WorldWideScience

Sample records for time-dependent hartree-fock calculations

  1. Variational derivation of a time-dependent Hartree-Fock Hamiltonian

    International Nuclear Information System (INIS)

    Lichtner, P.C.; Griffin, J.J.; Schultheis, H.; Schultheis, R.; Volkov, A.B.

    1979-01-01

    The variational derivation of the time-dependent Hartree-Fock equation is reviewed. When norm-violating variations are included, a unique time-dependent Hartree-Fock Hamiltonian, which differs from that customarily used in time-dependent Hartree-Fock analyses, is implied. This variationally ''true'' Hartree-Fock Hamiltonian has the same expectation value as the exact Hamiltonian, equal to the average energy of the system. Since this quantity remains constant under time-dependent Hartree-Fock time evolution, we suggest the label ''constant '' for this form of time-dependent Hartree-Fock theory

  2. Testing the multi-configuration time-dependent Hartree-Fock method

    International Nuclear Information System (INIS)

    Zanghellini, Juergen; Kitzler, Markus; Brabec, Thomas; Scrinzi, Armin

    2004-01-01

    We test the multi-configuration time-dependent Hartree-Fock method as a new approach towards the numerical calculation of dynamical processes in multi-electron systems using the harmonic quantum dot and one-dimensional helium in strong laser pulses as models. We find rapid convergence for quantities such as ground-state population, correlation coefficient and single ionization towards the exact results. The method converges, where the time-dependent Hartree-Fock method fails qualitatively

  3. Semiclassical approximation to time-dependent Hartree--Fock theory

    International Nuclear Information System (INIS)

    Dworzecka, M.; Poggioli, R.

    1976-01-01

    Working within a time-dependent Hartree-Fock framework, one develops a semiclassical approximation appropriate for large systems. It is demonstrated that the standard semiclassical approach, the Thomas-Fermi approximation, is inconsistent with Hartree-Fock theory when the basic two-body interaction is short-ranged (as in nuclear systems, for example). However, by introducing a simple extension of the Thomas-Fermi approximation, one overcomes this problem. One also discusses the infinite nuclear matter problem and point out that time-dependent Hartree-Fock theory yields collective modes of the zero sound variety instead of ordinary hydrodynamic (first) sound. One thus emphasizes that one should be extremely circumspect when attempting to cast the equations of motion of time-dependent Hartree-Fock theory into a hydrodynamic-like form

  4. Time-dependent--S-matrix Hartree-Fock theory of complex reactions

    International Nuclear Information System (INIS)

    Griffin, J.J.; Lichtner, P.C.; Dworzecka, M.

    1980-01-01

    Some limitations of the conventional time-dependent Hartree-Fock method for describing complex reactions are noted, and one particular ubiquitous defect is discussed in detail: the post-breakup spurious cross channel correlations which arise whenever several asymptotic reaction channels must be simultaneously described by a single determinant. A reformulated time-dependent--S-matrix Hartree-Fock theory is proposed, which obviates this difficulty. Axiomatic requirements minimal to assure that the time-dependent--S-matrix Hartree-Fock theory represents an unambiguous and physically interpretable asymptotic reaction theory are utilized to prescribe conditions upon the definition of acceptable asymptotic channels. That definition, in turn, defines the physical range of the time-dependent--S-matrix Hartree-Fock theory to encompass the collisions of mathematically well-defined ''time-dependent Hartree-Fock droplets.'' The physical properties of these objects then circumscribe the content of the Hartree-Fock single determinantal description. If their periodic vibrations occur for continuous ranges of energy then the resulting ''classical'' time-dependent Hartree-Fock droplets are seen to be intrinsically dissipative, and the single determinantal description of their collisions reduces to a ''trajectory'' theory which can describe the masses and relative motions of the fragments but can provide no information about specific asymptotic excited states beyond their constants of motion, or the average properties of the limit, if it exists, of their equilibrization process. If, on the other hand, the periodic vibrations of the time-dependent Hartree-Fock droplets are discrete in energy, then the time-dependent--S-matrix Hartree-Fock theory can describe asymptotically the time-average properties of the whole spectrum of such periodic vibrations

  5. Hartree--Fock time-dependent problem

    Energy Technology Data Exchange (ETDEWEB)

    Bove, A; Fano, G [Bologna Univ. (Italy). Istituto di Fisica; Istituto Nazionale di Fisica Nucleare, Bologna (Italy)); Da Prato, G [Rome Univ. (Italy). Istituto di Matematica

    1976-06-01

    A previous result is generalized. An existence and uniqueness theorem is proved for the Hartree--Fock time-dependent problem in the case of a finite Fermi system interacting via a two body potential which is supposed to be dominated by the kinetic energy part of the one-particle Hamiltonian.

  6. Time-dependent Hartree-Fock dynamics and phase transition in Lipkin-Meshkov-Glick model

    International Nuclear Information System (INIS)

    Kan, K.; Lichtner, P.C.; Dworzecka, M.; Griffin, J.J.

    1980-01-01

    The time-dependent Hartree-Fock solutions of the two-level Lipkin-Meshkov-Glick model are studied by transforming the time-dependent Hartree-Fock equations into Hamilton's canonical form and analyzing the qualitative structure of the Hartree-Fock energy surface in the phase space. It is shown that as the interaction strength increases these time-dependent Hartree-Fock solutions undergo a qualitative change associated with the ground state phase transition previously studied in terms of coherent states. For two-body interactions stronger than the critical value, two types of time-dependent Hartree-Fock solutions (the ''librations'' and ''rotations'' in Hamilton's mechanics) exist simultaneously, while for weaker interactions only the rotations persist. It is also shown that the coherent states with the maximum total pseudospin value are determinants, so that time-dependent Hartree-Fock analysis is equivalent to the coherent state method

  7. Damping of monopole vibrations in time dependent Hartree-Fock theory

    International Nuclear Information System (INIS)

    Vautherin, D.; Stringari, S.

    1979-01-01

    Monopole vibrations in oxygen-16 and calcium-40 have been investigated in time-dependent Hartree-Fock theory. The characteristic damping time obtained is tau approximately 1.5x10 -22 sec. This value is in good agreement with the width of the monopole mode calculated in the random phase approximation

  8. Constant resolution of time-dependent Hartree--Fock phase ambiguity

    International Nuclear Information System (INIS)

    Lichtner, P.C.; Griffin, J.J.; Schultheis, H.; Schultheis, R.; Volkov, A.B.

    1978-01-01

    The customary time-dependent Hartree--Fock problem is shown to be ambiguous up to an arbitrary function of time additive to H/sub HF/, and, consequently, up to an arbitrary time-dependent phase for the solution, PHI(t). The ''constant'' (H)'' phase is proposed as the best resolution of this ambiguity. It leads to the following attractive features: (a) the time-dependent Hartree--Fock (TDHF) Hamiltonian, H/sub HF/, becomes a quantity whose expectation value is equal to the average energy and, hence, constant in time; (b) eigenstates described exactly by determinants, have time-dependent Hartree--Fock solutions identical with the exact time-dependent solutions; (c) among all possible TDHF solutions this choice minimizes the norm of the quantity (H--i dirac constant delta/delta t) operating on the ket PHI, and guarantees optimal time evolution over an infinitesimal period; (d) this choice corresponds both to the stationary value of the absolute difference between (H) and (i dirac constant delta/delta t) and simultaneously to its absolute minimal value with respect to choice of the time-dependent phase. The source of the ambiguity is discussed. It lies in the time-dependent generalization of the freedom to transform unitarily among the single-particle states of a determinant at the (physically irrelevant for stationary states) cost of altering only a factor of unit magnitude

  9. Time-dependent Hartree-Fock calculation of the escape width of the giant monopole resonance in 16O

    International Nuclear Information System (INIS)

    Pacheco, J.M.; Maglione, E.; Broglia, R.A.

    1988-01-01

    The damping of the giant monopole resonance in 16 O is calculated within the framework of the time-dependent Hartree-Fock approximation. The strength function contains two peaks, centered at around 25 and 33 MeV, with escape widths of ∼11 and ∼2 MeV, associated with the 1p(0p) -1 and 1s(0s) -1 configurations, respectively

  10. Decomposition of the configuration-interaction coefficients in the multiconfiguration time-dependent Hartree-Fock method

    Energy Technology Data Exchange (ETDEWEB)

    Lötstedt, Erik, E-mail: lotstedt@chem.s.u-tokyo.ac.jp; Kato, Tsuyoshi; Yamanouchi, Kaoru [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2016-04-21

    An approximate implementation of the multiconfiguration time-dependent Hartree-Fock method is proposed, in which the matrix of configuration-interaction coefficients is decomposed into a product of matrices of smaller dimension. The applicability of this method in which all the configurations are kept in the expansion of the wave function, while the configuration-interaction coefficients are approximately calculated, is discussed by showing the results on three model systems: a one-dimensional model of a beryllium atom, a one-dimensional model of a carbon atom, and a one-dimensional model of a chain of four hydrogen atoms. The time-dependent electronic dynamics induced by a few-cycle, long-wavelength laser pulse is found to be well described at a lower computational cost compared to the standard multiconfiguration time-dependent Hartree-Fock treatment. Drawbacks of the method are also discussed.

  11. Multiconfiguration hartree-fock theory for pseudorelativistic systems: The time-dependent case

    KAUST Repository

    Hajaiej, Hichem

    2014-03-01

    In [Setting and analysis of the multi-configuration time-dependent Hartree-Fock equations, Arch. Ration. Mech. Anal. 198 (2010) 273-330] the third author has studied in collaboration with Bardos, Catto and Mauser the nonrelativistic multiconfiguration time-dependent Hartree-Fock system of equations arising in the modeling of molecular dynamics. In this paper, we extend the previous work to the case of pseudorelativistic atoms. We show the existence and the uniqueness of global-in-time solution to the underlying system under technical assumptions on the energy of the initial data and the charge of the nucleus. Moreover, we prove that the result can be extended to the case of neutron stars when the number of electrons is less than a critical number N cr. © 2014 World Scientific Publishing Company.

  12. Multiconfiguration Hartree-Fock calculations for complex atoms

    International Nuclear Information System (INIS)

    Fischer, C.F.

    1984-01-01

    The Hartree-Fock method has become a standard in atomic structure theory. Simpler methods are often compared with it when accessing their reliability or worth and the notion of correlation, which intuitively may be thought of as the correction needed to account for the fact that electrons do not move independently in a central field, is defined with respect to the Hartree-Fock method rather than some other independent-particle model. In fact, in an earlier article in this series, Fricke (Progress in Atomic Spectroscopy, Part A, Plenum Press (1978)), states, ''The so-called HF method is the basis of all good atomic calculations.'' In some sense, the Hartree-Fock method is the best method. The author briefly reviews its properties here. 67 references, 2 figures

  13. The time-dependent Hartree-Fock equations with Coulomb two-body interaction

    International Nuclear Information System (INIS)

    Chadam, J.M.; Glassey, R.T.

    1975-06-01

    The existence and uniqueness of global solutions to the Cauchy problem is proved in the space of ''smooth'' density matrices for the time-dependent Hartree-Fock equations describing the motion of finite Fermi systems interacting via a Coulomb two-body potential [fr

  14. The Hartree-Fock seniority approximation

    International Nuclear Information System (INIS)

    Gomez, J.M.G.; Prieto, C.

    1986-01-01

    A new self-consistent method is used to take into account the mean-field and the pairing correlations in nuclei at the same time. We call it the Hartree-Fock seniority approximation, because the long-range and short-range correlations are treated in the frameworks of Hartree-Fock theory and the seniority scheme. The method is developed in detail for a minimum-seniority variational wave function in the coordinate representation for an effective interaction of the Skyrme type. An advantage of the present approach over the Hartree-Fock-Bogoliubov theory is the exact conservation of angular momentum and particle number. Furthermore, the computational effort required in the Hartree-Fock seniority approximation is similar to that ofthe pure Hartree-Fock picture. Some numerical calculations for Ca isotopes are presented. (orig.)

  15. Equilibration in the time-dependent Hartree-Fock approach probed with the Wigner distribution function

    International Nuclear Information System (INIS)

    Loebl, N.; Maruhn, J. A.; Reinhard, P.-G.

    2011-01-01

    By calculating the Wigner distribution function in the reaction plane, we are able to probe the phase-space behavior in the time-dependent Hartree-Fock scheme during a heavy-ion collision in a consistent framework. Various expectation values of operators are calculated by evaluating the corresponding integrals over the Wigner function. In this approach, it is straightforward to define and analyze quantities even locally. We compare the Wigner distribution function with the smoothed Husimi distribution function. Different reaction scenarios are presented by analyzing central and noncentral 16 O + 16 O and 96 Zr + 132 Sn collisions. Although we observe strong dissipation in the time evolution of global observables, there is no evidence for complete equilibration in the local analysis of the Wigner function. Because the initial phase-space volumes of the fragments barely merge and mean values of the observables are conserved in fusion reactions over thousands of fm/c, we conclude that the time-dependent Hartree-Fock method provides a good description of the early stage of a heavy-ion collision but does not provide a mechanism to change the phase-space structure in a dramatic way necessary to obtain complete equilibration.

  16. An introduction to the adiabatic time-dependent Hartree-Fock method

    International Nuclear Information System (INIS)

    Giannoni, M.J.

    1984-05-01

    The aim of the adiabatic time-dependent Hartree-Fock method is to investigate the microscopic foundations of the phenomenological collective models. We briefly review the general formulation, which consists in deriving a Bohr-like Hamiltonian from a mean field theory, and discuss the limiting case where only a few collective variables participate to the motion. Some applications to soft nuclei and heavy ion collisions are presented

  17. Parallel scalability of Hartree-Fock calculations

    Science.gov (United States)

    Chow, Edmond; Liu, Xing; Smelyanskiy, Mikhail; Hammond, Jeff R.

    2015-03-01

    Quantum chemistry is increasingly performed using large cluster computers consisting of multiple interconnected nodes. For a fixed molecular problem, the efficiency of a calculation usually decreases as more nodes are used, due to the cost of communication between the nodes. This paper empirically investigates the parallel scalability of Hartree-Fock calculations. The construction of the Fock matrix and the density matrix calculation are analyzed separately. For the former, we use a parallelization of Fock matrix construction based on a static partitioning of work followed by a work stealing phase. For the latter, we use density matrix purification from the linear scaling methods literature, but without using sparsity. When using large numbers of nodes for moderately sized problems, density matrix computations are network-bandwidth bound, making purification methods potentially faster than eigendecomposition methods.

  18. Time-dependent Hartree--Fock method: description of heavy-ion collisions and allowance for correlations

    International Nuclear Information System (INIS)

    Maedler, P.

    1984-01-01

    The review describes the application of the time-dependent Hartree--Fock method to the description of heavy-ion interactions at energies of order 10 MeV/nucleon. The fundamentals of the method are presented and qualitative properties of its results are discussed. Realistic calculations of fusion reactions, deep inelastic collisions, and particle emission are presented and compared with the corresponding experimental data. Various approaches that generalize the method by taking into account correlations are considered

  19. Hartree-Fock-Bogolyubov Calculations

    International Nuclear Information System (INIS)

    Wolter, H.H.

    1970-01-01

    The author discusses in which way and to what extent pairing correlations affect the nuclear wave function. He finds that for many nuclei in the pf-shell the Hartree-Fock approximation is not valid. (author)

  20. Time Dependent Hartree Fock Equation: Gateway to Nonequilibrium Plasmas

    International Nuclear Information System (INIS)

    Dufty, James W.

    2007-01-01

    This is the Final Technical Report for DE-FG02-2ER54677 award 'Time Dependent Hartree Fock Equation - Gateway to Nonequilibrium Plasmas'. Research has focused on the nonequilibrium dynamics of electrons in the presence of ions, both via basic quantum theory and via semi-classical molecular dynamics (MD) simulation. In addition, fundamental notions of dissipative dynamics have been explored for models of grains and dust, and for scalar fields (temperature) in turbulent edge plasmas. The specific topics addressed were Quantum Kinetic Theory for Metallic Clusters, Semi-classical MD Simulation of Plasmas , and Effects of Dissipative Dynamics.

  1. Molecular wave function and effective adiabatic potentials calculated by extended multi-configuration time-dependent Hartree-Fock method

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Tsuyoshi; Ide, Yoshihiro; Yamanouchi, Kaoru [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo Bunkyo-ku, Tokyo, 113-0033 (Japan)

    2015-12-31

    We first calculate the ground-state molecular wave function of 1D model H{sub 2} molecule by solving the coupled equations of motion formulated in the extended multi-configuration time-dependent Hartree-Fock (MCTDHF) method by the imaginary time propagation. From the comparisons with the results obtained by the Born-Huang (BH) expansion method as well as with the exact wave function, we observe that the memory size required in the extended MCTDHF method is about two orders of magnitude smaller than in the BH expansion method to achieve the same accuracy for the total energy. Second, in order to provide a theoretical means to understand dynamical behavior of the wave function, we propose to define effective adiabatic potential functions and compare them with the conventional adiabatic electronic potentials, although the notion of the adiabatic potentials is not used in the extended MCTDHF approach. From the comparison, we conclude that by calculating the effective potentials we may be able to predict the energy differences among electronic states even for a time-dependent system, e.g., time-dependent excitation energies, which would be difficult to be estimated within the BH expansion approach.

  2. Hartree-Fock calculations of nuclear masses

    International Nuclear Information System (INIS)

    Quentin, P.

    1976-01-01

    Hartree-Fock calculations pertaining to the determination of nuclear binding energies throughout the whole chart of nuclides are reviewed. Such an approach is compared with other methods. Main techniques in use are shortly presented. Advantages and drawbacks of these calculations are also discussed with a special emphasis on the extrapolation towards nuclei far from the stability valley. Finally, a discussion of some selected results from light to superheavy nuclei, is given [fr

  3. The time dependent Hartree-Fock-theory for collective nuclear motions

    International Nuclear Information System (INIS)

    Goeke, K.

    1976-11-01

    The time-dependent Hartree-Fock theory (TDHF) approximately solves the Schroedinger equation by a variational method in the space of the time-dependent Slater determinants. As the TDHF wave function, similar to the exact solution has the property of being determined completely for all times by the nucleon-nucleon interaction and by assuming initial conditions. TDHF is expected to describe collective motion of nuclei with large amplitudes, too. The subject of this paper is to formulate the TDHF theory and its adiabatic limiting case (ATDHF) suited for setting up a collective Schroedinger equation, to investigate the relations with other theories, and to show the applicability for solving practical problems. (orig./WL) [de

  4. Time-Dependent Hartree-Fock Approach to Nuclear Pasta at Finite Temperature

    International Nuclear Information System (INIS)

    Schuetrumpf, B; Maruhn, J A; Klatt, M A; Mecke, K; Reinhard, P-G; Iida, K

    2013-01-01

    We present simulations of neutron-rich matter at subnuclear densities, like supernova matter, with the time-dependent Hartree-Fock approximation at temperatures of several MeV. The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter. This matter evolves into spherical, rod-like, and slab-like shapes and mixtures thereof. The simulations employ a full Skyrme interaction in a periodic three-dimensional grid. By an improved morphological analysis based on Minkowski functionals, all eight pasta shapes can be uniquely identified by the sign of only two valuations, namely the Euler characteristic and the integral mean curvature.

  5. Time-Dependent Hartree-Fock Approach to Nuclear Pasta at Finite Temperature

    Science.gov (United States)

    Schuetrumpf, B.; Klatt, M. A.; Iida, K.; Maruhn, J. A.; Mecke, K.; Reinhard, P.-G.

    2013-03-01

    We present simulations of neutron-rich matter at subnuclear densities, like supernova matter, with the time-dependent Hartree-Fock approximation at temperatures of several MeV. The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter. This matter evolves into spherical, rod-like, and slab-like shapes and mixtures thereof. The simulations employ a full Skyrme interaction in a periodic three-dimensional grid. By an improved morphological analysis based on Minkowski functionals, all eight pasta shapes can be uniquely identified by the sign of only two valuations, namely the Euler characteristic and the integral mean curvature.

  6. Matrix Methods for Solving Hartree-Fock Equations in Atomic Structure Calculations and Line Broadening

    Directory of Open Access Journals (Sweden)

    Thomas Gomez

    2018-04-01

    Full Text Available Atomic structure of N-electron atoms is often determined by solving the Hartree-Fock equations, which are a set of integro-differential equations. The integral part of the Hartree-Fock equations treats electron exchange, but the Hartree-Fock equations are not often treated as an integro-differential equation. The exchange term is often approximated as an inhomogeneous or an effective potential so that the Hartree-Fock equations become a set of ordinary differential equations (which can be solved using the usual shooting methods. Because the Hartree-Fock equations are an iterative-refinement method, the inhomogeneous term relies on the previous guess of the wavefunction. In addition, there are numerical complications associated with solving inhomogeneous differential equations. This work uses matrix methods to solve the Hartree-Fock equations as an integro-differential equation. It is well known that a derivative operator can be expressed as a matrix made of finite-difference coefficients; energy eigenvalues and eigenvectors can be obtained by using linear-algebra packages. The integral (exchange part of the Hartree-Fock equation can be approximated as a sum and written as a matrix. The Hartree-Fock equations can be solved as a matrix that is the sum of the differential and integral matrices. We compare calculations using this method against experiment and standard atomic structure calculations. This matrix method can also be used to solve for free-electron wavefunctions, thus improving how the atoms and free electrons interact. This technique is important for spectral line broadening in two ways: it improves the atomic structure calculations, and it improves the motion of the plasma electrons that collide with the atom.

  7. An adiabatic time-dependent Hartree-Fock theory of collective motion in finite systems

    International Nuclear Information System (INIS)

    Baranger, M.; Veneroni, M.

    1977-11-01

    It is shown how to derive the parameters of a phenomenological collective model from a microscopic theory. The microscopic theory is Hartree-Fock, and one starts from the time-dependent Hartree-Fock equation. To this, the adiabatic approximation is added, and the energy in powers of an adiabatic parameter is expanded, which results in a collective kinetic energy quadratic in the velocities, with coefficients depending on the coordinates, as in the phenomenological models. The adiabatic equations of motion are derived in different ways and their analogy with classical mechanics is stressed. The role of the adiabatic hypothesis and its range of validity, are analyzed in detail. It assumes slow motion, but not small amplitude, and is therefore suitable for large-amplitude collective motion. The RPA is obtained as the limiting case where the amplitude is also small. The translational mass is correctly given and the moment of inertia under rotation is that of Thouless and Valatin

  8. Relativistic hadrodynamics with field-strength dependent coupling of the scalar fields in Hartree and Hartree-Fock approximation

    International Nuclear Information System (INIS)

    Lindner, J.

    1992-09-01

    In this thesis in the framework of our model of the field-strength dependent coupling the properties of infinitely extended, homogeneous, static, spin- and isospin-saturated nuclear matter are studied. Thereby we use the Hartree-Mean-Field and the Hartree-Fock approximation, whereby the influence of the antiparticle states in the Fermi sea is neglected. In chapter 2 the Lagrangian density basing to our model is fixed. Starting from the Walecka model we modify in the Lagrangian density the Linear coupling of the scalar field to the scalar density as follows g S φanti ψψ→g S f(φ) anti ψψ. In chapter 3 we fix three different functions f(φ). For these three cases and for the Walecka model with f(φ)=φ nuclear-matter calculations are performed. In chapter 4 for the Hartree-Fock calculations, but also very especially regarding the molecular-dynamics calculations, the properties of the Dirac spinors in the plane-wave representation are intensively studied. (orig.)

  9. Basic and heavy ion scattering in time dependent Hartree-Fock Theory

    International Nuclear Information System (INIS)

    Weiss, M.S.

    1984-01-01

    Time Dependent Hartree-Fock theory, TDHF, is the most sophisticated, microscopic approach to nuclear dynamics yet practiced. Although it is far from a description of nature it does allow us to examine multiply interactive many-body systems semi quantum mechanically and to visualize otherwise covert processes. Some of the properties of the TDHF equations are stated leaving the interested reader to one of several excellent review articles for the derivations. Some of the applications to the collision of heavy ions are briefly described

  10. New algorithm for Hartree-Fock variational equation

    International Nuclear Information System (INIS)

    Iwasawa, K.; Sakata, F.; Hashimoto, Y.; Terasaki, J.

    1994-08-01

    Aiming at microscopically understanding the shape-coexistence phenomena, a new algorithm for obtaining many self-consistent Hartree-Fock states is developed. In contrast with the conventional numerical method of solving the constrained Hartree-Fock equation which gives the most energetically favorable state under a given constrained condition, it can find many high-lying Hartree-Fock states as well as many continuous constraint Hartree-Fock solutions by dictating their configurations through some reference state. Numerical calculation is performed by using the Skyrme III. (author)

  11. Time-dependent Hartree-Fock studies of the dynamical fusion threshold

    Directory of Open Access Journals (Sweden)

    Nakatsukasa Takashi

    2012-12-01

    Full Text Available A microscopic description of dynamical fusion threshold in heavy ion collisions is performed in the framework of time-dependent Hartree-Fock (TDHF theory using Skyrme energy density functional (EDF. TDHF fusion threshold is in a better agreement with experimental fusion barrier. We find that the onset of extra push lies at the effective fissility 33, which is consistent with the prediction of Swiatecki’s macroscopic model. The extra push energy in our TDHF simulation is systematically smaller than the prediction in macroscopic model. The important dynamical effects and the way to fit the parameter might be responsible for the different results.

  12. Time-dependent Hartree-Fock approach to nuclear ``pasta'' at finite temperature

    Science.gov (United States)

    Schuetrumpf, B.; Klatt, M. A.; Iida, K.; Maruhn, J. A.; Mecke, K.; Reinhard, P.-G.

    2013-05-01

    We present simulations of neutron-rich matter at subnuclear densities, like supernova matter, with the time-dependent Hartree-Fock approximation at temperatures of several MeV. The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter. This matter evolves into spherical, rod-like, and slab-like shapes and mixtures thereof. The simulations employ a full Skyrme interaction in a periodic three-dimensional grid. By an improved morphological analysis based on Minkowski functionals, all eight pasta shapes can be uniquely identified by the sign of only two valuations, namely the Euler characteristic and the integral mean curvature. In addition, we propose the variance in the cell density distribution as a measure to distinguish pasta matter from uniform matter.

  13. A study of self-consistent Hartree-Fock plus Bardeen-Cooper-Schrieffer calculations with finite-range interactions

    Science.gov (United States)

    Anguiano, M.; Lallena, A. M.; Co', G.; De Donno, V.

    2014-02-01

    In this work we test the validity of a Hartree-Fock plus Bardeen-Cooper-Schrieffer model in which a finite-range interaction is used in the two steps of the calculation by comparing the results obtained to those found in fully self-consistent Hartree-Fock-Bogoliubov calculations using the same interaction. Specifically, we consider the Gogny-type D1S and D1M forces. We study a wide range of spherical nuclei, far from the stability line, in various regions of the nuclear chart, from oxygen to tin isotopes. We calculate various quantities related to the ground state properties of these nuclei, such as binding energies, radii, charge and density distributions, and elastic electron scattering cross sections. The pairing effects are studied by direct comparison with the Hartree-Fock results. Despite its relative simplicity, in most cases, our model provides results very close to those of the Hartree-Fock-Bogoliubov calculations, and it reproduces the empirical evidence of pairing effects rather well in the nuclei investigated.

  14. Comparison of the surface friction model with the time-dependent Hartree-Fock method

    International Nuclear Information System (INIS)

    Froebrich, P.

    1984-01-01

    A comparison is made between the classical phenomenological surface friction model and a time-dependent Hartree-Fock study by Dhar for the system 208 Pb+ 74 Ge at E/sub lab/(Pb) = 1600 MeV. The general trends for energy loss, mean values for charge and mass, interaction times and energy-angle correlations turn out to be fairly similar in both methods. However, contrary to Dhar, the events close to capture are interpreted as normal deep-inelastic, i.e., not as fast fission processes

  15. Efficient, approximate and parallel Hartree-Fock and hybrid DFT calculations. A 'chain-of-spheres' algorithm for the Hartree-Fock exchange

    International Nuclear Information System (INIS)

    Neese, Frank; Wennmohs, Frank; Hansen, Andreas; Becker, Ute

    2009-01-01

    In this paper, the possibility is explored to speed up Hartree-Fock and hybrid density functional calculations by forming the Coulomb and exchange parts of the Fock matrix by different approximations. For the Coulomb part the previously introduced Split-RI-J variant (F. Neese, J. Comput. Chem. 24 (2003) 1740) of the well-known 'density fitting' approximation is used. The exchange part is formed by semi-numerical integration techniques that are closely related to Friesner's pioneering pseudo-spectral approach. Our potentially linear scaling realization of this algorithm is called the 'chain-of-spheres exchange' (COSX). A combination of semi-numerical integration and density fitting is also proposed. Both Split-RI-J and COSX scale very well with the highest angular momentum in the basis sets. It is shown that for extended basis sets speed-ups of up to two orders of magnitude compared to traditional implementations can be obtained in this way. Total energies are reproduced with an average error of <0.3 kcal/mol as determined from extended test calculations with various basis sets on a set of 26 molecules with 20-200 atoms and up to 2000 basis functions. Reaction energies agree to within 0.2 kcal/mol (Hartree-Fock) or 0.05 kcal/mol (hybrid DFT) with the canonical values. The COSX algorithm parallelizes with a speedup of 8.6 observed for 10 processes. Minimum energy geometries differ by less than 0.3 pm in the bond distances and 0.5 deg. in the bond angels from their canonical values. These developments enable highly efficient and accurate self-consistent field calculations including nonlocal Hartree-Fock exchange for large molecules. In combination with the RI-MP2 method and large basis sets, second-order many body perturbation energies can be obtained for medium sized molecules with unprecedented efficiency. The algorithms are implemented into the ORCA electronic structure system

  16. Uniform in N global well-posedness of the time-dependent Hartree-Fock-Bogoliubov equations in R^{1+1}

    Science.gov (United States)

    Chong, Jacky Jia Wei

    2018-04-01

    We prove the global well-posedness of the time-dependent Hartree-Fock-Bogoliubov (TDHFB) equations in R^{1+1} with two-body interaction potential of the form N^{-1}v_N(x) = N^{β -1} v(N^β x) where v≥0 is a sufficiently regular radial function, i.e., v \\in L^1(R)\\cap C^∞ (R) . In particular, using methods of dispersive PDEs similar to the ones used in Grillakis and Machedon (Commun Partial Differ Equ 42:24-67, 2017), we are able to show for any scaling parameter β >0 the TDHFB equations are globally well-posed in some Strichartz-type spaces independent of N, cf. (Bach et al. in The time-dependent Hartree-Fock-Bogoliubov equations for Bosons, 2016. arXiv:1602.05171).

  17. Hartree-Fock theory for the equilibrium shape of light nuclei; Theorie Hartree-Fock de la forme d'equilibre des noyaux legers

    Energy Technology Data Exchange (ETDEWEB)

    Ripka, G [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires

    1968-09-01

    Most of the content of this thesis is published in english in Advances In Nuclear Physics, Vol. 1 (Editors: Baranger and Vogt - Plenum Press). The Hartree- Fock equations are derived. The expansions of the orbits and the possible symmetries of the Hartree-Fock field are discussed. Wavefunctions of even-even N = Z nuclei are given for 12 {<=} A {<=} 40. The role of the monopole, quadrupole and exchange components of the force are discussed. The multiplicity of the solutions and the effect of the spin-orbit interaction are discussed. Exact angular momentum projection is used to generate rotational bands. The validity of the adiabatic rotational model in light nuclei is discussed. Hartree-Fock calculations are extended to include major-shell mixing in order to obtain quadrupole deformations without the use of effective charge. The incompressibility, of nuclei is discussed and the compatibility between the Hartree-Fock solutions, the Mottelson model of quadrupole deformations and the SU3 states of J.P. Elliott and M. Moshinsky is established. (author) [French] La theorie de Hartree-Fock est appliquee au calcul des fonctions d'onde des noyaux legers deformes. Les equations de Hartree-Fock, les symetries permises et le choix du developpement des orbites sont discutes. Les fonctions d'onde des noyaux pair-pairs N = Z (12 {<=} A {<=} 40) sont tabulees. Les contributions des composantes monopolaires et quadrupolaires ainsi que des termes d'echange de la force nucleon-nucleon sont discutees. La methode de projection de moment cinetique est utilisee pour engendrer les bandes de rotation. La validite du modele rotationnel adiabatique est discutee. Les calculs de Hartree-Fock qui tiennent compte du melange de plusieurs couches majeures dans chaque orbite sont appliques au calcul des deformations quadrupolaires sans l'utilisation de charge effective. L'incompressibilite des noyaux et la compatibilite des fonctions d'onde de Hartree- Fock avec les fonctions d'onde SU3 de J

  18. On particle emission in the time-dependent Hartree-Fock approximation

    International Nuclear Information System (INIS)

    Maedler, P.

    1984-01-01

    Investigations of fast particle emission in the time-dependent Hartree-Fock mean-field approximation (TDHF) have been performed for one-dimensional slab collisions. For a fixed target mass number and incident velocity the total yields of PEP exhibit pronounced srtructures as a function of the pro ectile mass number, which strongly correcate with the binding energy of the last nucleon in the projectnle. This is in explicit disagreement with experiment. The conclusion has been drawn that the Fermi-jet mechanism cannot be responsible for most of the fast particles observed in experiment, even if quantum diffraction is taken into account (as in TDHF). After PEP emission large amplitude density oscillations, which are the only possible modes in the slab geometry, are found to be damped by further particle emission

  19. Hartree-Fock theory for the equilibrium shape of light nuclei; Theorie Hartree-Fock de la forme d'equilibre des noyaux legers

    Energy Technology Data Exchange (ETDEWEB)

    Ripka, G. [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires

    1968-09-01

    Most of the content of this thesis is published in english in Advances In Nuclear Physics, Vol. 1 (Editors: Baranger and Vogt - Plenum Press). The Hartree- Fock equations are derived. The expansions of the orbits and the possible symmetries of the Hartree-Fock field are discussed. Wavefunctions of even-even N = Z nuclei are given for 12 {<=} A {<=} 40. The role of the monopole, quadrupole and exchange components of the force are discussed. The multiplicity of the solutions and the effect of the spin-orbit interaction are discussed. Exact angular momentum projection is used to generate rotational bands. The validity of the adiabatic rotational model in light nuclei is discussed. Hartree-Fock calculations are extended to include major-shell mixing in order to obtain quadrupole deformations without the use of effective charge. The incompressibility, of nuclei is discussed and the compatibility between the Hartree-Fock solutions, the Mottelson model of quadrupole deformations and the SU3 states of J.P. Elliott and M. Moshinsky is established. (author) [French] La theorie de Hartree-Fock est appliquee au calcul des fonctions d'onde des noyaux legers deformes. Les equations de Hartree-Fock, les symetries permises et le choix du developpement des orbites sont discutes. Les fonctions d'onde des noyaux pair-pairs N = Z (12 {<=} A {<=} 40) sont tabulees. Les contributions des composantes monopolaires et quadrupolaires ainsi que des termes d'echange de la force nucleon-nucleon sont discutees. La methode de projection de moment cinetique est utilisee pour engendrer les bandes de rotation. La validite du modele rotationnel adiabatique est discutee. Les calculs de Hartree-Fock qui tiennent compte du melange de plusieurs couches majeures dans chaque orbite sont appliques au calcul des deformations quadrupolaires sans l'utilisation de charge effective. L'incompressibilite des noyaux et la compatibilite des fonctions d'onde de Hartree- Fock avec les

  20. Efficient exact-exchange time-dependent density-functional theory methods and their relation to time-dependent Hartree-Fock.

    Science.gov (United States)

    Hesselmann, Andreas; Görling, Andreas

    2011-01-21

    A recently introduced time-dependent exact-exchange (TDEXX) method, i.e., a response method based on time-dependent density-functional theory that treats the frequency-dependent exchange kernel exactly, is reformulated. In the reformulated version of the TDEXX method electronic excitation energies can be calculated by solving a linear generalized eigenvalue problem while in the original version of the TDEXX method a laborious frequency iteration is required in the calculation of each excitation energy. The lowest eigenvalues of the new TDEXX eigenvalue equation corresponding to the lowest excitation energies can be efficiently obtained by, e.g., a version of the Davidson algorithm appropriate for generalized eigenvalue problems. Alternatively, with the help of a series expansion of the new TDEXX eigenvalue equation, standard eigensolvers for large regular eigenvalue problems, e.g., the standard Davidson algorithm, can be used to efficiently calculate the lowest excitation energies. With the help of the series expansion as well, the relation between the TDEXX method and time-dependent Hartree-Fock is analyzed. Several ways to take into account correlation in addition to the exact treatment of exchange in the TDEXX method are discussed, e.g., a scaling of the Kohn-Sham eigenvalues, the inclusion of (semi)local approximate correlation potentials, or hybrids of the exact-exchange kernel with kernels within the adiabatic local density approximation. The lowest lying excitations of the molecules ethylene, acetaldehyde, and pyridine are considered as examples.

  1. Nuclear Pasta at Finite Temperature with the Time-Dependent Hartree-Fock Approach

    Science.gov (United States)

    Schuetrumpf, B.; Klatt, M. A.; Iida, K.; Maruhn, J. A.; Mecke, K.; Reinhard, P.-G.

    2016-01-01

    We present simulations of neutron-rich matter at sub-nuclear densities, like supernova matter. With the time-dependent Hartree-Fock approximation we can study the evolution of the system at temperatures of several MeV employing a full Skyrme interaction in a periodic three-dimensional grid [1]. The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter. The matter evolves into spherical, rod-like, connected rod-like and slab-like shapes. Further we observe gyroid-like structures, discussed e.g. in [2], which are formed spontaneously choosing a certain value of the simulation box length. The ρ-T-map of pasta shapes is basically consistent with the phase diagrams obtained from QMD calculations [3]. By an improved topological analysis based on Minkowski functionals [4], all observed pasta shapes can be uniquely identified by only two valuations, namely the Euler characteristic and the integral mean curvature. In addition we propose the variance in the cell-density distribution as a measure to distinguish pasta matter from uniform matter.

  2. Nuclear Pasta at Finite Temperature with the Time-Dependent Hartree-Fock Approach

    International Nuclear Information System (INIS)

    Schuetrumpf, B; Maruhn, J A; Klatt, M A; Mecke, K; Reinhard, P-G; Iida, K

    2016-01-01

    We present simulations of neutron-rich matter at sub-nuclear densities, like supernova matter. With the time-dependent Hartree-Fock approximation we can study the evolution of the system at temperatures of several MeV employing a full Skyrme interaction in a periodic three-dimensional grid [1].The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter.The matter evolves into spherical, rod-like, connected rod-like and slab-like shapes. Further we observe gyroid-like structures, discussed e.g. in [2], which are formed spontaneously choosing a certain value of the simulation box length. The ρ-T-map of pasta shapes is basically consistent with the phase diagrams obtained from QMD calculations [3]. By an improved topological analysis based on Minkowski functionals [4], all observed pasta shapes can be uniquely identified by only two valuations, namely the Euler characteristic and the integral mean curvature.In addition we propose the variance in the cell-density distribution as a measure to distinguish pasta matter from uniform matter. (paper)

  3. The semi-classical limit of the time dependent Hartree-Fock equation. II. The Wick symbol of the solution

    OpenAIRE

    Amour, Laurent; Khodja, Mohamed; Nourrigat, Jean

    2011-01-01

    We study the Wick symbol of a solution of the time dependent Hartree Fock equation, under weaker hypotheses than those needed for the Weyl symbol in the first paper with thesame title. With similar, we prove some kind of Ehrenfest theorem for observables that are not pseudo-differential operators.

  4. Exponential convergence and acceleration of Hartree-Fock calculations

    International Nuclear Information System (INIS)

    Bonaccorso, A.; Di Toro, M.; Lomnitz-Adler, J.

    1979-01-01

    It is shown that one can expect an exponential behaviour for the convergence of the Hartree-Fock solution during the HF iteration procedure. This property is used to extrapolate some collective degrees of freedom, in this case the shape, in order to speed up the self-consistent calculation. For axially deformed nuclei the method is applied to the quadrupole moment which corresponds to a simple scaling transformation on the single particle wave functions. Results are shown for the deformed nuclei 20 Ne and 28 Si with a Skyrme interaction. (Auth.)

  5. Hartree-Fock (HF) method and density functional theory calculations of Methanol to Gasoline (MTG) reaction

    International Nuclear Information System (INIS)

    Seddigi, Z.S.

    2004-01-01

    We found interesting results regarding some thermodynamical parameters (Delta H, Delta G and Delta S of the MTG Reaction and FTIR Spectra of methanol and dimethylether, using the Hartree-Fock method and Density Functional Theory (DFT) calculations at different computational levels. It is the aim of this paper to highlight these results. The GAUSSIAN 98 program was used to carry out the LCAO-MO-SCF calculations at the following levels: RHF/3-21g, RHF/6-31g and DFT/B3LYP/d95**. Calculations at the restricted Hartree-Fock levels (FHR/3-22 g and RHF/6-31g) were performed since they are expensive as other levels (DFT/B3LYP/d95**. In case of the HF method, working with larger basis set (6-31g) has improved the values slightly, which is as expected. We have noticed that performing calculations at higher levels (DFT/B3LY/D95**) than the Hartree-Fock method does not dramatically improve the situation. Indeed RHF is a reasonable approximation for many single gas phase molecular calculations. HF calculations at relatively small basis sets are adequate. The theoretical vibrational spectra of both methanol and dimethylether were compared with experimental results. (author)

  6. Comparison of model Hartree-Fock type calculation schemes involving various non-degenerate and quasi-degenerate intrinsic Hamiltonians

    International Nuclear Information System (INIS)

    Amusa, A.

    1983-03-01

    Different Hamiltonians and their corresponding rotationally degenerate intrinsic counterparts are employed in the study of 18 O nucleus under the normal Hartree-Fock, as well as under six other Hartree-Fock type variational calculation schemes. The results are compared and then assessed in the light of their closeness or otherwise to the full 1s-0d basis shell model calculations for this nucleus. The use of these schemes for other shells is also considered. (author)

  7. The Hartree-Fock approximation applied to nuclear structure problems

    International Nuclear Information System (INIS)

    Oliveira, D.R. de.

    1972-01-01

    The Hartree-Fock indepedent-particle state basis is firstly constructed, whose wave functions are expressed as linear combinations of states of a Known basis. The coefficients of these combinations are reals e from themselves the Hartree-Fock density matrix is defined. The symmetries which characterize the system in study are embedded in these coefficients and in the density matrix. The formalism is applied to the Ne 20 , Si 28 and Ar 36 nuclei whose lowest Hartree-Fock energies are obtained admitting that theirs wave functions having axial symmetry. Once known the Hartree-Fock wave function, states are projected from it with well-defined total angular momentum using the Peierls and Yoccoz method. From these wave functions energy levels of the ground band are calculated as well as the electric quadrupole transition probabilities among these levels. (L.C.) [pt

  8. Adiabatic time-dependent Hartree-Fock theory of collective motion in finite systems

    International Nuclear Information System (INIS)

    Baranger, M.; Veneroni, M.

    1978-01-01

    We show how to derive the parameters of a phenomenological collective model from a microscopic theory. The microscopic theory is Hartree-Fock, and we start from the time-dependent Hartree-Fock equation. To this we add the adiabatic approximation, which results in a collective kinetic energy quadratic in the velocities, with coefficients depending on the coordinates, as in the phenomenological models. The crucial step is the decomposition of the single-particle density matrix p in the form exp(i/sub chi/) rho/sub omicron/exp(-i/sub chi/), where rho/sub omicron/ represents a time-even Slater determinant and plays the role of coordinate. Then chi plays the role of momentum, and the adiabatic assumption is that chi is small. The energy is expanded in powers of chi, the zeroth-order being the collective potential energy. The analogy with classical mechanics is stressed and studied. The same adiabatic equations of motion are derived in three different ways (directly, from the Lagrangian, from the Hamiltonian), thus proving the consistency of the theory. The dynamical equation is not necessary for writing the energy or for the subsequent quantization which leads to a Schroedinger equation, but it must be used to check the validity of various approximation schemes, particularly to reduce the problem to a few degrees of freedom. The role of the adiabatic hypothesis, its definition, and range of validity, are analyzed in great detail. It assumes slow motion, but not small amplitude, and is therefore suitable for large-amplitude collective motion. The RPA is obtained as the limiting case where the amplitude is also small. The translational mass is correctly given, and the moment of inertia under rotation is that of Thouless and Valatin. For a quadrupole two-body force, the Baranger-Kumar formalism is recovered. The self-consistency brings additional terms to the Inglis cranking formula. Comparison is also made with generator coordinate methods

  9. SU(3) versus deformed Hartree-Fock state

    International Nuclear Information System (INIS)

    Johnson, Calvin W.; Stetcu, Ionel; Draayer, J.P.

    2002-01-01

    Deformation is fundamental to understanding nuclear structure. We compare two ways to efficiently realize deformation for many-fermion wave functions, the leading SU(3) irreducible representation and the angular-momentum-projected Hartree-Fock state. In the absence of single-particle spin-orbit splitting the two are nearly identical. With realistic forces, however, the difference between the two is nontrivial, with the angular-momentum-projected Hartree-Fock state better approximating an 'exact' wave function calculated in the fully interacting shell model. The difference is driven almost entirely by the single-particle spin-orbit splitting

  10. Stability of the Hartree-Fock model with temperature

    OpenAIRE

    Dolbeault, Jean; Felmer, Patricio; Lewin, Mathieu

    2008-01-01

    This paper is devoted to the Hartree-Fock model with temperature in the euclidean space. For large classes of free energy functionals, minimizers are obtained as long as the total charge of the system does not exceed a threshold which depends on the temperature. The usual Hartree-Fock model is recovered in the zero temperature limit. An orbital stability result for the Cauchy problem is deduced from the variational approach.

  11. A multiconfigurational time-dependent Hartree-Fock method for excited electronic states. I. General formalism and application to open-shell states.

    Science.gov (United States)

    Miranda, R P; Fisher, A J; Stella, L; Horsfield, A P

    2011-06-28

    The solution of the time-dependent Schrödinger equation for systems of interacting electrons is generally a prohibitive task, for which approximate methods are necessary. Popular approaches, such as the time-dependent Hartree-Fock (TDHF) approximation and time-dependent density functional theory (TDDFT), are essentially single-configurational schemes. TDHF is by construction incapable of fully accounting for the excited character of the electronic states involved in many physical processes of interest; TDDFT, although exact in principle, is limited by the currently available exchange-correlation functionals. On the other hand, multiconfigurational methods, such as the multiconfigurational time-dependent Hartree-Fock (MCTDHF) approach, provide an accurate description of the excited states and can be systematically improved. However, the computational cost becomes prohibitive as the number of degrees of freedom increases, and thus, at present, the MCTDHF method is only practical for few-electron systems. In this work, we propose an alternative approach which effectively establishes a compromise between efficiency and accuracy, by retaining the smallest possible number of configurations that catches the essential features of the electronic wavefunction. Based on a time-dependent variational principle, we derive the MCTDHF working equation for a multiconfigurational expansion with fixed coefficients and specialise to the case of general open-shell states, which are relevant for many physical processes of interest.

  12. Derivation of an adiabatic time-dependent Hartree-Fock formalism from a variational principle

    International Nuclear Information System (INIS)

    Brink, D.M.; Giannoni, M.J.; Veneroni, M.

    1975-10-01

    A derivation of the adiabatic time-dependent Hartree-Fock formalism is given, which is based on a variational principle analogous to Hamilton's principle in classical mechanics. The method leads to a Hamiltonian for collective motion which separates into a potential and a kinetic energy and gives mass and potential parameters in terms of the nucleon-nucleon interaction. The adiabatic approximation assumes slow motion but not small amplitudes and can therefore describe anharmonic effects. The RPA is a limiting case where both amplitudes and velocities are small. The variational approach provides a consistent way of extracting coordinated and momenta from the density matrix and of obtaining equations of motion when particular trial forms for this density matrix are chosen. One such choice leads to Thouless-Valatin formula. An other choice leads to irrotational hydrodynamics [fr

  13. Hartree-Fock states in the thermodynamic limit

    International Nuclear Information System (INIS)

    Aguilera-Navarro, V.C.; Llano, M. de; Peltier, S.; Plastino, A.

    1976-01-01

    Two infinite families of two-parameter generalized Overhauser orbitals are introduced and shown to explicitly satisfy, for occupied states, the self-consistent Hartree-Fock equations in the thermodynamic limit. For an attractive delta interaction, they give lower Hartree-Fock energy than the usual plane-wave solutions, even for relatively weak coupling and/or low density. The limiting members (possessing an infinite number of harmonics) of both families appear to tend to a 'classical static lattice' state. The related density profiles and energy expressions are calculated as functions of the two new parameters. A direct-variation with respect to these parameters was done numerically and results are presented graphically. (Author) [pt

  14. Theories of the nuclear ground state beyond Hartree-Fock

    International Nuclear Information System (INIS)

    Gogny, D.

    1979-01-01

    Intensive efforts have been invested toward defining a microscopic approach, simple enough to render feasible systematic calculations of nuclear structure and of the some time sufficiently rich in information as to serve for updating traditional microscopic approaches to the collective excitations. Our starting point is the mean field approximation with density dependent effective forces. To describe the collective excitations we use the two well known extensions based on the H.F. theory namely the random phase approximation and the adiabatic approximation to the time dependent Hartree-Fock theory. The purpose of this paper is to show what sort of calculations can be effectively carried out in the frame of such fully self consistent approaches. (KBE) 891 KBE/KBE 892 ARA

  15. Hartree-Fock calculation of nuclear binding energy of sodium isotopes

    International Nuclear Information System (INIS)

    Campi, X.; Flocard, H.

    1975-01-01

    Mass spectrometer measurements of the neutron rich sodium isotopes show a sudden increase at 31 Na in the values of the two neutron separation energies. The spherical shell model naturally predicts a sudden decrease at 32 Na after the N=20 shell closure. It is proposed that the explanation for this disagreement lies in the fact that sodium isotopes in this mass region are strongly deformed due to the filling of negative parity orbitals from the 1f(7/2) shell. Hartree-Fock calculations are presented in support of this conjecture [fr

  16. Density-dependent Hartree-Fock response functions in quasi-elastic electron scattering on 12C and related sum rules

    International Nuclear Information System (INIS)

    Kohno, M.

    1983-01-01

    We report fully consistent calculations of the longitudinal and transverse response functions of the inclusive quasi-elastic electron scattering on 12 C in the Hartree-Fock approximation. The distorted wave for the outgoing nucleon is constructed from the same non-local Hartree-Fock field as in the ground-state description. Thus the orthogonality and Pauli principle requirements are naturally satisfied. The theoretical prediction, based on the standard density-dependent effective interaction (GO force), shows a good correspondence to the experimental data. Since the calculated response functions automatically satisfy the relevant sum rule, this work illuminates the well-known puzzle concerning the longitudinal part, which remains to be solved. We study the energy-weighted sum rules and discuss effects beyond the mean-field approximation. Meson-exchange-current contributions to the transverse response function are also estimated and found to be small due to cancellations among them. (orig.)

  17. Hartree--Fock density matrix equation

    International Nuclear Information System (INIS)

    Cohen, L.; Frishberg, C.

    1976-01-01

    An equation for the Hartree--Fock density matrix is discussed and the possibility of solving this equation directly for the density matrix instead of solving the Hartree--Fock equation for orbitals is considered. Toward that end the density matrix is expanded in a finite basis to obtain the matrix representative equation. The closed shell case is considered. Two numerical schemes are developed and applied to a number of examples. One example is given where the standard orbital method does not converge while the method presented here does

  18. The total Hartree-Fock energy-eigenvalue sum relationship in atoms

    International Nuclear Information System (INIS)

    Sen, K.D.

    1979-01-01

    Using the well known relationships for the isoelectronic changes in the total Hartree-Fock energy, nucleus-electron attraction energy and electron-electron repulsion energy in atoms a simple polynomial expansion in Z is obtained for the sum of the eigenvalues which can be used to calculate the total Hartree-Fock energy. Numerical results are presented for 2-10 electron series to show that the present relationship is a better approximation than the other available energy-eigenvalue relationships. (author)

  19. A finite difference Hartree-Fock program for atoms and diatomic molecules

    Science.gov (United States)

    Kobus, Jacek

    2013-03-01

    . The lowest energy eigenstates of a given irreducible representation and spin can be obtained. The program can be used to perform one-particle calculations with (smooth) Coulomb and Krammers-Henneberger potentials and also DFT-type calculations using LDA or B88 exchange functionals and LYP or VWN correlations ones or the self-consistent multiplicative constant method. Solution method: Single-particle two-dimensional numerical functions (orbitals) are used to construct an antisymmetric many-electron wave function of the restricted open-shell Hartree-Fock model. The orbitals are obtained by solving the Hartree-Fock equations as coupled two-dimensional second-order (elliptic) partial differential equations (PDEs). The Coulomb and exchange potentials are obtained as solutions of the corresponding Poisson equations. The PDEs are discretized by the eighth-order central difference stencil on a two-dimensional single grid, and the resulting large and sparse system of linear equations is solved by the (multicolour) successive overrelaxation ((MC)SOR) method. The self-consistent-field iterations are interwoven with the (MC)SOR ones and orbital energies and normalization factors are used to monitor the convergence. The accuracy of solutions depends mainly on the grid and the system under consideration, which means that within double precision arithmetic one can obtain orbitals and energies having up to 12 significant figures. If more accurate results are needed, quadruple-precision floating-point arithmetic can be used. Reasons for new version: Additional features, many modifications and corrections, improved convergence rate, overhauled code and documentation. Summary of revisions: see ChangeLog found in tar.gz archive Restrictions: The present version of the program is restricted to 60 orbitals. The maximum grid size is determined at compilation time. Unusual features: The program uses two C routines for allocating and deallocating memory. Several BLAS (Basic Linear Algebra

  20. General multi-configuration Hartree--Fock program: MCHF77

    International Nuclear Information System (INIS)

    Fischer, C.F.

    1977-11-01

    This technical report contains a listing of a general program for multi-configuration Hartree--Fock (MCHF) calculations, including its documentation. Several examples are given showing how the program may be used. Typical output for several cases is also presented. This program has been tested over an extended period of time for a large variety of cases. This program is written for the IBM 360 or 370 in double-precision arithmetic

  1. Approximate energy correction for particle number summetry breaking in constrained Hartree-Fock plus BCS calculations

    International Nuclear Information System (INIS)

    Redon, N.; Meyer, J.; Meyer, M.

    1989-01-01

    An approximate restoration of the particle number symmetry, a la Lipkin-Nogami, is numerically investigated in the context of Constrained Hartree-Fock plus BCS calculations. Its effect is assessed in a variety of physical situations like potential energy landscapes in transitional nuclei, shape isomerism at low spin and fission barriers of actinide nuclei

  2. Tensor numerical methods in quantum chemistry: from Hartree-Fock to excitation energies.

    Science.gov (United States)

    Khoromskaia, Venera; Khoromskij, Boris N

    2015-12-21

    We resume the recent successes of the grid-based tensor numerical methods and discuss their prospects in real-space electronic structure calculations. These methods, based on the low-rank representation of the multidimensional functions and integral operators, first appeared as an accurate tensor calculus for the 3D Hartree potential using 1D complexity operations, and have evolved to entirely grid-based tensor-structured 3D Hartree-Fock eigenvalue solver. It benefits from tensor calculation of the core Hamiltonian and two-electron integrals (TEI) in O(n log n) complexity using the rank-structured approximation of basis functions, electron densities and convolution integral operators all represented on 3D n × n × n Cartesian grids. The algorithm for calculating TEI tensor in a form of the Cholesky decomposition is based on multiple factorizations using algebraic 1D "density fitting" scheme, which yield an almost irreducible number of product basis functions involved in the 3D convolution integrals, depending on a threshold ε > 0. The basis functions are not restricted to separable Gaussians, since the analytical integration is substituted by high-precision tensor-structured numerical quadratures. The tensor approaches to post-Hartree-Fock calculations for the MP2 energy correction and for the Bethe-Salpeter excitation energies, based on using low-rank factorizations and the reduced basis method, were recently introduced. Another direction is towards the tensor-based Hartree-Fock numerical scheme for finite lattices, where one of the numerical challenges is the summation of electrostatic potentials of a large number of nuclei. The 3D grid-based tensor method for calculation of a potential sum on a L × L × L lattice manifests the linear in L computational work, O(L), instead of the usual O(L(3) log L) scaling by the Ewald-type approaches.

  3. Coupled Hartree-Fock calculation of {sup 13} C shielding tensors in acetylene clusters

    Energy Technology Data Exchange (ETDEWEB)

    Craw, John Simon; Nascimento, Marco Antonio Chaer [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica

    1992-12-31

    The coupled Hartree Fock method has been used to calculate ab-initio carbon magnetic shielding tensors for small clusters of acetylene molecules. The chemical shift increases from the monomer to the dimer and trimer. This is mainly due increased diamagnetism, which is imperfectly cancelled by increased paramagnetism due to loss of axial symmetry. Anisotropic effects are shown to be small in both the dimer the and trimer. (author) 21 refs., 2 tabs.

  4. Study on formalism of Griffin-Wheeler-Hartree-Fock equations and a propose for its variational discretization; Estudo sobre o formalismo das equacoes Griffin-Wheeler-Hartree-Fock e uma proposta para sua discretizacao variacional

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Rugles Cesar

    2002-07-01

    The present thesis is divided into two parts. The first part describes the many kind of the formalisms of the Generator Coordinate Hartree-Fock method (GCHFM) and second part describes the computational aspect applied to the GCHFM formalism in its discreet form. The major aim of this work is the development of an alternative method to non-linear parameters optimization (basis set) and later uses these optimized parameters to adjust the weight function into GCHFM method. The study of the weight function when N {yields} {infinity} (or for large N), where N represents the number of mesh, is important since the GCHFM theory in its continuous form depend on understanding of such behavior. In this thesis, a detailed study is carried out about the methodologies of the self-consistent solution of the GCHFM and some methodology aspects of non-linear parameters optimization. This work shows that the Generator Coordinate Hartree-Fock method is general and it has as particular case the Hartree-Fock Roothaan method. Some possible variations or combinations around of the characteristics of the GCHFM and a comparison with conventional SCF procedure are reported in this thesis. The piecewise weight function method developed in this work shows to be very good for collective parameter optimizations of the Generator Coordinate (GC). The GCHFM calculations are necessary restrict (GCM-RHF), especially when the calculated value energies approach of its numerical values or Hartree-Fock limit. In the optimization methods of state functions for atomic electronic systems is very common the application of the gradient method and its efficacy is not contested. However, the method describes above allow us to obtain results as good as the gradient method. The basis set generated using the piecewise weight function method for Gaussian type function were used in the Restrict Hartree-Fock (RHF) calculations to obtain the total energies for some atomic electronic systems, such as neutron atoms and

  5. Derivative discontinuity with localized Hartree-Fock potential

    Energy Technology Data Exchange (ETDEWEB)

    Nazarov, V. U. [Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan (China); Vignale, G. [Department of Physics, University of Missouri-Columbia, Columbia, Missouri 65211 (United States)

    2015-08-14

    The localized Hartree-Fock potential has proven to be a computationally efficient alternative to the optimized effective potential, preserving the numerical accuracy of the latter and respecting the exact properties of being self-interaction free and having the correct −1/r asymptotics. In this paper we extend the localized Hartree-Fock potential to fractional particle numbers and observe that it yields derivative discontinuities in the energy as required by the exact theory. The discontinuities are numerically close to those of the computationally more demanding Hartree-Fock method. Our potential enjoys a “direct-energy” property, whereby the energy of the system is given by the sum of the single-particle eigenvalues multiplied by the corresponding occupation numbers. The discontinuities c{sub ↑} and c{sub ↓} of the spin-components of the potential at integer particle numbers N{sub ↑} and N{sub ↓} satisfy the condition c{sub ↑}N{sub ↑} + c{sub ↓}N{sub ↓} = 0. Thus, joining the family of effective potentials which support a derivative discontinuity, but being considerably easier to implement, the localized Hartree-Fock potential becomes a powerful tool in the broad area of applications in which the fundamental gap is an issue.

  6. Self-consistent Hartree-Fock RPA calculations in 208Pb

    Science.gov (United States)

    Taqi, Ali H.; Ali, Mohammed S.

    2018-01-01

    The nuclear structure of 208Pb is studied in the framework of the self-consistent random phase approximation (SCRPA). The Hartree-Fock mean field and single particle states are used to implement a completely SCRPA with Skyrme-type interactions. The Hamiltonian is diagonalised within a model space using five Skyrme parameter sets, namely LNS, SkI3, SkO, SkP and SLy4. In view of the huge number of the existing Skyrme-force parameterizations, the question remains which of them provide the best description of data. The approach attempts to accurately describe the structure of the spherical even-even nucleus 208Pb. To illustrate our approach, we compared the binding energy, charge density distribution, excitation energy levels scheme with the available experimental data. Moreover, we calculated isoscalar and isovector monopole, dipole, and quadrupole transition densities and strength functions.

  7. A Hartree-Fock program for atomic structure calculations

    International Nuclear Information System (INIS)

    Mitroy, J.

    1999-01-01

    The Hartree-Fock equations for a general open shell atom are described. The matrix equations that result when the single particle orbitals are written in terms of a linear combination of analytic basis functions are derived. Attention is paid to the complexities that occur when open shells are present. The specifics of a working FORTRAN program which is available for public use are described. The program has the flexibility to handle either Slater-type orbitals or Gaussian-type orbitals. It can be obtained over the internet at http://lacebark.ntu.edu.au/j_mitroy/research/atomic.htm Copyright (1999) CSIRO Australia

  8. Relativity and pseudopotentials in the Hartree-Fock-Slater method

    International Nuclear Information System (INIS)

    Snijders, J.G.

    1979-01-01

    The methodological problems involved in electronic structure determinations of compounds containing heavy elements by the Hartree-Fock-Slater scheme are investigated. It is shown that the effect of the inner electrons can be simulated by a so called pseudopotential, so that only the valence electrons have to be treated explicitly which constitutes a considerable reduction of computation time. It is further shown that a pseudopotential calculation is able to achieve an accuracy that is comparable to the results of a calculation including the core. (Auth.)

  9. The contribution of Skyrme Hartree-Fock calculations to the understanding of the shell model

    International Nuclear Information System (INIS)

    Zamick, L.

    1984-01-01

    The authors present a detailed comparison of Skyrme Hartree-Fock and the shell model. The H-F calculations are sensitive to the parameters that are chosen. The H-F results justify the use of effective charges in restricted model space calculations by showing that the core contribution can be large. Further, the H-F results roughly justify the use of a constant E2 effective charge, but seem to yield nucleus dependent E4 effective charges. The H-F can yield results for E6 and higher multipoles, which would be zero in s-d model space calculations. On the other side of the coin in H-F the authors can easily consider only the lowest rotational band, whereas in the shell model one can calculate the energies and properties of many more states. In the comparison some apparent problems remain, in particular E4 transitions in the upper half of the s-d shell

  10. Extension of Hartree-Fock theory including tensor correlation in nuclear matter

    Science.gov (United States)

    Hu, Jinniu; Toki, Hiroshi; Ogawa, Yoko

    2013-10-01

    We study the properties of nuclear matter in the extension of Hartree-Fock theory including tensor correlation using a realistic nucleon-nucleon (NN) interaction. The nuclear wave function consists of the Hartree-Fock and two-particle-two-hole (2p-2h) states, following the concept of the tensor-optimized shell model (TOSM) for light nuclei. The short range repulsion and strong tensor force of realistic NN interaction provide high momentum components, which are taken into account in a many-body framework by introducing 2p-2h states. Single particle states are determined by the variational principle of the total energy with respect to 2p-2h amplitudes and Hartree-Fock (HF) single-particle states. The resulting differential equation is almost identical with that of Brueckner-Hartree-Fock (BHF) theory by taking two-body scattering terms only. We calculate the equation of state (EOS) of nuclear matter in this framework with the Bonn potential as a realistic NN interaction. We found similar results to BHF theory with slightly repulsive effects in the total energy. The relativistic effect is discussed for the EOSs of nuclear matter in both non-relativistic and relativistic frameworks. The momentum distribution has large components at high momenta due to 2p-2h excitations. We also obtain the EOSs of pure neutron matter, where the tensor effect is small in the iso-vector channel.

  11. Study on formalism of Griffin-Wheeler-Hartree-Fock equations and a propose for its variational discretization

    International Nuclear Information System (INIS)

    Barbosa, Rugles Cesar

    2002-01-01

    The present thesis is divided into two parts. The first part describes the many kind of the formalisms of the Generator Coordinate Hartree-Fock method (GCHFM) and second part describes the computational aspect applied to the GCHFM formalism in its discreet form. The major aim of this work is the development of an alternative method to non-linear parameters optimization (basis set) and later uses these optimized parameters to adjust the weight function into GCHFM method. The study of the weight function when N → ∞ (or for large N), where N represents the number of mesh, is important since the GCHFM theory in its continuous form depend on understanding of such behavior. In this thesis, a detailed study is carried out about the methodologies of the self-consistent solution of the GCHFM and some methodology aspects of non-linear parameters optimization. This work shows that the Generator Coordinate Hartree-Fock method is general and it has as particular case the Hartree-Fock Roothaan method. Some possible variations or combinations around of the characteristics of the GCHFM and a comparison with conventional SCF procedure are reported in this thesis. The piecewise weight function method developed in this work shows to be very good for collective parameter optimizations of the Generator Coordinate (GC). The GCHFM calculations are necessary restrict (GCM-RHF), especially when the calculated value energies approach of its numerical values or Hartree-Fock limit. In the optimization methods of state functions for atomic electronic systems is very common the application of the gradient method and its efficacy is not contested. However, the method describes above allow us to obtain results as good as the gradient method. The basis set generated using the piecewise weight function method for Gaussian type function were used in the Restrict Hartree-Fock (RHF) calculations to obtain the total energies for some atomic electronic systems, such as neutron atoms and ions in

  12. How good are Hartree-Fock charge densities

    International Nuclear Information System (INIS)

    Campi, X.

    1975-01-01

    The principle characteristics of Hartree-Fock charge densities (mean square radius, surface thickness, quantum fluctuation) calculated using different effective interactions are discussed in terms of their nuclear matter properties (Fermi momentum, effective mass, incompressibility). A comparison with the experimental charge distributions is made. Differences between the charge densities of neighbouring nuclei (isotope and isotone shifts) are also considered and the main factors governing these effects are discussed [fr

  13. Relativistic Hartree-Fock theory. Part I: density-dependent effective Lagrangians

    Energy Technology Data Exchange (ETDEWEB)

    LongWen Hui [School of Physics, Peking University, 100871 Beijing (China)]|[CNRS-IN2P3, UMR 8608, F-91406 Orsay Cedex (France)]|[Univ Paris-Sud, F-91405 Orsay (France); Giai, Nguyen Van [CNRS-IN2P3, UMR 8608, F-91406 Orsay Cedex (France)]|[Univ Paris-Sud, F-91405 Orsay (France); Meng, Jie [School of Physics, Peking University, 100871 Beijing (China)]|[Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing (China)]|[Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, 730000 Lanzhou (China)

    2006-10-15

    Effective Lagrangians suitable for a relativistic Hartree-Fock description of nuclear systems are presented. They include the 4 effective mesons {sigma}, {omega}, {rho} and {pi} with density-dependent meson-nucleon couplings. The criteria for determining the model parameters are the reproduction of the binding energies in a number of selected nuclei, and the bulk properties of nuclear matter (saturation point, compression modulus, symmetry energy). An excellent description of nuclear binding energies and radii is achieved for a range of nuclei encompassing light and heavy systems. The predictions of the present approach compare favorably with those of existing relativistic mean field models, with the advantage of incorporating the effects of pion-nucleon coupling. (authors)

  14. Generalized Hartree-Fock method for electron-atom scattering

    International Nuclear Information System (INIS)

    Rosenberg, L.

    1997-01-01

    In the widely used Hartree-Fock procedure for atomic structure calculations, trial functions in the form of linear combinations of Slater determinants are constructed and the Rayleigh-Ritz minimum principle is applied to determine the best in that class. A generalization of this approach, applicable to low-energy electron-atom scattering, is developed here. The method is based on a unique decomposition of the scattering wave function into open- and closed-channel components, so chosen that an approximation to the closed-channel component may be obtained by adopting it as a trial function in a minimum principle, whose rigor can be maintained even when the target wave functions are imprecisely known. Given a closed-channel trial function, the full scattering function may be determined from the solution of an effective one-body Schroedinger equation. Alternatively, in a generalized Hartree-Fock approach, the minimum principle leads to coupled integrodifferential equations to be satisfied by the basis functions appearing in a Slater-determinant representation of the closed-channel wave function; it also provides a procedure for optimizing the choice of nonlinear parameters in a variational determination of these basis functions. Inclusion of additional Slater determinants in the closed-channel trial function allows for systematic improvement of that function, as well as the calculated scattering parameters, with the possibility of spurious singularities avoided. Electron-electron correlations can be important in accounting for long-range forces and resonances. These correlation effects can be included explicitly by suitable choice of one component of the closed-channel wave function; the remaining component may then be determined by the generalized Hartree-Fock procedure. As a simple test, the method is applied to s-wave scattering of positrons by hydrogen. copyright 1997 The American Physical Society

  15. On the solution of the Hartree-Fock-Bogoliubov equations by the conjugate gradient method

    International Nuclear Information System (INIS)

    Egido, J.L.; Robledo, L.M.

    1995-01-01

    The conjugate gradient method is formulated in the Hilbert space for density and non-density dependent Hamiltonians. We apply it to the solution of the Hartree-Fock-Bogoliubov equations with constraints. As a numerical application we show calculations with the finite range density dependent Gogny force. The number of iterations required to reach convergence is reduced by a factor of three to four as compared with the standard gradient method. (orig.)

  16. Influence of the Dirac-Hartree-Fock starting potential on the parity-nonconserving electric-dipole-transition amplitudes in cesium and thallium

    Science.gov (United States)

    Perger, W. F.; Das, B. P.

    1987-01-01

    The parity-nonconserving electric-dipole-transition amplitudes for the 6s1/2-7s1/2 transition in cesium and the 6p1/2-7p1/2 transition in thallium have been calculated by the Dirac-Hartree-Fock method. The effects of using different Dirac-Hartree-Fock atomic core potentials are examined and the transition amplitudes for both the length and velocity gauges are given. It is found that the parity-nonconserving transition amplitudes exhibit a greater dependence on the starting potential for thallium than for cesium.

  17. Molecular Structure And Vibrational Frequencies of Tetrafluoro isophthalonitrile By Hartree-Fock And Density Functional Theory Calculations

    International Nuclear Information System (INIS)

    Ayikoglu, A.

    2008-01-01

    The molecular structure, vibrational frequencies and corresponding vibrational assignments of tetrafluoro isophthalonitrile (TFPN) in the ground state have been calculated using the Hartree-Fock (HF) and density functional methods (B3LYP) with 6-311++G (d, p) basis set. The calculations were utilized in the CS symmetry of TFPN. The obtained vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) were seen to be in good agreement with the experimental data. The comparison of the observed and calculated results showed that the B3LYP method is superior to the HF method for both the vibrational frequencies and geometric parameters

  18. Multi-configuration Dirac-Hartree-Fock (MCDHF) calculations for Ni XXV

    Science.gov (United States)

    Singh, Narendra; Aggarwal, Sunny

    2018-03-01

    We present accurate 165 fine-structure energy levels related to the configurations 1s22s2, 1s22p2, 1s2nƖn‧l‧ (n = 2, n‧ = 2, 3, 4, 5, Ɩ = s,p Ɩ‧ = s, p, d, f, g) of Ni XXV which may be useful ion for astrophysical and fusion plasma. For the calculations of energy levels and radiative rates, we have used the multiconfiguration Dirac-Hartree-Fock (MCDHF) method employed in GRASP2K code. The calculations are carried out in the active space approximation with the inclusion of the Breit interaction, the finite nuclear size effect, and quantum electrodynamic corrections. The transition wavelengths, transition probabilities, line strengths, and absorption oscillator strengths are reported for electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), magnetic quadrupole (M2) transitions from the ground state. We have compared our calculated results with available theoretical and experimental data and good agreement is achieved. We predict new energy levels, oscillator strengths, line strengths and transition probabilities, where no other experimental or theoretical results are available. The present complete set of results should be of great help in line identification and the interpretation of spectra, as well as in the modelling and diagnostics of astrophysical and fusion plasmas.

  19. Functionals Hartree-Fock equations in the Schrodinger representation of quantum field theory

    International Nuclear Information System (INIS)

    Gamboa, J.

    1989-08-01

    Hartree-Fock equations for a scalar field theory in the Schrodinger representation are derived. It is shown that renormalization of the total energy in the functional Schrodinger equation is enterely contained in the eigenvalues of the Hartree-Fock hamiltonian. (A.C.A.S.) [pt

  20. Dirac-Hartree-Fock studies of X-ray transitions in meitnerium

    International Nuclear Information System (INIS)

    Thierfelder, C.; Schwerdtfeger, P.; Hessberger, F.P.; Hofmann, S.

    2008-01-01

    The K -shell and L -shell ionizations potentials for 268 109 Mt were calculated at the Dirac-Hartree-Fock level taking into account quantum electrodynamic and finite nuclear-size effects. The K α1 transition energies for different ionization states are accurately predicted and compared with recent experiments in the α -decay of 272 111 Rg. (orig.)

  1. Multiconfiguration Dirac-Hartree-Fock calculations of energy levels and radiative rates of Fe VII

    Science.gov (United States)

    Li, Yang; Xu, Xiaokai; Li, Bowen; Jönsson, Per; Chen, Ximeng

    2018-06-01

    Detailed calculations are performed for 134 fine-structure levels of the 3p63d2, 3p63d4s, 3p53d3 and 3p63d4p configurations in Fe VII using the multiconfiguration Dirac-Hartree-Fock (MCDHF) and relativistic configuration interaction (RCI) methods. Important electron correlation effects are systematically accounted for through active space (AS) expansions. Our results compare well with experimental measurements, emphasizing the importance of a careful treatment of electron correlation, and provide some missing data in the NIST atomic database. The data obtained are expected to be useful in astrophysical applications, particularly for the research of the solar coronal plasma.

  2. Linearized Jastrow-style fluctuations on spin-projected Hartree-Fock

    International Nuclear Information System (INIS)

    Henderson, Thomas M.; Scuseria, Gustavo E.

    2013-01-01

    The accurate and efficient description of strong electronic correlations remains an important objective in electronic structure theory. Projected Hartree-Fock theory, where symmetries of the Hamiltonian are deliberately broken and projectively restored, all with a mean-field computational scaling, shows considerable promise in this regard. However, the method is neither size extensive nor size consistent; in other words, the correlation energy per particle beyond broken-symmetry mean field vanishes in the thermodynamic limit, and the dissociation limit of a molecule is not the sum of the fragment energies. These two problems are closely related. Recently, Neuscamman [Phys. Rev. Lett. 109, 203001 (2012)] has proposed a method to cure the lack of size consistency in the context of the antisymmetrized geminal power wave function (equivalent to number-projected Hartree-Fock-Bogoliubov) by using a Jastrow-type correlator in Hilbert space. Here, we apply the basic idea in the context of projected Hartree-Fock theory, linearizing the correlator for computational simplicity but extending it to include spin fluctuations. Results are presented for the Hubbard Hamiltonian and for some simple molecular systems

  3. Description of plasmon-like band in silver clusters: the importance of the long-range Hartree-Fock exchange in time-dependent density-functional theory simulations.

    Science.gov (United States)

    Rabilloud, Franck

    2014-10-14

    Absorption spectra of Ag20 and Ag55(q) (q = +1, -3) nanoclusters are investigated in the framework of the time-dependent density functional theory in order to analyse the role of the d electrons in plasmon-like band of silver clusters. The description of the plasmon-like band from calculations using density functionals containing an amount of Hartree-Fock exchange at long range, namely, hybrid and range-separated hybrid (RSH) density functionals, is in good agreement with the classical interpretation of the plasmon-like structure as a collective excitation of valence s-electrons. In contrast, using local or semi-local exchange functionals (generalized gradient approximations (GGAs) or meta-GGAs) leads to a strong overestimation of the role of d electrons in the plasmon-like band. The semi-local asymptotically corrected model potentials also describe the plasmon as mainly associated to d electrons, though calculated spectra are in fairly good agreement with those calculated using the RSH scheme. Our analysis shows that a portion of non-local exchange modifies the description of the plasmon-like band.

  4. The spectrum of 12C in a multi-configuration Hartree-Fock Basis

    International Nuclear Information System (INIS)

    Amos, K.; Morrison, I.; Smith, R.; Schmid, K.W.

    1981-01-01

    The energy level spectrum of 12 C is calculated in a truncated but large shell model space of projected one particle-one hole Hartree Fock determinants using a realistic G-matrix. Predictions of electromagnetic decays and electron scattering form factors are compared with experimental values

  5. Global solutions of restricted open-shell Hartree-Fock theory from semidefinite programming with applications to strongly correlated quantum systems.

    Science.gov (United States)

    Veeraraghavan, Srikant; Mazziotti, David A

    2014-03-28

    We present a density matrix approach for computing global solutions of restricted open-shell Hartree-Fock theory, based on semidefinite programming (SDP), that gives upper and lower bounds on the Hartree-Fock energy of quantum systems. While wave function approaches to Hartree-Fock theory yield an upper bound to the Hartree-Fock energy, we derive a semidefinite relaxation of Hartree-Fock theory that yields a rigorous lower bound on the Hartree-Fock energy. We also develop an upper-bound algorithm in which Hartree-Fock theory is cast as a SDP with a nonconvex constraint on the rank of the matrix variable. Equality of the upper- and lower-bound energies guarantees that the computed solution is the globally optimal solution of Hartree-Fock theory. The work extends a previously presented method for closed-shell systems [S. Veeraraghavan and D. A. Mazziotti, Phys. Rev. A 89, 010502-R (2014)]. For strongly correlated systems the SDP approach provides an alternative to the locally optimized Hartree-Fock energies and densities with a certificate of global optimality. Applications are made to the potential energy curves of C2, CN, Cr2, and NO2.

  6. Excess Charge for Pseudo-relativistic Atoms in Hartree-Fock Theory

    DEFF Research Database (Denmark)

    Dall'Acqua, Anna; Solovej, Jan Philip

    2010-01-01

    We prove within the Hartree-Fock theory of pseudo-relativistic atoms that the maximal negative ionization charge and the ionization energy of an atom remain bounded independently of the nuclear charge $Z$ and the fine structure constant $\\alpha$ as long as $Z\\alpha$ is bounded.......We prove within the Hartree-Fock theory of pseudo-relativistic atoms that the maximal negative ionization charge and the ionization energy of an atom remain bounded independently of the nuclear charge $Z$ and the fine structure constant $\\alpha$ as long as $Z\\alpha$ is bounded....

  7. The Hartree-Fock seniority method and its foundation

    International Nuclear Information System (INIS)

    Gomez, J.M.G.; Prieto, C.

    1987-01-01

    The seniority scheme is discussed in the framewok of quasi-spin formalism. It is shown that the ground-state wave function of the seniority scheme can be determined self-consistently from a set of Hartree-Fock seniority equations derived from the variational prinicple. The method takes into account the mean-field and the pairing correlations in nuclei at the same time. Angular momentum and particle number are exactly conserved. (author)

  8. Exact norm-conserving stochastic time-dependent Hartree-Fock

    International Nuclear Information System (INIS)

    Tessieri, Luca; Wilkie, Joshua; Cetinbas, Murat

    2005-01-01

    We derive an exact single-body decomposition of the time-dependent Schroedinger equation for N pairwise interacting fermions. Each fermion obeys a stochastic time-dependent norm-preserving wave equation. As a first test of the method, we calculate the low energy spectrum of helium. An extension of the method to bosons is outlined

  9. Accuracy of the Hartree-Fock and local density approximations for electron densities: a study for light atoms

    International Nuclear Information System (INIS)

    Almbladh, C.-O.; Ekenberg, U.; Pedroza, A.C.

    1983-01-01

    The authors compare the electron densities and Hartree potentials in the local density and the Hartree-Fock approximations to the corresponding quantities obtained from more accurate correlated wavefunctions. The comparison is made for a number of two-electron atoms, Li, and for Be. The Hartree-Fock approximation is more accurate than the local density approximation within the 1s shell and for the spin polarization in Li, while the local density approximation is slightly better than the Hartree-Fock approximation for charge densities in the 2s shell. The inaccuracy of the Hartree-Fock and local density approximations to the Hartree potential is substantially smaller than the inaccuracy of the local density approximation to the ground-state exchange-correlation potential. (Auth.)

  10. Application of an effective gauge-invariant model to nuclear matter in the relativistic Hartree-Fock approximation

    Energy Technology Data Exchange (ETDEWEB)

    Bernardos, P. [Universidad de Cantabria, Departamento de Matematica Aplicada y Ciencias de la Computacion, 39005, Santander (Spain); Fomenko, V.N. [St Petersburg University for Railway Engineering, Department of Mathematics, 190031, St Petersburg (Russian Federation); Marcos, S.; Niembro, R. [Universidad de Cantabria, Departamento de Fisica Moderna, 39005, Santander (Spain); Lopez-Quelle, M. [Universidad de Cantabria, Departamento de Fisica Aplicada, 39005, Santander (Spain); Savushkin, L.N. [St Petersburg University for Telecommunications, Department of Physics, 191186, St Petersburg (Russian Federation)

    2001-02-01

    An effective nuclear model describing {omega}-, {rho}- and axial-mesons as gauge fields is applied to nuclear matter in the relativistic Hartree-Fock approximation. The isoscalar two-pion exchange is simulated by a scalar field s similar to that used in the conventional relativistic mean-field approach. Two more scalar fields are essential ingredients of the present treatment: the {sigma}-field, the chiral partner of the pion, and the {sigma}-field, the Higgs field for the {omega}-meson. Two versions of the model are used depending on whether the {sigma}-field is considered as a dynamical variable or 'frozen', by taking its mass as infinite. The model contains four free parameters in the first case and three in the second one which are fitted to the nuclear matter saturation conditions. The nucleon and meson effective masses, compressibility modulus and symmetry energy are calculated. The results prove the reliability of the Dirac-Hartree-Fock approach within the linear realization of the chiral symmetry. (author)

  11. Instability of the cranked Hartree-Fock-Bogoliubov field in backbending region

    International Nuclear Information System (INIS)

    Horibata, Takatoshi; Onishi, Naoki.

    1982-01-01

    The stability condition of the cranked Hartree-Fock-Bogoliubov field is examined explicitly by solving the eigenvalue equation for the second order variation of the energy, which is reduced to an algebraic equation through a coupled dispersion formula. We confirm that the Hartree-Fock-Bogoliubov field is unstable in the backbending region of an irregular rotational band, even though the frequency of the softest random phase approximation mode always has a positive value. We investigate properties of the softest mode in detail. (author)

  12. Hartree-Fock description of superdeformed states

    International Nuclear Information System (INIS)

    Dobaczewski, J.; Meyer, J.

    1991-10-01

    The discovery of superdeformation has been preceded by theoretical predictions made in Nilsson-Strutinsky calculations and a description of the phenomenon still constitutes an exciting challenge to the theory of nuclear collective motion. In particular, a determination of electromagnetic transition rates requires a knowledge of microscopic collective wave functions, which can be achieved by using the Hartree-Fock (HF) theory and the generator coordinate method (GCM). In this study we present results of our calculations concerning the properties and superdeformed states in the mercury region. Using the GCM, we diagonalize the microscopic two-body hamiltonian within the basis set of constrained HF+BCS wave functions. The GCM provides values for the energy of the ground and excited states including the shape isomer which take into account the effect of correlations in the collective degree of freedom. The GCM will also allow us to discuss the qualitative modifications of the shape isomeric stability as induced by changes in pairing correlations

  13. A Hartree-Fock-Slater-Boltzmann-Saha method for detailed atomic structure and equation of state of plasmas

    International Nuclear Information System (INIS)

    Jiang Minhao; Meng Xujun

    2005-01-01

    The effect of the free electron background in plasmas is introduced in Hartree-Fock-Slater self-consistent field atomic model to correct the single electron energies for each electron configuration, and to provide accurate atomic data for Boltzmann-Saha equation. In the iteration process chemical potential is adjusted to change the free electron background to satisfy simultaneously the conservation of the free electrons in Saha equation as well as in Hartree-Fock-Slater self-consistent field atomic model. As examples the equations of state of the carbon and aluminum plasmas are calculated to show the applicability of this method. (authors)

  14. Spatial and Spin Symmetry Breaking in Semidefinite-Programming-Based Hartree-Fock Theory.

    Science.gov (United States)

    Nascimento, Daniel R; DePrince, A Eugene

    2018-05-08

    The Hartree-Fock problem was recently recast as a semidefinite optimization over the space of rank-constrained two-body reduced-density matrices (RDMs) [ Phys. Rev. A 2014 , 89 , 010502(R) ]. This formulation of the problem transfers the nonconvexity of the Hartree-Fock energy functional to the rank constraint on the two-body RDM. We consider an equivalent optimization over the space of positive semidefinite one-electron RDMs (1-RDMs) that retains the nonconvexity of the Hartree-Fock energy expression. The optimized 1-RDM satisfies ensemble N-representability conditions, and ensemble spin-state conditions may be imposed as well. The spin-state conditions place additional linear and nonlinear constraints on the 1-RDM. We apply this RDM-based approach to several molecular systems and explore its spatial (point group) and spin ( Ŝ 2 and Ŝ 3 ) symmetry breaking properties. When imposing Ŝ 2 and Ŝ 3 symmetry but relaxing point group symmetry, the procedure often locates spatial-symmetry-broken solutions that are difficult to identify using standard algorithms. For example, the RDM-based approach yields a smooth, spatial-symmetry-broken potential energy curve for the well-known Be-H 2 insertion pathway. We also demonstrate numerically that, upon relaxation of Ŝ 2 and Ŝ 3 symmetry constraints, the RDM-based approach is equivalent to real-valued generalized Hartree-Fock theory.

  15. Computational Nuclear Physics and Post Hartree-Fock Methods

    Energy Technology Data Exchange (ETDEWEB)

    Lietz, Justin [Michigan State University; Sam, Novario [Michigan State University; Hjorth-Jensen, M. [University of Oslo, Norway; Hagen, Gaute [ORNL; Jansen, Gustav R. [ORNL

    2017-05-01

    We present a computational approach to infinite nuclear matter employing Hartree-Fock theory, many-body perturbation theory and coupled cluster theory. These lectures are closely linked with those of chapters 9, 10 and 11 and serve as input for the correlation functions employed in Monte Carlo calculations in chapter 9, the in-medium similarity renormalization group theory of dense fermionic systems of chapter 10 and the Green's function approach in chapter 11. We provide extensive code examples and benchmark calculations, allowing thereby an eventual reader to start writing her/his own codes. We start with an object-oriented serial code and end with discussions on strategies for porting the code to present and planned high-performance computing facilities.

  16. Orbital and total atomic momentum expectation values with Roothaan-Hartree-Fock wave functions

    International Nuclear Information System (INIS)

    De La Vega, J.M.G.; Miguel, B.

    1993-01-01

    Orbital and total momentum expectation values are computed using the Roothaan-Hartree-Fock wave functions of Clementi and Roetti. These values are calculated analytically and may be used to study the quality of basis sets. Tabulations for ground and excited states of atoms from Z = 2 to Z = 54 are presented. 23 refs., 1 tab

  17. Molecular Structure And Vibrational Frequencies of 2,3,4 Nitro anilines By Hartree-Fock And Density Functional Theory Calculations

    International Nuclear Information System (INIS)

    Sert, Y.

    2008-01-01

    The optimised molecular structure, vibrational frequencies and corresponding vibrational assignments of 2-, 3- and 4- nitro anilines have been calculated using the Hartree-Fock (HF) and density functional methods (B3LYP) with 6-311++G (d, p) basis set. The calculations were adapted to the C S symmetries of all the molecules. The calculated vibrational frequencies and geometric parameters (bond lengths and bond angles) were seen to be in good agreement with the experimental data. The comparison of the experimental and theoretical results showed that the HF method is superior to the B3LYP method for both the vibrational frequencies and geometric parameters

  18. Positron and electron energy bands in several ionic crystals using restricted Hartree-Fock method

    Science.gov (United States)

    Kunz, A. B.; Waber, J. T.

    1981-08-01

    Using a restricted Hartree-Fock formalism and suitably localized and symmetrized wave functions, both the positron and electron energy bands were calculated for NaF, MgO and NiO. The lowest positron state at Γ 1 lies above the vacuum level and negative work functions are predicted. Positron annihilation rates were calculated and found to be in good agreement with measured lifetimes.

  19. Semiclassical expansions of the nuclear relativistic Hartree-Fock theory

    International Nuclear Information System (INIS)

    Weigel, M.K.; Haddad, S.

    1991-01-01

    Semiclassical expansions for Green functions, self-energy, phase-space density and density are given and discussed. The many-body problem was treated in the relativistic Hartree-Fock approximation with a Lagrangian with a standard OBE potential structure including the possibility of space-dependent couplings. The expansions are obtained by formulating the many-body problem in the mixed position-momentum (Wigner) representation and application of the (h/2π)-Wigner-Kirkwood expansion scheme. The resulting self-consistency problems for the zeroth and second order are formulated in three versions. (author)

  20. Nuclear Hartree-Fock approximation testing and other related approximations

    International Nuclear Information System (INIS)

    Cohenca, J.M.

    1970-01-01

    Hartree-Fock, and Tamm-Dancoff approximations are tested for angular momentum of even-even nuclei. Wave functions, energy levels and momenta are comparatively evaluated. Quadripole interactions are studied following the Elliott model. Results are applied to Ne 20 [pt

  1. Hartree-Fock limit values of multipole moments, polarizabilities, and hyperpolarizabilities for atoms and diatomic molecules

    Science.gov (United States)

    Kobus, Jacek

    2015-02-01

    Recently it has been demonstrated that the finite difference Hartree-Fock method can be used to deliver highly accurate values of electric multipole moments together with polarizabilities αz z,Az ,z z , and hyperpolarizabilities βz z z, γz z z,Bz z ,z z , for the ground states of various atomic and diatomic systems. Since these results can be regarded as de facto Hartree-Fock limit values their quality is of the utmost importance. This paper reexamines the use of the finite field method to calculate these electric properties, discusses its accuracy, and presents an updated list of the properties for the following atoms and diatomic molecules: H-, He, Li, Li+,Li2 +,Li-,Be2 + , Be, B+,C2 + , Ne, Mg2 +, Mg, Al+,Si2 + , Ar, K+,Ca2 +,Rb+,Sr2 +,Zr4 +,He2 , Be2,N2,F2,O2 , HeNe, LiH2 +, LiCl, LiBr, BH, CO, FH, NaCl, and KF. The potential energy curves and the dependence of the electric properties on the internuclear distance is also studied for He2,LiH+,Be2 , and HeNe systems.

  2. A constrained Hartree-Fock-Bogoliubov equation derived from the double variational method

    International Nuclear Information System (INIS)

    Onishi, Naoki; Horibata, Takatoshi.

    1980-01-01

    The double variational method is applied to the intrinsic state of the generalized BCS wave function. A constrained Hartree-Fock-Bogoliubov equation is derived explicitly in the form of an eigenvalue equation. A method of obtaining approximate overlap and energy overlap integrals is proposed. This will help development of numerical calculations of the angular momentum projection method, especially for general intrinsic wave functions without any symmetry restrictions. (author)

  3. Toroidal Superheavy Nuclei in Skyrme-Hartree-Fock Approach

    International Nuclear Information System (INIS)

    Staszczak, A.; Wong, Cheuk-Yin

    2009-01-01

    Within the self-consistent constraint Skyrme-Hartree-Fock+BCS model (SHF+BCS), we found equilibrium toroidal nuclear density distributions in the region of superheavy elements. For nuclei with a sufficient oblate deformation (Q 20 < -200 b), it becomes energetically favorable to change the genus of nuclear surface from 0 to 1, i.e., to switch the shape from a biconcave disc to a torus. The energy of the toroidal (genus=1) SHF+BCS solution relative to the compact (genus=0) ground state energy is strongly dependent both on the atomic number Z and the mass number A. We discuss the region of Z and A where the toroidal SHF+BCS total energy begins to be a global minimum

  4. The Gogny-Hartree-Fock-Bogoliubov nuclear-mass model

    Energy Technology Data Exchange (ETDEWEB)

    Goriely, S. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium); Hilaire, S.; Girod, M.; Peru, S. [CEA, DAM, DIF, Arpajon (France)

    2016-07-15

    We present the Gogny-Hartree-Fock-Bogoliubov model which reproduces nuclear masses with an accuracy comparable with the best mass formulas. In contrast to the Skyrme-HFB nuclear-mass models, an explicit and self-consistent account of all the quadrupole correlation energies is included within the 5D collective Hamiltonian approach. The final rms deviation with respect to the 2353 measured masses is 789 keV in the 2012 atomic mass evaluation. In addition, the D1M Gogny force is shown to predict nuclear and neutron matter properties in agreement with microscopic calculations based on realistic two- and three-body forces. The D1M properties and its predictions of various observables are compared with those of D1S and D1N. (orig.)

  5. Hartree-Fock-Bogoliubov approximation for finite systems

    International Nuclear Information System (INIS)

    Bulgac, A.

    1980-08-01

    The features of the spectrum of the Hartree-Fock-Bogoliubov equations are examined. Special attention is paid to the asymptotic behaviours of the single quasiparticle wave functions (s.qp.w.fs.), matter density distribution and density of the pair condensate. It is shown that, due to the coupling between hole and particle, the sufficiently deeply bound hole states acquire a width and consequently have to be treated as continuum states. The proper normalization of the s.qp.w.fs. is discussed. (author)

  6. Hartree-Fock-Bogoliubov model: a theoretical and numerical perspective

    International Nuclear Information System (INIS)

    Paul, S.

    2012-01-01

    This work is devoted to the theoretical and numerical study of Hartree-Fock-Bogoliubov (HFB) theory for attractive quantum systems, which is one of the main methods in nuclear physics. We first present the model and its main properties, and then explain how to get numerical solutions. We prove some convergence results, in particular for the simple fixed point algorithm (sometimes called Roothaan). We show that it converges, or oscillates between two states, none of them being a solution. This generalizes to the HFB case previous results of Cances and Le Bris for the simpler Hartree-Fock model in the repulsive case. Following these authors, we also propose a relaxed constraint algorithm for which convergence is guaranteed. In the last part of the thesis, we illustrate the behavior of these algorithms by some numerical experiments. We first consider a system where the particles only interact through the Newton potential. Our numerical results show that the pairing matrix never vanishes, a fact that has not yet been proved rigorously. We then study a very simplified model for protons and neutrons in a nucleus. (author)

  7. Ab initio Hartree-Fock study on surface desorption process in tritium release

    International Nuclear Information System (INIS)

    Taniguchi, M.; Tanaka, S.

    1998-01-01

    Dissociative adsorption of hydrogen on Li 2 O (110) surface has been investigated with ab initio Hartree-Fock quantum chemical calculation technique. Heat of adsorption and surface potential energy for H 2 dissociative adsorption were evaluated by calculating the total energy of the system. The calculated results on adsorption heat indicated that H 2 adsorption is endothermic. However, when an oxygen vacancy exists adjacent to the adsorption site, the heat of adsorption became less endothermic and the activation energy required to dissociate the H-H bonding was smaller than that for the terrace site. This is considered to be caused by the excess charge localized near the defect. (orig.)

  8. Ground-state properties of axially deformed Sr isotopes in Skyrme-Hartree-Fock-Bogolyubov method

    International Nuclear Information System (INIS)

    Yilmaz, A.H.; Bayram, T.; Demirci, M.; Engin, B.; Bayram, T.

    2010-01-01

    Binding energies, the mean-square nuclear radii, neutron radii, quadrupole moments and deformation parameters to axially deformed Strontium isotopes were evaluated using Hartree-Fock-Bogolyubov method. Shape coexistence was also discussed. The results were compared with experimental data and some estimates obtained within some nuclear models. The calculations were performed for SIy4 set of Skyrme forces and for wide range of the neutron numbers of Sr isotopes

  9. Hartree-Fock+BCS approach to unstable nuclei with the Skyrme force

    International Nuclear Information System (INIS)

    Tajima, Naoki

    2001-01-01

    We reanalyze the results of our extensive Hartree-Fock+BCS calculation from new points of view paying attention to the properties of unstable nuclei. The calculation has been done with the Skyrme SIII force for the ground and shape isomeric states of 1029 even-even nuclei ranging 2≤Z≤114. We also discuss the advantages of the employed three-dimensional Cartesian-mesh representation, especially on its remarkably high precision with apparently coarse meshes when applied to atomic nuclei. In Appendices we give the coefficients of finite-point numerical differentiation and integration formulae suitable for Cartesian mesh representation and elucidate the features of each formula and the differences from a method based on the Fourier transformation. (author)

  10. Conformational and vibrational analysis of 5-hydroxy 2-nitrobenzaldehyde by AB initio hartree-fock, density functional theory calculations

    International Nuclear Information System (INIS)

    Cinakli, S.; Sert, Y.; Boeyuekata, M.; Ucun, F.

    2010-01-01

    The vibrational spectra of benzaldehyde and its derivatives have been studied earlier. The substitution of a functional group changes the spectra markedly. Recent spectroscopic studies of the benzaldehyde and their derivatives have been motivated because the vibrational spectra are very useful for understanding of specific biological process and in the analysis of relatively complex systems. The optimized molecular structure, vibrational frequencies and corresponding vibrational assignments, the total energy calculations, relative energies, the mean vibrational deviations of the two planar O-cis and O-trans roomers of 5-Hydroxy 2-nitrobenzaldehydes have been calculated using ab initio Hartree Fock (HF) and Density Functional Theory (B3LYP) with 6-311++G(d,p) basis set. All computations have been performed on personal computer using the Gaussian 03 program package. The calculations were adapted to Cs symmetries of all the molecules. The O-trans rotomers with lower energy of all the molecules have been found as preferential rotomers in the ground state.

  11. Spin contamination analogy, Kramers pairs symmetry and spin density representations at the 2-component unrestricted Hartree-Fock level of theory

    KAUST Repository

    Bučinský , Luká š; Malček, Michal; Biskupič, Stanislav; Jayatilaka, Dylan; Bü chel, Gabriel E.; Arion, Vladimir B.

    2015-01-01

    "Kramers pairs symmetry breaking" is evaluated at the 2-component (2c) Kramers unrestricted and/or general complex Hartree-Fock (GCHF) level of theory, and its analogy with "spin contamination" at the 1-component (1c) unrestricted Hartree-Fock (UHF

  12. Ab-initio Hartree-Fock study of tritium desorption from Li{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Masaki; Tanaka, Satoru [Tokyo Univ. (Japan). Faculty of Engineering

    1998-03-01

    Dissociative adsorption of hydrogen on Li{sub 2}O (110) surface has been investigated with ab-initio Hartree-Fock quantum chemical calculation technique. Heat of adsorption and potential energy surface for H{sub 2} dissociative adsorption was evaluated by calculating the total energy of the system. Calculation results on adsorption heat indicated that H{sub 2} adsorption is endothermic. However, when oxygen vacancy exists adjacent to the adsorption sites, heat of adsorption energy became less endothermic and the activation energy required to dissociate the H-H bonding was smaller than that for the terrace site. This is considered to be caused by the excess charge localized near the defect. (author)

  13. Ground state hydrogen conformations and vibrational analysis of 1,2-dihdroxyanthraquinone (alizarin) molecule by AB initio Hartree-Fock and density functional theory calculations

    International Nuclear Information System (INIS)

    Delta, E.; Ucun, F.; Saglam, A.

    2010-01-01

    The ground state hydrogen conformations of 1,2-dihydroxyanthraquinone (alizarin) molecule have been investigated using ab initio Hartree-Fock (HF) and density functional theory (B3LYP) methods with 6-31G(d,p) basis set. The calculations indicate that the compound in the ground state exist with the doubly bonded O atom linked intra molecularly by the two hydrogen bonds. The vibrational analyses of the ground state conformation of the compound were also made and its optimized geometry parameters were given.

  14. Nucleon and isobar properties in a relativistic Hartree-Fock calculation with vector Richardson potential and various radial forms for scalar mass terms

    International Nuclear Information System (INIS)

    Dey, J.; Dey, M.; Mukhopadhyay, G.; Samanta, B.C.

    1989-01-01

    Mean field models of the nucleon and the delta are established with the two-quark vector Richardson potential along with various prescriptions for a running quark mass. This is taken to be a one-particle operator in the Dirac-Hartree Fock formalism. An effective density dependent one body potential U(ρ) for quarks at a given density ρ inside the nucleon is derived. It shows an interesting structure. Asymptotic freedom and confinement properties are built-in at high and low densities in U (ρ) and the model dependence is restricted to the intermediate desnsities. (author) [pt

  15. On the relation between the Hartree-Fock and Kohn-Sham approaches

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, 91904 Jerusalem (Israel); A.F. Ioffe Physical-Technical Institute, 194021 St. Petersburg (Russian Federation); Msezane, A.Z. [CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States); Shaginyan, V.R. [CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States); Petersburg Nuclear Physics Institute, 188300 Gatchina (Russian Federation)]. E-mail: vrshag@thd.pnpi.spb.ru; Sokolovski, D. [Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom)

    2004-09-13

    We show that the Hartree-Fock (HF) results cannot be reproduced within the framework of Kohn-Sham (KS) theory because the single-particle densities of finite systems obtained within the HF calculations are not v-representable, i.e., do not correspond to any ground state of a N non-interacting electron systems in a local external potential. For this reason, the KS theory, which finds a minimum on a different subset of all densities, can overestimate the ground state energy, as compared to the HF result. The discrepancy between the two approaches provides no grounds to assume that either the KS theory or the density functional theory suffers from internal contradictions.

  16. On the relation between the Hartree-Fock and Kohn-Sham approaches

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Msezane, A.Z.; Shaginyan, V.R.; Sokolovski, D.

    2004-01-01

    We show that the Hartree-Fock (HF) results cannot be reproduced within the framework of Kohn-Sham (KS) theory because the single-particle densities of finite systems obtained within the HF calculations are not v-representable, i.e., do not correspond to any ground state of a N non-interacting electron systems in a local external potential. For this reason, the KS theory, which finds a minimum on a different subset of all densities, can overestimate the ground state energy, as compared to the HF result. The discrepancy between the two approaches provides no grounds to assume that either the KS theory or the density functional theory suffers from internal contradictions

  17. Application of the resonating Hartree-Fock random phase approximation to the Lipkin model

    International Nuclear Information System (INIS)

    Nishiyama, S.; Ishida, K.; Ido, M.

    1996-01-01

    We have applied the resonating Hartree-Fock (Res-HF) approximation to the exactly solvable Lipkin model by utilizing a newly developed orbital-optimization algorithm. The Res-HF wave function was superposed by two Slater determinants (S-dets) which give two corresponding local energy minima of monopole ''deformations''. The self-consistent Res-HF calculation gives an excellent ground-state correlation energy. There exist excitations due to small vibrational fluctuations of the orbitals and mixing coefficients around their stationary values. They are described by a new approximation called the resonating Hartree-Fock random phase approximation (Res-HF RPA). Matrices of the second-order variation of the Res-HF energy have the same structures as those of the Res-HF RPA's matrices. The quadratic steepest descent of the Res-HF energy in the orbital optimization is considered to include certainly both effects of RPA-type fluctuations up to higher orders and their mode-mode couplings. It is a very important and interesting task to apply the Res-HF RPA to the Lipkin model with the use of the stationary values and to prove the above argument. It turns out that the Res-HF RPA works far better than the usual HF RPA and the renormalized one. We also show some important features of the Res-HF RPA. (orig.)

  18. A correction for the Hartree-Fock density of states for jellium without screening

    International Nuclear Information System (INIS)

    Blair, Alexander I.; Kroukis, Aristeidis; Gidopoulos, Nikitas I.

    2015-01-01

    We revisit the Hartree-Fock (HF) calculation for the uniform electron gas, or jellium model, whose predictions—divergent derivative of the energy dispersion relation and vanishing density of states (DOS) at the Fermi level—are in qualitative disagreement with experimental evidence for simple metals. Currently, this qualitative failure is attributed to the lack of screening in the HF equations. Employing Slater’s hyper-Hartree-Fock (HHF) equations, derived variationally, to study the ground state and the excited states of jellium, we find that the divergent derivative of the energy dispersion relation and the zero in the DOS are still present, but shifted from the Fermi wavevector and energy of jellium to the boundary between the set of variationally optimised and unoptimised HHF orbitals. The location of this boundary is not fixed, but it can be chosen to lie at arbitrarily high values of wavevector and energy, well clear from the Fermi level of jellium. We conclude that, rather than the lack of screening in the HF equations, the well-known qualitative failure of the ground-state HF approximation is an artifact of its nonlocal exchange operator. Other similar artifacts of the HF nonlocal exchange operator, not associated with the lack of electronic correlation, are known in the literature

  19. Extension of the multiconfiguration Hartree-Fock program for continuum functions

    International Nuclear Information System (INIS)

    Fischer, C.F.; Saha, H.P.

    1984-01-01

    The wave function of an outer electron coupled to a core, possibly with correlation included in the core, is similar to a multiconfiguration Hartree-Fock (MCHF) wavefunction, except that the radial function of the electron is a continuum function, and different numerical procedures are required for determining it. Only a single continuum function is allowed, and the orbitals defining the wave function of the core and bound channels are assumed to be fixed. The coefficients in the expansion of the wave function of the core are also fixed and are the result of a bound state calculation for the core. Under these assumptions, the equation for the radial wave function of the electron is solved iteratively. The asymptotic phase shift is evaluated. In order to test the accuracy of the procedure, calculations were performed for the scattering of electrons by neutral hydrogen. Some results of a photo-ionization calculation are compared, and for an electron transition in nitrogen

  20. Dirac-Fock atomic electronic structure calculations using different nuclear charge distributions

    NARCIS (Netherlands)

    Visscher, L; Dyall, KG

    1997-01-01

    Numerical Hartree-Fock calculations based on the Dirac-Coulomb Hamiltonian for the first 109 elements of the periodic table are presented. The results give the total electronic energy, as a function of the nuclear model that is used, for four different models of the nuclear charge distribution. The

  1. Relativistic description of nuclear systems in the Hartree-Fock approximation

    International Nuclear Information System (INIS)

    Bouyssy, A.; Mathiot, J.F.; Nguyen Van Giai; Marcos, S.

    1986-03-01

    The structure of infinite nuclear matter and finite nuclei is studied in the framework of the relativistic Hartree-Fock approximation. A particular attention is paid to the contribution of isovector mesons. (π,p). A satisfactory description of binding energies and densities can be obtained for light as well as heavy nuclei. The spin-orbit splittings are well reproduced. Connections with non-relativistic formulations are also discussed

  2. Time dependent density matrix theory and effective interaction

    Energy Technology Data Exchange (ETDEWEB)

    Tohyama, Mitsuru [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1998-07-01

    A correlated ground state of {sup 16}O and an E2 giant resonance built on it are calculated using an extended version of the time-dependent Hartree-Fock theory called the time-dependent density-matrix theory (TDDM). The Skyrme force is used in the calculation of both a mean field and two-body correlations. It is found that TDDM gives reasonable ground-state correlations and a large spreading width of the E2 giant resonance when single-particle states in the continuum are treated appropriately. (author)

  3. A comparison between the adiabatic time dependent Hartree-Fock and the generator coordinate methods for the description of nuclear collective motion

    International Nuclear Information System (INIS)

    Villars, F.

    1975-01-01

    The objective of the work is to draw attention to the essential equivalence of the two apparently quite distinct ways of describing nuclear collective dyanmics, the adiabatic time-dependent Hartree-Fock method (ADTHF) on the one hand, and the Generator Coordinate (GC) method on the other hand. To demonstrate this relation, an analysis of the simplest case, in which collective motion is described by a single collective para- meter q(t) is presented. In the ATDHF approach, two self-consistency conditions are obtained; the resultant expressions for the collective potential and kinetic energies represent a special case of the more general results of Baranger and Veneroni. In the G.C. approach to the same system (with the same collective parameter q), the narrow overlap approximation must be made, as the counterpart of the adiabatic approximation in the TDHF method. In its conventional form, the G.C. method leads to a different expression for the collective kinetic energy. It is shown however, that a simple generalization of the G.C.-wave function leads to corrections determined by a variational principle. In leading order, the corrected expression for the collective kinetic energy is identical with the TDHF result In both cases, the collective inertia is determined by a self-consistent cranking formula

  4. Automatic Differentiation in Quantum Chemistry with Applications to Fully Variational Hartree-Fock.

    Science.gov (United States)

    Tamayo-Mendoza, Teresa; Kreisbeck, Christoph; Lindh, Roland; Aspuru-Guzik, Alán

    2018-05-23

    Automatic differentiation (AD) is a powerful tool that allows calculating derivatives of implemented algorithms with respect to all of their parameters up to machine precision, without the need to explicitly add any additional functions. Thus, AD has great potential in quantum chemistry, where gradients are omnipresent but also difficult to obtain, and researchers typically spend a considerable amount of time finding suitable analytical forms when implementing derivatives. Here, we demonstrate that AD can be used to compute gradients with respect to any parameter throughout a complete quantum chemistry method. We present DiffiQult , a Hartree-Fock implementation, entirely differentiated with the use of AD tools. DiffiQult is a software package written in plain Python with minimal deviation from standard code which illustrates the capability of AD to save human effort and time in implementations of exact gradients in quantum chemistry. We leverage the obtained gradients to optimize the parameters of one-particle basis sets in the context of the floating Gaussian framework.

  5. Application of the gradient method to Hartree-Fock-Bogoliubov theory

    International Nuclear Information System (INIS)

    Robledo, L. M.; Bertsch, G. F.

    2011-01-01

    A computer code is presented for solving the equations of the Hartree-Fock-Bogoliubov (HFB) theory by the gradient method, motivated by the need for efficient and robust codes to calculate the configurations required by extensions of the HFB theory, such as the generator coordinate method. The code is organized with a separation between the parts that are specific to the details of the Hamiltonian and the parts that are generic to the gradient method. This permits total flexibility in choosing the symmetries to be imposed on the HFB solutions. The code solves for both even and odd particle-number ground states, with the choice determined by the input data stream. Application is made to the nuclei in the sd shell using the universal sd-shell interaction B (USDB) shell-model Hamiltonian.

  6. Equivalence of classical spins and Hartree-Fock-Bogoliubov approximation of the Fermionic Anharmonic Oscillator

    International Nuclear Information System (INIS)

    Thomaz, M.T.; Toledo Piza, A.F.R. de

    1994-01-01

    We show that the Hartree-Fock-Bogoliubov (alias Gaussian) approximation of the initial condition problem of the Fermionic Anharmonic Oscillator i equivalent to a bosonic Hamiltonian system of two classical spin. (author)

  7. Microscopic optical model potential based on Brueckner-Hartree-Fock theory

    International Nuclear Information System (INIS)

    Li Lulu; Zhao Enguang; Zhou Shangui; Li Zenghua; Zuo Wei; Bonaccorso, Angela; Lonbardo, Umberto

    2010-01-01

    The optical model is one of the most important models in the study of nuclear reactions. In the optical model, the elastic channel is considered to be dominant and the contributions of all other absorption channels are described by introducing an imaginary potential, Koning and Delaroche obtained empirically the so-called KDR optical potentials based on a best-fitting of massive experimental data on nucleon-nucleus scattering reactions. The volume part is found to be dominant in the real component of the OMP at low energies. Using the Bruckner-Hartree-Fock theory with Bonn B potential plus self consistent three body force, the nucleon-nucleus optical potential is studied in this thesis. In the Bruckner theory, the on-shell self energy, is corresponding to the depth of the volume part of the optical model potential (OMP) for nucleon-nucleus scattering. Using Bruckner-Hartree-Fock theory, the nucleon on-shell self energy is calculated based on Hughenoltz-Van Hove (HVH) theorem. The microscopic optical potentials thus obtained agree well with the volume part of the KDR potentials. Furthermore, the isospin splitting in the volume part of the OMP is also reproduced satisfactorily. The isospin effect in the volume part of the OMP is directly related to the isospin splitting of the effective mass of the nucleon. According to our results, the isospin splitting of neutron to proton effective mass is such that the neutron effective mass increases with isospin, whereas the proton effective mass decreases. The isovector potential U n (E) - U p (E) vanishes at energy E ≈ 200 MeV and then changes sign indicating a possible inversion in the effective mass isospin spitting. We also calculated from the Bruckner theory the imaginary part of the OMP, and the microscopic calculations predict that the isospin splitting exists also in the imaginary OMP whereas the empirical KDR potentials do not show this feature. The shape of the real component of the nucleon-nucleus OMP is

  8. Method of renormalization potential for one model of Hartree-Fock-Slater type

    CERN Document Server

    Zasorin, Y V

    2002-01-01

    A new method of the potential renormalization for the quasiclassical model of the Hartree-Fock-Slater real potential is proposed. The method makes it possible to easily construct the wave functions and contrary to the majority od similar methods it does not require the knowledge of the real-type potential

  9. Time-dependent Hartree approximation and time-dependent harmonic oscillator model

    International Nuclear Information System (INIS)

    Blaizot, J.P.

    1982-01-01

    We present an analytically soluble model for studying nuclear collective motion within the framework of the time-dependent Hartree (TDH) approximation. The model reduces the TDH equations to the Schroedinger equation of a time-dependent harmonic oscillator. Using canonical transformations and coherent states we derive a few properties of the time-dependent harmonic oscillator which are relevant for applications. We analyse the role of the normal modes in the time evolution of a system governed by TDH equations. We show how these modes couple together due to the anharmonic terms generated by the non-linearity of the theory. (orig.)

  10. Analytic formulae for the Hartree-Fock order parameter at arbitrary p/q filling factors for the 2DEG in a magnetic field

    International Nuclear Information System (INIS)

    Cabo Monte Oca, A. de.

    1994-07-01

    Analytic expressions for order parameters are given for the previously introduced general class of Hartree Fock states at arbitrary filling factors ν=p/q for odd q values. The order parameters are expressed as sums of magnetic translations eigenvalues over the filled single electron states. Simple summation formulae for the band spectra in terms of the same eigenvalues are also presented. The energy per particle at ν=1/3 is calculated for various states differing in the way of filling of the 1/3 of the orbitals. The calculated energies are not competing with the usual CDW results. However the high degree of electron overlapping allows for the next corrections to modify this situation. The discussion suggests these Hartree-Fock Slater determinants as interesting alternatives for the Tao-Thouless parent states which may correct their anomalous symmetry and correlation functions properties. (author). 28 refs

  11. Angular momentum projection on a mesh of cranked Hartree-Fock wave functions

    International Nuclear Information System (INIS)

    Baye, D.; Heenen, P.

    1984-01-01

    A method for projecting on angular momentum wave functions discretized on a three-dimensional Cartesian mesh is presented. The method is based on a matrix representation of the rotation operator. It is applied to cranked Hartree-Fock wave functions calculated for 24 Mg with a simple interaction. In this case, the accuracy of the projected matrix elements is estimated to be of the order of 0.1%. An extensive comparison of the projected and cranking energies is made. The validity of the cranking method as an approximation to a variation-after-projection calculation seems to be wider than usually expected. The study of the fission barrier of 24 Mg for the channel 4 He- 16 O- 4 He shows that the cranking predictions for these very deformed states are quite reliable

  12. Genealogical electronic coupling procedure incorporating the Hartree--Fock interacting space and suitable for degenerate point groups. Application to excited states of BH3

    International Nuclear Information System (INIS)

    Swope, W.C.; Schaefer, H.F. III; Yarkony, D.R.

    1980-01-01

    The use of Clebsch--Gordan-type coupling coefficients for finite point groups is applied to the problem of constructing symmetrized N-electron wave functions (configurations) for use by the Hartree--Fock SCF and CI methods of determining electronic wave functions for molecular systems. The configurations are eigenfunctions of electronic spin operators, and transform according to a particular irreducible representation of the relevant group of spatial operations which leave the Born--Oppenheimer Hamiltonian invariant. The method proposed for constructing the configurations involves a genealogical coupling procedure. It is particularly useful for studies of molecules which belong to a group which has multiply degenerate irreducible representations. The advantage of the method is that it results in configurations which are real linear combinations of determinants of real symmetry orbitals. This procedure for constructing configurations also allows for the identification of configurations which have no matrix element of the Hamiltonian with a reference configuration. It is therefore possible to construct a Hartree--Fock interacting space of configurations which can speed the convergence of a CI wave function. The coupling method is applied to a study of the ground and two excited electronic states of BH 3 in its D/sub 3h/ geometry. The theoretical approach involved Hartree--Fock SCF calculations followed by single and double substitution CI calculations, both of which employed double-zeta plus polarization quality basis sets

  13. Molecular structures and vibrational frequencies of xanthine and its methyl derivatives (caffeine and theobromine) by ab initio Hartree-Fock and density functional theory calculations

    Science.gov (United States)

    Ucun, Fatih; Sağlam, Adnan; Güçlü, Vesile

    2007-06-01

    The molecular structures, vibrational frequencies and corresponding vibrational assignments of xanthine and its methyl derivatives (caffeine and theobromine) have been calculated using ab initio Hartree-Fock (HF) and density functional theory (B3LYP) methods with 6-31G(d, p) basis set level. The calculations were utilized to the CS symmetries of the molecules. The obtained vibrational frequencies and optimised geometric parameters (bond lengths and bond angles) were seen to be well agreement with the experimental data. The used scale factors which have been obtained the ratio of the frequency values of the strongest peaks in the calculated and experimental spectra seem to cause the gained vibrations well corresponding to the experimental ones. Theoretical infrared intensities and Raman activities are also reported.

  14. Contribution to the projected Hartree-Fock method and microscopic theory of coupling between rotation bands

    International Nuclear Information System (INIS)

    Brut, F.

    1982-01-01

    The spectroscopy of odd-A nuclei, in the 1p and 2s-1d shells, is studied in the framework of the projected Hartree-Fock method and by the generator coordinate method. The nuclear effective interactions of Cohen and Kurath, on the one hand, and of Kuo or Preedom-Wildenthal, on the other hand, are used. The binding energies, the nuclear spectra, the static moments and the electromagnetic transitions obtained by these two approaches are compared to the same quantities given by a complete diagonalization in the shell model basis. This study of light nuclei gives some possibilities to put in order the energy levels by coupled rotational bands. In the microscopic approach, thus we find all the elements of the unified model of Bohr and Mottelson. To give evidence of such a relation, the functions of the angle β, in the integrals of the projection method of Peierls and Yoccoz, for a Slater determinant, are developed in the vicinity of the bounds β = O and β = π. The microscopic coefficients are evaluated in the Hartree-Fock approximation, using the particle-hole formalism. Calculations are made for 20 Ne and 21 Ne and the resulting microscopic coefficients are compared with the corresponding terms of the unified model of Bohr and Mottelson [fr

  15. Exploration of (super-)heavy elements using the Skyrme-Hartree-Fock model

    International Nuclear Information System (INIS)

    Erler, Jochen

    2011-01-01

    Motivated by the steadily increasing number of known nuclei and nuclear properties, theories of nuclear structure are presently a field of intense research. This work concentrates on the self-consistent description of nuclei in terms of the Skyrme-Hartree-Fock (SHF) approach. The extrapolation of nuclear shell structure to the region of super-heavy elements (SHE) using the SHF model, the dependence on different parameterization and the influence of collective correlation will be studied. The general scope of this work are large scale calculation for a global survey of properties of SHE like binding energies, separation energies and decay characteristics and lifetimes. These calculations were done in a collaboration with the theory group of the GSI in Darmstadt and have the aim to develop a database of lifetimes and reaction rates for α, β-decay and spontaneous fission in a very wide range with proton numbers 86 ≤ Z ≤ 120 and neutron numbers up to N ∼ 260 relevant for the astrophysical r-process. The results of this study for example predictions of a possible islands of very stable nuclei and information of favored decay mode for each nuclei are also applicable in the recent experimental synthesis of exotic SHE. For these calculation a framework to calculate β-decay half-lives within the SHF model has been developed and the existing axial SHF code has been extended to compute β-transition matrix elements and so to provide an estimation of half-lives. (orig.)

  16. Exploration of (super-)heavy elements using the Skyrme-Hartree-Fock model

    Energy Technology Data Exchange (ETDEWEB)

    Erler, Jochen

    2011-01-31

    Motivated by the steadily increasing number of known nuclei and nuclear properties, theories of nuclear structure are presently a field of intense research. This work concentrates on the self-consistent description of nuclei in terms of the Skyrme-Hartree-Fock (SHF) approach. The extrapolation of nuclear shell structure to the region of super-heavy elements (SHE) using the SHF model, the dependence on different parameterization and the influence of collective correlation will be studied. The general scope of this work are large scale calculation for a global survey of properties of SHE like binding energies, separation energies and decay characteristics and lifetimes. These calculations were done in a collaboration with the theory group of the GSI in Darmstadt and have the aim to develop a database of lifetimes and reaction rates for {alpha}, {beta}-decay and spontaneous fission in a very wide range with proton numbers 86 {<=} Z {<=} 120 and neutron numbers up to N {approx} 260 relevant for the astrophysical r-process. The results of this study for example predictions of a possible islands of very stable nuclei and information of favored decay mode for each nuclei are also applicable in the recent experimental synthesis of exotic SHE. For these calculation a framework to calculate {beta}-decay half-lives within the SHF model has been developed and the existing axial SHF code has been extended to compute {beta}-transition matrix elements and so to provide an estimation of half-lives. (orig.)

  17. Test of a q-fractional V{sup (N-q)} Hartree-Fock potential for the calculation of double photoionization cross sections of neon

    Energy Technology Data Exchange (ETDEWEB)

    Kilin, V.A. [Tomsk Polytechnic University, Tomsk (Russian Federation); Lazarev, D.V.; Lazarev, Dm.A.; Zelichenko, V.M. [Tomsk Pedagogic University, Tomsk (Russian Federation); Amusia, M. Ya. [A.F. Ioffe Physico-Technical Institute, St. Petersburg (Russian Federation); Schartner, K.-H. [I Physikalisches Institut, Justus-Liebig-Universitaet, Giessen (Germany); Ehresmann, A.; Schmoranzer, H. [Fachbereich Physik, Universitaet Kaiserslautern, Kaiserslautern (Germany)

    2001-10-28

    The approach of a parametric V{sup (N-q)} Hartree-Fock potential with fractional q is developed and applied for the first time for the calculation of the double photoionization cross sections of Ne. A minimum of the squared difference between the length-form and velocity-form cross sections is used as a criterion for calculating the values of q. It is found that the minimization procedure leads to a practically exact equality of the length-form and velocity-form cross sections for the Ne III 2s{sup 2}2p{sup 4}[{sup 3}P,{sup 1}D,{sup 1}S], 2s{sup 1}2p{sup 5}[{sup 3}P,{sup 1}P] and 2s{sup 0}2p{sup 6}[{sup 1}S] states in the exciting-photon energy region from the double-ionization threshold up to 325 eV, if q is considered as a function of the exciting-photon energy. The calculated V{sup (N-q)} cross sections are in better agreement with the experimental data than those for the V{sup (N-1)} and V{sup (N-2)} potentials. (author)

  18. The role of the form factor and short-range correlation in the relativistic Hartree-Fock model for nuclear matter

    Science.gov (United States)

    Hu, J.; Toki, H.; Wen, W.; Shen, H.

    2010-03-01

    The role of the form factor and short-range correlation in nuclear matter is studied within the relativistic Hartree-Fock approximation. We take, first, the mean-field approximation for meson fields and obtain the fluctuation terms of mesons to be used for the Fock energies. We introduce form factors in the meson-nucleon coupling vertices to take into account the finite-size effect of the nucleon. We use further the unitary correlation operator method for the treatment of the short-range correlation. The form factors of the size ( Λ ˜ 1.0 -2.0GeV) of the nucleon-nucleon interaction cut down largely the contribution of the ρ -meson in the Fock term. The short-range correlation effect is not large but has a significant effect on the pion and ρ -meson energies in the relativistic Hartree-Fock approximation for nuclear matter.

  19. Projection after variation in the finite-temperature Hartree-Fock-Bogoliubov approximation

    Science.gov (United States)

    Fanto, P.

    2017-11-01

    The finite-temperature Hartree-Fock-Bogoliubov (HFB) approximation often breaks symmetries of the underlying many-body Hamiltonian. Restricting the calculation of the HFB partition function to a subspace with good quantum numbers through projection after variation restores some of the correlations lost in breaking these symmetries, although effects of the broken symmetries such as sharp kinks at phase transitions remain. However, the most general projection after variation formula in the finite-temperature HFB approximation is limited by a sign ambiguity. Here, I extend the Pfaffian formula for the many-body traces of HFB density operators introduced by Robledo [L. M. Robledo, Phys. Rev. C. 79, 021302(R) (2009), 10.1103/PhysRevC.79.021302] to eliminate this sign ambiguity and evaluate the more complicated many-body traces required in projection after variation in the most general HFB case. The method is validated through a proof-of-principle calculation of the particle-number-projected HFB thermal energy in a simple model.

  20. Analysis of the half-projected Hartree--Fock function: density matrix, natural orbitals, and configuration interaction equivalence

    International Nuclear Information System (INIS)

    Smeyers, Y.G.; Delgado-Barrio, G.

    1976-01-01

    The half-projected Hartree--Fock function for singlet states (HPHF) is analyzed in terms of natural electronic configurations. For this purpose the HPHF spinless density matrix and its natural orbitals are first deduced. It is found that the HPHF function does not contain any contribution from odd-times excited configurations. It is seen in addition, in the case of the singlet ground states, this function is approximately equivalent to two closed-shell configurations, although the nature of the excited one depends on the nuclear geometry. An example is given in the case of the LiH ground state. Finally, the application of this model for studying systems of more than two atoms is criticized

  1. Application of the RPA method based on the cranked Hartree-Fock-Bogolyubov model in 168Er and 158Dy

    International Nuclear Information System (INIS)

    Kvasil, J.; Khariev, M.M.; Cwiok, S.; Mikhajlov, I.N.; Khoriev, B.

    1984-01-01

    The Random Phase Approximation (RPA) based on the Cranked Hartree-Fock-Bogolyubov (CHFB) model is used for the study of low-lying nuclear states near the yrast line in 158 Dy and 168 Er. The relation of the spurious unphysical states connected with the nucleus centre of mass rotational motion to the solutions of RPA equations of motion is cleared up. The calculated level energies and reduced probabilities B(E2) are compared with experimental ones. The dependence of the residual interaction strength constants and the nucleus moment of inertia on the angular momentum is discussed. The experimental characteristics of low-lying states up to approx. 2 MeV are reproduced by the CHFB+RPA model. (author)

  2. Structure of single-particle nuclear densities from Hartree-Fock theory and model independent analysis

    International Nuclear Information System (INIS)

    Starodubskij, V.E.; Shaginyan, V.R.

    1979-01-01

    Friar-Negele method is applied to determine the static densities of neutrons and nuclear matter from the fast proton-nuclei elastic scattering data. This model-independent analysis (MIA) has been carried out for 28 Si, sup(32,34)S, sup(40,42,44,48)Ca, 48 Ti, sup(58,60)Ni, 90 Zr, 208 Pb nuclei. The binding energies, rms radii, densities and scattering cross sections of 1 GeV-proton are calculated in the framework of the Hartree-Fock theory (HF) with Skyrme's interaction. The HF and MIA densities and cross sections have been compared to draw a conclusion on the quality of the HF densities. Calculation of the cross sections has included the spin-orbit interaction with parameters taken from the polarization data

  3. The role of the form factor and short-range correlation in the relativistic Hartree-Fock model for nuclear matter

    International Nuclear Information System (INIS)

    Hu, J.; Toki, H.; Wen, W.; Shen, H.

    2010-01-01

    The role of the form factor and short-range correlation in nuclear matter is studied within the relativistic Hartree-Fock approximation. We take, first, the mean-field approximation for meson fields and obtain the fluctuation terms of mesons to be used for the Fock energies. We introduce form factors in the meson-nucleon coupling vertices to take into account the finite-size effect of the nucleon. We use further the unitary correlation operator method for the treatment of the short-range correlation. The form factors of the size (Λ∝1.0 -2.0 GeV) of the nucleon-nucleon interaction cut down largely the contribution of the ρ-meson in the Fock term. The short-range correlation effect is not large but has a significant effect on the pion and ρ-meson energies in the relativistic Hartree-Fock approximation for nuclear matter. (orig.)

  4. On the problem of representability and the Bogolyubov-Hartree-Fock theory

    Energy Technology Data Exchange (ETDEWEB)

    Knoerr, Hans Konrad

    2013-11-22

    The general topic of this thesis is an approximation of the ground state energy for many-particle quantum systems. In particular the Bogolyubov-Hartree-Fock theory and the representability of one- and two-particle density matrices are studied. After an introductory chapter we specify some basic notation of many-body quantum mechanics in Chapter 2. In Chapter 3 we consider boson, as well as fermion systems. We first tackle the question of representability for bosons, i.e., the question which conditions a one- and a two-particle operator must satisfy to ensure that they are the one- and the two-particle density matrix of a state. For a particle number-conserving system, the representability conditions up to second order for bosons are well-known and called admissibility, P-, and G-conditions. Since, however, most physical systems consisting of bosons are not particle number-conserving, we give an alternative for such systems: Generalizing the two-particle density matrix, we observe that the representability conditions up to second order hold if and only if this generalized two-particle density matrix is positive semi-definite and the one- and the two-particle density matrices fulfill trace class and symmetry conditions. Moreover, we study the Bogolyubov-Hartree-Fock energy of boson and fermion systems. We generalize Lieb's variational principle which in its original formulation holds for purely repulsive particle interactions for fermions only. Our second main result is the following: for bosons, as well as for fermions the infimum of the energy for a variation over pure quasifree states coincides with the one for a variation over all quasifree states under the assumption that the Hamiltonian is bounded below. In the last section of Chapter 3 we specify the relation between centered quasifree states and their corresponding generalized one-particle density matrix, which finds an application in the variational process in the Bogolyubov-Hartree-Fock theory. It is

  5. On the problem of representability and the Bogolyubov-Hartree-Fock theory

    International Nuclear Information System (INIS)

    Knoerr, Hans Konrad

    2013-01-01

    The general topic of this thesis is an approximation of the ground state energy for many-particle quantum systems. In particular the Bogolyubov-Hartree-Fock theory and the representability of one- and two-particle density matrices are studied. After an introductory chapter we specify some basic notation of many-body quantum mechanics in Chapter 2. In Chapter 3 we consider boson, as well as fermion systems. We first tackle the question of representability for bosons, i.e., the question which conditions a one- and a two-particle operator must satisfy to ensure that they are the one- and the two-particle density matrix of a state. For a particle number-conserving system, the representability conditions up to second order for bosons are well-known and called admissibility, P-, and G-conditions. Since, however, most physical systems consisting of bosons are not particle number-conserving, we give an alternative for such systems: Generalizing the two-particle density matrix, we observe that the representability conditions up to second order hold if and only if this generalized two-particle density matrix is positive semi-definite and the one- and the two-particle density matrices fulfill trace class and symmetry conditions. Moreover, we study the Bogolyubov-Hartree-Fock energy of boson and fermion systems. We generalize Lieb's variational principle which in its original formulation holds for purely repulsive particle interactions for fermions only. Our second main result is the following: for bosons, as well as for fermions the infimum of the energy for a variation over pure quasifree states coincides with the one for a variation over all quasifree states under the assumption that the Hamiltonian is bounded below. In the last section of Chapter 3 we specify the relation between centered quasifree states and their corresponding generalized one-particle density matrix, which finds an application in the variational process in the Bogolyubov-Hartree-Fock theory. It is

  6. Energy Levels and B(E2) transition rates in the Hartree-Fock approximation with the Skyrme force

    International Nuclear Information System (INIS)

    Oliveira, D.R. de; Mizrahi, S.S.

    1976-11-01

    The Hartree-Fock approximation with the Skyrme force is applied to the A = 4n type of nuclei in the s-d shell. Energy levels and electric quadrupole transition probabilities within the ground states band are calculated from the projected states of good angular momentum. Strong approximations are made but the results concerning the spectra are better than those obtained with more sophisticated density independent two-body interactions. The transition rates are less sensitive to the interaction, as previously verified

  7. Cluster modeling of solid state defects and adsorbates: Beyond the Hartree-Fock level

    International Nuclear Information System (INIS)

    Kunz, A.B.

    1990-01-01

    The use of finite clusters of atoms to represent the physically interesting portion of a condensed matter system has been an accepted technique for the past two decades. Physical systems have been studied in this way using both density functional and Hartree-Fock methodologies, as well as a variety of empirical or semiempirical techniques. In this article, the author concentrates on the Hartree-Fock based methods. The attempt here is to construct a theoretical basis for the inclusion of correlation corrections in such an approach, as well as a strategy by which the limits of a finite cluster may be transcended in such a study. The initial appeal will be to a modeling approach, but methods to convert the model to a self-contained theory will be described. It will be seen for the case of diffusion of large ions in solids that such an approach is quite useful. A further study of the case of adsorption of rare gas atoms on simple metals will demonstrate the value of inclusion of electron correlation

  8. Time dependent mean field approximation to the many-body S-matrix

    International Nuclear Information System (INIS)

    Alhassid, Y.; Koonin, S.E.

    1980-01-01

    Time-dependent Hartree-Fock (TDHF) calculations are a good description of some inclusive properties of deep inelastic heavy-ion collisions. The first steps toward a mean-field theory that approximates specific elements of the many-body S matrix are presented. A many-body system with pairwise interactions excited by an external, time-dependent one-body field is considered. The methods are used to solve the forced Lipkin model. The moduli of elastic and excitation amplitudes are plotted. 3 figures

  9. The Calculation of Single-Nucleon Energies of Nuclei by Considering Two-Body Effective Interaction, n(k,ρ, and a Hartree-Fock Inspired Scheme

    Directory of Open Access Journals (Sweden)

    H. Mariji

    2016-01-01

    Full Text Available The nucleon single-particle energies (SPEs of the selected nuclei, that is, O16, Ca40, and Ni56, are obtained by using the diagonal matrix elements of two-body effective interaction, which generated through the lowest-order constrained variational (LOCV calculations for the symmetric nuclear matter with the Aυ18 phenomenological nucleon-nucleon potential. The SPEs at the major levels of nuclei are calculated by employing a Hartree-Fock inspired scheme in the spherical harmonic oscillator basis. In the scheme, the correlation influences are taken into account by imposing the nucleon effective mass factor on the radial wave functions of the major levels. Replacing the density-dependent one-body momentum distribution functions of nucleons, n(k,ρ, with the Heaviside functions, the role of n(k,ρ in the nucleon SPEs at the major levels of the selected closed shell nuclei is investigated. The best fit of spin-orbit splitting is taken into account when correcting the major levels of the nuclei by using the parameterized Wood-Saxon potential and the Aυ18 density-dependent mean field potential which is constructed by the LOCV method. Considering the point-like protons in the spherical Coulomb potential well, the single-proton energies are corrected. The results show the importance of including n(k,ρ, instead of the Heaviside functions, in the calculation of nucleon SPEs at the different levels, particularly the valence levels, of the closed shell nuclei.

  10. Vibrational spectroscopic investigation of p-, m- and o-nitrobenzonitrile by using Hartree-Fock and density functional theory

    Science.gov (United States)

    Sert, Y.; Ucun, F.

    2013-08-01

    In the present work, the theoretical vibrational spectra of p-, m- and o-nitrobenzonitrile molecules have been analyzed. The harmonic vibrational frequencies and geometric parameters (bond lengths and bond angles) of these molecules have been calculated using ab initio Hartree-Fock and density functional theory methods with 6-311++G(d,p) basis set by Gaussian 03 W, for the first time. Assignments of the vibrational frequencies have been performed by potential energy distribution by using VEDA 4 program. The optimized geometric parameters and harmonic vibrational frequencies have been compared with the corresponding experimental data and seen to be in a good agreement with each other. Also, the highest occupied molecular orbital and lowest unoccupied molecular orbital energies have been obtained.

  11. Obtaining Hartree-Fock and density functional theory doubly excited states with Car-Parrinello density matrix search

    Science.gov (United States)

    Liang, Wenkel; Isborn, Christine M.; Li, Xiaosong

    2009-11-01

    The calculation of doubly excited states is one of the major problems plaguing the modern day excited state workhorse methodology of linear response time dependent Hartree-Fock (TDHF) and density function theory (TDDFT). We have previously shown that the use of a resonantly tuned field within real-time TDHF and TDDFT is able to simultaneously excite both the α and β electrons to achieve the two-electron excited states of minimal basis H2 and HeH+ [C. M. Isborn and X. Li, J. Chem. Phys. 129, 204107 (2008)]. We now extend this method to many electron systems with the use of our Car-Parrinello density matrix search (CP-DMS) with a first-principles fictitious mass method for wave function optimization [X. Li, C. L. Moss, W. Liang, and Y. Feng, J. Chem. Phys. 130, 234115 (2009)]. Real-time TDHF/TDDFT is used during the application of the laser field perturbation, driving the electron density toward the doubly excited state. The CP-DMS method then converges the density to the nearest stationary state. We present these stationary state doubly excited state energies and properties at the HF and DFT levels for H2, HeH+, lithium hydride, ethylene, and butadiene.

  12. Functional approach to a time-dependent self-consistent field theory

    International Nuclear Information System (INIS)

    Reinhardt, H.

    1979-01-01

    The time-dependent Hartree-Fock approximation is formulated within the path integral approach. It is shown that by a suitable choice of the collective field the classical equation of motion of the collective field coincides with the time-dependent Hartree (TDH) equation. The consideration is restricted to the TDH equation, since the exchange terms do not appear in the functional approach on the same footing as the direct terms

  13. Dependence of Excited State Potential Energy Surfaces on the Spatial Overlap of the Kohn-Sham Orbitals and the Amount of Nonlocal Hartree-Fock Exchange in Time-Dependent Density Functional Theory.

    Science.gov (United States)

    Plötner, Jürgen; Tozer, David J; Dreuw, Andreas

    2010-08-10

    Time-dependent density functional theory (TDDFT) with standard GGA or hybrid exchange-correlation functionals is not capable of describing the potential energy surface of the S1 state of Pigment Yellow 101 correctly; an additional local minimum is observed at a twisted geometry with substantial charge transfer (CT) character. To investigate the influence of nonlocal exact orbital (Hartree-Fock) exchange on the shape of the potential energy surface of the S1 state in detail, it has been computed along the twisting coordinate employing the standard BP86, B3LYP, and BHLYP xc-functionals as well as the long-range separated (LRS) exchange-correlation (xc)-functionals LC-BOP, ωB97X, ωPBE, and CAM-B3LYP and compared to RI-CC2 benchmark results. Additionally, a recently suggested Λ-parameter has been employed that measures the amount of CT in an excited state by calculating the spatial overlap of the occupied and virtual molecular orbitals involved in the transition. Here, the error in the calculated S1 potential energy curves at BP86, B3LYP, and BHLYP can be clearly related to the Λ-parameter, i.e., to the extent of charge transfer. Additionally, it is demonstrated that the CT problem is largely alleviated when the BHLYP xc-functional is employed, although it still exhibits a weak tendency to underestimate the energy of CT states. The situation improves drastically when LRS-functionals are employed within TDDFT excited state calculations. All tested LRS-functionals give qualitatively the correct potential energy curves of the energetically lowest excited states of P. Y. 101 along the twisting coordinate. While LC-BOP and ωB97X overcorrect the CT problem and now tend to give too large excitation energies compared to other non-CT states, ωPBE and CAM-B3LYP are in excellent agreement with the RI-CC2 results, with respect to both the correct shape of the potential energy curve as well as the absolute values of the calculated excitation energies.

  14. Classic Multi-Configuration-Dirac-Fock and Hartree-Fock-Relativistic methods integrated into a program package for the RAL-IBM mainframe with automatic comparative output

    International Nuclear Information System (INIS)

    Cowan, R.D.; Grant, I.P.; Fawcett, B.C.; Rose, S.J.

    1985-11-01

    A Multi-Configuration-Dirac-Fock (MCDF) computer program is adapted to interface with the Hartree-Fock-Relativistic (HFR) program for the RAL IBM mainframe computer. The two codes are integrated into a package which includes the Zeeman Laboratory Slater parameter optimisation routines as well as new RAL routines to further process the HFR and MCDF output. A description of the adaptions to MCDF and new output extensions is included in this report, and details are given regarding HFR FORTRAN subroutines, and lists of Job Control Language (JCL) files for the complete package. (author)

  15. Hartree-Fock energies of the doubly excited states of the boron isoelectronic sequence

    International Nuclear Information System (INIS)

    El-Sherbini, T.M.; Mansour, H.M.; Farrag, A.A.; Rahman, A.A.

    1985-08-01

    Hartree-Fock energies of the 1s 2 2s 2p ns( 4 P), 1s 2 2s 2p np ( 4 P, 4 D) and 1s 2 2s 2p nd ( 4 P, 4 D); n=3-6 states in the boron isoelectronic sequence are reported. The results show a fairly good agreement with the experimental data of Bromander for O IV. (author)

  16. Time-dependent restricted-active-space self-consistent-field theory for laser-driven many-electron dynamics

    DEFF Research Database (Denmark)

    Miyagi, Haruhide; Madsen, Lars Bojer

    2013-01-01

    We present the time-dependent restricted-active-space self-consistent-field (TD-RASSCF) theory as a framework for the time-dependent many-electron problem. The theory generalizes the multiconfigurational time-dependent Hartree-Fock (MCTDHF) theory by incorporating the restricted-active-space scheme...... well known in time-independent quantum chemistry. Optimization of the orbitals as well as the expansion coefficients at each time step makes it possible to construct the wave function accurately while using only a relatively small number of electronic configurations. In numerical calculations of high...

  17. Microscopic descriptions of the superdeformed bands in the region A 190: Bohr and Routhian Hamiltonians in the Hartree-Fock-Bogolyubov approximation

    International Nuclear Information System (INIS)

    Libert, J.; Girod, M.; Delaroche, J-P.; Berger, J-F.; Romain, P.; Peru, S.

    1997-01-01

    The superdeformed bands of the nuclei in the region A = 190 were described by two microscopic approaches using Gogny D1 finite range interaction. The first one consists in building a Bohr Hamiltonian in the framework of Gauss overlap approximation (GOA) of the generator-coordinate method, starting from Hartree-Fock-Bogolyubov solutions under quadrupole constraints. This collective Hamiltonian microscopically determined for five quadrupolar variables is then diagonalized by a projection method on a collective based adapted to the large variety of the deformations to be considered. A special attention was given to the precise definition of the under-barrier collective wavefunctions (for which an original method of solving the collective Schroedinger equation was developed) in order to described correctly the lifetime of the shape isomeric states. The other approach, that of Routhian is based also on the Hartree-Fock-Bogolyubov approximation. The calculations are carried out with and without restoring the broken symmetry associated to the particle numbers (as given by Lipkin-Nogami). The results (excitation energies, moments of inertia, etc...) of the two calculation methods are compared with most recent experimental data. The existence of the superdeformed bands corresponding to vibrational excitations similar to those appearing in β and γ bands is proposed

  18. Actinide collisions for QED and superheavy elements with the time-dependent Hartree-Fock theory and the Balian-Vénéroni variational principle

    Directory of Open Access Journals (Sweden)

    Kedziora David J.

    2011-10-01

    Full Text Available Collisions of actinide nuclei form, during very short times of few zs (10−21 s, the heaviest ensembles of interacting nucleons available on Earth. Such collisions are used to produce super-strong electric fields by the huge number of interacting protons to test spontaneous positron-electron pair emission (vacuum decay predicted by the quantum electrodynamics (QED theory. Multi-nucleon transfer in actinide collisions could also be used as an alternative way to fusion in order to produce neutron-rich heavy and superheavy elements thanks to inverse quasifission mechanisms. Actinide collisions are studied in a dynamical quantum microscopic approach. The three-dimensional time-dependent Hartree-Fock (TDHF code tdhf3d is used with a full Skyrme energy density functional to investigate the time evolution of expectation values of one-body operators, such as fragment position and particle number. This code is also used to compute the dispersion of the particle numbers (e.g., widths of fragment mass and charge distributions from TDHF transfer probabilities, on the one hand, and using the BalianVeneroni variational principle, on the other hand. A first application to test QED is discussed. Collision times in 238U+238U are computed to determine the optimum energy for the observation of the vacuum decay. It is shown that the initial orientation strongly affects the collision times and reaction mechanism. The highest collision times predicted by TDHF in this reaction are of the order of ~ 4 zs at a center of mass energy of 1200 MeV. According to modern calculations based on the Dirac equation, the collision times at Ecm > 1 GeV are sufficient to allow spontaneous electron-positron pair emission from QED vacuum decay, in case of bare uranium ion collision. A second application of actinide collisions to produce neutron-rich transfermiums is discussed. A new inverse quasifission mechanism associated to a specific orientation of the nuclei is proposed to

  19. Correlation corrections to the Hartree-Fock perturbation theory of atomic and molecular properties. Dipole polarizabilities of He, Be and Ne

    International Nuclear Information System (INIS)

    Sadlej, A.J.

    1980-01-01

    The problem of the most efficient perturbation calculation of the correlation contributions to atomic and molecular properties is discussed. The method which is based on the coupled Hartree-Fock (CHF) perturbation theory appears to be the most promising one. The CHF-based perturbation theory of correlation effects is applied to the calculation of the second-order correlation contributions to the electric dipole polarizabilities of He, Be and Ne. The numerical approach employed in this paper consists in computing first the electric-field-dependent SCF functions. Then, the field dependent second-order correlation energy is calculated. The electric dipole polarizabilities, accurate through the second-order in correlation, are obtained via the numerical differentiation of the field-dependent energies with respect to the external electric field strength. In order to avoid the use of very large basis sets the so-called electric-field-variant (EFV) orbitals are employed in the present study. The CHF results obtained in this paper are of the same accuracy as the best literature data. In addition of the second-order correlation correction the final values of the electric dipole polarizability differ from the accurate or experimental results by less than a few per cent. (author)

  20. Time dependent resonating Hartree-Bogoliubov theory

    International Nuclear Information System (INIS)

    Nishiyama, Seiya; Fukutome, Hideo.

    1989-01-01

    Very recently, we have developed a theory of excitations in superconducting Fermion systems with large quantum fluctuations that can be described by resonance of time dependent non-orthogonal Hartree-Bogoliubov (HB) wave functions with different correlation structures. We have derived a new kind of variation equation called the time dependent Resonating HB equation, in order to determine both the time dependent Resonating HB wave functions and coefficients of a superposition of the HB wave functions. Further we have got a new approximation for excitations from time dependent small fluctuations of the Resonating HB ground state, i.e., the Resonating HB RPA. The Res HB RPA equation is represented in a given single particle basis. It, however, has drawbacks that the constraints for the Res HB RPA amplitudes are not taken into account and the equation contains equations which are not independent. We shall derive another form of the Res HB RPA equation eliminating these drawbacks. The Res HB RPA gives a unified description of the vibrons and resonons and their interactions. (author)

  1. Charge- and parity-projected Hartree-Fock method for the strong tensor correlation and its application to the alpha particle

    International Nuclear Information System (INIS)

    Sugimoto, Satoru; Ikeda, Kiyomi; Toki, Hiroshi

    2004-01-01

    We propose a new mean-field-type framework which can treat the strong correlation induced by the tensor force. To treat the tensor correlation we break the charge and parity symmetries of a single-particle state and restore these symmetries of the total system by the projection method. We perform the charge and parity projections before variation and obtain a Hartree-Fock-like equation, which is solved self-consistently. We apply the Hartree-Fock-like equation to the alpha particle and find that by breaking the parity and charge symmetries, the correlation induced by the tensor force is obtained in the projected mean-field framework. We emphasize that the projection before the variation is important to pick up the tensor correlation in the present framework

  2. Hartree-Fock-Bogolubov approximation in the models with general four-fermion interaction

    International Nuclear Information System (INIS)

    Bogolubov, N.N. Jr.; Soldatov, A.V.

    1995-12-01

    The foundation of this work was established by the lectures of Prof. N.N. Bogolubov (senior) written in the beginning of 1990. We should like to develop some of his ideas connected with Hartree-Fock-Bogolubov method and to show how this approximation works in connection with general equations for Green's functions with source terms for sufficiently general model Hamiltonian of four-fermion interaction type and how, for example, to get some results of superconductivity theory by means of this method. (author). 5 refs

  3. A single-electron picture based on the multiconfiguration time-dependent Hartree-Fock method: application to the anisotropic ionization and subsequent high-harmonic generation of the CO molecule

    Science.gov (United States)

    Ohmura, S.; Kato, T.; Oyamada, T.; Koseki, S.; Ohmura, H.; Kono, H.

    2018-02-01

    The mechanisms of anisotropic near-IR tunnel ionization and high-order harmonic generation (HHG) in a CO molecule are theoretically investigated by using the multiconfiguration time-dependent Hartree-Fock (MCTDHF) method developed for the simulation of multielectron dynamics of molecules. The multielectron dynamics obtained by numerically solving the equations of motion (EOMs) in the MCTDHF method is converted to a single orbital picture in the natural orbital representation where the first-order reduced density matrix is diagonalized. The ionization through each natural orbital is examined and the process of HHG is classified into different optical paths designated by a combinations of initial, intermediate and final natural orbitals. The EOMs for natural spin-orbitals are also derived within the framework of the MCTDHF, which maintains the first-order reduced density matrix to be a diagonal one throughout the time propagation of a many-electron wave function. The orbital dependent, time-dependent effective potentials that govern the dynamics of respective time-dependent natural orbitals are deduced from the derived EOMs, of which the temporal variation can be used to interpret the motion of the electron density associated with each natural spin-orbital. The roles of the orbital shape, multiorbital ionization, linear Stark effect and multielectron interaction in the ionization and HHG of a CO molecule are revealed by the effective potentials obtained. When the laser electric field points to the nucleus O from C, tunnel ionization from the C atom side is enhanced; a hump structure originating from multielectron interaction is then formed on the top of the field-induced distorted barrier of the HOMO effective potential. This hump formation, responsible for the directional anisotropy of tunnel ionization, restrains the influence of the linear Stark effect on the energy shifts of bound states.

  4. Dispersion correction derived from first principles for density functional theory and Hartree-Fock theory.

    Science.gov (United States)

    Guidez, Emilie B; Gordon, Mark S

    2015-03-12

    The modeling of dispersion interactions in density functional theory (DFT) is commonly performed using an energy correction that involves empirically fitted parameters for all atom pairs of the system investigated. In this study, the first-principles-derived dispersion energy from the effective fragment potential (EFP) method is implemented for the density functional theory (DFT-D(EFP)) and Hartree-Fock (HF-D(EFP)) energies. Overall, DFT-D(EFP) performs similarly to the semiempirical DFT-D corrections for the test cases investigated in this work. HF-D(EFP) tends to underestimate binding energies and overestimate intermolecular equilibrium distances, relative to coupled cluster theory, most likely due to incomplete accounting for electron correlation. Overall, this first-principles dispersion correction yields results that are in good agreement with coupled-cluster calculations at a low computational cost.

  5. Spin Hartree-Fock approach to studying quantum Heisenberg antiferromagnets in low dimensions

    Science.gov (United States)

    Werth, A.; Kopietz, P.; Tsyplyatyev, O.

    2018-05-01

    We construct a new mean-field theory for a quantum (spin-1/2) Heisenberg antiferromagnet in one (1D) and two (2D) dimensions using a Hartree-Fock decoupling of the four-point correlation functions. We show that the solution to the self-consistency equations based on two-point correlation functions does not produce any unphysical finite-temperature phase transition, in accord with the Mermin-Wagner theorem, unlike the common approach based on the mean-field equation for the order parameter. The next-neighbor spin-spin correlation functions, calculated within this approach, reproduce closely the strong renormalization by quantum fluctuations obtained via a Bethe ansatz in 1D and a small renormalization of the classical antiferromagnetic state in 2D. The heat capacity approximates with reasonable accuracy the full Bethe ansatz result at all temperatures in 1D. In 2D, we obtain a reduction of the peak height in the heat capacity at a finite temperature that is accessible by high-order 1 /T expansions.

  6. Extended Hartree-Fock-Bogoliubov theory for degenerate Bose systems

    International Nuclear Information System (INIS)

    Tommasini, Paolo; Passos, E J V de; Pires, M O C; Piza, A F R de Toledo

    2005-01-01

    An extension of the Hartree-Fock-Bogoliubov (HFB) theory of degenerate Bose systems in which the coupling between one and two quasi-particles is taken into account is developed. The excitation operators are written as linear combinations of one and two HFB quasi-particles. Excitation energies and quasi-particle amplitudes are given by generalized Bogoliubov equations. The excitation spectrum has two branches. The first one is a discrete branch which is gapless and has a phonon character at large wavelength and, contrarily to HFB, is always stable. This branch is detached from a second, continuum branch whose threshold, at fixed total momentum, coincides with the two quasi-particle threshold of the HFB theory. The gap between the two branches at P = 0 is twice the HFB gap, which thus provides for the relevant energy scale. Numerical results for a specific case are given

  7. Toward a muon-specific electronic structure theory: effective electronic Hartree-Fock equations for muonic molecules.

    Science.gov (United States)

    Rayka, Milad; Goli, Mohammad; Shahbazian, Shant

    2018-02-07

    An effective set of Hartree-Fock (HF) equations are derived for electrons of muonic systems, i.e., molecules containing a positively charged muon, conceiving the muon as a quantum oscillator, which are completely equivalent to the usual two-component HF equations used to derive stationary states of the muonic molecules. In these effective equations, a non-Coulombic potential is added to the orthodox coulomb and exchange potential energy terms, which describes the interaction of the muon and the electrons effectively and is optimized during the self-consistent field cycles. While in the two-component HF equations a muon is treated as a quantum particle, in the effective HF equations it is absorbed into the effective potential and practically transformed into an effective potential field experienced by electrons. The explicit form of the effective potential depends on the nature of muon's vibrations and is derivable from the basis set used to expand the muonic spatial orbital. The resulting effective Hartree-Fock equations are implemented computationally and used successfully, as a proof of concept, in a series of muonic molecules containing all atoms from the second and third rows of the Periodic Table. To solve the algebraic version of the equations muon-specific Gaussian basis sets are designed for both muon and surrounding electrons and it is demonstrated that the optimized exponents are quite distinct from those derived for the hydrogen isotopes. The developed effective HF theory is quite general and in principle can be used for any muonic system while it is the starting point for a general effective electronic structure theory that incorporates various types of quantum correlations into the muonic systems beyond the HF equations.

  8. Second-Order Moller-Plesset Perturbation Theory for Molecular Dirac-Hartree-Fock Wave Functions

    Science.gov (United States)

    Dyall, Kenneth G.; Arnold, James O. (Technical Monitor)

    1994-01-01

    Moller-Plesset perturbation theory is developed to second order for a selection of Kramers restricted Dirac-Hartree-Fock closed and open-shell reference wave functions. The open-shell wave functions considered are limited to those with no more than two electrons in open shells, but include the case of a two-configuration SCF reference. Denominator shifts are included in the style of Davidson's OPT2 method. An implementation which uses unordered integrals with labels is presented, and results are given for a few test cases.

  9. Physically asymptotic Hartree-Fock stationary-phase approximant to the many-body S-matrix

    International Nuclear Information System (INIS)

    Griffin, J.J.; Dworzecka, M.

    1982-01-01

    The Asymptotic Hartree-Fock Approximant replaces the physically non-asymptotic (and dynamically nontrivial) external translation of the FISP result with the asymptotic and dynamically trivial translational evolution of Dirac-TDHF by adding an explicit restriction upon the acceptable channel states. It is therefore preferable under the principle of commensurability, which judges the expected output of physical descriptions in terms of the physical assumptions they incorporate. Further insight into the relationship between the TDSHF and FISP methods will reward careful comparison of the respective expressions, in specific cases

  10. Generalized Hartree-Fock-Bogoliubov approach in the description of many-body systems

    International Nuclear Information System (INIS)

    Janssen, D.

    1979-01-01

    The quantum mechanical equation for a group of states connected by large probabilities of transitions to each other, i.e. possessing common internal structure, is found. No phenomenological assumptions about the vibrational or rotational character of these states have been used. The equations obtained here can be understood as a direct generalization of the Hartree-Fock-Bogoliubov equation, this scheme including not only the ground state, but some excited states as well. The question of normalization of the density matrix in the generalized space has been solved and the additional solutions of the problem have been excluded. (author)

  11. Systematic study of even-even nuclei with Hartree-Fock+BCS method using Skyrme SIII force

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, Naoki; Takahara, Satoshi; Onishi, Naoki [Tokyo Univ. (Japan). Coll. of Arts and Sciences

    1997-03-01

    We have applied the Hartree-Fock+BCS method with Skyrme SIII force formulated in a three-dimensional Cartesian-mesh representation to even-even nuclei with 2 {<=} Z {<=} 114. We discuss the results concerning the atomic masses, the quadrupole (m=0, 2) and hexadecapole (m=0, 2, 4) deformations, the skin thicknesses, and the halo radii. We also discuss the energy difference between oblate and prolate solutions and the shape difference between protons and neutrons. (author)

  12. Studies of the electron density in the highest occupied molecular orbitals of PH 3, PF 3 and P(CH 3) 3 by electron momentum spectroscopy and Hartree-Fock, MRSD-CI and DFT calculations

    Science.gov (United States)

    Rolke, J.; Brion, C. E.

    1996-06-01

    The spherically averaged momentum profiles for the highest occupied molecular orbitals of PF 3 and P(CH 3) 3 have been obtained by electron momentum spectroscopy. The measurements provide a stringent test of basis set effects and the quality of ab-initio methods in the description of these larger molecular systems. As in previous work on the methyl-substituted amines, intuitive arguments fail to predict the correct amount of s- and p-type contributions to the momentum profile while delocalized molecular orbital concepts provide a more adequate description of the HOMOs. The experimental momentum profiles have been compared with theoretical momentum profiles calculated at the level of the target Hartree-Fock approximation with a range of basis sets. New Hartree-Fock calculations are also presented for the HOMO of PH 3 and compared to previously published experimental and theoretical momentum profiles. The experimental momentum profiles have further been compared to calculations at the level of the target Kohn-Sham approximation using density functional theory with the local density approximation and also with gradient corrected (non-local) exchange correlation potentials. In addition, total energies and dipole moments have been calculated for all three molecules by the various theoretical methods and compared to experimental values. Calculated 'density difference maps' show the regions where the HOMO momentum and position electron densities of PF 3 and P(CH 3) 3 change relative to the corresponding HOMO density of PH 3. The results suggest that methyl groups have an electron-attracting effect (relative to H) on the HOMO charge density in trimethyl phosphines. These conclusions are supported by a consideration of dipole moments and the 31P NMR chemical shifts for PH 3, PF 3 and P(CH 3) 3.

  13. Time-dependent restricted-active-space self-consistent eld theory: Formulation and application to laser-driven many-electron dynamics

    DEFF Research Database (Denmark)

    Miyagi, Haruhide; Madsen, Lars Bojer

    We have developed a new theoretical framework for time-dependent many-electron problems named time-dependent restricted-active-space self-consistent field (TD-RASSCF) theory. The theory generalizes the multicongurational time-dependent Hartree-Fock (MCTDHF) theory by truncating the expansion...

  14. Stationary solution of a time dependent density matrix formalism

    International Nuclear Information System (INIS)

    Tohyama, Mitsuru

    1994-01-01

    A stationary solution of a time-dependent density-matrix formalism, which is an extension of the time-dependent Hartree-Fock theory to include the effects of two-body correlations, is obtained for the Lipkin model hamiltonian, using an adiabatic treatment of the two-body interaction. It is found that the obtained result is a reasonable approximation for the exact solution of the model. (author)

  15. Skyrme-Hartree-Fock in the realm of nuclear mean field models

    International Nuclear Information System (INIS)

    Reinhard, P.G.; Reiss, C.; Maruhn, J.; Bender, M.; Buervenich, T.; Greiner, W.

    2000-01-01

    We discuss and compare two brands of nuclear mean field models, the Skyrme-Hartree-Fock scheme (SHF) and the relativistic mean field model (RMF). Similarities and differences are worked out on a formal basis and with respect to the models performance in describing nuclear data. The bulk observables of stable nuclei are all described very well. Differences come up when extrapolating to exotic nuclei. The typically larger asymmetry energy in RMF leads to a larger neutron skin. Superheavy nuclei are found to be very sensitive on the single particle levels particularly on the spin orbit splitting. Ground state correlations from collective surface vibrations can have a significant effect on difference observables, as two-nucleon separation energy and two-nucleon shell gap. (author)

  16. Effect of Hartree-Fock exact exchange on intramolecular magnetic coupling constants of organic diradicals

    Science.gov (United States)

    Cho, Daeheum; Ko, Kyoung Chul; Ikabata, Yasuhiro; Wakayama, Kazufumi; Yoshikawa, Takeshi; Nakai, Hiromi; Lee, Jin Yong

    2015-01-01

    The intramolecular magnetic coupling constant (J) of diradical systems linked with five- or six-membered aromatic rings was calculated to obtain the scaling factor (experimental J/calculated J ratio) for various density functional theory (DFT) functionals. Scaling factors of group A (PBE, TPSSh, B3LYP, B97-1, X3LYP, PBE0, and BH&HLYP) and B (M06-L, M06, M06-2X, and M06-HF) were shown to decrease as the amount of Hartree-Fock exact exchange (HFx) increases, in other words, overestimation of calculated J becomes more severe as the HFx increases. We further investigated the effect of HFx fraction of DFT functional on J value, spin contamination, and spin density distributions by comparing the B3LYP analogues containing different amount of HFx. It was revealed that spin contamination and spin densities at each atom increases as the HFx increases. Above all, newly developed BLYP-5 functional, which has 5% of HFx, was found to have the scaling factor of 1.029, indicating that calculated J values are very close to that of experimental values without scaling. BLYP-5 has potential to be utilized for accurate evaluation of intramolecular magnetic coupling constant (J) of diradicals linked by five- or six-membered aromatic ring couplers.

  17. Effect of Hartree-Fock exact exchange on intramolecular magnetic coupling constants of organic diradicals

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Daeheum; Ko, Kyoung Chul; Lee, Jin Yong, E-mail: jinylee@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Ikabata, Yasuhiro; Wakayama, Kazufumi; Yoshikawa, Takeshi [Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Nakai, Hiromi, E-mail: nakai@waseda.jp [Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); CREST, Japan Science and Technology Agency, Tokyo 102-0075 (Japan); Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520 (Japan)

    2015-01-14

    The intramolecular magnetic coupling constant (J) of diradical systems linked with five- or six-membered aromatic rings was calculated to obtain the scaling factor (experimental J/calculated J ratio) for various density functional theory (DFT) functionals. Scaling factors of group A (PBE, TPSSh, B3LYP, B97-1, X3LYP, PBE0, and BH and HLYP) and B (M06-L, M06, M06-2X, and M06-HF) were shown to decrease as the amount of Hartree-Fock exact exchange (HFx) increases, in other words, overestimation of calculated J becomes more severe as the HFx increases. We further investigated the effect of HFx fraction of DFT functional on J value, spin contamination, and spin density distributions by comparing the B3LYP analogues containing different amount of HFx. It was revealed that spin contamination and spin densities at each atom increases as the HFx increases. Above all, newly developed BLYP-5 functional, which has 5% of HFx, was found to have the scaling factor of 1.029, indicating that calculated J values are very close to that of experimental values without scaling. BLYP-5 has potential to be utilized for accurate evaluation of intramolecular magnetic coupling constant (J) of diradicals linked by five- or six-membered aromatic ring couplers.

  18. Spatial dependence of pair correlations (nuclear scissors)

    International Nuclear Information System (INIS)

    Bal'butsev, E.B.; Malov, L.A.

    2009-01-01

    The solution of time-dependent Hartree-Fock-Bogolyubov equations by the Wigner function moments method leads to the appearance of low-lying modes whose description requires accurate knowledge of the anomalous density matrix. It is shown that calculations with the Woods-Saxon potential satisfy this requirement

  19. Properties of nuclear and neutron matter in a relativistic Hartree-Fock theory

    International Nuclear Information System (INIS)

    Horowitz, C.J.; Serot, B.D.

    1983-01-01

    Relativistic-Hartree-Fock (HF) equations are derived for an infinite system of mesons and baryons in the framework of a renormalizable relativistic quantum field theory. The derivation is based on a diagrammatic approach and Dyson's equation for the baryon propagator. The result is a set of coupled, nonlinear integral equations for the baryon self-energy with a self-consistency condition on the single-particle spectrum. The HF equations are solved for nuclear and neutron matter in the Walecka model, which contains neutral scalar and vector mesons. After renormalizing model parameters to reproduce nuclear matter saturation properties, HF results at low to moderate densities are similar to those in the mean-field (Hartree) approximation. Self-consistent exchange corrections to the Hartree equation of state become negligible at high densities. Rho- and pi-meson exchanges are incorporated using a renormalizable gauge-theory model. A chiral transformation of the lagrangian is used to replace the pseudoscalar πN coupling with a pseudovector coupling, for which one-pion exchange is a reasonable first approximation. This transformation maintains the model's renormalizability so that corrections may be evaluated. Pion exchange has a small effect on the HF results of the Walecka model and brings HF results in closer in closer agreement with the mean-field theory. The diagrammatic techniques used here retain the mesonic degrees of freedom and are simple enough to be extended to more refined self-consistent approximations. (orig.)

  20. Geometry and time scales of self-consistent orbits in a modified SU(2) model

    International Nuclear Information System (INIS)

    Jezek, D.M.; Hernandez, E.S.; Solari, H.G.

    1986-01-01

    We investigate the time-dependent Hartree-Fock flow pattern of a two-level many fermion system interacting via a two-body interaction which does not preserve the parity symmetry of standard SU(2) models. The geometrical features of the time-dependent Hartree-Fock energy surface are analyzed and a phase instability is clearly recognized. The time evolution of one-body observables along self-consistent and exact trajectories are examined together with the overlaps between both orbits. Typical time scales for the determinantal motion can be set and the validity of the time-dependent Hartree-Fock approach in the various regions of quasispin phase space is discussed

  1. On minimal energy Hartree-Fock states for the 2DEG at fractional fillings

    International Nuclear Information System (INIS)

    Cabo Montes Oca, A. de.

    1995-08-01

    Approximate minimal energy solutions of the previously discussed general class of Hartree-Fock (HF) states of the 2DEG at 1/3 and 2/3 filling factors are determined. Their selfenergy spectrum is evaluated. Wannier states associated to the filled Bloch states are introduced in a lattice having three flux quanta per cell. They allow to rewrite approximately the ν = 1/3 HF Hamiltonian as sum of three independent tight-binding model Hamiltonians, one describing the dynamics in the band of occupied states and the other ones in the tow bands of excited states. The magnitude of the hopping integral indicates the enhanced role which should have the correlation energy in the present situation with respect to the case of the Yoshioka and Lee second order energy calculation for the lowest energy HF state. Finally, the discussion also suggests the Wannier function, which spreads an electron into a three quanta area, as a physical model for the composite fermion mean field one particle state. (author). 11 refs, 5 figs

  2. The Hartree-Fock approximation for s-d shell even-even nuclei with N different of Z

    International Nuclear Information System (INIS)

    Oliveira, P.C. de.

    1981-02-01

    Using the Hartree-Fock approximation method for 22 Ne, 26 Mg and 30 Si nuclei with different kinds of two-body interactions, the electric quadrupole moments and projected energy levels, of angular momentum J=0,2,4,6..., are determined. The Peierls-Yoccoz projection m ethod is used to determine the wave function with well-defined angular momentum. A comparison is made, with the experimental results and the ones obtained by other authors. (Author) [pt

  3. Comparison of self-consistent calculations of the static polarizability of atoms and molecules

    International Nuclear Information System (INIS)

    Moullet, I.; Martins, J.L.

    1990-01-01

    The static dipole polarizabilities and other ground-state properties of H, H 2 , He, Na, and Na 2 are calculated using five different self-consistent schemes: Hartree--Fock, local spin density approximation, Hartree--Fock plus local density correlation, self-interaction-corrected local spin density approximation, and Hartree--Fock plus self-interaction-corrected local density correlation. The inclusion of the self-interaction corrected local spin density approximation in the Hartree--Fock method improves dramatically the calculated dissociation energies of molecules but has a small effect on the calculated polarizabilities. Correcting the local spin density calculations for self-interaction effects improves the calculated polarizability in the cases where the local spin density results are mediocre, and has only a small effect in the cases where the local spin density values are in reasonable agreement with experiment

  4. Modeling molecule-plasmon interactions using quantized radiation fields within time-dependent electronic structure theory

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Daniel R.; DePrince, A. Eugene, E-mail: deprince@chem.fsu.edu [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390 (United States)

    2015-12-07

    We present a combined cavity quantum electrodynamics/ab initio electronic structure approach for simulating plasmon-molecule interactions in the time domain. The simple Jaynes-Cummings-type model Hamiltonian typically utilized in such simulations is replaced with one in which the molecular component of the coupled system is treated in a fully ab initio way, resulting in a computationally efficient description of general plasmon-molecule interactions. Mutual polarization effects are easily incorporated within a standard ground-state Hartree-Fock computation, and time-dependent simulations carry the same formal computational scaling as real-time time-dependent Hartree-Fock theory. As a proof of principle, we apply this generalized method to the emergence of a Fano-like resonance in coupled molecule-plasmon systems; this feature is quite sensitive to the nanoparticle-molecule separation and the orientation of the molecule relative to the polarization of the external electric field.

  5. Fractional quantum Hall effect: Construction of the Hartree-Fock state by using translational covariance

    International Nuclear Information System (INIS)

    Ferrari, R.; I.N.F.N., Trento

    1994-01-01

    The formalism introduced in a previous paper is used for discussing the Coulomb interaction of many electrons moving in two space-dimensions in the presence of a strong magnetic field. The matrix element of the coulomb interaction is evaluated in the new basis, whose states are invariant under discrete translations. This paper is devoted to the case of low filling factor, thus the authors limit themselves to the lowest Landau level and to spins all oriented along the magnetic field. For the case of filling factor ν f = 1/u they give an Ansatz on the state of many electrons which provides a good approximated solution of the Hartree-Fock equation. For general filling factor ν f = u'/u a trial state is given which converges very rapidly to a solution of the self-consistent equation. They generalize the Hartree-Fock equation by considering some correlation: all quantum states are allowed for the u' electrons with the same translation quantum numbers. Numerical results are given for the mean energy and the energy bands, for some values of the filling factor (ν f = 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5). The results agree numerically with the Charge Density Wave approach. The boundary conditions are shown to be very important: only large systems (degeneracy of Landau level over 200) are not affected by the boundaries. Therefore results obtained on small scale systems are somewhat unreliable. The relevance of the results for the Fractional Quantum Hall Effect is briefly discussed

  6. The Strutinsky method and its foundation from the Hartree-Fock-Bogoliubov approximation at finite temperature

    International Nuclear Information System (INIS)

    Brack, M.

    1981-01-01

    Strutinsky's shell-correction method is investigated in the framework of the microscopial Hartree-Fock-Bogoliubov method at finite temperature HFBT. Applying the Strutinsky energy averaging consistently to the normal and abnormal density matrices and to the entropy, we define a self-consistently average HFBT system as the solution of a variational problem. From the latter we derive the generalized Strutinsky energy theorem and the explicit expressions for the shell correction of a statistically excited system of BCS quasiparticles. Using numerical results of HF calculations, we demonstrate the convergence of the Strutinsky expansion and estimate the validity of the partical shell-correction approach. We also discuss the close connections of the Strutinsky energy averaging with semiclassical expansions and their usefulness for solving the average nuclear self-consistency problem. In particular we argue that the Hohenberg-Kohn theorem should hold for the averaged HFBT system and we thus provide a justification of the use of semiclassical density functionals. (orig.)

  7. Restricted Hartree Fock using complex-valued orbitals: A long-known but neglected tool in electronic structure theory

    Energy Technology Data Exchange (ETDEWEB)

    Small, David W.; Sundstrom, Eric J.; Head-Gordon, Martin [Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-01-14

    Restricted Hartree Fock using complex-valued orbitals (cRHF) is studied. We introduce an orbital pairing theorem, with which we obtain a concise connection between cRHF and real-valued RHF, and use it to uncover the close relationship between cRHF, unrestricted Hartree Fock, and generalized valence bond perfect pairing. This enables an intuition for cRHF, contrasting with the generally unintuitive nature of complex orbitals. We also describe an efficient computer implementation of cRHF and its corresponding stability analysis. By applying cRHF to the Be + H{sub 2} insertion reaction, a Woodward-Hoffmann violating reaction, and a symmetry-driven conical intersection, we demonstrate in genuine molecular systems that cRHF is capable of removing certain potential energy surface singularities that plague real-valued RHF and related methods. This complements earlier work that showed this capability in a model system. We also describe how cRHF is the preferred RHF method for certain radicaloid systems like singlet oxygen and antiaromatic molecules. For singlet O{sub 2}, we show that standard methods fail even at the equilibrium geometry. An implication of this work is that, regardless of their individual efficacies, cRHF solutions to the HF equations are fairly commonplace.

  8. Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis. (VII) HFODD (v2.49t): A new version of the program

    International Nuclear Information System (INIS)

    Schunck, Nicolas F.; McDonnell, J.; Sheikh, J.A.; Staszczak, A.; Stoitsov, Mario; Dobaczewski, J.; Toivanen, P.

    2012-01-01

    We describe the new version (v2.49t) of the code HFODD which solves the nuclear Skyrme Hartree-Fock (HF) or Skyrme Hartree-Fock-Bogolyubov (HFB) problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following physics features: (i) the isospin mixing and projection, (ii) the finite temperature formalism for the HFB and HF+BCS methods, (iii) the Lipkin translational energy correction method, (iv) the calculation of the shell correction. A number of specific numerical methods have also been implemented in order to deal with large-scale multi-constraint calculations and hardware limitations: (i) the two-basis method for the HFB method, (ii) the Augmented Lagrangian Method (ALM) for multi-constraint calculations, (iii) the linear constraint method based on the approximation of the RPA matrix for multi-constraint calculations, (iv) an interface with the axial and parity-conserving Skyrme-HFB code HFBTHO, (v) the mixing of the HF or HFB matrix elements instead of the HF fields. Special care has been paid to using the code on massively parallel leadership class computers. For this purpose, the following features are now available with this version: (i) the Message Passing Interface (MPI) framework, (ii) scalable input data routines, (iii) multi-threading via OpenMP pragmas, (iv) parallel diagonalization of the HFB matrix in the simplex breaking case using the ScaLAPACK library. Finally, several little significant errors of the previous published version were corrected.

  9. Knock-on type exchange and the density dependence of an effective interaction

    International Nuclear Information System (INIS)

    Jeukenne, J.P.; Mahaux, C.

    1981-01-01

    We investigate the origin of the density-dependence of the strength of an effective interaction previously derived from a Brueckner-Hartree-Fock calculation of the optical-model potential in nuclear matter. From the analysis of a model based on the Hartree-Fock approximation and on a Yukawa interaction with a Majorana exchange component, we study to what extent this dependence derives from the momentum-dependence of the exchange contribution of the knock-on type. The model is also used to discuss zero-range pseudopotential methods for including this knock-on contribution. (orig.)

  10. Dirac-Fock-Breit-Gaunt calculations for tungsten hexacarbonyl W(CO)6.

    Science.gov (United States)

    Malli, Gulzari L

    2016-05-21

    The first all-electron fully relativistic Dirac-Fock-Breit-Gaunt (DFBG), Dirac-Fock (DF), and nonrelativistic (NR) Hartree-Fock (HF) calculations are reported for octahedral (Oh) tungsten hexacarbonyl W(CO)6. Our DF and NR HF calculations predict atomization energy of 73.76 and 70.33 eV, respectively. The relativistic contribution of ∼3.4 eV to the atomization energy of W(CO)6 is fairly significant. The DF and NR energy for the reaction W + 6CO → W(CO)6 is calculated as -7.90 and -8.86 eV, respectively. The mean bond energy predicted by our NR and DF calculations is 142.5 kJ/mol and 177.5 kJ/mol, respectively, and our predicted DF mean bond energy is in excellent agreement with the experimental value of 179 kJ/mol quoted in the literature. The relativistic effects contribute ∼35 kJ/mol to the mean bond energy and the calculated BSSE is 1.6 kcal/mol, which indicates that the triple zeta basis set used here is fairly good. The mean bond energy and the atomization energy calculated in our DFBG SCF calculations, which include variationally both the relativistic and magnetic Breit effects, is 157.4 kJ/mol and 68.84 eV, respectively. The magnetic Breit effects lead to a decrease of ∼20 kJ/mol and ∼4.9 eV for the mean bond energy and atomization energy, respectively, for W(CO)6. Our calculated magnetic Breit interaction energy of -9.79 eV for the energy of reaction (ΔE) for W + 6CO → W(CO)6 is lower by ∼1.90 eV as compared to the corresponding DF value (ΔE) and contributes significantly to the ΔE. A detailed discussion is presented of electronic structure, bonding, and molecular energy levels at various levels of theory for W(CO)6.

  11. Microscopic descriptions of the superdeformed bands in the region A 190: Bohr and Routhian Hamiltonians in the Hartree-Fock-Bogolyubov approximation; Descriptions microscopiques des bandes superdeformees dans la region A 190: Hamiltonien de Bohr et Routhian a l`approximation de Hartee-Fock-Bogolyubov

    Energy Technology Data Exchange (ETDEWEB)

    Libert, J. [Centre d`Etudes Nucleaires, Bordeaux-1 Univ., 33 Gradignan (France); Girod, M.; Delaroche, J-P.; Berger, J-F.; Romain, P.; Peru, S. [CEA Centre d`Etudes de Bruyeres-le-Chatel, 91 (France)

    1997-06-01

    The superdeformed bands of the nuclei in the region A = 190 were described by two microscopic approaches using Gogny D1 finite range interaction. The first one consists in building a Bohr Hamiltonian in the framework of Gauss overlap approximation (GOA) of the generator-coordinate method, starting from Hartree-Fock-Bogolyubov solutions under quadrupole constraints. This collective Hamiltonian microscopically determined for five quadrupolar variables is then diagonalized by a projection method on a collective based adapted to the large variety of the deformations to be considered. A special attention was given to the precise definition of the under-barrier collective wavefunctions (for which an original method of solving the collective Schroedinger equation was developed) in order to described correctly the lifetime of the shape isomeric states. The other approach, that of Routhian is based also on the Hartree-Fock-Bogolyubov approximation. The calculations are carried out with and without restoring the broken symmetry associated to the particle numbers (as given by Lipkin-Nogami). The results (excitation energies, moments of inertia, etc...) of the two calculation methods are compared with most recent experimental data. The existence of the superdeformed bands corresponding to vibrational excitations similar to those appearing in {beta} and {gamma} bands is proposed

  12. Linear response calculation using the canonical-basis TDHFB with a schematic pairing functional

    International Nuclear Information System (INIS)

    Ebata, Shuichiro; Nakatsukasa, Takashi; Yabana, Kazuhiro

    2011-01-01

    A canonical-basis formulation of the time-dependent Hartree-Fock-Bogoliubov (TDHFB) theory is obtained with an approximation that the pair potential is assumed to be diagonal in the time-dependent canonical basis. The canonical-basis formulation significantly reduces the computational cost. We apply the method to linear-response calculations for even-even nuclei. E1 strength distributions for proton-rich Mg isotopes are systematically calculated. The calculation suggests strong Landau damping of giant dipole resonance for drip-line nuclei.

  13. Dispersion corrected hartree-fock and density functional theory for organic crystal structure prediction.

    Science.gov (United States)

    Brandenburg, Jan Gerit; Grimme, Stefan

    2014-01-01

    We present and evaluate dispersion corrected Hartree-Fock (HF) and Density Functional Theory (DFT) based quantum chemical methods for organic crystal structure prediction. The necessity of correcting for missing long-range electron correlation, also known as van der Waals (vdW) interaction, is pointed out and some methodological issues such as inclusion of three-body dispersion terms are discussed. One of the most efficient and widely used methods is the semi-classical dispersion correction D3. Its applicability for the calculation of sublimation energies is investigated for the benchmark set X23 consisting of 23 small organic crystals. For PBE-D3 the mean absolute deviation (MAD) is below the estimated experimental uncertainty of 1.3 kcal/mol. For two larger π-systems, the equilibrium crystal geometry is investigated and very good agreement with experimental data is found. Since these calculations are carried out with huge plane-wave basis sets they are rather time consuming and routinely applicable only to systems with less than about 200 atoms in the unit cell. Aiming at crystal structure prediction, which involves screening of many structures, a pre-sorting with faster methods is mandatory. Small, atom-centered basis sets can speed up the computation significantly but they suffer greatly from basis set errors. We present the recently developed geometrical counterpoise correction gCP. It is a fast semi-empirical method which corrects for most of the inter- and intramolecular basis set superposition error. For HF calculations with nearly minimal basis sets, we additionally correct for short-range basis incompleteness. We combine all three terms in the HF-3c denoted scheme which performs very well for the X23 sublimation energies with an MAD of only 1.5 kcal/mol, which is close to the huge basis set DFT-D3 result.

  14. Quantum treatment of protons with the reduced explicitly correlated Hartree-Fock approach

    Energy Technology Data Exchange (ETDEWEB)

    Sirjoosingh, Andrew; Pak, Michael V.; Brorsen, Kurt R.; Hammes-Schiffer, Sharon, E-mail: shs3@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Ave., Urbana, Illinois 61801 (United States)

    2015-06-07

    The nuclear-electronic orbital (NEO) approach treats select nuclei quantum mechanically on the same level as the electrons and includes nonadiabatic effects between the electrons and the quantum nuclei. The practical implementation of this approach is challenging due to the significance of electron-nucleus dynamical correlation. Herein, we present a general extension of the previously developed reduced NEO explicitly correlated Hartree-Fock (RXCHF) approach, in which only select electronic orbitals are explicitly correlated to each quantum nuclear orbital via Gaussian-type geminal functions. Approximations of the electronic exchange between the geminal-coupled electronic orbitals and the other electronic orbitals are also explored. This general approach enables computationally tractable yet accurate calculations on molecular systems with quantum protons. The RXCHF method is applied to the hydrogen cyanide (HCN) and FHF{sup −} systems, where the proton and all electrons are treated quantum mechanically. For the HCN system, only the two electronic orbitals associated with the CH covalent bond are geminal-coupled to the proton orbital. For the FHF{sup −} system, only the four electronic orbitals associated with the two FH covalent bonds are geminal-coupled to the proton orbital. For both systems, the RXCHF method produces qualitatively accurate nuclear densities, in contrast to mean field-based NEO approaches. The development and implementation of the RXCHF method provide the framework to perform calculations on systems such as proton-coupled electron transfer reactions, where electron-proton nonadiabatic effects are important.

  15. Spin polarization, orbital occupation and band gap opening in vanadium dioxide: The effect of screened Hartree-Fock exchange

    KAUST Repository

    Wang, Hao

    2014-07-01

    The metal-insulator transition of VO2 so far has evaded an accurate description by density functional theory. The screened hybrid functional of Heyd, Scuseria and Ernzerhof leads to reasonable solutions for both the low-temperature monoclinic and high-temperature rutile phases only if spin polarization is excluded from the calculations. We explore whether a satisfactory agreement with experiment can be achieved by tuning the fraction of Hartree Fock exchange (α) in the density functional. It is found that two branches of locally stable solutions exist for the rutile phase for 12.5%≤α≤20%. One is metallic and has the correct stability as compared to the monoclinic phase, the other is insulating with lower energy than the metallic branch. We discuss these observations based on the V 3d orbital occupations and conclude that α=10% is the best possible choice for spin-polarized VO2 calculations. © 2014 Elsevier B.V. All rights reserved.

  16. Self-consistent field description of high spin states in rare earth nuclei. [Hartree-Fock-Bogolyubov Theory

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, A L [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)

    1976-07-12

    The Hartree-Fock-Bogolyubov cranking equations are solved for /sup 168/ /sup 170/Yb and /sup 174/Hf. Deformation and pairing properties are both obtained with a G-matrix derived from the Reid soft-core potential. The high spin anomalies are attributed to the disappearance of the neutron pair gap in /sup 168/Yb, the realignment of an isub(13/2) neutron pair in /sup 170/Yb, and a combination of these two mechanisms in /sup 174/Hf. Two bands intersecting at high spin are found for /sup 174/Hf.

  17. Axially deformed solution of the Skyrme-Hartree-Fock-Bogolyubov equations using the transformed harmonic oscillator basis (III) HFBTHO (v3.00): A new version of the program

    Science.gov (United States)

    Perez, R. Navarro; Schunck, N.; Lasseri, R.-D.; Zhang, C.; Sarich, J.

    2017-11-01

    We describe the new version 3.00 of the code HFBTHO that solves the nuclear Hartree-Fock (HF) or Hartree-Fock-Bogolyubov (HFB) problem by using the cylindrical transformed deformed harmonic oscillator basis. In the new version, we have implemented the following features: (i) the full Gogny force in both particle-hole and particle-particle channels, (ii) the calculation of the nuclear collective inertia at the perturbative cranking approximation, (iii) the calculation of fission fragment charge, mass and deformations based on the determination of the neck, (iv) the regularization of zero-range pairing forces, (v) the calculation of localization functions, (vi) a MPI interface for large-scale mass table calculations. Program Files doi:http://dx.doi.org/10.17632/c5g2f92by3.1 Licensing provisions: GPL v3 Programming language: FORTRAN-95 Journal reference of previous version: M.V. Stoitsov, N. Schunck, M. Kortelainen, N. Michel, H. Nam, E. Olsen, J. Sarich, and S. Wild, Comput. Phys. Commun. 184 (2013). Does the new version supersede the previous one: Yes Summary of revisions: 1. the Gogny force in both particle-hole and particle-particle channels was implemented; 2. the nuclear collective inertia at the perturbative cranking approximation was implemented; 3. fission fragment charge, mass and deformations were implemented based on the determination of the position of the neck between nascent fragments; 4. the regularization method of zero-range pairing forces was implemented; 5. the localization functions of the HFB solution were implemented; 6. a MPI interface for large-scale mass table calculations was implemented. Nature of problem:HFBTHO is a physics computer code that is used to model the structure of the nucleus. It is an implementation of the energy density functional (EDF) approach to atomic nuclei, where the energy of the nucleus is obtained by integration over space of some phenomenological energy density, which is itself a functional of the neutron and proton

  18. Electronic correlation without double counting via a combination of spin projected Hartree-Fock and density functional theories

    Energy Technology Data Exchange (ETDEWEB)

    Garza, Alejandro J.; Jiménez-Hoyos, Carlos A. [Department of Chemistry, Rice University, Houston, Texas 77251-1892 (United States); Scuseria, Gustavo E. [Department of Chemistry and Department of Physics and Astronomy, Rice University, Houston, Texas 77251-1892, USA and Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2014-06-28

    Several schemes to avoid the double counting of correlations in methods that merge multireference wavefunctions with density functional theory (DFT) are studied and here adapted to a combination of spin-projected Hartree-Fock (SUHF) and DFT. The advantages and limitations of the new method, denoted SUHF+f{sub c}DFT, are explored through calculations on benchmark sets in which the accounting of correlations is challenging for pure SUHF or DFT. It is shown that SUHF+f{sub c}DFT can greatly improve the description of certain molecular properties (e.g., singlet-triplet energy gaps) which are not improved by simple addition of DFT dynamical correlation to SUHF. However, SUHF+f{sub c}DFT is also shown to have difficulties dissociating certain types of bonds and describing highly charged ions with static correlation. Possible improvements to the current SUHF+f{sub c}DFT scheme are discussed in light of these results.

  19. Density Functional Theory versus the Hartree-Fock Method: Comparative Assessment

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Shaginyan, V.R.; Msezane, A.Z.

    2003-01-01

    We compare two different approaches to investigations of many-electron systems. The first is the Hartree-Fock (HF) method and the second is the Density Functional Theory (DFT). Overview of the main features and peculiar properties of the HF method are presented. A way to realize the HF method within the Kohn-Sham (KS) approach of the DFT is discussed. We show that this is impossible without including a specific correlation energy, which is defined by the difference between the sum of the kinetic and exchange energies of a system considered within KS and HF, respectively. It is the nonlocal exchange potential entering the HF equations that generates this correlation energy. We show that the total correlation energy of a finite electron system, which has to include this correlation energy, cannot be obtained from considerations of uniform electron systems. The single-particle excitation spectrum of many-electron systems is related to the eigenvalues of the corresponding KS equations. We demonstrate that this spectrum does not coincide in general with the eigenvalues of KS or HF equations

  20. Density Functional Theory versus the Hartree-Fock Method: Comparative Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya.; Shaginyan, V.R. [The Hebrew University, Jerusalem (Israel); Msezane, A.Z. [Clark Atlanta Univ., Atlanta, GA (United States). Center for Theoretical Studies of Physical Systems

    2003-12-01

    We compare two different approaches to investigations of many-electron systems. The first is the Hartree-Fock (HF) method and the second is the Density Functional Theory (DFT). Overview of the main features and peculiar properties of the HF method are presented. A way to realize the HF method within the Kohn-Sham (KS) approach of the DFT is discussed. We show that this is impossible without including a specific correlation energy, which is defined by the difference between the sum of the kinetic and exchange energies of a system considered within KS and HF, respectively. It is the nonlocal exchange potential entering the HF equations that generates this correlation energy. We show that the total correlation energy of a finite electron system, which has to include this correlation energy, cannot be obtained from considerations of uniform electron systems. The single-particle excitation spectrum of many-electron systems is related to the eigenvalues of the corresponding KS equations. We demonstrate that this spectrum does not coincide in general with the eigenvalues of KS or HF equations.

  1. Similarity transformed equation of motion coupled-cluster theory based on an unrestricted Hartree-Fock reference for applications to high-spin open-shell systems.

    Science.gov (United States)

    Huntington, Lee M J; Krupička, Martin; Neese, Frank; Izsák, Róbert

    2017-11-07

    The similarity transformed equation of motion coupled-cluster approach is extended for applications to high-spin open-shell systems, within the unrestricted Hartree-Fock (UHF) formalism. An automatic active space selection scheme has also been implemented such that calculations can be performed in a black-box fashion. It is observed that both the canonical and automatic active space selecting similarity transformed equation of motion (STEOM) approaches perform about as well as the more expensive equation of motion coupled-cluster singles doubles (EOM-CCSD) method for the calculation of the excitation energies of doublet radicals. The automatic active space selecting UHF STEOM approach can therefore be employed as a viable, lower scaling alternative to UHF EOM-CCSD for the calculation of excited states in high-spin open-shell systems.

  2. Similarity transformed equation of motion coupled-cluster theory based on an unrestricted Hartree-Fock reference for applications to high-spin open-shell systems

    Science.gov (United States)

    Huntington, Lee M. J.; Krupička, Martin; Neese, Frank; Izsák, Róbert

    2017-11-01

    The similarity transformed equation of motion coupled-cluster approach is extended for applications to high-spin open-shell systems, within the unrestricted Hartree-Fock (UHF) formalism. An automatic active space selection scheme has also been implemented such that calculations can be performed in a black-box fashion. It is observed that both the canonical and automatic active space selecting similarity transformed equation of motion (STEOM) approaches perform about as well as the more expensive equation of motion coupled-cluster singles doubles (EOM-CCSD) method for the calculation of the excitation energies of doublet radicals. The automatic active space selecting UHF STEOM approach can therefore be employed as a viable, lower scaling alternative to UHF EOM-CCSD for the calculation of excited states in high-spin open-shell systems.

  3. The effect of basis set and exchange-correlation functional on time-dependent density functional theory calculations within the Tamm-Dancoff approximation of the x-ray emission spectroscopy of transition metal complexes.

    Science.gov (United States)

    Roper, Ian P E; Besley, Nicholas A

    2016-03-21

    The simulation of X-ray emission spectra of transition metal complexes with time-dependent density functional theory (TDDFT) is investigated. X-ray emission spectra can be computed within TDDFT in conjunction with the Tamm-Dancoff approximation by using a reference determinant with a vacancy in the relevant core orbital, and these calculations can be performed using the frozen orbital approximation or with the relaxation of the orbitals of the intermediate core-ionised state included. Both standard exchange-correlation functionals and functionals specifically designed for X-ray emission spectroscopy are studied, and it is shown that the computed spectral band profiles are sensitive to the exchange-correlation functional used. The computed intensities of the spectral bands can be rationalised by considering the metal p orbital character of the valence molecular orbitals. To compute X-ray emission spectra with the correct energy scale allowing a direct comparison with experiment requires the relaxation of the core-ionised state to be included and the use of specifically designed functionals with increased amounts of Hartree-Fock exchange in conjunction with high quality basis sets. A range-corrected functional with increased Hartree-Fock exchange in the short range provides transition energies close to experiment and spectral band profiles that have a similar accuracy to those from standard functionals.

  4. Long-range corrected density functional theory with accelerated Hartree-Fock exchange integration using a two-Gaussian operator [LC-ωPBE(2Gau)].

    Science.gov (United States)

    Song, Jong-Won; Hirao, Kimihiko

    2015-10-14

    Since the advent of hybrid functional in 1993, it has become a main quantum chemical tool for the calculation of energies and properties of molecular systems. Following the introduction of long-range corrected hybrid scheme for density functional theory a decade later, the applicability of the hybrid functional has been further amplified due to the resulting increased performance on orbital energy, excitation energy, non-linear optical property, barrier height, and so on. Nevertheless, the high cost associated with the evaluation of Hartree-Fock (HF) exchange integrals remains a bottleneck for the broader and more active applications of hybrid functionals to large molecular and periodic systems. Here, we propose a very simple yet efficient method for the computation of long-range corrected hybrid scheme. It uses a modified two-Gaussian attenuating operator instead of the error function for the long-range HF exchange integral. As a result, the two-Gaussian HF operator, which mimics the shape of the error function operator, reduces computational time dramatically (e.g., about 14 times acceleration in C diamond calculation using periodic boundary condition) and enables lower scaling with system size, while maintaining the improved features of the long-range corrected density functional theory.

  5. Koopmans' theorem in the Hartree-Fock method. General formulation

    Science.gov (United States)

    Plakhutin, Boris N.

    2018-03-01

    This work presents a general formulation of Koopmans' theorem (KT) in the Hartree-Fock (HF) method which is applicable to molecular and atomic systems with arbitrary orbital occupancies and total electronic spin including orbitally degenerate (OD) systems. The new formulation is based on the full set of variational conditions imposed upon the HF orbitals by the variational principle for the total energy and the conditions imposed by KT on the orbitals of an ionized electronic shell [B. N. Plakhutin and E. R. Davidson, J. Chem. Phys. 140, 014102 (2014)]. Based on these conditions, a general form of the restricted open-shell HF method is developed, whose eigenvalues (orbital energies) obey KT for the whole energy spectrum. Particular attention is paid to the treatment of OD systems, for which the new method gives a number of unexpected results. For example, the present method gives four different orbital energies for the triply degenerate atomic level 2p in the second row atoms B to F. Based on both KT conditions and a parallel treatment of atoms B to F within a limited configuration interaction approach, we prove that these four orbital energies, each of which is triply degenerate, are related via KT to the energies of different spin-dependent ionization and electron attachment processes (2p)N → (2p ) N ±1. A discussion is also presented of specific limitations of the validity of KT in the HF method which arise in OD systems. The practical applicability of the theory is verified by comparing KT estimates of the ionization potentials I2s and I2p for the second row open-shell atoms Li to F with the relevant experimental data.

  6. Improvement of one-nucleon removal and total reaction cross sections in the Liège intranuclear-cascade model using Hartree-Fock-Bogoliubov calculations

    Science.gov (United States)

    Rodríguez-Sánchez, Jose Luis; David, Jean-Christophe; Mancusi, Davide; Boudard, Alain; Cugnon, Joseph; Leray, Sylvie

    2017-11-01

    The prediction of one-nucleon-removal cross sections by the Liège intranuclear-cascade model has been improved using a refined description of the matter and energy densities in the nuclear surface. Hartree-Fock-Bogoliubov calculations with the Skyrme interaction are used to obtain a more realistic description of the radial-density distributions of protons and neutrons, as well as the excitation-energy uncorrelation at the nuclear surface due to quantum effects and short-range correlations. The results are compared with experimental data covering a large range of nuclei, from carbon to uranium, and projectile kinetic energies. We find that the new approach is in good agreement with experimental data of one-nucleon-removal cross sections covering a broad range in nuclei and energies. The new ingredients also improve the description of total reaction cross sections induced by protons at low energies, the production cross sections of heaviest residues close to the projectile, and the triple-differential cross sections for one-proton removal. However, other observables such as quadruple-differential cross sections of coincident protons do not present any sizable sensitivity to the new approach. Finally, the model is also tested for light-ion-induced reactions. It is shown that the new parameters can give a reasonable description of the nucleus-nucleus total reaction cross sections at high energies.

  7. Axially deformed solution of the Skyrme-Hartree-Fock-Bogoliubov equations using the transformed harmonic oscillator basis (II) HFBTHO v2.00d: A new version of the program

    Science.gov (United States)

    Stoitsov, M. V.; Schunck, N.; Kortelainen, M.; Michel, N.; Nam, H.; Olsen, E.; Sarich, J.; Wild, S.

    2013-06-01

    of the transformed harmonic oscillator, which allows for an accurate description of deformation effects and pairing correlations in nuclei arbitrarily close to the particle drip lines. Solution method: The program uses the axial Transformed Harmonic Oscillator (THO) single- particle basis to expand quasi-particle wave functions. It iteratively diagonalizes the Hartree-Fock-Bogoliubov Hamiltonian based on generalized Skyrme-like energy densities and zero-range pairing interactions until a self-consistent solution is found. A previous version of the program was presented in: M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz, P. Ring, Comput. Phys. Commun. 167 (2005) 43-63. Reasons for new version: Version 2.00d of HFBTHO provides a number of new options such as the optional breaking of reflection symmetry, the calculation of axial multipole moments, the finite temperature formalism for the HFB method, optimized multi-constraint calculations, the treatment of odd-even and odd-odd nuclei in the blocking approximation, and the framework for generalized energy density with arbitrary density-dependences. It is also the first version of HFBTHO to contain threading capabilities. Summary of revisions: The modified Broyden method has been implemented, Optional breaking of reflection symmetry has been implemented, The calculation of all axial multipole moments up to λ=8 has been implemented, The finite temperature formalism for the HFB method has been implemented, The linear constraint method based on the approximation of the Random Phase Approximation (RPA) matrix for multi-constraint calculations has been implemented, The blocking of quasi-particles in the Equal Filling Approximation (EFA) has been implemented, The framework for generalized energy density functionals with arbitrary density-dependence has been implemented, Shared memory parallelism via OpenMP pragmas has been implemented. Restrictions: Axial- and time-reversal symmetries are assumed. Unusual features: The user must

  8. Nuclear-electronic orbital reduced explicitly correlated Hartree-Fock approach: Restricted basis sets and open-shell systems

    International Nuclear Information System (INIS)

    Brorsen, Kurt R.; Sirjoosingh, Andrew; Pak, Michael V.; Hammes-Schiffer, Sharon

    2015-01-01

    The nuclear electronic orbital (NEO) reduced explicitly correlated Hartree-Fock (RXCHF) approach couples select electronic orbitals to the nuclear orbital via Gaussian-type geminal functions. This approach is extended to enable the use of a restricted basis set for the explicitly correlated electronic orbitals and an open-shell treatment for the other electronic orbitals. The working equations are derived and the implementation is discussed for both extensions. The RXCHF method with a restricted basis set is applied to HCN and FHF − and is shown to agree quantitatively with results from RXCHF calculations with a full basis set. The number of many-particle integrals that must be calculated for these two molecules is reduced by over an order of magnitude with essentially no loss in accuracy, and the reduction factor will increase substantially for larger systems. Typically, the computational cost of RXCHF calculations with restricted basis sets will scale in terms of the number of basis functions centered on the quantum nucleus and the covalently bonded neighbor(s). In addition, the RXCHF method with an odd number of electrons that are not explicitly correlated to the nuclear orbital is implemented using a restricted open-shell formalism for these electrons. This method is applied to HCN + , and the nuclear densities are in qualitative agreement with grid-based calculations. Future work will focus on the significance of nonadiabatic effects in molecular systems and the further enhancement of the NEO-RXCHF approach to accurately describe such effects

  9. Nuclear-electronic orbital reduced explicitly correlated Hartree-Fock approach: Restricted basis sets and open-shell systems

    Energy Technology Data Exchange (ETDEWEB)

    Brorsen, Kurt R.; Sirjoosingh, Andrew; Pak, Michael V.; Hammes-Schiffer, Sharon, E-mail: shs3@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Ave., Urbana, Illinois 61801 (United States)

    2015-06-07

    The nuclear electronic orbital (NEO) reduced explicitly correlated Hartree-Fock (RXCHF) approach couples select electronic orbitals to the nuclear orbital via Gaussian-type geminal functions. This approach is extended to enable the use of a restricted basis set for the explicitly correlated electronic orbitals and an open-shell treatment for the other electronic orbitals. The working equations are derived and the implementation is discussed for both extensions. The RXCHF method with a restricted basis set is applied to HCN and FHF{sup −} and is shown to agree quantitatively with results from RXCHF calculations with a full basis set. The number of many-particle integrals that must be calculated for these two molecules is reduced by over an order of magnitude with essentially no loss in accuracy, and the reduction factor will increase substantially for larger systems. Typically, the computational cost of RXCHF calculations with restricted basis sets will scale in terms of the number of basis functions centered on the quantum nucleus and the covalently bonded neighbor(s). In addition, the RXCHF method with an odd number of electrons that are not explicitly correlated to the nuclear orbital is implemented using a restricted open-shell formalism for these electrons. This method is applied to HCN{sup +}, and the nuclear densities are in qualitative agreement with grid-based calculations. Future work will focus on the significance of nonadiabatic effects in molecular systems and the further enhancement of the NEO-RXCHF approach to accurately describe such effects.

  10. Three-dimensional TDHF calculation for reactions of unstable nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ka-Hae; Otsuka, Takaharu [Tokyo Univ. (Japan). Dept. of Physics; Bonche, P.

    1998-07-01

    The fusion is studied for reactions between a stable and an unstable nuclei with neutron skin. The reactions {sup 16,28}O+{sup 40}Ca and {sup 16}O+{sup 16,28}O are taken as examples, and the three-dimensional time-dependent Hartree-Fock method with the full Skyrme interaction is used. It is confirmed that the fusion cross section in low-energy region is sensitive to the interaction used in the calculation. (author)

  11. Adaptive multi-resolution 3D Hartree-Fock-Bogoliubov solver for nuclear structure

    Science.gov (United States)

    Pei, J. C.; Fann, G. I.; Harrison, R. J.; Nazarewicz, W.; Shi, Yue; Thornton, S.

    2014-08-01

    Background: Complex many-body systems, such as triaxial and reflection-asymmetric nuclei, weakly bound halo states, cluster configurations, nuclear fragments produced in heavy-ion fusion reactions, cold Fermi gases, and pasta phases in neutron star crust, are all characterized by large sizes and complex topologies in which many geometrical symmetries characteristic of ground-state configurations are broken. A tool of choice to study such complex forms of matter is an adaptive multi-resolution wavelet analysis. This method has generated much excitement since it provides a common framework linking many diversified methodologies across different fields, including signal processing, data compression, harmonic analysis and operator theory, fractals, and quantum field theory. Purpose: To describe complex superfluid many-fermion systems, we introduce an adaptive pseudospectral method for solving self-consistent equations of nuclear density functional theory in three dimensions, without symmetry restrictions. Methods: The numerical method is based on the multi-resolution and computational harmonic analysis techniques with a multi-wavelet basis. The application of state-of-the-art parallel programming techniques include sophisticated object-oriented templates which parse the high-level code into distributed parallel tasks with a multi-thread task queue scheduler for each multi-core node. The internode communications are asynchronous. The algorithm is variational and is capable of solving coupled complex-geometric systems of equations adaptively, with functional and boundary constraints, in a finite spatial domain of very large size, limited by existing parallel computer memory. For smooth functions, user-defined finite precision is guaranteed. Results: The new adaptive multi-resolution Hartree-Fock-Bogoliubov (HFB) solver madness-hfb is benchmarked against a two-dimensional coordinate-space solver hfb-ax that is based on the B-spline technique and a three-dimensional solver

  12. Spin contamination analogy, Kramers pairs symmetry and spin density representations at the 2-component unrestricted Hartree-Fock level of theory

    KAUST Repository

    Bučinský, Lukáš

    2015-05-11

    "Kramers pairs symmetry breaking" is evaluated at the 2-component (2c) Kramers unrestricted and/or general complex Hartree-Fock (GCHF) level of theory, and its analogy with "spin contamination" at the 1-component (1c) unrestricted Hartree-Fock (UHF) level of theory is emphasized. The GCHF "Kramers pairs symmetry breaking" evaluation is using the square of overlaps between the set of occupied spinorbitals with the projected set of Kramers pairs. In the same fashion, overlaps between α and β orbitals are used in the evaluation of "spin contamination" at the UHF level of theory. In this manner, UHF Š2 expectation value is made formally extended to the GCHF case. The directly evaluated GCHF expectation value of the Š2 operator is considered for completeness. It is found that the 2c GCHF Kramers pairs symmetry breaking has a very similar extent in comparison to the 1c UHF spin contamination. Thus higher excited states contributions to the 1c and 2c unrestricted wave functions of open shell systems have almost the same extent and physical consequences. Moreover, it is formally shown that a single determinant wave function in the restricted open shell Kramers case has the expectation value of K2 operator equal to the negative number of open shell electrons, while the eigenvalue of K2 for the series of simple systems (H, He, He*-triplet, Li and Li*-quartet) are found to be equal to minus the square of the number of open shell electrons. The concept of unpaired electron density is extended to the GCHF regime and compared to UHF and restricted open shell Hartree-Fock spin density. The "collinear" and "noncollinear" analogs of spin density at the GCHF level of theory are considered as well. Spin contamination and/or Kramers pairs symmetry breaking, spin populations and spin densities are considered for H2O+, Cl, HCl+, phenoxyl radical (C6H5O) as well as for Cu, Cu2+, Fe and the [OsCl5(1H-pyrazole)]- anion. The 1c and 2c unpaired electron density representation is found

  13. Charge transfer excitations from excited state Hartree-Fock subsequent minimization scheme

    International Nuclear Information System (INIS)

    Theophilou, Iris; Tassi, M.; Thanos, S.

    2014-01-01

    Photoinduced charge-transfer processes play a key role for novel photovoltaic phenomena and devices. Thus, the development of ab initio methods that allow for an accurate and computationally inexpensive treatment of charge-transfer excitations is a topic that nowadays attracts a lot of scientific attention. In this paper we extend an approach recently introduced for the description of single and double excitations [M. Tassi, I. Theophilou, and S. Thanos, Int. J. Quantum Chem. 113, 690 (2013); M. Tassi, I. Theophilou, and S. Thanos, J. Chem. Phys. 138, 124107 (2013)] to allow for the description of intermolecular charge-transfer excitations. We describe an excitation where an electron is transferred from a donor system to an acceptor one, keeping the excited state orthogonal to the ground state and avoiding variational collapse. These conditions are achieved by decomposing the space spanned by the Hartree-Fock (HF) ground state orbitals into four subspaces: The subspace spanned by the occupied orbitals that are localized in the region of the donor molecule, the corresponding for the acceptor ones and two more subspaces containing the virtual orbitals that are localized in the neighborhood of the donor and the acceptor, respectively. Next, we create a Slater determinant with a hole in the subspace of occupied orbitals of the donor and a particle in the virtual subspace of the acceptor. Subsequently we optimize both the hole and the particle by minimizing the HF energy functional in the corresponding subspaces. Finally, we test our approach by calculating the lowest charge-transfer excitation energies for a set of tetracyanoethylene-hydrocarbon complexes that have been used earlier as a test set for such kind of excitations

  14. Fock exchange in meson theories of nuclei

    International Nuclear Information System (INIS)

    Bolsterli, M.

    1986-01-01

    The Fock exchange term in meson field theories of nuclear systems is shown to arise from a two-loop ground-state self-energy diagram. Evaluation of this diagram gives the relativistic or semirelativistic analog of the Fock exchange energy; it differs from the nucleon-nucleon Fock energy in including retardation effects. In finite meson-field theories of nuclear systems, the variational nature of the meson-field analog of the Hartree-Fock energy functional can be further elucidated. 4 refs

  15. The calculation of collective energies from periodic time-dependent Hartree-Fock solutions

    International Nuclear Information System (INIS)

    Zahed, I.; Baranger, M.

    1983-06-01

    A periodic TDHF solution is used as the reference state for a diagrammatic expansion of the propagator. A discrete Fourier transform leads to a function of energy, whose poles are the corresponding energy levels. Limiting the expansion to first-order diagrams leads to a new derivation of the Bohr-Sommerfeld-like quantization rule for collective states

  16. Electric dipole transitions for four-times ionized cerium (Ce V)

    Energy Technology Data Exchange (ETDEWEB)

    Usta, Betül Karaçoban, E-mail: bkaracoban@sakarya.edu.tr; Akgün, Elif, E-mail: elif.akgun@ogr.sakarya.edu.tr; Alparslan, Büşra, E-mail: busra.alparslan1@ogr.sakarya.edu.tr [Physics Department, Sakarya University, 54187, Sakarya (Turkey)

    2016-03-25

    We have calculated the transition parameters, such as wavelengths, oscillator strengths, and transition probabilities (or rates), for the electric dipole (E1) transitions in four-times ionized cerium (Ce V, Z = 58) by using the multiconfiguration Hartree-Fock method within the framework of Breit-Pauli (MCHF+BP) relativistic corrections and the relativistic Hartree-Fock (HFR) method. The obtained results have been compared with other works available in literature. A discussion of these calculations for Ce V in this study has also been in view of the MCHF+BP and HFR methods.

  17. Oscillator strength of partially ionized high-Z atom on Hartree-Fock Slater model

    International Nuclear Information System (INIS)

    Nakamura, S.; Nishikawa, T.; Takabe, H.; Mima, K.

    1991-01-01

    The Hartree-Fock Slater (HFS) model has been solved for the partially ionized gold ions generated when an intense laser light is irradiated on a gold foil target. The resultant energy levels are compared with those obtained by a simple screened hydrogenic model with l-splitting effect (SHML). It is shown that the energy levels are poorly model by SHML as the ionization level becomes higher. The resultant wave functions are used to evaluate oscillator strength of important line radiations and compared with those obtained by a simple model using hydrogenic wave functions. Its demonstrated that oscillator strength of the 4p-4d and 4d-4f lines are well modeled by the simple method, while the 4-5 transitions such as 4f-5g, 4d-5f, 4p-5d, and 4f-5p forming the so-called N-band emission are poorly modeled and HFS results less strong line emissions. (author)

  18. Calculation of the valence charge density and binding energy in a simple metal according to the neutral atom method: the Hartree-Fock ionic potential

    International Nuclear Information System (INIS)

    Dagens, L.

    1975-01-01

    The neutral atom method is generalized in order to deal with a Hartree-Fock nonlocal ionic potential. It is used to test the following metal potential, based upon a theoretical analysis due to Hedin and Lundquist. The true HF potential is used to describe the ionic part and a simple local density scheme (the Gaspar-Kohn-Sham approximation) is used for the valence part. The method is first applied to the calculation of the rigid neutral atom valence density of a few simple metals and the corresponding form factor n(q). The choice of the ionic potential (HF or GKS) is found to have a small but significant effect as far as n(q) is concerned. A comparison with experiment is made for Al and Be, using the available X-rays structure factor measurements. Good agreement is obtained for Al with the recent results of Raccah and Heinrich. No agreement is obtained with the Be results of Brown, although the general behavior of the observed and theoretical n(g) as function of g (reciprocal vector length) are found to be quite similar. The binding energy is calculated for Li, Be, Na, Mg and Al, using the Nozieres-Pines formula for the valence-valence correlation energy. The agreement with observed values is improved considerably when the present (HF+GKS) scheme is used, instead of the HFS completely local density scheme used in a previous work. The remaining discrepancies may be ascribed to the inaccuracy of the NP formula and to the neglect of the whole valence-core correlation energy [fr

  19. Construction of the Fock Matrix on a Grid-Based Molecular Orbital Basis Using GPGPUs.

    Science.gov (United States)

    Losilla, Sergio A; Watson, Mark A; Aspuru-Guzik, Alán; Sundholm, Dage

    2015-05-12

    We present a GPGPU implementation of the construction of the Fock matrix in the molecular orbital basis using the fully numerical, grid-based bubbles representation. For a test set of molecules containing up to 90 electrons, the total Hartree-Fock energies obtained from reference GTO-based calculations are reproduced within 10(-4) Eh to 10(-8) Eh for most of the molecules studied. Despite the very large number of arithmetic operations involved, the high performance obtained made the calculations possible on a single Nvidia Tesla K40 GPGPU card.

  20. A uniqueness criterion for the Fock quantization of scalar fields with time-dependent mass

    International Nuclear Information System (INIS)

    Cortez, Jeronimo; Mena Marugan, Guillermo A; Olmedo, Javier; Velhinho, Jose M

    2011-01-01

    A major problem in the quantization of fields in curved spacetimes is the ambiguity in the choice of a Fock representation for the canonical commutation relations. There exists infinite number of choices leading to different physical predictions. In stationary scenarios, a common strategy is to select a vacuum (or a family of unitarily equivalent vacua) by requiring invariance under the spacetime symmetries. When stationarity is lost, a natural generalization consists in replacing time invariance by unitarity in the evolution. We prove that when the spatial sections are compact, the criterion of a unitary dynamics, together with the invariance under the spatial isometries, suffices to select a unique family of Fock quantizations for a scalar field with time-dependent mass. (fast track communication)

  1. Study of superdeformation at zero spin with Skyrme-Hartree-Fock method

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, S; Tajima, N; Onishi, N [Tokyo Univ. (Japan)

    1998-03-01

    Superdeformed (SD) bands have been studied extensively both experimentally and theoretically in the last decade. Since the first observation in {sup 152}Dy in 1986, SD bands have been found in four mass regions, i.e., A {approx} 80, 130, 150 and 190. While these SD bands have been observed only at high spins so far, they may also be present at zero spin like fission isomers in actinide nuclei: The familiar generic argument on the strong shell effect at axis ratio 2:1 does not assume rotations. If non-fissile SD isomers exist at zero spin, they may be utilized to develop new experimental methods to study exotic states, in a similar manner as short-lived high-spin isomers are planned to be utilized as projectiles of fusion reactions in order to populate very high-spin near-yrast states. They will also be useful to test theoretical models whether the models can describe correctly the large deformations of rare-earth nuclei without further complications due to rotations. In this report, we employ the Skyrme-Hartree-Fock method to study the SD states at zero spin. First, we compare various Skyrme force parameter sets to test whether they can reproduce the extrapolated excitation energy of the SD band head of {sup 194}Hg. Second, we systematically search large-deformation solutions with the SkM{sup *} force. The feature of our calculations is that the single-particle wavefunctions are expressed in a three-dimensional-Cartesian-mesh representation. This representation enables one to obtain solutions of various shapes (including SD) without preparing a basis specific to each shape. Solving the mean-field equations in this representation requires, however, a large amount of computation which can be accomplished only with present supercomputers. (author)

  2. Hartree-Fock implementation using a Laguerre-based wave function for the ground state and correlation energies of two-electron atoms.

    Science.gov (United States)

    King, Andrew W; Baskerville, Adam L; Cox, Hazel

    2018-03-13

    An implementation of the Hartree-Fock (HF) method using a Laguerre-based wave function is described and used to accurately study the ground state of two-electron atoms in the fixed nucleus approximation, and by comparison with fully correlated (FC) energies, used to determine accurate electron correlation energies. A variational parameter A is included in the wave function and is shown to rapidly increase the convergence of the energy. The one-electron integrals are solved by series solution and an analytical form is found for the two-electron integrals. This methodology is used to produce accurate wave functions, energies and expectation values for the helium isoelectronic sequence, including at low nuclear charge just prior to electron detachment. Additionally, the critical nuclear charge for binding two electrons within the HF approach is calculated and determined to be Z HF C =1.031 177 528.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Author(s).

  3. A simple and efficient dispersion correction to the Hartree-Fock theory (2): Incorporation of a geometrical correction for the basis set superposition error.

    Science.gov (United States)

    Yoshida, Tatsusada; Hayashi, Takahisa; Mashima, Akira; Chuman, Hiroshi

    2015-10-01

    One of the most challenging problems in computer-aided drug discovery is the accurate prediction of the binding energy between a ligand and a protein. For accurate estimation of net binding energy ΔEbind in the framework of the Hartree-Fock (HF) theory, it is necessary to estimate two additional energy terms; the dispersion interaction energy (Edisp) and the basis set superposition error (BSSE). We previously reported a simple and efficient dispersion correction, Edisp, to the Hartree-Fock theory (HF-Dtq). In the present study, an approximation procedure for estimating BSSE proposed by Kruse and Grimme, a geometrical counterpoise correction (gCP), was incorporated into HF-Dtq (HF-Dtq-gCP). The relative weights of the Edisp (Dtq) and BSSE (gCP) terms were determined to reproduce ΔEbind calculated with CCSD(T)/CBS or /aug-cc-pVTZ (HF-Dtq-gCP (scaled)). The performance of HF-Dtq-gCP (scaled) was compared with that of B3LYP-D3(BJ)-bCP (dispersion corrected B3LYP with the Boys and Bernadi counterpoise correction (bCP)), by taking ΔEbind (CCSD(T)-bCP) of small non-covalent complexes as 'a golden standard'. As a critical test, HF-Dtq-gCP (scaled)/6-31G(d) and B3LYP-D3(BJ)-bCP/6-31G(d) were applied to the complex model for HIV-1 protease and its potent inhibitor, KNI-10033. The present results demonstrate that HF-Dtq-gCP (scaled) is a useful and powerful remedy for accurately and promptly predicting ΔEbind between a ligand and a protein, albeit it is a simple correction procedure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Some notes on time dependent Thomas Fermi approximation

    International Nuclear Information System (INIS)

    Holzwarth, G.

    1979-01-01

    The successful use of effective density-dependent potentials in static Hartree-Fock calculations for nuclear ground-state properties has led to the question whether it is possible to obtain significant further simplification by approximating also the kinetic energy part of the ground state energy by a functional of the local density alone. The great advantage of such an approach is that its complexity is independent of particle number; the size of the system enters only through parameters, Z and N. The simple 'extended Thomas Fermi' functionals are based on the assumption of a spherically symmetric local Fermi surface throughout the nucleus and they represent the 'liquid drop' part of the static total energy. Given this static formalism which is solved directly for the local density without considering individual particles one might ask for a possible dynamical extension in the same sense as TDHF is a dynamical extension of the static HF approach. The aim of such a Time Dependent Thomas Fermi (TDTF) approximation would be to determine directly the time-dependent local single-particle density from given initial conditions and the single-particle current density without following each particle on its individual orbit

  5. Nonadiabatic Dynamics for Electrons at Second-Order: Real-Time TDDFT and OSCF2.

    Science.gov (United States)

    Nguyen, Triet S; Parkhill, John

    2015-07-14

    We develop a new model to simulate nonradiative relaxation and dephasing by combining real-time Hartree-Fock and density functional theory (DFT) with our recent open-systems theory of electronic dynamics. The approach has some key advantages: it has been systematically derived and properly relaxes noninteracting electrons to a Fermi-Dirac distribution. This paper combines the new dissipation theory with an atomistic, all-electron quantum chemistry code and an atom-centered model of the thermal environment. The environment is represented nonempirically and is dependent on molecular structure in a nonlocal way. A production quality, O(N(3)) closed-shell implementation of our theory applicable to realistic molecular systems is presented, including timing information. This scaling implies that the added cost of our nonadiabatic relaxation model, time-dependent open self-consistent field at second order (OSCF2), is computationally inexpensive, relative to adiabatic propagation of real-time time-dependent Hartree-Fock (TDHF) or time-dependent density functional theory (TDDFT). Details of the implementation and numerical algorithm, including factorization and efficiency, are discussed. We demonstrate that OSCF2 approaches the stationary self-consistent field (SCF) ground state when the gap is large relative to k(b)T. The code is used to calculate linear-response spectra including the effects of bath dynamics. Finally, we show how our theory of finite-temperature relaxation can be used to correct ground-state DFT calculations.

  6. Relativistic Hartree-Bogoliubov description of thorium and uranium isotopes

    International Nuclear Information System (INIS)

    Naz, Tabassum; Ahmad, Shakeb

    2016-01-01

    The relativistic Hartree-Bogoliubov (RHB) theory is a relativistic extension of the Hartree-Fock- Bogoliubov theory. It is a unified description of mean-field and pairing correlations and successfully describe the various phenomenon of nuclear structure. In the present work, RHB is applied to study the thorium and uranium isotopes

  7. Dynamic and static correlation functions in the inhomogeneous Hartree-Fock-state approach with random-phase-approximation fluctuations

    International Nuclear Information System (INIS)

    Lorenzana, J.; Grynberg, M.D.; Yu, L.; Yonemitsu, K.; Bishop, A.R.

    1992-11-01

    The ground state energy, and static and dynamic correlation functions are investigated in the inhomogeneous Hartree-Fock (HF) plus random phase approximation (RPA) approach applied to a one-dimensional spinless fermion model showing self-trapped doping states at the mean field level. Results are compared with homogeneous HF and exact diagonalization. RPA fluctuations added to the generally inhomogeneous HF ground state allows the computation of dynamical correlation functions that compare well with exact diagonalization results. The RPA correction to the ground state energy agrees well with the exact results at strong and weak coupling limits. We also compare it with a related quasi-boson approach. The instability towards self-trapped behaviour is signaled by a RPA mode with frequency approaching zero. (author). 21 refs, 10 figs

  8. Microscopic description of low-energy nuclear collisions: review and perspective

    International Nuclear Information System (INIS)

    Bonche, Paul

    2000-01-01

    The primary goal of this lecture is a review of the microscopic approaches to nuclear reactions. Semi-phenomenological theories will not be discussed. First the Time-Dependent Hartree-Fock formalism is recalled. The effective nucleon-nucleon interactions used in TDHF calculations are discussed. Applications to collisions are presented in different approximation scheme, one-dimensional dynamics, approximate three-dimensional ones.... Finally two microscopic extensions beyond mean-field are reviewed: the variational principal of Balian and Veneroni and the implementation of residual two-body interactions in the Time-Dependent Density Matrix (TDDM) and the Extended Time-Dependent Hartree-Fock schemes (ET-DHF). (author)

  9. Global existence of solutions to the Cauchy problem for time-dependent Hartree equations

    International Nuclear Information System (INIS)

    Chadam, J.M.; Glassey, R.T.

    1975-01-01

    The existence of global solutions to the Cauchy problem for time-dependent Hartree equations for N electrons is established. The solution is shown to have a uniformly bounded H 1 (R 3 ) norm and to satisfy an estimate of the form two parallel PSI (t) two parallel/sub H 2 ; less than or equal to c exp(kt). It is shown that ''negative energy'' solutions do not converge uniformly to zero as t → infinity. (U.S.)

  10. Investigation of the hyperfine properties of deoxy hemoglobin based on its electronic structure obtained by Hartree-Fock-Roothan procedure

    Energy Technology Data Exchange (ETDEWEB)

    Lata, K. Ramani [State University of New York at Albany, Department of Physics (United States); Sahoo, N. [University of Texas M.D. Anderson Cancer Center, Department of Radiation Physics (United States); Dubey, Archana [University of Central Florida, Department of Physics (United States); Scheicher, R. H. [Uppsala University, Condensed Matter Theory Group, Department of Physics and Materials Science (Sweden); Badu, S. R.; Pink, R. H.; Mahato, Dip N. [State University of New York at Albany, Department of Physics (United States); Schulte, A. F.; Saha, H. P. [University of Central Florida, Department of Physics (United States); Maharjan, N. B. [State University of New York at Albany, Department of Physics (United States); Chow, Lee [University of Central Florida, Department of Physics (United States); Das, T. P., E-mail: tpd56@albany.edu [State University of New York at Albany, Department of Physics (United States)

    2008-01-15

    The electronic structure of the heme unit of deoxyhemoglobin including the proximal imidazole has been studied using the first-principles Hartree-Fock procedure. Our results for the {sup 57m}Fe isomer shift and asymmetry parameter are in very good agreement with the values obtained from Moessbauer spectroscopy measurements. The {sup 57m}Fe nuclear quadrupole coupling constant is smaller than the experimental result and possible ways to improve the agreement in the future are discussed. Improved analysis of the Moessbauer data, removing some approximations made for deriving the magnetic hyperfine tensor for the {sup 57m}Fe nucleus, is suggested to allow quantitative comparison with our results in the future.

  11. Structure factors for tunneling ionization rates of molecules: General Hartree-Fock-based integral representation

    Science.gov (United States)

    Madsen, Lars Bojer; Jensen, Frank; Dnestryan, Andrey I.; Tolstikhin, Oleg I.

    2017-07-01

    In the leading-order approximation of the weak-field asymptotic theory (WFAT), the dependence of the tunneling ionization rate of a molecule in an electric field on its orientation with respect to the field is determined by the structure factor of the ionizing molecular orbital. The WFAT yields an expression for the structure factor in terms of a local property of the orbital in the asymptotic region. However, in general quantum chemistry approaches molecular orbitals are expanded in a Gaussian basis which does not reproduce their asymptotic behavior correctly. This hinders the application of the WFAT to polyatomic molecules, which are attracting increasing interest in strong-field physics. Recently, an integral-equation approach to the WFAT for tunneling ionization of one electron from an arbitrary potential has been developed. The structure factor is expressed in an integral form as a matrix element involving the ionizing orbital. The integral is not sensitive to the asymptotic behavior of the orbital, which resolves the difficulty mentioned above. Here, we extend the integral representation for the structure factor to many-electron systems treated within the Hartree-Fock method and show how it can be implemented on the basis of standard quantum chemistry software packages. We validate the methodology by considering noble-gas atoms and the CO molecule, for which accurate structure factors exist in the literature. We also present benchmark results for CO2 and for NH3 in the pyramidal and planar geometries.

  12. Deformation properties of osmium, platinum, mercury isotopes from self-consistent calculations: influence of the pairing treatment

    International Nuclear Information System (INIS)

    Sauvage-Letessier, J.; Quentin, P.; Flocard, H.

    1981-01-01

    The deformation properties of several isotopes of the elements Os, Pt and Hg have been computed by means of Hartree-Fock plus BCS calculations. The Hartree-Fock potential has been derived from the Skyrme interaction S III. Two approximations have been used for the treatment of pairing correlations: the constant (versus deformation) gap method and the constant (versus deformation) pairing matrix element method. A good agreement with experimental data is obtained for ground state deformation properties except for the exact location of the prolate-oblate transition as a function of the neutron number. For one nucleus 184 Hg, the pairing matrix elements have been calculated from the Gogny interaction D1, in order to study their single particle state- and deformation-dependence. From these results, the validity of the two approximations used for pairing correlations, is discussed

  13. Spiral magnetism in the single-band Hubbard model: the Hartree-Fock and slave-boson approaches.

    Science.gov (United States)

    Igoshev, P A; Timirgazin, M A; Gilmutdinov, V F; Arzhnikov, A K; Irkhin, V Yu

    2015-11-11

    The ground-state magnetic phase diagram is investigated within the single-band Hubbard model for square and different cubic lattices. The results of employing the generalized non-correlated mean-field (Hartree-Fock) approximation and generalized slave-boson approach by Kotliar and Ruckenstein with correlation effects included are compared. We take into account commensurate ferromagnetic, antiferromagnetic, and incommensurate (spiral) magnetic phases, as well as phase separation into magnetic phases of different types, which was often lacking in previous investigations. It is found that the spiral states and especially ferromagnetism are generally strongly suppressed up to non-realistically large Hubbard U by the correlation effects if nesting is absent and van Hove singularities are well away from the paramagnetic phase Fermi level. The magnetic phase separation plays an important role in the formation of magnetic states, the corresponding phase regions being especially wide in the vicinity of half-filling. The details of non-collinear and collinear magnetic ordering for different cubic lattices are discussed.

  14. Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis.. (VII) HFODD (v2.49t): A new version of the program

    Science.gov (United States)

    Schunck, N.; Dobaczewski, J.; McDonnell, J.; Satuła, W.; Sheikh, J. A.; Staszczak, A.; Stoitsov, M.; Toivanen, P.

    2012-01-01

    -consistent Hartree-Fock equations, even for heavy nuclei, and for various nucleonic ( n-particle- n-hole) configurations, deformations, excitation energies, or angular momenta. Similarly, Local Density Approximation in the particle-particle channel, which is equivalent to using a zero-range interaction, allows for a simple implementation of pairing effects within the Hartree-Fock-Bogolyubov method. Solution method: The program uses the Cartesian harmonic oscillator basis to expand single-particle or single-quasiparticle wave functions of neutrons and protons interacting by means of the Skyrme effective interaction and zero-range pairing interaction. The expansion coefficients are determined by the iterative diagonalization of the mean-field Hamiltonians or Routhians which depend non-linearly on the local neutron and proton densities. Suitable constraints are used to obtain states corresponding to a given configuration, deformation or angular momentum. The method of solution has been presented in: [J. Dobaczewski, J. Dudek, Comput. Phys. Commun. 102 (1997) 166]. Reasons for new version: Version 2.49s of HFODD provides a number of new options such as the isospin mixing and projection of the Skyrme functional, the finite-temperature HF and HFB formalism and optimized methods to perform multi-constrained calculations. It is also the first version of HFODD to contain threading and parallel capabilities. Summary of revisions: Isospin mixing and projection of the HF states has been implemented. The finite-temperature formalism for the HFB equations has been implemented. The Lipkin translational energy correction method has been implemented. Calculation of the shell correction has been implemented. The two-basis method for the solution to the HFB equations has been implemented. The Augmented Lagrangian Method (ALM) for calculations with multiple constraints has been implemented. The linear constraint method based on the cranking approximation of the RPA matrix has been implemented. An

  15. Relativistic Hartree-Bogoliubov description of the halo nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Meng, J.; Ring, P. [Universitaet Muenchen, Garching (Germany)

    1996-12-31

    Here the authors report the development of the relativistic Hartree-Bogoliubov theory in coordinate space. Pairing correlations are taken into account by both density dependent force of zero range and finite range Gogny force. As a primary application the relativistic HB theory is used to describe the chain of Lithium isotopes reaching from {sup 6}Li to {sup 11}Li. In contrast to earlier investigations within a relativistic mean field theory and a density dependent Hartree Fock theory, where the halo in {sup 11}Li could only be reproduced by an artificial shift of the 1p{sub 1/2} level close to the continuum limit, the halo is now reproduced in a self-consistent way without further modifications using the scattering of Cooper pairs to the 2s{sub 1/2} level in the continuum. Excellent agreement with recent experimental data is observed.

  16. Collective gyromagnetic ratio and moment of inertia from density-dependent Hartree-Fock calculations

    International Nuclear Information System (INIS)

    Sprung, D.W.L.; Lie, S.G.; Vallieres, M.; Quentin, P.

    1979-01-01

    The collective gyromagnetic ratio and moment of inertia of deformed even-even axially symmetric nuclei are calculated in the cranking approximation using wave functions obtained with the Skyrme force S-III. Good agreement is found for gsub(R), while the moment of inertia is about 20% too small. The cranking formula leads to better agreement than the projection method. (Auth.)

  17. Quantum dynamics through conical intersections in macrosystems: Combining effective modes and time-dependent Hartree

    International Nuclear Information System (INIS)

    Basler, Mathias; Gindensperger, Etienne; Meyer, Hans-Dieter; Cederbaum, Lorenz S.

    2008-01-01

    We address the nonadiabatic quantum dynamics of (macro)systems involving a vast number of nuclear degrees of freedom (modes) in the presence of conical intersections. The macrosystem is first decomposed into a system part carrying a few, strongly coupled modes, and an environment, comprising the remaining modes. By successively transforming the modes of the environment, a hierarchy of effective Hamiltonians for the environment can be constructed. Each effective Hamiltonian depends on a reduced number of effective modes, which carry cumulative effects. The environment is described by a few effective modes augmented by a residual environment. In practice, the effective modes can be added to the system's modes and the quantum dynamics of the entire macrosystem can be accurately calculated on a limited time-interval. For longer times, however, the residual environment plays a role. We investigate the possibility to treat fully quantum mechanically the system plus a few effective environmental modes, augmented by the dynamics of the residual environment treated by the time-dependent Hartree (TDH) approximation. While the TDH approximation is known to fail to correctly reproduce the dynamics in the presence of conical intersections, it is shown that its use on top of the effective-mode formalism leads to much better results. Two numerical examples are presented and discussed; one of them is known to be a critical case for the TDH approximation

  18. Tensor decomposition in electronic structure calculations on 3D Cartesian grids

    International Nuclear Information System (INIS)

    Khoromskij, B.N.; Khoromskaia, V.; Chinnamsetty, S.R.; Flad, H.-J.

    2009-01-01

    In this paper, we investigate a novel approach based on the combination of Tucker-type and canonical tensor decomposition techniques for the efficient numerical approximation of functions and operators in electronic structure calculations. In particular, we study applicability of tensor approximations for the numerical solution of Hartree-Fock and Kohn-Sham equations on 3D Cartesian grids. We show that the orthogonal Tucker-type tensor approximation of electron density and Hartree potential of simple molecules leads to low tensor rank representations. This enables an efficient tensor-product convolution scheme for the computation of the Hartree potential using a collocation-type approximation via piecewise constant basis functions on a uniform nxnxn grid. Combined with the Richardson extrapolation, our approach exhibits O(h 3 ) convergence in the grid-size h=O(n -1 ). Moreover, this requires O(3rn+r 3 ) storage, where r denotes the Tucker rank of the electron density with r=O(logn), almost uniformly in n. For example, calculations of the Coulomb matrix and the Hartree-Fock energy for the CH 4 molecule, with a pseudopotential on the C atom, achieved accuracies of the order of 10 -6 hartree with a grid-size n of several hundreds. Since the tensor-product convolution in 3D is performed via 1D convolution transforms, our scheme markedly outperforms the 3D-FFT in both the computing time and storage requirements.

  19. Using a pruned, nondirect product basis in conjunction with the multi-configuration time-dependent Hartree (MCTDH) method

    Energy Technology Data Exchange (ETDEWEB)

    Wodraszka, Robert, E-mail: Robert.Wodraszka@chem.queensu.ca; Carrington, Tucker, E-mail: Tucker.Carrington@queensu.ca [Department of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6 (Canada)

    2016-07-28

    In this paper, we propose a pruned, nondirect product multi-configuration time dependent Hartree (MCTDH) method for solving the Schrödinger equation. MCTDH uses optimized 1D basis functions, called single particle functions, but the size of the standard direct product MCTDH basis scales exponentially with D, the number of coordinates. We compare the pruned approach to standard MCTDH calculations for basis sizes small enough that the latter are possible and demonstrate that pruning the basis reduces the CPU cost of computing vibrational energy levels of acetonitrile (D = 12) by more than two orders of magnitude. Using the pruned method, it is possible to do calculations with larger bases, for which the cost of standard MCTDH calculations is prohibitive. Pruning the basis complicates the evaluation of matrix-vector products. In this paper, they are done term by term for a sum-of-products Hamiltonian. When no attempt is made to exploit the fact that matrices representing some of the factors of a term are identity matrices, one needs only to carefully constrain indices. In this paper, we develop new ideas that make it possible to further reduce the CPU time by exploiting identity matrices.

  20. Z-dependent perturbation theory and its application to polyatomic molecules

    International Nuclear Information System (INIS)

    Galvan, D.H.

    1986-01-01

    Z-dependent perturbation theory is applied to study the ground states of simple diatomic and triatomic molecules in order to calculate the total third-order energies for these systems. The systems studied are H 2 + , H 2 , H 3 + , HeH +2 , HeH + , and HeH 2 +2 . The total energies are compared with exact energy values, as well as Hartree-Fock values, and the author's results are a considerable improvement over second-order energies for most internuclear distances, and consistently better than Hartree-Fock calculations for all internuclear distances. Compared with variational methods, this method is simpler and more efficient. In order to calculate total energies up to third order, the wave functions necessary will be two-center, one electron or one-center, two-electron wave functions, at most. Hence, the most complicated integrals that have to be performed are three-center, two-electron integrals, and four-center, one-electron integrals, no matter how complex the molecular system. More importantly, the results obtained for the one-electron diatomic molecular ion are directly incorporated into the calculations for polyatomic systems

  1. Time-dependent non-equilibrium dielectric response in QM/continuum approaches

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Feizhi; Lingerfelt, David B.; Li, Xiaosong, E-mail: benedetta.mennucci@unipi.it, E-mail: li@chem.washington.edu [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States); Mennucci, Benedetta, E-mail: benedetta.mennucci@unipi.it, E-mail: li@chem.washington.edu [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, 56126 Pisa (Italy)

    2015-01-21

    The Polarizable Continuum Models (PCMs) are some of the most inexpensive yet successful methods for including the effects of solvation in quantum-mechanical calculations of molecular systems. However, when applied to the electronic excitation process, these methods are restricted to dichotomously assuming either that the solvent has completely equilibrated with the excited solute charge density (infinite-time limit), or that it retains the configuration that was in equilibrium with the solute prior to excitation (zero-time limit). This renders the traditional PCMs inappropriate for resolving time-dependent solvent effects on non-equilibrium solute electron dynamics like those implicated in the instants following photoexcitation of a solvated molecular species. To extend the existing methods to this non-equilibrium regime, we herein derive and apply a new formalism for a general time-dependent continuum embedding method designed to be propagated alongside the solute’s electronic degrees of freedom in the time domain. Given the frequency-dependent dielectric constant of the solvent, an equation of motion for the dielectric polarization is derived within the PCM framework and numerically integrated simultaneously with the time-dependent Hartree fock/density functional theory equations. Results for small molecular systems show the anticipated dipole quenching and electronic state dephasing/relaxation resulting from out-of-phase charge fluctuations in the dielectric and embedded quantum system.

  2. Combining density functional and incremental post-Hartree-Fock approaches for van der Waals dominated adsorbate-surface interactions: Ag2/graphene

    International Nuclear Information System (INIS)

    Lara-Castells, María Pilar de; Mitrushchenkov, Alexander O.; Stoll, Hermann

    2015-01-01

    A combined density functional (DFT) and incremental post-Hartree-Fock (post-HF) approach, proven earlier to calculate He-surface potential energy surfaces [de Lara-Castells et al., J. Chem. Phys. 141, 151102 (2014)], is applied to describe the van der Waals dominated Ag 2 /graphene interaction. It extends the dispersionless density functional theory developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] by including periodic boundary conditions while the dispersion is parametrized via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. Starting with the elementary cluster unit of the target surface (benzene), continuing through the realistic cluster model (coronene), and ending with the periodic model of the extended system, modern ab initio methodologies for intermolecular interactions as well as state-of-the-art van der Waals-corrected density functional-based approaches are put together both to assess the accuracy of the composite scheme and to better characterize the Ag 2 /graphene interaction. The present work illustrates how the combination of DFT and post-HF perspectives may be efficient to design simple and reliable ab initio-based schemes in extended systems for surface science applications

  3. Natural excitation orbitals from linear response theories : Time-dependent density functional theory, time-dependent Hartree-Fock, and time-dependent natural orbital functional theory

    NARCIS (Netherlands)

    Van Meer, R.; Gritsenko, O. V.; Baerends, E. J.

    2017-01-01

    Straightforward interpretation of excitations is possible if they can be described as simple single orbital-to-orbital (or double, etc.) transitions. In linear response time-dependent density functional theory (LR-TDDFT), the (ground state) Kohn-Sham orbitals prove to be such an orbital basis. In

  4. Ab Initio periodic Hartree-Fock study of group IA cations in ANA-type zeolites

    International Nuclear Information System (INIS)

    Anchell, J.L.; White, J.C.; Thompson, M.R.; Hess, A.C.

    1994-01-01

    This study investigates the electronic structure of Group IA cations intercalated into zeolites with the analcime (ANA) framework using ab initio periodic Hartree-Fock theory. The purpose of the study is to gain a better understanding of the role played by electron-donating species in zeolites in general, with specific applications to materials that have been suggested as storage matrices for radioactive materials. The effect of the intercalated species (Na, K, Rb, and Cs) on the electronic structure of the zeolite is presented on the basis of an analysis of the total and projected density of states, Mulliken charges, and charge density differences. The results of those analyses indicate that, relative to a charge neutral atomic state, the Group IA species donate an electron to the zeolite lattice and interact most strongly with the s and p atomic states of oxygen as the species are moved through the lattice. In addition, estimates of the self-diffusion constants of Na, K, Rb, and Cs based upon a one-dimensional diffusion model parameterized from the ab initio total energy data will be presented. 24 refs., 8 figs., 4 tabs

  5. A comprehensive analysis of molecule-intrinsic quasi-atomic, bonding, and correlating orbitals. I. Hartree-Fock wave functions

    International Nuclear Information System (INIS)

    West, Aaron C.; Schmidt, Michael W.; Gordon, Mark S.; Ruedenberg, Klaus

    2013-01-01

    Through a basis-set-independent web of localizing orbital-transformations, the electronic wave function of a molecule is expressed in terms of a set of orbitals that reveal the atomic structure and the bonding pattern of a molecule. The analysis is based on resolving the valence orbital space in terms of an internal space, which has minimal basis set dimensions, and an external space. In the internal space, oriented quasi-atomic orbitals and split-localized molecular orbitals are determined by new, fast localization methods. The density matrix between the oriented quasi-atomic orbitals as well as the locations of the split-localized orbitals exhibit atomic populations and inter-atomic bonding patterns. A correlation-adapted quasi-atomic basis is determined in the external orbital space. The general formulations are specified in detail for Hartree-Fock wave functions. Applications to specific molecules exemplify the general scheme

  6. Fully self-consistent GW calculations for molecules

    DEFF Research Database (Denmark)

    Rostgaard, Carsten; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer

    2010-01-01

    We calculate single-particle excitation energies for a series of 34 molecules using fully self-consistent GW, one-shot G0W0, Hartree-Fock (HF), and hybrid density-functional theory (DFT). All calculations are performed within the projector-augmented wave method using a basis set of Wannier...... functions augmented by numerical atomic orbitals. The GW self-energy is calculated on the real frequency axis including its full frequency dependence and off-diagonal matrix elements. The mean absolute error of the ionization potential (IP) with respect to experiment is found to be 4.4, 2.6, 0.8, 0.4, and 0...

  7. State-of-the-art for multiconfiguration Dirac-Fock calculations

    International Nuclear Information System (INIS)

    Desclaux, J.P.

    1981-01-01

    The approximations involved in almost all relativistic calculations are analyzed and one of the most advanced methods, the multiconfiguration Dirac-Fock (MCDF) one, available to carry out high quality atomic calculations for bound states is discussed

  8. Combining density functional and incremental post-Hartree-Fock approaches for van der Waals dominated adsorbate-surface interactions: Ag{sub 2}/graphene

    Energy Technology Data Exchange (ETDEWEB)

    Lara-Castells, María Pilar de, E-mail: Pilar.deLara.Castells@csic.es [Instituto de Física Fundamental (C.S.I.C.), Serrano 123, E-28006 Madrid (Spain); Mitrushchenkov, Alexander O. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France); Stoll, Hermann [Institut für Theoretische Chemie, Universität Stuttgart, D-70550 Stuttgart (Germany)

    2015-09-14

    A combined density functional (DFT) and incremental post-Hartree-Fock (post-HF) approach, proven earlier to calculate He-surface potential energy surfaces [de Lara-Castells et al., J. Chem. Phys. 141, 151102 (2014)], is applied to describe the van der Waals dominated Ag{sub 2}/graphene interaction. It extends the dispersionless density functional theory developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] by including periodic boundary conditions while the dispersion is parametrized via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. Starting with the elementary cluster unit of the target surface (benzene), continuing through the realistic cluster model (coronene), and ending with the periodic model of the extended system, modern ab initio methodologies for intermolecular interactions as well as state-of-the-art van der Waals-corrected density functional-based approaches are put together both to assess the accuracy of the composite scheme and to better characterize the Ag{sub 2}/graphene interaction. The present work illustrates how the combination of DFT and post-HF perspectives may be efficient to design simple and reliable ab initio-based schemes in extended systems for surface science applications.

  9. A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems

    Science.gov (United States)

    Kruse, Holger; Grimme, Stefan

    2012-04-01

    A semi-empirical counterpoise-type correction for basis set superposition error (BSSE) in molecular systems is presented. An atom pair-wise potential corrects for the inter- and intra-molecular BSSE in supermolecular Hartree-Fock (HF) or density functional theory (DFT) calculations. This geometrical counterpoise (gCP) denoted scheme depends only on the molecular geometry, i.e., no input from the electronic wave-function is required and hence is applicable to molecules with ten thousands of atoms. The four necessary parameters have been determined by a fit to standard Boys and Bernadi counterpoise corrections for Hobza's S66×8 set of non-covalently bound complexes (528 data points). The method's target are small basis sets (e.g., minimal, split-valence, 6-31G*), but reliable results are also obtained for larger triple-ζ sets. The intermolecular BSSE is calculated by gCP within a typical error of 10%-30% that proves sufficient in many practical applications. The approach is suggested as a quantitative correction in production work and can also be routinely applied to estimate the magnitude of the BSSE beforehand. The applicability for biomolecules as the primary target is tested for the crambin protein, where gCP removes intramolecular BSSE effectively and yields conformational energies comparable to def2-TZVP basis results. Good mutual agreement is also found with Jensen's ACP(4) scheme, estimating the intramolecular BSSE in the phenylalanine-glycine-phenylalanine tripeptide, for which also a relaxed rotational energy profile is presented. A variety of minimal and double-ζ basis sets combined with gCP and the dispersion corrections DFT-D3 and DFT-NL are successfully benchmarked on the S22 and S66 sets of non-covalent interactions. Outstanding performance with a mean absolute deviation (MAD) of 0.51 kcal/mol (0.38 kcal/mol after D3-refit) is obtained at the gCP-corrected HF-D3/(minimal basis) level for the S66 benchmark. The gCP-corrected B3LYP-D3/6-31G* model

  10. A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems.

    Science.gov (United States)

    Kruse, Holger; Grimme, Stefan

    2012-04-21

    A semi-empirical counterpoise-type correction for basis set superposition error (BSSE) in molecular systems is presented. An atom pair-wise potential corrects for the inter- and intra-molecular BSSE in supermolecular Hartree-Fock (HF) or density functional theory (DFT) calculations. This geometrical counterpoise (gCP) denoted scheme depends only on the molecular geometry, i.e., no input from the electronic wave-function is required and hence is applicable to molecules with ten thousands of atoms. The four necessary parameters have been determined by a fit to standard Boys and Bernadi counterpoise corrections for Hobza's S66×8 set of non-covalently bound complexes (528 data points). The method's target are small basis sets (e.g., minimal, split-valence, 6-31G*), but reliable results are also obtained for larger triple-ζ sets. The intermolecular BSSE is calculated by gCP within a typical error of 10%-30% that proves sufficient in many practical applications. The approach is suggested as a quantitative correction in production work and can also be routinely applied to estimate the magnitude of the BSSE beforehand. The applicability for biomolecules as the primary target is tested for the crambin protein, where gCP removes intramolecular BSSE effectively and yields conformational energies comparable to def2-TZVP basis results. Good mutual agreement is also found with Jensen's ACP(4) scheme, estimating the intramolecular BSSE in the phenylalanine-glycine-phenylalanine tripeptide, for which also a relaxed rotational energy profile is presented. A variety of minimal and double-ζ basis sets combined with gCP and the dispersion corrections DFT-D3 and DFT-NL are successfully benchmarked on the S22 and S66 sets of non-covalent interactions. Outstanding performance with a mean absolute deviation (MAD) of 0.51 kcal/mol (0.38 kcal/mol after D3-refit) is obtained at the gCP-corrected HF-D3/(minimal basis) level for the S66 benchmark. The gCP-corrected B3LYP-D3/6-31G* model

  11. Ab Initio Calculations of Oxosulfatovanadates

    DEFF Research Database (Denmark)

    Frøberg, Torben; Johansen, Helge

    1996-01-01

    Restricted Hartree-Fock and multi-configurational self-consistent-field calculations together with secondorder perturbation theory have been used to study the geometry, the electron density, and the electronicspectrum of (VO2SO4)-. A bidentate sulphate attachment to vanadium was found to be stabl...

  12. Some aspects of nuclear dynamics

    International Nuclear Information System (INIS)

    Gregoire, C.

    1987-01-01

    First the BBGKY hierarchy of equations is presented; the method developed here lies on a reduction procedure of a many body density distribution function. From the equations, Hartree and Hartree-Fock approximations are deduced, and time dependent Hartree-Fock equation. Then two derivations of a nuclear reaction kinetic equation are presented: the Woldmann-Snider equation and the Botermans-Malfliet equation. The Wigner transformation is used and the Landau-Vlasov equation is studied. (Or Vlasov-Uehling-Uhlenbeck or Boltzmann-Uehling-Uhlenbeck equation). Keypoints of approximate solutions are mentioned. Simulation calculations of phenomenological collisions are shown. Then dynamics of heavy ion reactions is studied from results presented

  13. Comprehensive calculations of 4p and 4d lifetimes for the Cu sequence

    International Nuclear Information System (INIS)

    Curtis, L.J.; Theodosiou, C.E.

    1989-01-01

    Computed lifetimes for the 4p 2 P/sub 1/2/, 4p 2 P/sub 3/2/, 4d 2 D/sub 3/2/, and 4d 2 D/sub 5/2/ levels in the copper isoelectronic sequence are presented for atomic numbers Z = 29--92. These calculations agree well with recent high-precision lifetime measurements, conflict with the isoelectronic trend of single-configuration Dirac-Fock calculations, and agree at lower Z with the multiplet values of multiconfiguration Hartree-Fock calculations using experimental transition energies. Our calculations involve the inclusion of experimental energy-level data and the use of a Hartree-Slater potential to represent the ionic core. It is found that the core-polarization effects are significant and must be included to obtain agreement with experiment, at least for the lower members of the isoelectronic sequence. As part of the study, we have combined semiempirical parametrizations of the existing database with Dirac-Fock calculations to produce a set of values for the ionization potentials and the 4p and 4d excitation energies for all stable ions in this sequence

  14. Theoretical calculations of electron-impact and radiative processes in atoms

    International Nuclear Information System (INIS)

    Pindzola, M.S.

    1975-01-01

    Electron-impact and radiative processes in atoms are investigated with particular attention paid to the effects of electron correlations. Using the optical potential method, the cross section for the elastic scattering of electrons by the neutral argon atom is calculated from 0 to 300 eV. Corrections to the Hartree--Fock cross section are obtained from a many-particle perturbation expansion. The effects of electron correlations are found to be quite significant at low energy. The optical potential results are compared with a polarized orbital calculation, the Born approximation and experiment. The 2s and 2p excitation cross sections for electron scattering on hydrogen are calculated by two similar methods. The distorted wave method is applied and the effect of calculating the outgoing scattered electron in the potential of the initial or final state is investigated. The imaginary part of the optical potential is also calculated in lowest order by the use of many-body diagrams. The subshell photoionization cross sections in argon are calculated using the acceleration, length and velocity forms of the dipole operator. First order electron correlation corrections to the Hartree--Fock approximation are obtained through the use of many-body perturbation theory. Also investigated is the two photon ionization cross section for the neutral argon atom. A double perturbation expansion in the Coulomb correlations and the atom-radiation field interaction is made. Contributions from intermediate states are obtained by direct summation over Hartree--Fock bound and continuum single particle states. The effects of electron correlations and photon radiative corrections are investigated

  15. 29Si NMR Chemical Shift Calculation for Silicate Species by Gaussian Software

    Science.gov (United States)

    Azizi, S. N.; Rostami, A. A.; Godarzian, A.

    2005-05-01

    Hartree-Fock self-consistent-field (HF-SCF) theory and the Gauge-including atomic orbital (GIAO) methods are used in the calculation of 29Si NMR chemical shifts for ABOUT 90 units of 19 compounds of various silicate species of precursors for zeolites. Calculations have been performed at geometries optimized at the AM1 semi-empirical method. The GIAO-HF-SCF calculations were carried out with using three different basis sets: 6-31G*, 6-31+G** and 6-311+G(2d,p). To demonstrate the quality of the calculations the calculated chemical shifts, δ, were compared with the corresponding experimental values for the compounds in study. The results, especially with 6-31+g** are in excellent agreement with experimental values. The calculated chemical shifts, in practical point of view, appear to be accurate enough to aid in experimental peak assignments. The difference between the experimental and calculated 29Si chemical shift values not only depends on the Qn units but also it seems that basis set effects and the level of theory is more important. For the series of molecules studied here, the standard deviations and mean absolute errors for 29Si chemical shifts relative to TMS determined using Hartree--Fock 6-31+G** basis is nearly in all cases smaller than the errors for shifts determined using HF/6-311+G(2d,p).

  16. Tensor force effect on the evolution of single-particle energies in some isotopic chains in the relativistic Hartree-Fock approximation

    Science.gov (United States)

    López-Quelle, M.; Marcos, S.; Niembro, R.; Savushkin, L. N.

    2018-03-01

    Within a nonlinear relativistic Hartree-Fock approximation combined with the BCS method, we study the effect of the nucleon-nucleon tensor force of the π-exchange potential on the spin- and pseudospin-orbit doublets along the Ca and Sn isotopic chains. We show how the self-consistent tensor force effect modifies the splitting of both kinds of doublets in an interdependent form, leading, quite generally, to opposite effects in the accomplishment of the spin and pseudospin symmetries (the one is restored, the other one deteriorates and vice versa). The ordering of the single-particle energy levels is crucial to this respect. Also, we observe a mutual dependence on the evolution of the shell closure gap Z = 50 and the energy band outside the core, along the Sn chain, as due to the tensor force. In fact, when the shell gap is quenched the outside energy band is enlarged, and vice versa. A reduction of the strength of the pion tensor force with respect to its experimental value from the nucleon-nucleon scattering is needed to get results closer to the experiment. Pairing correlations act to some extent in the opposite direction of the tensor term of the one-pion-exchange force.

  17. Use of results from microscopic methods in optical model calculations

    International Nuclear Information System (INIS)

    Lagrange, C.

    1985-11-01

    A concept of vectorization for coupled-channel programs based upon conventional methods is first presented. This has been implanted in our program for its use on the CRAY-1 computer. In a second part we investigate the capabilities of a semi-microscopic optical model involving fewer adjustable parameters than phenomenological ones. The two main ingredients of our calculations are, for spherical or well-deformed nuclei, the microscopic optical-model calculations of Jeukenne, Lejeune and Mahaux and nuclear densities from Hartree-Fock-Bogoliubov calculations using the density-dependent force D1. For transitional nuclei deformation-dependent nuclear structure wave functions are employed to weigh the scattering potentials for different shapes and channels [fr

  18. Transition mechanism of nuclear phase

    International Nuclear Information System (INIS)

    Kubo, T.; Sakata, F.; Marumori, T.; Iwasawa, K.; Hashimoto, Y.

    1993-01-01

    A general theory capable of exploring the microscopic structure of the time-dependent Hartree-Fock (TDHF) manifold is summarized. It is discussed that each stable fixed point in the TDHF-manifold represents a dynamical stable mean-field which is not reached by means of the conventional static Hartree-Fock (HF) or constrained Hartree-Fock (CHF) theories. A feasibility of the theory is shown by applying it to a simple model Hamiltonian. (orig.)

  19. Roothaan's approach to solve the Hartree-Fock equations for atoms confined by soft walls: Basis set with correct asymptotic behavior.

    Science.gov (United States)

    Rodriguez-Bautista, Mariano; Díaz-García, Cecilia; Navarrete-López, Alejandra M; Vargas, Rubicelia; Garza, Jorge

    2015-07-21

    In this report, we use a new basis set for Hartree-Fock calculations related to many-electron atoms confined by soft walls. One- and two-electron integrals were programmed in a code based in parallel programming techniques. The results obtained with this proposal for hydrogen and helium atoms were contrasted with other proposals to study just one and two electron confined atoms, where we have reproduced or improved the results previously reported. Usually, an atom enclosed by hard walls has been used as a model to study confinement effects on orbital energies, the main conclusion reached by this model is that orbital energies always go up when the confinement radius is reduced. However, such an observation is not necessarily valid for atoms confined by penetrable walls. The main reason behind this result is that for atoms with large polarizability, like beryllium or potassium, external orbitals are delocalized when the confinement is imposed and consequently, the internal orbitals behave as if they were in an ionized atom. Naturally, the shell structure of these atoms is modified drastically when they are confined. The delocalization was an argument proposed for atoms confined by hard walls, but it was never verified. In this work, the confinement imposed by soft walls allows to analyze the delocalization concept in many-electron atoms.

  20. Symplectic manifolds, coadjoint orbits, and Mean Field Theory

    International Nuclear Information System (INIS)

    Rosensteel, G.

    1986-01-01

    Mean field theory is given a geometrical interpretation as a Hamiltonian dynamical system. The Hartree-Fock phase space is the Grassmann manifold, a symplectic submanifold of the projective space of the full many-fermion Hilbert space. The integral curves of the Hartree-Fock vector field are the time-dependent Hartree-Fock solutions, while the critical points of the energy function are the time-independent states. The mean field theory is generalized beyond determinants to coadjoint orbit spaces of the unitary group; the Grassmann variety is the minimal coadjoint orbit

  1. Stochastic TDHF and the Boltzman-Langevin equation

    International Nuclear Information System (INIS)

    Suraud, E.; Reinhard, P.G.

    1991-01-01

    Outgoing from a time-dependent theory of correlations, we present a stochastic differential equation for the propagation of ensembles of Slater determinants, called Stochastic Time-Dependent Hartree-Fock (Stochastic TDHF). These ensembles are allowed to develop large fluctuations in the Hartree-Fock mean fields. An alternative stochastic differential equation, the Boltzmann-Langevin equation, can be derived from Stochastic TDHF by averaging over subensembles with small fluctuations

  2. Inner-shell correlations and Sturm expansions in coupled perturbation calculations of atomic systems

    International Nuclear Information System (INIS)

    Sherstyuk, A.I.; Solov'eva, G.S.

    1995-01-01

    It is shown that virtual Hartree-Fock orbitals in Sturm-type expansions can be used to calculate the response of atomic systems to an external field within the framework of the coupled perturbation theory with allowance for correlation effects. The corrected electron-electron interaction in a system with field-distorted orbitals is considered by adding a nonlocal potential to a one-electron Hartree-Fock operator within each group of equivalent elections. The remaining correlation effects are calculated by solving a system of equations for corrections to the radial functions. The system is solved iteratively, with each subsequent iteration corresponding to a correction of an increasingly higher order in the electron--electron interaction. The explicit expression derived for the polarizability contains one-and two-particle radial integrals of the Sturm functions

  3. The method of local increments for the calculation of adsorption energies of atoms and small molecules on solid surfaces. Part I. A single Cu atom on the polar surfaces of ZnO.

    Science.gov (United States)

    Schmitt, Ilka; Fink, Karin; Staemmler, Volker

    2009-12-21

    The method of local increments is used in connection with the supermolecule approach and an embedded cluster model to calculate the adsorption energy of single Cu atoms at different adsorption sites at the polar surfaces of ZnO. Hartree-Fock calculations for the full system, adsorbed atom and solid surface, and for the fragments are the first step in this approach. In the present study, restricted open-shell Hartree-Fock (ROHF) calculations are performed since the Cu atom possesses a singly-occupied 4s orbital. The occupied Hartree-Fock orbitals are then localized by means of the Foster-Boys localization procedure. The correlation energies are expanded into a series of many-body increments which are evaluated separately and independently. In this way, the very time-consuming treatment of large systems is replaced with a series of much faster calculations for small subunits. In the present application, these subunits consist of the orbitals localized at the different atoms. Three adsorption situations with rather different bonding characteristics have been studied: a Cu atom atop a threefold-coordinated O atom of an embedded Zn(4)O(4) cluster, a Cu atom in an O vacancy site at the O-terminated ZnO(000-1) surface, and a Cu atom in a Zn vacancy site at the Zn-terminated ZnO(0001) surface. The following properties are analyzed in detail: convergence of the many-body expansion, contributions of the different n-body increments to the adsorption energy, treatment of the singly-occupied orbital as "localized" or "delocalized". Big savings in computer time can be achieved by this approach, particularly if only the localized orbitals in the individual increment under consideration are described by a large correlation adapted basis set, while all other orbitals are treated by a medium-size Hartree-Fock-type basis set. In this way, the method of local increments is a powerful alternative to the widely used methods like DFT or RI-MP2.

  4. Quantal theory of heavy ion scattering in a three-dimensional TDHF model

    International Nuclear Information System (INIS)

    Cusson, R.Y.

    1977-01-01

    The fast Fourier transform and the predictor corrector method are used to solve the time-dependent Hartree-Fock equations. The equations are then used to calculate the electric scattering of heavy ions, concentrating on 16 O + 16 O and 14 N + 12 C

  5. Comparison between different computational schemes for variational calculations in nuclear structure

    International Nuclear Information System (INIS)

    Puddu, G.

    2009-01-01

    We compare several iteration methods for angular-momentum- and parity-projected Hartree-Fock calculations. We used the Anderson update, the modified Broyden method, newly introduced in nuclear-structure calculations, and variants of the Broyden-Fletcher-Goldhaber-Shanno methods (BFGS). We performed ground-state calculations for 18 C and 6 Li using the two-body Hamiltonian obtained from the CDBonn-2000 potential via the Lee-Suzuki renormalization method. We found that BFGS methods are superior to both the Anderson update and to the modified Broyden method. In the case of 6 Li we found that the Anderson update and modified Broyden method do not converge to the angular-momentum- and parity-projected Hartree-Fock minimum. The reason is traced back to the lack of a mechanism that guarantees a decrease of the energy from one iteration to the next and to the fact that these methods guarantee a stationary solution rather than a minimum of the energy. (orig.)

  6. Roothaan’s approach to solve the Hartree-Fock equations for atoms confined by soft walls: Basis set with correct asymptotic behavior

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Bautista, Mariano; Díaz-García, Cecilia; Navarrete-López, Alejandra M.; Vargas, Rubicelia; Garza, Jorge, E-mail: jgo@xanum.uam.mx [Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa C. P. 09340, México D. F., México (Mexico)

    2015-07-21

    In this report, we use a new basis set for Hartree-Fock calculations related to many-electron atoms confined by soft walls. One- and two-electron integrals were programmed in a code based in parallel programming techniques. The results obtained with this proposal for hydrogen and helium atoms were contrasted with other proposals to study just one and two electron confined atoms, where we have reproduced or improved the results previously reported. Usually, an atom enclosed by hard walls has been used as a model to study confinement effects on orbital energies, the main conclusion reached by this model is that orbital energies always go up when the confinement radius is reduced. However, such an observation is not necessarily valid for atoms confined by penetrable walls. The main reason behind this result is that for atoms with large polarizability, like beryllium or potassium, external orbitals are delocalized when the confinement is imposed and consequently, the internal orbitals behave as if they were in an ionized atom. Naturally, the shell structure of these atoms is modified drastically when they are confined. The delocalization was an argument proposed for atoms confined by hard walls, but it was never verified. In this work, the confinement imposed by soft walls allows to analyze the delocalization concept in many-electron atoms.

  7. Self-consistent green function calculations for isospin asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Mansour, Hesham; Gad, Khalaf; Hassaneen, Khaled S.A.

    2010-01-01

    The one-body potentials for protons and neutrons are obtained from the self-consistent Green-function calculations of asymmetric nuclear matter, in particular their dependence on the degree of proton/neutron asymmetry. Results of the binding energy per nucleon as a function of the density and asymmetry parameter are presented for the self-consistent Green function approach using the CD-Bonn potential. For the sake of comparison, the same calculations are performed using the Brueckner-Hartree-Fock approximation. The contribution of the hole-hole terms leads to a repulsive contribution to the energy per nucleon which increases with the nuclear density. The incompressibility for asymmetric nuclear matter has been also investigated in the framework of the self-consistent Green-function approach using the CD-Bonn potential. The behavior of the incompressibility is studied for different values of the nuclear density and the neutron excess parameter. The nuclear symmetry potential at fixed nuclear density is also calculated and its value decreases with increasing the nucleon energy. In particular, the nuclear symmetry potential at saturation density changes from positive to negative values at nucleon kinetic energy of about 200 MeV. For the sake of comparison, the same calculations are performed using the Brueckner-Hartree-Fock approximation. The proton/neutron effective mass splitting in neutron-rich matter has been studied. The predicted isospin splitting of the proton/neutron effective mass splitting in neutron-rich matter is such that m n * ≥ m p * . (author)

  8. Pseudopotentials for quantum-Monte-Carlo-calculations

    International Nuclear Information System (INIS)

    Burkatzki, Mark Thomas

    2008-01-01

    The author presents scalar-relativistic energy-consistent Hartree-Fock pseudopotentials for the main-group and 3d-transition-metal elements. The pseudopotentials do not exhibit a singularity at the nucleus and are therefore suitable for quantum Monte Carlo (QMC) calculations. The author demonstrates their transferability through extensive benchmark calculations of atomic excitation spectra as well as molecular properties. In particular, the author computes the vibrational frequencies and binding energies of 26 first- and second-row diatomic molecules using post Hartree-Fock methods, finding excellent agreement with the corresponding all-electron values. The author shows that the presented pseudopotentials give superior accuracy than other existing pseudopotentials constructed specifically for QMC. The localization error and the efficiency in QMC are discussed. The author also presents QMC calculations for selected atomic and diatomic 3d-transitionmetal systems. Finally, valence basis sets of different sizes (VnZ with n=D,T,Q,5 for 1st and 2nd row; with n=D,T for 3rd to 5th row; with n=D,T,Q for the 3d transition metals) optimized for the pseudopotentials are presented. (orig.)

  9. A microscopic calculation of potentials and inertia parameters for heavy-ion collisions

    International Nuclear Information System (INIS)

    Flocard, H.; Vautherin, D.; Heenen, P.H.

    1979-09-01

    Within the adiabatic time dependent Hartree-Fock formalism, the potential V(R) and the inertia parameter M(R) corresponding to the symmetric heavy-ion collisions 12 C+ 12 C and 16 O+ 16 O are computed. It is found that the mass M(R) exhibits very sharp peaks. These peaks are shown to provide a plausible mechanism to explain the occurrence of quasi-molecular resonances

  10. The molecular structure and vibrational spectra of N-(2,2-diphenylacetyl)- N'-(naphthalen-1yl)-thiourea by Hartree-Fock and density functional methods

    Science.gov (United States)

    Arslan, Hakan; Mansuroglu, Demet Sezgin; VanDerveer, Don; Binzet, Gun

    2009-04-01

    N-(2,2-Diphenylacetyl)- N'-(naphthalen-1yl)-thiourea (PANT) has been synthesized and characterized by elemental analysis, IR spectroscopy and 1H NMR spectroscopy. The crystal and molecular structure of the title compound has been determined from single crystal X-ray diffraction data. It crystallizes in the triclinic space group P-1, Z = 2 with a = 10.284(2) Å, b = 10.790(2) Å, c = 11.305(2) Å, α = 64.92(3)°, β = 89.88(3)°, γ = 62.99(3)°, V = 983.7(3) Å 3 and Dcalc = 1.339 Mg/m 3. The molecular structure, vibrational frequencies and infrared intensities of PANT were calculated by the Hartree-Fock and density functional theory methods (BLYP and B3LYP) using the 6-31G* basis set. The calculated geometric parameters were compared to the corresponding X-ray structure of the title compound. We obtained 22 stable conformers for the title compound; however Conformer 1 is approximately 9.53 kcal/mol more stable than Conformer 22. The comparison of the theoretical and experimental geometry of the title compound shows that the X-ray parameters fairly well reproduce the geometry of Conformer 17. The harmonic vibrations computed for this compound by the B3LYP/6-31G* method are in good agreement with the observed IR spectral data. Theoretical vibrational spectra of the title compound were interpreted by means of PEDs using the VEDA 4 program. A general better performance of the investigated methods was calculated by PAVF 1.0 program.

  11. Computational strong-field quantum dynamics. Intense light-matter interactions

    International Nuclear Information System (INIS)

    Bauer, Dieter

    2017-01-01

    This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time dependent Schroedinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.

  12. Computational strong-field quantum dynamics. Intense light-matter interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Dieter (ed.) [Rostock Univ. (Germany). Inst. fuer Physik

    2017-09-01

    This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time dependent Schroedinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.

  13. Computational strong-field quantum dynamics intense light-matter interactions

    CERN Document Server

    2017-01-01

    This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time-dependent Schrödinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi-configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.

  14. Self-consistent RPA and the time-dependent density matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Schuck, P. [Institut de Physique Nucleaire, Orsay (France); CNRS et Universite Joseph Fourier, Laboratoire de Physique et Modelisation des Milieux Condenses, Grenoble (France); Tohyama, M. [Kyorin University School of Medicine, Mitaka, Tokyo (Japan)

    2016-10-15

    The time-dependent density matrix (TDDM) or BBGKY (Bogoliubov, Born, Green, Kirkwood, Yvon) approach is decoupled and closed at the three-body level in finding a natural representation of the latter in terms of a quadratic form of two-body correlation functions. In the small amplitude limit an extended RPA coupled to an also extended second RPA is obtained. Since including two-body correlations means that the ground state cannot be a Hartree-Fock state, naturally the corresponding RPA is upgraded to Self-Consistent RPA (SCRPA) which was introduced independently earlier and which is built on a correlated ground state. SCRPA conserves all the properties of standard RPA. Applications to the exactly solvable Lipkin and the 1D Hubbard models show good performances of SCRPA and TDDM. (orig.)

  15. Time independent mean-field theory

    International Nuclear Information System (INIS)

    Negele, J.W.

    1980-02-01

    The physical and theoretical motivations for the time-dependent mean-field theory are presented, and the successes and limitations of the time-dependent Hartree-Fock initial-vaue problem are reviewed. New theoretical developments are described in the treatment of two-body correlations and the formulation of a quantum mean-field theory of large-amplitude collective motion and tunneling decay. Finally, the mean-field theory is used to obtain new insights into the phenomenon of pion condensation in finite nuclei. 18 figures

  16. $A$--Dependence of $\\Lambda\\Lambda$ Bond Energies in Double---$\\Lambda$ Hypernuclei

    OpenAIRE

    Lanskoy, D. E.; Lurie, Yu. A.; Shirokov, A. M.

    1995-01-01

    The $A$-dependence of the bond energy $\\Delta B_{\\Lambda\\Lambda}$ of the ${\\Lambda\\Lambda}$ hypernuclear ground states is calculated in a three-body ${\\Lambda + \\Lambda + {^{A}Z}}$ model and in the Skyrme-Hartree-Fock approach. Various ${\\Lambda\\Lambda}$ and $\\Lambda$-nucleus or ${\\Lambda N}$ potentials are used and the sensitivity of $\\Delta B_{\\Lambda\\Lambda}$ to the interactions is discussed. It is shown that in medium and heavy ${\\Lambda\\Lambda}$ hypernuclei, $\\Delta B_{\\Lambda\\Lambda}$ i...

  17. A full-dimensional multilayer multiconfiguration time-dependent Hartree study on the ultraviolet absorption spectrum of formaldehyde oxide

    International Nuclear Information System (INIS)

    Meng, Qingyong; Meyer, Hans-Dieter

    2014-01-01

    Employing the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method in conjunction with the multistate multimode vibronic coupling Hamiltonian (MMVCH) model, we perform a full dimensional (9D) quantum dynamical study on the simplest Criegee intermediate, formaldehyde oxide, in five lower-lying singlet electronic states. The ultraviolet (UV) spectrum is then simulated by a Fourier transform of the auto-correlation function. The MMVCH model is built based on extensive MRCI(8e,8o)/aug-cc-pVTZ calculations. To ensure a fast convergence of the final calculations, a large number of ML-MCTDH test calculations is performed to find an appropriate multilayer separations (ML-trees) of the ML-MCTDH nuclear wave functions, and the dynamical calculations are carefully checked to ensure that the calculations are well converged. To compare the computational efficiency, standard MCTDH simulations using the same Hamiltonian are also performed. A comparison of the MCTDH and ML-MCTDH calculations shows that even for the present not-too-large system (9D here) the ML-MCTDH calculations can save a considerable amount of computational resources while producing identical spectra as the MCTDH calculations. Furthermore, the present theoretical B ~ 1 A ′ ←X ~ 1 A ′ UV spectral band and the corresponding experimental measurements [J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc. 134, 20045–20048 (2012); L. Sheps, J. Phys. Chem. Lett. 4, 4201–4205 (2013); W.-L. Ting, Y.-H. Chen, W. Chao, M. C. Smith, and J. J.-M. Lin, Phys. Chem. Chem. Phys. 16, 10438–10443 (2014)] are discussed. To the best of our knowledge, this is the first theoretical UV spectrum simulated for this molecule including nuclear motion beyond an adiabatic harmonic approximation

  18. Electronic structure investigations of 4-aminophthal hydrazide by UV-visible, NMR spectral studies and HOMO-LUMO analysis by ab initio and DFT calculations.

    Science.gov (United States)

    Sambathkumar, K; Jeyavijayan, S; Arivazhagan, M

    2015-08-05

    Combined experimental and theoretical studies were conducted on the molecular structure and vibrational spectra of 4-AminoPhthalhydrazide (APH). The FT-IR and FT-Raman spectra of APH were recorded in the solid phase. The molecular geometry and vibrational frequencies of APH in the ground state have been calculated by using the ab initio HF (Hartree-Fock) and density functional methods (B3LYP) invoking 6-311+G(d,p) basis set. The optimized geometric bond lengths and bond angles obtained by HF and B3LYP method show best agreement with the experimental values. Comparison of the observed fundamental vibrational frequencies of APH with calculated results by HF and density functional methods indicates that B3LYP is superior to the scaled Hartree-Fock approach for molecular vibrational problems. The difference between the observed and scaled wave number values of most of the fundamentals is very small. A detailed interpretation of the NMR spectra of APH was also reported. The theoretical spectrograms for infrared and Raman spectra of the title molecule have been constructed. UV-vis spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies, were performed by time dependent density functional theory (TD-DFT) approach. Finally the calculations results were applied to simulated infrared and Raman spectra of the title compound which show good agreement with observed spectra. And the temperature dependence of the thermodynamic properties of constant pressure (Cp), entropy (S) and enthalpy change (ΔH0→T) for APH were also determined. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Ab initio calculation atomics ground state wave function for interactions Ion- Atom

    International Nuclear Information System (INIS)

    Shojaee, F.; Bolori zadeh, M. A.

    2007-01-01

    Ab initio calculation atomics ground state wave function for interactions Ion- Atom Atomic wave function expressed in a Slater - type basis obtained within Roothaan- Hartree - Fock for the ground state of the atoms He through B. The total energy is given for each atom.

  20. Comparative study of the requantization of the time-dependent mean field for the dynamics of nuclear pairing

    Science.gov (United States)

    Ni, Fang; Nakatsukasa, Takashi

    2018-04-01

    To describe quantal collective phenomena, it is useful to requantize the time-dependent mean-field dynamics. We study the time-dependent Hartree-Fock-Bogoliubov (TDHFB) theory for the two-level pairing Hamiltonian, and compare results of different quantization methods. The one constructing microscopic wave functions, using the TDHFB trajectories fulfilling the Einstein-Brillouin-Keller quantization condition, turns out to be the most accurate. The method is based on the stationary-phase approximation to the path integral. We also examine the performance of the collective model which assumes that the pairing gap parameter is the collective coordinate. The applicability of the collective model is limited for the nuclear pairing with a small number of single-particle levels, because the pairing gap parameter represents only a half of the pairing collective space.

  1. Finite-temperature coupled-cluster, many-body perturbation, and restricted and unrestricted Hartree-Fock study on one-dimensional solids: Luttinger liquids, Peierls transitions, and spin- and charge-density waves.

    Science.gov (United States)

    Hermes, Matthew R; Hirata, So

    2015-09-14

    One-dimensional (1D) solids exhibit a number of striking electronic structures including charge-density wave (CDW) and spin-density wave (SDW). Also, the Peierls theorem states that at zero temperature, a 1D system predicted by simple band theory to be a metal will spontaneously dimerize and open a finite fundamental bandgap, while at higher temperatures, it will assume the equidistant geometry with zero bandgap (a Peierls transition). We computationally study these unique electronic structures and transition in polyyne and all-trans polyacetylene using finite-temperature generalizations of ab initio spin-unrestricted Hartree-Fock (UHF) and spin-restricted coupled-cluster doubles (CCD) theories, extending upon previous work [He et al., J. Chem. Phys. 140, 024702 (2014)] that is based on spin-restricted Hartree-Fock (RHF) and second-order many-body perturbation (MP2) theories. Unlike RHF, UHF can predict SDW as well as CDW and metallic states, and unlike MP2, CCD does not diverge even if the underlying RHF reference wave function is metallic. UHF predicts a gapped SDW state with no dimerization at low temperatures, which gradually becomes metallic as the temperature is raised. CCD, meanwhile, confirms that electron correlation lowers the Peierls transition temperature. Furthermore, we show that the results from all theories for both polymers are subject to a unified interpretation in terms of the UHF solutions to the Hubbard-Peierls model using different values of the electron-electron interaction strength, U/t, in its Hamiltonian. The CCD wave function is shown to encompass the form of the exact solution of the Tomonaga-Luttinger model and is thus expected to describe accurately the electronic structure of Luttinger liquids.

  2. Time-dependent broken-symmetry density functional theory simulation of the optical response of entangled paramagnetic defects: Color centers in lithium fluoride

    Science.gov (United States)

    Janesko, Benjamin G.

    2018-02-01

    Parameter-free atomistic simulations of entangled solid-state paramagnetic defects may aid in the rational design of devices for quantum information science. This work applies time-dependent density functional theory (TDDFT) embedded-cluster simulations to a prototype entangled-defect system, namely two adjacent singlet-coupled F color centers in lithium fluoride. TDDFT calculations accurately reproduce the experimental visible absorption of both isolated and coupled F centers. The most accurate results are obtained by combining spin symmetry breaking to simulate strong correlation, a large fraction of exact (Hartree-Fock-like) exchange to minimize the defect electrons' self-interaction error, and a standard semilocal approximation for dynamical correlations between the defect electrons and the surrounding ionic lattice. These results motivate application of two-reference correlated ab initio approximations to the M-center, and application of TDDFT in parameter-free simulations of more complex entangled paramagnetic defect architectures.

  3. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi

    International Nuclear Information System (INIS)

    Wadt, W.R.; Hay, P.J.

    1985-01-01

    A consistent set of ab initio effective core potentials (ECP) has been generated for the main group elements from Na to Bi using the procedure originally developed by Kahn. The ECP's are derived from all-electron numerical Hartree--Fock atomic wave functions and fit to analytical representations for use in molecular calculations. For Rb to Bi the ECP's are generated from the relativistic Hartree--Fock atomic wave functions of Cowan which incorporate the Darwin and mass--velocity terms. Energy-optimized valence basis sets of (3s3p) primitive Gaussians are presented for use with the ECP's. Comparisons between all-electron and valence-electron ECP calculations are presented for NaF, NaCl, Cl 2 , Cl 2 - , Br 2 , Br 2 - , and Xe 2 + . The results show that the average errors introduced by the ECP's are generally only a few percent

  4. Analytical relativistic self-consistent-field calculations for atoms

    International Nuclear Information System (INIS)

    Barthelat, J.C.; Pelissier, M.; Durand, P.

    1980-01-01

    A new second-order representation of the Dirac equation is presented. This representation which is exact for a hydrogen atom is applied to approximate analytical self-consistent-field calculations for atoms. Results are given for the rare-gas atoms from helium to radon and for lead. The results compare favorably with numerical Dirac-Hartree-Fock solutions

  5. Gauge origin independent calculations of molecular magnetisabilities in relativistic four-component theory

    DEFF Research Database (Denmark)

    Iliaš, M.; Jensen, Hans Jørgen Aagaard; Bast, R.

    2013-01-01

    of the four-component relativistic linear response method at the self-consistent field single reference level. Benefits of employing the London atomic orbitals in relativistic calculations are illustrated with Hartree-Fock wave functions on the XF3 (X = N, P, As, Sb, Bi) series of molecules. Significantly...

  6. Effects of symmetry energy and momentum dependent interaction on low-energy reaction mechanisms

    Directory of Open Access Journals (Sweden)

    Zheng H.

    2016-01-01

    Full Text Available We study the dipole response associated with the Pygmy Dipole Resonance (PDR and the Isovector Giant Dipole Resonance (IVGDR, in connection with specific properties of the nuclear effective interaction (symmetry energy and momentum dependence, in the neutron-rich systems 68Ni, 132Sn and 208Pb. We perform our investigation within a microscopic transport model based on the Landau-Vlasov kinetic equation.We observe that the peak energies of PDR and IVGDR are shifted to higher values when employing momentum dependent interactions, with respect to the results obtained neglecting momentum dependence. The calculated energies are close to the experimental values and similar to the results obtained in Hartree-Fock (HF with Random Phase Approximation (RPA calculations.

  7. Hartree-Fock study of the Anderson metal-insulator transition in the presence of Coulomb interaction: Two types of mobility edges and their multifractal scaling exponents

    Science.gov (United States)

    Lee, Hyun-Jung; Kim, Ki-Seok

    2018-04-01

    We investigate the role of Coulomb interaction in the multifractality of Anderson metal-insulator transition, where the Coulomb interaction is treated within the Hartree-Fock approximation, but disorder effects are taken into account exactly. An innovative technical aspect in our simulation is to utilize the Ewald-sum technique, which allows us to introduce the long-range nature of the Coulomb interaction into Hartree-Fock self-consistent equations of order parameters more accurately. This numerical simulation reproduces the Altshuler-Aronov correction in a metallic state and the Efros-Shklovskii pseudogap in an insulating phase, where the density of states ρ (ω ) is evaluated in three dimensions. Approaching the quantum critical point of a metal-insulator transition from either the metallic or insulting phase, we find that the density of states is given by ρ (ω ) ˜|ω| 1 /2 , which determines one critical exponent of the McMillan-Shklovskii scaling theory. Our main result is to evaluate the eigenfunction multifractal scaling exponent αq, given by the Legendre transformation of the fractal dimension τq, which characterizes the scaling behavior of the inverse participation ratio with respect to the system size L . Our multifractal analysis leads us to identify two kinds of mobility edges, one of which occurs near the Fermi energy and the other of which appears at a high energy, where the density of states at the Fermi energy shows the Coulomb-gap feature. We observe that the multifractal exponent at the high-energy mobility edge remains to be almost identical to that of the Anderson localization transition in the absence of Coulomb interactions. On the other hand, we find that the multifractal exponent near the Fermi energy is more enhanced than that at the high-energy mobility edge, suspected to result from interaction effects. However, both the multifractal exponents do not change even if the strength of the Coulomb interaction varies. We also show that the

  8. Large-scale atomic calculations using variational methods

    International Nuclear Information System (INIS)

    Joensson, Per.

    1995-01-01

    Atomic properties, such as radiative lifetimes, hyperfine structures and isotope shift, have been studied both theoretically and experimentally. Computer programs which calculate these properties from multiconfiguration Hartree-Fock (MCHF) and configuration interaction (CI) wave functions have been developed and tested. To study relativistic effects, a program which calculates hyperfine structures from multiconfiguration Dirac-Fock (MCDF) wave functions has also been written. A new method of dealing with radial non-orthogonalities in transition matrix elements has been investigated. This method allows two separate orbital sets to be used for the initial and final states, respectively. It is shown that, once the usual orthogonality restrictions have been overcome, systematic MCHF calculations are able to predict oscillator strengths in light atoms with high accuracy. In connection with recent high-power laser experiments, time-dependent calculations of the atomic response to intense laser fields have been performed. Using the frozen-core approximation, where the atom is modeled as an active electron moving in the average field of the core electrons and the nucleus, the active electron has been propagated in time under the influence of the laser field. Radiative lifetimes and hyperfine structures of excited states in sodium and silver have been experimentally determined using time-resolved laser spectroscopy. By recording the fluorescence light decay following laser excitation in the vacuum ultraviolet spectral region, the radiative lifetimes and hyperfine structures of the 7p 2 P states in silver have been measured. The delayed-coincidence technique has been used to make very accurate measurements of the radiative lifetimes and hyperfine structures of the lowest 2P states in sodium and silver. 77 refs, 2 figs, 14 tabs

  9. Large-scale atomic calculations using variational methods

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, Per

    1995-01-01

    Atomic properties, such as radiative lifetimes, hyperfine structures and isotope shift, have been studied both theoretically and experimentally. Computer programs which calculate these properties from multiconfiguration Hartree-Fock (MCHF) and configuration interaction (CI) wave functions have been developed and tested. To study relativistic effects, a program which calculates hyperfine structures from multiconfiguration Dirac-Fock (MCDF) wave functions has also been written. A new method of dealing with radial non-orthogonalities in transition matrix elements has been investigated. This method allows two separate orbital sets to be used for the initial and final states, respectively. It is shown that, once the usual orthogonality restrictions have been overcome, systematic MCHF calculations are able to predict oscillator strengths in light atoms with high accuracy. In connection with recent high-power laser experiments, time-dependent calculations of the atomic response to intense laser fields have been performed. Using the frozen-core approximation, where the atom is modeled as an active electron moving in the average field of the core electrons and the nucleus, the active electron has been propagated in time under the influence of the laser field. Radiative lifetimes and hyperfine structures of excited states in sodium and silver have been experimentally determined using time-resolved laser spectroscopy. By recording the fluorescence light decay following laser excitation in the vacuum ultraviolet spectral region, the radiative lifetimes and hyperfine structures of the 7p{sup 2}P states in silver have been measured. The delayed-coincidence technique has been used to make very accurate measurements of the radiative lifetimes and hyperfine structures of the lowest 2P states in sodium and silver. 77 refs, 2 figs, 14 tabs.

  10. Assessing the role of Hartree-Fock exchange, correlation energy and long range corrections in evaluating ionization potential, and electron affinity in density functional theory.

    Science.gov (United States)

    Vikramaditya, Talapunur; Lin, Shiang-Tai

    2017-06-05

    Accurate determination of ionization potentials (IPs), electron affinities (EAs), fundamental gaps (FGs), and HOMO, LUMO energy levels of organic molecules play an important role in modeling and predicting the efficiencies of organic photovoltaics, OLEDs etc. In this work, we investigate the effects of Hartree Fock (HF) Exchange, correlation energy, and long range corrections in predicting IP and EA in Hybrid Functionals. We observe increase in percentage of HF exchange results in increase of IPs and decrease in EAs. Contrary to the general expectations inclusion of both HF exchange and correlation energy (from the second order perturbation theory MP2) leads to poor prediction. Range separated Hybrid Functionals are found to be more reliable among various DFT Functionals investigated. DFT Functionals predict accurate IPs whereas post HF methods predict accurate EAs. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. On the validity of microscopic calculations of double-quantum-dot spin qubits based on Fock-Darwin states

    Science.gov (United States)

    Chan, GuoXuan; Wang, Xin

    2018-04-01

    We consider two typical approximations that are used in the microscopic calculations of double-quantum dot spin qubits, namely, the Heitler-London (HL) and the Hund-Mulliken (HM) approximations, which use linear combinations of Fock-Darwin states to approximate the two-electron states under the double-well confinement potential. We compared these results to a case in which the solution to a one-dimensional Schr¨odinger equation was exactly known and found that typical microscopic calculations based on Fock-Darwin states substantially underestimate the value of the exchange interaction, which is the key parameter that controls the quantum dot spin qubits. This underestimation originates from the lack of tunneling of Fock-Darwin states, which is accurate only in the case with a single potential well. Our results suggest that the accuracies of the current two-dimensional molecular- orbit-theoretical calculations based on Fock-Darwin states should be revisited since underestimation could only deteriorate in dimensions that are higher than one.

  12. Microscopic theories for collective motions of large amplitude

    International Nuclear Information System (INIS)

    Souza Cruz, F.F. de.

    1986-01-01

    The many proposals of ''Collective Paths'' that have appeared in literature, were derived through a local analysis of the Time Dependent Hartree Fock dynamics. Those proposals were compared and validity conditions obtained for Semiclassical Hamiltonians which have only quadratic terms in momenta. A careful analysis of the parametrization of Slater Determinants allowed us to exploit the geometrical features of the Time Dependent Hartree Fock Theory and construct the Paths in a covariant way. The analysis was applied to a three level model (Su(3)). (author) [pt

  13. Relativistic multiple scattering X-alpha calculations

    International Nuclear Information System (INIS)

    Chermette, H.; Goursot, A.

    1986-01-01

    The necessity to include self-consistent relativistic corrections in molecular calculations has been pointed out for all compounds involving heavy atoms. Most of the changes in the electronic properties are due to the mass-velocity and the so-called Darwin terms so that the use of Wood and Boring's Hamiltonian is very convenient for this purpose as it can be easily included in MSXalpha programs. Although the spin orbit operator effects are only obtained by perturbation theory, the results compare fairly well with experiment and with other relativistic calculations, namely Hartree-Fock-Slater calculations

  14. Symbolic computation of the Hartree-Fock energy from a chiral EFT three-nucleon interaction at N2LO

    International Nuclear Information System (INIS)

    Gebremariam, B.; Bogner, S.K.; Duguet, T.

    2010-01-01

    We present the first of a two-part Mathematica notebook collection that implements a symbolic approach for the application of the density matrix expansion (DME) to the Hartree-Fock (HF) energy from a chiral effective field theory (EFT) three-nucleon interaction at N 2 LO. The final output from the notebooks is a Skyrme-like energy density functional that provides a quasi-local approximation to the non-local HF energy. In this paper, we discuss the derivation of the HF energy and its simplification in terms of the scalar/vector-isoscalar/isovector parts of the one-body density matrix. Furthermore, a set of steps is described and illustrated on how to extend the approach to other three-nucleon interactions. Program summary: Program title: SymbHFNNN; Catalogue identifier: AEGC v 1 0 ; Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEGC_v1_0.html; Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland; Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html; No. of lines in distributed program, including test data, etc.: 96 666; No. of bytes in distributed program, including test data, etc.: 378 083; Distribution format: tar.gz; Programming language: Mathematica 7.1; Computer: Any computer running Mathematica 6.0 and later versions; Operating system: Windows Xp, Linux/Unix; RAM: 256 Mb; Classification: 5, 17.16, 17.22; Nature of problem: The calculation of the HF energy from the chiral EFT three-nucleon interaction at N 2 LO involves tremendous spin-isospin algebra. The problem is compounded by the need to eventually obtain a quasi-local approximation to the HF energy, which requires the HF energy to be expressed in terms of scalar/vector-isoscalar/isovector parts of the one-body density matrix. The Mathematica notebooks discussed in this paper solve the latter issue. Solution method: The HF energy from the chiral EFT three-nucleon interaction at N 2 LO is cast into a form suitable for an automatic

  15. A importância do método de Hartree no ensino de química quântica

    Directory of Open Access Journals (Sweden)

    Silmar A. do Monte

    2011-01-01

    Full Text Available Hartree's original ideas are described. Its connection with electrostatics can be explored in order to decrease the gap between teaching of Physics and Chemistry. As a consequence of its simplicity and connection with electrostatics, it is suggested that Hartree's method should be presented before the Hartree-Fock method. Besides, since the fundamental concepts of indistinguishibility of electrons along with the antissimetry of the wave function are missing in the Hartree's product, the method itself can be used to introduce these concepts. Despite the fact that these features are not included in the trial wavefunction, important qualitatively correct results can be obtained.

  16. Communication: Orbital instabilities and triplet states from time-dependent density functional theory and long-range corrected functionals

    Science.gov (United States)

    Sears, John S.; Koerzdoerfer, Thomas; Zhang, Cai-Rong; Brédas, Jean-Luc

    2011-10-01

    Long-range corrected hybrids represent an increasingly popular class of functionals for density functional theory (DFT) that have proven to be very successful for a wide range of chemical applications. In this Communication, we examine the performance of these functionals for time-dependent (TD)DFT descriptions of triplet excited states. Our results reveal that the triplet energies are particularly sensitive to the range-separation parameter; this sensitivity can be traced back to triplet instabilities in the ground state coming from the large effective amounts of Hartree-Fock exchange included in these functionals. As such, the use of standard long-range corrected functionals for the description of triplet states at the TDDFT level is not recommended.

  17. Ab initio Hartree-Fock and density functional theory investigations on the conformational stability, molecular structure and vibrational spectra of 5-chloro-3-(2-(4-methylpiperazin-1-yl)-2-oxoethyl)benzo[d]thiazol-2(3H)-one drug molecule.

    Science.gov (United States)

    Taşal, Erol; Kumalar, Mustafa

    2012-09-01

    In this work, the experimental and theoretical spectra of 5-chloro-3-(2-(4-methylpiperazin-1-yl)-2-oxoethyl)benzo[d]thiazol-2(3H)-one molecule (abbreviated as 5CMOT) are studied. The molecular geometry and vibrational frequencies are calculated in the ground state of molecule using ab initio Hartree-Fock (HF) and Density Function Theory (DFT) methods with 6-311++G(d,p), 6-31G++(d,p), 6-31G(d,p), 6-31G(d) and 6-31G basis sets. Three staggered stable conformers were observed on the torsional potential energy surfaces. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes calculated. The comparison of the theoretical and experimental geometries of the title compound indicated that the X-ray parameters fairly well agree with the theoretically obtained values for the most stable conformer. The theoretical results showed an excellent agreement with the experimental values. The calculated HOMO and LUMO energies show that the charge transfer occurs within the molecule. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Quantum corrections to potential energy surfaces and their influence on barriers

    International Nuclear Information System (INIS)

    Reinhard, P.G.; Goeke, K.W.; Bonn Univ.

    1980-01-01

    A microscopic theory suitable for the description of fission processes and other large-amplitude collective phenomena is presented. The approach makes use of an optimal collective path, which is constructed by means of adiabatic time-dependent Hartree-Fock (TDHF) techniques as to show maximal de-coupling of collective and non-collective degrees of freedom. Although this involves a classical concept, the theory fully incorporates quantum effects associated with extracting a collective Schroedinger equation from adiabatic time-dependent Hartree-Fock theories (ATDHF). The quantum corrections are discussed extensively, and calculations in the two-centre shell model show, e.g. that they reduce the second barrier by 2 MeV and the life-time by a factor of 10 -7 . The relationships of the presented quantized ATDHF approach to the random-phase approximation (RPA) and a generalized dynamic generator co-ordinate method are investigated. For the construction of the optimal fission path, simple step-by-step methods are suggested. (author)

  19. Calculations of electronic structure of UF6 molecule and crystal UO2 with relativistic pseudopotential

    International Nuclear Information System (INIS)

    Ehvarestov, R.A.; Panin, A.I.; Bandura, A.V.

    2008-01-01

    Account of relativistic effects on the properties of uranium hexafluoride is testified. Detailed comparison of single electron energies spectrum revealed in nonrelativistic (by Hartree-Fock method), relativistic (by Dirac-Fock method), and scalar-relativistic (using relativistic potential of atomic uranium frame) has been conducted. Optimization procedures of atomic basis in LCAO calculations of molecules and crystals permissive taking into account distortion of atomic orbitals when chemical bonding are discussed, and optimization effect of atomic basis on the results of scalar-relativistic calculations of UF 6 molecule properties is analyzed. Calculations of electronic structure and properties of UO 2 crystal having relativistic and nonrelativistic pseudopotentials have been realized [ru

  20. The temperature dependence of giant resonances in high-excited nucleus

    International Nuclear Information System (INIS)

    Li Ming; Song Hongqiu

    1991-01-01

    The Hartree-Fock equation and the linear response theory in finite temperature are used to calculate the positions and transition strenghths of the giant resonances of high-excited nucleus Pb 208 . The result shows a downward shift and a broadening of the giant resonance energies as temperatrue increases

  1. Exact-exchange time-dependent density-functional theory for static and dynamic polarizabilities

    International Nuclear Information System (INIS)

    Hirata, So; Ivanov, Stanislav; Bartlett, Rodney J.; Grabowski, Ireneusz

    2005-01-01

    Time-dependent density-functional theory (TDDFT) employing the exact-exchange functional has been formulated on the basis of the optimized-effective-potential (OEP) method of Talman and Shadwick for second-order molecular properties and implemented into a Gaussian-basis-set, trial-vector algorithm. The only approximation involved, apart from the lack of correlation effects and the use of Gaussian-type basis functions, was the consistent use of the adiabatic approximation in the exchange kernel and in the linear response function. The static and dynamic polarizabilities and their anisotropy predicted by the TDDFT with exact exchange (TDOEP) agree accurately with the corresponding values from time-dependent Hartree-Fock theory, the exact-exchange counterpart in the wave function theory. The TDOEP is free from the nonphysical asymptotic decay of the exchange potential of most conventional density functionals or from any other manifestations of the incomplete cancellation of the self-interaction energy. The systematic overestimation of the absolute values and dispersion of polarizabilities that plagues most conventional TDDFT cannot be seen in the TDOEP

  2. Spin Density Distribution in Open-Shell Transition Metal Systems: A Comparative Post-Hartree-Fock, Density Functional Theory, and Quantum Monte Carlo Study of the CuCl2 Molecule.

    Science.gov (United States)

    Caffarel, Michel; Giner, Emmanuel; Scemama, Anthony; Ramírez-Solís, Alejandro

    2014-12-09

    We present a comparative study of the spatial distribution of the spin density of the ground state of CuCl2 using Density Functional Theory (DFT), quantum Monte Carlo (QMC), and post-Hartree-Fock wave function theory (WFT). A number of studies have shown that an accurate description of the electronic structure of the lowest-lying states of this molecule is particularly challenging due to the interplay between the strong dynamical correlation effects in the 3d shell and the delocalization of the 3d hole over the chlorine atoms. More generally, this problem is representative of the difficulties encountered when studying open-shell metal-containing molecular systems. Here, it is shown that qualitatively different results for the spin density distribution are obtained from the various quantum-mechanical approaches. At the DFT level, the spin density distribution is found to be very dependent on the functional employed. At the QMC level, Fixed-Node Diffusion Monte Carlo (FN-DMC) results are strongly dependent on the nodal structure of the trial wave function. Regarding wave function methods, most approaches not including a very high amount of dynamic correlation effects lead to a much too high localization of the spin density on the copper atom, in sharp contrast with DFT. To shed some light on these conflicting results Full CI-type (FCI) calculations using the 6-31G basis set and based on a selection process of the most important determinants, the so-called CIPSI approach (Configuration Interaction with Perturbative Selection done Iteratively) are performed. Quite remarkably, it is found that for this 63-electron molecule and a full CI space including about 10(18) determinants, the FCI limit can almost be reached. Putting all results together, a natural and coherent picture for the spin distribution is proposed.

  3. Coulomb displacement energies in relativistic and non-relativistic self-consistent models

    International Nuclear Information System (INIS)

    Marcos, S.; Savushkin, L.N.; Giai, N. van.

    1992-03-01

    Coulomb displacement energies in mirror nuclei are comparatively analyzed in Dirac-Hartree and Skyrme-Hartree-Fock models. Using a non-linear effective Lagrangian fitted on ground state properties of finite nuclei, it is found that the predictions of relativistic models are lower than those of Hartree-Fock calculations with Skyrme force. The main sources of reduction are the kinetic energy and the Coulomb-nuclear interference potential. The discrepancy with the data is larger than in the Skyrme-Hartree-Fock case. (author) 24 refs., 3 tabs

  4. Pseudopotentials for quantum-Monte-Carlo-calculations; Pseudopotentiale fuer Quanten-Monte-Carlo-Rechnungen

    Energy Technology Data Exchange (ETDEWEB)

    Burkatzki, Mark Thomas

    2008-07-01

    The author presents scalar-relativistic energy-consistent Hartree-Fock pseudopotentials for the main-group and 3d-transition-metal elements. The pseudopotentials do not exhibit a singularity at the nucleus and are therefore suitable for quantum Monte Carlo (QMC) calculations. The author demonstrates their transferability through extensive benchmark calculations of atomic excitation spectra as well as molecular properties. In particular, the author computes the vibrational frequencies and binding energies of 26 first- and second-row diatomic molecules using post Hartree-Fock methods, finding excellent agreement with the corresponding all-electron values. The author shows that the presented pseudopotentials give superior accuracy than other existing pseudopotentials constructed specifically for QMC. The localization error and the efficiency in QMC are discussed. The author also presents QMC calculations for selected atomic and diatomic 3d-transitionmetal systems. Finally, valence basis sets of different sizes (VnZ with n=D,T,Q,5 for 1st and 2nd row; with n=D,T for 3rd to 5th row; with n=D,T,Q for the 3d transition metals) optimized for the pseudopotentials are presented. (orig.)

  5. Some implications of the Hartree product treatment of the quantum nuclei in the ab initio nuclear–electronic orbital methodology

    Energy Technology Data Exchange (ETDEWEB)

    Gharabaghi, Masumeh [Faculty of Chemical and Petroleum Sciences, Shahid Beheshti University, G. C., Evin, Tehran, 19839, P.O. Box 19395-4716 (Iran, Islamic Republic of); Shahbazian, Shant, E-mail: chemist_shant@yahoo.com [Department of Physics, Shahid Beheshti University, G. C., Evin, Tehran, 19839, P.O. Box 19395-4716 (Iran, Islamic Republic of)

    2016-12-09

    In this letter the conceptual and computational implications of the Hartree product type nuclear wavefunction introduced recently within the context of the ab initio non-Born–Oppenheimer Nuclear–electronic orbital (NEO) methodology are considered. It is demonstrated that this wavefunction may imply a pseudo-adiabatic separation of the nuclei and electrons and each nucleus is conceived as a quantum oscillator while a non-Coulombic effective Hamiltonian is deduced for electrons. Using the variational principle this Hamiltonian is employed to derive a modified set of single-component Hartree–Fock equations which are equivalent to the multi-component version derived previously within the context of the NEO and, easy to be implemented computationally. - Highlights: • The Hartree product wavefunction is used for the quantum nuclei of a molecule. • With this wavefunction quantum nuclei may be conceived as quantum oscillators. • Using variational integral, non-Coulomb effective electronic Hamiltonian was derived. • A set of modified Hartree–Fock equations were derived from this Hamiltonian. • The derived equations are equivalent to the multi-component Hartree–Fock equations.

  6. Multiconfiguration hartree-fock theory for pseudorelativistic systems: The time-dependent case

    KAUST Repository

    Hajaiej, Hichem; Markowich, Peter A.; Trabelsi, Saber

    2014-01-01

    to the underlying system under technical assumptions on the energy of the initial data and the charge of the nucleus. Moreover, we prove that the result can be extended to the case of neutron stars when the number of electrons is less than a critical number N cr

  7. A J matrix engine for density functional theory calculations

    International Nuclear Information System (INIS)

    White, C.A.; Head-Gordon, M.

    1996-01-01

    We introduce a new method for the formation of the J matrix (Coulomb interaction matrix) within a basis of Cartesian Gaussian functions, as needed in density functional theory and Hartree endash Fock calculations. By summing the density matrix into the underlying Gaussian integral formulas, we have developed a J matrix open-quote open-quote engine close-quote close-quote which forms the exact J matrix without explicitly forming the full set of two electron integral intermediates. Several precomputable quantities have been identified, substantially reducing the number of floating point operations and memory accesses needed in a J matrix calculation. Initial timings indicate a speedup of greater than four times for the (pp parallel pp) class of integrals with speedups increasing to over ten times for (ff parallel ff) integrals. copyright 1996 American Institute of Physics

  8. Non-equilibrium quantum dynamics of ultra-cold atomic mixtures: the multi-layer multi-configuration time-dependent Hartree method for bosons

    International Nuclear Information System (INIS)

    Krönke, Sven; Cao, Lushuai; Schmelcher, Peter; Vendrell, Oriol

    2013-01-01

    We develop and apply the multi-layer multi-configuration time-dependent Hartree method for bosons, which represents an ab initio method for investigating the non-equilibrium quantum dynamics of multi-species bosonic systems. Its multi-layer feature allows for tailoring the wave function ansatz to describe intra- and inter-species correlations accurately and efficiently. To demonstrate the beneficial scaling and efficiency of the method, we explored the correlated tunneling dynamics of two species with repulsive intra- and inter-species interactions, to which a third species with vanishing intra-species interaction was weakly coupled. The population imbalances of the first two species can feature a temporal equilibration and their time evolution significantly depends on the coupling to the third species. Bosons of the first and second species exhibit a bunching tendency, whose strength can be influenced by their coupling to the third species. (paper)

  9. Calculation of transition probabilities using the multiconfiguration Dirac-Fock method

    International Nuclear Information System (INIS)

    Kim, Yong Ki; Desclaux, Jean Paul; Indelicato, Paul

    1998-01-01

    The performance of the multiconfiguration Dirac-Fock (MCDF) method in calculating transition probabilities of atoms is reviewed. In general, the MCDF wave functions will lead to transition probabilities accurate to ∼ 10% or better for strong, electric-dipole allowed transitions for small atoms. However, it is more difficult to get reliable transition probabilities for weak transitions. Also, some MCDF wave functions for a specific J quantum number may not reduce to the appropriate L and S quantum numbers in the nonrelativistic limit. Transition probabilities calculated from such MCDF wave functions for nonrelativistically forbidden transitions are unreliable. Remedies for such cases are discussed

  10. Calculation of exchange constants in manganese ferrite (MnFe2O4)

    International Nuclear Information System (INIS)

    Zuo Xu; Barbiellini, Bernardo; Vittoria, Carmine

    2004-01-01

    The exchange constants and electronic structure of manganese ferrite (MnFe 2 O 4 ) were calculated using Becke's density functional. The total exchange energy consists of Hartree-Fock (HF) and Becke's density functional terms. We introduced one parameter w as the weight of HF's contribution. We also introduced a parameter α to scale the radial part of the 3d wave functions of Fe 3+ ions. By varying w and α the calculated exchange constants were quantitatively fitted to the experimental values of a spinel ferrite for the first time. Direct (d-d) and indirect (d-p-d) hopping are controlled by the parameters w and α

  11. Molecular bonding in SF6 measured by elastic electron scattering

    International Nuclear Information System (INIS)

    Miller, J.D.; Fink, M.

    1992-01-01

    Elastic differential cross-section measurements of gaseous SF 6 were made with 30 keV electrons in the range of 0.25 bohrs -1 ≤s≤10 bohrs -1 . Structural parameters derived in this study closely matched those found in an earlier total (elastic plus inelastic) scattering investigation. Multiple-scattering effects were incorporated in the structural refinement. The discrepancies between the independent atom model and the measured differential cross section reproduce earlier total scattering results for momentum transfers of greater than 5 bohrs -1 . By extending the measurements to smaller s values, a closer examination of a Hartree--Fock calculation for SF 6 was possible. It was found that the difference curve obtained from the Hartree--Fock calculation matched the experimental data in this region. A more quantitative analysis was performed using the analytic expressions of Bonham and Fink to compute moments of the molecular charge distribution from the differential cross-section data. Comparison of these results with similar fits to the Hartree--Fock calculation confirmed the good agreement between the Hartree--Fock calculation and the current elastic data

  12. A systematic study of the octupole correlations in the lanthanides with realistic forces

    International Nuclear Information System (INIS)

    Egido, J.L.; Robledo, L.M.

    1992-01-01

    We have performed a systematic study of the octupole degree of freedom in the nuclei 140 Ba, 142-150 deg Ce, 144-152 Nd and 146-154 Sm. The static properties (ground state deformations, energy gaps, dipole moments, etc.) have been analyzed within the Hartree-Fock plus BCS approximation (HFBCS); for the dynamical ones (energy splittings, transition probabilities, etc.) the adiabatic time-dependent Hartree-Fock plus zero point energy in the cranking approximation (ATDHF+ZPE) has been applied. In both approximations the realistic density-dependent Gogny force has been used. In our parameter-free calculations we are able to describe very well the whole experimental systematic of energy splittings and B(E1), among others. The flatness of the whole experimental systematic of energy splittings and B(E1), among others. The flatness of the potential energy of some nuclei makes the mean field approach unreliable for such nuclei. (orig.)

  13. Phase transition and angular momentum dependence of correlations in the rotational spectra of Ne20 and Ne22

    International Nuclear Information System (INIS)

    Satpathy, L.; Schmid, K.W.; Krewald, S.; Faessler, A.

    1974-01-01

    Multi-Configuration-Hartree-Fock (MCHF) calculations with angular momentum projection before the variation of the internal degree of freedom have been performed for the nuclei Ne 20 and Ne 22 . This procedure yields different correlated intrinsic states for the different members of a rotational band. Thus, the angular momentum dependence of correlations has been studied. Experimentally, the ground state spectra of Ne 20 and Ne 22 show properties similar to the phase transitions observed in some rare earth nuclei which have been well reproduced through the present calculations. The calculated spectra show a significant improvement compared to the ones obtained by variation before the angular momentum projection is effected. (author)

  14. Relativistic Dirac-Fock and many-body perturbation calculations on He, He-like ions, Ne, and Ar

    International Nuclear Information System (INIS)

    Ishikawa, Y.

    1990-01-01

    Relativistic Dirac-Fock and diagrammatic many-body perturbation-theory calculations have been performed on He, several He-like ions, Ne, and Ar. The no-pair Dirac-Coulomb Hamiltonian is taken as the starting point. A solution of the Dirac-Fock equations is obtained by analytic expansion in basis sets of Gaussian-type functions. Many-body perturbation improvements of Coulomb correlation are done to third order

  15. Relativistic many-body perturbation-theory calculations based on Dirac-Fock-Breit wave functions

    International Nuclear Information System (INIS)

    Ishikawa, Y.; Quiney, H.M.

    1993-01-01

    A relativistic many-body perturbation theory based on the Dirac-Fock-Breit wave functions has been developed and implemented by employing analytic basis sets of Gaussian-type functions. The instantaneous Coulomb and low-frequency Breit interactions are treated using a unified formalism in both the construction of the Dirac-Fock-Breit self-consistent-field atomic potential and in the evaluation of many-body perturbation-theory diagrams. The relativistic many-body perturbation-theory calculations have been performed on the helium atom and ions of the helium isoelectronic sequence up to Z=50. The contribution of the low-frequency Breit interaction to the relativistic correlation energy is examined for the helium isoelectronic sequence

  16. Configuration mixing calculations with basis states obtained from constrained variational methods

    International Nuclear Information System (INIS)

    Miller, H.G.; Schroeder, H.P.

    1982-01-01

    Configuration mixing calculations have been performed in 20 Ne using basis states which are energetically the lowest-lying solutions of the constrained Hartree-Fock equations with an angular momentum constraint of the form 2 > = J(J + 1), For J = 6, very good agreement with the lower-lying 6 + states in an exact eigenvalue spectrum has been obtained with relatively few PAV-K mixed CHF basis states. (orig.)

  17. Symmetric and asymmetric nuclear matter in the relativistic approach

    International Nuclear Information System (INIS)

    Huber, H.; Weber, F.; Weigel, M.K.

    1995-01-01

    Symmetric and asymmetric nuclear matter is studied in the framework of the relativistic Brueckner-Hartree-Fock and in the relativistic version of the so-called Λ 00 approximation. The equations are solved self-consistently in the full Dirac space, so avoiding the ambiguities in the choice of the effective scattering amplitude in matter. The calculations were performed for some modern meson-exchange potentials constructed by Brockmann and Machleidt. In some cases we used also the Groningen potentials. First, we examine the outcome for symmetric matter with respect to other calculations, which restrict themselves to positive-energy states only. The main part is devoted to the properties of asymmetric matter. In this case we obtain additionally to the good agreement with the parameters of symmetric matter, also a quite satisfactory agreement with the semiempirical macroscopic coefficients of asymmetric matter. Furthermore, we tested the assumption of a quadratic dependence of the asymmetry energy for a large range of asymmetries. Included is also the dependence of nucleon self-energies on density and neutron excess. For the purpose of comparison we discuss further the similarities and differences with relativistic Hartree and Hartree-Fock calculations and nonrelativistic Skyrme calculations

  18. Effective interaction for relativistic mean-field theories of nuclear structure

    International Nuclear Information System (INIS)

    Ai, H.B.; Celenza, L.S.; Harindranath, A.; Shakin, C.M.

    1987-01-01

    We construct an effective interaction, which when treated in a relativistic Hartree-Fock approximation, reproduces rather accurately the nucleon self-energy in nuclear matter and the Migdal parameters obtained via relativistic Brueckner-Hartree-Fock calculations. This effective interaction is constructed by adding Born terms, describing the exchange of pseudoparticles, to the Born terms of the Dirac-Hartree-Fock analysis. The pseudoparticles have relatively large masses and either real or imaginary coupling constants. (For example, exchange of a pseudo-sigma with an imaginary coupling constant has the effect of reducing the scalar attraction arising from sigma exchange while exchange of a pseudo-omega with an imaginary coupling constant has the effect of reducing the repulsion arising from omega exchange. The terms beyond the Born term in the case of pion exchange are well simulated by pseudo-sigma exchange with a real coupling constant.) The effective interaction constructed here may be used for calculations of the properties of finite nuclei in a relativistic Hartree-Fock approximation

  19. The positronium and the dipositronium in a Hartree-Fock approximation of quantum electrodynamics

    DEFF Research Database (Denmark)

    Sok, Jérémy Vithya

    2016-01-01

    The Bogoliubov-Dirac-Fock (BDF) model is a no-photon approximation of quantum electrodynamics. It allows to study relativistic electrons in interaction with the Dirac sea. A state is fully characterized by its one-body density matrix, an infinite rank non-negative projector. We prove the existence...

  20. A constrained approximation for nuclear barrier penetration and fission

    International Nuclear Information System (INIS)

    Tang, H.H.K.; Negele, J.W.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge

    1983-01-01

    An approximation to the time-dependent mean-field theory for barrier penetration by a nucleus is obtained in terms of constrained Hartree-Fock wave functions and a coherent velocity field. A discrete approximation to the continuum theory suitable for practical numerical calculations is presented and applied to three illustrative models. Potential application of the theory to the study of nuclear fission is discussed. (orig.)

  1. The soliton solution of the PHI24 field theory in the Hartree approximation

    International Nuclear Information System (INIS)

    Altenbokum, M.

    1984-01-01

    In this thesis in a simple model which possesses at the classical level a soliton solution a quantum-mechanical soliton sector shall be constructed in a Hartree-Fock approximation without application of semiclassical procedures. To this belongs beside the determination of the excitation spectrum of the applied Hamiltonian the knowledge of the corresponding infinitely-much eigenfunctions. The existing translational invariance of a classical soliton solution which implies the existence of a degenerated ground state by presence of a massless excitation is removed by quantum fluctuations. By removing of this degeneration conventional approximation procedures for this sector of the Hilbert space become for the first time immediately possible. (HSI) [de

  2. On the role of anti-bound states in the RPA description of the giant monopole resonance

    International Nuclear Information System (INIS)

    Vertse, T.; Bang, J.

    1989-01-01

    The limit of the applicability of the resonant Random Phase Approximation (RPA) method is tested by calculating escape widths in the giant monopole resonance of 16 O and comparing them to the results of a time dependent Hartree-Fock calculation. Though the widths of the narrow s-wave component agree reasonably well, the broad p-wave component shows large disagreement, which cannot be cured by complementing the basis with anti-bound states in the RPA calculation. (author) 18 refs.; 3 tabs

  3. Theoretical investigation of molecular structure and vibrational spectra of 4,5-bis-(2-isopropyl-5- methylphenoxy) phthalonitrile molecule

    International Nuclear Information System (INIS)

    Avci, D.

    2005-01-01

    The molecular geometry and vibrational frequencies of 4,5-bis-(2-isopropyl-5- methylphenoxy) phthalonitrile in the ground state have been calculated using the Hartree- Fock (HF) and density functional method (B3LYP) with 6-31G(d) basis set. The optimized geometric bond lengths and bond angles obtained by using HF and DFT (B3LYP) show the best agreement with the experimental data. Comparison of the observed fundamental vibrational frequencies of 4,5-bis-(2-isopropyl-5-methylphenoxy) phthalonitrile with calculated results by density functional B3LYP and Hartree-Fock methods indicate that B3LYP is superior to the scaled Hartree-Fock approach for molecular vibrational problems

  4. Molecular structure and vibrational spectra of 6-methylquinoline and 8-methylquinoline molecules by quantum mechanical methods

    International Nuclear Information System (INIS)

    Kurt, M.

    2005-01-01

    The molecular geometry and vibrational frequencies of 6-methylquinoline(6MQ) and 8-methylquinolines(8MQ) in the ground state have been calculated by using the Hartree-Fock and density functional methods (B3LYP and BLYP) with 6-31G (d) as the basis set. The optimized geometric bond lengths obtained by using B3LYP and bond angles obtained by BLYP were given corresponding experimental values of similar molecule. Comparison of the observed fundamental vibrational frequencies of these molecules and calculated results by density functional B3LYP, BLYP and Hartree-Fock methods indicates that B3LYP is superior to the scaled Hartree- Fock and BLYP approach for molecular vibrational problems

  5. Isospin-dependent term in the relativistic microscopic optical potential

    International Nuclear Information System (INIS)

    Rong Jian; Ma Zhongyu; National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou; Chinese Academy of Sciences, Beijing

    2005-01-01

    The isospin-dependence of the relativistic microscopic optical potential is investigated in the Dirac Brueckner-Hartree-Fock approach. The isospin part of the microscopic optical potential is emphasized. A local density approximation is adopted for finite nuclei. Taking 208 Pb as example, the difference between proton and neutron optical potentials is studied and compared with the phenomenological Lane Model potential. (authors)

  6. Electron-impact excitation-autoionization in the cadmium isoelectronic sequence: A case of target term dependence in scattering theory

    International Nuclear Information System (INIS)

    Pindzola, M.S.; Griffin, D.C.; Bottcher, C.

    1983-01-01

    Excitation-autoionization contributions to electron-impact ionization are calculated for several atomic ions in the cadmium isoelectronic sequence. We calculate excitation cross sections in the distorted-wave approximation and compare them in one case to a calculation in the close-coupling approximation. We focus attention on the 4d 10 5s 2 →4d 9 5s 2 nf inner-shell excitations in In + , Sb 3+ , and Xe 6+ . Hartree-Fock atomic structure calculations for the 4d 9 5s 2 nf configurations are found to be highly term dependent. Thus our predictions for the total ionization cross section from the 5s subshell for these ions exhibit strong target term dependence. Our Xe 6+ results are found to be in excellent agreement with the recent experimental crossed-beam measurements of Gregory and Crandall

  7. Quasiparticle method in relativistic mean-field theories of nuclear structure

    International Nuclear Information System (INIS)

    Ai, H.

    1988-01-01

    In recent years, in order to understand the success of Dirac phenomenology, relativistic Brueckner-Hartree-Fock (RBHF) theory has been developed. This theory is a relativistic many-body theory of nuclear structure. Based upon the RBHF theory, which is characterized as having no free parameters other than those introduced in fitting free-space nucleon-nucleon scattering data, we construct an effective interaction. This interaction, when treated in a relativistic Hartree-Fock approximation, reproduces, rather accurately, the nucleon self-energy in nuclear matter, Migdal parameters obtained via relativistic Brueckner-Hartree-Fock calculations, and the saturation curves calculated with the full relativistic Brueckner-Hartree-Fock theory. This effective interaction is constructed by adding a number of pseudoparticles to the mesons used to construct one-boson-exchange (OBE) models of the nuclear force. The pseudoparticles have relatively large masses and either real or imaginary coupling constants. (For example, exchange of a pseudo-sigma with an imaginary coupling constant has the effect of reducing the scalar attraction arising from sigma exchange, while exchange of a pseudo-omega with an imaginary coupling constant has the effect of reducing the repulsion arising from omega exchange. The terms beyond the Born term in the case of pion exchange are well simulated by pseudo-sigma exchange with a real coupling constant.) The effective interaction constructed here may be used for calculations of the properties of finite nuclei in a relativistic Hartree-Fock approximation

  8. Recent developments and applications of multi-configuration Hartree-Fock methods. NRCC proceedings No. 10

    Energy Technology Data Exchange (ETDEWEB)

    Dupuis, M. (ed.)

    1981-02-01

    Twenty-seven papers are included in four sessions titled: generalized Fock operator methods, annihilation of single excitations methods, second-order MCSCF methods, and applications of MCHF methods. Separate abstracts were prepared for eight papers; one of the remaining had been previously abstracted. (DLC)

  9. Recent developments and applications of multi-configuration Hartree-Fock methods. NRCC proceedings No. 10

    International Nuclear Information System (INIS)

    Dupuis, M.

    1981-02-01

    Twenty-seven papers are included in four sessions titled: generalized Fock operator methods, annihilation of single excitations methods, second-order MCSCF methods, and applications of MCHF methods. Separate abstracts were prepared for eight papers; one of the remaining had been previously abstracted

  10. Molecular structure and spectroscopic characterization of Carbamazepine with experimental techniques and DFT quantum chemical calculations

    Science.gov (United States)

    Suhasini, M.; Sailatha, E.; Gunasekaran, S.; Ramkumaar, G. R.

    2015-04-01

    A systematic vibrational spectroscopic assignment and analysis of Carbamazepine has been carried out by using FT-IR, FT-Raman and UV spectral data. The vibrational analysis were aided by electronic structure calculations - ab initio (RHF) and hybrid density functional methods (B3LYP) performed with standard basis set 6-31G(d,p). Molecular equilibrium geometries, electronic energies, natural bond order analysis, harmonic vibrational frequencies and IR intensities have been computed. A detailed interpretation of the vibrational spectra of the molecule has been made on the basis of the calculated Potential Energy Distribution (PED) by VEDA program. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λmax were determined by HF/6-311++G(d,p) Time-Dependent method. The thermodynamic functions of the title molecule were also performed using the RHF and DFT methods. The restricted Hartree-Fock and density functional theory-based nuclear magnetic resonance (NMR) calculation procedure was also performed, and it was used for assigning the 13C and 1H NMR chemical shifts of Carbamazepine.

  11. Dirac-Fock calculation of oscillator strengths and lifetimes of levels for ions of potassium isoelectronic series

    International Nuclear Information System (INIS)

    Zilitis, V.A.

    1989-01-01

    Oscillator forces, f, of 4s-4p, 4p-5s, 3d-4p and 3d-4f transitions for 13 terms of the potassium isoelectric line (from K to U 73+ ) are calculated by the Dirac-Fock method. Nonmonotonous change in values f along the isoelectric line is detected in some cases. Radiation life times of levels 4p 1/2 , 4p 3/2 and 5s 1/2 are also calculated. Similar values, which can be approximated by formula τ≅ 5x10 -8 Z ef -3 .3 , where Z ef - the effective charge, are obtained for life times of these levels. Values obtained for f and τ are compared with data of other authors

  12. Microscopic optical potential calculations of finite nuclei with extended skyrme forces

    International Nuclear Information System (INIS)

    Yuan Haiji; Ye Weilei; Gao Qin; Shen Qingbiao

    1986-01-01

    Microscopic optical potential calculations in the Hartree-Fock (HF) approximation with Extended Skyrme forces are investigated. The HF equation is derived from the variation principle and the potential formula of spherical nuclei is obtained by two different ways. Then the calculations for symmetrid nuclei 16 O, 40 Ca and asymmetric nucleus 90 Zr with eight sets of Skyrme force parameters are presented. Our results show that the potential form and variating tendency with incident energy are reasonable and there apparently appears a 'wine-bottle-bottom' shape in the intermediate energy region. Furthermore, our calculations reflect shell effects clearly

  13. Temperature effects on nuclear pseudospin symmetry in the Dirac-Hartree-Bogoliubov formalism

    OpenAIRE

    Lisboa, R.; Alberto, P.; Carlson, B. V.; Malheiro, M.

    2017-01-01

    We present finite temperature Dirac-Hartree-Bogoliubov (FTDHB) calculations for the tin isotope chain to study the dependence of pseudospin on the nuclear temperature. In the FTDHB calculation, the density dependence of the self-consistent relativistic mean fields, the pairing, and the vapor phase that takes into account the unbound nucleon states are considered self-consistently. The mean field potentials obtained in the FTDHB calculations are fit by Woods-Saxon (WS) potentials to examine ho...

  14. Study of the tensor correlation in a neutron-rich sd-shell region with the charge- and parity-projected Hartree-Fock method

    International Nuclear Information System (INIS)

    Sugimoto, Satoru; Toki, Hiroshi; Ikeda, Kiyomi

    2008-01-01

    We study the effect of the tensor force on nuclear structure with mean-field and beyond-mean-field methods. An important correlation induced by the tensor force is two-particle-two-hole (2p2h) correlation, which cannot be treated with a usual mean-filed method. To treat the 2p2h tensor correlation, we develop a new framework (charge- and parity-projected Hartree-Fock (CPPHF) method), which is a beyond-mean-field method. In the CPPHF method, we introduce single-particle states with parity and charge mixing. The parity and charge projections are performed on a total wave function before variation. We apply the CPPHF method to oxygen isotopes including neutron-rich ones. The potential energy from the tensor force has the same order of magnitude with that from the LS force and becomes smaller with neutron number, which indicates that excess neutrons do not contribute to the 2p2h tensor correlation significantly. We also study the effect of the tensor force on spin-orbit-splitting (ls-splitting) in a neutron-rich fluorine isotope 23 F. The tensor force reduces the ls-splitting for the proton d-orbits by about 3 MeV. This effect is important to reproduce the experimental value. We also find that the 2p2h tensor correlation does not affect the ls-splitting in 23 F

  15. Quantum master equation method based on the broken-symmetry time-dependent density functional theory: application to dynamic polarizability of open-shell molecular systems.

    Science.gov (United States)

    Kishi, Ryohei; Nakano, Masayoshi

    2011-04-21

    A novel method for the calculation of the dynamic polarizability (α) of open-shell molecular systems is developed based on the quantum master equation combined with the broken-symmetry (BS) time-dependent density functional theory within the Tamm-Dancoff approximation, referred to as the BS-DFTQME method. We investigate the dynamic α density distribution obtained from BS-DFTQME calculations in order to analyze the spatial contributions of electrons to the field-induced polarization and clarify the contributions of the frontier orbital pair to α and its density. To demonstrate the performance of this method, we examine the real part of dynamic α of singlet 1,3-dipole systems having a variety of diradical characters (y). The frequency dispersion of α, in particular in the resonant region, is shown to strongly depend on the exchange-correlation functional as well as on the diradical character. Under sufficiently off-resonant condition, the dynamic α is found to decrease with increasing y and/or the fraction of Hartree-Fock exchange in the exchange-correlation functional, which enhances the spin polarization, due to the decrease in the delocalization effects of π-diradical electrons in the frontier orbital pair. The BS-DFTQME method with the BHandHLYP exchange-correlation functional also turns out to semiquantitatively reproduce the α spectra calculated by a strongly correlated ab initio molecular orbital method, i.e., the spin-unrestricted coupled-cluster singles and doubles.

  16. Development of efficient time-evolution method based on three-term recurrence relation

    International Nuclear Information System (INIS)

    Akama, Tomoko; Kobayashi, Osamu; Nanbu, Shinkoh

    2015-01-01

    The advantage of the real-time (RT) propagation method is a direct solution of the time-dependent Schrödinger equation which describes frequency properties as well as all dynamics of a molecular system composed of electrons and nuclei in quantum physics and chemistry. Its applications have been limited by computational feasibility, as the evaluation of the time-evolution operator is computationally demanding. In this article, a new efficient time-evolution method based on the three-term recurrence relation (3TRR) was proposed to reduce the time-consuming numerical procedure. The basic formula of this approach was derived by introducing a transformation of the operator using the arcsine function. Since this operator transformation causes transformation of time, we derived the relation between original and transformed time. The formula was adapted to assess the performance of the RT time-dependent Hartree-Fock (RT-TDHF) method and the time-dependent density functional theory. Compared to the commonly used fourth-order Runge-Kutta method, our new approach decreased computational time of the RT-TDHF calculation by about factor of four, showing the 3TRR formula to be an efficient time-evolution method for reducing computational cost

  17. The Hondo 15 program for calculation of molecule electronic structure: its adaptation to Cyber 170/750 system of IEAv and use manual

    International Nuclear Information System (INIS)

    Rosato, A.; Pinheiro, A.M.B.S.; Ornellas, F.R.; Roberto Neto, O.

    1985-01-01

    The HONDO/5 program, herein described, performs a Hartree-Fock-Roothaan type calculation in molecules employing Gaussian type functions in the expansion of the molecular orbitals. After a brief exposition of the method upon which the theory is based, a new manual is presented in a more detailed version than the original one. (Author) [pt

  18. Modified Fourth-Order Kinetic Energy Gradient Expansion with Hartree Potential-Dependent Coefficients.

    Science.gov (United States)

    Constantin, Lucian A; Fabiano, Eduardo; Della Sala, Fabio

    2017-09-12

    Using the semiclassical neutral atom theory, we developed a modified fourth-order kinetic energy (KE) gradient expansion (GE4m) that keeps unchanged all the linear-response terms of the uniform electron gas and gives a significant improvement with respect to the known semilocal functionals for both large atoms and jellium surfaces. On the other hand, GE4m is not accurate for light atoms; thus, we modified the GE4m coefficients making them dependent on a novel ingredient, the reduced Hartree potential, recently introduced in the Journal of Chemical Physics 2016, 145, 084110, in the context of exchange functionals. The resulting KE gradient expansion functional, named uGE4m, belongs to the novel class of u-meta-generalized-gradient-approximations (uMGGA) whose members depend on the conventional ingredients (i.e., the reduced gradient and Laplacian of the density) as well as on the reduced Hartree potential. To test uGE4m, we defined an appropriate benchmark (including total KE and KE differences for atoms, molecules and jellium clusters) for gradient expansion functionals, that is, including only those systems which are mainly described by a slowly varying density regime. While most of the GGA and meta-GGA KE functionals (we tested 18 of them) are accurate for some properties and inaccurate for others, uGE4m shows a consistently good performance for all the properties considered. This represents a qualitative boost in the KE functional development and highlights the importance of the reduced Hartree potential for the construction of next-generation KE functionals.

  19. Fully discrete Galerkin schemes for the nonlinear and nonlocal Hartree equation

    Directory of Open Access Journals (Sweden)

    Walter H. Aschbacher

    2009-01-01

    Full Text Available We study the time dependent Hartree equation in the continuum, the semidiscrete, and the fully discrete setting. We prove existence-uniqueness, regularity, and approximation properties for the respective schemes, and set the stage for a controlled numerical computation of delicate nonlinear and nonlocal features of the Hartree dynamics in various physical applications.

  20. A relativistic point coupling model for nuclear structure calculations

    International Nuclear Information System (INIS)

    Buervenich, T.; Maruhn, J.A.; Madland, D.G.; Reinhard, P.G.

    2002-01-01

    A relativistic point coupling model is discussed focusing on a variety of aspects. In addition to the coupling using various bilinear Dirac invariants, derivative terms are also included to simulate finite-range effects. The formalism is presented for nuclear structure calculations of ground state properties of nuclei in the Hartree and Hartree-Fock approximations. Different fitting strategies for the determination of the parameters have been applied and the quality of the fit obtainable in this model is discussed. The model is then compared more generally to other mean-field approaches both formally and in the context of applications to ground-state properties of known and superheavy nuclei. Perspectives for further extensions such as an exact treatment of the exchange terms using a higher-order Fierz transformation are discussed briefly. (author)

  1. Electronic structure of free and doped actinides: N and Z dependences of energy levels and electronic structure parameters

    International Nuclear Information System (INIS)

    Kulagin, N.

    2005-01-01

    Theoretical study of electronic structure of antinide ions and its dependence on N and Z are presented in this paper. The main 5f N and excited 5f N n'l' N' configurations of actinides have been studied using Hartree-Fock-Pauli approximation. Results of calculations of radial integrals and the energy of X-ray lines for all 5f ions with electronic state AC +1 -AC +4 show approximate dependence on N and Z. A square of N and cubic of Z are ewalized for the primary electronic parameters of the actinides. Theoretical values of radial integrals for free actinides and for ions in a cluster AC +n :[L] k are compared, too

  2. Transferability and accuracy by combining dispersionless density functional and incremental post-Hartree-Fock theories: Noble gases adsorption on coronene/graphene/graphite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lara-Castells, María Pilar de, E-mail: Pilar.deLara.Castells@csic.es; Bartolomei, Massimiliano [Instituto de Física Fundamental (C.S.I.C.), Serrano 123, E-28006 Madrid (Spain); Mitrushchenkov, Alexander O. [Laboratoire Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France); Stoll, Hermann [Institut für Theoretische Chemie, Universität Stuttgart, D-70550 Stuttgart (Germany)

    2015-11-21

    The accuracy and transferability of the electronic structure approach combining dispersionless density functional theory (DFT) [K. Pernal et al., Phys. Rev. Lett. 103, 263201 (2009)] with the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)], are validated for the interaction between the noble-gas Ne, Ar, Kr, and Xe atoms and coronene/graphene/graphite surfaces. This approach uses the method of increments for surface cluster models to extract intermonomer dispersion-like (2- and 3-body) correlation terms at coupled cluster singles and doubles and perturbative triples level, while periodic dispersionless density functionals calculations are performed to estimate the sum of Hartree-Fock and intramonomer correlation contributions. Dispersion energy contributions are also obtained using DFT-based symmetry-adapted perturbation theory [SAPT(DFT)]. An analysis of the structure of the X/surface (X = Ne, Ar, Kr, and Xe) interaction energies shows the excellent transferability properties of the leading intermonomer correlation contributions across the sequence of noble-gas atoms, which are also discussed using the Drude oscillator model. We further compare these results with van der Waals-(vdW)-corrected DFT-based approaches. As a test of accuracy, the energies of the low-lying nuclear bound states supported by the laterally averaged X/graphite potentials (X = {sup 3}He, {sup 4}He, Ne, Ar, Kr, and Xe) are calculated and compared with the best estimations from experimental measurements and an atom-bond potential model using the ab initio-assisted fine-tuning of semiempirical parameters. The bound-state energies determined differ by less than 6–7 meV (6%) from the atom-bond potential model. The crucial importance of including incremental 3-body dispersion-type terms is clearly demonstrated, showing that the SAPT(DFT) approach effectively account for these terms. With the deviations from the best experimental-based estimations smaller than 2.3 meV (1.9%), the

  3. Quantized TDHF for isoscalar giant quadrupole resonances in spherical nuclei

    International Nuclear Information System (INIS)

    Drozdz, S.; Okolowicz, J.; Ploszajczak, M.; Caurier, E.

    1988-01-01

    The time-dependent Hartree-Fock theory supplemented with the regularity and single-valuedness quantization condition for the gauge invariant component of the wavefunction is applied to the description of the centroid energy and escape width of isoscalar giant quadrupole resonances in 16 O, 40 Ca and 110 Zr. Calculations are performed using the Skyrme SIII effective interaction. An important role of the finite oscillation amplitude in the mean-field dynamics is emphasized. (orig.)

  4. Possibility of ΛΛ pairing and its dependence on background density in a relativistic Hartree-Bogoliubov model

    International Nuclear Information System (INIS)

    Tanigawa, Tomonori; Matsuzaki, Masayuki; Chiba, Satoshi

    2003-01-01

    We calculate a ΛΛ pairing gap in binary mixed matter of nucleons and Λ hyperons within the relativistic Hartree-Bogoliubov model. Λ hyperons to be paired up are immersed in background nucleons in a normal state. The gap is calculated with a one-boson-exchange interaction obtained from a relativistic Lagrangian. It is found that at background density ρ N =2.5ρ 0 the ΛΛ pairing gap is very small, and that a denser background makes it rapidly suppressed. This result suggests a mechanism, specific to mixed matter dealt with relativistic models, of its dependence on the nucleon density. An effect of weaker ΛΛ attraction on the gap is also examined in connection with the revised information of the ΛΛ interaction

  5. Self-consistent RPA calculations with Skyrme-type interactions: The skyrme_rpa program

    Science.gov (United States)

    Colò, Gianluca; Cao, Ligang; Van Giai, Nguyen; Capelli, Luigi

    2013-01-01

    the Random Phase Approximation (RPA). This work provides a tool where one starts from an assumed form of nuclear effective interaction (the Skyrme forces) and builds the self-consistent Hartree-Fock mean field of a given nucleus, and then the RPA multipole excitations of that nucleus. Solution method: The Hartree-Fock (HF) equations are solved in a radial mesh, using a Numerov algorithm. The solutions are iterated until self-consistency is achieved (in practice, when the energy eigenvalues are stable within a desired accuracy). In the obtained mean field, unoccupied states necessary for the RPA calculations are found. For all single-particle states, box boundary conditions are assumed. To solve the RPA problem for a given value of total angular momentum and parity Jπ a coupled basis is constructed and the RPA matrix is diagonalized (protons and neutrons are treated explicitly, and no approximation related to the use of isospin formalism is introduced). The transition amplitudes and transition strengths associated to given external operators are calculated. The HF densities and RPA transition densities are also evaluated. Restrictions: The main restrictions are related to the assumed spherical symmetry and absence of pairing correlations. Running time: The typical running time depends strongly on the nucleus, on the multipolarity, on the choice of the model space and of course on the computer. It can vary from a few minutes to several hours.

  6. Nonlinear many-body reaction theories from nuclear mean field approximations

    International Nuclear Information System (INIS)

    Griffin, J.J.

    1983-01-01

    Several methods of utilizing nonlinear mean field propagation in time to describe nuclear reaction have been studied. The property of physical asymptoticity is analyzed in this paper, which guarantees that the prediction by a reaction theory for the physical measurement of internal fragment properties shall not depend upon the precise location of the measuring apparatus. The physical asymptoticity is guaranteed in the Schroedinger collision theory of a scuttering system with translationally invariant interaction by the constancy of the S-matrix elements and by the translational invariance of the internal motion for well-separated fragments. Both conditions are necessary for the physical asymptoticity. The channel asymptotic single-determinantal propagation can be described by the Dirac-TDHF (time dependent Hartree-Fock) time evolution. A new asymptotic Hartree-Fock stationary phase (AHFSP) description together with the S-matrix time-dependent Hartree-Fock (TD-S-HF) theory constitute the second example of a physically asymptotic nonlinear many-body reaction theory. A review of nonlinear mean field many-body reaction theories shows that initial value TDHF is non-asymptotic. The TD-S-HF theory is asymptotic by the construction. The gauge invariant periodic quantized solution of the exact Schroedinger problem has been considered to test whether it includes all of the exact eigenfunctions as it ought to. It did, but included as well an infinity of all spurions solutions. (Kato, T.)

  7. Semiclassical approximations in a mean-field theory with collision terms

    International Nuclear Information System (INIS)

    Galetti, D.

    1986-01-01

    Semiclassical approximations in a mean-field theory with collision terms are discussed taking the time dependent Hartree-Fock method as framework in the obtainment of the relevant parameters.(L.C.) [pt

  8. Isoscalar giant resonances and Landau parameters with density-dependent effective interactions

    International Nuclear Information System (INIS)

    Kohno, Michio; Ando, Kazuhiko

    1979-01-01

    Discussion is given on the relations between the Landau parameters and the isoscalar giant (quadrupole- and monopole-) resonance energies by using general density-dependent interactions. In the limit of infinite nuclear matter, the isoscalar giant quadrupole energy is shown to depend not only on the effective mass but also on the Landau parameter F 2 . Collective energies of the isoscalar giant resonances are calculated for 16 O and 40 Ca with four different effective interactions, G-0, B1, SII and SV, by using the scaling- and constrained Hartree-Fock-methods. It is shown that the dependence of the collective energies on the effective interactions is essentially determined by the Landau parameters. The G-0 force is found to be most successful in reproducing the giant resonance energies. Validity of the RPA-moment theorems is examined for the case of local density-dependent interactions. (author)

  9. Influence of left right asymmetry degrees of freedom in self-consistent calculation of 20Ne

    International Nuclear Information System (INIS)

    Marcos, S.; Flocard, H.; Heenen, P.H.

    1983-06-01

    Within a constrained Hartree-Fock calculation we investigate the effects of left right asymmetric degrees of freedom associated with the channel 16 O + 4 He 20 Ne. We find a large softness of 20 Ne against octupole deformation. The optimal solution after restoration of the parity by means of a projection shows a pronouned 16 O + 4 He clustering. A generator coordinate calculation along the collective path confirms this conclusion. Once center of mass motion effects are taken into account a good agreement with experiment is found

  10. A study on the multiple solutions of the Martree-Fock-Roothaan equation for closed shell systems

    International Nuclear Information System (INIS)

    Malbouisson, L.A.C.

    1985-01-01

    An analysis of the multiple solutions of the Hartree-Fock-Roothaan equation for closed shell systems is done. The meaning of these solutions is discussed as self-consistent solutions of the pseudo-eingen-value equation and a general method for obtaining them is proposed. It is developed a criterion of stability for classifying the solutions depending on the type of the extremum point of the electronic energy function that the solution represent. It is also shown the existence of a correspondence between the multiple solutions and the several ordering rules that can be introduced for the usual iterative procedure of resolution of the equation. All the analysis and procedures developed are applied to the systems LiH, BH, Be and He. (author) [pt

  11. Nuclear ground state properties and self-consistent calculations with the Skyrme interaction. II. S-D shell nuclei

    International Nuclear Information System (INIS)

    Flocard, H.

    1975-04-01

    Hartree-Fock results concerning the ground state properties of some S-D shell nuclei are discussed. Two different Skyrme interactions have been used. They both lead to good agreement with the experimental total binding energies, charge radii and multipole moments. In particular the observed prolate-oblate transitions occuring in the S-D shell are reproduced. The calculated spectroscopic factors are also shown to be consistent with experimental data [fr

  12. Dirac-Fock-Slater calculations on the geometric and electronic structure of neutral and multiply charged C60 fullerenes

    International Nuclear Information System (INIS)

    Bastug, T.; Kuerpick, P.; Meyer, J.; Sepp, W.; Fricke, B.; Rosen, A.

    1997-01-01

    Using a self-consistent relativistic molecular Dirac-Fock-Slater method we have determined the geometric structures and ionization energies of C 60 x t (x=0 endash 7). The lengths of the bonds for the pentagonal edge (single bonds) and the bonds shared by hexagonal rings (double bonds) are found to increase as a function of charge state with an expansion of the cage. The binding energy per atom of C 60 x t (x=0 endash 7) shows a quadratic dependence on the charge state of the C 60 cluster and an extrapolation to higher charge states reveals that C 60 x t should still be bound up to x=13. Charging of the clusters are analyzed using a classical capacitance model and compared with results from other calculations. Calculated ionization potentials are found to increase linearly with the charge while the available experimental data with comparatively big uncertainties indicate a small quadratic dependence. copyright 1997 The American Physical Society

  13. On the XFEL Schrödinger Equation: Highly Oscillatory Magnetic Potentials and Time Averaging

    KAUST Repository

    Antonelli, Paolo; Athanassoulis, Agisillaos; Hajaiej, Hichem; Markowich, Peter A.

    2014-01-01

    We analyse a nonlinear Schrödinger equation for the time-evolution of the wave function of an electron beam, interacting selfconsistently through a Hartree-Fock nonlinearity and through the repulsive Coulomb interaction of an atomic nucleus

  14. On the quantum mechanics of deep inelastic collisions between heavy ions

    International Nuclear Information System (INIS)

    Toledo Piza, A.F.R. de

    1981-06-01

    An overview of the quantum-mechanical foundations of the dynamical behaviour of deep inelastic collisions between heavy ions is given. The use of time dependent Hartree-Fock method is stressed. (L.C.) [pt

  15. An effective Skyrme-type interaction for the calculation of nuclear structures of the whole mass table

    International Nuclear Information System (INIS)

    Waroquier, M.E.L.

    1982-01-01

    The Hartree-Fock-Bogolyubov formalism is extended for 3 body interactions and applied to spherical nuclei. The structure of the proposed extension of the Skyrme-type interaction is given, together with the analytical expression of the corresponding Hartree-Fock differential equation. The Skyrme-force parameters are modified in order to be able to reproduce the ground state properties. The problem of the spin-stability of the proposed interaction is treated. The Skyrme-interaction is applied as particle-hole interaction and saturation properties are studied. Structure of the charge, neutron density distributions and changes introduced by adding protons or neutrons are treated. (MDC)

  16. Inversion of single-particle levels in nuclear Hartree-Fock and Brueckner-HF calculations with broken symmetry

    International Nuclear Information System (INIS)

    Becker, R.L.; Svenne, J.P.

    1975-12-01

    Energy levels of states connected by a symmetry of the Hamiltonian normally should be degenerate. In self-consistent field theories, when only one of a pair of single-particle levels connected by a symmetry of the full Hamiltonian is occupied, the degeneracy is split and the unoccupied level often lies below the occupied one. Inversions of neutron-proton (charge) and time-reversal doublets in odd nuclei, charge doublets in even nuclei with a neutron excess, and spin-orbit doublets in spherical configurations with spin-unsaturated shells are examined. The origin of the level inversion is investigated, and the following explanation offered. Unoccupied single-particle levels, from a calculation in an A-particle system, should be interpreted as levels of the (A + 1)-particle system. When the symmetry-related level, occupied in the A-particle system, is also calculated in the (A + 1)-particle system it is degenerate with or lies lower than the other. That is, when both levels are calculated in the (A + 1)-particle system, they are not inverted. It is demonstrated that the usual prescription to occupy the lowest-lying orbitals should be modified to refer to the single-particle energies calculated in the (A + 1)- or the (A - 1)-particle system. This observation is shown to provide a justification for avoiding an oscillation of occupancy between symmetry-related partners in successive iterations leading to a self-consistency. It is pointed out that two degenerate determinants arise from occupying one or the other partner of an initially degenerate pair of levels and then iterating to self-consistency. The existence of the degenerate determinants indicates the need for introducing correlations, either by mixing the two configurations or by allowing additional symmetry-breaking (resulting in a more highly deformed non-degenerate configuration). 2 figures, 3 tables, 43 references

  17. Scissors mode with a simple Hamiltonians

    International Nuclear Information System (INIS)

    Bal'butsev, E.B.; ); Shuk, P.

    2002-01-01

    The system of the motion bound equation for the nucleus angular moment and its quadrupole moments in the coordinate and pulse spaces is derived from the equation of the Hartree-Fock time-dependent theory. The formulae for the energy, B(M1)- and B(E2)-factors of the scissors mode are obtained in the approximation of low amplitudes; the physical nature of the event is explained. The calculation results qualitatively agree with the experiment [ru

  18. Calculations of optical rotation: Influence of molecular structure

    Directory of Open Access Journals (Sweden)

    Yu Jia

    2012-01-01

    Full Text Available Ab initio Hartree-Fock (HF method and Density Functional Theory (DFT were used to calculate the optical rotation of 26 chiral compounds. The effects of theory and basis sets used for calculation, solvents influence on the geometry and values of calculated optical rotation were all discussed. The polarizable continuum model, included in the calculation, did not improve the accuracy effectively, but it was superior to γs. Optical rotation of five or sixmembered of cyclic compound has been calculated and 17 pyrrolidine or piperidine derivatives which were calculated by HF and DFT methods gave acceptable predictions. The nitrogen atom affects the calculation results dramatically, and it is necessary in the molecular structure in order to get an accurate computation result. Namely, when the nitrogen atom was substituted by oxygen atom in the ring, the calculation result deteriorated.

  19. Predicted NMR properties of noble gas hydride cations RgH +

    Science.gov (United States)

    Cukras, Janusz; Sadlej, Joanna

    2008-12-01

    The NMR shielding constants and, for the first time, the spin-spin coupling constants of Rg and H in RgH + compounds for Rg = Ne, Ar, Kr, Xe have been investigated by non-relativistic Hartree-Fock (HF) and relativistic Dirac-Hartree-Fock (DHF) methods. Electron-correlation effects have been furthermore calculated using SOPPA and CCSD at the non-relativistic level. The correlation effects are large on both parameters and opposite to the relativistic effects. The results indicate that both the relativistic and correlation effects need to be taken into account in a quantitative computations, especially in the case of the spin-spin coupling constants.

  20. Constrained Hartree-Fock and beyond

    International Nuclear Information System (INIS)

    Berger, J.F.; Girod, M.; Gogny, D.

    1989-01-01

    Completely microscopic descriptions of the fission phenomenon based on the nuclear mean field theory and its extensions are reviewed. The basic ideas underlying this kind of approach and the way one can set up a consistent microscopic dynamical model of the low energy fission process are presented. The main difficulties encountered in earlier calculations when trying to reproduce experimental fission barriers and to account for scission are recalled. We describe the method by which these difficulties have been overcome and discuss recent results. They concern a proposed interpretation for the scission mechanism and 'cold fission' events. Other issues like adiabaticity in the descent from the second saddle to scission and odd-even effects in cold fission are also discussed. (orig.)

  1. Iterative optimized effective potential and exact exchange calculations at finite temperature

    International Nuclear Information System (INIS)

    Mattsson, Ann Elisabet; Modine, Normand Arthur; Muller, Richard Partain; Desjarlais, Michael Paul; Lippert, Ross A.; Sears, Mark P.; Wright, Alan Francis

    2006-01-01

    We report the implementation of an iterative scheme for calculating the Optimized Effective Potential (OEP). Given an energy functional that depends explicitly on the Kohn-Sham wave functions, and therefore, implicitly on the local effective potential appearing in the Kohn-Sham equations, a gradient-based minimization is used to find the potential that minimizes the energy. Previous work has shown how to find the gradient of such an energy with respect to the effective potential in the zero-temperature limit. We discuss a density-matrix-based derivation of the gradient that generalizes the previous results to the finite temperature regime, and we describe important optimizations used in our implementation. We have applied our OEP approach to the Hartree-Fock energy expression to perform Exact Exchange (EXX) calculations. We report our EXX results for common semiconductors and ordered phases of hydrogen at zero and finite electronic temperatures. We also discuss issues involved in the implementation of forces within the OEP/EXX approach.

  2. Accurate orbital-dependent correlation and exchange-correlation potentials from non-iterative ab initio dft calculations

    Science.gov (United States)

    Grabowski, Ireneusz; Lotrich, Victor

    2005-08-01

    A new approximate non-iterative procedure to obtain accurate correlation and exchange-correlation potentials of Kohn-Sham (KS) density functional theory (DFT) is presented. By carrying out only one step of the correlated optimized effective potential (OEP) iterations following the standard iterative exchange-only OEP, one can recover accurate correlation potentials corresponding to the orbital-dependent second-order many-body perturbation theory [MBPT(2)] energy functional that are hardly discernible from those obtained by the more expensive, fully iterative procedure. This new 'one-step' OEP-MBPT(2) algorithm reflects the non-iterative, perturbative algorithm of standard, canonical MBPT(2) of ab initio wave function theory, while it allows the correlation potentials to readjust and include the majority of the MBPT(2) correlation effect. It is also flexible in the treatment of exchange and the Hartree-Fock orbitals may be used in lieu of the exchange-only OEP orbitals, when the correlation or exchange-correlation potential is of interest.

  3. Giant resonances in the deformed continuum

    International Nuclear Information System (INIS)

    Nakatsukasa, T.; Yabana, K.

    2004-01-01

    Giant resonances in the continuum for deformed nuclei are studied with the time-dependent Hartree-Fock (TDHF) theory in real time and real space. The continuum effect is effectively taken into account by introducing a complex Absorbing Boundary Condition (ABC). (orig.)

  4. Self-consistent description of the SHFB equations for 112Sn

    Science.gov (United States)

    Ghafouri, M.; Sadeghi, H.; Torkiha, M.

    2018-03-01

    The Hartree-Fock (HF) method is an excellent approximation of the closed shell magic nuclei. Pair correlation is essential for the description of open shell nuclei and has been derived for even-even, odd-odd and even-odd nuclei. These effects are reported by Hartree-Fock with BCS (HFBCS) or Hartree-Fock-Bogolyubov (HFB). These issues have been investigated, especially in the nuclear charts, and such studies have been compared with the observed information. We compute observations such as total binding energy, charge radius, densities, separation energies, pairing gaps and potential energy surfaces for neutrons and protons, and compare them with experimental data and the result of the spherical codes. In spherical even-even neutron-rich nuclei are considered in the Skyrme-Hartree-Fock-Bogolyubov (SHFB) method with density-dependent pairing interaction. Zero-range density-dependent interactions is used in the pairing channel. We solve SHF or SHFB equations in the spatial coordinates with spherical symmetry for tin isotopes such as 112Sn. The numerical accuracy of solving equations in the coordinate space is much greater than the fundamental extensions, which yields almost precise results.

  5. Time-reversal-violating Schiff moment of 199Hg

    International Nuclear Information System (INIS)

    Jesus, J.H. de; Engel, J.

    2005-01-01

    We calculate the Schiff moment of the nucleus 199 Hg, created by πNN vertices that are odd under parity (P) and time-reversal (T). Our approach, formulated in diagrammatic perturbation theory with important core-polarization diagrams summed to all orders, gives a close approximation to the expectation value of the Schiff operator in the odd-A Hartree-Fock-Bogoliubov ground state generated by a Skyrme interaction and a weak P- and T-odd pion-exchange potential. To assess the uncertainty in the results, we carry out the calculation with several Skyrme interactions, the quality of which we test by checking predictions for the isoscalar-E1 strength distribution in 208 Pb, and estimate most of the important diagrams we omit

  6. QCD-based relativistic Hartree-Fock calculations for identical quarks

    International Nuclear Information System (INIS)

    Dey, J.; Dey, M.; Le Tourneux, J.

    1985-12-01

    As was first pointed out by Witten, large number of colours (Nsub(c)) leads to a simplification in the theory of baryon masses in that the quarks may be assumed to move in a mean field which can be found self-consistently. The interquark potential in such a description can be borrowed from the meson sector phenomenology in the absence of an accurate evaluation of it from large Nsub(c) quantum chromodynamics (QCD). We have carried out this program with such a potential due to Richardson, used often by workers in the meson sector. This potential has the advantage of incorporating the two main features of QCD, namely confinement and asymptotic freedom. In view of the small number of parameters involved, the results agree surprisingly well with experiment for the case of three identical quarks. (author)

  7. Spectral analysis of the 4d96s configuration in eight times ionized xenon, Xe IX

    International Nuclear Information System (INIS)

    Raineri, M.; Gallardo, M.; Reyna Almandos, J.G.

    2006-01-01

    A capillary light source was used to observe the spectrum of eight times ionized xenon, Xe IX, in the vacuum ultraviolet range, 270-2000 A. Sixteen transitions have been identified as combinations between energy levels of the 4d 9 6s with 4d 9 5p configuration, and all 4d 9 6s levels have been determined. The present analysis is based on an accurate extrapolation of energy parameters and experimental energy level values in the Pd I isoelectronic sequence. The energy parameters were obtained with Hartree-Fock relativistic calculations. Least-squares parametric calculation has been carried out to study the fit between experimental and theoretical values

  8. Orbital energies and structural non-rigidity of complex hydrides according to data on ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Boldyrev, A I; Sukhanov, L P; Charkin, O P [AN SSSR, Moscow. Inst. Novykh Khimicheskikh Problem

    1982-01-01

    In approximation by the Hartree-Fock-Routine method using several Gauss type bases ionization potentials of complex hydrides LiBeH/sub 3/, NaBeH/sub 3/, LiMgH/sub 3/, LiBH/sub 4/, NaBH/sub 4/ and LiAlH/sub 4/ have been calculated. A problem of the show of structural non-rigidity of complex molecules L(MX/sub 4/) with tetrahedral anions (MX/sub 4/)/sup -/ in photoelectron spectra is considered.

  9. How to extract cross sections from TDHF

    International Nuclear Information System (INIS)

    Le Tourneux, Jean

    1979-01-01

    In spite of all the recent progress in solving numerically TDHF (Time Dependent Hartree-Fock) equations for heavy-ion collisions, this method is still far from lending itself readily to the computation of cross sections, except in the case of fusion. The theory presented here is purely formal so far and would lead to fairly heavy calculations in practice. It solves the problem of channel identification in the outgoing asymptotic region of TDHF solutions. It throws a bridge between TDHF and more traditional theories of nuclear reactions, which are time-independent

  10. Single determinantal reaction theory as a Schroedinger analog: the time-dependent S-matrix Hartree-Fock method

    International Nuclear Information System (INIS)

    Griffin, J.J.; Lichtner, P.C.; Dworzecka, M.; Kan, K.K.

    1979-01-01

    It is suggested that the TDHF method be viewed, not as an approximation to but as a model of the exact Schroedinger system; that is, as a gedanken many-body experiment whose analysis with digital computers provides data worthy in itself of theoretical study. From such a viewpoint attention is focused on the structural analogies of the TDHF system with the exact theory rather than upon its quantitative equivalence, and the TDHF many-body system is studied as a challenge of its own which, although much simpler than the realistic problem, may still offer complexity enough to educate theorists in the present state of knowledge. In this spirit, the TDHF description of continuum reactions can be restructured from an initial-value problem into a form analogous to the S-matrix version of the Schroedinger theory. The resulting TD-S-HF theory involves only self-consistent single determinantal solutions of the TDHF equations and invokes time averaging to obtain a consistent interpretation of the TDHF analogs of quantities which are constant in the exact theory, such as the S-matrix and the asymptotic reaction channel characteristics. Periodic solutions then play the role of stationary eigenstates in the construction of suitable asymptotic reaction channels. If these periodic channel states occur only at discrete energies, then the resulting channels are mutually orthogonal (on the time average) and the theory exhibits a structure fully analogous to the exact theory. In certain special cases where the periodic solutions are known to occur as an energy continuum, the requirement that the periodicity of the channel solutions be gauge invariant provides a natural requantization condition which (suggestively) turns out to be identical with the Bohr-Sommerfeld quantization rule. 11 references

  11. Calculations of core-excited states in Li

    International Nuclear Information System (INIS)

    Verbockhaven, G.; Hansen, J.E.

    1999-01-01

    We report on progress in the calculation of three-electron states making use of B-spline basis sets. In particular we discuss the advantages and disadvantages of using a Hartree-Fock basis (expanded in B-splines) compared to the use of hydrogenic basis states. Preliminary results are presented for the 2 S terms in Li below the 1s2s 3 S limit at 64.4 eV. The 2 S terms have been studied less extensively than other core-excited states in Li. In this particular case the choice of basis has a large influence on the quality of the results. (orig.)

  12. Towards quantifying the role of exact exchange in the prediction hydrogen bond spin-spin coupling constants involving fluorine

    Energy Technology Data Exchange (ETDEWEB)

    San Fabián, J.; Omar, S.; García de la Vega, J. M., E-mail: garcia.delavega@uam.es [Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid (Spain)

    2016-08-28

    The effect of a fraction of Hartree-Fock exchange on the calculated spin-spin coupling constants involving fluorine through a hydrogen bond is analyzed in detail. Coupling constants calculated using wavefunction methods are revisited in order to get high-level calculations using the same basis set. Accurate MCSCF results are obtained using an additive approach. These constants and their contributions are used as a reference for density functional calculations. Within the density functional theory, the Hartree-Fock exchange functional is split in short- and long-range using a modified version of the Coulomb-attenuating method with the SLYP functional as well as with the original B3LYP. Results support the difficulties for calculating hydrogen bond coupling constants using density functional methods when fluorine nuclei are involved. Coupling constants are very sensitive to the Hartree-Fock exchange and it seems that, contrary to other properties, it is important to include this exchange for short-range interactions. Best functionals are tested in two different groups of complexes: those related with anionic clusters of type [F(HF){sub n}]{sup −} and those formed by difluoroacetylene and either one or two hydrogen fluoride molecules.

  13. Electron propagator calculations on the ionization energies of CrH -, MnH - and FeH -

    Science.gov (United States)

    Lin, Jyh-Shing; Ortiz, J. V.

    1990-08-01

    Electron propagator calculations with unrestricted Hartree-Fock reference states yield the ionization energies of the title anions. Spin contamination in the anionic reference state is small, enabling the use of second-and third-order self-energies in the Dyson equation. Feynman-Dyson amplitudes for these ionizations are essentially identical to canonical spin-orbitals. For most of the final states, these consist of an antibonding combination of an sp metal hybrid, polarized away from the hydrogen, and hydroegen s functions. In one case, the Feynman-Dyson amplitude consists of nonbonding d functions. Calculated ionization energies are within 0.5 eV of experiment.

  14. Electron impact ionization of heavy ions: some surprises

    International Nuclear Information System (INIS)

    Younger, S.M.

    1986-01-01

    This paper reports the results of calculations of electron impact ionization cross sections for a variety of heavy ions using a distorted wave Born-exchange approximation. The target is described by a Hartree-Fock wavefunction. The scattering matrix element is represented by a triple partial wave expansion over incident, scattered, and ejected (originally bound) continuum states. These partial waves are computed in the potentials associated with the initial target (incident and scattered waves) and the residual ion (ejected waves). A Gauss integration was performed over the distribution of energy between the two final state continuum electrons. For ionization of closed d- and f-subshells, the ejected f-waves were computed in frozen-core term-dependent Hartree-Fock potentials, which include the strong repulsive contribution in singlet terms which arises from the interaction of an excited orbital with an almost closed shell. Ground state correlation was included in some calculations of ionization of d 10 subshells

  15. Sub-barrier fusion and transfers in the 40Ca + 58,64Ni systems

    Science.gov (United States)

    Bourgin, D.; Courtin, S.; Haas, F.; Goasduff, A.; Stefanini, A. M.; Montagnoli, G.; Montanari, D.; Corradi, L.; Huiming, J.; Scarlassara, F.; Fioretto, E.; Simenel, C.; Rowley, N.; Szilner, S.; Mijatović, T.

    2016-05-01

    Fusion cross sections have been measured in the 40Ca + 58Ni and 40Ca + 64Ni systems at energies around and below the Coulomb barrier. The 40Ca beam was delivered by the XTU Tandem accelerator of the Laboratori Nazionali di Legnaro and evaporation residues were measured at very forward angles with the LNL electrostatic beam deflector. Coupled-channels calculations were performed which highlight possible strong effects of neutron transfers on the fusion below the barrier in the 40Ca + 64Ni system. Microscopic time-dependent Hartree-Fock calculations have also been performed for both systems. Preliminary results are shown.

  16. Collective phenomena in a quasi-two-dimensional system of fermionic polar molecules: Band renormalization and excitons

    International Nuclear Information System (INIS)

    Babadi, Mehrtash; Demler, Eugene

    2011-01-01

    We theoretically analyze a quasi-two-dimensional system of fermionic polar molecules trapped in a harmonic transverse confining potential. The renormalized energy bands are calculated by solving the Hartree-Fock equation numerically for various trap and dipolar interaction strengths. The intersubband excitations of the system are studied in the conserving time-dependent Hartree-Fock (TDHF) approximation from the perspective of lattice modulation spectroscopy experiments. We find that the excitation spectrum consists of both intersubband particle-hole excitation continua and antibound excitons whose antibinding behavior is associated to the anisotropic nature of dipolar interactions. The excitonic modes are shown to capture the majority of the spectral weight. We evaluate the intersubband transition rates in order to investigate the nature of the excitonic modes and find that they are antibound states formed from particle-hole excitations arising from several subbands. We discuss the sum rules in the context of lattice modulation spectroscopy experiments and utilize them to check the consistency of the obtained results. Our results indicate that the excitonic effects persist for interaction strengths and temperatures accessible in the current experiments with polar molecules.

  17. Time-dependent theoretical treatments of the dynamics of electrons and nuclei in molecular systems

    International Nuclear Information System (INIS)

    Deumens, E.; Diz, A.; Longo, R.; Oehrn, Y.

    1994-01-01

    An overview is presented of methods for time-dependent treatments of molecules as systems of electrons and nuclei. The theoretical details of these methods are reviewed and contrasted in the light of a recently developed time-dependent method called electron-nuclear dynamics. Electron-nuclear dynamics (END) is a formulation of the complete dynamics of electrons and nuclei of a molecular system that eliminates the necessity of constructing potential-energy surfaces. Because of its general formulation, it encompasses many aspects found in other formulations and can serve as a didactic device for clarifying many of the principles and approximations relevant in time-dependent treatments of molecular systems. The END equations are derived from the time-dependent variational principle applied to a chosen family of efficiently parametrized approximate state vectors. A detailed analysis of the END equations is given for the case of a single-determinantal state for the electrons and a classical treatment of the nuclei. The approach leads to a simple formulation of the fully nonlinear time-dependent Hartree-Fock theory including nuclear dynamics. The nonlinear END equations with the ab initio Coulomb Hamiltonian have been implemented at this level of theory in a computer program, ENDyne, and have been shown feasible for the study of small molecular systems. Implementation of the Austin Model 1 semiempirical Hamiltonian is discussed as a route to large molecular systems. The linearized END equations at this level of theory are shown to lead to the random-phase approximation for the coupled system of electrons and nuclei. The qualitative features of the general nonlinear solution are analyzed using the results of the linearized equations as a first approximation. Some specific applications of END are presented, and the comparison with experiment and other theoretical approaches is discussed

  18. Uniqueness of the Fock quantization of the Gowdy T3 model

    International Nuclear Information System (INIS)

    Cortez, Jeronimo; Marugan, Guillermo A. Mena; Velhinho, Jose M.

    2007-01-01

    After its reduction by a gauge-fixing procedure, the family of linearly polarized Gowdy T 3 cosmologies admits a scalar field description whose evolution is governed by a Klein-Gordon type equation in a flat background in 1+1 dimensions with the spatial topology of S 1 , though in the presence of a time-dependent potential. The model is still subject to a homogeneous constraint, which generates S 1 -translations. Recently, a Fock quantization of this scalar field was introduced and shown to be unique under the requirements of unitarity of the dynamics and invariance under the gauge group of S 1 -translations. In this work, we extend and complete this uniqueness result by considering other possible scalar field descriptions, resulting from reasonable field reparametrizations of the induced metric of the reduced model. In the reduced phase space, these alternate descriptions can be obtained by means of a time-dependent scaling of the field, the inverse scaling of its canonical momentum, and the possible addition of a time-dependent, linear contribution of the field to this momentum. Demanding again unitarity of the field dynamics and invariance under the gauge group, we prove that the alternate canonical pairs of fieldlike variables admit a Fock representation if and only if the scaling of the field is constant in time. In this case, there exists essentially a unique Fock representation, provided by the quantization constructed by Corichi, Cortez, and Mena Marugan. In particular, our analysis shows that the scalar field description proposed by Pierri does not admit a Fock quantization with the above unitarity and invariance properties

  19. Approximate relativistic corrections to atomic radial wave functions

    International Nuclear Information System (INIS)

    Cowan, R.D.; Griffin, D.C.

    1976-01-01

    The mass-velocity and Darwin terms of the one-electron-atom Pauli equation have been added to the Hartree-Fock differential equations by using the HX formula to calculate a local central field potential for use in these terms. Introduction of the quantum number j is avoided by omitting the spin-orbit term of the Pauli equation. The major relativistic effects, both direct and indirect, are thereby incorporated into the wave functions, while allowing retention of the commonly used nonrelativistic formulation of energy level calculations. The improvement afforded in calculated total binding energies, excitation energies, spin-orbit parameters, and expectation values of r/sub m/ is comparable with that provided by fully relativistic Dirac-Hartree-Fock calculations

  20. Ab initio calculations and modelling of atomic cluster structure

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Lyalin, Andrey G.; Solov'yov, Andrey V.

    2004-01-01

    The optimized structure and electronic properties of small sodium and magnesium clusters have been investigated using it ab initio theoretical methods based on density-functional theory and post-Hartree-Fock many-body perturbation theory accounting for all electrons in the system. A new theoretical...

  1. Numerical comparison of atomic binding energies calculated by Thomas-Fermi like formulas

    International Nuclear Information System (INIS)

    Donnamaria, M.C.; Castro, E.A.; Fernandez, F.M.

    1985-01-01

    We apply in an exhaustive way formulas of Thomas-Fermi nature to determine atomic ground state energies. Results are compared with Hartree-Fock SCF data and the different methods are analysed in a comparative fashion. (authors)

  2. Hartree-Fock calculations for strongly deformed and highly excited nuclei using the Skyrme force

    International Nuclear Information System (INIS)

    Zint, P.G.

    1975-01-01

    It has been shown that in CHF-calculations the Skyrme-force is usefull to describe strongly deformed nuclei with even proton and neutron number till separation. Thereby the eigenfunctions of the two-centre Hamiltonian form an adequate basis. With this procedure, we obtain the correct deformation of the 32 S-system. Induding the spurious energy of relative motion between the 16 O-fragments, the energy curve is a good approximation for the real potential, extracted form scattering experiments. (orig./WL) [de

  3. Variationally-optimized muffin-tin potentials for band calculations

    International Nuclear Information System (INIS)

    Pant, M.M.

    1979-09-01

    A method is suggested to determine the best local periodic crystal potential V(r) by minimizing the Hartree-Fock expectation value of the energy. The explicit form of the integral equation for the local exchange potential is obtained for the special case of the Muffin-tin aproximation. (author)

  4. A microscopic theory of the nuclear collective motion

    International Nuclear Information System (INIS)

    Baranger, M.

    1975-01-01

    A microscopic theory of the nuclear collective model is reviewed, discussions being concentrated, mainly, on the shape motion. An adiabatic time dependent Hartree-Fock method is used. Kinetic energy using the cranking model is obtained. The generator coordinate method is discussed [pt

  5. A unique Fock quantization for fields in non-stationary spacetimes

    International Nuclear Information System (INIS)

    Cortez, Jerónimo; Marugán, Guillermo A. Mena; Olmedo, Javier; Velhinho, José M.

    2010-01-01

    In curved spacetimes, the lack of criteria for the construction of a unique quantization is a fundamental problem undermining the significance of the predictions of quantum field theory. Inequivalent quantizations lead to different physics. Recently, however, some uniqueness results have been obtained for fields in non-stationary settings. In particular, for vacua that are invariant under the background symmetries, a unitary implementation of the classical evolution suffices to pick up a unique Fock quantization in the case of Klein-Gordon fields with time-dependent mass, propagating in a static spacetime whose spatial sections are three-spheres. In fact, the field equation can be reinterpreted as describing the propagation in a Friedmann-Robertson-Walker spacetime after a suitable scaling of the field by a function of time. For this class of fields, we prove here an even stronger result about the Fock quantization: the uniqueness persists when one allows for linear time-dependent transformations of the field in order to account for a scaling by background functions. In total, paying attention to the dynamics, there exists a preferred choice of quantum field, and only one SO(4)-invariant Fock representation for it that respects the standard probabilistic interpretation along the evolution. The result has relevant implications e.g. in cosmology

  6. Self-consistent calculation of atomic structure for mixture

    International Nuclear Information System (INIS)

    Meng Xujun; Bai Yun; Sun Yongsheng; Zhang Jinglin; Zong Xiaoping

    2000-01-01

    Based on relativistic Hartree-Fock-Slater self-consistent average atomic model, atomic structure for mixture is studied by summing up component volumes in mixture. Algorithmic procedure for solving both the group of Thomas-Fermi equations and the self-consistent atomic structure is presented in detail, and, some numerical results are discussed

  7. Nuclear structure for the crust of neutron stars and exotic nuclei

    International Nuclear Information System (INIS)

    Goegelein, Peter

    2007-01-01

    In this work the Skyrme Hartree-Fock and Relativistic Hartree--Fock approaches have been considered to describe the structure of nuclear systems ranging from finite nuclei, structures in the crust of neutron stars to homogeneous matter. Effects of pairing correlations and finite temperature are also taken into account. The numerical procedure in the cubic box is described for the Skyrme Hartree-Fock as well as the relativistic Hartree-Fock approach. And finally, results for the crust of neutron stars and exotic nuclei are presented and discussed. (orig.)

  8. Nuclear structure for the crust of neutron stars and exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Goegelein, Peter

    2007-07-01

    In this work the Skyrme Hartree-Fock and Relativistic Hartree--Fock approaches have been considered to describe the structure of nuclear systems ranging from finite nuclei, structures in the crust of neutron stars to homogeneous matter. Effects of pairing correlations and finite temperature are also taken into account. The numerical procedure in the cubic box is described for the Skyrme Hartree-Fock as well as the relativistic Hartree-Fock approach. And finally, results for the crust of neutron stars and exotic nuclei are presented and discussed. (orig.)

  9. Tilted cranking classification of multibandspectra

    Energy Technology Data Exchange (ETDEWEB)

    Frauendorf, S [IHK F2-Rossendorf, Dresden (Germany); [Lawrence Berkeley Lab., CA (United States); May, F R [Niels Bohr Inst., Copenhagen (Denmark); [Lund Univ. (Sweden). Dept. of Mathematical Physics

    1992-08-01

    The tilted cranking theory of multi-band spectra of deformed nuclei is discussed. The existence of TDHF (time-dependent Hartree Fock) solutions rotating uniformly about a non-principal axis of the deformed axial potential is demonstrated. The solutions represent {Delta}I=1 bands. Self-consistency and symmetry are discussed. The transfer of experimental spectra to the rotating field of reference is introduced. Excitation spectra at high spin are calculated, and found to agree well with recent data on {sup 163}Er and {sup 174}Hf. 7 refs., 5 figs.

  10. Analytic calculations of hyper-Raman spectra from density functional theory hyperpolarizability gradients

    Energy Technology Data Exchange (ETDEWEB)

    Ringholm, Magnus; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø (Norway); Bast, Radovan [Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, S-10691 Stockholm (Sweden); PDC Center for High Performance Computing, Royal Institute of Technology, S-10044 Stockholm (Sweden); Oggioni, Luca [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø (Norway); Department of Physics G. Occhialini, University of Milano Bicocca, Piazza della scienza 3, 20126 Milan (Italy); Ekström, Ulf [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo (Norway)

    2014-10-07

    We present the first analytic calculations of the geometrical gradients of the first hyperpolarizability tensors at the density-functional theory (DFT) level. We use the analytically calculated hyperpolarizability gradients to explore the importance of electron correlation effects, as described by DFT, on hyper-Raman spectra. In particular, we calculate the hyper-Raman spectra of the all-trans and 11-cis isomers of retinal at the Hartree-Fock (HF) and density-functional levels of theory, also allowing us to explore the sensitivity of the hyper-Raman spectra on the geometrical characteristics of these structurally related molecules. We show that the HF results, using B3LYP-calculated vibrational frequencies and force fields, reproduce the experimental data for all-trans-retinal well, and that electron correlation effects are of minor importance for the hyper-Raman intensities.

  11. Calculation of vibrational spectra of complex hydrides, LiBeH/sub 3/, NaBeH/sub 3/ and LiMgH/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, L P; Boldyrev, A I [AN SSSR, Chernogolovka. Inst. Novykh Khimicheskikh Problem

    1984-03-01

    The non-empirical Hartree-Fock-Ruthan method with a two-exponent Ros-Zigban basis has been used to calculate the coefficients of harmonic force field, frequency and intensity of normal vibrations of the LiBeH/sub 3/, NaBeH/sub 3/ and LiMgH/sub 3/ complex hydrides. Attribution of vibrational types is conducted. Isotope shifts for different isotope substitutions in the L(MH/sub 3/) are calculated. The effect of the nature of both the outer-spherical cation L/sup +/ and central atom M on the vibrational spectrum is discussed.

  12. On the classification of the spectrally stable standing waves of the Hartree problem

    Science.gov (United States)

    Georgiev, Vladimir; Stefanov, Atanas

    2018-05-01

    We consider the fractional Hartree model, with general power non-linearity and arbitrary spatial dimension. We construct variationally the "normalized" solutions for the corresponding Choquard-Pekar model-in particular a number of key properties, like smoothness and bell-shapedness are established. As a consequence of the construction, we show that these solitons are spectrally stable as solutions to the time-dependent Hartree model. In addition, we analyze the spectral stability of the Moroz-Van Schaftingen solitons of the classical Hartree problem, in any dimensions and power non-linearity. A full classification is obtained, the main conclusion of which is that only and exactly the "normalized" solutions (which exist only in a portion of the range) are spectrally stable.

  13. 2nd derivatives of the electronic energy in density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Dam, H. van

    2001-08-01

    This document details the equations needed to implement the calculation of vibrational frequencies within the density functional formalism of electronic structure theory. This functionality has been incorporated into the CCP1 DFT module and the required changes to the application programmers interface are outlined. Throughout it is assumed that an implementation of Hartree-Fock vibrational frequencies is available that can be modified to incorporate the density functional formalism. Employing GAMESS-UK as an example the required changes to the Hartree-Fock code are outlined. (author)

  14. A theoretical study on the photoionization of the valence orbitals of phosphine

    Directory of Open Access Journals (Sweden)

    Nascimento Edmar M.

    2006-01-01

    Full Text Available We report a theoretical study on the photoionization of phosphine in the static-exchange level and frozen core approximation, using the method of continued fractions. The main subject of the present study is to investigate in which extent the Hartree-Fock description of the target applied to molecular photoionization is valid. Also, the role played by multichannel coupling is analysed. Our study shows that single-channel Hartree-Fock calculations can provide reliable results except for photon energies near the photoionization threshold.

  15. Straightening the Hierarchical Staircase for Basis Set Extrapolations: A Low-Cost Approach to High-Accuracy Computational Chemistry

    Science.gov (United States)

    Varandas, António J. C.

    2018-04-01

    Because the one-electron basis set limit is difficult to reach in correlated post-Hartree-Fock ab initio calculations, the low-cost route of using methods that extrapolate to the estimated basis set limit attracts immediate interest. The situation is somewhat more satisfactory at the Hartree-Fock level because numerical calculation of the energy is often affordable at nearly converged basis set levels. Still, extrapolation schemes for the Hartree-Fock energy are addressed here, although the focus is on the more slowly convergent and computationally demanding correlation energy. Because they are frequently based on the gold-standard coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)], correlated calculations are often affordable only with the smallest basis sets, and hence single-level extrapolations from one raw energy could attain maximum usefulness. This possibility is examined. Whenever possible, this review uses raw data from second-order Møller-Plesset perturbation theory, as well as CCSD, CCSD(T), and multireference configuration interaction methods. Inescapably, the emphasis is on work done by the author's research group. Certain issues in need of further research or review are pinpointed.

  16. Calculations of transitions in singly ionised iron

    International Nuclear Information System (INIS)

    Donnelly, M.P.

    1999-04-01

    The thesis gives a general overview of the atomic structure, introducing the relevant quantum mechanical concepts. Theoretical methods for determining the wave functions, like the Hartree-Fock Methode and the Hylleraas-Undheim Principle are discussed. Methods for obtaining atomic data by theoretical and by experimental means are discussed. Finally sextet transitions in FeII are treated in some detail

  17. Microscopic optical potential for 208Pb in the nuclear structure approach

    International Nuclear Information System (INIS)

    Bernard, V.; Nguyen Van Gai.

    1979-04-01

    The optical potential for nucleon- 208 Pb scattering below 30 MeV is calculated microscopically as the sum of a real Hartree-Fock term and a complex correction term arising from the coupling to excited states of the target. The Skyrme effective interaction is used to generate the Hartree-Fock field, the RPA excited states and the coupling. A complex local equivalent potential is defined and used to calculate scattering and absorption cross-sections. The real part of the optical potential is reasonably well described in this approach while the imaginary part is too weak. Inclusion of rearrangement processes could improve the agreement with experiment

  18. Molecular dynamics of a proguanil derivative | Muhammad | Bayero ...

    African Journals Online (AJOL)

    ... ab-initio Quantum chemical calculations at the Restricted Hatree-Fock (RHF) ... and 6-31++G basis sets were carried out for inclusion of electron correlation. ... The dipole moment of the Proguanil's derivative at both levels of theory is ... Keywords: Proguanil, Density Functional Theory, Restricted Hartree Fock, Gaussian ...

  19. A scalable implementation of RI-SCF on parallel computers

    International Nuclear Information System (INIS)

    Fruechtl, H.A.; Kendall, R.A.; Harrison, R.J.

    1996-01-01

    In order to avoid the integral bottleneck of conventional SCF calculations, the Resolution of the Identity (RI) method is used to obtain an approximate solution to the Hartree-Fock equations. In this approximation only three-center integrals are needed to build the Fock matrix. It has been implemented as part of the NWChem package of portable and scalable ab initio programs for parallel computers. Utilizing the V-approximation, both the Coulomb and exchange contribution to the Fock matrix can be calculated from a transformed set of three-center integrals which have to be precalculated and stored. A distributed in-core method as well as a disk based implementation have been programmed. Details of the implementation as well as the parallel programming tools used are described. We also give results and timings from benchmark calculations

  20. Sub-barrier fusion and transfers in the 40Ca + 58,64Ni systems

    Directory of Open Access Journals (Sweden)

    Bourgin D.

    2016-01-01

    Full Text Available Fusion cross sections have been measured in the 40Ca + 58Ni and 40Ca + 64Ni systems at energies around and below the Coulomb barrier. The 40Ca beam was delivered by the XTU Tandem accelerator of the Laboratori Nazionali di Legnaro and evaporation residues were measured at very forward angles with the LNL electrostatic beam deflector. Coupled-channels calculations were performed which highlight possible strong effects of neutron transfers on the fusion below the barrier in the 40Ca + 64Ni system. Microscopic time-dependent Hartree-Fock calculations have also been performed for both systems. Preliminary results are shown.

  1. The positronium and the dipositronium in a Hartree-Fock approximation of quantum electrodynamics

    Science.gov (United States)

    Sok, Jérémy

    2016-02-01

    The Bogoliubov-Dirac-Fock (BDF) model is a no-photon approximation of quantum electrodynamics. It allows to study relativistic electrons in interaction with the Dirac sea. A state is fully characterized by its one-body density matrix, an infinite rank non-negative projector. We prove the existence of the para-positronium, the bound state of an electron and a positron with antiparallel spins, in the BDF model represented by a critical point of the energy functional in the absence of an external field. We also prove the existence of the dipositronium, a molecule made of two electrons and two positrons that also appears as a critical point. More generally, for any half integer j ∈ 1/2 + Z + , we prove the existence of a critical point of the energy functional made of 2j + 1 electrons and 2j + 1 positrons.

  2. Large scale nuclear structure studies

    International Nuclear Information System (INIS)

    Faessler, A.

    1985-01-01

    Results of large scale nuclear structure studies are reported. The starting point is the Hartree-Fock-Bogoliubov solution with angular momentum and proton and neutron number projection after variation. This model for number and spin projected two-quasiparticle excitations with realistic forces yields in sd-shell nuclei similar good results as the 'exact' shell-model calculations. Here the authors present results for a pf-shell nucleus 46 Ti and results for the A=130 mass region where they studied 58 different nuclei with the same single-particle energies and the same effective force derived from a meson exchange potential. They carried out a Hartree-Fock-Bogoliubov variation after mean field projection in realistic model spaces. In this way, they determine for each yrast state the optimal mean Hartree-Fock-Bogoliubov field. They apply this method to 130 Ce and 128 Ba using the same effective nucleon-nucleon interaction. (Auth.)

  3. Application of the weak-field asymptotic theory to the analysis of tunneling ionization of linear molecules

    DEFF Research Database (Denmark)

    Madsen, Lars Bojer; Tolstikhin, Oleg I.; Morishita, Toru

    2012-01-01

    The recently developed weak-field asymptotic theory [ Phys. Rev. A 84 053423 (2011)] is applied to the analysis of tunneling ionization of a molecular ion (H2+), several homonuclear (H2, N2, O2) and heteronuclear (CO, HF) diatomic molecules, and a linear triatomic molecule (CO2) in a static...... electric field. The dependence of the ionization rate on the angle between the molecular axis and the field is determined by a structure factor for the highest occupied molecular orbital. This factor is calculated using a virtually exact discrete variable representation wave function for H2+, very accurate...... Hartree-Fock wave functions for the diatomics, and a Hartree-Fock quantum chemistry wave function for CO2. The structure factors are expanded in terms of standard functions and the associated structure coefficients, allowing the determination of the ionization rate for any orientation of the molecule...

  4. Photoelectron and ICD electron angular distributions from fixed-in-space neon dimers

    International Nuclear Information System (INIS)

    Jahnke, T; Czasch, A; Schoeffler, M; Schoessler, S; Kaesz, M; Titze, J; Kreidi, K; Grisenti, R E; Staudte, A; Jagutzki, O; Schmidt, L Ph H; Semenov, S K; Cherepkov, N A; Schmidt-Boecking, H; Doerner, R

    2007-01-01

    We report on molecular frame angular distributions of 2s photoelectrons and electrons emitted by interatomic Coulombic decay from neon dimers. We found that the measured angular distribution of the photoelectron strongly depends on the environment of the cluster. The experimental results are in excellent agreement with frozen core Hartree-Fock calculations. The ICD electrons show slight variations in their angular distribution for different kinetic energies

  5. Selfconsistent calculations for hyperdeformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Molique, H.; Dobaczewski, J.; Dudek, J.; Luo, W.D. [Universite Louis Pasteur, Strasbourg (France)

    1996-12-31

    Properties of the hyperdeformed nuclei in the A {approximately} 170 mass range are re-examined using the self-consistent Hartree-Fock method with the SOP parametrization. A comparison with the previous predictions that were based on a non-selfconsistent approach is made. The existence of the {open_quotes}hyper-deformed shell closures{close_quotes} at the proton and neutron numbers Z=70 and N=100 and their very weak dependence on the rotational frequency is suggested; the corresponding single-particle energy gaps are predicted to play a role similar to that of the Z=66 and N=86 gaps in the super-deformed nuclei of the A {approximately} 150 mass range. Selfconsistent calculations suggest also that the A {approximately} 170 hyperdeformed structures have neglegible mass asymmetry in their shapes. Very importantly for the experimental studies, both the fission barriers and the {open_quotes}inner{close_quotes} barriers (that separate the hyperdeformed structures from those with smaller deformations) are predicted to be relatively high, up to the factor of {approximately}2 higher than the corresponding ones in the {sup 152}Dy superdeformed nucleus used as a reference.

  6. Time-dependent importance sampling in semiclassical initial value representation calculations for time correlation functions.

    Science.gov (United States)

    Tao, Guohua; Miller, William H

    2011-07-14

    An efficient time-dependent importance sampling method is developed for the Monte Carlo calculation of time correlation functions via the initial value representation (IVR) of semiclassical (SC) theory. A prefactor-free time-dependent sampling function weights the importance of a trajectory based on the magnitude of its contribution to the time correlation function, and global trial moves are used to facilitate the efficient sampling the phase space of initial conditions. The method can be generally applied to sampling rare events efficiently while avoiding being trapped in a local region of the phase space. Results presented in the paper for two system-bath models demonstrate the efficiency of this new importance sampling method for full SC-IVR calculations.

  7. Correlations and fluctuations in static and dynamic mean-field approaches

    International Nuclear Information System (INIS)

    Balian, R.; Veneroni, M.

    1991-01-01

    Let the state of a many-body system at an initial time be specified, completely or partly; find the expectation values, correlations and fluctuations of single-particle observables at a later time. The characteristic function of these observables is optimized within a general variational scheme. The expansion of the optimal characteristic function provides the same results as the conventional mean-field approaches for the thermodynamic potentials and the expectation values: for fermions the best initial state is then the Hartree-Fock (HF) solution and the evolution is described by the time-dependent Hartree-Fock (TDHF) equation. Two special cases are investigated as preliminary steps. The first case deals with the evaluation of correlations for static problems, where the initial and final times coincide. In the second special case, the exact initial state is assumed to be an independent-particle one. (K.A.) 23 refs.; 1 fig

  8. The reaction rate for dissociative adsorption of N-2 on stepped Ru(0001): Six-dimensional quantum calculations

    DEFF Research Database (Denmark)

    van Harrevelt, Rob; Honkala, Johanna Karoliina; Nørskov, Jens Kehlet

    2005-01-01

    Quantum-mechanical calculations of the reaction rate for dissociative adsorption of N-2 on stepped Ru(0001) are presented. Converged six-dimensional quantum calculations for this heavy-atom reaction have been performed using the multiconfiguration time-dependent Hartree method. A potential...

  9. Calculation of the RPA response function of nuclei to quasi-elastic electron scattering with a density-dependent NN interaction

    International Nuclear Information System (INIS)

    Caillon, J-C.; Labarsouque, J.

    1997-01-01

    So far, the non-relativistic longitudinal and transverse functions in electron quasi-elastic scattering on the nuclei failed in reproducing satisfactorily the existent experimental data. The calculations including relativistic RPA correlations utilize until now the relativistic Hartree approximation to describe the nuclear matter. But, this provides an incompressibility module two times higher than its experimental value what is an important drawback for the calculation of realistic relativistic RPA correlations. Hence, we have determined the RPA response functions of nuclei by utilising a description of the relativistic nuclear matter leading to an incompressibility module in agreement with the empirical value. To do that we have utilized an interaction in the relativistic Hartree approximation in which we have determined the coupling constants σ-N and ω-N as a function of the density in order to reproduce the saturation curve obtained by a Dirac-Brueckner calculation. The results which we have obtained show that the longitudinal response function and the Coulomb sum generally overestimated when one utilizes the pure relativistic Hartree approximation, are here in good agreement with the experimental data for several nuclei

  10. Quanty4RIXS: a program for crystal field multiplet calculations of RIXS and RIXS-MCD spectra using Quanty.

    Science.gov (United States)

    Zimmermann, Patric; Green, Robert J; Haverkort, Maurits W; de Groot, Frank M F

    2018-05-01

    Some initial instructions for the Quanty4RIXS program written in MATLAB ® are provided. The program assists in the calculation of 1s 2p RIXS and 1s 2p RIXS-MCD spectra using Quanty. Furthermore, 1s XAS and 2p 3d RIXS calculations in different symmetries can also be performed. It includes the Hartree-Fock values for the Slater integrals and spin-orbit interactions for several 3d transition metal ions that are required to create the .lua scripts containing all necessary parameters and quantum mechanical definitions for the calculations. The program can be used free of charge and is designed to allow for further adjustments of the scripts. open access.

  11. Unitary evolution and uniqueness of the Fock quantization in flat cosmologies

    International Nuclear Information System (INIS)

    Marugán, G A Mena; Błas, D Martín-de; Gomar, L Castelló

    2013-01-01

    We study the Fock quantization of scalar fields with a time dependent mass in cosmological scenarios with flat compact spatial sections. This framework describes physically interesting situations like, e.g., cosmological perturbations in flat Friedmann-Robertson-Walker spacetimes, generally including a suitable scaling of them by a background function. We prove that the requirements of vacuum invariance under the spatial isometries and of a unitary quantum dynamics select (a) a unique canonical pair of field variables among all those related by time dependent canonical transformations which scale the field configurations, and (b) a unique Fock representation for the canonical commutation relations of this pair of variables. The proof is generalizable to any compact spatial topology in three or less dimensions, though we focus on the case of the three-torus owing to the especially relevant implications.

  12. Research in theoretical nuclear physics. Progress report, September 1984-August 1985

    International Nuclear Information System (INIS)

    Bayman, B.F.

    1985-01-01

    Progress is reported in these areas: inelastic scattering of deformed nuclei via the proximity potential; time-dependent Hartree-Fock study of nuclear motion after a grazing relativistic collision; electromagnetic decay of the giant quadrupole resonances; folding model with parity-dependent potentials; number-conserving sets with the Paris potential; spin flip in the 12 C( 13 C, 13 C') 12 C*(2 + ) inelastic reaction; polarization potentials arising from inelastic scattering; resonating group calculation for the α + 16 O system with realistic oscillator frequencies; microscopic study of d + α scattering system with multi-channel resonating group method; microscopic study of the 4 He system with multi-channel resonating group method; cluster configurations in 7 Li; and pseudo-state calculation in the n + t system. 41 refs

  13. Auxiliary-field quantum Monte Carlo calculations of molecular systems with a Gaussian basis

    International Nuclear Information System (INIS)

    Al-Saidi, W.A.; Zhang Shiwei; Krakauer, Henry

    2006-01-01

    We extend the recently introduced phaseless auxiliary-field quantum Monte Carlo (QMC) approach to any single-particle basis and apply it to molecular systems with Gaussian basis sets. QMC methods in general scale favorably with the system size as a low power. A QMC approach with auxiliary fields, in principle, allows an exact solution of the Schroedinger equation in the chosen basis. However, the well-known sign/phase problem causes the statistical noise to increase exponentially. The phaseless method controls this problem by constraining the paths in the auxiliary-field path integrals with an approximate phase condition that depends on a trial wave function. In the present calculations, the trial wave function is a single Slater determinant from a Hartree-Fock calculation. The calculated all-electron total energies show typical systematic errors of no more than a few millihartrees compared to exact results. At equilibrium geometries in the molecules we studied, this accuracy is roughly comparable to that of coupled cluster with single and double excitations and with noniterative triples [CCSD(T)]. For stretched bonds in H 2 O, our method exhibits a better overall accuracy and a more uniform behavior than CCSD(T)

  14. Ab initio calculations of the electronic and structural properties of beryllium-, magnesium- and calcium-nitrides

    International Nuclear Information System (INIS)

    Mokhtari, A.; Akbarzadeh, H.

    2003-01-01

    The electronic and structural properties of beryllium nitride (alpha and beta), magnesium- and calcium-nitrides were investigated using first principle full potential-linearized augmented plane wave method within density functional theory. We used Perdew and Wang-generalized gradient approximation, which is based on exchange correlation energy optimization, to calculate the total energy and the Engel-Vosko's GGA formalism, which optimize the corresponding potential, for band structure calculations. We also optimized internal parameters by relaxing the atomic positions in the force directions. Our results including lattice parameter, bulk modulus and it's pressure derivative, cohesive energy, band structure and density of states are compared with the experimental and other theoretical (Hartree-Fock approximation with a posteriori density functional correction) data

  15. Determination of the molecular structure via the medium energy electrons (500 eV-1,5 KeV) Ar, N2, Co e HCl

    International Nuclear Information System (INIS)

    Nogueira, J.C.

    1977-01-01

    Elastic Differential and Total Differential Cross Sections are measured for electron collision in medium-energy range (500 eV - 1,5 KeV) with argon, nitrogen, carbon monoxide and hydrogen chloride, all in their electronic ground state. Theoretical calculation for the Elastic Differential Cross Sections by atoms were done employing Hartree-Fock-Clementy wave function, and making use of Partial Wave and WKBJ Methods. Exchange effect is included in the case of argon. Independent Atom Model, Half Molecule Model and a new model, the Ionic Model were utilized for the molecular calculations. The Ionic Model is suggested for the interaction between HCl and electrons. Inelastic Differential Cross Section were also computed, making use of the First Born Approximation and Hartree-Fock-Clementi wave function. It is also demonstrated, for the first time, that medium energy electrons (500 eV - 1,5 Kev) can be used to determine molecular structure parameters, in gas phase [pt

  16. Molecular equilibrium structures from experimental rotational constants and calculated vibration-rotation interaction constants

    DEFF Research Database (Denmark)

    Pawlowski, F; Jorgensen, P; Olsen, Jeppe

    2002-01-01

    A detailed study is carried out of the accuracy of molecular equilibrium geometries obtained from least-squares fits involving experimental rotational constants B(0) and sums of ab initio vibration-rotation interaction constants alpha(r)(B). The vibration-rotation interaction constants have been...... calculated for 18 single-configuration dominated molecules containing hydrogen and first-row atoms at various standard levels of ab initio theory. Comparisons with the experimental data and tests for the internal consistency of the calculations show that the equilibrium structures generated using Hartree......-Fock vibration-rotation interaction constants have an accuracy similar to that obtained by a direct minimization of the CCSD(T) energy. The most accurate vibration-rotation interaction constants are those calculated at the CCSD(T)/cc-pVQZ level. The equilibrium bond distances determined from these interaction...

  17. Electronic structure of molecules using relativistic effective core potentials

    International Nuclear Information System (INIS)

    Hay, P.J.

    1981-01-01

    Starting with one-component Cowan-Griffin relativistic Hartree-Fock orbitals, which successfully incorporate the mass-velocity and Darwin terms present in more complicated wavefunctions such as Dirac-Hartree-Fock, one can derive relativistic effective core potentials (RECP's) to carry out molecular calculations. These potentials implicitly include the dominant relativistic terms for molecules while allowing one to use the traditional quantum chemical techniques for studying the electronic structure of molecules. The effects of spin-orbit coupling can then be included using orbitals from such calculations using an effective 1-electron, 1-center spin-orbit operator. Applications to molecular systems involving heavy atoms, show good agreement with available spectroscopic data on molecular geometries and excitation energies

  18. On the XFEL Schrödinger Equation: Highly Oscillatory Magnetic Potentials and Time Averaging

    KAUST Repository

    Antonelli, Paolo

    2014-01-14

    We analyse a nonlinear Schrödinger equation for the time-evolution of the wave function of an electron beam, interacting selfconsistently through a Hartree-Fock nonlinearity and through the repulsive Coulomb interaction of an atomic nucleus. The electrons are supposed to move under the action of a time dependent, rapidly periodically oscillating electromagnetic potential. This can be considered a simplified effective single particle model for an X-ray free electron laser. We prove the existence and uniqueness for the Cauchy problem and the convergence of wave-functions to corresponding solutions of a Schrödinger equation with a time-averaged Coulomb potential in the high frequency limit for the oscillations of the electromagnetic potential. © 2014 Springer-Verlag Berlin Heidelberg.

  19. Self-consistent GW calculations of electronic transport in thiol- and amine-linked molecular junctions

    DEFF Research Database (Denmark)

    Strange, M.; Rostgaard, Carsten; Hakkinen, H.

    2011-01-01

    suggest that more complex gold-thiolate structures where the thiolate anchors are chemically passivated by Au adatoms are responsible for the measured conductance. Analysis of the energy level alignment obtained with DFT, Hartree-Fock, and GW reveals the importance of self-interaction corrections...

  20. A few methods for the theory of collective motions and collisions

    International Nuclear Information System (INIS)

    Giraud, B.G.

    1984-01-01

    In this series of lectures the time-dependent Hartree-Fock theory of nuclear motions and collisions are treated for collective motion only. For the theory of collisions a representation, the boosted shell model, is proposed in which matrix elements of the T-matrix are easier to evaluate via a variational principle

  1. Coupled state analysis of electron excitations in asymmetric collision systems

    International Nuclear Information System (INIS)

    Mehler, G.; Reus, T. de; Mueller, U.; Reinhardt, J.; Mueller, B.; Greiner, W.; Soff, G.

    1985-01-01

    A coupled channel formalism is presented, using relativistic basis states of the target atom. Screening effects are incorporated by means of an effective potential of Hartree-Fock-Slater type. Relativistic wave packets are employed for the description of the continuum. The impact parameter dependence of the K-hole production in p-Ag collisions is calculated, including quadrupole contributions of the projectile Coulomb potential. The results are compared with experimental data. (orig.)

  2. Classical region of a trapped Bose gas

    Energy Technology Data Exchange (ETDEWEB)

    Blakie, P Blair [Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin (New Zealand); Davis, Matthew J [ARC Centre of Excellence for Quantum-Atom Optics, School of Physical Sciences, University of Queensland, Brisbane, QLD 4072 (Australia)

    2007-06-14

    The classical region of a Bose gas consists of all single particle modes that have a high average occupation and are well described by a classical field. Highly occupied modes only occur in massive Bose gases at ultra-cold temperatures, in contrast to the photon case where there are highly occupied modes at all temperatures. For the Bose gas the number of these modes is dependent on the temperature, the total number of particles and their interaction strength. In this paper, we characterize the classical region of a harmonically trapped Bose gas over a wide parameter regime. We use a Hartree-Fock approach to account for the effects of interactions, which we observe to significantly change the classical region as compared to the idealized case. We compare our results to full classical field calculations and show that the Hartree-Fock approach provides a qualitatively accurate description of a classical region for the interacting gas.

  3. Regarding the use and misuse of retinal protonated Schiff base photochemistry as a test case for time-dependent density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Valsson, Omar [Department of Chemistry and Applied Biosciences, ETH Zurich and Facoltà di Informatica, Instituto di Scienze Computationali, Università della Svizzera italiana, Via Giuseppe Buffi 13, CH-6900 Lugano (Switzerland); Filippi, Claudia, E-mail: c.filippi@utwente.nl [MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Casida, Mark E., E-mail: mark.casida@ujf-grenoble.fr [Laboratoire de Chimie Théorique, Département de Chimie Moléculaire (DCM), Institut de Chimie Moléculaire de Grenoble (ICMG), Université Joseph Fourier, Grenoble I, F-3801 Grenoble (France)

    2015-04-14

    The excited-state relaxation of retinal protonated Schiff bases (PSBs) is an important test case for biological applications of time-dependent (TD) density-functional theory (DFT). While well-known shortcomings of approximate TD-DFT might seem discouraging for application to PSB relaxation, progress continues to be made in the development of new functionals and of criteria allowing problematic excitations to be identified within the framework of TD-DFT itself. Furthermore, experimental and theoretical ab initio advances have recently lead to a revised understanding of retinal PSB photochemistry, calling for a reappraisal of the performance of TD-DFT in describing this prototypical photoactive system. Here, we re-investigate the performance of functionals in (TD-)DFT calculations in light of these new benchmark results, which we extend to larger PSB models. We focus on the ability of the functionals to describe primarily the early skeletal relaxation of the chromophore and investigate how far along the out-of-plane pathways these functionals are able to describe the subsequent rotation around formal single and double bonds. Conventional global hybrid and range-separated hybrid functionals are investigated as the presence of Hartree-Fock exchange reduces problems with charge-transfer excitations as determined by the Peach-Benfield-Helgaker-Tozer Λ criterion and by comparison with multi-reference perturbation theory results. While we confirm that most functionals cannot render the complex photobehavior of the retinal PSB, do we also observe that LC-BLYP gives the best description of the initial part of the photoreaction.

  4. A microscopic description of nuclear shapes

    International Nuclear Information System (INIS)

    Bonche, P.

    1987-07-01

    This talk describes recent three-dimensional self-consistent Hartree-Fock calculations. After an introduction providing the basic approximations and the different symmetries, we present an application to quadrupole deformation. We pursue with a study of octupole deformation properties of 222 Ra and 144 Ba nuclei for which states of good (positive and negative) parity are projected out. Finally we discuss an extension to the study of rotation and high-spin states with the cranked self-consistent Hartree-Fock method. As an example, the 24 Mg nucleus is studied as a function of angular momentum from ground state up to fission

  5. From TDHF to hydrodynamics

    International Nuclear Information System (INIS)

    Koehler, H.S.

    1983-01-01

    The Time-Dependent Hartree-Fock theory provides a microscopic approach to the scattering of heavy ions. Fundamental in this theory is a mean-(one-body) field. The calculation of this field from a two-body effective interaction makes the theory microscopic. Many-body effects are included by the Brueckner definition of this interaction; the reaction-matrix. In excited media it is in general complex allowing for decays. The imaginary part relates directly to the collision-term in a transport equation. We treat this term by the time-relaxation-method. This implies an extension of the TDHF-equation to include two-body collisions. Hydrodynamic equations are derived from this new equation. The solution of the two equations agree quantitatively for short-relaxation-times. Relaxation-times are calculated as a function of temperature. (orig.)

  6. Effects of molecular orientation in the laser ionization of molecules

    International Nuclear Information System (INIS)

    Xinhua Xie; Gerald Jordan; Christopher Ede; Armin Scrinzi

    2006-01-01

    Complete test of publication follows. Time-dependent electron momentum distributions are calculated during ionization of linear molecules by a strong laser pulse and upon recollision. For typical experimental laser parameters, we find a strong influence of molecular orientation and initial state symmetry on the total ionization rates and also on momentum distributions, compared to which the effect of electron correlation is less important for simple molecules. The dynamics of electron release and subsequent recollision with the parent ion largely determines the time-frequency structure of harmonic radiation, which underlies the generation of attosecond XUV pulses and the time-resolved imaging techniques for the electronic structure of molecules. In the present work, the effects of orientation and initial orbital symmetry are investigated by solving the time-dependent Schroedinger equation for a two-dimensional diatomic molecule in the single-active electron approximation. As in the presence of strong external fields recolliding electrons cannot be easily separated from bound electrons, the electron wave packet is probed at some distance from where all electrons can be safety considered as detached. We find that momentum distributions strongly depend on molecular size, orientation of the molecular axis, and node structure of the initial state. In order to determine the momentum spectra at the time of electron release and upon recollision, we classically propagate the Wigner distributions of probed wavepackets backward and forward in time, respectively. We find that the times of peak recollision current can vary strongly with the orientation of the molecule. Moreover, correlation effects on the electron spectra are included using the multi-configuration time-dependent Hartree-Fock method. The calculations are performed in three spatial dimensions with the restriction to cylindrical symmetry, where the molecule is aligned with the laser field. Correlation is studied

  7. On the way to a microscopic derivation of covariant density functionals in nuclei

    Science.gov (United States)

    Ring, Peter

    2018-02-01

    Several methods are discussed to derive covariant density functionals from the microscopic input of bare nuclear forces. In a first step there are semi-microscopic functionals, which are fitted to ab-initio calculations of nuclear matter and depend in addition on very few phenomenological parameters. They are able to describe nuclear properties with the same precision as fully phenomenological functionals. In a second step we present first relativistic Brueckner-Hartree-Fock calculations in finite nuclei in order to study properties of such functionals, which cannot be obtained from nuclear matter calculations.

  8. Dynamic response function and large-amplitude dissipative collective motion

    International Nuclear Information System (INIS)

    Wu Xizhen; Zhuo Yizhong; Li Zhuxia; Sakata, Fumihiko.

    1993-05-01

    Aiming at exploring microscopic dynamics responsible for the dissipative large-amplitude collective motion, the dynamic response and correlation functions are introduced within the general theory of nuclear coupled-master equations. The theory is based on the microscopic theory of nuclear collective dynamics which has been developed within the time-dependent Hartree-Fock (TDHF) theory for disclosing complex structure of the TDHF-manifold. A systematic numerical method for calculating the dynamic response and correlation functions is proposed. By performing numerical calculation for a simple model Hamiltonian, it is pointed out that the dynamic response function gives an important information in understanding the large-amplitude dissipative collective motion which is described by an ensemble of trajectories within the TDHF-manifold. (author)

  9. Impurities in semiconductors: total energy and infrared absorption calculations

    International Nuclear Information System (INIS)

    Yndurain, F.

    1987-01-01

    A new method to calculate the electronic structure of infinite nonperiodic system is discussed. The calculations are performed using atomic pseudopotentials and a basis of atomic Gaussiam wave functions. The Hartree-Fock self consistent equations are solved in the cluster-Bethe lattice system. Electron correlation is partially included in second order pertubation approximation. The formalism is applied to hydrogenated amorphous silicon. Total energy calculations of finite clusters of silicon atom in the presence of impurities, are also presented. The results show how atomic oxygen breaks the covalent silicon silicon bond forming a local configuration similar to that of SiO 2 . Calculations of the infrared absorption due to the presence of atomic oxygen in cristalline silicon are presented. The Born Hamiltonian to calculate the vibrational modes of the system and a simplied model to describe the infrared absorption mechanism are used. The interstitial and the the substitutional cases are considered and analysed. The position of the main infrared absorption peak, their intensities and their isotope shifts are calculated. The results are satisfactory agreement with the available data. (author) [pt

  10. Is there life after TDHF

    International Nuclear Information System (INIS)

    Davies, K.T.R.

    1978-10-01

    Time-dependent Hartree--Fock (TDHF) research over the last few years is reviewed and characterized. Typical results are presented for light-ion reactions calculated by two- and three-dimensional TDHF methods. A comparison is made between the results of various two-dimensional approximations and those from exact three-dimensional calculations. TDHF studies of fusion are shown to be in fairly good agreement with experiment. Results are presented for TDHF calculations of very heavy systems, including the induced fission of 236 U. For the heavy-ion reactions 84 Kr + 208 Pb and 84 Kr + 209 Bi, it is shown that the TDHF results give approximately the right energy loss in the correct angular regions of the experimental Wilczynski plots. 17 figures

  11. Critical temperature of liquid-gas phase transition for hot nuclear matter and three-body force effect

    International Nuclear Information System (INIS)

    Zuo Wei; Lu Guangcheng; Li Zenghua; Luo Peiyan; Chinese Academy of Sciences, Beijing

    2005-01-01

    The finite temperature Brueckner-Hartree-Fock (FTBHF) approach is extended by introducing a microscopic three-body force. Within the extended approach, the three-body force effects on the equation of state of hot nuclear matter and its temperature dependence have been investigated. The critical properties of the liquid-gas phase transition of hot nuclear matter have been calculated. It is shown that the three-body force provides a repulsive contribution to the equation of state of hot nuclear matter. The repulsive effect of the three-body force becomes more pronounced as the density and temperature increase and consequently inclusion of the three-body force contribution in the calculation reduces the predicted critical temperature from about 16 MeV to about 13 MeV. By separating the contribution originated from the 2σ-exchange process coupled to the virtual excitation of a nucleon-antinucleon pair from the full three-body force, the connection between the three-body force effect and the relativistic correction from the Dirac-Brueckner-Hartree-Fock has been explored. It turns out that the contribution of the 2σ-N(N-bar) part is more repulsive than that of the full three-body force and the calculated critical temperature is about 11 MeV if only the 2σ-N(N-bar) component of the three-body force is included which is lower than the value obtained in the case of including the full three-body force and is close to the value predicted by the Dirac-Brueckner-Hartree-Fock (DBHF) approach. Our result provides a reasonable explanation for the discrepancy between the values of critical temperature predicted from the FTBHF approach including the three-body force and the DBHF approach. (authors)

  12. The light-cone Fock state expansion and hadron physics phenomenology

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1997-06-01

    The light-cone Fock expansion is defined in the following way: one first constructs the light-cone time evolution operator and the invariant mass operator in light-cone gauge from the QCD Lagrangian. The total longitudinal momentum and transverse momenta are conserved, i.e. are independent of the interactions. The matrix elements of the invariant mass operator on the complete orthonormal basis of the free theory can then be constructed. The matrix elements connect Fock states differing by 0, 1, or 2 quark or gluon quanta, and they include the instantaneous quark and gluon contributions imposed by eliminating dependent degrees of freedom in light-cone gauge. Applications of light-cone methods to QCD phenomenology are briefly described

  13. Ab initio calculations of the electronic and structural properties of beryllium-, magnesium- and calcium-nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, A.; Akbarzadeh, H

    2003-09-01

    The electronic and structural properties of beryllium nitride (alpha and beta), magnesium- and calcium-nitrides were investigated using first principle full potential-linearized augmented plane wave method within density functional theory. We used Perdew and Wang-generalized gradient approximation, which is based on exchange correlation energy optimization, to calculate the total energy and the Engel-Vosko's GGA formalism, which optimize the corresponding potential, for band structure calculations. We also optimized internal parameters by relaxing the atomic positions in the force directions. Our results including lattice parameter, bulk modulus and it's pressure derivative, cohesive energy, band structure and density of states are compared with the experimental and other theoretical (Hartree-Fock approximation with a posteriori density functional correction) data.

  14. RHFPPP, SCF-LCAO-MO Calculation for Closed Shell and Open Shell Organic Molecules

    International Nuclear Information System (INIS)

    Bieber, A.; Andre, J.J.

    1987-01-01

    1 - Nature of physical problem solved: Complete program performs SCF-LCAO-MO calculations for both closed and open-shell organic pi-molecules. The Pariser-Parr-People approximations are used with- in the framework of the restricted Hartree-Fock method. The SCF calculation is followed, if desired, by a variational configuration interaction (CI) calculation including singly excited configurations. 2 - Method of solution: A standard procedure is used; at each step a real symmetric matrix has to be diagonalized. The self-consistency is checked by comparing the eigenvectors between two consecutive steps. 3 - Restrictions on the complexity of the problem: i) The calculations are restricted to planar molecules. ii) In order to avoid accumulation of round-off errors, in the iterative procedure, double precision arithmetic is used. iii) The program is restricted to systems up to about 16 atoms; however the size of the systems can easily be modified if required

  15. The monopole and quadrupole vibrations of a hot nucleus

    International Nuclear Information System (INIS)

    Okolowicz, J.; Drozdz, S.; Ploszajczak, M.; Caurier, E.

    1989-03-01

    An extended time-dependent Hartree-Fock approach has been applied to a description of the isoscalar giant monopole and quadrupole vibration modes in the excited nuclear system at finite temperature. The temperature dependence of the resonance characteristics is established for both modes. In anticipation of some anharmonic effects the principle of regularity and single-valuedness has been used to extract the energies of the collective modes. (orig.)

  16. Dynamical description of the fission process using the TD-BCS theory

    Energy Technology Data Exchange (ETDEWEB)

    Scamps, Guillaume, E-mail: scamps@nucl.phys.tohoku.ac.jp [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Simenel, Cédric [Department of Nuclear Physics, Research School of Physics and Engineering Australian National University, Canberra, Australian Capital Territory 2601 (Australia); Lacroix, Denis [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, F-91406 Orsay Cedex (France)

    2015-10-15

    The description of fission remains a challenge for nuclear microscopic theories. The time-dependent Hartree-Fock approach with BCS pairing is applied to study the last stage of the fission process. A good agreement is found for the one-body observables: the total kinetic energy and the average mass asymmetry. The non-physical dependence of two-body observables with the initial shape is discussed.

  17. Application of some Hartree-Fock model calculations to the analysis of atomic and free-ion optical spectra

    International Nuclear Information System (INIS)

    Hayhurst, T.L.

    1980-01-01

    Techniques for applying ab-initio calculations to the analysis of atomic spectra are investigated, along with the relationship between the semi-empirical and ab-initio forms of Slater-Condon theory. Slater-Condon theory is reviewed with a focus on the essential features that lead to the effective Hamiltonians associated with the semi-empirical form of the theory. Ab-initio spectroscopic parameters are calculated from wavefunctions obtained via self-consistent field methods, while multiconfiguration Hamiltonian matrices are constructed and diagonalized with computer codes written by Robert Cowan of Los Alamos Scientific Laboratory. Group theoretical analysis demonstrates that wavefunctions more general than Slater determinants (i.e. wavefunctions with radical correlations between electrons) lead to essentially the same parameterization of effective Hamiltonians. In the spirit of this analysis, a strategy is developed for adjusting ab-initio values of the spectroscopic parameters, reproducing parameters obtained by fitting the corresponding effective Hamiltonian. Secondary parameters are used to screen the calculated (primary) spectroscopic parameters, their values determined by least squares. Extrapolations of the secondary parameters determined from analyzed spectra are attempted to correct calculations of atoms and ions without experimental levels. The adjustment strategy and extrapolations are tested on the KI sequence from K 0+ through Fe 7+ , fitting to experimental levels for V 4+ , and Cr 5+ ; unobserved levels and spectra are predicted for several members of the sequence. A related problem is also discussed: Energy levels of the Uranium hexahalide complexes, (UX 6 ) 2- for X = F, Cl, Br, and I, are fit to an effective Hamiltonian (the f 2 configuration in O/sub h/ symmetry) with corrections proposed by Brian Judd

  18. Application of some Hartree-Fock model calculations to the analysis of atomic and free-ion optical spectra

    International Nuclear Information System (INIS)

    Hayhurst, T.L.

    1980-05-01

    Techniques for applying ab-initio calculations to the analysis of atomic spectra are investigated, along with the relationship between the semi-empirical and ab-initio forms of Slater-Condon theory. Slater-Condon theory is reviewed with a focus on the essential features that lead to the effective Hamiltonians associated with the semi-empirical form of the theory. Ab-initio spectroscopic parameters are calculated from wavefunctions obtained via self-consistent field methods, while multi-configuration Hamiltonian matrices are constructed and diagonalized with computer codes written by Robert Cowan of Los Alamos Scientific Laboratory. Group theoretical analysis demonstrates that wavefunctions more general than Slater determinants (i.e., wavefunctions with radial correlations between electrons) lead to essentially the same parameterization of effective Hamiltonians. In the spirit of this analysis, a strategy is developed for adjusting ab-initio values of the spectroscopic parameters, reproducing parameters obtained by fitting the corresponding effective Hamiltonian. Secondary parameters are used to screen the calculated (primary) spectroscopic parameters, their values determined by least squares. Extrapolations of the secondary parameters determined from analyzed spectra are attempted to correct calculations of atoms and ions without experimental levels. The adjustment strategy and extrapolations are tested on the K I sequence from K 0+ through Fe 7+ , fitting to experimental levels for V 4+ , and Cr 5+ ; unobserved levels and spectra are predicted for several members of the sequence. A related problem is also discussed: energy levels of the uranium hexahalide complexes, (UX 6 ) 2- for X = F, Cl, Br, and I, are fit to an effective Hamiltonian (the f 2 configuration in O/sub h/ symmetry) with corrections proposed by Brian Judd

  19. A New Method and a New Scaling for Deriving Fermionic Mean-Field Dynamics

    International Nuclear Information System (INIS)

    Petrat, Sören; Pickl, Peter

    2016-01-01

    We introduce a new method for deriving the time-dependent Hartree or Hartree-Fock equations as an effective mean-field dynamics from the microscopic Schrödinger equation for fermionic many-particle systems in quantum mechanics. The method is an adaption of the method used in Pickl (Lett. Math. Phys. 97 (2) 151–164 2011) for bosonic systems to fermionic systems. It is based on a Gronwall type estimate for a suitable measure of distance between the microscopic solution and an antisymmetrized product state. We use this method to treat a new mean-field limit for fermions with long-range interactions in a large volume. Some of our results hold for singular attractive or repulsive interactions. We can also treat Coulomb interaction assuming either a mild singularity cutoff or certain regularity conditions on the solutions to the Hartree(-Fock) equations. In the considered limit, the kinetic and interaction energy are of the same order, while the average force is subleading. For some interactions, we prove that the Hartree(-Fock) dynamics is a more accurate approximation than a simpler dynamics that one would expect from the subleading force. With our method we also treat the mean-field limit coupled to a semiclassical limit, which was discussed in the literature before, and we recover some of the previous results. All results hold for initial data close (but not necessarily equal) to antisymmetrized product states and we always provide explicit rates of convergence.

  20. Treating Coulomb exchange contributions in relativistic mean field calculations: why and how

    International Nuclear Information System (INIS)

    Giai, Nguyen Van; Liang, Haozhao; Gu, Huai-Qiang; Long, Wenhui; Meng, Jie

    2014-01-01

    The energy density functional (EDF) method is very widely used in nuclear physics, and among the various existing functionals those based on the relativistic Hartree (RH) approximation are very popular because the exchange contributions (Fock terms) are numerically rather onerous to calculate. Although it is possible to somehow ‘mock up’ the effects of meson-induced exchange terms by adjusting the meson–nucleon couplings, the lack of Coulomb exchange contributions hampers the accuracy of predictions. In this work, we show that the Coulomb exchange effects can be easily included with good accuracy in a perturbative approach. Therefore, it would be desirable for future relativistic EDF models to incorporate Coulomb exchange effects, at least to some order of perturbation

  1. Physics in Screening Environments

    Science.gov (United States)

    Certik, Ondrej

    In the current study, we investigated atoms in screening environments like plasmas. It is common practice to extract physical data, such as temperature and electron densities, from plasma experiments. We present results that address inherent computational difficulties that arise when the screening approach is extended to include the interaction between the atomic electrons. We show that there may arise an ambiguity in the interpretation of physical properties, such as temperature and charge density, from experimental data due to the opposing effects of electron-nucleus screening and electron-electron screening. The focus of the work, however, is on the resolution of inherent computational challenges that appear in the computation of two-particle matrix elements. Those enter already at the Hartree-Fock level. Furthermore, as examples of post Hartree-Fock calculations, we show second-order Green's function results and many body perturbation theory results of second order. A self-contained derivation of all necessary equations has been included. The accuracy of the implementation of the method is established by comparing standard unscreened results for various atoms and molecules against literature for Hartree-Fock as well as Green's function and many body perturbation theory. The main results of the thesis are presented in the chapter called Screened Results, where the behavior of several atomic systems depending on electron-electron and electron-nucleus Debye screening was studied. The computer code that we have developed has been made available for anybody to use. Finally, we present and discuss results obtained for screened interactions. We also examine thoroughly the computational details of the calculations and particular implementations of the method.

  2. Vibrational analysis of 4-chloro-3-nitrobenzonitrile by quantum chemical calculations

    Science.gov (United States)

    Sert, Yusuf; Çırak, Çağrı; Ucun, Fatih

    2013-04-01

    In the present study, the experimental and theoretical harmonic and anharmonic vibrational frequencies of 4-chloro-3-nitrobenzonitrile were investigated. The experimental FT-IR (400-4000 cm-1) and μ-Raman spectra (100-4000 cm-1) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) were calculated using ab initio Hartree Fock (HF), density functional B3LYP and M06-2X methods with 6-311++G(d,p) basis set by Gaussian 09 W program, for the first time. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. The theoretical optimized geometric parameters and vibrational frequencies were compared with the corresponding experimental data, and they were seen to be in a good agreement with each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies were found.

  3. Basis set convergence on static electric dipole polarizability calculations of alkali-metal clusters

    International Nuclear Information System (INIS)

    Souza, Fabio A. L. de; Jorge, Francisco E.

    2013-01-01

    A hierarchical sequence of all-electron segmented contracted basis sets of double, triple and quadruple zeta valence qualities plus polarization functions augmented with diffuse functions for the atoms from H to Ar was constructed. A systematic study of basis sets required to obtain reliable and accurate values of static dipole polarizabilities of lithium and sodium clusters (n = 2, 4, 6 and 8) at their optimized equilibrium geometries is reported. Three methods are examined: Hartree-Fock (HF), second-order Moeller-Plesset perturbation theory (MP2), and density functional theory (DFT). By direct calculations or by fitting the directly calculated values through one extrapolation scheme, estimates of the HF, MP2 and DFT complete basis set limits were obtained. Comparison with experimental and theoretical data reported previously in the literature is done (author)

  4. Basis set convergence on static electric dipole polarizability calculations of alkali-metal clusters

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Fabio A. L. de; Jorge, Francisco E., E-mail: jorge@cce.ufes.br [Departamento de Fisica, Universidade Federal do Espirito Santo, 29060-900 Vitoria-ES (Brazil)

    2013-07-15

    A hierarchical sequence of all-electron segmented contracted basis sets of double, triple and quadruple zeta valence qualities plus polarization functions augmented with diffuse functions for the atoms from H to Ar was constructed. A systematic study of basis sets required to obtain reliable and accurate values of static dipole polarizabilities of lithium and sodium clusters (n = 2, 4, 6 and 8) at their optimized equilibrium geometries is reported. Three methods are examined: Hartree-Fock (HF), second-order Moeller-Plesset perturbation theory (MP2), and density functional theory (DFT). By direct calculations or by fitting the directly calculated values through one extrapolation scheme, estimates of the HF, MP2 and DFT complete basis set limits were obtained. Comparison with experimental and theoretical data reported previously in the literature is done (author)

  5. Optimization of parameters for the extended Hueckel method starting from ab-initio atomic calculations

    International Nuclear Information System (INIS)

    Branda, M.M.; Ferullo, R.; Castellani, N.J.

    1990-01-01

    The application of an atomic Hartree-Fock-Slater method is exposed in the present work for the simultaneous obtainment of all parameters used in the extended Hueckel method with charge interaction (IEH): The diagonal elements of the Hamiltonian, the constants of the quadratic relation between. (Author). 16 refs., 3 tabs

  6. Effect of side chain length on the stability and structural properties of 3

    African Journals Online (AJOL)

    thiophene (DOOPT) and their dimers studied by Hartree-Fock (HF) and Density Functional Theory (DFT) methods. The DFT calculations suggest that dimers of the dialkoxyphenylthiophenes with longer side chains are thermodynamically more ...

  7. Polarisabilities and shielding factors for He, Ne and Ar

    International Nuclear Information System (INIS)

    McEachran, R.P.; Ryman, A.G.; Stauffer, A.D.

    1977-01-01

    Multipole polarisabilities and shielding factors for helium, neon and argon have been calculated accurately in the coupled Hartree-Fock approximation. A shell by shell analysis is given for the first four multipoles. (author)

  8. Time-dependent magnetization of a type-II superconductor numerically calculated by using the flux-creep equation

    International Nuclear Information System (INIS)

    Lee, J. H.; Park, I. S.; Ahmad, D.; Kim, D.; Kim, Y. C.; Ko, R. K.; Jeong, D. Y.

    2012-01-01

    The macroscopic magnetic behaviors of a type-II superconductor, such as the field- or the temperature-dependent magnetization, have been described by using critical state models. However, because the models are time-independent, the magnetic relaxation in a type-II superconductor cannot be described by them, and the time dependence of the magnetization can affect the field or the temperature-dependent magnetization curve described by the models. In order to avoid the time independence of critical state models, we try the numerical calculation used by Qin et al., who mainly calculated the temperature dependence of the ac susceptibility χ(T). Their calculation showed that the frequency-dependent χ(T) could be obtained by using the flux-creep equation. We calculated the field-dependent magnetization and magnetic relaxation by using a numerical method. The calculated field-dependent magnetization M(H) curves shows the shapes of a typical type-II superconductor. The calculated magnetic relaxation do not show a logarithmic decay of the magnetization, but the addition of a surface barrier to the relaxation calculation caused a clear logarithmic decay of the magnetization, producing a crossover at a mid-time. This means that the logarithmic magnetic relaxation is caused by not only flux creep but also a combination of flux creep and a surface barrier.

  9. Uniqueness of the Fock quantization of scalar fields in spatially flat cosmological spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Gomar, Laura Castelló [Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Cortez, Jerónimo [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico D.F. 04510 (Mexico); Blas, Daniel Martín-de; Marugán, Guillermo A. Mena [Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid (Spain); Velhinho, José M., E-mail: laucaste@estumail.ucm.es, E-mail: jacq@ciencias.unam.mx, E-mail: daniel.martin@iem.cfmac.csic.es, E-mail: jvelhi@ubi.pt [Departamento de Física, Faculdade de Ciências, Universidade da Beira Interior, R. Marquês D' Ávila e Bolama, 6201-001 Covilhã (Portugal)

    2012-11-01

    We study the Fock quantization of scalar fields in (generically) time dependent scenarios, focusing on the case in which the field propagation occurs in –either a background or effective– spacetime with spatial sections of flat compact topology. The discussion finds important applications in cosmology, like e.g. in the description of test Klein-Gordon fields and scalar perturbations in Friedmann-Robertson-Walker spacetime in the observationally favored flat case. Two types of ambiguities in the quantization are analyzed. First, the infinite ambiguity existing in the choice of a Fock representation for the canonical commutation relations, understandable as the freedom in the choice of inequivalent vacua for a given field. Besides, in cosmological situations, it is customary to scale the fields by time dependent functions, which absorb part of the evolution arising from the spacetime, which is treated classically. This leads to an additional ambiguity, this time in the choice of a canonical pair of field variables. We show that both types of ambiguities are removed by the requirements of (a) invariance of the vacuum under the symmetries of the three-torus, and (b) unitary implementation of the dynamics in the quantum theory. In this way, one arrives at a unique class of unitarily equivalent Fock quantizations for the system. This result provides considerable robustness to the quantum predictions and renders meaningful the confrontation with observation.

  10. Higher order alchemical derivatives from coupled perturbed self-consistent field theory.

    Science.gov (United States)

    Lesiuk, Michał; Balawender, Robert; Zachara, Janusz

    2012-01-21

    We present an analytical approach to treat higher order derivatives of Hartree-Fock (HF) and Kohn-Sham (KS) density functional theory energy in the Born-Oppenheimer approximation with respect to the nuclear charge distribution (so-called alchemical derivatives). Modified coupled perturbed self-consistent field theory is used to calculate molecular systems response to the applied perturbation. Working equations for the second and the third derivatives of HF/KS energy are derived. Similarly, analytical forms of the first and second derivatives of orbital energies are reported. The second derivative of Kohn-Sham energy and up to the third derivative of Hartree-Fock energy with respect to the nuclear charge distribution were calculated. Some issues of practical calculations, in particular the dependence of the basis set and Becke weighting functions on the perturbation, are considered. For selected series of isoelectronic molecules values of available alchemical derivatives were computed and Taylor series expansion was used to predict energies of the "surrounding" molecules. Predicted values of energies are in unexpectedly good agreement with the ones computed using HF/KS methods. Presented method allows one to predict orbital energies with the error less than 1% or even smaller for valence orbitals. © 2012 American Institute of Physics

  11. Superdeformed bands of odd nuclei in A=190 region in the quasiparticle picture

    International Nuclear Information System (INIS)

    Terasaki, J.; Flocard, H.; Heenen, P.H.; Bonche, P.

    1996-07-01

    Properties of the superdeformed (SD) bands of 195 Pb and 193 Hg have been studied by the cranked Hartree-Fock-Bogoliubov method. The calculations reproduce the flat behavior of the dynamical moment of inertia of two of the SD bands of 195 Pb measured recently. Possible configuration assignments for the observed bands 3 and 4 of 195 Pb are discussed. The two interacting SD bands of 193 Hg have also been calculated. The analysis confirms the superiority of a density-dependent pairing force over a seniority pairing interaction. (author)

  12. Theoretical investigation of pressure-induced structural transitions in americium using GGA+U and hybrid density functional theory methods

    DEFF Research Database (Denmark)

    Verma, Ashok K.; Modak, P.; Sharma, Surinder M.

    2013-01-01

    First-principles calculations have been performed for americium (Am) metal using the generalized gradient approximation + orbital-dependent onsite Coulomb repulsion via Hubbard interaction (GGA+U) and hybrid density functional theory (HYB-DFT) methods to investigate various ground state properties......-I to Am-II transition. Good agreement was found between calculated and experimental equations of states for all phases, but the first three phases need larger U (α) parameters (where α represents the fraction of Hartree-Fock exchange energy replacing the DFT exchange energy) than the fourth phase in order...

  13. A 3D coarse-mesh time dependent code for nuclear reactor kinetic calculations

    International Nuclear Information System (INIS)

    Montagnini, B.; Raffaelli, P.; Sumini, M.; Zardini, D.M.

    1996-01-01

    A course-mesh code for time-dependent multigroup neutron diffusion calculation based on a direct integration scheme for the time dependence and a low order nodal flux expansion approximation for the space variables has been implemented as a fast tool for transient analysis. (Author)

  14. Extended calculations of energies, transition rates, and lifetimes for F-like Kr XXVIII

    Science.gov (United States)

    Zhang, C. Y.; Si, R.; Yao, K.; Gu, M. F.; Wang, K.; Chen, C. Y.

    2018-02-01

    The excitation energies, lifetimes, wavelengths and E1, E2, M1 and M2 transition rates for the lowest 389 levels of the 2l7, 2l63l‧, 2l64l‧, and 2l65l‧ configurations from second-order many-body perturbation theory (MBPT) calculations, and the results for the lowest 200 states of the 2l7, 2l63l‧, and 2l64l‧ configurations from multi-configuration Dirac-Hartree-Fock (MCDHF) calculations in F-like Kr XXVIII are presented in this work. The relative differences between our two sets of level energies are mostly within 0.005% for the lowest 200 levels. Comparisons are made with experimental and other available theoretical results to assess the reliability and accuracy of the present calculations. We believe them to be the most complete and accurate results for Kr XXVIII at present.

  15. Molecular-crystal approach to accounting of correlation corrections in the chemical bond theory in crystals: electronic structure of Ti2O3 crystal

    International Nuclear Information System (INIS)

    Ehvarestov, R.A.; Panin, A.I.

    2000-01-01

    The problem on the possibility of partial accounting for the electron correlation effects within the frames of the Hartree-Fock unlimited method (HF). The local characteristic of the electron structure of the molecular systems for the case of the multi-determinant wave functions, configurational interaction methods and multiconfigurational self-consistent field (MCSCF) are determined. The molecular-crystalline approach is applied to studies on the electron correlation effects in the Ti 2 O 3 crystal. It is shown on the basis of the [Ti 2 O 9 ] 12- cluster electron structure calculation, that the Hartree-Fock unlimited method accounts in a number of cases for an essential part of statistical correlation effects. The energy values and local characteristics of the [Ti 2 O 9 ] 12- cluster, calculated through the HF and MCSCF methods, are presented [ru

  16. Alignment following Au L$_{3}$ photoionization by synchrotron radiation

    CERN Document Server

    Yamaoka, H; Takahiro, K; Morikawa, T; Ito, S; Mizumaki, M; Semenov, S; Cherepkov, N; Kabachnik, N M; Mukoyama, T; 10.1088/0953-4075/36/19/001

    2003-01-01

    The alignment of Au/sup +/ ions following L/sub 3/ photoionization has been studied using a high-resolution X-ray spectrometer. We observed a small anisotropy for the angular dependence of Au L/sub l/ and L alpha emissions. The alignment parameter A/sub 20/ derived from the experimental results is compared with theoretical calculations by Hartree-Fock approximation and random phase approximation with exchange. The contribution to the alignment of quadruple interaction is discussed. (40 refs).

  17. Isovector giant monopole resonances: A sum-rule approach

    International Nuclear Information System (INIS)

    Goeke, K.; Bonn Univ.; Castel, B.

    1980-01-01

    Several useful sum rules associated with isovector giant monopole resonances are calculated for doubly closed shell nuclei. The calculation is based on techniques known from constrained and adiabatic time-dependent Hartree-Fock theories and assume various Skyrme interactions. The results obtained form, together with the compiled literature, the basis for a quantitative description of the RPA strength distribution in terms of energy-weighted moments. These, together with strength distribution properties, are determined by a hierarchy of determinantal relations between moments. The isovector giant monopole resonance turns out to be a rather broad resonance centered at E = 46 Asup(-1/10) MeV with an extended width of more than 16 MeV. The consequences regarding isospin impurities in the nuclear ground state are discussed. (orig.)

  18. Magnetic field dependence of conductivity and effective mass of carriers in a model of Mott-Hubbard material

    Directory of Open Access Journals (Sweden)

    L.Didukh

    2005-01-01

    Full Text Available The effect of external magnetic field h on a static conductivity of Mott-Hubbard material which is described by the model with correlated hopping of electrons has been investigated. By means of canonical transformation, the effective Hamiltonian is obtained which takes into account strong intra-site Coulomb repulsion and correlated hopping. Using a variant of generalized Hartree-Fock approximation the single-electron Green function and quasiparticle energy spectrum of the model have been calculated. The static conductivity σ has been calculated as a function of h, electron concentration n and temperature T. The correlated hopping is shown to cause the electron-hole asymmetry of transport properties of narrow band materials.

  19. Piezo-optic tensor of crystals from quantum-mechanical calculations.

    Science.gov (United States)

    Erba, A; Ruggiero, M T; Korter, T M; Dovesi, R

    2015-10-14

    An automated computational strategy is devised for the ab initio determination of the full fourth-rank piezo-optic tensor of crystals belonging to any space group of symmetry. Elastic stiffness and compliance constants are obtained as numerical first derivatives of analytical energy gradients with respect to the strain and photo-elastic constants as numerical derivatives of analytical dielectric tensor components, which are in turn computed through a Coupled-Perturbed-Hartree-Fock/Kohn-Sham approach, with respect to the strain. Both point and translation symmetries are exploited at all steps of the calculation, within the framework of periodic boundary conditions. The scheme is applied to the determination of the full set of ten symmetry-independent piezo-optic constants of calcium tungstate CaWO4, which have recently been experimentally reconstructed. Present calculations unambiguously determine the absolute sign (positive) of the π61 constant, confirm the reliability of 6 out of 10 experimentally determined constants and provide new, more accurate values for the remaining 4 constants.

  20. Simplified calculation of nonlocal thermodynamic equilibrium excited state populations contributing to 13.5 nm emission in a tin plasma

    International Nuclear Information System (INIS)

    White, J.; Cummings, A.; Dunne, P.; Hayden, P.; O'Sullivan, G.

    2007-01-01

    Extreme ultraviolet lithography schemes for the semiconductor industry are currently based on coupling radiation from a plasma source into a 2% bandwidth at 13.5 nm (91.8 eV). In this paper, we consider the case for a laser-produced plasma (LPP) and address the calculation of ionic level populations in the 4p 6 4d N , 4p 6 4d N-1 4f 1 , 4p 5 4d N+1 , and 4p 6 4d N-1 5p 1 configurations in a range of tin ions (Sn 6+ to Sn 13+ ) producing radiation in this bandwidth. The LPP is modeled using a one-dimensional hydrodynamics code, which uses a hydrogenic, average atom model, where the level populations are treated as l degenerate. Hartree-Fock calculations are used to remove the l degeneracy and an energy functional method to calculate the nl level populations involved in n=4-4 transitions as a function of distance from the target surface and time. Detailed data are presented for the tin ions that contribute to in-band emission

  1. First-principles X-ray absorption dose calculation for time-dependent mass and optical density.

    Science.gov (United States)

    Berejnov, Viatcheslav; Rubinstein, Boris; Melo, Lis G A; Hitchcock, Adam P

    2018-05-01

    A dose integral of time-dependent X-ray absorption under conditions of variable photon energy and changing sample mass is derived from first principles starting with the Beer-Lambert (BL) absorption model. For a given photon energy the BL dose integral D(e, t) reduces to the product of an effective time integral T(t) and a dose rate R(e). Two approximations of the time-dependent optical density, i.e. exponential A(t) = c + aexp(-bt) for first-order kinetics and hyperbolic A(t) = c + a/(b + t) for second-order kinetics, were considered for BL dose evaluation. For both models three methods of evaluating the effective time integral are considered: analytical integration, approximation by a function, and calculation of the asymptotic behaviour at large times. Data for poly(methyl methacrylate) and perfluorosulfonic acid polymers measured by scanning transmission soft X-ray microscopy were used to test the BL dose calculation. It was found that a previous method to calculate time-dependent dose underestimates the dose in mass loss situations, depending on the applied exposure time. All these methods here show that the BL dose is proportional to the exposure time D(e, t) ≃ K(e)t.

  2. Systematic determination of extended atomic orbital basis sets and application to molecular SCF and MCSCF calculations

    Energy Technology Data Exchange (ETDEWEB)

    Feller, D.F.

    1979-01-01

    The behavior of the two exponential parameters in an even-tempered gaussian basis set is investigated as the set optimally approaches an integral transform representation of the radial portion of atomic and molecular orbitals. This approach permits a highly accurate assessment of the Hartree-Fock limit for atoms and molecules.

  3. Untitled

    Indian Academy of Sciences (India)

    Hartree-Fock cluster calculations will be useful in the interpretation of other ... Science Foundation and IBM Corporation, with additional support from New York ... very grateful for the kind hospitality of Professor S K Joshi, Director, National.

  4. Modeling Optical Spectra of Large Organic Systems Using Real-Time Propagation of Semiempirical Effective Hamiltonians.

    Science.gov (United States)

    Ghosh, Soumen; Andersen, Amity; Gagliardi, Laura; Cramer, Christopher J; Govind, Niranjan

    2017-09-12

    We present an implementation of a time-dependent semiempirical method (INDO/S) in NWChem using real-time (RT) propagation to address, in principle, the entire spectrum of valence electronic excitations. Adopting this model, we study the UV/vis spectra of medium-sized systems such as P3B2 and f-coronene, and in addition much larger systems such as ubiquitin in the gas phase and the betanin chromophore in the presence of two explicit solvents (water and methanol). RT-INDO/S provides qualitatively and often quantitatively accurate results when compared with RT- TDDFT or experimental spectra. Even though we only consider the INDO/S Hamiltonian in this work, our implementation provides a framework for performing electron dynamics in large systems using semiempirical Hartree-Fock Hamiltonians in general.

  5. First-principles calculations on double-walled inorganic nanotubes with hexagonal chiralities

    International Nuclear Information System (INIS)

    Zhukovskii, Yuri F; Evarestov, Robert A; Bandura, Andrei V; Losev, Maxim V

    2011-01-01

    The two sets of commensurate double-walled boron nitride and titania hexagonally-structured nanotubes (DW BN and TiO 2 NTs) possessing either armchair- or zigzag-type chiralities have been considered, i.e., (n 1 ,n 1 )-(n 2 ,n 2 ) or (n 1 ,0)-(n 2 ,0), respectively. For symmetry analysis of these nanotubes, the line symmetry groups for one-periodic (1D) nanostructures with rotohelical symmetry have been applied. To analyze the structural and electronic properties of hexagonal DW NTs, a series of large-scale ab initio DFT-LCAO calculations have been performed using the hybrid Hartree-Fock/Kohn-Sham exchange-correlation functional PBE0 (as implemented in CRYSTAL-09 code). To establish the optimal inter-shell distances within DW NTs corresponding to the minima of calculated total energy, the chiral indices n 1 and n 2 of the constituent single-walled (SW) nanotubes have been successively varied.

  6. Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory

    International Nuclear Information System (INIS)

    Zuniga-Gutierrez, Bernardo; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso; Simon-Bastida, Patricia; Calaminici, Patrizia; Köster, Andreas M.

    2015-01-01

    The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H 12 C– 12 CH–DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated

  7. Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Zuniga-Gutierrez, Bernardo, E-mail: bzuniga.51@gmail.com [Departamento de Ciencias Computacionales, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, C.P. 44430 Guadalajara, Jalisco (Mexico); Camacho-Gonzalez, Monica [Universidad Tecnológica de Tecámac, División A2, Procesos Industriales, Carretera Federal México Pachuca Km 37.5, Col. Sierra Hermosa, C.P. 55740 Tecámac, Estado de México (Mexico); Bendana-Castillo, Alfonso [Universidad Tecnológica de Tecámac, División A3, Tecnologías de la Información y Comunicaciones, Carretera Federal México Pachuca Km 37.5, Col. Sierra Hermosa, C.P. 55740 Tecámac, Estado de México (Mexico); Simon-Bastida, Patricia [Universidad Tecnlógica de Tulancingo, División Electromecánica, Camino a Ahuehuetitla No. 301, Col. Las Presas, C.P. 43642 Tulancingo, Hidalgo (Mexico); Calaminici, Patrizia; Köster, Andreas M. [Departamento de Química, CINVESTAV, Avenida Instituto Politécnico Nacional 2508, A.P. 14-740, México D.F. 07000 (Mexico)

    2015-09-14

    The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H{sup 12}C–{sup 12}CH–DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.

  8. Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory.

    Science.gov (United States)

    Zuniga-Gutierrez, Bernardo; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso; Simon-Bastida, Patricia; Calaminici, Patrizia; Köster, Andreas M

    2015-09-14

    The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H(12)C-(12)CH-DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.

  9. Microscopic approach to subthreshold pion production in heavy-ion collisions

    International Nuclear Information System (INIS)

    Tohyama, M.; Kaps, R.; Masak, D.; Mosel, U.

    1985-01-01

    A microscopic approach to subthreshold pion production in heavy-ion collisions is proposed, in which the wave function of the nucleon system is approximated in the time-dependent Hartree-Fock theory and an effective interaction for the pion-production process is taken from (p,π) reaction theories. The model is applied to pion production in 16 O + 16 O collisions. (orig.)

  10. Spectrum and energy levels of six-times ionized yttrium (Y VII)

    Science.gov (United States)

    Reader, Joseph

    2018-03-01

    The spectrum of six-times ionized yttrium, Y VII, was photographed with a sliding-spark discharge on 10.7 m normal- and grazing-incidence spectrographs. The region of observation was 157-824 Å. The observations extend the known configurations 4s24p3, 4s4p4, 4p5, 4s24p25s, 4s24p26s to the nearly complete 4s24p24d configuration. Our results for 4s24p24d significantly revise results of Rahimullah et al (1978 Phys. Scr. 18 96); Ateqad et al (1984 J. Phys. B: At. Mol. Phys. 17 4617). A total of 168 lines and 56 energy levels are now known for this ion. The observed configurations were interpreted with Hartree-Fock calculations and least-squares fits of the energy parameters to the observed levels. Transition probabilities for all classified lines were calculated with the fitted parameters.

  11. Opacity calculations for laser plasma applications

    International Nuclear Information System (INIS)

    Magee, N.H. Jr.

    1986-01-01

    The Los Alamos LTE light element detailed configuration opacity code (LEDCOP) has been revised to provide more accurate absorption coefficients and group means for modern radiation-hydrodynamic codes. The new group means will be especially useful for computing the transport of thermal radiation from laser deposition. The principal improvement is the inclusion of a complete set of accurate and internally consistent LS term energies and oscillator strengths in both the EOS and absorption coefficients. Selected energies and oscillator strengths were calculated from a Hartree-Fock code, then fitted by a quantum defect method. This allowed transitions at all wavelengths to be treated consistently and accurately instead of being limited to wavelength regions covered by experimental observations or isolated theoretical calculations. A second improvement is the use of more accurate photoionization cross sections for excited as well as ground state configurations. These cross sections are now more consistent with the bound-bound oscillator strengths, leading to a smooth transition across the continuum limit. Results will be presented showing the agreement of the LS term energies and oscillator strengths with observed values. The new absorption coefficients will be compared with previous calculations. 5 refs., 9 figs., 1 tab

  12. Compton scattering study of electron momentum distribution in lithium fluoride using 662 keV gamma radiations

    Science.gov (United States)

    Vijayakumar, R.; Shivaramu; Ramamurthy, N.; Ford, M. J.

    2008-12-01

    Here we report the first ever 137Cs Compton spectroscopy study of lithium fluoride. The spherical average Compton profiles of lithium fluoride are deduced from Compton scattering measurements on poly crystalline sample at gamma ray energy of 662 keV. To compare the experimental data, we have computed the spherical average Compton profiles using self-consistent Hartree-Fock wave functions employed on linear combination of atomic orbital (HF-LCAO) approximation. The directional Compton profiles and their anisotropic effects are also calculated using the same HF-LCAO approximation. The experimental spherical average profiles are found to be in good agreement with the corresponding HF-LCAO calculations and in qualitative agreement with Hartree-Fock free atom values. The present experimental isotropic and calculated directional profiles are also compared with the available experimental isotropic and directional Compton profiles using 59.54 and 159 keV γ-rays.

  13. Ab initio calculation of Ti NMR shieldings for titanium oxides and halides

    Science.gov (United States)

    Tossell, J. A.

    Titanium NMR shielding constants have been calculated using ab initio coupled Hartree-Fock perturbation theory and polarized double-zeta basis sets for TiF 4, TiF 62-, TiCI 4, Ti(OH) 4, Ti(OH 2) 64+, Ti(OH) 4O, and Ti(OH) 3O -. In all cases the calculations were performed at Hartree-Fuck energy-optimized geometries. For Ti(OH) 4 a S4-symmetry geometry with nonlinear ∠ TiOH was employed. Relative shieldings are in reasonable agreement with experiment for TiF 62-, TiCI 4, and Ti(OR) 4, where R = H or alkyl. Ti(OH 2) 64+ is predicted to be more highly shielded than Ti(OH) 4 by about 340 ppm. The five-coordinate complex Ti(OH) 4O, whose calculated structure matches well that measured by extended X-ray absorption fine structure in K 2O · TiO 2 · SiO 2 glass, is actually deshielded compared to Ti(OH) 4 by about 40 ppm. X-ray absorption-near-edge spectral energies have also been calculated for TiF 4, TiCI 4, Ti(OH) 4, and Ti(OH) 4O using an equivalent ionic core virtual-orbital method and the observed reduction in term energy for the five-coordinate species compared to Ti(OH) 4 has been reproduced. Replacement of the H atoms in Ti(OH) 4 by point charges has only a slight effect upon σTi, suggesting a possible means of incorporating second-neighbor effects in NMR calculations for condensed phases.

  14. Extended Lagrangian Excited State Molecular Dynamics.

    Science.gov (United States)

    Bjorgaard, J A; Sheppard, D; Tretiak, S; Niklasson, A M N

    2018-02-13

    An extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born-Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both for the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. The XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree-Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).

  15. Roothaan approach in the thermodynamic limit

    Science.gov (United States)

    Gutierrez, G.; Plastino, A.

    1982-02-01

    A systematic method for the solution of the Hartree-Fock equations in the thermodynamic limit is presented. The approach is seen to be a natural extension of the one usually employed in the finite-fermion case, i.e., that developed by Roothaan. The new techniques developed here are applied, as an example, to neutron matter, employing the so-called V1 Bethe "homework" potential. The results obtained are, by far, superior to those that the ordinary plane-wave Hartree-Fock theory yields. NUCLEAR STRUCTURE Hartree-Fock approach; nuclear and neutron matter.

  16. Semiempirical calculation of van der Waals coefficients for alkali-metal and alkaline-earth-metal atoms

    International Nuclear Information System (INIS)

    Mitroy, J.; Bromley, M.W.J.

    2003-01-01

    The van der Waals coefficients, C 6 , C 8 , and C 10 for the alkali-metal (Li, Na, K, and Rb) and alkaline-earth-metal (Be, Mg, Ca, and Sr) atoms are estimated by a combination of ab initio and semiempirical methods. Polarizabilities and atom-wall coefficients are given as a diagnostic check, and the lowest order nonadiabatic dispersion coefficient, D 8 and the three-body coefficient, C 9 are also presented. The dispersion coefficients are in agreement with the available relativistic many-body perturbation theory calculations. The contribution from the core was included by using constrained sum rules involving the core polarizability and Hartree-Fock expectation values to estimate the f-value distribution

  17. One-loop calculation in time-dependent non-equilibrium thermo field dynamics

    International Nuclear Information System (INIS)

    Umezawa, H.; Yamanaka, Y.

    1989-01-01

    This paper is a review on the structure of thermo field dynamics (TFD) in which the basic concepts such as the thermal doublets, the quasi-particles and the self-consistent renormalization are presented in detail. A strong emphasis is put on the computational scheme. A detailed structure of this scheme is illustrated by the one-loop calculation in a non-equilibrium time-dependent process. A detailed account of the one-loop calculation has never been reported anywhere. The role of the self-consistent renormalization is explained. The equilibrium TFD is obtained as the long-time limit of non-equilibrium TFD. (author)

  18. Gogny interactions with tensor terms

    Energy Technology Data Exchange (ETDEWEB)

    Anguiano, M.; Lallena, A.M.; Bernard, R.N. [Universidad de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, Granada (Spain); Co' , G. [INFN, Lecce (Italy); De Donno, V. [Universita del Salento, Dipartimento di Matematica e Fisica ' ' E. De Giorgi' ' , Lecce (Italy); Grasso, M. [Universite Paris-Sud, Institut de Physique Nucleaire, IN2P3-CNRS, Orsay (France)

    2016-07-15

    We present a perturbative approach to include tensor terms in the Gogny interaction. We do not change the values of the usual parameterisations, with the only exception of the spin-orbit term, and we add tensor terms whose only free parameters are the strengths of the interactions. We identify observables sensitive to the presence of the tensor force in Hartree-Fock, Hartree-Fock-Bogoliubov and random phase approximation calculations. We show the need of including two tensor contributions, at least: a pure tensor term and a tensor-isospin term. We show results relevant for the inclusion of the tensor term for single-particle energies, charge-conserving magnetic excitations and Gamow-Teller excitations. (orig.)

  19. Quantum mechanics of the fractional-statistics gas: Random-phase approximation

    International Nuclear Information System (INIS)

    Dai, Q.; Levy, J.L.; Fetter, A.L.; Hanna, C.B.; Laughlin, R.B.

    1992-01-01

    A description of the fractional-statistics gas based on the complete summation of Hartree, Fock, ladder and bubble diagrams is presented. The superfluid properties identified previously in the random-phase-approximation (RPA) calculation of Fetter, Hanna, and Laughlin [Phys. Rev. B 39, 9679 (1989)] are substantially confirmed. The discrepancy between the RPA sound speed and the Hartree-Fock bulk modulus is found to be eliminated. The unusual Hall-effect behavior is found to vanish for the Bose gas test case but not for the fractional-statistics gas, implying that it is physically correct. Excellent agreement is obtained with the collective-mode dispersion obtained numerically by Xie, He, and Das Sarma [Phys. Rev. Lett. 65, 649 (1990)

  20. A suggested periodic table up to Z≤ 172, based on Dirac-Fock calculations on atoms and ions.

    Science.gov (United States)

    Pyykkö, Pekka

    2011-01-07

    Extended Average Level (EAL) Dirac-Fock calculations on atoms and ions agree with earlier work in that a rough shell-filling order for the elements 119-172 is 8s Periodic Table develops further that of Fricke, Greiner and Waber [Theor. Chim. Acta 1971, 21, 235] by formally assigning the elements 121-164 to (nlj) slots on the basis of the electron configurations of their ions. Simple estimates are made for likely maximum oxidation states, i, of these elements M in their MX(i) compounds, such as i = 6 for UF(6). Particularly high i are predicted for the 6f elements.

  1. Ultrafast photoionization dynamics at high laser intensities in the xuv regime

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, B.; Vagov, A.; Axt, V. M.; Pietsch, U. [Institut fuer Theoretische Physik III, Universitaet Bayreuth, D-95440 Bayreuth (Germany); Institut fuer Festkoerperphysik, Universitaet Siegen, D-57068 Siegen (Germany)

    2011-10-15

    We study the ionization dynamics in the soft-x-ray regime for high intensities and short pulses for excitations near the ionization threshold. Using a one-dimensional helium atom model, we compare exact numerical solutions with time-dependent Hartree-Fock results in order to identify the role of electron-electron correlations. At moderate intensities but still in the x-ray and short-pulse regime, we find that the Hartree-Fock theory reproduces well the dynamics of the ground-state occupation, while at high intensities strong correlation effects occur for excitations close to the threshold. From their characteristic momentum distributions, we can identify contributions to the double ionization from sequential three-photon and nonsequential or sequential two-photon processes. At elevated intensities these contributions deviate from their usual intensity scaling due to saturation effects, even though the total double-ionization probability stays below 10%. Furthermore, analysis of the time evolution of the momentum distribution reveals signatures of the energy-time uncertainty which indicate a coherent regime of the dynamics.

  2. Quantum scattering theory of a single-photon Fock state in three-dimensional spaces.

    Science.gov (United States)

    Liu, Jingfeng; Zhou, Ming; Yu, Zongfu

    2016-09-15

    A quantum scattering theory is developed for Fock states scattered by two-level systems in three-dimensional free space. It is built upon the one-dimensional scattering theory developed in waveguide quantum electrodynamics. The theory fully quantizes the incident light as Fock states and uses a non-perturbative method to calculate the scattering matrix.

  3. The UNICAMP theta-pinch for spectroscopic study of plasma radiations

    International Nuclear Information System (INIS)

    Trigueiros, A.G.; Luna, F.R.T.; Holanda Cavalcanti, G. de; Mania, A.J.

    1993-01-01

    The emission spectrum of six times ionized xenon (Xe VII), has been observed in the vacuum ultraviolet (VUV) using a theta-pinch discharge. The spectrum was recorded with a 2-meter normal incidence spectrograph in the 300-2000 A region. Preliminary results allow the identification of transitions in the n=5 complex. Ten of these transitions were identified. The identifications are supported by relativistic Hartree-Fock calculations. (author)

  4. Collapse of the random-phase approximation: Examples and counter-examples from the shell model

    International Nuclear Information System (INIS)

    Johnson, Calvin W.; Stetcu, Ionel

    2009-01-01

    The Hartree-Fock approximation to the many-fermion problem can break exact symmetries, and in some cases by changing a parameter in the interaction one can drive the Hartree-Fock minimum from a symmetry-breaking state to a symmetry-conserving state (also referred to as a 'phase transition' in the literature). The order of the transition is important when one applies the random-phase approximation (RPA) to the of the Hartree-Fock wave function: if first order, RPA is stable through the transition, but if second-order, then the RPA amplitudes become large and lead to unphysical results. The latter is known as 'collapse' of the RPA. While the difference between first- and second-order transitions in the RPA was first pointed out by Thouless, we present for the first time nontrivial examples of both first- and second-order transitions in a uniform model, the interacting shell-model, where we can compare to exact numerical results.

  5. Performance of quantum Monte Carlo for calculating molecular bond lengths

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, Deidre M., E-mail: deidre.cleland@csiro.au; Per, Manolo C., E-mail: manolo.per@csiro.au [CSIRO Virtual Nanoscience Laboratory, 343 Royal Parade, Parkville, Victoria 3052 (Australia)

    2016-03-28

    This work investigates the accuracy of real-space quantum Monte Carlo (QMC) methods for calculating molecular geometries. We present the equilibrium bond lengths of a test set of 30 diatomic molecules calculated using variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC) methods. The effect of different trial wavefunctions is investigated using single determinants constructed from Hartree-Fock (HF) and Density Functional Theory (DFT) orbitals with LDA, PBE, and B3LYP functionals, as well as small multi-configurational self-consistent field (MCSCF) multi-determinant expansions. When compared to experimental geometries, all DMC methods exhibit smaller mean-absolute deviations (MADs) than those given by HF, DFT, and MCSCF. The most accurate MAD of 3 ± 2 × 10{sup −3} Å is achieved using DMC with a small multi-determinant expansion. However, the more computationally efficient multi-determinant VMC method has a similar MAD of only 4.0 ± 0.9 × 10{sup −3} Å, suggesting that QMC forces calculated from the relatively simple VMC algorithm may often be sufficient for accurate molecular geometries.

  6. The Application of CPA to Calculations of the Mean Magnetic Moment in the Gd1-xNi, Gd1-xFe, Gd1xCox, and Y1-xCox Intermetallic Compounds

    DEFF Research Database (Denmark)

    Szpunar, B.; Kozarzewski, B.

    1977-01-01

    with a narrow d-band is considered. The magnetic moment of the alloy at zero temperature is calculated within the molecular field and Hartree-Fock approximations. Disorder is treated in the coherent potential approximation. Results are in good agreement with the experimental data obtained for the crystalline......Calculations are made of the mean magnetic moment per atom of the transition metal and the rare-earth metal in the intermetallic compounds, Gd1-x,Nix, Gd1-x Fex, Gd1-x Cox, and Y1-x Cox. A simple model of the disordered alloy consisting of spins localized on the rare-earth atoms and interacting...

  7. Field theory of large amplitude collective motion. A schematic model

    International Nuclear Information System (INIS)

    Reinhardt, H.

    1978-01-01

    By using path integral methods the equation for large amplitude collective motion for a schematic two-level model is derived. The original fermion theory is reformulated in terms of a collective (Bose) field. The classical equation of motion for the collective field coincides with the time-dependent Hartree-Fock equation. Its classical solution is quantized by means of the field-theoretical generalization of the WKB method. (author)

  8. Constraints on effective interactions imposed by antisymmetry and charge independence

    Energy Technology Data Exchange (ETDEWEB)

    Stringari, S [Trento Univ. (Italy). Dipartimento di Matematica e Fisica; Brink, D M [Oxford Univ. (UK). Dept. of Theoretical Physics

    1978-07-24

    Restrictions on the form of the energy functional following antisymmetry and charge independence have been investigated for a Hartree-Fock theory based on effective interactions. These restrictions impose severe constraints on density dependent effective interactions.

  9. An HFB scheme in natural orbitals

    International Nuclear Information System (INIS)

    Reinhard, P.G.; Rutz, K.; Maruhn, J.A.

    1997-01-01

    We present a formulation of the Hartree-Fock-Bogoliubov (HFB) equations which solves the problem directly in the basis of natural orbitals. This provides a very efficient scheme which is particularly suited for large scale calculations on coordinate-space grids. (orig.)

  10. First-principles calculations on double-walled inorganic nanotubes with hexagonal chiralities

    Energy Technology Data Exchange (ETDEWEB)

    Zhukovskii, Yuri F [Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063, Riga (Latvia); Evarestov, Robert A; Bandura, Andrei V; Losev, Maxim V, E-mail: quantzh@latnet.lv [Department of Quantum Chemistry, St. Petersburg State University, 26 Universitetsky Ave., 198504, Petrodvorets (Russian Federation)

    2011-06-23

    The two sets of commensurate double-walled boron nitride and titania hexagonally-structured nanotubes (DW BN and TiO{sub 2} NTs) possessing either armchair- or zigzag-type chiralities have been considered, i.e., (n{sub 1},n{sub 1})-(n{sub 2},n{sub 2}) or (n{sub 1},0)-(n{sub 2},0), respectively. For symmetry analysis of these nanotubes, the line symmetry groups for one-periodic (1D) nanostructures with rotohelical symmetry have been applied. To analyze the structural and electronic properties of hexagonal DW NTs, a series of large-scale ab initio DFT-LCAO calculations have been performed using the hybrid Hartree-Fock/Kohn-Sham exchange-correlation functional PBE0 (as implemented in CRYSTAL-09 code). To establish the optimal inter-shell distances within DW NTs corresponding to the minima of calculated total energy, the chiral indices n{sub 1} and n{sub 2} of the constituent single-walled (SW) nanotubes have been successively varied.

  11. Nuclear spectroscopy and quantum chaos

    International Nuclear Information System (INIS)

    Sakata, Fumihiko; Marumori, Toshio; Hashimoto, Yukio; Yamamoto, Yoshifumi; Tsukuma, Hidehiko; Iwasawa, Kazuo.

    1990-05-01

    In this paper, a recent development of INS-TSUKUBA joint research project on large-amplitude collective motion is summerized. The classical theory of nuclear collective dynamics formulated within the time-dependent Hartree-Fock theory is recapitulated and decisive role of the level crossing in the single-particle dynamics on the order-to-chaos transition of collective motion is discussed in detail. Extending the basic idea of the classical theory, we discuss a quantum theory of nuclear collective dynamics which allows us to properly define a concept of quantum chaos for each eigenfunction. By using numerical calculation, we illustrate what the quantum chaos for each eigenfunction means and its relation to usual definition based on the random matrix theory. (author)

  12. Dynamic polarizabilities and Rydberg states of the argon isoelectronic sequence

    International Nuclear Information System (INIS)

    Ghosh, T.K.; Das, A.K.; Castro, M.; Canuto, S.; Mukherjee, P.K.

    1993-01-01

    Dynamic dipole polarizabilities α d (ω) have been calculated within and beyond the normal-dispersion region for the isoelectronic members of argon up to Mn 7+ using time-dependent coupled Hartree-Fock theory. Excitation energies, oscillator strengths, and quantum-defect values have been estimated for the dipole-allowed transitions 3p 6 1 Se→3p 5 ( 2 P)ns 1 Po (n=4,...,7) and 3p 6 1 Se→3p 5 ( 2 P)nd 1 Po (n=3,...,7). Analytic representations of the singly excited Rydberg orbitals have been obtained. The results compare favorably with the existing theoretical and experimental data. The oscillator strengths show an interesting trend of variation along the isoelectronic sequence

  13. Accurate Compton scattering measurements for N{sub 2} molecules

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kohjiro [Advanced Technology Research Center, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Itou, Masayoshi; Tsuji, Naruki; Sakurai, Yoshiharu [Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hosoya, Tetsuo; Sakurai, Hiroshi, E-mail: sakuraih@gunma-u.ac.jp [Department of Production Science and Technology, Gunma University, 29-1 Hon-cho, Ota, Gunma 373-0057 (Japan)

    2011-06-14

    The accurate Compton profiles of N{sub 2} gas were measured using 121.7 keV synchrotron x-rays. The present accurate measurement proves the better agreement of the CI (configuration interaction) calculation than the Hartree-Fock calculation and suggests the importance of multi-excitation in the CI calculations for the accuracy of wavefunctions in ground states.

  14. Self-consistent-field method and τ-functional method on group manifold in soliton theory. II. Laurent coefficients of soliton solutions for sln and for sun

    International Nuclear Information System (INIS)

    Nishiyama, Seiya; Providencia, Joao da; Komatsu, Takao

    2007-01-01

    To go beyond perturbative method in terms of variables of collective motion, using infinite-dimensional fermions, we have aimed to construct the self-consistent-field (SCF) theory, i.e., time dependent Hartree-Fock theory on associative affine Kac-Moody algebras along the soliton theory. In this paper, toward such an ultimate goal we will reconstruct a theoretical frame for a υ (external parameter)-dependent SCF method to describe more precisely the dynamics on the infinite-dimensional fermion Fock space. An infinite-dimensional fermion operator is introduced through Laurent expansion of finite-dimensional fermion operators with respect to degrees of freedom of the fermions related to a υ-dependent and a Υ-periodic potential. As an illustration, we derive explicit expressions for the Laurent coefficients of soliton solutions for sl n and for su n on infinite-dimensional Grassmannian. The associative affine Kac-Moody algebras play a crucial role to determine the dynamics on the infinite-dimensional fermion Fock space

  15. Dirac fields in flat FLRW cosmology: Uniqueness of the Fock quantization

    Energy Technology Data Exchange (ETDEWEB)

    Cortez, Jerónimo, E-mail: jacq@ciencias.unam.mx [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Elizaga Navascués, Beatriz, E-mail: beatriz.elizaga@iem.cfmac.csic.es [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid (Spain); Martín-Benito, Mercedes, E-mail: m.martin@hef.ru.nl [Radboud University Nijmegen, Institute for Mathematics, Astrophysics and Particle Physics, Heyendaalseweg 135, NL-6525 AJ Nijmegen (Netherlands); Mena Marugán, Guillermo A., E-mail: mena@iem.cfmac.csic.es [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid (Spain); Velhinho, José M., E-mail: jvelhi@ubi.pt [Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001, Covilhã (Portugal)

    2017-01-15

    We address the issue of the infinite ambiguity that affects the construction of a Fock quantization of a Dirac field propagating in a cosmological spacetime with flat compact sections. In particular, we discuss a physical criterion that restricts to a unique possibility (up to unitary equivalence) the infinite set of available vacua. We prove that this desired uniqueness is guaranteed, for any possible choice of spin structure on the spatial sections, if we impose two conditions. The first one is that the symmetries of the classical system must be implemented quantum mechanically, so that the vacuum is invariant under the symmetry transformations. The second and more important condition is that the constructed theory must have a quantum dynamics that is implementable as a (non-trivial) unitary operator in Fock space. Actually, this unitarity of the quantum dynamics leads us to identify as explicitly time dependent some very specific contributions of the Dirac field. In doing that, we essentially characterize the part of the dynamics governed by the Dirac equation that is unitarily implementable. The uniqueness of the Fock vacuum is attained then once a physically motivated convention for the concepts of particles and antiparticles is fixed.

  16. Dirac fields in flat FLRW cosmology: Uniqueness of the Fock quantization

    International Nuclear Information System (INIS)

    Cortez, Jerónimo; Elizaga Navascués, Beatriz; Martín-Benito, Mercedes; Mena Marugán, Guillermo A.; Velhinho, José M.

    2017-01-01

    We address the issue of the infinite ambiguity that affects the construction of a Fock quantization of a Dirac field propagating in a cosmological spacetime with flat compact sections. In particular, we discuss a physical criterion that restricts to a unique possibility (up to unitary equivalence) the infinite set of available vacua. We prove that this desired uniqueness is guaranteed, for any possible choice of spin structure on the spatial sections, if we impose two conditions. The first one is that the symmetries of the classical system must be implemented quantum mechanically, so that the vacuum is invariant under the symmetry transformations. The second and more important condition is that the constructed theory must have a quantum dynamics that is implementable as a (non-trivial) unitary operator in Fock space. Actually, this unitarity of the quantum dynamics leads us to identify as explicitly time dependent some very specific contributions of the Dirac field. In doing that, we essentially characterize the part of the dynamics governed by the Dirac equation that is unitarily implementable. The uniqueness of the Fock vacuum is attained then once a physically motivated convention for the concepts of particles and antiparticles is fixed.

  17. Microscopic description of 258Fm fission dynamic with pairing

    Directory of Open Access Journals (Sweden)

    Scamps Guillaume

    2016-01-01

    Full Text Available Fission dynamic remains a challenge for nuclear microscopic theories. In order to understand the dynamic of the last stage of the fission process, the time-dependent Hartree-Fock approach with BCS pairing is applied to the describe the fission of the 258Fm. A good agreement is found for the one-body observables: the total kinetic energy and the average mass asymmetry. The non-physical dependence of two-body observables with the initial shape is discussed.

  18. Theory of Nernst effect in layered superconductors

    International Nuclear Information System (INIS)

    Tinh, B D; Rosenstein, B

    2009-01-01

    We calculate, using the time-dependent Ginzburg-Landau (TDGL) equation with thermal noise, the transverse thermoelectric conductivity α xy , describing the Nernst effect, in type-II superconductor in the vortex-liquid regime. The method is an elaboration of the Hartree-Fock. An often made in analytical calculations additional assumption that only the lowest Landau level significantly contributes to α xy in the high field limit is lifted by including all the Landau levels. The resulting values in two dimensions (2D) are significantly lower than the numerical simulation data of the same model, but are in reasonably good quantitative agreement with experimental data on La 2 SrCuO 4 above the irreversibility line (below the irreversibility line at which α xy diverges and theory should be modified by including pinning effects).

  19. Comparative studies of atomic independent-particle potentials

    International Nuclear Information System (INIS)

    Talman, J.D.; Ganas, P.S.; Green, A.E.S.

    1979-01-01

    A number of atomic properties are compared in various independent-particle models for atoms. The models studied are the Hartree-Fock method, a variationally optimized potential model, a parametrized analytic form of the same model, parametrized analytic models constructed to fit atomic energy levels, the so-called Hartree-Fock-Slater model, and the Xα model. The physical properties compared are single-particle energy levels, total energies, and dipole polarizabilities. The extent to which the virial theorem is satisfied in the different models is also considered. The atoms Be, Ne, Ar, Kr, and Xe and ions O v and Al iv hav been compared. The results show that the experimental properties can be well represented by several of the independent-particle models. Since it has been shown that the optimized potential models yield wavefunctions that are almost the same as Hartree-Fock wavefunctions, they provide a natural solution to the problem of extending the Hartree-Fock method to excited states

  20. Low-lying electric-dipole strengths of Ca, Ni, and Sn isotopes imprinted on total reaction cross sections

    Science.gov (United States)

    Horiuchi, W.; Hatakeyama, S.; Ebata, S.; Suzuki, Y.

    2017-08-01

    Low-lying electric-dipole (E 1 ) strength of a neutron-rich nucleus contains information on neutron-skin thickness, deformation, and shell evolution. We discuss the possibility of making use of total reaction cross sections on 40Ca, 120Sn, and 208Pb targets to probe the E 1 strength of neutron-rich Ca, Ni, and Sn isotopes. They exhibit large enhancement of the E 1 strength at neutron number N >28 , 50, and 82, respectively, due to a change of the single-particle orbits near the Fermi surface participating in the transitions. The density distributions and the electric-multipole strength functions of those isotopes are calculated by the Hartree-Fock+BCS and the canonical-basis-time-dependent-Hartree-Fock-Bogoliubov methods, respectively, using three kinds of Skyrme-type effective interaction. The nuclear and Coulomb breakup processes are respectively described with the Glauber model and the equivalent photon method in which the effect of finite-charge distribution is taken into account. The three Skyrme interactions give different results for the total reaction cross sections because of different Coulomb breakup contributions. The contribution of the low-lying E 1 strength is amplified when the low-incident energy is chosen. With an appropriate choice of the incident energy and target nucleus, the total reaction cross section can be complementary to the Coulomb excitation for analyzing the low-lying E 1 strength of unstable nuclei.