi-meng; Hong, Wei; He, Shu-Kai; Teng, Jian [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Gu, Yu-qiu, E-mail: yqgu@caep.cn [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China)
2017-04-10
Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED) will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.
Wave equations with time-dependent dissipation II. Effective dissipation
Wirth, Jens
This article is intended to present a construction of structural representations of solutions to the Cauchy problem for wave equations with time-dependent dissipation above scaling. These representations are used to give estimates of the solution and its derivatives based on L(R), q⩾2. The article represents the second part within a series. In [Jens Wirth, Wave equations with time-dependent dissipation I. Non-effective dissipation, J. Differential Equations 222 (2) (2006) 487-514] weak dissipations below scaling were discussed.
Nonlinear wave time dependent dynamic evolution in solar flux tubes
Fedun, V.; Erdelyi, R.
2005-12-01
The aim of the present work is to investigate the excitation, time dependent dynamic evolution and interaction of weakly nonlinear propagating (i.e. solitary) waves on vertical cylindrical magnetic flux tubes in a compressible solar atmospheric plasma. The axisymmetric flux tube has a field strength of 1000 G at its footpoint what is typical for photospheric regions. Solitons are excited by a footpoint driver. The propagation of the nonlinear signal is investigated by solving numerically a set of fully nonlinear 2D MHD equations in cylindrical coordinates. For the initial conditions the solutions of the linear dispersion relation for wave modes (in the present case we focus on the sausage mode) in a magnetic flux tube is applied. This dispersion relation is solved numerically for a range of plasma parameters. We compare our results with the works of Roberts [1], Wilson [2] (dispersion relation), Molotovshchikov [3] (nonlinear slow sausage waves) and Weisshaar [4] (numerical solutions of the Leibovich-Prichard-Roberts equation). (1) We found solitary solutions and investigate solitary propagating with external sound speed by solving the full MHD equations. (2) We also found a solitary wave propagating with the tube speed. A natural application of our studies may be spicule formation in the chromosphere, as suggested by Roberts [5], where it was demonstrated theoretically, that a solar photospheric magnetic flux tube can support the propagation of solitons governed by the Benjamin-Ono (slow mode) equations. Future possible improvements in modeling and the relevance of the photospheric chromospheric transition region coupling by spicules is suggested. [1] B. Roberts and A. Webb, Sol. Phys., 1978, v. 56, p. 5 [2] P.R. Wilson, Astron. Astrophys., 1980, v. 87, p. 121 [3] A.L. Molotovshchikov and M.S. Ruderman, Sol. Phys., 1987, v. 109, p. 247 [4] E. Weisshaar, Phys. Fluids A, 1989, v. 1(8), p. 1406 [5] B. Roberts and A. Mangeney, Royal Astronomical Society, Monthly
Relativistic hydro and magnetohydrodynamic models for AGN jet propagation and deceleration
Keppens, R.; Meliani, Z.
2009-01-01
We present grid-adaptive computational studies of both magnetized and unmagnetized jet flows, with significantly relativistic bulk speeds, as appropriate for AGN jets. Our relativistic jet studies shed light on the observationally established classification of Fanaroff-Riley galaxies, where the
Neutron model for the formation of AGN jets with Cetral Radio Gap ...
African Journals Online (AJOL)
In this work, there has been an attempt to explain the formation of jets in some radio sources with gaps at their centers using the neutron “production-to-decay” process. The jet-light-up point is taken to coincide with the end of the lifetime of the neutrons. Calculated intrinsic opening angles for the jets of the selected Active ...
Guervilly, C.; Cardin, P.
2017-10-01
We study rapidly rotating Boussinesq convection driven by internal heating in a full sphere. We use a numerical model based on the quasi-geostrophic approximation for the velocity field, whereas the temperature field is 3-D. This approximation allows us to perform simulations for Ekman numbers down to 10-8, Prandtl numbers relevant for liquid metals (˜10-1) and Reynolds numbers up to 3 × 104. Persistent zonal flows composed of multiple jets form as a result of the mixing of potential vorticity. For the largest Rayleigh numbers computed, the zonal velocity is larger than the convective velocity despite the presence of boundary friction. The convective structures and the zonal jets widen when the thermal forcing increases. Prograde and retrograde zonal jets are dynamically different: in the prograde jets (which correspond to weak potential vorticity gradients) the convection transports heat efficiently and the mean temperature tends to be homogenized; by contrast, in the cores of the retrograde jets (which correspond to steep gradients of potential vorticity) the dynamics is dominated by the propagation of Rossby waves, resulting in the formation of steep mean temperature gradients and the dominance of conduction in the heat transfer process. Consequently, in quasi-geostrophic systems, the width of the retrograde zonal jets controls the efficiency of the heat transfer.
Modeling and computation of heat exchanges in the configuration of an impinging jet on a hot plate
Energy Technology Data Exchange (ETDEWEB)
Seiler, N.; Mimouni, S. [EDF R and D MFTT I81, 78 - Chatou (France); Simonin, O. [Institut de Mecanique des Fluides de Toulouse (IMFT), 31 - Toulouse (France); Gardin, P. [IRSID/THEMEF, 57 - Mazieres les Metz (France); Seiler, J.M. [CEA Grenoble, Dept. de Thermohydraulique et de Physique (DTP/SETEX/LTEM), 38 (France)
2003-07-01
The knowledge of the metal temperature history is essential, especially when strip leave the rolling mill, to get adequate final mechanical properties of steel. Some experiments have yet been carried out on the heat transfer associated with the impingement of a planar (1*9 mm{sup 2}) subcooled (5-16 K) water jet on a heated plate. Complete boiling curves were then obtained at different locations from the stagnation point and it was observed a phenomenon of 'shoulder of flux' in the transition boiling region near the impingement point. The aim of this work is to compute the heat flux transferred between a very hot plate and a subcooled liquid under a planar impinging jet to obtain the transient temperature distribution in the plate. To achieve this goal, a physical modelling of the phenomenon of 'shoulder of flux' has been carried out. This modelling is based on the assumption that the apparition of periodic bubble oscillations at the wall surface is due to the hydrodynamic fragmentation by the jet. The relation derived from this modelling is validated against experimental results from the literature obtained for a wide range of jet velocity, subcooling and jet diameter. This model is implemented in the new multiphase flow solver developed by EDF 'SATURNE polyphasique'. Numerical results are then compared to experimental heat fluxes obtained on previous experiments. (authors)
Murari, A.; Peluso, E.; Vega, J.; Gelfusa, M.; Lungaroni, M.; Gaudio, P.; Martínez, F. J.; Contributors, JET
2017-01-01
Understanding the many aspects of tokamak physics requires the development of quite sophisticated models. Moreover, in the operation of the devices, prediction of the future evolution of discharges can be of crucial importance, particularly in the case of the prediction of disruptions, which can cause serious damage to various parts of the machine. The determination of the limits of predictability is therefore an important issue for modelling, classifying and forecasting. In all these cases, once a certain level of performance has been reached, the question typically arises as to whether all the information available in the data has been exploited, or whether there are still margins for improvement of the tools being developed. In this paper, a theoretical information approach is proposed to address this issue. The excellent properties of the developed indicator, called the prediction factor (PF), have been proved with the help of a series of numerical tests. Its application to some typical behaviour relating to macroscopic instabilities in tokamaks has shown very positive results. The prediction factor has also been used to assess the performance of disruption predictors running in real time in the JET system, including the one systematically deployed in the feedback loop for mitigation purposes. The main conclusion is that the most advanced predictors basically exploit all the information contained in the locked mode signal on which they are based. Therefore, qualitative improvements in disruption prediction performance in JET would need the processing of additional signals, probably profiles.
International Nuclear Information System (INIS)
Wang Huhu; Lee Saya; Hassan, Yassin A.; Ruggles, Arthur E.
2014-01-01
The design of next generation (Gen. IV) high-temperature nuclear reactors including gas-cooled and sodium-cooled ones involves massive numerical works especially the Computational Fluid Dynamics (CFD) simulations. The high cost of large-scale experiments and the inherent uncertainties existing in the turbulent models and wall functions of any CFD codes solving Reynolds-averaged Navier-Stokes (RANS) equations necessitate the high-spacial experimental data sets for benchmarking the simulation results. In Gen. IV conceptual reactors, the high- temperature flows mix in the upper plenum before entering the secondary cooling system. The mixing condition should be accurately estimated and fully understood as it is related to the thermal stresses induced in the upper plenum and the magnitudes of output power oscillations due to any changes of primary coolant temperature. The purpose of this study is to use Laser Doppler Anemometry (LDA) technique to measure the flow field of two submerged parallel jets issuing from two rectangular channels. The LDA data sets can be used to validate the corresponding simulation results. The jets studied in this work were at room temperature. The turbulent characteristics including the distributions of mean velocities, turbulence intensities, Reynolds stresses were studied. Uncertainty analysis was also performed to study the errors involved in this experiment. The experimental results in this work are valid for benchmarking any steady-state numerical simulations using turbulence models to solve RANS equations. (author)
Characterisation, modelling and control of advanced scenarios in the european tokamak jet
International Nuclear Information System (INIS)
Tresset, G.
2002-01-01
The advanced scenarios, developed for less than ten years with the internal transport barriers and the control of current profile, give rise to a 'new deal' for the tokamak as a future thermonuclear controlled fusion reactor. The Joint European Torus (JET) in United Kingdom is presently the most powerful device in terms of fusion power and it has allowed to acquire a great experience in these improved confinement regimes. The reduction of turbulent transport, considered now as closely linked to the shape of current profile optimised for instance by lower hybrid current drive or the self-generated bootstrap current, can be characterised by a dimensionless criterion. Most of useful information related to the transport barriers are thus available. Large database analysis and real time plasma control are envisaged as attractive applications. The so-called 'S'-shaped transport models exhibit some interesting properties in fair agreement with the experiments, while the non-linear multivariate dependencies of thermal diffusivity can be approximated by a neural network, suggesting a new approach for transport investigation and modelling. Finally, the first experimental demonstrations of real time control of internal transport barriers and current profile have been performed on JET. Sophisticated feedback algorithms have been proposed and are being numerically tested to achieve steady-state and efficient plasmas. (author)
Thermal state of the general time-dependent harmonic oscillator
Indian Academy of Sciences (India)
Taking advantage of dynamical invariant operator, we derived quantum mechanical solution of general time-dependent harmonic oscillator. ... The domain part of the email address of all email addresses used by the office of Indian Academy of Sciences, including those of the staff, the journals, various programmes, and ...
BEC from a time-dependent variational point of view
International Nuclear Information System (INIS)
Benarous, Mohamed
2005-01-01
We use the time-dependent variational principle of Balian and Veneroni to derive a set of equations governing the dynamics of a trapped Bose gas at finite temperature. We show that this dynamics generalizes the Gross-Pitaevskii equations in that it introduces a consistent dynamical coupling between the evolution of the condensate density, the thermal cloud, and the 'anomalous' density
A remark on the time-dependent pair distribution
Hove, Léon van
1958-01-01
After recalling the classical work of Zernike and Prins on the pair distribution function of a liquid or gas and its role in X-ray scattering theory, one briefly discusses the time-dependent generalization of this distribution function, which is of special interest for neutron scattering. In line
Coherent states of general time-dependent harmonic oscillator
Indian Academy of Sciences (India)
Abstract. By introducing an invariant operator, we obtain exact wave functions for a general time-dependent quadratic harmonic oscillator. The coherent states, both in x- and p-spaces, are calculated. We confirm that the uncertainty product in coherent state is always larger than Η/2 and is equal to the minimum of the ...
Approximate factorization for time-dependent partial differential equations
P.J. van der Houwen; B.P. Sommeijer (Ben)
1999-01-01
textabstractThe first application of approximate factorization in the numerical solution of time-dependent partial differential equations (PDEs) can be traced back to the celebrated papers of Peaceman and Rachford and of Douglas in 1955. For linear problems, the Peaceman-Rachford- Douglas method can
Path integral solution for some time-dependent potential
International Nuclear Information System (INIS)
Storchak, S.N.
1989-12-01
The quantum-mechanical problem with a time-dependent potential is solved by the path integral method. The solution is obtained by the application of the previously derived general formula for rheonomic homogeneous point transformation and reparametrization in the path integral. (author). 4 refs
Time-dependent density functional theory for periodic systems
Kootstra, Freddie
2001-01-01
In this thesis the time-dependent version of density functional theory is described, which has been developed for crystalline non-metallic systems with periodicity in one to three dimensions. The application of this theory to the calculation of the optical reponse properties of a wide range of
Time-dependent quantum fluid density functional theory of hydrogen ...
Indian Academy of Sciences (India)
A time-dependent generalized non-linear Schrödinger equation (GNLSE) of motion was earlier derived in our laboratory by combining density functional theory and quantum fluid dynamics in threedimensional space. In continuation of the work reported previously, the GNLSE is applied to provide additional knowledge on ...
Construction of an exact solution of time-dependent Ginzburg ...
Indian Academy of Sciences (India)
A new approach is taken to calculate the speed of front propagation at which the interface moves from a superconducting to a normal region in a superconducting sample. Using time-dependent Ginzburg–Landau (TDGL) equations we have calculated the speed by constructing a new exact solution. This approach is based ...
Time-dependent fracture of early age concrete
DEFF Research Database (Denmark)
Østergaard, Lennart; Stang, Henrik; Olesen, John Forbes
2002-01-01
An experimental method suitable for the determination of the time-dependent tension softening response of early age concrete is presented. The method is based on the wedge splitting test by Tschegg, which is well known to be suited for the determination of fracture mechanical parameters, i...
Simulation of compressible viscous flow in time-dependent domains
Czech Academy of Sciences Publication Activity Database
Česenek, J.; Feistauer, M.; Horáček, Jaromír; Kučera, V.; Prokopova, J.
2013-01-01
Roč. 219, č. 13 (2013), s. 7139-7150 ISSN 0096-3003 R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional support: RVO:61388998 Keywords : time dependent domain * ALE method * semi-implicit time discretization * shock indicator Subject RIV: BI - Acoustics Impact factor: 1.600, year: 2013
Ranking paths in stochastic time-dependent networks
DEFF Research Database (Denmark)
Nielsen, Lars Relund; Andersen, Kim Allan; Pretolani, Daniele D.
2014-01-01
In this paper we address optimal routing problems in networks where travel times are both stochastic and time-dependent. In these networks, the best route choice is not necessarily a path, but rather a time-adaptive strategy that assigns successors to nodes as a function of time. Nevertheless, in...
Construction of an exact solution of time-dependent Ginzburg ...
Indian Academy of Sciences (India)
Abstract. A new approach is taken to calculate the speed of front propagation at which the interface moves from a superconducting to a normal region in a superconducting sample. Using time-dependent Ginzburg–Landau (TDGL) equations we have calculated the speed by constructing a new exact solution. This approach ...
Student Understanding of Time Dependence in Quantum Mechanics
Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.
2015-01-01
The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing…
Time-Dependent Natural Convection Couette Flow of Heat ...
African Journals Online (AJOL)
Time-Dependent Natural Convection Couette Flow of Heat Generating/Absorbing Fluid between Vertical Parallel Plates Filled With Porous Material. ... The numerical simulation conducted for some saturated liquids reveled that at t ≥ Pr the steady and unsteady state velocities (as well as the temperature of the fluid) ...
Time-dependent effects of cardiovascular exercise on memory
DEFF Research Database (Denmark)
Roig, Marc; Thomas, Richard; Mang, Cameron S
2016-01-01
We present new evidence supporting the hypothesis that the effects of cardiovascular exercise on memory can be regulated in a time-dependent manner. When the exercise stimulus is temporally coupled with specific phases of the memory formation process, a single bout of cardiovascular exercise may ...
Directory of Open Access Journals (Sweden)
Sareh Keshavarzi
2012-01-01
Full Text Available Background. In many studies with longitudinal data, time-dependent covariates can only be measured intermittently (not at all observation times, and this presents difficulties for standard statistical analyses. This situation is common in medical studies, and methods that deal with this challenge would be useful. Methods. In this study, we performed the seemingly unrelated regression (SUR based models, with respect to each observation time in longitudinal data with intermittently observed time-dependent covariates and further compared these models with mixed-effect regression models (MRMs under three classic imputation procedures. Simulation studies were performed to compare the sample size properties of the estimated coefficients for different modeling choices. Results. In general, the proposed models in the presence of intermittently observed time-dependent covariates showed a good performance. However, when we considered only the observed values of the covariate without any imputations, the resulted biases were greater. The performances of the proposed SUR-based models in comparison with MRM using classic imputation methods were nearly similar with approximately equal amounts of bias and MSE. Conclusion. The simulation study suggests that the SUR-based models work as efficiently as MRM in the case of intermittently observed time-dependent covariates. Thus, it can be used as an alternative to MRM.
Multi-scale simulations of droplets in generic time-dependent flows
Milan, Felix; Biferale, Luca; Sbragaglia, Mauro; Toschi, Federico
2017-11-01
We study the deformation and dynamics of droplets in time-dependent flows using a diffuse interface model for two immiscible fluids. The numerical simulations are at first benchmarked against analytical results of steady droplet deformation, and further extended to the more interesting case of time-dependent flows. The results of these time-dependent numerical simulations are compared against analytical models available in the literature, which assume the droplet shape to be an ellipsoid at all times, with time-dependent major and minor axis. In particular we investigate the time-dependent deformation of a confined droplet in an oscillating Couette flow for the entire capillary range until droplet break-up. In this way these multi component simulations prove to be a useful tool to establish from ``first principles'' the dynamics of droplets in complex flows involving multiple scales. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No 642069. & European Research Council under the European Community's Seventh Framework Program, ERC Grant Agreement No 339032.
Laird, Brian B.; Thompson, Ward H.
2011-08-01
The time-dependent fluorescence of a model dye molecule in a nanoconfined solvent is used to test approximations based on the dynamic and static linear-response theories and the assumption of Gaussian statistics. Specifically, the results of nonequilibrium molecular-dynamics simulations are compared to approximate expressions involving time correlation functions obtained from equilibrium simulations. Solvation dynamics of a model diatomic dye molecule dissolved in acetonitrile confined in a spherical hydrophobic cavity of radius 12, 15, and 20 Å is used as the test case. Both the time-dependent fluorescence energy, expressed as the normalized dynamic Stokes shift, and the time-dependent position of the dye molecule after excitation are examined. While the dynamic linear-response approximation fails to describe key aspects of the solvation dynamics, assuming Gaussian statistics reproduces the full nonequilibrium simulations well. The implications of these results are discussed.
Experiments and models of MHD jets and their relevance to astrophysics and solar physics
Bellan, Paul M.
2018-05-01
Magnetohydrodynamic (MHD)-driven jets involve poloidal and toroidal magnetic fields, finite pressure gradients, and unbalanced forces. The mechanism driving these jets is first discussed qualitatively by decomposing the magnetic force into a curvature and a gradient component. The mechanism is then considered quantitatively by consideration of all terms in the three components of the MHD equation of motion and in addition, the implications of Ampere's law, Faraday's law, the ideal Ohm's law, and the equation of continuity. The analysis shows that jets are self-collimating with the tip of the jet moving more slowly than the main column of the jet so there is a continuous stagnation near the tip in the jet frame. Experiments supporting these conclusions are discussed and it is shown how this mechanism relates to jets in astrophysical and solar corona contexts.
Iterative solution of the time dependent Schrodinger equation
International Nuclear Information System (INIS)
Kiss, Zs.G.; Nagy, L.; Borbely, S.; Toekesi, K.
2011-01-01
Complete text of publication follows. The most accurate theoretical method used to investigate the interaction between atoms and ultrashort (few-cycle) UV / XUV laser pulses is the direct numerical solution of the time dependent Schrodinger equation (TDSE). The aim of the present work is to test various methods used for the solution of the TDSE, and to find the less resource consuming one. The recently developed iterative solution of TDSE (iTDSE model) is an extension of the momentum-space strongfield approximation (MSSFA), in which the Coulomb potential was considered only as a first order perturbation. In the iTDSE model the higher order terms were gradually introduced, until convergence was achieved. The converged iTDSE results were compared with the 'exact' results, obtained from the direct solution of the TDSE (see [2-3]). The MSSFA method provides accurate results only in the half-cycle pulse limit, and its shortcomings are revealed only in the long pulse limit. As any perturbative approach, the MSSFA time propagation is not unitary (norm of the wave function is not conserved). Beside this due to the weak Coulomb potential (i.e. first order perturbation) the ionization probability amplitude is overestimated and the Δl = ±1 selection rule is not fulfilled, which leads to erroneous wave function dynamics. The direct solution of the TDSE does not have the above presented shortcomings, but during production runs it requires a large amount of CPU power and memory even in the framework of the single active electron approach. The newly implemented extension of the MSSFA model (the iTDSE model) eliminates all the MSSFA model's shortcomings providing accurate results. The main advantage of the iTDSE model is that it requires considerably less computer resources (CPU time and memory) then the direct solution, while it provides results as accurate as the direct solution. The most critical part of the iTDSE approach is the temporal propagation, which involves the
Jet observables without jet algorithms
Energy Technology Data Exchange (ETDEWEB)
Bertolini, Daniele; Chan, Tucker; Thaler, Jesse [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)
2014-04-02
We introduce a new class of event shapes to characterize the jet-like structure of an event. Like traditional event shapes, our observables are infrared/collinear safe and involve a sum over all hadrons in an event, but like a jet clustering algorithm, they incorporate a jet radius parameter and a transverse momentum cut. Three of the ubiquitous jet-based observables — jet multiplicity, summed scalar transverse momentum, and missing transverse momentum — have event shape counterparts that are closely correlated with their jet-based cousins. Due to their “local” computational structure, these jet-like event shapes could potentially be used for trigger-level event selection at the LHC. Intriguingly, the jet multiplicity event shape typically takes on non-integer values, highlighting the inherent ambiguity in defining jets. By inverting jet multiplicity, we show how to characterize the transverse momentum of the n-th hardest jet without actually finding the constituents of that jet. Since many physics applications do require knowledge about the jet constituents, we also build a hybrid event shape that incorporates (local) jet clustering information. As a straightforward application of our general technique, we derive an event-shape version of jet trimming, allowing event-wide jet grooming without explicit jet identification. Finally, we briefly mention possible applications of our method for jet substructure studies.