WorldWideScience

Sample records for time-dependent hartree-fock-bogoliubov theory

  1. Hartree-Fock-Bogoliubov approximation for finite systems

    International Nuclear Information System (INIS)

    Bulgac, A.

    1980-08-01

    The features of the spectrum of the Hartree-Fock-Bogoliubov equations are examined. Special attention is paid to the asymptotic behaviours of the single quasiparticle wave functions (s.qp.w.fs.), matter density distribution and density of the pair condensate. It is shown that, due to the coupling between hole and particle, the sufficiently deeply bound hole states acquire a width and consequently have to be treated as continuum states. The proper normalization of the s.qp.w.fs. is discussed. (author)

  2. The Gogny-Hartree-Fock-Bogoliubov nuclear-mass model

    Energy Technology Data Exchange (ETDEWEB)

    Goriely, S. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium); Hilaire, S.; Girod, M.; Peru, S. [CEA, DAM, DIF, Arpajon (France)

    2016-07-15

    We present the Gogny-Hartree-Fock-Bogoliubov model which reproduces nuclear masses with an accuracy comparable with the best mass formulas. In contrast to the Skyrme-HFB nuclear-mass models, an explicit and self-consistent account of all the quadrupole correlation energies is included within the 5D collective Hamiltonian approach. The final rms deviation with respect to the 2353 measured masses is 789 keV in the 2012 atomic mass evaluation. In addition, the D1M Gogny force is shown to predict nuclear and neutron matter properties in agreement with microscopic calculations based on realistic two- and three-body forces. The D1M properties and its predictions of various observables are compared with those of D1S and D1N. (orig.)

  3. Assessing the accuracy of Hartree-Fock-Bogoliubov calculations by use of mass relations

    DEFF Research Database (Denmark)

    Hove, D.; Fedorov, D. V.; Jensen, A. S.

    2014-01-01

    The accuracy of three different sets of Hartree-Fock-Bogoliubov calculations of nuclear binding energies is systematically evaluated. To emphasize minor fluctuations, a second order, four-point mass relation, which almost completely eliminates smooth aspects of the binding energy, is introduced...

  4. Generalized Hartree-Fock-Bogoliubov approach in the description of many-body systems

    International Nuclear Information System (INIS)

    Janssen, D.

    1979-01-01

    The quantum mechanical equation for a group of states connected by large probabilities of transitions to each other, i.e. possessing common internal structure, is found. No phenomenological assumptions about the vibrational or rotational character of these states have been used. The equations obtained here can be understood as a direct generalization of the Hartree-Fock-Bogoliubov equation, this scheme including not only the ground state, but some excited states as well. The question of normalization of the density matrix in the generalized space has been solved and the additional solutions of the problem have been excluded. (author)

  5. Particle-number-projected Hartree-Fock-Bogoliubov study with effective shell model interactions

    Science.gov (United States)

    Maqbool, I.; Sheikh, J. A.; Ganai, P. A.; Ring, P.

    2011-04-01

    We perform the particle-number-projected mean-field study using the recently developed symmetry-projected Hartree-Fock-Bogoliubov (HFB) equations. Realistic calculations have been performed in sd- and fp-shell nuclei using the shell model empirical interactions, USD and GXPFIA. It is demonstrated that the mean-field results for energy surfaces, obtained with these shell model interactions, are quite similar to those obtained using the density functional approaches. Further, it is shown that particle-number-projected results, for neutron-rich isotopes, can lead to different ground-state shapes in comparison to bare HFB calculations.

  6. Nonequilibrium dynamics of optical-lattice-loaded Bose-Einstein-condensate atoms: Beyond the Hartree-Fock-Bogoliubov approximation

    International Nuclear Information System (INIS)

    Rey, Ana Maria; Hu, B.L.; Roura, Albert; Calzetta, Esteban; Clark, Charles W.

    2004-01-01

    In this work a two-particle irreducible (2PI) closed-time-path (CTP) effective action is used to describe the nonequilibrium dynamics of a Bose-Einstein condensate selectively loaded into every third site of a one-dimensional optical lattice. The motivation of this work is the recent experimental realization of this system. Patterned loading methods may be useful for quantum computing with trapped atoms. This system also serves to illustrate many basic issues in nonequilibrium quantum-field theory pertaining to the dynamics of quantum correlations and fluctuations which goes beyond the capability of a mean-field theory. By numerically evolving in time the initial-state configuration using the Bose-Hubbard Hamiltonian an exact quantum solution is available for this system in the case of few atoms and wells. One can also use it to test various approximate methods. Under the 2PI CTP scheme with this initial configuration, three different approximations are considered: (a) the Hartree-Fock-Bogoliubov (HFB) approximation (b) the next-to-leading-order 1/N expansion of the 2PI effective action up to second order in the interaction strength, and (c) a second-order perturbative expansion in the interaction strength. We present detailed comparisons between these approximations and determine their range of validity by contrasting them with the exact many-body solution for a moderate number of atoms and wells. As a general feature we observe that because the second-order 2PI approximations include multiparticle scattering in a systematic way, they are able to capture damping effects exhibited in the exact solution, which a mean-field collisionless approach fails to produce. While the second-order approximations show a clear improvement over the HFB approximation, our numerical results show that they fail at late times, when interaction effects are significant

  7. Projection after variation in the finite-temperature Hartree-Fock-Bogoliubov approximation

    Science.gov (United States)

    Fanto, P.

    2017-11-01

    The finite-temperature Hartree-Fock-Bogoliubov (HFB) approximation often breaks symmetries of the underlying many-body Hamiltonian. Restricting the calculation of the HFB partition function to a subspace with good quantum numbers through projection after variation restores some of the correlations lost in breaking these symmetries, although effects of the broken symmetries such as sharp kinks at phase transitions remain. However, the most general projection after variation formula in the finite-temperature HFB approximation is limited by a sign ambiguity. Here, I extend the Pfaffian formula for the many-body traces of HFB density operators introduced by Robledo [L. M. Robledo, Phys. Rev. C. 79, 021302(R) (2009), 10.1103/PhysRevC.79.021302] to eliminate this sign ambiguity and evaluate the more complicated many-body traces required in projection after variation in the most general HFB case. The method is validated through a proof-of-principle calculation of the particle-number-projected HFB thermal energy in a simple model.

  8. Gradient of molecular Hartree-Fock-Bogoliubov energy with a linear combination of atomic orbital quasiparticle wave functions.

    Science.gov (United States)

    Kobayashi, Masato

    2014-02-28

    The analytical gradient for the atomic-orbital-based Hartree-Fock-Bogoliubov (HFB) energy functional, the modified form of which was proposed by Staroverov and Scuseria to account for the static electron correlation [J. Chem. Phys. 117, 11107 (2002)], is derived. Interestingly, the Pulay force for the HFB energy is expressed with the same formula as that for the Hartree-Fock method. The efficiency of the present HFB energy gradient is demonstrated in the geometry optimizations of conjugated and biradical systems. The geometries optimized by using the HFB method with the appropriate factor ζ, which controls the degree of static correlation included, are found to show good agreement with those obtained by using a complete active-space self-consistent field method, although they are significantly dependent on ζ.

  9. Breaking of the z-signature symmetry in the Hartree-Fock-Bogoliubov formalism. Applications to the dynamics of deformed nuclei

    International Nuclear Information System (INIS)

    Dancer, H.

    2000-01-01

    This work concerns the extension of the application domain of microscopic calculations in nuclear structure to phenomena breaking the z-signature symmetry. The approach followed consists in solving the many-body problem by means of the mean-field approximation using the Hartree-Fock-Bogoliubov method. By employing the Gogny nucleon-nucleon interaction, mean-field effects as well as pairing correlations are calculated in a self-consistent way. In order to simplify the iterative resolution of the associated system of non-linear equations, the remaining symmetries of the system are explicitly taken into account. In all studies made up to now, the z-signature symmetry was imposed. The solutions of the HFB problem were eigenstates of the z-signature symmetry, a symmetry related to a rotation of π around the z axis. However, many physical phenomena, as rotational bands based on individual excitations and magnetic dipole collective excitations, break this symmetry. In this work the formalism needed to take into account this symmetry breaking is developed and results are given for the two above phenomena. Theoretical rotational bands are in good agreement with experimental data. Band-heads excitation energies as well as moment of inertia are well reproduced. Concerning magnetic dipole excitations, we show that the low-lying l + states experimentally observed, are not collective scissor excitations, the latter being found at high excitation energy. An interpretation in terms of rather non-collective hexadecapole excitations coupled to individual excitations is proposed. (author) [fr

  10. Axially deformed solution of the Skyrme-Hartree-Fock-Bogoliubov equations using the transformed harmonic oscillator basis (II) HFBTHO v2.00d: A new version of the program

    Science.gov (United States)

    Stoitsov, M. V.; Schunck, N.; Kortelainen, M.; Michel, N.; Nam, H.; Olsen, E.; Sarich, J.; Wild, S.

    2013-06-01

    We describe the new version 2.00d of the code HFBTHO that solves the nuclear Skyrme-Hartree-Fock (HF) or Skyrme-Hartree-Fock-Bogoliubov (HFB) problem by using the cylindrical transformed deformed harmonic oscillator basis. In the new version, we have implemented the following features: (i) the modified Broyden method for non-linear problems, (ii) optional breaking of reflection symmetry, (iii) calculation of axial multipole moments, (iv) finite temperature formalism for the HFB method, (v) linear constraint method based on the approximation of the Random Phase Approximation (RPA) matrix for multi-constraint calculations, (vi) blocking of quasi-particles in the Equal Filling Approximation (EFA), (vii) framework for generalized energy density with arbitrary density-dependences, and (viii) shared memory parallelism via OpenMP pragmas. Program summaryProgram title: HFBTHO v2.00d Catalog identifier: ADUI_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUI_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 167228 No. of bytes in distributed program, including test data, etc.: 2672156 Distribution format: tar.gz Programming language: FORTRAN-95. Computer: Intel Pentium-III, Intel Xeon, AMD-Athlon, AMD-Opteron, Cray XT5, Cray XE6. Operating system: UNIX, LINUX, WindowsXP. RAM: 200 Mwords Word size: 8 bits Classification: 17.22. Does the new version supercede the previous version?: Yes Catalog identifier of previous version: ADUI_v1_0 Journal reference of previous version: Comput. Phys. Comm. 167 (2005) 43 Nature of problem: The solution of self-consistent mean-field equations for weakly-bound paired nuclei requires a correct description of the asymptotic properties of nuclear quasi-particle wave functions. In the present implementation, this is achieved by using the single-particle wave functions

  11. Density functional approaches to nuclear dynamics

    OpenAIRE

    Nakatsukasa, T.; Ebata, S.; Avogadro, P.; Guo, L.; Inakura, T.; Yoshida, K.

    2012-01-01

    We present background concepts of the nuclear density functional theory (DFT) and applications of the time-dependent DFT with the Skyrme energy functional for nuclear response functions. Practical methods for numerical applications of the time-dependent Hartree-Fock-Bogoliubov theory (TDHFB) are proposed; finite amplitude method and canonical-basis TDHFB. These approaches are briefly reviewed and some numerical applications are shown to demonstrate their feasibility.

  12. Instability of the cranked Hartree-Fock-Bogoliubov field in backbending region

    International Nuclear Information System (INIS)

    Horibata, Takatoshi; Onishi, Naoki.

    1981-07-01

    The stability condition of the cranked HFB field is examined explicitly by solving the eigen value equation for the second order variation of the energy, which is reduced to an algebraic equation through a coupled dispersion formula. We confirm that the HFB field is unstable in the backbending region of irregular rotational band, even though the frequency of the softest RPA mode stays in positive value. We investigate properties of the softest mode in detail. (author)

  13. Study of spontaneous fission lifetimes using nuclear density functional theory

    Directory of Open Access Journals (Sweden)

    Sadhukhan Jhilam

    2013-12-01

    Full Text Available The spontaneous fission lifetimes have been studied microscopically by minimizing the collective action integral in a two-dimensional collective space of quadrupole moments (Q20, Q22 representing elongation and triaxiality. The microscopic collective potential and inertia tensor are obtained by solving the self-consistent Hartree-Fock-Bogoliubov (HFB equations with the Skyrme energy density functional and mixed pairing interaction. The mass tensor is computed within the perturbative Adiabatic Time-Dependent HFB (ATDHFB approach in the cranking approximation. The dynamic fission trajectories have been obtained by minimizing the collective action using two different numerical techniques. The values of spontaneous fission lifetimes obtained in this way are compared with the static results.

  14. Time-dependent Dyson orbital theory

    NARCIS (Netherlands)

    Gritsenko, O.V.; Baerends, E.J.

    2016-01-01

    Although time-dependent density functional theory (TDDFT) has become the tool of choice for real-time propagation of the electron density ρN(t) of N-electron systems, it also encounters problems in this application. The first problem is the neglect of memory effects stemming from the, in TDDFT

  15. Time dependent resonating Hartree-Bogoliubov theory

    International Nuclear Information System (INIS)

    Nishiyama, Seiya; Fukutome, Hideo.

    1989-01-01

    Very recently, we have developed a theory of excitations in superconducting Fermion systems with large quantum fluctuations that can be described by resonance of time dependent non-orthogonal Hartree-Bogoliubov (HB) wave functions with different correlation structures. We have derived a new kind of variation equation called the time dependent Resonating HB equation, in order to determine both the time dependent Resonating HB wave functions and coefficients of a superposition of the HB wave functions. Further we have got a new approximation for excitations from time dependent small fluctuations of the Resonating HB ground state, i.e., the Resonating HB RPA. The Res HB RPA equation is represented in a given single particle basis. It, however, has drawbacks that the constraints for the Res HB RPA amplitudes are not taken into account and the equation contains equations which are not independent. We shall derive another form of the Res HB RPA equation eliminating these drawbacks. The Res HB RPA gives a unified description of the vibrons and resonons and their interactions. (author)

  16. Time-Dependent Thermal Transport Theory.

    Science.gov (United States)

    Biele, Robert; D'Agosta, Roberto; Rubio, Angel

    2015-07-31

    Understanding thermal transport in nanoscale systems presents important challenges to both theory and experiment. In particular, the concept of local temperature at the nanoscale appears difficult to justify. Here, we propose a theoretical approach where we replace the temperature gradient with controllable external blackbody radiations. The theory recovers known physical results, for example, the linear relation between the thermal current and the temperature difference of two blackbodies. Furthermore, our theory is not limited to the linear regime and goes beyond accounting for nonlinear effects and transient phenomena. Since the present theory is general and can be adapted to describe both electron and phonon dynamics, it provides a first step toward a unified formalism for investigating thermal and electronic transport.

  17. Linear response calculation using the canonical-basis TDHFB with a schematic pairing functional

    International Nuclear Information System (INIS)

    Ebata, Shuichiro; Nakatsukasa, Takashi; Yabana, Kazuhiro

    2011-01-01

    A canonical-basis formulation of the time-dependent Hartree-Fock-Bogoliubov (TDHFB) theory is obtained with an approximation that the pair potential is assumed to be diagonal in the time-dependent canonical basis. The canonical-basis formulation significantly reduces the computational cost. We apply the method to linear-response calculations for even-even nuclei. E1 strength distributions for proton-rich Mg isotopes are systematically calculated. The calculation suggests strong Landau damping of giant dipole resonance for drip-line nuclei.

  18. Time-dependent potential-functional embedding theory

    International Nuclear Information System (INIS)

    Huang, Chen; Libisch, Florian; Peng, Qing; Carter, Emily A.

    2014-01-01

    We introduce a time-dependent potential-functional embedding theory (TD-PFET), in which atoms are grouped into subsystems. In TD-PFET, subsystems can be propagated by different suitable time-dependent quantum mechanical methods and their interactions can be treated in a seamless, first-principles manner. TD-PFET is formulated based on the time-dependent quantum mechanics variational principle. The action of the total quantum system is written as a functional of the time-dependent embedding potential, i.e., a potential-functional formulation. By exploiting the Runge-Gross theorem, we prove the uniqueness of the time-dependent embedding potential under the constraint that all subsystems share a common embedding potential. We derive the integral equation that such an embedding potential needs to satisfy. As proof-of-principle, we demonstrate TD-PFET for a Na 4 cluster, in which each Na atom is treated as one subsystem and propagated by time-dependent Kohn-Sham density functional theory (TDDFT) using the adiabatic local density approximation (ALDA). Our results agree well with a direct TDDFT calculation on the whole Na 4 cluster using ALDA. We envision that TD-PFET will ultimately be useful for studying ultrafast quantum dynamics in condensed matter, where key regions are solved by highly accurate time-dependent quantum mechanics methods, and unimportant regions are solved by faster, less accurate methods

  19. Time-dependent density functional theory for periodic systems

    NARCIS (Netherlands)

    Kootstra, Freddie

    2001-01-01

    In this thesis the time-dependent version of density functional theory is described, which has been developed for crystalline non-metallic systems with periodicity in one to three dimensions. The application of this theory to the calculation of the optical reponse properties of a wide range of

  20. Semiclassical approximation to time-dependent Hartree--Fock theory

    International Nuclear Information System (INIS)

    Dworzecka, M.; Poggioli, R.

    1976-01-01

    Working within a time-dependent Hartree-Fock framework, one develops a semiclassical approximation appropriate for large systems. It is demonstrated that the standard semiclassical approach, the Thomas-Fermi approximation, is inconsistent with Hartree-Fock theory when the basic two-body interaction is short-ranged (as in nuclear systems, for example). However, by introducing a simple extension of the Thomas-Fermi approximation, one overcomes this problem. One also discusses the infinite nuclear matter problem and point out that time-dependent Hartree-Fock theory yields collective modes of the zero sound variety instead of ordinary hydrodynamic (first) sound. One thus emphasizes that one should be extremely circumspect when attempting to cast the equations of motion of time-dependent Hartree-Fock theory into a hydrodynamic-like form

  1. Natural excitation orbitals from linear response theories: Time-dependent density functional theory, time-dependent Hartree-Fock, and time-dependent natural orbital functional theory.

    Science.gov (United States)

    van Meer, R; Gritsenko, O V; Baerends, E J

    2017-01-28

    Straightforward interpretation of excitations is possible if they can be described as simple single orbital-to-orbital (or double, etc.) transitions. In linear response time-dependent density functional theory (LR-TDDFT), the (ground state) Kohn-Sham orbitals prove to be such an orbital basis. In contrast, in a basis of natural orbitals (NOs) or Hartree-Fock orbitals, excitations often employ many orbitals and are accordingly hard to characterize. We demonstrate that it is possible in these cases to transform to natural excitation orbitals (NEOs) which resemble very closely the KS orbitals and afford the same simple description of excitations. The desired transformation has been obtained by diagonalization of a submatrix in the equations of linear response time-dependent 1-particle reduced density matrix functional theory (LR-TDDMFT) for the NO transformation, and that of a submatrix in the linear response time-dependent Hartree-Fock (LR-TDHF) equations for the transformation of HF orbitals. The corresponding submatrix is already diagonal in the KS basis in the LR-TDDFT equations. While the orbital shapes of the NEOs afford the characterization of the excitations as (mostly) simple orbital-to-orbital transitions, the orbital energies provide a fair estimate of excitation energies.

  2. Time-dependent quantum fluid density functional theory of hydrogen ...

    Indian Academy of Sciences (India)

    A time-dependent generalized non-linear Schrödinger equation (GNLSE) of motion was earlier derived in our laboratory by combining density functional theory and quantum fluid dynamics in threedimensional space. In continuation of the work reported previously, the GNLSE is applied to provide additional knowledge on ...

  3. General time-dependent formulation of quantum scattering theory

    International Nuclear Information System (INIS)

    Althorpe, Stuart C.

    2004-01-01

    We derive and explain the key ideas behind a time-dependent formulation of quantum scattering theory, applicable generally to systems with a finite-range scattering potential. The scattering is initiated and probed by plane wave packets, which are localized just outside the range of the potential. The asymptotic limits of conventional scattering theory (initiation in the remote past; detection in the remote future) are not taken. Instead, the differential cross section (DCS) is obtained by projecting the scattered wave packet onto the probe plane wave packets. The projection also yields a time-dependent version of the DCS. Cuts through the wave packet, just as it exits the scattering potential, yield time-dependent and time-independent angular distributions that give a close-up picture of the scattering which complements the DCS. We have previously applied the theory to interpret experimental cross sections of chemical reactions [e.g., S. C. Althorpe, F. Fernandez-Alonso, B. D. Bean, J. D. Ayers, A. E. Pomerantz, R. N. Zare, and E. Wrede, Nature (London) 416, 67 (2002)]. This paper gives the derivation of the theory, and explains its relation to conventional scattering theory. For clarity, the derivation is restricted to spherical-particle scattering, though it may readily be extended to general multichannel systems. We illustrate the theory using a simple application to hard-sphere scattering

  4. Time-dependent density-functional theory concepts and applications

    CERN Document Server

    Ullrich, Carsten A

    2011-01-01

    Time-dependent density-functional theory (TDDFT) describes the quantum dynamics of interacting electronic many-body systems formally exactly and in a practical and efficient manner. TDDFT has become the leading method for calculating excitation energies and optical properties of large molecules, with accuracies that rival traditional wave-function based methods, but at a fraction of the computational cost.This book is the first graduate-level text on the concepts and applications of TDDFT, including many examples and exercises, and extensive coverage of the literature. The book begins with a s

  5. Scattering theory for explicitely time-dependent interactions

    International Nuclear Information System (INIS)

    Perusch, M.

    1982-01-01

    Multiple ionization of hydrogen atoms has got increased attention in recent years in connection with high-power lasers. Due to the strong external electromagnetic fields, perturbation theory is no longer valid. The expression for the multiple ionization probability contains the projections of the time-dependent Hamilton operators and the Moeller operators. The main point of the present work is a proof of existence and completeness of the Moeller operators. The proof of existence and completeness is given. The final chapter contains a physical interpretation and discussion of the multiple ionization probability. (G.Q.)

  6. Supersymmetric gauge theory with space-time-dependent couplings

    Science.gov (United States)

    Choi, Jaewang; Fernández-Melgarejo, José J.; Sugimoto, Shigeki

    2018-01-01

    We study deformations of N=4 supersymmetric Yang-Mills theory with couplings and masses depending on space-time. The conditions to preserve part of the supersymmetry are derived and a lot of solutions of these conditions are found. The main example is the case with ISO(1,1)× SO(3)× SO(3) symmetry, in which couplings, as well as masses and the theta parameter, can depend on two spatial coordinates. In the case in which ISO(1,1) is enhanced to ISO(1,2), it reproduces the supersymmetric Janus configuration found by Gaiotto and Witten [J. High Energy Phys. 06, 097 (2010)]. When SO(3)× SO(3) is enhanced to SO(6), it agrees with the world-volume theory of D3-branes embedded in F-theory (a background with 7-branes in type IIB string theory). We have also found the general solution of the supersymmetry conditions for the cases with ISO(1,1)× SO(2)× SO(4) symmetry. Cases with time-dependent couplings and/or masses are also considered.

  7. Existence of time-dependent density-functional theory for open electronic systems: time-dependent holographic electron density theorem.

    Science.gov (United States)

    Zheng, Xiao; Yam, ChiYung; Wang, Fan; Chen, GuanHua

    2011-08-28

    We present the time-dependent holographic electron density theorem (TD-HEDT), which lays the foundation of time-dependent density-functional theory (TDDFT) for open electronic systems. For any finite electronic system, the TD-HEDT formally establishes a one-to-one correspondence between the electron density inside any finite subsystem and the time-dependent external potential. As a result, any electronic property of an open system in principle can be determined uniquely by the electron density function inside the open region. Implications of the TD-HEDT on the practicality of TDDFT are also discussed.

  8. Time-dependent density functional theory for multi-component systems

    International Nuclear Information System (INIS)

    Tiecheng Li; Peiqing Tong

    1985-10-01

    The Runge-Gross version of Hohenberg-Kohn-Sham's density functional theory is generalized to multi-component systems, both for arbitrary time-dependent pure states and for arbitrary time-dependent ensembles. (author)

  9. Time-dependent quantum fluid density functional theory of hydrogen ...

    Indian Academy of Sciences (India)

    WINTEC

    GNLSE) of motion was earlier derived in our laboratory by combining density functional theory and quantum fluid dynamics in three- dimensional space. In continuation of the work reported previously, the GNLSE is applied to provide addi-.

  10. Time-dependent quantum fluid density functional theory of hydrogen ...

    Indian Academy of Sciences (India)

    dependent density; density functional theory; quantum fluid dynamics. ... (HHG) is also examined. The present approach goes beyond the linear response formalism and, in principle, calculates the TD electron density to all orders of change.

  11. Time-dependent quantum fluid density functional theory of hydrogen ...

    Indian Academy of Sciences (India)

    WINTEC

    derived in our laboratory by combining density functional theory and quantum fluid dynamics in three- dimensional space. In continuation of the .... repulsion, electron-nuclear Coulomb attraction, ex- change and correlation interactions, ..... Eberly J H, Grobe R, Law C K and Su Q 1992 Adv. At. Mol. Opt. Phys. Suppl. 1 301. 8.

  12. Systematic study of neutron-rich Molybdenum isotopes

    International Nuclear Information System (INIS)

    Oudih, M.R.; Fellah, M.; Allal, N.H.; Benhamouda, N.

    2010-01-01

    The ground state properties of neutron-rich even-even Molybdenum isotopes are studied using Hartree-Fock-Bogoliubov mean-field theory. Quantities such as two-neutron separation energies and r.m.s radii have been investigated and compared with available experimental data. Deformations and shape coexistence for not yet observed nuclei are predicted.

  13. Evaluation of time-dependent void nucleation theory under ion bombardment conditions

    International Nuclear Information System (INIS)

    Sprague, J.A.; Russell, K.C.; Choi, Y.H.

    1975-01-01

    The applicability of a steady state and time-dependent homogeneous void nucleation theory to charged-particle irradiation experiments was investigated. The steady-state theory was found to be inappropriate, since significant changes in a metal's microstructure would likely occur before the void nucleation rate could reach steady state. Two types of time dependence were examined, that of the point defect concentrations at the beginning of an irradiation and the longer-term time dependence of void nucleation. It was found that vacancy and interstitial clustering significantly reduce the relaxation time for the point defect concentrations. An efficient form of time-dependent homogeneous nucleation theory was applied to ion bombardment conditions to predict void size distributions

  14. Time-dependent--S-matrix Hartree-Fock theory of complex reactions

    International Nuclear Information System (INIS)

    Griffin, J.J.; Lichtner, P.C.; Dworzecka, M.

    1980-01-01

    Some limitations of the conventional time-dependent Hartree-Fock method for describing complex reactions are noted, and one particular ubiquitous defect is discussed in detail: the post-breakup spurious cross channel correlations which arise whenever several asymptotic reaction channels must be simultaneously described by a single determinant. A reformulated time-dependent--S-matrix Hartree-Fock theory is proposed, which obviates this difficulty. Axiomatic requirements minimal to assure that the time-dependent--S-matrix Hartree-Fock theory represents an unambiguous and physically interpretable asymptotic reaction theory are utilized to prescribe conditions upon the definition of acceptable asymptotic channels. That definition, in turn, defines the physical range of the time-dependent--S-matrix Hartree-Fock theory to encompass the collisions of mathematically well-defined ''time-dependent Hartree-Fock droplets.'' The physical properties of these objects then circumscribe the content of the Hartree-Fock single determinantal description. If their periodic vibrations occur for continuous ranges of energy then the resulting ''classical'' time-dependent Hartree-Fock droplets are seen to be intrinsically dissipative, and the single determinantal description of their collisions reduces to a ''trajectory'' theory which can describe the masses and relative motions of the fragments but can provide no information about specific asymptotic excited states beyond their constants of motion, or the average properties of the limit, if it exists, of their equilibrization process. If, on the other hand, the periodic vibrations of the time-dependent Hartree-Fock droplets are discrete in energy, then the time-dependent--S-matrix Hartree-Fock theory can describe asymptotically the time-average properties of the whole spectrum of such periodic vibrations

  15. Theory of time-dependent intense-field collisional resonance fluorescence

    Science.gov (United States)

    Kleiber, P. D.; Cooper, J.; Burnett, K.; Kunasz, C. V.; Raymer, M. G.

    1983-01-01

    The time-dependent theory of Courtens and Szoke (1977) is generalized using the approach of Burnett et al. (1982) to derive time-dependent spectral intensities of resonance fluorescence from atoms driven by a pulsed laser in the presence of collisions. These results are valid both for laser detunings inside and outside the usual impact region of the spectrum, including Zeeman degeneracy effects. This theory is applied to a simple but important example (J = 0 to J = 1) to obtain quantitative predictions for the observable scattered-light spectrum which can be directly compared with recent experiments.

  16. Unitarity Bounds and RG Flows in Time Dependent Quantum Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xi; Horn, Bart; Silverstein, Eva; Torroba, Gonzalo; /Stanford U., ITP /Stanford U., Phys. Dept. /SLAC

    2012-04-05

    We generalize unitarity bounds on operator dimensions in conformal field theory to field theories with spacetime dependent couplings. Below the energy scale of spacetime variation of the couplings, their evolution can strongly affect the physics, effectively shifting the infrared operator scaling and unitarity bounds determined from correlation functions in the theory. We analyze this explicitly for large-N double-trace flows, and connect these to UV complete field theories. One motivating class of examples comes from our previous work on FRW holography, where this effect explains the range of flavors allowed in the dual, time dependent, field theory.

  17. Thouless-Valatin rotational moment of inertia from linear response theory

    Science.gov (United States)

    Petrík, Kristian; Kortelainen, Markus

    2018-03-01

    Spontaneous breaking of continuous symmetries of a nuclear many-body system results in the appearance of zero-energy restoration modes. These so-called spurious Nambu-Goldstone modes represent a special case of collective motion and are sources of important information about the Thouless-Valatin inertia. The main purpose of this work is to study the Thouless-Valatin rotational moment of inertia as extracted from the Nambu-Goldstone restoration mode that results from the zero-frequency response to the total-angular-momentum operator. We examine the role and effects of the pairing correlations on the rotational characteristics of heavy deformed nuclei in order to extend our understanding of superfluidity in general. We use the finite-amplitude method of the quasiparticle random-phase approximation on top of the Skyrme energy density functional framework with the Hartree-Fock-Bogoliubov theory. We have successfully extended this formalism and established a practical method for extracting the Thouless-Valatin rotational moment of inertia from the strength function calculated in the symmetry-restoration regime. Our results reveal the relation between the pairing correlations and the moment of inertia of axially deformed nuclei of rare-earth and actinide regions of the nuclear chart. We have also demonstrated the feasibility of the method for obtaining the moment of inertia for collective Hamiltonian models. We conclude that from the numerical and theoretical perspective, the finite-amplitude method can be widely used to effectively study rotational properties of deformed nuclei within modern density functional approaches.

  18. Time-evolution operators for (coupled) time-dependent oscillators and Lie algebraic structure theory

    Science.gov (United States)

    Wolf, F.; Korsch, H. J.

    1988-03-01

    This paper deals with the application of Lie algebraic structure theory to time-dependent quantum systems making use of the Levi-Malcev decomposition of the Lie algebra generated by the Hamiltonian and the Wei-Norman representation of the time-evolution operator. In particular, (coupled) harmonic-oscillator systems are studied. Explicit formulas for expectation values and transition probabilities are derived.

  19. The Keldysh formalism applied to time-dependent current-density-functional theory

    NARCIS (Netherlands)

    Gidopoulos, NI; Wilson, S

    2003-01-01

    In this work we demonstrate how to derive the Kohn-Sham equations of time-dependent current-density functional theory from a generating action functional defined on a Keldysh time contour. These Kohn-Sham equations contain an exchange-correlation contribution to the vector potential. For this

  20. Time-dependent solutions for stochastic systems with delays: Perturbation theory and applications to financial physics

    International Nuclear Information System (INIS)

    Frank, T.D.

    2006-01-01

    First-order approximations of time-dependent solutions are determined for stochastic systems perturbed by time-delayed feedback forces. To this end, the theory of delay Fokker-Planck equations is applied in combination with Bayes' theorem. Applications to a time-delayed Ornstein-Uhlenbeck process and the geometric Brownian walk of financial physics are discussed

  1. Decay of autoionizing states in time-dependent density functional and reduced density matrix functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, Varun; Brics, Martins; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)

    2013-07-01

    Autoionizing states are inaccessible to time-dependent density functional theory (TDDFT) using known, adiabatic Kohn-Sham (KS) potentials. We determine the exact KS potential for a numerically exactly solvable model Helium atom interacting with a laser field that is populating an autoionizing state. The exact single-particle density of the population in the autoionizing state corresponds to that of the energetically lowest quasi-stationary state in the exact KS potential. We describe how this exact potential controls the decay by a barrier whose height and width allows for the density to tunnel out and decay with the same rate as in the ab initio time-dependent Schroedinger calculation. However, devising a useful exchange-correlation potential that is capable of governing such a scenario in general and in more complex systems is hopeless. As an improvement over TDDFT, time-dependent reduced density matrix functional theory has been proposed. We are able to obtain for the above described autoionization process the exact time-dependent natural orbitals (i.e., the eigenfunctions of the exact, time-dependent one-body reduced density matrix) and study the potentials that appear in the equations of motion for the natural orbitals and the structure of the two-body density matrix expanded in them.

  2. On time-dependent perturbation theory in matrix mechanics and time averaging

    International Nuclear Information System (INIS)

    Casas, Fernando

    2015-01-01

    The time-dependent quantum perturbation theory developed by Born, Heisenberg and Jordan in 1926 is revisited. We show that it not only reproduces the standard theory formulated in the interaction picture, but also allows one to construct more accurate approximations if time averaging techniques are employed. The theory can be rendered unitary even if the expansion is truncated by using a transformation previously suggested by Heisenberg. We illustrate the main features of the procedure on a simple example which clearly shows its advantages in comparison with the standard perturbation theory. (paper)

  3. The time dependent Hartree-Fock-theory for collective nuclear motions

    International Nuclear Information System (INIS)

    Goeke, K.

    1976-11-01

    The time-dependent Hartree-Fock theory (TDHF) approximately solves the Schroedinger equation by a variational method in the space of the time-dependent Slater determinants. As the TDHF wave function, similar to the exact solution has the property of being determined completely for all times by the nucleon-nucleon interaction and by assuming initial conditions. TDHF is expected to describe collective motion of nuclei with large amplitudes, too. The subject of this paper is to formulate the TDHF theory and its adiabatic limiting case (ATDHF) suited for setting up a collective Schroedinger equation, to investigate the relations with other theories, and to show the applicability for solving practical problems. (orig./WL) [de

  4. Time-dependent density functional theory for many-electron systems interacting with cavity photons.

    Science.gov (United States)

    Tokatly, I V

    2013-06-07

    Time-dependent (current) density functional theory for many-electron systems strongly coupled to quantized electromagnetic modes of a microcavity is proposed. It is shown that the electron-photon wave function is a unique functional of the electronic (current) density and the expectation values of photonic coordinates. The Kohn-Sham system is constructed, which allows us to calculate the above basic variables by solving self-consistent equations for noninteracting particles. We suggest possible approximations for the exchange-correlation potentials and discuss implications of this approach for the theory of open quantum systems. In particular we show that it naturally leads to time-dependent density functional theory for systems coupled to the Caldeira-Leggett bath.

  5. Exact-exchange time-dependent density-functional theory with the frequency-dependent kernel

    International Nuclear Information System (INIS)

    Shigeta, Yasuteru; Hirao, Kimihiko; Hirata, So

    2006-01-01

    The effects of the adiabatic approximation in time-dependent density-functional theory (TDDFT) on dynamic polarizabilities and van der Waals C 6 coefficients have been analyzed quantitatively. These effects are shown to be small in the off-resonance region of the perturbation frequencies by comparing the results from the exact-exchange TDDFT employing the optimized effective potentials and the corresponding frequency-dependent kernel [time-dependent optimized effective potentials (TDOEP)] and those from the frequency-independent kernel [adiabatic TDOEP (ATDOEP)]. The magnitude of the computed dynamic polarizabilities near the static limit is found to be in the order: time-dependent Hartree-Fock (TDHF)>ATDOEP>TDOEP, whereas that of C 6 is: TDHF>TDOEP>ATDOEP

  6. NATO Advanced Research Workshop on Time-Dependent Quantum Molecular Dynamics : Theory and Experiment

    CERN Document Server

    Lathouwers, L

    1992-01-01

    From March 30th to April 3rd, 1992, a NATO Advanced Research workshop entitled "Time Dependent Quantum Molecular Dynamics: Theory and Experiment" was held at Snowbird, Utah. The organizing committee consisted of J. BROECKHOVE (Antwerp, Belgium), L. CEDERBAUM (Heidelberg, Germany), L. LATHOUWERS (Antwerp, Belgium), N. OHRN (Gainesville, Florida) and J. SIMONS (Salt Lake City, Utah). Fifty-two participants from eleven different countries attended the meeting at which thirty-three talks and one poster session were held. Twenty-eight participants submitted contributions to the proceedings of the meeting, which are reproduced in this volume. The workshop brought together experts in different areas 0 f molecular quantum dynamics, all adhering to the time dependent approach. The aim was to discuss and compare methods and applications. The ~amiliarityo~ the aUdience with the concepts o~ time dependent approaches greatly facilitated topical discussions and probing towards new applications. A broad area of subject matt...

  7. Phase space theory of Bose–Einstein condensates and time-dependent modes

    International Nuclear Information System (INIS)

    Dalton, B.J.

    2012-01-01

    A phase space theory approach for treating dynamical behaviour of Bose–Einstein condensates applicable to situations such as interferometry with BEC in time-dependent double well potentials is presented. Time-dependent mode functions are used, chosen so that one, two,…highly occupied modes describe well the physics of interacting condensate bosons in time dependent potentials at well below the transition temperature. Time dependent mode annihilation, creation operators are represented by time dependent phase variables, but time independent total field annihilation, creation operators are represented by time independent field functions. Two situations are treated, one (mode theory) is where specific mode annihilation, creation operators and their related phase variables and distribution functions are dealt with, the other (field theory) is where only field creation, annihilation operators and their related field functions and distribution functionals are involved. The field theory treatment is more suitable when large boson numbers are involved. The paper focuses on the hybrid approach, where the modes are divided up between condensate (highly occupied) modes and non-condensate (sparsely occupied) modes. It is found that there are extra terms in the Ito stochastic equations both for the stochastic phases and stochastic fields, involving coupling coefficients defined via overlap integrals between mode functions and their time derivatives. For the hybrid approach both the Fokker–Planck and functional Fokker–Planck equations differ from those derived via the correspondence rules, the drift vectors are unchanged but the diffusion matrices contain additional terms involving the coupling coefficients. Results are also presented for the combined approach where all the modes are treated as one set. Here both the Fokker–Planck and functional Fokker–Planck equations are exactly the same as those derived via the correspondence rules. However, although the Ito

  8. Representation independent algorithms for molecular response calculations in time-dependent self-consistent field theories

    Energy Technology Data Exchange (ETDEWEB)

    Tretiak, Sergei [Los Alamos National Laboratory

    2008-01-01

    Four different numerical algorithms suitable for a linear scaling implementation of time-dependent Hartree-Fock and Kohn-Sham self-consistent field theories are examined. We compare the performance of modified Lanczos, Arooldi, Davidson, and Rayleigh quotient iterative procedures to solve the random-phase approximation (RPA) (non-Hermitian) and Tamm-Dancoff approximation (TDA) (Hermitian) eigenvalue equations in the molecular orbital-free framework. Semiempirical Hamiltonian models are used to numerically benchmark algorithms for the computation of excited states of realistic molecular systems (conjugated polymers and carbon nanotubes). Convergence behavior and stability are tested with respect to a numerical noise imposed to simulate linear scaling conditions. The results single out the most suitable procedures for linear scaling large-scale time-dependent perturbation theory calculations of electronic excitations.

  9. Double giant resonances in time-dependent relativistic mean-field theory

    International Nuclear Information System (INIS)

    Ring, P.; Podobnik, B.

    1996-01-01

    Collective vibrations in spherical nuclei are described in the framework of time-dependent relativistic mean-field theory (RMFT). Isoscalar quadrupole and isovector dipole oscillations that correspond to giant resonances are studied, and possible excitations of higher modes are investigated. We find evidence for modes which can be interpreted as double resonances. In a quantized RMFT they correspond to two-phonon states. (orig.)

  10. Optical properties of Al nanostructures from time dependent density functional theory

    KAUST Repository

    Mokkath, Junais Habeeb

    2016-04-05

    The optical properties of Al nanostructures are investigated by means of time dependent density functional theory, considering chains of varying length and ladders/stripes of varying aspect ratio. The absorption spectra show redshifting for increasing length and aspect ratio. For the chains the absorption is dominated by HOMO → LUMO transitions, whereas ladders and stripes reveal more complex spectra of plasmonic nature above a specific aspect ratio.

  11. Linear-response time-dependent density-functional theory with pairing fields.

    Science.gov (United States)

    Peng, Degao; van Aggelen, Helen; Yang, Yang; Yang, Weitao

    2014-05-14

    Recent development in particle-particle random phase approximation (pp-RPA) broadens the perspective on ground state correlation energies [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013), Y. Yang, H. van Aggelen, S. N. Steinmann, D. Peng, and W. Yang, J. Chem. Phys. 139, 174110 (2013); D. Peng, S. N. Steinmann, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 104112 (2013)] and N ± 2 excitation energies [Y. Yang, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 224105 (2013)]. So far Hartree-Fock and approximated density-functional orbitals have been utilized to evaluate the pp-RPA equation. In this paper, to further explore the fundamentals and the potential use of pairing matrix dependent functionals, we present the linear-response time-dependent density-functional theory with pairing fields with both adiabatic and frequency-dependent kernels. This theory is related to the density-functional theory and time-dependent density-functional theory for superconductors, but is applied to normal non-superconducting systems for our purpose. Due to the lack of the proof of the one-to-one mapping between the pairing matrix and the pairing field for time-dependent systems, the linear-response theory is established based on the representability assumption of the pairing matrix. The linear response theory justifies the use of approximated density-functionals in the pp-RPA equation. This work sets the fundamentals for future density-functional development to enhance the description of ground state correlation energies and N ± 2 excitation energies.

  12. Time-dependent density functional theory for open quantum systems with unitary propagation.

    Science.gov (United States)

    Yuen-Zhou, Joel; Tempel, David G; Rodríguez-Rosario, César A; Aspuru-Guzik, Alán

    2010-01-29

    We extend the Runge-Gross theorem for a very general class of open quantum systems under weak assumptions about the nature of the bath and its coupling to the system. We show that for Kohn-Sham (KS) time-dependent density functional theory, it is possible to rigorously include the effects of the environment within a bath functional in the KS potential. A Markovian bath functional inspired by the theory of nonlinear Schrödinger equations is suggested, which can be readily implemented in currently existing real-time codes. Finally, calculations on a helium model system are presented.

  13. Regular and chaotic dynamics in time-dependent relativistic mean-field theory

    International Nuclear Information System (INIS)

    Vretenar, D.; Ring, P.; Lalazissis, G.A.; Poeschl, W.

    1997-01-01

    Isoscalar and isovector monopole oscillations that correspond to giant resonances in spherical nuclei are described in the framework of time-dependent relativistic mean-field theory. Time-dependent and self-consistent calculations that reproduce experimental data on monopole resonances in 208 Pb show that the motion of the collective coordinate is regular for isoscalar oscillations, and that it becomes chaotic when initial conditions correspond to the isovector mode. Regular collective dynamics coexists with chaotic oscillations on the microscopic level. Time histories, Fourier spectra, state-space plots, Poincare sections, autocorrelation functions, and Lyapunov exponents are used to characterize the nonlinear system and to identify chaotic oscillations. Analogous considerations apply to higher multipolarities. copyright 1997 The American Physical Society

  14. Reactive scattering theory for molecular transitions in time-dependent fields

    International Nuclear Information System (INIS)

    Peskin, U.; Miller, W.H.

    1995-01-01

    A new approach is introduced for computing probabilities of molecular transitions in time-dependent fields. The method is based on the stationary (t,t') representation of the Schroedinger equation and is shown to be equivalent to infinite order time-dependent perturbation theory. Bound-to-bound (i.e., photoexcitation) and bound-to-continuum (i.e., photoreaction) transitions are regarded as reactive collisions with the ''time coordinate'' as the reaction coordinate in an extended Hilbert space. A numerical method based on imposing absorbing boundary conditions for the time coordinate in a discrete variable representation framework is introduced. A single operation of the Green's operator provides all the state-specific transition probabilities as well as partial state-resolved (inclusive) reaction probabilities. Illustrative numerical applications are given for model systems

  15. Hydrodynamic perspective on memory in time-dependent density-functional theory

    Science.gov (United States)

    Thiele, M.; Kümmel, S.

    2009-05-01

    The adiabatic approximation of time-dependent density-functional theory is studied in the context of nonlinear excitations of two-electron singlet systems. We compare the exact time evolution of these systems to the adiabatically exact one obtained from time-dependent Kohn-Sham calculations relying on the exact ground-state exchange-correlation potential. Thus, we can show under which conditions the adiabatic approximation breaks down and memory effects become important. The hydrodynamic formulation of quantum mechanics allows us to interpret these results and relate them to dissipative effects in the Kohn-Sham system. We show how the breakdown of the adiabatic approximation can be inferred from the rate of change of the ground-state noninteracting kinetic energy.

  16. Hydrodynamic perspective on memory in time-dependent density-functional theory

    International Nuclear Information System (INIS)

    Thiele, M.; Kuemmel, S.

    2009-01-01

    The adiabatic approximation of time-dependent density-functional theory is studied in the context of nonlinear excitations of two-electron singlet systems. We compare the exact time evolution of these systems to the adiabatically exact one obtained from time-dependent Kohn-Sham calculations relying on the exact ground-state exchange-correlation potential. Thus, we can show under which conditions the adiabatic approximation breaks down and memory effects become important. The hydrodynamic formulation of quantum mechanics allows us to interpret these results and relate them to dissipative effects in the Kohn-Sham system. We show how the breakdown of the adiabatic approximation can be inferred from the rate of change of the ground-state noninteracting kinetic energy.

  17. Critique of the foundations of time-dependent density-functional theory

    International Nuclear Information System (INIS)

    Schirmer, J.; Dreuw, A.

    2007-01-01

    The general expectation that, in principle, the time-dependent density-functional theory (TDDFT) is an exact formulation of the time evolution of an interacting N-electron system is critically reexamined. It is demonstrated that the previous TDDFT foundation, resting on four theorems by Runge and Gross (RG) [Phys. Rev. Lett. 52, 997 (1984)], is invalid because undefined phase factors corrupt the RG action integral functionals. Our finding confirms much of a previous analysis by van Leeuwen [Int. J. Mod. Phys. B 15, 1969 (2001)]. To analyze the RG theorems and other aspects of TDDFT, an utmost simplification of the Kohn-Sham (KS) concept has been introduced, in which the ground-state density is obtained from a single KS equation for one spatial (spinless) orbital. The time-dependent (TD) form of this radical Kohn-Sham (rKS) scheme, which has the same validity status as the ordinary KS version, has proved to be a valuable tool for analysis. The rKS concept is used to clarify also the alternative nonvariational formulation of TD KS theory. We argue that it is just a formal theory, allowing one to reproduce but not predict the time development of the exact density of the interacting N-electron system. Besides the issue of the formal exactness of TDDFT, it is shown that both the static and time-dependent KS linear response equations neglect the particle-particle (p-p) and hole-hole (h-h) matrix elements of the perturbing operator. For a local (multiplicative) operator this does not lead to a loss of information due to a remarkable general property of local operators. Accordingly, no logical inconsistency arises with respect to DFT, because DFT requires any external potential to be local. For a general nonlocal operator the error resulting from the neglected matrix elements is of second order in the electronic repulsion

  18. Time-dependent, many-body scattering theory and nuclear reaction applications

    International Nuclear Information System (INIS)

    Levin, F.S.

    1977-01-01

    The channel component state form of the channel coupling array theory of many-body scattering is briefly reviewed. These states obey a non-hermitian matrix equation whose exact solution yields the Schroedinger eigenstates, eigenvalues and scattering amplitudes. A time-dependent formulation of the theory is introduced in analogy to the time-dependent Schrodinger equation and several consequences of the development are noted. These include an interaction picture, a single (matrix) S operator, and the usual connection between the t = 0 time-dependent and the time-independent scattering states. Finally, the channel component states (psi/sub j/) are shown to have the useful property that only psi/sub j/ has (two-body) outgoing waves in channel j: psi/sub m/, m not equal to j, is asymptotically zero in two-body channel j. This formalism is then considered as a means for direct nuclear reaction analysis. Typical bound state approximations are introduced and it is shown that a DWBA amplitude occurs in only one channel. The non-time-reversal invariance of the approximate theory is noted. Results of calculations based on a realistic model for two sets of light-ion induced, one-particle transfer reactions are discussed and compared with the coupled reaction channel (CRC) results using the CRC procedure of Cotanch and Vincent. Angular distributions for the two calculational methods are found to be similar in shape and magnitude. Higher ordercorrections are small as are time-reversal non-invariant effects. Post- and prior-type CRC calculations are seen to differ; the latter are closer to the full CRC results

  19. Hot-electron-assisted femtochemistry at surfaces: A time-dependent density functional theory approach

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Rubio, Angel; Olsen, Thomas

    2009-01-01

    Using time-evolution time-dependent density functional theory (TDDFT) within the adiabatic local-density approximation, we study the interactions between single electrons and molecular resonances at surfaces. Our system is a nitrogen molecule adsorbed on a ruthenium surface. The surface is modeled...... at two levels of approximation, first as a simple external potential and later as a 20-atom cluster. We perform a number of calculations on an electron hitting the adsorbed molecule from inside the surface and establish a picture, where the resonance is being probed by the hot electron. This enables us...

  20. Excitation energies from range-separated time-dependent density and density matrix functional theory.

    Science.gov (United States)

    Pernal, Katarzyna

    2012-05-14

    Time-dependent density functional theory (TD-DFT) in the adiabatic formulation exhibits known failures when applied to predicting excitation energies. One of them is the lack of the doubly excited configurations. On the other hand, the time-dependent theory based on a one-electron reduced density matrix functional (time-dependent density matrix functional theory, TD-DMFT) has proven accurate in determining single and double excitations of H(2) molecule if the exact functional is employed in the adiabatic approximation. We propose a new approach for computing excited state energies that relies on functionals of electron density and one-electron reduced density matrix, where the latter is applied in the long-range region of electron-electron interactions. A similar approach has been recently successfully employed in predicting ground state potential energy curves of diatomic molecules even in the dissociation limit, where static correlation effects are dominating. In the paper, a time-dependent functional theory based on the range-separation of electronic interaction operator is rigorously formulated. To turn the approach into a practical scheme the adiabatic approximation is proposed for the short- and long-range components of the coupling matrix present in the linear response equations. In the end, the problem of finding excitation energies is turned into an eigenproblem for a symmetric matrix. Assignment of obtained excitations is discussed and it is shown how to identify double excitations from the analysis of approximate transition density matrix elements. The proposed method used with the short-range local density approximation (srLDA) and the long-range Buijse-Baerends density matrix functional (lrBB) is applied to H(2) molecule (at equilibrium geometry and in the dissociation limit) and to Be atom. The method accounts for double excitations in the investigated systems but, unfortunately, the accuracy of some of them is poor. The quality of the other

  1. Prediction of Excitation Energies for Conjugated Oligomers and Polymers from Time-Dependent Density Functional Theory

    Science.gov (United States)

    Tao, Jianmin; Tretiak, Sergei; Zhu, Jian-Xin

    2010-01-01

    With technological advances, light-emitting conjugated oligomers and polymers have become competitive candidates in the commercial market of light-emitting diodes for display and other technologies, due to the ultralow cost, light weight, and flexibility. Prediction of excitation energies of these systems plays a crucial role in the understanding of their optical properties and device design. In this review article, we discuss the calculation of excitation energies with time-dependent density functional theory, which is one of the most successful methods in the investigation of the dynamical response of molecular systems to external perturbation, owing to its high computational efficiency.

  2. All-electron density functional theory and time-dependent density functional theory with high-order finite elements

    OpenAIRE

    Lehtovaara, Lauri; Havu, Ville; Puska, Martti

    2009-01-01

    We present for static density functional theory and time-dependent density functional theory calculations an all-electron method which employs high-order hierarchical finite-element bases. Our mesh generation scheme, in which structured atomic meshes are merged to an unstructured molecular mesh, allows a highly nonuniform discretization of the space. Thus it is possible to represent the core and valence states using the same discretization scheme, i.e., no pseudopotentials or similar treatmen...

  3. Towards time-dependent current-density-functional theory in the non-linear regime.

    Science.gov (United States)

    Escartín, J M; Vincendon, M; Romaniello, P; Dinh, P M; Reinhard, P-G; Suraud, E

    2015-02-28

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.

  4. Towards time-dependent current-density-functional theory in the non-linear regime

    Energy Technology Data Exchange (ETDEWEB)

    Escartín, J. M. [Université de Toulouse, UPS, Laboratoire de Physique Théorique, IRSAMC, F-31062 Toulouse Cedex (France); CNRS, UMR5152, F-31062 Toulouse Cedex (France); Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Vincendon, M.; Dinh, P. M.; Suraud, E. [Université de Toulouse, UPS, Laboratoire de Physique Théorique, IRSAMC, F-31062 Toulouse Cedex (France); CNRS, UMR5152, F-31062 Toulouse Cedex (France); Romaniello, P. [Laboratoire de Physique Théorique, CNRS, IRSAMC, Université Toulouse III - Paul Sabatier and European Theoretical Spectroscopy Facility, 118 Route de Narbonne, 31062 Toulouse Cedex (France); Reinhard, P.-G. [Institut für Theoretische Physik, Universität Erlangen, Staudtstraße 7, D-91058 Erlangen (Germany)

    2015-02-28

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na{sub 2}. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.

  5. Time-Dependent Density Functional Theory for Open Systems and Its Applications.

    Science.gov (United States)

    Chen, Shuguang; Kwok, YanHo; Chen, GuanHua

    2018-02-20

    Photovoltaic devices, electrochemical cells, catalysis processes, light emitting diodes, scanning tunneling microscopes, molecular electronics, and related devices have one thing in common: open quantum systems where energy and matter are not conserved. Traditionally quantum chemistry is confined to isolated and closed systems, while quantum dissipation theory studies open quantum systems. The key quantity in quantum dissipation theory is the reduced system density matrix. As the reduced system density matrix is an O(M! × M!) matrix, where M is the number of the particles of the system of interest, quantum dissipation theory can only be employed to simulate systems of a few particles or degrees of freedom. It is thus important to combine quantum chemistry and quantum dissipation theory so that realistic open quantum systems can be simulated from first-principles. We have developed a first-principles method to simulate the dynamics of open electronic systems, the time-dependent density functional theory for open systems (TDDFT-OS). Instead of the reduced system density matrix, the key quantity is the reduced single-electron density matrix, which is an N × N matrix where N is the number of the atomic bases of the system of interest. As the dimension of the key quantity is drastically reduced, the TDDFT-OS can thus be used to simulate the dynamics of realistic open electronic systems and efficient numerical algorithms have been developed. As an application, we apply the method to study how quantum interference develops in a molecular transistor in time domain. We include electron-phonon interaction in our simulation and show that quantum interference in the given system is robust against nuclear vibration not only in the steady state but also in the transient dynamics. As another application, by combining TDDFT-OS with Ehrenfest dynamics, we study current-induced dissociation of water molecules under scanning tunneling microscopy and follow its time dependent

  6. Linear-Response Time-Dependent Embedded Mean-Field Theory.

    Science.gov (United States)

    Ding, Feizhi; Tsuchiya, Takashi; Manby, Frederick R; Miller, Thomas F

    2017-09-12

    We present a time-dependent (TD) linear-response description of excited electronic states within the framework of embedded mean-field theory (EMFT). TD-EMFT allows for subsystems to be described at different mean-field levels of theory, enabling straightforward treatment of excited states and transition properties. We provide benchmark demonstrations of TD-EMFT for both local and nonlocal excitations in organic molecules, as well as applications to chlorophyll a, solvatochromic shifts of a dye in solution, and sulfur K-edge X-ray absorption spectroscopy (XAS). It is found that mixed-basis implementations of TD-EMFT lead to substantial errors in terms of transition properties; however, as previously found for ground-state EMFT, these errors are largely eliminated with the use of Fock-matrix corrections. These results indicate that TD-EMFT is a promising method for the efficient, multilevel description of excited-state electronic structure and dynamics in complex systems.

  7. Time-dependent current-density functional theory for generalized open quantum systems.

    Science.gov (United States)

    Yuen-Zhou, Joel; Rodríguez-Rosario, César; Aspuru-Guzik, Alán

    2009-06-14

    In this article, we prove the one-to-one correspondence between vector potentials and particle and current densities in the context of master equations with arbitrary memory kernels, therefore extending time-dependent current-density functional theory (TD-CDFT) to the domain of generalized many-body open quantum systems (OQS). We also analyse the issue of A-representability for the Kohn-Sham (KS) scheme proposed by D'Agosta and Di Ventra for Markovian OQS [Phys. Rev. Lett. 2007, 98, 226403] and discuss its domain of validity. We suggest ways to expand their scheme, but also propose a novel KS scheme where the auxiliary system is both closed and non-interacting. This scheme is tested numerically with a model system, and several considerations for the future development of functionals are indicated. Our results formalize the possibility of practising TD-CDFT in OQS, hence expanding the applicability of the theory to non-Hamiltonian evolutions.

  8. An adiabatic time-dependent Hartree-Fock theory of collective motion in finite systems

    International Nuclear Information System (INIS)

    Baranger, M.; Veneroni, M.

    1977-11-01

    It is shown how to derive the parameters of a phenomenological collective model from a microscopic theory. The microscopic theory is Hartree-Fock, and one starts from the time-dependent Hartree-Fock equation. To this, the adiabatic approximation is added, and the energy in powers of an adiabatic parameter is expanded, which results in a collective kinetic energy quadratic in the velocities, with coefficients depending on the coordinates, as in the phenomenological models. The adiabatic equations of motion are derived in different ways and their analogy with classical mechanics is stressed. The role of the adiabatic hypothesis and its range of validity, are analyzed in detail. It assumes slow motion, but not small amplitude, and is therefore suitable for large-amplitude collective motion. The RPA is obtained as the limiting case where the amplitude is also small. The translational mass is correctly given and the moment of inertia under rotation is that of Thouless and Valatin

  9. Two-component hybrid time-dependent density functional theory within the Tamm-Dancoff approximation

    Energy Technology Data Exchange (ETDEWEB)

    Kühn, Michael [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Weigend, Florian, E-mail: florian.weigend@kit.edu [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe (Germany)

    2015-01-21

    We report the implementation of a two-component variant of time-dependent density functional theory (TDDFT) for hybrid functionals that accounts for spin-orbit effects within the Tamm-Dancoff approximation (TDA) for closed-shell systems. The influence of the admixture of Hartree-Fock exchange on excitation energies is investigated for several atoms and diatomic molecules by comparison to numbers for pure density functionals obtained previously [M. Kühn and F. Weigend, J. Chem. Theory Comput. 9, 5341 (2013)]. It is further related to changes upon switching to the local density approximation or using the full TDDFT formalism instead of TDA. Efficiency is demonstrated for a comparably large system, Ir(ppy){sub 3} (61 atoms, 1501 basis functions, lowest 10 excited states), which is a prototype molecule for organic light-emitting diodes, due to its “spin-forbidden” triplet-singlet transition.

  10. Remarks on time-dependent [current]-density functional theory for open quantum systems.

    Science.gov (United States)

    Yuen-Zhou, Joel; Aspuru-Guzik, Alán

    2013-08-14

    Time-dependent [current]-density functional theory for open quantum systems (OQS) has emerged as a formalism that can incorporate dissipative effects in the dynamics of many-body quantum systems. Here, we review and clarify some formal aspects of these theories that have been recently questioned in the literature. In particular, we provide theoretical support for the following conclusions: (1) contrary to what we and others had stated before, within the master equation framework, there is in fact a one-to-one mapping between vector potentials and current densities for fixed initial state, particle-particle interaction, and memory kernel; (2) regardless of the first conclusion, all of our recently suggested Kohn-Sham (KS) schemes to reproduce the current and particle densities of the original OQS, and in particular, the use of a KS closed driven system, remains formally valid; (3) the Lindblad master equation maintains the positivity of the density matrix regardless of the time-dependence of the Hamiltonian or the dissipation operators; (4) within the stochastic Schrödinger equation picture, a one-to-one mapping from stochastic vector potential to stochastic current density for individual trajectories has not been proven so far, except in the case where the vector potential is the same for every member of the ensemble, in which case, it reduces to the Lindblad master equation picture; (5) master equations may violate certain desired properties of the density matrix, such as positivity, but they remain as one of the most useful constructs to study OQS when the environment is not easily incorporated explicitly in the calculation. The conclusions support our previous work as formally rigorous, offer new insights into it, and provide a common ground to discuss related theories.

  11. Theories of time-dependent and time-independent nearside-farside reactive scattering dynamics

    Science.gov (United States)

    Monks, Phillip David Durrant

    The first application of nearside-farside (NF) theory is made to the time-dependent partial wave series (PWS) representation of the scattering amplitude for the reaction H + D[2](v = 0,j = 0, m = 0) → HD(v' = 3,j' = 0, m'= 0) + D. Time-dependent NF angular distributions and time-dependent NF local angular momenta (LAMs) are defined and used to analyse the dynamics in terms of time- direct and time-delayed reaction mechanisms. The concept of a cumulative time-evolving differential cross section (DCS) is introduced and used to provide a new method for visualising the time evolution of a chemical reaction. Time-independent NF DCS and LAM analyses of the H + D[2] reaction are presented, highlighting a distinctive "trench-ridge" feature present in the full and N LAMs. It is used to define a cut line which separates the energy-analogs of the two time- distinct reaction mechanisms. This trench-ridge feature is shown to be an interference between the time-direct (backward-scattered) and time-delayed (forward-scattered) reaction mechanisms. Resummation PWS theory is used to "clean" plots of the NF DCSs and LAMs of unphysical effects. A limitation of the resummation theory is described, whereby unphysical behaviour is sometimes introduced into the N and F subamplitudes. A technique for predicting and avoiding these undesired effects is used to further improve the usefulness of the resummation technique. The fundamental identity for NF local angular momenta is stated and derived by two methods. This identity gives rise to a CLAM plot (where CLAM denotes Cross section x LAM), which provides insight into the empirical obsei'vation that DCS and LAM analyses give consistent, yet complementary, information on the reaction dynamics. Applications are reported for the H + D[2] reaction, as well as for F + H[2](v = 0,j=0, m = 0)→ FH(v' = 3,j' = 3, m' = 0) + H. The angular time-delay for a state-to-state reactive collision often displays complicated behaviour. It is shown for the H

  12. Time-dependent density-functional theory in massively parallel computer architectures: the OCTOPUS project.

    Science.gov (United States)

    Andrade, Xavier; Alberdi-Rodriguez, Joseba; Strubbe, David A; Oliveira, Micael J T; Nogueira, Fernando; Castro, Alberto; Muguerza, Javier; Arruabarrena, Agustin; Louie, Steven G; Aspuru-Guzik, Alán; Rubio, Angel; Marques, Miguel A L

    2012-06-13

    Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures.

  13. Time-dependent density-functional theory in massively parallel computer architectures: the octopus project

    Science.gov (United States)

    Andrade, Xavier; Alberdi-Rodriguez, Joseba; Strubbe, David A.; Oliveira, Micael J. T.; Nogueira, Fernando; Castro, Alberto; Muguerza, Javier; Arruabarrena, Agustin; Louie, Steven G.; Aspuru-Guzik, Alán; Rubio, Angel; Marques, Miguel A. L.

    2012-06-01

    Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures.

  14. Time-dependent density-functional theory in massively parallel computer architectures: the octopus project

    International Nuclear Information System (INIS)

    Andrade, Xavier; Aspuru-Guzik, Alán; Alberdi-Rodriguez, Joseba; Rubio, Angel; Strubbe, David A; Louie, Steven G; Oliveira, Micael J T; Nogueira, Fernando; Castro, Alberto; Muguerza, Javier; Arruabarrena, Agustin; Marques, Miguel A L

    2012-01-01

    Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures. (topical review)

  15. Time-dependent density functional theory with twist-averaged boundary conditions

    Science.gov (United States)

    Schuetrumpf, B.; Nazarewicz, W.; Reinhard, P.-G.

    2016-05-01

    Background: Time-dependent density functional theory is widely used to describe excitations of many-fermion systems. In its many applications, three-dimensional (3D) coordinate-space representation is used, and infinite-domain calculations are limited to a finite volume represented by a spatial box. For finite quantum systems (atoms, molecules, nuclei, hadrons), the commonly used periodic or reflecting boundary conditions introduce spurious quantization of the continuum states and artificial reflections from boundary; hence, an incorrect treatment of evaporated particles. Purpose: The finite-volume artifacts for finite systems can be practically cured by invoking an absorbing potential in a certain boundary region sufficiently far from the described system. However, such absorption cannot be applied in the calculations of infinite matter (crystal electrons, quantum fluids, neutron star crust), which suffer from unphysical effects stemming from a finite computational box used. Here, twist-averaged boundary conditions (TABC) have been used successfully to diminish the finite-volume effects. In this work, we extend TABC to time-dependent modes. Method: We use the 3D time-dependent density functional framework with the Skyrme energy density functional. The practical calculations are carried out for small- and large-amplitude electric dipole and quadrupole oscillations of 16O. We apply and compare three kinds of boundary conditions: periodic, absorbing, and twist-averaged. Results: Calculations employing absorbing boundary conditions (ABC) and TABC are superior to those based on periodic boundary conditions. For low-energy excitations, TABC and ABC variants yield very similar results. With only four twist phases per spatial direction in TABC, one obtains an excellent reduction of spurious fluctuations. In the nonlinear regime, one has to deal with evaporated particles. In TABC, the floating nucleon gas remains in the box; the amount of nucleons in the gas is found to be

  16. Time-dependent restricted-active-space self-consistent-field theory for laser-driven many-electron dynamics

    DEFF Research Database (Denmark)

    Miyagi, Haruhide; Madsen, Lars Bojer

    2013-01-01

    We present the time-dependent restricted-active-space self-consistent-field (TD-RASSCF) theory as a framework for the time-dependent many-electron problem. The theory generalizes the multiconfigurational time-dependent Hartree-Fock (MCTDHF) theory by incorporating the restricted-active-space scheme...... well known in time-independent quantum chemistry. Optimization of the orbitals as well as the expansion coefficients at each time step makes it possible to construct the wave function accurately while using only a relatively small number of electronic configurations. In numerical calculations of high...

  17. Neuromodulated Spike-Timing-Dependent Plasticity, and Theory of Three-Factor Learning Rules

    Science.gov (United States)

    Frémaux, Nicolas; Gerstner, Wulfram

    2016-01-01

    Classical Hebbian learning puts the emphasis on joint pre- and postsynaptic activity, but neglects the potential role of neuromodulators. Since neuromodulators convey information about novelty or reward, the influence of neuromodulators on synaptic plasticity is useful not just for action learning in classical conditioning, but also to decide “when” to create new memories in response to a flow of sensory stimuli. In this review, we focus on timing requirements for pre- and postsynaptic activity in conjunction with one or several phasic neuromodulatory signals. While the emphasis of the text is on conceptual models and mathematical theories, we also discuss some experimental evidence for neuromodulation of Spike-Timing-Dependent Plasticity. We highlight the importance of synaptic mechanisms in bridging the temporal gap between sensory stimulation and neuromodulatory signals, and develop a framework for a class of neo-Hebbian three-factor learning rules that depend on presynaptic activity, postsynaptic variables as well as the influence of neuromodulators. PMID:26834568

  18. Time-dependent density-functional theory in the projector augmented-wave method

    DEFF Research Database (Denmark)

    Walter, Michael; Häkkinen, Hannu; Lehtovaara, Lauri

    2008-01-01

    We present the implementation of the time-dependent density-functional theory both in linear-response and in time-propagation formalisms using the projector augmented-wave method in real-space grids. The two technically very different methods are compared in the linear-response regime where we fo...... surfaces for a set of atoms and molecules with the linear-response method and by calculating nonlinear emission spectra using the time-propagation method....... found perfect agreement in the calculated photoabsorption spectra. We discuss the strengths and weaknesses of the two methods as well as their convergence properties. We demonstrate different applications of the methods by calculating excitation energies and excited state Born–Oppenheimer potential...

  19. Reformulating time-dependent density functional theory with non-orthogonal localized molecular orbitals.

    Science.gov (United States)

    Cui, Ganglong; Fang, Weihai; Yang, Weitao

    2010-01-14

    Time-dependent density functional theory (TDDFT) has broad application in the study of electronic response, excitation and transport. To extend such application to large and complex systems, we develop a reformulation of TDDFT equations in terms of non-orthogonal localized molecular orbitals (NOLMOs). NOLMO is the most localized representation of electronic degrees of freedom and has been used in ground state calculations. In atomic orbital (AO) representation, the sparsity of NOLMO is transferred to the coefficient matrix of molecular orbitals (MOs). Its novel use in TDDFT here leads to a very simple form of time propagation equations which can be solved with linear-scaling effort. We have tested the method for several long-chain saturated and conjugated molecular systems within the self-consistent charge density-functional tight-binding method (SCC-DFTB) and demonstrated its accuracy. This opens up pathways for TDDFT applications to large bio- and nano-systems.

  20. Neuromodulated Spike-Timing-Dependent Plasticity and Theory of Three-Factor Learning Rules

    Directory of Open Access Journals (Sweden)

    Wulfram eGerstner

    2016-01-01

    Full Text Available Classical Hebbian learning puts the emphasis on joint pre- and postsynaptic activity, but neglects the potential role of neuromodulators. Since neuromodulators convey information about novelty or reward, the influence of neuromodulatorson synaptic plasticity is useful not just for action learning in classical conditioning, but also to decide 'when' to create new memories in response to a flow of sensory stimuli.In this review, we focus on timing requirements for pre- and postsynaptic activity in conjunction with one or several phasic neuromodulatory signals. While the emphasis of the text is on conceptual models and mathematical theories, we also discusssome experimental evidence for neuromodulation of Spike-Timing-Dependent Plasticity.We highlight the importance of synaptic mechanisms in bridging the temporal gap between sensory stimulation and neuromodulatory signals, and develop a framework for a class of neo-Hebbian three-factor learning rules that depend on presynaptic activity, postsynaptic variables as well as the influence of neuromodulators.

  1. Neuromodulated Spike-Timing-Dependent Plasticity, and Theory of Three-Factor Learning Rules.

    Science.gov (United States)

    Frémaux, Nicolas; Gerstner, Wulfram

    2015-01-01

    Classical Hebbian learning puts the emphasis on joint pre- and postsynaptic activity, but neglects the potential role of neuromodulators. Since neuromodulators convey information about novelty or reward, the influence of neuromodulators on synaptic plasticity is useful not just for action learning in classical conditioning, but also to decide "when" to create new memories in response to a flow of sensory stimuli. In this review, we focus on timing requirements for pre- and postsynaptic activity in conjunction with one or several phasic neuromodulatory signals. While the emphasis of the text is on conceptual models and mathematical theories, we also discuss some experimental evidence for neuromodulation of Spike-Timing-Dependent Plasticity. We highlight the importance of synaptic mechanisms in bridging the temporal gap between sensory stimulation and neuromodulatory signals, and develop a framework for a class of neo-Hebbian three-factor learning rules that depend on presynaptic activity, postsynaptic variables as well as the influence of neuromodulators.

  2. Time-dependent Second Order Scattering Theory for Weather Radar with a Finite Beam Width

    Science.gov (United States)

    Kobayashi, Satoru; Tanelli, Simone; Im, Eastwood; Ito, Shigeo; Oguchi, Tomohiro

    2006-01-01

    Multiple scattering effects from spherical water particles of uniform diameter are studied for a W-band pulsed radar. The Gaussian transverse beam-profile and the rectangular pulse-duration are used for calculation. An second-order analytical solution is derived for a single layer structure, based on a time-dependent radiative transfer theory as described in the authors' companion paper. When the range resolution is fixed, increase in footprint radius leads to increase in the second order reflectivity that is defined as the ratio of the second order return to the first order one. This feature becomes more serious as the range increases. Since the spaceborne millimeter-wavelength radar has a large footprint radius that is competitive to the mean free path, the multiple scattering effect must be taken into account for analysis.

  3. Time-dependent density functional theory of open quantum systems in the linear-response regime.

    Science.gov (United States)

    Tempel, David G; Watson, Mark A; Olivares-Amaya, Roberto; Aspuru-Guzik, Alán

    2011-02-21

    Time-dependent density functional theory (TDDFT) has recently been extended to describe many-body open quantum systems evolving under nonunitary dynamics according to a quantum master equation. In the master equation approach, electronic excitation spectra are broadened and shifted due to relaxation and dephasing of the electronic degrees of freedom by the surrounding environment. In this paper, we develop a formulation of TDDFT linear-response theory (LR-TDDFT) for many-body electronic systems evolving under a master equation, yielding broadened excitation spectra. This is done by mapping an interacting open quantum system onto a noninteracting open Kohn-Sham system yielding the correct nonequilibrium density evolution. A pseudoeigenvalue equation analogous to the Casida equations of the usual LR-TDDFT is derived for the Redfield master equation, yielding complex energies and Lamb shifts. As a simple demonstration, we calculate the spectrum of a C(2 +) atom including natural linewidths, by treating the electromagnetic field vacuum as a photon bath. The performance of an adiabatic exchange-correlation kernel is analyzed and a first-order frequency-dependent correction to the bare Kohn-Sham linewidth based on the Görling-Levy perturbation theory is calculated.

  4. Two-electron Rabi oscillations in real-time time-dependent density-functional theory.

    Science.gov (United States)

    Habenicht, Bradley F; Tani, Noriyuki P; Provorse, Makenzie R; Isborn, Christine M

    2014-11-14

    We investigate the Rabi oscillations of electrons excited by an applied electric field in several simple molecular systems using time-dependent configuration interaction (TDCI) and real-time time-dependent density-functional theory (RT-TDDFT) dynamics. While the TDCI simulations exhibit the expected single-electron Rabi oscillations at a single resonant electric field frequency, Rabi oscillations in the RT-TDDFT simulations are a two-electron process. The existence of two-electron Rabi oscillations is determined both by full population inversion between field-free molecular orbitals and the behavior of the instantaneous dipole moment during the simulations. Furthermore, the Rabi oscillations in RT-TDDFT are subject to an intensity threshold of the electric field, below which Rabi oscillations do not occur and above which the two-electron Rabi oscillations occur at a broad range of frequencies. It is also shown that at field intensities near the threshold intensity, the field frequency predicted to induce Rabi oscillations by linear response TDDFT only produces detuned Rabi oscillations. Instead, the field frequency that yields the full two-electron population inversion and Rabi oscillation behavior is shown to be the average of single-electron transition frequencies from the ground S0 state and the doubly-excited S2 state. The behavior of the two-electron Rabi oscillations is rationalized via two possible models. The first model is a multi-photon process that results from the electric field interacting with the three level system such that three level Rabi oscillations may occur. The second model suggests that the mean-field nature of RT-TDDFT induces paired electron propagation.

  5. Two-electron Rabi oscillations in real-time time-dependent density-functional theory

    International Nuclear Information System (INIS)

    Habenicht, Bradley F.; Tani, Noriyuki P.; Provorse, Makenzie R.; Isborn, Christine M.

    2014-01-01

    We investigate the Rabi oscillations of electrons excited by an applied electric field in several simple molecular systems using time-dependent configuration interaction (TDCI) and real-time time-dependent density-functional theory (RT-TDDFT) dynamics. While the TDCI simulations exhibit the expected single-electron Rabi oscillations at a single resonant electric field frequency, Rabi oscillations in the RT-TDDFT simulations are a two-electron process. The existence of two-electron Rabi oscillations is determined both by full population inversion between field-free molecular orbitals and the behavior of the instantaneous dipole moment during the simulations. Furthermore, the Rabi oscillations in RT-TDDFT are subject to an intensity threshold of the electric field, below which Rabi oscillations do not occur and above which the two-electron Rabi oscillations occur at a broad range of frequencies. It is also shown that at field intensities near the threshold intensity, the field frequency predicted to induce Rabi oscillations by linear response TDDFT only produces detuned Rabi oscillations. Instead, the field frequency that yields the full two-electron population inversion and Rabi oscillation behavior is shown to be the average of single-electron transition frequencies from the ground S 0 state and the doubly-excited S 2 state. The behavior of the two-electron Rabi oscillations is rationalized via two possible models. The first model is a multi-photon process that results from the electric field interacting with the three level system such that three level Rabi oscillations may occur. The second model suggests that the mean-field nature of RT-TDDFT induces paired electron propagation

  6. Correlated electron dynamics and memory in time-dependent density functional theory

    International Nuclear Information System (INIS)

    Thiele, Mark

    2009-01-01

    Time-dependent density functional theory (TDDFT) is an exact reformulation of the time-dependent many-electron Schroedinger equation, where the problem of many interacting electrons is mapped onto the Kohn-Sham system of noninteracting particles which reproduces the exact electronic density. In the Kohn-Sham system all non-classical many-body effects are incorporated in the exchange-correlation potential which is in general unknown and needs to be approximated. It is the goal of this thesis to investigate the connection between memory effects and correlated electron dynamics in strong and weak fields. To this end one-dimensional two-electron singlet systems are studied. At the same time these systems include the onedimensional helium atom model, which is an established system to investigate the crucial effects of correlated electron dynamics in external fields. The studies presented in this thesis show that memory effects are negligible for typical strong field processes. Here the approximation of the spatial nonlocality is of primary importance. For the photoabsorption spectra on the other hand the neglect of memory effects leads to qualitative and quantitative errors, which are shown to be connected to transitions of double excitation character. To develop a better understanding of the conditions under which memory effects become important quantum fluid dynamics has been found to be especially suitable. It represents a further exact reformulation of the quantum mechanic many-body problem which is based on hydrodynamic quantities such as density and velocity. Memory effects are shown to be important whenever the velocity field develops strong gradients and dissipative effects contribute. (orig.)

  7. Correlated electron dynamics and memory in time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, Mark

    2009-07-28

    Time-dependent density functional theory (TDDFT) is an exact reformulation of the time-dependent many-electron Schroedinger equation, where the problem of many interacting electrons is mapped onto the Kohn-Sham system of noninteracting particles which reproduces the exact electronic density. In the Kohn-Sham system all non-classical many-body effects are incorporated in the exchange-correlation potential which is in general unknown and needs to be approximated. It is the goal of this thesis to investigate the connection between memory effects and correlated electron dynamics in strong and weak fields. To this end one-dimensional two-electron singlet systems are studied. At the same time these systems include the onedimensional helium atom model, which is an established system to investigate the crucial effects of correlated electron dynamics in external fields. The studies presented in this thesis show that memory effects are negligible for typical strong field processes. Here the approximation of the spatial nonlocality is of primary importance. For the photoabsorption spectra on the other hand the neglect of memory effects leads to qualitative and quantitative errors, which are shown to be connected to transitions of double excitation character. To develop a better understanding of the conditions under which memory effects become important quantum fluid dynamics has been found to be especially suitable. It represents a further exact reformulation of the quantum mechanic many-body problem which is based on hydrodynamic quantities such as density and velocity. Memory effects are shown to be important whenever the velocity field develops strong gradients and dissipative effects contribute. (orig.)

  8. Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction

    DEFF Research Database (Denmark)

    Silva-Junior, Mario R.; Schreiber, Marko; Sauer, Stephan P. A.

    2008-01-01

    Time-dependent density functional theory (TD-DFT) and DFT-based multireference configuration interaction (DFT/MRCI) calculations are reported for a recently proposed benchmark set of 28 medium-sized organic molecules. Vertical excitation energies, oscillator strengths, and excited-state dipole...... moments are computed using the same geometries (MP2/6-31G*) and basis set (TZVP) as in our previous ab initio benchmark study on electronically excited states. The results from TD-DFT (with the functionals BP86, B3LYP, and BHLYP) and from DFT/MRCI are compared against the previous high-level ab initio...

  9. Wavelet-based linear-response time-dependent density-functional theory

    Science.gov (United States)

    Natarajan, Bhaarathi; Genovese, Luigi; Casida, Mark E.; Deutsch, Thierry; Burchak, Olga N.; Philouze, Christian; Balakirev, Maxim Y.

    2012-06-01

    Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BIGDFT and results are compared against those obtained with the all-electron Gaussian-type orbital program DEMON2K for the calculation of electronic absorption spectra of N2 using the TD local density approximation (LDA). The two programs give comparable excitation energies and absorption spectra once suitably extensive basis sets are used. Convergence of LDA density orbitals and orbital energies to the basis-set limit is significantly faster for BIGDFT than for DEMON2K. However the number of virtual orbitals used in TD-DFT calculations is a parameter in BIGDFT, while all virtual orbitals are included in TD-DFT calculations in DEMON2K. As a reality check, we report the X-ray crystal structure and the measured and calculated absorption spectrum (excitation energies and oscillator strengths) of the small organic molecule N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1, 2-a]pyridin-3-amine.

  10. Quantum electrodynamical time-dependent density functional theory for many-electron systems on a lattice

    Science.gov (United States)

    Farzanehpour, Mehdi; Tokatly, Ilya; Nano-Bio Spectroscopy Group; ETSF Scientific Development Centre Team

    2015-03-01

    We present a rigorous formulation of the time-dependent density functional theory for interacting lattice electrons strongly coupled to cavity photons. We start with an example of one particle on a Hubbard dimer coupled to a single photonic mode, which is equivalent to the single mode spin-boson model or the quantum Rabi model. For this system we prove that the electron-photon wave function is a unique functional of the electronic density and the expectation value of the photonic coordinate, provided the initial state and the density satisfy a set of well defined conditions. Then we generalize the formalism to many interacting electrons on a lattice coupled to multiple photonic modes and prove the general mapping theorem. We also show that for a system evolving from the ground state of a lattice Hamiltonian any density with a continuous second time derivative is locally v-representable. Spanish Ministry of Economy and Competitiveness (Grant No. FIS2013-46159-C3-1-P), Grupos Consolidados UPV/EHU del Gobierno Vasco (Grant No. IT578-13), COST Actions CM1204 (XLIC) and MP1306 (EUSpec).

  11. Optical rotation calculated with time-dependent density functional theory: the OR45 benchmark.

    Science.gov (United States)

    Srebro, Monika; Govind, Niranjan; de Jong, Wibe A; Autschbach, Jochen

    2011-10-13

    Time-dependent density functional theory (TDDFT) computations are performed for 42 organic molecules and three transition metal complexes, with experimental molar optical rotations ranging from 2 to 2 × 10(4) deg cm(2) dmol(-1). The performances of the global hybrid functionals B3LYP, PBE0, and BHLYP, and of the range-separated functionals CAM-B3LYP and LC-PBE0 (the latter being fully long-range corrected), are investigated. The performance of different basis sets is studied. When compared to liquid-phase experimental data, the range-separated functionals do, on average, not perform better than B3LYP and PBE0. Median relative deviations between calculations and experiment range from 25 to 29%. A basis set recently proposed for optical rotation calculations (LPol-ds) on average does not give improved results compared to aug-cc-pVDZ in TDDFT calculations with B3LYP. Individual cases are discussed in some detail, among them norbornenone for which the LC-PBE0 functional produced an optical rotation that is close to available data from coupled-cluster calculations, but significantly smaller in magnitude than the liquid-phase experimental value. Range-separated functionals and BHLYP perform well for helicenes and helicene derivatives. Metal complexes pose a challenge to first-principles calculations of optical rotation.

  12. Time-dependent density functional theory for nonlinear properties of open-shell systems.

    Science.gov (United States)

    Rinkevicius, Zilvinas; Jha, Prakash Chandra; Oprea, Corneliu I; Vahtras, Olav; Agren, Hans

    2007-09-21

    This paper presents response theory based on a spin-restricted Kohn-Sham formalism for computation of time-dependent and time-independent nonlinear properties of molecules with a high spin ground state. The developed approach is capable to handle arbitrary perturbations and constitutes an efficient procedure for evaluation of electric, magnetic, and mixed properties. Apart from presenting the derivation of the proposed approach, we show results from illustrating calculations of static and dynamic hyperpolarizabilities of small Si(3n+1)H(6n+3) (n=0,1,2) clusters which mimic Si(111) surfaces with dangling bond defects. The results indicate that the first hyperpolarizability tensor components of Si(3n+1)H(6n+3) have an ordering compatible with the measurements of second harmonic generation in SiO2/Si(111) interfaces and, therefore, support the hypothesis that silicon surface defects with dangling bonds are responsible for this phenomenon. The results exhibit a strong dependence on the quality of basis set and exchange-correlation functional, showing that an appropriate set of diffuse functions is required for reliable predictions of the first hyperpolarizability of open-shell compounds.

  13. Time dependent – density functional theory characterization of organic dyes for dye-sensitized solar cells

    KAUST Repository

    Hilal, Rifaat

    2017-06-19

    We aim at providing better insight into the parameters that govern the intramolecular charge transfer (ICT) and photo-injection processes in dyes for dye-sensitised solar cells (DSSC). Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations are utilized to study the geometry, electronic structure, electrostatic potential (ESP) and absorption spectrum, for a representative donor-π bridge-acceptor (D–π–A) dye for DSSC. The coplanar geometry of the dye (D1) facilitates strong conjugation and considerable delocalization originating the π CT interaction from donor to acceptor orbitals and the hyper-conjugative interactions involving Rydberg states. A model simulating the adsorption of the dye on the TiO surface is utilized to estimate binding energies. The effect of fluorine substituents in the π-spacer on the quantum efficiency of DSSCs was investigated. Gibb’s free energy values, redox potentials, excited state lifetime, non-linear optical properties (NLO) and driving forces for D1 and its fluorinated derivatives were computed.

  14. Efficient block preconditioned eigensolvers for linear response time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Vecharynski, Eugene [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Brabec, Jiri [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Shao, Meiyue [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Govind, Niranjan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab.; Yang, Chao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division

    2017-12-01

    We present two efficient iterative algorithms for solving the linear response eigen- value problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into a product eigenvalue problem that is self-adjoint with respect to a K-inner product. This product eigenvalue problem can be solved efficiently by a modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. However, the other component of the eigenvector can be easily recovered in a postprocessing procedure. Therefore, the algorithms we present here are more efficient than existing algorithms that try to approximate both components of the eigenvectors simultaneously. The efficiency of the new algorithms is demonstrated by numerical examples.

  15. Time-dependent restricted-active-space self-consistent-field theory with space partition

    Science.gov (United States)

    Miyagi, Haruhide; Madsen, Lars Bojer

    2017-02-01

    Aiming at efficient numerical analysis of time-dependent (TD) many-electron dynamics of atoms involving multielectron continua, the TD restricted-active-space self-consistent-field theory with space partition (TD-RASSCF-SP) is presented. The TD-RASSCF-SP wave function is expanded in terms of TD configuration-interaction coefficients with Slater determinants composed of two kinds of TD orbitals: M ̂ orbitals are defined to be nonvanishing in the inner region (V ̂), a small volume around the atomic nucleus, and M ˇ orbitals are nonvanishing in the large outer region (V ˇ). For detailed discussion of the SP strategy, the equations of motion are derived by two different formalisms for comparison. To ensure continuous differentiability of the wave function across the two regions, one of the formalisms makes use of the property of the finite-element discrete-variable-representation (FEDVR) functions and introduces additional time-independent orbitals. The other formalism is more general and is based on the Bloch operator as in the R -matrix theory, but turns out to be less practical for numerical applications. Hence, using the FEDVR-based formalism, the numerical performance is tested by computing double-ionization dynamics of atomic beryllium in intense light fields. To achieve high accuracy, M ̂ should be set large to take into account the strong many-electron correlation around the nucleus. On the other hand, M ˇ can be set much smaller than M ̂ for capturing the weaker correlation between the two outgoing photoelectrons. As a result, compared with more accurate multiconfigurational TD Hartree-Fock (MCTDHF) method, the TD-RASSCF-SP method may achieve comparable accuracy in the description of the double-ionization dynamics. There are, however, difficulties related to the stiffness of the equations of motion of the TD-RASSCF-SP method, which makes the required time step for this method smaller than the one needed for the MCTDHF approach.

  16. Electron-nuclear coupling in time-dependent multicomponent density functional theory

    NARCIS (Netherlands)

    Butriy, Olena O.

    2008-01-01

    In this thesis we developed the time-dependent version of the multicomponent density functional approach to treat time-dependent electron-nuclear systems. The method enables to describe the electron-nuclear coupling fully quantum mechanically. No Born-Oppenheimer approximation is involved in the

  17. A unified approach to the density-potential mapping in a family of time-dependent density functional theories

    Science.gov (United States)

    Tokatly, I. V.

    2011-11-01

    It is shown that the density-potential mapping and the V-representability problems in the time-dependent current density functional theory (TDCDFT) are reduced to the solution of a certain many-body nonlinear Schrödinger equation (NLSE). The derived NLSE for TDCDFT links the earlier NLSE-based formulations of the time-dependent deformation functional theory (TDDefFT) and the time-dependent density functional theory (TDDFT). We establish a close relation between the nonlinear many-body problems which control the existence of TDCDFT, TDDFT, and TDDefFT, and thus develop a unified point of view on the whole family of the TDDFT-type theories.

  18. Spin-adapted open-shell time-dependent density functional theory. II. Theory and pilot application.

    Science.gov (United States)

    Li, Zhendong; Liu, Wenjian; Zhang, Yong; Suo, Bingbing

    2011-04-07

    The excited states of open-shell systems calculated by unrestricted Kohn-Sham-based time-dependent density functional theory (U-TD-DFT) are often heavily spin-contaminated and hence meaningless. This is solved ultimately by the recently proposed spin-adapted time-dependent density functional theory (TD-DFT) (S-TD-DFT) [J. Chem. Phys. 133, 064106 (2010)]. Unlike the standard restricted open-shell Kohn-Sham-based TD-DFT (R-TD-DFT) which can only access the singlet-coupled single excitations, the S-TD-DFT can capture both the singlet- and triplet-coupled single excitations with the same computational effort as the U-TD-DFT. The performances of the three approaches (U-TD-DFT, R-TD-DFT, and S-TD-DFT) are compared for both the spin-conserving and spin-flip excitations of prototypical open-shell systems, the nitrogen (N(2)(+)) and naphthalene (C(10)H(8)(+)) cations. The results show that the S-TD-DFT gives rise to balanced descriptions of excited states of open-shell systems.

  19. Influence of quadrupole pairing on backbending

    International Nuclear Information System (INIS)

    Faessler, A.; Wakai, M.

    1978-01-01

    The backbending phenomenon is attributed to the Coriolis antipairing and the rotational alignment effects. We can consider both effects simultaneously by applying the cranked Hartree-Fock-Bogoliubov theory to the description of the rotational motion of nuclei. In usual treatments of the backbending, however, only the monopole pairing force is considered and pairing forces of other types are neglected. This may be the main reason for starting of the backbending at too small total angular momentum in theoretical results. (orig.) [de

  20. Microscopic investigation of structural evolution in even-even N = 60 isotones

    International Nuclear Information System (INIS)

    Oudih, M. R.; Fellah, M.; Allal, N. H.; Benhamouda, N.

    2012-01-01

    The ground state properties of even-even N=60 isotones from the neutron-rich to the proton-rich side are investigated within the self-consistent Skyrme-Hartree-Fock-Bogoliubov theory in the triaxial landscape. Quantities such as binding energies and root-mean-square radii are investigated and compared with available experimental data. The evolution of the potential energy surfaces in the (β,γ) deformation plane is presented and discussed.

  1. On the pairing effects in triaxial nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Oudih, M. R. [Laboratoire de Physique Théorique, Faculté de Physique,USTHB BP 32, El Alia, 16111 Bab Ezzouar, Algiers (Algeria); Fellah, M.; Allal, N. H. [Centre de Recherche Nucléaire d' Alger, 2 Bd. Frantz Fanon, BP. 399 Alger-Gare, Algiers, Algeria and Laboratoire de Physique Théorique, Faculté de Physique,USTHB BP 32, El Alia, 16111 Bab Ezzouar, Algiers (Algeria)

    2014-03-05

    Triaxial deformation effect on the pairing correlations is studied in the framework of the Skyrme Hartree-Fock-Bogoliubov theory. Quantities such as binding energy, gap parameter and particle-number fluctuation are considered in neutron-rich Mo isotopes. The results are compared with those of axially symmetric calculation and with available experimental data. The role played by the particle-number projection is outlined.

  2. Limits of Nuclear Stability

    CERN Document Server

    Nerlo-Pomorska, B; Kleban, M

    2003-01-01

    The modern version of the liquid-drop model (LSD) is compared with the macroscopic part of the binding energy evaluated within the Hartree-Fock- Bogoliubov procedure with the Gogny force and the relativistic mean field theory. The parameters of a liquid-drop like mass formula which approximate on the average the self-consistent results are compared with other models. The limits of nuclear stability predicted by these models are discussed.

  3. Wavelet-based linear-response time-dependent density-functional theory

    International Nuclear Information System (INIS)

    Natarajan, Bhaarathi; Genovese, Luigi; Casida, Mark E.; Deutsch, Thierry; Burchak, Olga N.

    2012-01-01

    Highlights: ► We has been implemented LR-TD-DFT in the pseudopotential wavelet-based program. ► We have compared the results against all-electron Gaussian-type program. ► Orbital energies converges significantly faster for BigDFT than for DEMON2K. ► We report the X-ray crystal structure of the small organic molecule flugi6. ► Measured and calculated absorption spectrum of flugi6 is also reported. - Abstract: Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BIGDFT and results are compared against those obtained with the all-electron Gaussian-type orbital program DEMON2K for the calculation of electronic absorption spectra of N 2 using the TD local density approximation (LDA). The two programs give comparable excitation energies and absorption spectra once suitably extensive basis sets are used. Convergence of LDA density orbitals and orbital energies to the basis-set limit is significantly faster for BIGDFT than for DEMON2K. However the number of virtual orbitals used in TD-DFT calculations is a parameter in BIGDFT, while all virtual orbitals are included in TD-DFT calculations in DEMON2K. As a reality check, we report the X-ray crystal structure and the measured and calculated absorption spectrum (excitation energies and oscillator strengths) of the small organic molecule N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1, 2-a]pyridin-3-amine.

  4. Time-dependent restricted-active-space self-consistent-field theory for bosonic many-body systems

    International Nuclear Information System (INIS)

    Lévêque, Camille; Madsen, Lars Bojer

    2017-01-01

    We develop an ab initio time-dependent wavefunction based theory for the description of a many-body system of cold interacting bosons. Like the multi-configurational time-dependent Hartree method for bosons (MCTDHB), the theory is based on a configurational interaction Ansatz for the many-body wavefunction with time-dependent self-consistent-field orbitals. The theory generalizes the MCTDHB method by incorporating restrictions on the active space of the orbital excitations. The restrictions are specified based on the physical situation at hand. The equations of motion of this time-dependent restricted-active-space self-consistent-field (TD-RASSCF) theory are derived. The similarity between the formal development of the theory for bosons and fermions is discussed. The restrictions on the active space allow the theory to be evaluated under conditions where other wavefunction based methods due to exponential scaling in the numerical effort cannot, and to clearly identify the excitations that are important for an accurate description, significantly beyond the mean-field approach. For ground state calculations we find it to be important to allow a few particles to have the freedom to move in many orbitals, an insight facilitated by the flexibility of the restricted-active-space Ansatz . Moreover, we find that a high accuracy can be obtained by including only even excitations in the many-body self-consistent-field wavefunction. Time-dependent simulations of harmonically trapped bosons subject to a quenching of their noncontact interaction, show failure of the mean-field Gross-Pitaevskii approach within a fraction of a harmonic oscillation period. The TD-RASSCF theory remains accurate at much reduced computational cost compared to the MCTDHB method. Exploring the effect of changes of the restricted-active-space allows us to identify that even self-consistent-field excitations are mainly responsible for the accuracy of the method. (paper)

  5. Theory of coherent time-dependent transport in one-dimensional multiband semiconductor super-lattices

    DEFF Research Database (Denmark)

    Rotvig, J.; Smith, H.; Jauho, Antti-Pekka

    1996-01-01

    We present an analytical study of one-dimensional semiconductor superlattices in external electric fields, which may be time dependent. A number of general results for the (quasi)energies and eigenstates are derived. An equation of motion for the density matrix is obtained for a two-band model...

  6. The role of relativity in the optical response of gold within the time-dependent current-density-functional theory

    NARCIS (Netherlands)

    Romaniello, P; de Boeij, PL

    2005-01-01

    We included relativistic effects in the formulation of the time-dependent current-density-functional theory for the calculation of linear response properties of metals [P. Romaniello and P. L. de Boeij, Phys. Rev. B (to be published)]. We treat the dominant scalar-relativistic effects using the

  7. Time-dependent Takagi-Taupin eikonal theory and applications in the subpicosecond manipulation of X-rays

    International Nuclear Information System (INIS)

    Adams, Bernhard W.

    2004-01-01

    A time-dependent version of the Takagi-Taupin theory of X-ray diffraction is derived in a unified space-time approach, which is particularly applicable to X-ray diffraction in a crystal that is undergoing rapid change on the subpicosecond, and even few-femtosecond, time scale. The theory is applied to the proposal of a class of X-ray optical elements for the subpicosecond manipulation of X-rays

  8. Extended gyrokinetic field theory for time-dependent magnetic confinement fields

    International Nuclear Information System (INIS)

    Sugama, H.; Watanabe, T.-H.; Nunami, M.

    2013-12-01

    A gyrokinetic system of equations for turbulent toroidal plasmas in time-dependent axisymmetric background magnetic fields is derived from the variational principle. Besides governing equations for gyrocenter distribution functions and turbulent electromagnetic fields, the conditions which self-consistently determine the background fields varying on a transport time scale are obtained by using the Lagrangian which includes the constraint on the background fields. Conservation laws for energy and toroidal angular momentum of the whole system in the time-dependent background fields are naturally derived by applying Noether's theorem. It is shown that the ensemble-averaged transport equations of particles, energy and toroidal momentum given in the present work agree with the results from the conventional recursive formulation with the WKB representation except that collisional effects are disregarded here. (author)

  9. Multiconfiguration hartree-fock theory for pseudorelativistic systems: The time-dependent case

    KAUST Repository

    Hajaiej, Hichem

    2014-03-01

    In [Setting and analysis of the multi-configuration time-dependent Hartree-Fock equations, Arch. Ration. Mech. Anal. 198 (2010) 273-330] the third author has studied in collaboration with Bardos, Catto and Mauser the nonrelativistic multiconfiguration time-dependent Hartree-Fock system of equations arising in the modeling of molecular dynamics. In this paper, we extend the previous work to the case of pseudorelativistic atoms. We show the existence and the uniqueness of global-in-time solution to the underlying system under technical assumptions on the energy of the initial data and the charge of the nucleus. Moreover, we prove that the result can be extended to the case of neutron stars when the number of electrons is less than a critical number N cr. © 2014 World Scientific Publishing Company.

  10. Time-dependent configurations in the perturbative formalism of string theory

    International Nuclear Information System (INIS)

    Durin, B.

    2006-01-01

    In this thesis three time-dependent configurations are studied in the formalism of first-quantized string. These configurations are interesting because perturbative computation of correlation functions is possible and thus is a tool to understand the interplay between the time-dependent geometry and the quantified string. In a first chapter, we explain the reasons for studying these configurations. Then in the second chapter we describe the perturbative formalism and explain how to solve technical problem we encountered. The third chapter is devoted to the physical description of the phenomena involved in these configurations, to the specific computations we made and to the insights we gained. Eventually, we conclude and give some perspectives. (author)

  11. Beyond time-dependent Hartree-Fock: The collision terms in a mean-field theory

    International Nuclear Information System (INIS)

    Pauli, H.C.

    1983-01-01

    Generalised, time-dependent Hartree-Fock equations are shown to solve a well-defined part of the Hamiltonian problem. The complementary residual interaction is treated approximately, rather than by ensemble averages, and gives rise to the appearance of collision terms. The final set of equations is self-consistent. For colliding heavy ions the collision terms lead to a diffusion of the collective variables, which possibly can improve the agreement between mean-field calculations and experiment. (author)

  12. Support of A Summer School Workshop and Workshop Focused on Theory and Applications of Time-Dependent Density Functional Theory

    Energy Technology Data Exchange (ETDEWEB)

    Maitra, Neepa

    2017-08-31

    The first US-based summer school and workshop on Time-Dependent Density Functional Theory (TDDFT) was held July 11-21, 2017 in Telluride, CO. This grant provided funding to enable 33 students to attend the school, specifically with lodging and registration fee reductions. TDDFT is increasingly used in computational molecular and materials science to calculate electronic-excitation spectra and dynamics in a wide variety of applications, including photocatalysis, photo-controlled bond dissociation, and light-induced charge transfer. Software development in this community targets multiple software packages, many of which are open source, such as octopus, NWchem and Qb@ll, which are the ones our school focused on. The goal of this first iteration was to create a home for a national community of scholars, including users and developers, with a deep understanding of TDDFT, its capabilities, limitations, and high-performance computing context. We used this opportunity to explore interest in such an event in the future and based on overwhelmingly positive feedback from students and teachers, we intend to hold a similar school+workshop every two years in the US, in order to maintain the high level of interest that we witnessed and the enthusiasm amongst participants.

  13. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory.

    Science.gov (United States)

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth

    2016-09-07

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  14. Time dependence of silica optical properties during the implantation of fast hydrogen ions: Theory

    CERN Document Server

    Barannik, E; Zhurenko, V; Kononenko, S; Kononenko, O

    2015-01-01

    Formation, excitation and passivation of defects by absorbed hydrogen have been extensively reported in the literature. Here we present a basic luminescence-diffusion model to simulate creation and chemical annealing behavior of non-bridging oxygen hole centers in silica by their treatment under a long-time hydrogen implantation. The model is in a good agreement with experimental data and explains the uncommon nonmonotonic time dependence of the non-bridging oxygen hole centers luminescence during the hydrogen implantation. The proposed model establishes the quantitative relation between the intensity dependence of luminescence on its intrinsic diffusivity, hydrogen concentration, defect concentration and cross-section of their creation. Possibilities to estimate these parameters based on the experimental data for the efficiency of silica luminescence are also discussed.

  15. Time-dependence in relativistic collisionless shocks: theory of the variable

    Energy Technology Data Exchange (ETDEWEB)

    Spitkovsky, A

    2004-02-05

    We describe results from time-dependent numerical modeling of the collisionless reverse shock terminating the pulsar wind in the Crab Nebula. We treat the upstream relativistic wind as composed of ions and electron-positron plasma embedded in a toroidal magnetic field, flowing radially outward from the pulsar in a sector around the rotational equator. The relativistic cyclotron instability of the ion gyrational orbit downstream of the leading shock in the electron-positron pairs launches outward propagating magnetosonic waves. Because of the fresh supply of ions crossing the shock, this time-dependent process achieves a limit-cycle, in which the waves are launched with periodicity on the order of the ion Larmor time. Compressions in the magnetic field and pair density associated with these waves, as well as their propagation speed, semi-quantitatively reproduce the behavior of the wisp and ring features described in recent observations obtained using the Hubble Space Telescope and the Chandra X-Ray Observatory. By selecting the parameters of the ion orbits to fit the spatial separation of the wisps, we predict the period of time variability of the wisps that is consistent with the data. When coupled with a mechanism for non-thermal acceleration of the pairs, the compressions in the magnetic field and plasma density associated with the optical wisp structure naturally account for the location of X-ray features in the Crab. We also discuss the origin of the high energy ions and their acceleration in the equatorial current sheet of the pulsar wind.

  16. Accurate Ground-State Energies of Solids and Molecules from Time-Dependent Density-Functional Theory

    DEFF Research Database (Denmark)

    Olsen, Thomas; Thygesen, Kristian Sommer

    2014-01-01

    We demonstrate that ground-state energies approaching chemical accuracy can be obtained by combining the adiabatic-connection fluctuation-dissipation theorem with time-dependent densityfunctional theory. The key ingredient is a renormalization scheme, which eliminates the divergence of the correl......We demonstrate that ground-state energies approaching chemical accuracy can be obtained by combining the adiabatic-connection fluctuation-dissipation theorem with time-dependent densityfunctional theory. The key ingredient is a renormalization scheme, which eliminates the divergence...... and solids. We also consider examples of barrier heights in chemical reactions, molecular adsorption, and graphene interacting with metal surfaces, which are three examples where the RPA has been successful. In these cases, the renormalized kernel provides results that are of equal quality or even slightly...

  17. Time Dependent Density Functional Theory Calculations of Large Compact PAH Cations: Implications for the Diffuse Interstellar Bands

    Science.gov (United States)

    Weisman, Jennifer L.; Lee, Timothy J.; Salama, Farid; Gordon-Head, Martin; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We investigate the electronic absorption spectra of several maximally pericondensed polycyclic aromatic hydrocarbon radical cations with time dependent density functional theory calculations. We find interesting trends in the vertical excitation energies and oscillator strengths for this series containing pyrene through circumcoronene, the largest species containing more than 50 carbon atoms. We discuss the implications of these new results for the size and structure distribution of the diffuse interstellar band carriers.

  18. Benchmarking time-dependent renormalized natural orbital theory with exact solutions for a laser-driven model helium atom

    Energy Technology Data Exchange (ETDEWEB)

    Brics, Martins

    2016-12-09

    Intense, ultra-short laser pulses interacting with atoms, molecules, clusters, and solids give rise to many new fascinating phenomena, not at all accessible to quantum mechanics textbook perturbation theory. A full numerical solution of the time-dependent Schr¨odinger equation (TDSE) for such strong-field problems is also impossible for more than two electrons. Hence, powerful time-dependent quantum many-body approaches need to be developed. Unfortunately, efficient methods such as time-dependent density functional theory (TDDFT) fail in reproducing experimental observations, in particular if strong correlations are involved. In TDDFT, the approximation not only lies in the so-called exchange correlation potential but also in the density functionals for the observables of interest. In fact, with just the single-particle density alone it is unclear how to calculate, e.g., multiple-ionization probabilities or photoelectron spectra, or, even worse, correlated photoelectron spectra, as measured in nowadays experiments. In general, the simple structure of the time-dependent many-body Schroedinger equation for a highly-dimensional many-body wavefunction can only be traded for more complicated equations of motion for simpler quantities. In this thesis, a theory is examined that goes one step beyond TDDFT as far as the complexity of the propagated quantity is concerned. In time-dependent renormalized natural orbital theory (TDRNOT), the basic quantities that are propagated in time are the eigenvalues and eigenstates of the one-body reduced density matrix (1-RDM). The eigenstates are called natural orbitals (NOs), the eigenvalues are the corresponding occupation numbers (ONs). Compared to TDDFT, the knowledge of the NOs and the ONs relax the problem of calculating observables in practice because they can be used to construct the 1-RDM and the two-body reduced density matrix (2-RDM). After the derivation of the equations of motion for a combination of NOs and ONs, the so

  19. Global Melnikov Theory in Hamiltonian Systems with General Time-Dependent Perturbations

    Science.gov (United States)

    Gidea, Marian; de la Llave, Rafael

    2018-04-01

    We consider a mechanical system consisting of n-penduli and a d-degree-of-freedom rotator. The phase space of the rotator defines a normally hyperbolic invariant manifold Λ _0 . We apply a time-dependent perturbation, which is not assumed to be either Hamiltonian, or periodic, or quasi-periodic, as we allow for rather general time dependence. The strength of the perturbation is given by a parameter ɛ \\in R . For all |ɛ | sufficiently small, the augmented flow—obtained by making the time into a new variable—has a normally hyperbolic locally invariant manifold \\tilde{Λ }_ɛ . For ɛ =0 , \\tilde{Λ }_0=Λ _0× R . We define a Melnikov-type vector, which gives the first-order expansion of the displacement of the stable and unstable manifolds of \\tilde{Λ }_0 under the perturbation. We provide an explicit formula for the Melnikov vector in terms of convergent improper integrals of the perturbation along homoclinic orbits of the unperturbed system. We show that if the perturbation satisfies some explicit non-degeneracy conditions, then the stable and unstable manifolds of \\tilde{Λ }_ɛ , W^s(\\tilde{Λ }_ɛ ) and W^u(\\tilde{Λ }_ɛ ) , respectively, intersect along a transverse homoclinic manifold, and, moreover, the splitting of W^s(\\tilde{Λ }_ɛ ) and W^u(\\tilde{Λ }_ɛ ) can be explicitly computed, up to the first order, in terms of the Melnikov-type vector. This implies that the excursions along some homoclinic trajectories yield a non-trivial increase of order O(ɛ ) in the action variables of the rotator, for all sufficiently small perturbations. The formulas that we obtain are independent of the unperturbed motions in Λ _0 , and give, at the same time, the effects on periodic, quasi-periodic, or general-type orbits. When the perturbation is Hamiltonian, we express the effects of the perturbation, up to the first order, in terms of a Melnikov potential. In addition, if the perturbation is periodic, we obtain that the non-degeneracy conditions on

  20. A theory of loop formation and elimination by spike timing-dependent plasticity

    Directory of Open Access Journals (Sweden)

    James Kozloski

    2010-03-01

    Full Text Available We show that the local Spike Timing-Dependent Plasticity (STDP rule has the effect of regulating the trans-synaptic weights of loops of any length within a simulated network of neurons. We show that depending on STDP's polarity, functional loops are formed or eliminated in networks driven to normal spiking conditions by random, partially correlated inputs, where functional loops comprise synaptic weights that exceed a non-zero threshold. We further prove that STDP is a form of loop-regulating plasticity for the case of a linear network driven by noise. Thus a notable local synaptic learning rule makes a specific prediction about synapses in the brain in which standard STDP is present: that under normal spiking conditions, they should participate in predominantly feed-forward connections at all scales. Our model implies that any deviations from this prediction would require a substantial modification to the hypothesized role for standard STDP. Given its widespread occurrence in the brain, we predict that STDP could also regulate long range functional loops among individual neurons across all brain scales, up to, and including, the scale of global brain network topology.

  1. Time-dependent reduced density matrix functional theory applied to laser-driven, correlated two-electron dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brics, Martins; Kapoor, Varun; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)

    2013-07-01

    Time-dependent density functional theory (TDDFT) with known and practicable exchange-correlation potentials does not capture highly correlated electron dynamics such as single-photon double ionization, autoionization, or nonsequential ionization. Time-dependent reduced density matrix functional theory (TDRDMFT) may remedy these problems. The key ingredients in TDRDMFT are the natural orbitals (NOs), i.e., the eigenfunctions of the one-body reduced density matrix (1-RDM), and the occupation numbers (OCs), i.e., the respective eigenvalues. The two-body reduced density matrix (2-RDM) is then expanded in NOs, and equations of motion for the NOs can be derived. If the expansion coefficients of the 2-RDM were known exactly, the problem at hand would be solved. In practice, approximations have to be made. We study the prospects of TDRDMFT following a top-down approach. We solve the exact two-electron time-dependent Schroedinger equation for a model Helium atom in intense laser fields in order to study highly correlated phenomena such as the population of autoionizing states or single-photon double ionization. From the exact wave function we calculate the exact NOs, OCs, the exact expansion coefficients of the 2-RDM, and the exact potentials in the equations of motion. In that way we can identify how many NOs and which level of approximations are necessary to capture such phenomena.

  2. Kinetic Ising model in a time-dependent oscillating external magnetic field: effective-field theory

    International Nuclear Information System (INIS)

    Deviren, Bayram; Canko, Osman; Keskin, Mustafa

    2010-01-01

    Recently, Shi et al. [2008 Phys. Lett. A 372 5922] have studied the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field and presented the dynamic phase diagrams by using an effective-field theory (EFT) and a mean-field theory (MFT). The MFT results are in conflict with those of the earlier work of Tomé and de Oliveira, [1990 Phys. Rev. A 41 4251]. We calculate the dynamic phase diagrams and find that our results are similar to those of the earlier work of Tomé and de Oliveira; hence the dynamic phase diagrams calculated by Shi et al. are incomplete within both theories, except the low values of frequencies for the MFT calculation. We also investigate the influence of external field frequency (ω) and static external field amplitude (h 0 ) for both MFT and EFT calculations. We find that the behaviour of the system strongly depends on the values of ω and h 0 . (general)

  3. Spin-adapted open-shell random phase approximation and time-dependent density functional theory. I. Theory.

    Science.gov (United States)

    Li, Zhendong; Liu, Wenjian

    2010-08-14

    The spin-adaptation of single-reference quantum chemical methods for excited states of open-shell systems has been nontrivial. The primary reason is that the configuration space, generated by a truncated rank of excitations from only one component of a reference multiplet, is spin-incomplete. Those "missing" configurations are of higher ranks and can, in principle, be recaptured by a particular class of excitation operators. However, the resulting formalisms are then quite involved and there are situations [e.g., time-dependent density functional theory (TD-DFT) under the adiabatic approximation] that prevent one from doing so. To solve this issue, we propose here a tensor-coupling scheme that invokes all the components of a reference multiplet (i.e., a tensor reference) rather than increases the excitation ranks. A minimal spin-adapted n-tuply excited configuration space can readily be constructed by tensor products between the n-tuple tensor excitation operators and the chosen tensor reference. Further combined with the tensor equation-of-motion formalism, very compact expressions for excitation energies can be obtained. As a first application of this general idea, a spin-adapted open-shell random phase approximation is first developed. The so-called "translation rule" is then adopted to formulate a spin-adapted, restricted open-shell Kohn-Sham (ROKS)-based TD-DFT (ROKS-TD-DFT). Here, a particular symmetry structure has to be imposed on the exchange-correlation kernel. While the standard ROKS-TD-DFT can access only excited states due to singlet-coupled single excitations, i.e., only some of the singly excited states of the same spin (S(i)) as the reference, the new scheme can capture all the excited states of spin S(i)-1, S(i), or S(i)+1 due to both singlet- and triplet-coupled single excitations. The actual implementation and computation are very much like the (spin-contaminated) unrestricted Kohn-Sham-based TD-DFT. It is also shown that spin-contaminated spin

  4. Time-dependent restricted-active-space self-consistent-field theory for bosonic many-body systems

    Science.gov (United States)

    Leveque, Camille; Madsen, Lars Bojer

    2017-04-01

    We have developed an ab-initio time-dependent wavefunction based theory for the description of many-body systems of bosons. The theory is based on a configurational interaction Ansatz for the many-body wavefunction with time-dependent self-consistent-field orbitals. The active space of the orbital excitations is subject to restrictions to be specified based on the physical situation at hand. The restrictions on the active space allow the theory to be evaluated under conditions where other wavefunction based methods, due to exponential scaling in the numerical efforts, cannot. The restrictions also allow us to clearly identify the excitations that are important for an accurate description, significantly beyond the mean-field approach. We first apply this theory to compute the ground-state energy of tens of trapped bosons, and second to simulate the dynamics following an instantaneous quenching of a non-contact interaction. The method provides accurate results and its computational cost is largely reduced compared with other wavefunction based many-body methods thanks to the restriction of the active orbital space. The important excitations are clearly identified and the method provides a new way to gain insight in correlation effects. This work was supported by the ERC-StG (Project No. 277767-TDMET) and the VKR center of excellence, QUSCOPE.

  5. Quantum computing without wavefunctions: time-dependent density functional theory for universal quantum computation.

    Science.gov (United States)

    Tempel, David G; Aspuru-Guzik, Alán

    2012-01-01

    We prove that the theorems of TDDFT can be extended to a class of qubit Hamiltonians that are universal for quantum computation. The theorems of TDDFT applied to universal Hamiltonians imply that single-qubit expectation values can be used as the basic variables in quantum computation and information theory, rather than wavefunctions. From a practical standpoint this opens the possibility of approximating observables of interest in quantum computations directly in terms of single-qubit quantities (i.e. as density functionals). Additionally, we also demonstrate that TDDFT provides an exact prescription for simulating universal Hamiltonians with other universal Hamiltonians that have different, and possibly easier-to-realize two-qubit interactions. This establishes the foundations of TDDFT for quantum computation and opens the possibility of developing density functionals for use in quantum algorithms.

  6. Numerical implementation of time-dependent density functional theory for extended systems in extreme environments

    Energy Technology Data Exchange (ETDEWEB)

    Baczewski, Andrew David; Shulenburger, Luke; Desjarlais, Michael Paul; Magyar, Rudolph J.

    2014-02-01

    In recent years, DFT-MD has been shown to be a useful computational tool for exploring the properties of WDM. These calculations achieve excellent agreement with shock compression experiments, which probe the thermodynamic parameters of the Hugoniot state. New X-ray Thomson Scattering diagnostics promise to deliver independent measurements of electronic density and temperature, as well as structural information in shocked systems. However, they require the development of new levels of theory for computing the associated observables within a DFT framework. The experimentally observable x-ray scattering cross section is related to the electronic density-density response function, which is obtainable using TDDFT - a formally exact extension of conventional DFT that describes electron dynamics and excited states. In order to develop a capability for modeling XRTS data and, more generally, to establish a predictive capability for rst principles simulations of matter in extreme conditions, real-time TDDFT with Ehrenfest dynamics has been implemented in an existing PAW code for DFT-MD calculations. The purpose of this report is to record implementation details and benchmarks as the project advances from software development to delivering novel scienti c results. Results range from tests that establish the accuracy, e ciency, and scalability of our implementation, to calculations that are veri ed against accepted results in the literature. Aside from the primary XRTS goal, we identify other more general areas where this new capability will be useful, including stopping power calculations and electron-ion equilibration.

  7. Particle Transfer Reactions with the Time-Dependent Hartree-Fock Theory Using a Particle Number Projection Technique

    International Nuclear Information System (INIS)

    Simenel, Cedric

    2010-01-01

    A particle-number projection technique is used to calculate transfer probabilities in the 16 O+ 208 Pb reaction below the fusion barrier. The time evolution of the many-body wave function is obtained with the time-dependent Hartree-Fock (TDHF) mean-field theory. The agreement with experimental data for the sum of the proton-transfer channels is good, considering that TDHF has no parameter adjusted on the reaction mechanism. Some perspectives for extensions beyond TDHF to include cluster transfers are discussed.

  8. Time-dependent transport phenomena

    OpenAIRE

    Stefanucci, Gianluca; Kurth, S.; Gross, E. K. U.; Rubio, Angel

    2007-01-01

    This chapter describes the ab initio theory of quantum transport. The Cini scheme can be combined with time-dependent density functional theory (TDDFT). In this theory, the time-dependent density of an interacting system moving in an external, time-dependent local potential can be calculated via a fictitious system of non-interacting electrons moving in a local, effective, and time-dependent potential. Therefore this theory is well suited for the treatment of non-equilibrium transport problem...

  9. The role of relativity in the optical response of gold within the time-dependent current-density-functional theory.

    Science.gov (United States)

    Romaniello, P; de Boeij, P L

    2005-04-22

    We included relativistic effects in the formulation of the time-dependent current-density-functional theory for the calculation of linear response properties of metals [P. Romaniello and P. L. de Boeij, Phys. Rev. B (to be published)]. We treat the dominant scalar-relativistic effects using the zeroth-order regular approximation in the ground-state density-functional theory calculations, as well as in the time-dependent response calculations. The results for the dielectric function of gold calculated in the spectral range of 0-10 eV are compared with experimental data reported in literature and recent ellipsometric measurements. As well known, relativistic effects strongly influence the color of gold. We find that the onset of interband transitions is shifted from around 3.5 eV, obtained in a nonrelativistic calculation, to around 1.9 eV when relativity is included. With the inclusion of the scalar-relativistic effects there is an overall improvement of both real and imaginary parts of the dielectric function over the nonrelativistic ones. Nevertheless some important features in the absorption spectrum are not well reproduced, but can be explained in terms of spin-orbit coupling effects. The remaining deviations are attributed to the underestimation of the interband gap (5d-6sp band gap) in the local-density approximation and to the use of the adiabatic local-density approximation in the response calculation.

  10. Excited states of ReO4-: A comprehensive time-dependent relativistic density functional theory study

    Science.gov (United States)

    Xu, Wenhua; Ma, Jianyi; Peng, Daoling; Zou, Wenli; Liu, Wenjian; Staemmler, Volker

    2009-02-01

    The perrhenate anion, ReO4-, is taken as a showcase of heavy transition metal complexes, to examine the performance of time-dependent relativistic density functional linear response theory for electronic excitations, which is based on a newly proposed exact two-component Hamiltonian resulting from the symmetrized elimination of the small component. In total 30 scalar and 63 spinor excited states are investigated and the results are grossly in good agreement with those by the singles and doubles coupled-cluster linear response theory. It is found that only a few scalar states of 3T1 and 3T2 symmetries are split significantly by the spin-orbit coupling, whereas only those excited states involving the Rydberg-type virtual orbital are affected by the solvent effects. The nature of the optical absorption spectra is also highlighted.

  11. Excited states of ReO4-: A comprehensive time-dependent relativistic density functional theory study

    International Nuclear Information System (INIS)

    Xu Wenhua; Ma Jianyi; Peng Daoling; Zou Wenli; Liu Wenjian; Staemmler, Volker

    2009-01-01

    The perrhenate anion, ReO 4 - , is taken as a showcase of heavy transition metal complexes, to examine the performance of time-dependent relativistic density functional linear response theory for electronic excitations, which is based on a newly proposed exact two-component Hamiltonian resulting from the symmetrized elimination of the small component. In total 30 scalar and 63 spinor excited states are investigated and the results are grossly in good agreement with those by the singles and doubles coupled-cluster linear response theory. It is found that only a few scalar states of 3 T 1 and 3 T 2 symmetries are split significantly by the spin-orbit coupling, whereas only those excited states involving the Rydberg-type virtual orbital are affected by the solvent effects. The nature of the optical absorption spectra is also highlighted

  12. Unveiling the nature of post-linear response Z-vector method for time-dependent density functional theory.

    Science.gov (United States)

    Pastore, Mariachiara; Assfeld, Xavier; Mosconi, Edoardo; Monari, Antonio; Etienne, Thibaud

    2017-07-14

    We report a theoretical study on the analysis of the relaxed one-particle difference density matrix characterizing the passage from the ground to the excited state of a molecular system, as obtained from time-dependent density functional theory. In particular, this work aims at using the physics contained in the so-called Z-vector, which differentiates between unrelaxed and relaxed difference density matrices to analyze excited states' nature. For this purpose, we introduce novel quantum-mechanical quantities, based on the detachment/attachment methodology, for analysing the Z-vector transformation for different molecules and density functional theory functionals. A derivation pathway of these novel descriptors is reported, involving a numerical integration to be performed in the Euclidean space on the density functions. This topological analysis is then applied to two sets of chromophores, and the correlation between the level of theory and the behavior of our descriptors is properly rationalized. In particular, the effect of range-separation on the relaxation amplitude is discussed. The relaxation term is finally shown to be system-specific (for a given level of theory) and independent of the number of electrons (i.e., the relaxation amplitude is not simply the result of a collective phenomenon).

  13. Electronic and Optical Properties of Small Hydrogenated Silicon Quantum Dots Using Time-Dependent Density Functional Theory

    Directory of Open Access Journals (Sweden)

    Muhammad Mus-’ab Anas

    2015-01-01

    Full Text Available This paper presents a systematic study of the absorption spectrum of various sizes of small hydrogenated silicon quantum dots of quasi-spherical symmetry using the time-dependent density functional theory (TDDFT. In this study, real-time and real-space implementation of TDDFT involving full propagation of the time-dependent Kohn-Sham equations were used. The experimental results for SiH4 and Si5H12 showed good agreement with other earlier calculations and experimental data. Then these calculations were extended to study larger hydrogenated silicon quantum dots with diameter up to 1.6 nm. It was found that, for small quantum dots, the absorption spectrum is atomic-like while, for relatively larger (1.6 nm structure, it shows bulk-like behavior with continuous plateau with noticeable peak. This paper also studied the absorption coefficient of silicon quantum dots as a function of their size. Precisely, the dependence of dot size on the absorption threshold is elucidated. It was found that the silicon quantum dots exhibit direct transition of electron from HOMO to LUMO states; hence this theoretical contribution can be very valuable in discerning the microscopic processes for the future realization of optoelectronic devices.

  14. Time-dependent restricted-active-space self-consistent eld theory: Formulation and application to laser-driven many-electron dynamics

    DEFF Research Database (Denmark)

    Miyagi, Haruhide; Madsen, Lars Bojer

    We have developed a new theoretical framework for time-dependent many-electron problems named time-dependent restricted-active-space self-consistent field (TD-RASSCF) theory. The theory generalizes the multicongurational time-dependent Hartree-Fock (MCTDHF) theory by truncating the expansion...... at a specific excitation level. In a numerical application to laser-driven electron dynamics of the one-dimensional beryllium atom, the TD-RASSCF method performs accurately while largely reducing the computational complexity compared to the MCTDHF method....

  15. Quantum electrodynamical time-dependent density-functional theory for many-electron systems on a lattice

    Science.gov (United States)

    Farzanehpour, M.; Tokatly, I. V.

    2014-11-01

    We present a rigorous formulation of the time-dependent density-functional theory for interacting lattice electrons strongly coupled to cavity photons. We start with an example of one particle on a Hubbard dimer coupled to a single photonic mode, which is equivalent to the single mode spin-boson model or the quantum Rabi model. For this system we prove that the electron-photon wave function is a unique functional of the electronic density and the expectation value of the photonic coordinate, provided the initial state and the density satisfy a set of well defined conditions. Then we generalize the formalism to many interacting electrons on a lattice coupled to multiple photonic modes and prove the general mapping theorem. We also show that for a system evolving from the ground state of a lattice Hamiltonian any density with a continuous second time derivative is locally v representable.

  16. Near and Above Ionization Electronic Excitations with Non-Hermitian Real-Time Time-Dependent Density Functional Theory

    Energy Technology Data Exchange (ETDEWEB)

    Lopata, Kenneth A.; Govind, Niranjan

    2013-11-12

    We present a real-time time-dependent density functional theory (RT-TDDFT) prescription for capturing near and post-ionization excitations based on non-Hermitian von Neumann density matrix propagation with atom-centered basis sets, tuned range-separated DFT, and a phenomenological imaginary molecular orbital-based absorbing potential to mimic coupling to the continuum. The computed extreme ultraviolet absorption spectra for acetylene (C2H2), water (H2O), and Freon 12 (CF2Cl2) agree well with electron energy loss spectroscopy (EELS) data over the range 0 to 50 eV. The absorbing potential removes spurious high energy finite basis artifacts, yielding correct bound to bound transitions, metastable (autoionizing) resonance states, and consistent overall absorption shapes.

  17. Time-dependent density functional theory for open systems with a positivity-preserving decomposition scheme for environment spectral functions.

    Science.gov (United States)

    Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung

    2015-04-14

    Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene.

  18. Time-dependent density functional theory for the charging kinetics of electric double layer containing room-temperature ionic liquids.

    Science.gov (United States)

    Lian, Cheng; Zhao, Shuangliang; Liu, Honglai; Wu, Jianzhong

    2016-11-28

    Understanding the charging kinetics of electric double layers is of fundamental importance for the design and development of novel electrochemical devices such as supercapacitors and field-effect transistors. In this work, we study the dynamic behavior of room-temperature ionic liquids using a classical time-dependent density functional theory that accounts for the molecular excluded volume effects, the electrostatic correlations, and the dispersion forces. While the conventional models predict a monotonic increase of the surface charge with time upon application of an electrode voltage, our results show that dispersion between ions results in a non-monotonic increase of the surface charge with the duration of charging. Furthermore, we investigate the effects of van der Waals attraction between electrode/ionic-liquid interactions on the charging processes.

  19. Communication: Orbital instabilities and triplet states from time-dependent density functional theory and long-range corrected functionals

    Science.gov (United States)

    Sears, John S.; Koerzdoerfer, Thomas; Zhang, Cai-Rong; Brédas, Jean-Luc

    2011-10-01

    Long-range corrected hybrids represent an increasingly popular class of functionals for density functional theory (DFT) that have proven to be very successful for a wide range of chemical applications. In this Communication, we examine the performance of these functionals for time-dependent (TD)DFT descriptions of triplet excited states. Our results reveal that the triplet energies are particularly sensitive to the range-separation parameter; this sensitivity can be traced back to triplet instabilities in the ground state coming from the large effective amounts of Hartree-Fock exchange included in these functionals. As such, the use of standard long-range corrected functionals for the description of triplet states at the TDDFT level is not recommended.

  20. Iterative diagonalization of non-Hermitian eigenproblems in time-dependent density-functional and many-body perturbation theory

    Science.gov (United States)

    Bai, Zhaojun; Rocca, Dario; Li, Ren-Cang; Galli, Giulia

    2012-02-01

    We present a technique for the iterative diagonalization of random-phase approximation (RPA) matrices, which are encountered in the framework of time-dependent density-functional theory (TDDFT) and in the solution of the Bethe-Salpeter equation (BSE) [1]. The non-Hermitian character of these matrices does not permit a straightforward application of standard iterative techniques used, i.e., for the diagonalization of ground state Hamiltonians. We first introduce a new block variational principle for RPA matrices. We then develop an algorithm for the simultaneous calculation of multiple eigenvalues and eigenvectors, with convergence and stability properties similar to techniques used to iteratively diagonalize Hermitian matrices. The algorithm is validated by computing multiple low-lying excitation energies of molecules at both the TDDFT and BSE level.[4pt] [1] D. Rocca, Z. Bai, R.-C. Li, and G. Galli, submitted to J. Chem. Phys.

  1. Time-dependent density-functional-theory investigation of the collisions of protons and α particles with uracil and adenine

    Science.gov (United States)

    Covington, Cody; Hartig, Kara; Russakoff, Arthur; Kulpins, Ryan; Varga, Kálmán

    2017-05-01

    Time-dependent density-functional theory was employed to study the effects of proton and α -particle radiation on uracil and adenine. This method has the advantage of treating nuclear motion and electronic motion simultaneously, allowing for the study of electronic excitation, charge transfer, ionization, and nuclear motion. Particle energies were surveyed in the range of 15-500 keV for protons and 100-2000 keV for α particles in conjunction with impact points both on and off carbon bonds in order to investigate the electron and nuclear dynamics of irradiated molecules and the form and quantity of transferred energy. The stopping power, energy transferred, and ionization were found, and the relationship between incident particle energy and electron density of the target molecule was characterized for proton and α -particle radiation incident on adenine and uracil.

  2. Mode coupling theory analysis of electrolyte solutions: Time dependent diffusion, intermediate scattering function, and ion solvation dynamics.

    Science.gov (United States)

    Roy, Susmita; Yashonath, Subramanian; Bagchi, Biman

    2015-03-28

    A self-consistent mode coupling theory (MCT) with microscopic inputs of equilibrium pair correlation functions is developed to analyze electrolyte dynamics. We apply the theory to calculate concentration dependence of (i) time dependent ion diffusion, (ii) intermediate scattering function of the constituent ions, and (iii) ion solvation dynamics in electrolyte solution. Brownian dynamics with implicit water molecules and molecular dynamics method with explicit water are used to check the theoretical predictions. The time dependence of ionic self-diffusion coefficient and the corresponding intermediate scattering function evaluated from our MCT approach show quantitative agreement with early experimental and present Brownian dynamic simulation results. With increasing concentration, the dispersion of electrolyte friction is found to occur at increasingly higher frequency, due to the faster relaxation of the ion atmosphere. The wave number dependence of intermediate scattering function, F(k, t), exhibits markedly different relaxation dynamics at different length scales. At small wave numbers, we find the emergence of a step-like relaxation, indicating the presence of both fast and slow time scales in the system. Such behavior allows an intriguing analogy with temperature dependent relaxation dynamics of supercooled liquids. We find that solvation dynamics of a tagged ion exhibits a power law decay at long times-the decay can also be fitted to a stretched exponential form. The emergence of the power law in solvation dynamics has been tested by carrying out long Brownian dynamics simulations with varying ionic concentrations. The solvation time correlation and ion-ion intermediate scattering function indeed exhibit highly interesting, non-trivial dynamical behavior at intermediate to longer times that require further experimental and theoretical studies.

  3. Effects of Solvation on One- and Two-Photon Spectra of Coumarin Derivatives: A Time-Dependent Density Functional Theory Study (Postprint)

    National Research Council Canada - National Science Library

    Pachter, Ruth; Nguyen, Kiet A; Day, Paul N

    2007-01-01

    We report one- and two-photon absorption excitation energies and cross sections for a series of 7-aminocoumarins using time-dependent density functional theory with various basis sets and functionals...

  4. Excited state geometry optimizations by analytical energy gradient of long-range corrected time-dependent density functional theory.

    Science.gov (United States)

    Chiba, Mahito; Tsuneda, Takao; Hirao, Kimihiko

    2006-04-14

    An analytical excitation energy gradient of long-range corrected time-dependent density functional theory (LC-TDDFT) is presented. This is based on a previous analytical TDDFT gradient formalism, which avoids solving the coupled-perturbed Kohn-Sham equation for each nuclear degree of freedom. In LC-TDDFT, exchange interactions are evaluated by combining the short-range part of a DFT exchange functional with the long-range part of the Hartree-Fock exchange integral. This LC-TDDFT gradient was first examined by calculating the excited state geometries and adiabatic excitation energies of small typical molecules and a small protonated Schiff base. As a result, we found that long-range interactions play a significant role even in valence excited states of small systems. This analytical LC-TDDFT gradient was also applied to the investigations of small twisted intramolecular charge transfer (TICT) systems. By comparing with calculated ab initio multireference perturbation theory and experimental results, we found that LC-TDDFT gave much more accurate absorption and fluorescence energies of these systems than those of conventional TDDFTs using pure and hybrid functionals. For optimized excited state geometries, LC-TDDFT provided fairly different twisting and wagging angles of these small TICT systems in comparison with conventional TDDFT results.

  5. Breaking Symmetry in Time-Dependent Electronic Structure Theory to Describe Spectroscopic Properties of Non-Collinear and Chiral Molecules

    Science.gov (United States)

    Goings, Joshua James

    Time-dependent electronic structure theory has the power to predict and probe the ways electron dynamics leads to useful phenomena and spectroscopic data. Here we report several advances and extensions of broken-symmetry time-dependent electronic structure theory in order to capture the flexibility required to describe non-equilibrium spin dynamics, as well as electron dynamics for chiroptical properties and vibrational effects. In the first half, we begin by discussing the generalization of self-consistent field methods to the so-called two-component structure in order to capture non-collinear spin states. This means that individual electrons are allowed to take a superposition of spin-1/2 projection states, instead of being constrained to either spin-up or spin-down. The system is no longer a spin eigenfunction, and is known a a spin-symmetry broken wave function. This flexibility to break spin symmetry may lead to variational instabilities in the approximate wave function, and we discuss how these may be overcome. With a stable non-collinear wave function in hand, we then discuss how to obtain electronic excited states from the non-collinear reference, along with associated challenges in their physical interpretation. Finally, we extend the two-component methods to relativistic Hamiltonians, which is the proper setting for describing spin-orbit driven phenomena. We describe the first implementation of the explicit time propagation of relativistic two-component methods and how this may be used to capture spin-forbidden states in electronic absorption spectra. In the second half, we describe the extension of explicitly time-propagated wave functions to the simulation of chiroptical properties, namely circular dichroism (CD) spectra of chiral molecules. Natural circular dichroism, that is, CD in the absence of magnetic fields, originates in the broken parity symmetry of chiral molecules. This proves to be an efficient method for computing circular dichroism spectra

  6. A (time-dependent) density functional theory study of the optoelectronic properties of bis-triisopropylsilylethynyl-functionalized acenes

    International Nuclear Information System (INIS)

    Malloci, G.; Cappellini, G.; Mulas, G.; Mattoni, A.

    2013-01-01

    We report a comparative study of the optoelectronic properties of small acenes (benzene, anthracene, and pentacene) and their bis-triisopropylsilylethynyl (TIPS) functionalized counterparts. We computed the fundamental gap using density functional theory (DFT) in the framework of the ΔSCF scheme, and the optical absorption spectra by means of time-dependent DFT. Upon TIPS functionalization we observed a lowering of the ionization energy and a rise of the electron affinity; we consequently predict a systematic reduction of the fundamental electronic gap which decreases from ∼ 40% for benzene to ∼ 16% for pentacene. This trend is reflected in the computed optical absorption spectra: for all TIPS-molecules the onset of absorption is red-shifted as compared to their plain precursors. In the case of TIPS-pentacene, in particular, the computed spectrum agrees with the available experimental data. - Highlights: • We evaluate the effect of triisopropylsilylethynyl (TIPS)-substitution on acenes. • We compared the fundamental gap and the optical absorption as a function of size. • We found a general gap reduction following TIPS functionalization. • The gap reduction decreases at increasing size, from 40% for n = 1 to 16% for n = 5. • The onset of absorption is red-shifted as compared to TIPS precursors

  7. Phosphorescence lifetimes of organic light-emitting diodes from two-component time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Kühn, Michael [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Weigend, Florian, E-mail: florian.weigend@kit.edu [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe (Germany)

    2014-12-14

    “Spin-forbidden” transitions are calculated for an eight-membered set of iridium-containing candidate molecules for organic light-emitting diodes (OLEDs) using two-component time-dependent density functional theory. Phosphorescence lifetimes (obtained from averaging over relevant excitations) are compared to experimental data. Assessment of parameters like non-distorted and distorted geometric structures, density functionals, relativistic Hamiltonians, and basis sets was done by a thorough study for Ir(ppy){sub 3} focussing not only on averaged phosphorescence lifetimes, but also on the agreement of the triplet substate structure with experimental data. The most favorable methods were applied to an eight-membered test set of OLED candidate molecules; Boltzmann-averaged phosphorescence lifetimes were investigated concerning the convergence with the number of excited states and the changes when including solvent effects. Finally, a simple model for sorting out molecules with long averaged phosphorescence lifetimes is developed by visual inspection of computationally easily achievable one-component frontier orbitals.

  8. Tailored pump-probe transient spectroscopy with time-dependent density-functional theory: controlling absorption spectra

    Science.gov (United States)

    Walkenhorst, Jessica; De Giovannini, Umberto; Castro, Alberto; Rubio, Angel

    2016-05-01

    Recent advances in laser technology allow us to follow electronic motion at its natural time-scale with ultra-fast time resolution, leading the way towards attosecond physics experiments of extreme precision. In this work, we assess the use of tailored pumps in order to enhance (or reduce) some given features of the probe absorption (for example, absorption in the visible range of otherwise transparent samples). This type of manipulation of the system response could be helpful for its full characterization, since it would allow us to visualize transitions that are dark when using unshaped pulses. In order to investigate these possibilities, we perform first a theoretical analysis of the non-equilibrium response function in this context, aided by one simple numerical model of the hydrogen atom. Then, we proceed to investigate the feasibility of using time-dependent density-functional theory as a means to implement, theoretically, this absorption-optimization idea, for more complex atoms or molecules. We conclude that the proposed idea could in principle be brought to the laboratory: tailored pump pulses can excite systems into light-absorbing states. However, we also highlight the severe numerical and theoretical difficulties posed by the problem: large-scale non-equilibrium quantum dynamics are cumbersome, even with TDDFT, and the shortcomings of state-of-the-art TDDFT functionals may still be serious for these out-of-equilibrium situations.

  9. Analytical Hessian of electronic excited states in time-dependent density functional theory with Tamm-Dancoff approximation.

    Science.gov (United States)

    Liu, Jie; Liang, WanZhen

    2011-07-07

    We present the analytical expression and computer implementation for the second-order energy derivatives of the electronic excited state with respect to the nuclear coordinates in the time-dependent density functional theory (TDDFT) with Gaussian atomic orbital basis sets. Here, the Tamm-Dancoff approximation to the full TDDFT is adopted, and therefore the formulation process of TDDFT excited-state Hessian is similar to that of configuration interaction singles (CIS) Hessian. However, due to the replacement of the Hartree-Fock exchange integrals in CIS with the exchange-correlation kernels in TDDFT, many quantitative changes in the derived equations are arisen. The replacement also causes additional technical difficulties associated with the calculation of a large number of multiple-order functional derivatives with respect to the density variables and the nuclear coordinates. Numerical tests on a set of test molecules are performed. The simulated excited-state vibrational frequencies by the analytical Hessian approach are compared with those computed by CIS and the finite-difference method. It is found that the analytical Hessian method is superior to the finite-difference method in terms of the computational accuracy and efficiency. The numerical differentiation can be difficult due to root flipping for excited states that are close in energy. TDDFT yields more exact excited-state vibrational frequencies than CIS, which usually overestimates the values.

  10. Excited States of Xanthene Analogues: Photofragmentation and Calculations by CC2 and Time-Dependent Density Functional Theory.

    Science.gov (United States)

    Kulesza, Alexander Jan; Titov, Evgenii; Daly, Steven; Włodarczyk, Radosław; Megow, Jörg; Saalfrank, Peter; Choi, Chang Min; MacAleese, Luke; Antoine, Rodolphe; Dugourd, Philippe

    2016-10-05

    Action spectroscopy has emerged as an analytical tool to probe excited states in the gas phase. Although comparison of gas-phase absorption properties with quantum-chemical calculations is, in principle, straightforward, popular methods often fail to describe many molecules of interest-such as xanthene analogues. We, therefore, face their nano- and picosecond laser-induced photofragmentation with excited-state computations by using the CC2 method and time-dependent density functional theory (TDDFT). Whereas the extracted absorption maxima agree with CC2 predictions, the TDDFT excitation energies are blueshifted. Lowering the amount of Hartree-Fock exchange in the DFT functional can reduce this shift but at the cost of changing the nature of the excited state. Additional bandwidth observed in the photofragmentation spectra is rationalized in terms of multiphoton processes. Observed fragmentation from higher-lying excited states conforms to intense excited-to-excited state transitions calculated with CC2. The CC2 method is thus suitable for the comparison with photofragmentation in xanthene analogues. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Breaking of the first adiabatic invariants of charged particles in time-dependent magnetic fields: Computer simulations and theory

    International Nuclear Information System (INIS)

    Borovsky, J.E.; Hansen, P.J.

    1991-01-01

    The mechanics of the first adiabatic invariant μ of nonrelativistic charged particles in time-dependent magnetic inductions B(t) are studied by means of computer simulations and analytic theory. Linear-ramp magnetic-induction profiles B=B 0 +(ΔB/Δt)t are utilized, as well as hyperbolic-tangent ramps and sine half-wave ramps. The change in μ that results from an induction change ΔB that occurs over a time Δt is quantified for all values of ΔB and Δt, as well as for all values of the particle position. It is found that the cases fall into two categories with very different μ behavior: cases in which the change in the magnetic induction occurs over a time Δt that is exactly equal to an integer number of gyroperiods (textbook case) or cases in which the change in the induction occurs over a time Δt that is not equal to an integer number of gyroperiods (more general case). In both categories μ is an adiabatic invariant, although the conservation of μ is much poorer in the latter category. It is pointed out that, in addition to the well-known constraints on ΔB and Δt, there is a constraint on the particle's initial position in the magnetic field if the change in the adiabatic invariant is to be kept small

  12. Spin-adapted open-shell time-dependent density functional theory. III. An even better and simpler formulation.

    Science.gov (United States)

    Li, Zhendong; Liu, Wenjian

    2011-11-21

    The recently proposed spin-adapted time-dependent density functional theory (S-TD-DFT) [Z. Li and W. Liu, J. Chem. Phys. 133, 064106 (2010)] resolves the spin-contamination problem in describing singly excited states of high spin open-shell systems. It is an extension of the standard restricted open-shell Kohn-Sham-based TD-DFT which can only access those excited states due to singlet-coupled single excitations. It is also far superior over the unrestricted Kohn-Sham-based TD-DFT (U-TD-DFT) which suffers from severe spin contamination for those excited states due to triplet-coupled single excitations. Nonetheless, the accuracy of S-TD-DFT for high spin open-shell systems is still inferior to TD-DFT for well-behaved closed-shell systems. The reason can be traced back to the violation of the spin degeneracy conditions (SDC) by approximate exchange-correlation (XC) functionals. Noticing that spin-adapted random phase approximation (S-RPA) can indeed maintain the SDC by virtue of the Wigner-Eckart theorem, a hybrid ansatz combining the good of S-TD-DFT and S-RPA can immediately be envisaged. The resulting formalism, dubbed as X-TD-DFT, is free of spin contamination and can also be viewed as a S-RPA correction to the XC kernel of U-TD-DFT. Compared with S-TD-DFT, X-TD-DFT leads to much improved results for the low-lying excited states of, e.g., N(2)(+), yet with much reduced computational cost. Therefore, X-TD-DFT can be recommended for routine calculations of excited states of high spin open-shell systems.

  13. Calibration of the fine-structure constant of graphene by time-dependent density-functional theory

    Science.gov (United States)

    Sindona, A.; Pisarra, M.; Vacacela Gomez, C.; Riccardi, P.; Falcone, G.; Bellucci, S.

    2017-11-01

    One of the amazing properties of graphene is the ultrarelativistic behavior of its loosely bound electrons, mimicking massless fermions that move with a constant velocity, inversely proportional to a fine-structure constant αg of the order of unity. The effective interaction between these quasiparticles is, however, better controlled by the coupling parameter αg*=αg/ɛ , which accounts for the dynamic screening due to the complex permittivity ɛ of the many-valence electron system. This concept was introduced in a couple of previous studies [Reed et al., Science 330, 805 (2010) and Gan et al., Phys. Rev. B 93, 195150 (2016)], where inelastic x-ray scattering measurements on crystal graphite were converted into an experimentally derived form of αg* for graphene, over an energy-momentum region on the eV Å -1 scale. Here, an accurate theoretical framework is provided for αg*, using time-dependent density-functional theory in the random-phase approximation, with a cutoff in the interaction between excited electrons in graphene, which translates to an effective interlayer interaction in graphite. The predictions of the approach are in excellent agreement with the above-mentioned measurements, suggesting a calibration method to substantially improve the experimental derivation of αg*, which tends to a static limiting value of ˜0.14 . Thus, the ab initio calibration procedure outlined demonstrates the accuracy of perturbation expansion treatments for the two-dimensional gas of massless Dirac fermions in graphene, in parallel with quantum electrodynamics.

  14. Electron dynamics in complex environments with real-time time dependent density functional theory in a QM-MM framework

    Energy Technology Data Exchange (ETDEWEB)

    Morzan, Uriel N.; Ramírez, Francisco F.; Scherlis, Damián A., E-mail: damian@qi.fcen.uba.ar, E-mail: mcgl@qb.ffyb.uba.ar [Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires (C1428EHA) (Argentina); Oviedo, M. Belén; Sánchez, Cristián G. [Departamento de Matemática y Física, Facultad de Ciencias Químicas, INFIQC, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba (Argentina); Lebrero, Mariano C. González, E-mail: damian@qi.fcen.uba.ar, E-mail: mcgl@qb.ffyb.uba.ar [Instituto de Química y Fisicoquímica Biológicas, IQUIFIB, CONICET (Argentina)

    2014-04-28

    This article presents a time dependent density functional theory (TDDFT) implementation to propagate the Kohn-Sham equations in real time, including the effects of a molecular environment through a Quantum-Mechanics Molecular-Mechanics (QM-MM) hamiltonian. The code delivers an all-electron description employing Gaussian basis functions, and incorporates the Amber force-field in the QM-MM treatment. The most expensive parts of the computation, comprising the commutators between the hamiltonian and the density matrix—required to propagate the electron dynamics—, and the evaluation of the exchange-correlation energy, were migrated to the CUDA platform to run on graphics processing units, which remarkably accelerates the performance of the code. The method was validated by reproducing linear-response TDDFT results for the absorption spectra of several molecular species. Two different schemes were tested to propagate the quantum dynamics: (i) a leap-frog Verlet algorithm, and (ii) the Magnus expansion to first-order. These two approaches were confronted, to find that the Magnus scheme is more efficient by a factor of six in small molecules. Interestingly, the presence of iron was found to seriously limitate the length of the integration time step, due to the high frequencies associated with the core-electrons. This highlights the importance of pseudopotentials to alleviate the cost of the propagation of the inner states when heavy nuclei are present. Finally, the methodology was applied to investigate the shifts induced by the chemical environment on the most intense UV absorption bands of two model systems of general relevance: the formamide molecule in water solution, and the carboxy-heme group in Flavohemoglobin. In both cases, shifts of several nanometers are observed, consistently with the available experimental data.

  15. Electron dynamics in complex environments with real-time time dependent density functional theory in a QM-MM framework

    Science.gov (United States)

    Morzan, Uriel N.; Ramírez, Francisco F.; Oviedo, M. Belén; Sánchez, Cristián G.; Scherlis, Damián A.; Lebrero, Mariano C. González

    2014-04-01

    This article presents a time dependent density functional theory (TDDFT) implementation to propagate the Kohn-Sham equations in real time, including the effects of a molecular environment through a Quantum-Mechanics Molecular-Mechanics (QM-MM) hamiltonian. The code delivers an all-electron description employing Gaussian basis functions, and incorporates the Amber force-field in the QM-MM treatment. The most expensive parts of the computation, comprising the commutators between the hamiltonian and the density matrix—required to propagate the electron dynamics—, and the evaluation of the exchange-correlation energy, were migrated to the CUDA platform to run on graphics processing units, which remarkably accelerates the performance of the code. The method was validated by reproducing linear-response TDDFT results for the absorption spectra of several molecular species. Two different schemes were tested to propagate the quantum dynamics: (i) a leap-frog Verlet algorithm, and (ii) the Magnus expansion to first-order. These two approaches were confronted, to find that the Magnus scheme is more efficient by a factor of six in small molecules. Interestingly, the presence of iron was found to seriously limitate the length of the integration time step, due to the high frequencies associated with the core-electrons. This highlights the importance of pseudopotentials to alleviate the cost of the propagation of the inner states when heavy nuclei are present. Finally, the methodology was applied to investigate the shifts induced by the chemical environment on the most intense UV absorption bands of two model systems of general relevance: the formamide molecule in water solution, and the carboxy-heme group in Flavohemoglobin. In both cases, shifts of several nanometers are observed, consistently with the available experimental data.

  16. Sulfur K-edge X-ray absorption spectroscopy and time-dependent density functional theory of arsenic dithiocarbamates.

    Science.gov (United States)

    Donahue, Courtney M; Pacheco, Juan S Lezama; Keith, Jason M; Daly, Scott R

    2014-06-28

    S K-edge X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TDDFT) calculations were performed on a series of As[S2CNR2]3 complexes, where R2 = Et2, (CH2)5 and Ph2, to determine how dithiocarbamate substituents attached to N affect As[S2CNR2]3 electronic structure. Complimentary [PPh4][S2CNR2] salts were also studied to compare dithiocarbamate bonding in the absence of As. The XAS results indicate that changing the orientation of the alkyl substituents from trans to cis (R2 = Et2vs. (CH2)5) yields subtle variations whereas differences associated with a change from alkyl to aryl are much more pronounced. For example, despite the differences in As 4p mixing, the first features in the S K-edge XAS spectra of [PPh4][S2CNPh2] and As[S2CNPh2]3 were both shifted by 0.3 eV compared to their alkyl-substituted derivatives. DFT calculations revealed that the unique shift observed for [PPh4][S2CNPh2] is due to phenyl-induced splitting of the π* orbitals delocalized over N, C and S. A similar phenomenon accounts for the shift observed for As[S2CNPh2]3, but the presence of two unique S environments (As-S and As···S) prevented reliable analysis of As-S covalency from the XAS data. In the absence of experimental values, DFT calculations revealed a decrease in As-S orbital mixing in As[S2CNPh2]3 that stems from a redistribution of electron density to S atoms participating in weaker As···S interactions. Simulated spectra obtained from TDDFT calculations reproduce the experimental differences in the S K-edge XAS data, which suggests that the theory is accurately modeling the experimental differences in As-S orbital mixing. The results highlight how S K-edge XAS and DFT can be used cooperatively to understand the electronic structure of low symmetry coordination complexes containing S atoms in different chemical environments.

  17. Excited-state absorption in tetrapyridyl porphyrins: comparing real-time and quadratic-response time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, David N. [Department of Chemistry; Supercomputing Institute and Chemical Theory Center; University of Minnesota; Minneapolis; USA; Asher, Jason C. [Department of Chemistry; Supercomputing Institute and Chemical Theory Center; University of Minnesota; Minneapolis; USA; Fischer, Sean A. [William R. Wiley Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratory; P.O. Box 999; Richland; USA; Cramer, Christopher J. [Department of Chemistry; Supercomputing Institute and Chemical Theory Center; University of Minnesota; Minneapolis; USA; Govind, Niranjan [William R. Wiley Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratory; P.O. Box 999; Richland; USA

    2017-01-01

    Threemeso-substituted tetrapyridyl porphyrins (free base, Ni(ii), and Cu(ii)) were investigated for their optical limiting (OL) capabilities using real-time (RT-), linear-response (LR-), and quadratic-response (QR-) time-dependent density functional theory (TDDFT) methods.

  18. A crucial role of fractional occupation numbers of natural orbitals (NOs) in the description of double excitations in response time-dependent NO functional theory

    NARCIS (Netherlands)

    Gritsenko, O. V.

    2017-01-01

    We demonstrate a crucial role of fractional occupation numbers (FONs) of natural orbitals (NOs) in the description of double excitations in time-dependent NO functional theory (TDNOFT). An analytical dependence of the double excitation energy ωα on the ratio of the FONs is derived in a model from

  19. Visualizing the mechanism that determines the critical current density in polycrystalline superconductors using time-dependent Ginzburg-Landau theory.

    OpenAIRE

    Carty, G. J.; Hampshire, D. P.

    2008-01-01

    In polycrystalline superconducting materials optimized for high critical current density (JC) in high magnetic fields, the mechanism that determines JC has long remained uncertain because of the complicated manner in which the fluxon-fluxon and fluxon-microstructure forces combine. In this work, the time-dependent Ginzburg-Landau equations are used to produce visualizations of fluxons at JC that show the disorder in the pinned part of the flux-line lattice and the motion of those fluxons alon...

  20. Toroidal Nuclear Matter Distributions of Superheavy Nuclei from Constrained Skyrme-HFB Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kosior, Amelia [Maria Curie-Sklodowska University, Poland; Staszczak, A. [Maria Curie-Sklodowska University, Poland; Wong, Cheuk-Yin [ORNL

    2017-01-01

    Using the Hartree Fock Bogoliubov (HFB) self-consistent mean-field theory with the SkM* Skyrme energy-density functional, we study nuclear structure properties of even even superheavy nuclei (SHN) of Z = 120 isotopes and N = 184 isotones. The shape of the nucleus along the lowest energy curve as a function of the quadrupole moment Q20 makes a sud- den transition from the oblate spheroids (biconcave discs) to the toroidal shapes, in the region of large oblate quadrupole moments.

  1. Visualizing the mechanism that determines the critical current density in polycrystalline superconductors using time-dependent Ginzburg-Landau theory

    Science.gov (United States)

    Carty, George J.; Hampshire, Damian P.

    2008-05-01

    In polycrystalline superconducting materials optimized for high critical current density (JC) in high magnetic fields, the mechanism that determines JC has long remained uncertain because of the complicated manner in which the fluxon-fluxon and fluxon-microstructure forces combine. In this work, the time-dependent Ginzburg-Landau equations are used to produce visualizations of fluxons at JC that show the disorder in the pinned part of the flux-line lattice and the motion of those fluxons along grain boundaries that cause dissipation. Calculated values of JC are consistent with experimental data.

  2. Particle currents in a space-time dependent and CP-violating Higgs background: a field theory approach

    International Nuclear Information System (INIS)

    Comelli, D.; Riotto, A.

    1995-06-01

    Motivated by cosmological applications like electroweak baryogenesis, we develop a field theoretic approach to the computation of particle currents on a space-time dependent and CP-violating Higgs background. We consider the Standard Model model with two Higgs doublets and CP violation in the scalar sector, and compute both fermionic and Higgs currents by means of an expansion in the background fields. We discuss the gauge dependence of the results and the renormalization of the current operators, showing that in the limit of local equilibrium, no extra renormalization conditions are needed in order to specify the system completely. (orig.)

  3. Charge Transfer Enhancement in the D-π-A Type Porphyrin Dyes: A Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT) Study.

    Science.gov (United States)

    Kang, Guo-Jun; Song, Chao; Ren, Xue-Feng

    2016-11-25

    The electronic geometries and optical properties of two D-π-A type zinc porphyrin dyes (NCH₃-YD2 and TPhe-YD) were systematically investigated by density functional theory (DFT) and time-dependent density functional theory (TD-DFT) to reveal the origin of significantly altered charge transfer enhancement by changing the electron donor of the famous porphyrin-based sensitizer YD2-o-C8. The molecular geometries and photophysical properties of dyes before and after binding to the TiO₂ cluster were fully investigated. From the analyses of natural bond orbital (NBO), extended charge decomposition analysis (ECDA), and electron density variations (Δρ) between the excited state and ground state, it was found that the introduction of N(CH₃)₂ and 1,1,2-triphenylethene groups enhanced the intramolecular charge-transfer (ICT) character compared to YD2-o-C8. The absorption wavelength and transition possess character were significantly influenced by N(CH₃)₂ and 1,1,2-triphenylethene groups. NCH₃-YD2 with N(CH₃)₂ groups in the donor part is an effective way to improve the interactions between the dyes and TiO₂ surface, light having efficiency (LHE), and free energy change (ΔG inject ), which is expected to be an efficient dye for use in dye-sensitized solar cells (DSSCs).

  4. Charge Transfer Enhancement in the D-π-A Type Porphyrin Dyes: A Density Functional Theory (DFT and Time-Dependent Density Functional Theory (TD-DFT Study

    Directory of Open Access Journals (Sweden)

    Guo-Jun Kang

    2016-11-01

    Full Text Available The electronic geometries and optical properties of two D-π-A type zinc porphyrin dyes (NCH3-YD2 and TPhe-YD were systematically investigated by density functional theory (DFT and time-dependent density functional theory (TD-DFT to reveal the origin of significantly altered charge transfer enhancement by changing the electron donor of the famous porphyrin-based sensitizer YD2-o-C8. The molecular geometries and photophysical properties of dyes before and after binding to the TiO2 cluster were fully investigated. From the analyses of natural bond orbital (NBO, extended charge decomposition analysis (ECDA, and electron density variations (Δρ between the excited state and ground state, it was found that the introduction of N(CH32 and 1,1,2-triphenylethene groups enhanced the intramolecular charge-transfer (ICT character compared to YD2-o-C8. The absorption wavelength and transition possess character were significantly influenced by N(CH32 and 1,1,2-triphenylethene groups. NCH3-YD2 with N(CH32 groups in the donor part is an effective way to improve the interactions between the dyes and TiO2 surface, light having efficiency (LHE, and free energy change (ΔGinject, which is expected to be an efficient dye for use in dye-sensitized solar cells (DSSCs.

  5. A crucial role of fractional occupation numbers of natural orbitals (NOs) in the description of double excitations in response time-dependent NO functional theory

    Science.gov (United States)

    Gritsenko, O. V.

    2017-09-01

    We demonstrate a crucial role of fractional occupation numbers (FONs) of natural orbitals (NOs) in the description of double excitations in time-dependent NO functional theory (TDNOFT). An analytical dependence of the double excitation energy ωα on the ratio of the FONs is derived in a model from the matrix diagonalization problem. In the large ratio Heitler-London limit the derived formula reproduces the correct asymptotics of ωα of the ionic state of double excitation character. In the small ratio Møller-Plesset, MP limit the reverse relation of static MP perturbation theory emerges in the dynamical response theory to provide ωα .

  6. A time-dependent density functional theory study on the effect of electronic excited-state hydrogen bonding on luminescent MOFs.

    Science.gov (United States)

    Ji, Min; Hao, Ce; Wang, Dandan; Li, Hongjiang; Qiu, Jieshan

    2013-03-14

    We have investigated a new silver-based luminescent metal-organic framework (MOF) using density functional theory and time-dependent density functional theory methods. We theoretically demonstrated that the H...O hydrogen bond is strengthened and the Ag-O coordination bond is shortened significantly due to strengthening of the hydrogen bond in the S(1) state. When the hydrogen bond is formed, the mechanism of luminescence changes from a ligand-to-metal charge transfer (LMCT) coupled with intraligand charge transfer (LLCT) to LMCT, and the luminescence is found to be enhanced.

  7. Single determinantal reaction theory as a Schroedinger analog: the time-dependent S-matrix Hartree-Fock method

    International Nuclear Information System (INIS)

    Griffin, J.J.; Lichtner, P.C.; Dworzecka, M.; Kan, K.K.

    1979-01-01

    It is suggested that the TDHF method be viewed, not as an approximation to but as a model of the exact Schroedinger system; that is, as a gedanken many-body experiment whose analysis with digital computers provides data worthy in itself of theoretical study. From such a viewpoint attention is focused on the structural analogies of the TDHF system with the exact theory rather than upon its quantitative equivalence, and the TDHF many-body system is studied as a challenge of its own which, although much simpler than the realistic problem, may still offer complexity enough to educate theorists in the present state of knowledge. In this spirit, the TDHF description of continuum reactions can be restructured from an initial-value problem into a form analogous to the S-matrix version of the Schroedinger theory. The resulting TD-S-HF theory involves only self-consistent single determinantal solutions of the TDHF equations and invokes time averaging to obtain a consistent interpretation of the TDHF analogs of quantities which are constant in the exact theory, such as the S-matrix and the asymptotic reaction channel characteristics. Periodic solutions then play the role of stationary eigenstates in the construction of suitable asymptotic reaction channels. If these periodic channel states occur only at discrete energies, then the resulting channels are mutually orthogonal (on the time average) and the theory exhibits a structure fully analogous to the exact theory. In certain special cases where the periodic solutions are known to occur as an energy continuum, the requirement that the periodicity of the channel solutions be gauge invariant provides a natural requantization condition which (suggestively) turns out to be identical with the Bohr-Sommerfeld quantization rule. 11 references

  8. Spectroscopic and time-dependent density functional theory investigation of the photophysical properties of zearalenone and its analogs

    Science.gov (United States)

    Structures of the mycotoxin zearalenone and its analogs were investigated using density functional theory methods to gain insight into the ground state and excited state properties related to detection. Zearalenone is an estrogenic mycotoxin that can occur in agricultural commodities, and ultraviole...

  9. Relaxation and dephasing in open quantum systems time-dependent density functional theory: Properties of exact functionals from an exactly-solvable model system

    Science.gov (United States)

    Tempel, David G.; Aspuru-Guzik, Alán

    2011-11-01

    The dissipative dynamics of many-electron systems interacting with a thermal environment has remained a long-standing challenge within time-dependent density functional theory (TDDFT). Recently, the formal foundations of open quantum systems time-dependent density functional theory (OQS-TDDFT) within the master equation approach were established. It was proven that the exact time-dependent density of a many-electron open quantum system evolving under a master equation can be reproduced with a closed (unitarily evolving) and non-interacting Kohn-Sham system. This potentially offers a great advantage over previous approaches to OQS-TDDFT, since with suitable functionals one could obtain the dissipative open-systems dynamics by simply propagating a set of Kohn-Sham orbitals as in usual TDDFT. However, the properties and exact conditions of such open-systems functionals are largely unknown. In the present article, we examine a simple and exactly-solvable model open quantum system: one electron in a harmonic well evolving under the Lindblad master equation. We examine two different representitive limits of the Lindblad equation (relaxation and pure dephasing) and are able to deduce a number of properties of the exact OQS-TDDFT functional. Challenges associated with developing approximate functionals for many-electron open quantum systems are also discussed.

  10. Space-time Dependency of the Time and its Effect on the Relativistic Classical Equation of the String Theory

    Science.gov (United States)

    Gholibeigian, Hassan; Amirshahkarami, Abdolazim; Gholibeigian, Kazem

    2017-01-01

    In special relativity theory, time dilates in velocity of near light speed. Also based on ``Substantial motion'' theory of Sadra, relative time (time flux); R = f (mv , σ , τ) , for each atom is momentum of its involved fundamental particles, which is different from the other atoms. In this way, for modification of the relativistic classical equation of string theory and getting more precise results, we should use effect of dilation and contraction of time in equation. So we propose to add two derivatives of the time's flux to the equation as follows: n.tp∂/R ∂ τ +∂2Xμ/(σ , τ) ∂τ2 = n .tp (∂/R ∂ σ ) +c2∂2Xμ/(σ , τ) ∂σ2 In which, Xμ is space-time coordinates of the string, σ & τ are coordinates on the string world sheet, respectively space and time along the string, string's mass m , velocity of string's motion v , factor n depends on geometry of each hidden extra dimension which relates to its own flux time, and tp is Planck's time. AmirKabir University of Technology, Tehran, Iran.

  11. Excited state nuclear forces from the Tamm-Dancoff approximation to time-dependent density functional theory within the plane wave basis set framework

    Science.gov (United States)

    Hutter, Jürg

    2003-03-01

    An efficient formulation of time-dependent linear response density functional theory for the use within the plane wave basis set framework is presented. The method avoids the transformation of the Kohn-Sham matrix into the canonical basis and references virtual orbitals only through a projection operator. Using a Lagrangian formulation nuclear derivatives of excited state energies within the Tamm-Dancoff approximation are derived. The algorithms were implemented into a pseudo potential/plane wave code and applied to the calculation of adiabatic excitation energies, optimized geometries and vibrational frequencies of three low lying states of formaldehyde. An overall good agreement with other time-dependent density functional calculations, multireference configuration interaction calculations and experimental data was found.

  12. Dynamic pathways to mediate reactions buried in thermal fluctuations. I. Time-dependent normal form theory for multidimensional Langevin equation.

    Science.gov (United States)

    Kawai, Shinnosuke; Komatsuzaki, Tamiki

    2009-12-14

    We present a novel theory which enables us to explore the mechanism of reaction selectivity and robust functions in complex systems persisting under thermal fluctuation. The theory constructs a nonlinear coordinate transformation so that the equation of motion for the new reaction coordinate is independent of the other nonreactive coordinates in the presence of thermal fluctuation. In this article we suppose that reacting systems subject to thermal noise are described by a multidimensional Langevin equation without a priori assumption for the form of potential. The reaction coordinate is composed not only of all the coordinates and velocities associated with the system (solute) but also of the random force exerted by the environment (solvent) with friction constants. The sign of the reaction coordinate at any instantaneous moment in the region of a saddle determines the fate of the reaction, i.e., whether the reaction will proceed through to the products or go back to the reactants. By assuming the statistical properties of the random force, one can know a priori a well-defined boundary of the reaction which separates the full position-velocity space in the saddle region into mainly reactive and mainly nonreactive regions even under thermal fluctuation. The analytical expression of the reaction coordinate provides the firm foundation on the mechanism of how and why reaction proceeds in thermal fluctuating environments.

  13. Kohn-Sham approach to quantum electrodynamical density-functional theory: Exact time-dependent effective potentials in real space.

    Science.gov (United States)

    Flick, Johannes; Ruggenthaler, Michael; Appel, Heiko; Rubio, Angel

    2015-12-15

    The density-functional approach to quantum electrodynamics extends traditional density-functional theory and opens the possibility to describe electron-photon interactions in terms of effective Kohn-Sham potentials. In this work, we numerically construct the exact electron-photon Kohn-Sham potentials for a prototype system that consists of a trapped electron coupled to a quantized electromagnetic mode in an optical high-Q cavity. Although the effective current that acts on the photons is known explicitly, the exact effective potential that describes the forces exerted by the photons on the electrons is obtained from a fixed-point inversion scheme. This procedure allows us to uncover important beyond-mean-field features of the effective potential that mark the breakdown of classical light-matter interactions. We observe peak and step structures in the effective potentials, which can be attributed solely to the quantum nature of light; i.e., they are real-space signatures of the photons. Our findings show how the ubiquitous dipole interaction with a classical electromagnetic field has to be modified in real space to take the quantum nature of the electromagnetic field fully into account.

  14. Scattering of a proton with the Li{sub 4} cluster: Non-adiabatic molecular dynamics description based on time-dependent density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Castro, A., E-mail: acastro@bifi.es [Institute for Biocomputation and Physics of Complex Systems (BIFI) and Zaragoza Scientific Center for Advanced Modelling (ZCAM), University of Zaragoza, 50018 Zaragoza (Spain); Isla, M. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, 47005 Valladolid (Spain); Martinez, Jose I. [Departamento de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid, ES-28049 Madrid (Spain); Alonso, J.A. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, 47005 Valladolid (Spain)

    2012-05-03

    Graphical abstract: Two trajectories for the collision of a proton with the Lithium tetramer. On the left, the proton is scattered away, and a Li{sub 2} molecule plus two isolated Lithium atoms result. On the right, the proton is captured and a LiH molecule is created. Highlights: Black-Right-Pointing-Pointer Scattering of a proton with Lithium clusters described from first principles. Black-Right-Pointing-Pointer Description based on non-adiabatic molecular dynamics. Black-Right-Pointing-Pointer The electronic structure is described with time-dependent density-functional theory. Black-Right-Pointing-Pointer The method allows to discern reaction channels depending on initial parameters. - Abstract: We have employed non-adiabatic molecular dynamics based on time-dependent density-functional theory to characterize the scattering behavior of a proton with the Li{sub 4} cluster. This technique assumes a classical approximation for the nuclei, effectively coupled to the quantum electronic system. This time-dependent theoretical framework accounts, by construction, for possible charge transfer and ionization processes, as well as electronic excitations, which may play a role in the non-adiabatic regime. We have varied the incidence angles in order to analyze the possible reaction patterns. The initial proton kinetic energy of 10 eV is sufficiently high to induce non-adiabatic effects. For all the incidence angles considered the proton is scattered away, except in one interesting case in which one of the Lithium atoms captures it, forming a LiH molecule. This theoretical formalism proves to be a powerful, effective and predictive tool for the analysis of non-adiabatic processes at the nanoscale.

  15. Quasi-Low-Dimensional Electron Gas with One Populated Band as a Testing Ground for Time-Dependent Density-Functional Theory of Mesoscopic Systems

    Science.gov (United States)

    Nazarov, Vladimir U.

    2017-06-01

    We find an exact analytical solution to the exchange-only time-dependent density-functional theory (TDDFT) problem for a significant class of quasi-low-dimensional (QLD) materials: QLD electron gas with only one band filled in the direction perpendicular to the layer or wire. The theory yields the TD exchange potential as an explicit nonlocal operator of the TD spin density. The dressed interband (image states) excitation spectra of quasi-two-dimensional electron gas are obtained, while the comparison with the Kohn-Sham transitions provides insights into the qualitative and quantitative role of the many-body interactions. Important cancellations between the Hartree fH and the exchange fx kernels of TDDFT are found in the low-density regime, elucidating the interrelations between the Kohn-Sham and the many-body dynamics in mesoscopic systems.

  16. Simulation of resonance hyper-Rayleigh scattering of molecules and metal clusters using a time-dependent density functional theory approach.

    Science.gov (United States)

    Hu, Zhongwei; Autschbach, Jochen; Jensen, Lasse

    2014-09-28

    Resonance hyper-Rayleigh scattering (HRS) of molecules and metal clusters have been simulated based on a time-dependent density functional theory approach. The resonance first-order hyperpolarizability (β) is obtained by implementing damped quadratic response theory using the (2n + 1) rule. To test this implementation, the prototypical dipolar molecule para-nitroaniline (p-NA) and the octupolar molecule crystal violet are used as benchmark systems. Moreover, small silver clusters Ag 8 and Ag 20 are tested with a focus on determining the two-photon resonant enhancement arising from the strong metal transition. Our results show that, on a per atom basis, the small silver clusters possess two-photon enhanced HRS comparable to that of larger nanoparticles. This finding indicates the potential interest of using small metal clusters for designing new nonlinear optical materials.

  17. Optical to ultraviolet spectra of sandwiches of benzene and transition metal atoms: Time dependent density functional theory and many-body calculations

    DEFF Research Database (Denmark)

    Martinez, Jose Ignacio; García Lastra, Juan Maria; Lopez, M. J.

    2010-01-01

    the optical properties according to specific functionality targets. The differences in the spectra could be used to identify relative abundances of isomers with different spins in experimental studies. As a salient feature, this theoretical spectroscopic analysis predicts the metallization of the infinite (Ti......The optical spectra of sandwich clusters formed by transition metal atoms (titanium, vanadium, and chromium) intercalated between parallel benzene molecules have been studied by time-dependent density functional theory (TDDFT) and many-body perturbation theory. Sandwiches with different number...... of layers, including infinite chains, are considered. The lowest excitation energy peaks in the spectra are characteristic of the robust bonding in these complexes. The excitation energies vary in a systematic way with the metal atoms and with the cluster size, and so these materials could be used to tune...

  18. Time-dependent configurations in the perturbative formalism of string theory; Configurations dependantes du temps dans le formalisme perturbatif de la theorie des cordes

    Energy Technology Data Exchange (ETDEWEB)

    Durin, B

    2006-01-15

    In this thesis three time-dependent configurations are studied in the formalism of first-quantized string. These configurations are interesting because perturbative computation of correlation functions is possible and thus is a tool to understand the interplay between the time-dependent geometry and the quantified string. In a first chapter, we explain the reasons for studying these configurations. Then in the second chapter we describe the perturbative formalism and explain how to solve technical problem we encountered. The third chapter is devoted to the physical description of the phenomena involved in these configurations, to the specific computations we made and to the insights we gained. Eventually, we conclude and give some perspectives. (author)

  19. Time dependent seismic hazard

    Science.gov (United States)

    Polidoro, B.; Iervolino, I.; Chioccarelli, E.; Giorgio, M.

    2012-04-01

    Probabilistic seismic hazard is usually computed trough a homogeneous Poisson process that even though it is a time-independent process it is widely used for its very convenient properties. However, when a single fault is of concern and/or the time scale is different from that of the long term, time-dependent processes are required. In this paper, different time-dependent models are reviewed with working examples. In fact, the Paganica fault (in central Italy) has been considered to compute both the probability of occurrence of at least one event in the lifespan of the structure, as well as the seismic hazard expressed in terms of probability of exceedance of an intensity value in a given time frame causing the collapse of the structure. Several models, well known or novel application to engineering hazard have been considered, limitation and issues in their applications are also discussed. The Brownian Passage Time (BPT) model is based on a stochastic modification of the deterministic stick-slip oscillator model for characteristic earthquakes; i.e., based on the addition of random perturbations (a Gaussian white noise) to the deterministic load path predicted by elastic rebound theory. This model assumes that the load state is at some ground level immediately after an event, increases steadly over time, reaches a failure threshold and relaxes instantaneously back to the ground level. For this model also a variable threshold has been considered to take into account the uncertainty of the threshold value. For the slip-predictable model it is assumed that the stress accumulates at a constant rate starting from some initial stress level. Stress is assumed to accumulate for a random period of time until an earthquake occurs. The size of the earthquake is governed by the stress release and it is a function of the elapsed time since the last event. In the time-predictable model stress buildup occurs at a constant rate until the accumulated stress reaches a threshold

  20. Time-dependent broken-symmetry density functional theory simulation of the optical response of entangled paramagnetic defects: Color centers in lithium fluoride

    Science.gov (United States)

    Janesko, Benjamin G.

    2018-02-01

    Parameter-free atomistic simulations of entangled solid-state paramagnetic defects may aid in the rational design of devices for quantum information science. This work applies time-dependent density functional theory (TDDFT) embedded-cluster simulations to a prototype entangled-defect system, namely two adjacent singlet-coupled F color centers in lithium fluoride. TDDFT calculations accurately reproduce the experimental visible absorption of both isolated and coupled F centers. The most accurate results are obtained by combining spin symmetry breaking to simulate strong correlation, a large fraction of exact (Hartree-Fock-like) exchange to minimize the defect electrons' self-interaction error, and a standard semilocal approximation for dynamical correlations between the defect electrons and the surrounding ionic lattice. These results motivate application of two-reference correlated ab initio approximations to the M-center, and application of TDDFT in parameter-free simulations of more complex entangled paramagnetic defect architectures.

  1. Time-Dependent Coupled Perturbed Hartree-Fock and Density-Functional-Theory Approach for Calculating Frequency-Dependent (Hyper)Polarizabilities with Nonorthogonal Localized Molecular Orbitals.

    Science.gov (United States)

    Peng, Daoling; Li, Shaopeng; Peng, Liang; Gu, Feng Long; Yang, Weitao

    2017-09-12

    The time-dependent coupled perturbed Hartree-Fock/density-functional-theory (TDHF/TDDFT) approach has been reformulated based on nonorthogonal localized molecular orbitals (NOLMOs). Based on the NOLMO Fock equation, we have derived the corresponding NOLMO-TDHF/TDDFT equations up to the third order, and the formula for the frequency-dependent (hyper)polarizabilities has been given. Our approach has been applied to calculate both static and dynamic (hyper)polarizabilities of molecules varying from small molecules to large molecules. The NOLMO-TDHF/TDDFT approach can reproduce the reference canonical molecular orbital (CMO) results for all of our testing calculations. With the help of ongoing development of optimized local virtual molecular orbitals, the NOLMO-TDHF/TDDFT approach would be a very efficient method for large system calculations and tp achieve linear scaling.

  2. The relationship between the Johnson-Baranger time-dependent folded diagram expansion and the time-independent methods of perturbation theory

    International Nuclear Information System (INIS)

    Passos, E.M.J. de

    1976-01-01

    The relationship between the Johnson-Baranger time-dependent folded diagram (JBFD) expansion, and the time independent methods of perturbation theory, are investigated. In the nondegenerate case, the JBFD expansion and the Rayleigh-Schroedinger perturbation expansion, for the ground state energy, are identical. On the other hand, in the degenerate case, for the nonhermitian effective interaction considered, the JBFD expansion, of the effective interaction, is equal to the perturbative expansion of the effective interaction of the nonhermitian eigenvalue problem of Bloch and Brandow-Des Cloizeaux. For the two hermitian effective interactions, the JBFD expansion of the effective interaction differs from the perturbation expansion of the effective interaction of the hermitian eigenvalue problem of Des Cloizeaux [pt

  3. Collision cross sections of N2 by H+ impact at keV energies within time-dependent density-functional theory

    Science.gov (United States)

    Yu, W.; Gao, C.-Z.; Zhang, Y.; Zhang, F. S.; Hutton, R.; Zou, Y.; Wei, B.

    2018-03-01

    We calculate electron capture and ionization cross sections of N2 impacted by the H+ projectile at keV energies. To this end, we employ the time-dependent density-functional theory coupled nonadiabatically to molecular dynamics. To avoid the explicit treatment of the complex density matrix in the calculation of cross sections, we propose an approximate method based on the assumption of constant ionization rate over the period of the projectile passing the absorbing boundary. Our results agree reasonably well with experimental data and semi-empirical results within the measurement uncertainties in the considered energy range. The discrepancies are mainly attributed to the inadequate description of exchange-correlation functional and the crude approximation for constant ionization rate. Although the present approach does not predict the experiments quantitatively for collision energies below 10 keV, it is still helpful to calculate total cross sections of ion-molecule collisions within a certain energy range.

  4. Range-separated time-dependent density-functional theory with a frequency-dependent second-order Bethe-Salpeter correlation kernel

    Energy Technology Data Exchange (ETDEWEB)

    Rebolini, Elisa, E-mail: elisa.rebolini@kjemi.uio.no; Toulouse, Julien, E-mail: julien.toulouse@upmc.fr [Laboratoire de Chimie Théorique, Sorbonne Universités, UPMC Univ Paris 06, CNRS, 4 place Jussieu, F-75005 Paris (France)

    2016-03-07

    We present a range-separated linear-response time-dependent density-functional theory (TDDFT) which combines a density-functional approximation for the short-range response kernel and a frequency-dependent second-order Bethe-Salpeter approximation for the long-range response kernel. This approach goes beyond the adiabatic approximation usually used in linear-response TDDFT and aims at improving the accuracy of calculations of electronic excitation energies of molecular systems. A detailed derivation of the frequency-dependent second-order Bethe-Salpeter correlation kernel is given using many-body Green-function theory. Preliminary tests of this range-separated TDDFT method are presented for the calculation of excitation energies of the He and Be atoms and small molecules (H{sub 2}, N{sub 2}, CO{sub 2}, H{sub 2}CO, and C{sub 2}H{sub 4}). The results suggest that the addition of the long-range second-order Bethe-Salpeter correlation kernel overall slightly improves the excitation energies.

  5. Highly efficient implementation of pseudospectral time-dependent density-functional theory for the calculation of excitation energies of large molecules.

    Science.gov (United States)

    Cao, Yixiang; Hughes, Thomas; Giesen, Dave; Halls, Mathew D; Goldberg, Alexander; Vadicherla, Tati Reddy; Sastry, Madhavi; Patel, Bhargav; Sherman, Woody; Weisman, Andrew L; Friesner, Richard A

    2016-06-15

    We have developed and implemented pseudospectral time-dependent density-functional theory (TDDFT) in the quantum mechanics package Jaguar to calculate restricted singlet and restricted triplet, as well as unrestricted excitation energies with either full linear response (FLR) or the Tamm-Dancoff approximation (TDA) with the pseudospectral length scales, pseudospectral atomic corrections, and pseudospectral multigrid strategy included in the implementations to improve the chemical accuracy and to speed the pseudospectral calculations. The calculations based on pseudospectral time-dependent density-functional theory with full linear response (PS-FLR-TDDFT) and within the Tamm-Dancoff approximation (PS-TDA-TDDFT) for G2 set molecules using B3LYP/6-31G*(*) show mean and maximum absolute deviations of 0.0015 eV and 0.0081 eV, 0.0007 eV and 0.0064 eV, 0.0004 eV and 0.0022 eV for restricted singlet excitation energies, restricted triplet excitation energies, and unrestricted excitation energies, respectively; compared with the results calculated from the conventional spectral method. The application of PS-FLR-TDDFT to OLED molecules and organic dyes, as well as the comparisons for results calculated from PS-FLR-TDDFT and best estimations demonstrate that the accuracy of both PS-FLR-TDDFT and PS-TDA-TDDFT. Calculations for a set of medium-sized molecules, including Cn fullerenes and nanotubes, using the B3LYP functional and 6-31G(**) basis set show PS-TDA-TDDFT provides 19- to 34-fold speedups for Cn fullerenes with 450-1470 basis functions, 11- to 32-fold speedups for nanotubes with 660-3180 basis functions, and 9- to 16-fold speedups for organic molecules with 540-1340 basis functions compared to fully analytic calculations without sacrificing chemical accuracy. The calculations on a set of larger molecules, including the antibiotic drug Ramoplanin, the 46-residue crambin protein, fullerenes up to C540 and nanotubes up to 14×(6,6), using the B3LYP functional and 6-31G

  6. Quantum master equation method based on the broken-symmetry time-dependent density functional theory: application to dynamic polarizability of open-shell molecular systems.

    Science.gov (United States)

    Kishi, Ryohei; Nakano, Masayoshi

    2011-04-21

    A novel method for the calculation of the dynamic polarizability (α) of open-shell molecular systems is developed based on the quantum master equation combined with the broken-symmetry (BS) time-dependent density functional theory within the Tamm-Dancoff approximation, referred to as the BS-DFTQME method. We investigate the dynamic α density distribution obtained from BS-DFTQME calculations in order to analyze the spatial contributions of electrons to the field-induced polarization and clarify the contributions of the frontier orbital pair to α and its density. To demonstrate the performance of this method, we examine the real part of dynamic α of singlet 1,3-dipole systems having a variety of diradical characters (y). The frequency dispersion of α, in particular in the resonant region, is shown to strongly depend on the exchange-correlation functional as well as on the diradical character. Under sufficiently off-resonant condition, the dynamic α is found to decrease with increasing y and/or the fraction of Hartree-Fock exchange in the exchange-correlation functional, which enhances the spin polarization, due to the decrease in the delocalization effects of π-diradical electrons in the frontier orbital pair. The BS-DFTQME method with the BHandHLYP exchange-correlation functional also turns out to semiquantitatively reproduce the α spectra calculated by a strongly correlated ab initio molecular orbital method, i.e., the spin-unrestricted coupled-cluster singles and doubles.

  7. A time-dependent density-functional theory and complete active space self-consistent field method study of vibronic absorption and emission spectra of coumarin.

    Science.gov (United States)

    Li, Junfeng; Rinkevicius, Zilvinas; Cao, Zexing

    2014-07-07

    Time-dependent density-functional theory (TD-DFT) and complete active space multiconfiguration self-consistent field (CASSCF) calculations have been used to determine equilibrium structures and vibrational frequencies of the ground state and several singlet low-lying excited states of coumarin. Vertical and adiabatic transition energies of S1, S2, and S3 have been estimated by TD-B3LYP and CASSCF/PT2. Calculations predict that the dipole-allowed S1 and S3 states have a character of (1)(ππ*), while the dipole-forbidden (1)(nπ*) state is responsible for S2. The vibronic absorption and emission spectra of coumarin have been simulated by TD-B3LYP and CASSCF calculations within the Franck-Condon approximation, respectively. The simulated vibronic spectra show good agreement with the experimental observations available, which allow us to reasonably interpret vibronic features in the S0→S1 and S0→S3 absorption and the S0←S1 emission spectra. Based on the calculated results, activity, intensity, and density of the vibronic transitions and their contribution to the experimental spectrum profile have been discussed.

  8. Similarity transformed coupled cluster response (ST-CCR) theory--a time-dependent similarity transformed equation-of-motion coupled cluster (STEOM-CC) approach.

    Science.gov (United States)

    Landau, Arie

    2013-07-07

    This paper presents a new method for calculating spectroscopic properties in the framework of response theory utilizing a sequence of similarity transformations (STs). The STs are preformed using the coupled cluster (CC) and Fock-space coupled cluster operators. The linear and quadratic response functions of the new similarity transformed CC response (ST-CCR) method are derived. The poles of the linear response yield excitation-energy (EE) expressions identical to the ones in the similarity transformed equation-of-motion coupled cluster (STEOM-CC) approach. ST-CCR and STEOM-CC complement each other, in analogy to the complementarity of CC response (CCR) and equation-of-motion coupled cluster (EOM-CC). ST-CCR/STEOM-CC and CCR/EOM-CC yield size-extensive and size-intensive EEs, respectively. Other electronic-properties, e.g., transition dipole strengths, are also size-extensive within ST-CCR, in contrast to STEOM-CC. Moreover, analysis suggests that in comparison with CCR, the ST-CCR expressions may be confined to a smaller subspace, however, the precise scope of the truncation can only be determined numerically. In addition, reformulation of the time-independent STEOM-CC using the same parameterization as in ST-CCR, as well as an efficient truncation scheme, is presented. The shown convergence of the time-dependent and time-independent expressions displays the completeness of the presented formalism.

  9. Ruthenium nitrosyls derived from tetradentate ligands containing carboxamido-N and phenolato-o donors: syntheses, structures, photolability, and time dependent density functional theory studies.

    Science.gov (United States)

    Fry, Nicole L; Rose, Michael J; Rogow, David L; Nyitray, Crystal; Kaur, Manpreet; Mascharak, Pradip K

    2010-02-15

    In order to examine the role(s) of designed ligands on the NO photolability of {Ru-NO}(6) nitrosyls, a set of three nitrosyls with ligands containing two carboxamide groups along with a varying number of phenolates have been synthesized. The nitrosyls namely, (NEt(4))(2)[(hybeb)Ru(NO)(OEt)] (1), (PPh(4))[(hypyb)Ru(NO)(OEt)] (2), and [(bpb)Ru(NO)(OEt)] (3) have been characterized by X-ray crystallography. Complexes 1-3 are diamagnetic, exhibit nu(NO) in the range 1780-1840 cm(-1) and rapidly release NO in solution upon exposure to low power UV light (7 mW/cm(2)). Density Functional Theory (DFT) and Time Dependent DFT (TDDFT) calculations on 1-3 indicate considerable contribution of ligand orbitals in the MOs involved in transitions leading to NO photolability. The results of the theoretical studies match well with the experimental absorption spectra as well as the parameters for NO photorelease and provide insight into the transition(s) associated with loss of NO.

  10. Modeling of laser-pulse induced water decomposition on two-dimensional materials by simulations based on time-dependent density functional theory

    Science.gov (United States)

    Miyamoto, Yoshiyuki; Zhang, Hong; Cheng, Xinlu; Rubio, Angel

    2017-09-01

    We use time-dependent density functional theory to study laser-pulse induced decomposition of H2O molecules above the two-dimensional (2D) materials graphene, hexagonal boron nitride, and graphitic carbon nitride. We examine femtosecond-laser pulses with a full width at half maximum of 10 or 20 fs for laser-field intensity and wavelengths of 800 or 400 nm by varying the intensity of the laser field from 5 to 9 V/Å, with the corresponding range of fluence per pulse up to 10.7 J /cm2 . For a H2O molecule above the graphitic sheets, the threshold for laser-field H2O decomposition is reduced by more than 20% compared with that of an isolated H2O molecule. We also show that hole doping enhances the water adsorption energy above graphene. The present results indicate that the graphitic materials should support laser-induced chemistry and that other 2D materials that can enhance laser-induced H2O decomposition should be investigated.

  11. Electron dynamics and optical properties modulation of monolayer MoS{sub 2} by femtosecond laser pulse: a simulation using time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Su, Xiaoxing; Jiang, Lan [Beijing Institute of Technology, Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing (China); Wang, Feng [Beijing Institute of Technology, School of Physics, Beijing (China); Su, Gaoshi [Beijing Institute of Technology, School of Mechatronical Engineering, Beijing (China); Qu, Liangti [Beijing Institute of Technology, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry, Beijing (China); Lu, Yongfeng [University of Nebraska-Lincoln, Department of Electrical Engineering, Lincoln, NE (United States)

    2017-07-15

    In this study, we adopted time-dependent density functional theory to investigate the optical properties of monolayer MoS{sub 2} and the effect of intense few-cycle femtosecond laser pulses on these properties. The electron dynamics of monolayer MoS{sub 2} under few-cycle and multi-cycle laser irradiation were described. The polarization direction of the laser had a marked effect on the energy absorption and electronic excitation of monolayer MoS{sub 2} because of anisotropy. Change in the polarization direction of few-cycle pulse changed the absorbed energy by a factor over 4000. Few-cycle pulse showed a higher sensitivity to the electronic property of material than multi-cycle pulse. The modulation of the dielectric properties of the material was observed on the femtosecond time scale. The negative divergence appeared in the real part of the function at low frequencies and photoinduced blue shift occurred due to Burstein-Moss effect. The irradiation of femtosecond laser caused the dielectric response within the infrared region and introduced anisotropy to the in-plane optical properties. Laser-based engineering of optical properties through controlling transient electron dynamics expands the functionality of MoS{sub 2} and has potential applications in direction-dependent optoelectronic devices. (orig.)

  12. Regarding the use and misuse of retinal protonated Schiff base photochemistry as a test case for time-dependent density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Valsson, Omar [Department of Chemistry and Applied Biosciences, ETH Zurich and Facoltà di Informatica, Instituto di Scienze Computationali, Università della Svizzera italiana, Via Giuseppe Buffi 13, CH-6900 Lugano (Switzerland); Filippi, Claudia, E-mail: c.filippi@utwente.nl [MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Casida, Mark E., E-mail: mark.casida@ujf-grenoble.fr [Laboratoire de Chimie Théorique, Département de Chimie Moléculaire (DCM), Institut de Chimie Moléculaire de Grenoble (ICMG), Université Joseph Fourier, Grenoble I, F-3801 Grenoble (France)

    2015-04-14

    The excited-state relaxation of retinal protonated Schiff bases (PSBs) is an important test case for biological applications of time-dependent (TD) density-functional theory (DFT). While well-known shortcomings of approximate TD-DFT might seem discouraging for application to PSB relaxation, progress continues to be made in the development of new functionals and of criteria allowing problematic excitations to be identified within the framework of TD-DFT itself. Furthermore, experimental and theoretical ab initio advances have recently lead to a revised understanding of retinal PSB photochemistry, calling for a reappraisal of the performance of TD-DFT in describing this prototypical photoactive system. Here, we re-investigate the performance of functionals in (TD-)DFT calculations in light of these new benchmark results, which we extend to larger PSB models. We focus on the ability of the functionals to describe primarily the early skeletal relaxation of the chromophore and investigate how far along the out-of-plane pathways these functionals are able to describe the subsequent rotation around formal single and double bonds. Conventional global hybrid and range-separated hybrid functionals are investigated as the presence of Hartree-Fock exchange reduces problems with charge-transfer excitations as determined by the Peach-Benfield-Helgaker-Tozer Λ criterion and by comparison with multi-reference perturbation theory results. While we confirm that most functionals cannot render the complex photobehavior of the retinal PSB, do we also observe that LC-BLYP gives the best description of the initial part of the photoreaction.

  13. The electronic and optical properties of the sulvanite compounds: a many-body perturbation and time-dependent density functional theory study

    Science.gov (United States)

    Espinosa-García, W. F.; Pérez-Walton, S.; Osorio-Guillén, J. M.; Moyses Araujo, C.

    2018-01-01

    We have studied, by means of first-principles calculations, the electronic and optical properties of the sulvanite family: Cu3MX4 (M  =  V, Nb, Ta and X  =  S, Se), which, due to its broad range of gaps and chemical stability, have emerged as promising materials for technological applications such as photovoltaics and transparent conductivity. To address the reliability of those properties we have used semi-local and hybrid functionals (PBEsol, HSE06), many-body perturbation theory (G0W0 approximation and Bethe–Salpeter equation), and time-dependent density functional theory (revised bootstrap kernel) to calculate the quasi-particle dispersion relation, band gaps, the imaginary part of the macroscopic dielectric function and the absorption coefficient. The calculated valence band maximum and the conduction band minimum are located at the R and X-points, respectively. The calculated gaps using PBEsol are between 0.81 and 1.88 eV, with HSE06 into 1.73 and 2.94 eV, whereas the G0W0 values fall into the 1.91–3.19 eV range. The calculated dielectric functions and absorption coefficients show that all these compounds present continuous excitonic features when the Bethe–Salpeter equation is used. Contrarily, the revised bootstrap kernel is incapable of describing the excitonic spectra. The calculated optical spectra show that Cu3VS4 and Cu3MSe4 have good absorption in the visible, whereas Cu3NbS4 and Cu3TaS4 have it on the near ultraviolet.

  14. Time dependence of ICD

    Science.gov (United States)

    Dorner, Reinhard

    2014-05-01

    We will discuss experimental studies of ICD in van der Vaals dimers of rare gas atoms and small molecules using the COLTRIMS technique. The talk will cover ICD after resonant Auger excitation (Nature 505, 664 (2014)) and two studies unveiling the time dependence of ICD in the energy (PRL 111, 233004 (2013)) and in the time domain (PRL 111, 093401 (2013)). A new technique to make ultrafast movies without the use of short pulses will be discussed.

  15. The calculation of product quantum state distributions and partial cross-sections in time-dependent molecular collision and photodissociation theory

    Energy Technology Data Exchange (ETDEWEB)

    Balint-Kurti, G.G.; Dixon, R.N.; Marston, C.C.; Mulholland, A.J. (Bristol Univ. (UK). School of Chemistry)

    1991-02-01

    A new method of analyzing the results of multidimensional time-dependent quantum dynamical wavepacket calculations in terms of the product quantum state distributions is presented. The method requires knowledge only of the time-dependent projection coefficients of the wavepacket onto individual product quantum states along a cut in the exit valley of the photodissociation or reaction process. The squares of the Fourier transforms of these coefficients then directly yield the cross-sections of interest. The great advantage of time-dependent quantum dynamics, namely that a single wavepacket calculation yields the cross-sections at all energies of interest, is fully exploited. (orig.).

  16. Multiresolution quantum chemistry in multiwavelet bases: excited states from time-dependent Hartree-Fock and density functional theory via linear response.

    Science.gov (United States)

    Yanai, Takeshi; Fann, George I; Beylkin, Gregory; Harrison, Robert J

    2015-12-21

    A fully numerical method for the time-dependent Hartree-Fock and density functional theory (TD-HF/DFT) with the Tamm-Dancoff (TD) approximation is presented in a multiresolution analysis (MRA) approach. From a reformulation with effective use of the density matrix operator, we obtain a general form of the HF/DFT linear response equation in the first quantization formalism. It can be readily rewritten as an integral equation with the bound-state Helmholtz (BSH) kernel for the Green's function. The MRA implementation of the resultant equation permits excited state calculations without virtual orbitals. The integral equation is efficiently and adaptively solved using a numerical multiresolution solver with multiwavelet bases. Our implementation of the TD-HF/DFT methods is applied for calculating the excitation energies of H2, Be, N2, H2O, and C2H4 molecules. The numerical errors of the calculated excitation energies converge in proportion to the residuals of the equation in the molecular orbitals and response functions. The energies of the excited states at a variety of length scales ranging from short-range valence excitations to long-range Rydberg-type ones are consistently accurate. It is shown that the multiresolution calculations yield the correct exponential asymptotic tails for the response functions, whereas those computed with Gaussian basis functions are too diffuse or decay too rapidly. We introduce a simple asymptotic correction to the local spin-density approximation (LSDA) so that in the TDDFT calculations, the excited states are correctly bound.

  17. Linear-scaling time-dependent density-functional theory beyond the Tamm-Dancoff approximation: Obtaining efficiency and accuracy with in situ optimised local orbitals

    Energy Technology Data Exchange (ETDEWEB)

    Zuehlsdorff, T. J., E-mail: tjz21@cam.ac.uk; Payne, M. C. [Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Hine, N. D. M. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Haynes, P. D. [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)

    2015-11-28

    We present a solution of the full time-dependent density-functional theory (TDDFT) eigenvalue equation in the linear response formalism exhibiting a linear-scaling computational complexity with system size, without relying on the simplifying Tamm-Dancoff approximation (TDA). The implementation relies on representing the occupied and unoccupied subspaces with two different sets of in situ optimised localised functions, yielding a very compact and efficient representation of the transition density matrix of the excitation with the accuracy associated with a systematic basis set. The TDDFT eigenvalue equation is solved using a preconditioned conjugate gradient algorithm that is very memory-efficient. The algorithm is validated on a small test molecule and a good agreement with results obtained from standard quantum chemistry packages is found, with the preconditioner yielding a significant improvement in convergence rates. The method developed in this work is then used to reproduce experimental results of the absorption spectrum of bacteriochlorophyll in an organic solvent, where it is demonstrated that the TDA fails to reproduce the main features of the low energy spectrum, while the full TDDFT equation yields results in good qualitative agreement with experimental data. Furthermore, the need for explicitly including parts of the solvent into the TDDFT calculations is highlighted, making the treatment of large system sizes necessary that are well within reach of the capabilities of the algorithm introduced here. Finally, the linear-scaling properties of the algorithm are demonstrated by computing the lowest excitation energy of bacteriochlorophyll in solution. The largest systems considered in this work are of the same order of magnitude as a variety of widely studied pigment-protein complexes, opening up the possibility of studying their properties without having to resort to any semiclassical approximations to parts of the protein environment.

  18. Investigation of the Electronic Excited States of Small Gold Clusters in Rare Gas Matrices: Spin-Orbit Time-Dependent Density Functional Theory Calculation.

    Science.gov (United States)

    Jamshidi, Zahra; Kaveei, Elham; Mohammadpour, Mozhdeh

    2015-08-13

    The effects of the weak interactions of rare gas atoms on the UV-visible absorption spectra of gold dimer and tetramer clusters are investigated. The time-dependent density functional theory based on the two-component relativistic zeroth-order regular approximation that considered spin-orbit coupling is performed to estimate the absorption spectra of Au2,4-Rgn (Rg = Ne-Xe, and n = 1-6) complexes. Using spin-orbit, including the appropriate functional, shows a close correlation between experiment and our calculations. It is also demonstrated that the weak interactions between rare gas atoms and gold clusters affect the UV-vis spectra of Au2,4 clusters by shifting the electronic transition toward the blue. Moreover, we find that the order of change in peak position, Δν̃, is proportional to the strength of interactions: Δν̃Au2,4-Xe > Δν̃Au2,4-Kr > Δν̃Au2,4-Ar > Δν̃Au2,4-Ne. In addition, comparing the UV-visible spectra of Au2,4-Rgn complexes with those of isolated Au2 and Au4 clusters shows that for Au2,4-Rg2,4,6 complexes in which Rg atoms interacted symmetrically with gold clusters no additional peaks are observed compared to isolated clusters; however, for Au2,4-Rg1,3,5 complexes, extra peaks appear because of the decrease in symmetry.

  19. Simulating Ru L3-edge X-ray absorption spectroscopy with time-dependent density functional theory: model complexes and electron localization in mixed-valence metal dimers.

    Science.gov (United States)

    Van Kuiken, Benjamin E; Valiev, Marat; Daifuku, Stephanie L; Bannan, Caitlin; Strader, Matthew L; Cho, Hana; Huse, Nils; Schoenlein, Robert W; Govind, Niranjan; Khalil, Munira

    2013-05-30

    Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of Ru(II) and Ru(III) complexes in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6](4-) and Ru(II) polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5M(II)-CN-Ru(III)(NH3)5](-) (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.

  20. Critical Assessment of Time-Dependent Density Functional Theory for Excited States of Open-Shell Systems: II. Doublet-Quartet Transitions.

    Science.gov (United States)

    Li, Zhendong; Liu, Wenjian

    2016-06-14

    Compared with closed-shell systems, open-shell systems place three additional challenges to time-dependent density functional theory (TD-DFT) for electronically excited states: (a) the spin-contamination problem is a serious issue; (b) the exchange-correlation (XC) kernel may be numerically instable; and (c) the single-determinant description of open-shell ground states readily becomes energetically instable. Confined to flip-up single excitations, the spin-contamination problem can largely be avoided by using the spin-flip TD-DFT (SF-TD-DFT) formalism, provided that a noncollinear XC kernel is employed. As for the numerical instabilities associated with such a kernel, only an ad hoc scheme has been proposed so far, viz., the ALDA0 kernel, which amounts to setting the divergent components (arising from density gradients and kinetic energy density) simply to zero. The ground-state instability problem can effectively be avoided by introducing the Tamm-Dancoff approximation (TDA) to TD-DFT. Therefore, on a general basis, the SF-TDA/ALDA0 Ansatz is so far the only promising means within the TD-DFT framework for flip-up single excitations of open-shell systems. To assess systematically the performance of SF-TDA/ALDA0, in total 61 low-lying quartet excited states of the benchmark set of 11 small radicals [J. Chem. Theory Comput. 2016, 12, 238] are investigated with various XC functionals. Taking the MRCISD+Q (multireference configuration interaction with singles and doubles plus the Davidson correction) results as benchmark, it is found that the mean absolute errors of SF-TDA/ALDA0 with the SAOP (statistical averaging of model orbital potentials), global hybrid, and range-separated hybrid functionals are in the range of 0.2-0.4 eV. This is in line not only with the typical accuracy of TD-DFT for singlet and triplet excited states of closed-shell systems but also with the gross accuracy of spin-adapted TD-DFT for spin-conserving excited states of open-shell systems.

  1. Carbon K-edge X-ray absorption spectroscopy and time-dependent density functional theory examination of metal-carbon bonding in metallocene dichlorides.

    Science.gov (United States)

    Minasian, Stefan G; Keith, Jason M; Batista, Enrique R; Boland, Kevin S; Kozimor, Stosh A; Martin, Richard L; Shuh, David K; Tyliszczak, Tolek; Vernon, Louis J

    2013-10-02

    Metal-carbon covalence in (C5H5)2MCl2 (M = Ti, Zr, Hf) has been evaluated using carbon K-edge X-ray absorption spectroscopy (XAS) as well as ground-state and time-dependent hybrid density functional theory (DFT and TDDFT). Differences in orbital mixing were determined experimentally using transmission XAS of thin crystalline material with a scanning transmission X-ray microscope (STXM). Moving down the periodic table (Ti to Hf) has a marked effect on the experimental transition intensities associated with the low-lying antibonding 1a1* and 1b2* orbitals. The peak intensities, which are directly related to the M-(C5H5) orbital mixing coefficients, increase from 0.08(1) and 0.26(3) for (C5H5)2TiCl2 to 0.31(3) and 0.75(8) for (C5H5)2ZrCl2, and finally to 0.54(5) and 0.83(8) for (C5H5)2HfCl2. The experimental trend toward increased peak intensity for transitions associated with 1a1* and 1b2* orbitals agrees with the calculated TDDFT oscillator strengths [0.10 and 0.21, (C5H5)2TiCl2; 0.21 and 0.73, (C5H5)2ZrCl2; 0.35 and 0.69, (C5H5)2HfCl2] and with the amount of C 2p character obtained from the Mulliken populations for the antibonding 1a1* and 1b2* orbitals [8.2 and 23.4%, (C5H5)2TiCl2; 15.3 and 39.7%, (C5H5)2ZrCl2; 20.1 and 50.9%, (C5H5)2HfCl2]. The excellent agreement between experiment, theory, and recent Cl K-edge XAS and DFT measurements shows that C 2p orbital mixing is enhanced for the diffuse Hf (5d) and Zr (4d) atomic orbitals in relation to the more localized Ti (3d) orbitals. These results provide insight into how changes in M-Cl orbital mixing within the metallocene wedge are correlated with periodic trends in covalent bonding between the metal and the cyclopentadienide ancillary ligands.

  2. Covalency Trends in Group IV Metallocene Dichlorides. Chlorine K-Edge X-Ray Absorption Spectroscopy And Time Dependent-Density Functional Theory

    Energy Technology Data Exchange (ETDEWEB)

    Kozimor, S.A.; Yang, P.; Batista, E.R.; Boland, K.S.; Burns, C.J.; Christensen, C.N.; Clark, D.L.; Conradson, S.D.; Hay, P.J.; Lezama, J.S.; Martin, R.L.; Schwarz, D.E.; Wilkerson, M.P.; Wolfsberg, L.E.

    2009-05-20

    For 3-5d transition-metal ions, the (C{sub 5}R{sub 5}){sub 2}MCl{sub 2} (R = H, Me for M = Ti, Zr, Hf) bent metallocenes represent a series of compounds that have been central in the development of organometallic chemistry and homogeneous catalysis. Here, we evaluate how changes in the principal quantum number for the group IV (C{sub 5}H{sub 5}){sub 2}MCl{sub 2} (M = Ti, Zr, Hf; 1-3, respectively) complexes affects the covalency of M-Cl bonds through application of Cl K-edge X-ray Absorption Spectroscopy (XAS). Spectra were recorded on solid samples dispersed as a thin film and encapsulated in polystyrene matrices to reliably minimize problems associated with X-ray self-absorption. The data show that XAS pre-edge intensities can be quantitatively reproduced when analytes are encapsulated in polystyrene. Cl K-edge XAS data show that covalency in M-Cl bonding changes in the order Ti > Zr > Hf and demonstrates that covalency slightly decreases with increasing principal quantum number in 1-3. The percent Cl 3p character was experimentally determined to be 26, 23, and 18% per M-Cl bond in the thin-film samples for 1-3 respectively and was indistinguishable from the polystyrene samples, which analyzed as 25, 25, and 19% for 1-3, respectively. To aid in interpretation of Cl K-edge XAS, 1-3 were also analyzed by ground-state and time-dependent density functional theory (TD-DFT) calculations. The calculated spectra and percent chlorine character are in close agreement with the experimental observations, and show 20, 18, and 17% Cl 3p character per M-Cl bond for 1-3, respectively. Polystyrene matrix encapsulation affords a convenient method to safely contain radioactive samples to extend our studies to include actinide elements, where both 5f and 6d orbitals are expected to play a role in M-Cl bonding and where transition assignments must rely on accurate theoretical calculations.

  3. The structure and UV spectroscopy of benzene-water (Bz-W6) clusters using time-dependent density functional theory.

    Science.gov (United States)

    Sharma, Divya; Paterson, Martin J

    2014-11-01

    DFT and MP2 calculations are performed to obtain optimized ground state geometries and binding energies of the cage and the prism conformers of water W6 clusters and Bz-W6 clusters using the aug-cc-pVDZ basis set. The cage conformer of Bz-W6 system is found to be more stable than prism conformer for all range of DFT functionals and MP2. Time dependent-DFT is then used to study UV spectroscopy of Bz, water W6 clusters and Bz-W6 clusters at both the MP2 and wB97XD optimized ground state geometries using the B3LYP, CAM-B3LYP and M06-2X functionals with 6-31++G(d,p) and aug-cc-pVTZ basis sets. Our results predict minor differences in the UV spectroscopy of cage and prism conformers W6 and Bz-W6 clusters that may be observable with high-resolution spectroscopy. The M06-2X and CAM-B3LYP functionals perform consistently with each other. Benzene-mediated excitations of the water W6 cluster towards longer wavelengths above 170 nm are noticed in both the cage and prism geometries of Bz-W6. Benzene is found to be influenced after interacting with the cage and prism W6 geometries, and is seen to undergo a red shift in the main π→π* electronic transition, in which the degeneracy is slightly broken. Charge transfer (CT) states and diffuse Rydberg-type states are also found to play an important role in the spectroscopy of such systems.

  4. Study of local response effects in interatomic collisions with two active electrons in the framework of time-dependent density functional theory; Untersuchung lokaler Responseffekte in interatomaren Stoessen mit zwei aktiven Elektronen im Rahmen zeitabhaengiger Dichtefunktionaltheorie

    Energy Technology Data Exchange (ETDEWEB)

    Keim, M.

    2005-07-01

    In the present thesis response effects in interatomic collisions with two active electrons are studied in the range of non-relativistic collision energies. The starting point is the mapping of the time-dependent interacting many-electron sytem on an effective one-particle picture on the base of the time-dependent density functional theory (TDDFT). By means of the basis generator method the one-particle equations aring in the framework of the TDDFT concept are solved in a finite-dimensional model space. In the study of ionization cross section in the collisional systeem anti p+He it is shown that by response effects an essential diminuishing of the cross sections in comparison to the no-response case is reached. Analoguously the ionization cross sections for the collisional systems p-He, He{sup 2+}-He, Li{sup 3+}-He and p-Li{sup +} behave.

  5. Many-Body Perturbation Theory (MBPT) and Time-Dependent Density-Functional Theory (TD-DFT): MBPT Insights About What Is Missing In, and Corrections To, the TD-DFT Adiabatic Approximation.

    Science.gov (United States)

    Casida, Mark E; Huix-Rotllant, Miquel

    2016-01-01

    In their famous paper, Kohn and Sham formulated a formally exact density-functional theory (DFT) for the ground-state energy and density of a system of N interacting electrons, albeit limited at the time by certain troubling representability questions. As no practical exact form of the exchange-correlation (xc) energy functional was known, the xc-functional had to be approximated, ideally by a local or semilocal functional. Nowadays, however, the realization that Nature is not always so nearsighted has driven us up Perdew's Jacob's ladder to find increasingly nonlocal density/wavefunction hybrid functionals. Time-dependent (TD-) DFT is a younger development which allows DFT concepts to be used to describe the temporal evolution of the density in the presence of a perturbing field. Linear response (LR) theory then allows spectra and other information about excited states to be extracted from TD-DFT. Once again the exact TD-DFT xc-functional must be approximated in practical calculations and this has historically been done using the TD-DFT adiabatic approximation (AA) which is to TD-DFT very similar to what the local density approximation (LDA) is to conventional ground-state DFT. Although some of the recent advances in TD-DFT focus on what can be done within the AA, others explore ways around the AA. After giving an overview of DFT, TD-DFT, and LR-TD-DFT, this chapter focuses on many-body corrections to LR-TD-DFT as one way to build hybrid density-functional/wavefunction methodology for incorporating aspects of nonlocality in time not present in the AA.

  6. Probing mixed-spin pairing in heavy nuclei

    Science.gov (United States)

    Bulthuis, Brendan; Gezerlis, Alexandros

    2016-01-01

    The nature of the nuclear pairing condensate is an active topic of investigation, especially as regards its neutron-proton versus identical-particle character, which manifests as the difference between spin-singlet and spin-triplet pairing. In this work, we probe the recently proposed mixed-spin pairing condensates, using a phenomenological Hamiltonian and Hartree-Fock-Bogoliubov theory along with the gradient method. In addition to improving the solution of the many-body problem, we have calculated a series of physical quantities and examined the robustness of the mixed-spin pairing state as the input Hamiltonian is modified. Overall, we find that even though the mixed-spin correlation energy is suppressed in comparison to earlier work, the new pairing behavior persists. We also discuss the possibility of directly probing the mixed-spin pairing phase.

  7. Continuum and symmetry-conserving effects in drip-line nuclei using finite-range forces

    International Nuclear Information System (INIS)

    Schunck, N.; Egido, J. L.

    2008-01-01

    We report the first calculations of nuclear properties near the drip lines using the spherical Hartree-Fock-Bogoliubov mean-field theory with a finite-range force supplemented by continuum and particle-number projection effects. Calculations were carried out in a basis made of the eigenstates of a Woods-Saxon potential computed in a box, thereby guaranteeing that continuum effects were properly taken into account. Projection of the self-consistent solutions on good particle number was carried out after variation, and an approximation of the variation after projection result was used. We give the position of the drip lines and examine neutron densities in neutron-rich nuclei. We discuss the sensitivity of nuclear observables upon continuum and particle-number restoration effects

  8. Nuclear Energy Density Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Kortelainen, Erno M [ORNL; Lesinski, Thomas [ORNL; More, J. [Argonne National Laboratory (ANL); Nazarewicz, W. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Sarich, J. [Argonne National Laboratory (ANL); Schunck, N. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Stoitsov, M. V. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Wild, S. [Argonne National Laboratory (ANL)

    2010-01-01

    We carry out state-of-the-art optimization of a nuclear energy density of Skyrme type in the framework of the Hartree-Fock-Bogoliubov (HFB) theory. The particle-hole and particle-particle channels are optimized simultaneously, and the experimental data set includes both spherical and deformed nuclei. The new model-based, derivative-free optimization algorithm used in this work has been found to be significantly better than standard optimization methods in terms of reliability, speed, accuracy, and precision. The resulting parameter set UNEDFpre results in good agreement with experimental masses, radii, and deformations and seems to be free of finite-size instabilities. An estimate of the reliability of the obtained parameterization is given, based on standard statistical methods. We discuss new physics insights offered by the advanced covariance analysis.

  9. Modeling L2,3-Edge X-ray Absorption Spectroscopy with Real-Time Exact Two-Component Relativistic Time-Dependent Density Functional Theory.

    Science.gov (United States)

    Kasper, Joseph M; Lestrange, Patrick J; Stetina, Torin F; Li, Xiaosong

    2018-03-29

    X-ray absorption spectroscopy is a powerful technique to probe local electronic and nuclear structure. There has been extensive theoretical work modeling K-edge spectra from first principles. However, modeling L-edge spectra directly with density functional theory poses a unique challenge requiring further study. Spin-orbit coupling must be included in the model, and a noncollinear density functional theory is required. Using the real-time exact two-component method, we are able to variationally include one-electron spin-orbit coupling terms when calculating the absorption spectrum. The abilities of different basis sets and density functionals to model spectra for both closed- and open-shell systems are investigated using SiCl 4 and three transition metal complexes, TiCl 4 , CrO 2 Cl 2 , and [FeCl 6 ] 3- . Although we are working in the real-time framework, individual molecular orbital transitions can still be recovered by projecting the density onto the ground state molecular orbital space and separating contributions to the time evolving dipole moment.

  10. Evolution in time-dependent fitness landscapes

    OpenAIRE

    Wilke, Claus O.

    1998-01-01

    Evolution in changing environments is an important, but little studied aspect of the theory of evolution. The idea of adaptive walks in fitness landscapes has triggered a vast amount of research and has led to many important insights about the progress of evolution. Nevertheless, the small step to time-dependent fitness landscapes has most of the time not been taken. In this work, some elements of a theory of adaptive walks on changing fitness landscapes are proposed, and are subsequently app...

  11. Quantum Hydrodynamical Formulation of Time-Dependent Density Functional Theory for Probing Strong-Field Multiphoton Processes: Application to the Study of High-Order Harmonic Generation of He and Ne in Intense Laser Fields

    Science.gov (United States)

    Roy, A. K.; Chu, Shih-I.

    2002-05-01

    We extend the quantum hydrodynamical (QFD) formulation of time-dependent density functional theory (TDDFT) to the study of multiphoton processes of many-electron atomic systems in intense laser fields (A. K. Roy and S. I. Chu, Phys. Rev. A (in press).). The QFD-TDDFT formulation results in a single generalized nonlinear Schrodinger equation (GNLSE) and includes the many-body effects through a local time-dependent exchange-correlation (xc) potential. The GNLSE is solved by the time- dependent generalized pseudospectral method (X. M. Tong and S.I. Chu, Chem. Phys. 217) (1997) 119. (X. Chu and S. I. Chu, Phys. Rev. A 63) (2001) 023411.. The procedure is applied to the study of multiphoton ionization (MPI) and high harmonic generation (HHG) of He and Ne in intense laser fields. Four different xc energy functionals are used in the study with an aim to explore the roles of exchange and correlation ovn MPI/HHG processes in details ^1.

  12. Electronic Absorption Spectra of Neutral Perylene (C20H12), Terrylene (C30H16), and Quaterrylene (C40H20) and their Positive and Negative Ions: Ne Matrix-Isolation Spectroscopy and Time Dependent Density Functional Theory Calculations

    Science.gov (United States)

    Halasinski, Thomas M.; Weisman, Jennifer L.; Lee, Timothy J.; Salama, Farid; Head-Gordon, Martin; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We present a full experimental and theoretical study of an interesting series of polycyclic aromatic hydrocarbons, the oligorylenes. The absorption spectra of perylene, terrylene and quaterrylene in neutral, cationic and anionic charge states are obtained by matrix-isolation spectroscopy in Ne. The experimental spectra are dominated by a bright state that red shifts with growing molecular size. Excitation energies and state symmetry assignments are supported by calculations using time dependent density functional theory methods. These calculations also provide new insight into the observed trends in oscillator strength and excitation energy for the bright states: the oscillator strength per unit mass of carbon increases along the series.

  13. Time-dependent density functional theory (TD-DFT) coupled with reference interaction site model self-consistent field explicitly including spatial electron density distribution (RISM-SCF-SEDD)

    Science.gov (United States)

    Yokogawa, D.

    2016-09-01

    Theoretical approach to design bright bio-imaging molecules is one of the most progressing ones. However, because of the system size and computational accuracy, the number of theoretical studies is limited to our knowledge. To overcome the difficulties, we developed a new method based on reference interaction site model self-consistent field explicitly including spatial electron density distribution and time-dependent density functional theory. We applied it to the calculation of indole and 5-cyanoindole at ground and excited states in gas and solution phases. The changes in the optimized geometries were clearly explained with resonance structures and the Stokes shift was correctly reproduced.

  14. Multielectron effects in the photoelectron momentum distribution of noble-gas atoms driven by visible-to-infrared-frequency laser pulses: A time-dependent density-functional-theory approach

    Science.gov (United States)

    Murakami, Mitsuko; Zhang, G. P.; Chu, Shih-I.

    2017-05-01

    We present the photoelectron momentum distributions (PMDs) of helium, neon, and argon atoms driven by a linearly polarized, visible (527-nm) or near-infrared (800-nm) laser pulse (20 optical cycles in duration) based on the time-dependent density-functional theory (TDDFT) under the local-density approximation with a self-interaction correction. A set of time-dependent Kohn-Sham equations for all electrons in an atom is numerically solved using the generalized pseudospectral method. An effect of the electron-electron interaction driven by a visible laser field is not recognizable in the helium and neon PMDs except for a reduction of the overall photoelectron yield, but there is a clear difference between the PMDs of an argon atom calculated with the frozen-core approximation and TDDFT, indicating an interference of its M -shell wave functions during the ionization. Furthermore, we find that the PMDs of degenerate p states are well separated in intensity when driven by a near-infrared laser field, so that the single-active-electron approximation can be adopted safely.

  15. Betweenness in time dependent networks

    International Nuclear Information System (INIS)

    Alsayed, Ahmad; Higham, Desmond J.

    2015-01-01

    The concept of betweenness has given rise to a very useful class of network centrality measures. Loosely, betweenness quantifies the level of importance of a node in terms of its propensity to act as an intermediary when messages are passed around the network. In this work we generalize a walk-based betweenness measure to the case of time-dependent networks, such as those arising in telecommunications and on-line social media. We also introduce a new kind of betweenness measure, temporal betweenness, which quantifies the importance of a time-point. We illustrate the effectiveness of these new measures on synthetic examples, and also give results on real data sets involving voice call, email and Twitter

  16. Description of plasmon-like band in silver clusters: the importance of the long-range Hartree-Fock exchange in time-dependent density-functional theory simulations.

    Science.gov (United States)

    Rabilloud, Franck

    2014-10-14

    Absorption spectra of Ag20 and Ag55(q) (q = +1, -3) nanoclusters are investigated in the framework of the time-dependent density functional theory in order to analyse the role of the d electrons in plasmon-like band of silver clusters. The description of the plasmon-like band from calculations using density functionals containing an amount of Hartree-Fock exchange at long range, namely, hybrid and range-separated hybrid (RSH) density functionals, is in good agreement with the classical interpretation of the plasmon-like structure as a collective excitation of valence s-electrons. In contrast, using local or semi-local exchange functionals (generalized gradient approximations (GGAs) or meta-GGAs) leads to a strong overestimation of the role of d electrons in the plasmon-like band. The semi-local asymptotically corrected model potentials also describe the plasmon as mainly associated to d electrons, though calculated spectra are in fairly good agreement with those calculated using the RSH scheme. Our analysis shows that a portion of non-local exchange modifies the description of the plasmon-like band.

  17. Time dependent-density functional theory (TD-DFT) and experimental studies of UV-Visible spectra and cyclic voltammetry for Cu(II) complex with Et2DTC

    Science.gov (United States)

    Valle, Eliana Maira A.; Maltarollo, Vinicius Gonçalves; Almeida, Michell O.; Honorio, Kathia Maria; dos Santos, Mauro Coelho; Cerchiaro, Giselle

    2018-04-01

    In this work, we studied the complexation mode between copper(II) ion and the specific ligand investigated as carriers of metals though biological membranes, diethyldithiocarbamate (Et2DTC). It is important to understand how this occurs because it is an important intracellular chelator with potential therapeutic applications. Theoretical and experimental UV visible studies were performed to investigate the complexation mode between copper and the ligand. Electrochemical studies were also performed to complement the spectroscopic analyses. According to the theoretical calculations, using TD-DFT (Time dependent density functional theory), with B3LYP functional and DGDVZP basis set, implemented in Gaussian 03 package, it was observed that the formation of the complex [Cu(Et2DTC)2] is favorable with higher electron density over the sulfur atoms of the ligand. UV/Vis spectra have a charge transfer band at 450 nm, with the DMSO-d6 band shift from 800 to 650 nm. The electrochemical experiments showed the formation of a new redox process, referring to the complex, where the reduction peak potential of copper is displaced to less positive region. Therefore, the results obtained from this study give important insights on possible mechanisms involved in several biological processes related to the studied system.

  18. Network-timing-dependent plasticity

    Directory of Open Access Journals (Sweden)

    Vincent eDelattre

    2015-06-01

    Full Text Available Bursts of activity in networks of neurons are thought to convey salient information and drive synaptic plasticity. Here we report that network bursts also exert a profound effect on Spike-Timing-Dependent Plasticity (STDP. In acute slices of juvenile rat somatosensory cortex we paired a network burst, which alone induced long-term depression (LTD, with STDP-induced long-term potentiation and depression (LTP and LTD. We observed that STDP-induced LTP was either unaffected, blocked or flipped into LTD by the network burst, and that STDP-induced LTD was either saturated or flipped into LTP, depending on the relative timing of the network burst with respect to spike coincidences of the STDP event. We hypothesized that network bursts flip STDP-induced LTP to LTD by depleting resources needed for LTP and therefore developed a resource-dependent STDP learning rule. In a model neural network under the influence of the proposed resource-dependent STDP rule, we found that excitatory synaptic coupling was homeostatically regulated to produce power law distributed burst amplitudes reflecting self-organized criticality, a state that ensures optimal information coding.

  19. Time-dependent multimode structure

    International Nuclear Information System (INIS)

    Edgu, E.

    1991-01-01

    In a previous paper, the authors sought to display the multimode kinetics structure and step changes were considered. In this paper, a similar study is undertaken in which ramp changes are considered. Throughout the previous study, a rather simple model of a bare, cylindrical, initially critical nuclear system was the focus. This system had a central region into which a control rod was suddenly inserted, or from which a control rod was suddenly ejected. (A rod follower concept was then adopted.) The mentioned transients were modeled by a two-mode synthesis approach that displayed, rather rigorously, the space-dependency behavior of the time- and space-dependent flux in question. It is useful to complete the picture previously drawn by a study within the authors' framework, where time-dependent changes now take place instead of step changes. In this paper, they consider a ramp rod drop in a bare cylindrical nuclear system as well as a ramp rod ejection from this system (still with a rod follower concept). The effect of a feedback mechanism is not taken into account

  20. Time-dependent density functional theory/discrete reaction field spectra of open shell systems: The visual spectrum of [FeIII(PyPepS)2]- in aqueous solution.

    Science.gov (United States)

    van Duijnen, Piet Th; Greene, Shannon N; Richards, Nigel G J

    2007-07-28

    We report the calculated visible spectrum of [FeIII(PyPepS)2]- in aqueous solution. From all-classical molecular dynamics simulations on the solute and 200 water molecules with a polarizable force field, 25 solute/solvent configurations were chosen at random from a 50 ps production run and subjected the systems to calculations using time-dependent density functional theory (TD-DFT) for the solute, combined with a solvation model in which the water molecules carry charges and polarizabilities. In each calculation the first 60 excited states were collected in order to span the experimental spectrum. Since the solute has a doublet ground state several excitations to states are of type "three electrons in three orbitals," each of which gives rise to a manifold of a quartet and two doublet states which cannot properly be represented by single Slater determinants. We applied a tentative scheme to analyze this type of spin contamination in terms of Delta and Delta transitions between the same orbital pairs. Assuming the associated states as pure single determinants obtained from restricted calculations, we construct conformation state functions (CFSs), i.e., eigenfunctions of the Hamiltonian Sz and S2, for the two doublets and the quartet for each Delta,Delta pair, the necessary parameters coming from regular and spin-flip calculations. It appears that the lower final states remain where they were originally calculated, while the higher states move up by some tenths of an eV. In this case filtering out these higher states gives a spectrum that compares very well with experiment, but nevertheless we suggest investigating a possible (re)formulation of TD-DFT in terms of CFSs rather than determinants.

  1. Simulating Ru L 3 -Edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    Energy Technology Data Exchange (ETDEWEB)

    Van Kuiken, Benjamin E.; Valiev, Marat; Daifuku, Stephanie L.; Bannan, Caitlin; Strader, Matthew L.; Cho, Hana; Huse, Nils; Schoenlein, Robert W.; Govind, Niranjan; Khalil, Munira

    2013-05-30

    Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of RuII and RuIII complexes in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6]4- and RuII polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5MII-CN-RuIII(NH3)5] (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.

  2. Functional differentiability in time-dependent quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Penz, Markus, E-mail: markus.penz@uibk.ac.at; Ruggenthaler, Michael, E-mail: michael.ruggenthaler@uibk.ac.at [Institut für Theoretische Physik, Universität Innsbruck, 6020 Innsbruck (Austria)

    2015-03-28

    In this work, we investigate the functional differentiability of the time-dependent many-body wave function and of derived quantities with respect to time-dependent potentials. For properly chosen Banach spaces of potentials and wave functions, Fréchet differentiability is proven. From this follows an estimate for the difference of two solutions to the time-dependent Schrödinger equation that evolve under the influence of different potentials. Such results can be applied directly to the one-particle density and to bounded operators, and present a rigorous formulation of non-equilibrium linear-response theory where the usual Lehmann representation of the linear-response kernel is not valid. Further, the Fréchet differentiability of the wave function provides a new route towards proving basic properties of time-dependent density-functional theory.

  3. Trends in Covalency for d- and f-Element Metallocene Dichlorides Identified Using Chlorine K-Edge X-Ray Absorption Spectroscopy and Time Dependent-Density Functional Theory

    Energy Technology Data Exchange (ETDEWEB)

    Kozimor, Stosh A.; Yang, Ping; Batista, Enrique R.; Boland, Kevin S.; Burns, Carol J.; Clark, David L.; Conradson, Steven D.; Martin, Richard L.; Wikerson, Marianne P.; Wolfsberg, Laura E.

    2009-09-02

    We describe the use of Cl K-edge X-ray Absorption Spectroscopy (XAS) and both ground state and time-dependent hybrid density functional theory (DFT) to probe electronic structure and determine the degree of orbital mixing in M-Cl bonds for (C5Me5)2MCl2 (M = Ti, 1; Zr, 2; Hf, 3; Th, 4; and U, 5), where we can directly compare a class of structurally similar compounds for d- and f-elements. We report direct experimental evidence for covalency in M-Cl bonding, including actinides, and offer insight into the relative roles of the valence f- and dorbitals in these systems. The Cl K-edge XAS data for the group IV transition metals, 1 – 3, show slight decreases in covalency in M-Cl bonding with increasing principal quantum number, in the order Ti > Zr > Hf. The percent Cl 3p character per M-Cl bond was experimentally determined to be 25, 23, and 22% per M-Cl bond for 1-3, respectively. For actinides, we find a shoulder on the white line for (C5Me5)2ThCl2, 4, and distinct, but weak pre-edge features for 2 (C5Me5)2UCl2, 5. The percent Cl 3p character in Th-Cl bonds in 4 was determined to be 14 %, with high uncertainty, while the U-Cl bonds in 5 contains 9 % Cl 3p character. The magnitudes of both values are approximately half what was observed for the transition metal complexes in this class of bent metallocene dichlorides. Using the hybrid DFT calculations as a guide to interpret the experimental Cl K-edge XAS, these experiments suggest that when evaluating An- Cl bonding, both 5f- and 6d-orbitals should be considered. For (C5Me5)2ThCl2, the calculations and XAS indicate that the 5f- and 6d-orbitals are nearly degenerate and heavily mixed. In contrast, the 5f- and 6d-orbitals in (C5Me5)2UCl2 are no longer degenerate, and fall in two distinct energy groupings. The 5f-orbitals are lowest in energy and split into a 5-over-2 pattern with the high lying U 6d-orbitals split in a 4-over-1 pattern, the latter of which is similar to the dorbital splitting in group IV transition

  4. Time dependent density functional calculation of plasmon response in clusters

    Science.gov (United States)

    Wang, Feng; Zhang, Feng-Shou; Eric, Suraud

    2003-02-01

    We have introduced a theoretical scheme for the efficient description of the optical response of a cluster based on the time-dependent density functional theory. The practical implementation is done by means of the fully fledged time-dependent local density approximation scheme, which is solved directly in the time domain without any linearization. As an example we consider the simple Na2 cluster and compute its surface plasmon photoabsorption cross section, which is in good agreement with the experiments.

  5. Time-dependent Autler-Townes spectroscopy

    CERN Document Server

    Qamar, S; Zubairy, M S

    2003-01-01

    Autler-Townes spontaneous emission spectroscopy is revisited for a time-dependent case. We report the results of spontaneous emission spectra for nonstationary scattered light signals using the definition of the time-dependent physical spectrum. This is a rare example of problems where time-dependent spectra can be calculated exactly.

  6. Holographic complexity for time-dependent backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, Davood, E-mail: davoodmomeni78@gmail.com [Eurasian International Center for Theoretical Physics and Department of General Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Faizal, Mir, E-mail: mirfaizalmir@googlemail.com [Irving K. Barber School of Arts and Sciences, University of British Columbia, Okanagan, 3333 University Way, Kelowna, British Columbia V1V 1V7 (Canada); Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta, T1K 3M4 (Canada); Bahamonde, Sebastian, E-mail: sebastian.beltran.14@ucl.ac.uk [Department of Mathematics, University College London, Gower Street, London, WC1E 6BT (United Kingdom); Myrzakulov, Ratbay [Eurasian International Center for Theoretical Physics and Department of General Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan)

    2016-11-10

    In this paper, we will analyze the holographic complexity for time-dependent asymptotically AdS geometries. We will first use a covariant zero mean curvature slicing of the time-dependent bulk geometries, and then use this co-dimension one spacelike slice of the bulk spacetime to define a co-dimension two minimal surface. The time-dependent holographic complexity will be defined using the volume enclosed by this minimal surface. This time-dependent holographic complexity will reduce to the usual holographic complexity for static geometries. We will analyze the time-dependence as a perturbation of the asymptotically AdS geometries. Thus, we will obtain time-dependent asymptotically AdS geometries, and we will calculate the holographic complexity for such time-dependent geometries.

  7. Time-dependent behavior of concrete

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Tanabe, Tada-aki

    1992-01-01

    This paper is a condensed version of the material presented at the International Workshop on Finite Element Analysis of Reinforced Concrete, Session 4 -- Time Dependent Behavior, held at Columbia University, New York on June 3--6, 1991. Dr. P.A. Pfeiffer presented recent developments in time-dependent behavior of concrete and Professor T. Tanabe presented a review of research in Japan on time-dependent behavior of concrete. The paper discusses the recent research of time-dependent behavior of concrete in the past few years. 6 refs

  8. Time-dependent fracture of cementitious materials

    NARCIS (Netherlands)

    Van Zijl, G.P.A.G.; De Borst, R.; Rots, J.G.

    2000-01-01

    The response of cementitious materials is highly time dependent. On the one hand, it can lead to delayed collapse of structures fabricated of such materials. On the other hand, the time dependence is associated with the relaxation of peak stresses, which avoids, or postpones damage. A finite element

  9. A remark on the time-dependent pair distribution

    NARCIS (Netherlands)

    Hove, Léon van

    1958-01-01

    After recalling the classical work of Zernike and Prins on the pair distribution function of a liquid or gas and its role in X-ray scattering theory, one briefly discusses the time-dependent generalization of this distribution function, which is of special interest for neutron scattering. In line

  10. Asymptotic time dependent neutron transport in multidimensional systems

    International Nuclear Information System (INIS)

    Nagy, M.E.; Sawan, M.E.; Wassef, W.A.; El-Gueraly, L.A.

    1983-01-01

    A model which predicts the asymptotic time behavior of the neutron distribution in multi-dimensional systems is presented. The model is based on the kernel factorization method used for stationary neutron transport in a rectangular parallelepiped. The accuracy of diffusion theory in predicting the asymptotic time dependence is assessed. The use of neutron pulse experiments for predicting the diffusion parameters is also investigated

  11. Spectral methods for time dependent partial differential equations

    Science.gov (United States)

    Gottlieb, D.; Turkel, E.

    1983-01-01

    The theory of spectral methods for time dependent partial differential equations is reviewed. When the domain is periodic Fourier methods are presented while for nonperiodic problems both Chebyshev and Legendre methods are discussed. The theory is presented for both hyperbolic and parabolic systems using both Galerkin and collocation procedures. While most of the review considers problems with constant coefficients the extension to nonlinear problems is also discussed. Some results for problems with shocks are presented.

  12. Topic 5: Time-Dependent Behavior

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Tanabe, Tada-aki

    1991-01-01

    This chapter is a report of the material presented at the International Workshop on Finite Element Analysis of Reinforced Concrete, Session 4 -- Time Dependent Behavior, held at Columbia University, New York on June 3--6, 1991. Dr. P.A. Pfeiffer presented recent developments in time-dependent behavior of concrete and Professor T. Tanabe presented a review of research in Japan on time-dependent behavior of concrete. The chapter discusses the recent research of time-dependent behavior of concrete in the past few years in both the USA-European and Japanese communities. The author appreciates the valuable information provided by Zdenek P. Bazant in preparing the USA-European Research section

  13. Time-dependent reliability analysis of flood defences

    International Nuclear Information System (INIS)

    Buijs, F.A.; Hall, J.W.; Sayers, P.B.; Gelder, P.H.A.J.M. van

    2009-01-01

    This paper describes the underlying theory and a practical process for establishing time-dependent reliability models for components in a realistic and complex flood defence system. Though time-dependent reliability models have been applied frequently in, for example, the offshore, structural safety and nuclear industry, application in the safety-critical field of flood defence has to date been limited. The modelling methodology involves identifying relevant variables and processes, characterisation of those processes in appropriate mathematical terms, numerical implementation, parameter estimation and prediction. A combination of stochastic, hierarchical and parametric processes is employed. The approach is demonstrated for selected deterioration mechanisms in the context of a flood defence system. The paper demonstrates that this structured methodology enables the definition of credible statistical models for time-dependence of flood defences in data scarce situations. In the application of those models one of the main findings is that the time variability in the deterioration process tends to be governed the time-dependence of one or a small number of critical attributes. It is demonstrated how the need for further data collection depends upon the relevance of the time-dependence in the performance of the flood defence system.

  14. Competing risks and time-dependent covariates

    DEFF Research Database (Denmark)

    Cortese, Giuliana; Andersen, Per K

    2010-01-01

    cumulative incidences at different subintervals of the entire study period. The final strategy is to extend the competing risks model by considering all the possible combinations between internal covariate levels and cause-specific events as final states. In all of those proposals, it is possible to estimate......Time-dependent covariates are frequently encountered in regression analysis for event history data and competing risks. They are often essential predictors, which cannot be substituted by time-fixed covariates. This study briefly recalls the different types of time-dependent covariates......, as classified by Kalbfleisch and Prentice [The Statistical Analysis of Failure Time Data, Wiley, New York, 2002] with the intent of clarifying their role and emphasizing the limitations in standard survival models and in the competing risks setting. If random (internal) time-dependent covariates...

  15. Investigations of Low Temperature Time Dependent Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sluys, W A; Robitz, E S; Young, B A; Bloom, J

    2002-09-30

    The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity. The resultant data was integrated into current available life prediction tools.

  16. Modification of Time-dependent Schrodinger Equation in Quantum Mechanics by Adding Derivations of Time's Flow (Relative Time) with Respect of the Both Space and Time Based on the ``Substantial Motion'' Theory of Iranian Philosopher; Mulla Sadra

    Science.gov (United States)

    Gholibeigian, Hassan; Gholibeigian, Kazem

    2016-03-01

    In Sadra's theory, the relative time for an atom (body) which is varying continuously becomes momentums of its involved fundamental particles (strings), (time's relativity) [Gholibeigian, APS March Meeting 2015, abstract #V1.023]. Einstein's theory of special relativity might be special form of Sadra's theory. ``The nature has two magnitudes and two elongations, the one is gradual being (wavy-like motion) which belongs to the time and dividable to the former and the next times in mind, and the other is jerky-like motion which belongs to the space and dividable to the former and the next places'' [Asfar, Mulla Sadra, (1571/2-1640)]. Sadra separated the nature of time from nature of space. Therefore we can match these two natures on wave-particle duality. It means that the nature of time might be wavy-like and the nature of space might be jerky-like. So, there are two independent variable sources for particle(s)' flow with respect of its two natures such as potential of flow and relative time which vary with respect of both space and time. Consequently we propose two additional parts to Schrodinger's equation: H⌢ Ψ +tp ∇t' = ih/2 π ∂/∂t Ψ +tp∂/∂t t' , where tp is Planck's time and t' is relative time: t' = f (m , v , t) = t +/- Δt , in which t is time, m is mass and vis speed of particle . AmirKabir University of Technology, Tehran, Iran.

  17. Time Dependent Hartree Fock Equation: Gateway to Nonequilibrium Plasmas

    International Nuclear Information System (INIS)

    Dufty, James W.

    2007-01-01

    This is the Final Technical Report for DE-FG02-2ER54677 award 'Time Dependent Hartree Fock Equation - Gateway to Nonequilibrium Plasmas'. Research has focused on the nonequilibrium dynamics of electrons in the presence of ions, both via basic quantum theory and via semi-classical molecular dynamics (MD) simulation. In addition, fundamental notions of dissipative dynamics have been explored for models of grains and dust, and for scalar fields (temperature) in turbulent edge plasmas. The specific topics addressed were Quantum Kinetic Theory for Metallic Clusters, Semi-classical MD Simulation of Plasmas , and Effects of Dissipative Dynamics.

  18. Time dependent policy-based access control

    DEFF Research Database (Denmark)

    Vasilikos, Panagiotis; Nielson, Flemming; Nielson, Hanne Riis

    2017-01-01

    Access control policies are essential to determine who is allowed to access data in a system without compromising the data's security. However, applications inside a distributed environment may require those policies to be dependent on the actual content of the data, the flow of information, while...... also on other attributes of the environment such as the time. In this paper, we use systems of Timed Automata to model distributed systems and we present a logic in which one can express time-dependent policies for access control. We show how a fragment of our logic can be reduced to a logic...... that current model checkers for Timed Automata such as UPPAAL can handle and we present a translator that performs this reduction. We then use our translator and UPPAAL to enforce time-dependent policy-based access control on an example application from the aerospace industry....

  19. Time-dependent 2-stream particle transport

    International Nuclear Information System (INIS)

    Corngold, Noel

    2015-01-01

    Highlights: • We consider time-dependent transport in the 2-stream or “rod” model via an attractive matrix formalism. • After reviewing some classical problems in homogeneous media we discuss transport in materials with whose density may vary. • There we achieve a significant contraction of the underlying Telegrapher’s equation. • We conclude with a discussion of stochastics, treated by the “first-order smoothing approximation.” - Abstract: We consider time-dependent transport in the 2-stream or “rod” model via an attractive matrix formalism. After reviewing some classical problems in homogeneous media we discuss transport in materials whose density may vary. There we achieve a significant contraction of the underlying Telegrapher’s equation. We conclude with a discussion of stochastics, treated by the “first-order smoothing approximation.”

  20. Time-dependent problems and difference methods

    CERN Document Server

    Gustafsson, Bertil; Oliger, Joseph

    2013-01-01

    Praise for the First Edition "". . . fills a considerable gap in the numerical analysis literature by providing a self-contained treatment . . . this is an important work written in a clear style . . . warmly recommended to any graduate student or researcher in the field of the numerical solution of partial differential equations."" -SIAM Review Time-Dependent Problems and Difference Methods, Second Edition continues to provide guidance for the analysis of difference methods for computing approximate solutions to partial differential equations for time-de

  1. Time-dependent projected Hartree-Fock.

    Science.gov (United States)

    Tsuchimochi, Takashi; Van Voorhis, Troy

    2015-03-28

    Projected Hartree-Fock (PHF) has recently emerged as an alternative approach to describing degenerate systems where static correlation is abundant, when the spin-symmetry is projected. Here, we derive a set of linearized time-dependent equations for PHF in order to be able to access excited states. The close connection of such linear-response time-dependent PHF (TDPHF) to the stability condition of a PHF wave function is discussed. Expanding this analysis also makes it possible to give analytical expressions for the projected coupling terms of Hamiltonian and overlaps between excited Slater determinants. TDPHF with spin-projection (TDSUHF) and its Tamm-Dancoff approximation are benchmarked for several electronically degenerate molecules including the dissociating H2, F2 and O3 at equilibrium, and the distorted ethylene. It is shown that they give consistently better descriptions of excited states than does time-dependent HF (TDHF). Furthermore, we demonstrate that they offer not only singly but also doubly excited states, which naturally arise upon spin-projection. We also address the thermodynamic limit of TDSUHF, using non-interacting He gas. While TDPHF singly excited states tend to converge to those of HF with the size of the system due to the lack of size-extensivity of PHF, doubly excited states remain reasonable even at the thermodynamic limit. We find that the overall performance of our method is systematically better than the regular TDHF in many cases at the same computational scaling.

  2. Time-dependent fracture toughness of cornea.

    Science.gov (United States)

    Tonsomboon, Khaow; Koh, Ching Theng; Oyen, Michelle L

    2014-06-01

    The fracture and time-dependent properties of cornea are very important for the development of corneal scaffolds and prostheses. However, there has been no systematic study of cornea fracture; time-dependent behavior of cornea has never been investigated in a fracture context. In this work, fracture toughness of cornea was characterized by trouser tear tests, and time-dependent properties of cornea were examined by stress-relaxation and uniaxial tensile tests. Control experiments were performed on a photoelastic rubber sheet. Corneal fracture resistance was found to be strain-rate dependent, with values ranging from 3.39±0.57 to 5.40±0.48kJm(-2) over strain rates from 3 to 300mmmin(-1). Results from stress-relaxation tests confirmed that cornea is a nonlinear viscoelastic material. The cornea behaved closer to a viscous fluid at small strain but became relatively more elastic at larger strain. Although cornea properties are greatly dependent on time, the stress-strain responses of cornea were found to be insensitive to the strain rate when subjected to tensile loading. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Characterization of Models for Time-Dependent Behavior of Soils

    DEFF Research Database (Denmark)

    Liingaard, Morten; Augustesen, Anders; Lade, Poul V.

    2004-01-01

    developed for metals and steel but are, to some extent, used to characterize time effects in geomaterials. The third part is a review of constitutive laws that describe not only viscous effects but also the inviscid ( rate-independent) behavior of soils, in principle, under any possible loading condition......  Different classes of constitutive models have been developed to capture the time-dependent viscous phenomena ~ creep, stress relaxation, and rate effects ! observed in soils. Models based on empirical, rheological, and general stress-strain-time concepts have been studied. The first part....... Special attention is paid to elastoviscoplastic models that combine inviscid elastic and time-dependent plastic behavior. Various general elastoviscoplastic models can roughly be divided into two categories: Models based on the concept of overstress and models based on nonstationary flow surface theory...

  4. The effect of oxide shell thickness on the structural, electronic, and optical properties of Si-SiO2 core-shell nano-crystals: A (time dependent)density functional theory study

    International Nuclear Information System (INIS)

    Nazemi, Sanaz; Soleimani, Ebrahim Asl; Pourfath, Mahdi; Kosina, Hans

    2016-01-01

    Due to their tunable properties, silicon nano-crystals (NC) are currently being investigated. Quantum confinement can generally be employed for size-dependent band-gap tuning at dimensions smaller than the Bohr radius (∼5 nm for silicon). At the nano-meter scale, however, increased surface-to-volume ratio makes the surface effects dominant. Specifically, in Si-SiO 2 core-shell semiconductor NCs the interfacial transition layer causes peculiar electronic and optical properties, because of the co-existence of intermediate oxidation states of silicon (Si n+ , n = 0–4). Due to the presence of the many factors involved, a comprehensive understanding of the optical properties of these NCs has not yet been achieved. In this work, Si-SiO 2 NCs with a diameter of 1.1 nm and covered by amorphous oxide shells with thicknesses between 2.5 and 4.75 Å are comprehensively studied, employing density functional theory calculations. It is shown that with increased oxide shell thickness, the low-energy part of the optical transition spectrum of the NC is red shifted and attenuated. Moreover, the absorption coefficient is increased in the high-energy part of the spectrum which corresponds to SiO 2 transitions. Structural examinations indicate a larger compressive stress on the central silicon cluster with a thicker oxide shell. Examination of the local density of states reveals the migration of frontier molecular orbitals from the oxide shell into the silicon core with the increase of silica shell thickness. The optical and electrical properties are explained through the analysis of the density of states and the spatial distribution of silicon sub-oxide species.

  5. Examining empirical evidence of the effect of superfluidity on the fusion barrier

    Science.gov (United States)

    Scamps, Guillaume

    2018-04-01

    Background: Recent time-dependent Hartree-Fock-Bogoliubov (TDHFB) calculations predict that superfluidity enhances fluctuations of the fusion barrier. This effect is not fully understood and not yet experimentally revealed. Purpose: The goal of this study is to empirically investigate the effect of superfluidity on the distribution width of the fusion barrier. Method: Two new methods are proposed in the present study. First, the local regression method is introduced and used to determine the barrier distribution. The second method, which requires only the calculation of an integral of the cross section, is developed to determine accurately the fluctuations of the barrier. This integral method, showing the best performance, is systematically applied to 115 fusion reactions. Results: Fluctuations of the barrier for open-shell systems are, on average, larger than those for magic or semimagic nuclei. This is due to the deformation and the superfluidity. To disentangle these two effects, a comparison is made between the experimental width and the width estimated from a model that takes into account the tunneling, the deformation, and the vibration effect. This study reveals that superfluidity enhances the fusion barrier width. Conclusions: This analysis shows that the predicted effect of superfluidity on the width of the barrier is real and is of the order of 1 MeV.

  6. Time-dependent studies of multiphoton processes

    International Nuclear Information System (INIS)

    Kulander, K.C.; Schafer, K.J.; Krause, J.L.

    1992-01-01

    Interest in intense-field laser-atom interactions has undergone very rapid growth over the past decade due to a number of very surprising observations made during short-pulse (much-lt 1 ns) excitation of atoms and molecules. Extensive results have been reported for electron and photon emission from atoms subject to high-intensity lasers. This wealth of data has greatly increased our detailed knowledge of the effects of electromagnetic radiation on the electrons in these systems. The richness of these results has encouraged the development of new theoretical methods to provide an understanding of the observations. This paper reports that one of the major techniques being used to study the dynamics of excitation and ionization is the direct solution of the time-dependent Schrodinger equation for an atom or molecule in a pulse laser field. The time-dependent methods allow the exact calculation of above-threshold ionization (ATI) spectra for real (three-dimensional) hydrogenic systems and of photon emission from atoms excited by lasers. Recently the possibility of high-frequency, high-intensity suppression of ionization has also been addressed

  7. Simulating the time-dependent behaviour of excavations in hard rock

    CSIR Research Space (South Africa)

    Malan, DF

    2002-10-01

    Full Text Available associated with using viscoelastic theory to simulate the time-dependent behaviour of hard rock, a viscoelastic convergence solution for the incremental enlargement of a tabular excavation is discussed. Data on the time dependent deformation of a tunnel...

  8. Time-dependent density-functional calculation of nuclear response functions

    OpenAIRE

    Nakatsukasa, Takashi

    2017-01-01

    Basic issues of the time-dependent density-functional theory are discussed, especially on the real-time calculation of the linear response functions. Some remarks on the derivation of the time-dependent Kohn-Sham equations and on the numerical methods are given.

  9. Linearized Jastrow-style fluctuations on spin-projected Hartree-Fock.

    Science.gov (United States)

    Henderson, Thomas M; Scuseria, Gustavo E

    2013-12-21

    The accurate and efficient description of strong electronic correlations remains an important objective in electronic structure theory. Projected Hartree-Fock theory, where symmetries of the Hamiltonian are deliberately broken and projectively restored, all with a mean-field computational scaling, shows considerable promise in this regard. However, the method is neither size extensive nor size consistent; in other words, the correlation energy per particle beyond broken-symmetry mean field vanishes in the thermodynamic limit, and the dissociation limit of a molecule is not the sum of the fragment energies. These two problems are closely related. Recently, Neuscamman [Phys. Rev. Lett. 109, 203001 (2012)] has proposed a method to cure the lack of size consistency in the context of the antisymmetrized geminal power wave function (equivalent to number-projected Hartree-Fock-Bogoliubov) by using a Jastrow-type correlator in Hilbert space. Here, we apply the basic idea in the context of projected Hartree-Fock theory, linearizing the correlator for computational simplicity but extending it to include spin fluctuations. Results are presented for the Hubbard Hamiltonian and for some simple molecular systems.

  10. Linearized Jastrow-style fluctuations on spin-projected Hartree-Fock

    International Nuclear Information System (INIS)

    Henderson, Thomas M.; Scuseria, Gustavo E.

    2013-01-01

    The accurate and efficient description of strong electronic correlations remains an important objective in electronic structure theory. Projected Hartree-Fock theory, where symmetries of the Hamiltonian are deliberately broken and projectively restored, all with a mean-field computational scaling, shows considerable promise in this regard. However, the method is neither size extensive nor size consistent; in other words, the correlation energy per particle beyond broken-symmetry mean field vanishes in the thermodynamic limit, and the dissociation limit of a molecule is not the sum of the fragment energies. These two problems are closely related. Recently, Neuscamman [Phys. Rev. Lett. 109, 203001 (2012)] has proposed a method to cure the lack of size consistency in the context of the antisymmetrized geminal power wave function (equivalent to number-projected Hartree-Fock-Bogoliubov) by using a Jastrow-type correlator in Hilbert space. Here, we apply the basic idea in the context of projected Hartree-Fock theory, linearizing the correlator for computational simplicity but extending it to include spin fluctuations. Results are presented for the Hubbard Hamiltonian and for some simple molecular systems

  11. Spectroscopic criteria for identification of nuclear tetrahedral and octahedral symmetries: Illustration on a rare earth nucleus

    Science.gov (United States)

    Dudek, J.; Curien, D.; Dedes, I.; Mazurek, K.; Tagami, S.; Shimizu, Y. R.; Bhattacharjee, T.

    2018-02-01

    We formulate criteria for identification of the nuclear tetrahedral and octahedral symmetries and illustrate for the first time their possible realization in a rare earth nucleus 152Sm. We use realistic nuclear mean-field theory calculations with the phenomenological macroscopic-microscopic method, the Gogny-Hartree-Fock-Bogoliubov approach, and general point-group theory considerations to guide the experimental identification method as illustrated on published experimental data. Following group theory the examined symmetries imply the existence of exotic rotational bands on whose properties the spectroscopic identification criteria are based. These bands may contain simultaneously states of even and odd spins, of both parities and parity doublets at well-defined spins. In the exact-symmetry limit those bands involve no E 2 transitions. We show that coexistence of tetrahedral and octahedral deformations is essential when calculating the corresponding energy minima and surrounding barriers, and that it has a characteristic impact on the rotational bands. The symmetries in question imply the existence of long-lived shape isomers and, possibly, new waiting point nuclei—impacting the nucleosynthesis processes in astrophysics—and an existence of 16-fold degenerate particle-hole excitations. Specifically designed experiments which aim at strengthening the identification arguments are briefly discussed.

  12. Inflection point inflation and time dependent potentials in string theory

    International Nuclear Information System (INIS)

    Itzhaki, Nissan; Kovetz, Ely D.

    2007-01-01

    We consider models of inflection point inflation. The main drawback of such models is that they suffer from the overshoot problem. Namely the initial condition should be fine tuned to be near the inflection point for the universe to inflate. We show that stringy realizations of inflection point inflation are common and offer a natural resolution to the overshoot problem

  13. Time-dependent current-density-functional theory for metals

    NARCIS (Netherlands)

    Romaniello, Pina

    2006-01-01

    Materials have been used throughout history for their structural properties, e.g. ductility, elasticity, hardness etc., and later also for their physical properties, i.e., for their characteristic response to external perturbances. These last properties have been investigated in this thesis by using

  14. Large quantum systems: a mathematical and numerical perspective

    International Nuclear Information System (INIS)

    Lewin, M.

    2009-06-01

    This thesis is devoted to the mathematical study of variational models for large quantum systems. The mathematical methods are that of nonlinear analysis, calculus of variations, partial differential equations, spectral theory, and numerical analysis. The first part contains some results on finite systems. We study several approximations of the N-body Schroedinger equation for electrons in an atom or a molecule, and then the so-called Hartree-Fock- Bogoliubov model for a system of fermions interacting via the gravitational force. In a second part, we propose a new method allowing to prove the existence of the thermodynamic limit of Coulomb quantum systems. Then, we construct two Hartree-Fock-type models for infinite systems. The first is a relativistic theory deduced from Quantum Electrodynamics, allowing to describe the behavior of electrons, coupled to that of Dirac's vacuum which can become polarized. The second model describes a nonrelativistic quantum crystal in the presence of a charged defect. A new numerical method is also proposed. The last part of the thesis is devoted to spectral pollution, a phenomenon which is observed when trying to approximate eigenvalues in a gap of the essential spectrum of a self-adjoint operator, for instance for periodic Schroedinger operators or Dirac operators. (author)

  15. Inhomogeneities in a strongly correlated d-wave superconductors in the limit of strong disorder

    Science.gov (United States)

    Chakraborty, Debmalya; Sensarma, Rajdeep; Ghosal, Amit

    2015-03-01

    The complex interplay of the strong correlations and impurities in a high temperature superconductor is analyzed within a Hartree-Fock-Bogoliubov theory, augmented with Gutzwiller approximation for taking care of the strong electronic repulsion. The inclusion of such correlations is found to play a crucial role in reducing inhomogeneities in both qualitative and quantitative manner. This difference is comprehended by investigating the underlying one-particle ``normal states'' that includes the order parameters in the Hartree and Fock channels in the absence of superconductivity. This amounts to the renormalization of disorder both on the lattice sites and also on links. These two components of disorder turn out to be spatially anti-correlated through self-consistency. Interestingly, a simple pairing theory in terms of these normal states is found to describe the complex behaviors of dirty cuprates with reasonable accuracy. However, this framework needs modifications in the limit where disorder strengths are comparable to the band width. We will discuss appropriate updates in the formalism to describe physics of inhomogeneities with strong disorder.

  16. Systems with N correlated fermions. Mean-field models for nuclear structures and other N-body systems

    International Nuclear Information System (INIS)

    Grasso, M.

    2009-10-01

    This document is a summary of the author's research activities whose common topic is the N-body problem. The first chapter introduces the N-body issue through models based on the mean-field theory and on the Hartree-Fock-Bogoliubov equations. The second chapter presents the understanding of exotic nuclei features within the mean-field approach. Exotic phenomena like nuclear bubble structure, pairing correlations and pairing violations, giant neutron halos, non-standard terms in the Skyrme interactions are reviewed. The chapter 3 is dedicated to some extensions of the RPA (random phase approximation). For instance the computation of the shell structure far from the stability valley requires a more accurate assessment of the energy of the individual states through the introduction of a particle-vibration coupling. Different RPA extensions are described: first the self-consistent extension enlarged beyond particle-hole configurations, then the boson-mapping-based extension in a 3-level Lipkin model and also the second random-phase approximation. The chapter 4 gathers some studies concerning ultra-cold gases of trapped atoms. These systems are the only structures that allow the study of the correlations associated to superfluidity in terms of interaction intensity, temperature or system size. The mean-field approach is adequate for these studies. The last chapter draws a perspective for the mean-field-based models, their limits are assessed and ways of improvement are proposed. (A.C.)

  17. Pseudospin-orbit splitting and its consequences for the central depression in nuclear density

    Science.gov (United States)

    Li, Jia Jie; Long, Wen Hui; Song, Jun Ling; Zhao, Qiang

    2016-05-01

    The occurrence of the bubble-like structure has been studied, in the light of pseudospin degeneracy, within the relativistic Hartree-Fock-Bogoliubov (RHFB) theory. It is concluded that the charge/neutron bubble-like structure is predicted to occur in the mirror system of {34Si,34Ca } commonly by the selected Lagrangians, due to the persistence of Z (N )=14 subshell gaps above which the π (ν ) 2 s1 /2 states are not occupied. However, for the popular candidate 46Ar, the RHFB Lagrangian PKA1 does not support the occurrence of the bubble-like structure in the charge (proton) density profiles, due to the almost degenerate pseudospin doublet {π 2 s1 /2,π 1 d3 /2} and coherent pairing effects. The formation of a semibubble in heavy nuclei is less possible as a result of small pseudospin-orbit (PSO) splitting, while it tends to appear at Z =120 superheavy systems which coincides with large PSO splitting of the doublet {π 3 p3 /2,π 2 f5 /2} and couples with significant shell effects. Pairing correlations, which can work against bubble formation, significantly affect the PSO splitting. Furthermore, we found that the influence on semibubble formation due to different types of pairing interactions is negligible. The quenching of the spin-orbit splitting in the p orbit has been also stressed, and it may be considered the hallmark for semibubble nuclei.

  18. The N=16 subshell closure; La fermeture de sous-couche N=16

    Energy Technology Data Exchange (ETDEWEB)

    Obertelli, A

    2005-09-01

    The sequence of magic numbers for stable nuclei is now well understood. However the magnitude of shell gap may evolve from stability to drip line. Several observables show that N = 16 neutron-rich isotones present a higher stability compared to their neighbors on the N-Z chart. The spectroscopy of the levels of Ne{sup 27}, involving sd and fp shells, has allowed us to study the evolution of the nuclear shells responsible for the structure changes in N 16 isotones. In this framework we have studied the neutron transfer reaction Ne{sup 26}(d,p)Ne{sup 27} by inverted kinematics at 9,7 MeV/u. A cryogenic D{sub 2} target (17 mg.cm{sup -2}) has been used. The use of the magnetic spectrometer Vamos and that of the Exogam photon detector in coincidence operating mode has allowed us to achieve the spectroscopy of Ne{sup 27}. The results show a reduction in the gap between sd and fp shells for N = 17 isotones as we go from stability toward the neutron drip line. We have also performed a theoretical study in mean-field theory and beyond it through configuration mixing so that we can see the evolution of the isospin of the N = 16 subshell's closure. We have used a HFB (Hartree-Fock-Bogoliubov) with the finite range D1S effective interaction. (A.C.)

  19. Time-dependent correlations in electricity markets

    International Nuclear Information System (INIS)

    Alvarez-Ramirez, Jose; Escarela-Perez, Rafael

    2010-01-01

    In the last years, many electricity markets were subjected to deregulated operation where prices are set by the action of market participants. In this form, producers and consumers rely on demand and price forecasts to decide their bidding strategies, allocate assets, negotiate bilateral contracts, hedge risks, and plan facility investments. A basic feature of efficient market hypothesis is the absence of correlations between price increments over any time scale leading to random walk-type behavior of prices, so arbitrage is not possible. However, recent studies have suggested that this is not the case and correlations are present in the behavior of diverse electricity markets. In this paper, a temporal quantification of electricity market correlations is made by means of detrended fluctuation and Allan analyses. The approach is applied to two Canadian electricity markets, Ontario and Alberta. The results show the existence of correlations in both demand and prices, exhibiting complex time-dependent behavior with lower correlations in winter while higher in summer. Relatively steady annual cycles in demand but unstable cycles in prices are detected. On the other hand, the more significant nonlinear effects (measured in terms of a multifractality index) are found for winter months, while the converse behavior is displayed during the summer period. In terms of forecasting models, our results suggest that nonlinear recursive models (e.g., feedback NNs) should be used for accurate day-ahead price estimation. In contrast, linear models can suffice for demand forecasting purposes. (author)

  20. Tunable Time-Dependent Colloidal Interactions

    Science.gov (United States)

    Bergman, Andrew M.; Rogers, W. Benjamin; Manoharan, Vinothan N.

    Self-assembly of colloidal particles can be driven by changes in temperature, density, or the concentration of solutes, and it is even possible to program the thermal response and equilibrium phase transitions of such systems. It is still difficult, however, to tune how the self-assembly process varies in time. We demonstrate control over the time-dependence of colloidal interactions, using DNA-functionalized colloidal particles with binding energies that are set by the concentration of a free linker strand in solution. We control the rate at which this free strand is consumed using a catalytic DNA reaction, whose rate is governed by the concentration of a catalyst strand. Varying the concentration of the linker, its competitor, and the catalyst at a fixed temperature, we can tune the rate and degree of the formation of colloidal aggregates and their following disassembly. Close to the colloidal melting point, the timescales of these out-of-equilibrium assembly and disassembly processes are determined by the rate of the catalytic reaction. Far below the colloidal melting point, however, the effects from varying our linker and competitor concentrations dominate.

  1. Time-Dependent Variations of Accretion Disk

    Directory of Open Access Journals (Sweden)

    Hye-Weon Na

    1987-06-01

    Full Text Available In dward nova we assume the primary star as a white dwarf and the secondary as the late type star which filled Roche lobe. Mass flow from the secondary star leads to the formation of thin accretion disk around the white dwarf. We use the α parameter as viscosity to maintain the disk form and propose that the outburst in dwarf nova cause the steep increase of source term. With these assumptions we solve the basic equations of stellar structure using Newton-Raphson method. We show the physical parameters like temperature, density, pressure, opacity, surface density, height and flux to the radius of disk. Changing the value of α, we compare several parameters when mass flow rate is constant with those of when luminosity of disk is brightest. At the same time, we obtain time-dependent variations of luminosity and mass of disk. We propose the suitable range of α is 0.15-0.18 to the difference of luminosity. We compare several parameters of disk with those of the normal late type stars which have the same molecular weight of disk is lower. Maybe the outburst in dwarf nova is due to the variation of the α value instead of increment of mass flow from the secondary star.

  2. Time dependent mean-field games

    KAUST Repository

    Gomes, Diogo A.

    2014-01-06

    We consider time dependent mean-field games (MFG) with a local power-like dependence on the measure and Hamiltonians satisfying both sub and superquadratic growth conditions. We establish existence of smooth solutions under a certain set of conditions depending both on the growth of the Hamiltonian as well as on the dimension. In the subquadratic case this is done by combining a Gagliardo-Nirenberg type of argument with a new class of polynomial estimates for solutions of the Fokker-Planck equation in terms of LrLp- norms of DpH. These techniques do not apply to the superquadratic case. In this setting we recur to a delicate argument that combines the non-linear adjoint method with polynomial estimates for solutions of the Fokker-Planck equation in terms of L1L1-norms of DpH. Concerning the subquadratic case, we substantially improve and extend the results previously obtained. Furthermore, to the best of our knowledge, the superquadratic case has not been addressed in the literature yet. In fact, it is likely that our estimates may also add to the current understanding of Hamilton-Jacobi equations with superquadratic Hamiltonians.

  3. System reliability time-dependent models

    International Nuclear Information System (INIS)

    Debernardo, H.D.

    1991-06-01

    A probabilistic methodology for safety system technical specification evaluation was developed. The method for Surveillance Test Interval (S.T.I.) evaluation basically means an optimization of S.T.I. of most important system's periodically tested components. For Allowed Outage Time (A.O.T.) calculations, the method uses system reliability time-dependent models (A computer code called FRANTIC III). A new approximation, which was called Independent Minimal Cut Sets (A.C.I.), to compute system unavailability was also developed. This approximation is better than Rare Event Approximation (A.E.R.) and the extra computing cost is neglectible. A.C.I. was joined to FRANTIC III to replace A.E.R. on future applications. The case study evaluations verified that this methodology provides a useful probabilistic assessment of surveillance test intervals and allowed outage times for many plant components. The studied system is a typical configuration of nuclear power plant safety systems (two of three logic). Because of the good results, these procedures will be used by the Argentine nuclear regulatory authorities in evaluation of technical specification of Atucha I and Embalse nuclear power plant safety systems. (Author) [es

  4. Time dependent viscous string cloud cosmological models

    Science.gov (United States)

    Tripathy, S. K.; Nayak, S. K.; Sahu, S. K.; Routray, T. R.

    2009-09-01

    Bianchi type-I string cosmological models are studied in Saez-Ballester theory of gravitation when the source for the energy momentum tensor is a viscous string cloud coupled to gravitational field. The bulk viscosity is assumed to vary with time and is related to the scalar expansion. The relationship between the proper energy density ρ and string tension density λ are investigated from two different cosmological models.

  5. Entanglement entropy with a time-dependent Hamiltonian

    Science.gov (United States)

    Sivaramakrishnan, Allic

    2018-03-01

    The time evolution of entanglement tracks how information propagates in interacting quantum systems. We study entanglement entropy in CFT2 with a time-dependent Hamiltonian. We perturb by operators with time-dependent source functions and use the replica trick to calculate higher-order corrections to entanglement entropy. At first order, we compute the correction due to a metric perturbation in AdS3/CFT2 and find agreement on both sides of the duality. Past first order, we find evidence of a universal structure of entanglement propagation to all orders. The central feature is that interactions entangle unentangled excitations. Entanglement propagates according to "entanglement diagrams," proposed structures that are motivated by accessory spacetime diagrams for real-time perturbation theory. To illustrate the mechanisms involved, we compute higher-order corrections to free fermion entanglement entropy. We identify an unentangled operator, one which does not change the entanglement entropy to any order. Then, we introduce an interaction and find it changes entanglement entropy by entangling the unentangled excitations. The entanglement propagates in line with our conjecture. We compute several entanglement diagrams. We provide tools to simplify the computation of loop entanglement diagrams, which probe UV effects in entanglement propagation in CFT and holography.

  6. On the time-dependent radiative transfer in photospheric plasmas

    International Nuclear Information System (INIS)

    Schultz, A.L.; Schweizer, M.A.

    1987-01-01

    The paper is the second of a series investigating time-dependent radiative transfer processes of x-rays in photospheric plasmas. A quantitative discussion is presented of analytical results derived earlier along with a comparison with Monte Carlo simulations. The geometry considered is a homogeneous plasma ball with radius R. The source is concentrated on a concentric shell with radius r 0 < R. Point sources at the centre of the ball or semi-infinite geometries are discussed as limiting cases. Diffusion profiles are given for every scattering order and the total profile appears as the sum over these individual profiles. The comparison with Monte Carlo results is used to test the accuracy of the analytical approach and to adjust the time profiles of the first few scattering orders. The analytical theory yields good results over a wide range of situations. (author)

  7. Origin of the spike-timing-dependent plasticity rule

    Science.gov (United States)

    Cho, Myoung Won; Choi, M. Y.

    2016-08-01

    A biological synapse changes its efficacy depending on the difference between pre- and post-synaptic spike timings. Formulating spike-timing-dependent interactions in terms of the path integral, we establish a neural-network model, which makes it possible to predict relevant quantities rigorously by means of standard methods in statistical mechanics and field theory. In particular, the biological synaptic plasticity rule is shown to emerge as the optimal form for minimizing the free energy. It is further revealed that maximization of the entropy of neural activities gives rise to the competitive behavior of biological learning. This demonstrates that statistical mechanics helps to understand rigorously key characteristic behaviors of a neural network, thus providing the possibility of physics serving as a useful and relevant framework for probing life.

  8. Time-dependent intranuclear cascade model

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Kostenko, B.F.; Zadorogny, A.M.

    1980-01-01

    An intranuclear cascade model with explicit consideration of the time coordinate in the Monte Carlo simulation of the development of a cascade particle shower has been considered. Calculations have been performed using a diffuse nuclear boundary without any step approximation of the density distribution. Changes in the properties of the target nucleus during the cascade development have been taken into account. The results of these calculations have been compared with experiment and with the data which had been obtained by means of a time-independent cascade model. The consideration of time improved agreement between experiment and theory particularly for high-energy shower particles; however, for low-energy cascade particles (with grey and black tracks in photoemulsion) a discrepancy remains at T >= 10 GeV. (orig.)

  9. Structure of high spin states of 76Kr and 78Kr nuclei

    Indian Academy of Sciences (India)

    Following a fully self-consistent cranked Hartree-Fock-Bogoliubov (CHFB) approach with a pairing+quadrupole+hexadecapole model interaction Hamiltonian the structure of the yrast states of 76,78Kr nuclei is studied up to angular momentum = 24. Evolution of the shape with spin, and rotation alignment of proton as well ...

  10. An HFB scheme in natural orbitals

    International Nuclear Information System (INIS)

    Reinhard, P.G.; Rutz, K.; Maruhn, J.A.

    1997-01-01

    We present a formulation of the Hartree-Fock-Bogoliubov (HFB) equations which solves the problem directly in the basis of natural orbitals. This provides a very efficient scheme which is particularly suited for large scale calculations on coordinate-space grids. (orig.)

  11. Time-dependent constrained Hamiltonian systems and Dirac brackets

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Manuel de [Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Madrid (Spain); Marrero, Juan C. [Departamento de Matematica Fundamental, Facultad de Matematicas, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands (Spain); Martin de Diego, David [Departamento de Economia Aplicada Cuantitativa, Facultad de Ciencias Economicas y Empresariales, UNED, Madrid (Spain)

    1996-11-07

    In this paper the canonical Dirac formalism for time-dependent constrained Hamiltonian systems is globalized. A time-dependent Dirac bracket which reduces to the usual one for time-independent systems is introduced. (author)

  12. Vibrationally resolved UV/Vis spectroscopy with time-dependent density functional based tight binding

    OpenAIRE

    Rüger, Robert; Niehaus, Thomas; van Lenthe, Erik; Heine, Thomas; Visscher, Lucas

    2016-01-01

    We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the adiabatic Hessian Franck-Condon (AH|FC) method with a harmonic approximation for the nuclear wavefunction. The theory of vibrationally resolved UV/Vis spectroscopy is first summarized from the viewpoint of TD-DFTB. The method is benchmarked against time-dependent density functional theory (TD-DFT) ...

  13. On the time-dependent Aharonov–Bohm effect

    Directory of Open Access Journals (Sweden)

    Jian Jing

    2017-11-01

    Full Text Available The Aharonov–Bohm effect in the background of a time-dependent vector potential is re-examined for both non-relativistic and relativistic cases. Based on the solutions to the Schrodinger and Dirac equations which contain the time-dependent magnetic vector potential, we find that contrary to the conclusions in a recent paper (Singleton and Vagenas 2013 [4], the interference pattern will be altered with respect to time because of the time-dependent vector potential.

  14. Transient fluctuation relations for time-dependent particle transport

    Science.gov (United States)

    Altland, Alexander; de Martino, Alessandro; Egger, Reinhold; Narozhny, Boris

    2010-09-01

    We consider particle transport under the influence of time-varying driving forces, where fluctuation relations connect the statistics of pairs of time-reversed evolutions of physical observables. In many “mesoscopic” transport processes, the effective many-particle dynamics is dominantly classical while the microscopic rates governing particle motion are of quantum-mechanical origin. We here employ the stochastic path-integral approach as an optimal tool to probe the fluctuation statistics in such applications. Describing the classical limit of the Keldysh quantum nonequilibrium field theory, the stochastic path integral encapsulates the quantum origin of microscopic particle exchange rates. Dynamically, it is equivalent to a transport master equation which is a formalism general enough to describe many applications of practical interest. We apply the stochastic path integral to derive general functional fluctuation relations for current flow induced by time-varying forces. We show that the successive measurement processes implied by this setup do not put the derivation of quantum fluctuation relations in jeopardy. While in many cases the fluctuation relation for a full time-dependent current profile may contain excessive information, we formulate a number of reduced relations, and demonstrate their application to mesoscopic transport. Examples include the distribution of transmitted charge, where we show that the derivation of a fluctuation relation requires the combined monitoring of the statistics of charge and work.

  15. Time dependent analysis of concrete in SAP2000

    OpenAIRE

    Varona Moya, Francisco de Borja

    2018-01-01

    This document presents an example of time-dependent analysis of a concrete column using SAP2000. In order to understand the parameters required by the software to run the analysis, the formulation of time dependent properties of concrete according to Model Code 1990 is included.

  16. Thermal state of the general time-dependent harmonic oscillator

    Indian Academy of Sciences (India)

    Harmonic oscillator that has time-dependent mass or frequency may be a good example of time-dependent Hamiltonian systems. Although a large number of dynamical systems have been investigated using approximation and perturbation method in the literature [2,3], we confine our concern to the exact quantum solution ...

  17. Time dependent Hartree-Fock treatment of elastic scattering of electrons by H and He/+/.

    Science.gov (United States)

    Jamieson, M. J.

    1972-01-01

    Time dependent Hartree-Fock theory, in its coupled and uncoupled forms, is used to calculate the elastic singlet p-wave phase shifts for the scattering of electrons by H and He/+/. On comparison with the best available results it is concluded that the coupled scheme, which contains correlation to at least first order, is superior. Levinson's theorem is confirmed.

  18. Quantum trajectory in a time-dependent potential : oscillator in a monochromatic field

    OpenAIRE

    Nishiyama, Yoshio

    2002-01-01

    The 'quantum trajectory' obeying the Schrodinger equation with a time dependent potential is theoretically determined. As an illustration of the theory the trajectory of a charged harmonic oscillator in an electromagnetic field obeying the wave equation is shown along with the orbital motion of the corresponding classical particle.

  19. Exact solution for a time-dependent multi-mode coupled quadratic Bose system

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xiuwei; Mu Haifeng [College of Physics, Ludong University, Yantai 264025 (China); Liu Shuyan [College of Electric and Electronic Engineering, Ludong University, Yantai 264025 (China); Guo Chun, E-mail: hai-fengmu@163.co [Office of Teaching Affairs, Ludong University, Yantai 264025 (China)

    2010-11-12

    By utilizing generalized linear quantum transformation theory, the evolution operator, normal and anti-normal Wigner characteristic functions, P- and Q-representations of a multi-mode coupled quadratic Boson system are presented. The squeezing properties of a time-dependent double-mode coupled quadratic Bose system are investigated as a specific example.

  20. Time-dependent reliability sensitivity analysis of motion mechanisms

    International Nuclear Information System (INIS)

    Wei, Pengfei; Song, Jingwen; Lu, Zhenzhou; Yue, Zhufeng

    2016-01-01

    Reliability sensitivity analysis aims at identifying the source of structure/mechanism failure, and quantifying the effects of each random source or their distribution parameters on failure probability or reliability. In this paper, the time-dependent parametric reliability sensitivity (PRS) analysis as well as the global reliability sensitivity (GRS) analysis is introduced for the motion mechanisms. The PRS indices are defined as the partial derivatives of the time-dependent reliability w.r.t. the distribution parameters of each random input variable, and they quantify the effect of the small change of each distribution parameter on the time-dependent reliability. The GRS indices are defined for quantifying the individual, interaction and total contributions of the uncertainty in each random input variable to the time-dependent reliability. The envelope function method combined with the first order approximation of the motion error function is introduced for efficiently estimating the time-dependent PRS and GRS indices. Both the time-dependent PRS and GRS analysis techniques can be especially useful for reliability-based design. This significance of the proposed methods as well as the effectiveness of the envelope function method for estimating the time-dependent PRS and GRS indices are demonstrated with a four-bar mechanism and a car rack-and-pinion steering linkage. - Highlights: • Time-dependent parametric reliability sensitivity analysis is presented. • Time-dependent global reliability sensitivity analysis is presented for mechanisms. • The proposed method is especially useful for enhancing the kinematic reliability. • An envelope method is introduced for efficiently implementing the proposed methods. • The proposed method is demonstrated by two real planar mechanisms.

  1. Simulation of time-dependent Heisenberg models in one dimension

    DEFF Research Database (Denmark)

    Volosniev, A. G.; Hammer, H. -W.; Zinner, N. T.

    2016-01-01

    constants can be manipulated by time-dependent driving of the shape of the external confinement. As illustrative examples, we consider a harmonic trapping potential with a variable frequency and an infinite square well potential with a time-dependent barrier in the middle.......In this Letter, we provide a theoretical analysis of strongly interacting quantum systems confined by a time-dependent external potential in one spatial dimension. We show that such systems can be used to simulate spin chains described by Heisenberg Hamiltonians in which the exchange coupling...

  2. Time-dependent deterministic transport on parallel architectures using PARTISN

    International Nuclear Information System (INIS)

    Alcouffe, R.E.; Baker, R.S.

    1998-01-01

    In addition to the ability to solve the static transport equation, the authors have also incorporated time dependence into the parallel S N code PARTISN. Using a semi-implicit scheme, PARTISN is capable of performing time-dependent calculations for both fissioning and pure source driven problems. They have applied this to various types of problems such as shielding and prompt fission experiments. This paper describes the form of the time-dependent equations implemented, their solution strategies in PARTISN including iteration acceleration, and the strategies used for time-step control. Results are presented for a iron-water shielding calculation and a criticality excursion in a uranium solution configuration

  3. Time dependent mean field approximation to the many-body S-matrix

    International Nuclear Information System (INIS)

    Alhassid, Y.; Koonin, S.E.

    1980-01-01

    Time-dependent Hartree-Fock (TDHF) calculations are a good description of some inclusive properties of deep inelastic heavy-ion collisions. The first steps toward a mean-field theory that approximates specific elements of the many-body S matrix are presented. A many-body system with pairwise interactions excited by an external, time-dependent one-body field is considered. The methods are used to solve the forced Lipkin model. The moduli of elastic and excitation amplitudes are plotted. 3 figures

  4. Analysis of time-dependent reliability of degenerated reinforced concrete structure

    Directory of Open Access Journals (Sweden)

    Zhang Hongping

    2016-07-01

    Full Text Available Durability deterioration of structure is a highly random process. The maintenance of degenerated structure involves the calculation of the reliability of time-dependent structure. This study introduced reinforced concrete structure resistance decrease model and related statistical parameters of uncertainty, analyzed resistance decrease rules of corroded bending element of reinforced concrete structure, and finally calculated timedependent reliability of the corroded bending element of reinforced concrete structure, aiming to provide a specific theoretical basis for the application of time-dependent reliability theory.

  5. Learning Bounds of ERM Principle for Sequences of Time-Dependent Samples

    Directory of Open Access Journals (Sweden)

    Mingchen Yao

    2015-01-01

    Full Text Available Many generalization results in learning theory are established under the assumption that samples are independent and identically distributed (i.i.d.. However, numerous learning tasks in practical applications involve the time-dependent data. In this paper, we propose a theoretical framework to analyze the generalization performance of the empirical risk minimization (ERM principle for sequences of time-dependent samples (TDS. In particular, we first present the generalization bound of ERM principle for TDS. By introducing some auxiliary quantities, we also give a further analysis of the generalization properties and the asymptotical behaviors of ERM principle for TDS.

  6. Spike-timing dependent plasticity and the cognitive map

    Directory of Open Access Journals (Sweden)

    Daniel eBush

    2010-10-01

    Full Text Available Since the discovery of place cells – single pyramidal neurons that encode spatial location – it has been hypothesised that the hippocampus may act as a cognitive map of known environments. This putative function has been extensively modelled using auto-associative networks, which utilise rate-coded synaptic plasticity rules in order to generate strong bi-directional connections between concurrently active place cells that encode for neighbouring place fields. However, empirical studies using hippocampal cultures have demonstrated that the magnitude and direction of changes in synaptic strength can also be dictated by the relative timing of pre- and post- synaptic firing according to a spike-timing dependent plasticity (STDP rule. Furthermore, electrophysiology studies have identified persistent ‘theta-coded’ temporal correlations in place cell activity in vivo, characterised by phase precession of firing as the corresponding place field is traversed. It is not yet clear if STDP and theta-coded neural dynamics are compatible with cognitive map theory and previous rate-coded models of spatial learning in the hippocampus. Here, we demonstrate that an STDP rule based on empirical data obtained from the hippocampus can mediate rate-coded Hebbian learning when pre- and post- synaptic activity is stochastic and has no persistent sequence bias. We subsequently demonstrate that a spiking recurrent neural network that utilises this STDP rule, alongside theta-coded neural activity, allows the rapid development of a cognitive map during directed or random exploration of an environment of overlapping place fields. Hence, we establish that STDP and phase precession are compatible with rate-coded models of cognitive map development.

  7. Ambiguities in the Lagrangians formalism: the time-dependent case

    International Nuclear Information System (INIS)

    Moreira, D.T.

    1986-01-01

    An intrinsic formulation of the equivalence problem for time-dependent Lagrangians is given. A new demostration of a theorem derived by Henneaux (1982) is obtained. The relationship to transformation groups is discussed. (Author) [pt

  8. Time-dependent rheological behaviour of bacterial cellulose hydrogel.

    Science.gov (United States)

    Gao, Xing; Shi, Zhijun; Kuśmierczyk, Piotr; Liu, Changqing; Yang, Guang; Sevostianov, Igor; Silberschmidt, Vadim V

    2016-01-01

    This work focuses on time-dependent rheological behaviour of bacterial cellulose (BC) hydrogel. Due to its ideal biocompatibility, BC hydrogel could be employed in biomedical applications. Considering the complexity of loading conditions in human body environment, time-dependent behaviour under relevant conditions should be understood. BC specimens are produced by Gluconacetobacter xylinus ATCC 53582 at static-culture conditions. Time-dependent behaviour of specimens at several stress levels is experimentally determined by uniaxial tensile creep tests. We use fraction-exponential operators to model the rheological behaviour. Such a representation allows combination of good accuracy in analytical description of viscoelastic behaviour of real materials and simplicity in solving boundary value problems. The obtained material parameters allow us to identify time-dependent behaviour of BC hydrogel at high stress level with sufficient accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Skinner-Rusk approach to time-dependent mechanics

    NARCIS (Netherlands)

    Cortés, Jorge; Martínez, Sonia; Cantrijn, Frans

    2002-01-01

    The geometric approach to autonomous classical mechanical systems in terms of a canonical first-order system on the Whitney sum of the tangent and cotangent bundle, developed by Skinner and Rusk, is extended to the time-dependent framework.

  10. Time-dependent shape fluctuations and the giant dipole resonance in hot nuclei: Realistic calculations

    International Nuclear Information System (INIS)

    Alhassid, Y.; Bush, B.; Yale Univ., New Haven, CT

    1990-01-01

    The effects of time-dependent shape fluctuations on the giant dipole resonance (GDR) in hot rotating nuclei are investigated. Using the framework of the Landau theory of shape transitions we develop a realistic macroscopic stochastic model to describe the quadrupole time-dependent shape fluctuations and their coupling to the dipole degrees of freedom. In the adiabatic limit the theory reduces to a previous adiabatic theory of static fluctuations in which the GDR cross section is calculated by averaging over the equilibrium distribution with the unitary invariant metric. Nonadiabatic effects are investigated in this model and found to cause structural changes in the resonance cross section and motional narrowing. Comparisons with experimental data are made and deviations from the adiabatic calculations can be explained. In these cases it is possible to determine from the data the damping of the quadrupole motion at finite temperature. (orig.)

  11. Time-dependent fluorescence in nanoconfined solvents: Linear-response approximations and Gaussian statistics

    Science.gov (United States)

    Laird, Brian B.; Thompson, Ward H.

    2011-08-01

    The time-dependent fluorescence of a model dye molecule in a nanoconfined solvent is used to test approximations based on the dynamic and static linear-response theories and the assumption of Gaussian statistics. Specifically, the results of nonequilibrium molecular-dynamics simulations are compared to approximate expressions involving time correlation functions obtained from equilibrium simulations. Solvation dynamics of a model diatomic dye molecule dissolved in acetonitrile confined in a spherical hydrophobic cavity of radius 12, 15, and 20 Å is used as the test case. Both the time-dependent fluorescence energy, expressed as the normalized dynamic Stokes shift, and the time-dependent position of the dye molecule after excitation are examined. While the dynamic linear-response approximation fails to describe key aspects of the solvation dynamics, assuming Gaussian statistics reproduces the full nonequilibrium simulations well. The implications of these results are discussed.

  12. Sensitivity and uncertainty analysis for functionals of the time-dependent nuclide density field

    International Nuclear Information System (INIS)

    Williams, M.L.; Weisbin, C.R.

    1978-04-01

    An approach to extend the present ORNL sensitivity program to include functionals of the time-dependent nuclide density field is developed. An adjoint equation for the nuclide field was derived previously by using generalized perturbation theory; the present derivation makes use of a variational principle and results in the same equation. The physical significance of this equation is discussed and compared to that of the time-dependent neutron adjoint equation. Computational requirements for determining sensitivity profiles and uncertainties for functionals of the time-dependent nuclide density vector are developed within the framework of the existing FORSS system; in this way the current capability is significantly extended. The development, testing, and use of an adjoint version of the ORIGEN isotope generation and depletion code are documented. Finally, a sample calculation is given which estimates the uncertainty in the plutonium inventory at shutdown of a PWR due to assumed uncertainties in uranium and plutonium cross sections. 8 figures, 4 tables

  13. Time-dependent wave-packet description of dissociative electron attachment

    International Nuclear Information System (INIS)

    Gertitschke, P.L.; Domcke, W.

    1993-01-01

    A time-dependent description of the dissociative-attachment process is formulated within the framework of the projection-operator formalism of scattering theory. A generally applicable computational scheme for the solution of the resulting integro-differential equation of motion is developed. The concepts and computational techniques are illustrated for a model of a d-wave shape resonance as well as for the p-wave 2 Σ u + shape resonance in electron-H 2 collisions. It is shown that the time-dependent wave-packet picture yields qualitative insight into the dynamics of the dissociative-attachment reaction. The origin of the complete failure of the local-complex-potential approximation for the 2 Σ u + resonance in e+H 2 becomes apparent in the time-dependent picture

  14. An investigation into the photochemistry of, and the electrochemically induced CO-loss from, [(CO)(5)MC(OMe)Me](M = Cr or W) using low-temperature matrix isolation, picosecond infrared spectroscopy, cyclic voltammetry, and time-dependent density functional theory

    NARCIS (Netherlands)

    McMahon, S.; Amirjalayer, S.; Buma, W.J.; Halpin, Y.; Long, C.; Rooney, A.D.; Woutersen, S.; Pryce, M.T.

    2015-01-01

    The photophysics and photochemistry of [(CO)(5)MC(OMe)Me] (M = Cr or W) were investigated using pico-second time-resolved infrared spectroscopy (M = Cr or W), low-temperature matrix isolation techniques (M = Cr), and time-dependent density functional calculations (M = Cr or W). These studies provide

  15. Hydraulic mechanism and time-dependent characteristics of loose gully deposits failure induced by rainfall

    Directory of Open Access Journals (Sweden)

    Yong Wu

    2015-12-01

    Full Text Available Failure of loose gully deposits under the effect of rainfall contributes to the potential risk of debris flow. In the past decades, researches on hydraulic mechanism and time-dependent characteristics of loose deposits failure are frequently reported, however adequate measures for reducing debris flow are not available practically. In this context, a time-dependent model was established to determine the changes of water table of loose deposits using hydraulic and topographic theories. In addition, the variation in water table with elapsed time was analyzed. The formulas for calculating hydrodynamic and hydrostatic pressures on each strip and block unit of deposit were proposed, and the slope stability and failure risk of the loose deposits were assessed based on the time-dependent hydraulic characteristics of established model. Finally, the failure mechanism of deposits based on infinite slope theory was illustrated, with an example, to calculate sliding force, anti-sliding force and residual sliding force applied to each slice. The results indicate that failure of gully deposits under the effect of rainfall is the result of continuously increasing hydraulic pressure and water table. The time-dependent characteristics of loose deposit failure are determined by the factors of hydraulic properties, drainage area of interest, rainfall pattern, rainfall duration and intensity.

  16. Vacuum radiation induced by time dependent electric field

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-04-01

    Full Text Available Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  17. The nonlinear time-dependent response of isotactic polypropylene

    DEFF Research Database (Denmark)

    Drozdov, Aleksey D.; Christiansen, Jesper de Claville

    2002-01-01

    Tensile creep tests, tensile relaxation tests and a tensile test with a constant strain rate are performed on injection-molded isotactic polypropylene at room temperature. A constitutive model is derived for the time-dependent behavior of semicrystalline polymers. A polymer is treated as an equiv......Tensile creep tests, tensile relaxation tests and a tensile test with a constant strain rate are performed on injection-molded isotactic polypropylene at room temperature. A constitutive model is derived for the time-dependent behavior of semicrystalline polymers. A polymer is treated...

  18. Vacuum radiation induced by time dependent electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo, E-mail: zhangbolfrc@caep.cn [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Zhang, Zhi-meng; Hong, Wei; He, Shu-Kai; Teng, Jian [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Gu, Yu-qiu, E-mail: yqgu@caep.cn [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China)

    2017-04-10

    Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED) will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  19. Wave equations with time-dependent dissipation II. Effective dissipation

    Science.gov (United States)

    Wirth, Jens

    This article is intended to present a construction of structural representations of solutions to the Cauchy problem for wave equations with time-dependent dissipation above scaling. These representations are used to give estimates of the solution and its derivatives based on L(R), q⩾2. The article represents the second part within a series. In [Jens Wirth, Wave equations with time-dependent dissipation I. Non-effective dissipation, J. Differential Equations 222 (2) (2006) 487-514] weak dissipations below scaling were discussed.

  20. An introduction to the adiabatic time-dependent Hartree-Fock method

    International Nuclear Information System (INIS)

    Giannoni, M.J.

    1984-05-01

    The aim of the adiabatic time-dependent Hartree-Fock method is to investigate the microscopic foundations of the phenomenological collective models. We briefly review the general formulation, which consists in deriving a Bohr-like Hamiltonian from a mean field theory, and discuss the limiting case where only a few collective variables participate to the motion. Some applications to soft nuclei and heavy ion collisions are presented

  1. Thermal state of the general time-dependent harmonic oscillator

    Indian Academy of Sciences (India)

    Taking advantage of dynamical invariant operator, we derived quantum mechanical solution of general time-dependent harmonic oscillator. ... The domain part of the email address of all email addresses used by the office of Indian Academy of Sciences, including those of the staff, the journals, various programmes, and ...

  2. BEC from a time-dependent variational point of view

    International Nuclear Information System (INIS)

    Benarous, Mohamed

    2005-01-01

    We use the time-dependent variational principle of Balian and Veneroni to derive a set of equations governing the dynamics of a trapped Bose gas at finite temperature. We show that this dynamics generalizes the Gross-Pitaevskii equations in that it introduces a consistent dynamical coupling between the evolution of the condensate density, the thermal cloud, and the 'anomalous' density

  3. Coherent states of general time-dependent harmonic oscillator

    Indian Academy of Sciences (India)

    Abstract. By introducing an invariant operator, we obtain exact wave functions for a general time-dependent quadratic harmonic oscillator. The coherent states, both in x- and p-spaces, are calculated. We confirm that the uncertainty product in coherent state is always larger than Η/2 and is equal to the minimum of the ...

  4. Approximate factorization for time-dependent partial differential equations

    NARCIS (Netherlands)

    P.J. van der Houwen; B.P. Sommeijer (Ben)

    1999-01-01

    textabstractThe first application of approximate factorization in the numerical solution of time-dependent partial differential equations (PDEs) can be traced back to the celebrated papers of Peaceman and Rachford and of Douglas in 1955. For linear problems, the Peaceman-Rachford- Douglas method can

  5. Path integral solution for some time-dependent potential

    International Nuclear Information System (INIS)

    Storchak, S.N.

    1989-12-01

    The quantum-mechanical problem with a time-dependent potential is solved by the path integral method. The solution is obtained by the application of the previously derived general formula for rheonomic homogeneous point transformation and reparametrization in the path integral. (author). 4 refs

  6. Construction of an exact solution of time-dependent Ginzburg ...

    Indian Academy of Sciences (India)

    A new approach is taken to calculate the speed of front propagation at which the interface moves from a superconducting to a normal region in a superconducting sample. Using time-dependent Ginzburg–Landau (TDGL) equations we have calculated the speed by constructing a new exact solution. This approach is based ...

  7. Time-dependent fracture of early age concrete

    DEFF Research Database (Denmark)

    Østergaard, Lennart; Stang, Henrik; Olesen, John Forbes

    2002-01-01

    An experimental method suitable for the determination of the time-dependent tension softening response of early age concrete is presented. The method is based on the wedge splitting test by Tschegg, which is well known to be suited for the determination of fracture mechanical parameters, i...

  8. Simulation of compressible viscous flow in time-dependent domains

    Czech Academy of Sciences Publication Activity Database

    Česenek, J.; Feistauer, M.; Horáček, Jaromír; Kučera, V.; Prokopova, J.

    2013-01-01

    Roč. 219, č. 13 (2013), s. 7139-7150 ISSN 0096-3003 R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional support: RVO:61388998 Keywords : time dependent domain * ALE method * semi-implicit time discretization * shock indicator Subject RIV: BI - Acoustics Impact factor: 1.600, year: 2013

  9. Time dependent critical state in disks and rings

    NARCIS (Netherlands)

    Hemmes, Herman K.; Kuper, A.R.; Kuper, A.R.; van de Klundert, L.J.M.; van de Klundert, L.J.M.

    1991-01-01

    The authors have developed a model to calculate the response of the current distribution in disks and rings to a time-dependent applied magnetic field. In the model, the ring (or disk) is divided into concentric segments. The segments are assumed to be inductively coupled to each other and to the

  10. Ranking paths in stochastic time-dependent networks

    DEFF Research Database (Denmark)

    Nielsen, Lars Relund; Andersen, Kim Allan; Pretolani, Daniele D.

    2014-01-01

    In this paper we address optimal routing problems in networks where travel times are both stochastic and time-dependent. In these networks, the best route choice is not necessarily a path, but rather a time-adaptive strategy that assigns successors to nodes as a function of time. Nevertheless, in...

  11. Construction of an exact solution of time-dependent Ginzburg ...

    Indian Academy of Sciences (India)

    Abstract. A new approach is taken to calculate the speed of front propagation at which the interface moves from a superconducting to a normal region in a superconducting sample. Using time-dependent Ginzburg–Landau (TDGL) equations we have calculated the speed by constructing a new exact solution. This approach ...

  12. Student Understanding of Time Dependence in Quantum Mechanics

    Science.gov (United States)

    Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.

    2015-01-01

    The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing…

  13. Time-Dependent Natural Convection Couette Flow of Heat ...

    African Journals Online (AJOL)

    Time-Dependent Natural Convection Couette Flow of Heat Generating/Absorbing Fluid between Vertical Parallel Plates Filled With Porous Material. ... The numerical simulation conducted for some saturated liquids reveled that at t ≥ Pr the steady and unsteady state velocities (as well as the temperature of the fluid) ...

  14. Time-dependent effects of cardiovascular exercise on memory

    DEFF Research Database (Denmark)

    Roig, Marc; Thomas, Richard; Mang, Cameron S

    2016-01-01

    We present new evidence supporting the hypothesis that the effects of cardiovascular exercise on memory can be regulated in a time-dependent manner. When the exercise stimulus is temporally coupled with specific phases of the memory formation process, a single bout of cardiovascular exercise may ...

  15. Examining the time dependence of DAMA's modulation amplitude

    Science.gov (United States)

    Kelso, Chris; Savage, Christopher; Sandick, Pearl; Freese, Katherine; Gondolo, Paolo

    2018-03-01

    If dark matter is composed of weakly interacting particles, Earth's orbital motion may induce a small annual variation in the rate at which these particles interact in a terrestrial detector. The DAMA collaboration has identified at a 9.3σ confidence level such an annual modulation in their event rate over two detector iterations, DAMA/NaI and DAMA/LIBRA, each with ˜ 7 years of observations. This data is well fit by a constant modulation amplitude for the two iterations of the experiment. We statistically examine the time dependence of the modulation amplitudes, which "by eye" appear to be decreasing with time in certain energy ranges. We perform a chi-squared goodness of fit test of the average modulation amplitudes measured by the two detector iterations which rejects the hypothesis of a consistent modulation amplitude at greater than 80, 96, and 99.6% for the 2-4, 2-5 and 2-6 keVee energy ranges, respectively. We also find that among the 14 annual cycles there are three ≳ 3σ departures from the average in our estimated data in the 5-6 keVee energy range. In addition, we examined several phenomenological models for the time dependence of the modulation amplitude. Using a maximum likelihood test, we find that descriptions of the modulation amplitude as decreasing with time are preferred over a constant modulation amplitude at anywhere between 1σ and 3σ , depending on the phenomenological model for the time dependence and the signal energy range considered. A time dependent modulation amplitude is not expected for a dark matter signal, at least for dark matter halo morphologies consistent with the DAMA signal. New data from DAMA/LIBRA-phase2 will certainly aid in determining whether any apparent time dependence is a real effect or a statistical fluctuation.

  16. The Bloch wave operator: generalizations and applications: II. The time-dependent case

    Energy Technology Data Exchange (ETDEWEB)

    Jolicard, Georges [Observatoire de Besancon (UMR-CNRS 6091), Universite de Franche-Comte, 41 bis, Avenue de l' Observatoire, 25000 Besancon (France); Killingbeck, John P [Observatoire de Besancon (UMR-CNRS 6091), Universite de Franche-Comte, 41 bis, Avenue de l' Observatoire, 25000 Besancon (France); Mathematics Department, University of Hull, Hull HU6 7RX (United Kingdom)

    2003-10-10

    Part II of the review shows how the stationary Bloch wave operator of part I can be suitably modified to give a time-dependent wave operator. This operator makes it possible to use a relatively small active space in order to describe the dynamical processes which occur in quantum mechanical systems which have a time-dependent Hamiltonian. A close study is made of the links between the time-dependent and time-independent wave operators at the adiabatic limit; the analysis clarifies the way in which the wave operator formalism allows the time evolution of a system or a wave packet to be described in terms of a fast evolution inside the active space together with weak transitions out of this space which can be treated by perturbation methods. Two alternative wave operator equations of motion are derived and analysed. The first one is a non-linear differential equation in the usual Hilbert space; the second one is a differential equation in an extended Hilbert space with an extra time variable added and becomes equivalent to the usual Bloch equation when the Floquet Hamiltonian is taken in place of the ordinary Hamiltonian. A study is made of the close relationships between the time-dependent wave operator formalism, the Floquet theory and the (t, t') theory. Some original methods of solution of the two forms of wave operator equation are proposed and lead to new techniques of integration for the time-dependent Schroedinger equation (e.g., the generalized Green equation procedure). Mixed procedures involving both the time-independent and time-dependent wave operators are shown to be applicable to the internal eigenstate problem for large complex matrices. A detailed account is given of the description of inelastic and photoreactive processes by means of the time-dependent wave operator formalism, with particular attention to laser-molecule interactions. The emphasis is on projection operator techniques, with special attention being given to the method of selection

  17. Tokamak power reactor ignition and time dependent fractional power operation

    International Nuclear Information System (INIS)

    Vold, E.L.; Mau, T.K.; Conn, R.W.

    1986-06-01

    A flexible time-dependent and zero-dimensional plasma burn code with radial profiles was developed and employed to study the fractional power operation and the thermal burn control options for an INTOR-sized tokamak reactor. The code includes alpha thermalization and a time-dependent transport loss which can be represented by any one of several currently popular scaling laws for energy confinement time. Ignition parameters were found to vary widely in density-temperature (n-T) space for the range of scaling laws examined. Critical ignition issues were found to include the extent of confinement time degradation by alpha heating, the ratio of ion to electron transport power loss, and effect of auxiliary heating on confinement. Feedback control of the auxiliary power and ion fuel sources are shown to provide thermal stability near the ignition curve

  18. Time dependent non-extinction probability for prompt critical systems

    International Nuclear Information System (INIS)

    Gregson, M. W.; Prinja, A. K.

    2009-01-01

    The time dependent non-extinction probability equation is presented for slab geometry. Numerical solutions are provided for a nested inner/outer iteration routine where the fission terms (both linear and non-linear) are updated and then held fixed over the inner scattering iteration. Time dependent results are presented highlighting the importance of the injection position and angle. The iteration behavior is also described as the steady state probability of initiation is approached for both small and large time steps. Theoretical analysis of the nested iteration scheme is shown and highlights poor numerical convergence for marginally prompt critical systems. An acceleration scheme for the outer iterations is presented to improve convergence of such systems. Theoretical analysis of the acceleration scheme is also provided and the associated decrease in computational run time addressed. (authors)

  19. Chromospheric extents predicted by time-dependent acoustic wave models

    Science.gov (United States)

    Cuntz, Manfred

    1990-01-01

    Theoretical models for chromospheric structures of late-type giant stars are computed, including the time-dependent propagation of acoustic waves. Models with short-period monochromatic shock waves as well as a spectrum of acoustic waves are discussed, and the method is applied to the stars Arcturus, Aldebaran, and Betelgeuse. Chromospheric extent, defined as the monotonic decrease with height of the time-averaged electron densities, are found to be 1.12, 1.13, and 1.22 stellar radii for the three stars, respectively; this corresponds to a time-averaged electron density of 10 to the 7th/cu cm. Predictions of the extended chromospheric obtained using a simple scaling law agree well with those obtained by the time-dependent wave models; thus, the chromospheres of all stars for which the scaling law is valid consist of the same number of pressure scale heights.

  20. Chromospheric extents predicted by time-dependent acoustic wave models

    Energy Technology Data Exchange (ETDEWEB)

    Cuntz, M. (Joint Institute for Laboratory Astrophysics, Boulder, CO (USA) Heidelberg Universitaet (Germany, F.R.))

    1990-01-01

    Theoretical models for chromospheric structures of late-type giant stars are computed, including the time-dependent propagation of acoustic waves. Models with short-period monochromatic shock waves as well as a spectrum of acoustic waves are discussed, and the method is applied to the stars Arcturus, Aldebaran, and Betelgeuse. Chromospheric extent, defined as the monotonic decrease with height of the time-averaged electron densities, are found to be 1.12, 1.13, and 1.22 stellar radii for the three stars, respectively; this corresponds to a time-averaged electron density of 10 to the 7th/cu cm. Predictions of the extended chromospheric obtained using a simple scaling law agree well with those obtained by the time-dependent wave models; thus, the chromospheres of all stars for which the scaling law is valid consist of the same number of pressure scale heights. 74 refs.

  1. Local time dependence of turbulent magnetic fields in Saturn's magnetodisc

    Science.gov (United States)

    Kaminker, V.; Delamere, P. A.; Ng, C. S.; Dennis, T.; Otto, A.; Ma, X.

    2017-04-01

    Net plasma transport in magnetodiscs around giant planets is outward. Observations of plasma temperature have shown that the expanding plasma is heating nonadiabatically during this process. Turbulence has been suggested as a source of heating. However, the mechanism and distribution of magnetic fluctuations in giant magnetospheres are poorly understood. In this study we attempt to quantify the radial and local time dependence of fluctuating magnetic field signatures that are suggestive of turbulence, quantifying the fluctuations in terms of a plasma heating rate density. In addition, the inferred heating rate density is correlated with magnetic field configurations that include azimuthal bend forward/back and magnitude of the equatorial normal component of magnetic field relative to the dipole. We find a significant local time dependence in magnetic fluctuations that is consistent with flux transport triggered in the subsolar and dusk sectors due to magnetodisc reconnection.

  2. Generalization of DT Equations for Time Dependent Sources

    Science.gov (United States)

    Neri, Lorenzo; Tudisco, Salvatore; Musumeci, Francesco; Scordino, Agata; Fallica, Giorgio; Mazzillo, Massimo; Zimbone, Massimo

    2010-01-01

    New equations for paralyzable, non paralyzable and hybrid DT models, valid for any time dependent sources are presented. We show how such new equations include the equations already used for constant rate sources, and how it’s is possible to correct DT losses in the case of time dependent sources. Montecarlo simulations were performed to compare the equations behavior with the three DT models. Excellent accordance between equations predictions and Montecarlo simulation was found. We also obtain good results in the experimental validation of the new hybrid DT equation. Passive quenched SPAD device was chosen as a device affected by hybrid DT losses and active quenched SPAD with 50 ns DT was used as DT losses free device. PMID:22163500

  3. Generalization of DT Equations for Time Dependent Sources

    Directory of Open Access Journals (Sweden)

    Massimo Mazzillo

    2010-12-01

    Full Text Available New equations for paralyzable, non paralyzable and hybrid DT models, valid for any time dependent sources are presented. We show how such new equations include the equations already used for constant rate sources, and how it’s is possible to correct DT losses in the case of time dependent sources. Montecarlo simulations were performed to compare the equations behavior with the three DT models. Excellent accordance between equations predictions and Montecarlo simulation was found. We also obtain good results in the experimental validation of the new hybrid DT equation. Passive quenched SPAD device was chosen as a device affected by hybrid DT losses and active quenched SPAD with 50 ns DT was used as DT losses free device.

  4. Non-Perturbative Formulation of Time-Dependent String Solutions

    CERN Document Server

    Alexandre, J; Mavromatos, Nikolaos E; Alexandre, Jean; Ellis, John; Mavromatos, Nikolaos E.

    2006-01-01

    We formulate here a new world-sheet renormalization-group technique for the bosonic string, which is non-perturbative in the Regge slope alpha' and based on a functional method for controlling the quantum fluctuations, whose magnitudes are scaled by the value of alpha'. Using this technique we exhibit, in addition to the well-known linear-dilaton cosmology, a new, non-perturbative time-dependent background solution. Using the reparametrization invariance of the string S-matrix, we demonstrate that this solution is conformally invariant to alpha', and we give a heuristic inductive argument that conformal invariance can be maintained to all orders in alpha'. This new time-dependent string solution may be applicable to primordial cosmology or to the exit from linear-dilaton cosmology at large times.

  5. Time-dependent phase error correction using digital waveform synthesis

    Science.gov (United States)

    Doerry, Armin W.; Buskirk, Stephen

    2017-10-10

    The various technologies presented herein relate to correcting a time-dependent phase error generated as part of the formation of a radar waveform. A waveform can be pre-distorted to facilitate correction of an error induced into the waveform by a downstream operation/component in a radar system. For example, amplifier power droop effect can engender a time-dependent phase error in a waveform as part of a radar signal generating operation. The error can be quantified and an according complimentary distortion can be applied to the waveform to facilitate negation of the error during the subsequent processing of the waveform. A time domain correction can be applied by a phase error correction look up table incorporated into a waveform phase generator.

  6. Theoretical information measurement in nonrelativistic time-dependent approach

    Science.gov (United States)

    Najafizade, S. A.; Hassanabadi, H.; Zarrinkamar, S.

    2018-02-01

    The information-theoretic measures of time-dependent Schrödinger equation are investigated via the Shannon information entropy, variance and local Fisher quantities. In our calculations, we consider the two first states n = 0,1 and obtain the position Sx (t) and momentum Sp (t) Shannon entropies as well as Fisher information Ix (t) in position and momentum Ip (t) spaces. Using the Fourier transformed wave function, we obtain the results in momentum space. Some interesting features of the information entropy densities ρs (x,t) and γs (p,t), as well as the probability densities ρ (x,t) and γ (p,t) for time-dependent states are demonstrated. We establish a general relation between variance and Fisher's information. The Bialynicki-Birula-Mycielski inequality is tested and verified for the states n = 0,1.

  7. High-temperature service and time dependent failure

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, R.W.; Asada, Y.; Chang, S.J.; Todd, J.A. (eds.)

    1993-01-01

    Separate abstracts were prepared for the technical papers presented at the American Society of Mechanical Engineers 1993 Pressure Vessels and Piping Conference on July 25--29 in Denver, Colorado. This volume contains twelve papers related to materials and design methods for high temperatures, eight papers related to time dependent failure evaluation and prevention in pressure vessels and piping, and five papers related to constitutive equations in high temperature design.

  8. The time dependence of molecular iodine emission from Laminaria digitata

    Directory of Open Access Journals (Sweden)

    J. Orphal

    2009-02-01

    Full Text Available We present the first in situ detection of molecular iodine emitted from the brown macroalga Laminaria digitata under natural stress conditions. We show that the release of I2 occurs in short, strong bursts with a complex time signature. The new data indicate that algal control of I2 release in the form of an oscillatory time-dependence may be based on a nonlinear autocatalytic reaction scheme which is closely linked to the production of H2O2.

  9. The time dependence of molecular iodine emission from Laminaria digitata

    Science.gov (United States)

    Dixneuf, S.; Ruth, A. A.; Vaughan, S.; Varma, R. M.; Orphal, J.

    2009-02-01

    We present the first in situ detection of molecular iodine emitted from the brown macroalga Laminaria digitata under natural stress conditions. We show that the release of I2 occurs in short, strong bursts with a complex time signature. The new data indicate that algal control of I2 release in the form of an oscillatory time-dependence may be based on a nonlinear autocatalytic reaction scheme which is closely linked to the production of H2O2.

  10. Longitudinal dispersion with time-dependent source concentration ...

    Indian Academy of Sciences (India)

    An analytical solution is obtained to predict the contaminant concentration along unsteady ground-water flow in semi-in finite aquifer. Initially,the aquifer is not supposed to be solute free ,i.e.,aquifer is not clean.A time-dependent source concentration is considered at the origin of the aquifer and at the other end of the aquifer, ...

  11. Relating Time-Dependent Acceleration and Height Using an Elevator

    Science.gov (United States)

    Kinser, Jason M.

    2015-01-01

    A simple experiment in relating a time-dependent linear acceleration function to height is explored through the use of a smartphone and an elevator. Given acceleration as a function of time, a(t), the velocity function and position functions are determined through integration as in v(t)=? a(t) dt (1) and x(t)=? v(t) dt. Mobile devices such as…

  12. Rashba Effect in Presence of Time-Dependent Interaction

    International Nuclear Information System (INIS)

    Sobhani, Hadi; Hassanabadi, Hassan

    2016-01-01

    Rashba effect in presence of a time-dependent interaction has been considered. Then time-evolution of such a system has been studied by using Lewis–Riesenfeld dynamical invariant and unitary transformation method. So appropriate dynamical invariant and unitary transformation according the considered system have been constructed as well as some special cases have come into this article which are common in physics. (paper)

  13. Time Dependent Geoid Constraints Upon Mantle Viscosity Stratification

    Science.gov (United States)

    Harlow, C.; Peltier, W. R.

    2004-12-01

    The global measurement of the time dependence of geoid height that is being provided by the GRACE satellite system that is now in space will eventually provide the basis for considerably more accurate inversions for mantle viscosity structure than are now possible. However, existing data on the time dependence of geoid height based upon the results of satellite laser ranging already provide very strong constraints upon the effective viscosity of the of the deepest mantle, especially when these are conbined with observations of the spectrum of relaxation times that characterize the process of glacial isostatic adjustment (GIA). Such data, by themselves, very tightly constrain the viscosity structure in the upper mantle and transition zone. We will describe a series of new analyses of the expected global pattern of geoid height time dependence based upon the recently published refined model of the GIA process denoted ICE-5G(VM2), a model based upon a significant refinement of the ICE-4G(VM2) precursor ( see W.R. Peltier, Ann. Rev. Earth and Planet. Sci., 32, 111-149, 2004). The impact of the new model of surface loading upon the mantle viscosity inverse problem turns out to be both interesting and significant.

  14. Time-dependent fatigue--phenomenology and life prediction

    International Nuclear Information System (INIS)

    Coffin, L.F.

    1979-01-01

    The time-dependent fatigue behavior of materials used or considered for use in present and advanced systems for power generation is outlined. A picture is first presented to show how basic mechanisms and phenomenological information relate to the performance of the component under consideration through the so-called local strain approach. By this means life prediction criteria and design rules can be formulated utilizing laboratory test information which is directly translated to predicting the performance of a component. The body of phenomenological information relative to time-dependent fatigue is reviewed. Included are effects of strain range, strain rate and frequency, environment and wave shape, all of which are shown to be important in developing both an understanding and design base for time dependent fatigue. Using this information, some of the current methods being considered for the life prediction of components are reviewed. These include the current ASME code case, frequency-modified fatigue equations, strain range partitioning, the damage function method, frequency separation and damage rate equations. From this review, it is hoped that a better perspective on future directions for basic material science at high temperature can be achieved

  15. Neutrino flavor instabilities in a time-dependent supernova model

    Directory of Open Access Journals (Sweden)

    Sajad Abbar

    2015-12-01

    Full Text Available A dense neutrino medium such as that inside a core-collapse supernova can experience collective flavor conversion or oscillations because of the neutral-current weak interaction among the neutrinos. This phenomenon has been studied in a restricted, stationary supernova model which possesses the (spatial spherical symmetry about the center of the supernova and the (directional axial symmetry around the radial direction. Recently it has been shown that these spatial and directional symmetries can be broken spontaneously by collective neutrino oscillations. In this letter we analyze the neutrino flavor instabilities in a time-dependent supernova model. Our results show that collective neutrino oscillations start at approximately the same radius in both the stationary and time-dependent supernova models unless there exist very rapid variations in local physical conditions on timescales of a few microseconds or shorter. Our results also suggest that collective neutrino oscillations can vary rapidly with time in the regimes where they do occur which need to be studied in time-dependent supernova models.

  16. Time-Dependent-Asymmetric-Linear-Parsimonious Ancestral State Reconstruction.

    Science.gov (United States)

    Didier, Gilles

    2017-10-01

    The time-dependent-asymmetric-linear parsimony is an ancestral state reconstruction method which extends the standard linear parsimony (a.k.a. Wagner parsimony) approach by taking into account both branch lengths and asymmetric evolutionary costs for reconstructing quantitative characters (asymmetric costs amount to assuming an evolutionary trend toward the direction with the lowest cost). A formal study of the influence of the asymmetry parameter shows that the time-dependent-asymmetric-linear parsimony infers states which are all taken among the known states, except for some degenerate cases corresponding to special values of the asymmetry parameter. This remarkable property holds in particular for the Wagner parsimony. This study leads to a polynomial algorithm which determines, and provides a compact representation of, the parametric reconstruction of a phylogenetic tree, that is for all the unknown nodes, the set of all the possible reconstructed states associated with the asymmetry parameters leading to them. The time-dependent-asymmetric-linear parsimony is finally illustrated with the parametric reconstruction of the body size of cetaceans.

  17. Effect of a time-dependent field on subdiffusing particles.

    Science.gov (United States)

    Shushin, A I

    2008-11-01

    We analyze the effect of a time-dependent external field on non-Markovian migration described by the continuous time random walk (CTRW) approach. The rigorous method of treating the problem is proposed which is based on the Markovian representations of the CTRW approach and field modulation. With the use of this method we derive the non-Markovian stochastic Liouville equation (SLE), that describes the effect of this field, and thoroughly analyze the relation of the derived SLE with equations proposed earlier. This SLE is applied to the case of subdiffusive migration in which the exact formulas for the first and second moments of spatial distribution are obtained. In the case of oscillating external field they predict unusual dependence of the first moment on oscillation phase and anomalous time behavior of field dependent contribution to the dispersion which agree with results of earlier works. Anomalous time dependence is also found in the case of a fluctuating field. The specific features of this time dependence are analyzed in detail.

  18. Time-dependent weak values and their intrinsic phases of evolution

    International Nuclear Information System (INIS)

    Parks, A D

    2008-01-01

    The equation of motion for a time-dependent weak value of a quantum-mechanical observable is known to contain a complex valued energy factor (the weak energy of evolution) that is defined by the dynamics of the pre-selected and post-selected states which specify the observable's weak value. In this paper, the mechanism responsible for the creation of this energy is identified and it is shown that the cumulative effect over time of this energy is manifested as dynamical phases and pure geometric phases (the intrinsic phases of evolution) which govern the evolution of the weak value during its measurement process. These phases are simply related to a Pancharatnam phase and Fubini-Study metric distance defined by the Hilbert space evolution of the associated pre-selected and post-selected states. A characterization of time-dependent weak value evolution as Pancharatnam phase angle rotations and Fubini-Study distance scalings of a vector in the Argand plane is discussed as an application of this relationship. The theory of weak values is also reviewed and simple 'gedanken experiments' are used to illustrate both the time-independent and the time-dependent versions of the theory. It is noted that the direct experimental observation of the weak energy of evolution would strongly support the time-symmetric paradigm of quantum mechanics and it is suggested that weak value equations of motion represent a new category of nonlocal equations of motion

  19. Progress Report on Alloy 617 Time Dependent Allowables

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Julie Knibloe [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    Time dependent allowable stresses are required in the ASME Boiler and Pressure Vessel Code for design of components in the temperature range where time dependent deformation (i.e., creep) is expected to become significant. There are time dependent allowable stresses in Section IID of the Code for use in the non-nuclear construction codes, however, there are additional criteria that must be considered in developing time dependent allowables for nuclear components. These criteria are specified in Section III NH. St is defined as the lesser of three quantities: 100% of the average stress required to obtain a total (elastic, plastic, primary and secondary creep) strain of 1%; 67% of the minimum stress to cause rupture; and 80% of the minimum stress to cause the initiation of tertiary creep. The values are reported for a range of temperatures and for time increments up to 100,000 hours. These values are determined from uniaxial creep tests, which involve the elevated temperature application of a constant load which is relatively small, resulting in deformation over a long time period prior to rupture. The stress which is the minimum resulting from these criteria is the time dependent allowable stress St. In this report data from a large number of creep and creep-rupture tests on Alloy 617 are analyzed using the ASME Section III NH criteria. Data which are used in the analysis are from the ongoing DOE sponsored high temperature materials program, form Korea Atomic Energy Institute through the Generation IV VHTR Materials Program and historical data from previous HTR research and vendor data generated in developing the alloy. It is found that the tertiary creep criterion determines St at highest temperatures, while the stress to cause 1% total strain controls at low temperatures. The ASME Section III Working Group on Allowable Stress Criteria has recommended that the uncertainties associated with determining the onset of tertiary creep and the lack of significant

  20. Interplay between chaotic and regular motion in a time-dependent barred galaxy model

    Science.gov (United States)

    Manos, T.; Bountis, T.; Skokos, Ch

    2013-06-01

    We study the distinction and quantification of chaotic and regular motion in a time-dependent Hamiltonian barred galaxy model. Recently, a strong correlation was found between the strength of the bar and the presence of chaotic motion in this system, as models with relatively strong bars were shown to exhibit stronger chaotic behavior compared to those having a weaker bar component. Here, we attempt to further explore this connection by studying the interplay between chaotic and regular behavior of star orbits when the parameters of the model evolve in time. This happens for example when one introduces linear time dependence in the mass parameters of the model to mimic, in some general sense, the effect of self-consistent interactions of the actual N-body problem. We thus observe, in this simple time-dependent model also, that the increase of the bar’s mass leads to an increase of the system’s chaoticity. We propose a new way of using the generalized alignment index (GALI) method as a reliable criterion to estimate the relative fraction of chaotic versus regular orbits in such time-dependent potentials, which proves to be much more efficient than the computation of Lyapunov exponents. In particular, GALI is able to capture subtle changes in the nature of an orbit (or ensemble of orbits) even for relatively small time intervals, which makes it ideal for detecting dynamical transitions in time-dependent systems. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’.

  1. Stability of superheavy elements around Z=120 probed by the study of their fission time obtained by the crystal blocking method; Stabilite d'elements superlourds au voisinage de Z=120 testee par l'etude de leurs temps de fission deduits par la methode du blocage cristallin

    Energy Technology Data Exchange (ETDEWEB)

    Laget, M

    2007-10-15

    While the existence of an island of stability beyond Z=110 is theoretically acquired, the location of this island ranges from Z=114 to Z=126 depending on models. In this work, the stability of super-heavy nuclei is probed through the study of their fission time. The chosen experimental method, the crystal blocking method, is sensitive to the presence of possible long time components in the fission time distribution which indicates a fission mechanism occurring after the formation of a compound nucleus. The blocking dips were therefore constituted for the various products of the reaction U{sup 238} + Ni (6.6 MeV/A) {yields} 120, the experimental set-up allowing us to clearly identify and select the reaction mechanisms. The comparison of the blocking dip constituted for quasi-elastic scattering events with the one obtained for the fission fragments of a Z=120, combined with the study of kinematical properties of these fission fragments, give evidences of the existence of very long fission times (> 10{sup -18} s) only compatible with a fusion-fission mechanism implying a non vanishing fission barrier height for Z=120. The second part outlines microscopic calculations of fission barrier heights, carried out in the framework of the finite temperature of the Hartree-Fock-Bogoliubov (HFB) theory. Because of the progressive vanishing of the pairing correlation with T, which happens differently at the ground state and at the top of the barrier, B{sub f} first grows until T {approx_equal} 0.8 MeV before dropping with T owing to shell-effects damping with temperature. (author)

  2. Theoretical study of time-dependent, ultrasound-induced acoustic streaming in microchannels

    DEFF Research Database (Denmark)

    Muller, Peter Barkholt; Bruus, Henrik

    2015-01-01

    Based on first- and second-order perturbation theory, we present a numerical study of the temporal buildup and decay of unsteady acoustic fields and acoustic streaming flows actuated by vibrating walls in the transverse cross-sectional plane of a long straight microchannel under adiabatic...... conditions and assuming temperature-independent material parameters. The unsteady streaming flow is obtained by averaging the time-dependent velocity field over one oscillation period, and as time increases, it is shown to converge towards the well-known steady time-averaged solution calculated...... in the frequency domain. Scaling analysis reveals that the acoustic resonance builds up much faster than the acoustic streaming, implying that the radiation force may dominate over the drag force from streaming even for small particles. However, our numerical time-dependent analysis indicates that pulsed actuation...

  3. Calculating Derivative Couplings between Time-Dependent Hartree-Fock Excited States with Pseudo-Wavefunctions.

    Science.gov (United States)

    Alguire, Ethan C; Ou, Qi; Subotnik, Joseph E

    2015-06-18

    A pseudo-wavefunction description of time-dependent Hartree-Fock (TDHF) states is proposed and used to develop an analytic expression for derivative couplings between TDHF excited states based on the Hellmann-Feynman theorem. The resulting expression includes Pulay terms associated with using an atom-centered basis as well as a correction to ensure translational invariance. We demonstrate that our formalism recovers the well-known Chernyak-Mukamel expression near a crossing and in the limit of a complete basis, and thus our approach is consistent with time-dependent response theory. In a companion paper (DOI 10.1021/jp5057682 ), we investigate these derivative couplings near conical intersections and show that they behave correctly.

  4. Transient Taylor-Aris dispersion for time-dependent flows in straight channels

    DEFF Research Database (Denmark)

    Vedel, Søren; Bruus, Henrik

    2012-01-01

    Taylor–Aris dispersion, the shear-induced enhancement of solute diffusion in the flow direction of the solvent, has been studied intensely in the past half century for the case of steady flow and single-frequency pulsating flows. Here, combining Aris’s method of moments with Dirac’s bra–ket forma......Taylor–Aris dispersion, the shear-induced enhancement of solute diffusion in the flow direction of the solvent, has been studied intensely in the past half century for the case of steady flow and single-frequency pulsating flows. Here, combining Aris’s method of moments with Dirac’s bra......–ket formalism, we derive an expression for the effective solute diffusivity valid for transient Taylor–Aris dispersion in any given time-dependent, multi-frequency solvent flow through straight channels. Our theory shows that the solute dispersion may be greatly enhanced by the time-dependent parts of the flow...

  5. The nucleon localization function in static and time-dependent DFT

    Science.gov (United States)

    Schuetrumpf, Bastian; Zhang, Chunli

    2017-11-01

    Static and time-dependent density functional theory (DFT) calculations are often used to predict fission fragment distributions or fusion cross sections with great success. However, nuclear shell structure and clusterization effects are usually studied using the density distribution of the nucleons which is a poor indicator of these phenomena. In this work, we employ a measure called the localization function, which was first introduced in chemistry to visualize electronic bonds and recently applied to nuclear physics for light nuclei to reveal α-clustering. We show, that the localization function reveals the shell structure of the fragments in fission long before the scission point and also illustrates the shell structure of intermediate states in time-dependent DFT calculations.

  6. Obtaining time-dependent multi-dimensional dividing surfaces using Lagrangian descriptors

    Science.gov (United States)

    Feldmaier, Matthias; Junginger, Andrej; Main, Jörg; Wunner, Günter; Hernandez, Rigoberto

    2017-11-01

    Dynamics between reactants and products are often mediated by a rate-determining barrier and an associated dividing surface leading to the transition state theory rate. This framework is challenged when the barrier is time-dependent because its motion can give rise to recrossings across the fixed dividing surface. A non-recrossing time-dependent dividing surface can nevertheless be attached to the TS trajectory resulting in recrossing-free dynamics. We extend the formalism-constructed using Lagrangian Descriptors-to systems with additional bath degrees of freedom. The propagation of reactant ensembles provides a numerical demonstration that our dividing surface is recrossing-free and leads to exact TST rates.

  7. An investigation into the photochemistry of, and the electrochemically induced CO-loss from, [(CO)5MC(OMe)Me](M = Cr or W) using low-temperature matrix isolation, picosecond infrared spectroscopy, cyclic voltammetry, and time-dependent density functional theory.

    Science.gov (United States)

    McMahon, Suzanne; Amirjalayer, Saeed; Buma, Wybren J; Halpin, Yvonne; Long, Conor; Rooney, A Denise; Woutersen, Sander; Pryce, Mary T

    2015-09-21

    The photophysics and photochemistry of [(CO)5MC(OMe)Me] (M = Cr or W) were investigated using picosecond time-resolved infrared spectroscopy (M = Cr or W), low-temperature matrix isolation techniques (M = Cr), and time-dependent density functional calculations (M = Cr or W). These studies provide unambiguous evidence for the photochemical formation of a long-lived, 18-electron metallaketene species capable of acting as a synthetically useful intermediate. For the Cr complex, an intermediate metallacyclopropanone singlet excited state was detected on the reaction path to the metallaketene species. This metallacyclopropanone excited state species has a lifetime of less than 100 ps and a characteristic bridging carbonyl band at 1770 cm(-1). The tungsten ketene species was also detected but in contrast to the chromium system, this forms directly from a low-lying triplet excited state. The electrochemical release of CO showed a greater efficiency for the chromium complex when compared to the tungsten.

  8. Characterizing time-dependent mechanics in metallic MEMS

    Directory of Open Access Journals (Sweden)

    Geers M.G.D.

    2010-06-01

    Full Text Available Experiments for characterization of time-dependent material properties in free-standing metallic microelectromechanical system (MEMS pose challenges: e.g. fabrication and handling (sub-μm sized specimens, control and measurement of sub-μN loads and sub-μm displacements over long periods and various temperatures [1]. A variety of experimental setups have been reported each having their pros and cons. One example is a micro-tensile tester with an ingenious electro-static specimen gripping system [2] aiding simple specimen design giving good results at μN and sub-μm levels, but without in-situ full-field observations. Other progressive examples assimilate the specimen, MEMS actuators and load cells on a single chip [3,4] yielding significant results at nN and nm levels with in-situ TEM/SEM observability, though not without complications: complex load actuator/sensor calibration per chip, measures to reduce fabrication failure and unfeasible cofabrication on wafers with commercial metallic MEMS. This work aims to overcome these drawbacks by developing experimental methods with high sensitivity, precision and in-situ full-field observation capabilities. Moreover, these should be applicable to simple free-standing metallic MEMS that can be co-fabricated with commercial devices. These methods will then serve in systematic studies into size-effects in time-dependent material properties. First a numeric-experimental method is developed. It characterizes bending deformation of onwafer μm-sized aluminum cantilevers. A specially designed micro-clamp is used to mechanically apply a constant precise deflection of the beam (zres <50 nm for a prolonged period, see fig. 1. After this period, the deflection by the micro-clamp is removed. Full-field height maps with the ensuing deformation are measured over time with confocal optical profilometry (COP. This yields the tip deflection as function of time with ~3 nm precision, see fig.2. To extract material

  9. Time-dependent radiation dose estimations during interplanetary space flights

    Science.gov (United States)

    Dobynde, M. I.; Shprits, Y.; Drozdov, A.

    2015-12-01

    Time-dependent radiation dose estimations during interplanetary space flights 1,2Dobynde M.I., 2,3Drozdov A.Y., 2,4Shprits Y.Y.1Skolkovo institute of science and technology, Moscow, Russia 2University of California Los Angeles, Los Angeles, USA 3Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics, Moscow, Russia4Massachusetts Institute of Technology, Cambridge, USASpace radiation is the main restriction for long-term interplanetary space missions. It induces degradation of external components and propagates inside providing damage to internal environment. Space radiation particles and induced secondary particle showers can lead to variety of damage to astronauts in short- and long- term perspective. Contribution of two main sources of space radiation- Sun and out-of-heliosphere space varies in time in opposite phase due to the solar activity state. Currently the only habituated mission is the international interplanetary station that flights on the low Earth orbit. Besides station shell astronauts are protected with the Earth magnetosphere- a natural shield that prevents significant damage for all humanity. Current progress in space exploration tends to lead humanity out of magnetosphere bounds. With the current study we make estimations of spacecraft parameters and astronauts damage for long-term interplanetary flights. Applying time dependent model of GCR spectra and data on SEP spectra we show the time dependence of the radiation in a human phantom inside the shielding capsule. We pay attention to the shielding capsule design, looking for an optimal geometry parameters and materials. Different types of particles affect differently on the human providing more or less harm to the tissues. Incident particles provide a large amount of secondary particles while propagating through the shielding capsule. We make an attempt to find an optimal combination of shielding capsule parameters, namely material and thickness, that will effectively decrease

  10. Timing-dependent actions of NGF required for cell differentiation.

    Directory of Open Access Journals (Sweden)

    Jaehoon Chung

    Full Text Available BACKGROUND: Continuous NGF stimulation induces PC12 cell differentiation. However, why continuous NGF stimulation is required for differentiation is unclear. In this study, we investigated the underlying mechanisms of the timing-dependent requirement of NGF action for cell differentiation. METHODOLOGY/PRINCIPAL FINDINGS: To address the timing-dependency of the NGF action, we performed a discontinuous stimulation assay consisting of a first transient stimulation followed by an interval and then a second sustained stimulation and quantified the neurite extension level. Consequently, we observed a timing-dependent action of NGF on cell differentiation, and discontinuous NGF stimulation similarly induced differentiation. The first stimulation did not induce neurite extension, whereas the second stimulation induced fast neurite extension; therefore, the first stimulation is likely required as a prerequisite condition. These observations indicate that the action of NGF can be divided into two processes: an initial stimulation-driven latent process and a second stimulation-driven extension process. The latent process appears to require the activities of ERK and transcription, but not PI3K, whereas the extension-process requires the activities of ERK and PI3K, but not transcription. We also found that during the first stimulation, the activity of NGF can be replaced by PACAP, but not by insulin, EGF, bFGF or forskolin; during the second stimulation, however, the activity of NGF cannot be replaced by any of these stimulants. These findings allowed us to identify potential genes specifically involved in the latent process, rather than in other processes, using a microarray. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that NGF induces the differentiation of PC12 cells via mechanically distinct processes: an ERK-driven and transcription-dependent latent process, and an ERK- and PI3K-driven and transcription-independent extension process.

  11. Time-Dependent Neutron and Photon Dose-Field Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, Hasani Omar [Georgia Inst. of Technology, Atlanta, GA (United States)

    2005-08-01

    A unique tool is developed that allows the user to model physical representations of complicated glovebox facilities in two dimensions and determine neutral-particle flux and ambient dose-equivalent fields throughout that geometry. The Pandemonium code, originally designed to determine flux and dose-rates only, is improved to include realistic glovebox geometries, time-dependent source and detector positions, time-dependent shielding thickness calculations, time-integrated doses, a representative criticality accident scenario based on time-dependent reactor kinetics, and more rigorous photon treatment. A primary benefit of this work has been an extensive analysis and improvement of the photon model that is not limited to the application described in this thesis. The photon model has been extended in energy range to 10 MeV to include photons from fission and new photon buildup factors have been included that account for the effects of photon buildup at slant-path thicknesses as a function of angle, where the mean free path thickness has been preserved. The overall system of codes is user-friendly and it is directly applicable to facilities such as the plutonium facility at Los Alamos National Laboratory, where high-intensity neutron and photon emitters are regularly used. The codes may be used to determine a priori doses for given work scenarios in an effort to supply dose information to process models which will in turn assist decision makers on ensuring as low as reasonably achievable (ALARA) compliance. In addition, coupling the computational results of these tools with the process model visualization tools will help to increase worker safety and radiological safety awareness.

  12. TIME-DEPENDENT MODELS OF FLARES FROM SAGITTARIUS A*

    International Nuclear Information System (INIS)

    Dodds-Eden, Katie; Genzel, Reinhard; Gillessen, Stefan; Eisenhauer, Frank; Sharma, Prateek; Quataert, Eliot; Porquet, Delphine

    2010-01-01

    The emission from Sgr A*, the supermassive black hole in the Galactic Center, shows order of magnitude variability ('flares') a few times a day that is particularly prominent in the near-infrared (NIR) and X-rays. We present a time-dependent model for these flares motivated by the hypothesis that dissipation of magnetic energy powers the flares. We show that episodic magnetic reconnection can occur near the last stable circular orbit in time-dependent magnetohydrodynamic simulations of black hole accretion-the timescales and energetics of these events are broadly consistent with the flares from Sgr A*. Motivated by these results, we present a spatially one-zone time-dependent model for the electron distribution function in flares, including energy loss due to synchrotron cooling and adiabatic expansion. Synchrotron emission from transiently accelerated particles can explain the NIR/X-ray light curves and spectra of a luminous flare observed on 2007 April 4. A significant decrease in the magnetic field strength during the flare (coincident with the electron acceleration) is required to explain the simultaneity and symmetry of the simultaneous light curves. Our models predict that the NIR and X-ray spectral indices are related by Δα ≅ 0.5 (where νF ν ∝ ν α ) and that there is only modest variation in the spectral index during flares. We also explore implications of this model for longer wavelength (radio-submillimeter) emission seemingly associated with X-ray and NIR flares; we argue that a few hour decrease in the submillimeter emission is a more generic consequence of large-scale magnetic reconnection than delayed radio emission from adiabatic expansion.

  13. Filter frequency response of time dependent signal using Laplace transform

    Energy Technology Data Exchange (ETDEWEB)

    Shestakov, Aleksei I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-16

    We analyze the effect a filter has on a time dependent signal x(t). If X(s) is the Laplace transform of x and H (s) is the filter Transfer function, the response in frequency space is X (s) H (s). Consequently, in real space, the response is the convolution (x*h) (t), where hi is the Laplace inverse of H. Effects are analyzed and analytically for functions such as (t/tc)2 e-t/t$_c$, where tc = const. We consider lowpass, highpass and bandpass filters.

  14. Shapes and dynamics from the time-dependent mean field

    International Nuclear Information System (INIS)

    Stevenson, P.D.; Goddard, P.M.; Rios, A.

    2015-01-01

    Explaining observed properties in terms of underlying shape degrees of freedom is a well-established prism with which to understand atomic nuclei. Self-consistent mean-field models provide one tool to understand nuclear shapes, and their link to other nuclear properties and observables. We present examples of how the time-dependent extension of the mean-field approach can be used in particular to shed light on nuclear shape properties, particularly looking at the giant resonances built on deformed nuclear ground states, and at dynamics in highly-deformed fission isomers. Example calculations are shown of 28 Si in the first case, and 240 Pu in the latter case

  15. Time-Dependent Mean-Field Games with Logarithmic Nonlinearities

    KAUST Repository

    Gomes, Diogo A.

    2015-10-06

    In this paper, we prove the existence of classical solutions for time-dependent mean-field games with a logarithmic nonlinearity and subquadratic Hamiltonians. Because the logarithm is unbounded from below, this nonlinearity poses substantial mathematical challenges that have not been addressed in the literature. Our result is proven by recurring to a delicate argument which combines Lipschitz regularity for the Hamilton-Jacobi equation with estimates for the nonlinearity in suitable Lebesgue spaces. Lipschitz estimates follow from an application of the nonlinear adjoint method. These are then combined with a priori bounds for solutions of the Fokker-Planck equation and a concavity argument for the nonlinearity.

  16. The time-dependent prize-collecting arc routing problem

    DEFF Research Database (Denmark)

    Black, Dan; Eglese, Richard; Wøhlk, Sanne

    2013-01-01

    A new problem is introduced named the Time-Dependent Prize-Collecting Arc Routing Problem (TD-PARP). It is particularly relevant to situations where a transport manager has to choose between a number of full truck load pick-ups and deliveries on a road network where travel times change...... with the time of day. Two metaheuristic algorithms, one based on Variable Neighborhood Search and one based on Tabu Search, are proposed and tested for a set of benchmark problems, generated from real road networks and travel time information. Both algorithms are capable of finding good solutions, though...

  17. Numerical solution of time dependent neutron transport equation. An application

    International Nuclear Information System (INIS)

    Barroso, Dalton Ellery Girao

    2000-01-01

    In this work we show a simple method to solve numerically the time-dependent neutron transport equation which is a simple extension of the numerical methods used to solve the time-independent static transport equation. This is possible because the time-discretized transport equation has the same form as the time-independent transport equation, with only some additional terms. A general outline of the method is given and used to evaluate the neutron flux in a microexplosion calculation of a highly compressed micro fissile system composed by DT-Pu-Be microsphere. (author)

  18. Evaluation of design safety factors for time-dependent buckling

    International Nuclear Information System (INIS)

    Stone, C.M.; Nickell, R.E.

    1977-02-01

    The ASME Boiler and Pressure Vessel Code rules concerning time-dependent (creep) buckling for Class 1 nuclear components have recently been changed. Previous requirements for a factor of ten on service life have been replaced with a factor of safety of 1.5 on loading for load-controlled buckling. This report examines the supposed equivalence of the two rules from the standpoint of materials behavior--specifically, the secondary creep strain rate exponent. The comparison is made using results obtained numerically for an axially-loaded, cylindrical shell with varying secondary creep exponents. A computationally efficient scheme for analyzing creep buckling problems is also presented

  19. Time dependent deformation in prestressed concrete girder: Measurement and prediction

    Science.gov (United States)

    Sokal, Y. J.; Tyrer, P.

    1981-11-01

    Prestressed concrete girders which are intended for composite construction in bridges and other similar structures are often stored unloaded for some time before being placed in their final positions where top deck is being poured over. During that free storage the girders are subjected to creep and shrinkage which manifests itself through increased upward deformation usually defined as camber. The analytical estimation of this deformation is important as it controls the minimum thickness of the top deck. An attempt was made to correlate on site measurements with continuous computer modeling of the time-dependent behavior using data from recently adopted international standard for concrete structures.

  20. Time dependent modeling of non-LTE plasmas: Final report

    International Nuclear Information System (INIS)

    1988-06-01

    During the period of performance of this contract Science Applications International Corporation (SAIC) has aided Lawrence Livermore National Laboratory (LLNL) in the development of an unclassified modeling tool for studying time evolution of high temperature ionizing and recombining plasmas. This report covers the numerical code developed, (D)ynamic (D)etailed (C)onfiguration (A)ccounting (DDCA), which was written to run on the National Magnetic Fusion Energy Computing Center (NMFECC) network as well as the classified Livermore Computer Center (OCTOPUS) network. DDCA is a One-Dimensional (1D) time dependent hydrodynamic model which makes use of the non-LTE detailed atomic physics ionization model DCA. 5 refs

  1. Time-Dependent Testing Evaluation and Modeling for Rubber Stopper Seal Performance.

    Science.gov (United States)

    Zeng, Qingyu; Zhao, Xia

    2018-01-01

    Sufficient rubber stopper sealing performance throughout the entire sealed product life cycle is essential for maintaining container closure integrity in the parenteral packaging industry. However, prior publications have lacked systematic considerations for the time-dependent influence on sealing performance that results from the viscoelastic characteristics of the rubber stoppers. In this paper, we report results of an effort to study these effects by applying both compression stress relaxation testing and residual seal force testing for time-dependent experimental data collection. These experiments were followed by modeling fit calculations based on the Maxwell-Wiechert theory modified with the Kohlrausch-Williams-Watts stretched exponential function, resulting in a nonlinear, time-dependent sealing force model. By employing both testing evaluations and modeling calculations, an in-depth understanding of the time-dependent effects on rubber stopper sealing force was developed. Both testing and modeling data show good consistency, demonstrating that the sealing force decays exponentially over time and eventually levels off because of the viscoelastic nature of the rubber stoppers. The nonlinearity of stress relaxation derives from the viscoelastic characteristics of the rubber stoppers coupled with the large stopper compression deformation into restrained geometry conditions. The modeling fit with capability to handle actual testing data can be employed as a tool to calculate the compression stress relaxation and residual seal force throughout the entire sealed product life cycle. In addition to being time-dependent, stress relaxation is also experimentally shown to be temperature-dependent. The present work provides a new, integrated methodology framework and some fresh insights to the parenteral packaging industry for practically and proactively considering, designing, setting up, controlling, and managing stopper sealing performance throughout the entire

  2. Interacting particle systems in time-dependent geometries

    International Nuclear Information System (INIS)

    Ali, A; Ball, R C; Grosskinsky, S; Somfai, E

    2013-01-01

    Many complex structures and stochastic patterns emerge from simple kinetic rules and local interactions, and are governed by scale invariance properties in combination with effects of the global geometry. We consider systems that can be described effectively by space–time trajectories of interacting particles, such as domain boundaries in two-dimensional growth or river networks. We study trajectories embedded in time-dependent geometries, and the main focus is on uniformly expanding or decreasing domains for which we obtain an exact mapping to simple fixed domain systems while preserving the local scale invariance properties. This approach was recently introduced in Ali et al (2013 Phys. Rev. E 87 020102(R)) and here we provide a detailed discussion on its applicability for self-affine Markovian models, and how it can be adapted to self-affine models with memory or explicit time dependence. The mapping corresponds to a nonlinear time transformation which converges to a finite value for a large class of trajectories, enabling an exact analysis of asymptotic properties in expanding domains. We further provide a detailed discussion of different particle interactions and generalized geometries. All our findings are based on exact computations and are illustrated numerically for various examples, including Lévy processes and fractional Brownian motion. (paper)

  3. FRANTIC: a computer code for time dependent unavailability analysis

    International Nuclear Information System (INIS)

    Vesely, W.E.; Goldberg, F.F.

    1977-03-01

    The FRANTIC computer code evaluates the time dependent and average unavailability for any general system model. The code is written in FORTRAN IV for the IBM 370 computer. Non-repairable components, monitored components, and periodically tested components are handled. One unique feature of FRANTIC is the detailed, time dependent modeling of periodic testing which includes the effects of test downtimes, test overrides, detection inefficiencies, and test-caused failures. The exponential distribution is used for the component failure times and periodic equations are developed for the testing and repair contributions. Human errors and common mode failures can be included by assigning an appropriate constant probability for the contributors. The output from FRANTIC consists of tables and plots of the system unavailability along with a breakdown of the unavailability contributions. Sensitivity studies can be simply performed and a wide range of tables and plots can be obtained for reporting purposes. The FRANTIC code represents a first step in the development of an approach that can be of direct value in future system evaluations. Modifications resulting from use of the code, along with the development of reliability data based on operating reactor experience, can be expected to provide increased confidence in its use and potential application to the licensing process

  4. Time-dependent strains and stresses in a pumpkin balloon

    Science.gov (United States)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    This paper presents a study of pumpkin-shaped superpressure balloons consisting of gores made from a thin polymeric film attached to high stiffness meridional tendons This type of design is being used for the NASA ULDB balloons The gore film shows considerable time-dependent stress relaxation whereas the behaviour of the tendons is essentially time-independent Upon inflation and pressurization the instantaneous i e linear-elastic strain and stress distributions in the film show significantly higher values in the meridional direction However over time and due to the biaxial visco-elastic stress relaxation of the the gore material the em hoop strains increase and the em meridional stresses decrease whereas the em remaining strain and stress components remain substantially unchanged These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission both in terms of the material performance and the overall stability of the shape of the balloon An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter 48 gore pumpkin balloon is presented The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature The results show good correlation with a numerical study using the ABAQUS finite-element package that includes a widely used model of

  5. Time-dependent patterns in quasivertical cylindrical binary convection

    Science.gov (United States)

    Alonso, Arantxa; Mercader, Isabel; Batiste, Oriol

    2018-02-01

    This paper reports on numerical investigations of the effect of a slight inclination α on pattern formation in a shallow vertical cylindrical cell heated from below for binary mixtures with a positive value of the Soret coefficient. By using direct numerical simulation of the three-dimensional Boussinesq equations with Soret effect in cylindrical geometry, we show that a slight inclination of the cell in the range α ≈0.036 rad =2∘ strongly influences pattern selection. The large-scale shear flow (LSSF) induced by the small tilt of gravity overcomes the squarelike arrangements observed in noninclined cylinders in the Soret regime, stratifies the fluid along the direction of inclination, and produces an enhanced separation of the two components of the mixture. The competition between shear effects and horizontal and vertical buoyancy alters significantly the dynamics observed in noninclined convection. Additional unexpected time-dependent patterns coexist with the basic LSSF. We focus on an unsual periodic state recently discovered in an experiment, the so-called superhighway convection state (SHC), in which ascending and descending regions of fluid move in opposite directions. We provide numerical confirmation that Boussinesq Navier-Stokes equations with standard boundary conditions contain the essential ingredients that allow for the existence of such a state. Also, we obtain a persistent heteroclinic structure where regular oscillations between a SHC pattern and a state of nearly stationary longitudinal rolls take place. We characterize numerically these time-dependent patterns and investigate the dynamics around the threshold of convection.

  6. Time-dependent penetrative mixed convection in a porous layer

    International Nuclear Information System (INIS)

    Jendoubi, S.; Kulacki, F.A.

    1997-01-01

    In the last few decades, heat and mass transfer in porous media have been studied extensively by many investigators. The main motivations behind these studies were the wide range of applications and the interaction of multiple processes. Examples include geothermal energy production, drying of porous media, high level nuclear waste disposal, and energy-related engineering technologies. Here, a general two-dimensional, time-dependent model has been developed to investigate the transfer of heat and mass in a liquid saturated porous layer locally heated from above. Both free and mixed convection are considered. For mixed convection an eternal flow is assumed to enter the two-dimensional domain in the horizontal direction. At a finite segment of the top wall, two types of heat sources are applied: a constant flux heat source and a time varying heat, constant flux source. The latter is a representation of heat released by spent nuclear fuel in a mined repository located above the layer. Both time-dependent and steady solutions of the flow and temperature fields are obtained. For natural convection, the effects of Rayleigh number on the Nusselt number are obtained. For mixed convection, the effects of both Rayleigh and Peclet numbers are studied. In addition, the effects of the aspect ratio, as well as the length of the heated zone are examined

  7. Time Dependent Relative Risks in Life Insurance Medical Underwriting.

    Science.gov (United States)

    Kneepkens, Robert F

    2015-01-01

    Introduction .- Life insurance medicine focuses on mortality hazards in specified periods. People are free to insure their lives for shorter or longer terms. Because the chosen terms range from 1 year to a life time, life insurers have to take into account the fact that the predictive value of risk indicators can and will change over time. The time a risk indicator keeps its predictive value, will be dependent on its biological effects, volatility, and treatability. For a given applicant this implies that the relative hazard (RH) calculated for his/her medical condition should be dependent on the term of the insurance. The main objective of this study is to determine if some commonly used risk indicators - previously used to study age dependency of relative risks - have a predictive value that increases with the observation period. (1) Methods .- This population-based cohort study uses NHANES-data files from the Third National Health and Nutrition Examination Survey (NHANES III) and the NHANES Linked Mortality Files 2010. Only participants aged 20 to 69 that were examined in mobile examination centers, without a history of some prevalent high risk diseases were included. The observed mortality was compared to the expected mortality in a Generalized Linear Model (GLM) with Poisson error structure with two reference populations, which both can serve as preferred reference for life insurers: The United States Life Tables 2008 (USLT) and the 2008 Valuation Basic Tables (VBT) based on the insured population of 35 US Life insurers. The time dependency of the RHs of the systolic blood pressure (SBP), aspartate aminotransferase (ASAT), lactate dehydrogenase (LDH), serum albumin and albuminuria, was assessed, with correction for ethnicity, household income, history of diabetes mellitus, BMI and serum cholesterol. To be able to compare the results with the results of the Age Dependency Study (ADS), the same data, risk indicators, statistical analysis method, and the

  8. Time-dependent non-equilibrium dielectric response in QM/continuum approaches

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Feizhi; Lingerfelt, David B.; Li, Xiaosong, E-mail: benedetta.mennucci@unipi.it, E-mail: li@chem.washington.edu [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States); Mennucci, Benedetta, E-mail: benedetta.mennucci@unipi.it, E-mail: li@chem.washington.edu [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, 56126 Pisa (Italy)

    2015-01-21

    The Polarizable Continuum Models (PCMs) are some of the most inexpensive yet successful methods for including the effects of solvation in quantum-mechanical calculations of molecular systems. However, when applied to the electronic excitation process, these methods are restricted to dichotomously assuming either that the solvent has completely equilibrated with the excited solute charge density (infinite-time limit), or that it retains the configuration that was in equilibrium with the solute prior to excitation (zero-time limit). This renders the traditional PCMs inappropriate for resolving time-dependent solvent effects on non-equilibrium solute electron dynamics like those implicated in the instants following photoexcitation of a solvated molecular species. To extend the existing methods to this non-equilibrium regime, we herein derive and apply a new formalism for a general time-dependent continuum embedding method designed to be propagated alongside the solute’s electronic degrees of freedom in the time domain. Given the frequency-dependent dielectric constant of the solvent, an equation of motion for the dielectric polarization is derived within the PCM framework and numerically integrated simultaneously with the time-dependent Hartree fock/density functional theory equations. Results for small molecular systems show the anticipated dipole quenching and electronic state dephasing/relaxation resulting from out-of-phase charge fluctuations in the dielectric and embedded quantum system.

  9. Time-dependent aspects of electron degradation: 4, Subexcitation electrons in nitrogen and carbon dioxide

    International Nuclear Information System (INIS)

    Kimura, Mineo; Inokuti, Mitio; Kowari, Ken-ichi; Dillon, M.A.; Pagnamenta, A.

    1988-01-01

    We discuss here the temporal behavior of subexcitation electrons and the yields of products due to these subexcitation electrons. Our examples concern cases in which resonance scattering of electrons occurs, such as vibrational and rotational excitation in N 2 and negative-ion formation in CO 2 . One focus of the present work is a test of the continuous-slowing-down-approximation (CSDA) which we compare to the full solution of the time-dependent Spencer-Fano theory, which has been developed recently. 11 refs., 6 figs., 1 tab

  10. Time-dependent Hartree-Fock studies of the dynamical fusion threshold

    Directory of Open Access Journals (Sweden)

    Nakatsukasa Takashi

    2012-12-01

    Full Text Available A microscopic description of dynamical fusion threshold in heavy ion collisions is performed in the framework of time-dependent Hartree-Fock (TDHF theory using Skyrme energy density functional (EDF. TDHF fusion threshold is in a better agreement with experimental fusion barrier. We find that the onset of extra push lies at the effective fissility 33, which is consistent with the prediction of Swiatecki’s macroscopic model. The extra push energy in our TDHF simulation is systematically smaller than the prediction in macroscopic model. The important dynamical effects and the way to fit the parameter might be responsible for the different results.

  11. A COKOSNUT code for the control of the time-dependent Kohn-Sham model

    Science.gov (United States)

    Sprengel, M.; Ciaramella, G.; Borzì, A.

    2017-05-01

    Optimal control of multi-electron systems is considered in the framework of the time-dependent density functional theory. For this purpose, the MATLAB package COKOSNUT is presented that aims at solving optimal quantum control problems governed by the Kohn-Sham equation. This package includes a robust globalized nonlinear conjugate gradient scheme and an efficient splitting procedure for the numerical integration of the nonlinear Kohn-Sham equations in two dimensions. Results of numerical experiments demonstrate the ability of the COKOSNUT code in computing accurate optimal controls.

  12. Optimal control of interacting particles: a multi-configuration time-dependent Hartree-Fock approach

    International Nuclear Information System (INIS)

    Mundt, Michael; Tannor, David J

    2009-01-01

    We combine optimal control theory with the multi-configuration time-dependent Hartree-Fock method to control the dynamics of interacting particles. We use the resulting scheme to optimize state-to-state transitions in a one-dimensional (1D) model of helium and to entangle the external degrees-of-freedom of two rubidium atoms in a 1D optical lattice. Comparisons with optimization results based on the exact solution of the Schroedinger equation show that the scheme can be used to optimize even involved processes in systems consisting of interacting particles in a reliable and efficient way.

  13. On quantization of time-dependent systems with constraints

    International Nuclear Information System (INIS)

    Hadjialieva, F.G.; Jafarov, R.G.

    1993-07-01

    The Dirac method of canonical quantization of theories with second class constraints has to be modified if the constraints depend on time explicitly. A solution of the problem was given by Gitman and Tyutin. In the present work we propose an independent way to derive the rules of quantization for these systems, starting from physical equivalent theory with trivial nonstationarity. (author). 4 refs

  14. Parametric Resonance in a Time-Dependent Harmonic Oscillator

    Directory of Open Access Journals (Sweden)

    P. N. Nesterov

    2013-01-01

    Full Text Available In this paper, we study the phenomenon of appearance of new resonances in a timedependent harmonic oscillator under an oscillatory decreasing force. The studied equation belongs to the class of adiabatic oscillators and arises in connection with the spectral problem for the one-dimensional Schr¨odinger equation with Wigner–von Neumann type potential. We use a specially developed method for asymptotic integration of linear systems of differential equations with oscillatory decreasing coefficients. This method uses the ideas of the averaging method to simplify the initial system. Then we apply Levinson’s fundamental theorem to get the asymptotics for its solutions. Finally, we analyze the features of a parametric resonance phenomenon. The resonant frequencies of perturbation are found and the pointwise type of the parametric resonance phenomenon is established. In conclusion, we construct an example of a time-dependent harmonic oscillator (adiabatic oscillator in which the parametric resonances, mentioned in the paper, may occur.

  15. Fundamental Constants in Physics and their Time Dependence

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    In the Standard Model of Particle Physics we are dealing with 28 fundamental constants. In the experiments these constants can be measured, but theoretically they are not understood. I will discuss these constants, which are mostly mass parameters. Astrophysical measurements indicate that the finestructure constant is not a real constant, but depends on time. Grand unification then implies also a time variation of the QCD scale. Thus the masses of the atomic nuclei and the magnetic moments of the nuclei will depend on time. I proposed an experiment, which is currently done by Prof. Haensch in Munich and his group. The first results indicate a time dependence of the QCD scale. I will discuss the theoretical implications.

  16. Time dependent variation of carrying capacity of prestressed precast beam

    Science.gov (United States)

    Le, Tuan D.; Konečný, Petr; Matečková, Pavlína

    2018-04-01

    The article deals with the evaluation of the precast concrete element time dependent carrying capacity. The variation of the resistance is inherited property of laboratory as well as in-situ members. Thus the specification of highest, yet possible, laboratory sample resistance is important with respect to evaluation of laboratory experiments based on the test machine loading capabilities. The ultimate capacity is evaluated through the bending moment resistance of a simply supported prestressed concrete beam. The probabilistic assessment is applied. Scatter of random variables of compressive strength of concrete and effective height of the cross section is considered. Monte Carlo simulation technique is used to investigate the performance of the cross section of the beam with changes of tendons’ positions and compressive strength of concrete.

  17. Development of constitutive model for composites exhibiting time dependent properties

    International Nuclear Information System (INIS)

    Pupure, L; Joffe, R; Varna, J; Nyström, B

    2013-01-01

    Regenerated cellulose fibres and their composites exhibit highly nonlinear behaviour. The mechanical response of these materials can be successfully described by the model developed by Schapery for time-dependent materials. However, this model requires input parameters that are experimentally determined via large number of time-consuming tests on the studied composite material. If, for example, the volume fraction of fibres is changed we have a different material and new series of experiments on this new material are required. Therefore the ultimate objective of our studies is to develop model which determines the composite behaviour based on behaviour of constituents of the composite. This paper gives an overview of problems and difficulties, associated with development, implementation and verification of such model

  18. Monolayer phosphorene under time-dependent magnetic field

    Science.gov (United States)

    Nascimento, J. P. G.; Aguiar, V.; Guedes, I.

    2018-02-01

    We obtain the exact wave function of a monolayer phosphorene under a low-intensity time-dependent magnetic field using the dynamical invariant method. We calculate the quantum-mechanical energy expectation value and the transition probability for a constant and an oscillatory magnetic field. For the former we observe that the Landau level energy varies linearly with the quantum numbers n and m and the magnetic field intensity B0. No transition takes place. For the latter, we observe that the energy oscillates in time, increasing linearly with the Landau level n and m and nonlinearly with the magnetic field. The (k , l) →(n , m) transitions take place only for l = m. We investigate the (0,0) →(n , 0) and (1 , l) and (2 , l) probability transitions.

  19. Two-dimensional time dependent Riemann solvers for neutron transport

    International Nuclear Information System (INIS)

    Brunner, Thomas A.; Holloway, James Paul

    2005-01-01

    A two-dimensional Riemann solver is developed for the spherical harmonics approximation to the time dependent neutron transport equation. The eigenstructure of the resulting equations is explored, giving insight into both the spherical harmonics approximation and the Riemann solver. The classic Roe-type Riemann solver used here was developed for one-dimensional problems, but can be used in multidimensional problems by treating each face of a two-dimensional computation cell in a locally one-dimensional way. Several test problems are used to explore the capabilities of both the Riemann solver and the spherical harmonics approximation. The numerical solution for a simple line source problem is compared to the analytic solution to both the P 1 equation and the full transport solution. A lattice problem is used to test the method on a more challenging problem

  20. Stirring inertia in time-dependent low Reynolds number flows

    Science.gov (United States)

    Yecko, Philip; Luchtenburg, Dirk Martin (Mark); Forgoston, Eric; Billings, Lora

    2017-11-01

    Diagnosis of a kinematic flow and its transport using Lagrangian coherent structures (LCS) based on finite-time Lyapunov exponents (FTLE) neglects dynamical effects, such as pressure, as well as dynamically important constraints, such as potential vorticity conservation. Chaotic advection, on the other hand, often neglects inertial effects, which are prominent in LCS. We present results for very low Reynolds number laboratory flows, including a Stokes double gyre, vertically sheared strain and a four roll mill. Images of tracer (dye) and FTLE fields computed from particle image velocimetry (PIV) reveal complementary sets of flow structures, giving a more complete picture of transport in these flows. We confirm by computing FTLE of an exact time-dependent Stokes flow solution and present implications of these findings for inertial object transport in flows. Support of NSF DMS-1418956 is gratefully acknoweldged.

  1. Time-Dependent Increase in Network Response to Stimulation.

    Directory of Open Access Journals (Sweden)

    Franz Hamilton

    Full Text Available In vitro neuronal cultures have become a popular method with which to probe network-level neuronal dynamics and phenomena in controlled laboratory settings. One of the key dynamics of interest in these in vitro studies has been the extent to which cultured networks display properties indicative of learning. Here we demonstrate the effects of a high frequency electrical stimulation signal in training cultured networks of cortical neurons. Networks receiving this training signal displayed a time-dependent increase in the response to a low frequency probing stimulation, particularly in the time window of 20-50 ms after stimulation. This increase was found to be statistically significant as compared to control networks that did not receive training. The timing of this increase suggests potentiation of synaptic mechanisms. To further investigate this possibility, we leveraged the powerful Cox statistical connectivity method as previously investigated by our group. This method was used to identify and track changes in network connectivity strength.

  2. Fuzzy economic production quantity model with time dependent demand rate

    Directory of Open Access Journals (Sweden)

    Susanta Kumar Indrajitsingha

    2016-09-01

    Full Text Available Background: In this paper, an economic production quantity model is considered under a fuzzy environment. Both the demand cost and holding cost are considered using fuzzy pentagonal numbers. The Signed Distance Method is used to defuzzify the total cost function. Methods: The results obtained by these methods are compared with the help of a numerical example. Sensitivity analysis is also carried out to explore the effect of changes in the values of some of the system parameters. Results and conclusions: The fuzzy EPQ model with time dependent demand rate was presented together with the possible implementation. The behavior of changes in parameters was analyzed. The possible extension of the implementation of this method was presented.

  3. Observation of Broadband Time-Dependent Rabi Shifting in Microplasmas

    International Nuclear Information System (INIS)

    Compton, Ryan; Filin, Alex; Romanov, Dmitri A.; Levis, Robert J.

    2009-01-01

    Coherent broadband radiation in the form of Rabi sidebands is observed when a ps probe laser propagates through a weakly ionized, electronically excited microplasma generated in the focus of an intense pump beam. The sidebands arise from the interaction of the probe beam with pairs of excited states of a constituent neutral atom via the probe-induced Rabi oscillation. Sideband shifting of >90 meV from the probe carrier frequency results in an effective bandwidth of 200 meV. The sidebands are controlled by the intensity and temporal profile of the probe pulse; with amplitude and shift in agreement with the predictions of a time-dependent generalized Rabi cycling model.

  4. Time-Dependent Topology of Railway Prestressed Concrete Sleepers

    Science.gov (United States)

    Li, Dan; Ngamkhanong, Chayut; Kaewunruen, Sakdirat

    2017-10-01

    The railway sleepers are very important component of railway track structure. The sleepers can be manufactured by using timber, concrete, steel or other engineered materials. Nowadays, prestressed concrete has become most commonly used type of sleepers. Prestressed concrete sleepers have longer life-cycle and lower maintenance cost than reinforced concrete sleepers. They are expected to withstand high dynamic loads and harsh environments. However, durability and long-term performance of prestressed concrete sleepers are largely dependent on creep and shrinkage responses. This study investigates the long-term behaviours of prestressed concrete sleepers and proposes the shortening and deflection diagrams. Comparison between design codes of Eurocode 2 and AS3600-2009 provides the insight into the time-dependent performance of prestressed concrete sleepers. The outcome of this paper will improve the rail maintenance and inspection criteria in order to establish appropriate sensible remote track condition monitor network in practice.

  5. Time-dependent reliability analysis and condition assessment of structures

    International Nuclear Information System (INIS)

    Ellingwood, B.R.

    1997-01-01

    Structures generally play a passive role in assurance of safety in nuclear plant operation, but are important if the plant is to withstand the effect of extreme environmental or abnormal events. Relative to mechanical and electrical components, structural systems and components would be difficult and costly to replace. While the performance of steel or reinforced concrete structures in service generally has been very good, their strengths may deteriorate during an extended service life as a result of changes brought on by an aggressive environment, excessive loading, or accidental loading. Quantitative tools for condition assessment of aging structures can be developed using time-dependent structural reliability analysis methods. Such methods provide a framework for addressing the uncertainties attendant to aging in the decision process

  6. Spin-orbit torque induced spike-timing dependent plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Abhronil, E-mail: asengup@purdue.edu; Al Azim, Zubair; Fong, Xuanyao; Roy, Kaushik [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2015-03-02

    Nanoelectronic devices that mimic the functionality of synapses are a crucial requirement for performing cortical simulations of the brain. In this work, we propose a ferromagnet-heavy metal heterostructure that employs spin-orbit torque to implement spike-timing dependent plasticity. The proposed device offers the advantage of decoupled spike transmission and programming current paths, thereby leading to reliable operation during online learning. Possible arrangement of such devices in a crosspoint architecture can pave the way for ultra-dense neural networks. Simulation studies indicate that the device has the potential of achieving pico-Joule level energy consumption (maximum 2 pJ per synaptic event) which is comparable to the energy consumption for synaptic events in biological synapses.

  7. Coordinate Space HFB Calculations for the Zirconium Isotope Chain up to the Two-Neutron Dripline

    OpenAIRE

    Blazkiewicz, A.; Oberacker, V. E.; Umar, A. S.; Stoitsov, M.

    2005-01-01

    We solve the Hartree-Fock-Bogoliubov (HFB) equations for deformed, axially symmetric even-even nuclei in coordinate space on a 2-D lattice utilizing the Basis-Spline expansion method. Results are presented for the neutron-rich zirconium isotopes up to the two-neutron dripline. In particular, we calculate binding energies, two-neutron separation energies, normal densities and pairing densities, mean square radii, quadrupole moments, and pairing gaps. Very large prolate quadrupole deformations ...

  8. Pairing field and moments of inertia of superdeformed nuclei

    CERN Document Server

    Chen Yong; Xu Fu Xin

    2002-01-01

    The authors have systematically analysed the dynamic moments of inertia of the experimental superdeformed (SD) bands observed in the A = 190, 150 and 60-80 mass regions as functions of rotational frequency. By combining the different mass regions, the dramatic features of the dynamic moments of inertia were found and explained based on the calculations of the pairing fields of SD nuclei with the anisotropic harmonic oscillator quadrupole pairing Hartree-Fock-Bogoliubov model

  9. The Dirac-Frenkel Principle for Reduced Density Matrices, and the Bogoliubov-de-Gennes Equations

    OpenAIRE

    Benedikter, Niels; Sok, Jérémy; Solovej, Jan Philip

    2017-01-01

    The derivation of effective evolution equations is central to the study of non-stationary quantum many-body sytems, and widely used in contexts such as superconductivity, nuclear physics, Bose-Einstein condensation and quantum chemistry. We reformulate the Dirac-Frenkel approximation principle in terms of reduced density matrices, and apply it to fermionic and bosonic many-body systems. We obtain the Bogoliubov-de-Gennes and Hartree-Fock-Bogoliubov equations, respectively. While we do not pro...

  10. Time-Dependent Rock Failure in a Heterogeneous Limestone

    Science.gov (United States)

    Roth, K.; Kemeny, J.

    2015-12-01

    Time-dependent rock failure is an important aspect in the analysis of long-term rock stability for slopes, dam and bridge foundations, and underground storage facilities. An on-going project at the University of Arizona is using Kartchner Caverns in Benson, Arizona as a natural analog to study such failure by reconstructing the process of natural cave breakdown with subcritical crack growth modeling. Breakdown is thought to occur along joints through the time-dependent failure of rock bridges: sections of intact rock separating discontinuities in a rock mass. The Escabrosa limestone composing the caverns ranges from a more homogenous, even-grained texture to a more heterogeneous texture consisting of coarse-grained veins and solution cavities set in a fine-grained matrix. To determine if the veined regions are more susceptible to fracturing and act as the nuclei of rock bridge failure, fracture toughness tests were conducted for both textures. The subcritical crack growth parameters were calculated using the constant stress-rate method. Results indicate that the more heterogeneous limestone has a higher fracture strength, fracture toughness, and subcritical crack growth index n than the more homogeneous limestone. This is in agreement with previous studies which found that a more complex and heterogeneous microstructure produces a larger microcrack process zone, leading to higher fracture energies and lower susceptibility to subcritical crack growth. Thus, despite their solution cavities, the calcite veins do not localize failure or act as planes of weakness; instead, rock bridges fail through the more homogeneous limestone matrix.

  11. New applications with time-dependent thermochemical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Koukkari, P. [VTT Chemical Technology, Espoo (Finland); Laukkanen, L. [VTT Automation, Espoo (Finland); Penttilae, K. [Kemira Engineering Oy, Helsinki (Finland)

    1996-12-31

    A new method (RATEMIX) to calculate multicomponent chemical reaction mixtures as a series of sequential thermochemical states was recently introduced. The procedure combines multicomponent thermodynamics with chemical kinetics and may be used to simulate the multicomponent reactors as a thermochemical natural process. The method combines the desired reaction rates sequentially with constrained Gibbs energy minimization. The reactant concentrations are determined by the experimental (Arrhenius) rate laws. During the course of the given reaction the subsequent side reactions are supposed to occur reversibly. At every sequential stage of the given reaction the temperature and composition of the reaction mixture are calculated by a thermodynamic subroutine, which minimizes the Gibbs energy of the system and takes into account the heat transfer between the system and its surroundings. The extents of reaction are included as algorithmic constraints in the Gibbs energy minimization procedure. Initially, the reactants are introduced to the system as inert copies to match both the mass and energy balance of the reactive system. During the calculation the copies are sequentially interchanged to the actual reactants which allows one to simulate the time-dependent reaction route by using the thermochemical procedure. For each intermediate stage, the temperature and composition are calculated and as well numerical estimates of the thermodynamic functions are obtained. The method is applicable in processes where the core thermodynamic and kinetic data of the system are known and the time-dependent heat transfer data can either be measured or estimated by calculation. The method has been used to simulate e.g. high temperature flame reactions, zinc vapour oxidation and a counter-current rotary drum with chemical reactions. The procedure has today been tested with SOLGASMIX, CHEMSAGE and HSC programs. (author)

  12. Time-dependent degenerative transformations in the lipidome of chalazia.

    Science.gov (United States)

    Wojtowicz, Jadwiga C; Butovich, Igor A; McMahon, Anne; Hogan, Robert N; Itani, Kamel M; Mancini, Ronald; Molai, Mike; Linsenbardt, Emily

    2014-10-01

    The aim of this prospective study was to conduct histopathologic and lipidomic analyses of chalazia, in order to evaluate time-dependent changes in the lesion. Samples of surgically excised chalazia were collected over a period of 12 months from 10 patients (mean age 41 years; range, 23-58) with clinically diagnosed chalazia, who underwent scheduled surgery. The ages of chalazia varied from 2 to 28 weeks. To confirm the clinical diagnoses, the morphology of collected tissue samples was evaluated histologically after hematoxylin and eosin staining. The lipids from individual chalazia were analyzed by high-performance liquid chromatography-mass spectrometry and compared with authentic lipid standards and with the lipids of meibum collected from normal controls. We observed gradual, lesion age-dependent transformation of the lipidome of chalazia from an almost normal meibum-like composition to a very different kind of lipidome. A rapid initial increase in the free cholesterol content was followed by a gradual replacement of extremely long chain meibomian-type lipids with a mixture of shorter-chain cholesteryl esters of the C14-C18 family, triacylglycerols, ceramides, phospholipids and sphingomyelins. In addition, a rapid disappearance of wax esters and cholesteryl esters of (1-O)-acyl-omega-hydroxy fatty acids from the lipidome of aging chalazia was observed. Our results are indicative of dramatic, time-dependent changes in the lesion that may involve cholesterol as a trigger and/or a marker of subsequent degeneration of the meibomian lipidome. We hypothesize that early inhibition of these transformations may be useful in reversing the course of the disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Spike-timing dependent plasticity in the striatum

    Directory of Open Access Journals (Sweden)

    Elodie Fino

    2010-06-01

    Full Text Available The striatum is the major input nucleus of basal ganglia, an ensemble of interconnected sub-cortical nuclei associated with fundamental processes of action-selection and procedural learning and memory. The striatum receives afferents from the cerebral cortex and the thalamus. In turn, it relays the integrated information towards the basal ganglia output nuclei through which it operates a selected activation of behavioral effectors. The striatal output neurons, the GABAergic medium-sized spiny neurons (MSNs, are in charge of the detection and integration of behaviorally relevant information. This property confers to the striatum the ability to extract relevant information from the background noise and select cognitive-motor sequences adapted to environmental stimuli. As long-term synaptic efficacy changes are believed to underlie learning and memory, the corticostriatal long-term plasticity provides a fundamental mechanism for the function of the basal ganglia in procedural learning. Here, we reviewed the different forms of spike-timing dependent plasticity (STDP occurring at corticostriatal synapses. Most of the studies have focused on MSNs and their ability to develop long-term plasticity. Nevertheless, the striatal interneurons (the fast-spiking GABAergic, the NO synthase and cholinergic interneurons also receive monosynaptic afferents from the cortex and tightly regulated corticostriatal information processing. Therefore, it is important to take into account the variety of striatal neurons to fully understand the ability of striatum to develop long-term plasticity. Corticostriatal STDP with various spike-timing dependence have been observed depending on the neuronal sub-populations and experimental conditions. This complexity highlights the extraordinary potentiality in term of plasticity of the corticostriatal pathway.

  14. Implicit time-dependent finite different algorithm for quench simulation

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Norikiyo; Takahashi, Yoshikazu; Tsuji, Hiroshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1994-12-01

    A magnet in a fusion machine has many difficulties in its application because of requirement of a large operating current, high operating field and high breakdown voltage. A cable-in-conduit (CIC) conductor is the best candidate to overcome these difficulties. However, there remained uncertainty in a quench event in the cable-in-conduit conductor because of a difficulty to analyze a fluid dynamics equation. Several scientists, then, developed the numerical code for the quench simulation. However, most of them were based on an explicit time-dependent finite difference scheme. In this scheme, a discrete time increment is strictly restricted by CFL (Courant-Friedrichs-Lewy) condition. Therefore, long CPU time was consumed for the quench simulation. Authors, then, developed a new quench simulation code, POCHI1, which is based on an implicit time dependent scheme. In POCHI1, the fluid dynamics equation is linearlized according to a procedure applied by Beam and Warming and then, a tridiagonal system can be offered. Therefore, no iteration is necessary to solve the fluid dynamics equation. This leads great reduction of the CPU time. Also, POCHI1 can cope with non-linear boundary condition. In this study, comparison with experimental results was carried out. The normal zone propagation behavior was investigated in two samples of CIC conductors which had different hydraulic diameters. The measured and simulated normal zone propagation length showed relatively good agreement. However, the behavior of the normal voltage shows a little disagreement. These results indicate necessity to improve the treatment of the heat transfer coefficient in the turbulent flow region and the electric resistivity of the copper stabilizer in high temperature and high field region. (author).

  15. Implicit time-dependent finite different algorithm for quench simulation

    International Nuclear Information System (INIS)

    Koizumi, Norikiyo; Takahashi, Yoshikazu; Tsuji, Hiroshi

    1994-12-01

    A magnet in a fusion machine has many difficulties in its application because of requirement of a large operating current, high operating field and high breakdown voltage. A cable-in-conduit (CIC) conductor is the best candidate to overcome these difficulties. However, there remained uncertainty in a quench event in the cable-in-conduit conductor because of a difficulty to analyze a fluid dynamics equation. Several scientists, then, developed the numerical code for the quench simulation. However, most of them were based on an explicit time-dependent finite difference scheme. In this scheme, a discrete time increment is strictly restricted by CFL (Courant-Friedrichs-Lewy) condition. Therefore, long CPU time was consumed for the quench simulation. Authors, then, developed a new quench simulation code, POCHI1, which is based on an implicit time dependent scheme. In POCHI1, the fluid dynamics equation is linearlized according to a procedure applied by Beam and Warming and then, a tridiagonal system can be offered. Therefore, no iteration is necessary to solve the fluid dynamics equation. This leads great reduction of the CPU time. Also, POCHI1 can cope with non-linear boundary condition. In this study, comparison with experimental results was carried out. The normal zone propagation behavior was investigated in two samples of CIC conductors which had different hydraulic diameters. The measured and simulated normal zone propagation length showed relatively good agreement. However, the behavior of the normal voltage shows a little disagreement. These results indicate necessity to improve the treatment of the heat transfer coefficient in the turbulent flow region and the electric resistivity of the copper stabilizer in high temperature and high field region. (author)

  16. Time-dependent quantum many-body systems. Linear response, electronic transport, and reduced density matrices

    International Nuclear Information System (INIS)

    Appel, H.

    2007-05-01

    In part I of this work we present a double-pole approximation (DPA) to the response equations of time-dependent density functional theory (TDDFT). The double-pole approximation provides an exact description of systems with two strongly coupled excitations which are isolated from the rest of the spectrum. In contrast to the traditional single-pole approximation of TDDFT the DPA also yields corrections to the Kohn-Sham oscillator strengths. We also demonstrate how to invert the double-pole solution which allows us to predict matrix elements of the exchange-correlation kernel f xc from experimental input. We attempt some first steps towards a time-dependent generalization of reduced density matrix functional theory (RDMFT). In part II we derive equations of motion for natural orbitals and occupation numbers. Using the equation of motion for the occupation numbers we show that an adiabatic extension of presently known ground-state functionals of static RDMFT always leads to occupation numbers which are constant in time. From the stationary conditions of the equations of motion for the N-body correlations (correlated parts of the N-body matrices) we derive a new class of ground-state functionals which can be used in static RDMFT. Applications are presented for a one-dimensional model system where the time-dependent many-body Schroedinger equation can be propagated numerically. We use optimal control theory to find optimized laser pulses for transitions in a model for atomic Helium. From the numerically exact correlated wavefunction we extract the exact time evolution of natural orbitals and occupation numbers for (i) laser-driven Helium and (ii) electron-ion scattering. Part III of this work considers time-dependent quantum transport within TDDFT. We present an algorithm for the calculation of extended eigenstates of single-particle Hamiltonians which is especially tailored to a finite-difference discretization of the Schroedinger equation. We consider the propagation

  17. Time-dependent quantum many-body systems. Linear response, electronic transport, and reduced density matrices

    Energy Technology Data Exchange (ETDEWEB)

    Appel, H.

    2007-05-15

    In part I of this work we present a double-pole approximation (DPA) to the response equations of time-dependent density functional theory (TDDFT). The double-pole approximation provides an exact description of systems with two strongly coupled excitations which are isolated from the rest of the spectrum. In contrast to the traditional single-pole approximation of TDDFT the DPA also yields corrections to the Kohn-Sham oscillator strengths. We also demonstrate how to invert the double-pole solution which allows us to predict matrix elements of the exchange-correlation kernel f{sub xc} from experimental input. We attempt some first steps towards a time-dependent generalization of reduced density matrix functional theory (RDMFT). In part II we derive equations of motion for natural orbitals and occupation numbers. Using the equation of motion for the occupation numbers we show that an adiabatic extension of presently known ground-state functionals of static RDMFT always leads to occupation numbers which are constant in time. From the stationary conditions of the equations of motion for the N-body correlations (correlated parts of the N-body matrices) we derive a new class of ground-state functionals which can be used in static RDMFT. Applications are presented for a one-dimensional model system where the time-dependent many-body Schroedinger equation can be propagated numerically. We use optimal control theory to find optimized laser pulses for transitions in a model for atomic Helium. From the numerically exact correlated wavefunction we extract the exact time evolution of natural orbitals and occupation numbers for (i) laser-driven Helium and (ii) electron-ion scattering. Part III of this work considers time-dependent quantum transport within TDDFT. We present an algorithm for the calculation of extended eigenstates of single-particle Hamiltonians which is especially tailored to a finite-difference discretization of the Schroedinger equation. We consider the

  18. Geoid Height Time Dependence Due to Global Glacial Isostatic Adjustment: The Critical Influence of Rotational Feedback

    Science.gov (United States)

    Peltier, W.

    2006-05-01

    It has recently been suggested in Mitrovica, Wahr et al.(2005. Geophys. J. Int. 161, 491-506) that the theory previously developed to predict the Earth's rotational response to the Late Quaternary glaciation-deglaciation cycle may require modification. This theory was initially described in Peltier (1982, Advances in Geophysics 24, 1-146) and in Wu and Peltier (1984, Geophys. J. R. astr. Soc. 76, 202-242). Its importance for understanding the GIA contribution to the modern rate of geoid height time dependence that is currently being measured by the GRACE satellite system lies in the fact that the polar wander induced by the ice-age cycle contributes to this field in an important way. It has proven possible to test the quality of the original form of the theory in a definitive way by employing Holocene inferences of relative sea level history based upon radio- carbon dated sea level index points. This test relies upon data from a wide range of sites on the Earth's surface, sites located in regions that are expcted to be most strongly influenced by the feedback of the polar wander component of the Earth's rotatonal response to the glaciation cycle onto sea level history itself. Application of the test demonstrates that the claims made in the Mitrovica, Wahr et al. paper concerning the existence of a flaw in the theory are incorrect. The previously published ICE-5G(VM2)prediction of the expected geoid height time dependence due to the GIA process is therefor secure (see Peltier, 2005. QSR 24, 1655- 1671).

  19. Recovery of time-dependent volatility in option pricing model

    Science.gov (United States)

    Deng, Zui-Cha; Hon, Y. C.; Isakov, V.

    2016-11-01

    In this paper we investigate an inverse problem of determining the time-dependent volatility from observed market prices of options with different strikes. Due to the non linearity and sparsity of observations, an analytical solution to the problem is generally not available. Numerical approximation is also difficult to obtain using most of the existing numerical algorithms. Based on our recent theoretical results, we apply the linearisation technique to convert the problem into an inverse source problem from which recovery of the unknown volatility function can be achieved. Two kinds of strategies, namely, the integral equation method and the Landweber iterations, are adopted to obtain the stable numerical solution to the inverse problem. Both theoretical analysis and numerical examples confirm that the proposed approaches are effective. The work described in this paper was partially supported by a grant from the Research Grant Council of the Hong Kong Special Administrative Region (Project No. CityU 101112) and grants from the NNSF of China (Nos. 11261029, 11461039), and NSF grants DMS 10-08902 and 15-14886 and by Emylou Keith and Betty Dutcher Distinguished Professorship at the Wichita State University (USA).

  20. Time-dependent histamine release from stored human blood products

    DEFF Research Database (Denmark)

    Nielsen, Hans Jørgen; Edvardsen, L; Vangsgaard, K

    1996-01-01

    storage. Whole blood (six units), plasma-reduced whole blood (six units), and plasma- and buffy coat-reduced (saline-adenine-glucose-mannitol) (SAGM) blood (six units) from unpaid healthy donors were stored in the blood bank for 35 days at 4 degrees C. Plasma histamine and total cell-bound histamine.......0 (range 176.0-910.0) nmol/l in whole blood and 475.0 (range 360.0-1560.0) nmol/l in plasma-reduced whole blood, while it was undetectable in SAGM blood. Spontaneous histamine release increased in a time-dependent manner from a median of 6.7 (range 2.2-17.4) nmol/l at the time of storage to 175.0 (range 33.......0-485.0) nmol/l at day 35 in whole blood, from 18.8 (range 8.2-38.5) to 328.5 (range 224.0-1137.0) nmol/l in plasma-reduced whole blood, and from 0.5 (range 0.5-1.5) to 2.2 (range 1.4-6.9) nmol/l in SAGM blood. These results show spontaneous histamine release during storage of human blood products which contain...

  1. Investigating the time-dependent zeta potential of wood surfaces.

    Science.gov (United States)

    Muff, Livius F; Luxbacher, Thomas; Burgert, Ingo; Michen, Benjamin

    2018-05-15

    This work reports on streaming potential measurements through natural capillaries in wood and investigates the cause of a time-dependent zeta potential measured during the equilibration of wood cell-walls with an electrolyte solution. For the biomaterial, this equilibration phase takes several hours, which is much longer than for many other materials that have been characterized by electrokinetic measurements. During this equilibration phase the zeta potential magnitude is decaying due to two parallel mechanisms: (i) the swelling of the cell-wall which causes a dimensional change reducing the charge density at the capillary interface; (ii) the transport of ions from the electrolyte solution into the permeable cell-wall which alters the electrical potential at the interface by internal charge compensation. The obtained results demonstrate the importance of equilibration kinetics for an accurate determination of the zeta potential, especially for materials that interact strongly with the measurement electrolyte. Moreover, the change in zeta potential with time can be correlated with the bulk swelling of wood if the effect of electrolyte ion diffusion is excluded. This study shows the potential of streaming potential measurements of wood, and possibly of other hygroscopic and nanoporous materials, to reveal kinetic information about their interaction with liquids, such as swelling and ion uptake. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity123

    Science.gov (United States)

    Pecevski, Dejan

    2016-01-01

    Abstract Numerous experimental data show that the brain is able to extract information from complex, uncertain, and often ambiguous experiences. Furthermore, it can use such learnt information for decision making through probabilistic inference. Several models have been proposed that aim at explaining how probabilistic inference could be performed by networks of neurons in the brain. We propose here a model that can also explain how such neural network could acquire the necessary information for that from examples. We show that spike-timing-dependent plasticity in combination with intrinsic plasticity generates in ensembles of pyramidal cells with lateral inhibition a fundamental building block for that: probabilistic associations between neurons that represent through their firing current values of random variables. Furthermore, by combining such adaptive network motifs in a recursive manner the resulting network is enabled to extract statistical information from complex input streams, and to build an internal model for the distribution p* that generates the examples it receives. This holds even if p* contains higher-order moments. The analysis of this learning process is supported by a rigorous theoretical foundation. Furthermore, we show that the network can use the learnt internal model immediately for prediction, decision making, and other types of probabilistic inference. PMID:27419214

  3. Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity.

    Science.gov (United States)

    Pecevski, Dejan; Maass, Wolfgang

    2016-01-01

    Numerous experimental data show that the brain is able to extract information from complex, uncertain, and often ambiguous experiences. Furthermore, it can use such learnt information for decision making through probabilistic inference. Several models have been proposed that aim at explaining how probabilistic inference could be performed by networks of neurons in the brain. We propose here a model that can also explain how such neural network could acquire the necessary information for that from examples. We show that spike-timing-dependent plasticity in combination with intrinsic plasticity generates in ensembles of pyramidal cells with lateral inhibition a fundamental building block for that: probabilistic associations between neurons that represent through their firing current values of random variables. Furthermore, by combining such adaptive network motifs in a recursive manner the resulting network is enabled to extract statistical information from complex input streams, and to build an internal model for the distribution p (*) that generates the examples it receives. This holds even if p (*) contains higher-order moments. The analysis of this learning process is supported by a rigorous theoretical foundation. Furthermore, we show that the network can use the learnt internal model immediately for prediction, decision making, and other types of probabilistic inference.

  4. submitter Time-dependent CP violation in charm mesons

    CERN Document Server

    Inguglia, Gianluca

    CP violation is a well established phenomenon for B and K mesons, but for D0 mesons, bound states made up of a quark-antiquark pair containing a charm quark, a conclusive answer to the question whether there is CP vio- lation or not, has yet to be determined. I show here the phenomenology of time-dependent CP asymmetries in charm decays, and discuss the implica- tions of experimental tests aimed at the measurement of CP violation in the interference between mixing and decays of charm mesons, in particular when studying the decay channels D0 ! h+h (h = K; ). The decay channels considered can also be used to constrain quantities that are poorly measured or still to be investigated, such as MIX and c;eff , provided that the e ects of penguin pollution are ignored. I considered correlated production of D0 mesons at the SuperB experiment and its planned asymmetric run at the charm threshold and performed a study of simulated events, nding that a boost factor = 0:28 would not be su cient to produce competitive re- ...

  5. Residual distribution for general time-dependent conservation laws

    International Nuclear Information System (INIS)

    Ricchiuto, Mario; Csik, Arpad; Deconinck, Herman

    2005-01-01

    We consider the second-order accurate numerical solution of general time-dependent hyperbolic conservation laws over unstructured grids in the framework of the Residual Distribution method. In order to achieve full conservation of the linear, monotone and first-order space-time schemes of (Csik et al., 2003) and (Abgrall et al., 2000), we extend the conservative residual distribution (CRD) formulation of (Csik et al., 2002) to prismatic space-time elements. We then study the design of second-order accurate and monotone schemes via the nonlinear mapping of the local residuals of linear monotone schemes. We derive sufficient and necessary conditions for the well-posedness of the mapping. We prove that the schemes obtained with the CRD formulation satisfy these conditions by construction. Thus the nonlinear schemes proposed in this paper are always well defined. The performance of the linear and nonlinear schemes are evaluated on a series of test problems involving the solution of the Euler equations and of a two-phase flow model. We consider the resolution of strong shocks and complex interacting flow structures. The results demonstrate the robustness, accuracy and non-oscillatory character of the proposed schemes. d schemes

  6. Time-dependent effect in green synthesis of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Darroudi M

    2011-04-01

    Full Text Available Majid Darroudi1,2, Mansor Bin Ahmad3, Reza Zamiri4, AK Zak5, Abdul Halim Abdullah1,3, Nor Azowa Ibrahim31Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA, Universiti Putra Malaysia, Selangor, Malaysia; 2Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; 3Department of Chemistry, 4Department of Physics, Faculty of Science, Universiti Putra Malaysia, Selangor, Malaysia; 5Low Dimensional Materials Research Center, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur, MalaysiaAbstract: The application of “green” chemistry rules to nanoscience and nanotechnology is very important in the preparation of various nanomaterials. In this work, we successfully developed an eco-friendly chemistry method for preparing silver nanoparticles (Ag-NPs in natural polymeric media. The colloidal Ag-NPs were synthesized in an aqueous solution using silver nitrate, gelatin, and glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag-NPs were studied at different reaction times. The ultraviolet-visible (UV-vis spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM and their size distributions. The prepared samples were also characterized by X-ray diffraction (XRD and atomic force microscopy (AFM. The use of eco-friendly reagents, such as gelatin and glucose, provides green and economic attributes to this work.Keywords: silver nanoparticles, gelatin, green chemistry, time-dependent effect, ultraviolet-visible spectra

  7. Time-dependent motor properties of multipedal molecular spiders.

    Science.gov (United States)

    Samii, Laleh; Blab, Gerhard A; Bromley, Elizabeth H C; Linke, Heiner; Curmi, Paul M G; Zuckermann, Martin J; Forde, Nancy R

    2011-09-01

    Molecular spiders are synthetic biomolecular walkers that use the asymmetry resulting from cleavage of their tracks to bias the direction of their stepping motion. Using Monte Carlo simulations that implement the Gillespie algorithm, we investigate the dependence of the biased motion of molecular spiders, along with binding time and processivity, on tunable experimental parameters, such as number of legs, span between the legs, and unbinding rate of a leg from a substrate site. We find that an increase in the number of legs increases the spiders' processivity and binding time but not their mean velocity. However, we can increase the mean velocity of spiders with simultaneous tuning of the span and the unbinding rate of a spider leg from a substrate site. To study the efficiency of molecular spiders, we introduce a time-dependent expression for the thermodynamic efficiency of a molecular motor, allowing us to account for the behavior of spider populations as a function of time. Based on this definition, we find that spiders exhibit transient motor function over time scales of many hours and have a maximum efficiency on the order of 1%, weak compared to other types of molecular motors.

  8. Time-dependent, multimode interaction analysis of the gyroklystron amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Swati, M. V., E-mail: swati.mv.ece10@iitbhu.ac.in; Chauhan, M. S.; Jain, P. K. [Department of Electronics Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005 (India)

    2016-08-15

    In this paper, a time-dependent multimode nonlinear analysis for the gyroklystron amplifier has been developed by extending the analysis of gyrotron oscillators by employing the self-consistent approach. The nonlinear analysis developed here has been validated by taking into account the reported experimental results for a 32.3 GHz, three cavity, second harmonic gyroklystron operating in the TE{sub 02} mode. The analysis has been used to estimate the temporal RF growth in the operating mode as well as the nearby competing modes. Device gain and bandwidth have been computed for different drive powers and frequencies. The effect of various beam parameters, such as beam voltage, beam current, and pitch factor, has also been studied. The computational results have estimated the gyroklystron saturated RF power ∼319 kW at 32.3 GHz with efficiency ∼23% and gain ∼26.3 dB with device bandwidth ∼0.027% (8 MHz) for a 70 kV, 20 A electron beam. The computed results are found to be in agreement with the experimental values within 10%.

  9. Time-dependence of salinity in monsoonal estuaries

    Digital Repository Service at National Institute of Oceanography (India)

    Vijith, V.; Sundar, D.; Shetye, S.R.

    The theories and classification schemes commonly used for understanding estuarine dynamics often refer to a steady state of the estuary in which the salinity field is time-independent. In this state salinity-ingress into the estuary due to different...

  10. Longitudinal dispersion with time-dependent source concentration ...

    Indian Academy of Sciences (India)

    theory of dispersion in porous media has been very well compiled by Scheidegger (1961). Groundwater ... direct proportion to the seepage velocity for var- ious types of porous media (Ebach and White. 1958). .... and Social Science, Indian School of Mines Uni- versity, Dhanbad, for his co-operation in editing this work.

  11. Asymptotic absolute continuity for perturbed time-dependent ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    symbol r(t,x) of the multiplication operator R(t,x). ... in scattering theory of an exact solution to a Hamilton–Jacobi equation appeared in [H1], where the existence of a certain wave operator was shown. Moreover this solution is also a powerful tool when applied to the two-body completeness problem as it was demonstrated.

  12. Hamiltonian Dynamics and Adiabatic Invariants for Time-Dependent Superconducting Qubit-Oscillators and Resonators in Quantum Computing Systems

    Directory of Open Access Journals (Sweden)

    Jeong Ryeol Choi

    2015-01-01

    Full Text Available An adiabatic invariant, which is a conserved quantity, is useful for studying quantum and classical properties of dynamical systems. Adiabatic invariants for time-dependent superconducting qubit-oscillator systems and resonators are investigated using the Liouville-von Neumann equation. At first, we derive an invariant for a simple superconducting qubit-oscillator through the introduction of its reduced Hamiltonian. Afterwards, an adiabatic invariant for a nanomechanical resonator linearly interfaced with a superconducting circuit, via a coupling with a time-dependent strength, is evaluated using the technique of unitary transformation. The accuracy of conservation for such invariant quantities is represented in detail. Based on the results of our developments in this paper, perturbation theory is applicable to the research of quantum characteristics of more complicated qubit systems that are described by a time-dependent Hamiltonian involving nonlinear terms.

  13. Nonlinear wave time dependent dynamic evolution in solar flux tubes

    Science.gov (United States)

    Fedun, V.; Erdelyi, R.

    2005-12-01

    The aim of the present work is to investigate the excitation, time dependent dynamic evolution and interaction of weakly nonlinear propagating (i.e. solitary) waves on vertical cylindrical magnetic flux tubes in a compressible solar atmospheric plasma. The axisymmetric flux tube has a field strength of 1000 G at its footpoint what is typical for photospheric regions. Solitons are excited by a footpoint driver. The propagation of the nonlinear signal is investigated by solving numerically a set of fully nonlinear 2D MHD equations in cylindrical coordinates. For the initial conditions the solutions of the linear dispersion relation for wave modes (in the present case we focus on the sausage mode) in a magnetic flux tube is applied. This dispersion relation is solved numerically for a range of plasma parameters. We compare our results with the works of Roberts [1], Wilson [2] (dispersion relation), Molotovshchikov [3] (nonlinear slow sausage waves) and Weisshaar [4] (numerical solutions of the Leibovich-Prichard-Roberts equation). (1) We found solitary solutions and investigate solitary propagating with external sound speed by solving the full MHD equations. (2) We also found a solitary wave propagating with the tube speed. A natural application of our studies may be spicule formation in the chromosphere, as suggested by Roberts [5], where it was demonstrated theoretically, that a solar photospheric magnetic flux tube can support the propagation of solitons governed by the Benjamin-Ono (slow mode) equations. Future possible improvements in modeling and the relevance of the photospheric chromospheric transition region coupling by spicules is suggested. [1] B. Roberts and A. Webb, Sol. Phys., 1978, v. 56, p. 5 [2] P.R. Wilson, Astron. Astrophys., 1980, v. 87, p. 121 [3] A.L. Molotovshchikov and M.S. Ruderman, Sol. Phys., 1987, v. 109, p. 247 [4] E. Weisshaar, Phys. Fluids A, 1989, v. 1(8), p. 1406 [5] B. Roberts and A. Mangeney, Royal Astronomical Society, Monthly

  14. Time dependence of microsecond intense electron beam transport in gases

    International Nuclear Information System (INIS)

    Lucey, R.F. Jr.; Gilgenback, R.M.; Tucker, J.E.; Brake, M.L.; Enloe, C.L.; Repetti, T.E.

    1987-01-01

    The authors present results of long-pulse (0.5 μs) electron beam propagation in the ion focused regime (IFR). Electron beam parameters are 800 kV with several hundred amperes injected current. For injection into air (from 0.7 mTorr to 75 mTorr) and helium (from 14 mTorr to 227 mTorr) the authors observe a ''time-dependent propagation window'' in which efficient (up to 100%) propagation starts at a time comparable to the electron impact ionization time needed to achieve n/sub i/ -- (1/γ/sup 2/)n/sub eb/. The transport goes abruptly to zero about 50-150 ns after this initial propagation. This is followed by erratic propagation often consisting of numerous narrower pulses 10-40 ns wide. In these pulses the transported current can be 100% of the injected current, but is generally lower. As the fill pressure is increased, there are differences in the propagated beam pulse, which can be summarized as follows: 1) the temporal occurrence of the beam propagation window shifts to earlier times, 2) the propagated beam current has much faster risetimes, 3) a larger portion of the injected beam is propagated. Similar results are observed when the electron beam is propagated in helium. However, at a given pressure, the beam transport window occurs at later times and exhibits a slower risetime. These effects are consistent with electron beam-induced ionization. Experiments are being performed to determine if the observed beam instability is due to the ion hose instability or streaming instability

  15. Solving the time dependent vehicle routing problem by metaheuristic algorithms

    Science.gov (United States)

    Johar, Farhana; Potts, Chris; Bennell, Julia

    2015-02-01

    The problem we consider in this study is Time Dependent Vehicle Routing Problem (TDVRP) which has been categorized as non-classical VRP. It is motivated by the fact that multinational companies are currently not only manufacturing the demanded products but also distributing them to the customer location. This implies an efficient synchronization of production and distribution activities. Hence, this study will look into the routing of vehicles which departs from the depot at varies time due to the variation in manufacturing process. We consider a single production line where demanded products are being process one at a time once orders have been received from the customers. It is assumed that order released from the production line will be loaded into scheduled vehicle which ready to be delivered. However, the delivery could only be done once all orders scheduled in the vehicle have been released from the production line. Therefore, there could be lateness on the delivery process from awaiting all customers' order of the route to be released. Our objective is to determine a schedule for vehicle routing that minimizes the solution cost including the travelling and tardiness cost. A mathematical formulation is developed to represent the problem and will be solved by two metaheuristics; Variable Neighborhood Search (VNS) and Tabu Search (TS). These algorithms will be coded in C ++ programming and run using 56's Solomon instances with some modification. The outcome of this experiment can be interpreted as the quality criteria of the different approximation methods. The comparison done shown that VNS gave the better results while consuming reasonable computational efforts.

  16. Pharmacokinetics: time-dependent changes--autoinduction of carbamazepine epoxidation

    International Nuclear Information System (INIS)

    Bertilsson, L.; Tomson, T.; Tybring, G.

    1986-01-01

    Drugs labeled with stable isotopes have been useful to study time-dependent changes in kinetics. Early studies suggested that carbamazepine (CBZ) may induce its own metabolism, but this could not be proved until tetradeuterium-labeled CBZ (CBZ-D4) was synthesized and then given to patients. CBZ-D4 was administered to three children during long-term treatment of epilepsy with CBZ. After 17 to 32 days of treatment, the plasma clearance of CBZ-D4 was doubled, but during the next four months, there was no further increase, indicating that autoinduction was complete within one month. Two patients with chronic alcoholism were treated with CBZ for five days. Half of the first dose of 600 mg was comprised of CBZ-D4. The half-life of this CBZ-D4 dose in the two patients (20 and 26 hr, respectively) was similar to the post-steady-state half-life of CBZ (23 hr in both patients) measured later. A single dose of CBZ given one week after the last maintenance dose had a longer half-life (46 and 45 hr, respectively), which probably is close to the disposition of the drug before starting the treatment with CBZ. This shows that autoinduction of CBZ metabolism was completed during the very first doses of CBZ. Autoinduction also disappeared rapidly after stopping the treatment. We have shown that it is mainly the epoxide-diol pathway that is induced, both during autoinduction and after induction with other antiepileptic agents

  17. On the time-dependent behavior of FGM plates

    OpenAIRE

    Altenbach, Holm; Eremeyev, Victor,

    2009-01-01

    International audience; A non-classical plate theory based on the direct approach is introduced and applied to plates composed of functionally graded materials (FGM). The governing two-dimensional equations are formulated for a deformable surface, the viscoelastic stiffness parameters are identified assuming linear-viscoelastic material behavior. In addition, the material properties are changing in the thickness direction. Solving some problems of the global structural analysis it can be show...

  18. Time dependence of magnetization of high temperature superconductors

    International Nuclear Information System (INIS)

    Larkin, A.I.; Geshkenbein, V.B.

    1988-10-01

    Magnetization of high T c superconductors logarithmically decreases with time. There is a maximum in the temperature dependence of the coefficient at this logarithm. If one assumes that there do exist two kinds of pinning centers, then this dependence can be described in the Anderson theory of thermal creeps of Abrikosov's vortices. The temperature dependence of the critical current is also discussed. (author). 23 refs

  19. Temporal sensitivity. [time dependent human perception of visual stimuli

    Science.gov (United States)

    Watson, Andrew B.

    1986-01-01

    Human visual temporal sensitivity is examined. The stimuli used to measure temporal sensitivity are described and the linear systems theory is reviewed in terms of temporal sensitivity. A working model which represents temporal sensitivity is proposed. The visibility of a number of temporal wave forms, sinusoids, rectangular pulses, and pulse pairs, is analyzed. The relation between spatial and temporal effects is studied. Temporal variations induced by image motion and the effects of light adaptation on temporal sensitivity are considered.

  20. On the initial conditions of time-dependent mean-field equations of evolution. Pt. 2

    International Nuclear Information System (INIS)

    Troudet, T.; Paris-11 Univ., 91 - Orsay

    1986-01-01

    We analyze the problem so far untouched of determining the initial mean-field wavefunction in the context of zero-temperature mean-field descriptions of time-dependent expectation values and quantum fluctuations of nuclear observables. The nucleus, at zero temperature, is taken to be in a low-lying excited many-body eigenstate and is approximated by the corresponding RPA wavefunction as a continuous superposition of coherent states (i.e. Slater determinants). A generating function Gsub(A)(lambda) for time-dependent expectation values and quantum fluctuations is constructed within the formalism of functional integration. By applying the saddle-point method to the functional action of Gsub(A)(lambda) and then taking its lambda-derivatives, we recover the well-known TDHF theory and propose a simple determination of the initial Slater determinant for an appropriate mean-field description of time-dependent expectation values. The analog mean-field description of quadratic-quantum fluctuations proceeds similarly and in addition includes the contribution of the uncorrelated TDHF-RPA phonons coupled to collective excitations of the initial (static) mean-field configuration. When the collective TDHF-RPA excitations are solely taken into account, we obtain an improved version of the Balian-Veneroni dispersion formula by showing how to determine the initial mean-field wavefunction. By first taking the lambda-derivatives of Gsub(A)(lambda) before applying the saddle-point method, the initial mean-field wavefunction is found to be non-linearly coupled to the mean-field dynamics themselves. In return, and in contrast to the first quantization scheme, these both depend non-trivially upon the observable A being measured so that approximations must be proposed to simplify the resulting mean-field equations. (orig.)

  1. Optimised effective potential for ground states, excited states, and time-dependent phenomena

    International Nuclear Information System (INIS)

    Gross, E.K.U.

    1996-01-01

    (1) The optimized effective potential method is a variant of the traditional Kohn-Sham scheme. In this variant, the exchange-correlation energy E xc is an explicit functional of single-particle orbitals. The exchange-correlation potential, given as usual by the functional derivative v xc = δE xc /δρ, then satisfies as integral equation involving the single-particle orbitals. This integral equation in solved semi-analytically using a scheme recently proposed by Krieger, Li and Iafrate. If the exact (Fock) exchange-energy functional is employed together with the Colle-Salvetti orbital functional for the correlation energy, the mean absolute deviation of the resulting ground-state energies from the exact nonrelativistic values is CT mH for the first-row atoms, as compared to 4.5 mH in a state-of-the-art CI calculation. The proposed scheme is thus significantly more accurate than the conventional Kohn-Sham method while the numerical effort involved is about the same as for an ordinary Hanree-Fock calculation. (2) A time-dependent generalization of the optimized-potential method is presented and applied to the linear-response regime. Since time-dependent density functional theory leads to a formally exact representation of the frequency-dependent linear density response and since the latter, as a function of frequency, has poles at the excitation energies of the fully interacting system, the formalism is suitable for the calculation of excitation energies. A simple additive correction to the Kohn-Sham single-particle excitation energies will be deduced and first results for atomic and molecular singlet and triplet excitation energies will be presented. (3) Beyond the regime of linear response, the time-dependent optimized-potential method is employed to describe atoms in strong emtosecond laser pulses. Ionization yields and harmonic spectra will be presented and compared with experimental data

  2. Chemical dynamics between wells across a time-dependent barrier: Self-similarity in the Lagrangian descriptor and reactive basins

    Science.gov (United States)

    Junginger, Andrej; Duvenbeck, Lennart; Feldmaier, Matthias; Main, Jörg; Wunner, Günter; Hernandez, Rigoberto

    2017-08-01

    In chemical or physical reaction dynamics, it is essential to distinguish precisely between reactants and products for all times. This task is especially demanding in time-dependent or driven systems because therein the dividing surface (DS) between these states often exhibits a nontrivial time-dependence. The so-called transition state (TS) trajectory has been seen to define a DS which is free of recrossings in a large number of one-dimensional reactions across time-dependent barriers and thus, allows one to determine exact reaction rates. A fundamental challenge to applying this method is the construction of the TS trajectory itself. The minimization of Lagrangian descriptors (LDs) provides a general and powerful scheme to obtain that trajectory even when perturbation theory fails. Both approaches encounter possible breakdowns when the overall potential is bounded, admitting the possibility of returns to the barrier long after the trajectories have reached the product or reactant wells. Such global dynamics cannot be captured by perturbation theory. Meanwhile, in the LD-DS approach, it leads to the emergence of additional local minima which make it difficult to extract the optimal branch associated with the desired TS trajectory. In this work, we illustrate this behavior for a time-dependent double-well potential revealing a self-similar structure of the LD, and we demonstrate how the reflections and side-minima can be addressed by an appropriate modification of the LD associated with the direct rate across the barrier.

  3. DEPTH-CHARGE static and time-dependent perturbation/sensitivity system for nuclear reactor core analysis. Revision I

    International Nuclear Information System (INIS)

    White, J.R.

    1985-04-01

    This report provides the background theory, user input, and sample problems required for the efficient application of the DEPTH-CHARGE system - a code black for both static and time-dependent perturbation theory and data sensitivity analyses. The DEPTH-CHARGE system is of modular construction and has been implemented within the VENTURE-BURNER computational system at Oak Ridge National Laboratory. The DEPTH module (coupled with VENTURE) solves for the three adjoint functions of Depletion Perturbation Theory and calculates the desired time-dependent derivatives of the response with respect to the nuclide concentrations and nuclear data utilized in the reference model. The CHARGE code is a collection of utility routines for general data manipulation and input preparation and considerably extends the usefulness of the system through the automatic generation of adjoint sources, estimated perturbed responses, and relative data sensitivity coefficients. Combined, the DEPTH-CHARGE system provides, for the first time, a complete generalized first-order perturbation/sensitivity theory capability for both static and time-dependent analyses of realistic multidimensional reactor models. This current documentation incorporates minor revisions to the original DEPTH-CHARGE documentation (ORNL/CSD-78) to reflect some new capabilities within the individual codes

  4. Theoretical study of time-dependent, ultrasound-induced acoustic streaming in microchannels.

    Science.gov (United States)

    Muller, Peter Barkholt; Bruus, Henrik

    2015-12-01

    Based on first- and second-order perturbation theory, we present a numerical study of the temporal buildup and decay of unsteady acoustic fields and acoustic streaming flows actuated by vibrating walls in the transverse cross-sectional plane of a long straight microchannel under adiabatic conditions and assuming temperature-independent material parameters. The unsteady streaming flow is obtained by averaging the time-dependent velocity field over one oscillation period, and as time increases, it is shown to converge towards the well-known steady time-averaged solution calculated in the frequency domain. Scaling analysis reveals that the acoustic resonance builds up much faster than the acoustic streaming, implying that the radiation force may dominate over the drag force from streaming even for small particles. However, our numerical time-dependent analysis indicates that pulsed actuation does not reduce streaming significantly due to its slow decay. Our analysis also shows that for an acoustic resonance with a quality factor Q, the amplitude of the oscillating second-order velocity component is Q times larger than the usual second-order steady time-averaged velocity component. Consequently, the well-known criterion v(1)≪c(s) for the validity of the perturbation expansion is replaced by the more restrictive criterion v(1)≪c(s)/Q. Our numerical model is available as supplemental material in the form of comsol model files and matlab scripts.

  5. 2007 Time_Dependent Density-Functional Therory (July 15-20, 2007 Colby College, Maine)

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich Carsten

    2008-09-19

    Time-dependent density-functional theory (TDDFT) provides an efficient, elegant, and formally exact way of describing the dynamics of interacting many-body quantum systems, circumventing the need for solving the full time-dependent Schroedinger equation. In the 20 years since it was first rigorously established in 1984, the field of TDDFT has made rapid and significant advances both formally as well as in terms of successful applications in chemistry, physics and materials science. Today, TDDFT has become the method of choice for calculating excitation energies of complex molecules, and is becoming increasingly popular for describing optical and spectroscopic properties of a variety of materials such as bulk solids, clusters and nanostructures. Other growing areas of applications of TDDFT are nonlinear dynamics of strongly excited electronic systems and molecular electronics. The purpose and scope of this Gordon Research Conference is to provide a platform for discussing the current state of the art of the rapidly progressing, highly interdisciplinary field of TDDFT, to identify and debate open questions, and to point out new promising research directions. The conference will bring together experts with a diverse background in chemistry, physics, and materials science.

  6. Iterative solution of the time dependent Schrodinger equation

    International Nuclear Information System (INIS)

    Kiss, Zs.G.; Nagy, L.; Borbely, S.; Toekesi, K.

    2011-01-01

    Complete text of publication follows. The most accurate theoretical method used to investigate the interaction between atoms and ultrashort (few-cycle) UV / XUV laser pulses is the direct numerical solution of the time dependent Schrodinger equation (TDSE). The aim of the present work is to test various methods used for the solution of the TDSE, and to find the less resource consuming one. The recently developed iterative solution of TDSE (iTDSE model) is an extension of the momentum-space strongfield approximation (MSSFA), in which the Coulomb potential was considered only as a first order perturbation. In the iTDSE model the higher order terms were gradually introduced, until convergence was achieved. The converged iTDSE results were compared with the 'exact' results, obtained from the direct solution of the TDSE (see [2-3]). The MSSFA method provides accurate results only in the half-cycle pulse limit, and its shortcomings are revealed only in the long pulse limit. As any perturbative approach, the MSSFA time propagation is not unitary (norm of the wave function is not conserved). Beside this due to the weak Coulomb potential (i.e. first order perturbation) the ionization probability amplitude is overestimated and the Δl = ±1 selection rule is not fulfilled, which leads to erroneous wave function dynamics. The direct solution of the TDSE does not have the above presented shortcomings, but during production runs it requires a large amount of CPU power and memory even in the framework of the single active electron approach. The newly implemented extension of the MSSFA model (the iTDSE model) eliminates all the MSSFA model's shortcomings providing accurate results. The main advantage of the iTDSE model is that it requires considerably less computer resources (CPU time and memory) then the direct solution, while it provides results as accurate as the direct solution. The most critical part of the iTDSE approach is the temporal propagation, which involves the

  7. Time-Dependent Toroidal Compactification Proposals and the Bianchi Type I Model: Classical and Quantum Solutions

    Directory of Open Access Journals (Sweden)

    L. Toledo Sesma

    2016-01-01

    Full Text Available We construct an effective four-dimensional model by compactifying a ten-dimensional theory of gravity coupled with a real scalar dilaton field on a time-dependent torus. This approach is applied to anisotropic cosmological Bianchi type I model for which we study the classical coupling of the anisotropic scale factors with the two real scalar moduli produced by the compactification process. Under this approach, we present an isotropization mechanism for the Bianchi I cosmological model through the analysis of the ratio between the anisotropic parameters and the volume of the Universe which in general keeps constant or runs into zero for late times. We also find that the presence of extra dimensions in this model can accelerate the isotropization process depending on the momenta moduli values. Finally, we present some solutions to the corresponding Wheeler-DeWitt (WDW equation in the context of standard quantum cosmology.

  8. Chemical dynamics in the gas phase: Time-dependent quantum mechanics of chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Gray, S.K. [Argonne National Laboratory, IL (United States)

    1993-12-01

    A major goal of this research is to obtain an understanding of the molecular reaction dynamics of three and four atom chemical reactions using numerically accurate quantum dynamics. This work involves: (i) the development and/or improvement of accurate quantum mechanical methods for the calculation and analysis of the properties of chemical reactions (e.g., rate constants and product distributions), and (ii) the determination of accurate dynamical results for selected chemical systems, which allow one to compare directly with experiment, determine the reliability of the underlying potential energy surfaces, and test the validity of approximate theories. This research emphasizes the use of recently developed time-dependent quantum mechanical methods, i.e. wave packet methods.

  9. The time-dependent Ginzburg—Landau equation for the two-velocity difference model

    International Nuclear Information System (INIS)

    Wu Shu-Zhen; Ge Hong-Xia; Cheng Rong-Jun

    2011-01-01

    A thermodynamic theory is formulated to describe the phase transition and critical phenomenon in traffic flow. Based on the two-velocity difference model, the time-dependent Ginzburg—Landau (TDGL) equation under certain condition is derived to describe the traffic flow near the critical point through the nonlinear analytical method. The corresponding two solutions, the uniform and the kink solutions, are given. The coexisting curve, spinodal line and critical point are obtained by the first and second derivatives of the thermodynamic potential. The modified Korteweg de Vries (mKdV) equation around the critical point is derived by using the reductive perturbation method and its kink—antikink solution is also obtained. The relation between the TDGL equation and the mKdV equation is shown. The simulation result is consistent with the nonlinear analytical result. (general)

  10. Dynamical response of the Ising model to the time dependent magnetic field with white noise

    Science.gov (United States)

    Akıncı, Ümit

    2018-03-01

    The effect of the white noise in time dependent magnetic field on the dynamic behavior of the Ising model has been investigated within the effective field theory based on Glauber type of stochastic process. Discrete white noise has been chosen from both Gaussian and uniform probability distributions. Detailed investigation on probability distribution of dynamical order parameter results that, both type of noise distributions yield the same probability distribution related to the dynamical order parameter, namely Gaussian probability distribution. The variation of the parameters that describe the probability distribution of dynamical order parameter (mean value and standard deviation) with temperature and strength of the noise have been inspected. Also, it has been shown that, rising strength of the noise can induce dynamical phase transition in the system.

  11. Time dependence linear transport III convergence of the discrete ordinate method

    International Nuclear Information System (INIS)

    Wilson, D.G.

    1983-01-01

    In this paper the uniform pointwise convergence of the discrete ordinate method for weak and strong solutions of the time dependent, linear transport equation posed in a multidimensional, rectangular parallelepiped with partially reflecting walls is established. The first result is that a sequence of discrete ordinate solutions converges uniformly on the quadrature points to a solution of the continuous problem provided that the corresponding sequence of truncation errors for the solution of the continuous problem converges to zero in the same manner. The second result is that continuity of the solution with respect to the velocity variables guarantees that the truncation erros in the quadrature formula go the zero and hence that the discrete ordinate approximations converge to the solution of the continuous problem as the discrete ordinate become dense. An existence theory for strong solutions of the the continuous problem follows as a result

  12. Nonperturbative Time Dependent Solution of a Simple Ionization Model

    Science.gov (United States)

    Costin, Ovidiu; Costin, Rodica D.; Lebowitz, Joel L.

    2018-02-01

    We present a non-perturbative solution of the Schrödinger equation {iψ_t(t,x)=-ψ_{xx}(t,x)-2(1 +α sinω t) δ(x)ψ(t,x)} , written in units in which \\hbar=2m=1, describing the ionization of a model atom by a parametric oscillating potential. This model has been studied extensively by many authors, including us. It has surprisingly many features in common with those observed in the ionization of real atoms and emission by solids, subjected to microwave or laser radiation. Here we use new mathematical methods to go beyond previous investigations and to provide a complete and rigorous analysis of this system. We obtain the Borel-resummed transseries (multi-instanton expansion) valid for all values of α, ω, t for the wave function, ionization probability, and energy distribution of the emitted electrons, the latter not studied previously for this model. We show that for large t and small α the energy distribution has sharp peaks at energies which are multiples of ω, corresponding to photon capture. We obtain small α expansions that converge for all t, unlike those of standard perturbation theory. We expect that our analysis will serve as a basis for treating more realistic systems revealing a form of universality in different emission processes.

  13. Acoustic noise interferometry in a time-dependent coastal ocean.

    Science.gov (United States)

    Godin, Oleg A

    2018-02-01

    Interferometry of underwater noise provides a way to estimate physical parameters of the water column and the seafloor without employing any controlled sound sources. In applications of acoustic noise interferometry to coastal oceans, the propagation environment changes appreciably during the averaging times that are necessary for the Green's functions to emerge from noise cross-correlations. Here, a theory is developed to quantify the effects of nonstationarity of the propagation environment on two-point correlation functions of diffuse noise. It is shown that temporal variability of the ocean limits from above the frequency range, where noise cross-correlations approximate the Green's functions. The theoretical predictions are in quantitative agreement with results of the 2012 noise interferometry experiment in the Florida Straits. The loss of coherence at high frequencies constrains the passive acoustic remote sensing to exploiting a low-frequency part of measured noise cross-correlations, thus limiting the resolution of deterministic inversions. On the other hand, the passively measured coherence loss contains information about statistical characteristics of the ocean dynamics at unresolved spatial and temporal scales.

  14. The time-dependent simplified P2 equations: Asymptotic analyses and numerical experiments

    International Nuclear Information System (INIS)

    Shin, U.; Miller, W.F. Jr.

    1998-01-01

    Using an asymptotic expansion, the authors found that the modified time-dependent simplified P 2 (SP 2 ) equations are robust, high-order, asymptotic approximations to the time-dependent transport equation in a physical regime in which the conventional time-dependent diffusion equation is the leading-order approximation. Using diffusion limit analysis, they also asymptotically compared three competitive time-dependent equations (the telegrapher's equation, the time-dependent SP 2 equations, and the time-dependent simplified even-parity equation). As a result, they found that the time-dependent SP 2 equations contain higher-order asymptotic approximations to the time-dependent transport equation than the other competitive equations. The numerical results confirm that, in the vast majority of cases, the time-dependent SP 2 solutions are significantly more accurate than the time-dependent diffusion and the telegrapher's solutions. They have also shown that the time-dependent SP 2 equations have excellent characteristics such as rotational invariance (which means no ray effect), good diffusion limit behavior, guaranteed positivity in diffusive regimes, and significant accuracy, even in deep-penetration problems. Through computer-running-time tests, they have shown that the time-dependent SP 2 equations can be solved with significantly less computational effort than the conventionally used, time-dependent S N equations (for N > 2) and almost as fast as the time-dependent diffusion equation. From all these results, they conclude that the time-dependent SP 2 equations should be considered as an important competitor for an improved approximately transport equations solver. Such computationally efficient time-dependent transport models are important for problems requiring enhanced computational efficiency, such as neutronics/fluid-dynamics coupled problems that arise in the analyses of hypothetical nuclear reactor accidents

  15. Exact solution of a quantum forced time-dependent harmonic oscillator

    Science.gov (United States)

    Yeon, Kyu Hwang; George, Thomas F.; Um, Chung IN

    1992-01-01

    The Schrodinger equation is used to exactly evaluate the propagator, wave function, energy expectation values, uncertainty values, and coherent state for a harmonic oscillator with a time dependent frequency and an external driving time dependent force. These quantities represent the solution of the classical equation of motion for the time dependent harmonic oscillator.

  16. Relativistic Adiabatic Time-Dependent Density Functional Theory Using Hybrid Functionals and Noncollinear Spin Magnetization

    DEFF Research Database (Denmark)

    Bast, Radovan; Jensen, Hans Jørgen Aagaard; Saue, Trond

    2009-01-01

    into reduction of algebra from quaternion to complex or real. For hybrid GGAs with noncollinear spin magnetization we derive a new computationally advantageous equation for the full second variational derivatives of such exchange-correlation functionals. We apply our implementation to calculations on the ns2...

  17. Optical Absorption in Molecular Crystals from Time-Dependent Density Functional Theory

    Science.gov (United States)

    2017-04-23

    aliphatic molecules (carbon dioxide, ammonia, acetic acid, suc- cinic acid, cyanamide, ethyl carbamate, oxalic acid (in both α and β polymorphs), urea...8.8 8.8 Urea 4.8 8.0 7.9 Ethyl carbamate 5.6 9.0 8.8 Acetic acid 5.1 9.1 9.3 Oxalic acid (α) 3.2 6.7 6.9 Oxalic acid (β) 3.5 7.3 7.5 Succinic acid...6.4 7.4 7.1 Ethyl carbamate 5.6 7.3 6.5 - 7.2 7.7 7.5 Acetic acid 5.1 5.8 5.6 - 5.5 8.2 8.3 Oxalic acid (α) 3.2 4.7 4.4 - 3.7 6.0 6.3 Oxalic acid (β

  18. Two-Component Noncollinear Time-Dependent Spin Density Functional Theory for Excited State Calculations.

    Science.gov (United States)

    Egidi, Franco; Sun, Shichao; Goings, Joshua J; Scalmani, Giovanni; Frisch, Michael J; Li, Xiaosong

    2017-06-13

    We present a linear response formalism for the description of the electronic excitations of a noncollinear reference defined via Kohn-Sham spin density functional methods. A set of auxiliary variables, defined using the density and noncollinear magnetization density vector, allows the generalization of spin density functional kernels commonly used in collinear DFT to noncollinear cases, including local density, GGA, meta-GGA and hybrid functionals. Working equations and derivations of functional second derivatives with respect to the noncollinear density, required in the linear response noncollinear TDDFT formalism, are presented in this work. This formalism takes all components of the spin magnetization into account independent of the type of reference state (open or closed shell). As a result, the method introduced here is able to afford a nonzero local xc torque on the spin magnetization while still satisfying the zero-torque theorem globally. The formalism is applied to a few test cases using the variational exact-two-component reference including spin-orbit coupling to illustrate the capabilities of the method.

  19. Mechanical Structure Design Optimization by Blind Number Theory: Time-dependent Reliability

    OpenAIRE

    Zakari Yaou; Lirong Cui

    2012-01-01

    In a product development process, understanding the functional behavior of the system, the role of components in achieving functions and failure modes if components/subsystem fails its required function will help develop appropriate design validation and verification program for reliability assessment. The integration of these three issues will help design and reliability engineers in identifying weak spots in design and planning future actions and testing program. This case study demonstrate...

  20. Time-dependent reliability of corrosion-affected RC beams. Part 3: Effect of corrosion initiation time and its variability on time-dependent failure probability

    International Nuclear Information System (INIS)

    Bhargava, Kapilesh; Mori, Yasuhiro; Ghosh, A.K.

    2011-01-01

    This paper forms the third part of a study which addresses time-dependent reliability analyses of reinforced concrete (RC) beams affected by reinforcement corrosion. Parts 1 and 2 of the reliability study are presented in companion papers. Part 1 of the reliability study presents evaluation of probabilistic descriptions for time-dependent strengths of a typical simply supported corrosion-affected RC beam. These probabilistic descriptions, i.e., mean and coefficient of variation (c.o.v.) for the time-dependent strengths are presented for two limit states: (a) flexural failure; and (b) shear failure. Part 2 of the reliability study presents evaluation of time-dependent failure probability for the considered RC beam by utilizing the information on probabilistic descriptions for time-dependent strengths available in Part 1. Evaluation of time-dependent failure probability considering the variability in time-dependent strengths and/or time-dependent degradation functions is also presented. This paper investigates the effects of time to corrosion initiation and its variability on failure probability of the same RC beam presented in companion papers. By considering variability in the identified variables that could affect the expected time of first corrosion, simple estimations are presented for mean time to corrosion initiation and variability associated with time to corrosion initiation. Evaluation of time-dependent failure probability for the beam is presented by considering estimated probabilistic descriptions, i.e., mean and c.o.v. for time to corrosion initiation. Parametric analyses show that failure probability for the beam is sensitive to the mode of strength degradation and time to corrosion initiation.

  1. Attainable conditions and exact invariant for the time-dependent harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Guasti, Manuel Fernandez [Lab. de Optica Cuantica, Dep. de Fisica, Universidad A. Metropolitana, Unidad Iztapalapa, Mexico DF, Ap. Post. 55-534 (Mexico)

    2006-09-22

    The time-dependent oscillator equation is solved numerically for various trajectories in amplitude and phase variables. The solutions exhibit a finite time-dependent parameter whenever the squared amplitude times the derivative of the phase is invariant. If the invariant relationship does not hold, the time-dependent parameter has divergent singularities. These observations lead to the proposition that the harmonic oscillator equation with finite time-dependent parameter must have amplitude and phase solutions fulfilling the invariant relationship. Since the time-dependent parameter or the potential must be finite for any real oscillator implementation, the invariant must hold for any such physically realizable system.

  2. Time-dependent density functional methods for Raman spectra in open-shell systems.

    Science.gov (United States)

    Aquino, Fredy W; Schatz, George C

    2014-01-16

    We present an implementation of a time-dependent density functional theory (TD-DFT) linear response module in NWChem for unrestricted DFT calculations and apply it to the calculation of resonant Raman spectra in open-shell molecular systems using the short-time approximation. The new source code was validated and applied to simulate Raman spectra on several doublet organic radicals (e.g., benzyl, benzosemiquinone, TMPD, trans-stilbene anion and cation, and methyl viologen) and the metal complex copper phthalocyanine. We also introduce a divide-and-conquer approach for the evaluation of polarizabilities in relatively large systems (e.g., copper phthalocyanine). The implemented tool gives comparisons with experiment that are similar to what is commonly found for closed-shell systems, with good agreement for most features except for small frequency shifts, and occasionally large deviations for some modes that depend on the molecular system studied, experimental conditions not being accounted in the modeling such as solvation effects and extra solvent-based peaks, and approximations in the underlying theory. The approximations used in the quantum chemical modeling include (i) choice of exchange-correlation functional and basis set; (ii) harmonic approximation used in the frequency analysis to determine vibrational normal modes; and (iii) short-time approximation (omission of nuclear motion effects) used in calculating resonant Raman spectra.

  3. Modeling and analysis of time-dependent processes in a chemically reactive mixture

    Science.gov (United States)

    Ramos, M. P.; Ribeiro, C.; Soares, A. J.

    2018-01-01

    In this paper, we study the propagation of sound waves and the dynamics of local wave disturbances induced by spontaneous internal fluctuations in a reactive mixture. We consider a non-diffusive, non-heat conducting and non-viscous mixture described by an Eulerian set of evolution equations. The model is derived from the kinetic theory in a hydrodynamic regime of a fast chemical reaction. The reactive source terms are explicitly computed from the kinetic theory and are built in the model in a proper way. For both time-dependent problems, we first derive the appropriate dispersion relation, which retains the main effects of the chemical process, and then investigate the influence of the chemical reaction on the properties of interest in the problems studied here. We complete our study by developing a rather detailed analysis using the Hydrogen-Chlorine system as reference. Several numerical computations are included illustrating the behavior of the phase velocity and attenuation coefficient in a low-frequency regime and describing the spectrum of the eigenmodes in the small wavenumber limit.

  4. Time-dependent entropy evolution in microscopic and macroscopic electromagnetic relaxation

    International Nuclear Information System (INIS)

    Baker-Jarvis, James

    2005-01-01

    This paper is a study of entropy and its evolution in the time and frequency domains upon application of electromagnetic fields to materials. An understanding of entropy and its evolution in electromagnetic interactions bridges the boundaries between electromagnetism and thermodynamics. The approach used here is a Liouville-based statistical-mechanical theory. I show that the microscopic entropy is reversible and the macroscopic entropy satisfies an H theorem. The spectral entropy development can be very useful for studying the frequency response of materials. Using a projection-operator based nonequilibrium entropy, different equations are derived for the entropy and entropy production and are applied to the polarization, magnetization, and macroscopic fields. I begin by proving an exact H theorem for the entropy, progress to application of time-dependent entropy in electromagnetics, and then apply the theory to relevant applications in electromagnetics. The paper concludes with a discussion of the relationship of the frequency-domain form of the entropy to the permittivity, permeability, and impedance

  5. Measurement of time-dependent adhesion between a polymer film and a flat indenter tip

    International Nuclear Information System (INIS)

    Choi, S T; Lee, S R; Earmme, Y Y

    2008-01-01

    We revisited an elasticity problem of flat indentation on an elastic film bonded to a rigid substrate and obtained the force-depth relation in a simple form. With the obtained force-depth relation, Kendall's elastic equilibrium theory of adhesion was extended to the adhesion between a flat tip and a compressible elastic film. Thus, the thermodynamic work of adhesion at the moment of debonding of a flat tip from an elastic film was expressed in terms of pull-off force, elastic constants and geometric parameters. It is worth noting that the obtained relation for elastic films is still valid for viscoelastic films if viscoelastic losses are limited to the process zone of debonding. This makes it possible to study the time-dependent adhesion of viscoelastic polymer films. Indentation experiments with a flat diamond tip were performed on SU-8 films, and the results verified that the extended form of Kendall's theory correctly compensates the effect of the finite thickness of the films on the work of adhesion. The indentation results also showed that the work of adhesion is strongly dependent on the unloading velocity of the tip, while indentation depth and dwell time have only minor effects on the work of adhesion

  6. On the subsystem formulation of linear-response time-dependent DFT.

    Science.gov (United States)

    Pavanello, Michele

    2013-05-28

    A new and thorough derivation of linear-response subsystem time-dependent density functional theory (TD-DFT) is presented and analyzed in detail. Two equivalent derivations are presented and naturally yield self-consistent subsystem TD-DFT equations. One reduces to the subsystem TD-DFT formalism of Neugebauer [J. Chem. Phys. 126, 134116 (2007)]. The other yields Dyson type equations involving three types of subsystem response functions: coupled, uncoupled, and Kohn-Sham. The Dyson type equations for subsystem TD-DFT are derived here for the first time. The response function formalism reveals previously hidden qualities and complications of subsystem TD-DFT compared with the regular TD-DFT of the supersystem. For example, analysis of the pole structure of the subsystem response functions shows that each function contains information about the electronic spectrum of the entire supersystem. In addition, comparison of the subsystem and supersystem response functions shows that, while the correlated response is subsystem additive, the Kohn-Sham response is not. Comparison with the non-subjective partition DFT theory shows that this non-additivity is largely an artifact introduced by the subjective nature of the density partitioning in subsystem DFT.

  7. Microscopic predictions of fission yields based on the time dependent GCM formalism

    Directory of Open Access Journals (Sweden)

    Regnier D.

    2016-01-01

    Full Text Available Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization in nuclear energy. The need for a predictive theory applicable where no data is available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. One of the most promising theoretical frameworks is the time-dependent generator coordinate method (TDGCM applied under the Gaussian overlap approximation (GOA. Previous studies reported promising results by numerically solving the TDGCM+GOA equation with a finite difference technique. However, the computational cost of this method makes it difficult to properly control numerical errors. In addition, it prevents one from performing calculations with more than two collective variables. To overcome these limitations, we developed the new code FELIX-1.0 that solves the TDGCM+GOA equation based on the Galerkin finite element method. In this article, we briefly illustrate the capabilities of the solver FELIX-1.0, in particular its validation for n+239Pu low energy induced fission. This work is the result of a collaboration between CEA,DAM,DIF and LLNL on nuclear fission theory.

  8. Time-dependent convective flows with high viscosity contrasts under micro gravity conditions.

    Science.gov (United States)

    Zaussinger, Florian; Egbers, Christoph; Krebs, Andreas; Schwarzbach, Felix; Kunze, Christian

    2015-04-01

    Thermal driven convection in spherical geometry is of main interest in geo- and astrophysical research. To capture certain aspects of temperature dependent viscosity we investigate the micro-gravity experiment GeoFlow-IIb, located on the ISS. This unique experimental setup consists of a bottom heated and top cooled spherical gap, filled with the silicon oil 1-Nonanol. However, rotation and varying temperature gradients can be applied, to spread the experimental parameter space. The main focus of the current mission is the investigation of time dependent convective flow structures. Since the ISS requirements makes it impossible to use tracer particles, the flow structures are captured by interferometry, whose outcome is analysed by an ground based adapted image processing technique. To guarantee valid results the experimental time of each parameter is in the order of the thermal time scale, which is about 40 min. We are presenting latest results of plume-like and sheet-like time-dependent convective patterns in the spherical shell, their evolution and temporal behaviour under high viscosity contrasts. Due to an unexpected nonlinear coupling between the temperature dependent viscosity of the working fluid and the applied dielectrophoretic force field, we are able to maintain a viscosity contrast of 50 and more. This gives the chance to compare cautiously our experimental results with theoretical assumptions of the mantle convection theory. Besides, numerical simulations in the same parameter regime are performed, which give the opportunity to deduce the internal structure of the experimental flow flied. The main focus of the presented results are the long time temporal evolution of convective plumes in the spherical gap, image capturing- and processing techniques and the deduction of the internal flow field based on planar interferometry pictures.

  9. The time dependent Schrodinger equation revisited I: quantum field and classical Hamilton-Jacobi routes to Schrodinger's wave equation

    International Nuclear Information System (INIS)

    Scully, M O

    2008-01-01

    The time dependent Schrodinger equation is frequently 'derived' by postulating the energy E → i h-bar (∂/∂t) and momentum p-vector → ( h-bar /i)∇ operator relations. In the present paper we review the quantum field theoretic route to the Schrodinger wave equation which treats time and space as parameters, not operators. Furthermore, we recall that a classical (nonlinear) wave equation can be derived from the classical action via Hamiltonian-Jacobi theory. By requiring the wave equation to be linear we again arrive at the Schrodinger equation, without postulating operator relations. The underlying philosophy is operational: namely 'a particle is what a particle detector detects.' This leads us to a useful physical picture combining the wave (field) and particle paradigms which points the way to the time-dependent Schrodinger equation

  10. Time-dependent London approach: Dissipation due to out-of-core normal excitations by moving vortices

    Science.gov (United States)

    Kogan, V. G.

    2018-03-01

    The dissipative currents due to normal excitations are included in the London description. The resulting time-dependent London equations are solved for a moving vortex and a moving vortex lattice. It is shown that the field distribution of a moving vortex loses its cylindrical symmetry. It experiences contraction that is stronger in the direction of the motion than in the direction normal to the velocity v . The London contribution of normal currents to dissipation is small relative to the Bardeen-Stephen core dissipation at small velocities, but it approaches the latter at high velocities, where this contribution is no longer proportional to v2. To minimize the London contribution to dissipation, the vortex lattice is oriented so as to have one of the unit cell vectors along the velocity. This effect is seen in experiments and predicted within the time-dependent Ginzburg-Landau theory.

  11. Time-dependent geminal method applied to laser-driven beryllium

    Science.gov (United States)

    Lötstedt, Erik; Kato, Tsuyoshi; Yamanouchi, Kaoru

    2018-01-01

    We introduce the time-dependent geminal method, in which the total wave function is written as an antisymmetrized product of time-dependent geminals. A geminal is a two-electron orbital depending on the coordinates of two electrons, and each geminal is expanded as a sum of products of time-dependent one-electron orbitals. The equation of motion for the geminal coefficients similar to the time-dependent Hartree-Fock equation is derived. The evaluation of the largest eigenvalues of the second-order reduced density matrix is proposed as a way to measure the extent of the intergeminal correlation in a time-dependent wave function. Using the time-dependent geminal method, we simulate the evolution of the time-dependent wave function of a beryllium atom exposed to an intense laser pulse at two different wavelengths, 400 and 10 nm. The results are compared to those obtained by the time-dependent Hartree-Fock method and by the multiconfiguration time-dependent Hartree-Fock method.

  12. Dynamic phase transitions in a cylindrical Ising nanowire under a time-dependent oscillating magnetic field

    International Nuclear Information System (INIS)

    Deviren, Bayram; Kantar, Ersin; Keskin, Mustafa

    2012-01-01

    The dynamic phase transitions in a cylindrical Ising nanowire system under a time-dependent oscillating external magnetic field for both ferromagnetic and antiferromagnetic interactions are investigated within the effective-field theory with correlations and the Glauber-type stochastic dynamics approach. The effective-field dynamic equations for the average longitudinal magnetizations on the surface shell and core are derived by employing the Glauber transition rates. Temperature dependence of the dynamic magnetizations, the dynamic total magnetization, the hysteresis loop areas and the dynamic correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic transitions as well as the dynamic phase transition temperatures and the compensation behaviors. The system strongly affected by the surface situations. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. According to the values of Hamiltonian parameters, five different types of compensation behaviors in the Néel classification nomenclature exist in the system. The system also exhibits a reentrant behavior. - Highlights: ► The dynamic aspects of a cylindrical Ising nanowire are investigated in detail. ► The dynamic magnetizations, hysteresis loop areas and correlations are calculated. ► We studied both the FM and AFM interactions within the EFT with correlations. ► Some characteristic phenomena are found depending on the interaction parameters. ► We obtained five different types of compensation behaviors and reentrant behavior.

  13. Dynamic phase transitions in a cylindrical Ising nanowire under a time-dependent oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Kantar, Ersin [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-07-15

    The dynamic phase transitions in a cylindrical Ising nanowire system under a time-dependent oscillating external magnetic field for both ferromagnetic and antiferromagnetic interactions are investigated within the effective-field theory with correlations and the Glauber-type stochastic dynamics approach. The effective-field dynamic equations for the average longitudinal magnetizations on the surface shell and core are derived by employing the Glauber transition rates. Temperature dependence of the dynamic magnetizations, the dynamic total magnetization, the hysteresis loop areas and the dynamic correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic transitions as well as the dynamic phase transition temperatures and the compensation behaviors. The system strongly affected by the surface situations. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. According to the values of Hamiltonian parameters, five different types of compensation behaviors in the Neel classification nomenclature exist in the system. The system also exhibits a reentrant behavior. - Highlights: Black-Right-Pointing-Pointer The dynamic aspects of a cylindrical Ising nanowire are investigated in detail. Black-Right-Pointing-Pointer The dynamic magnetizations, hysteresis loop areas and correlations are calculated. Black-Right-Pointing-Pointer We studied both the FM and AFM interactions within the EFT with correlations. Black-Right-Pointing-Pointer Some characteristic phenomena are found depending on the interaction parameters. Black-Right-Pointing-Pointer We obtained five different types of compensation behaviors and reentrant behavior.

  14. Finite difference solution of the time dependent neutron group diffusion equations

    International Nuclear Information System (INIS)

    Hendricks, J.S.; Henry, A.F.

    1975-08-01

    In this thesis two unrelated topics of reactor physics are examined: the prompt jump approximation and alternating direction checkerboard methods. In the prompt jump approximation it is assumed that the prompt and delayed neutrons in a nuclear reactor may be described mathematically as being instantaneously in equilibrium with each other. This approximation is applied to the spatially dependent neutron diffusion theory reactor kinetics model. Alternating direction checkerboard methods are a family of finite difference alternating direction methods which may be used to solve the multigroup, multidimension, time-dependent neutron diffusion equations. The reactor mesh grid is not swept line by line or point by point as in implicit or explicit alternating direction methods; instead, the reactor mesh grid may be thought of as a checkerboard in which all the ''red squares'' and '' black squares'' are treated successively. Two members of this family of methods, the ADC and NSADC methods, are at least as good as other alternating direction methods. It has been found that the accuracy of implicit and explicit alternating direction methods can be greatly improved by the application of an exponential transformation. This transformation is incompatible with checkerboard methods. Therefore, a new formulation of the exponential transformation has been developed which is compatible with checkerboard methods and at least as good as the former transformation for other alternating direction methods

  15. Dynamic Creep Buckling: Analysis of Shell Structures Subjected to Time-dependent Mechanical and Thermal Loading

    Science.gov (United States)

    Simitses, G. J.; Carlson, R. L.; Riff, R.

    1985-01-01

    The objective of the present research is to develop a general mathematical model and solution methodologies for analyzing the structural response of thin, metallic shell structures under large transient, cyclic, or static thermomechanical loads. Among the system responses associated with these loads and conditions are thermal buckling, creep buckling, and ratcheting. Thus geometric and material nonlinearities (of high order) can be anticipated and must be considered in developing the mathematical model. A complete, true ab-initio rate theory of kinematics and kinetics for continuum and curved thin structures, without any restriction on the magnitude of the strains or the deformations, was formulated. The time dependence and large strain behavior are incorporated through the introduction of the time rates of metric and curvature in two coordinate systems: fixed (spatial) and convected (material). The relations between the time derivative and the covariant derivative (gradient) were developed for curved space and motion, so the velocity components supply the connection between the equations of motion and the time rates of change of the metric and curvature tensors.

  16. To Rabi Hamiltonian through their Time Dependent Terms can be Reckons as Fractals

    Science.gov (United States)

    Rosary-Oyong, Se, Glory

    2016-03-01

    For light-matters interactions, ever replies by theLate HE. Mr. Prof M. Barmawi through Bose-Einstein condensates matter-waves ever retrieves [Boyce & DiPrima, 2015] instead of Richard Courant cq HE. Mr. Prof. Sudjoko Danusubroto's LKTM, Lustrum VI ITB, March 2, 1984. Follows ``Modified kernel to Quantum systems thorough Laplace inverse transformation'' whereas ``karyon'' in prokaryotes/eukaryotes meant as well as `kernel' , have been sought for `growth curve' & `potential of proton to other protons' the time dependent terms cos (ωt)exp[-iωot] whose integration y = sin ωt + c proves to be fractals h. 3 guided by Rabi Hamiltonian from Isidor Isaac Rabi,1944. Accompanying ``the Theory of Scale Relativity'' from Laurent Nottale/LUTH, the proofs of considerances whereas `time also are fractals', from Norways for Infra OMAN soughts a benchmark portfolio from Kjell Storvik, 2004: ``Socially Responsible Investment Strategies for the Norwegian Petroleum Fund'' whereas the Rabi frequency ? = 2 ɛ.deg/h can be relatively in comparisons expressed of capacitive [E.d/h]. Acknowledgment to HE. Mr. AUGUST PARENGKUAN if accepts 1995-2005 Invoicing & Fulfillments to ``KOMPAS'' cq the Prodi of Physics ITB.

  17. Microscopic description of fission dynamics: Toward a 3D computation of the time dependent GCM equation

    Directory of Open Access Journals (Sweden)

    Regnier D.

    2017-01-01

    Full Text Available Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization in nuclear energy. The need for a predictive theory applicable where no data is available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. One of the most promising theoretical frameworks is the time dependent generator coordinate method (TDGCM applied under the Gaussian overlap approximation (GOA. However, the computational cost of this method makes it difficult to perform calculations with more than two collective degree of freedom. Meanwhile, it is well-known from both semi-phenomenological and fully microscopic approaches that at least four or five dimensions may play a role in the dynamics of fission. To overcome this limitation, we develop the code FELIX aiming to solve the TDGCM+GOA equation for an arbitrary number of collective variables. In this talk, we report the recent progress toward this enriched description of fission dynamics. We will briefly present the numerical methods adopted as well as the status of the latest version of FELIX. Finally, we will discuss fragments yields obtained within this approach for the low energy fission of major actinides.

  18. A viscoplastic model including anisotropic damage for the time dependent behaviour of rock

    Science.gov (United States)

    Pellet, F.; Hajdu, A.; Deleruyelle, F.; Besnus, F.

    2005-08-01

    This paper presents a new constitutive model for the time dependent mechanical behaviour of rock which takes into account both viscoplastic behaviour and evolution of damage with respect to time. This model is built by associating a viscoplastic constitutive law to the damage theory. The main characteristics of this model are the account of a viscoplastic volumetric strain (i.e. contractancy and dilatancy) as well as the anisotropy of damage. The latter is described by a second rank tensor. Using this model, it is possible to predict delayed rupture by determining time to failure, in creep tests for example. The identification of the model parameters is based on experiments such as creep tests, relaxation tests and quasi-static tests. The physical meaning of these parameters is discussed and comparisons with lab tests are presented. The ability of the model to reproduce the delayed failure observed in tertiary creep is demonstrated as well as the sensitivity of the mechanical response to the rate of loading. The model could be used to simulate the evolution of the excavated damage zone around underground openings.

  19. Time-dependent formulation of the linear unitary transformation and the time evolution of general time-dependent quadratic Hamiltonian systems

    International Nuclear Information System (INIS)

    Liu Wensen

    2004-01-01

    A time-dependent closed-form formulation of the linear unitary transformation for harmonic-oscillator annihilation and creation operators is presented in the Schroedinger picture using the Lie algebraic approach. The time evolution of the quantum mechanical system described by a general time-dependent quadratic Hamiltonian is investigated by combining this formulation with the time evolution equation of the system. The analytic expressions of the evolution operator and propagator are found. The motion of a charged particle with variable mass in the time-dependent electric field is considered as an illustrative example of the formalism. The exact time evolution wave function starting from a Gaussian wave packet and the operator expectation values with respect to the complicated evolution wave function are obtained readily

  20. Nonlinear dynamic response of a simply supported rectangular functionally graded material plate under the time-dependent thermal mechanical loads

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Y. X. [Beijing Information Science and Technology University, Beijing (China); Zhang, W. [Beijing University of Technology, Beijing (China); Yang, J. [RMIT University, Bundoora (Australia); Li, S. Y. [Ttianjin University of Technology and Education, Tianjin (China)

    2011-07-15

    An analysis on nonlinear dynamic characteristics of a simply supported functionally graded materials (FGMs) rectangular plate subjected to the transversal and in-plane excitations is presented in the time dependent thermal environment. Here we look the FGM Plates as isotropic materials which is assumed to be temperature dependent and graded in the thickness direction according to the power-law distribution in terms of volume fractions of the constituents. The geometrical nonlinearity using Von Karman's assumption is introduced. The formulation also includes in-plane and rotary inertia effects. In the framework of Reddy's third-order shear deformation plate theory, the governing equations of motion for the FGM plate are derived by the Hamilton's principle. Then the equations of motion with two degree- of-freedom under combined the time-dependent thermomechanical loads can be obtained by using Galerkin's method. Using numerical method, the control equations are analyzed to obtain the response curves. Under certain conditions the periodic and chaotic motions of the FGM plate are found. It is found that because of the existence of the temperature which relate to the time the motions of the FGM plate show the great difference. A period motion can be changed into the chaotic motions which are affected by the time dependent temperature.

  1. Simulation of charge transport in organic semiconductors: A time-dependent multiscale method based on nonequilibrium Green's functions

    Science.gov (United States)

    Leitherer, S.; Jäger, C. M.; Krause, A.; Halik, M.; Clark, T.; Thoss, M.

    2017-11-01

    In weakly interacting organic semiconductors, static disorder and dynamic disorder often have an important impact on transport properties. Describing charge transport in these systems requires an approach that correctly takes structural and electronic fluctuations into account. Here, we present a multiscale method based on a combination of molecular-dynamics simulations, electronic-structure calculations, and a transport theory that uses time-dependent nonequilibrium Green's functions. We apply the methodology to investigate charge transport in C60-containing self-assembled monolayers, which are used in organic field-effect transistors.

  2. Parametric resonance for solitons in the nonlinear Schroedinger equation model with time-dependent harmonic oscillator potential

    International Nuclear Information System (INIS)

    Hernandez-Tenorio, C.; Belyaeva, T.L.; Serkin, V.N.

    2007-01-01

    The dynamics of nonlinear solitary waves is studied in the framework of the nonlinear Schroedinger equation model with time-dependent harmonic oscillator potential. The model allows one to analyse on general basis a variety of nonlinear phenomena appearing both in Bose-Einstein condensate, condensed matter physics, nonlinear optics, and biophysics. The soliton parametric resonance is investigated by using two complementary methods: the adiabatic perturbation theory and direct numerical experiments. Conditions for reversible and irreversible denaturation of soliton bound states are also considered

  3. Simulation of charge transport in organic semiconductors: A time-dependent multiscale method based on nonequilibrium Green's functions

    DEFF Research Database (Denmark)

    Leitherer, Susanne; Jager, C. M.; Krause, A.

    2017-01-01

    In weakly interacting organic semiconductors, static disorder and dynamic disorder often have an important impact on transport properties. Describing charge transport in these systems requires an approach that correctly takes structural and electronic fluctuations into account. Here, we present...... a multiscale method based on a combination of molecular-dynamics simulations, electronic-structure calculations, and a transport theory that uses time-dependent nonequilibrium Green's functions. We apply the methodology to investigate charge transport in C-60-containing self-assembled monolayers, which...

  4. A class of Galerkin Schemes for Time-Dependent Radiative Transfer

    NARCIS (Netherlands)

    Egger, Herbert; Schlottbom, Matthias

    2016-01-01

    The numerical solution of time-dependent radiative transfer problems is challenging, due to the high dimension and to the anisotropic structure of the underlying integro-partial differential equation. In this paper we propose a general framework for designing numerical methods for time-dependent

  5. Modelling time-dependent mechanical behaviour of softwood using deformation kinetics

    DEFF Research Database (Denmark)

    Engelund, Emil Tang; Svensson, Staffan

    2010-01-01

    The time-dependent mechanical behaviour (TDMB) of softwood is relevant, e.g., when wood is used as building material where the mechanical properties must be predicted for decades ahead. The established mathematical models should be able to predict the time-dependent behaviour. However, these models...

  6. Exact norm-conserving stochastic time-dependent Hartree-Fock

    International Nuclear Information System (INIS)

    Tessieri, Luca; Wilkie, Joshua; Cetinbas, Murat

    2005-01-01

    We derive an exact single-body decomposition of the time-dependent Schroedinger equation for N pairwise interacting fermions. Each fermion obeys a stochastic time-dependent norm-preserving wave equation. As a first test of the method, we calculate the low energy spectrum of helium. An extension of the method to bosons is outlined

  7. Time-dependent transport in interacting and noninteracting resonant-tunneling systems

    DEFF Research Database (Denmark)

    Jauho, Antti-Pekka; Wingreen, Ned S.; Meir, Yigal

    1994-01-01

    We consider a mesoscopic region coupled to two leads under the influence of external time-dependent voltages. The time dependence is coupled to source and drain contacts, the gates controlling the tunnel-barrier heights, or to the gates that define the mesoscopic region. We derive, with the Keldysh...

  8. Time-Dependence effect in alumite recording media with perpendicular anisotropy

    NARCIS (Netherlands)

    Phan le kim, P.L.K.; Lodder, J.C.

    1999-01-01

    In this paper, we will present a study of the time-dependence effect in alumite perpendicular media at different thicknesses. Important parameters of the time-dependence effect such as magnetic viscosity and activation volume are investigated. Viscosity as a function of applied field (viscosity

  9. CREEP-2: Long-term time-dependent rock deformation in a deep-sea observatory.

    Science.gov (United States)

    Boon, Steve; Meredith, Philip; Heap, Michael; Berenzoli, Laura; Favali, Paolo

    2010-05-01

    Earthquake rupture and volcanic eruptions are the most spectacular manifestations of dynamic failure of a critically stressed crust. But these are actually rather rare events, and most of the crust spends most of its time in a highly-stressed but sub-critical state. Below a few hundred metres, the crust is saturated, and water-rock chemical reactions lead to time-dependent deformation that allows rocks to fail over extended periods of time at stresses far below their short-term strength by the mechanism of stress corrosion crack growth. This process is highly non-linear and a change in applied stress of around 5% can lead to a change in the time-to-failure of more than an order of magnitude. Theoretical calculations based on reaction rate theory suggest that such cracking may occur down to stresses as low as 20% of the rock strength, implying that time-dependent cracking will be an important deformation mechanism over geological time and at typical tectonic strain rates. A number of theoretical models have been proposed to explain this behaviour. However, it is currently not possible to discriminate between these competing models due to the relatively narrow bandwidth of strain rates that are practicably achievable in conventional laboratory experiments. Ultra-long-term experiments at very low strain rates are clearly essential to address this problem. We have therefore used the stability of the deep-sea environment to conduct ultra-long-term experiments. At depth, the temperature remains constant throughout the year and water pressure also remains essentially constant, especially in the Ionian Sea where the tidal range is minimal. We have successfully conducted a pilot experiment (CREEP-1) in which we used the constant sea-water pressure at depth to provide both a constant confining pressure and a constant deforming stress for our rock samples. Building on that success, we are now building a multi-sample deformation observatory (CREEP-2) to be deployed at

  10. Time-Dependent Damage Investigation of Rock Mass in an In Situ Experimental Tunnel

    Science.gov (United States)

    Jiang, Quan; Cui, Jie; Chen, Jing

    2012-01-01

    In underground tunnels or caverns, time-dependent deformation or failure of rock mass, such as extending cracks, gradual rock falls, etc., are a costly irritant and a major safety concern if the time-dependent damage of surrounding rock is serious. To understand the damage evolution of rock mass in underground engineering, an in situ experimental testing was carried out in a large belowground tunnel with a scale of 28.5 m in width, 21 m in height and 352 m in length. The time-dependent damage of rock mass was detected in succession by an ultrasonic wave test after excavation. The testing results showed that the time-dependent damage of rock mass could last a long time, i.e., nearly 30 days. Regression analysis of damage factors defined by wave velocity, resulted in the time-dependent evolutional damage equation of rock mass, which corresponded with logarithmic format. A damage viscoelastic-plastic model was developed to describe the exposed time-dependent deterioration of rock mass by field test, such as convergence of time-dependent damage, deterioration of elastic modules and logarithmic format of damage factor. Furthermore, the remedial measures for damaged surrounding rock were discussed based on the measured results and the conception of damage compensation, which provides new clues for underground engineering design.

  11. Second quantized scalar QED in homogeneous time-dependent electromagnetic fields

    Science.gov (United States)

    Kim, Sang Pyo

    2014-12-01

    We formulate the second quantization of a charged scalar field in homogeneous, time-dependent electromagnetic fields, in which the Hamiltonian is an infinite system of decoupled, time-dependent oscillators for electric fields, but it is another infinite system of coupled, time-dependent oscillators for magnetic fields. We then employ the quantum invariant method to find various quantum states for the charged field. For time-dependent electric fields, a pair of quantum invariant operators for each oscillator with the given momentum plays the role of the time-dependent annihilation and the creation operators, constructs the exact quantum states, and gives the vacuum persistence amplitude as well as the pair-production rate. We also find the quantum invariants for the coupled oscillators for the charged field in time-dependent magnetic fields and advance a perturbation method when the magnetic fields change adiabatically. Finally, the quantum state and the pair production are discussed when a time-dependent electric field is present in parallel to the magnetic field.

  12. Time-Dependent Stress Rupture Strength Degradation of Hi-Nicalon Fiber-Reinforced Silicon Carbide Composites at Intermediate Temperatures

    Science.gov (United States)

    Sullivan, Roy M.

    2016-01-01

    The stress rupture strength of silicon carbide fiber-reinforced silicon carbide composites with a boron nitride fiber coating decreases with time within the intermediate temperature range of 700 to 950 degree Celsius. Various theories have been proposed to explain the cause of the time-dependent stress rupture strength. The objective of this paper is to investigate the relative significance of the various theories for the time-dependent strength of silicon carbide fiber-reinforced silicon carbide composites. This is achieved through the development of a numerically based progressive failure analysis routine and through the application of the routine to simulate the composite stress rupture tests. The progressive failure routine is a time-marching routine with an iterative loop between a probability of fiber survival equation and a force equilibrium equation within each time step. Failure of the composite is assumed to initiate near a matrix crack and the progression of fiber failures occurs by global load sharing. The probability of survival equation is derived from consideration of the strength of ceramic fibers with randomly occurring and slow growing flaws as well as the mechanical interaction between the fibers and matrix near a matrix crack. The force equilibrium equation follows from the global load sharing presumption. The results of progressive failure analyses of the composite tests suggest that the relationship between time and stress-rupture strength is attributed almost entirely to the slow flaw growth within the fibers. Although other mechanisms may be present, they appear to have only a minor influence on the observed time-dependent behavior.

  13. Influence of time dependent effects on the disposal environments of low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    1984-12-01

    Reviews are presented firstly of potential events and processes which may affect the evolution of the disposal environments of low and intermediate level radioactive wastes in Britain and secondly of previous studies carried out worldwide in the field of time dependent effects. From the latter review available methodologies for incorporating time dependence into radiological assessments are identified. Finally, proposals are presented for the design and development of a time dependent effects model, based on the existing far field state model (FFSM) developed for ONWI in USA. (author)

  14. Investigation of properties of time-dependent bell inequalities in Wigner’s form for nonstationary and open quantum systems

    International Nuclear Information System (INIS)

    Nikitin, N. V.; Sotnikov, V.P.; Toms, K. S.

    2015-01-01

    A radically new class of Bell inequalities in Wigner’s form was obtained on the basis of Kolmorov’s axiomatization of probability theory and the hypothesis of locality. These inequalities take explicitly into account the dependence on time (time-dependent Bell inequalities in Wigner’s form). By using these inequalities, one can propose a means for experimentally testing Bohr’ complementarity principle in the relativistic region. The inequalities in question open broad possibilities for studying correlations of nonrelativistic and relativistic quantum systems in external fields. The violation of the time-dependent inequalities in quantum mechanics was studied by considering the behavior of a pair of anticorrelated spins in a constant external magnetic field and oscillations of neutral pseudoscalar mesons. The decay of a pseudoscalar particle to a fermion–antifermion pair is considered within quantum field theory. In order to test experimentally the inequalities proposed in the present study, it is not necessary to perform dedicated noninvasive measurements required in the Leggett–Garg approach, for example

  15. Molecular mechanisms and time-dependent dynamics of hormesis, antagonism and radioprotective effects at combined ionizing irradiation of biological systems

    Science.gov (United States)

    Vysotskii, Vladimir I.; Pinchuk, Anatolii A.; Kornilova, Alla A.; Samoylenko, Igor I.

    2002-11-01

    We study the time-dependent dynamics of formation, relaxation and self-reparation of DNA double-strand breaks at combined irradiation and the nonradiation degradation processes. The self-repairing process of DNA double-strand breaks is related with the peculiarities of long-range interaction of nucleotides within the breakage area. The properties of an intracellular liquid and the characteristics of the long-range interaction between the end pairs of nucleotides in the area of DNA double-strand break are changed during irradiation. Each kind of irradiation is characterized by certain effectiveness of double-strand breaks formation but on the other hand, the irradiation creates the conditions for their liquidation. Based on the analysis and correlation of these phenomena the time-dependent theory for DNA degradation was created, including hormesis phenomenon, radiation antagonism, the validity of anomaly influence of low and large doses at sharp and chronic irradiation and other effects. A qualitative and quantitative agreement of the theory and experimental results was obtained.

  16. Effects of Firing Variability on Network Structures with Spike-Timing-Dependent Plasticity

    Directory of Open Access Journals (Sweden)

    Bin Min

    2018-01-01

    Full Text Available Synaptic plasticity is believed to be the biological substrate underlying learning and memory. One of the most widespread forms of synaptic plasticity, spike-timing-dependent plasticity (STDP, uses the spike timing information of presynaptic and postsynaptic neurons to induce synaptic potentiation or depression. An open question is how STDP organizes the connectivity patterns in neuronal circuits. Previous studies have placed much emphasis on the role of firing rate in shaping connectivity patterns. Here, we go beyond the firing rate description to develop a self-consistent linear response theory that incorporates the information of both firing rate and firing variability. By decomposing the pairwise spike correlation into one component associated with local direct connections and the other associated with indirect connections, we identify two distinct regimes regarding the network structures learned through STDP. In one regime, the contribution of the direct-connection correlations dominates over that of the indirect-connection correlations in the learning dynamics; this gives rise to a network structure consistent with the firing rate description. In the other regime, the contribution of the indirect-connection correlations dominates in the learning dynamics, leading to a network structure different from the firing rate description. We demonstrate that the heterogeneity of firing variability across neuronal populations induces a temporally asymmetric structure of indirect-connection correlations. This temporally asymmetric structure underlies the emergence of the second regime. Our study provides a new perspective that emphasizes the role of high-order statistics of spiking activity in the spike-correlation-sensitive learning dynamics.

  17. Interactions effectives, théories de champ moyen masses et rayons nucléaires

    Science.gov (United States)

    Meyer, J.

    2003-05-01

    Effective interactions, mean field theories, masses and nuclear radii A review of effective interactions used in mean field theories for the description of properties of atomic nuclei is presented. Relativistic as well as non relativistic theories are discussed with a special attention to the cases where their results are very different. We will concentrate on the effective forces built up to investigate the nuclear medium in extreme conditions. Masses and r.m.s. radii along long chain of isotopes will be discussed. Large deformations, as observed in the fission of heavy nuclei, and exotic neutron rich nuclei will be taken as examples of these extreme conditions. Le principal propos de cet ouvrage est : (i) de passer en revue les outils théoriques utilisés sous le sigle ”théories microscopiques de champ moyen ”. Sans entrer dans le détail des formalismes (le lecteur sera systématiquement renvoyé ”pour en savoir plus ” à des cours plus complets qui ont déjà été donnés dans le passé à l'École Joliot-Curie) il s'agira surtout de préciser le contexte, les hypothèses et les approximations qui se cachent sous les sigles : Hartree-Fock (HF), Hartree-Fock-Bogoliubov (HFB), Approximation BCS (HFBCS), Champ Moyen Relativiste (RMF), Approximations Hartree (RH), Hartree-Fock (RHF) et Hartree-Bogoliubov (RHB) Relativistes, ... ; (ii) de présenter la procédure générale et les ingrédients qui entrent dans la construction d'une interaction effective, élément de base de ces théories dont l'intérêt majeur est de livrer des résultats comparables à l'expérience sans paramètre ajustable ; (iii) de discuter des effets des différentes approximations ou interactions effectives sur des résultats expérimentaux pris dans diverses zones de noyaux. Ces discussions seront surtout centrées sur les masses et les rayons des noyaux mais aussi sur certaines quantités plus significatives que l'on peut en extraire : énergies de séparation de deux neutrons

  18. Analytical Solution of Heat Conduction for Hollow Cylinders with Time-Dependent Boundary Condition and Time-Dependent Heat Transfer Coefficient

    Directory of Open Access Journals (Sweden)

    Te-Wen Tu

    2015-01-01

    Full Text Available An analytical solution for the heat transfer in hollow cylinders with time-dependent boundary condition and time-dependent heat transfer coefficient at different surfaces is developed for the first time. The methodology is an extension of the shifting function method. By dividing the Biot function into a constant plus a function and introducing two specially chosen shifting functions, the system is transformed into a partial differential equation with homogenous boundary conditions only. The transformed system is thus solved by series expansion theorem. Limiting cases of the solution are studied and numerical results are compared with those in the literature. The convergence rate of the present solution is fast and the analytical solution is simple and accurate. Also, the influence of physical parameters on the temperature distribution of a hollow cylinder along the radial direction is investigated.

  19. The time-dependent close-coupling method for atomic and molecular collision processes

    Energy Technology Data Exchange (ETDEWEB)

    Pindzola, M S [Department of Physics, Auburn University, Auburn, AL (United States); Robicheaux, F [Department of Physics, Auburn University, Auburn, AL (United States); Loch, S D [Department of Physics, Auburn University, Auburn, AL (United States); Berengut, J C [Department of Physics, Auburn University, Auburn, AL (United States); Topcu, T [Department of Physics, Auburn University, Auburn, AL (United States); Colgan, J [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM (United States); Foster, M [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM (United States); Griffin, D C [Department of Physics, Rollins College, Winter Park, FL (United States); Ballance, C P [Department of Physics, Rollins College, Winter Park, FL (United States); Schultz, D R [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Minami, T [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Badnell, N R [Department of Physics, University of Strathclyde, Glasgow (United Kingdom); Witthoeft, M C [Department of Physics, University of Strathclyde, Glasgow (United Kingdom); Plante, D R [Department of Mathematics, Stetson University, Deland, FL (United States); Mitnik, D M [Department of Physics, University of Buenos Aires, Buenos Aires (Argentina); Ludlow, J A [Department of Applied Mathematics, Queen' s University, Belfast (United Kingdom); Kleiman, U [Max Planck Institute for the Physics of Complex Systems, Dresden (Germany)

    2007-04-14

    We review the development of the time-dependent close-coupling method to study atomic and molecular few body dynamics. Applications include electron and photon collisions with atoms, molecules, and their ions. (topical review)

  20. Investigation into the mechanisms of time dependent deformation of hard rocks.

    CSIR Research Space (South Africa)

    Drescher, K

    2002-02-01

    Full Text Available The testing undertaken for this dissertation is intended to help quantify the various time-dependant deformation processes around typical deep level hard rock tabular excavations. Three mechanisms were investigated and two different hard rock types...

  1. The master symmetry and time dependent symmetries of the differential–difference KP equation

    International Nuclear Information System (INIS)

    Khanizadeh, Farbod

    2014-01-01

    We first obtain the master symmetry of the differential–difference KP equation. Then we show how this master symmetry, through sl(2,C)-representation of the equation, can construct generators of time dependent symmetries. (paper)

  2. Integration of the time-dependent heat equation in the fuel rod performance program IAMBUS

    International Nuclear Information System (INIS)

    West, G.

    1982-01-01

    An iterative numerical method for integration of the time-dependent heat equation is described. No presuppositions are made for the dependency of the thermal conductivity and heat capacity on space, time and temperature. (orig.) [de

  3. Experimental quantum-walk revival with a time-dependent coin.

    Science.gov (United States)

    Xue, P; Zhang, R; Qin, H; Zhan, X; Bian, Z H; Li, J; Sanders, Barry C

    2015-04-10

    We demonstrate a quantum walk with time-dependent coin bias. With this technique we realize an experimental single-photon one-dimensional quantum walk with a linearly ramped time-dependent coin flip operation and thereby demonstrate two periodic revivals of the walker distribution. In our beam-displacer interferometer, the walk corresponds to movement between discretely separated transverse modes of the field serving as lattice sites, and the time-dependent coin flip is effected by implementing a different angle between the optical axis of half-wave plate and the light propagation at each step. Each of the quantum-walk steps required to realize a revival comprises two sequential orthogonal coin-flip operators, with one coin having constant bias and the other coin having a time-dependent ramped coin bias, followed by a conditional translation of the walker.

  4. Application of Trotter approximation for solving time dependent neutron transport equation

    International Nuclear Information System (INIS)

    Stancic, V.

    1987-01-01

    A method is proposed to solve multigroup time dependent neutron transport equation with arbitrary scattering anisotropy. The recurrence relation thus obtained is simple, numerically stable and especially suitable for treatment of complicated geometries. (author)

  5. A Realization of a Quasi-Random Walk for Atoms in Time-Dependent Optical Potentials

    Directory of Open Access Journals (Sweden)

    Torsten Hinkel

    2015-09-01

    Full Text Available We consider the time dependent dynamics of an atom in a two-color pumped cavity, longitudinally through a side mirror and transversally via direct driving of the atomic dipole. The beating of the two driving frequencies leads to a time dependent effective optical potential that forces the atom into a non-trivial motion, strongly resembling a discrete random walk behavior between lattice sites. We provide both numerical and analytical analysis of such a quasi-random walk behavior.

  6. Dynamic acoustics for the STAR-100. [computer algorithms for time dependent sound waves in jet

    Science.gov (United States)

    Bayliss, A.; Turkel, E.

    1979-01-01

    An algorithm is described to compute time dependent acoustic waves in a jet. The method differs from previous methods in that no harmonic time dependence is assumed, thus permitting the study of nonharmonic acoustical behavior. Large grids are required to resolve the acoustic waves. Since the problem is nonstiff, explicit high order schemes can be used. These have been adapted to the STAR-100 with great efficiencies and permitted the efficient solution of problems which would not be feasible on a scalar machine.

  7. Measuring time dependent volatility and cross-sectional correlation in Australian equity returns

    Science.gov (United States)

    Bertram, William K.

    2008-05-01

    In this study we examine the time-dependent nature of volatility and cross-correlation of Australian equity returns data. Volatility and correlation estimates are calculated using methods that allow for non-stationary behaviour. By averaging the estimates across the entire data set we show that the correlation in ASX stock returns displays evidence of significant time-dependent behaviour. We also find that the volatility estimates do not display similar non-stationary patterns.

  8. Navy Operational Planner: Anti-Submarine Warfare with Time-Dependent Performance

    Science.gov (United States)

    2017-09-01

    horizon . We develop three test cases with varying degrees of time- dependence in the performance data, and show that taking this new information into... account changes the operational plans generated and can lead to better employment of ASW platforms due to the more realistic representation of...ocean or atmospheric conditions that vary over the planning horizon . We develop three test cases with varying degrees of time-dependence in the

  9. Understanding the Origins of Time-Dependent Inhibition by Polypeptide Deformylase Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Totoritis, Rachel; Duraiswami, Chaya; Taylor, Amy N.; Kerrigan, John J.; Campobasso, Nino; Smith, Katherine J.; Ward, Paris; King, Bryan W.; Murrayz-Thompson, Monique; Jones, Amber D.; Van Aller, Glenn S.; Aubart, Kelly M.; Zalacain, Magdalena; Thrall, Sara H.; Meek, Thomas D.; Schwartz, Benjamin (GSKPA)

    2012-03-15

    The continual bacterial adaptation to antibiotics creates an ongoing medical need for the development of novel therapeutics. Polypeptide deformylase (PDF) is a highly conserved bacterial enzyme, which is essential for viability. It has previously been shown that PDF inhibitors represent a promising new area for the development of antimicrobial agents, and that many of the best PDF inhibitors demonstrate slow, time-dependent binding. To improve our understanding of the mechanistic origin of this time-dependent inhibition, we examined in detail the kinetics of PDF catalysis and inhibition by several different PDF inhibitors. Varying pH and solvent isotope led to clear changes in time-dependent inhibition parameters, as did inclusion of NaCl, which binds to the active site metal of PDF. Quantitative analysis of these results demonstrated that the observed time dependence arises from slow binding of the inhibitors to the active site metal. However, we also found several metal binding inhibitors that exhibited rapid, non-time-dependent onset of inhibition. By a combination of structural and chemical modification studies, we show that metal binding is only slow when the rest of the inhibitor makes optimal hydrogen bonds within the subsites of PDF. Both of these interactions between the inhibitor and enzyme were found to be necessary to observe time-dependent inhibition, as elimination of either leads to its loss.

  10. A multiconfigurational time-dependent Hartree-Fock method for excited electronic states. I. General formalism and application to open-shell states.

    Science.gov (United States)

    Miranda, R P; Fisher, A J; Stella, L; Horsfield, A P

    2011-06-28

    The solution of the time-dependent Schrödinger equation for systems of interacting electrons is generally a prohibitive task, for which approximate methods are necessary. Popular approaches, such as the time-dependent Hartree-Fock (TDHF) approximation and time-dependent density functional theory (TDDFT), are essentially single-configurational schemes. TDHF is by construction incapable of fully accounting for the excited character of the electronic states involved in many physical processes of interest; TDDFT, although exact in principle, is limited by the currently available exchange-correlation functionals. On the other hand, multiconfigurational methods, such as the multiconfigurational time-dependent Hartree-Fock (MCTDHF) approach, provide an accurate description of the excited states and can be systematically improved. However, the computational cost becomes prohibitive as the number of degrees of freedom increases, and thus, at present, the MCTDHF method is only practical for few-electron systems. In this work, we propose an alternative approach which effectively establishes a compromise between efficiency and accuracy, by retaining the smallest possible number of configurations that catches the essential features of the electronic wavefunction. Based on a time-dependent variational principle, we derive the MCTDHF working equation for a multiconfigurational expansion with fixed coefficients and specialise to the case of general open-shell states, which are relevant for many physical processes of interest.

  11. Time-dependent density-functional and reduced density-matrix methods for few electrons: Exact versus adiabatic approximations

    International Nuclear Information System (INIS)

    Helbig, N.; Fuks, J.I.; Tokatly, I.V.; Appel, H.; Gross, E.K.U.; Rubio, A.

    2011-01-01

    Graphical abstract: We solve a 1D N-electron system, with N small, by mapping it onto an N-dimensional one-electron problem. We compare the exact solutions to the results from adiabatic density and density matrix functionals for different physical situations. Highlights: ► Static and dynamical correlations. ► Memory dependence of exchange-correlation functionals in TDDFT. ► Linear and non-linear response. ► Laser-induced population control. - Abstract: To address the impact of electron correlations in the linear and non-linear response regimes of interacting many-electron systems exposed to time-dependent external fields, we study one-dimensional (1D) systems where the interacting problem is solved exactly by exploiting the mapping of the 1D N-electron problem onto an N-dimensional single electron problem. We analyze the performance of the recently derived 1D local density approximation as well as the exact-exchange orbital functional for those systems. We show that the interaction with an external resonant laser field shows Rabi oscillations which are detuned due to the lack of memory in adiabatic approximations. To investigate situations where static correlations play a role, we consider the time-evolution of the natural occupation numbers associated to the reduced one-body density matrix. Those studies shed light on the non-locality and time-dependence of the exchange and correlation functionals in time-dependent density and density-matrix functional theories.

  12. Adjoint-based sensitivities and data assimilation with a time-dependent marine ice sheet model

    Science.gov (United States)

    Goldberg, Dan; Heimbach, Patrick

    2013-04-01

    To date, assimilation of observational data using large-scale ice models has consisted only of time-dependent inversions of surface velocities for basal traction, bed elevation, or ice stiffness. These inversions are for the most part based on control methods (Macayeal D R, 1992, A tutorial on the use of control methods in ice sheet modeling), which involve generating and solving the adjoint of the ice model. Quite a lot has been learned about the fast-flowing parts of the Antarctic Ice Sheet from such inversions. Still, there are limitations to these "snapshot" inversions. For instance, they cannot capture time-dependent dynamics, such as propagation of perturbations through the ice sheet. They cannot assimilate time-dependent observations, such as surface elevation changes. And they are problematic for initializing time-dependent ice sheet models, as such initializations may contain considerable model drift. We have developed an adjoint for a time-dependent land ice model, with which we will address such issues. The land ice model implements a hybrid shallow shelf-shallow ice stress balance and can represent the floating, fast-sliding, and frozen bed regimes of a marine ice sheet. The adjoint is generated by a combination of analytic methods and the use of automated differentiation (AD) software. Experiments with idealized geometries have been carried out; adjoint sensitivities reveal the "vulnerable" regions of ice shelves, and preliminary inversions of "synthetic" observations (e.g. simultaneous inversion of basal traction and topography) yield encouraging results.

  13. Multi-scale simulations of droplets in generic time-dependent flows

    Science.gov (United States)

    Milan, Felix; Biferale, Luca; Sbragaglia, Mauro; Toschi, Federico

    2017-11-01

    We study the deformation and dynamics of droplets in time-dependent flows using a diffuse interface model for two immiscible fluids. The numerical simulations are at first benchmarked against analytical results of steady droplet deformation, and further extended to the more interesting case of time-dependent flows. The results of these time-dependent numerical simulations are compared against analytical models available in the literature, which assume the droplet shape to be an ellipsoid at all times, with time-dependent major and minor axis. In particular we investigate the time-dependent deformation of a confined droplet in an oscillating Couette flow for the entire capillary range until droplet break-up. In this way these multi component simulations prove to be a useful tool to establish from ``first principles'' the dynamics of droplets in complex flows involving multiple scales. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No 642069. & European Research Council under the European Community's Seventh Framework Program, ERC Grant Agreement No 339032.

  14. Electron mobilities of n-type organic semiconductors from time-dependent wavepacket diffusion method: pentacenequinone derivatives.

    Science.gov (United States)

    Zhang, WeiWei; Zhong, XinXin; Zhao, Yi

    2012-11-26

    The electron mobilities of two n-type pentacenequinone derivative organic semiconductors, 5,7,12,14-tetraaza-6,13-pentacenequinone (TAPQ5) and 1,4,8,11-tetraaza-6,13-pentacenequinone (TAPQ7), are investigated with use of the methods of electronic structure and quantum dynamics. The electronic structure calculations reveal that the two key parameters for the control of electron transfer, reorganization energy and electronic coupling, are similar for these two isomerization systems, and the charge carriers essentially display one-dimensional transport properties. The mobilities are then calculated by using the time-dependent wavepacket diffusion approach in which the dynamic fluctuations of the electronic couplings are incorporated via their correlation functions obtained from molecular dynamics simulations. The predicted mobility of TAPQ7 crystal is about six times larger than that of TAPQ5 crystal. Most interestingly, Fermi's golden rule predicts the mobilities very close to those from the time-dependent wavepacket diffusion method, even though the electronic couplings are explicitly large enough to make the perturbation theory invalid. The possible reason is analyzed from the dynamic fluctuations.

  15. Numerical studies of time-independent and time-dependent scattering by several elliptical cylinders

    Science.gov (United States)

    Nigsch, Martin

    2007-07-01

    A numerical solution to the problem of time-dependent scattering by an array of elliptical cylinders with parallel axes is presented. The solution is an exact one, based on the separation-of-variables technique in the elliptical coordinate system, the addition theorem for Mathieu functions, and numerical integration. Time-independent solutions are described by a system of linear equations of infinite order which are truncated for numerical computations. Time-dependent solutions are obtained by numerical integration involving a large number of these solutions. First results of a software package generating these solutions are presented: wave propagation around three impenetrable elliptical scatterers. As far as we know, this method described has never been used for time-dependent multiple scattering.

  16. On the algebraic approach to the time-dependent quadratic Hamiltonian

    International Nuclear Information System (INIS)

    Urdaneta, Ines; Palma, Alejandro; Sandoval, Lourdes

    2010-01-01

    The unitary operator V(t) that diagonalizes the time-dependent quadratic Hamiltonian (TDQH) into a time-dependent harmonic oscillator (TDHO) is obtained using a Lie algebra. The method involves a factorization of the TDQH into a TDHO through a unitary Bogoliubov transformation in terms of creation and annihilation operators with time-dependent coefficients. It is shown that this operator can be easily achieved by means of the factorization, together with the commonly known Wei-Norman theorem. We discuss the conditions under which this unitary operator converges to the evolution operator U(t) of the Schroedinger equation for the TDQH, giving then a straightforward calculation of the evolution operator with respect to the procedures published in the literature.

  17. Time-dependent model of the Martian atmosphere for use in orbit lifetime and sustenance studies

    Science.gov (United States)

    Culp, R. D.; Stewart, A. I.

    1984-01-01

    A time-dependent model of the Martian atmosphere suitable for calculation of long-term aerodynamic effects on low altitude satellites is presented. The atmospheric model is both position dependent, through latitude and longitude effects, and time dependent. The time dependency includes diurnal and seasonal effects, effects of annual motion, long and short term solar activity effects, and periodic dust storm effects. Nine constituent gases are included in the model. Uncertainties in exospheric temperature, turbidity, and turbopause altitude are used to produce bounds on the expected density. A computer model - a Fortran subroutine which, when given the Julian date, Cartesian position of the sun and the spacecraft in aerocentric coordinates, returns the local values of mass density, temperature, scale height, and upper and lower bounds on the mass density is presented.

  18. Time-dependent model of the Martian atmosphere for use in orbit lifetime and sustenance studies

    Science.gov (United States)

    Culp, R. D.; Stewart, A. I.

    1984-09-01

    A time-dependent model of the Martian atmosphere suitable for calculation of long-term aerodynamic effects on low altitude satellites is presented. The atmospheric model is both position dependent, through latitude and longitude effects, and time dependent. The time dependency includes diurnal and seasonal effects, effects of annual motion, long and short term solar activity effects, and periodic dust storm effects. Nine constituent gases are included in the model. Uncertainties in exospheric temperature, turbidity, and turbopause altitude are used to produce bounds on the expected density. A computer model - a Fortran subroutine which, when given the Julian date, Cartesian position of the sun and the spacecraft in aerocentric coordinates, returns the local values of mass density, temperature, scale height, and upper and lower bounds on the mass density is presented.

  19. On the algebraic approach to the time-dependent quadratic Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Urdaneta, Ines; Palma, Alejandro [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, Puebla (Mexico); Sandoval, Lourdes, E-mail: urdaneta@sirio.ifuap.buap.m [Facultad de Ciencias de la Computacion, Benemerita Universidad Autonoma de Puebla, Puebla (Mexico)

    2010-09-24

    The unitary operator V(t) that diagonalizes the time-dependent quadratic Hamiltonian (TDQH) into a time-dependent harmonic oscillator (TDHO) is obtained using a Lie algebra. The method involves a factorization of the TDQH into a TDHO through a unitary Bogoliubov transformation in terms of creation and annihilation operators with time-dependent coefficients. It is shown that this operator can be easily achieved by means of the factorization, together with the commonly known Wei-Norman theorem. We discuss the conditions under which this unitary operator converges to the evolution operator U(t) of the Schroedinger equation for the TDQH, giving then a straightforward calculation of the evolution operator with respect to the procedures published in the literature.

  20. Effective Potential from the Generalized Time-Dependent Schrödinger Equation

    Directory of Open Access Journals (Sweden)

    Trifce Sandev

    2016-09-01

    Full Text Available We analyze the generalized time-dependent Schrödinger equation for the force free case, as a generalization, for example, of the standard time-dependent Schrödinger equation, time fractional Schrödinger equation, distributed order time fractional Schrödinger equation, and tempered in time Schrödinger equation. We relate it to the corresponding standard Schrödinger equation with effective potential. The general form of the effective potential that leads to a standard time-dependent Schrodinger equation with the same solution as the generalized one is derived explicitly. Further, effective potentials for several special cases, such as Dirac delta, power-law, Mittag-Leffler and truncated power-law memory kernels, are expressed in terms of the Mittag-Leffler functions. Such complex potentials have been used in the transport simulations in quantum dots, and in simulation of resonant tunneling diode.