Energy Technology Data Exchange (ETDEWEB)
Cline, M.C.
1981-08-01
VNAP2 is a computer program for calculating turbulent (as well as laminar and inviscid), steady, and unsteady flow. VNAP2 solves the two-dimensional, time-dependent, compressible Navier-Stokes equations. The turbulence is modeled with either an algebraic mixing-length model, a one-equation model, or the Jones-Launder two-equation model. The geometry may be a single- or a dual-flowing stream. The interior grid points are computed using the unsplit MacCormack scheme. Two options to speed up the calculations for high Reynolds number flows are included. The boundary grid points are computed using a reference-plane-characteristic scheme with the viscous terms treated as source functions. An explicit artificial viscosity is included for shock computations. The fluid is assumed to be a perfect gas. The flow boundaries may be arbitrary curved solid walls, inflow/outflow boundaries, or free-jet envelopes. Typical problems that can be solved concern nozzles, inlets, jet-powered afterbodies, airfoils, and free-jet expansions. The accuracy and efficiency of the program are shown by calculations of several inviscid and turbulent flows. The program and its use are described completely, and six sample cases and a code listing are included.
Local time dependence of turbulent magnetic fields in Saturn's magnetodisc
Kaminker, V.; Delamere, P. A.; Ng, C. S.; Dennis, T.; Otto, A.; Ma, X.
2017-04-01
Net plasma transport in magnetodiscs around giant planets is outward. Observations of plasma temperature have shown that the expanding plasma is heating nonadiabatically during this process. Turbulence has been suggested as a source of heating. However, the mechanism and distribution of magnetic fluctuations in giant magnetospheres are poorly understood. In this study we attempt to quantify the radial and local time dependence of fluctuating magnetic field signatures that are suggestive of turbulence, quantifying the fluctuations in terms of a plasma heating rate density. In addition, the inferred heating rate density is correlated with magnetic field configurations that include azimuthal bend forward/back and magnitude of the equatorial normal component of magnetic field relative to the dipole. We find a significant local time dependence in magnetic fluctuations that is consistent with flux transport triggered in the subsolar and dusk sectors due to magnetodisc reconnection.
Energy transfer in compressible turbulence
Bataille, Francoise; Zhou, YE; Bertoglio, Jean-Pierre
1995-01-01
This letter investigates the compressible energy transfer process. We extend a methodology developed originally for incompressible turbulence and use databases from numerical simulations of a weak compressible turbulence based on Eddy-Damped-Quasi-Normal-Markovian (EDQNM) closure. In order to analyze the compressible mode directly, the well known Helmholtz decomposition is used. While the compressible component has very little influence on the solenoidal part, we found that almost all of the compressible turbulence energy is received from its solenoidal counterpart. We focus on the most fundamental building block of the energy transfer process, the triadic interactions. This analysis leads us to conclude that, at low turbulent Mach number, the compressible energy transfer process is dominated by a local radiative transfer (absorption) in both inertial and energy containing ranges.
Advances in compressible turbulent mixing
Energy Technology Data Exchange (ETDEWEB)
Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.
1992-01-01
This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.
Premixed autoignition in compressible turbulence
Konduri, Aditya; Kolla, Hemanth; Krisman, Alexander; Chen, Jacqueline
2016-11-01
Prediction of chemical ignition delay in an autoignition process is critical in combustion systems like compression ignition engines and gas turbines. Often, ignition delay times measured in simple homogeneous experiments or homogeneous calculations are not representative of actual autoignition processes in complex turbulent flows. This is due the presence of turbulent mixing which results in fluctuations in thermodynamic properties as well as chemical composition. In the present study the effect of fluctuations of thermodynamic variables on the ignition delay is quantified with direct numerical simulations of compressible isotropic turbulence. A premixed syngas-air mixture is used to remove the effects of inhomogeneity in the chemical composition. Preliminary results show a significant spatial variation in the ignition delay time. We analyze the topology of autoignition kernels and identify the influence of extreme events resulting from compressibility and intermittency. The dependence of ignition delay time on Reynolds and turbulent Mach numbers is also quantified. Supported by Basic Energy Sciences, Dept of Energy, United States.
Simulation of compressible viscous flow in time-dependent domains
Czech Academy of Sciences Publication Activity Database
Česenek, J.; Feistauer, M.; Horáček, Jaromír; Kučera, V.; Prokopova, J.
2013-01-01
Roč. 219, č. 13 (2013), s. 7139-7150 ISSN 0096-3003 R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional support: RVO:61388998 Keywords : time dependent domain * ALE method * semi-implicit time discretization * shock indicator Subject RIV: BI - Acoustics Impact factor: 1.600, year: 2013
Turbulence compressibility corrections
Coakley, T. J.; Horstman, C. C.; Marvin, J. G.; Viegas, J. R.; Bardina, J. E.; Huang, P. G.; Kussoy, M. I.
1994-01-01
The basic objective of this research was to identify, develop and recommend turbulence models which could be incorporated into CFD codes used in the design of the National AeroSpace Plane vehicles. To accomplish this goal, a combined effort consisting of experimental and theoretical phases was undertaken. The experimental phase consisted of a literature survey to collect and assess a database of well documented experimental flows, with emphasis on high speed or hypersonic flows, which could be used to validate turbulence models. Since it was anticipated that this database would be incomplete and would need supplementing, additional experiments in the NASA Ames 3.5-Foot Hypersonic Wind Tunnel (HWT) were also undertaken. The theoretical phase consisted of identifying promising turbulence models through applications to simple flows, and then investigating more promising models in applications to complex flows. The complex flows were selected from the database developed in the first phase of the study. For these flows it was anticipated that model performance would not be entirely satisfactory, so that model improvements or corrections would be required. The primary goals of the investigation were essentially achieved. A large database of flows was collected and assessed, a number of additional hypersonic experiments were conducted in the Ames HWT, and two turbulence models (kappa-epsilon and kappa-omega models with corrections) were determined which gave superior performance for most of the flows studied and are now recommended for NASP applications.
Compressible turbulence in one dimension
Fleischer, Jason Wolf
1999-11-01
The Burgers' model of compressible fluid dynamics in one dimension is extended to include the effects of pressure back-reaction. The new system consists of two coupled equations: Burgers' equation with a pressure gradient (essentially the 1-D Navier-Stokes equation) and an advection-diffusion equation for the pressure field. It presents a minimal model of both adiabatic gas dynamics and compressible magnetohydrodynamics. From the magnetic perspective, it is the simplest possible system which allows for Alfvenization, i.e. energy transfer between the fluid and the magnetic field. For the special case of equal fluid viscosity and (magnetic) diffusivity, the system is completely integrable, reducing to two decoupled Burgers' equations in the characteristic variables v +/- vsound ( v +/- vAlfven). For arbitrary diffusivities, renormalized perturbation theory is used to calculate the effective transport coefficients for forced Burgerlence. It is shown that energy equi- dissipation, not equipartition, is fundamental to the turbulent state. Both energy and dissipation are localized to shock-like structures, in which wave steepening is inhibited by small-scale forcing and by pressure back-reaction. The spectral forms predicted by theory are confirmed by numerical simulations. It is shown that the velocity structures lead to an asymmetric velocity PDF, as in Burgers' turbulence. Pressure fluctuations, however, are symmetrically distributed. A Fokker-Planck calculation of these distributions is compared and contrasted with a path integral approach. The latter instanton solution suggests that the system maintains its characteristic directions in steady-state turbulence, supporting the results from perturbation theory. Implications for the spectra of turbulence and self-organization phenomena in compressible fluids and plasmas are also discussed.
Sudden viscous dissipation in compressing plasma turbulence
Davidovits, Seth; Fisch, Nathaniel
2015-11-01
Compression of a turbulent plasma or fluid can cause amplification of the turbulent kinetic energy, if the compression is fast compared to the turnover and viscous dissipation times of the turbulent eddies. The consideration of compressing turbulent flows in inviscid fluids has been motivated by the suggestion that amplification of turbulent kinetic energy occurred on experiments at the Weizmann Institute of Science Z-Pinch. We demonstrate a sudden viscous dissipation mechanism whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, which further increases the temperature, feeding back to further enhance the dissipation. Application of this mechanism in compression experiments may be advantageous, if the plasma can be kept comparatively cold during much of the compression, reducing radiation and conduction losses, until the plasma suddenly becomes hot. This work was supported by DOE through contract 67350-9960 (Prime # DOE DE-NA0001836) and by the DTRA.
International Nuclear Information System (INIS)
Nemeth, J.; Barranco, M.; Ngo, C.; Tomasi, E.
1985-01-01
We have used a self-consistent time dependent Thomas-Fermi model at finite temperature to calculate the dynamical evolution of hot and compressed nuclei. It has been found that nuclei can accomodate more thermal energy than compressional energy before they break. (orig.)
Electromotive force in strongly compressible magnetohydrodynamic turbulence
Yokoi, N.
2017-12-01
Variable density fluid turbulence is ubiquitous in geo-fluids, not to mention in astrophysics. Depending on the source of density variation, variable density fluid turbulence may be divided into two categories: the weak compressible (entropy mode) turbulence for slow flow and the strong compressible (acoustic mode) turbulence for fast flow. In the strong compressible turbulence, the pressure fluctuation induces a strong density fluctuation ρ ', which is represented by the density variance ( denotes the ensemble average). The turbulent effect on the large-scale magnetic-field B induction is represented by the turbulent electromotive force (EMF) (u': velocity fluctuation, b': magnetic-field fluctuation). In the usual treatment in the dynamo theory, the expression for the EMF has been obtained in the framework of incompressible or weak compressible turbulence, where only the variation of the mean density , if any, is taken into account. We see from the equation of the density fluctuation ρ', the density variance is generated by the large mean density variation ∂ coupled with the turbulent mass flux . This means that in the region where the mean density steeply changes, the density variance effect becomes relevant for the magnetic field evolution. This situation is typically the case for phenomena associated with shocks and compositional discontinuities. With the aid of the analytical theory of inhomogeneous compressible magnetohydrodynamic (MHD) turbulence, the expression for the turbulent electromotive force is investigated. It is shown that, among others, an obliqueness (misalignment) between the mean density gradient ∂ and the mean magnetic field B may contribute to the EMF as ≈χ B×∂ with the turbulent transport coefficient χ proportional to the density variance (χ ). This density variance effect is expected to strongly affect the EMF near the interface, and changes the transport properties of turbulence. In the case of an interface under the MHD slow
Directory of Open Access Journals (Sweden)
Hong Qin
2004-10-01
Full Text Available In the currently envisioned configurations for heavy ion fusion, it is necessary to longitudinally compress the beam bunches by a large factor after the acceleration phase. Because the space-charge force increases as the beam is compressed, the beam size in the transverse direction will increase in a periodic quadrupole lattice. If an active control of the beam size is desired, a larger focusing force is needed to confine the beam in the transverse direction, and a nonperiodic quadrupole lattice along the beam path is necessary. In this paper, we describe the design of such a focusing lattice using the transverse envelope equations. A drift compression and final focus lattice should focus the entire beam pulse onto the same focal spot on the target. This is difficult with a fixed lattice, because different slices of the beam may have different perveance and emittance. Four time-dependent magnets are introduced in the upstream of drift compression to focus the entire pulse onto the same focal spot. Drift compression and final focusing schemes are developed for a typical heavy ion fusion driver and for the integrated beam experiment being designed by the Heavy Ion Fusion Virtual National Laboratory.
Effects of Time-Dependent Inflow Perturbations on Turbulent Flow in a Street Canyon
Duan, G.; Ngan, K.
2017-12-01
Urban flow and turbulence are driven by atmospheric flows with larger horizontal scales. Since building-resolving computational fluid dynamics models typically employ steady Dirichlet boundary conditions or forcing, the accuracy of numerical simulations may be limited by the neglect of perturbations. We investigate the sensitivity of flow within a unit-aspect-ratio street canyon to time-dependent perturbations near the inflow boundary. Using large-eddy simulation, time-periodic perturbations to the streamwise velocity component are incorporated via the nudging technique. Spatial averages of pointwise differences between unperturbed and perturbed velocity fields (i.e., the error kinetic energy) show a clear dependence on the perturbation period, though spatial structures are largely insensitive to the time-dependent forcing. The response of the error kinetic energy is maximized for perturbation periods comparable to the time scale of the mean canyon circulation. Frequency spectra indicate that this behaviour arises from a resonance between the inflow forcing and the mean motion around closed streamlines. The robustness of the results is confirmed using perturbations derived from measurements of roof-level wind speed.
Lagrangian investigations of vorticity dynamics in compressible turbulence
Parashar, Nishant; Sinha, Sawan Suman; Danish, Mohammad; Srinivasan, Balaji
2017-10-01
In this work, we investigate the influence of compressibility on vorticity-strain rate dynamics. Well-resolved direct numerical simulations of compressible homogeneous isotropic turbulence performed over a cubical domain of 10243 are employed for this study. To clearly identify the influence of compressibility on the time-dependent dynamics (rather than on the one-time flow field), we employ a well-validated Lagrangian particle tracker. The tracker is used to obtain time correlations between the instantaneous vorticity vector and the strain-rate eigenvector system of an appropriately chosen reference time. In this work, compressibility is parameterized in terms of both global (turbulent Mach number) and local parameters (normalized dilatation-rate and flow field topology). Our investigations reveal that the local dilatation rate significantly influences these statistics. In turn, this observed influence of the dilatation rate is predominantly associated with rotation dominated topologies (unstable-focus-compressing, stable-focus-stretching). We find that an enhanced dilatation rate (in both contracting and expanding fluid elements) significantly enhances the tendency of the vorticity vector to align with the largest eigenvector of the strain-rate. Further, in fluid particles where the vorticity vector is maximally misaligned (perpendicular) at the reference time, vorticity does show a substantial tendency to align with the intermediate eigenvector as well. The authors make an attempt to provide physical explanations of these observations (in terms of moment of inertia and angular momentum) by performing detailed calculations following tetrads {approach of Chertkov et al. ["Lagrangian tetrad dynamics and the phenomenology of turbulence," Phys. Fluids 11(8), 2394-2410 (1999)] and Xu et al. ["The pirouette effect in turbulent flows," Nat. Phys. 7(9), 709-712 (2011)]} in a compressible flow field.
Single-particle dispersion in compressible turbulence
Zhang, Qingqing; Xiao, Zuoli
2018-04-01
Single-particle dispersion statistics in compressible box turbulence are studied using direct numerical simulation. Focus is placed on the detailed discussion of effects of the particle Stokes number and turbulent Mach number, as well as the forcing type. When solenoidal forcing is adopted, it is found that the single-particle dispersion undergoes a transition from the ballistic regime at short times to the diffusive regime at long times, in agreement with Taylor's particle dispersion argument. The strongest dispersion of heavy particles is announced when the Stokes number is of order 1, which is similar to the scenario in incompressible turbulence. The dispersion tends to be suppressed as the Mach number increases. When hybrid solenoidal and compressive forcing at a ratio of 1/2 is employed, the flow field shows apparent anisotropic property, characterized by the appearance of large shock wave structures. Accordingly, the single-particle dispersion shows extremely different behavior from the solenoidal forcing case.
Energy transfer in compressible magnetohydrodynamic turbulence
Grete, Philipp; O'Shea, Brian W.; Beckwith, Kris; Schmidt, Wolfram; Christlieb, Andrew
2017-09-01
Magnetic fields, compressibility, and turbulence are important factors in many terrestrial and astrophysical processes. While energy dynamics, i.e., how energy is transferred within and between kinetic and magnetic reservoirs, has been previously studied in the context of incompressible magnetohydrodynamic (MHD) turbulence, we extend shell-to-shell energy transfer analysis to the compressible regime. We derive four new transfer functions specifically capturing compressibility effects in the kinetic and magnetic cascade, and capturing energy exchange via magnetic pressure. To illustrate their viability, we perform and analyze four simulations of driven isothermal MHD turbulence in the sub- and supersonic regime with two different codes. On the one hand, our analysis reveals robust characteristics across regime and numerical method. For example, energy transfer between individual scales is local and forward for both cascades with the magnetic cascade being stronger than the kinetic one. Magnetic tension and magnetic pressure related transfers are less local and weaker than the cascades. We find no evidence for significant nonlocal transfer. On the other hand, we show that certain functions, e.g., the compressive component of the magnetic energy cascade, exhibit a more complex behavior that varies both with regime and numerical method. Having established a basis for the analysis in the compressible regime, the method can now be applied to study a broader parameter space.
Turbulence models for compressible boundary layers
Huang, P. G.; Bradshaw, P.; Coakley, T. J.
1994-01-01
It is shown that to satisfy the general accepted compressible law of the wall derived from the Van Driest transformation, turbulence modeling coefficients must actually be functions of density gradients. The transformed velocity profiles obtained by using standard turbulence model constants have too small a value of the effective von Karman constant kappa in the log-law region (inner layer). Thus, if the model is otherwise accurate, the wake component is overpredicted and the predicted skin friction is lower than the expected value.
Turbulence models for compressible boundary layers
Energy Technology Data Exchange (ETDEWEB)
Huang, P.G.; Bradshaw, P.; Coakley, T.J. [Eloret Institute, Palo Alto, CA (United States)]|[Stanford Univ., CA (United States)]|[NASA, Ames Research Center, Moffet Field, CA (United States)
1994-04-01
It is shown that to satisfy the general accepted compressible law of the wall derived from the Van Driest transformation, turbulence modeling coefficients must actually be functions of density gradients. The transformed velocity profiles obtained by using standard turbulence model constants have too small a value of the effective von Karman constant kappa in the log-law region (inner layer). Thus, if the model is otherwise accurate, the wake component is overpredicted and the predicted skin friction is lower than the expected value.
Exact Theory of Compressible Fluid Turbulence
Drivas, Theodore; Eyink, Gregory
2017-11-01
We obtain exact results for compressible turbulence with any equation of state, using coarse-graining/filtering. We find two mechanisms of turbulent kinetic energy dissipation: scale-local energy cascade and ``pressure-work defect'', or pressure-work at viscous scales exceeding that in the inertial-range. Planar shocks in an ideal gas dissipate all kinetic energy by pressure-work defect, but the effect is omitted by standard LES modeling of pressure-dilatation. We also obtain a novel inverse cascade of thermodynamic entropy, injected by microscopic entropy production, cascaded upscale, and removed by large-scale cooling. This nonlinear process is missed by the Kovasznay linear mode decomposition, treating entropy as a passive scalar. For small Mach number we recover the incompressible ``negentropy cascade'' predicted by Obukhov. We derive exact Kolmogorov 4/5th-type laws for energy and entropy cascades, constraining scaling exponents of velocity, density, and internal energy to sub-Kolmogorov values. Although precise exponents and detailed physics are Mach-dependent, our exact results hold at all Mach numbers. Flow realizations at infinite Reynolds are ``dissipative weak solutions'' of compressible Euler equations, similarly as Onsager proposed for incompressible turbulence.
Scott E. Hamel; John C. Hermanson; Steven M. Cramer
2012-01-01
The thermoplastics within woodâplastic composites (WPCs) are known to experience significant time-dependent deformation or creep. In some formulations, creep deformation can be twice as much as the initial quasi-static strain in as little as 4 days. While extensive work has been done on the creep behavior of pure polymers, little information is available on the...
On numerical solution of compressible flow in time-dependent domains
Czech Academy of Sciences Publication Activity Database
Feistauer, M.; Horáček, Jaromír; Kučera, V.; Prokopová, Jaroslava
2012-01-01
Roč. 137, č. 1 (2012), s. 1-16 ISSN 0862-7959 R&D Projects: GA MŠk OC09019 Institutional research plan: CEZ:AV0Z20760514 Keywords : compressible Navier-Stokes equations * arbitrary Lagrangian-Eulerian method * discontinuous Galerkin finite element method * interior and boundary penalty Subject RIV: BI - Acoustics
Chakrabarti, Nikhil; Maity, Chandan; Schamel, Hans
2011-04-01
Compressional waves in a magnetized plasma of arbitrary resistivity are treated with the Lagrangian fluid approach. An exact nonlinear solution with a nontrivial space and time dependence is obtained with boundary conditions as in Harris’ current sheet. The solution shows competition among hydrodynamic convection, magnetic field diffusion, and dispersion. This results in a collapse of density and the magnetic field in the absence of dispersion. The dispersion effects arrest the collapse of density but not of the magnetic field. A possible application is in the early stage of magnetic star formation.
International Nuclear Information System (INIS)
Hong Qin; Davidson, Ronald C.; Barnard, John J.; Lee, Edward P.
2005-01-01
In the currently envisioned configurations for heavy ion fusion, it is necessary to longitudinally compress the beam bunches by a large factor after the acceleration phase. Because the space-charge force increases as the beam is compressed, the beam size in the transverse direction will increase in a periodic quadrupole lattice. If an active control of the beam size is desired, a larger focusing force is needed to confine the beam in the transverse direction, and a non-periodic quadrupole lattice along the beam path is necessary. In this paper, we describe the design of such a focusing lattice using the transverse envelope equations. A drift compression and final focus lattice should focus the entire beam pulse onto the same focal spot on the target. This is difficult with a fixed lattice, because different slices of the beam may have different perveance and emittance. Four time-dependent magnets are introduced in the upstream of drift compression to focus the entire pulse onto the sam e focal spot. Drift compression and final focusing schemes are developed for a typical heavy ion fusion driver and for the Integrated Beam Experiment (IBX) being designed by the Heavy Ion Fusion Virtual National Laboratory
Energy Transfer and Triadic Interactions in Compressible Turbulence
1997-11-01
No. 97-62 ANNIVERSARY Energy Transfer and Triadic Interactions in Compressible Turbulence F. Bataille INSA, Centre for Thermique de Lyon, France Ye...19480 November 1997 1997112 ENERGY TRANSFER AND TRIADIC INTERACTIONS IN COMPRESSIBLE TURBULENCE* F. BATAILLE t , YE ZHOU1 , AND JEAN-PIERRE BERTOGLIO...Abstract. Using a two-point closure theory, the Eddy-Damped-Quasi-Normal-Markovian (EDQNM) approximation, we have investigated the energy transfer
Compressibility and rotation effects on transport suppression in magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Yoshizawa, A.
1996-01-01
Compressibility and rotation effects on turbulent transports in magnetohydrodynamic (MHD) flows under arbitrary mean field are investigated using a Markovianized two-scale statistical approach. Some new aspects of MHD turbulence are pointed out in close relation to plasma compressibility. Special attention is paid to the turbulent electromotive force, which plays a central role in the generation of magnetic and velocity fluctuations. In addition to plasma rotation, the interaction between compressibility and magnetic fields is shown to bring a few factors suppressing MHD fluctuations and, eventually, density and temperature transports, even in the presence of steep mean density and temperature gradients. This finding is discussed in the context of the turbulence-suppression mechanism in the tokamak close-quote s high-confinement modes. copyright 1996 American Institute of Physics
Compression of turbulent magnetized gas in giant molecular clouds
Birnboim, Yuval; Federrath, Christoph; Krumholz, Mark
2018-01-01
Interstellar gas clouds are often both highly magnetized and supersonically turbulent, with velocity dispersions set by a competition between driving and dissipation. This balance has been studied extensively in the context of gases with constant mean density. However, many astrophysical systems are contracting under the influence of external pressure or gravity, and the balance between driving and dissipation in a contracting, magnetized medium has yet to be studied. In this paper, we present three-dimensional magnetohydrodynamic simulations of compression in a turbulent, magnetized medium that resembles the physical conditions inside molecular clouds. We find that in some circumstances the combination of compression and magnetic fields leads to a rate of turbulent dissipation far less than that observed in non-magnetized gas, or in non-compressing magnetized gas. As a result, a compressing, magnetized gas reaches an equilibrium velocity dispersion much greater than would be expected for either the hydrodynamic or the non-compressing case. We use the simulation results to construct an analytic model that gives an effective equation of state for a coarse-grained parcel of the gas, in the form of an ideal equation of state with a polytropic index that depends on the dissipation and energy transfer rates between the magnetic and turbulent components. We argue that the reduced dissipation rate and larger equilibrium velocity dispersion has important implications for the driving and maintenance of turbulence in molecular clouds and for the rates of chemical and radiative processes that are sensitive to shocks and dissipation.
Self-consistent viscous heating of rapidly compressed turbulence
Campos, Alejandro; Morgan, Brandon
2017-11-01
Given turbulence subjected to infinitely rapid deformations, linear terms representing interactions between the mean flow and the turbulence dictate the evolution of the flow, whereas non-linear terms corresponding to turbulence-turbulence interactions are safely ignored. For rapidly deformed flows where the turbulence Reynolds number is not sufficiently large, viscous effects can't be neglected and tend to play a prominent role, as shown in the study of Davidovits & Fisch (2016). For such a case, the rapid increase of viscosity in a plasma-as compared to the weaker scaling of viscosity in a fluid-leads to the sudden viscous dissipation of turbulent kinetic energy. As shown in Davidovits & Fisch, increases in temperature caused by the direct compression of the plasma drive sufficiently large values of viscosity. We report on numerical simulations of turbulence where the increase in temperature is the result of both the direct compression (an inviscid mechanism) and the self-consistent viscous transfer of energy from the turbulent scales towards the thermal energy. A comparison between implicit large-eddy simulations against well-resolved direct numerical simulations is included to asses the effect of the numerical and subgrid-scale dissipation on the self-consistent viscous This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
A compressible Navier-Stokes code for turbulent flow modeling
Coakley, T. J.
1984-01-01
An implicit, finite volume code for solving two dimensional, compressible turbulent flows is described. Second order upwind differencing of the inviscid terms of the equations is used to enhance stability and accuracy. A diagonal form of the implicit algorithm is used to improve efficiency. Several zero and two equation turbulence models are incorporated to study their impact on overall flow modeling accuracy. Applications to external and internal flows are discussed.
Energy Transfer and Triadic Interactions in Compressible Turbulence
Bataille, F.; Zhou, Ye; Bertoglio, Jean-Pierre
1997-01-01
Using a two-point closure theory, the Eddy-Damped-Quasi-Normal-Markovian (EDQNM) approximation, we have investigated the energy transfer process and triadic interactions of compressible turbulence. In order to analyze the compressible mode directly, the Helmholtz decomposition is used. The following issues were addressed: (1) What is the mechanism of energy exchange between the solenoidal and compressible modes, and (2) Is there an energy cascade in the compressible energy transfer process? It is concluded that the compressible energy is transferred locally from the solenoidal part to the compressible part. It is also found that there is an energy cascade of the compressible mode for high turbulent Mach number (M(sub t) greater than or equal to 0.5). Since we assume that the compressibility is weak, the magnitude of the compressible (radiative or cascade) transfer is much smaller than that of solenoidal cascade. These results are further confirmed by studying the triadic energy transfer function, the most fundamental building block of the energy transfer.
Numerical computation of compressible, turbulent high-speed flows
Suzen, Yildirim Bora
Separated flows and subsequent formation of shear layers are important fluid processes which play a dominant role in numerous engineering applications. Accurate prediction of this fluid process is an important element in the design and analysis of high speed vehicles and, ultimately, in performance and trajectory analysis. In this study, a two-dimensional/axisymmetric Navier-Stokes flow solver using Steger-Warming flux vector splitting technique is developed for the accurate simulation of high speed turbulent flows. Computations are performed for an underexpanded, supersonic, turbulent, axisymmetric jet and a two-stream supersonic turbulent wake flowfield behind a two-dimensional thick base as representative of high speed, compressible shear flows. Baldwin-Barth and Spalart-Allmaras one-equation turbulence models and Baseline version of Menter's zonal k - omega/k - varepsilon two-equation turbulence models are used to investigate their performance for the applications considered. Modifications to these models are incorporated in order to improve their prediction capabilities for the types of flows considered. For two-equation models, modifications to include compressibility correction terms are considered and a modeled version of Menter's models including compressible dissipation and pressure dilatation terms is developed. Axisymmetric correction is incorporated to all models by means of coefficient changes. The computational results are compared to available experimental data. Results show that the modifications improve the computed solutions for all models.
Morphing continuum analysis of energy transfer in compressible turbulence
Cheikh, Mohamad Ibrahim; Wonnell, Louis B.; Chen, James
2018-02-01
A shock-preserving finite volume solver with the generalized Lax-Friedrichs splitting flux for morphing continuum theory (MCT) is presented and verified. The numerical MCT solver is showcased in a supersonic turbulent flow with Mach 2.93 over an 8∘ compression ramp. The simulation results validated MCT with experiments as an alternative for modeling compressible turbulence. The required size of the smallest mesh cell for the MCT simulation is shown to be almost an order larger than that in a similar direct numerical simulation study. The comparison shows MCT is a much more computationally friendly theory than the classical Navier-Stokes equations. The dynamics of energy cascade at the length scale of individual eddies is illuminated through the subscale rotation introduced by MCT. In this regard, MCT provides a statistical averaging procedure for capturing energy transfer in compressible turbulence, not found in classical fluid theories. Analysis of the MCT results show the existence of a statistical coupling of the internal and translational kinetic energy fluctuations with the corresponding eddy rotational energy fluctuations, indicating a multiscale transfer of energy. In conclusion, MCT gives a new characterization of the energy cascade within compressible turbulence without the use of excessive computational resources.
Exact law for homogeneous compressible Hall magnetohydrodynamics turbulence
Andrés, N.; Galtier, S.; Sahraoui, F.
2018-01-01
We derive an exact law for three-dimensional (3D) homogeneous compressible isothermal Hall magnetohydrodynamic turbulence, without the assumption of isotropy. The Hall current is shown to introduce new flux and source terms that act at the small scales (comparable or smaller than the ion skin depth) to significantly impact the turbulence dynamics. The law provides an accurate means to estimate the energy cascade rate over a broad range of scales covering the magnetohydrodynamic inertial range and the sub-ion dispersive range in 3D numerical simulations and in in situ spacecraft observations of compressible turbulence. This work is particularly relevant to astrophysical flows in which small-scale density fluctuations cannot be ignored such as the solar wind, planetary magnetospheres, and the interstellar medium.
Turbulence Modulation of a Weakly Compressible Wall-Jet
Garnica, Cristale; Rollin, Bertrand
2017-11-01
Wall-jets are flows of paramount importance in modern engineering, where applications in thermal protection, combustion, flow control and noise generation are numerous. It can be seen as being composed of two canonical flows: a boundary layer and a free mixing flow. In this paper, the focus is turned to the modulation of turbulence in weakly compressible isothermal wall-jets, when subject to changes in the jet-inlet conditions. Direct Numerical Simulations (DNS) of wall-jets are carried out using PyFR, a Python based computational fluid dynamics framework. Analysis of mean profiles and turbulence quantities response to carefully designed excitation profiles will be presented, as well as changes in coherent structures of the turbulent flow. Finally, of particular interest is the relation between the Kelvin-Helmholtz instability and the modulation of turbulence in both the outer and the inner-layer.
Numerical simulation of compressible, turbulent, two-phase flow
Coakley, t. J.; Champney, J. M.
1985-01-01
A computer program for numerically simulating compressible, turbulent, two-phase flows is described and applied. Special attention is given to flows in which dust is ingested into the turbulent boundary layer behind shock waves moving over the earth's surface. it is assumed that the two phases are interpenetrating continua which are coupled by drag forces and heat transfer. The particle phase is assumed to be dilute, and turbulent effects are modeled by zero- and two-equation eddy viscosity models. An important feature of the turbulence modeling is the treatment of surface boundary conditions which control the ingestion of particles into the boundary layer by turbulent friction and diffusion. The numerical method uses second-order implicit upwind differencing of the inviscid terms of the equations and second-order central differencing of the viscous terms. A diagonal form of the implicit algorithm is used to improve efficiency, and the transformation to a curvilinear coordinate system is accomplished by the finite volume techniques. Applications to a series of representative flows include a two-phase nozzle flow, the steady flow of air over a sand bed, and the air flow behind a normal shock wave in uniform motion over a sand bed. Results of the latter two applications are compared with experimental results.
Multifractal scaling at the Kolmogorov microscale in fully developed compressible turbulence
International Nuclear Information System (INIS)
Shivamoggi, B.K.
1995-01-01
In this paper, some aspects of multifractal scaling at the Kolmogorov microscale in fully developed compressible turbulence are considered. These considerations, on the one hand, provide an insight into the mechanism of compressible turbulence, and on the other hand enable one to determine the robustness of some known results in incompressible turbulence. copyright 1995 Academic Press, Inc
New insights on compressible turbulent mixing in spectral space
Panickacheril John, John; Donzis, Diego; Sreenivasan, Katepalli
2017-11-01
Previous studies have shown that dilatational forcing has an effect in the dynamics of the velocity field in compressible turbulence. However, there has virtually been no studies of these effects on scalar mixing, the specific mechanisms responsible for compressibility effects and the scaling with governing parameters. Using a large DNS database, generated with different ratios of solenoidal to dilatational forcing, we find that the commonly used turbulent Mach number (Mt) fails to parametrize mixing efficiency. Instead, the dilatational Mach number (Mtd) is a better scaling parameter to observe non-monotonic trends. We observe an accumulation of energy at large scales when compressibility is high; this has an effect on the energy and scalar cascade. We analyze both budgets to assess changes in global and inter-scale statistics for each mode and their interactions. For moderate compressibility levels, the normalized spectra of both modes do not collapse even when their own dissipation rates are used. Furthermore, a dilatational cascade is formed at high compressibilty levels with advection terms scaling with χ, the ratio of dilatational to total kinetic energy. Results on scalar dissipation and their relation to thermodynamic variables are also presented. Support from NSF is gratefully acknowledged.
Modeling turbulent compressible flows - The mass fluctuating velocity and squared density
Taulbee, D.; Vanosdol, J.
1991-01-01
This paper deals with single-point closure theory for compressible turbulent flow, including the effects of compressibility on the turbulence. In particular, the combination of the pressure dilatation and the dilatation dissipation, terms which appear on the turbulent kinetic energy equation, are modeled. Model parameters in these transport equations are determined by comparing predictions with boundary layer measurements. Finally, predictions with a k-epsilon model, including the new formulations, are presented for the compressible shear layer.
Assessment of closure coefficients for compressible-flow turbulence models
Huang, P. G.; Bradshaw, P.; Coakley, T. J.
1992-01-01
A critical assessment is made of the closure coefficients used for turbulence length scale in existing models of the transport equation, with reference to the extension of these models to compressible flow. It is shown that to satisfy the compressible 'law of the wall', the model coefficients must actually be functions of density gradients. The magnitude of the errors that result from neglecting this dependence on density varies with the variable used to specify the length scale. Among the models investigated, the k-omega model yields the best performance, although it is not completely free from errors associated with density terms. Models designed to reduce the density-gradient effect to an insignificant level are proposed.
Cascades and Dissipative Anomalies in Compressible Fluid Turbulence
Eyink, Gregory L.; Drivas, Theodore D.
2018-02-01
We investigate dissipative anomalies in a turbulent fluid governed by the compressible Navier-Stokes equation. We follow an exact approach pioneered by Onsager, which we explain as a nonperturbative application of the principle of renormalization-group invariance. In the limit of high Reynolds and Péclet numbers, the flow realizations are found to be described as distributional or "coarse-grained" solutions of the compressible Euler equations, with standard conservation laws broken by turbulent anomalies. The anomalous dissipation of kinetic energy is shown to be due not only to local cascade but also to a distinct mechanism called pressure-work defect. Irreversible heating in stationary, planar shocks with an ideal-gas equation of state exemplifies the second mechanism. Entropy conservation anomalies are also found to occur via two mechanisms: an anomalous input of negative entropy (negentropy) by pressure work and a cascade of negentropy to small scales. We derive "4 /5 th-law"-type expressions for the anomalies, which allow us to characterize the singularities (structure-function scaling exponents) required to sustain the cascades. We compare our approach with alternative theories and empirical evidence. It is argued that the "Big Power Law in the Sky" observed in electron density scintillations in the interstellar medium is a manifestation of a forward negentropy cascade or an inverse cascade of usual thermodynamic entropy.
Cascades and Dissipative Anomalies in Compressible Fluid Turbulence
Directory of Open Access Journals (Sweden)
Gregory L. Eyink
2018-02-01
Full Text Available We investigate dissipative anomalies in a turbulent fluid governed by the compressible Navier-Stokes equation. We follow an exact approach pioneered by Onsager, which we explain as a nonperturbative application of the principle of renormalization-group invariance. In the limit of high Reynolds and Péclet numbers, the flow realizations are found to be described as distributional or “coarse-grained” solutions of the compressible Euler equations, with standard conservation laws broken by turbulent anomalies. The anomalous dissipation of kinetic energy is shown to be due not only to local cascade but also to a distinct mechanism called pressure-work defect. Irreversible heating in stationary, planar shocks with an ideal-gas equation of state exemplifies the second mechanism. Entropy conservation anomalies are also found to occur via two mechanisms: an anomalous input of negative entropy (negentropy by pressure work and a cascade of negentropy to small scales. We derive “4/5th-law”-type expressions for the anomalies, which allow us to characterize the singularities (structure-function scaling exponents required to sustain the cascades. We compare our approach with alternative theories and empirical evidence. It is argued that the “Big Power Law in the Sky” observed in electron density scintillations in the interstellar medium is a manifestation of a forward negentropy cascade or an inverse cascade of usual thermodynamic entropy.
Cheskes, Sheldon; Schmicker, Robert H; Rea, Tom; Powell, Judy; Drennan, Ian R; Kudenchuk, Peter; Vaillancourt, Christian; Conway, William; Stiell, Ian; Stub, Dion; Davis, Dan; Alexander, Noah; Christenson, Jim
2015-12-01
The role of chest compression fraction (CCF) in resuscitation of shockable out-of-hospital cardiac arrest (OHCA) is uncertain. We evaluated the relationship between CCF and clinical outcomes in a secondary analysis of the Resuscitation Outcomes Consortium PRIMED trial. We included patients presenting in a shockable rhythm who suffered OHCA prior to EMS arrival. Multivariable logistic regression was used to determine the relationship between CCF and survival to hospital discharge, return of spontaneous circulation (ROSC), and neurologically intact survival. We also performed a secondary analysis restricted to patients without ROSC in the first 10 min of EMS resuscitation. Among the 2011 patients, median (IQR) age was 65 (54, 75) years, 78.2% were male, and mean (SD) CCF was 0.71 (0.14). Compared to the reference group (CCFratio (OR) for survival was 0.49 (95% CI: 0.36, 0.68) for CCF 0.60-0.79 and 0.30 (95% CI: 0.20, 0.44) for CCF≥0.80. Results were similar for outcomes of ROSC and neurologically intact survival. Conversely, when restricted to the cohort who did not achieve ROSC during the first 10 min (n=1633), compared to the reference group (CCF<0.60), the OR for survival was 0.79 (95% CI: 0.53, 1.18) for CCF 0.60-0.79 and OR 0.88 (95% CI: 0.56, 1.36) for CCF≥0.80. In this study of OHCA patients presenting in a shockable rhythm, CCF was paradoxically associated with lower odds of survival. CCF is a complex measure and taken by itself may not be a consistent predictor of good clinical outcomes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Turbulence modeling methods for the compressible Navier-Stokes equations
Coakley, T. J.
1983-01-01
Turbulence modeling methods for the compressible Navier-Stokes equations, including several zero- and two-equation eddy-viscosity models, are described and applied. Advantages and disadvantages of the models are discussed with respect to mathematical simplicity, conformity with physical theory, and numerical compatibility with methods. A new two-equation model is introduced which shows advantages over other two-equation models with regard to numerical compatibility and the ability to predict low-Reynolds-number transitional phenomena. Calculations of various transonic airfoil flows are compared with experimental results. A new implicit upwind-differencing method is used which enhances numerical stability and accuracy, and leads to rapidly convergent steady-state solutions.
Bailly, Christophe
2015-01-01
This book covers the major problems of turbulence and turbulent processes, including physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...
Stable low-dissipation schemes for turbulent compressible flows
Subbareddy, Pramod Kumar V.
Shock capturing schemes, which are commonly used in compressible flow simulations, introduce excessive amounts of numerical viscosity which smears out small scale flow features. A few low-dissipation methods have been proposed in the recent literature. They are more selective in the sense that they explicitly identify the portion of the numerical flux that is diffusive and damp its effect in 'smooth' regions of the flow. This work employs flux vector splitting methods; the dissipative portions of the Steger-Warming schemes are explicitly identified and various shock detection switches are explored. For high Reynolds number flows, especially when the energetic scales are close to the Nyquist limits of the grids used, aliasing errors become noticeable. These high frequency oscillations that arise due to the nonlinear nature of the Navier-Stokes equations cause solutions to become unstable. When dissipative methods are used, these errors are suppressed; however when using low-dissipation schemes, they can be prominent and need to be addressed by some other means. In this thesis, we focus on methods that enhance stability by enforcing 'secondary conservation' - the fluxes are constrained in such a way that a conservation law for a secondary, positive quantity is also satisified. In particular, we focus on kinetic energy, and a fully discrete (in time and space) 'kinetic energy consistent' scheme is derived and tested. Hybrid RAMS-LES methods such as Detached Eddy Simulations are necessary in order to make simulations of high speed flows with attached boundary layers affordable. A popular DES model is based on the Spalart-Allmaras RANS equation; a minor modification to the length scale makes the model behave in a hybrid manner. The S-A model itself was constructed using mostly empirical arguments by the authors. This model is analyzed and its connection to other turbulence models, in particular, the ksgs equation, is explored. A dynamic version of the model is proposed
National Research Council Canada - National Science Library
Liu, Chaoqun
1999-01-01
.... Four transitional stages are observed: the linear and weakly nonlinear growth, the appearance of staggered A-vortex patterns, the evolution of A-vortex into hairpin vortex, the breakdown of hairpin vortical structures...
National Research Council Canada - National Science Library
Liu, Chaoguin
2000-01-01
.... It has been found that the shedding of the small-scale vortical structures originates not only from the Kelvin-Helmholtz type instability of the leading-edge shear layer, but also from the separation...
Emanuel, Kaj S; van der Veen, Albert J; Rustenburg, Christine M E; Smit, Theodoor H; Kingma, Idsart
2018-03-21
The mechanical behaviour of the intervertebral disc highly depends on the content and transport of interstitial fluid. It is unknown, however, to what extent the time-dependent behaviour can be attributed to osmosis. Here we investigate the effect of both mechanical and osmotic loading on water content, nucleus pressure and disc height. Eight goat intervertebral discs, immersed in physiological saline, were subjected to a compressive force with a pressure needle inserted in the nucleus. The loading protocol was: 10 N (6 h); 150 N (42 h); 10 N (24 h). Half-way the 150 N-phase (24 h), we eliminated the osmotic gradient by adding 26% poly-ethylene glycol to the surrounding fluid. For 62 additional discs, we determined the water content of both nucleus and annulus after 6, 24, 48, or 72 h. The compressive load was initially counterbalanced by the hydrostatic pressure in the nucleus. The load forced 4.3% of the water out of the nucleus, which reduced nucleus pressure by 44(±6)%. Reduction of the osmotic gradient disturbed the equilibrium disc height, and a significant loss of annulus water content was found. Remarkably, pressure and water content of the nucleus pulposus remained unchanged. This shows that annulus water content is important in the response to axial loading. After unloading, in the absence of an osmotic gradient, there was substantial viscoelastic recovery of 53(±11)% of the disc height, without a change in water content. However, for restoration of the nucleus pressure and for full restoration of disc height, restoration of the osmotic gradient was needed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Direct numerical simulations of premixed autoignition in compressible uniformly-sheared turbulence
Towery, Colin; Darragh, Ryan; Poludnenko, Alexei; Hamlington, Peter
2017-11-01
High-speed combustion systems, such as scramjet engines, operate at high temperatures and pressures, extremely short combustor residence times, very high rates of shear stress, and intense turbulent mixing. As a result, the reacting flow can be premixed and have highly-compressible turbulence fluctuations. We investigate the effects of compressible turbulence on the ignition delay time, heat-release-rate (HRR) intermittency, and mode of autoignition of premixed Hydrogen-air fuel in uniformly-sheared turbulence using new three-dimensional direct numerical simulations with a multi-step chemistry mechanism. We analyze autoignition in both the Eulerian and Lagrangian reference frames at eight different turbulence Mach numbers, Mat , spanning the quasi-isentropic, linear thermodynamic, and nonlinear compressibility regimes, with eddy shocklets appearing in the nonlinear regime. Results are compared to our previous study of premixed autoignition in isotropic turbulence at the same Mat and with a single-step reaction mechanism. This previous study found large decreases in delay times and large increases in HRR intermittency between the linear and nonlinear compressibility regimes and that detonation waves could form in both regimes.
Three-dimensional density and compressible magnetic structure in solar wind turbulence
Roberts, Owen W.; Narita, Yasuhito; Escoubet, C.-Philippe
2018-03-01
The three-dimensional structure of both compressible and incompressible components of turbulence is investigated at proton characteristic scales in the solar wind. Measurements of the three-dimensional structure are typically difficult, since the majority of measurements are performed by a single spacecraft. However, the Cluster mission consisting of four spacecraft in a tetrahedral formation allows for a fully three-dimensional investigation of turbulence. Incompressible turbulence is investigated by using the three vector components of the magnetic field. Meanwhile compressible turbulence is investigated by considering the magnitude of the magnetic field as a proxy for the compressible fluctuations and electron density data deduced from spacecraft potential. Application of the multi-point signal resonator technique to intervals of fast and slow wind shows that both compressible and incompressible turbulence are anisotropic with respect to the mean magnetic field direction P⟂ ≫ P∥ and are sensitive to the value of the plasma beta (β; ratio of thermal to magnetic pressure) and the wind type. Moreover, the incompressible fluctuations of the fast and slow solar wind are revealed to be different with enhancements along the background magnetic field direction present in the fast wind intervals. The differences in the fast and slow wind and the implications for the presence of different wave modes in the plasma are discussed.
Self-similar regimes of turbulence in weakly coupled plasmas under compression
Viciconte, Giovanni; Gréa, Benoît-Joseph; Godeferd, Fabien S.
2018-02-01
Turbulence in weakly coupled plasmas under compression can experience a sudden dissipation of kinetic energy due to the abrupt growth of the viscosity coefficient governed by the temperature increase. We investigate in detail this phenomenon by considering a turbulent velocity field obeying the incompressible Navier-Stokes equations with a source term resulting from the mean velocity. The system can be simplified by a nonlinear change of variable, and then solved using both highly resolved direct numerical simulations and a spectral model based on the eddy-damped quasinormal Markovian closure. The model allows us to explore a wide range of initial Reynolds and compression numbers, beyond the reach of simulations, and thus permits us to evidence the presence of a nonlinear cascade phase. We find self-similarity of intermediate regimes as well as of the final decay of turbulence, and we demonstrate the importance of initial distribution of energy at large scales. This effect can explain the global sensitivity of the flow dynamics to initial conditions, which we also illustrate with simulations of compressed homogeneous isotropic turbulence and of imploding spherical turbulent layers relevant to inertial confinement fusion.
Energy Cascade Rate in Compressible Fast and Slow Solar Wind Turbulence
International Nuclear Information System (INIS)
Hadid, L. Z.; Sahraoui, F.; Galtier, S.
2017-01-01
Estimation of the energy cascade rate in the inertial range of solar wind turbulence has been done so far mostly within incompressible magnetohydrodynamics (MHD) theory. Here, we go beyond that approximation to include plasma compressibility using a reduced form of a recently derived exact law for compressible, isothermal MHD turbulence. Using in situ data from the THEMIS / ARTEMIS spacecraft in the fast and slow solar wind, we investigate in detail the role of the compressible fluctuations in modifying the energy cascade rate with respect to the prediction of the incompressible MHD model. In particular, we found that the energy cascade rate (1) is amplified particularly in the slow solar wind; (2) exhibits weaker fluctuations in spatial scales, which leads to a broader inertial range than the previous reported ones; (3) has a power-law scaling with the turbulent Mach number; (4) has a lower level of spatial anisotropy. Other features of solar wind turbulence are discussed along with their comparison with previous studies that used incompressible or heuristic (nonexact) compressible MHD models.
Energy Cascade Rate in Compressible Fast and Slow Solar Wind Turbulence
Energy Technology Data Exchange (ETDEWEB)
Hadid, L. Z.; Sahraoui, F.; Galtier, S., E-mail: lina.hadid@lpp.polytechnique.fr [LPP, CNRS, Ecole Polytechnique, UPMC Univ Paris 06, Univ. Paris-Sud, Observatoire de Paris, Université Paris-Saclay, Sorbonne Universités, PSL Research University, F-91128 Palaiseau (France)
2017-03-20
Estimation of the energy cascade rate in the inertial range of solar wind turbulence has been done so far mostly within incompressible magnetohydrodynamics (MHD) theory. Here, we go beyond that approximation to include plasma compressibility using a reduced form of a recently derived exact law for compressible, isothermal MHD turbulence. Using in situ data from the THEMIS / ARTEMIS spacecraft in the fast and slow solar wind, we investigate in detail the role of the compressible fluctuations in modifying the energy cascade rate with respect to the prediction of the incompressible MHD model. In particular, we found that the energy cascade rate (1) is amplified particularly in the slow solar wind; (2) exhibits weaker fluctuations in spatial scales, which leads to a broader inertial range than the previous reported ones; (3) has a power-law scaling with the turbulent Mach number; (4) has a lower level of spatial anisotropy. Other features of solar wind turbulence are discussed along with their comparison with previous studies that used incompressible or heuristic (nonexact) compressible MHD models.
Investigation of turbulence models with compressibility corrections for hypersonic boundary flows
Directory of Open Access Journals (Sweden)
Han Tang
2015-12-01
Full Text Available The applications of pressure work, pressure-dilatation, and dilatation-dissipation (Sarkar, Zeman, and Wilcox models to hypersonic boundary flows are investigated. The flat plate boundary layer flows of Mach number 5–11 and shock wave/boundary layer interactions of compression corners are simulated numerically. For the flat plate boundary layer flows, original turbulence models overestimate the heat flux with Mach number high up to 10, and compressibility corrections applied to turbulence models lead to a decrease in friction coefficients and heating rates. The pressure work and pressure-dilatation models yield the better results. Among the three dilatation-dissipation models, Sarkar and Wilcox corrections present larger deviations from the experiment measurement, while Zeman correction can achieve acceptable results. For hypersonic compression corner flows, due to the evident increase of turbulence Mach number in separation zone, compressibility corrections make the separation areas larger, thus cannot improve the accuracy of calculated results. It is unreasonable that compressibility corrections take effect in separation zone. Density-corrected model by Catris and Aupoix is suitable for shock wave/boundary layer interaction flows which can improve the simulation accuracy of the peak heating and have a little influence on separation zone.
Modelling and simulation of the compressible turbulence in supersonic shear flows
International Nuclear Information System (INIS)
Guezengar, Dominique
1997-02-01
This research thesis addresses the modelling of some specific physical problems of fluid mechanics: compressibility (issue of mixing layers), large variations of volumetric mass (boundary layers), and anisotropy (compression ramps). After a presentation of the chosen physical modelling and numerical approximation, the author pays attention to flows at the vicinity of a wall, and to boundary conditions. The next part addresses existing compressibility models and their application to the calculation of supersonic mixing layers. A critical assessment is also performed through calculations of boundary layers and of compression ramps. The next part addresses problems related to large variations of volumetric mass which are not taken by compressibility models into account. A modification is thus proposed for the diffusion term, and is tested for the case of supersonic boundary layers and of mixing layers with high density rates. Finally, anisotropy effects are addressed through the implementation of Explicit Algebraic Stress k-omega Turbulence models (EARSM), and their tests on previously studied cases [fr
Energy Technology Data Exchange (ETDEWEB)
Takamoto, Makoto [Department of Earth and Planetary Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan); Lazarian, Alexandre, E-mail: mtakamoto@eps.s.u-tokyo.ac.jp, E-mail: alazarian@facstaff.wisc.edu [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States)
2016-11-10
In this Letter, we report compressible mode effects on relativistic magnetohydrodynamic (RMHD) turbulence in Poynting-dominated plasmas using three-dimensional numerical simulations. We decomposed fluctuations in the turbulence into 3 MHD modes (fast, slow, and Alfvén) following the procedure of mode decomposition in Cho and Lazarian, and analyzed their energy spectra and structure functions separately. We also analyzed the ratio of compressible mode to Alfvén mode energy with respect to its Mach number. We found the ratio of compressible mode increases not only with the Alfvén Mach number, but also with the background magnetization, which indicates a strong coupling between the fast and Alfvén modes. It also signifies the appearance of a new regime of RMHD turbulence in Poynting-dominated plasmas where the fast and Alfvén modes are strongly coupled and, unlike the non-relativistic MHD regime, cannot be treated separately. This finding will affect particle acceleration efficiency obtained by assuming Alfvénic critical-balance turbulence and can change the resulting photon spectra emitted by non-thermal electrons.
Banerjee, Supratik; Kritsuk, Alexei G.
2018-02-01
Three-dimensional, compressible, magnetohydrodynamic turbulence of an isothermal, self-gravitating fluid is analyzed using two-point statistics in the asymptotic limit of large Reynolds numbers (both kinetic and magnetic). Following an alternative formulation proposed by Banerjee and Galtier [Phys. Rev. E 93, 033120 (2016), 10.1103/PhysRevE.93.033120; J. Phys. A: Math. Theor. 50, 015501 (2017), 10.1088/1751-8113/50/1/015501], an exact relation has been derived for the total energy transfer. This approach results in a simpler relation expressed entirely in terms of mixed second-order structure functions. The kinetic, thermodynamic, magnetic, and gravitational contributions to the energy transfer rate can be easily separated in the present form. By construction, the new formalism includes such additional effects as global rotation, the Hall term in the induction equation, etc. The analysis shows that solid-body rotation cannot alter the energy flux rate of compressible turbulence. However, the contribution of a uniform background magnetic field to the flux is shown to be nontrivial unlike in the incompressible case. Finally, the compressible, turbulent energy flux rate does not vanish completely due to simple alignments, which leads to a zero turbulent energy flux rate in the incompressible case.
The Origin of Compressible Magnetic Turbulence in the Very Local Interstellar Medium
Zank, G. P.; Du, S.; Hunana, P.
2017-12-01
Voyager 1 observed compressible magnetic turbulence in the Very Local Interstellar Medium (VLISM). We show that inner heliosheath (IHS) fast- and slow-mode waves incident on the heliopause (HP) generate VLISM fast-mode waves only that propagate into the VLISM. We suggest that this is the origin of compressible turbulence in the VLISM. We show that fast- and slow-mode waves transmitted across a tangential discontinuity such as the HP, are strongly refracted on crossing the HP, and subsequently propagate at highly oblique angles to the VLISM magnetic field. Thus, fast-mode waves in the VLISM contribute primarily to the compressible and not the transverse components of the VLISM fluctuating magnetic field variance. If the fast- and slow-mode waves in the IHS exhibit a Kolmogorov-like power spectral density, as appears to be observed by Voyager 1, then the corresponding transmitted spectral density in the VLISM forms an amplified Kolmogorov power law with -5/3 index. Consequently, the HP "radiates" fast-mode fluctuations into the VLISM, and the heliosphere therefore mediates the character of turbulence in the VLISM. In particular, we predict the form of the VLISM magnetic turbulence power spectral density to be a superposition of the background pristine interstellar turbulence spectrum and the fast-mode spectrum generated by the interaction of fast- and slow-mode IHS waves with the HP, i.e., a power law with an enhanced feature or "bump" corresponding to the contribution by fast-mode turbulence radiated by the HP.
Compressing Turbulence Effect in FSO using New Modulation Technique
Directory of Open Access Journals (Sweden)
Mohamed Nawawi Norizan
2017-01-01
Full Text Available Diffusers transmitter modulation to reduce the effect of atmospheric turbulence in free space optical communication system is described in this paper. This technique uses dual transmitters and dual receivers which are using differential mode for detection. The combination of these components produce superior modulation method especially to reduce scintillation index, to overcome signal detection with fix zero threshold and improve power received. In order to improve the performance of free space optical system, these three elements play an important role. The analysis result show that for receiving power dual diffuser modulation at 3 km distance propagation is 4.59dBm compared to conventional OOK using diffuser which only −7.6dBm and equivalent to 3dBm improvement or up to 40 percent better.
Beardsell, Guillaume; Blanquart, Guillaume
2017-11-01
In direct numerical simulations (DNS) of turbulent flows, it is often prohibitively expensive to simulate complete flow geometries. For example, to study turbulence-flame interactions, one cannot perform a DNS of a full combustor. Usually, a well-selected portion of the domain is chosen, in this particular case the region around the flame front. In this work, we perform a Reynolds decomposition of the velocity field and solve for the fluctuating part only. The resulting equations are the same as the original Navier-Stokes equations, except for turbulence-generating large scale features of the flow such as mean shear, which appear as forcing terms. This approach allows us to achieve high Reynolds numbers and sustained turbulence while keeping the computational cost reasonable. We have already applied this strategy to incompressible flows, but not to compressible ones, where special care has to be taken regarding the energy equation. Implementation of the resulting additional terms in the finite-difference code NGA is discussed and preliminary results are presented. In particular, we look at the budget of turbulent kinetic energy and internal energy. We are considering applying this technique to turbulent premixed flames.
A practical discrete-adjoint method for high-fidelity compressible turbulence simulations
International Nuclear Information System (INIS)
Vishnampet, Ramanathan; Bodony, Daniel J.; Freund, Jonathan B.
2015-01-01
Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvements. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs, though this is predicated on the availability of a sufficiently accurate solution of the forward and adjoint systems. These are challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. Here, we analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space–time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge–Kutta-like scheme, though it would be just first-order accurate if used outside the adjoint formulation for time integration, with finite-difference spatial operators for the adjoint system. Its computational cost only modestly exceeds that of the flow equations. We confirm that
International Nuclear Information System (INIS)
Kowal, Grzegorz; Lazarian, A.
2010-01-01
We study compressible magnetohydrodynamic turbulence, which holds the key to many astrophysical processes, including star formation and cosmic-ray propagation. To account for the variations of the magnetic field in the strongly turbulent fluid, we use wavelet decomposition of the turbulent velocity field into Alfven, slow, and fast modes, which presents an extension of the Cho and Lazarian decomposition approach based on Fourier transforms. The wavelets allow us to follow the variations of the local direction of the magnetic field and therefore improve the quality of the decomposition compared to the Fourier transforms, which are done in the mean field reference frame. For each resulting component, we calculate the spectra and two-point statistics such as longitudinal and transverse structure functions as well as higher order intermittency statistics. In addition, we perform a Helmholtz- Hodge decomposition of the velocity field into incompressible and compressible parts and analyze these components. We find that the turbulence intermittency is different for different components, and we show that the intermittency statistics depend on whether the phenomenon was studied in the global reference frame related to the mean magnetic field or in the frame defined by the local magnetic field. The dependencies of the measures we obtained are different for different components of the velocity; for instance, we show that while the Alfven mode intermittency changes marginally with the Mach number, the intermittency of the fast mode is substantially affected by the change.
Li, Shi-Yao; She, Zhen-Su; Chen, Jun
2017-11-01
A velocity-vorticity correlation structure (VVCS) analysis is applied to the direct numerical simulation (DNS) of compressible turbulent boundary layer (CTBL) at Mach numbers, Ma = 2.25 , 4.50 and 6.0 . It is shown that the VVCS analysis captures the geometry variation in the streamwise direction during the transition and in the wall-normal direction in the fully developed regime. Specifically, before transition, the VVCS captures the instability wave number, while in the transition region it displays a distinct scaling change of the dimensions. The fully developed turbulence regime is characterized by a nearly constant spatial extension of the VVCS. Particularly, after turbulence is well developed, a multi-layer structure in the wall normal direction is observed in the maximum correlation coefficient and in the length scales of the VVCS, as expected from a recent symmetry-based theory, the ensemble structure dynamics (SED). The most interesting outcome is an observed linear dependence of the length scale of the VVCS from y+ 50 to 200, which is a direct support to Townsend's attached-eddy theory. In conclusion, the VVCS analysis quantifies the geometrical characteristics of the coherent structures in turbulent compressible shear flows throughout the whole domain. Supported by NSFC (11172006, 11221062, 11452002) and by MOST (China) 973 project (2009CB724100).
Evaluation of Industry Standard Turbulence Models on an Axisymmetric Supersonic Compression Corner
DeBonis, James R.
2015-01-01
Reynolds-averaged Navier-Stokes computations of a shock-wave/boundary-layer interaction (SWBLI) created by a Mach 2.85 flow over an axisymmetric 30-degree compression corner were carried out. The objectives were to evaluate four turbulence models commonly used in industry, for SWBLIs, and to evaluate the suitability of this test case for use in further turbulence model benchmarking. The Spalart-Allmaras model, Menter's Baseline and Shear Stress Transport models, and a low-Reynolds number k- model were evaluated. Results indicate that the models do not accurately predict the separation location; with the SST model predicting the separation onset too early and the other models predicting the onset too late. Overall the Spalart-Allmaras model did the best job in matching the experimental data. However there is significant room for improvement, most notably in the prediction of the turbulent shear stress. Density data showed that the simulations did not accurately predict the thermal boundary layer upstream of the SWBLI. The effect of turbulent Prandtl number and wall temperature were studied in an attempt to improve this prediction and understand their effects on the interaction. The data showed that both parameters can significantly affect the separation size and location, but did not improve the agreement with the experiment. This case proved challenging to compute and should provide a good test for future turbulence modeling work.
Cebeci, Tuncer
2005-01-01
This second edition of our book extends the modeling and calculation of boundary-layer flows to include compressible flows. The subjects cover laminar, transitional and turbulent boundary layers for two- and three-dimensional incompressible and compressible flows. The viscous-inviscid coupling between the boundary layer and the inviscid flow is also addressed. The book has a large number of homework problems.
Taylor, Ellen Meredith
Weighted essentially non-oscillatory (WENO) methods have been developed to simultaneously provide robust shock-capturing in compressible fluid flow and avoid excessive damping of fine-scale flow features such as turbulence. This is accomplished by constructing multiple candidate numerical stencils that adaptively combine so as to provide high order of accuracy and high bandwidth-resolving efficiency in continuous flow regions while averting instability-provoking interpolation across discontinuities. Under certain conditions in compressible turbulence, however, numerical dissipation remains unacceptably high even after optimization of the linear optimal stencil combination that dominates in smooth regions. The remaining nonlinear error arises from two primary sources: (i) the smoothness measurement that governs the application of adaptation away from the optimal stencil and (ii) the numerical properties of individual candidate stencils that govern numerical accuracy when adaptation engages. In this work, both of these sources are investigated, and corrective modifications to the WENO methodology are proposed and evaluated. Excessive nonlinear error due to the first source is alleviated through two separately considered procedures appended to the standard smoothness measurement technique that are designated the "relative smoothness limiter" and the "relative total variation limiter." In theory, appropriate values of their associated parameters should be insensitive to flow configuration, thereby sidestepping the prospect of costly parameter tuning; and this expectation of broad effectiveness is assessed in direct numerical simulations (DNS) of one-dimensional inviscid test problems, three-dimensional compressible isotropic turbulence of varying Reynolds and turbulent Mach numbers, and shock/isotropic-turbulence interaction (SITI). In the process, tools for efficiently comparing WENO adaptation behavior in smooth versus shock-containing regions are developed. The
LES/FMDF of turbulent jet ignition in a rapid compression machine
Validi, Abdoulahad; Schock, Harold; Toulson, Elisa; Jaberi, Farhad; CFD; Engine Research Labs, Michigan State University Collaboration
2015-11-01
Turbulent Jet Ignition (TJI) is an efficient method for initiating and controlling combustion in combustion systems, e.g. internal combustion engines. It enables combustion in ultra-lean mixtures by utilizing hot product turbulent jets emerging from a pre-chamber combustor as the ignition source for the main combustion chamber. Here, we study the TJI-assisted ignition and combustion of lean methane-air mixtures in a Rapid Compression Machine (RCM) for various flow/combustion conditions with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) computational model. In the LES/FMDF model, the filtered form of compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity, while the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar (species mass fraction and temperature) field. The LES/FMDF data are used to study the physics of TJI and combustion in RCM. The results show the very complex behavior of the reacting flow and the flame structure in the pre-chamber and RCM.
Dynamic scaling and large scale effects in turbulence in compressible stratified fluid
International Nuclear Information System (INIS)
Pharasi, Hirdesh K.; Bhattacharjee, Jayanta K.
2016-01-01
We consider the propagation of sound in a turbulent fluid which is confined between two horizontal parallel plates, maintained at different temperatures. In the homogeneous fluid, Staroselsky et al. had predicted a divergent sound speed at large length scales. Here we find a divergent sound speed and a vanishing expansion coefficient at large length scales. Dispersion relation and the question of scale invariance at large distance scales lead to these results. - Highlights: • Turbulence in a stratified fluid has been studied in the Boussinesq approximation. • We extend this study to include density fluctuations due to pressure fluctuations. • For a homogeneous weakly compressible fluid the sound speed is known to become scale dependent. • For the stratified fluid we show that the expansion coefficient is also scale dependent. • Our results are based on general dynamic scaling arguments rather than detailed calculation.
Directory of Open Access Journals (Sweden)
L. Zhang
2015-01-01
Full Text Available In solar wind, dissipation of slow-mode magnetosonic waves may play a significant role in heating the solar wind, and these modes contribute essentially to the solar wind compressible turbulence. Most previous identifications of slow waves utilized the characteristic negative correlation between δ|B| and δρ. However, that criterion does not well identify quasi-parallel slow waves, for which δ|B| is negligible compared to δρ. Here we present a new method of identification, which will be used in 3-D compressible simulation. It is based on two criteria: (1 that VpB0 (phase speed projected along B0 is around ± cs, and that (2 there exists a clear correlation of δv|| and δρ. Our research demonstrates that if vA > cs, slow waves possess correlation between δv|| and δρ, with δρ / δv|| ≈ ± ρ0 / cs. This method helps us to distinguish slow-mode waves from fast and Alfvén waves, both of which do not have this polarity relation. The criteria are insensitive to the propagation angle θk B, defined as the angle between wave vector k and B0; they can be applied with a wide range of β if only vA > cs. In our numerical simulation, we have identified four cases of slow wave trains with this method. The slow wave trains seem to deform, probably caused by interaction with other waves; as a result, fast or Alfvén waves may be produced during the interaction and seem to propagate bidirectionally away. Our identification and analysis of the wave trains provide useful methods for investigations of compressible turbulence in the solar wind or in similar environments, and will thus deepen understandings of slow waves in the turbulence.
Ziaei-Rad, Masoud; Nouri-Broujerdi, Ali
2008-12-01
In this paper, the compressible gas flow through a pipe subjected to wall heat flux in unsteady condition in the entrance region is investigated numerically. The coupled conservation equations governing turbulent compressible viscous flow in the developing region of a pipe are solved numerically under different thermal boundary conditions. The numerical procedure is a finite-volume-based finite-element method applied to unstructured grids. The convection terms are discretized by the well-defined Roe method, whereas the diffusion terms are discretized by a Galerkin finite-element formulation. The temporal terms are evaluated based on an explicit fourth-order Runge-Kutta scheme. The effect of different thermal conditions on the pressure loss of unsteady flow is investigated. The results show that increase in the inflow temperature or pipe-wall heat flux increases the pressure drop or decreases the mass flow rate in the pipe.
Skin friction and velocity profile family for compressible turbulent boundary layers
Huang, P. G.; Bradshaw, P.; Coakley, T. J.
1993-01-01
The paper presents a general approach to constructing mean velocity profiles for compressible turbulent boundary layers with isothermal or adiabatic walls. The theory is based on a density-weighted transformation that allows the extension of the incompressible similarity laws of the wall to the compressible regions. The velocity profile family is compared to a range of experimental data, and excellent agreement is obtained. A self-consistent skin friction law, which satisfies the proposed velocity profile family, is derived and compared with the well-known Van Driest II theory for boundary layers in zero pressure gradient. The results are found to be at least as good as those obtained by using the Van Driest II transformation.
Tong, Fulin; Li, Xinliang; Duan, Yanhui; Yu, Changping
2017-12-01
Numerical investigations on a supersonic turbulent boundary layer over a longitudinal curved compression ramp are conducted using direct numerical simulation for a free stream Mach number M∞ = 2.9 and Reynolds number Reθ = 2300. The total turning angle is 24°, and the concave curvature radius is 15 times the thickness of the incoming turbulent boundary layer. Under the selected conditions, the shock foot is transferred to a fan of the compression wave because of the weaker adverse pressure gradient. The time-averaged flow-field in the curved ramp is statistically attached where the instantaneous flow-field is close to the intermittent transitory detachment state. Studies on coherent vortex structures have shown that large-scale vortex packets are enhanced significantly when the concave curvature is aligned in the spanwise direction. Consistent with findings of previous experiments, the effect of the concave curvature on the logarithmic region of the mean velocity profiles is found to be small. The intensity of the turbulent fluctuations is amplified across the curved ramp. Based on the analysis of the Reynolds stress anisotropy tensor, the evolutions of the turbulence state in the inner and outer layers of the boundary layer are considerably different. The curvature effect on the transport mechanism of the turbulent kinetic energy is studied using the balance analysis of the contributing terms in the transport equation. Furthermore, the Görtler instability in the curved ramp is quantitatively analyzed using a stability criterion. The instantaneous streamwise vorticity confirms the existence of the Görtler-like structures. These structures are characterized by an unsteady motion. In addition, the dynamic mode decomposition analysis of the instantaneous flow field at the spanwise/wall-normal plane reveals that four dynamical relevant modes with performance loss of 16% provide an optimal low-order representation of the essential characteristics of the numerical
Dorner, Reinhard
2014-05-01
We will discuss experimental studies of ICD in van der Vaals dimers of rare gas atoms and small molecules using the COLTRIMS technique. The talk will cover ICD after resonant Auger excitation (Nature 505, 664 (2014)) and two studies unveiling the time dependence of ICD in the energy (PRL 111, 233004 (2013)) and in the time domain (PRL 111, 093401 (2013)). A new technique to make ultrafast movies without the use of short pulses will be discussed.
Heating and Acceleration of Charged Particles by Weakly Compressible Magnetohydrodynamic Turbulence
Lynn, Jacob William
We investigate the interaction between low-frequency magnetohydrodynamic (MHD) turbulence and a distribution of charged particles. Understanding this physics is central to understanding the heating of the solar wind, as well as the heating and acceleration of other collisionless plasmas. Our central method is to simulate weakly compressible MHD turbulence using the Athena code, along with a distribution of test particles which feel the electromagnetic fields of the turbulence. We also construct analytic models of transit-time damping (TTD), which results from the mirror force caused by compressible (fast or slow) MHD waves. Standard linear-theory models in the literature require an exact resonance between particle and wave velocities to accelerate particles. The models developed in this thesis go beyond standard linear theory to account for the fact that wave-particle interactions decorrelate over a short time, which allows particles with velocities off resonance to undergo acceleration and velocity diffusion. We use the test particle simulation results to calibrate and distinguish between different models for this velocity diffusion. Test particle heating is larger than the linear theory prediction, due to continued acceleration of particles with velocities off-resonance. We also include an artificial pitch-angle scattering to the test particle motion, representing the effect of high-frequency waves or velocity-space instabilities. For low scattering rates, we find that the scattering enforces isotropy and enhances heating by a modest factor. For much higher scattering rates, the acceleration is instead due to a non-resonant effect, as particles "frozen" into the fluid adiabatically gain and lose energy as eddies expand and contract. Lastly, we generalize our calculations to allow for relativistic test particles. Linear theory predicts that relativistic particles with velocities much higher than the speed of waves comprising the turbulence would undergo no
Bukhvostova, A.; Russo, E; Kuerten, Johannes G.M.; Geurts, Bernardus J.
Direct numerical simulation is used to assess the importance of compressibility in turbulent channel flow of a mixture of air and water vapor with dispersed water droplets. The dispersed phase is allowed to undergo phase transition, which leads to heat and mass transfer between the phases. We
Rozema, W.; Kok, J. C.; Verstappen, R. W. C. P.; Veldman, A. E. P.
2014-01-01
Most simulation methods for compressible flow attain numerical stability at the cost of swamping the fine turbulent flow structures by artificial dissipation. This article demonstrates that numerical stability can also be attained by preserving conservation laws at the discrete level. A new
PEVC-FMDF for Large Eddy Simulation of Compressible Turbulent Flows
Nouri Gheimassi, Arash; Nik, Mehdi; Givi, Peyman; Livescu, Daniel; Pope, Stephen
2017-11-01
The filtered density function (FDF) closure is extended to a ``self-contained'' format to include the subgrid scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint ``pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF).'' In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation (SDE) for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.
Polidoro, B.; Iervolino, I.; Chioccarelli, E.; Giorgio, M.
2012-04-01
Probabilistic seismic hazard is usually computed trough a homogeneous Poisson process that even though it is a time-independent process it is widely used for its very convenient properties. However, when a single fault is of concern and/or the time scale is different from that of the long term, time-dependent processes are required. In this paper, different time-dependent models are reviewed with working examples. In fact, the Paganica fault (in central Italy) has been considered to compute both the probability of occurrence of at least one event in the lifespan of the structure, as well as the seismic hazard expressed in terms of probability of exceedance of an intensity value in a given time frame causing the collapse of the structure. Several models, well known or novel application to engineering hazard have been considered, limitation and issues in their applications are also discussed. The Brownian Passage Time (BPT) model is based on a stochastic modification of the deterministic stick-slip oscillator model for characteristic earthquakes; i.e., based on the addition of random perturbations (a Gaussian white noise) to the deterministic load path predicted by elastic rebound theory. This model assumes that the load state is at some ground level immediately after an event, increases steadly over time, reaches a failure threshold and relaxes instantaneously back to the ground level. For this model also a variable threshold has been considered to take into account the uncertainty of the threshold value. For the slip-predictable model it is assumed that the stress accumulates at a constant rate starting from some initial stress level. Stress is assumed to accumulate for a random period of time until an earthquake occurs. The size of the earthquake is governed by the stress release and it is a function of the elapsed time since the last event. In the time-predictable model stress buildup occurs at a constant rate until the accumulated stress reaches a threshold
Time-dependent transport phenomena
Stefanucci, Gianluca; Kurth, S.; Gross, E. K. U.; Rubio, Angel
2007-01-01
This chapter describes the ab initio theory of quantum transport. The Cini scheme can be combined with time-dependent density functional theory (TDDFT). In this theory, the time-dependent density of an interacting system moving in an external, time-dependent local potential can be calculated via a fictitious system of non-interacting electrons moving in a local, effective, and time-dependent potential. Therefore this theory is well suited for the treatment of non-equilibrium transport problem...
The radiation of sound by the instability waves of a compressible plane turbulent shear layer
Tam, C. K. W.; Morris, P. J.
1980-01-01
The problem of acoustic radiation generated by instability waves of a compressible plane turbulent shear layer is solved. The solution provided is valid up to the acoustic far-field region. It represents a significant improvement over the solution obtained by classical hydrodynamic-stability theory which is essentially a local solution with the acoustic radiation suppressed. The basic instability-wave solution which is valid in the shear layer and the near-field region is constructed in terms of an asymptotic expansion using the method of multiple scales. This solution accounts for the effects of the slightly divergent mean flow. It is shown that the multiple-scales asymptotic expansion is not uniformly valid far from the shear layer. Continuation of this solution into the entire upper half-plane is described. The extended solution enables the near- and far-field pressure fluctuations associated with the instability wave to be determined. Numerical results show that the directivity pattern of acoustic radiation into the stationary medium peaks at 20 degrees to the axis of the shear layer in the downstream direction for supersonic flows. This agrees qualitatively with the observed noise-directivity patterns of supersonic jets.
Directory of Open Access Journals (Sweden)
Romit Maulik
2017-04-01
Full Text Available Solving two-dimensional compressible turbulence problems up to a resolution of 16, 384^2, this paper investigates the characteristics of two promising computational approaches: (i an implicit or numerical large eddy simulation (ILES framework using an upwind-biased fifth-order weighted essentially non-oscillatory (WENO reconstruction algorithm equipped with several Riemann solvers, and (ii a central sixth-order reconstruction framework combined with various linear and nonlinear explicit low-pass spatial filtering processes. Our primary aim is to quantify the dissipative behavior, resolution characteristics, shock capturing ability and computational expenditure for each approach utilizing a systematic analysis with respect to its modeling parameters or parameterizations. The relative advantages and disadvantages of both approaches are addressed for solving a stratified Kelvin-Helmholtz instability shear layer problem as well as a canonical Riemann problem with the interaction of four shocks. The comparisons are both qualitative and quantitative, using visualizations of the spatial structure of the flow and energy spectra, respectively. We observe that the central scheme, with relaxation filtering, offers a competitive approach to ILES and is much more computationally efficient than WENO-based schemes.
Implementation of k-kL-omega turbulence model for compressible flow into OpenFOAM
Czech Academy of Sciences Publication Activity Database
Kožíšek, Martin; Fürst, J.; Příhoda, Jaromír; Doerffer, P.
2016-01-01
Roč. 821, Januar (2016), s. 63-69 ISSN 1662-7482 R&D Projects: GA ČR GAP101/12/1271; GA TA ČR(CZ) TA03020277 Institutional support: RVO:61388998 Keywords : CFD * openFOAM * RANS * transition * turbulence Subject RIV: BK - Fluid Dynamics
Directory of Open Access Journals (Sweden)
Priestley John V
2008-10-01
Full Text Available Abstract Background Mutations of the superoxide dismutase 1 (SOD1 gene are linked to amyotrophic lateral sclerosis (ALS, an invariably fatal neurological condition involving cortico-spinal degeneration. Mechanical injury can also determine spinal cord degeneration and act as a risk factor for the development of ALS. Results We have performed a comparative ontological analysis of the gene expression profiles of thoracic cord samples from rats carrying the G93A SOD1 gene mutation and from wild-type littermates subjected to mechanical compression of the spinal cord. Common molecular responses and gene expression changes unique to each experimental paradigm were evaluated against the functional development of each animal model. Gene Ontology categories crucial to protein folding, extracellular matrix and axonal formation underwent early activation in both experimental paradigms, but decreased significantly in the spinal cord from animals recovering from injury after 7 days and from the G93A SOD1 mutant rats at end-stage disease. Functional improvement after compression coincided with a massive up-regulation of growth-promoting gene categories including factors involved in angiogenesis and transcription, overcoming the more transitory surge of pro-apoptotic components and cell-cycle genes. The cord from G93A SOD1 mutants showed persistent over-expression of apoptotic and stress molecules with fewer neurorestorative signals, while functional deterioration was ongoing. Conclusion this study illustrates how cytoskeletal protein metabolism is central to trauma and genetically-induced spinal cord degeneration and elucidates the main molecular events accompanying functional recovery or decline in two different animal models of spinal cord degeneration.
Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-01-01
Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow or simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by
An Onsager Singularity Theorem for Turbulent Solutions of Compressible Euler Equations
Drivas, Theodore D.; Eyink, Gregory L.
2017-12-01
We prove that bounded weak solutions of the compressible Euler equations will conserve thermodynamic entropy unless the solution fields have sufficiently low space-time Besov regularity. A quantity measuring kinetic energy cascade will also vanish for such Euler solutions, unless the same singularity conditions are satisfied. It is shown furthermore that strong limits of solutions of compressible Navier-Stokes equations that are bounded and exhibit anomalous dissipation are weak Euler solutions. These inviscid limit solutions have non-negative anomalous entropy production and kinetic energy dissipation, with both vanishing when solutions are above the critical degree of Besov regularity. Stationary, planar shocks in Euclidean space with an ideal-gas equation of state provide simple examples that satisfy the conditions of our theorems and which demonstrate sharpness of our L 3-based conditions. These conditions involve space-time Besov regularity, but we show that they are satisfied by Euler solutions that possess similar space regularity uniformly in time.
Betweenness in time dependent networks
International Nuclear Information System (INIS)
Alsayed, Ahmad; Higham, Desmond J.
2015-01-01
The concept of betweenness has given rise to a very useful class of network centrality measures. Loosely, betweenness quantifies the level of importance of a node in terms of its propensity to act as an intermediary when messages are passed around the network. In this work we generalize a walk-based betweenness measure to the case of time-dependent networks, such as those arising in telecommunications and on-line social media. We also introduce a new kind of betweenness measure, temporal betweenness, which quantifies the importance of a time-point. We illustrate the effectiveness of these new measures on synthetic examples, and also give results on real data sets involving voice call, email and Twitter
Network-timing-dependent plasticity
Directory of Open Access Journals (Sweden)
Vincent eDelattre
2015-06-01
Full Text Available Bursts of activity in networks of neurons are thought to convey salient information and drive synaptic plasticity. Here we report that network bursts also exert a profound effect on Spike-Timing-Dependent Plasticity (STDP. In acute slices of juvenile rat somatosensory cortex we paired a network burst, which alone induced long-term depression (LTD, with STDP-induced long-term potentiation and depression (LTP and LTD. We observed that STDP-induced LTP was either unaffected, blocked or flipped into LTD by the network burst, and that STDP-induced LTD was either saturated or flipped into LTP, depending on the relative timing of the network burst with respect to spike coincidences of the STDP event. We hypothesized that network bursts flip STDP-induced LTP to LTD by depleting resources needed for LTP and therefore developed a resource-dependent STDP learning rule. In a model neural network under the influence of the proposed resource-dependent STDP rule, we found that excitatory synaptic coupling was homeostatically regulated to produce power law distributed burst amplitudes reflecting self-organized criticality, a state that ensures optimal information coding.
Time-dependent multimode structure
International Nuclear Information System (INIS)
Edgu, E.
1991-01-01
In a previous paper, the authors sought to display the multimode kinetics structure and step changes were considered. In this paper, a similar study is undertaken in which ramp changes are considered. Throughout the previous study, a rather simple model of a bare, cylindrical, initially critical nuclear system was the focus. This system had a central region into which a control rod was suddenly inserted, or from which a control rod was suddenly ejected. (A rod follower concept was then adopted.) The mentioned transients were modeled by a two-mode synthesis approach that displayed, rather rigorously, the space-dependency behavior of the time- and space-dependent flux in question. It is useful to complete the picture previously drawn by a study within the authors' framework, where time-dependent changes now take place instead of step changes. In this paper, they consider a ramp rod drop in a bare cylindrical nuclear system as well as a ramp rod ejection from this system (still with a rod follower concept). The effect of a feedback mechanism is not taken into account
Kokmanian, Katherine; Duvvuri, Subrahmanyam; Hultmark, Marcus
2017-11-01
Nano-Scale Thermal Anemometry Probes (NSTAP) have been designed, tested and used in a wide variety of incompressible flows. These sensors are capable of measuring streamwise velocity fluctuations with an order of magnitude better resolution, both temporal and spatial, compared to conventional hot-wires, due to their miniature size and minute thermal mass (the heating element is only 60 microns long, 2 microns wide and 100 nm thick). Here we report recent efforts to redesign the NSTAP to withstand supersonic flow conditions. Work has been performed in Princeton's micro-nano fabrication laboratory in order to modify both the 2D layout and the 3D shapes of these sensors. The supersonic version of the NSTAP is evaluated in collaboration with Bundeswehr University. The ultimate objective of this work is to measure both fluctuating mass flow rate and total temperature in compressible turbulent boundary layers, by combining two supersonic sensors which operate at different overheat ratios. AFOSR FA9550-16-1-0170 (Program manager: Ivett Leyva).
Donkov, Sava; Stefanov, Ivan Z.
2018-03-01
We have set ourselves the task of obtaining the probability distribution function of the mass density of a self-gravitating isothermal compressible turbulent fluid from its physics. We have done this in the context of a new notion: the molecular clouds ensemble. We have applied a new approach that takes into account the fractal nature of the fluid. Using the medium equations, under the assumption of steady state, we show that the total energy per unit mass is an invariant with respect to the fractal scales. As a next step we obtain a non-linear integral equation for the dimensionless scale Q which is the third root of the integral of the probability distribution function. It is solved approximately up to the leading-order term in the series expansion. We obtain two solutions. They are power-law distributions with different slopes: the first one is -1.5 at low densities, corresponding to an equilibrium between all energies at a given scale, and the second one is -2 at high densities, corresponding to a free fall at small scales.
Time-dependent Autler-Townes spectroscopy
Qamar, S; Zubairy, M S
2003-01-01
Autler-Townes spontaneous emission spectroscopy is revisited for a time-dependent case. We report the results of spontaneous emission spectra for nonstationary scattered light signals using the definition of the time-dependent physical spectrum. This is a rare example of problems where time-dependent spectra can be calculated exactly.
Holographic complexity for time-dependent backgrounds
Energy Technology Data Exchange (ETDEWEB)
Momeni, Davood, E-mail: davoodmomeni78@gmail.com [Eurasian International Center for Theoretical Physics and Department of General Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Faizal, Mir, E-mail: mirfaizalmir@googlemail.com [Irving K. Barber School of Arts and Sciences, University of British Columbia, Okanagan, 3333 University Way, Kelowna, British Columbia V1V 1V7 (Canada); Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta, T1K 3M4 (Canada); Bahamonde, Sebastian, E-mail: sebastian.beltran.14@ucl.ac.uk [Department of Mathematics, University College London, Gower Street, London, WC1E 6BT (United Kingdom); Myrzakulov, Ratbay [Eurasian International Center for Theoretical Physics and Department of General Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan)
2016-11-10
In this paper, we will analyze the holographic complexity for time-dependent asymptotically AdS geometries. We will first use a covariant zero mean curvature slicing of the time-dependent bulk geometries, and then use this co-dimension one spacelike slice of the bulk spacetime to define a co-dimension two minimal surface. The time-dependent holographic complexity will be defined using the volume enclosed by this minimal surface. This time-dependent holographic complexity will reduce to the usual holographic complexity for static geometries. We will analyze the time-dependence as a perturbation of the asymptotically AdS geometries. Thus, we will obtain time-dependent asymptotically AdS geometries, and we will calculate the holographic complexity for such time-dependent geometries.
Directory of Open Access Journals (Sweden)
Shun Takahashi
2014-01-01
Full Text Available A computational code adopting immersed boundary methods for compressible gas-particle multiphase turbulent flows is developed and validated through two-dimensional numerical experiments. The turbulent flow region is modeled by a second-order pseudo skew-symmetric form with minimum dissipation, while the monotone upstream-centered scheme for conservation laws (MUSCL scheme is employed in the shock region. The present scheme is applied to the flow around a two-dimensional cylinder under various freestream Mach numbers. Compared with the original MUSCL scheme, the minimum dissipation enabled by the pseudo skew-symmetric form significantly improves the resolution of the vortex generated in the wake while retaining the shock capturing ability. In addition, the resulting aerodynamic force is significantly improved. Also, the present scheme is successfully applied to moving two-cylinder problems.
Bukhvostova, A.; Russo, E; Kuerten, Johannes G.M.; Geurts, Bernardus J.
In this paper a turbulent channel flow with dispersed droplets is examined. The dispersed phase is allowed to have phase transition, which leads to heat and mass transfer between the phases, and correspondingly modulates turbulent flow properties. As a point of reference we examine the flow of water
Time-dependent behavior of concrete
International Nuclear Information System (INIS)
Pfeiffer, P.A.; Tanabe, Tada-aki
1992-01-01
This paper is a condensed version of the material presented at the International Workshop on Finite Element Analysis of Reinforced Concrete, Session 4 -- Time Dependent Behavior, held at Columbia University, New York on June 3--6, 1991. Dr. P.A. Pfeiffer presented recent developments in time-dependent behavior of concrete and Professor T. Tanabe presented a review of research in Japan on time-dependent behavior of concrete. The paper discusses the recent research of time-dependent behavior of concrete in the past few years. 6 refs
Time Dependent Hartree Fock Equation: Gateway to Nonequilibrium Plasmas
International Nuclear Information System (INIS)
Dufty, James W.
2007-01-01
This is the Final Technical Report for DE-FG02-2ER54677 award 'Time Dependent Hartree Fock Equation - Gateway to Nonequilibrium Plasmas'. Research has focused on the nonequilibrium dynamics of electrons in the presence of ions, both via basic quantum theory and via semi-classical molecular dynamics (MD) simulation. In addition, fundamental notions of dissipative dynamics have been explored for models of grains and dust, and for scalar fields (temperature) in turbulent edge plasmas. The specific topics addressed were Quantum Kinetic Theory for Metallic Clusters, Semi-classical MD Simulation of Plasmas , and Effects of Dissipative Dynamics.
Time-dependent fracture of cementitious materials
Van Zijl, G.P.A.G.; De Borst, R.; Rots, J.G.
2000-01-01
The response of cementitious materials is highly time dependent. On the one hand, it can lead to delayed collapse of structures fabricated of such materials. On the other hand, the time dependence is associated with the relaxation of peak stresses, which avoids, or postpones damage. A finite element
Topic 5: Time-Dependent Behavior
International Nuclear Information System (INIS)
Pfeiffer, P.A.; Tanabe, Tada-aki
1991-01-01
This chapter is a report of the material presented at the International Workshop on Finite Element Analysis of Reinforced Concrete, Session 4 -- Time Dependent Behavior, held at Columbia University, New York on June 3--6, 1991. Dr. P.A. Pfeiffer presented recent developments in time-dependent behavior of concrete and Professor T. Tanabe presented a review of research in Japan on time-dependent behavior of concrete. The chapter discusses the recent research of time-dependent behavior of concrete in the past few years in both the USA-European and Japanese communities. The author appreciates the valuable information provided by Zdenek P. Bazant in preparing the USA-European Research section
Numerical solution of time dependent neutron transport equation. An application
International Nuclear Information System (INIS)
Barroso, Dalton Ellery Girao
2000-01-01
In this work we show a simple method to solve numerically the time-dependent neutron transport equation which is a simple extension of the numerical methods used to solve the time-independent static transport equation. This is possible because the time-discretized transport equation has the same form as the time-independent transport equation, with only some additional terms. A general outline of the method is given and used to evaluate the neutron flux in a microexplosion calculation of a highly compressed micro fissile system composed by DT-Pu-Be microsphere. (author)
Progress in turbulence research
International Nuclear Information System (INIS)
Bradshaw, P.
1990-01-01
Recent developments in experiments and eddy simulations, as an introduction to a discussion of turbulence modeling for engineers is reviewed. The most important advances in the last decade rely on computers: microcomputers to control laboratory experiments, especially for multidimensional imaging, and supercomputers to simulate turbulence. These basic studies in turbulence research are leading to genuine breakthroughs in prediction methods for engineers and earth scientists. The three main branches of turbulence research: experiments, simulations (numerically-accurate three-dimensional, time-dependent solutions of the Navier-Stokes equations, with any empiricism confined to the smallest eddies), and modeling (empirical closure of time-averaged equations for turbulent flow) are discussed. 33 refs
Time dependent variation of carrying capacity of prestressed precast beam
Le, Tuan D.; Konečný, Petr; Matečková, Pavlína
2018-04-01
The article deals with the evaluation of the precast concrete element time dependent carrying capacity. The variation of the resistance is inherited property of laboratory as well as in-situ members. Thus the specification of highest, yet possible, laboratory sample resistance is important with respect to evaluation of laboratory experiments based on the test machine loading capabilities. The ultimate capacity is evaluated through the bending moment resistance of a simply supported prestressed concrete beam. The probabilistic assessment is applied. Scatter of random variables of compressive strength of concrete and effective height of the cross section is considered. Monte Carlo simulation technique is used to investigate the performance of the cross section of the beam with changes of tendons’ positions and compressive strength of concrete.
Competing risks and time-dependent covariates
DEFF Research Database (Denmark)
Cortese, Giuliana; Andersen, Per K
2010-01-01
cumulative incidences at different subintervals of the entire study period. The final strategy is to extend the competing risks model by considering all the possible combinations between internal covariate levels and cause-specific events as final states. In all of those proposals, it is possible to estimate......Time-dependent covariates are frequently encountered in regression analysis for event history data and competing risks. They are often essential predictors, which cannot be substituted by time-fixed covariates. This study briefly recalls the different types of time-dependent covariates......, as classified by Kalbfleisch and Prentice [The Statistical Analysis of Failure Time Data, Wiley, New York, 2002] with the intent of clarifying their role and emphasizing the limitations in standard survival models and in the competing risks setting. If random (internal) time-dependent covariates...
Investigations of Low Temperature Time Dependent Cracking
Energy Technology Data Exchange (ETDEWEB)
Van der Sluys, W A; Robitz, E S; Young, B A; Bloom, J
2002-09-30
The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity. The resultant data was integrated into current available life prediction tools.
Time-dependent Dyson orbital theory
Gritsenko, O.V.; Baerends, E.J.
2016-01-01
Although time-dependent density functional theory (TDDFT) has become the tool of choice for real-time propagation of the electron density ρN(t) of N-electron systems, it also encounters problems in this application. The first problem is the neglect of memory effects stemming from the, in TDDFT
Time dependent resonating Hartree-Bogoliubov theory
International Nuclear Information System (INIS)
Nishiyama, Seiya; Fukutome, Hideo.
1989-01-01
Very recently, we have developed a theory of excitations in superconducting Fermion systems with large quantum fluctuations that can be described by resonance of time dependent non-orthogonal Hartree-Bogoliubov (HB) wave functions with different correlation structures. We have derived a new kind of variation equation called the time dependent Resonating HB equation, in order to determine both the time dependent Resonating HB wave functions and coefficients of a superposition of the HB wave functions. Further we have got a new approximation for excitations from time dependent small fluctuations of the Resonating HB ground state, i.e., the Resonating HB RPA. The Res HB RPA equation is represented in a given single particle basis. It, however, has drawbacks that the constraints for the Res HB RPA amplitudes are not taken into account and the equation contains equations which are not independent. We shall derive another form of the Res HB RPA equation eliminating these drawbacks. The Res HB RPA gives a unified description of the vibrons and resonons and their interactions. (author)
Time dependent policy-based access control
DEFF Research Database (Denmark)
Vasilikos, Panagiotis; Nielson, Flemming; Nielson, Hanne Riis
2017-01-01
Access control policies are essential to determine who is allowed to access data in a system without compromising the data's security. However, applications inside a distributed environment may require those policies to be dependent on the actual content of the data, the flow of information, while...... also on other attributes of the environment such as the time. In this paper, we use systems of Timed Automata to model distributed systems and we present a logic in which one can express time-dependent policies for access control. We show how a fragment of our logic can be reduced to a logic...... that current model checkers for Timed Automata such as UPPAAL can handle and we present a translator that performs this reduction. We then use our translator and UPPAAL to enforce time-dependent policy-based access control on an example application from the aerospace industry....
Time-dependent 2-stream particle transport
International Nuclear Information System (INIS)
Corngold, Noel
2015-01-01
Highlights: • We consider time-dependent transport in the 2-stream or “rod” model via an attractive matrix formalism. • After reviewing some classical problems in homogeneous media we discuss transport in materials with whose density may vary. • There we achieve a significant contraction of the underlying Telegrapher’s equation. • We conclude with a discussion of stochastics, treated by the “first-order smoothing approximation.” - Abstract: We consider time-dependent transport in the 2-stream or “rod” model via an attractive matrix formalism. After reviewing some classical problems in homogeneous media we discuss transport in materials whose density may vary. There we achieve a significant contraction of the underlying Telegrapher’s equation. We conclude with a discussion of stochastics, treated by the “first-order smoothing approximation.”
Evolution in time-dependent fitness landscapes
Wilke, Claus O.
1998-01-01
Evolution in changing environments is an important, but little studied aspect of the theory of evolution. The idea of adaptive walks in fitness landscapes has triggered a vast amount of research and has led to many important insights about the progress of evolution. Nevertheless, the small step to time-dependent fitness landscapes has most of the time not been taken. In this work, some elements of a theory of adaptive walks on changing fitness landscapes are proposed, and are subsequently app...
Time-dependent problems and difference methods
Gustafsson, Bertil; Oliger, Joseph
2013-01-01
Praise for the First Edition "". . . fills a considerable gap in the numerical analysis literature by providing a self-contained treatment . . . this is an important work written in a clear style . . . warmly recommended to any graduate student or researcher in the field of the numerical solution of partial differential equations."" -SIAM Review Time-Dependent Problems and Difference Methods, Second Edition continues to provide guidance for the analysis of difference methods for computing approximate solutions to partial differential equations for time-de
Time-dependent projected Hartree-Fock.
Tsuchimochi, Takashi; Van Voorhis, Troy
2015-03-28
Projected Hartree-Fock (PHF) has recently emerged as an alternative approach to describing degenerate systems where static correlation is abundant, when the spin-symmetry is projected. Here, we derive a set of linearized time-dependent equations for PHF in order to be able to access excited states. The close connection of such linear-response time-dependent PHF (TDPHF) to the stability condition of a PHF wave function is discussed. Expanding this analysis also makes it possible to give analytical expressions for the projected coupling terms of Hamiltonian and overlaps between excited Slater determinants. TDPHF with spin-projection (TDSUHF) and its Tamm-Dancoff approximation are benchmarked for several electronically degenerate molecules including the dissociating H2, F2 and O3 at equilibrium, and the distorted ethylene. It is shown that they give consistently better descriptions of excited states than does time-dependent HF (TDHF). Furthermore, we demonstrate that they offer not only singly but also doubly excited states, which naturally arise upon spin-projection. We also address the thermodynamic limit of TDSUHF, using non-interacting He gas. While TDPHF singly excited states tend to converge to those of HF with the size of the system due to the lack of size-extensivity of PHF, doubly excited states remain reasonable even at the thermodynamic limit. We find that the overall performance of our method is systematically better than the regular TDHF in many cases at the same computational scaling.
Time-dependent fracture toughness of cornea.
Tonsomboon, Khaow; Koh, Ching Theng; Oyen, Michelle L
2014-06-01
The fracture and time-dependent properties of cornea are very important for the development of corneal scaffolds and prostheses. However, there has been no systematic study of cornea fracture; time-dependent behavior of cornea has never been investigated in a fracture context. In this work, fracture toughness of cornea was characterized by trouser tear tests, and time-dependent properties of cornea were examined by stress-relaxation and uniaxial tensile tests. Control experiments were performed on a photoelastic rubber sheet. Corneal fracture resistance was found to be strain-rate dependent, with values ranging from 3.39±0.57 to 5.40±0.48kJm(-2) over strain rates from 3 to 300mmmin(-1). Results from stress-relaxation tests confirmed that cornea is a nonlinear viscoelastic material. The cornea behaved closer to a viscous fluid at small strain but became relatively more elastic at larger strain. Although cornea properties are greatly dependent on time, the stress-strain responses of cornea were found to be insensitive to the strain rate when subjected to tensile loading. Copyright © 2014 Elsevier Ltd. All rights reserved.
Time-dependent studies of multiphoton processes
International Nuclear Information System (INIS)
Kulander, K.C.; Schafer, K.J.; Krause, J.L.
1992-01-01
Interest in intense-field laser-atom interactions has undergone very rapid growth over the past decade due to a number of very surprising observations made during short-pulse (much-lt 1 ns) excitation of atoms and molecules. Extensive results have been reported for electron and photon emission from atoms subject to high-intensity lasers. This wealth of data has greatly increased our detailed knowledge of the effects of electromagnetic radiation on the electrons in these systems. The richness of these results has encouraged the development of new theoretical methods to provide an understanding of the observations. This paper reports that one of the major techniques being used to study the dynamics of excitation and ionization is the direct solution of the time-dependent Schrodinger equation for an atom or molecule in a pulse laser field. The time-dependent methods allow the exact calculation of above-threshold ionization (ATI) spectra for real (three-dimensional) hydrogenic systems and of photon emission from atoms excited by lasers. Recently the possibility of high-frequency, high-intensity suppression of ionization has also been addressed
Implicit time-dependent finite different algorithm for quench simulation
Energy Technology Data Exchange (ETDEWEB)
Koizumi, Norikiyo; Takahashi, Yoshikazu; Tsuji, Hiroshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment
1994-12-01
A magnet in a fusion machine has many difficulties in its application because of requirement of a large operating current, high operating field and high breakdown voltage. A cable-in-conduit (CIC) conductor is the best candidate to overcome these difficulties. However, there remained uncertainty in a quench event in the cable-in-conduit conductor because of a difficulty to analyze a fluid dynamics equation. Several scientists, then, developed the numerical code for the quench simulation. However, most of them were based on an explicit time-dependent finite difference scheme. In this scheme, a discrete time increment is strictly restricted by CFL (Courant-Friedrichs-Lewy) condition. Therefore, long CPU time was consumed for the quench simulation. Authors, then, developed a new quench simulation code, POCHI1, which is based on an implicit time dependent scheme. In POCHI1, the fluid dynamics equation is linearlized according to a procedure applied by Beam and Warming and then, a tridiagonal system can be offered. Therefore, no iteration is necessary to solve the fluid dynamics equation. This leads great reduction of the CPU time. Also, POCHI1 can cope with non-linear boundary condition. In this study, comparison with experimental results was carried out. The normal zone propagation behavior was investigated in two samples of CIC conductors which had different hydraulic diameters. The measured and simulated normal zone propagation length showed relatively good agreement. However, the behavior of the normal voltage shows a little disagreement. These results indicate necessity to improve the treatment of the heat transfer coefficient in the turbulent flow region and the electric resistivity of the copper stabilizer in high temperature and high field region. (author).
Implicit time-dependent finite different algorithm for quench simulation
International Nuclear Information System (INIS)
Koizumi, Norikiyo; Takahashi, Yoshikazu; Tsuji, Hiroshi
1994-12-01
A magnet in a fusion machine has many difficulties in its application because of requirement of a large operating current, high operating field and high breakdown voltage. A cable-in-conduit (CIC) conductor is the best candidate to overcome these difficulties. However, there remained uncertainty in a quench event in the cable-in-conduit conductor because of a difficulty to analyze a fluid dynamics equation. Several scientists, then, developed the numerical code for the quench simulation. However, most of them were based on an explicit time-dependent finite difference scheme. In this scheme, a discrete time increment is strictly restricted by CFL (Courant-Friedrichs-Lewy) condition. Therefore, long CPU time was consumed for the quench simulation. Authors, then, developed a new quench simulation code, POCHI1, which is based on an implicit time dependent scheme. In POCHI1, the fluid dynamics equation is linearlized according to a procedure applied by Beam and Warming and then, a tridiagonal system can be offered. Therefore, no iteration is necessary to solve the fluid dynamics equation. This leads great reduction of the CPU time. Also, POCHI1 can cope with non-linear boundary condition. In this study, comparison with experimental results was carried out. The normal zone propagation behavior was investigated in two samples of CIC conductors which had different hydraulic diameters. The measured and simulated normal zone propagation length showed relatively good agreement. However, the behavior of the normal voltage shows a little disagreement. These results indicate necessity to improve the treatment of the heat transfer coefficient in the turbulent flow region and the electric resistivity of the copper stabilizer in high temperature and high field region. (author)
Homogeneous turbulence dynamics
Sagaut, Pierre
2018-01-01
This book provides state-of-the-art results and theories in homogeneous turbulence, including anisotropy and compressibility effects with extension to quantum turbulence, magneto-hydodynamic turbulence and turbulence in non-newtonian fluids. Each chapter is devoted to a given type of interaction (strain, rotation, shear, etc.), and presents and compares experimental data, numerical results, analysis of the Reynolds stress budget equations and advanced multipoint spectral theories. The role of both linear and non-linear mechanisms is emphasized. The link between the statistical properties and the dynamics of coherent structures is also addressed. Despite its restriction to homogeneous turbulence, the book is of interest to all people working in turbulence, since the basic physical mechanisms which are present in all turbulent flows are explained. The reader will find a unified presentation of the results and a clear presentation of existing controversies. Special attention is given to bridge the results obta...
Time-dependent correlations in electricity markets
International Nuclear Information System (INIS)
Alvarez-Ramirez, Jose; Escarela-Perez, Rafael
2010-01-01
In the last years, many electricity markets were subjected to deregulated operation where prices are set by the action of market participants. In this form, producers and consumers rely on demand and price forecasts to decide their bidding strategies, allocate assets, negotiate bilateral contracts, hedge risks, and plan facility investments. A basic feature of efficient market hypothesis is the absence of correlations between price increments over any time scale leading to random walk-type behavior of prices, so arbitrage is not possible. However, recent studies have suggested that this is not the case and correlations are present in the behavior of diverse electricity markets. In this paper, a temporal quantification of electricity market correlations is made by means of detrended fluctuation and Allan analyses. The approach is applied to two Canadian electricity markets, Ontario and Alberta. The results show the existence of correlations in both demand and prices, exhibiting complex time-dependent behavior with lower correlations in winter while higher in summer. Relatively steady annual cycles in demand but unstable cycles in prices are detected. On the other hand, the more significant nonlinear effects (measured in terms of a multifractality index) are found for winter months, while the converse behavior is displayed during the summer period. In terms of forecasting models, our results suggest that nonlinear recursive models (e.g., feedback NNs) should be used for accurate day-ahead price estimation. In contrast, linear models can suffice for demand forecasting purposes. (author)
Tunable Time-Dependent Colloidal Interactions
Bergman, Andrew M.; Rogers, W. Benjamin; Manoharan, Vinothan N.
Self-assembly of colloidal particles can be driven by changes in temperature, density, or the concentration of solutes, and it is even possible to program the thermal response and equilibrium phase transitions of such systems. It is still difficult, however, to tune how the self-assembly process varies in time. We demonstrate control over the time-dependence of colloidal interactions, using DNA-functionalized colloidal particles with binding energies that are set by the concentration of a free linker strand in solution. We control the rate at which this free strand is consumed using a catalytic DNA reaction, whose rate is governed by the concentration of a catalyst strand. Varying the concentration of the linker, its competitor, and the catalyst at a fixed temperature, we can tune the rate and degree of the formation of colloidal aggregates and their following disassembly. Close to the colloidal melting point, the timescales of these out-of-equilibrium assembly and disassembly processes are determined by the rate of the catalytic reaction. Far below the colloidal melting point, however, the effects from varying our linker and competitor concentrations dominate.
Time-Dependent Variations of Accretion Disk
Directory of Open Access Journals (Sweden)
Hye-Weon Na
1987-06-01
Full Text Available In dward nova we assume the primary star as a white dwarf and the secondary as the late type star which filled Roche lobe. Mass flow from the secondary star leads to the formation of thin accretion disk around the white dwarf. We use the α parameter as viscosity to maintain the disk form and propose that the outburst in dwarf nova cause the steep increase of source term. With these assumptions we solve the basic equations of stellar structure using Newton-Raphson method. We show the physical parameters like temperature, density, pressure, opacity, surface density, height and flux to the radius of disk. Changing the value of α, we compare several parameters when mass flow rate is constant with those of when luminosity of disk is brightest. At the same time, we obtain time-dependent variations of luminosity and mass of disk. We propose the suitable range of α is 0.15-0.18 to the difference of luminosity. We compare several parameters of disk with those of the normal late type stars which have the same molecular weight of disk is lower. Maybe the outburst in dwarf nova is due to the variation of the α value instead of increment of mass flow from the secondary star.
Time dependent mean-field games
Gomes, Diogo A.
2014-01-06
We consider time dependent mean-field games (MFG) with a local power-like dependence on the measure and Hamiltonians satisfying both sub and superquadratic growth conditions. We establish existence of smooth solutions under a certain set of conditions depending both on the growth of the Hamiltonian as well as on the dimension. In the subquadratic case this is done by combining a Gagliardo-Nirenberg type of argument with a new class of polynomial estimates for solutions of the Fokker-Planck equation in terms of LrLp- norms of DpH. These techniques do not apply to the superquadratic case. In this setting we recur to a delicate argument that combines the non-linear adjoint method with polynomial estimates for solutions of the Fokker-Planck equation in terms of L1L1-norms of DpH. Concerning the subquadratic case, we substantially improve and extend the results previously obtained. Furthermore, to the best of our knowledge, the superquadratic case has not been addressed in the literature yet. In fact, it is likely that our estimates may also add to the current understanding of Hamilton-Jacobi equations with superquadratic Hamiltonians.
System reliability time-dependent models
International Nuclear Information System (INIS)
Debernardo, H.D.
1991-06-01
A probabilistic methodology for safety system technical specification evaluation was developed. The method for Surveillance Test Interval (S.T.I.) evaluation basically means an optimization of S.T.I. of most important system's periodically tested components. For Allowed Outage Time (A.O.T.) calculations, the method uses system reliability time-dependent models (A computer code called FRANTIC III). A new approximation, which was called Independent Minimal Cut Sets (A.C.I.), to compute system unavailability was also developed. This approximation is better than Rare Event Approximation (A.E.R.) and the extra computing cost is neglectible. A.C.I. was joined to FRANTIC III to replace A.E.R. on future applications. The case study evaluations verified that this methodology provides a useful probabilistic assessment of surveillance test intervals and allowed outage times for many plant components. The studied system is a typical configuration of nuclear power plant safety systems (two of three logic). Because of the good results, these procedures will be used by the Argentine nuclear regulatory authorities in evaluation of technical specification of Atucha I and Embalse nuclear power plant safety systems. (Author) [es
Extended gyrokinetic field theory for time-dependent magnetic confinement fields
International Nuclear Information System (INIS)
Sugama, H.; Watanabe, T.-H.; Nunami, M.
2013-12-01
A gyrokinetic system of equations for turbulent toroidal plasmas in time-dependent axisymmetric background magnetic fields is derived from the variational principle. Besides governing equations for gyrocenter distribution functions and turbulent electromagnetic fields, the conditions which self-consistently determine the background fields varying on a transport time scale are obtained by using the Lagrangian which includes the constraint on the background fields. Conservation laws for energy and toroidal angular momentum of the whole system in the time-dependent background fields are naturally derived by applying Noether's theorem. It is shown that the ensemble-averaged transport equations of particles, energy and toroidal momentum given in the present work agree with the results from the conventional recursive formulation with the WKB representation except that collisional effects are disregarded here. (author)
Time-dependent constrained Hamiltonian systems and Dirac brackets
Energy Technology Data Exchange (ETDEWEB)
Leon, Manuel de [Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Madrid (Spain); Marrero, Juan C. [Departamento de Matematica Fundamental, Facultad de Matematicas, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands (Spain); Martin de Diego, David [Departamento de Economia Aplicada Cuantitativa, Facultad de Ciencias Economicas y Empresariales, UNED, Madrid (Spain)
1996-11-07
In this paper the canonical Dirac formalism for time-dependent constrained Hamiltonian systems is globalized. A time-dependent Dirac bracket which reduces to the usual one for time-independent systems is introduced. (author)
Three-dimensional simulations of turbulent spectra in the local interstellar medium
Directory of Open Access Journals (Sweden)
D. Shaikh
2007-07-01
Full Text Available Three-dimensional time dependent numerical simulations of compressible magnetohydrodynamic fluids describing super-Alfvénic, supersonic and strongly magnetized space and laboratory plasmas show a nonlinear relaxation towards a state of near incompressibility. The latter is characterized essentially by a subsonic turbulent Mach number. This transition is mediated dynamically by disparate spectral energy dissipation rates in compressible magnetosonic and shear Alfvénic modes. Nonlinear cascades lead to super-Alfvénic turbulent motions decaying to a sub-Alfvénic regime that couples weakly with (magnetoacoustic cascades. Consequently, the supersonic plasma motion is transformed into highly subsonic motion and density fluctuations experience a passive convection. This model provides a self-consistent explaination of the ubiquitous nature of incompressible magnetoplasma fluctuations in the solar wind and the interstellar medium.
Analysis of turbulent boundary layers
Cebeci, Tuncer
1974-01-01
Analysis of Turbulent Boundary Layers focuses on turbulent flows meeting the requirements for the boundary-layer or thin-shear-layer approximations. Its approach is devising relatively fundamental, and often subtle, empirical engineering correlations, which are then introduced into various forms of describing equations for final solution. After introducing the topic on turbulence, the book examines the conservation equations for compressible turbulent flows, boundary-layer equations, and general behavior of turbulent boundary layers. The latter chapters describe the CS method for calculati
Nonlinear wave time dependent dynamic evolution in solar flux tubes
Fedun, V.; Erdelyi, R.
2005-12-01
The aim of the present work is to investigate the excitation, time dependent dynamic evolution and interaction of weakly nonlinear propagating (i.e. solitary) waves on vertical cylindrical magnetic flux tubes in a compressible solar atmospheric plasma. The axisymmetric flux tube has a field strength of 1000 G at its footpoint what is typical for photospheric regions. Solitons are excited by a footpoint driver. The propagation of the nonlinear signal is investigated by solving numerically a set of fully nonlinear 2D MHD equations in cylindrical coordinates. For the initial conditions the solutions of the linear dispersion relation for wave modes (in the present case we focus on the sausage mode) in a magnetic flux tube is applied. This dispersion relation is solved numerically for a range of plasma parameters. We compare our results with the works of Roberts [1], Wilson [2] (dispersion relation), Molotovshchikov [3] (nonlinear slow sausage waves) and Weisshaar [4] (numerical solutions of the Leibovich-Prichard-Roberts equation). (1) We found solitary solutions and investigate solitary propagating with external sound speed by solving the full MHD equations. (2) We also found a solitary wave propagating with the tube speed. A natural application of our studies may be spicule formation in the chromosphere, as suggested by Roberts [5], where it was demonstrated theoretically, that a solar photospheric magnetic flux tube can support the propagation of solitons governed by the Benjamin-Ono (slow mode) equations. Future possible improvements in modeling and the relevance of the photospheric chromospheric transition region coupling by spicules is suggested. [1] B. Roberts and A. Webb, Sol. Phys., 1978, v. 56, p. 5 [2] P.R. Wilson, Astron. Astrophys., 1980, v. 87, p. 121 [3] A.L. Molotovshchikov and M.S. Ruderman, Sol. Phys., 1987, v. 109, p. 247 [4] E. Weisshaar, Phys. Fluids A, 1989, v. 1(8), p. 1406 [5] B. Roberts and A. Mangeney, Royal Astronomical Society, Monthly
On the time-dependent Aharonov–Bohm effect
Directory of Open Access Journals (Sweden)
Jian Jing
2017-11-01
Full Text Available The Aharonov–Bohm effect in the background of a time-dependent vector potential is re-examined for both non-relativistic and relativistic cases. Based on the solutions to the Schrodinger and Dirac equations which contain the time-dependent magnetic vector potential, we find that contrary to the conclusions in a recent paper (Singleton and Vagenas 2013 [4], the interference pattern will be altered with respect to time because of the time-dependent vector potential.
Time-Dependent Testing Evaluation and Modeling for Rubber Stopper Seal Performance.
Zeng, Qingyu; Zhao, Xia
2018-01-01
Sufficient rubber stopper sealing performance throughout the entire sealed product life cycle is essential for maintaining container closure integrity in the parenteral packaging industry. However, prior publications have lacked systematic considerations for the time-dependent influence on sealing performance that results from the viscoelastic characteristics of the rubber stoppers. In this paper, we report results of an effort to study these effects by applying both compression stress relaxation testing and residual seal force testing for time-dependent experimental data collection. These experiments were followed by modeling fit calculations based on the Maxwell-Wiechert theory modified with the Kohlrausch-Williams-Watts stretched exponential function, resulting in a nonlinear, time-dependent sealing force model. By employing both testing evaluations and modeling calculations, an in-depth understanding of the time-dependent effects on rubber stopper sealing force was developed. Both testing and modeling data show good consistency, demonstrating that the sealing force decays exponentially over time and eventually levels off because of the viscoelastic nature of the rubber stoppers. The nonlinearity of stress relaxation derives from the viscoelastic characteristics of the rubber stoppers coupled with the large stopper compression deformation into restrained geometry conditions. The modeling fit with capability to handle actual testing data can be employed as a tool to calculate the compression stress relaxation and residual seal force throughout the entire sealed product life cycle. In addition to being time-dependent, stress relaxation is also experimentally shown to be temperature-dependent. The present work provides a new, integrated methodology framework and some fresh insights to the parenteral packaging industry for practically and proactively considering, designing, setting up, controlling, and managing stopper sealing performance throughout the entire
Time dependent analysis of concrete in SAP2000
Varona Moya, Francisco de Borja
2018-01-01
This document presents an example of time-dependent analysis of a concrete column using SAP2000. In order to understand the parameters required by the software to run the analysis, the formulation of time dependent properties of concrete according to Model Code 1990 is included.
Thermal state of the general time-dependent harmonic oscillator
Indian Academy of Sciences (India)
Harmonic oscillator that has time-dependent mass or frequency may be a good example of time-dependent Hamiltonian systems. Although a large number of dynamical systems have been investigated using approximation and perturbation method in the literature [2,3], we confine our concern to the exact quantum solution ...
Time-dependent potential-functional embedding theory
International Nuclear Information System (INIS)
Huang, Chen; Libisch, Florian; Peng, Qing; Carter, Emily A.
2014-01-01
We introduce a time-dependent potential-functional embedding theory (TD-PFET), in which atoms are grouped into subsystems. In TD-PFET, subsystems can be propagated by different suitable time-dependent quantum mechanical methods and their interactions can be treated in a seamless, first-principles manner. TD-PFET is formulated based on the time-dependent quantum mechanics variational principle. The action of the total quantum system is written as a functional of the time-dependent embedding potential, i.e., a potential-functional formulation. By exploiting the Runge-Gross theorem, we prove the uniqueness of the time-dependent embedding potential under the constraint that all subsystems share a common embedding potential. We derive the integral equation that such an embedding potential needs to satisfy. As proof-of-principle, we demonstrate TD-PFET for a Na 4 cluster, in which each Na atom is treated as one subsystem and propagated by time-dependent Kohn-Sham density functional theory (TDDFT) using the adiabatic local density approximation (ALDA). Our results agree well with a direct TDDFT calculation on the whole Na 4 cluster using ALDA. We envision that TD-PFET will ultimately be useful for studying ultrafast quantum dynamics in condensed matter, where key regions are solved by highly accurate time-dependent quantum mechanics methods, and unimportant regions are solved by faster, less accurate methods
Time-dependent reliability sensitivity analysis of motion mechanisms
International Nuclear Information System (INIS)
Wei, Pengfei; Song, Jingwen; Lu, Zhenzhou; Yue, Zhufeng
2016-01-01
Reliability sensitivity analysis aims at identifying the source of structure/mechanism failure, and quantifying the effects of each random source or their distribution parameters on failure probability or reliability. In this paper, the time-dependent parametric reliability sensitivity (PRS) analysis as well as the global reliability sensitivity (GRS) analysis is introduced for the motion mechanisms. The PRS indices are defined as the partial derivatives of the time-dependent reliability w.r.t. the distribution parameters of each random input variable, and they quantify the effect of the small change of each distribution parameter on the time-dependent reliability. The GRS indices are defined for quantifying the individual, interaction and total contributions of the uncertainty in each random input variable to the time-dependent reliability. The envelope function method combined with the first order approximation of the motion error function is introduced for efficiently estimating the time-dependent PRS and GRS indices. Both the time-dependent PRS and GRS analysis techniques can be especially useful for reliability-based design. This significance of the proposed methods as well as the effectiveness of the envelope function method for estimating the time-dependent PRS and GRS indices are demonstrated with a four-bar mechanism and a car rack-and-pinion steering linkage. - Highlights: • Time-dependent parametric reliability sensitivity analysis is presented. • Time-dependent global reliability sensitivity analysis is presented for mechanisms. • The proposed method is especially useful for enhancing the kinematic reliability. • An envelope method is introduced for efficiently implementing the proposed methods. • The proposed method is demonstrated by two real planar mechanisms.
Simulation of time-dependent Heisenberg models in one dimension
DEFF Research Database (Denmark)
Volosniev, A. G.; Hammer, H. -W.; Zinner, N. T.
2016-01-01
constants can be manipulated by time-dependent driving of the shape of the external confinement. As illustrative examples, we consider a harmonic trapping potential with a variable frequency and an infinite square well potential with a time-dependent barrier in the middle.......In this Letter, we provide a theoretical analysis of strongly interacting quantum systems confined by a time-dependent external potential in one spatial dimension. We show that such systems can be used to simulate spin chains described by Heisenberg Hamiltonians in which the exchange coupling...
Time-dependent deterministic transport on parallel architectures using PARTISN
International Nuclear Information System (INIS)
Alcouffe, R.E.; Baker, R.S.
1998-01-01
In addition to the ability to solve the static transport equation, the authors have also incorporated time dependence into the parallel S N code PARTISN. Using a semi-implicit scheme, PARTISN is capable of performing time-dependent calculations for both fissioning and pure source driven problems. They have applied this to various types of problems such as shielding and prompt fission experiments. This paper describes the form of the time-dependent equations implemented, their solution strategies in PARTISN including iteration acceleration, and the strategies used for time-step control. Results are presented for a iron-water shielding calculation and a criticality excursion in a uranium solution configuration
Wave turbulence in magnetized plasmas
Directory of Open Access Journals (Sweden)
S. Galtier
2009-02-01
Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.
Functional differentiability in time-dependent quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Penz, Markus, E-mail: markus.penz@uibk.ac.at; Ruggenthaler, Michael, E-mail: michael.ruggenthaler@uibk.ac.at [Institut für Theoretische Physik, Universität Innsbruck, 6020 Innsbruck (Austria)
2015-03-28
In this work, we investigate the functional differentiability of the time-dependent many-body wave function and of derived quantities with respect to time-dependent potentials. For properly chosen Banach spaces of potentials and wave functions, Fréchet differentiability is proven. From this follows an estimate for the difference of two solutions to the time-dependent Schrödinger equation that evolve under the influence of different potentials. Such results can be applied directly to the one-particle density and to bounded operators, and present a rigorous formulation of non-equilibrium linear-response theory where the usual Lehmann representation of the linear-response kernel is not valid. Further, the Fréchet differentiability of the wave function provides a new route towards proving basic properties of time-dependent density-functional theory.
Ambiguities in the Lagrangians formalism: the time-dependent case
International Nuclear Information System (INIS)
Moreira, D.T.
1986-01-01
An intrinsic formulation of the equivalence problem for time-dependent Lagrangians is given. A new demostration of a theorem derived by Henneaux (1982) is obtained. The relationship to transformation groups is discussed. (Author) [pt
Time-dependent rheological behaviour of bacterial cellulose hydrogel.
Gao, Xing; Shi, Zhijun; Kuśmierczyk, Piotr; Liu, Changqing; Yang, Guang; Sevostianov, Igor; Silberschmidt, Vadim V
2016-01-01
This work focuses on time-dependent rheological behaviour of bacterial cellulose (BC) hydrogel. Due to its ideal biocompatibility, BC hydrogel could be employed in biomedical applications. Considering the complexity of loading conditions in human body environment, time-dependent behaviour under relevant conditions should be understood. BC specimens are produced by Gluconacetobacter xylinus ATCC 53582 at static-culture conditions. Time-dependent behaviour of specimens at several stress levels is experimentally determined by uniaxial tensile creep tests. We use fraction-exponential operators to model the rheological behaviour. Such a representation allows combination of good accuracy in analytical description of viscoelastic behaviour of real materials and simplicity in solving boundary value problems. The obtained material parameters allow us to identify time-dependent behaviour of BC hydrogel at high stress level with sufficient accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.
Skinner-Rusk approach to time-dependent mechanics
Cortés, Jorge; Martínez, Sonia; Cantrijn, Frans
2002-01-01
The geometric approach to autonomous classical mechanical systems in terms of a canonical first-order system on the Whitney sum of the tangent and cotangent bundle, developed by Skinner and Rusk, is extended to the time-dependent framework.
Time dependent density functional calculation of plasmon response in clusters
Wang, Feng; Zhang, Feng-Shou; Eric, Suraud
2003-02-01
We have introduced a theoretical scheme for the efficient description of the optical response of a cluster based on the time-dependent density functional theory. The practical implementation is done by means of the fully fledged time-dependent local density approximation scheme, which is solved directly in the time domain without any linearization. As an example we consider the simple Na2 cluster and compute its surface plasmon photoabsorption cross section, which is in good agreement with the experiments.
Zheng, Xiao; Yam, ChiYung; Wang, Fan; Chen, GuanHua
2011-08-28
We present the time-dependent holographic electron density theorem (TD-HEDT), which lays the foundation of time-dependent density-functional theory (TDDFT) for open electronic systems. For any finite electronic system, the TD-HEDT formally establishes a one-to-one correspondence between the electron density inside any finite subsystem and the time-dependent external potential. As a result, any electronic property of an open system in principle can be determined uniquely by the electron density function inside the open region. Implications of the TD-HEDT on the practicality of TDDFT are also discussed.
van Meer, R; Gritsenko, O V; Baerends, E J
2017-01-28
Straightforward interpretation of excitations is possible if they can be described as simple single orbital-to-orbital (or double, etc.) transitions. In linear response time-dependent density functional theory (LR-TDDFT), the (ground state) Kohn-Sham orbitals prove to be such an orbital basis. In contrast, in a basis of natural orbitals (NOs) or Hartree-Fock orbitals, excitations often employ many orbitals and are accordingly hard to characterize. We demonstrate that it is possible in these cases to transform to natural excitation orbitals (NEOs) which resemble very closely the KS orbitals and afford the same simple description of excitations. The desired transformation has been obtained by diagonalization of a submatrix in the equations of linear response time-dependent 1-particle reduced density matrix functional theory (LR-TDDMFT) for the NO transformation, and that of a submatrix in the linear response time-dependent Hartree-Fock (LR-TDHF) equations for the transformation of HF orbitals. The corresponding submatrix is already diagonal in the KS basis in the LR-TDDFT equations. While the orbital shapes of the NEOs afford the characterization of the excitations as (mostly) simple orbital-to-orbital transitions, the orbital energies provide a fair estimate of excitation energies.
Bruno, Roberto
2016-01-01
This book provides an overview of solar wind turbulence from both the theoretical and observational perspective. It argues that the interplanetary medium offers the best opportunity to directly study turbulent fluctuations in collisionless plasmas. In fact, during expansion, the solar wind evolves towards a state characterized by large-amplitude fluctuations in all observed parameters, which resembles, at least at large scales, the well-known hydrodynamic turbulence. This text starts with historical references to past observations and experiments on turbulent flows. It then introduces the Navier-Stokes equations for a magnetized plasma whose low-frequency turbulence evolution is described within the framework of the MHD approximation. It also considers the scaling of plasma and magnetic field fluctuations and the study of nonlinear energy cascades within the same framework. It reports observations of turbulence in the ecliptic and at high latitude, treating Alfvénic and compressive fluctuations separately in...
4th European Turbulence Conference
1993-01-01
The European Turbulence Conferences have been organized under the auspices of the European Mechanics Committee (Euromech) to provide a forum for discussion and exchange of recent and new results in the field of turbulence. The first conference was organized in Lyon in 1986 with 152 participants. The second and third conferences were held in Berlin (1988) and Stockholm (1990) with 165 and 172 participants respectively. The fourth was organized in Delft from 30 June to 3 July 1992 by the J.M. Burgers Centre. There were 214 participants from 22 countries. This steadily growing number of participants demonstrates both the success and need for this type of conference. The main topics of the Fourth European Turbulence Conference were: Dynamical Systems and Transition; Statistical Physics and Turbulence; Experiments and Novel Experimental Techniques; Particles and Bubbles in Turbulence; Simulation Methods; Coherent Structures; Turbulence Modelling and Compressibility Effects. In addition a special session was held o...
Time-dependent reliability analysis of flood defences
International Nuclear Information System (INIS)
Buijs, F.A.; Hall, J.W.; Sayers, P.B.; Gelder, P.H.A.J.M. van
2009-01-01
This paper describes the underlying theory and a practical process for establishing time-dependent reliability models for components in a realistic and complex flood defence system. Though time-dependent reliability models have been applied frequently in, for example, the offshore, structural safety and nuclear industry, application in the safety-critical field of flood defence has to date been limited. The modelling methodology involves identifying relevant variables and processes, characterisation of those processes in appropriate mathematical terms, numerical implementation, parameter estimation and prediction. A combination of stochastic, hierarchical and parametric processes is employed. The approach is demonstrated for selected deterioration mechanisms in the context of a flood defence system. The paper demonstrates that this structured methodology enables the definition of credible statistical models for time-dependence of flood defences in data scarce situations. In the application of those models one of the main findings is that the time variability in the deterioration process tends to be governed the time-dependence of one or a small number of critical attributes. It is demonstrated how the need for further data collection depends upon the relevance of the time-dependence in the performance of the flood defence system.
Time-Dependent Behavior of Reinforced Polymer Concrete Columns under Eccentric Axial Loading
Directory of Open Access Journals (Sweden)
Valentino Paolo Berardi
2012-11-01
Full Text Available Polymer concretes (PCs represent a promising alternative to traditional cementitious materials in the field of new construction. In fact, PCs exhibit high compressive strength and ultimate compressive strain values, as well as good chemical resistance. Within the context of these benefits, this paper presents a study on the time-dependent behavior of polymer concrete columns reinforced with different bar types using a mechanical model recently developed by the authors. Balanced internal reinforcements are considered (i.e., two bars at both the top and bottom of the cross-section. The investigation highlights relevant stress and strain variations over time and, consequently, the emergence of a significant decrease in concrete’s stiffness and strength over time. Therefore, the results indicate that deferred effects due to viscous flow may significantly affect the reliability of reinforced polymer concrete elements over time.
Steady-state and time-dependent modelling of parallel transport in the scrape-off layer
DEFF Research Database (Denmark)
Havlickova, E.; Fundamenski, W.; Naulin, Volker
2011-01-01
temperature calculated in SOLF1D is compared with the approximative model used in the turbulence code ESEL both for steady-state and turbulent SOL. Dynamics of the parallel transport are investigated for a simple transient event simulating the propagation of particles and energy to the targets from a blob......The one-dimensional fluid code SOLF1D has been used for modelling of plasma transport in the scrape-off layer (SOL) along magnetic field lines, both in steady state and under transient conditions that arise due to plasma turbulence. The presented work summarizes results of SOLF1D with attention...... given to transient parallel transport which reveals two distinct time scales due to the transport mechanisms of convection and diffusion. Time-dependent modelling combined with the effect of ballooning shows propagation of particles along the magnetic field line with Mach number up to M ≈ 1...
Semiclassical approximation to time-dependent Hartree--Fock theory
International Nuclear Information System (INIS)
Dworzecka, M.; Poggioli, R.
1976-01-01
Working within a time-dependent Hartree-Fock framework, one develops a semiclassical approximation appropriate for large systems. It is demonstrated that the standard semiclassical approach, the Thomas-Fermi approximation, is inconsistent with Hartree-Fock theory when the basic two-body interaction is short-ranged (as in nuclear systems, for example). However, by introducing a simple extension of the Thomas-Fermi approximation, one overcomes this problem. One also discusses the infinite nuclear matter problem and point out that time-dependent Hartree-Fock theory yields collective modes of the zero sound variety instead of ordinary hydrodynamic (first) sound. One thus emphasizes that one should be extremely circumspect when attempting to cast the equations of motion of time-dependent Hartree-Fock theory into a hydrodynamic-like form
Energy Technology Data Exchange (ETDEWEB)
Subramanian, G.
2005-09-15
Homogeneous Charge Compression Ignition (HCCI) is an alternative engine combustion process that offers the potential for substantial reductions in both NO{sub x} and particulate matter still providing high Diesel-like efficiencies. Combustion in HCCI mode takes place essentially by auto-ignition. It is mainly controlled by the chemical kinetics. It is therefore necessary to introduce detailed chemistry effects in combustion CFD codes in order to properly model the HCCI combustion process. The objective of this work is to develop an auto-ignition model including detailed chemical kinetics and its interactions with turbulence. Also, a comprehensive study has been performed to analyze the chemical influence of CO and H{sub 2} residual species on auto-ignition, which can be present in the exhaust gases. A new auto-ignition model, TKI-PDF (Tabulated Kinetics for Ignition - with turbulent mixing interactions through a pdf approach) dedicated to RANS 3D engine combustion CFD calculations is proposed. The TKI-PDF model is formulated in order to accommodate the detailed chemical kinetics of auto-ignition coupled with turbulence/chemistry interactions. The complete model development and its validation against experimental results are presented in two parts. The first part of this work describes the detailed chemistry input to the model. The second part is dedicated to the turbulent mixing description. A method based on a progress variable reaction rate tabulation is used. A look-up table for the progress variable reaction rates has been built through constant volume complex chemistry simulations. Instantaneous local reaction rates inside the CFD computational cell are then calculated by linear interpolation inside the look-up table depending on the local thermodynamic conditions. In order to introduce the turbulent mixing effects on auto-ignition, a presumed pdf approach is used. The model has been validated in different levels. First, the detailed kinetic approach was
Vacuum radiation induced by time dependent electric field
Directory of Open Access Journals (Sweden)
Bo Zhang
2017-04-01
Full Text Available Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.
The nonlinear time-dependent response of isotactic polypropylene
DEFF Research Database (Denmark)
Drozdov, Aleksey D.; Christiansen, Jesper de Claville
2002-01-01
Tensile creep tests, tensile relaxation tests and a tensile test with a constant strain rate are performed on injection-molded isotactic polypropylene at room temperature. A constitutive model is derived for the time-dependent behavior of semicrystalline polymers. A polymer is treated as an equiv......Tensile creep tests, tensile relaxation tests and a tensile test with a constant strain rate are performed on injection-molded isotactic polypropylene at room temperature. A constitutive model is derived for the time-dependent behavior of semicrystalline polymers. A polymer is treated...
Vacuum radiation induced by time dependent electric field
Energy Technology Data Exchange (ETDEWEB)
Zhang, Bo, E-mail: zhangbolfrc@caep.cn [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Zhang, Zhi-meng; Hong, Wei; He, Shu-Kai; Teng, Jian [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Gu, Yu-qiu, E-mail: yqgu@caep.cn [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China)
2017-04-10
Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED) will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.
Wave equations with time-dependent dissipation II. Effective dissipation
Wirth, Jens
This article is intended to present a construction of structural representations of solutions to the Cauchy problem for wave equations with time-dependent dissipation above scaling. These representations are used to give estimates of the solution and its derivatives based on L(R), q⩾2. The article represents the second part within a series. In [Jens Wirth, Wave equations with time-dependent dissipation I. Non-effective dissipation, J. Differential Equations 222 (2) (2006) 487-514] weak dissipations below scaling were discussed.
Thermal state of the general time-dependent harmonic oscillator
Indian Academy of Sciences (India)
Taking advantage of dynamical invariant operator, we derived quantum mechanical solution of general time-dependent harmonic oscillator. ... The domain part of the email address of all email addresses used by the office of Indian Academy of Sciences, including those of the staff, the journals, various programmes, and ...
BEC from a time-dependent variational point of view
International Nuclear Information System (INIS)
Benarous, Mohamed
2005-01-01
We use the time-dependent variational principle of Balian and Veneroni to derive a set of equations governing the dynamics of a trapped Bose gas at finite temperature. We show that this dynamics generalizes the Gross-Pitaevskii equations in that it introduces a consistent dynamical coupling between the evolution of the condensate density, the thermal cloud, and the 'anomalous' density
A remark on the time-dependent pair distribution
Hove, Léon van
1958-01-01
After recalling the classical work of Zernike and Prins on the pair distribution function of a liquid or gas and its role in X-ray scattering theory, one briefly discusses the time-dependent generalization of this distribution function, which is of special interest for neutron scattering. In line
Coherent states of general time-dependent harmonic oscillator
Indian Academy of Sciences (India)
Abstract. By introducing an invariant operator, we obtain exact wave functions for a general time-dependent quadratic harmonic oscillator. The coherent states, both in x- and p-spaces, are calculated. We confirm that the uncertainty product in coherent state is always larger than Η/2 and is equal to the minimum of the ...
Approximate factorization for time-dependent partial differential equations
P.J. van der Houwen; B.P. Sommeijer (Ben)
1999-01-01
textabstractThe first application of approximate factorization in the numerical solution of time-dependent partial differential equations (PDEs) can be traced back to the celebrated papers of Peaceman and Rachford and of Douglas in 1955. For linear problems, the Peaceman-Rachford- Douglas method can
Path integral solution for some time-dependent potential
International Nuclear Information System (INIS)
Storchak, S.N.
1989-12-01
The quantum-mechanical problem with a time-dependent potential is solved by the path integral method. The solution is obtained by the application of the previously derived general formula for rheonomic homogeneous point transformation and reparametrization in the path integral. (author). 4 refs
Time-dependent density functional theory for periodic systems
Kootstra, Freddie
2001-01-01
In this thesis the time-dependent version of density functional theory is described, which has been developed for crystalline non-metallic systems with periodicity in one to three dimensions. The application of this theory to the calculation of the optical reponse properties of a wide range of
Time-dependent quantum fluid density functional theory of hydrogen ...
Indian Academy of Sciences (India)
A time-dependent generalized non-linear Schrödinger equation (GNLSE) of motion was earlier derived in our laboratory by combining density functional theory and quantum fluid dynamics in threedimensional space. In continuation of the work reported previously, the GNLSE is applied to provide additional knowledge on ...
Construction of an exact solution of time-dependent Ginzburg ...
Indian Academy of Sciences (India)
A new approach is taken to calculate the speed of front propagation at which the interface moves from a superconducting to a normal region in a superconducting sample. Using time-dependent Ginzburg–Landau (TDGL) equations we have calculated the speed by constructing a new exact solution. This approach is based ...
Time-dependent fracture of early age concrete
DEFF Research Database (Denmark)
Østergaard, Lennart; Stang, Henrik; Olesen, John Forbes
2002-01-01
An experimental method suitable for the determination of the time-dependent tension softening response of early age concrete is presented. The method is based on the wedge splitting test by Tschegg, which is well known to be suited for the determination of fracture mechanical parameters, i...
Time dependent critical state in disks and rings
Hemmes, Herman K.; Kuper, A.R.; Kuper, A.R.; van de Klundert, L.J.M.; van de Klundert, L.J.M.
1991-01-01
The authors have developed a model to calculate the response of the current distribution in disks and rings to a time-dependent applied magnetic field. In the model, the ring (or disk) is divided into concentric segments. The segments are assumed to be inductively coupled to each other and to the
Ranking paths in stochastic time-dependent networks
DEFF Research Database (Denmark)
Nielsen, Lars Relund; Andersen, Kim Allan; Pretolani, Daniele D.
2014-01-01
In this paper we address optimal routing problems in networks where travel times are both stochastic and time-dependent. In these networks, the best route choice is not necessarily a path, but rather a time-adaptive strategy that assigns successors to nodes as a function of time. Nevertheless, in...
Construction of an exact solution of time-dependent Ginzburg ...
Indian Academy of Sciences (India)
Abstract. A new approach is taken to calculate the speed of front propagation at which the interface moves from a superconducting to a normal region in a superconducting sample. Using time-dependent Ginzburg–Landau (TDGL) equations we have calculated the speed by constructing a new exact solution. This approach ...
Student Understanding of Time Dependence in Quantum Mechanics
Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.
2015-01-01
The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing…
Asymptotic time dependent neutron transport in multidimensional systems
International Nuclear Information System (INIS)
Nagy, M.E.; Sawan, M.E.; Wassef, W.A.; El-Gueraly, L.A.
1983-01-01
A model which predicts the asymptotic time behavior of the neutron distribution in multi-dimensional systems is presented. The model is based on the kernel factorization method used for stationary neutron transport in a rectangular parallelepiped. The accuracy of diffusion theory in predicting the asymptotic time dependence is assessed. The use of neutron pulse experiments for predicting the diffusion parameters is also investigated
Time-Dependent Natural Convection Couette Flow of Heat ...
African Journals Online (AJOL)
Time-Dependent Natural Convection Couette Flow of Heat Generating/Absorbing Fluid between Vertical Parallel Plates Filled With Porous Material. ... The numerical simulation conducted for some saturated liquids reveled that at t ≥ Pr the steady and unsteady state velocities (as well as the temperature of the fluid) ...
Time-dependent effects of cardiovascular exercise on memory
DEFF Research Database (Denmark)
Roig, Marc; Thomas, Richard; Mang, Cameron S
2016-01-01
We present new evidence supporting the hypothesis that the effects of cardiovascular exercise on memory can be regulated in a time-dependent manner. When the exercise stimulus is temporally coupled with specific phases of the memory formation process, a single bout of cardiovascular exercise may ...
Examining the time dependence of DAMA's modulation amplitude
Kelso, Chris; Savage, Christopher; Sandick, Pearl; Freese, Katherine; Gondolo, Paolo
2018-03-01
If dark matter is composed of weakly interacting particles, Earth's orbital motion may induce a small annual variation in the rate at which these particles interact in a terrestrial detector. The DAMA collaboration has identified at a 9.3σ confidence level such an annual modulation in their event rate over two detector iterations, DAMA/NaI and DAMA/LIBRA, each with ˜ 7 years of observations. This data is well fit by a constant modulation amplitude for the two iterations of the experiment. We statistically examine the time dependence of the modulation amplitudes, which "by eye" appear to be decreasing with time in certain energy ranges. We perform a chi-squared goodness of fit test of the average modulation amplitudes measured by the two detector iterations which rejects the hypothesis of a consistent modulation amplitude at greater than 80, 96, and 99.6% for the 2-4, 2-5 and 2-6 keVee energy ranges, respectively. We also find that among the 14 annual cycles there are three ≳ 3σ departures from the average in our estimated data in the 5-6 keVee energy range. In addition, we examined several phenomenological models for the time dependence of the modulation amplitude. Using a maximum likelihood test, we find that descriptions of the modulation amplitude as decreasing with time are preferred over a constant modulation amplitude at anywhere between 1σ and 3σ , depending on the phenomenological model for the time dependence and the signal energy range considered. A time dependent modulation amplitude is not expected for a dark matter signal, at least for dark matter halo morphologies consistent with the DAMA signal. New data from DAMA/LIBRA-phase2 will certainly aid in determining whether any apparent time dependence is a real effect or a statistical fluctuation.
Mathematical and physical theory of turbulence
Cannon, John
2006-01-01
Although the current dynamical system approach offers several important insights into the turbulence problem, issues still remain that present challenges to conventional methodologies and concepts. These challenges call for the advancement and application of new physical concepts, mathematical modeling, and analysis techniques. Bringing together experts from physics, applied mathematics, and engineering, Mathematical and Physical Theory of Turbulence discusses recent progress and some of the major unresolved issues in two- and three-dimensional turbulence as well as scalar compressible turbulence. Containing introductory overviews as well as more specialized sections, this book examines a variety of turbulence-related topics. The authors concentrate on theory, experiments, computational, and mathematical aspects of Navier-Stokes turbulence; geophysical flows; modeling; laboratory experiments; and compressible/magnetohydrodynamic effects. The topics discussed in these areas include finite-time singularities a...
Tokamak power reactor ignition and time dependent fractional power operation
International Nuclear Information System (INIS)
Vold, E.L.; Mau, T.K.; Conn, R.W.
1986-06-01
A flexible time-dependent and zero-dimensional plasma burn code with radial profiles was developed and employed to study the fractional power operation and the thermal burn control options for an INTOR-sized tokamak reactor. The code includes alpha thermalization and a time-dependent transport loss which can be represented by any one of several currently popular scaling laws for energy confinement time. Ignition parameters were found to vary widely in density-temperature (n-T) space for the range of scaling laws examined. Critical ignition issues were found to include the extent of confinement time degradation by alpha heating, the ratio of ion to electron transport power loss, and effect of auxiliary heating on confinement. Feedback control of the auxiliary power and ion fuel sources are shown to provide thermal stability near the ignition curve
Time dependent non-extinction probability for prompt critical systems
International Nuclear Information System (INIS)
Gregson, M. W.; Prinja, A. K.
2009-01-01
The time dependent non-extinction probability equation is presented for slab geometry. Numerical solutions are provided for a nested inner/outer iteration routine where the fission terms (both linear and non-linear) are updated and then held fixed over the inner scattering iteration. Time dependent results are presented highlighting the importance of the injection position and angle. The iteration behavior is also described as the steady state probability of initiation is approached for both small and large time steps. Theoretical analysis of the nested iteration scheme is shown and highlights poor numerical convergence for marginally prompt critical systems. An acceleration scheme for the outer iterations is presented to improve convergence of such systems. Theoretical analysis of the acceleration scheme is also provided and the associated decrease in computational run time addressed. (authors)
Chromospheric extents predicted by time-dependent acoustic wave models
Cuntz, Manfred
1990-01-01
Theoretical models for chromospheric structures of late-type giant stars are computed, including the time-dependent propagation of acoustic waves. Models with short-period monochromatic shock waves as well as a spectrum of acoustic waves are discussed, and the method is applied to the stars Arcturus, Aldebaran, and Betelgeuse. Chromospheric extent, defined as the monotonic decrease with height of the time-averaged electron densities, are found to be 1.12, 1.13, and 1.22 stellar radii for the three stars, respectively; this corresponds to a time-averaged electron density of 10 to the 7th/cu cm. Predictions of the extended chromospheric obtained using a simple scaling law agree well with those obtained by the time-dependent wave models; thus, the chromospheres of all stars for which the scaling law is valid consist of the same number of pressure scale heights.
Chromospheric extents predicted by time-dependent acoustic wave models
Energy Technology Data Exchange (ETDEWEB)
Cuntz, M. (Joint Institute for Laboratory Astrophysics, Boulder, CO (USA) Heidelberg Universitaet (Germany, F.R.))
1990-01-01
Theoretical models for chromospheric structures of late-type giant stars are computed, including the time-dependent propagation of acoustic waves. Models with short-period monochromatic shock waves as well as a spectrum of acoustic waves are discussed, and the method is applied to the stars Arcturus, Aldebaran, and Betelgeuse. Chromospheric extent, defined as the monotonic decrease with height of the time-averaged electron densities, are found to be 1.12, 1.13, and 1.22 stellar radii for the three stars, respectively; this corresponds to a time-averaged electron density of 10 to the 7th/cu cm. Predictions of the extended chromospheric obtained using a simple scaling law agree well with those obtained by the time-dependent wave models; thus, the chromospheres of all stars for which the scaling law is valid consist of the same number of pressure scale heights. 74 refs.
Generalization of DT Equations for Time Dependent Sources
Neri, Lorenzo; Tudisco, Salvatore; Musumeci, Francesco; Scordino, Agata; Fallica, Giorgio; Mazzillo, Massimo; Zimbone, Massimo
2010-01-01
New equations for paralyzable, non paralyzable and hybrid DT models, valid for any time dependent sources are presented. We show how such new equations include the equations already used for constant rate sources, and how it’s is possible to correct DT losses in the case of time dependent sources. Montecarlo simulations were performed to compare the equations behavior with the three DT models. Excellent accordance between equations predictions and Montecarlo simulation was found. We also obtain good results in the experimental validation of the new hybrid DT equation. Passive quenched SPAD device was chosen as a device affected by hybrid DT losses and active quenched SPAD with 50 ns DT was used as DT losses free device. PMID:22163500
Generalization of DT Equations for Time Dependent Sources
Directory of Open Access Journals (Sweden)
Massimo Mazzillo
2010-12-01
Full Text Available New equations for paralyzable, non paralyzable and hybrid DT models, valid for any time dependent sources are presented. We show how such new equations include the equations already used for constant rate sources, and how it’s is possible to correct DT losses in the case of time dependent sources. Montecarlo simulations were performed to compare the equations behavior with the three DT models. Excellent accordance between equations predictions and Montecarlo simulation was found. We also obtain good results in the experimental validation of the new hybrid DT equation. Passive quenched SPAD device was chosen as a device affected by hybrid DT losses and active quenched SPAD with 50 ns DT was used as DT losses free device.
Characterization of Models for Time-Dependent Behavior of Soils
DEFF Research Database (Denmark)
Liingaard, Morten; Augustesen, Anders; Lade, Poul V.
2004-01-01
developed for metals and steel but are, to some extent, used to characterize time effects in geomaterials. The third part is a review of constitutive laws that describe not only viscous effects but also the inviscid ( rate-independent) behavior of soils, in principle, under any possible loading condition...... Different classes of constitutive models have been developed to capture the time-dependent viscous phenomena ~ creep, stress relaxation, and rate effects ! observed in soils. Models based on empirical, rheological, and general stress-strain-time concepts have been studied. The first part....... Special attention is paid to elastoviscoplastic models that combine inviscid elastic and time-dependent plastic behavior. Various general elastoviscoplastic models can roughly be divided into two categories: Models based on the concept of overstress and models based on nonstationary flow surface theory...
Non-Perturbative Formulation of Time-Dependent String Solutions
Alexandre, J; Mavromatos, Nikolaos E; Alexandre, Jean; Ellis, John; Mavromatos, Nikolaos E.
2006-01-01
We formulate here a new world-sheet renormalization-group technique for the bosonic string, which is non-perturbative in the Regge slope alpha' and based on a functional method for controlling the quantum fluctuations, whose magnitudes are scaled by the value of alpha'. Using this technique we exhibit, in addition to the well-known linear-dilaton cosmology, a new, non-perturbative time-dependent background solution. Using the reparametrization invariance of the string S-matrix, we demonstrate that this solution is conformally invariant to alpha', and we give a heuristic inductive argument that conformal invariance can be maintained to all orders in alpha'. This new time-dependent string solution may be applicable to primordial cosmology or to the exit from linear-dilaton cosmology at large times.
Time-dependent phase error correction using digital waveform synthesis
Doerry, Armin W.; Buskirk, Stephen
2017-10-10
The various technologies presented herein relate to correcting a time-dependent phase error generated as part of the formation of a radar waveform. A waveform can be pre-distorted to facilitate correction of an error induced into the waveform by a downstream operation/component in a radar system. For example, amplifier power droop effect can engender a time-dependent phase error in a waveform as part of a radar signal generating operation. The error can be quantified and an according complimentary distortion can be applied to the waveform to facilitate negation of the error during the subsequent processing of the waveform. A time domain correction can be applied by a phase error correction look up table incorporated into a waveform phase generator.
Theoretical information measurement in nonrelativistic time-dependent approach
Najafizade, S. A.; Hassanabadi, H.; Zarrinkamar, S.
2018-02-01
The information-theoretic measures of time-dependent Schrödinger equation are investigated via the Shannon information entropy, variance and local Fisher quantities. In our calculations, we consider the two first states n = 0,1 and obtain the position Sx (t) and momentum Sp (t) Shannon entropies as well as Fisher information Ix (t) in position and momentum Ip (t) spaces. Using the Fourier transformed wave function, we obtain the results in momentum space. Some interesting features of the information entropy densities ρs (x,t) and γs (p,t), as well as the probability densities ρ (x,t) and γ (p,t) for time-dependent states are demonstrated. We establish a general relation between variance and Fisher's information. The Bialynicki-Birula-Mycielski inequality is tested and verified for the states n = 0,1.
High-temperature service and time dependent failure
Energy Technology Data Exchange (ETDEWEB)
Swindeman, R.W.; Asada, Y.; Chang, S.J.; Todd, J.A. (eds.)
1993-01-01
Separate abstracts were prepared for the technical papers presented at the American Society of Mechanical Engineers 1993 Pressure Vessels and Piping Conference on July 25--29 in Denver, Colorado. This volume contains twelve papers related to materials and design methods for high temperatures, eight papers related to time dependent failure evaluation and prevention in pressure vessels and piping, and five papers related to constitutive equations in high temperature design.
The time dependence of molecular iodine emission from Laminaria digitata
Directory of Open Access Journals (Sweden)
J. Orphal
2009-02-01
Full Text Available We present the first in situ detection of molecular iodine emitted from the brown macroalga Laminaria digitata under natural stress conditions. We show that the release of I2 occurs in short, strong bursts with a complex time signature. The new data indicate that algal control of I2 release in the form of an oscillatory time-dependence may be based on a nonlinear autocatalytic reaction scheme which is closely linked to the production of H2O2.
The time dependence of molecular iodine emission from Laminaria digitata
Dixneuf, S.; Ruth, A. A.; Vaughan, S.; Varma, R. M.; Orphal, J.
2009-02-01
We present the first in situ detection of molecular iodine emitted from the brown macroalga Laminaria digitata under natural stress conditions. We show that the release of I2 occurs in short, strong bursts with a complex time signature. The new data indicate that algal control of I2 release in the form of an oscillatory time-dependence may be based on a nonlinear autocatalytic reaction scheme which is closely linked to the production of H2O2.
Longitudinal dispersion with time-dependent source concentration ...
Indian Academy of Sciences (India)
An analytical solution is obtained to predict the contaminant concentration along unsteady ground-water ﬂow in semi-in ﬁnite aquifer. Initially,the aquifer is not supposed to be solute free ,i.e.,aquifer is not clean.A time-dependent source concentration is considered at the origin of the aquifer and at the other end of the aquifer, ...
Relating Time-Dependent Acceleration and Height Using an Elevator
Kinser, Jason M.
2015-01-01
A simple experiment in relating a time-dependent linear acceleration function to height is explored through the use of a smartphone and an elevator. Given acceleration as a function of time, a(t), the velocity function and position functions are determined through integration as in v(t)=? a(t) dt (1) and x(t)=? v(t) dt. Mobile devices such as…
Spectral methods for time dependent partial differential equations
Gottlieb, D.; Turkel, E.
1983-01-01
The theory of spectral methods for time dependent partial differential equations is reviewed. When the domain is periodic Fourier methods are presented while for nonperiodic problems both Chebyshev and Legendre methods are discussed. The theory is presented for both hyperbolic and parabolic systems using both Galerkin and collocation procedures. While most of the review considers problems with constant coefficients the extension to nonlinear problems is also discussed. Some results for problems with shocks are presented.
Rashba Effect in Presence of Time-Dependent Interaction
International Nuclear Information System (INIS)
Sobhani, Hadi; Hassanabadi, Hassan
2016-01-01
Rashba effect in presence of a time-dependent interaction has been considered. Then time-evolution of such a system has been studied by using Lewis–Riesenfeld dynamical invariant and unitary transformation method. So appropriate dynamical invariant and unitary transformation according the considered system have been constructed as well as some special cases have come into this article which are common in physics. (paper)
International Nuclear Information System (INIS)
Scherer, K.; Fahr, H.J.
1990-01-01
It is well known that the neutral component of the local interstellar medium (LISM) can effectively pass through the plasma interface ahead of the solar system and can penetrate deeply into the inner heliosphere. Here we present a newly-developed theoretical approach to describe the distribution function of LISM neutral hydrogen in the heliosphere, also taking into account time-dependent solar and interstellar boundary conditions. For this purpose we start from a Boltzmann-Vlasov equation, Fourier-transformed with respect to space and time coordinates, in connection with correspondingly transformed solar radiation forces and ionization rates, and then arrive at semi-analytic solutions for the transformed hydrogen velocity distribution function. As interstellar boundary conditions we allow for very general, non-Maxwellian and time-dependent distribution functions to account for the case that some LISM turbulence patterns or non-linear wave-like shock structures pass over the solar system. We consider this theoretical approach to be an ideal instrument for the synoptic interpretation of huge data samples on interplanetary Ly-α resonance glow intensities registered from different celestial directions over extended periods of time. In addition we feel that the theoretical approach presented here, when applied to interplanetary resonance glow data, may permit the detection of genuine fluctuations in the local interstellar medium. (author)
Time-Dependent Effects of Glaze Ice on the Aerodynamic Characteristics of an Airfoil
Directory of Open Access Journals (Sweden)
Narges Tabatabaei
2018-01-01
Full Text Available The main objective of this study is to estimate the dynamic loads acting over a glaze-iced airfoil. This work studies the performance of unsteady Reynolds-averaged Navier-Stokes (URANS simulations in predicting the oscillations over an iced airfoil. The structure and size of time-averaged vortices are compared to measurements. Furthermore, the accuracy of a two-equation eddy viscosity turbulence model, the shear stress transport (SST model, is investigated in the case of the dynamic load analysis over a glaze-iced airfoil. The computational fluid dynamic analysis was conducted to investigate the effect of critical ice accretions on a 0.610 m chord NACA 0011 airfoil. Leading edge glaze ice accretion was simulated with flat plates (spoiler-ice extending along the span of the blade. Aerodynamic performance coefficients and pressure profiles were calculated and validated for the Reynolds number of 1.83 × 106. Furthermore, turbulent separation bubbles were studied. The numerical results confirm both time-dependent phenomena observed in previous similar measurements: (1 low-frequency mode, with a Strouhal number Sth≈0,013–0.02, and (2 higher frequency mode with a Strouhal number StL≈0,059–0.69. The higher frequency motion has the same characteristics as the shedding mode and the lower frequency motion has the flapping mode characteristics.
General time-dependent formulation of quantum scattering theory
International Nuclear Information System (INIS)
Althorpe, Stuart C.
2004-01-01
We derive and explain the key ideas behind a time-dependent formulation of quantum scattering theory, applicable generally to systems with a finite-range scattering potential. The scattering is initiated and probed by plane wave packets, which are localized just outside the range of the potential. The asymptotic limits of conventional scattering theory (initiation in the remote past; detection in the remote future) are not taken. Instead, the differential cross section (DCS) is obtained by projecting the scattered wave packet onto the probe plane wave packets. The projection also yields a time-dependent version of the DCS. Cuts through the wave packet, just as it exits the scattering potential, yield time-dependent and time-independent angular distributions that give a close-up picture of the scattering which complements the DCS. We have previously applied the theory to interpret experimental cross sections of chemical reactions [e.g., S. C. Althorpe, F. Fernandez-Alonso, B. D. Bean, J. D. Ayers, A. E. Pomerantz, R. N. Zare, and E. Wrede, Nature (London) 416, 67 (2002)]. This paper gives the derivation of the theory, and explains its relation to conventional scattering theory. For clarity, the derivation is restricted to spherical-particle scattering, though it may readily be extended to general multichannel systems. We illustrate the theory using a simple application to hard-sphere scattering
Time Dependent Geoid Constraints Upon Mantle Viscosity Stratification
Harlow, C.; Peltier, W. R.
2004-12-01
The global measurement of the time dependence of geoid height that is being provided by the GRACE satellite system that is now in space will eventually provide the basis for considerably more accurate inversions for mantle viscosity structure than are now possible. However, existing data on the time dependence of geoid height based upon the results of satellite laser ranging already provide very strong constraints upon the effective viscosity of the of the deepest mantle, especially when these are conbined with observations of the spectrum of relaxation times that characterize the process of glacial isostatic adjustment (GIA). Such data, by themselves, very tightly constrain the viscosity structure in the upper mantle and transition zone. We will describe a series of new analyses of the expected global pattern of geoid height time dependence based upon the recently published refined model of the GIA process denoted ICE-5G(VM2), a model based upon a significant refinement of the ICE-4G(VM2) precursor ( see W.R. Peltier, Ann. Rev. Earth and Planet. Sci., 32, 111-149, 2004). The impact of the new model of surface loading upon the mantle viscosity inverse problem turns out to be both interesting and significant.
Time-dependent fatigue--phenomenology and life prediction
International Nuclear Information System (INIS)
Coffin, L.F.
1979-01-01
The time-dependent fatigue behavior of materials used or considered for use in present and advanced systems for power generation is outlined. A picture is first presented to show how basic mechanisms and phenomenological information relate to the performance of the component under consideration through the so-called local strain approach. By this means life prediction criteria and design rules can be formulated utilizing laboratory test information which is directly translated to predicting the performance of a component. The body of phenomenological information relative to time-dependent fatigue is reviewed. Included are effects of strain range, strain rate and frequency, environment and wave shape, all of which are shown to be important in developing both an understanding and design base for time dependent fatigue. Using this information, some of the current methods being considered for the life prediction of components are reviewed. These include the current ASME code case, frequency-modified fatigue equations, strain range partitioning, the damage function method, frequency separation and damage rate equations. From this review, it is hoped that a better perspective on future directions for basic material science at high temperature can be achieved
Neutrino flavor instabilities in a time-dependent supernova model
Directory of Open Access Journals (Sweden)
Sajad Abbar
2015-12-01
Full Text Available A dense neutrino medium such as that inside a core-collapse supernova can experience collective flavor conversion or oscillations because of the neutral-current weak interaction among the neutrinos. This phenomenon has been studied in a restricted, stationary supernova model which possesses the (spatial spherical symmetry about the center of the supernova and the (directional axial symmetry around the radial direction. Recently it has been shown that these spatial and directional symmetries can be broken spontaneously by collective neutrino oscillations. In this letter we analyze the neutrino flavor instabilities in a time-dependent supernova model. Our results show that collective neutrino oscillations start at approximately the same radius in both the stationary and time-dependent supernova models unless there exist very rapid variations in local physical conditions on timescales of a few microseconds or shorter. Our results also suggest that collective neutrino oscillations can vary rapidly with time in the regimes where they do occur which need to be studied in time-dependent supernova models.
Time-Dependent-Asymmetric-Linear-Parsimonious Ancestral State Reconstruction.
Didier, Gilles
2017-10-01
The time-dependent-asymmetric-linear parsimony is an ancestral state reconstruction method which extends the standard linear parsimony (a.k.a. Wagner parsimony) approach by taking into account both branch lengths and asymmetric evolutionary costs for reconstructing quantitative characters (asymmetric costs amount to assuming an evolutionary trend toward the direction with the lowest cost). A formal study of the influence of the asymmetry parameter shows that the time-dependent-asymmetric-linear parsimony infers states which are all taken among the known states, except for some degenerate cases corresponding to special values of the asymmetry parameter. This remarkable property holds in particular for the Wagner parsimony. This study leads to a polynomial algorithm which determines, and provides a compact representation of, the parametric reconstruction of a phylogenetic tree, that is for all the unknown nodes, the set of all the possible reconstructed states associated with the asymmetry parameters leading to them. The time-dependent-asymmetric-linear parsimony is finally illustrated with the parametric reconstruction of the body size of cetaceans.
Effect of a time-dependent field on subdiffusing particles.
Shushin, A I
2008-11-01
We analyze the effect of a time-dependent external field on non-Markovian migration described by the continuous time random walk (CTRW) approach. The rigorous method of treating the problem is proposed which is based on the Markovian representations of the CTRW approach and field modulation. With the use of this method we derive the non-Markovian stochastic Liouville equation (SLE), that describes the effect of this field, and thoroughly analyze the relation of the derived SLE with equations proposed earlier. This SLE is applied to the case of subdiffusive migration in which the exact formulas for the first and second moments of spatial distribution are obtained. In the case of oscillating external field they predict unusual dependence of the first moment on oscillation phase and anomalous time behavior of field dependent contribution to the dispersion which agree with results of earlier works. Anomalous time dependence is also found in the case of a fluctuating field. The specific features of this time dependence are analyzed in detail.
Progress Report on Alloy 617 Time Dependent Allowables
Energy Technology Data Exchange (ETDEWEB)
Wright, Julie Knibloe [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-06-01
Time dependent allowable stresses are required in the ASME Boiler and Pressure Vessel Code for design of components in the temperature range where time dependent deformation (i.e., creep) is expected to become significant. There are time dependent allowable stresses in Section IID of the Code for use in the non-nuclear construction codes, however, there are additional criteria that must be considered in developing time dependent allowables for nuclear components. These criteria are specified in Section III NH. St is defined as the lesser of three quantities: 100% of the average stress required to obtain a total (elastic, plastic, primary and secondary creep) strain of 1%; 67% of the minimum stress to cause rupture; and 80% of the minimum stress to cause the initiation of tertiary creep. The values are reported for a range of temperatures and for time increments up to 100,000 hours. These values are determined from uniaxial creep tests, which involve the elevated temperature application of a constant load which is relatively small, resulting in deformation over a long time period prior to rupture. The stress which is the minimum resulting from these criteria is the time dependent allowable stress St. In this report data from a large number of creep and creep-rupture tests on Alloy 617 are analyzed using the ASME Section III NH criteria. Data which are used in the analysis are from the ongoing DOE sponsored high temperature materials program, form Korea Atomic Energy Institute through the Generation IV VHTR Materials Program and historical data from previous HTR research and vendor data generated in developing the alloy. It is found that the tertiary creep criterion determines St at highest temperatures, while the stress to cause 1% total strain controls at low temperatures. The ASME Section III Working Group on Allowable Stress Criteria has recommended that the uncertainties associated with determining the onset of tertiary creep and the lack of significant
Characterizing time-dependent mechanics in metallic MEMS
Directory of Open Access Journals (Sweden)
Geers M.G.D.
2010-06-01
Full Text Available Experiments for characterization of time-dependent material properties in free-standing metallic microelectromechanical system (MEMS pose challenges: e.g. fabrication and handling (sub-μm sized specimens, control and measurement of sub-μN loads and sub-μm displacements over long periods and various temperatures [1]. A variety of experimental setups have been reported each having their pros and cons. One example is a micro-tensile tester with an ingenious electro-static specimen gripping system [2] aiding simple specimen design giving good results at μN and sub-μm levels, but without in-situ full-field observations. Other progressive examples assimilate the specimen, MEMS actuators and load cells on a single chip [3,4] yielding significant results at nN and nm levels with in-situ TEM/SEM observability, though not without complications: complex load actuator/sensor calibration per chip, measures to reduce fabrication failure and unfeasible cofabrication on wafers with commercial metallic MEMS. This work aims to overcome these drawbacks by developing experimental methods with high sensitivity, precision and in-situ full-field observation capabilities. Moreover, these should be applicable to simple free-standing metallic MEMS that can be co-fabricated with commercial devices. These methods will then serve in systematic studies into size-effects in time-dependent material properties. First a numeric-experimental method is developed. It characterizes bending deformation of onwafer μm-sized aluminum cantilevers. A specially designed micro-clamp is used to mechanically apply a constant precise deflection of the beam (zres <50 nm for a prolonged period, see fig. 1. After this period, the deflection by the micro-clamp is removed. Full-field height maps with the ensuing deformation are measured over time with confocal optical profilometry (COP. This yields the tip deflection as function of time with ~3 nm precision, see fig.2. To extract material
Time-dependent radiation dose estimations during interplanetary space flights
Dobynde, M. I.; Shprits, Y.; Drozdov, A.
2015-12-01
Time-dependent radiation dose estimations during interplanetary space flights 1,2Dobynde M.I., 2,3Drozdov A.Y., 2,4Shprits Y.Y.1Skolkovo institute of science and technology, Moscow, Russia 2University of California Los Angeles, Los Angeles, USA 3Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics, Moscow, Russia4Massachusetts Institute of Technology, Cambridge, USASpace radiation is the main restriction for long-term interplanetary space missions. It induces degradation of external components and propagates inside providing damage to internal environment. Space radiation particles and induced secondary particle showers can lead to variety of damage to astronauts in short- and long- term perspective. Contribution of two main sources of space radiation- Sun and out-of-heliosphere space varies in time in opposite phase due to the solar activity state. Currently the only habituated mission is the international interplanetary station that flights on the low Earth orbit. Besides station shell astronauts are protected with the Earth magnetosphere- a natural shield that prevents significant damage for all humanity. Current progress in space exploration tends to lead humanity out of magnetosphere bounds. With the current study we make estimations of spacecraft parameters and astronauts damage for long-term interplanetary flights. Applying time dependent model of GCR spectra and data on SEP spectra we show the time dependence of the radiation in a human phantom inside the shielding capsule. We pay attention to the shielding capsule design, looking for an optimal geometry parameters and materials. Different types of particles affect differently on the human providing more or less harm to the tissues. Incident particles provide a large amount of secondary particles while propagating through the shielding capsule. We make an attempt to find an optimal combination of shielding capsule parameters, namely material and thickness, that will effectively decrease
Timing-dependent actions of NGF required for cell differentiation.
Directory of Open Access Journals (Sweden)
Jaehoon Chung
Full Text Available BACKGROUND: Continuous NGF stimulation induces PC12 cell differentiation. However, why continuous NGF stimulation is required for differentiation is unclear. In this study, we investigated the underlying mechanisms of the timing-dependent requirement of NGF action for cell differentiation. METHODOLOGY/PRINCIPAL FINDINGS: To address the timing-dependency of the NGF action, we performed a discontinuous stimulation assay consisting of a first transient stimulation followed by an interval and then a second sustained stimulation and quantified the neurite extension level. Consequently, we observed a timing-dependent action of NGF on cell differentiation, and discontinuous NGF stimulation similarly induced differentiation. The first stimulation did not induce neurite extension, whereas the second stimulation induced fast neurite extension; therefore, the first stimulation is likely required as a prerequisite condition. These observations indicate that the action of NGF can be divided into two processes: an initial stimulation-driven latent process and a second stimulation-driven extension process. The latent process appears to require the activities of ERK and transcription, but not PI3K, whereas the extension-process requires the activities of ERK and PI3K, but not transcription. We also found that during the first stimulation, the activity of NGF can be replaced by PACAP, but not by insulin, EGF, bFGF or forskolin; during the second stimulation, however, the activity of NGF cannot be replaced by any of these stimulants. These findings allowed us to identify potential genes specifically involved in the latent process, rather than in other processes, using a microarray. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that NGF induces the differentiation of PC12 cells via mechanically distinct processes: an ERK-driven and transcription-dependent latent process, and an ERK- and PI3K-driven and transcription-independent extension process.
Time-Dependent Neutron and Photon Dose-Field Analysis
Energy Technology Data Exchange (ETDEWEB)
Wooten, Hasani Omar [Georgia Inst. of Technology, Atlanta, GA (United States)
2005-08-01
A unique tool is developed that allows the user to model physical representations of complicated glovebox facilities in two dimensions and determine neutral-particle flux and ambient dose-equivalent fields throughout that geometry. The Pandemonium code, originally designed to determine flux and dose-rates only, is improved to include realistic glovebox geometries, time-dependent source and detector positions, time-dependent shielding thickness calculations, time-integrated doses, a representative criticality accident scenario based on time-dependent reactor kinetics, and more rigorous photon treatment. A primary benefit of this work has been an extensive analysis and improvement of the photon model that is not limited to the application described in this thesis. The photon model has been extended in energy range to 10 MeV to include photons from fission and new photon buildup factors have been included that account for the effects of photon buildup at slant-path thicknesses as a function of angle, where the mean free path thickness has been preserved. The overall system of codes is user-friendly and it is directly applicable to facilities such as the plutonium facility at Los Alamos National Laboratory, where high-intensity neutron and photon emitters are regularly used. The codes may be used to determine a priori doses for given work scenarios in an effort to supply dose information to process models which will in turn assist decision makers on ensuring as low as reasonably achievable (ALARA) compliance. In addition, coupling the computational results of these tools with the process model visualization tools will help to increase worker safety and radiological safety awareness.
TIME-DEPENDENT MODELS OF FLARES FROM SAGITTARIUS A*
International Nuclear Information System (INIS)
Dodds-Eden, Katie; Genzel, Reinhard; Gillessen, Stefan; Eisenhauer, Frank; Sharma, Prateek; Quataert, Eliot; Porquet, Delphine
2010-01-01
The emission from Sgr A*, the supermassive black hole in the Galactic Center, shows order of magnitude variability ('flares') a few times a day that is particularly prominent in the near-infrared (NIR) and X-rays. We present a time-dependent model for these flares motivated by the hypothesis that dissipation of magnetic energy powers the flares. We show that episodic magnetic reconnection can occur near the last stable circular orbit in time-dependent magnetohydrodynamic simulations of black hole accretion-the timescales and energetics of these events are broadly consistent with the flares from Sgr A*. Motivated by these results, we present a spatially one-zone time-dependent model for the electron distribution function in flares, including energy loss due to synchrotron cooling and adiabatic expansion. Synchrotron emission from transiently accelerated particles can explain the NIR/X-ray light curves and spectra of a luminous flare observed on 2007 April 4. A significant decrease in the magnetic field strength during the flare (coincident with the electron acceleration) is required to explain the simultaneity and symmetry of the simultaneous light curves. Our models predict that the NIR and X-ray spectral indices are related by Δα ≅ 0.5 (where νF ν ∝ ν α ) and that there is only modest variation in the spectral index during flares. We also explore implications of this model for longer wavelength (radio-submillimeter) emission seemingly associated with X-ray and NIR flares; we argue that a few hour decrease in the submillimeter emission is a more generic consequence of large-scale magnetic reconnection than delayed radio emission from adiabatic expansion.
Filter frequency response of time dependent signal using Laplace transform
Energy Technology Data Exchange (ETDEWEB)
Shestakov, Aleksei I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2018-01-16
We analyze the effect a filter has on a time dependent signal x(t). If X(s) is the Laplace transform of x and H (s) is the filter Transfer function, the response in frequency space is X (s) H (s). Consequently, in real space, the response is the convolution (x*h) (t), where hi is the Laplace inverse of H. Effects are analyzed and analytically for functions such as (t/t_{c})^{2} e^{-t/t$_c$}, where t_{c} = const. We consider lowpass, highpass and bandpass filters.
Shapes and dynamics from the time-dependent mean field
International Nuclear Information System (INIS)
Stevenson, P.D.; Goddard, P.M.; Rios, A.
2015-01-01
Explaining observed properties in terms of underlying shape degrees of freedom is a well-established prism with which to understand atomic nuclei. Self-consistent mean-field models provide one tool to understand nuclear shapes, and their link to other nuclear properties and observables. We present examples of how the time-dependent extension of the mean-field approach can be used in particular to shed light on nuclear shape properties, particularly looking at the giant resonances built on deformed nuclear ground states, and at dynamics in highly-deformed fission isomers. Example calculations are shown of 28 Si in the first case, and 240 Pu in the latter case
Time-Dependent Mean-Field Games with Logarithmic Nonlinearities
Gomes, Diogo A.
2015-10-06
In this paper, we prove the existence of classical solutions for time-dependent mean-field games with a logarithmic nonlinearity and subquadratic Hamiltonians. Because the logarithm is unbounded from below, this nonlinearity poses substantial mathematical challenges that have not been addressed in the literature. Our result is proven by recurring to a delicate argument which combines Lipschitz regularity for the Hamilton-Jacobi equation with estimates for the nonlinearity in suitable Lebesgue spaces. Lipschitz estimates follow from an application of the nonlinear adjoint method. These are then combined with a priori bounds for solutions of the Fokker-Planck equation and a concavity argument for the nonlinearity.
Time-dependent density-functional theory concepts and applications
Ullrich, Carsten A
2011-01-01
Time-dependent density-functional theory (TDDFT) describes the quantum dynamics of interacting electronic many-body systems formally exactly and in a practical and efficient manner. TDDFT has become the leading method for calculating excitation energies and optical properties of large molecules, with accuracies that rival traditional wave-function based methods, but at a fraction of the computational cost.This book is the first graduate-level text on the concepts and applications of TDDFT, including many examples and exercises, and extensive coverage of the literature. The book begins with a s
The time-dependent prize-collecting arc routing problem
DEFF Research Database (Denmark)
Black, Dan; Eglese, Richard; Wøhlk, Sanne
2013-01-01
A new problem is introduced named the Time-Dependent Prize-Collecting Arc Routing Problem (TD-PARP). It is particularly relevant to situations where a transport manager has to choose between a number of full truck load pick-ups and deliveries on a road network where travel times change...... with the time of day. Two metaheuristic algorithms, one based on Variable Neighborhood Search and one based on Tabu Search, are proposed and tested for a set of benchmark problems, generated from real road networks and travel time information. Both algorithms are capable of finding good solutions, though...
Evaluation of design safety factors for time-dependent buckling
International Nuclear Information System (INIS)
Stone, C.M.; Nickell, R.E.
1977-02-01
The ASME Boiler and Pressure Vessel Code rules concerning time-dependent (creep) buckling for Class 1 nuclear components have recently been changed. Previous requirements for a factor of ten on service life have been replaced with a factor of safety of 1.5 on loading for load-controlled buckling. This report examines the supposed equivalence of the two rules from the standpoint of materials behavior--specifically, the secondary creep strain rate exponent. The comparison is made using results obtained numerically for an axially-loaded, cylindrical shell with varying secondary creep exponents. A computationally efficient scheme for analyzing creep buckling problems is also presented
Time dependent deformation in prestressed concrete girder: Measurement and prediction
Sokal, Y. J.; Tyrer, P.
1981-11-01
Prestressed concrete girders which are intended for composite construction in bridges and other similar structures are often stored unloaded for some time before being placed in their final positions where top deck is being poured over. During that free storage the girders are subjected to creep and shrinkage which manifests itself through increased upward deformation usually defined as camber. The analytical estimation of this deformation is important as it controls the minimum thickness of the top deck. An attempt was made to correlate on site measurements with continuous computer modeling of the time-dependent behavior using data from recently adopted international standard for concrete structures.
Time dependent modeling of non-LTE plasmas: Final report
International Nuclear Information System (INIS)
1988-06-01
During the period of performance of this contract Science Applications International Corporation (SAIC) has aided Lawrence Livermore National Laboratory (LLNL) in the development of an unclassified modeling tool for studying time evolution of high temperature ionizing and recombining plasmas. This report covers the numerical code developed, (D)ynamic (D)etailed (C)onfiguration (A)ccounting (DDCA), which was written to run on the National Magnetic Fusion Energy Computing Center (NMFECC) network as well as the classified Livermore Computer Center (OCTOPUS) network. DDCA is a One-Dimensional (1D) time dependent hydrodynamic model which makes use of the non-LTE detailed atomic physics ionization model DCA. 5 refs
Scattering theory for explicitely time-dependent interactions
International Nuclear Information System (INIS)
Perusch, M.
1982-01-01
Multiple ionization of hydrogen atoms has got increased attention in recent years in connection with high-power lasers. Due to the strong external electromagnetic fields, perturbation theory is no longer valid. The expression for the multiple ionization probability contains the projections of the time-dependent Hamilton operators and the Moeller operators. The main point of the present work is a proof of existence and completeness of the Moeller operators. The proof of existence and completeness is given. The final chapter contains a physical interpretation and discussion of the multiple ionization probability. (G.Q.)
Jig For Compression-Relaxation Tests Of Plastics
Shelley, Richard M.; Daniel, James A.; Tapphorn, Ralph M.
1991-01-01
Improved jig facilitates tests of long-term compression-relaxation properties of plastics. Holds specimen in compression when removed from compression-testing machine, yet allows compression force on specimen to be measured when on machine. Useful in quantifying some of time-dependent properties of polymers, in investigations of effects of aging, and in ascertaining service lifetimes of polymeric components.
Interacting particle systems in time-dependent geometries
International Nuclear Information System (INIS)
Ali, A; Ball, R C; Grosskinsky, S; Somfai, E
2013-01-01
Many complex structures and stochastic patterns emerge from simple kinetic rules and local interactions, and are governed by scale invariance properties in combination with effects of the global geometry. We consider systems that can be described effectively by space–time trajectories of interacting particles, such as domain boundaries in two-dimensional growth or river networks. We study trajectories embedded in time-dependent geometries, and the main focus is on uniformly expanding or decreasing domains for which we obtain an exact mapping to simple fixed domain systems while preserving the local scale invariance properties. This approach was recently introduced in Ali et al (2013 Phys. Rev. E 87 020102(R)) and here we provide a detailed discussion on its applicability for self-affine Markovian models, and how it can be adapted to self-affine models with memory or explicit time dependence. The mapping corresponds to a nonlinear time transformation which converges to a finite value for a large class of trajectories, enabling an exact analysis of asymptotic properties in expanding domains. We further provide a detailed discussion of different particle interactions and generalized geometries. All our findings are based on exact computations and are illustrated numerically for various examples, including Lévy processes and fractional Brownian motion. (paper)
Entanglement entropy with a time-dependent Hamiltonian
Sivaramakrishnan, Allic
2018-03-01
The time evolution of entanglement tracks how information propagates in interacting quantum systems. We study entanglement entropy in CFT2 with a time-dependent Hamiltonian. We perturb by operators with time-dependent source functions and use the replica trick to calculate higher-order corrections to entanglement entropy. At first order, we compute the correction due to a metric perturbation in AdS3/CFT2 and find agreement on both sides of the duality. Past first order, we find evidence of a universal structure of entanglement propagation to all orders. The central feature is that interactions entangle unentangled excitations. Entanglement propagates according to "entanglement diagrams," proposed structures that are motivated by accessory spacetime diagrams for real-time perturbation theory. To illustrate the mechanisms involved, we compute higher-order corrections to free fermion entanglement entropy. We identify an unentangled operator, one which does not change the entanglement entropy to any order. Then, we introduce an interaction and find it changes entanglement entropy by entangling the unentangled excitations. The entanglement propagates in line with our conjecture. We compute several entanglement diagrams. We provide tools to simplify the computation of loop entanglement diagrams, which probe UV effects in entanglement propagation in CFT and holography.
FRANTIC: a computer code for time dependent unavailability analysis
International Nuclear Information System (INIS)
Vesely, W.E.; Goldberg, F.F.
1977-03-01
The FRANTIC computer code evaluates the time dependent and average unavailability for any general system model. The code is written in FORTRAN IV for the IBM 370 computer. Non-repairable components, monitored components, and periodically tested components are handled. One unique feature of FRANTIC is the detailed, time dependent modeling of periodic testing which includes the effects of test downtimes, test overrides, detection inefficiencies, and test-caused failures. The exponential distribution is used for the component failure times and periodic equations are developed for the testing and repair contributions. Human errors and common mode failures can be included by assigning an appropriate constant probability for the contributors. The output from FRANTIC consists of tables and plots of the system unavailability along with a breakdown of the unavailability contributions. Sensitivity studies can be simply performed and a wide range of tables and plots can be obtained for reporting purposes. The FRANTIC code represents a first step in the development of an approach that can be of direct value in future system evaluations. Modifications resulting from use of the code, along with the development of reliability data based on operating reactor experience, can be expected to provide increased confidence in its use and potential application to the licensing process
Time-dependent strains and stresses in a pumpkin balloon
Gerngross, T.; Xu, Y.; Pellegrino, S.
This paper presents a study of pumpkin-shaped superpressure balloons consisting of gores made from a thin polymeric film attached to high stiffness meridional tendons This type of design is being used for the NASA ULDB balloons The gore film shows considerable time-dependent stress relaxation whereas the behaviour of the tendons is essentially time-independent Upon inflation and pressurization the instantaneous i e linear-elastic strain and stress distributions in the film show significantly higher values in the meridional direction However over time and due to the biaxial visco-elastic stress relaxation of the the gore material the em hoop strains increase and the em meridional stresses decrease whereas the em remaining strain and stress components remain substantially unchanged These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission both in terms of the material performance and the overall stability of the shape of the balloon An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter 48 gore pumpkin balloon is presented The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature The results show good correlation with a numerical study using the ABAQUS finite-element package that includes a widely used model of
Time-dependent patterns in quasivertical cylindrical binary convection
Alonso, Arantxa; Mercader, Isabel; Batiste, Oriol
2018-02-01
This paper reports on numerical investigations of the effect of a slight inclination α on pattern formation in a shallow vertical cylindrical cell heated from below for binary mixtures with a positive value of the Soret coefficient. By using direct numerical simulation of the three-dimensional Boussinesq equations with Soret effect in cylindrical geometry, we show that a slight inclination of the cell in the range α ≈0.036 rad =2∘ strongly influences pattern selection. The large-scale shear flow (LSSF) induced by the small tilt of gravity overcomes the squarelike arrangements observed in noninclined cylinders in the Soret regime, stratifies the fluid along the direction of inclination, and produces an enhanced separation of the two components of the mixture. The competition between shear effects and horizontal and vertical buoyancy alters significantly the dynamics observed in noninclined convection. Additional unexpected time-dependent patterns coexist with the basic LSSF. We focus on an unsual periodic state recently discovered in an experiment, the so-called superhighway convection state (SHC), in which ascending and descending regions of fluid move in opposite directions. We provide numerical confirmation that Boussinesq Navier-Stokes equations with standard boundary conditions contain the essential ingredients that allow for the existence of such a state. Also, we obtain a persistent heteroclinic structure where regular oscillations between a SHC pattern and a state of nearly stationary longitudinal rolls take place. We characterize numerically these time-dependent patterns and investigate the dynamics around the threshold of convection.
Time-dependent penetrative mixed convection in a porous layer
International Nuclear Information System (INIS)
Jendoubi, S.; Kulacki, F.A.
1997-01-01
In the last few decades, heat and mass transfer in porous media have been studied extensively by many investigators. The main motivations behind these studies were the wide range of applications and the interaction of multiple processes. Examples include geothermal energy production, drying of porous media, high level nuclear waste disposal, and energy-related engineering technologies. Here, a general two-dimensional, time-dependent model has been developed to investigate the transfer of heat and mass in a liquid saturated porous layer locally heated from above. Both free and mixed convection are considered. For mixed convection an eternal flow is assumed to enter the two-dimensional domain in the horizontal direction. At a finite segment of the top wall, two types of heat sources are applied: a constant flux heat source and a time varying heat, constant flux source. The latter is a representation of heat released by spent nuclear fuel in a mined repository located above the layer. Both time-dependent and steady solutions of the flow and temperature fields are obtained. For natural convection, the effects of Rayleigh number on the Nusselt number are obtained. For mixed convection, the effects of both Rayleigh and Peclet numbers are studied. In addition, the effects of the aspect ratio, as well as the length of the heated zone are examined
Time Dependent Relative Risks in Life Insurance Medical Underwriting.
Kneepkens, Robert F
2015-01-01
Introduction .- Life insurance medicine focuses on mortality hazards in specified periods. People are free to insure their lives for shorter or longer terms. Because the chosen terms range from 1 year to a life time, life insurers have to take into account the fact that the predictive value of risk indicators can and will change over time. The time a risk indicator keeps its predictive value, will be dependent on its biological effects, volatility, and treatability. For a given applicant this implies that the relative hazard (RH) calculated for his/her medical condition should be dependent on the term of the insurance. The main objective of this study is to determine if some commonly used risk indicators - previously used to study age dependency of relative risks - have a predictive value that increases with the observation period. (1) Methods .- This population-based cohort study uses NHANES-data files from the Third National Health and Nutrition Examination Survey (NHANES III) and the NHANES Linked Mortality Files 2010. Only participants aged 20 to 69 that were examined in mobile examination centers, without a history of some prevalent high risk diseases were included. The observed mortality was compared to the expected mortality in a Generalized Linear Model (GLM) with Poisson error structure with two reference populations, which both can serve as preferred reference for life insurers: The United States Life Tables 2008 (USLT) and the 2008 Valuation Basic Tables (VBT) based on the insured population of 35 US Life insurers. The time dependency of the RHs of the systolic blood pressure (SBP), aspartate aminotransferase (ASAT), lactate dehydrogenase (LDH), serum albumin and albuminuria, was assessed, with correction for ethnicity, household income, history of diabetes mellitus, BMI and serum cholesterol. To be able to compare the results with the results of the Age Dependency Study (ADS), the same data, risk indicators, statistical analysis method, and the
Time-dependence in relativistic collisionless shocks: theory of the variable
Energy Technology Data Exchange (ETDEWEB)
Spitkovsky, A
2004-02-05
We describe results from time-dependent numerical modeling of the collisionless reverse shock terminating the pulsar wind in the Crab Nebula. We treat the upstream relativistic wind as composed of ions and electron-positron plasma embedded in a toroidal magnetic field, flowing radially outward from the pulsar in a sector around the rotational equator. The relativistic cyclotron instability of the ion gyrational orbit downstream of the leading shock in the electron-positron pairs launches outward propagating magnetosonic waves. Because of the fresh supply of ions crossing the shock, this time-dependent process achieves a limit-cycle, in which the waves are launched with periodicity on the order of the ion Larmor time. Compressions in the magnetic field and pair density associated with these waves, as well as their propagation speed, semi-quantitatively reproduce the behavior of the wisp and ring features described in recent observations obtained using the Hubble Space Telescope and the Chandra X-Ray Observatory. By selecting the parameters of the ion orbits to fit the spatial separation of the wisps, we predict the period of time variability of the wisps that is consistent with the data. When coupled with a mechanism for non-thermal acceleration of the pairs, the compressions in the magnetic field and plasma density associated with the optical wisp structure naturally account for the location of X-ray features in the Crab. We also discuss the origin of the high energy ions and their acceleration in the equatorial current sheet of the pulsar wind.
On the time-dependent radiative transfer in photospheric plasmas
International Nuclear Information System (INIS)
Schultz, A.L.; Schweizer, M.A.
1987-01-01
The paper is the second of a series investigating time-dependent radiative transfer processes of x-rays in photospheric plasmas. A quantitative discussion is presented of analytical results derived earlier along with a comparison with Monte Carlo simulations. The geometry considered is a homogeneous plasma ball with radius R. The source is concentrated on a concentric shell with radius r 0 < R. Point sources at the centre of the ball or semi-infinite geometries are discussed as limiting cases. Diffusion profiles are given for every scattering order and the total profile appears as the sum over these individual profiles. The comparison with Monte Carlo results is used to test the accuracy of the analytical approach and to adjust the time profiles of the first few scattering orders. The analytical theory yields good results over a wide range of situations. (author)
Parametric Resonance in a Time-Dependent Harmonic Oscillator
Directory of Open Access Journals (Sweden)
P. N. Nesterov
2013-01-01
Full Text Available In this paper, we study the phenomenon of appearance of new resonances in a timedependent harmonic oscillator under an oscillatory decreasing force. The studied equation belongs to the class of adiabatic oscillators and arises in connection with the spectral problem for the one-dimensional Schr¨odinger equation with Wigner–von Neumann type potential. We use a specially developed method for asymptotic integration of linear systems of differential equations with oscillatory decreasing coefficients. This method uses the ideas of the averaging method to simplify the initial system. Then we apply Levinson’s fundamental theorem to get the asymptotics for its solutions. Finally, we analyze the features of a parametric resonance phenomenon. The resonant frequencies of perturbation are found and the pointwise type of the parametric resonance phenomenon is established. In conclusion, we construct an example of a time-dependent harmonic oscillator (adiabatic oscillator in which the parametric resonances, mentioned in the paper, may occur.
Fundamental Constants in Physics and their Time Dependence
CERN. Geneva
2008-01-01
In the Standard Model of Particle Physics we are dealing with 28 fundamental constants. In the experiments these constants can be measured, but theoretically they are not understood. I will discuss these constants, which are mostly mass parameters. Astrophysical measurements indicate that the finestructure constant is not a real constant, but depends on time. Grand unification then implies also a time variation of the QCD scale. Thus the masses of the atomic nuclei and the magnetic moments of the nuclei will depend on time. I proposed an experiment, which is currently done by Prof. Haensch in Munich and his group. The first results indicate a time dependence of the QCD scale. I will discuss the theoretical implications.
Development of constitutive model for composites exhibiting time dependent properties
International Nuclear Information System (INIS)
Pupure, L; Joffe, R; Varna, J; Nyström, B
2013-01-01
Regenerated cellulose fibres and their composites exhibit highly nonlinear behaviour. The mechanical response of these materials can be successfully described by the model developed by Schapery for time-dependent materials. However, this model requires input parameters that are experimentally determined via large number of time-consuming tests on the studied composite material. If, for example, the volume fraction of fibres is changed we have a different material and new series of experiments on this new material are required. Therefore the ultimate objective of our studies is to develop model which determines the composite behaviour based on behaviour of constituents of the composite. This paper gives an overview of problems and difficulties, associated with development, implementation and verification of such model
Monolayer phosphorene under time-dependent magnetic field
Nascimento, J. P. G.; Aguiar, V.; Guedes, I.
2018-02-01
We obtain the exact wave function of a monolayer phosphorene under a low-intensity time-dependent magnetic field using the dynamical invariant method. We calculate the quantum-mechanical energy expectation value and the transition probability for a constant and an oscillatory magnetic field. For the former we observe that the Landau level energy varies linearly with the quantum numbers n and m and the magnetic field intensity B0. No transition takes place. For the latter, we observe that the energy oscillates in time, increasing linearly with the Landau level n and m and nonlinearly with the magnetic field. The (k , l) →(n , m) transitions take place only for l = m. We investigate the (0,0) →(n , 0) and (1 , l) and (2 , l) probability transitions.
Two-dimensional time dependent Riemann solvers for neutron transport
International Nuclear Information System (INIS)
Brunner, Thomas A.; Holloway, James Paul
2005-01-01
A two-dimensional Riemann solver is developed for the spherical harmonics approximation to the time dependent neutron transport equation. The eigenstructure of the resulting equations is explored, giving insight into both the spherical harmonics approximation and the Riemann solver. The classic Roe-type Riemann solver used here was developed for one-dimensional problems, but can be used in multidimensional problems by treating each face of a two-dimensional computation cell in a locally one-dimensional way. Several test problems are used to explore the capabilities of both the Riemann solver and the spherical harmonics approximation. The numerical solution for a simple line source problem is compared to the analytic solution to both the P 1 equation and the full transport solution. A lattice problem is used to test the method on a more challenging problem
Stirring inertia in time-dependent low Reynolds number flows
Yecko, Philip; Luchtenburg, Dirk Martin (Mark); Forgoston, Eric; Billings, Lora
2017-11-01
Diagnosis of a kinematic flow and its transport using Lagrangian coherent structures (LCS) based on finite-time Lyapunov exponents (FTLE) neglects dynamical effects, such as pressure, as well as dynamically important constraints, such as potential vorticity conservation. Chaotic advection, on the other hand, often neglects inertial effects, which are prominent in LCS. We present results for very low Reynolds number laboratory flows, including a Stokes double gyre, vertically sheared strain and a four roll mill. Images of tracer (dye) and FTLE fields computed from particle image velocimetry (PIV) reveal complementary sets of flow structures, giving a more complete picture of transport in these flows. We confirm by computing FTLE of an exact time-dependent Stokes flow solution and present implications of these findings for inertial object transport in flows. Support of NSF DMS-1418956 is gratefully acknoweldged.
Time-Dependent Increase in Network Response to Stimulation.
Directory of Open Access Journals (Sweden)
Franz Hamilton
Full Text Available In vitro neuronal cultures have become a popular method with which to probe network-level neuronal dynamics and phenomena in controlled laboratory settings. One of the key dynamics of interest in these in vitro studies has been the extent to which cultured networks display properties indicative of learning. Here we demonstrate the effects of a high frequency electrical stimulation signal in training cultured networks of cortical neurons. Networks receiving this training signal displayed a time-dependent increase in the response to a low frequency probing stimulation, particularly in the time window of 20-50 ms after stimulation. This increase was found to be statistically significant as compared to control networks that did not receive training. The timing of this increase suggests potentiation of synaptic mechanisms. To further investigate this possibility, we leveraged the powerful Cox statistical connectivity method as previously investigated by our group. This method was used to identify and track changes in network connectivity strength.
Fuzzy economic production quantity model with time dependent demand rate
Directory of Open Access Journals (Sweden)
Susanta Kumar Indrajitsingha
2016-09-01
Full Text Available Background: In this paper, an economic production quantity model is considered under a fuzzy environment. Both the demand cost and holding cost are considered using fuzzy pentagonal numbers. The Signed Distance Method is used to defuzzify the total cost function. Methods: The results obtained by these methods are compared with the help of a numerical example. Sensitivity analysis is also carried out to explore the effect of changes in the values of some of the system parameters. Results and conclusions: The fuzzy EPQ model with time dependent demand rate was presented together with the possible implementation. The behavior of changes in parameters was analyzed. The possible extension of the implementation of this method was presented.
Observation of Broadband Time-Dependent Rabi Shifting in Microplasmas
International Nuclear Information System (INIS)
Compton, Ryan; Filin, Alex; Romanov, Dmitri A.; Levis, Robert J.
2009-01-01
Coherent broadband radiation in the form of Rabi sidebands is observed when a ps probe laser propagates through a weakly ionized, electronically excited microplasma generated in the focus of an intense pump beam. The sidebands arise from the interaction of the probe beam with pairs of excited states of a constituent neutral atom via the probe-induced Rabi oscillation. Sideband shifting of >90 meV from the probe carrier frequency results in an effective bandwidth of 200 meV. The sidebands are controlled by the intensity and temporal profile of the probe pulse; with amplitude and shift in agreement with the predictions of a time-dependent generalized Rabi cycling model.
Time-Dependent Topology of Railway Prestressed Concrete Sleepers
Li, Dan; Ngamkhanong, Chayut; Kaewunruen, Sakdirat
2017-10-01
The railway sleepers are very important component of railway track structure. The sleepers can be manufactured by using timber, concrete, steel or other engineered materials. Nowadays, prestressed concrete has become most commonly used type of sleepers. Prestressed concrete sleepers have longer life-cycle and lower maintenance cost than reinforced concrete sleepers. They are expected to withstand high dynamic loads and harsh environments. However, durability and long-term performance of prestressed concrete sleepers are largely dependent on creep and shrinkage responses. This study investigates the long-term behaviours of prestressed concrete sleepers and proposes the shortening and deflection diagrams. Comparison between design codes of Eurocode 2 and AS3600-2009 provides the insight into the time-dependent performance of prestressed concrete sleepers. The outcome of this paper will improve the rail maintenance and inspection criteria in order to establish appropriate sensible remote track condition monitor network in practice.
Origin of the spike-timing-dependent plasticity rule
Cho, Myoung Won; Choi, M. Y.
2016-08-01
A biological synapse changes its efficacy depending on the difference between pre- and post-synaptic spike timings. Formulating spike-timing-dependent interactions in terms of the path integral, we establish a neural-network model, which makes it possible to predict relevant quantities rigorously by means of standard methods in statistical mechanics and field theory. In particular, the biological synaptic plasticity rule is shown to emerge as the optimal form for minimizing the free energy. It is further revealed that maximization of the entropy of neural activities gives rise to the competitive behavior of biological learning. This demonstrates that statistical mechanics helps to understand rigorously key characteristic behaviors of a neural network, thus providing the possibility of physics serving as a useful and relevant framework for probing life.
Time-dependent reliability analysis and condition assessment of structures
International Nuclear Information System (INIS)
Ellingwood, B.R.
1997-01-01
Structures generally play a passive role in assurance of safety in nuclear plant operation, but are important if the plant is to withstand the effect of extreme environmental or abnormal events. Relative to mechanical and electrical components, structural systems and components would be difficult and costly to replace. While the performance of steel or reinforced concrete structures in service generally has been very good, their strengths may deteriorate during an extended service life as a result of changes brought on by an aggressive environment, excessive loading, or accidental loading. Quantitative tools for condition assessment of aging structures can be developed using time-dependent structural reliability analysis methods. Such methods provide a framework for addressing the uncertainties attendant to aging in the decision process
Spin-orbit torque induced spike-timing dependent plasticity
Energy Technology Data Exchange (ETDEWEB)
Sengupta, Abhronil, E-mail: asengup@purdue.edu; Al Azim, Zubair; Fong, Xuanyao; Roy, Kaushik [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)
2015-03-02
Nanoelectronic devices that mimic the functionality of synapses are a crucial requirement for performing cortical simulations of the brain. In this work, we propose a ferromagnet-heavy metal heterostructure that employs spin-orbit torque to implement spike-timing dependent plasticity. The proposed device offers the advantage of decoupled spike transmission and programming current paths, thereby leading to reliable operation during online learning. Possible arrangement of such devices in a crosspoint architecture can pave the way for ultra-dense neural networks. Simulation studies indicate that the device has the potential of achieving pico-Joule level energy consumption (maximum 2 pJ per synaptic event) which is comparable to the energy consumption for synaptic events in biological synapses.
Time-Dependent Rock Failure in a Heterogeneous Limestone
Roth, K.; Kemeny, J.
2015-12-01
Time-dependent rock failure is an important aspect in the analysis of long-term rock stability for slopes, dam and bridge foundations, and underground storage facilities. An on-going project at the University of Arizona is using Kartchner Caverns in Benson, Arizona as a natural analog to study such failure by reconstructing the process of natural cave breakdown with subcritical crack growth modeling. Breakdown is thought to occur along joints through the time-dependent failure of rock bridges: sections of intact rock separating discontinuities in a rock mass. The Escabrosa limestone composing the caverns ranges from a more homogenous, even-grained texture to a more heterogeneous texture consisting of coarse-grained veins and solution cavities set in a fine-grained matrix. To determine if the veined regions are more susceptible to fracturing and act as the nuclei of rock bridge failure, fracture toughness tests were conducted for both textures. The subcritical crack growth parameters were calculated using the constant stress-rate method. Results indicate that the more heterogeneous limestone has a higher fracture strength, fracture toughness, and subcritical crack growth index n than the more homogeneous limestone. This is in agreement with previous studies which found that a more complex and heterogeneous microstructure produces a larger microcrack process zone, leading to higher fracture energies and lower susceptibility to subcritical crack growth. Thus, despite their solution cavities, the calcite veins do not localize failure or act as planes of weakness; instead, rock bridges fail through the more homogeneous limestone matrix.
New applications with time-dependent thermochemical simulation
Energy Technology Data Exchange (ETDEWEB)
Koukkari, P. [VTT Chemical Technology, Espoo (Finland); Laukkanen, L. [VTT Automation, Espoo (Finland); Penttilae, K. [Kemira Engineering Oy, Helsinki (Finland)
1996-12-31
A new method (RATEMIX) to calculate multicomponent chemical reaction mixtures as a series of sequential thermochemical states was recently introduced. The procedure combines multicomponent thermodynamics with chemical kinetics and may be used to simulate the multicomponent reactors as a thermochemical natural process. The method combines the desired reaction rates sequentially with constrained Gibbs energy minimization. The reactant concentrations are determined by the experimental (Arrhenius) rate laws. During the course of the given reaction the subsequent side reactions are supposed to occur reversibly. At every sequential stage of the given reaction the temperature and composition of the reaction mixture are calculated by a thermodynamic subroutine, which minimizes the Gibbs energy of the system and takes into account the heat transfer between the system and its surroundings. The extents of reaction are included as algorithmic constraints in the Gibbs energy minimization procedure. Initially, the reactants are introduced to the system as inert copies to match both the mass and energy balance of the reactive system. During the calculation the copies are sequentially interchanged to the actual reactants which allows one to simulate the time-dependent reaction route by using the thermochemical procedure. For each intermediate stage, the temperature and composition are calculated and as well numerical estimates of the thermodynamic functions are obtained. The method is applicable in processes where the core thermodynamic and kinetic data of the system are known and the time-dependent heat transfer data can either be measured or estimated by calculation. The method has been used to simulate e.g. high temperature flame reactions, zinc vapour oxidation and a counter-current rotary drum with chemical reactions. The procedure has today been tested with SOLGASMIX, CHEMSAGE and HSC programs. (author)
Time-dependent degenerative transformations in the lipidome of chalazia.
Wojtowicz, Jadwiga C; Butovich, Igor A; McMahon, Anne; Hogan, Robert N; Itani, Kamel M; Mancini, Ronald; Molai, Mike; Linsenbardt, Emily
2014-10-01
The aim of this prospective study was to conduct histopathologic and lipidomic analyses of chalazia, in order to evaluate time-dependent changes in the lesion. Samples of surgically excised chalazia were collected over a period of 12 months from 10 patients (mean age 41 years; range, 23-58) with clinically diagnosed chalazia, who underwent scheduled surgery. The ages of chalazia varied from 2 to 28 weeks. To confirm the clinical diagnoses, the morphology of collected tissue samples was evaluated histologically after hematoxylin and eosin staining. The lipids from individual chalazia were analyzed by high-performance liquid chromatography-mass spectrometry and compared with authentic lipid standards and with the lipids of meibum collected from normal controls. We observed gradual, lesion age-dependent transformation of the lipidome of chalazia from an almost normal meibum-like composition to a very different kind of lipidome. A rapid initial increase in the free cholesterol content was followed by a gradual replacement of extremely long chain meibomian-type lipids with a mixture of shorter-chain cholesteryl esters of the C14-C18 family, triacylglycerols, ceramides, phospholipids and sphingomyelins. In addition, a rapid disappearance of wax esters and cholesteryl esters of (1-O)-acyl-omega-hydroxy fatty acids from the lipidome of aging chalazia was observed. Our results are indicative of dramatic, time-dependent changes in the lesion that may involve cholesterol as a trigger and/or a marker of subsequent degeneration of the meibomian lipidome. We hypothesize that early inhibition of these transformations may be useful in reversing the course of the disease. Copyright © 2014 Elsevier Ltd. All rights reserved.
Spike-timing dependent plasticity in the striatum
Directory of Open Access Journals (Sweden)
Elodie Fino
2010-06-01
Full Text Available The striatum is the major input nucleus of basal ganglia, an ensemble of interconnected sub-cortical nuclei associated with fundamental processes of action-selection and procedural learning and memory. The striatum receives afferents from the cerebral cortex and the thalamus. In turn, it relays the integrated information towards the basal ganglia output nuclei through which it operates a selected activation of behavioral effectors. The striatal output neurons, the GABAergic medium-sized spiny neurons (MSNs, are in charge of the detection and integration of behaviorally relevant information. This property confers to the striatum the ability to extract relevant information from the background noise and select cognitive-motor sequences adapted to environmental stimuli. As long-term synaptic efficacy changes are believed to underlie learning and memory, the corticostriatal long-term plasticity provides a fundamental mechanism for the function of the basal ganglia in procedural learning. Here, we reviewed the different forms of spike-timing dependent plasticity (STDP occurring at corticostriatal synapses. Most of the studies have focused on MSNs and their ability to develop long-term plasticity. Nevertheless, the striatal interneurons (the fast-spiking GABAergic, the NO synthase and cholinergic interneurons also receive monosynaptic afferents from the cortex and tightly regulated corticostriatal information processing. Therefore, it is important to take into account the variety of striatal neurons to fully understand the ability of striatum to develop long-term plasticity. Corticostriatal STDP with various spike-timing dependence have been observed depending on the neuronal sub-populations and experimental conditions. This complexity highlights the extraordinary potentiality in term of plasticity of the corticostriatal pathway.
EuHIT, Collaboration
2015-01-01
As a member of the EuHIT (European High-Performance Infrastructures in Turbulence - see here) consortium, CERN is participating in fundamental research on turbulence phenomena. To this end, the Laboratory provides European researchers with a cryogenic research infrastructure (see here), where the first tests have just been performed.
International Nuclear Information System (INIS)
Horton, W.
1998-07-01
The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates
Turbulent deflagrations, autoignitions, and detonations
Bradley, Derek
2012-09-01
Measurements of turbulent burning velocities in fan-stirred explosion bombs show an initial linear increase with the fan speed and RMS turbulent velocity. The line then bends over to form a plateau of high values around the maximum attainable burning velocity. A further increase in fan speed leads to the eventual complete quenching of the flame due to increasing localised extinctions because of the flame stretch rate. The greater the Markstein number, the more readily does flame quenching occur. Flame propagation along a duct closed at one end, with and without baffles to increase the turbulence, is subjected to a one-dimensional analysis. The flame, initiated at the closed end of the long duct, accelerates by the turbulent feedback mechanism, creating a shock wave ahead of it, until the maximum turbulent burning velocity for the mixture is attained. With the confining walls, the mixture is compressed between the flame and the shock plane up to the point where it might autoignite. This can be followed by a deflagration to detonation transition. The maximum shock intensity occurs with the maximum attainable turbulent burning velocity, and this defines the limit for autoignition of the mixture. For more reactive mixtures, autoignition can occur at turbulent burning velocities that are less than the maximum attainable one. Autoignition can be followed by quasi-detonation or fully developed detonation. The stability of ensuing detonations is discussed, along with the conditions that may lead to their extinction. © 2012 by Pleiades Publishing, Ltd.
Recovery of time-dependent volatility in option pricing model
Deng, Zui-Cha; Hon, Y. C.; Isakov, V.
2016-11-01
In this paper we investigate an inverse problem of determining the time-dependent volatility from observed market prices of options with different strikes. Due to the non linearity and sparsity of observations, an analytical solution to the problem is generally not available. Numerical approximation is also difficult to obtain using most of the existing numerical algorithms. Based on our recent theoretical results, we apply the linearisation technique to convert the problem into an inverse source problem from which recovery of the unknown volatility function can be achieved. Two kinds of strategies, namely, the integral equation method and the Landweber iterations, are adopted to obtain the stable numerical solution to the inverse problem. Both theoretical analysis and numerical examples confirm that the proposed approaches are effective. The work described in this paper was partially supported by a grant from the Research Grant Council of the Hong Kong Special Administrative Region (Project No. CityU 101112) and grants from the NNSF of China (Nos. 11261029, 11461039), and NSF grants DMS 10-08902 and 15-14886 and by Emylou Keith and Betty Dutcher Distinguished Professorship at the Wichita State University (USA).
Time-dependent histamine release from stored human blood products
DEFF Research Database (Denmark)
Nielsen, Hans Jørgen; Edvardsen, L; Vangsgaard, K
1996-01-01
storage. Whole blood (six units), plasma-reduced whole blood (six units), and plasma- and buffy coat-reduced (saline-adenine-glucose-mannitol) (SAGM) blood (six units) from unpaid healthy donors were stored in the blood bank for 35 days at 4 degrees C. Plasma histamine and total cell-bound histamine.......0 (range 176.0-910.0) nmol/l in whole blood and 475.0 (range 360.0-1560.0) nmol/l in plasma-reduced whole blood, while it was undetectable in SAGM blood. Spontaneous histamine release increased in a time-dependent manner from a median of 6.7 (range 2.2-17.4) nmol/l at the time of storage to 175.0 (range 33.......0-485.0) nmol/l at day 35 in whole blood, from 18.8 (range 8.2-38.5) to 328.5 (range 224.0-1137.0) nmol/l in plasma-reduced whole blood, and from 0.5 (range 0.5-1.5) to 2.2 (range 1.4-6.9) nmol/l in SAGM blood. These results show spontaneous histamine release during storage of human blood products which contain...
Investigating the time-dependent zeta potential of wood surfaces.
Muff, Livius F; Luxbacher, Thomas; Burgert, Ingo; Michen, Benjamin
2018-05-15
This work reports on streaming potential measurements through natural capillaries in wood and investigates the cause of a time-dependent zeta potential measured during the equilibration of wood cell-walls with an electrolyte solution. For the biomaterial, this equilibration phase takes several hours, which is much longer than for many other materials that have been characterized by electrokinetic measurements. During this equilibration phase the zeta potential magnitude is decaying due to two parallel mechanisms: (i) the swelling of the cell-wall which causes a dimensional change reducing the charge density at the capillary interface; (ii) the transport of ions from the electrolyte solution into the permeable cell-wall which alters the electrical potential at the interface by internal charge compensation. The obtained results demonstrate the importance of equilibration kinetics for an accurate determination of the zeta potential, especially for materials that interact strongly with the measurement electrolyte. Moreover, the change in zeta potential with time can be correlated with the bulk swelling of wood if the effect of electrolyte ion diffusion is excluded. This study shows the potential of streaming potential measurements of wood, and possibly of other hygroscopic and nanoporous materials, to reveal kinetic information about their interaction with liquids, such as swelling and ion uptake. Copyright © 2018 Elsevier Inc. All rights reserved.
Supersymmetric gauge theory with space-time-dependent couplings
Choi, Jaewang; Fernández-Melgarejo, José J.; Sugimoto, Shigeki
2018-01-01
We study deformations of N=4 supersymmetric Yang-Mills theory with couplings and masses depending on space-time. The conditions to preserve part of the supersymmetry are derived and a lot of solutions of these conditions are found. The main example is the case with ISO(1,1)× SO(3)× SO(3) symmetry, in which couplings, as well as masses and the theta parameter, can depend on two spatial coordinates. In the case in which ISO(1,1) is enhanced to ISO(1,2), it reproduces the supersymmetric Janus configuration found by Gaiotto and Witten [J. High Energy Phys. 06, 097 (2010)]. When SO(3)× SO(3) is enhanced to SO(6), it agrees with the world-volume theory of D3-branes embedded in F-theory (a background with 7-branes in type IIB string theory). We have also found the general solution of the supersymmetry conditions for the cases with ISO(1,1)× SO(2)× SO(4) symmetry. Cases with time-dependent couplings and/or masses are also considered.
Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity123
Pecevski, Dejan
2016-01-01
Abstract Numerous experimental data show that the brain is able to extract information from complex, uncertain, and often ambiguous experiences. Furthermore, it can use such learnt information for decision making through probabilistic inference. Several models have been proposed that aim at explaining how probabilistic inference could be performed by networks of neurons in the brain. We propose here a model that can also explain how such neural network could acquire the necessary information for that from examples. We show that spike-timing-dependent plasticity in combination with intrinsic plasticity generates in ensembles of pyramidal cells with lateral inhibition a fundamental building block for that: probabilistic associations between neurons that represent through their firing current values of random variables. Furthermore, by combining such adaptive network motifs in a recursive manner the resulting network is enabled to extract statistical information from complex input streams, and to build an internal model for the distribution p* that generates the examples it receives. This holds even if p* contains higher-order moments. The analysis of this learning process is supported by a rigorous theoretical foundation. Furthermore, we show that the network can use the learnt internal model immediately for prediction, decision making, and other types of probabilistic inference. PMID:27419214
Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity.
Pecevski, Dejan; Maass, Wolfgang
2016-01-01
Numerous experimental data show that the brain is able to extract information from complex, uncertain, and often ambiguous experiences. Furthermore, it can use such learnt information for decision making through probabilistic inference. Several models have been proposed that aim at explaining how probabilistic inference could be performed by networks of neurons in the brain. We propose here a model that can also explain how such neural network could acquire the necessary information for that from examples. We show that spike-timing-dependent plasticity in combination with intrinsic plasticity generates in ensembles of pyramidal cells with lateral inhibition a fundamental building block for that: probabilistic associations between neurons that represent through their firing current values of random variables. Furthermore, by combining such adaptive network motifs in a recursive manner the resulting network is enabled to extract statistical information from complex input streams, and to build an internal model for the distribution p (*) that generates the examples it receives. This holds even if p (*) contains higher-order moments. The analysis of this learning process is supported by a rigorous theoretical foundation. Furthermore, we show that the network can use the learnt internal model immediately for prediction, decision making, and other types of probabilistic inference.
submitter Time-dependent CP violation in charm mesons
Inguglia, Gianluca
CP violation is a well established phenomenon for B and K mesons, but for D0 mesons, bound states made up of a quark-antiquark pair containing a charm quark, a conclusive answer to the question whether there is CP vio- lation or not, has yet to be determined. I show here the phenomenology of time-dependent CP asymmetries in charm decays, and discuss the implica- tions of experimental tests aimed at the measurement of CP violation in the interference between mixing and decays of charm mesons, in particular when studying the decay channels D0 ! h+h (h = K; ). The decay channels considered can also be used to constrain quantities that are poorly measured or still to be investigated, such as MIX and c;eff , provided that the e ects of penguin pollution are ignored. I considered correlated production of D0 mesons at the SuperB experiment and its planned asymmetric run at the charm threshold and performed a study of simulated events, nding that a boost factor = 0:28 would not be su cient to produce competitive re- ...
Residual distribution for general time-dependent conservation laws
International Nuclear Information System (INIS)
Ricchiuto, Mario; Csik, Arpad; Deconinck, Herman
2005-01-01
We consider the second-order accurate numerical solution of general time-dependent hyperbolic conservation laws over unstructured grids in the framework of the Residual Distribution method. In order to achieve full conservation of the linear, monotone and first-order space-time schemes of (Csik et al., 2003) and (Abgrall et al., 2000), we extend the conservative residual distribution (CRD) formulation of (Csik et al., 2002) to prismatic space-time elements. We then study the design of second-order accurate and monotone schemes via the nonlinear mapping of the local residuals of linear monotone schemes. We derive sufficient and necessary conditions for the well-posedness of the mapping. We prove that the schemes obtained with the CRD formulation satisfy these conditions by construction. Thus the nonlinear schemes proposed in this paper are always well defined. The performance of the linear and nonlinear schemes are evaluated on a series of test problems involving the solution of the Euler equations and of a two-phase flow model. We consider the resolution of strong shocks and complex interacting flow structures. The results demonstrate the robustness, accuracy and non-oscillatory character of the proposed schemes. d schemes
Time-dependent effect in green synthesis of silver nanoparticles
Directory of Open Access Journals (Sweden)
Darroudi M
2011-04-01
Full Text Available Majid Darroudi1,2, Mansor Bin Ahmad3, Reza Zamiri4, AK Zak5, Abdul Halim Abdullah1,3, Nor Azowa Ibrahim31Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA, Universiti Putra Malaysia, Selangor, Malaysia; 2Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; 3Department of Chemistry, 4Department of Physics, Faculty of Science, Universiti Putra Malaysia, Selangor, Malaysia; 5Low Dimensional Materials Research Center, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur, MalaysiaAbstract: The application of “green” chemistry rules to nanoscience and nanotechnology is very important in the preparation of various nanomaterials. In this work, we successfully developed an eco-friendly chemistry method for preparing silver nanoparticles (Ag-NPs in natural polymeric media. The colloidal Ag-NPs were synthesized in an aqueous solution using silver nitrate, gelatin, and glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag-NPs were studied at different reaction times. The ultraviolet-visible (UV-vis spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM and their size distributions. The prepared samples were also characterized by X-ray diffraction (XRD and atomic force microscopy (AFM. The use of eco-friendly reagents, such as gelatin and glucose, provides green and economic attributes to this work.Keywords: silver nanoparticles, gelatin, green chemistry, time-dependent effect, ultraviolet-visible spectra
Transient fluctuation relations for time-dependent particle transport
Altland, Alexander; de Martino, Alessandro; Egger, Reinhold; Narozhny, Boris
2010-09-01
We consider particle transport under the influence of time-varying driving forces, where fluctuation relations connect the statistics of pairs of time-reversed evolutions of physical observables. In many “mesoscopic” transport processes, the effective many-particle dynamics is dominantly classical while the microscopic rates governing particle motion are of quantum-mechanical origin. We here employ the stochastic path-integral approach as an optimal tool to probe the fluctuation statistics in such applications. Describing the classical limit of the Keldysh quantum nonequilibrium field theory, the stochastic path integral encapsulates the quantum origin of microscopic particle exchange rates. Dynamically, it is equivalent to a transport master equation which is a formalism general enough to describe many applications of practical interest. We apply the stochastic path integral to derive general functional fluctuation relations for current flow induced by time-varying forces. We show that the successive measurement processes implied by this setup do not put the derivation of quantum fluctuation relations in jeopardy. While in many cases the fluctuation relation for a full time-dependent current profile may contain excessive information, we formulate a number of reduced relations, and demonstrate their application to mesoscopic transport. Examples include the distribution of transmitted charge, where we show that the derivation of a fluctuation relation requires the combined monitoring of the statistics of charge and work.
Time-dependent motor properties of multipedal molecular spiders.
Samii, Laleh; Blab, Gerhard A; Bromley, Elizabeth H C; Linke, Heiner; Curmi, Paul M G; Zuckermann, Martin J; Forde, Nancy R
2011-09-01
Molecular spiders are synthetic biomolecular walkers that use the asymmetry resulting from cleavage of their tracks to bias the direction of their stepping motion. Using Monte Carlo simulations that implement the Gillespie algorithm, we investigate the dependence of the biased motion of molecular spiders, along with binding time and processivity, on tunable experimental parameters, such as number of legs, span between the legs, and unbinding rate of a leg from a substrate site. We find that an increase in the number of legs increases the spiders' processivity and binding time but not their mean velocity. However, we can increase the mean velocity of spiders with simultaneous tuning of the span and the unbinding rate of a spider leg from a substrate site. To study the efficiency of molecular spiders, we introduce a time-dependent expression for the thermodynamic efficiency of a molecular motor, allowing us to account for the behavior of spider populations as a function of time. Based on this definition, we find that spiders exhibit transient motor function over time scales of many hours and have a maximum efficiency on the order of 1%, weak compared to other types of molecular motors.
Time-dependent, multimode interaction analysis of the gyroklystron amplifier
Energy Technology Data Exchange (ETDEWEB)
Swati, M. V., E-mail: swati.mv.ece10@iitbhu.ac.in; Chauhan, M. S.; Jain, P. K. [Department of Electronics Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005 (India)
2016-08-15
In this paper, a time-dependent multimode nonlinear analysis for the gyroklystron amplifier has been developed by extending the analysis of gyrotron oscillators by employing the self-consistent approach. The nonlinear analysis developed here has been validated by taking into account the reported experimental results for a 32.3 GHz, three cavity, second harmonic gyroklystron operating in the TE{sub 02} mode. The analysis has been used to estimate the temporal RF growth in the operating mode as well as the nearby competing modes. Device gain and bandwidth have been computed for different drive powers and frequencies. The effect of various beam parameters, such as beam voltage, beam current, and pitch factor, has also been studied. The computational results have estimated the gyroklystron saturated RF power ∼319 kW at 32.3 GHz with efficiency ∼23% and gain ∼26.3 dB with device bandwidth ∼0.027% (8 MHz) for a 70 kV, 20 A electron beam. The computed results are found to be in agreement with the experimental values within 10%.
Neoclassical and gyrokinetic analysis of time-dependent helium transport experiments on MAST
International Nuclear Information System (INIS)
Henderson, S.S.; O'Mullane, M.; Summers, H.P.; Garzotti, L.; Casson, F.J.; Dickinson, D.; Fox, M.F.J.; Patel, A.; Roach, C.M.; Valovič, M.
2014-01-01
Time-dependent helium gas puff experiments have been performed on the Mega Ampère Spherical Tokamak (MAST) during a two point plasma current scan in L-mode and a confinement scan at 900 kA. An evaluation of the He II (n = 4 → 3) spectrum line induced by charge exchange suggests anomalous rates of diffusion and inward convection in the outer regions of both L-mode plasmas. Similar rates of diffusion are found in the H-mode plasma, however these rates are consistent with neoclassical predictions. The anomalous inward pinch found in the core of L-mode plasmas is also not apparent in the H-mode core. Linear gyrokinetic simulations of one flux surface in L-mode using the GS2 and GKW codes find that equilibrium flow shear is sufficient to stabilize ITG modes, consistent with beam emission spectroscopy (BES) observations, and suggest that collisionless TEMs may dominate the anomalous helium particle transport. A quasilinear estimate of the dimensionless peaking factor associated with TEMs is in good agreement with experiment. Collisionless TEMs are more stable in H-mode because the electron density gradient is flatter. The steepness of this gradient is therefore pivotal in determining the inward neoclassical particle pinch and the particle flux associated with TEM turbulence. (paper)
Nazarenko, Sergey
2015-07-01
Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.
Spike-timing dependent plasticity and the cognitive map
Directory of Open Access Journals (Sweden)
Daniel eBush
2010-10-01
Full Text Available Since the discovery of place cells – single pyramidal neurons that encode spatial location – it has been hypothesised that the hippocampus may act as a cognitive map of known environments. This putative function has been extensively modelled using auto-associative networks, which utilise rate-coded synaptic plasticity rules in order to generate strong bi-directional connections between concurrently active place cells that encode for neighbouring place fields. However, empirical studies using hippocampal cultures have demonstrated that the magnitude and direction of changes in synaptic strength can also be dictated by the relative timing of pre- and post- synaptic firing according to a spike-timing dependent plasticity (STDP rule. Furthermore, electrophysiology studies have identified persistent ‘theta-coded’ temporal correlations in place cell activity in vivo, characterised by phase precession of firing as the corresponding place field is traversed. It is not yet clear if STDP and theta-coded neural dynamics are compatible with cognitive map theory and previous rate-coded models of spatial learning in the hippocampus. Here, we demonstrate that an STDP rule based on empirical data obtained from the hippocampus can mediate rate-coded Hebbian learning when pre- and post- synaptic activity is stochastic and has no persistent sequence bias. We subsequently demonstrate that a spiking recurrent neural network that utilises this STDP rule, alongside theta-coded neural activity, allows the rapid development of a cognitive map during directed or random exploration of an environment of overlapping place fields. Hence, we establish that STDP and phase precession are compatible with rate-coded models of cognitive map development.
Time dependence of microsecond intense electron beam transport in gases
International Nuclear Information System (INIS)
Lucey, R.F. Jr.; Gilgenback, R.M.; Tucker, J.E.; Brake, M.L.; Enloe, C.L.; Repetti, T.E.
1987-01-01
The authors present results of long-pulse (0.5 μs) electron beam propagation in the ion focused regime (IFR). Electron beam parameters are 800 kV with several hundred amperes injected current. For injection into air (from 0.7 mTorr to 75 mTorr) and helium (from 14 mTorr to 227 mTorr) the authors observe a ''time-dependent propagation window'' in which efficient (up to 100%) propagation starts at a time comparable to the electron impact ionization time needed to achieve n/sub i/ -- (1/γ/sup 2/)n/sub eb/. The transport goes abruptly to zero about 50-150 ns after this initial propagation. This is followed by erratic propagation often consisting of numerous narrower pulses 10-40 ns wide. In these pulses the transported current can be 100% of the injected current, but is generally lower. As the fill pressure is increased, there are differences in the propagated beam pulse, which can be summarized as follows: 1) the temporal occurrence of the beam propagation window shifts to earlier times, 2) the propagated beam current has much faster risetimes, 3) a larger portion of the injected beam is propagated. Similar results are observed when the electron beam is propagated in helium. However, at a given pressure, the beam transport window occurs at later times and exhibits a slower risetime. These effects are consistent with electron beam-induced ionization. Experiments are being performed to determine if the observed beam instability is due to the ion hose instability or streaming instability
Solving the time dependent vehicle routing problem by metaheuristic algorithms
Johar, Farhana; Potts, Chris; Bennell, Julia
2015-02-01
The problem we consider in this study is Time Dependent Vehicle Routing Problem (TDVRP) which has been categorized as non-classical VRP. It is motivated by the fact that multinational companies are currently not only manufacturing the demanded products but also distributing them to the customer location. This implies an efficient synchronization of production and distribution activities. Hence, this study will look into the routing of vehicles which departs from the depot at varies time due to the variation in manufacturing process. We consider a single production line where demanded products are being process one at a time once orders have been received from the customers. It is assumed that order released from the production line will be loaded into scheduled vehicle which ready to be delivered. However, the delivery could only be done once all orders scheduled in the vehicle have been released from the production line. Therefore, there could be lateness on the delivery process from awaiting all customers' order of the route to be released. Our objective is to determine a schedule for vehicle routing that minimizes the solution cost including the travelling and tardiness cost. A mathematical formulation is developed to represent the problem and will be solved by two metaheuristics; Variable Neighborhood Search (VNS) and Tabu Search (TS). These algorithms will be coded in C ++ programming and run using 56's Solomon instances with some modification. The outcome of this experiment can be interpreted as the quality criteria of the different approximation methods. The comparison done shown that VNS gave the better results while consuming reasonable computational efforts.
Pharmacokinetics: time-dependent changes--autoinduction of carbamazepine epoxidation
International Nuclear Information System (INIS)
Bertilsson, L.; Tomson, T.; Tybring, G.
1986-01-01
Drugs labeled with stable isotopes have been useful to study time-dependent changes in kinetics. Early studies suggested that carbamazepine (CBZ) may induce its own metabolism, but this could not be proved until tetradeuterium-labeled CBZ (CBZ-D4) was synthesized and then given to patients. CBZ-D4 was administered to three children during long-term treatment of epilepsy with CBZ. After 17 to 32 days of treatment, the plasma clearance of CBZ-D4 was doubled, but during the next four months, there was no further increase, indicating that autoinduction was complete within one month. Two patients with chronic alcoholism were treated with CBZ for five days. Half of the first dose of 600 mg was comprised of CBZ-D4. The half-life of this CBZ-D4 dose in the two patients (20 and 26 hr, respectively) was similar to the post-steady-state half-life of CBZ (23 hr in both patients) measured later. A single dose of CBZ given one week after the last maintenance dose had a longer half-life (46 and 45 hr, respectively), which probably is close to the disposition of the drug before starting the treatment with CBZ. This shows that autoinduction of CBZ metabolism was completed during the very first doses of CBZ. Autoinduction also disappeared rapidly after stopping the treatment. We have shown that it is mainly the epoxide-diol pathway that is induced, both during autoinduction and after induction with other antiepileptic agents
CERN. Geneva. Audiovisual Unit
2005-01-01
Understanding turbulence is vital in astrophysics, geophysics and many engineering applications, with thermal convection playing a central role. I shall describe progress that has recently been made in understanding this ubiquitous phenomenon by making controlled experiments using low-temperature helium, and a brief account of the frontier topic of superfluid turbulence will also be given. CERN might be able to play a unique role in experiments to probe these two problems.
International Nuclear Information System (INIS)
Prij, J.; Vons, L.H.
1984-01-01
Results are presented of in-situ measurements, performed in a 300 m deep dry-drilled borehole, in the ASSE-mine. Convergence measurements at ambient as well as elevated temperatures and pressure measurements at elevated temperatures are discussed. Creep equations derived from these experiments are used for the numerical analysis of the time dependent behavior of a salt dome with a HLW repository. The analyses show that the total stresses in the salt remain compressive with deviatoric components smaller than 3 MPa. 9 references, 6 figures, 1 table
"Compressed" Compressed Sensing
Reeves, Galen; Gastpar, Michael
2010-01-01
The field of compressed sensing has shown that a sparse but otherwise arbitrary vector can be recovered exactly from a small number of randomly constructed linear projections (or samples). The question addressed in this paper is whether an even smaller number of samples is sufficient when there exists prior knowledge about the distribution of the unknown vector, or when only partial recovery is needed. An information-theoretic lower bound with connections to free probability theory and an upp...
Physics Based Modeling of Compressible Turbulance
2016-11-07
ports (four on the body side and...experiments The HDCR is instrumented with static pressure ports along the isolator and combustor...Stanford University. Hernandez, V., Roman , J. E. & Vidal, V. 2005 SLEPc: A scalable
Iterative solution of the time dependent Schrodinger equation
International Nuclear Information System (INIS)
Kiss, Zs.G.; Nagy, L.; Borbely, S.; Toekesi, K.
2011-01-01
Complete text of publication follows. The most accurate theoretical method used to investigate the interaction between atoms and ultrashort (few-cycle) UV / XUV laser pulses is the direct numerical solution of the time dependent Schrodinger equation (TDSE). The aim of the present work is to test various methods used for the solution of the TDSE, and to find the less resource consuming one. The recently developed iterative solution of TDSE (iTDSE model) is an extension of the momentum-space strongfield approximation (MSSFA), in which the Coulomb potential was considered only as a first order perturbation. In the iTDSE model the higher order terms were gradually introduced, until convergence was achieved. The converged iTDSE results were compared with the 'exact' results, obtained from the direct solution of the TDSE (see [2-3]). The MSSFA method provides accurate results only in the half-cycle pulse limit, and its shortcomings are revealed only in the long pulse limit. As any perturbative approach, the MSSFA time propagation is not unitary (norm of the wave function is not conserved). Beside this due to the weak Coulomb potential (i.e. first order perturbation) the ionization probability amplitude is overestimated and the Δl = ±1 selection rule is not fulfilled, which leads to erroneous wave function dynamics. The direct solution of the TDSE does not have the above presented shortcomings, but during production runs it requires a large amount of CPU power and memory even in the framework of the single active electron approach. The newly implemented extension of the MSSFA model (the iTDSE model) eliminates all the MSSFA model's shortcomings providing accurate results. The main advantage of the iTDSE model is that it requires considerably less computer resources (CPU time and memory) then the direct solution, while it provides results as accurate as the direct solution. The most critical part of the iTDSE approach is the temporal propagation, which involves the
Tchen, C. M.
1986-01-01
Theoretical and numerical works in atmospheric turbulence have used the Navier-Stokes fluid equations exclusively for describing large-scale motions. Controversy over the existence of an average temperature gradient for the very large eddies in the atmosphere suggested that a new theoretical basis for describing large-scale turbulence was necessary. A new soliton formalism as a fluid analogue that generalizes the Schrodinger equation and the Zakharov equations has been developed. This formalism, processing all the nonlinearities including those from modulation provided by the density fluctuations and from convection due to the emission of finite sound waves by velocity fluctuations, treats large-scale turbulence as coalescing and colliding solitons. The new soliton system describes large-scale instabilities more explicitly than the Navier-Stokes system because it has a nonlinearity of the gradient type, while the Navier-Stokes has a nonlinearity of the non-gradient type. The forced Schrodinger equation for strong fluctuations describes the micro-hydrodynamical state of soliton turbulence and is valid for large-scale turbulence in fluids and plasmas where internal waves can interact with velocity fluctuations.
Acceleration methods for multi-physics compressible flow
Peles, Oren; Turkel, Eli
2018-04-01
In this work we investigate the Runge-Kutta (RK)/Implicit smoother scheme as a convergence accelerator for complex multi-physics flow problems including turbulent, reactive and also two-phase flows. The flows considered are subsonic, transonic and supersonic flows in complex geometries, and also can be either steady or unsteady flows. All of these problems are considered to be a very stiff. We then introduce an acceleration method for the compressible Navier-Stokes equations. We start with the multigrid method for pure subsonic flow, including reactive flows. We then add the Rossow-Swanson-Turkel RK/Implicit smoother that enables performing all these complex flow simulations with a reasonable CFL number. We next discuss the RK/Implicit smoother for time dependent problem and also for low Mach numbers. The preconditioner includes an intrinsic low Mach number treatment inside the smoother operator. We also develop a modified Roe scheme with a corresponding flux Jacobian matrix. We then give the extension of the method for real gas and reactive flow. Reactive flows are governed by a system of inhomogeneous Navier-Stokes equations with very stiff source terms. The extension of the RK/Implicit smoother requires an approximation of the source term Jacobian. The properties of the Jacobian are very important for the stability of the method. We discuss what the chemical physics theory of chemical kinetics tells about the mathematical properties of the Jacobian matrix. We focus on the implication of the Le-Chatelier's principle on the sign of the diagonal entries of the Jacobian. We present the implementation of the method for turbulent flow. We use a two RANS turbulent model - one equation model - Spalart-Allmaras and a two-equation model - k-ω SST model. The last extension is for two-phase flows with a gas as a main phase and Eulerian representation of a dispersed particles phase (EDP). We present some examples for such flow computations inside a ballistic evaluation
International Nuclear Information System (INIS)
Laurence, D.
1997-01-01
This paper is an introduction course in modelling turbulent thermohydraulics, aimed at computational fluid dynamics users. No specific knowledge other than the Navier Stokes equations is required beforehand. Chapter I (which those who are not beginners can skip) provides basic ideas on turbulence physics and is taken up in a textbook prepared by the teaching team of the ENPC (Benque, Viollet). Chapter II describes turbulent viscosity type modelling and the 2k-ε two equations model. It provides details of the channel flow case and the boundary conditions. Chapter III describes the 'standard' (R ij -ε) Reynolds tensions transport model and introduces more recent models called 'feasible'. A second paper deals with heat transfer and the effects of gravity, and returns to the Reynolds stress transport model. (author)
The importance of three dimensional dune morphology on the time dependent flow field
Hardy, Richard; Parsons, Dan; Reesink, Arnold; Best, Jim
2017-04-01
The flow field over dunes has been extensively studied and there is general understanding of the nature of the flow over dunes formed over two dimensional dunes under equilibrium flow conditions. This model is typically used to explain flow fields over all dunes fields. However, fluvial systems typically experience unsteady flow and therefore the sediment-water interface is constantly reorganizing to form complex three-dimensional morphologies (ripples, dunes and bar forms). Here we investigate how flow over natural three dimensional dunes differs from the accepted model of flow of two dimensional dunes. A series of experiments were undertaken in a flume where fine sand was water worked under a range of unsteady hydraulic conditions to generate quasi-equilibrium three dimensional bed forms. On four occasions, the flume was drained and the bed topography measured with terrestrial LiDAR to create digital elevation models (DEM). Here to demonstrate the approach we choose the DEM with the greatest topographic variation and apply a new Large Eddy Simulation model with an wall-adapting local eddy-viscosity (WALE) turbulence model and a non-linear higher-order numerical differencing scheme. This provided a three dimensional time dependent prediction of the flow field over the static three-dimensional dune morphology at millimeter and hertz scale resolution. The numerically predicted flows were analyzed by standard Reynolds decomposition approaches and Eulerian and Lagrangian coherent flow structure identification methods. The results show that the superimposed bed forms can cause changes in the nature of the classical separated flow regions, in particularly the number of locations where vortices are shed and the points of flow reattachment. Coalescence of vortices generated downstream and can be seen to move to the free surface and form kolk signatures. These structures also correlate in space and time showing a clear flow morphology feedback. The modified flow field
Measurement of time-dependent adhesion between a polymer film and a flat indenter tip
International Nuclear Information System (INIS)
Choi, S T; Lee, S R; Earmme, Y Y
2008-01-01
We revisited an elasticity problem of flat indentation on an elastic film bonded to a rigid substrate and obtained the force-depth relation in a simple form. With the obtained force-depth relation, Kendall's elastic equilibrium theory of adhesion was extended to the adhesion between a flat tip and a compressible elastic film. Thus, the thermodynamic work of adhesion at the moment of debonding of a flat tip from an elastic film was expressed in terms of pull-off force, elastic constants and geometric parameters. It is worth noting that the obtained relation for elastic films is still valid for viscoelastic films if viscoelastic losses are limited to the process zone of debonding. This makes it possible to study the time-dependent adhesion of viscoelastic polymer films. Indentation experiments with a flat diamond tip were performed on SU-8 films, and the results verified that the extended form of Kendall's theory correctly compensates the effect of the finite thickness of the films on the work of adhesion. The indentation results also showed that the work of adhesion is strongly dependent on the unloading velocity of the tip, while indentation depth and dwell time have only minor effects on the work of adhesion
Scaling, Intermittency and Decay of MHD Turbulence
International Nuclear Information System (INIS)
Lazarian, A.; Cho, Jungyeon
2005-01-01
We discuss a few recent developments that are important for understanding of MHD turbulence. First, MHD turbulence is not so messy as it is usually believed. In fact, the notion of strong non-linear coupling of compressible and incompressible motions along MHD cascade is not tenable. Alfven, slow and fast modes of MHD turbulence follow their own cascades and exhibit degrees of anisotropy consistent with theoretical expectations. Second, the fast decay of turbulence is not related to the compressibility of fluid. Rates of decay of compressible and incompressible motions are very similar. Third, viscosity by neutrals does not suppress MHD turbulence in a partially ionized gas. Instead, MHD turbulence develops magnetic cascade at scales below the scale at which neutrals damp ordinary hydrodynamic motions. Forth, density statistics does not exhibit the universality that the velocity and magnetic field do. For instance, at small Mach numbers the density is anisotropic, but it gets isotropic at high Mach numbers. Fifth, the intermittency of magnetic field and velocity are different. Both depend on whether the measurements are done in a local system of reference oriented along the local magnetic field or in the global system of reference related to the mean magnetic field
Time-dependent density functional theory for multi-component systems
International Nuclear Information System (INIS)
Tiecheng Li; Peiqing Tong
1985-10-01
The Runge-Gross version of Hohenberg-Kohn-Sham's density functional theory is generalized to multi-component systems, both for arbitrary time-dependent pure states and for arbitrary time-dependent ensembles. (author)
The time-dependent simplified P2 equations: Asymptotic analyses and numerical experiments
International Nuclear Information System (INIS)
Shin, U.; Miller, W.F. Jr.
1998-01-01
Using an asymptotic expansion, the authors found that the modified time-dependent simplified P 2 (SP 2 ) equations are robust, high-order, asymptotic approximations to the time-dependent transport equation in a physical regime in which the conventional time-dependent diffusion equation is the leading-order approximation. Using diffusion limit analysis, they also asymptotically compared three competitive time-dependent equations (the telegrapher's equation, the time-dependent SP 2 equations, and the time-dependent simplified even-parity equation). As a result, they found that the time-dependent SP 2 equations contain higher-order asymptotic approximations to the time-dependent transport equation than the other competitive equations. The numerical results confirm that, in the vast majority of cases, the time-dependent SP 2 solutions are significantly more accurate than the time-dependent diffusion and the telegrapher's solutions. They have also shown that the time-dependent SP 2 equations have excellent characteristics such as rotational invariance (which means no ray effect), good diffusion limit behavior, guaranteed positivity in diffusive regimes, and significant accuracy, even in deep-penetration problems. Through computer-running-time tests, they have shown that the time-dependent SP 2 equations can be solved with significantly less computational effort than the conventionally used, time-dependent S N equations (for N > 2) and almost as fast as the time-dependent diffusion equation. From all these results, they conclude that the time-dependent SP 2 equations should be considered as an important competitor for an improved approximately transport equations solver. Such computationally efficient time-dependent transport models are important for problems requiring enhanced computational efficiency, such as neutronics/fluid-dynamics coupled problems that arise in the analyses of hypothetical nuclear reactor accidents
Exact solution of a quantum forced time-dependent harmonic oscillator
Yeon, Kyu Hwang; George, Thomas F.; Um, Chung IN
1992-01-01
The Schrodinger equation is used to exactly evaluate the propagator, wave function, energy expectation values, uncertainty values, and coherent state for a harmonic oscillator with a time dependent frequency and an external driving time dependent force. These quantities represent the solution of the classical equation of motion for the time dependent harmonic oscillator.
DEFF Research Database (Denmark)
Nielsen, Mogens Peter; Shui, Wan; Johansson, Jens
2011-01-01
term with stresses depending linearly on the strain rates. This term takes into account the transfer of linear momentum from one part of the fluid to another. Besides there is another term, which takes into account the transfer of angular momentum. Thus the model implies a new definition of turbulence...
Energy Technology Data Exchange (ETDEWEB)
Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)
1993-12-01
Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.
International Nuclear Information System (INIS)
Bhargava, Kapilesh; Mori, Yasuhiro; Ghosh, A.K.
2011-01-01
This paper forms the third part of a study which addresses time-dependent reliability analyses of reinforced concrete (RC) beams affected by reinforcement corrosion. Parts 1 and 2 of the reliability study are presented in companion papers. Part 1 of the reliability study presents evaluation of probabilistic descriptions for time-dependent strengths of a typical simply supported corrosion-affected RC beam. These probabilistic descriptions, i.e., mean and coefficient of variation (c.o.v.) for the time-dependent strengths are presented for two limit states: (a) flexural failure; and (b) shear failure. Part 2 of the reliability study presents evaluation of time-dependent failure probability for the considered RC beam by utilizing the information on probabilistic descriptions for time-dependent strengths available in Part 1. Evaluation of time-dependent failure probability considering the variability in time-dependent strengths and/or time-dependent degradation functions is also presented. This paper investigates the effects of time to corrosion initiation and its variability on failure probability of the same RC beam presented in companion papers. By considering variability in the identified variables that could affect the expected time of first corrosion, simple estimations are presented for mean time to corrosion initiation and variability associated with time to corrosion initiation. Evaluation of time-dependent failure probability for the beam is presented by considering estimated probabilistic descriptions, i.e., mean and c.o.v. for time to corrosion initiation. Parametric analyses show that failure probability for the beam is sensitive to the mode of strength degradation and time to corrosion initiation.
Attainable conditions and exact invariant for the time-dependent harmonic oscillator
Energy Technology Data Exchange (ETDEWEB)
Guasti, Manuel Fernandez [Lab. de Optica Cuantica, Dep. de Fisica, Universidad A. Metropolitana, Unidad Iztapalapa, Mexico DF, Ap. Post. 55-534 (Mexico)
2006-09-22
The time-dependent oscillator equation is solved numerically for various trajectories in amplitude and phase variables. The solutions exhibit a finite time-dependent parameter whenever the squared amplitude times the derivative of the phase is invariant. If the invariant relationship does not hold, the time-dependent parameter has divergent singularities. These observations lead to the proposition that the harmonic oscillator equation with finite time-dependent parameter must have amplitude and phase solutions fulfilling the invariant relationship. Since the time-dependent parameter or the potential must be finite for any real oscillator implementation, the invariant must hold for any such physically realizable system.
Compression-Based Compressed Sensing
Rezagah, Farideh Ebrahim; Jalali, Shirin; Erkip, Elza; Poor, H. Vincent
2016-01-01
Modern compression algorithms exploit complex structures that are present in signals to describe them very efficiently. On the other hand, the field of compressed sensing is built upon the observation that "structured" signals can be recovered from their under-determined set of linear projections. Currently, there is a large gap between the complexity of the structures studied in the area of compressed sensing and those employed by the state-of-the-art compression codes. Recent results in the...
Turbulence modeling for hypersonic flows
Marvin, J. G.; Coakley, T. J.
1992-01-01
Turbulence modeling for high-speed compressible flows is described and discussed. Starting with the compressible Navier-Stokes equations, methods of statistical averaging are described by means of which the Reynolds-averaged Navier-Stokes equations are developed. Unknown averages in these equations are approximated using various closure concepts. Zero-, one-, and two-equation eddy viscosity models, algebraic stress models, and Reynolds stress transport models are discussed. Computations of supersonic and hypersonic flows obtained using several of the models are discussed and compared with experimental results. Specific examples include attached boundary-layer flows, shock-wave boundary-layer interactions, and compressible shear layers. From these examples, conclusions regarding the status of modeling and recommendations for future studies are discussed.
Sandford, M.T. II; Handel, T.G.; Bradley, J.N.
1998-07-07
A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique are disclosed. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%. 21 figs.
Time-dependent geoid anomalies at subduction zones due to the seismic cycle
Cambiotti, G.; Sabadini, R.; Yuen, D. A.
2018-01-01
We model the geoid anomalies excited during a megathrust earthquake cycle at subduction zones, including the interseismic phase and the contribution from the infinite series of previous earthquakes, within the frame of self-gravitating, spherically symmetric, compressible, viscoelastic Earth models. The fault cuts the whole 50 km lithosphere, dips 20°, and the slip amplitude, together with the length of the fault, are chosen in order to simulate an Mw = 9.0 earthquake, while the viscosity of the 170 km thick asthenosphere ranges from 1017 to 1020 Pa s. On the basis of a new analysis from the Correspondence Principle, we show that the geoid anomaly is characterized by a periodic anomaly due to the elastic and viscous contribution from past earthquakes and to the back-slip of the interseismic phase, and by a smaller static contribution from the steady-state response to the previous infinite earthquake cycles. For asthenospheric viscosities from 1017-1018 to 1019-1020 Pa s, the characteristic relaxation times of the Earth model change from shorter to longer timescales compared to the 400 yr earthquake recurrence time, which dampen the geoid anomaly for the higher asthenospheric viscosities, since the slower relaxation cannot contribute its whole strength within the interseismic cycle. The geoid anomaly pattern is characterized by a global, time-dependent positive upwarping of the geoid topography, involving the whole hanging wall and partially the footwall compared to the sharper elastic contribution, attaining, for a moment magnitude Mw = 9.0, amplitudes as high as 6.6 cm for the lowermost asthenospheric viscosities during the viscoelastic response compared to the elastic maximum of 3.8 cm. The geoid anomaly vanishes due to the back-slip of the interseismic phase, leading to its disappearance at the end of the cycle before the next earthquake. Our results are of importance for understanding the post-seismic and interseismic geoid patterns at subduction zones.
Silent inflow condition for turbulent boundary layers
Gloerfelt, X.; Robinet, J.-C.
2017-12-01
The generation of a turbulent inflow is a tricky problem. In the framework of aeroacoustics, another important constraint is that the numerical strategy used to reach a turbulent state induces a spurious noise which is lower than the acoustic field of interest. For the study of noise radiated directly by a turbulent boundary layer on a flat plate, this constraint is severe since wall turbulence is a very inefficient source. That is why a method based on a transition by modal interaction using a base flow with an inflection point is proposed to cope with that. The base flow must be a solution of the equations so we use a profile behind a backward-facing step representative of experimental trip bands. A triad of resonant waves is selected by a local stability analysis of the linearized compressible equations and is added with a weak amplitude in the inlet plane. The compressible stability calculation allows the specification of the thermodynamic quantities at the inlet, which turns out to be fundamental to ensure a quiet inflow. A smooth transition is achieved with the rapid formation of Λ -shape vortices in a staggered organization as in subharmonic transition. The dominance of oblique waves promotes a rapid breakdown by the liftup mechanism of low-speed streaks. The quality of the fully turbulent state is assessed and the direct noise radiation from a turbulent boundary layer at Mach 0.5 is obtained with a very low level of spurious noise.
Graphical Turbulence Guidance - Composite
National Oceanic and Atmospheric Administration, Department of Commerce — Forecast turbulence hazards identified by the Graphical Turbulence Guidance algorithm. The Graphical Turbulence Guidance product depicts mid-level and upper-level...
Time-dependent geminal method applied to laser-driven beryllium
Lötstedt, Erik; Kato, Tsuyoshi; Yamanouchi, Kaoru
2018-01-01
We introduce the time-dependent geminal method, in which the total wave function is written as an antisymmetrized product of time-dependent geminals. A geminal is a two-electron orbital depending on the coordinates of two electrons, and each geminal is expanded as a sum of products of time-dependent one-electron orbitals. The equation of motion for the geminal coefficients similar to the time-dependent Hartree-Fock equation is derived. The evaluation of the largest eigenvalues of the second-order reduced density matrix is proposed as a way to measure the extent of the intergeminal correlation in a time-dependent wave function. Using the time-dependent geminal method, we simulate the evolution of the time-dependent wave function of a beryllium atom exposed to an intense laser pulse at two different wavelengths, 400 and 10 nm. The results are compared to those obtained by the time-dependent Hartree-Fock method and by the multiconfiguration time-dependent Hartree-Fock method.
Topics in strong Langmuir turbulence
International Nuclear Information System (INIS)
Skoric, M.M.
1981-01-01
This thesis discusses certain aspects of the turbulence of a fully ionised non-isothermal plasma dominated by the Langmuir mode. Some of the basic properties of strongly turbulent plasmas are reviewed. In particular, interest is focused on the state of Langmuir turbulence, that is the turbulence of a simple externally unmagnetized plasma. The problem of the existence and dynamics of Langmuir collapse is discussed, often met as a non-linear stage of the modulational instability in the framework of the Zakharov equations (i.e. simple time-averaged dynamical equations). Possible macroscopic consequences of such dynamical turbulent models are investigated. In order to study highly non-linear collapse dynamics in its advanced stage, a set of generalized Zakharov equations are derived. Going beyond the original approximation, the author includes the effects of higher electron non-linearities and a breakdown of slow-timescale quasi-neutrality. He investigates how these corrections may influence the collapse stabilisation. Recently, it has been realised that the modulational instability in a Langmuir plasma will be accompanied by the collisionless-generation of a slow-timescale magnetic field. Accordingly, a novel physical situation has emerged which is investigated in detail. The stability of monochromatic Langmuir waves in a self-magnetized Langmuir plasma, is discussed, and the existence of a novel magneto-modulational instability shown. The wave collapse dynamics is investigated and a physical interpretation of the basic results is given. A problem of the transient analysis of an interaction of time-dependent electromagnetic pulses with linear cold plasma media is investigated. (Auth.)
Magnetohydrodynamic Turbulence
Montgomery, David C.
2004-01-01
Magnetohydrodynamic (MHD) turbulence theory is modeled on neutral fluid (Navier-Stokes) turbulence theory, but with some important differences. There have been essentially no repeatable laboratory MHD experiments wherein the boundary conditions could be controlled or varied and a full set of diagnostics implemented. The equations of MHD are convincingly derivable only in the limit of small ratio of collision mean-free-paths to macroscopic length scales, an inequality that often goes the other way for magnetofluids of interest. Finally, accurate information on the MHD transport coefficients-and thus, the Reynolds-like numbers that order magnetofluid behavior-is largely lacking; indeed, the algebraic expressions used for such ingredients as the viscous stress tensor are often little more than wishful borrowing from fluid mechanics. The one accurate thing that has been done extensively and well is to solve the (strongly nonlinear) MHD equations numerically, usually in the presence of rectangular periodic boundary conditions, and then hope for the best when drawing inferences from the computations for those astrophysical and geophysical MHD systems for which some indisputably turbulent detailed data are available, such as the solar wind or solar prominences. This has led to what is perhaps the first field of physics for which computer simulations are regarded as more central to validating conclusions than is any kind of measurement. Things have evolved in this way due to a mixture of the inevitable and the bureaucratic, but that is the way it is, and those of us who want to work on the subject have to live with it. It is the only game in town, and theories that have promised more-often on the basis of some alleged ``instability''-have turned out to be illusory.
Lutsenko, N. A.; Fetsov, S. S.
2017-10-01
Mathematical model and numerical method are proposed for investigating the one-dimensional time-dependent gas flows through a packed bed of encapsulated Phase Change Material (PCM). The model is based on the assumption of interacting interpenetrating continua and includes equations of state, continuity, momentum conservation and energy for PCM and gas. The advantage of the method is that it does not require predicting the location of phase transition zone and can define it automatically as in a usual shock-capturing method. One of the applications of the developed numerical model is the simulation of novel Adiabatic Compressed Air Energy Storage system (A-CAES) with Thermal Energy Storage subsystem (TES) based on using the encapsulated PCM in packed bed. Preliminary test calculations give hope that the method can be effectively applied in the future for modelling the charge and discharge processes in such TES with PCM.
International Nuclear Information System (INIS)
Liu Wensen
2004-01-01
A time-dependent closed-form formulation of the linear unitary transformation for harmonic-oscillator annihilation and creation operators is presented in the Schroedinger picture using the Lie algebraic approach. The time evolution of the quantum mechanical system described by a general time-dependent quadratic Hamiltonian is investigated by combining this formulation with the time evolution equation of the system. The analytic expressions of the evolution operator and propagator are found. The motion of a charged particle with variable mass in the time-dependent electric field is considered as an illustrative example of the formalism. The exact time evolution wave function starting from a Gaussian wave packet and the operator expectation values with respect to the complicated evolution wave function are obtained readily
Dissipative structures in magnetorotational turbulence
Ross, Johnathan; Latter, Henrik N.
2018-03-01
Via the process of accretion, magnetorotational turbulence removes energy from a disk's orbital motion and transforms it into heat. Turbulent heating is far from uniform and is usually concentrated in small regions of intense dissipation, characterised by abrupt magnetic reconnection and higher temperatures. These regions are of interest because they might generate non-thermal emission, in the form of flares and energetic particles, or thermally process solids in protoplanetary disks. Moreover, the nature of the dissipation bears on the fundamental dynamics of the magnetorotational instability (MRI) itself: local simulations indicate that the large-scale properties of the turbulence (e.g. saturation levels, the stress-pressure relationship) depend on the short dissipative scales. In this paper we undertake a numerical study of how the MRI dissipates and the small-scale dissipative structures it employs to do so. We use the Godunov code RAMSES and unstratified compressible shearing boxes. Our simulations reveal that dissipation is concentrated in ribbons of strong magnetic reconnection that are significantly elongated in azimuth, up to a scale height. Dissipative structures are hence meso-scale objects, and potentially provide a route by which large scales and small scales interact. We go on to show how these ribbons evolve over time — forming, merging, breaking apart, and disappearing. Finally, we reveal important couplings between the large-scale density waves generated by the MRI and the small-scale structures, which may illuminate the stress-pressure relationship in MRI turbulence.
Turbulence modification and multiphase turbulence transport modeling
International Nuclear Information System (INIS)
Besnard, D.C.; Kataoka, I.; Serizawa, A.
1991-01-01
It is shown here that in the derivation of turbulence transport models for multiphase flows, terms naturally appear that can be interpreted as related to turbulence modification of one field by the other. We obtain two such terms, one suggesting turbulence enhancement due to instabilities in two-phase flow, the second one showing turbulence damping due to the presence of the other field, both in gas-particle and gas-liquid cases
A class of Galerkin Schemes for Time-Dependent Radiative Transfer
Egger, Herbert; Schlottbom, Matthias
2016-01-01
The numerical solution of time-dependent radiative transfer problems is challenging, due to the high dimension and to the anisotropic structure of the underlying integro-partial differential equation. In this paper we propose a general framework for designing numerical methods for time-dependent
Simulating the time-dependent behaviour of excavations in hard rock
CSIR Research Space (South Africa)
Malan, DF
2002-10-01
Full Text Available associated with using viscoelastic theory to simulate the time-dependent behaviour of hard rock, a viscoelastic convergence solution for the incremental enlargement of a tabular excavation is discussed. Data on the time dependent deformation of a tunnel...
Modelling time-dependent mechanical behaviour of softwood using deformation kinetics
DEFF Research Database (Denmark)
Engelund, Emil Tang; Svensson, Staffan
2010-01-01
The time-dependent mechanical behaviour (TDMB) of softwood is relevant, e.g., when wood is used as building material where the mechanical properties must be predicted for decades ahead. The established mathematical models should be able to predict the time-dependent behaviour. However, these models...
Exact norm-conserving stochastic time-dependent Hartree-Fock
International Nuclear Information System (INIS)
Tessieri, Luca; Wilkie, Joshua; Cetinbas, Murat
2005-01-01
We derive an exact single-body decomposition of the time-dependent Schroedinger equation for N pairwise interacting fermions. Each fermion obeys a stochastic time-dependent norm-preserving wave equation. As a first test of the method, we calculate the low energy spectrum of helium. An extension of the method to bosons is outlined
Electron-nuclear coupling in time-dependent multicomponent density functional theory
Butriy, Olena O.
2008-01-01
In this thesis we developed the time-dependent version of the multicomponent density functional approach to treat time-dependent electron-nuclear systems. The method enables to describe the electron-nuclear coupling fully quantum mechanically. No Born-Oppenheimer approximation is involved in the
Time-dependent transport in interacting and noninteracting resonant-tunneling systems
DEFF Research Database (Denmark)
Jauho, Antti-Pekka; Wingreen, Ned S.; Meir, Yigal
1994-01-01
We consider a mesoscopic region coupled to two leads under the influence of external time-dependent voltages. The time dependence is coupled to source and drain contacts, the gates controlling the tunnel-barrier heights, or to the gates that define the mesoscopic region. We derive, with the Keldysh...
Time-Dependence effect in alumite recording media with perpendicular anisotropy
Phan le kim, P.L.K.; Lodder, J.C.
1999-01-01
In this paper, we will present a study of the time-dependence effect in alumite perpendicular media at different thicknesses. Important parameters of the time-dependence effect such as magnetic viscosity and activation volume are investigated. Viscosity as a function of applied field (viscosity
Time-dependent density-functional calculation of nuclear response functions
Nakatsukasa, Takashi
2017-01-01
Basic issues of the time-dependent density-functional theory are discussed, especially on the real-time calculation of the linear response functions. Some remarks on the derivation of the time-dependent Kohn-Sham equations and on the numerical methods are given.
Statistical turbulence theory and turbulence phenomenology
Herring, J. R.
1973-01-01
The application of deductive turbulence theory for validity determination of turbulence phenomenology at the level of second-order, single-point moments is considered. Particular emphasis is placed on the phenomenological formula relating the dissipation to the turbulence energy and the Rotta-type formula for the return to isotropy. Methods which deal directly with most or all the scales of motion explicitly are reviewed briefly. The statistical theory of turbulence is presented as an expansion about randomness. Two concepts are involved: (1) a modeling of the turbulence as nearly multipoint Gaussian, and (2) a simultaneous introduction of a generalized eddy viscosity operator.
Turbulent dynamo action in stars
International Nuclear Information System (INIS)
Brandenburg, A.; Nordlund, A.; Ruokolainen, J.; Stein, R.F.; Tuominen, I.
1990-01-01
The way in which dynamo action amplifies magnetic fields in the Sun, the Earth, and indeed galaxies is a classic problem of theoretical physics. Here we present the results of direct simulations of turbulent compressible hydromagnetic convection with a stable overshoot layer underneath (to model the Sun). We find spontaneous dynamo action followed by saturation, with most of the generated magnetic field appearing as coherent flux tubes in the vicinity of strong downdrafts. Here both the generation and destruction of magnetic field is at its most vigorous, and which process ultimately dominates depends on the sizes of the magnetic Reynolds and magnetic Prandtl numbers. (orig.)
Time-Dependent Damage Investigation of Rock Mass in an In Situ Experimental Tunnel
Jiang, Quan; Cui, Jie; Chen, Jing
2012-01-01
In underground tunnels or caverns, time-dependent deformation or failure of rock mass, such as extending cracks, gradual rock falls, etc., are a costly irritant and a major safety concern if the time-dependent damage of surrounding rock is serious. To understand the damage evolution of rock mass in underground engineering, an in situ experimental testing was carried out in a large belowground tunnel with a scale of 28.5 m in width, 21 m in height and 352 m in length. The time-dependent damage of rock mass was detected in succession by an ultrasonic wave test after excavation. The testing results showed that the time-dependent damage of rock mass could last a long time, i.e., nearly 30 days. Regression analysis of damage factors defined by wave velocity, resulted in the time-dependent evolutional damage equation of rock mass, which corresponded with logarithmic format. A damage viscoelastic-plastic model was developed to describe the exposed time-dependent deterioration of rock mass by field test, such as convergence of time-dependent damage, deterioration of elastic modules and logarithmic format of damage factor. Furthermore, the remedial measures for damaged surrounding rock were discussed based on the measured results and the conception of damage compensation, which provides new clues for underground engineering design.
Second quantized scalar QED in homogeneous time-dependent electromagnetic fields
Kim, Sang Pyo
2014-12-01
We formulate the second quantization of a charged scalar field in homogeneous, time-dependent electromagnetic fields, in which the Hamiltonian is an infinite system of decoupled, time-dependent oscillators for electric fields, but it is another infinite system of coupled, time-dependent oscillators for magnetic fields. We then employ the quantum invariant method to find various quantum states for the charged field. For time-dependent electric fields, a pair of quantum invariant operators for each oscillator with the given momentum plays the role of the time-dependent annihilation and the creation operators, constructs the exact quantum states, and gives the vacuum persistence amplitude as well as the pair-production rate. We also find the quantum invariants for the coupled oscillators for the charged field in time-dependent magnetic fields and advance a perturbation method when the magnetic fields change adiabatically. Finally, the quantum state and the pair production are discussed when a time-dependent electric field is present in parallel to the magnetic field.
International Nuclear Information System (INIS)
1984-12-01
Reviews are presented firstly of potential events and processes which may affect the evolution of the disposal environments of low and intermediate level radioactive wastes in Britain and secondly of previous studies carried out worldwide in the field of time dependent effects. From the latter review available methodologies for incorporating time dependence into radiological assessments are identified. Finally, proposals are presented for the design and development of a time dependent effects model, based on the existing far field state model (FFSM) developed for ONWI in USA. (author)
Compressed Counting Meets Compressed Sensing
Li, Ping; Zhang, Cun-Hui; Zhang, Tong
2013-01-01
Compressed sensing (sparse signal recovery) has been a popular and important research topic in recent years. By observing that natural signals are often nonnegative, we propose a new framework for nonnegative signal recovery using Compressed Counting (CC). CC is a technique built on maximally-skewed p-stable random projections originally developed for data stream computations. Our recovery procedure is computationally very efficient in that it requires only one linear scan of the coordinates....
Directory of Open Access Journals (Sweden)
Te-Wen Tu
2015-01-01
Full Text Available An analytical solution for the heat transfer in hollow cylinders with time-dependent boundary condition and time-dependent heat transfer coefficient at different surfaces is developed for the first time. The methodology is an extension of the shifting function method. By dividing the Biot function into a constant plus a function and introducing two specially chosen shifting functions, the system is transformed into a partial differential equation with homogenous boundary conditions only. The transformed system is thus solved by series expansion theorem. Limiting cases of the solution are studied and numerical results are compared with those in the literature. The convergence rate of the present solution is fast and the analytical solution is simple and accurate. Also, the influence of physical parameters on the temperature distribution of a hollow cylinder along the radial direction is investigated.
The time-dependent close-coupling method for atomic and molecular collision processes
Energy Technology Data Exchange (ETDEWEB)
Pindzola, M S [Department of Physics, Auburn University, Auburn, AL (United States); Robicheaux, F [Department of Physics, Auburn University, Auburn, AL (United States); Loch, S D [Department of Physics, Auburn University, Auburn, AL (United States); Berengut, J C [Department of Physics, Auburn University, Auburn, AL (United States); Topcu, T [Department of Physics, Auburn University, Auburn, AL (United States); Colgan, J [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM (United States); Foster, M [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM (United States); Griffin, D C [Department of Physics, Rollins College, Winter Park, FL (United States); Ballance, C P [Department of Physics, Rollins College, Winter Park, FL (United States); Schultz, D R [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Minami, T [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Badnell, N R [Department of Physics, University of Strathclyde, Glasgow (United Kingdom); Witthoeft, M C [Department of Physics, University of Strathclyde, Glasgow (United Kingdom); Plante, D R [Department of Mathematics, Stetson University, Deland, FL (United States); Mitnik, D M [Department of Physics, University of Buenos Aires, Buenos Aires (Argentina); Ludlow, J A [Department of Applied Mathematics, Queen' s University, Belfast (United Kingdom); Kleiman, U [Max Planck Institute for the Physics of Complex Systems, Dresden (Germany)
2007-04-14
We review the development of the time-dependent close-coupling method to study atomic and molecular few body dynamics. Applications include electron and photon collisions with atoms, molecules, and their ions. (topical review)
Investigation into the mechanisms of time dependent deformation of hard rocks.
CSIR Research Space (South Africa)
Drescher, K
2002-02-01
Full Text Available The testing undertaken for this dissertation is intended to help quantify the various time-dependant deformation processes around typical deep level hard rock tabular excavations. Three mechanisms were investigated and two different hard rock types...
The master symmetry and time dependent symmetries of the differential–difference KP equation
International Nuclear Information System (INIS)
Khanizadeh, Farbod
2014-01-01
We first obtain the master symmetry of the differential–difference KP equation. Then we show how this master symmetry, through sl(2,C)-representation of the equation, can construct generators of time dependent symmetries. (paper)
Integration of the time-dependent heat equation in the fuel rod performance program IAMBUS
International Nuclear Information System (INIS)
West, G.
1982-01-01
An iterative numerical method for integration of the time-dependent heat equation is described. No presuppositions are made for the dependency of the thermal conductivity and heat capacity on space, time and temperature. (orig.) [de
Evaluation of time-dependent void nucleation theory under ion bombardment conditions
International Nuclear Information System (INIS)
Sprague, J.A.; Russell, K.C.; Choi, Y.H.
1975-01-01
The applicability of a steady state and time-dependent homogeneous void nucleation theory to charged-particle irradiation experiments was investigated. The steady-state theory was found to be inappropriate, since significant changes in a metal's microstructure would likely occur before the void nucleation rate could reach steady state. Two types of time dependence were examined, that of the point defect concentrations at the beginning of an irradiation and the longer-term time dependence of void nucleation. It was found that vacancy and interstitial clustering significantly reduce the relaxation time for the point defect concentrations. An efficient form of time-dependent homogeneous nucleation theory was applied to ion bombardment conditions to predict void size distributions
Experimental quantum-walk revival with a time-dependent coin.
Xue, P; Zhang, R; Qin, H; Zhan, X; Bian, Z H; Li, J; Sanders, Barry C
2015-04-10
We demonstrate a quantum walk with time-dependent coin bias. With this technique we realize an experimental single-photon one-dimensional quantum walk with a linearly ramped time-dependent coin flip operation and thereby demonstrate two periodic revivals of the walker distribution. In our beam-displacer interferometer, the walk corresponds to movement between discretely separated transverse modes of the field serving as lattice sites, and the time-dependent coin flip is effected by implementing a different angle between the optical axis of half-wave plate and the light propagation at each step. Each of the quantum-walk steps required to realize a revival comprises two sequential orthogonal coin-flip operators, with one coin having constant bias and the other coin having a time-dependent ramped coin bias, followed by a conditional translation of the walker.
Application of Trotter approximation for solving time dependent neutron transport equation
International Nuclear Information System (INIS)
Stancic, V.
1987-01-01
A method is proposed to solve multigroup time dependent neutron transport equation with arbitrary scattering anisotropy. The recurrence relation thus obtained is simple, numerically stable and especially suitable for treatment of complicated geometries. (author)
A Realization of a Quasi-Random Walk for Atoms in Time-Dependent Optical Potentials
Directory of Open Access Journals (Sweden)
Torsten Hinkel
2015-09-01
Full Text Available We consider the time dependent dynamics of an atom in a two-color pumped cavity, longitudinally through a side mirror and transversally via direct driving of the atomic dipole. The beating of the two driving frequencies leads to a time dependent effective optical potential that forces the atom into a non-trivial motion, strongly resembling a discrete random walk behavior between lattice sites. We provide both numerical and analytical analysis of such a quasi-random walk behavior.
Dynamic acoustics for the STAR-100. [computer algorithms for time dependent sound waves in jet
Bayliss, A.; Turkel, E.
1979-01-01
An algorithm is described to compute time dependent acoustic waves in a jet. The method differs from previous methods in that no harmonic time dependence is assumed, thus permitting the study of nonharmonic acoustical behavior. Large grids are required to resolve the acoustic waves. Since the problem is nonstiff, explicit high order schemes can be used. These have been adapted to the STAR-100 with great efficiencies and permitted the efficient solution of problems which would not be feasible on a scalar machine.
Measuring time dependent volatility and cross-sectional correlation in Australian equity returns
Bertram, William K.
2008-05-01
In this study we examine the time-dependent nature of volatility and cross-correlation of Australian equity returns data. Volatility and correlation estimates are calculated using methods that allow for non-stationary behaviour. By averaging the estimates across the entire data set we show that the correlation in ASX stock returns displays evidence of significant time-dependent behaviour. We also find that the volatility estimates do not display similar non-stationary patterns.
Navy Operational Planner: Anti-Submarine Warfare with Time-Dependent Performance
2017-09-01
horizon . We develop three test cases with varying degrees of time- dependence in the performance data, and show that taking this new information into... account changes the operational plans generated and can lead to better employment of ASW platforms due to the more realistic representation of...ocean or atmospheric conditions that vary over the planning horizon . We develop three test cases with varying degrees of time-dependence in the
Time-dependent--S-matrix Hartree-Fock theory of complex reactions
International Nuclear Information System (INIS)
Griffin, J.J.; Lichtner, P.C.; Dworzecka, M.
1980-01-01
Some limitations of the conventional time-dependent Hartree-Fock method for describing complex reactions are noted, and one particular ubiquitous defect is discussed in detail: the post-breakup spurious cross channel correlations which arise whenever several asymptotic reaction channels must be simultaneously described by a single determinant. A reformulated time-dependent--S-matrix Hartree-Fock theory is proposed, which obviates this difficulty. Axiomatic requirements minimal to assure that the time-dependent--S-matrix Hartree-Fock theory represents an unambiguous and physically interpretable asymptotic reaction theory are utilized to prescribe conditions upon the definition of acceptable asymptotic channels. That definition, in turn, defines the physical range of the time-dependent--S-matrix Hartree-Fock theory to encompass the collisions of mathematically well-defined ''time-dependent Hartree-Fock droplets.'' The physical properties of these objects then circumscribe the content of the Hartree-Fock single determinantal description. If their periodic vibrations occur for continuous ranges of energy then the resulting ''classical'' time-dependent Hartree-Fock droplets are seen to be intrinsically dissipative, and the single determinantal description of their collisions reduces to a ''trajectory'' theory which can describe the masses and relative motions of the fragments but can provide no information about specific asymptotic excited states beyond their constants of motion, or the average properties of the limit, if it exists, of their equilibrization process. If, on the other hand, the periodic vibrations of the time-dependent Hartree-Fock droplets are discrete in energy, then the time-dependent--S-matrix Hartree-Fock theory can describe asymptotically the time-average properties of the whole spectrum of such periodic vibrations
Coherence in Turbulence: New Perspective
Levich, Eugene
2009-07-01
. In particular, theoretical and numerical evidence is given indicating that BCC in turbulent channel/pipe flows have the depth at the walls proportional to the square root of the Reynolds number in wall units, Ly ∝ √Re, which is equivalent to the fractal dimension in normal to the walls y direction DyF = 0, 5, and the total dimension DF = Dx, zF + DyF = 2 + 0.5 = 2.5. Similar BCC structure and the same fractal dimension are suggested for geophysical turbulence, in near agreement with the recent comprehensive analysis of experimental and observational data. It is asserted that the atmospheric and oceanic events, e.g., tropical hurricanes, tornadoes and other mesoscale phenomena, and probably ocean currents are manifestations of BCC and their environs. Generally BCC should be rather seen as the turbulence core, while the whole surrounding 3D flow as being created and sustained by the intense vorticity of BCC by means of induction, in a manner similar to that for an electric current generating magnetic field. It is further argued that BCC is not only a theoretical concept important for fundamental grasp on turbulence, but may be a practical asset furnishing tools for turbulence management in regular fluids and plasmas. The concept of helical fluctuations in turbulence goes 25 years back in time, and while never totally abandoned nevertheless has been residing on the fringes of research activity. Experiment and numerical simulations had not been able to either validate or repudiate decisively the concept. However, recent large scale direct numerical simulations and proliferation of experimental and observational data showed convincingly how ubiquitous is the phenomenon of helicity fluctuations in various turbulent flows, from hurricanes and tornadoes to turbulent jets to solar wind plasma turbulence to turbulent flows in compressible fluids. This allowed a fresh look at the concept and led to a quantitative theory exposed in this paper. The paper concludes with a
Understanding the Origins of Time-Dependent Inhibition by Polypeptide Deformylase Inhibitors
Energy Technology Data Exchange (ETDEWEB)
Totoritis, Rachel; Duraiswami, Chaya; Taylor, Amy N.; Kerrigan, John J.; Campobasso, Nino; Smith, Katherine J.; Ward, Paris; King, Bryan W.; Murrayz-Thompson, Monique; Jones, Amber D.; Van Aller, Glenn S.; Aubart, Kelly M.; Zalacain, Magdalena; Thrall, Sara H.; Meek, Thomas D.; Schwartz, Benjamin (GSKPA)
2012-03-15
The continual bacterial adaptation to antibiotics creates an ongoing medical need for the development of novel therapeutics. Polypeptide deformylase (PDF) is a highly conserved bacterial enzyme, which is essential for viability. It has previously been shown that PDF inhibitors represent a promising new area for the development of antimicrobial agents, and that many of the best PDF inhibitors demonstrate slow, time-dependent binding. To improve our understanding of the mechanistic origin of this time-dependent inhibition, we examined in detail the kinetics of PDF catalysis and inhibition by several different PDF inhibitors. Varying pH and solvent isotope led to clear changes in time-dependent inhibition parameters, as did inclusion of NaCl, which binds to the active site metal of PDF. Quantitative analysis of these results demonstrated that the observed time dependence arises from slow binding of the inhibitors to the active site metal. However, we also found several metal binding inhibitors that exhibited rapid, non-time-dependent onset of inhibition. By a combination of structural and chemical modification studies, we show that metal binding is only slow when the rest of the inhibitor makes optimal hydrogen bonds within the subsites of PDF. Both of these interactions between the inhibitor and enzyme were found to be necessary to observe time-dependent inhibition, as elimination of either leads to its loss.
3-D time-dependent numerical model of flow patterns within a large-scale Czochralski system
Nam, Phil-Ouk; O, Sang-Kun; Yi, Kyung-Woo
2008-04-01
Silicon single crystals grown through the Czochralski (Cz) method have increased in size to 300 mm, resulting in the use of larger crucibles. The objective of this study is to investigate the continuous Cz method in a large crucible (800 mm), which is performed by inserting a polycrystalline silicon rod into the melt. The numerical model is based on a time-dependent and three-dimensional standard k- ɛ turbulent model using the analytical software package CFD-ACE+, version 2007. Wood's metal melt, which has a low melting point ( Tm=70 °C), was used as the modeling fluid. Crystal rotation given in the clockwise direction with rotation rates varying from 0 to 15 rpm, while the crucible was rotated counter-clockwise, with rotation rates between 0 and 3 rpm. The results show that asymmetrical phenomena of fluid flow arise as results of crystal and crucible rotation, and that these phenomena move with the passage of time. Near the crystal, the flow moves towards the crucible at the pole of the asymmetrical phenomena. Away from the poles, a vortex begins to form, which is strongly pronounced in the region between the poles.
Compressibility effects in planar wakes
Hickey, Jean-Pierre; Hussain, Fazle; Wu, Xiaohua
2010-11-01
Far-field, temporally evolving planar wakes are studied by DNS to evaluate the effect of compressibility on the flow. A high-order predictor-corrector code was developed and fully validated against canonical compressible test cases. In this study, wake simulations are performed at constant Reynolds number for three different Mach numbers: Ma= 0.2, 0.8 and 1.2. The domain is doubly periodic with a non-reflecting boundary in the cross-flow and is initialized by a randomly perturbed laminar profile. The compressibility of the flow modifies the observed structures which show greater three-dimensionality. A self-similar period develops in which the square of the wake half-width increase linearly with time and the Reynolds stress statistics at various times collapse using proper scaling parameters. The growth-rate increases with increasing compressibility of the flow: an observation which is substantiated by experimental results but is in stark contrast with the high-speed mixing-layer. As the growth-rate is related to the mixing ability of the flow, the impact of compressibility is of fundamental importance. Therefore, we seek an explanation of the modified growth-rate by investigating the turbulent kinetic energy equation. From the analysis, it can be conjectured that the pressure-strain term might play a role in the modified growth-rate.
Numerical simulation of a laboratory-scale turbulent V-flame
Energy Technology Data Exchange (ETDEWEB)
Bell, J.B.; Day, M.S.; Shepherd, I.G.; Johnson, M.; Cheng, R.K.; Grcar,J.F.; Beckner, V.E.; Lijewski, M.J.
2005-02-07
We present a three-dimensional, time-dependent simulation of a laboratory-scale rod-stabilized premixed turbulent V-flame. The simulations are performed using an adaptive time-dependent low Mach number model with detailed chemical kinetics and a mixture model for differential species diffusion. The algorithm is based on a second-order projection formulation and does not require an explicit subgrid model for turbulence or turbulence chemistry interaction. Adaptive mesh refinement is used to dynamically resolve the flame and turbulent structures. Here, we briefly discuss the numerical procedure and present detailed comparisons with experimental measurements showing that the computation is able to accurately capture the basic flame morphology and associated mean velocity field. Finally, we discuss key issues that arise in performing these types of simulations and the implications of these issues for using computation to form a bridge between turbulent flame experiments and basic combustion chemistry.
DEFF Research Database (Denmark)
Xenaki, Angeliki; Mosegaard, Klaus
2014-01-01
Sound source localization with sensor arrays involves the estimation of the direction-of-arrival (DOA) from a limited number of observations. Compressive sensing (CS) solves such underdetermined problems achieving sparsity, thus improved resolution, and can be solved efficiently with convex...
3rd Turbulence and Interactions Conference
Estivalezes, Jean-Luc; Gleize, Vincent; Lê, Thien-Hiep; Terracol, Marc; Vincent, Stéphane
2014-01-01
The book presents a snapshot of the state-of-art in the field of turbulence modeling and covers the latest developments concerning direct numerical simulations, large eddy simulations, compressible turbulence, coherent structures, two-phase flow simulation, and other related topics. It provides readers with a comprehensive review of both theory and applications, describing in detail the authors’ own experimental results. The book is based on the proceedings of the third Turbulence and Interactions Conference (TI 2012), which was held on June 11-14 in La Saline-les-Bains, La Réunion, France, and includes both keynote lectures and outstanding contributed papers presented at the conference. This multifaceted collection, which reflects the conference´s emphasis on the interplay of theory, experiments and computing in the process of understanding and predicting the physics of complex flows and solving related engineering problems, offers a practice-oriented guide for students, researchers and professionals in ...
Adjoint-based sensitivities and data assimilation with a time-dependent marine ice sheet model
Goldberg, Dan; Heimbach, Patrick
2013-04-01
To date, assimilation of observational data using large-scale ice models has consisted only of time-dependent inversions of surface velocities for basal traction, bed elevation, or ice stiffness. These inversions are for the most part based on control methods (Macayeal D R, 1992, A tutorial on the use of control methods in ice sheet modeling), which involve generating and solving the adjoint of the ice model. Quite a lot has been learned about the fast-flowing parts of the Antarctic Ice Sheet from such inversions. Still, there are limitations to these "snapshot" inversions. For instance, they cannot capture time-dependent dynamics, such as propagation of perturbations through the ice sheet. They cannot assimilate time-dependent observations, such as surface elevation changes. And they are problematic for initializing time-dependent ice sheet models, as such initializations may contain considerable model drift. We have developed an adjoint for a time-dependent land ice model, with which we will address such issues. The land ice model implements a hybrid shallow shelf-shallow ice stress balance and can represent the floating, fast-sliding, and frozen bed regimes of a marine ice sheet. The adjoint is generated by a combination of analytic methods and the use of automated differentiation (AD) software. Experiments with idealized geometries have been carried out; adjoint sensitivities reveal the "vulnerable" regions of ice shelves, and preliminary inversions of "synthetic" observations (e.g. simultaneous inversion of basal traction and topography) yield encouraging results.
Multi-scale simulations of droplets in generic time-dependent flows
Milan, Felix; Biferale, Luca; Sbragaglia, Mauro; Toschi, Federico
2017-11-01
We study the deformation and dynamics of droplets in time-dependent flows using a diffuse interface model for two immiscible fluids. The numerical simulations are at first benchmarked against analytical results of steady droplet deformation, and further extended to the more interesting case of time-dependent flows. The results of these time-dependent numerical simulations are compared against analytical models available in the literature, which assume the droplet shape to be an ellipsoid at all times, with time-dependent major and minor axis. In particular we investigate the time-dependent deformation of a confined droplet in an oscillating Couette flow for the entire capillary range until droplet break-up. In this way these multi component simulations prove to be a useful tool to establish from ``first principles'' the dynamics of droplets in complex flows involving multiple scales. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No 642069. & European Research Council under the European Community's Seventh Framework Program, ERC Grant Agreement No 339032.
Energy Technology Data Exchange (ETDEWEB)
Kapoor, Varun; Brics, Martins; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)
2013-07-01
Autoionizing states are inaccessible to time-dependent density functional theory (TDDFT) using known, adiabatic Kohn-Sham (KS) potentials. We determine the exact KS potential for a numerically exactly solvable model Helium atom interacting with a laser field that is populating an autoionizing state. The exact single-particle density of the population in the autoionizing state corresponds to that of the energetically lowest quasi-stationary state in the exact KS potential. We describe how this exact potential controls the decay by a barrier whose height and width allows for the density to tunnel out and decay with the same rate as in the ab initio time-dependent Schroedinger calculation. However, devising a useful exchange-correlation potential that is capable of governing such a scenario in general and in more complex systems is hopeless. As an improvement over TDDFT, time-dependent reduced density matrix functional theory has been proposed. We are able to obtain for the above described autoionization process the exact time-dependent natural orbitals (i.e., the eigenfunctions of the exact, time-dependent one-body reduced density matrix) and study the potentials that appear in the equations of motion for the natural orbitals and the structure of the two-body density matrix expanded in them.
High Reynolds Number Turbulence
National Research Council Canada - National Science Library
Smits, Alexander J
2007-01-01
The objectives of the grant were to provide a systematic study to fill the gap between existing research on low Reynolds number turbulent flows to the kinds of turbulent flows encountered on full-scale vehicles...
National Research Council Canada - National Science Library
Drikakis, D; Geurts, Bernard
2002-01-01
... discretization 3 A test-case: turbulent channel flow 4 Conclusions 75 75 82 93 98 4 Analysis and control of errors in the numerical simulation of turbulence Sandip Ghosal 1 Introduction 2 Source...
DEFF Research Database (Denmark)
Brand, Arno J.; Peinke, Joachim; Mann, Jakob
2011-01-01
The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....
Interstellar MHD Turbulence and Star Formation
Vázquez-Semadeni, Enrique
This chapter reviews the nature of turbulence in the Galactic interstellar medium (ISM) and its connections to the star formation (SF) process. The ISM is turbulent, magnetized, self-gravitating, and is subject to heating and cooling processes that control its thermodynamic behavior, causing it to behave approximately isobarically, in spite of spanning several orders of magnitude in density and temperature. The turbulence in the warm and hot ionized components of the ISM appears to be trans- or subsonic, and thus to behave nearly incompressibly. However, the neutral warm and cold components are highly compressible, as a consequence of both thermal instability (TI) in the atomic gas and of moderately-to-strongly supersonic motions in the roughly isothermal cold atomic and molecular components. Within this context, we discuss: (1) the production and statistical distribution of turbulent density fluctuations in both isothermal and polytropic media; (2) the nature of the clumps produced by TI, noting that, contrary to classical ideas, they in general accrete mass from their environment in spite of exhibiting sharp discontinuities at their boundaries; (3) the density-magnetic field correlation (and, at low densities, lack thereof) in turbulent density fluctuations, as a consequence of the superposition of the different wave modes in the turbulent flow; (4) the evolution of the mass-to-magnetic flux ratio (MFR) in density fluctuations as they are built up by dynamic compressions; (5) the formation of cold, dense clouds aided by TI, in both the hydrodynamic (HD) and the magnetohydrodynamic (MHD) cases; (6) the expectation that star-forming molecular clouds are likely to be undergoing global gravitational contraction, rather than being near equilibrium, as generally believed, and (7) the regulation of the star formation rate (SFR) in such gravitationally contracting clouds by stellar feedback which, rather than keeping the clouds from collapsing, evaporates and disperses
Laird, Brian B.; Thompson, Ward H.
2011-08-01
The time-dependent fluorescence of a model dye molecule in a nanoconfined solvent is used to test approximations based on the dynamic and static linear-response theories and the assumption of Gaussian statistics. Specifically, the results of nonequilibrium molecular-dynamics simulations are compared to approximate expressions involving time correlation functions obtained from equilibrium simulations. Solvation dynamics of a model diatomic dye molecule dissolved in acetonitrile confined in a spherical hydrophobic cavity of radius 12, 15, and 20 Å is used as the test case. Both the time-dependent fluorescence energy, expressed as the normalized dynamic Stokes shift, and the time-dependent position of the dye molecule after excitation are examined. While the dynamic linear-response approximation fails to describe key aspects of the solvation dynamics, assuming Gaussian statistics reproduces the full nonequilibrium simulations well. The implications of these results are discussed.
Numerical studies of time-independent and time-dependent scattering by several elliptical cylinders
Nigsch, Martin
2007-07-01
A numerical solution to the problem of time-dependent scattering by an array of elliptical cylinders with parallel axes is presented. The solution is an exact one, based on the separation-of-variables technique in the elliptical coordinate system, the addition theorem for Mathieu functions, and numerical integration. Time-independent solutions are described by a system of linear equations of infinite order which are truncated for numerical computations. Time-dependent solutions are obtained by numerical integration involving a large number of these solutions. First results of a software package generating these solutions are presented: wave propagation around three impenetrable elliptical scatterers. As far as we know, this method described has never been used for time-dependent multiple scattering.
On the algebraic approach to the time-dependent quadratic Hamiltonian
International Nuclear Information System (INIS)
Urdaneta, Ines; Palma, Alejandro; Sandoval, Lourdes
2010-01-01
The unitary operator V(t) that diagonalizes the time-dependent quadratic Hamiltonian (TDQH) into a time-dependent harmonic oscillator (TDHO) is obtained using a Lie algebra. The method involves a factorization of the TDQH into a TDHO through a unitary Bogoliubov transformation in terms of creation and annihilation operators with time-dependent coefficients. It is shown that this operator can be easily achieved by means of the factorization, together with the commonly known Wei-Norman theorem. We discuss the conditions under which this unitary operator converges to the evolution operator U(t) of the Schroedinger equation for the TDQH, giving then a straightforward calculation of the evolution operator with respect to the procedures published in the literature.
Time-dependent model of the Martian atmosphere for use in orbit lifetime and sustenance studies
Culp, R. D.; Stewart, A. I.
1984-01-01
A time-dependent model of the Martian atmosphere suitable for calculation of long-term aerodynamic effects on low altitude satellites is presented. The atmospheric model is both position dependent, through latitude and longitude effects, and time dependent. The time dependency includes diurnal and seasonal effects, effects of annual motion, long and short term solar activity effects, and periodic dust storm effects. Nine constituent gases are included in the model. Uncertainties in exospheric temperature, turbidity, and turbopause altitude are used to produce bounds on the expected density. A computer model - a Fortran subroutine which, when given the Julian date, Cartesian position of the sun and the spacecraft in aerocentric coordinates, returns the local values of mass density, temperature, scale height, and upper and lower bounds on the mass density is presented.
Time-dependent model of the Martian atmosphere for use in orbit lifetime and sustenance studies
Culp, R. D.; Stewart, A. I.
1984-09-01
A time-dependent model of the Martian atmosphere suitable for calculation of long-term aerodynamic effects on low altitude satellites is presented. The atmospheric model is both position dependent, through latitude and longitude effects, and time dependent. The time dependency includes diurnal and seasonal effects, effects of annual motion, long and short term solar activity effects, and periodic dust storm effects. Nine constituent gases are included in the model. Uncertainties in exospheric temperature, turbidity, and turbopause altitude are used to produce bounds on the expected density. A computer model - a Fortran subroutine which, when given the Julian date, Cartesian position of the sun and the spacecraft in aerocentric coordinates, returns the local values of mass density, temperature, scale height, and upper and lower bounds on the mass density is presented.
On the algebraic approach to the time-dependent quadratic Hamiltonian
Energy Technology Data Exchange (ETDEWEB)
Urdaneta, Ines; Palma, Alejandro [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, Puebla (Mexico); Sandoval, Lourdes, E-mail: urdaneta@sirio.ifuap.buap.m [Facultad de Ciencias de la Computacion, Benemerita Universidad Autonoma de Puebla, Puebla (Mexico)
2010-09-24
The unitary operator V(t) that diagonalizes the time-dependent quadratic Hamiltonian (TDQH) into a time-dependent harmonic oscillator (TDHO) is obtained using a Lie algebra. The method involves a factorization of the TDQH into a TDHO through a unitary Bogoliubov transformation in terms of creation and annihilation operators with time-dependent coefficients. It is shown that this operator can be easily achieved by means of the factorization, together with the commonly known Wei-Norman theorem. We discuss the conditions under which this unitary operator converges to the evolution operator U(t) of the Schroedinger equation for the TDQH, giving then a straightforward calculation of the evolution operator with respect to the procedures published in the literature.
Sensitivity and uncertainty analysis for functionals of the time-dependent nuclide density field
International Nuclear Information System (INIS)
Williams, M.L.; Weisbin, C.R.
1978-04-01
An approach to extend the present ORNL sensitivity program to include functionals of the time-dependent nuclide density field is developed. An adjoint equation for the nuclide field was derived previously by using generalized perturbation theory; the present derivation makes use of a variational principle and results in the same equation. The physical significance of this equation is discussed and compared to that of the time-dependent neutron adjoint equation. Computational requirements for determining sensitivity profiles and uncertainties for functionals of the time-dependent nuclide density vector are developed within the framework of the existing FORSS system; in this way the current capability is significantly extended. The development, testing, and use of an adjoint version of the ORIGEN isotope generation and depletion code are documented. Finally, a sample calculation is given which estimates the uncertainty in the plutonium inventory at shutdown of a PWR due to assumed uncertainties in uranium and plutonium cross sections. 8 figures, 4 tables
Effective Potential from the Generalized Time-Dependent Schrödinger Equation
Directory of Open Access Journals (Sweden)
Trifce Sandev
2016-09-01
Full Text Available We analyze the generalized time-dependent Schrödinger equation for the force free case, as a generalization, for example, of the standard time-dependent Schrödinger equation, time fractional Schrödinger equation, distributed order time fractional Schrödinger equation, and tempered in time Schrödinger equation. We relate it to the corresponding standard Schrödinger equation with effective potential. The general form of the effective potential that leads to a standard time-dependent Schrodinger equation with the same solution as the generalized one is derived explicitly. Further, effective potentials for several special cases, such as Dirac delta, power-law, Mittag-Leffler and truncated power-law memory kernels, are expressed in terms of the Mittag-Leffler functions. Such complex potentials have been used in the transport simulations in quantum dots, and in simulation of resonant tunneling diode.
Exact-exchange time-dependent density-functional theory with the frequency-dependent kernel
International Nuclear Information System (INIS)
Shigeta, Yasuteru; Hirao, Kimihiko; Hirata, So
2006-01-01
The effects of the adiabatic approximation in time-dependent density-functional theory (TDDFT) on dynamic polarizabilities and van der Waals C 6 coefficients have been analyzed quantitatively. These effects are shown to be small in the off-resonance region of the perturbation frequencies by comparing the results from the exact-exchange TDDFT employing the optimized effective potentials and the corresponding frequency-dependent kernel [time-dependent optimized effective potentials (TDOEP)] and those from the frequency-independent kernel [adiabatic TDOEP (ATDOEP)]. The magnitude of the computed dynamic polarizabilities near the static limit is found to be in the order: time-dependent Hartree-Fock (TDHF)>ATDOEP>TDOEP, whereas that of C 6 is: TDHF>TDOEP>ATDOEP
Time-series analysis of multiple foreign exchange rates using time-dependent pattern entropy
Ishizaki, Ryuji; Inoue, Masayoshi
2018-01-01
Time-dependent pattern entropy is a method that reduces variations to binary symbolic dynamics and considers the pattern of symbols in a sliding temporal window. We use this method to analyze the instability of daily variations in multiple foreign exchange rates. The time-dependent pattern entropy of 7 foreign exchange rates (AUD/USD, CAD/USD, CHF/USD, EUR/USD, GBP/USD, JPY/USD, and NZD/USD) was found to be high in the long period after the Lehman shock, and be low in the long period after Mar 2012. We compared the correlation matrix between exchange rates in periods of high and low of the time-dependent pattern entropy.
NATO Advanced Research Workshop on Time-Dependent Quantum Molecular Dynamics : Theory and Experiment
Lathouwers, L
1992-01-01
From March 30th to April 3rd, 1992, a NATO Advanced Research workshop entitled "Time Dependent Quantum Molecular Dynamics: Theory and Experiment" was held at Snowbird, Utah. The organizing committee consisted of J. BROECKHOVE (Antwerp, Belgium), L. CEDERBAUM (Heidelberg, Germany), L. LATHOUWERS (Antwerp, Belgium), N. OHRN (Gainesville, Florida) and J. SIMONS (Salt Lake City, Utah). Fifty-two participants from eleven different countries attended the meeting at which thirty-three talks and one poster session were held. Twenty-eight participants submitted contributions to the proceedings of the meeting, which are reproduced in this volume. The workshop brought together experts in different areas 0 f molecular quantum dynamics, all adhering to the time dependent approach. The aim was to discuss and compare methods and applications. The ~amiliarityo~ the aUdience with the concepts o~ time dependent approaches greatly facilitated topical discussions and probing towards new applications. A broad area of subject matt...
Time-dependent wave-packet description of dissociative electron attachment
International Nuclear Information System (INIS)
Gertitschke, P.L.; Domcke, W.
1993-01-01
A time-dependent description of the dissociative-attachment process is formulated within the framework of the projection-operator formalism of scattering theory. A generally applicable computational scheme for the solution of the resulting integro-differential equation of motion is developed. The concepts and computational techniques are illustrated for a model of a d-wave shape resonance as well as for the p-wave 2 Σ u + shape resonance in electron-H 2 collisions. It is shown that the time-dependent wave-packet picture yields qualitative insight into the dynamics of the dissociative-attachment reaction. The origin of the complete failure of the local-complex-potential approximation for the 2 Σ u + resonance in e+H 2 becomes apparent in the time-dependent picture
Communication: Time-dependent optimized coupled-cluster method for multielectron dynamics
Sato, Takeshi; Pathak, Himadri; Orimo, Yuki; Ishikawa, Kenichi L.
2018-02-01
Time-dependent coupled-cluster method with time-varying orbital functions, called time-dependent optimized coupled-cluster (TD-OCC) method, is formulated for multielectron dynamics in an intense laser field. We have successfully derived the equations of motion for CC amplitudes and orthonormal orbital functions based on the real action functional, and implemented the method including double excitations (TD-OCCD) and double and triple excitations (TD-OCCDT) within the optimized active orbitals. The present method is size extensive and gauge invariant, a polynomial cost-scaling alternative to the time-dependent multiconfiguration self-consistent-field method. The first application of the TD-OCC method of intense-laser driven correlated electron dynamics in Ar atom is reported.
Theory of time-dependent intense-field collisional resonance fluorescence
Kleiber, P. D.; Cooper, J.; Burnett, K.; Kunasz, C. V.; Raymer, M. G.
1983-01-01
The time-dependent theory of Courtens and Szoke (1977) is generalized using the approach of Burnett et al. (1982) to derive time-dependent spectral intensities of resonance fluorescence from atoms driven by a pulsed laser in the presence of collisions. These results are valid both for laser detunings inside and outside the usual impact region of the spectrum, including Zeeman degeneracy effects. This theory is applied to a simple but important example (J = 0 to J = 1) to obtain quantitative predictions for the observable scattered-light spectrum which can be directly compared with recent experiments.
Time-Dependent Networks as Models to Achieve Fast Exact Time-Table Queries
DEFF Research Database (Denmark)
Brodal, Gert Stølting; Jacob, Rico
2003-01-01
We consider efficient algorithms for exact time-table queries, i.e. algorithms that find optimal itineraries for travelers using a train system. We propose to use time-dependent networks as a model and show advantages of this approach over space-time networks as models.......We consider efficient algorithms for exact time-table queries, i.e. algorithms that find optimal itineraries for travelers using a train system. We propose to use time-dependent networks as a model and show advantages of this approach over space-time networks as models....
Time-dependent Networks as Models to Achieve Fast Exact Time-table Queries
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Jacob, Rico
2001-01-01
We consider efficient algorithms for exact time-table queries, i.e. algorithms that find optimal itineraries. We propose to use time-dependent networks as a model and show advantages of this approach over space-time networks as models.......We consider efficient algorithms for exact time-table queries, i.e. algorithms that find optimal itineraries. We propose to use time-dependent networks as a model and show advantages of this approach over space-time networks as models....
Efficient computation of the MCTDHF approximation to the time-dependent Schrödinger equation
Directory of Open Access Journals (Sweden)
Othmar Koch
2006-01-01
Full Text Available We discuss analytical and numerical properties of the multi-configuration time-dependent Hartree-Fock method for the approximate solution of the time-dependent multi-particle (electronic Schrödinger equation which are relevant for an efficient implementation of this model reduction technique. Particularly, we focus on a discretization and low rank approximation in the evaluation of the meanfield terms occurring in the MCTDHF equations of motion, which is crucial for the computational tractability of the problem. We give error bounds for this approximation and demonstrate the achieved gain in performance.
Exact solutions to the supply chain equations for arbitrary, time-dependent demands
DEFF Research Database (Denmark)
Warburton, Roger D.H.; Hodgson, J.P.E.; Nielsen, Erland Hejn
2014-01-01
for the estimated demand and the target work in progress when the demand is time-dependent. The resulting inventory equation is solved in terms of the Lambert modes with all of the demand non-linearities confined to the pre-shape function. The series solution is exact, and all terms are reasonably easy to calculate......, so users can determine the inventory behavior to any desired precision. To illustrate, we solve the equations for a non-linear, quadratic time-dependence in the demand. For practical use, only a few terms in the series are required, a proposition illustrated by the For All Practical Purposes (FAPP...
DEFF Research Database (Denmark)
Sørensen, Nina Buus; Christiansen, Anders Tolstrup; Kjær, Troels Wesenberg
2017-01-01
PURPOSE: The time-dependent effect of anesthetics on the retinal function is debated. We hypothesize that in anesthetized animals there is a time-dependent decline that requires optimized multifocal electroretinogram (mfERG) recording procedures. METHODS: Conventional and four-frame global-flash mf...... by determining the necessary time-of-delay from intraocular injection of a drug to full effect. TRANSLATIONAL RELEVANCE: General anesthesia is a possible source of error in mfERG recordings. Therefore, it is important to investigate the translational relevance of the results to mfERG recordings in children...
Quantum Many-Body System in Presence of Time-Dependent Potential and Electric Field
Energy Technology Data Exchange (ETDEWEB)
Sobhani, Hadi; Hassanabadi, Hassan [Shahrood University of Technology, Shahrood (Iran, Islamic Republic of)
2017-07-15
In this article, a quantum many-body system is considered. Then two time-dependent interactions have been added to the system. Changing of them is assumed in general form. After that, by using algebraic method, time evolution of this many-body system has been investigated. In order to study the time evolution, Lewis-Riesenfeld dynamical invariant and time evolution operator method have been used. Appropriate dynamical invariants are constructed and their Eigenvalues are derived as well as appropriate time evolution operators are constructed. These calculations have been done in general form so there are no limiting assumptions on changing of time-dependent functions.
Quantum Many-Body System in Presence of Time-Dependent Potential and Electric Field
International Nuclear Information System (INIS)
Sobhani, Hadi; Hassanabadi, Hassan
2017-01-01
In this article, a quantum many-body system is considered. Then two time-dependent interactions have been added to the system. Changing of them is assumed in general form. After that, by using algebraic method, time evolution of this many-body system has been investigated. In order to study the time evolution, Lewis-Riesenfeld dynamical invariant and time evolution operator method have been used. Appropriate dynamical invariants are constructed and their Eigenvalues are derived as well as appropriate time evolution operators are constructed. These calculations have been done in general form so there are no limiting assumptions on changing of time-dependent functions.
Rate-Independent Processes with Linear Growth Energies and Time-Dependent Boundary Conditions
Czech Academy of Sciences Publication Activity Database
Kružík, Martin; Zimmer, J.
2012-01-01
Roč. 5, č. 3 (2012), s. 591-604 ISSN 1937-1632 R&D Projects: GA AV ČR IAA100750802 Grant - others:GA ČR(CZ) GAP201/10/0357 Institutional research plan: CEZ:AV0Z10750506 Keywords : concentrations * oscillations * time-dependent boundary conditions * rate-independent evolution Subject RIV: BA - General Mathematics http://library.utia.cas.cz/separaty/2011/MTR/kruzik-rate-independent processes with linear growth energies and time-dependent boundary conditions.pdf
Time-dependent reliability analysis of nuclear reactor operators using probabilistic network models
International Nuclear Information System (INIS)
Oka, Y.; Miyata, K.; Kodaira, H.; Murakami, S.; Kondo, S.; Togo, Y.
1987-01-01
Human factors are very important for the reliability of a nuclear power plant. Human behavior has essentially a time-dependent nature. The details of thinking and decision making processes are important for detailed analysis of human reliability. They have, however, not been well considered by the conventional methods of human reliability analysis. The present paper describes the models for the time-dependent and detailed human reliability analysis. Recovery by an operator is taken into account and two-operators models are also presented
Long-lifetime Martian orbit selection using a time-dependent model of the Martian atmosphere
Culp, R. D.; Stewart, A. I.; Chow, C.-C.; Uphoff, C.
1984-01-01
A mathematical model of the time-dependent Martian atmosphere has been developed in order to accurately calculate the effects of aerodynamic drag on a low altitude satellite. The time-dependent properties of the model include solar activity effects, dust storm effects, seasonal and diurnal variations, and annual motion effects. Position effects are accounted for through Martian latitude and longitude. Expected values of mass density, temperature, scale height, and the estimated standard deviation of the mass density are provided. An example of the use of the model in selecting an orbit for the Mars Geochemical/Climatology Orbiter is given.
Long-lifetime Martian orbit selection using a time-dependent model of the Martian atmosphere
Culp, R. D.; Stewart, A. I.; Chow, C.-C.; Uphoff, C.
1984-08-01
A mathematical model of the time-dependent Martian atmosphere has been developed in order to accurately calculate the effects of aerodynamic drag on a low altitude satellite. The time-dependent properties of the model include solar activity effects, dust storm effects, seasonal and diurnal variations, and annual motion effects. Position effects are accounted for through Martian latitude and longitude. Expected values of mass density, temperature, scale height, and the estimated standard deviation of the mass density are provided. An example of the use of the model in selecting an orbit for the Mars Geochemical/Climatology Orbiter is given.
Low-energy fusion dynamics of weakly bound nuclei: A time dependent perspective
Directory of Open Access Journals (Sweden)
Diaz-Torres A.
2016-01-01
Full Text Available Recent dynamical fusion models for weakly bound nuclei at low incident energies, based on a time-dependent perspective, are briefly presented. The main features of both the PLATYPUS model and a new quantum approach are highlighted. In contrast to existing timedependent quantum models, the present quantum approach separates the complete and incomplete fusion from the total fusion. Calculations performed within a toy model for 6Li + 209Bi at near-barrier energies show that converged excitation functions for total, complete and incomplete fusion can be determined with the time-dependent wavepacket dynamics.
Low-energy fusion dynamics of weakly bound nuclei: A time dependent perspective
Diaz-Torres, A.; Boselli, M.
2016-05-01
Recent dynamical fusion models for weakly bound nuclei at low incident energies, based on a time-dependent perspective, are briefly presented. The main features of both the PLATYPUS model and a new quantum approach are highlighted. In contrast to existing timedependent quantum models, the present quantum approach separates the complete and incomplete fusion from the total fusion. Calculations performed within a toy model for 6Li + 209Bi at near-barrier energies show that converged excitation functions for total, complete and incomplete fusion can be determined with the time-dependent wavepacket dynamics.
Time-Dependent Mean-Field Games in the Subquadratic Case
Gomes, Diogo A.
2014-10-14
In this paper we consider time-dependent mean-field games with subquadratic Hamiltonians and power-like local dependence on the measure. We establish existence of classical solutions under a certain set of conditions depending on both the growth of the Hamiltonian and the dimension. This is done by combining regularity estimates for the Hamilton-Jacobi equation based on the Gagliardo-Nirenberg interpolation inequality with polynomial estimates for the Fokker-Planck equation. This technique improves substantially the previous results on the regularity of time-dependent mean-field games.
Simulation of transverse beam splitting using time-dependent dipolar or quadrupolar kicks
Capoani, Federico
2017-01-01
Two simple systems with high relevance for accelerator physics have been studied in detail in the context of this Summer Student Project. These systems describe the motion under the influence of detuning with amplitude due to non-linear magnets and an external, time-dependent force of dipolar or quadrupolar nature.Two simple systems with high relevance for accelerator physics have been studied in detail in the context of this Summer Student Project. These systems describe the motion under the influence of detuning with amplitude due to non-linear magnets and an external, time-dependent force of dipolar or quadrupolar nature.
Franosch, Jan-Moritz P; Urban, Sebastian; van Hemmen, J Leo
2013-12-01
How can an animal learn from experience? How can it train sensors, such as the auditory or tactile system, based on other sensory input such as the visual system? Supervised spike-timing-dependent plasticity (supervised STDP) is a possible answer. Supervised STDP trains one modality using input from another one as "supervisor." Quite complex time-dependent relationships between the senses can be learned. Here we prove that under very general conditions, supervised STDP converges to a stable configuration of synaptic weights leading to a reconstruction of primary sensory input.
Time dependent mean field approximation to the many-body S-matrix
International Nuclear Information System (INIS)
Alhassid, Y.; Koonin, S.E.
1980-01-01
Time-dependent Hartree-Fock (TDHF) calculations are a good description of some inclusive properties of deep inelastic heavy-ion collisions. The first steps toward a mean-field theory that approximates specific elements of the many-body S matrix are presented. A many-body system with pairwise interactions excited by an external, time-dependent one-body field is considered. The methods are used to solve the forced Lipkin model. The moduli of elastic and excitation amplitudes are plotted. 3 figures
Analysis of time-dependent reliability of degenerated reinforced concrete structure
Directory of Open Access Journals (Sweden)
Zhang Hongping
2016-07-01
Full Text Available Durability deterioration of structure is a highly random process. The maintenance of degenerated structure involves the calculation of the reliability of time-dependent structure. This study introduced reinforced concrete structure resistance decrease model and related statistical parameters of uncertainty, analyzed resistance decrease rules of corroded bending element of reinforced concrete structure, and finally calculated timedependent reliability of the corroded bending element of reinforced concrete structure, aiming to provide a specific theoretical basis for the application of time-dependent reliability theory.
The Modification of Time-Dependent Mechanical Properties of Polyamides due to Sterilization
Florjancic, Urska; Zupancic, Barbara; Sutton, Elizabeth; Sitar, Ksenija Rener; Marion, Ljubo; Batista, Urska; Groselj, Dusan; Emri, Igor
2008-07-01
We examine the effect of sterilization on functionality and durability of Polyamide 6. Nowadays there are several applications of this material in medicine in a form of surgical sewing material, vascular catheters and other implants. Understanding the time-dependent behavior of PA-6 is critical in predicting the durability of different medical products made from this polymer. We show that two PA-6 materials having different initial kinetics and processed with the same technology, when exposed to sterilization, change their time-dependent mechanical properties, and hence the durability in significantly different ways.
Learning Bounds of ERM Principle for Sequences of Time-Dependent Samples
Directory of Open Access Journals (Sweden)
Mingchen Yao
2015-01-01
Full Text Available Many generalization results in learning theory are established under the assumption that samples are independent and identically distributed (i.i.d.. However, numerous learning tasks in practical applications involve the time-dependent data. In this paper, we propose a theoretical framework to analyze the generalization performance of the empirical risk minimization (ERM principle for sequences of time-dependent samples (TDS. In particular, we first present the generalization bound of ERM principle for TDS. By introducing some auxiliary quantities, we also give a further analysis of the generalization properties and the asymptotical behaviors of ERM principle for TDS.
Time-series analysis of foreign exchange rates using time-dependent pattern entropy
Ishizaki, Ryuji; Inoue, Masayoshi
2013-08-01
Time-dependent pattern entropy is a method that reduces variations to binary symbolic dynamics and considers the pattern of symbols in a sliding temporal window. We use this method to analyze the instability of daily variations in foreign exchange rates, in particular, the dollar-yen rate. The time-dependent pattern entropy of the dollar-yen rate was found to be high in the following periods: before and after the turning points of the yen from strong to weak or from weak to strong, and the period after the Lehman shock.
Dynamical grid method for time dependent simulations of axisymmetric instabilities in tokamaks
International Nuclear Information System (INIS)
Jardin, S.C.; Johnson, J.L.; Greene, J.M.; Grimm, R.C.
1977-07-01
A natural nonorthogonal time-dependent coordinate transformation based on the magnetic field lines is utilized for the numerical integration of the two-dimensional axisymmetric time-dependent ideal MHD equations in tokamak geometry. The finite-difference grid is treated as a dynamical variable, and its equations of motion are integrated simultaneously with those for the fluid and magnetic field. The method is applicable to tokamak systems of arbitrary pressure and cross section. It is particularly useful for the nearly incompressible ideal MHD modes which are of interest in tokamak stability studies
Rüger, Robert; Niehaus, Thomas; van Lenthe, Erik; Heine, Thomas; Visscher, Lucas
2016-01-01
We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the adiabatic Hessian Franck-Condon (AH|FC) method with a harmonic approximation for the nuclear wavefunction. The theory of vibrationally resolved UV/Vis spectroscopy is first summarized from the viewpoint of TD-DFTB. The method is benchmarked against time-dependent density functional theory (TD-DFT) ...
Directory of Open Access Journals (Sweden)
Jerry D. Gibson
2016-06-01
Full Text Available Speech compression is a key technology underlying digital cellular communications, VoIP, voicemail, and voice response systems. We trace the evolution of speech coding based on the linear prediction model, highlight the key milestones in speech coding, and outline the structures of the most important speech coding standards. Current challenges, future research directions, fundamental limits on performance, and the critical open problem of speech coding for emergency first responders are all discussed.
Directory of Open Access Journals (Sweden)
Jinzhu Li
2014-01-01
Full Text Available To describe the time-dependent behavior of soft clay, this paper extended one-dimensional Nishihara model to three-dimensional stress state based on the framework of Perzyna’s overstress theory and modified cam-clay model. The yield criterion of modified cam-clay model was used to describe the plastic properties of soft clay, and the overstress theory was used to describe the strain rate effect. Triaxial rheological tests were carried out on Ningbo soft clay and the rheological characteristics were studied. Based on laboratory results, the parameters of proposed model were determined by curve fitting, which show that this model is suitable for the rheological characteristics of Ningbo soft clay. The analysis of parameters shows that, the value of parameters changes slightly with different deviatoric stress when the confining pressure was constant, but changes notably with the increase of confining pressure. A user material subroutine of the proposed constitutive mode was coded on the platform of the FEM software ABAQUS and verified by triaxial compression of soil column. A plain strain problem was computed to analyze the rheological consolidation properties of soft clay, in which the rheological effect and the finite strain effect were considered.
Numerical solution of inviscid and viscous laminar and turbulent flow around the airfoil
Directory of Open Access Journals (Sweden)
Slouka Martin
2016-01-01
Full Text Available This work deals with the 2D numerical solution of inviscid compressible flow and viscous compressible laminar and turbulent flow around the profile. In a case of turbulent flow algebraic Baldwin-Lomax model is used and compared with Wilcox k-omega model. Calculations are done for NACA 0012 and RAE 2822 airfoil profile for the different angles of upstream flow. Numerical results are compared and discussed with experimental data.
Numerical solution of inviscid and viscous laminar and turbulent flow around the airfoil
Slouka, Martin; Kozel, Karel
2016-03-01
This work deals with the 2D numerical solution of inviscid compressible flow and viscous compressible laminar and turbulent flow around the profile. In a case of turbulent flow algebraic Baldwin-Lomax model is used and compared with Wilcox k-omega model. Calculations are done for NACA 0012 and RAE 2822 airfoil profile for the different angles of upstream flow. Numerical results are compared and discussed with experimental data.
The role of the CI expansion length in time-dependent studies
Ulusoy, Inga S.; Stewart, Zachary; Wilson, Angela K.
2018-01-01
With the recent advances in experimental attosecond science, theoretical predictions of electron dynamics can now be validated against experiment. Time-dependent studies of the electron motion in molecules can be used to obtain information about electronic transitions and the interaction of the electrons with electromagnetic fields. Often, these approaches rely on single-excited wave functions. Presented here is a first attempt to evaluate the accuracy of the time-dependent configuration interaction method so that the optimal representation of the electronic wave function for time-dependent studies can be assessed. A quantifier is determined that can aid in finding this optimal representation. The approach is demonstrated on a variety of molecules that include both localized and intramolecular charge transfer electron excitations. Observables including excitation energies, dipole moments, strengths, and static polarizabilities are obtained from time-independent and time-dependent calculations and are compared to experimental data. In this way, a rigorous routine is developed by which the reliability and accuracy of the CI wave function can be assessed and which represents a first step to a more quantitative description of electron dynamics in molecules.
Directory of Open Access Journals (Sweden)
Yong Wu
2015-12-01
Full Text Available Failure of loose gully deposits under the effect of rainfall contributes to the potential risk of debris flow. In the past decades, researches on hydraulic mechanism and time-dependent characteristics of loose deposits failure are frequently reported, however adequate measures for reducing debris flow are not available practically. In this context, a time-dependent model was established to determine the changes of water table of loose deposits using hydraulic and topographic theories. In addition, the variation in water table with elapsed time was analyzed. The formulas for calculating hydrodynamic and hydrostatic pressures on each strip and block unit of deposit were proposed, and the slope stability and failure risk of the loose deposits were assessed based on the time-dependent hydraulic characteristics of established model. Finally, the failure mechanism of deposits based on infinite slope theory was illustrated, with an example, to calculate sliding force, anti-sliding force and residual sliding force applied to each slice. The results indicate that failure of gully deposits under the effect of rainfall is the result of continuously increasing hydraulic pressure and water table. The time-dependent characteristics of loose deposit failure are determined by the factors of hydraulic properties, drainage area of interest, rainfall pattern, rainfall duration and intensity.
Little rip cosmological models with quadratic equation of state with time dependent parameters
Shelote, R. D.; Khadekar, G. S.
2018-02-01
We have studied flat FRW cosmological model of the universe filled with an ideal fluid with quadratic equation of state (EOS) with time dependent parameters ω(t) and Λ(t). We found the equation of the state parameter ω(t) is less than -1 and also found Little Rip (LR) and Pseudo Rip (PR) behavior for dark energy.
Directory of Open Access Journals (Sweden)
Sareh Keshavarzi
2012-01-01
Full Text Available Background. In many studies with longitudinal data, time-dependent covariates can only be measured intermittently (not at all observation times, and this presents difficulties for standard statistical analyses. This situation is common in medical studies, and methods that deal with this challenge would be useful. Methods. In this study, we performed the seemingly unrelated regression (SUR based models, with respect to each observation time in longitudinal data with intermittently observed time-dependent covariates and further compared these models with mixed-effect regression models (MRMs under three classic imputation procedures. Simulation studies were performed to compare the sample size properties of the estimated coefficients for different modeling choices. Results. In general, the proposed models in the presence of intermittently observed time-dependent covariates showed a good performance. However, when we considered only the observed values of the covariate without any imputations, the resulted biases were greater. The performances of the proposed SUR-based models in comparison with MRM using classic imputation methods were nearly similar with approximately equal amounts of bias and MSE. Conclusion. The simulation study suggests that the SUR-based models work as efficiently as MRM in the case of intermittently observed time-dependent covariates. Thus, it can be used as an alternative to MRM.
Time-evolution operators for (coupled) time-dependent oscillators and Lie algebraic structure theory
Wolf, F.; Korsch, H. J.
1988-03-01
This paper deals with the application of Lie algebraic structure theory to time-dependent quantum systems making use of the Levi-Malcev decomposition of the Lie algebra generated by the Hamiltonian and the Wei-Norman representation of the time-evolution operator. In particular, (coupled) harmonic-oscillator systems are studied. Explicit formulas for expectation values and transition probabilities are derived.
The effect of time-dependent coupling on non-equilibrium steady states
DEFF Research Database (Denmark)
Cornean, Horia; Neidhardt, Hagen; Zagrebnov, Valentin
Consider (for simplicity) two one-dimensional semi-infinite leads coupled to a quantum well via time dependent point interactions. In the remote past the system is decoupled, and each of its components is at thermal equilibrium. In the remote future the system is fully coupled. We define and comp...
The effect of time-dependent coupling on non-equilibrium steady states
DEFF Research Database (Denmark)
Cornean, Horia; Neidhardt, Hagen; Zagrebnov, Valentin A.
2009-01-01
Consider (for simplicity) two one-dimensional semi-infinite leads coupled to a quantum well via time dependent point interactions. In the remote past the system is decoupled, and each of its components is at thermal equilibrium. In the remote future the system is fully coupled. We define and comp...
Heat conduction in a plate-type fuel element with time-dependent boundary conditions
International Nuclear Information System (INIS)
Faya, A.J.G.; Maiorino, J.R.
1981-01-01
A method for the solution of boundary-value problems with variable boundary conditions is applied to solve a heat conduction problem in a plate-type fuel element with time dependent film coefficient. The numerical results show the feasibility of the method in the solution of this class of problems. (Author) [pt
Analysis of time-dependent changes in Bitemarks on Styrofoam sheets
Directory of Open Access Journals (Sweden)
Djeapragassam Parimala
2015-01-01
Full Text Available Context: The scope of Bitemarks in forensic dentistry is widening as they help the forensic expert in identifying the perpetuator in medicolegal cases. The greatest challenge in Bitemarks analysis is the time-dependent changes produced in Bitemark patterns on various substrates at the scene of the crime. Aims: To analyze the time-dependent changes in Bitemarks on Styrofoam sheets. Settings and Design: Single centered prospective study. Materials and Methods: Twenty-five subjects were randomly chosen, and dental casts prepared. Then test bites were registered on Styrofoam sheets, overlays prepared from these test bites on subsequent days (day 1, 2, 3, 4 and checked for matching accuracy. Statistical Analysis Used: The data were analyzed using Kruskal-Wallis ANOVA to compare the overlays from dental stone cast with test bites on Styrofoam sheets on subsequent days. Results: The P value was found to be 1 which is statistically not significant implying that there were no significant time-dependent changes in the pattern of Bitemarks. Conclusions: There were no time-dependent changes in the pattern of Bitemarks on Styrofoam sheets hence they serve as better materials than Bitemarks on human skin or food substrates obtained from the scene of the crime.
Space-time discontinuous Galerkin method for parabolic problems in time-dependent domains
Janivita Joto Sudirham, J.J.S.; Sudirham, J.J.; van der Vegt, Jacobus J.W.; van Damme, Rudolf M.J.
2004-01-01
In this report a space-time discontinuous Galerkin (DG) finite element method for the solution of the advection-diffusion-reaction equation in time-dependent domains is presented and analyzed. The variational formulation is based on a combination of the space-time DG method developed by van der Vegt
A time-dependent measurement of charm CP violation at LHCb
Smith, M
2014-01-01
A time dependent analysis of CP violation in charm mesons is presented through the measurement of the observable $A_{\\Gamma}$. This observable involves precise measurements of the D0 lifetime as it decays to a CP eigenstate. The results presented are the most precise to date. No CP violation is observed.
A new approximation method for time-dependent problems in quantum mechanics
International Nuclear Information System (INIS)
Amore, Paolo; Aranda, Alfredo; Fernandez, Francisco M.; Jones, Hugh
2005-01-01
We propose an approximate solution of the time-dependent Schroedinger equation using the method of stationary states combined with a variational matrix method for finding the energies and eigenstates. We illustrate the effectiveness of the method by applying it to the time development of the wave-function in the quantum-mechanical version of the inflationary slow-roll transition
DEFF Research Database (Denmark)
Rotvig, J.; Smith, H.; Jauho, Antti-Pekka
1996-01-01
We present an analytical study of one-dimensional semiconductor superlattices in external electric fields, which may be time dependent. A number of general results for the (quasi)energies and eigenstates are derived. An equation of motion for the density matrix is obtained for a two-band model...
Time dependent Hartree-Fock treatment of elastic scattering of electrons by H and He/+/.
Jamieson, M. J.
1972-01-01
Time dependent Hartree-Fock theory, in its coupled and uncoupled forms, is used to calculate the elastic singlet p-wave phase shifts for the scattering of electrons by H and He/+/. On comparison with the best available results it is concluded that the coupled scheme, which contains correlation to at least first order, is superior. Levinson's theorem is confirmed.
Ruger, R.; Niehaus, T.; van Lenthe, E.; Heine, T.; Visscher, L.
2016-01-01
We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the adiabatic Hessian Franck-Condon method with a harmonic approximation for the nu- clear wavefunction.
Photodissociation of NaH using time-dependent Fourier grid method
Indian Academy of Sciences (India)
We have solved the time dependent Schrödinger equation by using the Chebyshev polynomial scheme and Fourier grid Hamiltonian method to calculate the dissociation cross section of NaH molecule by 1-photon absorption from the 1+ state to the 1 state. We have found that the results differ signiﬁcantly from an ...
Exact solutions of Feinberg–Horodecki equation for time-dependent ...
Indian Academy of Sciences (India)
analytically solved whose time-dependent potentials are constant, linear and quadratic functions of the coordinates [1–6]. In an interesting work, Molski [7] has demonstrated the possibility of describing the biological systems in terms of the time-like supersymmetric quantum mechanics [8] to include space-like quantum ...
Kinetic study of time-dependent fixation of U{sup VI} on biochar
Energy Technology Data Exchange (ETDEWEB)
Ashry, A. [Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD (United Kingdom); Radiation Protection Department, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo (Egypt); Bailey, E.H., E-mail: liz.bailey@nottingham.ac.uk [Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD (United Kingdom); Chenery, S.R.N. [British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG (United Kingdom); Young, S.D. [Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD (United Kingdom)
2016-12-15
Biochar, a by-product from the production of biofuel and syngas by gasification, was tested as a material for adsorption and fixation of U{sup VI} from aqueous solutions. A batch experiment was conducted to study the factors that influence the adsorption and time-dependent fixation on biochar at 20 °C, including pH, initial concentration of U{sup VI} and contact time. Uranium (U{sup VI}) adsorption was highly dependent on pH but adsorption on biochar was high over a wide range of pH values, from 4.5 to 9.0, and adsorption strength was time-dependent over several days. The experimental data for pH > 7 were most effectively modelled using a Freundlich adsorption isotherm coupled to a reversible first order kinetic equation to describe the time-dependent fixation of U{sup VI} within the biochar structure. Desorption experiments showed that U{sup VI} was only sparingly desorbable from the biochar with time and isotopic dilution with {sup 233}U{sup VI} confirmed the low, or time-dependent, lability of adsorbed {sup 238}U{sup VI}. Below pH 7 the adsorption isotherm trend suggested precipitation, rather than true adsorption, may occur. However, across all pH values (4.5-9) measured saturation indices suggested precipitation was possible: autunite below pH 6.5 and either swartzite, liebigite or bayleyite above pH 6.5.
Kinetic study of time-dependent fixation of UVI on biochar
International Nuclear Information System (INIS)
Ashry, A.; Bailey, E.H.; Chenery, S.R.N.; Young, S.D.
2016-01-01
Biochar, a by-product from the production of biofuel and syngas by gasification, was tested as a material for adsorption and fixation of U VI from aqueous solutions. A batch experiment was conducted to study the factors that influence the adsorption and time-dependent fixation on biochar at 20 °C, including pH, initial concentration of U VI and contact time. Uranium (U VI ) adsorption was highly dependent on pH but adsorption on biochar was high over a wide range of pH values, from 4.5 to 9.0, and adsorption strength was time-dependent over several days. The experimental data for pH > 7 were most effectively modelled using a Freundlich adsorption isotherm coupled to a reversible first order kinetic equation to describe the time-dependent fixation of U VI within the biochar structure. Desorption experiments showed that U VI was only sparingly desorbable from the biochar with time and isotopic dilution with 233 U VI confirmed the low, or time-dependent, lability of adsorbed 238 U VI . Below pH 7 the adsorption isotherm trend suggested precipitation, rather than true adsorption, may occur. However, across all pH values (4.5-9) measured saturation indices suggested precipitation was possible: autunite below pH 6.5 and either swartzite, liebigite or bayleyite above pH 6.5.
On the time evolution operator for time-dependent quadratic Hamiltonians
International Nuclear Information System (INIS)
Fernandez, F.M.
1989-01-01
The Schroedinger equation with a time-dependent quadratic Hamiltonian is investigated. The time-evolution operator is written as a product of exponential operators determined by the Heisenberg equations of motion. This product operator is shown to be global in the occupation number representation when the Hamiltonian is Hermitian. The success of some physical applications of the product-form representation is explained
Stochastic time-dependent vehicle routing problem: Mathematical models and ant colony algorithm
Directory of Open Access Journals (Sweden)
Zhengyu Duan
2015-11-01
Full Text Available This article addresses the stochastic time-dependent vehicle routing problem. Two mathematical models named robust optimal schedule time model and minimum expected schedule time model are proposed for stochastic time-dependent vehicle routing problem, which can guarantee delivery within the time windows of customers. The robust optimal schedule time model only requires the variation range of link travel time, which can be conveniently derived from historical traffic data. In addition, the robust optimal schedule time model based on robust optimization method can be converted into a time-dependent vehicle routing problem. Moreover, an ant colony optimization algorithm is designed to solve stochastic time-dependent vehicle routing problem. As the improvements in initial solution and transition probability, ant colony optimization algorithm has a good performance in convergence. Through computational instances and Monte Carlo simulation tests, robust optimal schedule time model is proved to be better than minimum expected schedule time model in computational efficiency and coping with the travel time fluctuations. Therefore, robust optimal schedule time model is applicable in real road network.
Optimal adaptive control for quantum metrology with time-dependent Hamiltonians
Pang, Shengshi; Jordan, Andrew N.
2017-01-01
Quantum metrology has been studied for a wide range of systems with time-independent Hamiltonians. For systems with time-dependent Hamiltonians, however, due to the complexity of dynamics, little has been known about quantum metrology. Here we investigate quantum metrology with time-dependent Hamiltonians to bridge this gap. We obtain the optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and show proper Hamiltonian control is generally necessary to optimize the Fisher information. We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement scheme to attain the optimal Fisher information. In a minimal example of a qubit in a rotating magnetic field, we find a surprising result that the fundamental limit of T2 time scaling of quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches T4 in estimating the rotation frequency of the field. We conclude by considering level crossings in the derivatives of the Hamiltonians, and point out additional control is necessary for that case. PMID:28276428
Thyroid status affects the rat cardiac beta-adrenoceptor system transiently and time-dependently
Zwaveling, J.; Batink, H. D.; Taguchi, K.; de Jong, J.; Michel, M. C.; Pfaffendorf, M.; van Zwieten, A.
1998-01-01
1. The aim of this study was to investigate the time-dependency of the influence of dysthyroid states on the beta-adrenoceptor system in rat heart left ventricle. Therefore, the influence of acute and chronic hyper- and hypothyroidism on beta-adrenoceptor-induced left ventricular responses,
Modelling Faculty Replacement Strategies Using a Time-Dependent Finite Markov-Chain Process.
Hackett, E. Raymond; Magg, Alexander A.; Carrigan, Sarah D.
1999-01-01
Describes the use of a time-dependent Markov-chain model to develop faculty-replacement strategies within a college at a research university. The study suggests that a stochastic modelling approach can provide valuable insight when planning for personnel needs in the immediate (five-to-ten year) future. (MSE)
Time-dependent field equations for paraxial relativistic electron beams: Beam Research Program
International Nuclear Information System (INIS)
Sharp, W.M.; Yu, S.S.; Lee, E.P.
1987-01-01
A simplified set of field equations for a paraxial relativistic electron beam is presented. These equations for the beam electrostatic potential phi and pinch potential Phi identical to A/sub z/ - phi retain previously neglected time-dependent terms and for axisymmetric beams reduce exactly to Maxwell's equations
One-dimensional multiple-well oscillators: A time-dependent ...
Indian Academy of Sciences (India)
Time-dependent Schrödinger equation (TDSE) is solved numerically to calculate the ground- and first three excited-state ... tum mechanical approach is employed here for the first time to calculate the energy eigen- values, expectation values x2j (j = 1,2,... ..... Delhi, for financial support. References. [1] E Magyari, Phys. Lett.
The Keldysh formalism applied to time-dependent current-density-functional theory
Gidopoulos, NI; Wilson, S
2003-01-01
In this work we demonstrate how to derive the Kohn-Sham equations of time-dependent current-density functional theory from a generating action functional defined on a Keldysh time contour. These Kohn-Sham equations contain an exchange-correlation contribution to the vector potential. For this
Optimal Preventive Maintenance Schedule based on Lifecycle Cost and Time-Dependent Reliability
2011-11-10
cost PC , the inspection cost IC and an expected variable cost EVC [2, 32]. These costs are a function of quality and reliability. The lifecycle...expected variable cost EVC is a function of the time- dependent reliability which is used to estimate the expected present value of repairing and/or
Analysis of time-dependent changes in Bitemarks on Styrofoam sheets.
Parimala, Djeapragassam; Daniel, Mariappan Jonathan; Srinivasan, Subramanian Vasudevan; Kumaran, Jimsha Vannathan
2015-03-01
The scope of Bitemarks in forensic dentistry is widening as they help the forensic expert in identifying the perpetuator in medicolegal cases. The greatest challenge in Bitemarks analysis is the time-dependent changes produced in Bitemark patterns on various substrates at the scene of the crime. To analyze the time-dependent changes in Bitemarks on Styrofoam sheets. Single centered prospective study. Twenty-five subjects were randomly chosen, and dental casts prepared. Then test bites were registered on Styrofoam sheets, overlays prepared from these test bites on subsequent days (day 1, 2, 3, 4) and checked for matching accuracy. The data were analyzed using Kruskal-Wallis ANOVA to compare the overlays from dental stone cast with test bites on Styrofoam sheets on subsequent days. The P value was found to be 1 which is statistically not significant implying that there were no significant time-dependent changes in the pattern of Bitemarks. There were no time-dependent changes in the pattern of Bitemarks on Styrofoam sheets hence they serve as better materials than Bitemarks on human skin or food substrates obtained from the scene of the crime.
A time-dependent Green's function-based model for stream ...
African Journals Online (AJOL)
DRINIE
2003-07-03
Jul 3, 2003 ... Because the ratio of the depth to lateral dimensions of most aquifers is extremely small, this assumption is ... problem in a novel way that accommodates medium heterogeneity, varying bedrock profile, and point .... has been developed on the basis of Eq. (11), incorporating the time- dependent fundamental ...
Reparametrization in the path integral over finite dimensional manifold with a time-dependent metric
International Nuclear Information System (INIS)
Storchak, S.N.
1988-01-01
The path reparametrization procedure in the path integral is considered using the methods of stochastic processes for diffusion on finite dimensional manifold with a time-dependent metric. the reparametrization Jacobian has been obtained. The formulas of reparametrization for a symbolic presentation of the path integral have been derived
Quantum trajectory in a time-dependent potential : oscillator in a monochromatic field
Nishiyama, Yoshio
2002-01-01
The 'quantum trajectory' obeying the Schrodinger equation with a time dependent potential is theoretically determined. As an illustration of the theory the trajectory of a charged harmonic oscillator in an electromagnetic field obeying the wave equation is shown along with the orbital motion of the corresponding classical particle.
International Nuclear Information System (INIS)
Abdullaev, F.Kh.; Kamchatnov, A.M.; Konotop, V.V.; Brazhnyi, V.A.
2003-01-01
Evolution of periodic matter waves in one-dimensional Bose-Einstein condensates with time-dependent scattering length is described. It is shown that variation of the effective nonlinearity is a powerful tool for controlled generation of bright and dark solitons starting with periodic waves
International Nuclear Information System (INIS)
Frank, T.D.
2006-01-01
First-order approximations of time-dependent solutions are determined for stochastic systems perturbed by time-delayed feedback forces. To this end, the theory of delay Fokker-Planck equations is applied in combination with Bayes' theorem. Applications to a time-delayed Ornstein-Uhlenbeck process and the geometric Brownian walk of financial physics are discussed
Branch and price for the time-dependent vehicle routing problem with time windows
DEFF Research Database (Denmark)
Dabia, Said; Dabia, Said; Van Woensel, Tom
2013-01-01
solution methods to the DM-TDVRPTW are based on (meta-)heuristics. The decomposition of an arc-based formulation leads to a setpartitioning problem as the master problem, and a time-dependent shortest path problem with resource constraints as the pricing problem. The master problem is solved by means...
3D time-dependent flow computations using a molecular stress function model with constraint release
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz
2002-01-01
The numerical simulation of time dependent viscoelastic flow (in three dimensions) is of interest in connection with a variety of polymer processing operations. The application of the numerical simulation techniques is in the analysis and design of polymer processing problems. This is operations,...
International Nuclear Information System (INIS)
Fynbo, P.B.
1981-02-01
A method is described by which the surface temperature of a steel cylinder containing radioactive waste can be calculated. The method assumes a time-dependent continuous line source in cylindrical symmetry and it applies Laplace transformation. The resultant laplace transform is approximated and then inverted (by convolution). The method is computationally fast and future generalisations to similar problems are suggested. (author)
International Nuclear Information System (INIS)
Christoskov, I.D.; Vapirev, E.I.
1990-01-01
An alternative way of presenting the time-dependent amplitudes and intensities of radiation, corresponding to resonant absorption and scattering experiments, is developed. Infinite series of Bessel functions with complex coefficients are replaced by simple for calculation definite integrals and the number of Bessel function calls is reduced to one per a tabulation point. Thus the calculational effort for experimental data processing becomes smaller
Time-adaptive and history-adaptive multicriterion routing in stochastic, time-dependent networks
DEFF Research Database (Denmark)
Pretolani, Daniele; Nielsen, Lars Relund; Andersen, Kim Allan
2009-01-01
We compare two different models for multicriterion routing in stochastic time-dependent networks: the classic "time-adaptive'' model and the more flexible "history-adaptive'' one. We point out several properties of the sets of efficient solutions found under the two models. We also devise a metho...
Exact solution for a time-dependent multi-mode coupled quadratic Bose system
Energy Technology Data Exchange (ETDEWEB)
Xu Xiuwei; Mu Haifeng [College of Physics, Ludong University, Yantai 264025 (China); Liu Shuyan [College of Electric and Electronic Engineering, Ludong University, Yantai 264025 (China); Guo Chun, E-mail: hai-fengmu@163.co [Office of Teaching Affairs, Ludong University, Yantai 264025 (China)
2010-11-12
By utilizing generalized linear quantum transformation theory, the evolution operator, normal and anti-normal Wigner characteristic functions, P- and Q-representations of a multi-mode coupled quadratic Boson system are presented. The squeezing properties of a time-dependent double-mode coupled quadratic Bose system are investigated as a specific example.
Numerical modelling of softwood time-dependent behaviour based on microstructure
DEFF Research Database (Denmark)
Engelund, Emil Tang
2010-01-01
The time-dependent mechanical behaviour of softwood such as creep or relaxation can be predicted, from knowledge of the microstructural arrangement of the cell wall, by applying deformation kinetics. This has been done several times before; however, often without considering the constraints defined...
Emergence of slow collective oscillations in neural networks with spike-timing dependent plasticity
DEFF Research Database (Denmark)
Mikkelsen, Kaare; Imparato, Alberto; Torcini, Alessandro
2013-01-01
The collective dynamics of excitatory pulse coupled neurons with spike timing dependent plasticity (STDP) is studied. The introduction of STDP induces persistent irregular oscillations between strongly and weakly synchronized states, reminiscent of brain activity during slow-wave sleep. We explain...
New numerical methods for solving the time-dependent Maxwell equations
De Raedt, H; Kole, JS; Michielsen, KFL; Figge, MT; Berz, M; Makino, K
2005-01-01
We review some recent developments in numerical algorithms to solve the time-dependent Maxwell equations for systems with spatially varying permittivity and permeabilitly. We show that the Suzuki product-formula approach can be used to construct a family of unconditionally stable algorithms, the
Determination of relaxation modulus of time-dependent materials using neural networks
Aulova, Alexandra; Govekar, Edvard; Emri, Igor
2017-08-01
Health monitoring systems for plastic based structures require the capability of real time tracking of changes in response to the time-dependent behavior of polymer based structures. The paper proposes artificial neural networks as a tool of solving inverse problem appearing within time-dependent material characterization, since the conventional methods are computationally demanding and cannot operate in the real time mode. Abilities of a Multilayer Perceptron (MLP) and a Radial Basis Function Neural Network (RBFN) to solve ill-posed inverse problems on an example of determination of a time-dependent relaxation modulus curve segment from constant strain rate tensile test data are investigated. The required modeling data composed of strain rate, tensile and related relaxation modulus were generated using existing closed-form solution. Several neural networks topologies were tested with respect to the structure of input data, and their performance was compared to an exponential fitting technique. Selected optimal topologies of MLP and RBFN were tested for generalization and robustness on noisy data; performance of all the modeling methods with respect to the number of data points in the input vector was analyzed as well. It was shown that MLP and RBFN are capable of solving inverse problems related to the determination of a time dependent relaxation modulus curve segment. Particular topologies demonstrate good generalization and robustness capabilities, where the topology of RBFN with data provided in parallel proved to be superior compared to other methods.
Analysis of Two-Level Support Systems with Time-Dependent Overflow - A Banking Application
DEFF Research Database (Denmark)
Barth, Wolfgang; Manitz, Michael; Stolletz, Raik
2010-01-01
In this paper, we analyze the performance of call centers of financial service providers with two levels of support and a time-dependent overflow mechanism. Waiting calls from the front-office queue flow over to the back office if a waiting-time limit is reached and at least one back-office agent...
The Limit Behavior of a Stochastic Logistic Model with Individual Time-Dependent Rates
Directory of Open Access Journals (Sweden)
Yilun Shang
2013-01-01
Full Text Available We investigate a variant of the stochastic logistic model that allows individual variation and time-dependent infection and recovery rates. The model is described as a heterogeneous density dependent Markov chain. We show that the process can be approximated by a deterministic process defined by an integral equation as the population size grows.
A Bimodal Hybrid Model for Time-Dependent Probabilistic Seismic Hazard Analysis
Yaghmaei-Sabegh, Saman; Shoaeifar, Nasser; Shoaeifar, Parva
2018-03-01
The evaluation of evidence provided by geological studies and historical catalogs indicates that in some seismic regions and faults, multiple large earthquakes occur in cluster. Then, the occurrences of large earthquakes confront with quiescence and only the small-to-moderate earthquakes take place. Clustering of large earthquakes is the most distinguishable departure from the assumption of constant hazard of random occurrence of earthquakes in conventional seismic hazard analysis. In the present study, a time-dependent recurrence model is proposed to consider a series of large earthquakes that occurs in clusters. The model is flexible enough to better reflect the quasi-periodic behavior of large earthquakes with long-term clustering, which can be used in time-dependent probabilistic seismic hazard analysis with engineering purposes. In this model, the time-dependent hazard results are estimated by a hazard function which comprises three parts. A decreasing hazard of last large earthquake cluster and an increasing hazard of the next large earthquake cluster, along with a constant hazard of random occurrence of small-to-moderate earthquakes. In the final part of the paper, the time-dependent seismic hazard of the New Madrid Seismic Zone at different time intervals has been calculated for illustrative purpose.
Photodissociation of NaH using time-dependent Fourier grid method
Indian Academy of Sciences (India)
Abstract. We have solved the time dependent Schrödinger equation by using the Chebyshev poly- nomial scheme and Fourier grid Hamiltonian method to calculate the dissociation cross section of. NaH molecule by 1-photon absorption from the X1Σ· state to the B1Π state. We have found that the results differ significantly ...
Magnetohydrodynamic turbulence model
Hammer, James
2005-10-01
K-epsilon models find wide application as approximate models of fluid turbulence. The models couple equations for the turbulent kinetic energy and dissipation rate to the usual fluid equations, where the turbulence is driven by Reynolds stress or buoyancy source terms. We generalize to the case with magnetic forces in a Z-pinch geometry (azimuthal fields), using simple energy arguments to derive the turbulent source terms. The field is presumed strong enough that 3 dimensional twisting or bending of the field can be ignored, i.e. the flow is of the interchange type. The generalized source terms show the familiar correspondence between magnetic curvature and acceleration as drive terms for Rayleigh-Taylor and sausage instability. The source terms lead naturally to a modification of Ohm's law including a turbulent electric field that allows magnetic field to diffuse through material. The turbulent magnetic diffusion parallels a corresponding ohmic heating term in the equation for the turbulent kinetic energy.
Rain Initiation Time in Turbulent Warm Clouds
Falkovich, Gregory; Stepanov, Mikhail G.; Vucelja, Marija
2006-04-01
A mean field model is presented that describes droplet growth resulting from condensation and collisions and droplet loss resulting from fallout. The model allows for an effective numerical simulation. The numerical scheme that is conservative in water mass and keeps accurate count of the number of droplets is applied, and the way in which the rain initiation time depends on different parameters is studied. In particular, it is shown that the rain initiation time depends nonmonotonically (has a minimum) on the number of cloud condensation nuclei. Also presented is a simple model that allows one to estimate the rain initiation time for turbulent clouds with an inhomogeneous concentration of cloud condensation nuclei. It is argued that by overseeding even a part of a cloud by small hygroscopic nuclei one can substantially delay the onset of precipitation.
The Bloch wave operator: generalizations and applications: II. The time-dependent case
Energy Technology Data Exchange (ETDEWEB)
Jolicard, Georges [Observatoire de Besancon (UMR-CNRS 6091), Universite de Franche-Comte, 41 bis, Avenue de l' Observatoire, 25000 Besancon (France); Killingbeck, John P [Observatoire de Besancon (UMR-CNRS 6091), Universite de Franche-Comte, 41 bis, Avenue de l' Observatoire, 25000 Besancon (France); Mathematics Department, University of Hull, Hull HU6 7RX (United Kingdom)
2003-10-10
Part II of the review shows how the stationary Bloch wave operator of part I can be suitably modified to give a time-dependent wave operator. This operator makes it possible to use a relatively small active space in order to describe the dynamical processes which occur in quantum mechanical systems which have a time-dependent Hamiltonian. A close study is made of the links between the time-dependent and time-independent wave operators at the adiabatic limit; the analysis clarifies the way in which the wave operator formalism allows the time evolution of a system or a wave packet to be described in terms of a fast evolution inside the active space together with weak transitions out of this space which can be treated by perturbation methods. Two alternative wave operator equations of motion are derived and analysed. The first one is a non-linear differential equation in the usual Hilbert space; the second one is a differential equation in an extended Hilbert space with an extra time variable added and becomes equivalent to the usual Bloch equation when the Floquet Hamiltonian is taken in place of the ordinary Hamiltonian. A study is made of the close relationships between the time-dependent wave operator formalism, the Floquet theory and the (t, t') theory. Some original methods of solution of the two forms of wave operator equation are proposed and lead to new techniques of integration for the time-dependent Schroedinger equation (e.g., the generalized Green equation procedure). Mixed procedures involving both the time-independent and time-dependent wave operators are shown to be applicable to the internal eigenstate problem for large complex matrices. A detailed account is given of the description of inelastic and photoreactive processes by means of the time-dependent wave operator formalism, with particular attention to laser-molecule interactions. The emphasis is on projection operator techniques, with special attention being given to the method of selection
Transit-time and age distributions for nonlinear time-dependent compartmental systems.
Metzler, Holger; Müller, Markus; Sierra, Carlos A
2018-02-06
Many processes in nature are modeled using compartmental systems (reservoir/pool/box systems). Usually, they are expressed as a set of first-order differential equations describing the transfer of matter across a network of compartments. The concepts of age of matter in compartments and the time required for particles to transit the system are important diagnostics of these models with applications to a wide range of scientific questions. Until now, explicit formulas for transit-time and age distributions of nonlinear time-dependent compartmental systems were not available. We compute densities for these types of systems under the assumption of well-mixed compartments. Assuming that a solution of the nonlinear system is available at least numerically, we show how to construct a linear time-dependent system with the same solution trajectory. We demonstrate how to exploit this solution to compute transit-time and age distributions in dependence on given start values and initial age distributions. Furthermore, we derive equations for the time evolution of quantiles and moments of the age distributions. Our results generalize available density formulas for the linear time-independent case and mean-age formulas for the linear time-dependent case. As an example, we apply our formulas to a nonlinear and a linear version of a simple global carbon cycle model driven by a time-dependent input signal which represents fossil fuel additions. We derive time-dependent age distributions for all compartments and calculate the time it takes to remove fossil carbon in a business-as-usual scenario.
Interplay between chaotic and regular motion in a time-dependent barred galaxy model
Manos, T.; Bountis, T.; Skokos, Ch
2013-06-01
We study the distinction and quantification of chaotic and regular motion in a time-dependent Hamiltonian barred galaxy model. Recently, a strong correlation was found between the strength of the bar and the presence of chaotic motion in this system, as models with relatively strong bars were shown to exhibit stronger chaotic behavior compared to those having a weaker bar component. Here, we attempt to further explore this connection by studying the interplay between chaotic and regular behavior of star orbits when the parameters of the model evolve in time. This happens for example when one introduces linear time dependence in the mass parameters of the model to mimic, in some general sense, the effect of self-consistent interactions of the actual N-body problem. We thus observe, in this simple time-dependent model also, that the increase of the bar’s mass leads to an increase of the system’s chaoticity. We propose a new way of using the generalized alignment index (GALI) method as a reliable criterion to estimate the relative fraction of chaotic versus regular orbits in such time-dependent potentials, which proves to be much more efficient than the computation of Lyapunov exponents. In particular, GALI is able to capture subtle changes in the nature of an orbit (or ensemble of orbits) even for relatively small time intervals, which makes it ideal for detecting dynamical transitions in time-dependent systems. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’.
Time-dependence Effects in Photospheric-Phase Type II Supernova Spectra
Dessart, Luc; Hillier, D. John
2007-08-01
We have incorporated time-dependent terms into the statistical and radiative equilibrium calculations of the non-LTE line-blanketed radiative transfer code CMFGEN. To illustrate the significant improvements in spectral fitting achieved for photospheric phase Type II SN, and to document the effects associated with time dependence, we model the outer 6.1 Msolar of ejecta of a BSG/RSG progenitor star. Hopping by 3-day increments, we compute the UV to near-IR spectral evolution for both continuum and lines, from the fully ionized conditions at one week to the partially recombined conditions at 6 weeks after the explosion. We confirm the importance of allowing for time-dependence in the modeling of Type-II SN, as recently discussed by Utrobin & Chugai for SN1987A. However unlike Utrobin & Chugai, who treated the radiation field in a core-halo approximation and assumed the Sobolev approximation for line formation, we allow for the full interaction between the radiation field and level populations, and study the effects on the full spectrum. At the hydrogen-recombination epoch, HI lines and NaD are considerably stronger and broader than in equivalent steady-state models, while CaII is weakened. Former successes of steady-state CMFGEN models are unaffected, while former discrepancies are cured. Time dependence affects all lines, while the continuum, from the UV to the optical, changes only moderately. We identify two key effects: First, time dependence together with the energy gain through changes in ionization and excitation lead to an over-ionization in the vicinity of the photosphere, dramatically affecting line optical depths and profiles. Second, the ionization is frozen-in at large radii/velocities. This stems solely from the time-scale contrast between recombination and expansion and will occur, modulo non-thermal excitation effects, in all SN types. The importance of this effect on spectral analyses, across SN types and epochs, remains to be determined.
Interactive calculation procedures for mixed compression inlets
Reshotko, Eli
1983-01-01
The proper design of engine nacelle installations for supersonic aircraft depends on a sophisticated understanding of the interactions between the boundary layers and the bounding external flows. The successful operation of mixed external-internal compression inlets depends significantly on the ability to closely control the operation of the internal compression portion of the inlet. This portion of the inlet is one where compression is achieved by multiple reflection of oblique shock waves and weak compression waves in a converging internal flow passage. However weak these shocks and waves may seem gas-dynamically, they are of sufficient strength to separate a laminar boundary layer and generally even strong enough for separation or incipient separation of the turbulent boundary layers. An understanding was developed of the viscous-inviscid interactions and of the shock wave boundary layer interactions and reflections.
Spectral properties of electromagnetic turbulence in plasmas
Directory of Open Access Journals (Sweden)
D. Shaikh
2009-03-01
Full Text Available We report on the nonlinear turbulent processes associated with electromagnetic waves in plasmas. We focus on low-frequency (in comparison with the electron gyrofrequency nonlinearly interacting electron whistlers and nonlinearly interacting Hall-magnetohydrodynamic (H-MHD fluctuations in a magnetized plasma. Nonlinear whistler mode turbulence study in a magnetized plasma involves incompressible electrons and immobile ions. Two-dimensional turbulent interactions and subsequent energy cascades are critically influenced by the electron whisters that behave distinctly for scales smaller and larger than the electron skin depth. It is found that in whistler mode turbulence there results a dual cascade primarily due to the forward spectral migration of energy that coexists with a backward spectral transfer of mean squared magnetic potential. Finally, inclusion of the ion dynamics, resulting from a two fluid description of the H-MHD plasma, leads to several interesting results that are typically observed in the solar wind plasma. Particularly in the solar wind, the high-time-resolution databases identify a spectral break at the end of the MHD inertial range spectrum that corresponds to a high-frequency regime. In the latter, turbulent cascades cannot be explained by the usual MHD model and a finite frequency effect (in comparison with the ion gyrofrequency arising from the ion inertia is essentially included to discern the dynamics of the smaller length scales (in comparison with the ion skin depth. This leads to a nonlinear H-MHD model, which is presented in this paper. With the help of our 3-D H-MHD code, we find that the characteristic turbulent interactions in the high-frequency regime evolve typically on kinetic-Alfvén time-scales. The turbulent fluctuation associated with kinetic-Alfvén interactions are compressive and anisotropic and possess equipartition of the kinetic and magnetic energies.
On Challenges for Hypersonic Turbulent Simulations
International Nuclear Information System (INIS)
Yee, H.C.; Sjogreen, B.
2009-01-01
This short note discusses some of the challenges for design of suitable spatial numerical schemes for hypersonic turbulent flows, including combustion, and thermal and chemical nonequilibrium flows. Often, hypersonic turbulent flows in re-entry space vehicles and space physics involve mixed steady strong shocks and turbulence with unsteady shocklets. Material mixing in combustion poses additional computational challenges. Proper control of numerical dissipation in numerical methods beyond the standard shock-capturing dissipation at discontinuities is an essential element for accurate and stable simulations of the subject physics. On one hand, the physics of strong steady shocks and unsteady turbulence/shocklet interactions under the nonequilibrium environment is not well understood. On the other hand, standard and newly developed high order accurate (fourth-order or higher) schemes were developed for homogeneous hyperbolic conservation laws and mixed hyperbolic and parabolic partial differential equations (PDEs) (without source terms). The majority of finite rate chemistry and thermal nonequilibrium simulations employ methods for homogeneous time-dependent PDEs with a pointwise evaluation of the source terms. The pointwise evaluation of the source term might not be the best choice for stability, accuracy and minimization of spurious numerics for the overall scheme
On Challenges for Hypersonic Turbulent Simulations
Energy Technology Data Exchange (ETDEWEB)
Yee, H C; Sjogreen, B
2009-01-14
This short note discusses some of the challenges for design of suitable spatial numerical schemes for hypersonic turbulent flows, including combustion, and thermal and chemical nonequilibrium flows. Often, hypersonic turbulent flows in re-entry space vehicles and space physics involve mixed steady strong shocks and turbulence with unsteady shocklets. Material mixing in combustion poses additional computational challenges. Proper control of numerical dissipation in numerical methods beyond the standard shock-capturing dissipation at discontinuities is an essential element for accurate and stable simulations of the subject physics. On one hand, the physics of strong steady shocks and unsteady turbulence/shocklet interactions under the nonequilibrium environment is not well understood. On the other hand, standard and newly developed high order accurate (fourth-order or higher) schemes were developed for homogeneous hyperbolic conservation laws and mixed hyperbolic and parabolic partial differential equations (PDEs) (without source terms). The majority of finite rate chemistry and thermal nonequilibrium simulations employ methods for homogeneous time-dependent PDEs with a pointwise evaluation of the source terms. The pointwise evaluation of the source term might not be the best choice for stability, accuracy and minimization of spurious numerics for the overall scheme.
Issues in direct numerical simulation of plasma turbulence and transport
Thyagaraja, A.; Arter, W.; Haas, F. A.
1991-04-01
The problem of direct numerical simulation of plasma turbulence in magnetic confinement systems such as a tokamak is important in gaining a theoretical understanding of anomalous transport of particles, energy, momentum and impurities in such systems. Two approaches to this question are being developed. The design philosophy and the basic numerical problems encountered and solved in the construction of a two-fluid, 3-D, electro-magnetic, finite difference, time evolution code, CUTIE, are outlined. The importance of qualitative consistency, time-reversal, conservation properties, phase mixing, and boundary conditions are illustrated in the context of both passive and active electrostatic turbulence. A separate study was undertaken to aid in the understanding of drift wave turbulence in tokamak plasmas. In this connection a 3-D, time-dependant, electrostatic drift wave code called DRIFT was written. This has features which take account of toroidicity, non-adiabaticity and magnetic shear. The resulting code is very flexible, and was used to solve the Hasegawa-Mima equation efficiently in 2-D. Results from time-dependant, 3-D calculation run on a Cray-2 are presented. The aim is to obtain a proper physical understanding of plasma turbulence in typical tokamak conditions by calculating the power spectra of the turbulent fluctuations and their transport consequences. It is believed that this can only be achieved by a step-by-step approach to the numerics, making sure that the calculated effects represent genuine physics and are not mere artifacts of the numerical simulation.
Phase space theory of Bose–Einstein condensates and time-dependent modes
International Nuclear Information System (INIS)
Dalton, B.J.
2012-01-01
A phase space theory approach for treating dynamical behaviour of Bose–Einstein condensates applicable to situations such as interferometry with BEC in time-dependent double well potentials is presented. Time-dependent mode functions are used, chosen so that one, two,…highly occupied modes describe well the physics of interacting condensate bosons in time dependent potentials at well below the transition temperature. Time dependent mode annihilation, creation operators are represented by time dependent phase variables, but time independent total field annihilation, creation operators are represented by time independent field functions. Two situations are treated, one (mode theory) is where specific mode annihilation, creation operators and their related phase variables and distribution functions are dealt with, the other (field theory) is where only field creation, annihilation operators and their related field functions and distribution functionals are involved. The field theory treatment is more suitable when large boson numbers are involved. The paper focuses on the hybrid approach, where the modes are divided up between condensate (highly occupied) modes and non-condensate (sparsely occupied) modes. It is found that there are extra terms in the Ito stochastic equations both for the stochastic phases and stochastic fields, involving coupling coefficients defined via overlap integrals between mode functions and their time derivatives. For the hybrid approach both the Fokker–Planck and functional Fokker–Planck equations differ from those derived via the correspondence rules, the drift vectors are unchanged but the diffusion matrices contain additional terms involving the coupling coefficients. Results are also presented for the combined approach where all the modes are treated as one set. Here both the Fokker–Planck and functional Fokker–Planck equations are exactly the same as those derived via the correspondence rules. However, although the Ito
Gottsmann, J.; Odbert, H.
2014-06-01
Using ground deformation data from Soufrière Hills volcano (SHV), we present results from numerical modeling of the temperature- and time-dependent stress evolution in a mechanically heterogeneous crust prior to reservoir failure and renewed eruptive activity. The best fit models do not allow us to discriminate between a magmatic plumbing system consisting of either a single vertically elongated reservoir or a series of stacked reservoirs. A prolate reservoir geometry with volumes between 50 and 100 km3, reservoir pressure changes between 4 and 7 MPa, and reservoir volume changes between 0.03 and 0.04 km3 with magma compressibility between 4 × 10-11 and 1 × 10-9 Pa-1 provide plausible thermomechanical model parameters to explain the deformation time series; around an order of magnitude less overpressure than is generally inferred from homogeneous, elastic crustal models. Reservoir failure is predicted to occur at the crest of the reservoir except for reservoirs with highly compressible magma (≳4×10-9 Pa) for which subhorizontal sill formation is predicted upon reservoir failure. Introducing a deep-crustal hot zone modulates the partitioning of strains into the hotter underlying crust and results in a further reduction in overpressure estimates to values of around 1-2 MPa upon reservoir failure. Deduced volume fluxes are consistent with constraints from thermal modeling of active subvolcanic systems and imply dynamic failure of a compressible magma mush column feeding eruptions at SHV. Our interpretation of the results is that the combined thermomechanical effects of a deep-crustal hot zone and hot encasing rocks around a midcrustal andesitic reservoir fundamentally alter the time-dependent subsurface stress and strain partitioning upon reservoir priming. These effects substantially influence surface strains recorded by volcano geodetic monitoring.
Scattering of coherent sound waves by atmospheric turbulence
Chow, P. L.; Liu, C. H.; Maestrello, L.
1975-01-01
An analytical study of the propagation of coherent sound waves through an atmosphere containing both mean and fluctuating flow variables is presented. The general flow problem is formulated as a time-dependent wave propagation in a half-space containing the turbulent medium. The coherent acoustic waves are analyzed by a smoothing technique, assuming that mean flow variables vary with the height only. The general equations for the coherent waves are derived, and then applied to two special cases, corresponding to uniform and shear mean flow, respectively. The results show that mean shear and turbulence introduce pronounced effects on the propagation of coherent acoustic disturbances.
Status of Turbulence Modeling for Hypersonic Propulsion Flowpaths
Georgiadis, Nicholas J.; Yoder, Dennis A.; Vyas, Manan A.; Engblom, William A.
2012-01-01
This report provides an assessment of current turbulent flow calculation methods for hypersonic propulsion flowpaths, particularly the scramjet engine. Emphasis is placed on Reynolds-averaged Navier-Stokes (RANS) methods, but some discussion of newer meth- ods such as Large Eddy Simulation (LES) is also provided. The report is organized by considering technical issues throughout the scramjet-powered vehicle flowpath including laminar-to-turbulent boundary layer transition, shock wave / turbulent boundary layer interactions, scalar transport modeling (specifically the significance of turbulent Prandtl and Schmidt numbers) and compressible mixing. Unit problems are primarily used to conduct the assessment. In the combustor, results from calculations of a direct connect supersonic combustion experiment are also used to address the effects of turbulence model selection and in particular settings for the turbulent Prandtl and Schmidt numbers. It is concluded that RANS turbulence modeling shortfalls are still a major limitation to the accuracy of hypersonic propulsion simulations, whether considering individual components or an overall system. Newer methods such as LES-based techniques may be promising, but are not yet at a maturity to be used routinely by the hypersonic propulsion community. The need for fundamental experiments to provide data for turbulence model development and validation is discussed.
Measurement and simulation of the time-dependent behavior of the UMER source
International Nuclear Information System (INIS)
Haber, I.; Feldman, D.; Fiorito, R.; Friedman, A.; Grote, D.P.; Kishek, R.A.; Quinn, B.; Reiser, M.; Rodgers, J.; O'Shea, P.G.; Stratakis, D.; Tian, K.; Vay, J.-L.; Walter, M.
2007-01-01
Control of the time-dependent characteristics of the beam pulse, beginning when it is born from the source, is important for obtaining adequate beam intensity on a target. Recent experimental measurements combined with the new mesh-refinement capability in WARP have improved the understanding of time-dependent beam characteristics beginning at the source, as well as the predictive ability of the simulation codes. The University of Maryland Electron Ring (UMER), because of its ease of operation and flexible diagnostics has proved particularly useful for benchmarking WARP by comparing simulation to measurement. One source of significant agreement has been in the ability of three-dimensional WARP simulations to predict the onset of virtual cathode oscillations in the vicinity of the cathode grid in the UMER gun, and the subsequent measurement of the predicted oscillations
The time dependent Hartree-Fock-theory for collective nuclear motions
International Nuclear Information System (INIS)
Goeke, K.
1976-11-01
The time-dependent Hartree-Fock theory (TDHF) approximately solves the Schroedinger equation by a variational method in the space of the time-dependent Slater determinants. As the TDHF wave function, similar to the exact solution has the property of being determined completely for all times by the nucleon-nucleon interaction and by assuming initial conditions. TDHF is expected to describe collective motion of nuclei with large amplitudes, too. The subject of this paper is to formulate the TDHF theory and its adiabatic limiting case (ATDHF) suited for setting up a collective Schroedinger equation, to investigate the relations with other theories, and to show the applicability for solving practical problems. (orig./WL) [de
DEFF Research Database (Denmark)
Lacevic, N.; Starr, F. W.; Schrøder, Thomas
2003-01-01
Relaxation in supercooled liquids above their glass transition and below the onset temperature of "slow" dynamics involves the correlated motion of neighboring particles. This correlated motion results in the appearance of spatially heterogeneous dynamics or "dynamical heterogeneity." Traditional...... two-point time-dependent density correlation functions, while providing information about the transient "caging" of particles on cooling, are unable to provide sufficiently detailed information about correlated motion and dynamical heterogeneity. Here, we study a four-point, time-dependent density......-q behavior of S4(q,t) provides an estimate of the range of correlated particle motion. We find that xi4(t) has a maximum as a function of time t, and that the value of the maximum of xi4(t) increases steadily from less than one particle diameter to a value exceeding nine particle diameters in the temperature...
Gamma processes and peaks-over-threshold distributions for time-dependent reliability
International Nuclear Information System (INIS)
Noortwijk, J.M. van; Weide, J.A.M. van der; Kallen, M.J.; Pandey, M.D.
2007-01-01
In the evaluation of structural reliability, a failure is defined as the event in which stress exceeds a resistance that is liable to deterioration. This paper presents a method to combine the two stochastic processes of deteriorating resistance and fluctuating load for computing the time-dependent reliability of a structural component. The deterioration process is modelled as a gamma process, which is a stochastic process with independent non-negative increments having a gamma distribution with identical scale parameter. The stochastic process of loads is generated by a Poisson process. The variability of the random loads is modelled by a peaks-over-threshold distribution (such as the generalised Pareto distribution). These stochastic processes of deterioration and load are combined to evaluate the time-dependent reliability
Time-dependent density functional theory for many-electron systems interacting with cavity photons.
Tokatly, I V
2013-06-07
Time-dependent (current) density functional theory for many-electron systems strongly coupled to quantized electromagnetic modes of a microcavity is proposed. It is shown that the electron-photon wave function is a unique functional of the electronic (current) density and the expectation values of photonic coordinates. The Kohn-Sham system is constructed, which allows us to calculate the above basic variables by solving self-consistent equations for noninteracting particles. We suggest possible approximations for the exchange-correlation potentials and discuss implications of this approach for the theory of open quantum systems. In particular we show that it naturally leads to time-dependent density functional theory for systems coupled to the Caldeira-Leggett bath.
Theoretical study of time-dependent, ultrasound-induced acoustic streaming in microchannels
DEFF Research Database (Denmark)
Muller, Peter Barkholt; Bruus, Henrik
2015-01-01
Based on first- and second-order perturbation theory, we present a numerical study of the temporal buildup and decay of unsteady acoustic fields and acoustic streaming flows actuated by vibrating walls in the transverse cross-sectional plane of a long straight microchannel under adiabatic...... conditions and assuming temperature-independent material parameters. The unsteady streaming flow is obtained by averaging the time-dependent velocity field over one oscillation period, and as time increases, it is shown to converge towards the well-known steady time-averaged solution calculated...... in the frequency domain. Scaling analysis reveals that the acoustic resonance builds up much faster than the acoustic streaming, implying that the radiation force may dominate over the drag force from streaming even for small particles. However, our numerical time-dependent analysis indicates that pulsed actuation...
An elementary solution of the Maxwell equations for a time-dependent source
International Nuclear Information System (INIS)
Rivera, R; Villarroel, D
2002-01-01
We present an elementary solution of the Maxwell equations for a time-dependent source consisting of an infinite solenoid with a current density that increases linearly with time. The geometrical symmetries and the time dependence of the current density make possible a mathematical treatment that does not involve the usual technical difficulties, thus making this presentation suitable for students that are taking a first course in electromagnetism. We also show that the electric field generated by the solenoid can be used to construct an exact solution of the relativistic equation of motion of the electron that takes into account the effect of the radiation. In particular, we derive, in an almost trivial way, the formula for the radiation rate of an electron in circular motion
Regular and chaotic dynamics in time-dependent relativistic mean-field theory
International Nuclear Information System (INIS)
Vretenar, D.; Ring, P.; Lalazissis, G.A.; Poeschl, W.
1997-01-01
Isoscalar and isovector monopole oscillations that correspond to giant resonances in spherical nuclei are described in the framework of time-dependent relativistic mean-field theory. Time-dependent and self-consistent calculations that reproduce experimental data on monopole resonances in 208 Pb show that the motion of the collective coordinate is regular for isoscalar oscillations, and that it becomes chaotic when initial conditions correspond to the isovector mode. Regular collective dynamics coexists with chaotic oscillations on the microscopic level. Time histories, Fourier spectra, state-space plots, Poincare sections, autocorrelation functions, and Lyapunov exponents are used to characterize the nonlinear system and to identify chaotic oscillations. Analogous considerations apply to higher multipolarities. copyright 1997 The American Physical Society
International Nuclear Information System (INIS)
Alhassid, Y.; Bush, B.; Yale Univ., New Haven, CT
1990-01-01
The effects of time-dependent shape fluctuations on the giant dipole resonance (GDR) in hot rotating nuclei are investigated. Using the framework of the Landau theory of shape transitions we develop a realistic macroscopic stochastic model to describe the quadrupole time-dependent shape fluctuations and their coupling to the dipole degrees of freedom. In the adiabatic limit the theory reduces to a previous adiabatic theory of static fluctuations in which the GDR cross section is calculated by averaging over the equilibrium distribution with the unitary invariant metric. Nonadiabatic effects are investigated in this model and found to cause structural changes in the resonance cross section and motional narrowing. Comparisons with experimental data are made and deviations from the adiabatic calculations can be explained. In these cases it is possible to determine from the data the damping of the quadrupole motion at finite temperature. (orig.)
Alguire, Ethan C; Ou, Qi; Subotnik, Joseph E
2015-06-18
A pseudo-wavefunction description of time-dependent Hartree-Fock (TDHF) states is proposed and used to develop an analytic expression for derivative couplings between TDHF excited states based on the Hellmann-Feynman theorem. The resulting expression includes Pulay terms associated with using an atom-centered basis as well as a correction to ensure translational invariance. We demonstrate that our formalism recovers the well-known Chernyak-Mukamel expression near a crossing and in the limit of a complete basis, and thus our approach is consistent with time-dependent response theory. In a companion paper (DOI 10.1021/jp5057682 ), we investigate these derivative couplings near conical intersections and show that they behave correctly.
A method for untriggered time-dependent searches for multiple flares from neutrino point sources
International Nuclear Information System (INIS)
Gora, D.; Bernardini, E.; Cruz Silva, A.H.
2011-04-01
A method for a time-dependent search for flaring astrophysical sources which can be potentially detected by large neutrino experiments is presented. The method uses a time-clustering algorithm combined with an unbinned likelihood procedure. By including in the likelihood function a signal term which describes the contribution of many small clusters of signal-like events, this method provides an effective way for looking for weak neutrino flares over different time-scales. The method is sensitive to an overall excess of events distributed over several flares which are not individually detectable. For standard cases (one flare) the discovery potential of the method is worse than a standard time-dependent point source analysis with unknown duration of the flare by a factor depending on the signal-to-background level. However, for flares sufficiently shorter than the total observation period, the method is more sensitive than a time-integrated analysis. (orig.)
Transient Taylor-Aris dispersion for time-dependent flows in straight channels
DEFF Research Database (Denmark)
Vedel, Søren; Bruus, Henrik
2012-01-01
Taylor–Aris dispersion, the shear-induced enhancement of solute diffusion in the flow direction of the solvent, has been studied intensely in the past half century for the case of steady flow and single-frequency pulsating flows. Here, combining Aris’s method of moments with Dirac’s bra–ket forma......Taylor–Aris dispersion, the shear-induced enhancement of solute diffusion in the flow direction of the solvent, has been studied intensely in the past half century for the case of steady flow and single-frequency pulsating flows. Here, combining Aris’s method of moments with Dirac’s bra......–ket formalism, we derive an expression for the effective solute diffusivity valid for transient Taylor–Aris dispersion in any given time-dependent, multi-frequency solvent flow through straight channels. Our theory shows that the solute dispersion may be greatly enhanced by the time-dependent parts of the flow...
Multiconfiguration hartree-fock theory for pseudorelativistic systems: The time-dependent case
Hajaiej, Hichem
2014-03-01
In [Setting and analysis of the multi-configuration time-dependent Hartree-Fock equations, Arch. Ration. Mech. Anal. 198 (2010) 273-330] the third author has studied in collaboration with Bardos, Catto and Mauser the nonrelativistic multiconfiguration time-dependent Hartree-Fock system of equations arising in the modeling of molecular dynamics. In this paper, we extend the previous work to the case of pseudorelativistic atoms. We show the existence and the uniqueness of global-in-time solution to the underlying system under technical assumptions on the energy of the initial data and the charge of the nucleus. Moreover, we prove that the result can be extended to the case of neutron stars when the number of electrons is less than a critical number N cr. © 2014 World Scientific Publishing Company.
Time-dependent configurations in the perturbative formalism of string theory
International Nuclear Information System (INIS)
Durin, B.
2006-01-01
In this thesis three time-dependent configurations are studied in the formalism of first-quantized string. These configurations are interesting because perturbative computation of correlation functions is possible and thus is a tool to understand the interplay between the time-dependent geometry and the quantified string. In a first chapter, we explain the reasons for studying these configurations. Then in the second chapter we describe the perturbative formalism and explain how to solve technical problem we encountered. The third chapter is devoted to the physical description of the phenomena involved in these configurations, to the specific computations we made and to the insights we gained. Eventually, we conclude and give some perspectives. (author)
Energy Technology Data Exchange (ETDEWEB)
Tretiak, Sergei [Los Alamos National Laboratory
2008-01-01
Four different numerical algorithms suitable for a linear scaling implementation of time-dependent Hartree-Fock and Kohn-Sham self-consistent field theories are examined. We compare the performance of modified Lanczos, Arooldi, Davidson, and Rayleigh quotient iterative procedures to solve the random-phase approximation (RPA) (non-Hermitian) and Tamm-Dancoff approximation (TDA) (Hermitian) eigenvalue equations in the molecular orbital-free framework. Semiempirical Hamiltonian models are used to numerically benchmark algorithms for the computation of excited states of realistic molecular systems (conjugated polymers and carbon nanotubes). Convergence behavior and stability are tested with respect to a numerical noise imposed to simulate linear scaling conditions. The results single out the most suitable procedures for linear scaling large-scale time-dependent perturbation theory calculations of electronic excitations.
Effects of time-dependent diffusion behaviors on the rumor spreading in social networks
International Nuclear Information System (INIS)
Qiu, Xiaoyan; Zhao, Laijun; Wang, Jiajia; Wang, Xiaoli; Wang, Qin
2016-01-01
When considering roles of realistic external forces (e.g. authorities) and internal forces (e.g. the forgetting nature of human), diffusion behaviors like spreading, stifling and forgetting behaviors are time-dependent. They were incorporated in an SIR-like rumor spreading model to investigate the effects to rumor spreading dynamics. Mean-field equations were derived, and the steady state analysis was conducted. Simulations were carried out on different complex networks. We demonstrated that the combination of the three variable diffusion behaviors provides a faster and larger spreading expansion capacity. Network structure matters considerably in rumor spreading dynamics. - Highlights: • We incorporate time-dependent diffusion behaviors into a SIR-like rumor spreading model. • The combination of the three variable diffusion behaviors provides a faster and larger spreading expansion capacity. • Network structure matters considerably in rumor spreading dynamics.
The nucleon localization function in static and time-dependent DFT
Schuetrumpf, Bastian; Zhang, Chunli
2017-11-01
Static and time-dependent density functional theory (DFT) calculations are often used to predict fission fragment distributions or fusion cross sections with great success. However, nuclear shell structure and clusterization effects are usually studied using the density distribution of the nucleons which is a poor indicator of these phenomena. In this work, we employ a measure called the localization function, which was first introduced in chemistry to visualize electronic bonds and recently applied to nuclear physics for light nuclei to reveal α-clustering. We show, that the localization function reveals the shell structure of the fragments in fission long before the scission point and also illustrates the shell structure of intermediate states in time-dependent DFT calculations.
Two-dimensional, time dependent simulation of the planetary boundary layer over a 48-hour period
International Nuclear Information System (INIS)
Haschke, D.; Gassmann, F.; Rudin, F.
1978-06-01
This report presents results of a two-dimensional time-dependent simulation of the planetary boundary layer for a 48-hour period. These calculations are a continuation and expansion of one-dimensional simulations of the planetary boundary layer as described previously. The time-dependent evolution of a weather situation was simulated. It could be demonstrated that the main features of local ventilation systems can be simulated correctly. Two case studies are presented to show qualitatively, how local circulation systems can be influenced. One case assumes introduction of a hypothetical city, the other case uses arbitrarily introduced coverage of the sky as a pertubrbation. The problems connected with the verification of two-dimensional simulations using experimental data are discussed. Furthermore, proposals for a methodology to solve problems of model verification are discussed. (Auth.)
Reactive scattering theory for molecular transitions in time-dependent fields
International Nuclear Information System (INIS)
Peskin, U.; Miller, W.H.
1995-01-01
A new approach is introduced for computing probabilities of molecular transitions in time-dependent fields. The method is based on the stationary (t,t') representation of the Schroedinger equation and is shown to be equivalent to infinite order time-dependent perturbation theory. Bound-to-bound (i.e., photoexcitation) and bound-to-continuum (i.e., photoreaction) transitions are regarded as reactive collisions with the ''time coordinate'' as the reaction coordinate in an extended Hilbert space. A numerical method based on imposing absorbing boundary conditions for the time coordinate in a discrete variable representation framework is introduced. A single operation of the Green's operator provides all the state-specific transition probabilities as well as partial state-resolved (inclusive) reaction probabilities. Illustrative numerical applications are given for model systems
Hydrodynamic perspective on memory in time-dependent density-functional theory
Thiele, M.; Kümmel, S.
2009-05-01
The adiabatic approximation of time-dependent density-functional theory is studied in the context of nonlinear excitations of two-electron singlet systems. We compare the exact time evolution of these systems to the adiabatically exact one obtained from time-dependent Kohn-Sham calculations relying on the exact ground-state exchange-correlation potential. Thus, we can show under which conditions the adiabatic approximation breaks down and memory effects become important. The hydrodynamic formulation of quantum mechanics allows us to interpret these results and relate them to dissipative effects in the Kohn-Sham system. We show how the breakdown of the adiabatic approximation can be inferred from the rate of change of the ground-state noninteracting kinetic energy.
Hydrodynamic perspective on memory in time-dependent density-functional theory
International Nuclear Information System (INIS)
Thiele, M.; Kuemmel, S.
2009-01-01
The adiabatic approximation of time-dependent density-functional theory is studied in the context of nonlinear excitations of two-electron singlet systems. We compare the exact time evolution of these systems to the adiabatically exact one obtained from time-dependent Kohn-Sham calculations relying on the exact ground-state exchange-correlation potential. Thus, we can show under which conditions the adiabatic approximation breaks down and memory effects become important. The hydrodynamic formulation of quantum mechanics allows us to interpret these results and relate them to dissipative effects in the Kohn-Sham system. We show how the breakdown of the adiabatic approximation can be inferred from the rate of change of the ground-state noninteracting kinetic energy.
Observation of the time dependence of B0d-B0d mixing
Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Pietrzyk, B.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Maggi, M.; Markou, C.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miotto, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Pater, J. R.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Tomalin, I. R.; Veenhof, R.; Wachsmuth, H.; Wasserbaech, S.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Focardi, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Levinthal, D.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Moutoussi, A.; Nash, J.; Patton, S.; Payne, D. G.; Phillips, M. J.; San Martin, G.; Sedgbeer, J. K.; Wright, A. G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Vogl, R.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Jakobs, K.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Valassi, A.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Gao, Y.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Cartwright, S.; Combley, F.; Dawson, I.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Bosisio, L.; della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Conway, J. S.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Nachtman, J. M.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I.; Sharma, V.; Shi, Z. H.; Turk, J. D.; Walsh, A. M.; Weber, F. V.; Sau, Lan, Wu; Zheng, M.; Zobernig, G.
1993-09-01
The time dependence of B0d-B0d oscillations has been observed using events with a d*, decaying into a D0π+, and a lepton in opposite hemispheres. The time dependence of the oscillations is derived from the displacement of the D0 vertex and the D*-lepton charge correlation. From a fit for the oscillation frequency the mass difference of the B0d states is measured: Δm = [3.44+0.65-0.70(stat.)+0.26-0.20(syst.)] × 10-4 eV/c2. Supported by the US Department of Energy, contract DE-AC02-76ER00881.
Effects of time-dependent diffusion behaviors on the rumor spreading in social networks
Energy Technology Data Exchange (ETDEWEB)
Qiu, Xiaoyan [School of Management, Shanghai University, Shanghai 200444 (China); Zhao, Laijun, E-mail: ljzhao70@sjtu.edu.cn [Sino–US Global Logistics Institute, Shanghai Jiao Tong University, Shanghai 200030 (China); Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai 200052 (China); Wang, Jiajia [Sino–US Global Logistics Institute, Shanghai Jiao Tong University, Shanghai 200030 (China); Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai 200052 (China); Wang, Xiaoli [School of Management, Shanghai University of Engineering Science, Shanghai 201620 (China); Wang, Qin [College of Transport & Communications, Shanghai Maritime University, Shanghai 201306 (China)
2016-05-27
When considering roles of realistic external forces (e.g. authorities) and internal forces (e.g. the forgetting nature of human), diffusion behaviors like spreading, stifling and forgetting behaviors are time-dependent. They were incorporated in an SIR-like rumor spreading model to investigate the effects to rumor spreading dynamics. Mean-field equations were derived, and the steady state analysis was conducted. Simulations were carried out on different complex networks. We demonstrated that the combination of the three variable diffusion behaviors provides a faster and larger spreading expansion capacity. Network structure matters considerably in rumor spreading dynamics. - Highlights: • We incorporate time-dependent diffusion behaviors into a SIR-like rumor spreading model. • The combination of the three variable diffusion behaviors provides a faster and larger spreading expansion capacity. • Network structure matters considerably in rumor spreading dynamics.
NON-UNITARY TRANSFORMATION OF QUANTUM TIME-DEPENDENT NON-HERMITIAN SYSTEMS
Directory of Open Access Journals (Sweden)
Mustapha Maamache
2017-12-01
Full Text Available We provide a new perspective on non-Hermitian evolution in quantum mechanics by emphasizing the same method as in the Hermitian quantum evolution. We first give a precise description of the non unitary transformation and the associated evolution, and collecting the basic results around it and postulating the norm preserving. This cautionary postulate imposing that the time evolution of a non Hermitian quantum system preserves the inner products between the associated states must not be read naively. We also give an example showing that the solutions of time-dependent non Hermitian Hamiltonian systems given by a linear combination of SU(1,1 and SU(2 are obtained thanks to time-dependent non-unitary transformation.
Time-dependent amplitude analysis of $B^0 \\to K^0_S\\pi^ pi^-$
Energy Technology Data Exchange (ETDEWEB)
Aubert, B.
2009-05-26
In this paper we present results from a time-dependent amplitude analysis of the B{sup 0} {yields} K{sup 0}{sub s}{pi}{sup +}{pi}{sup -} decay. In Sec. II we describe the time-dependent DP formalism, and introduce the signal parameters that are extracted in the fit to data. In Sec. III we briefly describe the BABAR detector and the data set. In Sec. IV, we explain the selection requirements used to obtain the signal candidates and suppress backgrounds. In Sec. V we describe the fit method and the approach used to control experimental effects such as resolution. In Sec. VI we present the results of the fit, and extract parameters relevant to the contributing intermediate resonant states. In Sec. VII we discuss systematic uncertainties in the results, and finally we summarize the results in Sec. VIII.
Obtaining time-dependent multi-dimensional dividing surfaces using Lagrangian descriptors
Feldmaier, Matthias; Junginger, Andrej; Main, Jörg; Wunner, Günter; Hernandez, Rigoberto
2017-11-01
Dynamics between reactants and products are often mediated by a rate-determining barrier and an associated dividing surface leading to the transition state theory rate. This framework is challenged when the barrier is time-dependent because its motion can give rise to recrossings across the fixed dividing surface. A non-recrossing time-dependent dividing surface can nevertheless be attached to the TS trajectory resulting in recrossing-free dynamics. We extend the formalism-constructed using Lagrangian Descriptors-to systems with additional bath degrees of freedom. The propagation of reactant ensembles provides a numerical demonstration that our dividing surface is recrossing-free and leads to exact TST rates.
Time-dependent analysis of dissolver off-gas cleaning installations in a reprocessing plant
International Nuclear Information System (INIS)
Nagel, K.; Furrer, J.; Becker, G.; Obrowski, W.; Seghal, Y.P.; Weymann, J.
1983-01-01
The iodine- and aerosol-filtering test facility PASSAT of the Nuclear Research Centre in Karlsruhe has been investigated using a method which allows time-dependent analyses under accident conditions. This method which is closely related to fault-tree analysis needs subdivision in barriers of the system, and their logical combination in a tree. The barriers have binary states: defect and intact. The defect state will be described by a fault tree, whereas the intact state includes dependences of a barrier operation on physical parameters. The intact state enables time-dependent calculations. Calculations have been done for iodine filtering, because the best known entrance data are given. Results demonstrate clearly that the amount of iodine released increases only if both heaters failed, which heat the off-gas from 30 0 C to 80 0 C and then to 130 0 C. Additionally the integrated amount of iodine released depends on time period between the failures of the heaters
Directory of Open Access Journals (Sweden)
Katherine G. Akers
2009-01-01
Full Text Available In humans, hippocampal damage typically produces temporally graded retrograde amnesia, with relative sparing of remote memories compared to recent memories. This observation led to the idea that as memories age, they are reorganized in a time-dependent manner. Here, we evaluate evidence for time-dependent memory reorganization in animal models. We conclude that, although hippocampal lesions may not always produce temporal gradients under all conditions, studies using alternate experimental approaches consistently support the idea that memories reorganize over time—becoming less dependent on the hippocampus and more dependent on a cortical network. We further speculate on the processes that drive memory reorganization such as sleep, memory reactivation, synaptic plasticity, and neurogenesis.
Nonequilibrium dynamics of strings in time-dependent plane wave backgrounds
Energy Technology Data Exchange (ETDEWEB)
Nardi, R., E-mail: rnardi@cbpf.br [Centro Brasileiro de Pesquisas Fisicas (CBPF), R. Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ (Brazil); Vancea, I.V., E-mail: ionvancea@ufrrj.br [Grupo de Fisica Teorica e Matematica Fisica, Departamento de Fisica, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Cx. Postal 23851, BR 465 Km 7, 23890-000 Seropedica, RJ (Brazil)
2012-06-21
We formulate and study the nonequilibrium dynamics of strings near the singularity of the time-dependent plane wave background in the framework of the Nonequilibrium Thermo Field Dynamics (NETFD). In particular, we construct the Hilbert space of the thermal string oscillators at nonequilibrium and generalize the NETFD to describe the coordinates of the center of mass of the thermal string. The equations of motion of the thermal fields and the Hamiltonian are derived. Due to the time-dependence of the oscillator frequencies, a counterterm is present in the Hamiltonian. This counterterm determines the correlation functions in a perturbative fashion. We compute the two point correlation function of the thermal string at zero order in the power expansion.
Pelissetto, Andrea; Rossini, Davide; Vicari, Ettore
2018-03-01
We investigate the quantum dynamics of many-body systems subject to local (i.e., restricted to a limited space region) time-dependent perturbations. If the system crosses a quantum phase transition, an off-equilibrium behavior is observed, even for a very slow driving. We show that, close to the transition, time-dependent quantities obey scaling laws. In first-order transitions, the scaling behavior is universal, and some scaling functions can be computed exactly. For continuous transitions, the scaling laws are controlled by the standard critical exponents and by the renormalization-group dimension of the perturbation at the transition. Our protocol can be implemented in existing relatively small quantum simulators, paving the way for a quantitative probe of the universal off-equilibrium scaling behavior, without the need to manipulate systems close to the thermodynamic limit.
Rotating Hele-Shaw cell with a time-dependent angular velocity
Anjos, Pedro H. A.; Alvarez, Victor M. M.; Dias, Eduardo O.; Miranda, José A.
2017-12-01
Despite the large number of existing studies of viscous flows in rotating Hele-Shaw cells, most investigations analyze rotational motion with a constant angular velocity, under vanishing Reynolds number conditions in which inertial effects can be neglected. In this work, we examine the linear and weakly nonlinear dynamics of the interface between two immiscible fluids in a rotating Hele-Shaw cell, considering the action of a time-dependent angular velocity, and taking into account the contribution of inertia. By using a generalized Darcy's law, we derive a second-order mode-coupling equation which describes the time evolution of the interfacial perturbation amplitudes. For arbitrary values of viscosity and density ratios, and for a range of values of a rotational Reynolds number, we investigate how the time-dependent angular velocity and inertia affect the important finger competition events that traditionally arise in rotating Hele-Shaw flows.
A method for untriggered time-dependent searches for multiple flares from neutrino point sources
Energy Technology Data Exchange (ETDEWEB)
Gora, D. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Institute of Nuclear Physics PAN, Cracow (Poland); Bernardini, E.; Cruz Silva, A.H. [Institute of Nuclear Physics PAN, Cracow (Poland)
2011-04-15
A method for a time-dependent search for flaring astrophysical sources which can be potentially detected by large neutrino experiments is presented. The method uses a time-clustering algorithm combined with an unbinned likelihood procedure. By including in the likelihood function a signal term which describes the contribution of many small clusters of signal-like events, this method provides an effective way for looking for weak neutrino flares over different time-scales. The method is sensitive to an overall excess of events distributed over several flares which are not individually detectable. For standard cases (one flare) the discovery potential of the method is worse than a standard time-dependent point source analysis with unknown duration of the flare by a factor depending on the signal-to-background level. However, for flares sufficiently shorter than the total observation period, the method is more sensitive than a time-integrated analysis. (orig.)
Simulation of Time-Dependent P3 Equations Using a Semi-Analog Medium
International Nuclear Information System (INIS)
Hadad, K.; Pirouzmand, A.; Suh, Kune Y.
2010-01-01
A wide variety of numerical methods have been introduced to solve the neutron transport equation for reactor calculations. With the state-of-the-art computer technology, successful implementation of higher-order approximation of transport methods (P N , S N , MOC, etc.) may now be feasible. Although these methods have been adaptable to code parallelization techniques, the computational expense remains a significant obstacle and thwarts their implementation in a whole-core, time-dependent methodology. A novel method to remove this problem is based on the method of cellular neural networks (CNN) coupling with the PN method. Parallel data processing in CNN reduces the processing time and makes it possible to solve the time dependent models of neutron transport equation in real time
Turbulence Visualization at the Terascale on Desktop PCs
Treib, M.
2012-12-01
Despite the ongoing efforts in turbulence research, the universal properties of the turbulence small-scale structure and the relationships between small-and large-scale turbulent motions are not yet fully understood. The visually guided exploration of turbulence features, including the interactive selection and simultaneous visualization of multiple features, can further progress our understanding of turbulence. Accomplishing this task for flow fields in which the full turbulence spectrum is well resolved is challenging on desktop computers. This is due to the extreme resolution of such fields, requiring memory and bandwidth capacities going beyond what is currently available. To overcome these limitations, we present a GPU system for feature-based turbulence visualization that works on a compressed flow field representation. We use a wavelet-based compression scheme including run-length and entropy encoding, which can be decoded on the GPU and embedded into brick-based volume ray-casting. This enables a drastic reduction of the data to be streamed from disk to GPU memory. Our system derives turbulence properties directly from the velocity gradient tensor, and it either renders these properties in turn or generates and renders scalar feature volumes. The quality and efficiency of the system is demonstrated in the visualization of two unsteady turbulence simulations, each comprising a spatio-temporal resolution of 10244. On a desktop computer, the system can visualize each time step in 5 seconds, and it achieves about three times this rate for the visualization of a scalar feature volume. © 1995-2012 IEEE.
Interdisciplinary aspects of turbulence
Kupka, Friedrich
2008-01-01
What do combustion engines, fusion reactors, weather forecast, ocean flows, our sun, and stellar explosions in outer space have in common? Of course, the physics and the length and time scales are vastly different in all cases, but it is also well known that in all of them, on some relevant length scales, the material flows that govern the dynamical and/or secular evolution of the systems are chaotic and often unpredictable: they are said to be turbulent. The interdisciplinary aspects of turbulence are brought together in this volume containing chapters written by experts from very different fields, including geophysics, astrophysics, and engineering. It covers several subjects on which considerable progress was made during the last decades, from questions concerning the very nature of turbulence to some practical applications. These subjects include: a basic introduction into turbulence, statistical mechanics and nonlinear dynamics, turbulent convection in stars, atmospheric turbulence in the context of nume...
Efficient finite difference solutions to the time-dependent Schroedinger equation
International Nuclear Information System (INIS)
Nash, P.L.; Chen, L.Y.
1997-01-01
The matrix elements of the exponential of a finite difference realization of the one-dimensional Laplacian are found exactly. This matrix is used to formulate an efficient algorithm for the numerical solution to the time-dependent quantum mechanical scattering of a single particle from a time-independent potential in one-space and one-time dimension. The method generalizes to high spatial dimensions, as well as to multiparticle problems. 8 refs
Pravda-Starov, Karel
2017-01-01
We study evolution equations associated to time-dependent dissipative non-selfadjoint quadratic operators. We prove that the solution operators to these non-autonomous evolution equations are given by Fourier integral operators whose kernels are Gaussian tempered distributions associated to non-negative complex symplectic linear transformations, and we derive a generalized Mehler formula for their Weyl symbols. Some applications to the study of the propagation of Gabor singularities (characte...
Cortico-Striatal Spike-Timing Dependent Plasticity After Activation of Subcortical Pathways
Schulz, Jan M.; Redgrave, Peter; Reynolds, John N. J.
2010-01-01
Cortico-striatal spike-timing dependent plasticity (STDP) is modulated by dopamine in vitro. The present study investigated STDP in vivo using alternative procedures for modulating dopaminergic inputs. Postsynaptic potentials (PSP) were evoked in intracellularly recorded spiny neurons by electrical stimulation of the contralateral motor cortex. PSPs often consisted of up to three distinct components, likely representing distinct cortico-striatal pathways. After baseline recording, bicucullin...
Double giant resonances in time-dependent relativistic mean-field theory
International Nuclear Information System (INIS)
Ring, P.; Podobnik, B.
1996-01-01
Collective vibrations in spherical nuclei are described in the framework of time-dependent relativistic mean-field theory (RMFT). Isoscalar quadrupole and isovector dipole oscillations that correspond to giant resonances are studied, and possible excitations of higher modes are investigated. We find evidence for modes which can be interpreted as double resonances. In a quantized RMFT they correspond to two-phonon states. (orig.)
Dynamical control of matter-wave splitting using time-dependent optical lattices
DEFF Research Database (Denmark)
Park, Sung Jong; Andersen, Henrik Kjær; Mai, Sune
2012-01-01
potential. Next, we apply time-dependent optical Bragg mirrors to a BEC oscillating in a harmonic trap. We demonstrate high-order Bragg reflection of the condensate due to multiphoton Raman transitions, where the depth of the optical lattice potential allows for a choice of the order of the transition....... Finally, a combination of multiple Bragg reflections and Landau-Zener tunneling allows for the generation of macroscopic arrays of condensates with potential applications in atom optics and atom interferometry....
Voltage- and time-dependent action of histrionicotoxin on the endplate current of the frog muscle.
Masukawa, L M; Albuquerque, E X
1978-09-01
Histrionicotoxin, a toxin isolated from skin secretions of a Colombian arrow poison frog, Dendrobates histrionicus, decreased the amplitude and time-course of the endplate current, and altered the voltage dependence of the half-decay time. In addition, the toxin produced a characteristic nonlinearity in the current-voltage relationship of the endplate current when 3-s voltage conditioning steps were used. Reduction in time of the conditioning steps to 10 ms made the current-voltage relationship linear. The decrease in peak amplitude of the endplate current (epc) produced by histrionicotoxin measured during long hyperpolarizing conditioning steps was fitted by a single exponential function. The calculated rate constants ranged from 0.03 to 0.14 s-1 and varied with membrane potential at hyperpolarizing levels. The voltage- and time-dependent action of histrionicotoxin does not require an initial activation of receptors by acetylcholine (ACh). The characteristic of the current-voltage relationship can be accounted for by the observed voltage and time dependency of the attenuation of the endplate current amplitude in the presence of histrionicotoxin during long conditioning steps. These effects of histrionicotoxin on the peak amplitude, and on the voltage and time dependence of the epc were concentration-dependent and slowly reversible upon washing out the toxin. Thus, the voltage- and time-dependent action of histrionicotoxin at the endplate is related to an increase in the affinity between the toxin and the ACh receptor-ionic channel complex. This increase in affinity is postulated to be due to a conformational change of the macromolecule in the presence of histrionicotoxin which is demonstrated to be relatively slow, i.e., on the order of tens of seconds.
Pomarning-eddington approximation for time-dependent radiation transfer in finite slab media
International Nuclear Information System (INIS)
El-Wakil, S.A.; Degheidy, A.R.; Sallah, M.
2005-01-01
The time-dependent monoenergetic radiation transfer equation with linear anisotropic scattering is proposed. Pomraning-Eddington approximation is used to calculate the radiation intensity in finite plane-parallel media. Numerical results are done for the isotropic media. Shielding calculations are shown for reflectivity and transmissivity at different times. The medium is assumed to have specular-reflecting boundaries. Two different weight functions are introduced to force the boundary conditions to be fulfilled
A nodal method for solving the time-depending diffusion equation in the IQS approximation
International Nuclear Information System (INIS)
Vidovsky, I.; Kereszturi, A.
1991-11-01
The fast and slow variation of the neutron flux shape needed for the dynamical description of nuclear reactor cores can be described advantageously in the Improved Quasistatic (IQS) model where the flux is factorized by a fast changing space-independent amplitude and a slow changing shape function. The basic equations of a time-dependent nodal approximation using the IQS method is presented.The calculational procedure of the response matrices is also described. (R.P.) 2 refs
Energy decay of a variable-coefficient wave equation with nonlinear time-dependent localized damping
Directory of Open Access Journals (Sweden)
Jieqiong Wu
2015-09-01
Full Text Available We study the energy decay for the Cauchy problem of the wave equation with nonlinear time-dependent and space-dependent damping. The damping is localized in a bounded domain and near infinity, and the principal part of the wave equation has a variable-coefficient. We apply the multiplier method for variable-coefficient equations, and obtain an energy decay that depends on the property of the coefficient of the damping term.
An introduction to the adiabatic time-dependent Hartree-Fock method
International Nuclear Information System (INIS)
Giannoni, M.J.
1984-05-01
The aim of the adiabatic time-dependent Hartree-Fock method is to investigate the microscopic foundations of the phenomenological collective models. We briefly review the general formulation, which consists in deriving a Bohr-like Hamiltonian from a mean field theory, and discuss the limiting case where only a few collective variables participate to the motion. Some applications to soft nuclei and heavy ion collisions are presented
Darboux transformations for the time-dependent nonhomogeneous Burgers equation in (1+1) dimensions
International Nuclear Information System (INIS)
Schulze-Halberg, Axel; Manuel Carballo Jimenez, Juan
2009-01-01
We extend the formalism of nth order Darboux transformations to the time-dependent nonhomogeneous Burgers equation (NBE) in (1+1) dimensions. Similar to the Schroedinger case, our Darboux transformation retains the form of the NBE, while changing the nonhomogeneous term. The transformed solution of the NBE and the corresponding transformed nonhomogeneity are given in closed form. Furthermore, properties of the transformation are discussed and an application is given.
Local regularity for time-dependent tug-of-war games with varying probabilities
Parviainen, Mikko; Ruosteenoja, Eero
2016-07-01
We study local regularity properties of value functions of time-dependent tug-of-war games. For games with constant probabilities we get local Lipschitz continuity. For more general games with probabilities depending on space and time we obtain Hölder and Harnack estimates. The games have a connection to the normalized p (x , t)-parabolic equation ut = Δu + (p (x , t) - 2) Δ∞N u.
Beyond time-dependent Hartree-Fock: The collision terms in a mean-field theory
International Nuclear Information System (INIS)
Pauli, H.C.
1983-01-01
Generalised, time-dependent Hartree-Fock equations are shown to solve a well-defined part of the Hamiltonian problem. The complementary residual interaction is treated approximately, rather than by ensemble averages, and gives rise to the appearance of collision terms. The final set of equations is self-consistent. For colliding heavy ions the collision terms lead to a diffusion of the collective variables, which possibly can improve the agreement between mean-field calculations and experiment. (author)
Wave packet dynamics and photofragmentation in time-dependent quadratic potentials
DEFF Research Database (Denmark)
Møller, Klaus Braagaard; Henriksen, Niels Engholm
1996-01-01
We study the dynamics of generalized harmonic oscillator states in time-dependent quadratic potentials and derive analytical expressions for the momentum space and the Wigner phase space representation of these wave packets. Using these results we consider a model for the rotational excitation...... of a diatomic fragment produced in the photofragmentation of a triatomic molecule and we highlight the signatures of classical mechanics in the final product distribution of this process. (C) 1996 American Institute of Physics....
A consistent approach for the treatment of Fermi acceleration in time-dependent billiards
Karlis, A. K.; Diakonos, F. K.; Constantoudis, V.
2012-06-01
The standard description of Fermi acceleration, developing in a class of time-dependent billiards, is given in terms of a diffusion process taking place in momentum space. Within this framework, the evolution of the probability density function (PDF) of the magnitude of particle velocities as a function of the number of collisions n is determined by the Fokker-Planck equation (FPE). In the literature, the FPE is constructed by identifying the transport coefficients with the ensemble averages of the change of the magnitude of particle velocity and its square in the course of one collision. Although this treatment leads to the correct solution after a sufficiently large number of collisions have been reached, the transient part of the evolution of the PDF is not described. Moreover, in the case of the Fermi-Ulam model (FUM), if a standard simplification is employed, the solution of the FPE is even inconsistent with the values of the transport coefficients used for its derivation. The goal of our work is to provide a self-consistent methodology for the treatment of Fermi acceleration in time-dependent billiards. The proposed approach obviates any assumptions for the continuity of the random process and the existence of the limits formally defining the transport coefficients of the FPE. Specifically, we suggest, instead of the calculation of ensemble averages, the derivation of the one-step transition probability function and the use of the Chapman-Kolmogorov forward equation. This approach is generic and can be applied to any time-dependent billiard for the treatment of Fermi-acceleration. As a first step, we apply this methodology to the FUM, being the archetype of time-dependent billiards to exhibit Fermi acceleration.
Finite element approximation for time-dependent diffusion with measure-valued source
Czech Academy of Sciences Publication Activity Database
Seidman, T.; Gobbert, M.; Trott, D.; Kružík, Martin
2012-01-01
Roč. 122, č. 4 (2012), s. 709-723 ISSN 0029-599X R&D Projects: GA AV ČR IAA100750802 Institutional support: RVO:67985556 Keywords : measure-valued source * diffusion equation Subject RIV: BA - General Mathematics Impact factor: 1.329, year: 2012 http://library.utia.cas.cz/separaty/2012/MTR/kruzik-finite element approximation for time-dependent diffusion with measure-valued source.pdf
Wiwie, Christian; Rauch, Alexander; Haakonsson, Anders; Barrio-Hernandez, Inigo; Blagoev, Blagoy; Mandrup, Susanne; Röttger, Richard; Baumbach, Jan
2018-01-01
Advances in OMICS technologies emerged both massive expression data sets and huge networks modelling the molecular interplay of genes, RNAs, proteins and metabolites. Network enrichment methods combine these two data types to extract subnetwork responses from case/control setups. However, no methods exist to integrate time series data with networks, thus preventing the identification of time-dependent systems biology responses. We close this gap with Time Course Network Enrichment (TiCoNE). I...
Time dependent analysis of Xenon spatial oscillations in small power reactors
International Nuclear Information System (INIS)
Decco, Claudia Cristina Ghirardello
1997-01-01
This work presents time dependent analysis of xenon spatial oscillations studying the influence of the power density distribution, type of reactivity perturbation, power level and core size, using the one-dimensional and three-dimensional analysis with the MID2 and citation codes, respectively. It is concluded that small pressurized water reactors with height smaller than 1.5 m are stable and do not have xenon spatial oscillations. (author)
Shape optimization for non-Newtonian fluids in time-dependent domains
Czech Academy of Sciences Publication Activity Database
Sokolowski, J.; Stebel, Jan
2014-01-01
Roč. 3, č. 2 (2014), s. 331-348 ISSN 2163-2480 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:67985840 Keywords : shape optimization * time-dependent domain * incompressible viscous fluid Subject RIV: BA - General Mathematics Impact factor: 0.373, year: 2014 http://www.aimsciences.org/journals/home.jsp?journalID=25
Global existence of solutions to the Cauchy problem for time-dependent Hartree equations
International Nuclear Information System (INIS)
Chadam, J.M.; Glassey, R.T.
1975-01-01
The existence of global solutions to the Cauchy problem for time-dependent Hartree equations for N electrons is established. The solution is shown to have a uniformly bounded H 1 (R 3 ) norm and to satisfy an estimate of the form two parallel PSI (t) two parallel/sub H 2 ; less than or equal to c exp(kt). It is shown that ''negative energy'' solutions do not converge uniformly to zero as t → infinity. (U.S.)
Modelling the time-dependent rheological behaviour of heterogeneous brittle rocks
Xu, Tao; Tang, Chun-an; Zhao, Jian; Li, Lianchong; Heap, M. J.
2012-06-01
A 2-D numerical model for brittle creep and stress relaxation is proposed for the time-dependent brittle deformation of heterogeneous brittle rock under uniaxial loading conditions. The model accounts for material heterogeneity through a stochastic local failure stress field, and local material degradation using an exponential material softening law. Importantly, the model introduces the concept of a mesoscopic renormalization to capture the co-operative interaction between microcracks in the transition from distributed to localized damage. The model also describes the temporal and spatial evolution of acoustic emissions, including their size (energy released), in the medium during the progressive damage process. The model is first validated using previously published experimental data and is then used to simulate brittle creep and stress relaxation experiments. The model accurately reproduces the classic trimodal behaviour (primary, secondary and tertiary creep) seen in laboratory brittle creep (constant stress) experiments and the decelerating stress during laboratory stress relaxation (constant strain) experiments. Brittle creep simulations also show evidence of a 'critical level of damage' before the onset of tertiary creep and the initial stages of localization can be seen as early as the start of the secondary creep phase, both of which have been previously observed in experiments. Stress relaxation simulations demonstrate that the total amount of stress relaxation increases when the level of constant axial strain increases, also corroborating with previously published experimental data. Our approach differs from previously adopted macroscopic approaches, based on constitutive laws, and microscopic approaches that focus on fracture propagation. The model shows that complex macroscopic time-dependent behaviour can be explained by the small-scale interaction of elements and material degradation. The fact that the simulations are able to capture a similar time-dependent
Said-Houari, Belkacem
2012-03-01
In this paper, we consider a viscoelastic wave equation with an absorbing term and space-time dependent damping term. Based on the weighted energy method, and by assuming that the kernel decaying exponentially, we obtain the L2 decay rates of the solutions. More precisely, we show that the decay rates are the same as those obtained in Lin et al. (2010) [15] for the semilinear wave equation with absorption term. © 2011 Elsevier Inc.
TIME-DEPENDENT MOSSBAUER-SPECTROSCOPY AND 119MTE-IMPLANTED GAAS
MO, D; ZHANG, GL; NIESEN, L; Waard , de Hendrik
1991-01-01
A new type of time-dependent Mossbauer spectroscopy is proposed and realized on the basis of using the two-step decay (119m)Te --> 113Sb --> Sn-119. For the GaAs samples, implanted with a dose of 110-keV (119m)Te + 10(15) stable Te/cm2 and annealed at 600-degrees-C, the relative intensities of
Optical properties of Al nanostructures from time dependent density functional theory
Mokkath, Junais Habeeb
2016-04-05
The optical properties of Al nanostructures are investigated by means of time dependent density functional theory, considering chains of varying length and ladders/stripes of varying aspect ratio. The absorption spectra show redshifting for increasing length and aspect ratio. For the chains the absorption is dominated by HOMO → LUMO transitions, whereas ladders and stripes reveal more complex spectra of plasmonic nature above a specific aspect ratio.
Nonadiabatic analysis of strange-modes in hot massive stars with time-dependent convection
Directory of Open Access Journals (Sweden)
Sonoi Takafumi
2015-01-01
Full Text Available We carry out nonadiabatic analysis of strange-modes in hot massive stars with time-dependent convection (TDC. We find that the instability of the modes excited at the Fe bump is weaker with TDC than with frozen-in convection (FC. But the instability still remains with TDC, and could be a possible candidate for the trigger of luminous blue variable (LBV phenomena.
Pricing multi-asset financial derivatives with time-dependent parameters—Lie algebraic approach
Directory of Open Access Journals (Sweden)
C. F. Lo
2002-01-01
Full Text Available We present a Lie algebraic technique for the valuation of multi-asset financial derivatives with time-dependent parameters. Exploiting the dynamical symmetry of the pricing partial differential equations of the financial derivatives, the new method enables us to derive analytical closed-form pricing formulae very straightforwardly. We believe that this new approach will provide an efficient and easy-to-use method for the valuation of financial derivatives.
International Nuclear Information System (INIS)
Sarler, B.
1987-01-01
The basic principles of the boundary element method numerical treatment of the radial flow heat diffusion equation are presented. The algorithm copes the time dependent Dirichlet and Neumann boundary conditions, temperature dependent material properties and regions from different materials in thermal contact. It is verified on the several analytically obtained test cases. The developed method is used for the modelling of unsteady radial heat flow in pressurized water reactor fuel rod. (author)
Exact Quantum-Statistical Dynamics of Time-Dependent Generalized Oscillators
Kim, Sang Pyo; Page, Don N.
2002-01-01
Using linear invariant operators in a constructive way we find the most general thermal density operator and Wigner function for time-dependent generalized oscillators. The general Wigner function has five free parameters and describes the thermal Wigner function about a classical trajectory in phase space. The contour of the Wigner function depicts an elliptical orbit with a constant area moving about the classical trajectory, whose eccentricity determines the squeezing of the initial vacuum.
The development of the time dependence of the nuclear EMP electric field
International Nuclear Information System (INIS)
Eng, C.
2009-01-01
The nuclear electromagnetic pulse (EMP) electric field calculated with the legacy code CHAP is compared with the field given by an integral solution of Maxwell's equations, also known as the Jefimenko equation, to aid our current understanding on the factors that affect the time dependence of the EMP. For a fair comparison the CHAP current density is used as a source in the Jefimenko equation. At first, the comparison is simplified by neglecting the conduction current and replacing the standard atmosphere with a constant density air slab. The simplicity of the resultant current density aids in determining the factors that affect the rise, peak and tail of the EMP electric field versus time. The three dimensional nature of the radiating source, i.e. sources off the line-of-sight, and the time dependence of the derivative of the current density with respect to time are found to play significant roles in shaping the EMP electric field time dependence. These results are found to hold even when the conduction current and the standard atmosphere are properly accounted for. Comparison of the CHAP electric field with the Jefimenko electric field offers a direct validation of the high-frequency/outgoing wave approximation.
Time-dependence of the holographic spectral function: diverse routes to thermalisation
Energy Technology Data Exchange (ETDEWEB)
Banerjee, Souvik [Van Swinderen Institute for Particle Physics and Gravity,University of Groningen, Nijenborgh 4, 9747 AG (Netherlands); Ishii, Takaaki [Department of Physics, University of Colorado, 390 UCB, Boulder, CO 80309 (United States); Center for Theory of Quantum Matter, University of Colorado, Boulder, CO 80309 (United States); Joshi, Lata Kh [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400 076 (India); Mukhopadhyay, Ayan [Institut für Theoretische Physik, Technische Universität Wien,Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria); Ramadevi, P. [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400 076 (India)
2016-08-08
We develop a new method for computing the holographic retarded propagator in generic (non-)equilibrium states using the state/geometry map. We check that our method reproduces the thermal spectral function given by the Son-Starinets prescription. The time-dependence of the spectral function of a relevant scalar operator is studied in a class of non-equilibrium states. The latter are represented by AdS-Vaidya geometries with an arbitrary parameter characterising the timescale for the dual state to transit from an initial thermal equilibrium to another due to a homogeneous quench. For long quench duration, the spectral function indeed follows the thermal form at the instantaneous effective temperature adiabatically, although with a slight initial time delay and a bit premature thermalisation. At shorter quench durations, several new non-adiabatic features appear: (i) time-dependence of the spectral function is seen much before than that in the effective temperature (advanced time-dependence), (ii) a big transfer of spectral weight to frequencies greater than the initial temperature occurs at an intermediate time (kink formation) and (iii) new peaks with decreasing amplitudes but in greater numbers appear even after the effective temperature has stabilised (persistent oscillations). We find four broad routes to thermalisation for lower values of spatial momenta. At higher values of spatial momenta, kink formations and persistent oscillations are suppressed, and thermalisation time decreases. The general thermalisation pattern is globally top-down, but a closer look reveals complexities.
Searches for Time-dependent Neutrino Sources with IceCube Data from 2008 to 2012
Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Baker, M.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Clevermann, F.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eisch, J.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Gier, D.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huang, F.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jero, K.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larsen, D. T.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Rees, I.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rodrigues, J. P.; Rongen, M.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Sander, H.-G.; Sandroos, J.; Santander, M.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tosi, D.; Tselengidou, M.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Vandenbroucke, J.; van Santen, J.; Vanheule, S.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallraff, M.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zoll, M.; IceCube Collaboration
2015-07-01
In this paper searches for flaring astrophysical neutrino sources and sources with periodic emission with the IceCube neutrino telescope are presented. In contrast to time-integrated searches, where steady emission is assumed, the analyses presented here look for a time-dependent signal of neutrinos using the information from the neutrino arrival times to enhance the discovery potential. A search was performed for correlations between neutrino arrival times and directions, as well as neutrino emission following time-dependent light curves, sporadic emission, or periodicities of candidate sources. These include active galactic nuclei, soft γ-ray repeaters, supernova remnants hosting pulsars, microquasars, and X-ray binaries. The work presented here updates and extends previously published results to a longer period that covers 4 years of data from 2008 April 5 to 2012 May 16, including the first year of operation of the completed 86 string detector. The analyses did not find any significant time-dependent point sources of neutrinos, and the results were used to set upper limits on the neutrino flux from source candidates.