WorldWideScience

Sample records for time variable gravity

  1. Analysis of time variable gravity data over Africa

    International Nuclear Information System (INIS)

    Barletta, Valentina R.; Aoudia, Abdelkarim

    2010-01-01

    Africa, in principle, is a unique laboratory where to address the individual contribution of the different facets of the Earth system as well as their interactions. However, it shows both a rich hydrology that exhibits complex characteristics of rivers and wide basins of different sizes in addition to the hydrology of lakes, and other wetlands and storage reservoirs and groundwater aquifers, and continuous and discontinuous changes in the physical properties of the Earth interior. Stretching and heating processes are accompanied by punctuated episodes of faulting and/or volcanism, and longer-term changes in surface elevation that disrupt river drainage and climate. Space gravity missions GRACE, flying since 2002, was expressly designed to detect the time-dependent gravity field in order to study the hydrological cycle of the Earth, but has also evidenced Solid Earth phenomena such as Post Glacial Rebound (PGR) and the signature of a giant earthquake such as the 2004 Sumatra. Hence the idea to analyze time variable gravity data over Africa in order to retrieve fingerprints of geophysical phenomena. The exploitation of the GRACE data for geophysics, however, is not straightforward. Indeed, the quality of the signal is not uniform worldwide and gravity is always the superposition of contributions from solid Earth as well as climate-related phenomena, that cannot be easily distinguished, at a first glance, both in time and space. In the present study we show that mass changes cannot be classified simply as trends or periodic signals. We follow an alternative way to separate complementary components, periodic and non-periodic signals, without loosing information. We show that the a priori periodic and linear trend fitting function is not everywhere appropriate and in some cases it is even so poor to result in misinterpreting the data. Variations in long term behavior and periodicities higher than the usual annual (and semi-annual) indeed occur, related to geophysical

  2. Earth System Data Records of Mass Transport from Time-Variable Gravity Data

    Science.gov (United States)

    Zlotnicki, V.; Talpe, M.; Nerem, R. S.; Landerer, F. W.; Watkins, M. M.

    2014-12-01

    Satellite measurements of time variable gravity have revolutionized the study of Earth, by measuring the ice losses of Greenland, Antarctica and land glaciers, changes in groundwater including unsustainable losses due to extraction of groundwater, the mass and currents of the oceans and their redistribution during El Niño events, among other findings. Satellite measurements of gravity have been made primarily by four techniques: satellite tracking from land stations using either lasers or Doppler radio systems, satellite positioning by GNSS/GPS, satellite to satellite tracking over distances of a few hundred km using microwaves, and through a gravity gradiometer (radar altimeters also measure the gravity field, but over the oceans only). We discuss the challenges in the measurement of gravity by different instruments, especially time-variable gravity. A special concern is how to bridge a possible gap in time between the end of life of the current GRACE satellite pair, launched in 2002, and a future GRACE Follow-On pair to be launched in 2017. One challenge in combining data from different measurement systems consists of their different spatial and temporal resolutions and the different ways in which they alias short time scale signals. Typically satellite measurements of gravity are expressed in spherical harmonic coefficients (although expansions in terms of 'mascons', the masses of small spherical caps, has certain advantages). Taking advantage of correlations among spherical harmonic coefficients described by empirical orthogonal functions and derived from GRACE data it is possible to localize the otherwise coarse spatial resolution of the laser and Doppler derived gravity models. This presentation discusses the issues facing a climate data record of time variable mass flux using these different data sources, including its validation.

  3. Squeezing more information out of time variable gravity data with a temporal decomposition approach

    DEFF Research Database (Denmark)

    Barletta, Valentina Roberta; Bordoni, A.; Aoudia, A.

    2012-01-01

    an explorative approach based on a suitable time series decomposition, which does not rely on predefined time signatures. The comparison and validation against the fitting approach commonly used in GRACE literature shows a very good agreement for what concerns trends and periodic signals on one side......A measure of the Earth's gravity contains contributions from solid Earth as well as climate-related phenomena, that cannot be easily distinguished both in time and space. After more than 7years, the GRACE gravity data available now support more elaborate analysis on the time series. We propose...... used to assess the possibility of finding evidence of meaningful geophysical signals different from hydrology over Africa in GRACE data. In this case we conclude that hydrological phenomena are dominant and so time variable gravity data in Africa can be directly used to calibrate hydrological models....

  4. Time-variable gravity fields derived from GPS tracking of Swarm

    Czech Academy of Sciences Publication Activity Database

    Bezděk, Aleš; Sebera, Josef; da Encarnacao, J.T.; Klokočník, Jaroslav

    2016-01-01

    Roč. 205, č. 3 (2016), s. 1665-1669 ISSN 0956-540X R&D Projects: GA MŠk LG14026; GA ČR GA13-36843S Institutional support: RVO:67985815 Keywords : satellite geodesy * time variable gravity * global change from geodesy Subject RIV: DD - Geochemistry Impact factor: 2.414, year: 2016

  5. On the Inversion for Mass (Re)Distribution from Global (Time-Variable) Gravity Field

    Science.gov (United States)

    Chao, Benjamin F.

    2004-01-01

    The well-known non-uniqueness of the gravitational inverse problem states the following: The external gravity field, even if completely and exactly known, cannot Uniquely determine the density distribution of the body that produces the gravity field. This is an intrinsic property of a field that obeys the Laplace equation, as already treated in mathematical as well as geophysical literature. In this paper we provide conceptual insight by examining the problem in terms of spherical harmonic expansion of the global gravity field. By comparing the multipoles and the moments of the density function, we show that in 3-S the degree of knowledge deficiency in trying to inversely recover the density distribution from external gravity field is (n+l)(n+2)/2 - (2n+l) = n(n-1)/2 for each harmonic degree n. On the other hand, on a 2-D spherical shell we show via a simple relationship that the inverse solution of the surface density distribution is unique. The latter applies quite readily in the inversion of time-variable gravity signals (such as those observed by the GRACE space mission) where the sources over a wide range of the scales largely come from the Earth's Surface.

  6. Time-variable gravity fields and ocean mass change from 37 months of kinematic Swarm orbits

    Science.gov (United States)

    Lück, Christina; Kusche, Jürgen; Rietbroek, Roelof; Löcher, Anno

    2018-03-01

    Measuring the spatiotemporal variation of ocean mass allows for partitioning of volumetric sea level change, sampled by radar altimeters, into mass-driven and steric parts. The latter is related to ocean heat change and the current Earth's energy imbalance. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) mission has provided monthly snapshots of the Earth's time-variable gravity field, from which one can derive ocean mass variability. However, GRACE has reached the end of its lifetime with data degradation and several gaps occurred during the last years, and there will be a prolonged gap until the launch of the follow-on mission GRACE-FO. Therefore, efforts focus on generating a long and consistent ocean mass time series by analyzing kinematic orbits from other low-flying satellites, i.e. extending the GRACE time series. Here we utilize data from the European Space Agency's (ESA) Swarm Earth Explorer satellites to derive and investigate ocean mass variations. For this aim, we use the integral equation approach with short arcs (Mayer-Gürr, 2006) to compute more than 500 time-variable gravity fields with different parameterizations from kinematic orbits. We investigate the potential to bridge the gap between the GRACE and the GRACE-FO mission and to substitute missing monthly solutions with Swarm results of significantly lower resolution. Our monthly Swarm solutions have a root mean square error (RMSE) of 4.0 mm with respect to GRACE, whereas directly estimating constant, trend, annual, and semiannual (CTAS) signal terms leads to an RMSE of only 1.7 mm. Concerning monthly gaps, our CTAS Swarm solution appears better than interpolating existing GRACE data in 13.5 % of all cases, when artificially removing one solution. In the case of an 18-month artificial gap, 80.0 % of all CTAS Swarm solutions were found closer to the observed GRACE data compared to interpolated GRACE data. Furthermore, we show that precise modeling of non-gravitational forces

  7. Time-Variable Gravity from Space: Quarter Century of Observations, Mysteries, and Prospects

    Science.gov (United States)

    Chao, Benjamin F.; Boy, John-Paul

    2003-01-01

    Any large mass transport in the Earth system produces changes in the gravity field. Via the space geodetic technique of satellite-laser ranging in the last quarter century, the Earth's dynamic oblateness J2 (the lowest-degree harmonic component of the gravity field) has been observed to undergo a slight decrease -- until around 1998, when it switched quite suddenly to an increase trend which has continued to 2001 before sharply turning back to the value which it is "supposed to be"!. The secular decrease in J2 has long been attributed primarily to the post-glacial rebound in the mantle; the present increase signifies an even larger change in global mass distribution whose J2 effect overshadows that of the post-glacial rebound, at least over interannual timescales. Intriguing evidences have been found in the ocean water distribution, especially in the extratropical Pacific basins, that may be responsible for this J2 change. New techniques based on satellite-to-satellite tracking will yield greatly improved observations for time-variable gravity, with much higher precision and spatial resolution (i.e., much higher harmonic degrees). The most important example is the GRACE mission launched in March 2002, following the success of the CHAMP mission. Such observations are becoming a new and powerful tool for remote sensing of geophysical fluid processes that involve larger-scale mass transports.

  8. Excitation of Earth Rotation Variations "Observed" by Time-Variable Gravity

    Science.gov (United States)

    Chao, Ben F.; Cox, C. M.

    2005-01-01

    Time variable gravity measurements have been made over the past two decades using the space geodetic technique of satellite laser ranging, and more recently by the GRACE satellite mission with improved spatial resolutions. The degree-2 harmonic components of the time-variable gravity contain important information about the Earth s length-of-day and polar motion excitation functions, in a way independent to the traditional "direct" Earth rotation measurements made by, for example, the very-long-baseline interferometry and GPS. In particular, the (degree=2, order= 1) components give the mass term of the polar motion excitation; the (2,O) component, under certain mass conservation conditions, gives the mass term of the length-of-day excitation. Combining these with yet another independent source of angular momentum estimation calculated from global geophysical fluid models (for example the atmospheric angular momentum, in both mass and motion terms), in principle can lead to new insights into the dynamics, particularly the role or the lack thereof of the cores, in the excitation processes of the Earth rotation variations.

  9. Time-variable gravity potential components for optical clock comparisons and the definition of international time scales

    International Nuclear Information System (INIS)

    Voigt, C.; Denker, H.; Timmen, L.

    2016-01-01

    The latest generation of optical atomic clocks is approaching the level of one part in 10 18 in terms of frequency stability and uncertainty. For clock comparisons and the definition of international time scales, a relativistic redshift effect of the clock frequencies has to be taken into account at a corresponding uncertainty level of about 0.1 m 2 s -2 and 0.01 m in terms of gravity potential and height, respectively. Besides the predominant static part of the gravity potential, temporal variations must be considered in order to avoid systematic frequency shifts. Time-variable gravity potential components induced by tides and non-tidal mass redistributions are investigated with regard to the level of one part in 10 18 . The magnitudes and dominant time periods of the individual gravity potential contributions are investigated globally and for specific laboratory sites together with the related uncertainty estimates. The basics of the computation methods are presented along with the applied models, data sets and software. Solid Earth tides contribute by far the most dominant signal with a global maximum amplitude of 4.2 m 2 s -2 for the potential and a range (maximum-to-minimum) of up to 1.3 and 10.0 m 2 s -2 in terms of potential differences between specific laboratories over continental and intercontinental scales, respectively. Amplitudes of the ocean tidal loading potential can amount up to 1.25 m 2 s -2 , while the range of the potential between specific laboratories is 0.3 and 1.1 m 2 s -2 over continental and intercontinental scales, respectively. These are the only two contributors being relevant at a 10 -17 level. However, several other time-variable potential effects can particularly affect clock comparisons at the 10 -18 level. Besides solid Earth pole tides, these are non-tidal mass redistributions in the atmosphere, the oceans and the continental water storage. (authors)

  10. Three-Gorge Reservoir: A 'Controlled Experiment' for Calibration/Validation of Time-Variable Gravity Signals Detected from Space

    Science.gov (United States)

    Chao, Benjamin F.; Boy, J. P.

    2003-01-01

    With the advances of measurements, modern space geodesy has become a new type of remote sensing for the Earth dynamics, especially for mass transports in the geophysical fluids on large spatial scales. A case in point is the space gravity mission GRACE (Gravity Recovery And Climate Experiment) which has been in orbit collecting gravity data since early 2002. The data promise to be able to detect changes of water mass equivalent to sub-cm thickness on spatial scale of several hundred km every month or so. China s Three-Gorge Reservoir has already started the process of water impoundment in phases. By 2009,40 km3 of water will be stored behind one of the world s highest dams and spanning a section of middle Yangtze River about 600 km in length. For the GRACE observations, the Three-Gorge Reservoir would represent a geophysical controlled experiment , one that offers a unique opportunity to do detailed geophysical studies. -- Assuming a complete documentation of the water level and history of the water impoundment process and aided with a continual monitoring of the lithospheric loading response (such as in area gravity and deformation), one has at hand basically a classical forwardinverse modeling problem of surface loading, where the input and certain output are known. The invisible portion of the impounded water, i.e. underground storage, poses either added values as an observable or a complication as an unknown to be modeled. Wang (2000) has studied the possible loading effects on a local scale; we here aim for larger spatial scales upwards from several hundred km, with emphasis on the time-variable gravity signals that can be detected by GRACE and follow-on missions. Results using the Green s function approach on the PREM elastic Earth model indicate the geoid height variations reaching several millimeters on wavelengths of about a thousand kilometers. The corresponding vertical deformations have amplitude of a few centimeters. In terms of long

  11. Time-variable gravity fields and ocean mass change from 37 months of kinematic Swarm orbits

    Directory of Open Access Journals (Sweden)

    C. Lück

    2018-03-01

    Full Text Available Measuring the spatiotemporal variation of ocean mass allows for partitioning of volumetric sea level change, sampled by radar altimeters, into mass-driven and steric parts. The latter is related to ocean heat change and the current Earth's energy imbalance. Since 2002, the Gravity Recovery and Climate Experiment (GRACE mission has provided monthly snapshots of the Earth's time-variable gravity field, from which one can derive ocean mass variability. However, GRACE has reached the end of its lifetime with data degradation and several gaps occurred during the last years, and there will be a prolonged gap until the launch of the follow-on mission GRACE-FO. Therefore, efforts focus on generating a long and consistent ocean mass time series by analyzing kinematic orbits from other low-flying satellites, i.e. extending the GRACE time series. Here we utilize data from the European Space Agency's (ESA Swarm Earth Explorer satellites to derive and investigate ocean mass variations. For this aim, we use the integral equation approach with short arcs (Mayer-Gürr, 2006 to compute more than 500 time-variable gravity fields with different parameterizations from kinematic orbits. We investigate the potential to bridge the gap between the GRACE and the GRACE-FO mission and to substitute missing monthly solutions with Swarm results of significantly lower resolution. Our monthly Swarm solutions have a root mean square error (RMSE of 4.0 mm with respect to GRACE, whereas directly estimating constant, trend, annual, and semiannual (CTAS signal terms leads to an RMSE of only 1.7 mm. Concerning monthly gaps, our CTAS Swarm solution appears better than interpolating existing GRACE data in 13.5 % of all cases, when artificially removing one solution. In the case of an 18-month artificial gap, 80.0 % of all CTAS Swarm solutions were found closer to the observed GRACE data compared to interpolated GRACE data. Furthermore, we show that precise modeling of non

  12. Evaluation of Release-05 GRACE time-variable gravity coefficients over the ocean

    Directory of Open Access Journals (Sweden)

    D. P. Chambers

    2012-10-01

    Full Text Available The latest release of GRACE (Gravity Recovery and Climate Experiment gravity field coefficients (Release-05, or RL05 are evaluated for ocean applications. Data have been processed using the current methodology for Release-04 (RL04 coefficients, and have been compared to output from two different ocean models. Results indicate that RL05 data from the three Science Data Centers – the Center for Space Research (CSR, GeoForschungsZentrum (GFZ, and Jet Propulsion Laboratory (JPL – are more consistent among themselves than the previous RL04 data. Moreover, the variance of residuals with the output of an ocean model is 50–60% lower for RL05 data than for RL04 data. A more optimized destriping algorithm is also tested, which improves the results slightly. By comparing the GRACE maps with two different ocean models, we can better estimate the uncertainty in the RL05 maps. We find the standard error to be about 1 cm (equivalent water thickness in the low- and mid-latitudes, and between 1.5 and 2 cm in the polar and subpolar oceans, which is comparable to estimated uncertainty for the output from the ocean models.

  13. Seasonal variability of the Red Sea, from GRACE time-variable gravity and altimeter sea surface height measurements

    Science.gov (United States)

    Wahr, John; Smeed, David; Leuliette, Eric; Swenson, Sean

    2014-05-01

    Seasonal variability of sea surface height and mass within the Red Sea, occurs mostly through the exchange of heat with the atmosphere and wind-driven inflow and outflow of water through the strait of Bab el Mandab that opens into the Gulf of Aden to the south. The seasonal effects of precipitation and evaporation, of water exchange through the Suez Canal to the north, and of runoff from the adjacent land, are all small. The flow through the Bab el Mandab involves a net mass transfer into the Red Sea during the winter and a net transfer out during the summer. But that flow has a multi-layer pattern, so that in the summer there is actually an influx of cool water at intermediate (~100 m) depths. Thus, summer water in the southern Red Sea is warmer near the surface due to higher air temperatures, but cooler at intermediate depths (especially in the far south). Summer water in the northern Red Sea experiences warming by air-sea exchange only. The temperature profile affects the water density, which impacts the sea surface height but has no effect on vertically integrated mass. Here, we study this seasonal cycle by combining GRACE time-variable mass estimates, altimeter (Jason-1, Jason-2, and Envisat) measurements of sea surface height, and steric sea surface height contributions derived from depth-dependent, climatological values of temperature and salinity obtained from the World Ocean Atlas. We find good consistency, particularly in the northern Red Sea, between these three data types. Among the general characteristics of our results are: (1) the mass contributions to seasonal SSHT variations are much larger than the steric contributions; (2) the mass signal is largest in winter, consistent with winds pushing water into the Red Sea through the Strait of Bab el Mandab in winter, and out during the summer; and (3) the steric signal is largest in summer, consistent with summer sea surface warming.

  14. Gravity, Time, and Lagrangians

    Science.gov (United States)

    Huggins, Elisha

    2010-01-01

    Feynman mentioned to us that he understood a topic in physics if he could explain it to a college freshman, a high school student, or a dinner guest. Here we will discuss two topics that took us a while to get to that level. One is the relationship between gravity and time. The other is the minus sign that appears in the Lagrangian. (Why would one…

  15. New variables for classical and quantum gravity

    Science.gov (United States)

    Ashtekar, Abhay

    1986-01-01

    A Hamiltonian formulation of general relativity based on certain spinorial variables is introduced. These variables simplify the constraints of general relativity considerably and enable one to imbed the constraint surface in the phase space of Einstein's theory into that of Yang-Mills theory. The imbedding suggests new ways of attacking a number of problems in both classical and quantum gravity. Some illustrative applications are discussed.

  16. Symplectic Structure of Intrinsic Time Gravity

    Directory of Open Access Journals (Sweden)

    Eyo Eyo Ita

    2016-08-01

    Full Text Available The Poisson structure of intrinsic time gravity is analysed. With the starting point comprising a unimodular three-metric with traceless momentum, a trace-induced anomaly results upon quantization. This leads to a revision of the choice of momentum variable to the (mixed index traceless momentric. This latter choice unitarily implements the fundamental commutation relations, which now take on the form of an affine algebra with SU(3 Lie algebra amongst the momentric variables. The resulting relations unitarily implement tracelessness upon quantization. The associated Poisson brackets and Hamiltonian dynamics are studied.

  17. Tide Gauge Records Reveal Improved Processing of Gravity Recovery and Climate Experiment Time-Variable Mass Solutions over the Coastal Ocean

    Science.gov (United States)

    Piecuch, Christopher G.; Landerer, Felix W.; Ponte, Rui M.

    2018-05-01

    Monthly ocean bottom pressure solutions from the Gravity Recovery and Climate Experiment (GRACE), derived using surface spherical cap mass concentration (MC) blocks and spherical harmonics (SH) basis functions, are compared to tide gauge (TG) monthly averaged sea level data over 2003-2015 to evaluate improved gravimetric data processing methods near the coast. MC solutions can explain ≳ 42% of the monthly variance in TG time series over broad shelf regions and in semi-enclosed marginal seas. MC solutions also generally explain ˜5-32 % more TG data variance than SH estimates. Applying a coastline resolution improvement algorithm in the GRACE data processing leads to ˜ 31% more variance in TG records explained by the MC solution on average compared to not using this algorithm. Synthetic observations sampled from an ocean general circulation model exhibit similar patterns of correspondence between modeled TG and MC time series and differences between MC and SH time series in terms of their relationship with TG time series, suggesting that observational results here are generally consistent with expectations from ocean dynamics. This work demonstrates the improved quality of recent MC solutions compared to earlier SH estimates over the coastal ocean, and suggests that the MC solutions could be a useful tool for understanding contemporary coastal sea level variability and change.

  18. Maglev Facility for Simulating Variable Gravity

    Science.gov (United States)

    Liu, Yuanming; Strayer, Donald M.; Israelsson, Ulf E.

    2010-01-01

    An improved magnetic levitation apparatus ("Maglev Facility") has been built for use in experiments in which there are requirements to impose variable gravity (including zero gravity) in order to assess the effects of gravity or the absence thereof on physical and physiological processes. The apparatus is expected to be especially useful for experiments on the effects of gravity on convection, boiling, and heat transfer in fluids and for experiments on mice to gain understanding of bone loss induced in human astronauts by prolonged exposure to reduced gravity in space flight. The maglev principle employed by the apparatus is well established. Diamagnetic cryogenic fluids such as liquid helium have been magnetically levitated for studying their phase transitions and critical behaviors. Biological entities consist mostly of diamagnetic molecules (e.g., water molecules) and thus can be levitated by use of sufficiently strong magnetic fields having sufficiently strong vertical gradients. The heart of the present maglev apparatus is a vertically oriented superconducting solenoid electromagnet (see figure) that generates a static magnetic field of about 16 T with a vertical gradient sufficient for levitation of water in normal Earth gravity. The electromagnet is enclosed in a Dewar flask having a volume of 100 L that contains liquid helium to maintain superconductivity. The Dewar flask features a 66-mm-diameter warm bore, lying within the bore of the magnet, wherein experiments can be performed at room temperature. The warm bore is accessible from its top and bottom ends. The superconducting electromagnet is run in the persistent mode, in which the supercurrent and the magnetic field can be maintained for weeks with little decay, making this apparatus extremely cost and energy efficient to operate. In addition to water, this apparatus can levitate several common fluids: liquid hydrogen, liquid oxygen, methane, ammonia, sodium, and lithium, all of which are useful

  19. Analytical study on abnormal change in time-variable gravity at Yichang seismostation before the M5.1 Badong earthquake

    Directory of Open Access Journals (Sweden)

    Wei Jin

    2014-02-01

    Full Text Available An M5.1 earthquake occurred in Badong County, only 66 km from the Three Gorges Dam, on December 16, 2013. The continuous gravity observation data obtained at Yichang seismostation nearest to the epicenter (96 km were analyzed, and it was found that the continuous gravity observation data obtained in this rainy season did not exhibit a characteristic of seasonal change in gravity identical to that in the past years, and thereafter the M5.1 Badong earthquake occurred. Numerical simulation revealed that the water storage and discharge of the Three Gorges reservoir generated seasonal change in gravity, and the changes in atmospheric pressure and gravity load were not the main sources of the seasonal change of continuous gravity observation data whether in respect of magnitude or phase and did not have obvious breaking change on annual variation before the earthquake. Through analysis of the seasonal change data observed on the same site including cavern temperature, rainfall data and global terrestrial water model (CPC simulated water load, it was thought that, in the observation room with cavern temperature change of only −0.11 °C/a at Yichang seismostation, the seasonal change of continuous gravity observation result mainly originated from the seasonal change in rainfall. In the case that the changes in rainfall and its water load did not have evident breaking change on annual variation law before the earthquake, if the M5.1 Badong earthquake was the cause of the breaking change on annual variation law in Yichang this time, then it was believed through analysis of crust expansion ratio that similar anomaly should occur at a crust expansion and compression intersection, no more than 100 km away from the epicenter.

  20. Artificial gravity - The evolution of variable gravity research

    Science.gov (United States)

    Fuller, Charles A.; Sulzman, Frank M.; Keefe, J. Richard

    1987-01-01

    The development of a space life science research program based on the use of rotational facilities is described. In-flight and ground centrifuges can be used as artificial gravity environments to study the following: nongravitational biological factors; the effects of 0, 1, and hyper G on man; counter measures for deconditioning astronauts in weightlessness; and the development of suitable artificial gravity for long-term residence in space. The use of inertial fields as a substitute for gravity, and the relations between the radius of the centrifuge and rotation rate and specimen height and rotation radius are examined. An example of a centrifuge study involving squirrel monkeys is presented.

  1. Universe before Planck time: A quantum gravity model

    International Nuclear Information System (INIS)

    Padmanabhan, T.

    1983-01-01

    A model for quantum gravity can be constructed by treating the conformal degree of freedom of spacetime as a quantum variable. An isotropic, homogeneous cosmological solution in this quantum gravity model is presented. The spacetime is nonsingular for all the three possible values of three-space curvature, and agrees with the classical solution for time scales larger than the Planck time scale. A possibility of quantum fluctuations creating the matter in the universe is suggested

  2. Gravity across Space and Time

    NARCIS (Netherlands)

    Klasing, Mariko; Milionis, Petros; Zymek, Robert

    2016-01-01

    How well can the standard gravity equation account for the evolution of global trade flows over the long run? This paper provides the first systematic attempt to answer this question using a newly-assembled data set of bilateral trade flows, income levels and trade frictions that spans the years

  3. Gauge Gravity and Space-Time

    OpenAIRE

    Wu, Ning

    2012-01-01

    When we discuss problems on gravity, we can not avoid some fundamental physical problems, such as space-time, inertia, and inertial reference frame. The goal of this paper is to discuss the logic system of gravity theory and the problems of space-time, inertia, and inertial reference frame. The goal of this paper is to set up the theory on space-time in gauge theory of gravity. Based on this theory, it is possible for human kind to manipulate physical space-time on earth, and produce a machin...

  4. Time and a physical Hamiltonian for quantum gravity.

    Science.gov (United States)

    Husain, Viqar; Pawłowski, Tomasz

    2012-04-06

    We present a nonperturbative quantization of general relativity coupled to dust and other matter fields. The dust provides a natural time variable, leading to a physical Hamiltonian with spatial diffeomorphism symmetry. The surprising feature is that the Hamiltonian is not a square root. This property, together with the kinematical structure of loop quantum gravity, provides a complete theory of quantum gravity, and puts applications to cosmology, quantum gravitational collapse, and Hawking radiation within technical reach. © 2012 American Physical Society

  5. Does time exist in quantum gravity?

    Directory of Open Access Journals (Sweden)

    Claus Kiefer

    2015-12-01

    Full Text Available Time is absolute in standard quantum theory and dynamical in general relativity. The combination of both theories into a theory of quantum gravity leads therefore to a “problem of time”. In my essay, I investigate those consequences for the concept of time that may be drawn without a detailed knowledge of quantum gravity. The only assumptions are the experimentally supported universality of the linear structure of quantum theory and the recovery of general relativity in the classical limit. Among the consequences are the fundamental timelessness of quantum gravity, the approximate nature of a semiclassical time, and the correlation of entropy with the size of the Universe.

  6. On precanonical quantization of gravity in spin connection variables

    Energy Technology Data Exchange (ETDEWEB)

    Kanatchikov, I. V. [National Center of Quantum Information in Gdansk (KCIK), 81-824 Sopot (Poland)

    2013-02-21

    The basics of precanonical quantization and its relation to the functional Schroedinger picture in QFT are briefly outlined. The approach is then applied to quantization of Einstein's gravity in vielbein and spin connection variables and leads to a quantum dynamics described by the covariant Schroedinger equation for the transition amplitudes on the bundle of spin connection coefficients over space-time, that yields a novel quantum description of space-time geometry. A toy model of precanonical quantum cosmology based on the example of flat FLRW universe is considered.

  7. How many 'times' do we have in quantum gravity?

    International Nuclear Information System (INIS)

    Hosoya, Akio; Soda, Jiro.

    1990-07-01

    Apparently, there are infinite number of time-like variables in the Wheeler-DeWitt equation in quantum gravity. This gives rise to an obvious conceptual difficulty and further becomes an obstacle if one wants to canonically third quantize the universe. In this paper, adopting York's gauge in the path-integral approach, we formulate quantum geometrodynamics so that it contains only a single time-like variable corresponding to the total volume of the universe. (author)

  8. Characteristic precipitation patterns of El Niño/La Niña in time-variable gravity fields by GRACE

    OpenAIRE

    Morishita, Yu; Heki, Kosuke

    2008-01-01

    El Niño and La Niña are known to bring about characteristic patterns of anomalous precipitation in various regions of the world. We extracted temporary and regional gravity changes from monthly gravity fields recovered by the GRACE satellites, and converted them to the changes in surface mass, possibly ground or subsurface water in land area. Such mass changes in the 2006-2007 El Niño and 2005-2006 La Niña episodes agreed well with precipitation anomaly patterns inferred from meteorological r...

  9. Gravity in two-time physics

    International Nuclear Information System (INIS)

    Bars, Itzhak

    2008-01-01

    The field theoretic action for gravitational interactions in d+2 dimensions is constructed in the formalism of two-time (2T) physics. General relativity in d dimensions emerges as a shadow of this theory with one less time and one less space dimensions. The gravitational constant turns out to be a shadow of a dilaton field in d+2 dimensions that appears as a constant to observers stuck in d dimensions. If elementary scalar fields play a role in the fundamental theory (such as Higgs fields in the standard model coupled to gravity), then their shadows in d dimensions must necessarily be conformal scalars. This has the physical consequence that the gravitational constant changes at each phase transition (inflation, grand unification, electroweak, etc.), implying interesting new scenarios in cosmological applications. The fundamental action for pure gravity, which includes the spacetime metric G MN (X), the dilaton Ω(X), and an additional auxiliary scalar field W(X), all in d+2 dimensions with two times, has a mix of gauge symmetries to produce appropriate constraints that remove all ghosts or redundant degrees of freedom. The action produces on-shell classical field equations of motion in d+2 dimensions, with enough constraints for the theory to be in agreement with classical general relativity in d dimensions. Therefore this action describes the correct classical gravitational physics directly in d+2 dimensions. Taken together with previous similar work on the standard model of particles and forces, the present paper shows that 2T physics is a general consistent framework for a physical theory. Furthermore, the 2T-physics approach reveals more physical information for observers stuck in the shadow in d dimensions in the form of hidden symmetries and dualities, that are largely concealed in the usual one-time formulation of physics

  10. Gravity

    CERN Document Server

    Gamow, George

    2003-01-01

    A distinguished physicist and teacher, George Gamow also possessed a special gift for making the intricacies of science accessible to a wide audience. In Gravity, he takes an enlightening look at three of the towering figures of science who unlocked many of the mysteries behind the laws of physics: Galileo, the first to take a close look at the process of free and restricted fall; Newton, originator of the concept of gravity as a universal force; and Einstein, who proposed that gravity is no more than the curvature of the four-dimensional space-time continuum.Graced with the author's own draw

  11. Quantizing higher-spin gravity in free-field variables

    Science.gov (United States)

    Campoleoni, Andrea; Fredenhagen, Stefan; Raeymaekers, Joris

    2018-02-01

    We study the formulation of massless higher-spin gravity on AdS3 in a gauge in which the fundamental variables satisfy free field Poisson brackets. This gauge choice leaves a small portion of the gauge freedom unfixed, which should be further quotiented out. We show that doing so leads to a bulk version of the Coulomb gas formalism for W N CFT's: the generators of the residual gauge symmetries are the classical limits of screening charges, while the gauge-invariant observables are classical W N charges. Quantization in these variables can be carried out using standard techniques and makes manifest a remnant of the triality symmetry of W ∞[λ]. This symmetry can be used to argue that the theory should be supplemented with additional matter content which is precisely that of the Prokushkin-Vasiliev theory. As a further application, we use our formulation to quantize a class of conical surplus solutions and confirm the conjecture that these are dual to specific degenerate W N primaries, to all orders in the large central charge expansion.

  12. Radar time delays in the dynamic theory of gravity

    Directory of Open Access Journals (Sweden)

    Haranas I.I.

    2004-01-01

    Full Text Available There is a new theory gravity called the dynamic theory, which is derived from thermodynamic principles in a five dimensional space, radar signals traveling times and delays are calculated for the major planets in the solar system, and compared to those of general relativity. This is done by using the usual four dimensional spherically symmetric space-time element of classical general relativistic gravity which has now been slightly modified by a negative inverse radial exponential term due to the dynamic theory of gravity potential.

  13. Determining the Ocean's Role on the Variable Gravity Field on Earth Rotation

    Science.gov (United States)

    Ponte, Rui M.

    1999-01-01

    A number of ocean models of different complexity have been used to study changes in the oceanic mass field and angular momentum and their relation to the variable Earth rotation and gravity field. Time scales examined range from seasonal to a few days. Results point to the importance of oceanic signals in driving polar motion, in particular the Chandler and annual wobbles. Results also show that oceanic signals have a measurable impact on length-of-day variations. Various circulation features and associated mass signals, including the North Pacific subtropical gyre, the equatorial currents, and the Antarctic Circumpolar Current play a significant role in oceanic angular momentum variability.

  14. Time delays across saddles as a test of modified gravity

    International Nuclear Information System (INIS)

    Magueijo, João; Mozaffari, Ali

    2013-01-01

    Modified gravity theories can produce strong signals in the vicinity of the saddles of the total gravitational potential. In a sub-class of these models, this translates into diverging time delays for echoes crossing the saddles. Such models arise from the possibility that gravity might be infrared divergent or confined, and if suitably designed they are very difficult to rule out. We show that Lunar Laser Ranging during an eclipse could probe the time-delay effect within metres of the saddle, thereby proving or excluding these models. Very Large Baseline Interferometry, instead, could target delays across the Jupiter–Sun saddle. Such experiments would shed light on the infrared behaviour of gravity and examine the puzzling possibility that there might be well-hidden regions of strong gravity and even singularities inside the solar system. (fast track communication)

  15. Calibrating Vadose Zone Models with Time-Lapse Gravity Data

    DEFF Research Database (Denmark)

    Christiansen, Lars; Hansen, A. B.; Looms, M. C.

    2009-01-01

    A change in soil water content is a change in mass stored in the subsurface. Given that the mass change is big enough, the change can be measured with a gravity meter. Attempts have been made with varying success over the last decades to use ground-based time-lapse gravity measurements to infer...... hydrogeological parameters. These studies focused on the saturated zone with specific yield as the most prominent target parameter. Any change in storage in the vadose zone has been considered as noise. Our modeling results show a measureable change in gravity from the vadose zone during a forced infiltration...... experiment on 10m by 10m grass land. Simulation studies show a potential for vadose zone model calibration using gravity data in conjunction with other geophysical data, e.g. cross-borehole georadar. We present early field data and calibration results from a forced infiltration experiment conducted over 30...

  16. Calibrating vadose zone models with time-lapse gravity data

    DEFF Research Database (Denmark)

    Christiansen, Lars; Binning, Philip John; Rosbjerg, Dan

    2011-01-01

    The vadose zone plays an important role in the hydrologic cycle. Various geophysical methods can determine soil water content variations in time and space in volumes ranging from a few cubic centimeters to several cubic meters. In contrast to the established methods, time-lapse gravity measurements...... of changes in soil water content do not rely on a petrophysical relationship between the measured quantity and the water content but give a direct measure of the mass change in the soil. Only recently has the vadose zone been systematically incorporated when ground-based gravity data are used to infer...... hydrologic information. In this study, changes in the soil water content gave rise to a measurable signal in a forced infiltration experiment on a 107-m2 grassland area. Time-lapse gravity data were able to constrain the van Genuchten soil hydraulic parameters in both a synthetic example and a field...

  17. Time machines and traversable wormholes in modified theories of gravity

    Directory of Open Access Journals (Sweden)

    Lobo Francisco S.N.

    2013-09-01

    Full Text Available We review recent work on wormhole geometries in the context of modified theories of gravity, in particular, in f(R gravity and with a nonminimal curvature-matter coupling, and in the recently proposed hybrid metric-Palatini theory. In principle, the normal matter threading the throat can be shown to satisfy the energy conditions and it is the higher order curvatures terms that sustain these wormhole geometries. We also briefly review the conversion of wormholes into time-machines, explore several of the time travel paradoxes and possible remedies to these intriguing side-effects in wormhole physics.

  18. The Effect of Variable Gravity on the Cooling Performance of a 16-Nozzle Spray Array

    National Research Council Canada - National Science Library

    Elston, Levi J; Yerkes, Kirk L; Thomas, Scott K; McQuillen, John

    2008-01-01

    The objective of this thesis was to investigate the cooling performance of a 16-nozzle spray array, using FC-72 as the working fluid, in variable gravity conditions with additional emphasis on fluid...

  19. Cosmological time in (2+1)-gravity

    International Nuclear Information System (INIS)

    Benedetti, Riccardo; Guadagnini, Enore

    2001-01-01

    We consider maximal globally hyperbolic flat (2+1)-spacetimes with compact space S of genus g>1. For any spacetime M of this type, the length of time that the events have been in existence is M defines a global time, called the cosmological time CT of M, which reveals deep intrinsic properties of spacetime. In particular, the past/future asymptotic states of the cosmological time recover and decouple the linear and the translational parts of the ISO(2,1)-valued holonomy of the flat spacetime. The initial singularity can be interpreted as an isometric action of the fundamental group of S on a suitable real tree. The initial singularity faithfully manifests itself as a lack of smoothness of the embedding of the CT level surfaces into the spacetime M. The cosmological time determines a real analytic curve in the Teichmueller space of Riemann surfaces of genus g, which connects an interior point (associated to the linear part of the holonomy) with a point on Thurston's natural boundary (associated to the initial singularity)

  20. Cosmological time in /(2+1)-gravity

    Science.gov (United States)

    Benedetti, Riccardo; Guadagnini, Enore

    2001-10-01

    We consider maximal globally hyperbolic flat (2+1)-spacetimes with compact space S of genus g>1. For any spacetime M of this type, the length of time that the events have been in existence is M defines a global time, called the cosmological time CT of M, which reveals deep intrinsic properties of spacetime. In particular, the past/future asymptotic states of the cosmological time recover and decouple the linear and the translational parts of the ISO(2,1)-valued holonomy of the flat spacetime. The initial singularity can be interpreted as an isometric action of the fundamental group of S on a suitable real tree. The initial singularity faithfully manifests itself as a lack of smoothness of the embedding of the CT level surfaces into the spacetime M. The cosmological time determines a real analytic curve in the Teichmüller space of Riemann surfaces of genus g, which connects an interior point (associated to the linear part of the holonomy) with a point on Thurston's natural boundary (associated to the initial singularity).

  1. Pulse timing for cataclysmic variables

    International Nuclear Information System (INIS)

    Chester, T.J.

    1979-01-01

    It is shown that present pulse timing measurements of cataclysmic variables can be explained by models of accretion disks in these systems, and thus such measurements can constrain disk models. The model for DQ Her correctly predicts the amplitude variation of the continuum pulsation and can also perhaps explain the asymmetric amplitude of the pulsed lambda4686 emission line. Several other predictions can be made from the model. In particular, if pulse timing measurements that resolve emission lines both in wavelength and in binary phase can be made, the projected orbital radius of the white dwarf could be deduced

  2. Quantum gravity effects in Myers-Perry space-times

    International Nuclear Information System (INIS)

    Litim, Daniel F.; Nikolakopoulos, Konstantinos

    2014-01-01

    We study quantum gravity effects for Myers-Perry black holes assuming that the leading contributions arise from the renormalization group evolution of Newton’s coupling. Provided that gravity weakens following the asymptotic safety conjecture, we find that quantum effects lift a degeneracy of higher-dimensional black holes, and dominate over kinematical ones induced by rotation, particularly for small black hole mass, large angular momentum, and higher space-time dimensionality. Quantum-corrected space-times display inner and outer horizons, and show the existence of a black hole of smallest mass in any dimension. Ultra-spinning solutions no longer persist. Thermodynamic properties including temperature, specific heat, the Komar integrals, and aspects of black hole mechanics are studied as well. Observing a softening of the ring singularity, we also discuss the validity of classical energy conditions

  3. Towards loop quantum gravity without the time gauge.

    Science.gov (United States)

    Cianfrani, Francesco; Montani, Giovanni

    2009-03-06

    The Hamiltonian formulation of the Holst action is reviewed and it provides a solution of second-class constraints corresponding to a generic local Lorentz frame. Within this scheme the form of rotation constraints can be reduced to a Gauss-like one by a proper generalization of Ashtekar-Barbero-Immirzi connections. This result emphasizes that the loop quantum gravity quantization procedure can be applied when the time-gauge condition does not stand.

  4. Quantum Gravity corrections and entropy at the Planck time

    International Nuclear Information System (INIS)

    Basilakos, Spyros; Vagenas, Elias C.; Das, Saurya

    2010-01-01

    We investigate the effects of Quantum Gravity on the Planck era of the universe. In particular, using different versions of the Generalized Uncertainty Principle and under specific conditions we find that the main Planck quantities such as the Planck time, length, mass and energy become larger by a factor of order 10−10 4 compared to those quantities which result from the Heisenberg Uncertainty Principle. However, we prove that the dimensionless entropy enclosed in the cosmological horizon at the Planck time remains unchanged. These results, though preliminary, indicate that we should anticipate modifications in the set-up of cosmology since changes in the Planck era will be inherited even to the late universe through the framework of Quantum Gravity (or Quantum Field Theory) which utilizes the Planck scale as a fundamental one. More importantly, these corrections will not affect the entropic content of the universe at the Planck time which is a crucial element for one of the basic principles of Quantum Gravity named Holographic Principle

  5. Test Equal Bending by Gravity for Space and Time

    Science.gov (United States)

    Sweetser, Douglas

    2009-05-01

    For the simplest problem of gravity - a static, non-rotating, spherically symmetric source - the solution for spacetime bending around the Sun should be evenly split between time and space. That is true to first order in M/R, and confirmed by experiment. At second order, general relativity predicts different amounts of contribution from time and space without a physical justification. I show an exponential metric is consistent with light bending to first order, measurably different at second order. All terms to all orders show equal contributions from space and time. Beautiful minimalism is Nature's way.

  6. Pulsar timing arrays and gravity tests in the radiative regime

    Science.gov (United States)

    Lee, K. J.

    2013-11-01

    In this paper, we focus on testing gravity theories in the radiative regime using pulsar timing array observations. After reviewing current techniques to measure the dispersion and alternative polarization of gravitational waves, we extend the framework to the most general situations, where the combinations of a massive graviton and alternative polarization modes are considered. The atlas of the Hellings-Downs functions is completed by the new calculations for these dispersive alternative polarization modes. We find that each mode and corresponding graviton mass introduce characteristic features in the Hellings-Downs function. Thus, in principal, we can not only detect each polarization mode, measure the corresponding graviton mass, but also discriminate the different scenarios. In this way, we can test gravity theories in the radiative regime in a generalized fashion, and such method is a direct experiment, where one can address the gauge symmetry of the gravity theories in their linearized limits. Although current pulsar timing still lacks enough stable pulsars and sensitivity for such practices, we expect that future telescopes with larger collecting areas could make such experiments feasible.

  7. Clock Synchronization, Dirac Observables and Gauge Variables in Canonical Gravity and the Objectivity of Spacetime

    International Nuclear Information System (INIS)

    Lusanna, Luca

    2006-01-01

    This is a review of the chrono-geometrical structure of special and general relativity with a special emphasis on the role of non-inertial frames and of the conventions for the synchronization of distant clocks. ADM canonical metric and tetrad gravity are analyzed in a class of space-times suitable to incorporate particle physics by using Dirac theory of constraints, which allows to arrive at a separation of the genuine degrees of freedom of the gravitational field, the Dirac observables describing generalized tidal effects, from its gauge variables, describing generalized inertial effects. A background-independent formulation (the rest-frame instant form of tetrad gravity) emerges, since the chosen boundary conditions at spatial infinity imply the existence of an asymptotic flat metric. By switching off the Newton constant in presence of matter this description deparametrizes to the rest-frame instant form for such matter in the framework of parametrized Minkowski theories. The problem of the objectivity of the spacetime point-events, implied by Einstein's Hole Argument, is analyzed

  8. Gravity flow and solute dispersion in variably saturated sand

    Science.gov (United States)

    Kumahor, Samuel K.; de Rooij, Gerrit H.; Vogel, Hans-Joerg

    2014-05-01

    Solute dispersion in porous media depends on the structure of the velocity field at the pore scale. Hence, dispersion is expected to change with water content and with mean flow velocity. We performed laboratory experiments using a column of repacked fine-grained quartz sand (0.1-0.3 mm grain size) with a porous plate at the bottom to controle the water potential at the lower boundary. We established gravity flow conditions - i.e. constant matric potential and water content throughout the column - for a number of different irrigation rates. We measured breakthrough curves during unit gradient flow for an inert tracer which could be described by the convection-dispersion equation. As the soil water content decreased we observed an initially gradual increase in dispersivity followed by an abrupt increase below a threshold water content (0.19) and pressure head (-38 hPa). This phenomena can be explained by the geometry of phase distribution which was simulated based on Xray-CT images of the porous structure.

  9. Translation invariant time-dependent solutions to massive gravity II

    Science.gov (United States)

    Mourad, J.; Steer, D. A.

    2014-06-01

    This paper is a sequel to JCAP 12 (2013) 004 and is also devoted to translation-invariant solutions of ghost-free massive gravity in its moving frame formulation. Here we consider a mass term which is linear in the vielbein (corresponding to a β3 term in the 4D metric formulation) in addition to the cosmological constant. We determine explicitly the constraints, and from the initial value formulation show that the time-dependent solutions can have singularities at a finite time. Although the constraints give, as in the β1 case, the correct number of degrees of freedom for a massive spin two field, we show that the lapse function can change sign at a finite time causing a singular time evolution. This is very different to the β1 case where time evolution is always well defined. We conclude that the β3 mass term can be pathological and should be treated with care.

  10. gravity

    Indian Academy of Sciences (India)

    We study the cosmological dynamics for R p exp( λ R ) gravity theory in the metric formalism, using dynamical systems approach. Considering higher-dimensional FRW geometries in case of an imperfect fluid which has two different scale factors in the normal and extra dimensions, we find the exact solutions, and study its ...

  11. Temporal variability of tidal and gravity waves during a record long 10-day continuous lidar sounding

    Science.gov (United States)

    Baumgarten, Kathrin; Gerding, Michael; Baumgarten, Gerd; Lübken, Franz-Josef

    2018-01-01

    Gravity waves (GWs) as well as solar tides are a key driving mechanism for the circulation in the Earth's atmosphere. The propagation of gravity waves is strongly affected by tidal waves as they modulate the mean background wind field and vice versa, which is not yet fully understood and not adequately implemented in many circulation models. The daylight-capable Rayleigh-Mie-Raman (RMR) lidar at Kühlungsborn (54° N, 12° E) typically provides temperature data to investigate both wave phenomena during one full day or several consecutive days in the middle atmosphere between 30 and 75 km altitude. Outstanding weather conditions in May 2016 allowed for an unprecedented 10-day continuous lidar measurement, which shows a large variability of gravity waves and tides on timescales of days. Using a one-dimensional spectral filtering technique, gravity and tidal waves are separated according to their specific periods or vertical wavelengths, and their temporal evolution is studied. During the measurement period a strong 24 h wave occurs only between 40 and 60 km and vanishes after a few days. The disappearance is related to an enhancement of gravity waves with periods of 4-8 h. Wind data provided by ECMWF are used to analyze the meteorological situation at our site. The local wind structure changes during the observation period, which leads to different propagation conditions for gravity waves in the last days of the measurement period and therefore a strong GW activity. The analysis indicates a further change in wave-wave interaction resulting in a minimum of the 24 h tide. The observed variability of tides and gravity waves on timescales of a few days clearly demonstrates the importance of continuous measurements with high temporal and spatial resolution to detect interaction phenomena, which can help to improve parametrization schemes of GWs in general circulation models.

  12. Design strategies for the International Space University's variable gravity research facility

    Science.gov (United States)

    Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.

    1990-01-01

    A variable gravity research facility named 'Newton' was designed by 58 students from 13 countries at the International Space University's 1989 summer session at the Universite Louis Pasteur, Strasbourge, France. The project was comprehensive in scope, including a political and legal foundation for international cooperation, development and financing; technical, science and engineering issues; architectural design; plausible schedules; and operations, crew issues and maintenance. Since log-term exposure to zero gravity is known to be harmful to the human body, the main goal was to design a unique variable gravity research facility which would find a practical solution to this problem, permitting a manned mission to Mars. The facility would not duplicate other space-based facilities and would provide the flexibility for examining a number of gravity levels, including lunar and Martian gravities. Major design alternatives included a truss versus a tether based system which also involved the question of docking while spinning or despinning to dock. These design issues are described. The relative advantages or disadvantages are discussed, including comments on the necessary research and technology development required for each.

  13. Determining the Ocean's Role on the Variable Gravity Field and Earth Rotation

    Science.gov (United States)

    Ponte, Rui M.; Frey, H. (Technical Monitor)

    2000-01-01

    A number of ocean models of different complexity have been used to study changes in the oceanic angular momentum (OAM) and mass fields and their relation to the variable Earth rotation and gravity field. Time scales examined range from seasonal to a few days. Results point to the importance of oceanic signals in driving polar motion, in particular the Chandler and annual wobbles. Results also show that oceanic signals have a measurable impact on length-of-day variations. Various circulation features and associated mass signals, including the North Pacific subtropical gyre, the equatorial currents, and the Antarctic Circumpolar Current play a significant role in oceanic angular momentum variability. The impact on OAM values of an optimization procedure that uses available data to constrain ocean model results was also tested for the first time. The optimization procedure yielded substantial changes, in OAM, related to adjustments in both motion and mass fields,as well as in the wind stress torques acting on the ocean. Constrained OAM values were found to yield noticeable improvements in the agreement with the observed Earth rotation parameters, particularly at the seasonal timescale.

  14. Newtonian Version of the Variable Mass Theory of Gravity

    Science.gov (United States)

    Carvalho, J. C.; Lima, J. A. S.

    1990-11-01

    RESUMEN. Se presenta una versi6n Newtoniana de los modelos cosmol6gicos espacialmente e isotr6picos con masa variable. La influencia de la variaci6n de masa en la evoluci6n de la funci6n de escala est establecida para el caso de un Universo lieno de polvo bajo Ia suposici6n de que esta variaci6n es un efecto estrictamente cosmol6jico. Se muestra que el hiperb6lico, parab6lico 0 el#ptico dcl movimiento de puede ser modificado a lo larjo de la expansi6n. ABSTRACT. This paper presents a Newtonian version of the spatially homojeneous and isotropic cosmolojical models with variable mass. The influence of the mass variation on the evolution of the scale function is established for the case of a dust-filled Universe under the assumption that this variation is a strict cosmolojical effect. It is shown that the hyperbolic, parabolic or elliptic character of the fluid motion can be modified alonj the expansion. Keq : COSMOLOGY

  15. Insights into the Earth System mass variability from CSR-RL05 GRACE gravity fields

    Science.gov (United States)

    Bettadpur, S.

    2012-04-01

    The next-generation Release-05 GRACE gravity field data products are the result of extensive effort applied to the improvements to the GRACE Level-1 (tracking) data products, and to improvements in the background gravity models and processing methodology. As a result, the squared-error upper-bound in RL05 fields is half or less than the squared-error upper-bound in RL04 fields. The CSR-RL05 field release consists of unconstrained gravity fields as well as a regularized gravity field time-series that can be used for several applications without any post-processing error reduction. This paper will describe the background and the nature of these improvements in the data products, and provide an error characterization. We will describe the insights these new series offer in measuring the mass flux due to diverse Hydrologic, Oceanographic and Cryospheric processes.

  16. Time-adjusted variable resistor

    Science.gov (United States)

    Heyser, R. C.

    1972-01-01

    Timing mechanism was developed effecting extremely precisioned highly resistant fixed resistor. Switches shunt all or portion of resistor; effective resistance is varied over time interval by adjusting switch closure rate.

  17. Constraining Alternative Theories of Gravity Using Pulsar Timing Arrays

    Science.gov (United States)

    Cornish, Neil J.; O'Beirne, Logan; Taylor, Stephen R.; Yunes, Nicolás

    2018-05-01

    The opening of the gravitational wave window by ground-based laser interferometers has made possible many new tests of gravity, including the first constraints on polarization. It is hoped that, within the next decade, pulsar timing will extend the window by making the first detections in the nanohertz frequency regime. Pulsar timing offers several advantages over ground-based interferometers for constraining the polarization of gravitational waves due to the many projections of the polarization pattern provided by the different lines of sight to the pulsars, and the enhanced response to longitudinal polarizations. Here, we show that existing results from pulsar timing arrays can be used to place stringent limits on the energy density of longitudinal stochastic gravitational waves. However, unambiguously distinguishing these modes from noise will be very difficult due to the large variances in the pulsar-pulsar correlation patterns. Existing upper limits on the power spectrum of pulsar timing residuals imply that the amplitude of vector longitudinal (VL) and scalar longitudinal (SL) modes at frequencies of 1/year are constrained, AVL<4 ×10-16 and ASL<4 ×10-17, while the bounds on the energy density for a scale invariant cosmological background are ΩVLh2<4 ×10-11 and ΩSLh2<3 ×10-13.

  18. Space-time symmetry and quantum Yang-Mills gravity how space-time translational gauge symmetry enables the unification of gravity with other forces

    CERN Document Server

    Hsu, Jong-Ping

    2013-01-01

    Yang-Mills gravity is a new theory, consistent with experiments, that brings gravity back to the arena of gauge field theory and quantum mechanics in flat space-time. It provides solutions to long-standing difficulties in physics, such as the incompatibility between Einstein's principle of general coordinate invariance and modern schemes for a quantum mechanical description of nature, and Noether's 'Theorem II' which showed that the principle of general coordinate invariance in general relativity leads to the failure of the law of conservation of energy. Yang-Mills gravity in flat space-time a

  19. Temporal variability of gravity wave drag - vertical coupling and possible climate links

    Science.gov (United States)

    Miksovsky, Jiri; Sacha, Petr; Kuchar, Ales; Pisoft, Petr

    2017-04-01

    In the atmosphere, the internal gravity waves (IGW) are one of the fastest ways of natural information transfer in the vertical direction. Tropospheric changes that result in modification of sourcing, propagation or breaking conditions for IGWs almost immediately influence the distribution of gravity wave drag in the stratosphere. So far most of the related studies deal with IGW impacts higher in the upper stratospheric/mesospheric region and with the modulation of IGWs by planetary waves. This is most likely due to the fact that IGWs induce highest accelerations in the mesosphere and lower thermosphere region. However, the imposed drag force is much bigger in the stratosphere. In the presented analysis, we have assessed the relationship between the gravity wave activity in the stratosphere and other climatic phenomena through statistical techniques. Multivariable regression has been applied to investigate the IGW-related eastward and northward wind tendencies in the CMAM30-SD data, subject to the explanatory variables involving local circulation characteristics (derived from regional configuration of the thermobaric field) as well as the phases of the large-scale internal climate variability modes (ENSO, NAO, QBO). Our tests have highlighted several geographical areas with statistically significant responses of the orographic gravity waves effect to each of the variability modes under investigation; additional experiments have also indicated distinct signs of nonlinearity in some of the links uncovered. Furthermore, we have also applied composite analysis of displaced and split stratospheric polar vortex events (SPV) from CMAM30-SD to focus on how the strength and occurrence of the IGW hotspots can play a role in SPV occurrence and frequency.

  20. Travel time variability and rational inattention

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Jiang, Gege

    2017-01-01

    This paper sets up a rational inattention model for the choice of departure time for a traveler facing random travel time. The traveler chooses how much information to acquire about the travel time out-come before choosing departure time. This reduces the cost of travel time variability compared...

  1. The effect of substrate composition and storage time on urine specific gravity in dogs.

    Science.gov (United States)

    Steinberg, E; Drobatz, K; Aronson, L

    2009-10-01

    The purpose of this study is to evaluate the effects of substrate composition and storage time on urine specific gravity in dogs. A descriptive cohort study of 15 dogs. The urine specific gravity of free catch urine samples was analysed during a 5-hour time period using three separate storage methods; a closed syringe, a diaper pad and non-absorbable cat litter. The urine specific gravity increased over time in all three substrates. The syringe sample had the least change from baseline and the diaper sample had the greatest change from baseline. The urine specific gravity for the litter and diaper samples had a statistically significant increase from the 1-hour to the 5-hour time point. The urine specific gravity from canine urine stored either on a diaper or in a non-absorbable litter increased over time. Although the change was found to be statistically significant over the 5-hour study period it is unlikely to be clinically significant.

  2. Gravity field recovery in the framework of a Geodesy and Time Reference in Space (GETRIS)

    Science.gov (United States)

    Hauk, Markus; Schlicht, Anja; Pail, Roland; Murböck, Michael

    2017-04-01

    The study ;Geodesy and Time Reference in Space; (GETRIS), funded by European Space Agency (ESA), evaluates the potential and opportunities coming along with a global space-borne infrastructure for data transfer, clock synchronization and ranging. Gravity field recovery could be one of the first beneficiary applications of such an infrastructure. This paper analyzes and evaluates the two-way high-low satellite-to-satellite-tracking as a novel method and as a long-term perspective for the determination of the Earth's gravitational field, using it as a synergy of one-way high-low combined with low-low satellite-to-satellite-tracking, in order to generate adequate de-aliasing products. First planned as a constellation of geostationary satellites, it turned out, that an integration of European Union Global Navigation Satellite System (Galileo) satellites (equipped with inter-Galileo links) into a Geostationary Earth Orbit (GEO) constellation would extend the capability of such a mission constellation remarkably. We report about simulations of different Galileo and Low Earth Orbiter (LEO) satellite constellations, computed using time variable geophysical background models, to determine temporal changes in the Earth's gravitational field. Our work aims at an error analysis of this new satellite/instrument scenario by investigating the impact of different error sources. Compared to a low-low satellite-to-satellite-tracking mission, results show reduced temporal aliasing errors due to a more isotropic error behavior caused by an improved observation geometry, predominantly in near-radial direction within the inter-satellite-links, as well as the potential of an improved gravity recovery with higher spatial and temporal resolution. The major error contributors of temporal gravity retrieval are aliasing errors due to undersampling of high frequency signals (mainly atmosphere, ocean and ocean tides). In this context, we investigate adequate methods to reduce these errors. We

  3. Additive measures of travel time variability

    DEFF Research Database (Denmark)

    Engelson, Leonid; Fosgerau, Mogens

    2011-01-01

    This paper derives a measure of travel time variability for travellers equipped with scheduling preferences defined in terms of time-varying utility rates, and who choose departure time optimally. The corresponding value of travel time variability is a constant that depends only on preference...... parameters. The measure is unique in being additive with respect to independent parts of a trip. It has the variance of travel time as a special case. Extension is provided to the case of travellers who use a scheduled service with fixed headway....

  4. Can time be a discrete dynamical variable

    International Nuclear Information System (INIS)

    Lee, T.D.

    1983-01-01

    The possibility that time can be regarded as a discrete dynamical variable is examined through all phases of mechanics: from classical mechanics to nonrelativistic quantum mechanics, and to relativistic quantum field theories. (orig.)

  5. A novel centrifuge for animal physiological researches in hypergravity and variable gravity forces

    Science.gov (United States)

    Kumei, Yasuhiro; Hasegawa, Katsuya; Inoue, Katarzyna; Zeredo, . Jorge; Kimiya Narikiyo, .; Maezawa, Yukio; Yuuki Watanabe, .; Aou, Shuji

    2012-07-01

    Understanding the physiological responses to altered gravitational environments is essential for space exploration and long-term human life in space. Currently available centrifuges restrict experimentation due to limited space for laboratory equipments. We developed a medium-sized disc-type centrifuge to conduct ground-based studies on animal physiological response to hypergravity and variable gravity forces, which features the following advantages: 1) It enables simultaneous examination into the effects of various gravity levels including rotation control. 2) Beside the constant G force, variable G forces (delta-G) can be loaded to generate gravitational acceleration and deceleration. 3) Multiple imaging techniques can be used, such as high-speed video (16 channels wireless) and photography, X-ray, and infra-red imaging. 4) Telemetry is available on the disc table of the centrifuge through 128-channel analog and 32-channel digital signals, with sampling rate of 100 kHz for 2 hours. Our dynamic-balanced centrifuge can hold payloads of 600 kg that enable experimentation on various models of living organisms, from cells to animals and plants. We use this novel centrifuge for neurochemical and neurophysiological approaches such as microdialysis and telemetrical recording of neuronal activity in the rat brain. Financial supports from JSPS to K. Hasegawa (2011) and from JAXA to Y. Kumei (2011).

  6. Studies of midlatitude mesospheric temperature variability and its relationship to gravity waves, tides, and planetary waves

    Science.gov (United States)

    Beissner, Kenneth C.

    1997-10-01

    Temperature observations of the middle atmosphere have been carried out from September 1993 through July 1995 using a Rayleigh backscatter lidar located at Utah State University (42oN, 111oW). Data have been analyzed to obtain absolute temperature profiles from 40 to 90 km. Various sources of error were reviewed in order to ensure the quality of the measurements. This included conducting a detailed examination of the data reduction procedure, integration methods, and averaging techniques, eliminating errors of 1-3%. The temperature structure climatology has been compared with several other mid-latitude data sets, including those from the French lidars, the SME spacecraft, the sodium lidars at Ft. Collins and Urbana, the MSISe90 model, and a high- latitude composite set from Andenes, Norway. In general, good agreement occurs at mid-latitudes, but areas of disagreement do exist. Among these, the Utah temperatures are significantly warmer than the MSISe90 temperatures above approximately 80 km, they are lower below 80 km than any of the others in summer, they show major year- to-year variability in the winter profiles, and they differ from the sodium lidar data at the altitudes where the temperature profiles should overlap. Also, comparisons between observations and a physics based global circulation model, the TIME-GCM, were conducted for a mid-latitude site. A photo-chemical model was developed to predict airglow intensity of OH based on output from the TIME-GCM. Many discrepancies between the model and observations were found, including a modeled summer mesopause too high, a stronger summer inversion not normally observed by lidar, a fall-spring asymmetry in the OH winds and lidar temperatures but not reproduced in the TIME-GCM equinoctial periods, larger winter seasonal wind tide than observed by the FPI, and a failure of the model to reverse the summertime mesospheric jet. It is our conclusion these discrepancies are due to a gravity wave parameterization in the

  7. Calibrating vadose zone models with time-lapse gravity data: a forced infiltration experiment

    DEFF Research Database (Denmark)

    Christiansen, Lars; Hansen, Allan Bo; Zibar, Majken Caroline Looms

    A change in soil water content is a change in mass stored in the subsurface, and when large enough, can be measured with a gravity meter. Over the last few decades there has been increased use of ground-based time-lapse gravity measurements to infer hydrogeological parameters. These studies have...... focused on the saturated zone, with specific yield as the most prominent target parameter and with few exceptions, changes in storage in the vadose zone have been considered as noise. Here modeling results are presented suggesting that gravity changes will be measureable when soil moisture changes occur...... in the unsaturated zone. These results are confirmed by field measurements of gravity and georadar data at a forced infiltration experiment conducted over 14 days on a grassland area of 10 m by 10 m. An unsaturated zone infiltration model can be calibrated using the gravity data with good agreement to the field data...

  8. Travel time variability and airport accessibility

    NARCIS (Netherlands)

    Koster, P.R.; Kroes, E.P.; Verhoef, E.T.

    2011-01-01

    We analyze the cost of access travel time variability for air travelers. Reliable access to airports is important since the cost of missing a flight is likely to be high. First, the determinants of the preferred arrival times at airports are analyzed. Second, the willingness to pay (WTP) for

  9. Gravity in the Brain as a Reference for Space and Time Perception.

    Science.gov (United States)

    Lacquaniti, Francesco; Bosco, Gianfranco; Gravano, Silvio; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Zago, Myrka

    2015-01-01

    Moving and interacting with the environment require a reference for orientation and a scale for calibration in space and time. There is a wide variety of environmental clues and calibrated frames at different locales, but the reference of gravity is ubiquitous on Earth. The pull of gravity on static objects provides a plummet which, together with the horizontal plane, defines a three-dimensional Cartesian frame for visual images. On the other hand, the gravitational acceleration of falling objects can provide a time-stamp on events, because the motion duration of an object accelerated by gravity over a given path is fixed. Indeed, since ancient times, man has been using plumb bobs for spatial surveying, and water clocks or pendulum clocks for time keeping. Here we review behavioral evidence in favor of the hypothesis that the brain is endowed with mechanisms that exploit the presence of gravity to estimate the spatial orientation and the passage of time. Several visual and non-visual (vestibular, haptic, visceral) cues are merged to estimate the orientation of the visual vertical. However, the relative weight of each cue is not fixed, but depends on the specific task. Next, we show that an internal model of the effects of gravity is combined with multisensory signals to time the interception of falling objects, to time the passage through spatial landmarks during virtual navigation, to assess the duration of a gravitational motion, and to judge the naturalness of periodic motion under gravity.

  10. Studying unsaturated epikarst water storage properties by time lapse surface to depth gravity measurements

    Science.gov (United States)

    Deville, S.; Champollion, C.; chery, J.; Doerflinger, E.; Le Moigne, N.; Bayer, R.; Vernant, P.

    2011-12-01

    The assessment of water storage in the unsaturated zone in karstic areas is particularly challenging. Indeed, water flow path and water storage occur in quite heterogeneous ways through small scale porosity, fractures, joints and large voids. Due to this large heterogeneity, it is therefore difficult to estimate the amount of water circulating in the vadose zone by hydrological means. One indirect method consists to measure the gravity variation associated to water storage and withdrawal. Here, we apply a gravimetric method in which the gravity is measured at the surface and at depth on different sites. Then the time variations of the surface to depth (STD) gravity differences are compared for each site. In this study we attempt to evaluate the magnitude of epikarstic water storage variation in various karst settings using a CG5 portable gravimeter. Surface to depth gravity measurements are performed two times a year since 2009 at the surface an inside caves at different depths on three karst aquifers in southern France : 1. A limestone site on the Larzac plateau with a vadose zone thickness of 300m On this site measurements are done on five locations at different depths going from 0 to 50 m; 2. A dolomitic site on the Larzac plateau (Durzon karst aquifer) with a vadose zone thickness of 200m; Measurements are taken at the surface and at 60m depth 3. A limestone site on the Hortus karst aquifer and "Larzac Septentrional karst aquifer") with a vadose zone thickness of only 35m. Measurements are taken at the surface and at 30m depth Therefore, our measurements are used in two ways : First, the STD differences between dry and wet seasons are used to estimate the capacity of differential storage of each aquifer. Surprisingly, the differential storage capacity of all the sites is relatively invariant despite their variable geological of hydrological contexts. Moreover, the STD gravity variations on site 1 show that no water storage variation occurs beneath 10m depth

  11. Public transport travel time and its variability

    OpenAIRE

    Mazloumi Shomali, Ehsan

    2017-01-01

    Executive Summary Public transport agencies around the world are constantly trying to improve the performance of their service, and to provide passengers with a more reliable service. Two major measures to evaluate the performance of a transit system include travel time and travel time variability. Information on these two measures provides operators with a capacity to identify the problematic locations in a transport system and improve operating plans. Likewise, users can benefit through...

  12. Travel time variability and airport accessibility

    OpenAIRE

    Koster, P.R.; Kroes, E.P.; Verhoef, E.T.

    2010-01-01

    This discussion paper resulted in a publication in Transportation Research Part B: Methodological (2011). Vol. 45(10), pages 1545-1559. This paper analyses the cost of access travel time variability for air travelers. Reliable access to airports is important since it is likely that the cost of missing a flight is high. First, the determinants of the preferred arrival times at airports are analyzed, including trip purpose, type of airport, flight characteristics, travel experience, type of che...

  13. Modelling the Earth's static and time-varying gravity field using a combination of GRACE and GOCE data

    NARCIS (Netherlands)

    Farahani, H.H.

    2013-01-01

    The main focus of the thesis is modelling the static and time-varying parts of the Earth's gravity field at the global scale based on data acquired by the Gravity Recovery And Climate Experiment (GRACE) and Gravity field and steady-state Ocean Circulation Explorer (GOCE). In addition, a new

  14. Using time-lapse gravity for groundwater model calibration: An application to alluvial aquifer storage

    DEFF Research Database (Denmark)

    Christiansen, Lars; Binning, Philip John; Rosbjerg, Dan

    2011-01-01

    hydrogeophysical inversion to decrease parameter correlation in groundwater models. This is demonstrated for a model of riverbank infiltration where combined inversion successfully constrains hydraulic conductivity and specific yield in both an analytical and a numerical groundwater model. A sensitivity study...... shows that time-lapse gravity data are especially useful to constrain specific yield. Furthermore, we demonstrate that evapotranspiration, and riverbed conductance are better constrained by coupled inversion to gravity and head data than to head data alone. When estimating the four parameters...... simultaneously, the six correlation coefficients were reduced from unity when only head data were employed to significantly lower values when gravity and head data were combined. Our analysis reveals that the estimated parameter values are not very sensitive to the choice of weighting between head and gravity...

  15. On the impact of topography and building mask on time varying gravity due to local hydrology

    Science.gov (United States)

    Deville, S.; Jacob, T.; Chéry, J.; Champollion, C.

    2013-01-01

    We use 3 yr of surface absolute gravity measurements at three sites on the Larzac plateau (France) to quantify the changes induced by topography and the building on gravity time-series, with respect to an idealized infinite slab approximation. Indeed, local topography and buildings housing ground-based gravity measurement have an effect on the distribution of water storage changes, therefore affecting the associated gravity signal. We first calculate the effects of surrounding topography and building dimensions on the gravity attraction for a uniform layer of water. We show that a gravimetric interpretation of water storage change using an infinite slab, the so-called Bouguer approximation, is generally not suitable. We propose to split the time varying gravity signal in two parts (1) a surface component including topographic and building effects (2) a deep component associated to underground water transfer. A reservoir modelling scheme is herein presented to remove the local site effects and to invert for the effective hydrological properties of the unsaturated zone. We show that effective time constants associated to water transfer vary greatly from site to site. We propose that our modelling scheme can be used to correct for the local site effects on gravity at any site presenting a departure from a flat topography. Depending on sites, the corrected signal can exceed measured values by 5-15 μGal, corresponding to 120-380 mm of water using the Bouguer slab formula. Our approach only requires the knowledge of daily precipitation corrected for evapotranspiration. Therefore, it can be a useful tool to correct any kind of gravimetric time-series data.

  16. Calculation of the temporal gravity variation from spatially variable water storage change in soils and aquifers

    DEFF Research Database (Denmark)

    Leiriao, Silvia; He, Xin; Christiansen, Lars

    2009-01-01

    Total water storage change in the subsurface is a key component of the global, regional and local water balances. It is partly responsible for temporal variations of the earth's gravity field in the micro-Gal (1 mu Gal = 10(-8) m s(-2)) range. Measurements of temporal gravity variations can thus...... be used to determine the water storage change in the hydrological system. A numerical method for the calculation of temporal gravity changes from the output of hydrological models is developed. Gravity changes due to incremental prismatic mass storage in the hydrological model cells are determined to give...

  17. Time-dependent mixed convection heat transfer from a sphere in a micro-gravity environment

    International Nuclear Information System (INIS)

    Hommel, M.J.

    1987-01-01

    A fundamental problem of interest for crystal growth in micro-gravity applications involves the mixed convection heat transfer from a sphere in a uniform flow of fluid at a differing temperature. Under the combined influence of the imposed free stream as well as an induced buoyancy force due to thermal expansion of the fluid, the heat transfer from the sphere will be different from that of either the pure forced convection flow or the pure free convection flow. For the present study, the method of matched asymptotic expansions is applied to the laminar flow problem of an impulsively heated, impulsively started sphere in an originally quiescent fluid. Time series expansions are developed for the dependent variables by acknowledging the existence of two district regions: one, an inner region, near the sphere, in which viscous effects are significant; and two, an outer region in which the fluid may be treated as inviscid. The time series expansions are developed in terms of the Reynolds number and Richardson number (Buoyancy Parameter), and the relevant heat transfer and drag coefficients are calculated and plotted

  18. Unification of gauge and gravity Chern-Simons theories in 3-D space-time

    Energy Technology Data Exchange (ETDEWEB)

    Saghir, Chireen A.; Shamseddine, Laurence W. [American University of Beirut, Physics Department, Beirut (Lebanon)

    2017-11-15

    Chamseddine and Mukhanov showed that gravity and gauge theories could be unified in one geometric construction provided that a metricity condition is imposed on the vielbein. In this paper we are going to show that by enlarging the gauge group we are able to unify Chern-Simons gauge theory and Chern-Simons gravity in 3-D space-time. Such a unification leads to the quantization of the coefficients for both Chern-Simons terms for compact groups but not for non-compact groups. Moreover, it leads to a topological invariant quantity of the 3-dimensional space-time manifold on which they are defined. (orig.)

  19. Gravity wave control on ESF day-to-day variability: An empirical approach

    Science.gov (United States)

    Aswathy, R. P.; Manju, G.

    2017-06-01

    The gravity wave control on the daily variation in nighttime ionization irregularity occurrence is studied using ionosonde data for the period 2002-2007 at magnetic equatorial location Trivandrum. Recent studies during low solar activity period have revealed that the seed perturbations should have the threshold amplitude required to trigger equatorial spread F (ESF), at a particular altitude and that this threshold amplitude undergoes seasonal and solar cycle changes. In the present study, the altitude variation of the threshold seed perturbations is examined for autumnal equinox of different years. Thereafter, a unique empirical model, incorporating the electrodynamical effects and the gravity wave modulation, is developed. Using the model the threshold curve for autumnal equinox season of any year may be delineated if the solar flux index (F10.7) is known. The empirical model is validated using the data for high, moderate, and low solar epochs in 2001, 2004, and 1995, respectively. This model has the potential to be developed further, to forecast ESF incidence, if the base height of ionosphere is in the altitude region where electrodynamics controls the occurrence of ESF. ESF irregularities are harmful for communication and navigation systems, and therefore, research is ongoing globally to predict them. In this context, this study is crucial for evolving a methodology to predict communication as well as navigation outages.Plain Language SummaryThe manifestation of nocturnal ionospheric irregularities at magnetic equatorial regions poses a major hazard for communication and navigation systems. It is therefore essential to arrive at prediction methodologies for these irregularities. The present study puts forth a novel empirical model which, using only solar flux index, successfully differentiates between days with and without nocturnal ionization irregularity occurrence. The model-derived curve is obtained such that the days with and without occurrence of

  20. Mass Redistribution in the Core and Time-varying Gravity at the Earth's Surface

    Science.gov (United States)

    Kuang, Wei-Jia; Chao, Benjamin F.; Fang, Ming

    2003-01-01

    The Earth's liquid outer core is in convection, as suggested by the existence of the geomagnetic field in much of the Earth's history. One consequence of the convection is the redistribution of mass resulting from relative motion among fluid parcels with slightly different densities. This time dependent mass redistribution inside the core produces a small perturbation on the gravity field of the Earth. With our numerical dynamo solutions, we find that the mass redistribution (and the resultant gravity field) symmetric about the equator is much stronger than that anti-symmetric about the equator. In particular, J(sub 2) component is the strongest. In addition, the gravity field variation increases with the Rayleigh number that measures the driving force for the geodynamo in the core. With reasonable scaling from the current dynamo solutions, we could expect that at the surface of the Earth, the J(sub 2) variation from the core is on the order of l0(exp -16)/year relative to the mean (i.e. spherically symmetric) gravity field of the Earth. The possible shielding effect due to core-mantle boundary pressure variation loading is likely much smaller and is therefore negligible. Our results suggest that time-varying gravity field perturbation due to core mass redistribution may be measured with modem space geodetic observations, which will result a new means of detecting dynamical processes in the Earth's deep interior.

  1. Time Changes of the European Gravity Field from GRACE: A Comparison with Ground Measurements from Superconducting Gravimeters and with Hydrology Model Predictions

    Science.gov (United States)

    Hinderer, J.; Lemoine, Frank G.; Crossley, D.; Boy, J.-P.

    2004-01-01

    We investigate the time-variable gravity changes in Europe retrieved from the initial GRACE monthly solutions spanning a 18 month duration from April 2002 to October 2003. Gravity anomaly maps are retrieved in Central Europe from the monthly satellite solutions we compare the fields according to various truncation levels (typically between degree 10 and 20) of the initial fields (expressed in spherical harmonics to degree 120). For these different degrees, an empirical orthogonal function (EOF) decomposition of the time-variable gravity field leads us to its main spatial and temporal characteristics. We show that the dominant signal is found to be annual with an amplitude and a phase both in agreement with predictions in Europe modeled using snow and soil-moisture variations from recent hydrology models. We compare these GRACE gravity field changes to surface gravity observations from 6 superconducting gravimeters of the GGP (Global Geodynamics Project) European sub-network, with a special attention to loading corrections. Initial results suggest that all 3 data sets (GRACE, hydrology and GGP) are responding to annual changes in near-surface water in Europe of a few microGal (at length scales of approx.1000 km) that show a high value in winter and a summer minimum. We also point out that the GRACE gravity field evolution seems to indicate that there is a trend in gravity between summer 2002 and summer 2003 which can be related to the 2003 heatwave in Europe and its hydrological consequences (drought). Despite the limited time span of our analysis and the uncertainties in retrieving a regional solution from the network of gravimeters, the calibration and validation aspects of the GRACE data processing based on the annual hydrology cycle in Europe are in progress.

  2. Accounting for time- and space-varying changes in the gravity field to improve the network adjustment of relative-gravity data

    Science.gov (United States)

    Kennedy, Jeffrey R.; Ferre, Ty P.A.

    2015-01-01

    The relative gravimeter is the primary terrestrial instrument for measuring spatially and temporally varying gravitational fields. The background noise of the instrument—that is, non-linear drift and random tares—typically requires some form of least-squares network adjustment to integrate data collected during a campaign that may take several days to weeks. Here, we present an approach to remove the change in the observed relative-gravity differences caused by hydrologic or other transient processes during a single campaign, so that the adjusted gravity values can be referenced to a single epoch. The conceptual approach is an example of coupled hydrogeophysical inversion, by which a hydrologic model is used to inform and constrain the geophysical forward model. The hydrologic model simulates the spatial variation of the rate of change of gravity as either a linear function of distance from an infiltration source, or using a 3-D numerical groundwater model. The linear function can be included in and solved for as part of the network adjustment. Alternatively, the groundwater model is used to predict the change of gravity at each station through time, from which the accumulated gravity change is calculated and removed from the data prior to the network adjustment. Data from a field experiment conducted at an artificial-recharge facility are used to verify our approach. Maximum gravity change due to hydrology (observed using a superconducting gravimeter) during the relative-gravity field campaigns was up to 2.6 μGal d−1, each campaign was between 4 and 6 d and one month elapsed between campaigns. The maximum absolute difference in the estimated gravity change between two campaigns, two months apart, using the standard network adjustment method and the new approach, was 5.5 μGal. The maximum gravity change between the same two campaigns was 148 μGal, and spatial variation in gravity change revealed zones of preferential infiltration and areas of relatively

  3. Finite-time future singularities in modified Gauss-Bonnet and F(R,G) gravity and singularity avoidance

    International Nuclear Information System (INIS)

    Bamba, Kazuharu; Odintsov, Sergei D.; Sebastiani, Lorenzo; Zerbini, Sergio

    2010-01-01

    We study all four types of finite-time future singularities emerging in the late-time accelerating (effective quintessence/phantom) era from F(R,G)-gravity, where R and G are the Ricci scalar and the Gauss-Bonnet invariant, respectively. As an explicit example of F(R,G)-gravity, we also investigate modified Gauss-Bonnet gravity, so-called F(G)-gravity. In particular, we reconstruct the F(G)-gravity and F(R,G)-gravity models where accelerating cosmologies realizing the finite-time future singularities emerge. Furthermore, we discuss a possible way to cure the finite-time future singularities in F(G)-gravity and F(R,G)-gravity by taking into account higher-order curvature corrections. The example of non-singular realistic modified Gauss-Bonnet gravity is presented. It turns out that adding such non-singular modified gravity to singular Dark Energy makes the combined theory a non-singular one as well. (orig.)

  4. Quantum time uncertainty in a gravity's rainbow formalism

    International Nuclear Information System (INIS)

    Galan, Pablo; Marugan, Guillermo A. Mena

    2004-01-01

    The existence of a minimum time uncertainty is usually argued to be a consequence of the combination of quantum mechanics and general relativity. Most of the studies that point to this result are nonetheless based on perturbative quantization approaches, in which the effect of matter on the geometry is regarded as a correction to a classical background. In this paper, we consider rainbow spacetimes constructed from doubly special relativity by using a modification of the proposals of Magueijo and Smolin. In these models, gravitational effects are incorporated (at least to a certain extent) in the definition of the energy-momentum of particles without adhering to a perturbative treatment of the backreaction. In this context, we derive and compare the expressions of the time uncertainty in quantizations that use as evolution parameter either the background or the rainbow time coordinates. These two possibilities can be regarded as corresponding to perturbative and nonperturbative quantization schemes, respectively. We show that, while a nonvanishing time uncertainty is generically unavoidable in a perturbative framework, an infinite time resolution can in fact be achieved in a nonperturbative quantization for the whole family of doubly special relativity theories with unbounded physical energy

  5. Time-lapse gravity data for monitoring and modeling artificial recharge through a thick unsaturated zone

    Science.gov (United States)

    Kennedy, Jeffrey R.; Ferre, Ty P.A.; Creutzfeldt, Benjamin

    2016-01-01

    Groundwater-level measurements in monitoring wells or piezometers are the most common, and often the only, hydrologic measurements made at artificial recharge facilities. Measurements of gravity change over time provide an additional source of information about changes in groundwater storage, infiltration, and for model calibration. We demonstrate that for an artificial recharge facility with a deep groundwater table, gravity data are more sensitive to movement of water through the unsaturated zone than are groundwater levels. Groundwater levels have a delayed response to infiltration, change in a similar manner at many potential monitoring locations, and are heavily influenced by high-frequency noise induced by pumping; in contrast, gravity changes start immediately at the onset of infiltration and are sensitive to water in the unsaturated zone. Continuous gravity data can determine infiltration rate, and the estimate is only minimally affected by uncertainty in water-content change. Gravity data are also useful for constraining parameters in a coupled groundwater-unsaturated zone model (Modflow-NWT model with the Unsaturated Zone Flow (UZF) package).

  6. Wormholes and time-machines in nonminimally coupled matter-curvature theories of gravity

    DEFF Research Database (Denmark)

    Bertolami, O.; Ferreira, R. Z.

    2013-01-01

    In this work we show the existence of traversable wormhole and time-machine solutions in a modified theory of gravity where matter and curvature are nonminimally coupled. Those solutions present a nontrivial redshift function and exist even in the presence of ordinary matter which satisfies...

  7. Wormholes and Time-Machines in Nonminimally Coupled Matter-Curvature Theories of Gravity

    Directory of Open Access Journals (Sweden)

    Bertolami Orfeu

    2013-09-01

    Full Text Available In this work we show the existence of traversable wormhole and time-machine solutions in a modified theory of gravity where matter and curvature are nonminimally coupled. Those solutions present a nontrivial redshift function and exist even in the presence of ordinary matter which satisfies the dominant energy condition.

  8. Field-theoretic approach to gravity in the flat space-time

    Energy Technology Data Exchange (ETDEWEB)

    Cavalleri, G [Centro Informazioni Studi Esperienze, Milan (Italy); Milan Univ. (Italy). Ist. di Fisica); Spinelli, G [Istituto di Matematica del Politecnico di Milano, Milano (Italy)

    1980-01-01

    In this paper it is discussed how the field-theoretical approach to gravity starting from the flat space-time is wider than the Einstein approach. The flat approach is able to predict the structure of the observable space as a consequence of the behaviour of the particle proper masses. The field equations are formally equal to Einstein's equations without the cosmological term.

  9. Space, time, and gravity. The theory of the big bang and black holes

    Energy Technology Data Exchange (ETDEWEB)

    Wald, R.M.

    1977-01-01

    In Einstein's theory of gravity, gravitation is described in terms of the curved geometry of space--time. The implications of these ideas for the universe: its origin, evolution, and large-scale structure are considered. Also discussed are gravitational collapse and black holes. (JFP)

  10. A non-perturbative definition of 2D quantum gravity by the fifth time action

    International Nuclear Information System (INIS)

    Ambjoern, J.; Greensite, J.; Varsted, S.

    1990-07-01

    The general formalism for stabilizing bottomless Euclidean field theories (the 'fifth-time' action) provides a natural non-perturbative definition of matrix models corresponding to 2d quantum gravity. The formalism allows, in principle, the use of lattice Monte Carlo techniques for non-perturbative computation of correlation functions. (orig.)

  11. The added value of time-variable microgravimetry to the understanding of how volcanoes work

    Science.gov (United States)

    Carbone, Daniele; Poland, Michael; Greco, Filippo; Diament, Michel

    2017-01-01

    During the past few decades, time-variable volcano gravimetry has shown great potential for imaging subsurface processes at active volcanoes (including some processes that might otherwise remain “hidden”), especially when combined with other methods (e.g., ground deformation, seismicity, and gas emissions). By supplying information on changes in the distribution of bulk mass over time, gravimetry can provide information regarding processes such as magma accumulation in void space, gas segregation at shallow depths, and mechanisms driving volcanic uplift and subsidence. Despite its potential, time-variable volcano gravimetry is an underexploited method, not widely adopted by volcano researchers or observatories. The cost of instrumentation and the difficulty in using it under harsh environmental conditions is a significant impediment to the exploitation of gravimetry at many volcanoes. In addition, retrieving useful information from gravity changes in noisy volcanic environments is a major challenge. While these difficulties are not trivial, neither are they insurmountable; indeed, creative efforts in a variety of volcanic settings highlight the value of time-variable gravimetry for understanding hazards as well as revealing fundamental insights into how volcanoes work. Building on previous work, we provide a comprehensive review of time-variable volcano gravimetry, including discussions of instrumentation, modeling and analysis techniques, and case studies that emphasize what can be learned from campaign, continuous, and hybrid gravity observations. We are hopeful that this exploration of time-variable volcano gravimetry will excite more scientists about the potential of the method, spurring further application, development, and innovation.

  12. A novel variable-gravity simulation method: potential for astronaut training.

    Science.gov (United States)

    Sussingham, J C; Cocks, F H

    1995-11-01

    Zero gravity conditions for astronaut training have traditionally used neutral buoyancy tanks, and with such tanks hypogravity conditions are produced by the use of supplemental weights. This technique does not allow for the influence of water viscosity on any reduced gravity exercise regime. With a water-foam fluid produced by using a microbubble air flow together with surface active agents to prevent bubble agglomeration, it has been found possible to simulate a range of gravity conditions without the need for supplemental weights and additionally with a substantial reduction in the resulting fluid viscosity. This new technique appears to have application in improving the simulation environment for astronaut training under the reduced gravity conditions to be found on the moon or on Mars, and may have terrestrial applications in patient rehabilitation and exercise as well.

  13. Black holes in loop quantum gravity: the complete space-time.

    Science.gov (United States)

    Gambini, Rodolfo; Pullin, Jorge

    2008-10-17

    We consider the quantization of the complete extension of the Schwarzschild space-time using spherically symmetric loop quantum gravity. We find an exact solution corresponding to the semiclassical theory. The singularity is eliminated but the space-time still contains a horizon. Although the solution is known partially numerically and therefore a proper global analysis is not possible, a global structure akin to a singularity-free Reissner-Nordström space-time including a Cauchy horizon is suggested.

  14. A Gravity-Responsive Time-Keeping Protein of the Plant and Animal Cell Surface

    Science.gov (United States)

    Morre, D. James

    2003-01-01

    The hypothesis under investigation was that a ubiquinol (NADH) oxidase protein of the cell surface with protein disulfide-thiol interchange activity (= NOX protein) is a plant and animal time-keeping ultradian (period of less than 24 h) driver of both cell enlargement and the biological clock that responds to gravity. Despite considerable work in a large number of laboratories spanning several decades, this is, to my knowledge, our work is the first demonstration of a time-keeping biochemical reaction that is both gravity-responsive and growth-related and that has been shown to determine circadian periodicity. As such, the NOX protein may represent both the long-sought biological gravity receptor and the core oscillator of the cellular biological clock. Completed studies have resulted in 12 publications and two issued NASA-owned patents of the clock activity. The gravity response and autoentrainment were characterized in cultured mammalian cells and in two plant systems together with entrainment by light and small molecules (melatonin). The molecular basis of the oscillatory behavior was investigated using spectroscopic methods (Fourier transform infrared and circular dichroism) and high resolution electron microscopy. We have also applied these findings to an understanding of the response to hypergravity. Statistical methods for analysis of time series phenomena were developed (Foster et al., 2003).

  15. Specific gravity of hybrid poplars in the north-central region, USA: within-tree variability and site × genotype effects

    Science.gov (United States)

    William L. Headlee; Ronald S. Jr. Zalesny; Richard B. Hall; Edmund O. Bauer; Bradford Bender; Bruce A. Birr; Raymond O. Miller; Jesse A. Randall; Adam H. Wiese

    2013-01-01

    Specific gravity is an important consideration for traditional uses of hybrid poplars for pulp and solid wood products, as well as for biofuels and bioenergy production. While specific gravity has been shown to be under strong genetic control and subject to within-tree variability, the role of genotype × environment interactions is poorly understood. Most...

  16. Beyond-one-loop quantum gravity action yielding both inflation and late-time acceleration

    Directory of Open Access Journals (Sweden)

    E. Elizalde

    2017-08-01

    Full Text Available A unified description of early-time inflation with the current cosmic acceleration is achieved by means of a new theory that uses a quadratic model of gravity, with the inclusion of an exponential F(R-gravity contribution for dark energy. High-curvature corrections of the theory come from higher-derivative quantum gravity and yield an effective action that goes beyond the one-loop approximation. It is shown that, in this theory, viable inflation emerges in a natural way, leading to a spectral index and tensor-to-scalar ratio that are in perfect agreement with the most reliable Planck results. At low energy, late-time accelerated expansion takes place. As exponential gravity, for dark energy, must be stabilized during the matter and radiation eras, we introduce a curing term in order to avoid nonphysical singularities in the effective equation of state parameter. The results of our analysis are confirmed by accurate numerical simulations, which show that our model does fit the most recent cosmological data for dark energy very precisely.

  17. Late time acceleration of the universe in f(R) gravity model

    International Nuclear Information System (INIS)

    Mukherjee, Ankan

    2014-01-01

    In this work, a new way to look at the nature of late time dynamics of the universe for f(R) gravity models using the contracted Bianchi Identity has been proposed. As the Einstein field equations contain derivatives of the curvature scalar R, the contracted Bianchi identity yields a second order nonlinear differential equation in H, the Hubble parameter. This equation is studied for two particular forms of f(R), and the late time behaviour of the model is discussed. (author)

  18. Optimization of a Time-Lapse Gravity Network for Carbon Sequestration

    Science.gov (United States)

    Appriou, D.; Strickland, C. E.; Ruprecht Yonkofski, C. M.

    2017-12-01

    The objective of this study is to evaluate what could be a comprehensive and optimal state of the art gravity monitoring network that would meet the UIC class VI regulation and insure that 90% of the CO2 injected remain underground. Time-lapse gravity surveys have a long history of effective applications of monitoring temporal density changes in the subsurface. For decades, gravity measurements have been used for a wide range of applications. The interest of time-lapse gravity surveys for monitoring carbon sequestration sites started recently. The success of their deployment in such sites depends upon a combination of favorable conditions, such as the reservoir geometry, depth, thickness, density change over time induced by the CO2 injection and the location of the instrument. In most cases, the density changes induced by the CO2 plume in the subsurface are not detectable from the surface but the use of borehole gravimeters can provide excellent results. In the framework of the National Assessment and Risk Partnership (NRAP) funded by the Department of Energy, the evaluation of the effectiveness of the gravity monitoring of a CO2 storage site has been assessed using multiple synthetic scenarios implemented on a community model developed for the Kimberlina site (e.g., fault leakage scenarios, borehole leakage). The Kimberlina carbon sequestration project was a pilot project located in southern San Joaquin Valley, California, aimed to safely inject 250,000 t CO2/yr for four years. Although the project was cancelled in 2012, the site characterization efforts resulted in the development of a geologic model. In this study, we present the results of the time-lapse gravity monitoring applied on different multiphase flow and reactive transport models developed by Lawrence Berkeley National Laboratory (i.e., no leakage, permeable fault zone, wellbore leakage). Our monitoring approach considers an ideal network, consisting of multiple vertical and horizontal instrumented

  19. Gravity, two times, tractors, Weyl invariance, and six-dimensional quantum mechanics

    International Nuclear Information System (INIS)

    Bonezzi, R.; Latini, E.; Waldron, A.

    2010-01-01

    Fefferman and Graham showed some time ago that four-dimensional conformal geometries could be analyzed in terms of six-dimensional, ambient, Riemannian geometries admitting a closed homothety. Recently, it was shown how conformal geometry provides a description of physics manifestly invariant under local choices of unit systems. Strikingly, Einstein's equations are then equivalent to the existence of a parallel scale tractor (a six-component vector subject to a certain first order covariant constancy condition at every point in four-dimensional spacetime). These results suggest a six-dimensional description of four-dimensional physics, a viewpoint promulgated by the 2 times physics program of Bars. The Fefferman-Graham construction relies on a triplet of operators corresponding, respectively, to a curved six-dimensional light cone, the dilation generator and the Laplacian. These form an sp(2) algebra which Bars employs as a first class algebra of constraints in a six-dimensional gauge theory. In this article four-dimensional gravity is recast in terms of six-dimensional quantum mechanics by melding the 2 times and tractor approaches. This parent formulation of gravity is built from an infinite set of six-dimensional fields. Successively integrating out these fields yields various novel descriptions of gravity including a new four-dimensional one built from a scalar doublet, a tractor-vector multiplet and a conformal class of metrics.

  20. A time-lapse gravity survey of the Coso geothermal field, China Lake Naval Air Weapons Station, California

    Science.gov (United States)

    Phelps, Geoffrey; Cronkite-Ratcliff, Collin; Blake, Kelly

    2018-04-19

    We have conducted a gravity survey of the Coso geothermal field to continue the time-lapse gravity study of the area initiated in 1991. In this report, we outline a method of processing the gravity data that minimizes the random errors and instrument bias introduced into the data by the Scintrex CG-5 relative gravimeters that were used. After processing, the standard deviation of the data was estimated to be ±13 microGals. These data reveal that the negative gravity anomaly over the Coso geothermal field, centered on gravity station CER1, is continuing to increase in magnitude over time. Preliminary modeling indicates that water-table drawdown at the location of CER1 is between 65 and 326 meters over the last two decades. We note, however, that several assumptions on which the model results depend, such as constant elevation and free-water level over the study period, still require verification.

  1. The quantum cosmological wavefunction at very early times for a quadratic gravity theory

    International Nuclear Information System (INIS)

    Davis, Simon

    2003-01-01

    The quantum cosmological wavefunction for a quadratic gravity theory derived from the heterotic string effective action is obtained near the inflationary epoch and during the initial Planck era. Neglecting derivatives with respect to the scalar field, the wavefunction would satisfy a third-order differential equation near the inflationary epoch which has a solution that is singular in the scale factor limit a(t) → 0. When scalar field derivatives are included, a sixth-order differential equation is obtained for the wavefunction and the solution by Mellin transform is regular in the a → 0 limit. It follows that inclusion of the scalar field in the quadratic gravity action is necessary for consistency of the quantum cosmology of the theory at very early times

  2. When up is down in 0g: how gravity sensing affects the timing of interceptive actions.

    Science.gov (United States)

    Senot, Patrice; Zago, Myrka; Le Séac'h, Anne; Zaoui, Mohammed; Berthoz, Alain; Lacquaniti, Francesco; McIntyre, Joseph

    2012-02-08

    Humans are known to regulate the timing of interceptive actions by modeling, in a simplified way, Newtonian mechanics. Specifically, when intercepting an approaching ball, humans trigger their movements a bit earlier when the target arrives from above than from below. This bias occurs regardless of the ball's true kinetics, and thus appears to reflect an a priori expectation that a downward moving object will accelerate. We postulate that gravito-inertial information is used to tune visuomotor responses to match the target's most likely acceleration. Here we used the peculiar conditions of parabolic flight--where gravity's effects change every 20 s--to test this hypothesis. We found a striking reversal in the timing of interceptive responses performed in weightlessness compared with trials performed on ground, indicating a role of gravity sensing in the tuning of this response. Parallels between these observations and the properties of otolith receptors suggest that vestibular signals themselves might plausibly provide the critical input. Thus, in addition to its acknowledged importance for postural control, gaze stabilization, and spatial navigation, we propose that detecting the direction of gravity's pull plays a role in coordinating quick reactions intended to intercept a fast-moving visual target.

  3. Late-time cosmological approach in mimetic f(R, T) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Baffou, E.H. [Institut de Mathematiques et de Sciences Physiques (IMSP), Porto-Novo (Benin); Houndjo, M.J.S. [Institut de Mathematiques et de Sciences Physiques (IMSP), Porto-Novo (Benin); Faculte des Sciences et Techniques de Natitingou, Natitingou (Benin); Hamani-Daouda, M. [Universite de Niamey, Departement de Physique, Niamey (Niger); Alvarenga, F.G. [Universidade Federal do Espirito Santo, Departamento de Engenharia e Ciencias Naturais, CEUNES, Sao Mateus, ES (Brazil)

    2017-10-15

    In this paper, we investigate the late-time cosmic acceleration in mimetic f(R, T) gravity with the Lagrange multiplier and potential in a Universe containing, besides radiation and dark energy, a self-interacting (collisional) matter. We obtain through the modified Friedmann equations the main equation that can describe the cosmological evolution. Then, with several models from Q(z) and the well-known particular model f(R, T), we perform an analysis of the late-time evolution. We examine the behavior of the Hubble parameter, the dark energy equation of state and the total effective equation of state and in each case we compare the resulting picture with the non-collisional matter (assumed as dust) and also with the collisional matter in mimetic f(R, T) gravity. The results obtained are in good agreement with the observational data and show that in the presence of the collisional matter the dark energy oscillations in mimetic f(R, T) gravity can be damped. (orig.)

  4. Commuters’ valuation of travel time variability in Barcelona

    OpenAIRE

    Javier Asensio; Anna Matas

    2007-01-01

    The value given by commuters to the variability of travel times is empirically analysed using stated preference data from Barcelona (Spain). Respondents are asked to choose between alternatives that differ in terms of cost, average travel time, variability of travel times and departure time. Different specifications of a scheduling choice model are used to measure the influence of various socioeconomic characteristics. Our results show that travel time variability.

  5. Cosmological wheel of time: A classical perspective of f(R) gravity

    Science.gov (United States)

    Yadav, Bal Krishna; Verma, Murli Manohar

    It is shown that the structures in the universe can be interpreted to show a closed wheel of time, rather than a straight arrow. An analysis in f(R) gravity model has been carried out to show that due to local observations, a small arc at any given spacetime point would invariably indicate an arrow of time from past to future, though on a quantum scale it is not a linear flow but a closed loop, a fact that can be examined through future observations.

  6. Spot Welding Characterizations With Time Variable

    International Nuclear Information System (INIS)

    Abdul Hafid; Pinitoyo, A.; History; Paidjo, Andryansyah; Sagino, Sudarmin; Tamzil, M.

    2001-01-01

    For obtain spot welding used effective data, this research is made, so that time operational of machine increasing. Welding parameters are material classification, electrical current, and weld time. All of the factors are determined welding quality. If the plate more thick, the time must be longer when the current constant. Another factor as determined welding quality are surface condition of electrode, surface condition of weld material, and material classifications. In this research, the weld machine type IP32A2 VI (110 V), Rivoira trademark is characterized

  7. Anisotropic, time-dependent solutions in maximally Gauss-Bonnet extended gravity

    International Nuclear Information System (INIS)

    Kitaura, Takayuki; Wheeler, J.T.

    1991-01-01

    In an arbitrary number of dimensions, we find the full exact anisotropic, time-dependent, diagonal-metric solutions to maximally Gauss-Bonnet extended gravity theory. This class of theories for which the lagrangian is an arbitrary linear combination of dimensionally extnded Euler forms, is the most general gravitational theory in which the field equations contain no more than second derivatives of the metric. We show that the space-time exponentially approaches an asymptotic state of constant, anisotropic curvature and prove three theorems concerning two generic types of singularities. The first theorem gives conditions for the existence of Kasner-like curvature singularities. For these the metric diverges as tsup(p i ) where Σp i = 2 k max -1 and k max is the highest power of the curvature in the lagrangian. Other critical point singularities can arise from the polynomial nature of the theory. The remaining theorems demonstrate that the generic solution is extendible at all of these other critical points and that the generic critical points occur at moments of extremal volume density of space-time. We give an explicit coordinate transformation which produces a smooth extension through the critical point. The space-time may therefore alternately expand and contract for many cycles before expanding forever or contracting to a singularity. Many particular cases are treated in detail including several power series solutions, the generalized Kasner solution to general relativity with or without cosmological constant, the perturbative solution for quadratic string gravity, and five-dimensional extended gravity. (orig.)

  8. Mechanics and Newton-Cartan-like gravity on the Newton-Hooke space-time

    International Nuclear Information System (INIS)

    Tian Yu; Guo Hanying; Huang Chaoguang; Xu Zhan; Zhou Bin

    2005-01-01

    We focus on the dynamical aspects on Newton-Hooke space-time NH + mainly from the viewpoint of geometric contraction of the de Sitter spacetime with Beltrami metric. (The term spacetime is used to denote a space with non-degenerate metric, while the term space-time is used to denote a space with degenerate metric.) We first discuss the Newton-Hooke classical mechanics, especially the continuous medium mechanics, in this framework. Then, we establish a consistent theory of gravity on the Newton-Hooke space-time as a kind of Newton-Cartan-like theory, parallel to the Newton's gravity in the Galilei space-time. Finally, we give the Newton-Hooke invariant Schroedinger equation from the geometric contraction, where we can relate the conservative probability in some sense to the mass density in the Newton-Hooke continuous medium mechanics. Similar consideration may apply to the Newton-Hooke space-time NH - contracted from anti-de Sitter spacetime

  9. Space-time philosophy reconstructed via massive Nordström scalar gravities? Laws vs. geometry, conventionality, and underdetermination

    Science.gov (United States)

    Pitts, J. Brian

    2016-02-01

    What if gravity satisfied the Klein-Gordon equation? Both particle physics from the 1920-30s and the 1890s Neumann-Seeliger modification of Newtonian gravity with exponential decay suggest considering a "graviton mass term" for gravity, which is algebraic in the potential. Unlike Nordström's "massless" theory, massive scalar gravity is strictly special relativistic in the sense of being invariant under the Poincaré group but not the 15-parameter Bateman-Cunningham conformal group. It therefore exhibits the whole of Minkowski space-time structure, albeit only indirectly concerning volumes. Massive scalar gravity is plausible in terms of relativistic field theory, while violating most interesting versions of Einstein's principles of general covariance, general relativity, equivalence, and Mach. Geometry is a poor guide to understanding massive scalar gravity(s): matter sees a conformally flat metric due to universal coupling, but gravity also sees the rest of the flat metric (barely or on long distances) in the mass term. What is the 'true' geometry, one might wonder, in line with Poincaré's modal conventionality argument? Infinitely many theories exhibit this bimetric 'geometry,' all with the total stress-energy's trace as source; thus geometry does not explain the field equations. The irrelevance of the Ehlers-Pirani-Schild construction to a critique of conventionalism becomes evident when multi-geometry theories are contemplated. Much as Seeliger envisaged, the smooth massless limit indicates underdetermination of theories by data between massless and massive scalar gravities-indeed an unconceived alternative. At least one version easily could have been developed before General Relativity; it then would have motivated thinking of Einstein's equations along the lines of Einstein's newly re-appreciated "physical strategy" and particle physics and would have suggested a rivalry from massive spin 2 variants of General Relativity (massless spin 2, Pauli and Fierz

  10. Intercomparison of Satellite Derived Gravity Time Series with Inferred Gravity Time Series from TOPEX/POSEIDON Sea Surface Heights and Climatological Model Output

    Science.gov (United States)

    Cox, C.; Au, A.; Klosko, S.; Chao, B.; Smith, David E. (Technical Monitor)

    2001-01-01

    The upcoming GRACE mission promises to open a window on details of the global mass budget that will have remarkable clarity, but it will not directly answer the question of what the state of the Earth's mass budget is over the critical last quarter of the 20th century. To address that problem we must draw upon existing technologies such as SLR, DORIS, and GPS, and climate modeling runs in order to improve our understanding. Analysis of long-period geopotential changes based on SLR and DORIS tracking has shown that addition of post 1996 satellite tracking data has a significant impact on the recovered zonal rates and long-period tides. Interannual effects such as those causing the post 1996 anomalies must be better characterized before refined estimates of the decadal period changes in the geopotential can be derived from the historical database of satellite tracking. A possible cause of this anomaly is variations in ocean mass distribution, perhaps associated with the recent large El Nino/La Nina. In this study, a low-degree spherical harmonic gravity time series derived from satellite tracking is compared with a TOPEX/POSEIDON-derived sea surface height time series. Corrections for atmospheric mass effects, continental hydrology, snowfall accumulation, and ocean steric model predictions will be considered.

  11. Timing system design and tests for the Gravity Probe B relativity mission

    International Nuclear Information System (INIS)

    Li, J; Keiser, G M; Ohshima, Y; Shestople, P; Lockhart, J M

    2015-01-01

    In this paper, we discuss the timing system design and tests for the NASA/Stanford Gravity Probe B (GP-B) relativity mission. The primary clock of GP-B, called the 16f o clock, was an oven-controlled crystal oscillator that produced a 16.368 MHz master frequency 3 . The 16f o clock and the 10 Hz data strobe, which was divided down from the 16f o clock, provided clock signals to all GP-B components and synchronized the data collection, transmission, and processing. The sampled data of science signals were stamped with the vehicle time, a counter of the 10 Hz data strobe. The time latency between the time of data sampling and the stamped vehicle time was compensated in the ground data processing. Two redundant global positioning system receivers onboard the GP-B satellite supplied an external reference for time transfer between the vehicle time and coordinated universal time (UTC), and the time conversion was established in the ground preprocessing of the telemetry timing data. The space flight operation showed that the error of time conversion between the vehicle time and UTC was less than 2 μs. Considering that the constant timing offsets were compensated in the ground processing of the GP-B science data, the time latency between the effective sampling time of GP-B science signals and the stamped vehicle time was verified to within 1 ms in the ground tests. (paper)

  12. A Time-Regularized, Multiple Gravity-Assist Low-Thrust, Bounded-Impulse Model for Trajectory Optimization

    Science.gov (United States)

    Ellison, Donald H.; Englander, Jacob A.; Conway, Bruce A.

    2017-01-01

    The multiple gravity assist low-thrust (MGALT) trajectory model combines the medium-fidelity Sims-Flanagan bounded-impulse transcription with a patched-conics flyby model and is an important tool for preliminary trajectory design. While this model features fast state propagation via Keplers equation and provides a pleasingly accurate estimation of the total mass budget for the eventual flight suitable integrated trajectory it does suffer from one major drawback, namely its temporal spacing of the control nodes. We introduce a variant of the MGALT transcription that utilizes the generalized anomaly from the universal formulation of Keplers equation as a decision variable in addition to the trajectory phase propagation time. This results in two improvements over the traditional model. The first is that the maneuver locations are equally spaced in generalized anomaly about the orbit rather than time. The second is that the Kepler propagator now has the generalized anomaly as its independent variable instead of time and thus becomes an iteration-free propagation method. The new algorithm is outlined, including the impact that this has on the computation of Jacobian entries for numerical optimization, and a motivating application problem is presented that illustrates the improvements that this model has over the traditional MGALT transcription.

  13. High resolution time-lapse gravity field from GRACE for hydrological modelling

    DEFF Research Database (Denmark)

    Krogh, Pernille Engelbredt

    Calibration of large scale hydrological models have traditionally been performed using point observations, which are often sparsely distributed. The Gravity Recovery And Climate Experiment (GRACE) mission provides global remote sensing information about mass fluxes with unprecedented accuracy...... than for the mascon only solution, but later than the GLDAS/Noah TWS and the CNES/GRGS SH solutions. The deviations are 10–20 days. From this point of view, the tuning of hydrological models with KBRR data is certainly feasible, though highly time consuming and complicated at the moment. The method...

  14. Coupling gravity, electromagnetism and space-time for space propulsion breakthroughs

    Science.gov (United States)

    Millis, Marc G.

    1994-01-01

    spaceflight would be revolutionized if it were possible to propel a spacecraft without rockets using the coupling between gravity, electromagnetism, and space-time (hence called 'space coupling propulsion'). New theories and observations about the properties of space are emerging which offer new approaches to consider this breakthrough possibility. To guide the search, evaluation, and application of these emerging possibilities, a variety of hypothetical space coupling propulsion mechanisms are presented to highlight the issues that would have to be satisfied to enable such breakthroughs. A brief introduction of the emerging opportunities is also presented.

  15. Identification of two-phase flow regimes under variable gravity conditions

    International Nuclear Information System (INIS)

    Kamiel S Gabriel; Huawei Han

    2005-01-01

    Full text of publication follows: Two-phase flow is becoming increasingly important as we move into new and more aggressive technologies in the twenty-first century. Some of its many applications include the design of efficient heat transport systems, the transfer and storage of cryogenic fluids, and condensation and flow boiling processes in heat exchangers and energy transport systems. Two-phase flow has many applications in reduced gravity environments experienced in orbiting spacecraft and earth observation satellites. Examples are heat transport systems, the transfer and storage of cryogenic fluids, and condensation and flow boiling processes in heat exchangers. A concave parallel plate capacitance sensor has been developed to measure void fraction for the purpose of objectively identifying flow regimes. The sensor has been used to collect void-fraction data at microgravity conditions aboard the NASA and ESA zero-gravity aircraft. It is shown that the flow regimes can be objectively determined from the probability density functions of the void fraction signals. It was shown that under microgravity conditions four flow regimes exist: bubbly flow, characterized by discrete gas bubbles flowing in the liquid; slug flow, consisting of Taylor bubbles separated by liquid slugs which may or may not contain several small gas bubbles; transitional flow, characterized by the liquid flowing as a film at the tube wall, and the gas phase flowing in the center with the frequent appearance of chaotic, unstable slugs; and annular flow in which the liquid flows as a film along the tube wall and the gas flows uninterrupted through the center. Since many two-phase flow models are flow regime dependent, a method that can accurately and objectively determine flow regimes is required. (authors)

  16. Identification of two-phase flow regimes under variable gravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kamiel S Gabriel [University of Ontario Institute of Technology 2000 Simcoe Street North, Oshawa, ON L1H 7K4 (Canada); Huawei Han [Mechanical Engineering Department, University of Saskatchewan 57 Campus Dr., Saskatoon, Saskatchewan, S7N 5A9 (Canada)

    2005-07-01

    Full text of publication follows: Two-phase flow is becoming increasingly important as we move into new and more aggressive technologies in the twenty-first century. Some of its many applications include the design of efficient heat transport systems, the transfer and storage of cryogenic fluids, and condensation and flow boiling processes in heat exchangers and energy transport systems. Two-phase flow has many applications in reduced gravity environments experienced in orbiting spacecraft and earth observation satellites. Examples are heat transport systems, the transfer and storage of cryogenic fluids, and condensation and flow boiling processes in heat exchangers. A concave parallel plate capacitance sensor has been developed to measure void fraction for the purpose of objectively identifying flow regimes. The sensor has been used to collect void-fraction data at microgravity conditions aboard the NASA and ESA zero-gravity aircraft. It is shown that the flow regimes can be objectively determined from the probability density functions of the void fraction signals. It was shown that under microgravity conditions four flow regimes exist: bubbly flow, characterized by discrete gas bubbles flowing in the liquid; slug flow, consisting of Taylor bubbles separated by liquid slugs which may or may not contain several small gas bubbles; transitional flow, characterized by the liquid flowing as a film at the tube wall, and the gas phase flowing in the center with the frequent appearance of chaotic, unstable slugs; and annular flow in which the liquid flows as a film along the tube wall and the gas flows uninterrupted through the center. Since many two-phase flow models are flow regime dependent, a method that can accurately and objectively determine flow regimes is required. (authors)

  17. Is Reaction Time Variability in ADHD Mainly at Low Frequencies?

    Science.gov (United States)

    Karalunas, Sarah L.; Huang-Pollock, Cynthia L.; Nigg, Joel T.

    2013-01-01

    Background: Intraindividual variability in reaction times (RT variability) has garnered increasing interest as an indicator of cognitive and neurobiological dysfunction in children with attention deficit hyperactivity disorder (ADHD). Recent theory and research has emphasized specific low-frequency patterns of RT variability. However, whether…

  18. GRACE, time-varying gravity, Earth system dynamics and climate change

    NARCIS (Netherlands)

    Wouters, B.; Bonin, J.A.; Chambers, D.P.; Riva, R.E.M.; Sasgen, I.; Wahr, J.

    2014-01-01

    Continuous observations of temporal variations in the Earth's gravity field have recently become available at an unprecedented resolution of a few hundreds of kilometers. The gravity field is a product of the Earth's mass distribution, and these data—provided by the satellites of the Gravity

  19. Black hole formation and space-time fluctuations in two dimensional dilaton gravity and complementarity

    International Nuclear Information System (INIS)

    Das, S.R.; Mukherji, S.

    1994-01-01

    We study black hole formation in a model of two dimensional dilaton gravity and 24 massless scalar fields with a boundary. We find the most general boundary condition consistent with perfect reflection of matter and the constraints. We show that in the semiclassical approximation and for the generic value of a parameter which characterizes the boundary conditions, the boundary starts receding to infinity at the speed of light whenever the total energy of the incoming matter flux exceeds a certain critical value. This is also the critical energy which marks the onset of black hole formation. We then compute the quantum fluctuations of the boundary and of the rescaled scalar curvature and show that as soon as the incoming energy exceeds this critical value, and asymptotic observer using normal time resolutions will always measure large quantum fluctuations of space-time near the horizon, even though the freely falling observer does not. This is an aspect of black hole complementarity relating directly to quantum gravity effects. (author). 30 refs, 4 figs

  20. Time varying G and \\varLambda cosmology in f(R,T) gravity theory

    Science.gov (United States)

    Tiwari, R. K.; Beesham, A.; Singh, Rameshwar; Tiwari, L. K.

    2017-08-01

    We have studied the time dependence of the gravitational constant G and cosmological constant Λ by taking into account an anisotropic and homogeneous Bianchi type-I space-time in the framework of the modified f(R,T) theory of gravity proposed by Harko et al. (Phys. Rev. D 84:024020, 2011). For a specific choice of f(R,T)=R+2f(T) where f(T)=-λ T, two solutions of the modified gravity field equations have been generated with the help of a variation law between the expansion anisotropy ({σ}/{θ}) and the scale factor (S), together with a general non-linear equation of state. The solution for m≠3 corresponds to singular model of the universe whereas the solution for m=3 represents a non-singular model. We infer that the models entail a constant value of the deceleration parameter. A careful analysis of all the physical parameters of the models has also been carried out.

  1. Control bandwidth improvements in GRAVITY fringe tracker by switching to a synchronous real time computer architecture

    Science.gov (United States)

    Abuter, Roberto; Dembet, Roderick; Lacour, Sylvestre; di Lieto, Nicola; Woillez, Julien; Eisenhauer, Frank; Fedou, Pierre; Phan Duc, Than

    2016-08-01

    The new VLTI (Very Large Telescope Interferometer) 1 instrument GRAVITY5, 22, 23 is equipped with a fringe tracker16 able to stabilize the K-band fringes on six baselines at the same time. It has been designed to achieve a performance for average seeing conditions of a residual OPD (Optical Path Difference) lower than 300 nm with objects brighter than K = 10. The control loop implementing the tracking is composed of a four stage real time computer system compromising: a sensor where the detector pixels are read in and the OPD and GD (Group Delay) are calculated; a controller receiving the computed sensor quantities and producing commands for the piezo actuators; a concentrator which combines both the OPD commands with the real time tip/tilt corrections offloading them to the piezo actuator; and finally a Kalman15 parameter estimator. This last stage is used to monitor current measurements over a window of few seconds and estimate new values for the main Kalman15 control loop parameters. The hardware and software implementation of this design runs asynchronously and communicates the four computers for data transfer via the Reflective Memory Network3. With the purpose of improving the performance of the GRAVITY5, 23 fringe tracking16, 22 control loop, a deviation from the standard asynchronous communication mechanism has been proposed and implemented. This new scheme operates the four independent real time computers involved in the tracking loop synchronously using the Reflective Memory Interrupts2 as the coordination signal. This synchronous mechanism had the effect of reducing the total pure delay of the loop from 3.5 [ms] to 2.0 [ms] which then translates on a better stabilization of the fringes as the bandwidth of the system is substantially improved. This paper will explain in detail the real time architecture of the fringe tracker in both is synchronous and synchronous implementation. The achieved improvements on reducing the delay via this mechanism will be

  2. Nonlocal gravity

    CERN Document Server

    Mashhoon, Bahram

    2017-01-01

    Relativity theory is based on a postulate of locality, which means that the past history of the observer is not directly taken into account. This book argues that the past history should be taken into account. In this way, nonlocality---in the sense of history dependence---is introduced into relativity theory. The deep connection between inertia and gravitation suggests that gravity could be nonlocal, and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein's theory of gravitation has recently been developed. A significant consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. According to nonlocal gravity theory, what astronomers attribute to dark matter should instead be due to the nonlocality of gravitation. Nonlocality dominates on the scale of galaxies and beyond. Memory fades with time; therefore, the nonlocal aspect of gravity becomes wea...

  3. Using ocean bottom pressure from the gravity recovery and climate experiment (GRACE) to estimate transport variability in the southern Indian Ocean

    Science.gov (United States)

    Makowski, Jessica K.; Chambers, Don P.; Bonin, Jennifer A.

    2015-06-01

    Previous studies have suggested that ocean bottom pressure (OBP) from the Gravity Recovery and Climate Experiment (GRACE) can be used to measure the depth-averaged, or barotropic, transport variability of the Antarctic Circumpolar Current (ACC). Here, we use GRACE OBP observations to calculate transport variability in a region of the southern Indian Ocean encompassing the major fronts of the ACC. We use a statistical analysis of a simulated GRACE-like data set to determine the uncertainty of the estimated transport for the 2003.0-2013.0 time period. We find that when the transport is averaged over 60° of longitude, the uncertainty (one standard error) is close to 1 Sv (1 Sv = 106 m3 s-1) for low-pass filtered transport, which is significantly smaller than the signal and lower than previous studies have found. The interannual variability is correlated with the Southern Annual mode (SAM) (0.61), but more highly correlated with circumpolar zonally averaged winds between 45°S and 65°S (0.88). GRACE transport reflects significant changes in transport between 2007 and 2009 that is observed in the zonal wind variations but not in the SAM index. We also find a statistically significant trend in transport (-1.0 ± 0.4 Sv yr-1, 90% confidence) that is correlated with a local deceleration in zonal winds related to an asymmetry in the SAM on multidecadal periods.

  4. Spatial and temporal variability of interhemispheric transport times

    Science.gov (United States)

    Wu, Xiaokang; Yang, Huang; Waugh, Darryn W.; Orbe, Clara; Tilmes, Simone; Lamarque, Jean-Francois

    2018-05-01

    The seasonal and interannual variability of transport times from the northern midlatitude surface into the Southern Hemisphere is examined using simulations of three idealized age tracers: an ideal age tracer that yields the mean transit time from northern midlatitudes and two tracers with uniform 50- and 5-day decay. For all tracers the largest seasonal and interannual variability occurs near the surface within the tropics and is generally closely coupled to movement of the Intertropical Convergence Zone (ITCZ). There are, however, notable differences in variability between the different tracers. The largest seasonal and interannual variability in the mean age is generally confined to latitudes spanning the ITCZ, with very weak variability in the southern extratropics. In contrast, for tracers subject to spatially uniform exponential loss the peak variability tends to be south of the ITCZ, and there is a smaller contrast between tropical and extratropical variability. These differences in variability occur because the distribution of transit times from northern midlatitudes is very broad and tracers with more rapid loss are more sensitive to changes in fast transit times than the mean age tracer. These simulations suggest that the seasonal-interannual variability in the southern extratropics of trace gases with predominantly NH midlatitude sources may differ depending on the gases' chemical lifetimes.

  5. Predictor Variables for Marathon Race Time in Recreational Female Runners

    OpenAIRE

    Schmid, Wiebke; Knechtle, Beat; Knechtle, Patrizia; Barandun, Ursula; Rüst, Christoph Alexander; Rosemann, Thomas; Lepers, Romuald

    2012-01-01

    Purpose We intended to determine predictor variables of anthropometry and training for marathon race time in recreational female runners in order to predict marathon race time for future novice female runners. Methods Anthropometric characteristics such as body mass, body height, body mass index, circumferences of limbs, thicknesses of skin-folds and body fat as well as training variables such as volume and speed in running training were related to marathon race time using bi- and multi-varia...

  6. Frequency variations of gravity waves interacting with a time-varying tide

    Energy Technology Data Exchange (ETDEWEB)

    Huang, C.M.; Zhang, S.D.; Yi, F.; Huang, K.M.; Gan, Q.; Gong, Y. [Wuhan Univ., Hubei (China). School of Electronic Information; Ministry of Education, Wuhan, Hubei (China). Key Lab. of Geospace Environment and Geodesy; State Observatory for Atmospheric Remote Sensing, Wuhan, Hubei (China); Zhang, Y.H. [Nanjing Univ. of Information Science and Technology (China). College of Hydrometeorolgy

    2013-11-01

    Using a nonlinear, 2-D time-dependent numerical model, we simulate the propagation of gravity waves (GWs) in a time-varying tide. Our simulations show that when aGW packet propagates in a time-varying tidal-wind environment, not only its intrinsic frequency but also its ground-based frequency would change significantly. The tidal horizontal-wind acceleration dominates the GW frequency variation. Positive (negative) accelerations induce frequency increases (decreases) with time. More interestingly, tidal-wind acceleration near the critical layers always causes the GW frequency to increase, which may partially explain the observations that high-frequency GW components are more dominant in the middle and upper atmosphere than in the lower atmosphere. The combination of the increased ground-based frequency of propagating GWs in a time-varying tidal-wind field and the transient nature of the critical layer induced by a time-varying tidal zonal wind creates favorable conditions for GWs to penetrate their originally expected critical layers. Consequently, GWs have an impact on the background atmosphere at much higher altitudes than expected, which indicates that the dynamical effects of tidal-GW interactions are more complicated than usually taken into account by GW parameterizations in global models.

  7. A model for AGN variability on multiple time-scales

    Science.gov (United States)

    Sartori, Lia F.; Schawinski, Kevin; Trakhtenbrot, Benny; Caplar, Neven; Treister, Ezequiel; Koss, Michael J.; Urry, C. Megan; Zhang, C. E.

    2018-05-01

    We present a framework to link and describe active galactic nuclei (AGN) variability on a wide range of time-scales, from days to billions of years. In particular, we concentrate on the AGN variability features related to changes in black hole fuelling and accretion rate. In our framework, the variability features observed in different AGN at different time-scales may be explained as realisations of the same underlying statistical properties. In this context, we propose a model to simulate the evolution of AGN light curves with time based on the probability density function (PDF) and power spectral density (PSD) of the Eddington ratio (L/LEdd) distribution. Motivated by general galaxy population properties, we propose that the PDF may be inspired by the L/LEdd distribution function (ERDF), and that a single (or limited number of) ERDF+PSD set may explain all observed variability features. After outlining the framework and the model, we compile a set of variability measurements in terms of structure function (SF) and magnitude difference. We then combine the variability measurements on a SF plot ranging from days to Gyr. The proposed framework enables constraints on the underlying PSD and the ability to link AGN variability on different time-scales, therefore providing new insights into AGN variability and black hole growth phenomena.

  8. THE TIME DOMAIN SPECTROSCOPIC SURVEY: VARIABLE SELECTION AND ANTICIPATED RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Morganson, Eric; Green, Paul J. [Harvard Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States); Anderson, Scott F.; Ruan, John J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Eracleous, Michael; Brandt, William Nielsen [Department of Astronomy and Astrophysics, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802 (United States); Kelly, Brandon [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106-9530 (United States); Badenes, Carlos [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 O’Hara St, Pittsburgh, PA 15260 (United States); Bañados, Eduardo [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Blanton, Michael R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Bershady, Matthew A. [Department of Astronomy, University of Wisconsin, 475 N. Charter St., Madison, WI 53706 (United States); Borissova, Jura [Instituto de Física y Astronomía, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Casilla 5030, and Millennium Institute of Astrophysics (MAS), Santiago (Chile); Burgett, William S. [GMTO Corp, Suite 300, 251 S. Lake Ave, Pasadena, CA 91101 (United States); Chambers, Kenneth, E-mail: emorganson@cfa.harvard.edu [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); and others

    2015-06-20

    We present the selection algorithm and anticipated results for the Time Domain Spectroscopic Survey (TDSS). TDSS is an Sloan Digital Sky Survey (SDSS)-IV Extended Baryon Oscillation Spectroscopic Survey (eBOSS) subproject that will provide initial identification spectra of approximately 220,000 luminosity-variable objects (variable stars and active galactic nuclei across 7500 deg{sup 2} selected from a combination of SDSS and multi-epoch Pan-STARRS1 photometry. TDSS will be the largest spectroscopic survey to explicitly target variable objects, avoiding pre-selection on the basis of colors or detailed modeling of specific variability characteristics. Kernel Density Estimate analysis of our target population performed on SDSS Stripe 82 data suggests our target sample will be 95% pure (meaning 95% of objects we select have genuine luminosity variability of a few magnitudes or more). Our final spectroscopic sample will contain roughly 135,000 quasars and 85,000 stellar variables, approximately 4000 of which will be RR Lyrae stars which may be used as outer Milky Way probes. The variability-selected quasar population has a smoother redshift distribution than a color-selected sample, and variability measurements similar to those we develop here may be used to make more uniform quasar samples in large surveys. The stellar variable targets are distributed fairly uniformly across color space, indicating that TDSS will obtain spectra for a wide variety of stellar variables including pulsating variables, stars with significant chromospheric activity, cataclysmic variables, and eclipsing binaries. TDSS will serve as a pathfinder mission to identify and characterize the multitude of variable objects that will be detected photometrically in even larger variability surveys such as Large Synoptic Survey Telescope.

  9. The cost of travel time variability: three measures with properties

    DEFF Research Database (Denmark)

    Engelson, Leonid; Fosgerau, Mogens

    2016-01-01

    This paper explores the relationships between three types of measures of the cost of travel time variability: measures based on scheduling preferences and implicit departure time choice, Bernoulli type measures based on a univariate function of travel time, and mean-dispersion measures. We...

  10. Variability of Travel Times on New Jersey Highways

    Science.gov (United States)

    2011-06-01

    This report presents the results of a link and path travel time study conducted on selected New Jersey (NJ) highways to produce estimates of the corresponding variability of travel time (VTT) by departure time of the day and days of the week. The tra...

  11. Discrete-time BAM neural networks with variable delays

    Science.gov (United States)

    Liu, Xin-Ge; Tang, Mei-Lan; Martin, Ralph; Liu, Xin-Bi

    2007-07-01

    This Letter deals with the global exponential stability of discrete-time bidirectional associative memory (BAM) neural networks with variable delays. Using a Lyapunov functional, and linear matrix inequality techniques (LMI), we derive a new delay-dependent exponential stability criterion for BAM neural networks with variable delays. As this criterion has no extra constraints on the variable delay functions, it can be applied to quite general BAM neural networks with a broad range of time delay functions. It is also easy to use in practice. An example is provided to illustrate the theoretical development.

  12. Discrete-time BAM neural networks with variable delays

    International Nuclear Information System (INIS)

    Liu Xinge; Tang Meilan; Martin, Ralph; Liu Xinbi

    2007-01-01

    This Letter deals with the global exponential stability of discrete-time bidirectional associative memory (BAM) neural networks with variable delays. Using a Lyapunov functional, and linear matrix inequality techniques (LMI), we derive a new delay-dependent exponential stability criterion for BAM neural networks with variable delays. As this criterion has no extra constraints on the variable delay functions, it can be applied to quite general BAM neural networks with a broad range of time delay functions. It is also easy to use in practice. An example is provided to illustrate the theoretical development

  13. Periodicity and stability for variable-time impulsive neural networks.

    Science.gov (United States)

    Li, Hongfei; Li, Chuandong; Huang, Tingwen

    2017-10-01

    The paper considers a general neural networks model with variable-time impulses. It is shown that each solution of the system intersects with every discontinuous surface exactly once via several new well-proposed assumptions. Moreover, based on the comparison principle, this paper shows that neural networks with variable-time impulse can be reduced to the corresponding neural network with fixed-time impulses under well-selected conditions. Meanwhile, the fixed-time impulsive systems can be regarded as the comparison system of the variable-time impulsive neural networks. Furthermore, a series of sufficient criteria are derived to ensure the existence and global exponential stability of periodic solution of variable-time impulsive neural networks, and to illustrate the same stability properties between variable-time impulsive neural networks and the fixed-time ones. The new criteria are established by applying Schaefer's fixed point theorem combined with the use of inequality technique. Finally, a numerical example is presented to show the effectiveness of the proposed results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Sources of variability and systematic error in mouse timing behavior.

    Science.gov (United States)

    Gallistel, C R; King, Adam; McDonald, Robert

    2004-01-01

    In the peak procedure, starts and stops in responding bracket the target time at which food is expected. The variability in start and stop times is proportional to the target time (scalar variability), as is the systematic error in the mean center (scalar error). The authors investigated the source of the error and the variability, using head poking in the mouse, with target intervals of 5 s, 15 s, and 45 s, in the standard procedure, and in a variant with 3 different target intervals at 3 different locations in a single trial. The authors conclude that the systematic error is due to the asymmetric location of start and stop decision criteria, and the scalar variability derives primarily from sources other than memory.

  15. Variability in reaction time performance of younger and older adults.

    Science.gov (United States)

    Hultsch, David F; MacDonald, Stuart W S; Dixon, Roger A

    2002-03-01

    Age differences in three basic types of variability were examined: variability between persons (diversity), variability within persons across tasks (dispersion), and variability within persons across time (inconsistency). Measures of variability were based on latency performance from four measures of reaction time (RT) performed by a total of 99 younger adults (ages 17--36 years) and 763 older adults (ages 54--94 years). Results indicated that all three types of variability were greater in older compared with younger participants even when group differences in speed were statistically controlled. Quantile-quantile plots showed age and task differences in the shape of the inconsistency distributions. Measures of within-person variability (dispersion and inconsistency) were positively correlated. Individual differences in RT inconsistency correlated negatively with level of performance on measures of perceptual speed, working memory, episodic memory, and crystallized abilities. Partial set correlation analyses indicated that inconsistency predicted cognitive performance independent of level of performance. The results indicate that variability of performance is an important indicator of cognitive functioning and aging.

  16. BRS invariant stochastic quantization of Einstein gravity

    International Nuclear Information System (INIS)

    Nakazawa, Naohito.

    1989-11-01

    We study stochastic quantization of gravity in terms of a BRS invariant canonical operator formalism. By introducing artificially canonical momentum variables for the original field variables, a canonical formulation of stochastic quantization is proposed in the sense that the Fokker-Planck hamiltonian is the generator of the fictitious time translation. Then we show that there exists a nilpotent BRS symmetry in an enlarged phase space of the first-class constrained systems. The phase space is spanned by the dynamical variables, their canonical conjugate momentum variables, Faddeev-Popov ghost and anti-ghost. We apply the general BRS invariant formulation to stochastic quantization of gravity which is described as a second-class constrained system in terms of a pair of Langevin equations coupled with white noises. It is shown that the stochastic action of gravity includes explicitly the De Witt's type superspace metric which leads to a geometrical interpretation of quantum gravity analogous to nonlinear σ-models. (author)

  17. Is Time a creation of Life in response to Gravity? : This hypothesis suggests new ways for looking at extraterrestrial life

    NARCIS (Netherlands)

    Ockels, W.J.

    2007-01-01

    From his personal experience during a space flight (Challenger 1985) onward, the author has been struck repeatedly by the remarkable influence of Earth's environment on life, in particular by its most inevitable elements: time and gravity. Our life might be peculiar to the local Earth conditions,

  18. Timing variability in children with early-treated congenital hypothyroidism

    NARCIS (Netherlands)

    Kooistra, L.; Snijders, T.A.B.; Schellekens, J.M.H.; Kalverboer, A.F.; Geuze, R.H.

    This study reports on central and peripheral determinants of timing variability in self-paced tapping by children with early-treated congenital hypothyroidism (CH). A theoretical model of the timing of repetitive movements developed by Wing and Kristofferson was applied to estimate the central

  19. Predicting travel time variability for cost-benefit analysis

    NARCIS (Netherlands)

    Peer, S.; Koopmans, C.; Verhoef, E.T.

    2010-01-01

    Unreliable travel times cause substantial costs to travelers. Nevertheless, they are not taken into account in many cost-benefit-analyses (CBA), or only in very rough ways. This paper aims at providing simple rules on how variability can be predicted, based on travel time data from Dutch highways.

  20. f(R) gravity cosmology in scalar degree of freedom

    International Nuclear Information System (INIS)

    Goswami, Umananda Dev; Deka, Kabita

    2014-01-01

    The models of f(R) gravity belong to an important class of modified gravity models where the late time cosmic accelerated expansion is considered as the manifestation of the large scale modification of the force of gravity. f(R) gravity models can be expressed in terms of a scalar degree of freedom by explicit redefinition of model's variable. Here we report about the study of the features of cosmological parameters and hence the cosmological evolution using the scalar degree of freedom of the f(R) = ξR n gravity model in the Friedmann-Lemaître-Robertson-Walker (FLRW) background

  1. A moving mesh method with variable relaxation time

    OpenAIRE

    Soheili, Ali Reza; Stockie, John M.

    2006-01-01

    We propose a moving mesh adaptive approach for solving time-dependent partial differential equations. The motion of spatial grid points is governed by a moving mesh PDE (MMPDE) in which a mesh relaxation time \\tau is employed as a regularization parameter. Previously reported results on MMPDEs have invariably employed a constant value of the parameter \\tau. We extend this standard approach by incorporating a variable relaxation time that is calculated adaptively alongside the solution in orde...

  2. Space and time evolution of two nonlinearly coupled variables

    International Nuclear Information System (INIS)

    Obayashi, H.; Totsuji, H.; Wilhelmsson, H.

    1976-12-01

    The system of two coupled linear differential equations are studied assuming that the coupling terms are proportional to the product of the dependent variables, representing e.g. intensities or populations. It is furthermore assumed that these variables experience different linear dissipation or growth. The derivations account for space as well as time dependence of the variables. It is found that certain particular solutions can be obtained to this system, whereas a full solution in space and time as an initial value problem is outside the scope of the present paper. The system has a nonlinear equilibrium solution for which the nonlinear coupling terms balance the terms of linear dissipation. The case of space and time evolution of a small perturbation of the nonlinear equilibrium state, given the initial one-dimensional spatial distribution of the perturbation, is also considered in some detail. (auth.)

  3. Volcanic signatures in time gravity variations during the volcanic unrest on El Hierro (Canary Islands)

    Science.gov (United States)

    Sainz-Maza Aparicio, S.; Arnoso Sampedro, J.; Gonzalez Montesinos, F.; Martí Molist, J.

    2014-06-01

    Gravity changes occurring during the initial stage of the 2011-2012 El Hierro submarine eruption are interpreted in terms of the preeruptive signatures during the episode of unrest. Continuous gravity measurements were made at two sites on the island using the relative spring gravimeter LaCoste and Romberg gPhone-054. On 15 September 2011, an observed gravity decrease of 45 μGal, associated with the southward migration of seismic epicenters, is consistent with a lateral magma migration that occurred beneath the volcanic edifice, an apparently clear precursor of the eruption that took place 25 days later on 10 October 2011. High-frequency gravity signals also appeared on 6-11 October 2011, pointing to an occurring interaction between a magmatic intrusion and the ocean floor. These important gravity changes, with amplitudes varying from 10 to -90 μGal, during the first 3 days following the onset of the eruption are consistent with the northward migration of the eruptive focus along an active eruptive fissure. An apparent correlation of gravity variations with body tide vertical strain was also noted, which could indicate that concurrent tidal triggering occurred during the initial stage of the eruption.

  4. Verification of models for ballistic movement time and endpoint variability.

    Science.gov (United States)

    Lin, Ray F; Drury, Colin G

    2013-01-01

    A hand control movement is composed of several ballistic movements. The time required in performing a ballistic movement and its endpoint variability are two important properties in developing movement models. The purpose of this study was to test potential models for predicting these two properties. Twelve participants conducted ballistic movements of specific amplitudes using a drawing tablet. The measured data of movement time and endpoint variability were then used to verify the models. This study was successful with Hoffmann and Gan's movement time model (Hoffmann, 1981; Gan and Hoffmann 1988) predicting more than 90.7% data variance for 84 individual measurements. A new theoretically developed ballistic movement variability model, proved to be better than Howarth, Beggs, and Bowden's (1971) model, predicting on average 84.8% of stopping-variable error and 88.3% of aiming-variable errors. These two validated models will help build solid theoretical movement models and evaluate input devices. This article provides better models for predicting end accuracy and movement time of ballistic movements that are desirable in rapid aiming tasks, such as keying in numbers on a smart phone. The models allow better design of aiming tasks, for example button sizes on mobile phones for different user populations.

  5. Variable selection for mixture and promotion time cure rate models.

    Science.gov (United States)

    Masud, Abdullah; Tu, Wanzhu; Yu, Zhangsheng

    2016-11-16

    Failure-time data with cured patients are common in clinical studies. Data from these studies are typically analyzed with cure rate models. Variable selection methods have not been well developed for cure rate models. In this research, we propose two least absolute shrinkage and selection operators based methods, for variable selection in mixture and promotion time cure models with parametric or nonparametric baseline hazards. We conduct an extensive simulation study to assess the operating characteristics of the proposed methods. We illustrate the use of the methods using data from a study of childhood wheezing. © The Author(s) 2016.

  6. Variable Selection in Time Series Forecasting Using Random Forests

    Directory of Open Access Journals (Sweden)

    Hristos Tyralis

    2017-10-01

    Full Text Available Time series forecasting using machine learning algorithms has gained popularity recently. Random forest is a machine learning algorithm implemented in time series forecasting; however, most of its forecasting properties have remained unexplored. Here we focus on assessing the performance of random forests in one-step forecasting using two large datasets of short time series with the aim to suggest an optimal set of predictor variables. Furthermore, we compare its performance to benchmarking methods. The first dataset is composed by 16,000 simulated time series from a variety of Autoregressive Fractionally Integrated Moving Average (ARFIMA models. The second dataset consists of 135 mean annual temperature time series. The highest predictive performance of RF is observed when using a low number of recent lagged predictor variables. This outcome could be useful in relevant future applications, with the prospect to achieve higher predictive accuracy.

  7. Time-lapse gravity and levelling in the sinkhole-endangered urban area of Bad Frankenhausen, Germany

    Science.gov (United States)

    Kobe, Martin; Gabriel, Gerald; Weise, Adelheid; Krawczyk, Charlotte; Vogel, Detlef

    2017-04-01

    Sinkholes, resulting from subrosion in the subsurface, can reach diameters of several hundred meters and thus pose a severe hazard for infrastructure and inhabitants in urban areas. Subrosion is the leaching of readily-soluble rocks, such as rock salt, gypsum, anhydrite and limestone by ground or meteoric water and leads to mass transport and relocation. Two scenarios of sinkhole evolution are conceivable: First, the surface subsides continuously in order to compensate for the mass loss. Second, the mass relocation leads to development of subsurface cavities. If they reach a critical size and the cover layers are not supported anymore, the surface collapses abruptly. To improve the understanding of subrosion processes and the related surface deformation a case study is conducted in Bad Frankenhausen, Germany, where subrosion leaches the Zechstein evaporates of the Permian. One part of the study is to analyse the spatiotemporal development of sinkholes by applying time-lapse observations. Therefore, we established a monitoring network consisting of 15 gravity and additional levelling points covering the main sinkhole areas in the city centre. In March 2014, the baseline survey was carried out. Since then, quarterly measurement campaigns are performed. In each campaign four different gravity meters are used to collect a statistical significant amount of data and to control the plausibility of our data. The gravity measurements are complemented by levelling surveys. The rectification of the time-lapse gravity data comprises the correction for jumps and systematic errors, as well as for well calculable influences, such as earth tides and air pressure changes. Furthermore, special interest was applied to seasonal changes of hydrological parameters such as soil moisture or groundwater level. We found the hydrological influence to be in the single digit up to the lower two-digit µGal range, depending on the season and the station. The standard deviations of the adjusted

  8. Variability of gastric emptying time using standardized radiolabeled meals

    International Nuclear Information System (INIS)

    Christian, P.E.; Brophy, C.M.; Egger, M.J.; Taylor, A.; Moore, J.G.

    1984-01-01

    To define the range of inter- and intra-subject variability on gastric emptying measurements, eight healthy male subjects (ages 19-40) received meals on four separate occasions. The meal consisted of 150 g of beef stew labeled with Tc-99m SC labeled liver (600 μCi) and 150 g of orange juice containing In-111 DTPA (100 μCi) as the solid- and liquid-phase markers respectively. Images of the solid and liquid phases were obtained at 20 min intervals immediately after meal ingestion. The stomach region was selected from digital images and data were corrected for radionuclide interference, radioactive decay and the geometric mean of anterior and posterior counts. More absolute variability was seen with the solid than the liquid marker emptying for the group. The mean solid half-emptying time was 58 +- 17 min (range 29-92) while the mean liquid half-emptying time was 24 +- 8 min (range 12-37). A nested random effects analysis of variance showed moderate intra-subject variability for solid half-emptying times (rho = 0.4594), and high intra-subject variability was implied by a low correlation (rho = 0.2084) for liquid half-emptying. The average inter-subject differences were 58.3% of the total variance for solids (rho = 0.0017). For liquids, the inter-subject variability was 69.1% of the total variance, but was only suggestive of statistical significance (rho = 0.0666). The normal half emptying time for gastric emptying of liquids and solids is a variable phenomenon in healthy subjects and has great inter- and intra-individual day-to-day differences

  9. Variability of gastric emptying time using standardized radiolabeled meals

    Energy Technology Data Exchange (ETDEWEB)

    Christian, P.E.; Brophy, C.M.; Egger, M.J.; Taylor, A.; Moore, J.G.

    1984-01-01

    To define the range of inter- and intra-subject variability on gastric emptying measurements, eight healthy male subjects (ages 19-40) received meals on four separate occasions. The meal consisted of 150 g of beef stew labeled with Tc-99m SC labeled liver (600 ..mu..Ci) and 150 g of orange juice containing In-111 DTPA (100 ..mu..Ci) as the solid- and liquid-phase markers respectively. Images of the solid and liquid phases were obtained at 20 min intervals immediately after meal ingestion. The stomach region was selected from digital images and data were corrected for radionuclide interference, radioactive decay and the geometric mean of anterior and posterior counts. More absolute variability was seen with the solid than the liquid marker emptying for the group. The mean solid half-emptying time was 58 +- 17 min (range 29-92) while the mean liquid half-emptying time was 24 +- 8 min (range 12-37). A nested random effects analysis of variance showed moderate intra-subject variability for solid half-emptying times (rho = 0.4594), and high intra-subject variability was implied by a low correlation (rho = 0.2084) for liquid half-emptying. The average inter-subject differences were 58.3% of the total variance for solids (rho = 0.0017). For liquids, the inter-subject variability was 69.1% of the total variance, but was only suggestive of statistical significance (rho = 0.0666). The normal half emptying time for gastric emptying of liquids and solids is a variable phenomenon in healthy subjects and has great inter- and intra-individual day-to-day differences.

  10. Predictor variables for marathon race time in recreational female runners.

    Science.gov (United States)

    Schmid, Wiebke; Knechtle, Beat; Knechtle, Patrizia; Barandun, Ursula; Rüst, Christoph Alexander; Rosemann, Thomas; Lepers, Romuald

    2012-06-01

    We intended to determine predictor variables of anthropometry and training for marathon race time in recreational female runners in order to predict marathon race time for future novice female runners. Anthropometric characteristics such as body mass, body height, body mass index, circumferences of limbs, thicknesses of skin-folds and body fat as well as training variables such as volume and speed in running training were related to marathon race time using bi- and multi-variate analysis in 29 female runners. The marathoners completed the marathon distance within 251 (26) min, running at a speed of 10.2 (1.1) km/h. Body mass (r=0.37), body mass index (r=0.46), the circumferences of thigh (r=0.51) and calf (r=0.41), the skin-fold thicknesses of front thigh (r=0.38) and of medial calf (r=0.40), the sum of eight skin-folds (r=0.44) and body fat percentage (r=0.41) were related to marathon race time. For the variables of training, maximal distance ran per week (r=- 0.38), number of running training sessions per week (r=- 0.46) and the speed of the training sessions (r= - 0.60) were related to marathon race time. In the multi-variate analysis, the circumference of calf (P=0.02) and the speed of the training sessions (P=0.0014) were related to marathon race time. Marathon race time might be partially (r(2)=0.50) predicted by the following equation: Race time (min)=184.4 + 5.0 x (circumference calf, cm) -11.9 x (speed in running during training, km/h) for recreational female marathoners. Variables of both anthropometry and training were related to marathon race time in recreational female marathoners and cannot be reduced to one single predictor variable. For practical applications, a low circumference of calf and a high running speed in training are associated with a fast marathon race time in recreational female runners.

  11. Physical attraction to reliable, low variability nervous systems: Reaction time variability predicts attractiveness.

    Science.gov (United States)

    Butler, Emily E; Saville, Christopher W N; Ward, Robert; Ramsey, Richard

    2017-01-01

    The human face cues a range of important fitness information, which guides mate selection towards desirable others. Given humans' high investment in the central nervous system (CNS), cues to CNS function should be especially important in social selection. We tested if facial attractiveness preferences are sensitive to the reliability of human nervous system function. Several decades of research suggest an operational measure for CNS reliability is reaction time variability, which is measured by standard deviation of reaction times across trials. Across two experiments, we show that low reaction time variability is associated with facial attractiveness. Moreover, variability in performance made a unique contribution to attractiveness judgements above and beyond both physical health and sex-typicality judgements, which have previously been associated with perceptions of attractiveness. In a third experiment, we empirically estimated the distribution of attractiveness preferences expected by chance and show that the size and direction of our results in Experiments 1 and 2 are statistically unlikely without reference to reaction time variability. We conclude that an operating characteristic of the human nervous system, reliability of information processing, is signalled to others through facial appearance. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Long Pulse Integrator of Variable Integral Time Constant

    International Nuclear Information System (INIS)

    Wang Yong; Ji Zhenshan; Du Xiaoying; Wu Yichun; Li Shi; Luo Jiarong

    2010-01-01

    A kind of new long pulse integrator was designed based on the method of variable integral time constant and deducting integral drift by drift slope. The integral time constant can be changed by choosing different integral resistors, in order to improve the signal-to-noise ratio, and avoid output saturation; the slope of integral drift of a certain period of time can be calculated by digital signal processing, which can be used to deduct the drift of original integral signal in real time to reduce the integral drift. The tests show that this kind of long pulse integrator is good at reducing integral drift, which also can eliminate the effects of changing integral time constant. According to experiments, the integral time constant can be changed by remote control and manual adjustment of integral drift is avoided, which can improve the experiment efficiency greatly and can be used for electromagnetic measurement in Tokamak experiment. (authors)

  13. Inverse Ising problem in continuous time: A latent variable approach

    Science.gov (United States)

    Donner, Christian; Opper, Manfred

    2017-12-01

    We consider the inverse Ising problem: the inference of network couplings from observed spin trajectories for a model with continuous time Glauber dynamics. By introducing two sets of auxiliary latent random variables we render the likelihood into a form which allows for simple iterative inference algorithms with analytical updates. The variables are (1) Poisson variables to linearize an exponential term which is typical for point process likelihoods and (2) Pólya-Gamma variables, which make the likelihood quadratic in the coupling parameters. Using the augmented likelihood, we derive an expectation-maximization (EM) algorithm to obtain the maximum likelihood estimate of network parameters. Using a third set of latent variables we extend the EM algorithm to sparse couplings via L1 regularization. Finally, we develop an efficient approximate Bayesian inference algorithm using a variational approach. We demonstrate the performance of our algorithms on data simulated from an Ising model. For data which are simulated from a more biologically plausible network with spiking neurons, we show that the Ising model captures well the low order statistics of the data and how the Ising couplings are related to the underlying synaptic structure of the simulated network.

  14. Increased timing variability in schizophrenia and bipolar disorder.

    Directory of Open Access Journals (Sweden)

    Amanda R Bolbecker

    Full Text Available Theoretical and empirical evidence suggests that impaired time perception and the neural circuitry underlying internal timing mechanisms may contribute to severe psychiatric disorders, including psychotic and mood disorders. The degree to which alterations in temporal perceptions reflect deficits that exist across psychosis-related phenotypes and the extent to which mood symptoms contribute to these deficits is currently unknown. In addition, compared to schizophrenia, where timing deficits have been more extensively investigated, sub-second timing has been studied relatively infrequently in bipolar disorder. The present study compared sub-second duration estimates of schizophrenia (SZ, schizoaffective disorder (SA, non-psychotic bipolar disorder (BDNP, bipolar disorder with psychotic features (BDP, and healthy non-psychiatric controls (HC on a well-established time perception task using sub-second durations. Participants included 66 SZ, 37 BDNP, 34 BDP, 31 SA, and 73 HC who participated in a temporal bisection task that required temporal judgements about auditory durations ranging from 300 to 600 milliseconds. Timing variability was significantly higher in SZ, BDP, and BDNP groups compared to healthy controls. The bisection point did not differ across groups. These findings suggest that both psychotic and mood symptoms may be associated with disruptions in internal timing mechanisms. Yet unexpected findings emerged. Specifically, the BDNP group had significantly increased variability compared to controls, but the SA group did not. In addition, these deficits appeared to exist independent of current symptom status. The absence of between group differences in bisection point suggests that increased variability in the SZ and bipolar disorder groups are due to alterations in perceptual timing in the sub-second range, possibly mediated by the cerebellum, rather than cognitive deficits.

  15. Complexity Variability Assessment of Nonlinear Time-Varying Cardiovascular Control

    Science.gov (United States)

    Valenza, Gaetano; Citi, Luca; Garcia, Ronald G.; Taylor, Jessica Noggle; Toschi, Nicola; Barbieri, Riccardo

    2017-02-01

    The application of complex systems theory to physiology and medicine has provided meaningful information about the nonlinear aspects underlying the dynamics of a wide range of biological processes and their disease-related aberrations. However, no studies have investigated whether meaningful information can be extracted by quantifying second-order moments of time-varying cardiovascular complexity. To this extent, we introduce a novel mathematical framework termed complexity variability, in which the variance of instantaneous Lyapunov spectra estimated over time serves as a reference quantifier. We apply the proposed methodology to four exemplary studies involving disorders which stem from cardiology, neurology and psychiatry: Congestive Heart Failure (CHF), Major Depression Disorder (MDD), Parkinson’s Disease (PD), and Post-Traumatic Stress Disorder (PTSD) patients with insomnia under a yoga training regime. We show that complexity assessments derived from simple time-averaging are not able to discern pathology-related changes in autonomic control, and we demonstrate that between-group differences in measures of complexity variability are consistent across pathologies. Pathological states such as CHF, MDD, and PD are associated with an increased complexity variability when compared to healthy controls, whereas wellbeing derived from yoga in PTSD is associated with lower time-variance of complexity.

  16. Quantum Gravity

    International Nuclear Information System (INIS)

    Giribet, G E

    2005-01-01

    Claus Kiefer presents his book, Quantum Gravity, with his hope that '[the] book will convince readers of [the] outstanding problem [of unification and quantum gravity] and encourage them to work on its solution'. With this aim, the author presents a clear exposition of the fundamental concepts of gravity and the steps towards the understanding of its quantum aspects. The main part of the text is dedicated to the analysis of standard topics in the formulation of general relativity. An analysis of the Hamiltonian formulation of general relativity and the canonical quantization of gravity is performed in detail. Chapters four, five and eight provide a pedagogical introduction to the basic concepts of gravitational physics. In particular, aspects such as the quantization of constrained systems, the role played by the quadratic constraint, the ADM decomposition, the Wheeler-de Witt equation and the problem of time are treated in an expert and concise way. Moreover, other specific topics, such as the minisuperspace approach and the feasibility of defining extrinsic times for certain models, are discussed as well. The ninth chapter of the book is dedicated to the quantum gravitational aspects of string theory. Here, a minimalistic but clear introduction to string theory is presented, and this is actually done with emphasis on gravity. It is worth mentioning that no hard (nor explicit) computations are presented, even though the exposition covers the main features of the topic. For instance, black hole statistical physics (within the framework of string theory) is developed in a pedagogical and concise way by means of heuristical arguments. As the author asserts in the epilogue, the hope of the book is to give 'some impressions from progress' made in the study of quantum gravity since its beginning, i.e., since the end of 1920s. In my opinion, Kiefer's book does actually achieve this goal and gives an extensive review of the subject. (book review)

  17. Gravity is Geometry.

    Science.gov (United States)

    MacKeown, P. K.

    1984-01-01

    Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)

  18. Surface mass redistribution inversion from global GPS deformation and Gravity Recovery and Climate Experiment (GRACE) gravity data

    NARCIS (Netherlands)

    Kusche, J.; Schrama, E.J.O.

    2005-01-01

    Monitoring hydrological redistributions through their integrated gravitational effect is the primary aim of the Gravity Recovery and Climate Experiment (GRACE) mission. Time?variable gravity data from GRACE can be uniquely inverted to hydrology, since mass transfers located at or near the Earth's

  19. First-Passage-Time Distribution for Variable-Diffusion Processes

    Science.gov (United States)

    Barney, Liberty; Gunaratne, Gemunu H.

    2017-05-01

    First-passage-time distribution, which presents the likelihood of a stock reaching a pre-specified price at a given time, is useful in establishing the value of financial instruments and in designing trading strategies. First-passage-time distribution for Wiener processes has a single peak, while that for stocks exhibits a notable second peak within a trading day. This feature has only been discussed sporadically—often dismissed as due to insufficient/incorrect data or circumvented by conversion to tick time—and to the best of our knowledge has not been explained in terms of the underlying stochastic process. It was shown previously that intra-day variations in the market can be modeled by a stochastic process containing two variable-diffusion processes (Hua et al. in, Physica A 419:221-233, 2015). We show here that the first-passage-time distribution of this two-stage variable-diffusion model does exhibit a behavior similar to the empirical observation. In addition, we find that an extended model incorporating overnight price fluctuations exhibits intra- and inter-day behavior similar to those of empirical first-passage-time distributions.

  20. Automatic classification of time-variable X-ray sources

    International Nuclear Information System (INIS)

    Lo, Kitty K.; Farrell, Sean; Murphy, Tara; Gaensler, B. M.

    2014-01-01

    To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, and other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ∼97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7–500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.

  1. Automatic classification of time-variable X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Kitty K.; Farrell, Sean; Murphy, Tara; Gaensler, B. M. [Sydney Institute for Astronomy, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)

    2014-05-01

    To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, and other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ∼97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7–500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.

  2. Area and Entropy Spectrum of Gauss—Bonnet Gravity in de Sitter Space-Times for Black Hole Event Horizon

    International Nuclear Information System (INIS)

    Chen Qiang; Ren Ji-Rong

    2013-01-01

    In this paper, we use the modified Hod's treatment and the Kunstatter's method to study the horizon area spectrum and entropy spectrum in Gauss—Bonnet de-Sitter space-time, which is regarded as the natural generalization of Einstein gravity by including higher derivative correction terms to the original Einstein—Hilbert action. The horizon areas have some properties that are very different from the vacuum solutions obtained from the frame of Einstein gravity. With the new physical interpretation of quasinormal modes, the area/entropy spectrum for the event horizon for near-extremal Gauss—Bonnet de Sitter black holes are obtained. Meanwhile, we also extend the discussion of area/entropy quantization to the non-extremal black holes solutions. (general)

  3. Numerical counting ratemeter with variable time constant and integrated circuits

    International Nuclear Information System (INIS)

    Kaiser, J.; Fuan, J.

    1967-01-01

    We present here the prototype of a numerical counting ratemeter which is a special version of variable time-constant frequency meter (1). The originality of this work lies in the fact that the change in the time constant is carried out automatically. Since the criterion for this change is the accuracy in the annunciated result, the integration time is varied as a function of the frequency. For the prototype described in this report, the time constant varies from 1 sec to 1 millisec. for frequencies in the range 10 Hz to 10 MHz. This prototype is built entirely of MECL-type integrated circuits from Motorola and is thus contained in two relatively small boxes. (authors) [fr

  4. The new Toyota variable valve timing and lift system

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, K.; Fuwa, N.; Yoshihara, Y. [Toyota Motor Corporation (Japan); Hori, K. [Toyota Boshoku Corporation (Japan)

    2007-07-01

    A continuously variable valve timing (duration and phase) and lift system was developed. This system was applied to the valvetrain of a new 2.0L L4 engine (3ZRFAE) for the Japanese market. The system has rocker arms, which allow continuously variable timing and lift, situated between a conventional roller-rocker arm and the camshaft, an electromotor actuator to drive it and a phase mechanism for intake and exhaust camshafts (Dual VVT-i). The rocking center of the rocker arm is stationary, and the axial linear motion of a helical spline changes the initial phase of the rocker arm which varies the timing and lift. The linear motion mechanism uses an original planetary roller screw and is driven by a brushless motor with a built-in electric control unit. Since the rocking center and the linear motion helical spline center coincide, a compact cylinder head design was possible, and the cylinder head is a common design with a conventional engine. Since the ECU controls intake valve duration and timing, a fuel economy gain of maximum 10% (depending on driving condition) is obtained by reducing light to medium load pumping losses. Also intake efficiency was maximized throughout the speed range, resulting in a power gain of 10%. Further, HC emissions were reduced due to increased air speed at low valve lift. (orig.)

  5. Quadratic time dependent Hamiltonians and separation of variables

    International Nuclear Information System (INIS)

    Anzaldo-Meneses, A.

    2017-01-01

    Time dependent quantum problems defined by quadratic Hamiltonians are solved using canonical transformations. The Green’s function is obtained and a comparison with the classical Hamilton–Jacobi method leads to important geometrical insights like exterior differential systems, Monge cones and time dependent Gaussian metrics. The Wei–Norman approach is applied using unitary transformations defined in terms of generators of the associated Lie groups, here the semi-direct product of the Heisenberg group and the symplectic group. A new explicit relation for the unitary transformations is given in terms of a finite product of elementary transformations. The sequential application of adequate sets of unitary transformations leads naturally to a new separation of variables method for time dependent Hamiltonians, which is shown to be related to the Inönü–Wigner contraction of Lie groups. The new method allows also a better understanding of interacting particles or coupled modes and opens an alternative way to analyze topological phases in driven systems. - Highlights: • Exact unitary transformation reducing time dependent quadratic quantum Hamiltonian to zero. • New separation of variables method and simultaneous uncoupling of modes. • Explicit examples of transformations for one to four dimensional problems. • New general evolution equation for quadratic form in the action, respectively Green’s function.

  6. GRACE, time-varying gravity, Earth system dynamics and climate change

    Science.gov (United States)

    Wouters, B.; Bonin, J. A.; Chambers, D. P.; Riva, R. E. M.; Sasgen, I.; Wahr, J.

    2014-11-01

    Continuous observations of temporal variations in the Earth's gravity field have recently become available at an unprecedented resolution of a few hundreds of kilometers. The gravity field is a product of the Earth's mass distribution, and these data—provided by the satellites of the Gravity Recovery And Climate Experiment (GRACE)—can be used to study the exchange of mass both within the Earth and at its surface. Since the launch of the mission in 2002, GRACE data has evolved from being an experimental measurement needing validation from ground truth, to a respected tool for Earth scientists representing a fixed bound on the total change and is now an important tool to help unravel the complex dynamics of the Earth system and climate change. In this review, we present the mission concept and its theoretical background, discuss the data and give an overview of the major advances GRACE has provided in Earth science, with a focus on hydrology, solid Earth sciences, glaciology and oceanography.

  7. GRACE, time-varying gravity, Earth system dynamics and climate change

    International Nuclear Information System (INIS)

    Wouters, B; Bonin, J A; Chambers, D P; Riva, R E M; Sasgen, I; Wahr, J

    2014-01-01

    Continuous observations of temporal variations in the Earth's gravity field have recently become available at an unprecedented resolution of a few hundreds of kilometers. The gravity field is a product of the Earth's mass distribution, and these data—provided by the satellites of the Gravity Recovery And Climate Experiment (GRACE)—can be used to study the exchange of mass both within the Earth and at its surface. Since the launch of the mission in 2002, GRACE data has evolved from being an experimental measurement needing validation from ground truth, to a respected tool for Earth scientists representing a fixed bound on the total change and is now an important tool to help unravel the complex dynamics of the Earth system and climate change. In this review, we present the mission concept and its theoretical background, discuss the data and give an overview of the major advances GRACE has provided in Earth science, with a focus on hydrology, solid Earth sciences, glaciology and oceanography. (review article)

  8. Prewhitening of hydroclimatic time series? Implications for inferred change and variability across time scales

    Science.gov (United States)

    Razavi, Saman; Vogel, Richard

    2018-02-01

    Prewhitening, the process of eliminating or reducing short-term stochastic persistence to enable detection of deterministic change, has been extensively applied to time series analysis of a range of geophysical variables. Despite the controversy around its utility, methodologies for prewhitening time series continue to be a critical feature of a variety of analyses including: trend detection of hydroclimatic variables and reconstruction of climate and/or hydrology through proxy records such as tree rings. With a focus on the latter, this paper presents a generalized approach to exploring the impact of a wide range of stochastic structures of short- and long-term persistence on the variability of hydroclimatic time series. Through this approach, we examine the impact of prewhitening on the inferred variability of time series across time scales. We document how a focus on prewhitened, residual time series can be misleading, as it can drastically distort (or remove) the structure of variability across time scales. Through examples with actual data, we show how such loss of information in prewhitened time series of tree rings (so-called "residual chronologies") can lead to the underestimation of extreme conditions in climate and hydrology, particularly droughts, reconstructed for centuries preceding the historical period.

  9. Valuing travel time variability: Characteristics of the travel time distribution on an urban road

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Fukuda, Daisuke

    2012-01-01

    This paper provides a detailed empirical investigation of the distribution of travel times on an urban road for valuation of travel time variability. Our investigation is premised on the use of a theoretical model with a number of desirable properties. The definition of the value of travel time...... variability depends on certain properties of the distribution of random travel times that require empirical verification. Applying a range of nonparametric statistical techniques to data giving minute-by-minute travel times for a congested urban road over a period of five months, we show that the standardized...... travel time is roughly independent of the time of day as required by the theory. Except for the extreme right tail, a stable distribution seems to fit the data well. The travel time distributions on consecutive links seem to share a common stability parameter such that the travel time distribution...

  10. Time variable cosmological constants from the age of universe

    International Nuclear Information System (INIS)

    Xu Lixin; Lu Jianbo; Li Wenbo

    2010-01-01

    In this Letter, time variable cosmological constant, dubbed age cosmological constant, is investigated motivated by the fact: any cosmological length scale and time scale can introduce a cosmological constant or vacuum energy density into Einstein's theory. The age cosmological constant takes the form ρ Λ =3c 2 M P 2 /t Λ 2 , where t Λ is the age or conformal age of our universe. The effective equation of state (EoS) of age cosmological constant are w Λ eff =-1+2/3 (√(Ω Λ ))/c and w Λ eff =-1+2/3 (√(Ω Λ ))/c (1+z) when the age and conformal age of universe are taken as the role of cosmological time scales respectively. The EoS are the same as the so-called agegraphic dark energy models. However, the evolution histories are different from the agegraphic ones for their different evolution equations.

  11. Time and space variability of spectral estimates of atmospheric pressure

    Science.gov (United States)

    Canavero, Flavio G.; Einaudi, Franco

    1987-01-01

    The temporal and spatial behaviors of atmospheric pressure spectra over the northern Italy and the Alpine massif were analyzed using data on surface pressure measurements carried out at two microbarograph stations in the Po Valley, one 50 km south of the Alps, the other in the foothills of the Dolomites. The first 15 days of the study overlapped with the Alpex Intensive Observation Period. The pressure records were found to be intrinsically nonstationary and were found to display substantial time variability, implying that the statistical moments depend on time. The shape and the energy content of spectra depended on different time segments. In addition, important differences existed between spectra obtained at the two stations, indicating a substantial effect of topography, particularly for periods less than 40 min.

  12. Quadratic time dependent Hamiltonians and separation of variables

    Science.gov (United States)

    Anzaldo-Meneses, A.

    2017-06-01

    Time dependent quantum problems defined by quadratic Hamiltonians are solved using canonical transformations. The Green's function is obtained and a comparison with the classical Hamilton-Jacobi method leads to important geometrical insights like exterior differential systems, Monge cones and time dependent Gaussian metrics. The Wei-Norman approach is applied using unitary transformations defined in terms of generators of the associated Lie groups, here the semi-direct product of the Heisenberg group and the symplectic group. A new explicit relation for the unitary transformations is given in terms of a finite product of elementary transformations. The sequential application of adequate sets of unitary transformations leads naturally to a new separation of variables method for time dependent Hamiltonians, which is shown to be related to the Inönü-Wigner contraction of Lie groups. The new method allows also a better understanding of interacting particles or coupled modes and opens an alternative way to analyze topological phases in driven systems.

  13. Gravity-Assist Trajectories to the Ice Giants: An Automated Method to Catalog Mass-or Time-Optimal Solutions

    Science.gov (United States)

    Hughes, Kyle M.; Knittel, Jeremy M.; Englander, Jacob A.

    2017-01-01

    This work presents an automated method of calculating mass (or time) optimal gravity-assist trajectories without a priori knowledge of the flyby-body combination. Since gravity assists are particularly crucial for reaching the outer Solar System, we use the Ice Giants, Uranus and Neptune, as example destinations for this work. Catalogs are also provided that list the most attractive trajectories found over launch dates ranging from 2024 to 2038. The tool developed to implement this method, called the Python EMTG Automated Trade Study Application (PEATSA), iteratively runs the Evolutionary Mission Trajectory Generator (EMTG), a NASA Goddard Space Flight Center in-house trajectory optimization tool. EMTG finds gravity-assist trajectories with impulsive maneuvers using a multiple-shooting structure along with stochastic methods (such as monotonic basin hopping) and may be run with or without an initial guess provided. PEATSA runs instances of EMTG in parallel over a grid of launch dates. After each set of runs completes, the best results within a neighborhood of launch dates are used to seed all other cases in that neighborhood---allowing the solutions across the range of launch dates to improve over each iteration. The results here are compared against trajectories found using a grid-search technique, and PEATSA is found to outperform the grid-search results for most launch years considered.

  14. Variable dead time counters: 2. A computer simulation

    International Nuclear Information System (INIS)

    Hooton, B.W.; Lees, E.W.

    1980-09-01

    A computer model has been developed to give a pulse train which simulates that generated by a variable dead time counter (VDC) used in safeguards determination of Pu mass. The model is applied to two algorithms generally used for VDC analysis. It is used to determine their limitations at high counting rates and to investigate the effects of random neutrons from (α,n) reactions. Both algorithms are found to be deficient for use with masses of 240 Pu greater than 100g and one commonly used algorithm is shown, by use of the model and also by theory, to yield a result which is dependent on the random neutron intensity. (author)

  15. Intra-individual variability in the urine concentrations of inhaled salmeterol in male subjects with reference to doping analysis – impact of urine specific gravity correction

    DEFF Research Database (Denmark)

    Hostrup, Morten; Kalsen, Anders; Hemmersbach, Peter

    2012-01-01

    and a-hydroxysalmeterol during visits one and two were 12.6 and 21.8%, respectively. The intra-individual variability of salmeterol and a-hydroxysalmeterol in the urine concentrations were significantly higher when uncorrected for USG with 43.0 and 43.7% versus 20.4% (p...Since 2010, the World Anti-Doping Agency (WADA) has introduced urinary thresholds for some beta2-agonists. In doping analysis urine samples of beta2-agonists are not corrected for the Urine Specific Gravity (USG) by the WADA laboratories. Several studies have observed high differences in the urine...

  16. Coherent states for FLRW space-times in loop quantum gravity

    International Nuclear Information System (INIS)

    Magliaro, Elena; Perini, Claudio; Marciano, Antonino

    2011-01-01

    We construct a class of coherent spin-network states that capture properties of curved space-times of the Friedmann-Lamaitre-Robertson-Walker type on which they are peaked. The data coded by a coherent state are associated to a cellular decomposition of a spatial (t=const) section with a dual graph given by the complete five-vertex graph, though the construction can be easily generalized to other graphs. The labels of coherent states are complex SL(2,C) variables, one for each link of the graph, and are computed through a smearing process starting from a continuum extrinsic and intrinsic geometry of the canonical surface. The construction covers both Euclidean and Lorentzian signatures; in the Euclidean case and in the limit of flat space we reproduce the simplicial 4-simplex semiclassical states used in spin foams.

  17. Variable slip wind generator modeling for real-time simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, R.; Brochu, J.; Turmel, G. [Hydro-Quebec, Varennes, PQ (Canada). IREQ

    2006-07-01

    A model of a wind turbine using a variable slip wound-rotor induction machine was presented. The model was created as part of a library of generic wind generator models intended for wind integration studies. The stator winding of the wind generator was connected directly to the grid and the rotor was driven by the turbine through a drive train. The variable resistors was synthesized by an external resistor in parallel with a diode rectifier. A forced-commutated power electronic device (IGBT) was connected to the wound rotor by slip rings and brushes. Simulations were conducted in a Matlab/Simulink environment using SimPowerSystems blocks to model power systems elements and Simulink blocks to model the turbine, control system and drive train. Detailed descriptions of the turbine, the drive train and the control system were provided. The model's implementation in the simulator was also described. A case study demonstrating the real-time simulation of a wind generator connected at the distribution level of a power system was presented. Results of the case study were then compared with results obtained from the SimPowerSystems off-line simulation. Results showed good agreement between the waveforms, demonstrating the conformity of the real-time and the off-line simulations. The capability of Hypersim for real-time simulation of wind turbines with power electronic converters in a distribution network was demonstrated. It was concluded that hardware-in-the-loop (HIL) simulation of wind turbine controllers for wind integration studies in power systems is now feasible. 5 refs., 1 tab., 6 figs.

  18. Variability of interconnected wind plants: correlation length and its dependence on variability time scale

    Science.gov (United States)

    St. Martin, Clara M.; Lundquist, Julie K.; Handschy, Mark A.

    2015-04-01

    The variability in wind-generated electricity complicates the integration of this electricity into the electrical grid. This challenge steepens as the percentage of renewably-generated electricity on the grid grows, but variability can be reduced by exploiting geographic diversity: correlations between wind farms decrease as the separation between wind farms increases. But how far is far enough to reduce variability? Grid management requires balancing production on various timescales, and so consideration of correlations reflective of those timescales can guide the appropriate spatial scales of geographic diversity grid integration. To answer ‘how far is far enough,’ we investigate the universal behavior of geographic diversity by exploring wind-speed correlations using three extensive datasets spanning continents, durations and time resolution. First, one year of five-minute wind power generation data from 29 wind farms span 1270 km across Southeastern Australia (Australian Energy Market Operator). Second, 45 years of hourly 10 m wind-speeds from 117 stations span 5000 km across Canada (National Climate Data Archive of Environment Canada). Finally, four years of five-minute wind-speeds from 14 meteorological towers span 350 km of the Northwestern US (Bonneville Power Administration). After removing diurnal cycles and seasonal trends from all datasets, we investigate dependence of correlation length on time scale by digitally high-pass filtering the data on 0.25-2000 h timescales and calculating correlations between sites for each high-pass filter cut-off. Correlations fall to zero with increasing station separation distance, but the characteristic correlation length varies with the high-pass filter applied: the higher the cut-off frequency, the smaller the station separation required to achieve de-correlation. Remarkable similarities between these three datasets reveal behavior that, if universal, could be particularly useful for grid management. For high

  19. Time-scales of stellar rotational variability and starspot diagnostics

    Science.gov (United States)

    Arkhypov, Oleksiy V.; Khodachenko, Maxim L.; Lammer, Helmut; Güdel, Manuel; Lüftinger, Teresa; Johnstone, Colin P.

    2018-01-01

    The difference in stability of starspot distribution on the global and hemispherical scales is studied in the rotational spot variability of 1998 main-sequence stars observed by Kepler mission. It is found that the largest patterns are much more stable than smaller ones for cool, slow rotators, whereas the difference is less pronounced for hotter stars and/or faster rotators. This distinction is interpreted in terms of two mechanisms: (1) the diffusive decay of long-living spots in activity complexes of stars with saturated magnetic dynamos, and (2) the spot emergence, which is modulated by gigantic turbulent flows in convection zones of stars with a weaker magnetism. This opens a way for investigation of stellar deep convection, which is yet inaccessible for asteroseismology. Moreover, a subdiffusion in stellar photospheres was revealed from observations for the first time. A diagnostic diagram was proposed that allows differentiation and selection of stars for more detailed studies of these phenomena.

  20. Planetary and gravity wave signatures in the F region ionosphere with impact on radio propagation predictions and variability

    Czech Academy of Sciences Publication Activity Database

    Altadill, D.; Apostolov, E. M.; Boška, Josef; Laštovička, Jan; Šauli, Petra

    2004-01-01

    Roč. 47, 2/3 (2004), s. 1109-1119 ISSN 1593-5213. [Final Meeting COST271 Action. Effects of the upper atmosphere on terrestrial and Earth-space communications (EACOS). Abingdon, 26.08.2004-27.08.2004] R&D Projects: GA MŠk OC 271.10; GA ČR GA205/01/1071; GA ČR GP205/02/P077 Institutional research plan: CEZ:AV0Z3042911 Keywords : ionosphere * planetary waves * gravity waves Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.413, year: 2004

  1. Perfectionistic Cognitions: Stability, Variability, and Changes Over Time.

    Science.gov (United States)

    Prestele, Elisabeth; Altstötter-Gleich, Christine

    2018-02-01

    The construct of perfectionistic cognitions is defined as a state-like construct resulting from a perfectionistic self-schema and activated by specific situational demands. Only a few studies have investigated whether and how perfectionistic cognitions change across different situations and whether they reflect stable between-person differences or also within-person variations over time. We conducted 2 studies to investigate the variability and stability of 3 dimensions of perfectionistic cognitions while situational demands changed (Study 1) and on a daily level during a highly demanding period of time (Study 2). The results of both studies revealed that stable between-person differences accounted for the largest proportion of variance in the dimensions of perfectionistic cognitions and that these differences were validly associated with between-person differences in affect. The frequency of perfectionistic cognitions increased during students' first semester at university, and these average within-person changes were different for the 3 dimensions of perfectionistic cognitions (Study 1). In addition, there were between-person differences in the within-person changes that were validly associated with concurrent changes in closely related constructs (unpleasant mood and tense arousal). Within-person variations in perfectionistic cognitions were also validly associated with variations in unpleasant mood and tense arousal from day to day (Study 2).

  2. Chaos synchronization in time-delayed systems with parameter mismatches and variable delay times

    International Nuclear Information System (INIS)

    Shahverdiev, E.M.; Nuriev, R.A.; Hashimov, R.H.; Shore, K.A.

    2004-06-01

    We investigate synchronization between two undirectionally linearly coupled chaotic nonidentical time-delayed systems and show that parameter mismatches are of crucial importance to achieve synchronization. We establish that independent of the relation between the delay time in the coupled systems and the coupling delay time, only retarded synchronization with the coupling delay time is obtained. We show that with parameter mismatch or without it neither complete nor anticipating synchronization occurs. We derive existence and stability conditions for the retarded synchronization manifold. We demonstrate our approach using examples of the Ikeda and Mackey Glass models. Also for the first time we investigate chaos synchronization in time-delayed systems with variable delay time and find both existence and sufficient stability conditions for the retarded synchronization manifold with the coupling-delay lag time. (author)

  3. Protecting chips against hold time violations due to variability

    CERN Document Server

    Neuberger, Gustavo; Reis, Ricardo

    2013-01-01

    With the development of Very-Deep Sub-Micron technologies, process variability is becoming increasingly important and is a very important issue in the design of complex circuits. Process variability is the statistical variation of process parameters, meaning that these parameters do not have always the same value, but become a random variable, with a given mean value and standard deviation. This effect can lead to several issues in digital circuit design.The logical consequence of this parameter variation is that circuit characteristics, as delay and power, also become random variables. Becaus

  4. Quasinormal modes and thermodynamics of linearly charged BTZ black holes in massive gravity in (anti) de Sitter space-time

    Energy Technology Data Exchange (ETDEWEB)

    Prasia, P.; Kuriakose, V.C. [Cochin University of Science and Technology, Department of Physics, Kochi (India)

    2017-01-15

    In this work we study the Quasi-Normal Modes (QNMs) under massless scalar perturbations and the thermodynamics of linearly charged BTZ black holes in massive gravity in the (Anti)de Sitter ((A)dS) space-time. It is found that the behavior of QNMs changes with the massive parameter of the graviton and also with the charge of the black hole. The thermodynamics of such black holes in the (A)dS space-time is also analyzed in detail. The behavior of specific heat with temperature for such black holes gives an indication of a phase transition that depends on the massive parameter of the graviton and also on the charge of the black hole. (orig.)

  5. Towards conformal loop quantum gravity

    International Nuclear Information System (INIS)

    Wang, Charles H-T

    2006-01-01

    A discussion is given of recent developments in canonical gravity that assimilates the conformal analysis of gravitational degrees of freedom. The work is motivated by the problem of time in quantum gravity and is carried out at the metric and the triad levels. At the metric level, it is shown that by extending the Arnowitt-Deser-Misner (ADM) phase space of general relativity (GR), a conformal form of geometrodynamics can be constructed. In addition to the Hamiltonian and Diffeomorphism constraints, an extra first class constraint is introduced to generate conformal transformations. This phase space consists of York's mean extrinsic curvature time, conformal three-metric and their momenta. At the triad level, the phase space of GR is further enlarged by incorporating spin-gauge as well as conformal symmetries. This leads to a canonical formulation of GR using a new set of real spin connection variables. The resulting gravitational constraints are first class, consisting of the Hamiltonian constraint and the canonical generators for spin-gauge and conformorphism transformations. The formulation has a remarkable feature of being parameter-free. Indeed, it is shown that a conformal parameter of the Barbero-Immirzi type can be absorbed by the conformal symmetry of the extended phase space. This gives rise to an alternative approach to loop quantum gravity that addresses both the conceptual problem of time and the technical problem of functional calculus in quantum gravity

  6. Search for scalar-tensor gravity theories with a non-monotonic time evolution of the speed-up factor

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, A [Dept Fisica, Universidad de Murcia, E30071-Murcia (Spain); Serna, A [Dept Fisica, Computacion y Comunicaciones, Universidad Miguel Hernandez, E03202-Elche (Spain); Alimi, J-M [Lab. de l' Univers et de ses Theories (LUTH, CNRS FRE2462), Observatoire de Paris-Meudon, F92195-Meudon (France)

    2002-08-21

    We present a method to detect, in the framework of scalar-tensor gravity theories, the existence of stationary points in the time evolution of the speed-up factor. An attractive aspect of this method is that, once the particular scalar-tensor theory has been specified, the stationary points are found through a simple algebraic equation which does not contain any integration. By applying this method to the three classes of scalar-tensor theories defined by Barrow and Parsons, we have found several new cosmological models with a non-monotonic evolution of the speed-up factor. The physical interest of these models is that, as previously shown by Serna and Alimi, they predict the observed primordial abundance of light elements for a very wide range of baryon density. These models are then consistent with recent CMB and Lyman-{alpha} estimates of the baryon content of the universe.

  7. Anticipating the effects of visual gravity during simulated self-motion: estimates of time-to-passage along vertical and horizontal paths.

    Science.gov (United States)

    Indovina, Iole; Maffei, Vincenzo; Lacquaniti, Francesco

    2013-09-01

    By simulating self-motion on a virtual rollercoaster, we investigated whether acceleration cued by the optic flow affected the estimate of time-to-passage (TTP) to a target. In particular, we studied the role of a visual acceleration (1 g = 9.8 m/s(2)) simulating the effects of gravity in the scene, by manipulating motion law (accelerated or decelerated at 1 g, constant speed) and motion orientation (vertical, horizontal). Thus, 1-g-accelerated motion in the downward direction or decelerated motion in the upward direction was congruent with the effects of visual gravity. We found that acceleration (positive or negative) is taken into account but is overestimated in module in the calculation of TTP, independently of orientation. In addition, participants signaled TTP earlier when the rollercoaster accelerated downward at 1 g (as during free fall), with respect to when the same acceleration occurred along the horizontal orientation. This time shift indicates an influence of the orientation relative to visual gravity on response timing that could be attributed to the anticipation of the effects of visual gravity on self-motion along the vertical, but not the horizontal orientation. Finally, precision in TTP estimates was higher during vertical fall than when traveling at constant speed along the vertical orientation, consistent with a higher noise in TTP estimates when the motion violates gravity constraints.

  8. Emergent semiclassical time in quantum gravity: II. Full geometrodynamics and minisuperspace examples

    International Nuclear Information System (INIS)

    Anderson, Edward

    2007-01-01

    I apply the preceding paper's emergent semiclassical time approach to geometrodynamics. The analogy between the two papers is useful at the level of the quadratic constraints, while I document the differences between the two due to the underlying differences in their linear constraints. I find that the emergent time-dependent wave equation for the universe in general not a time-dependent Schroedinger equation but rather a more general equation containing second time derivatives, and estimate in which regime this becomes significant. I provide a specific minisuperspace example for my emergent semiclassical time scheme and compare it with the hidden York time scheme. Overall, interesting connections are shown between Newtonian, Leibniz-Mach-Barbour, Wentzel-Kramers-Brillouin (WKB) and cosmic times, while the Euler and York hidden dilational times are argued to be somewhat different from these

  9. Feynman propagator for spin foam quantum gravity.

    Science.gov (United States)

    Oriti, Daniele

    2005-03-25

    We link the notion causality with the orientation of the spin foam 2-complex. We show that all current spin foam models are orientation independent. Using the technology of evolution kernels for quantum fields on Lie groups, we construct a generalized version of spin foam models, introducing an extra proper time variable. We prove that different ranges of integration for this variable lead to different classes of spin foam models: the usual ones, interpreted as the quantum gravity analogue of the Hadamard function of quantum field theory (QFT) or as inner products between quantum gravity states; and a new class of causal models, the quantum gravity analogue of the Feynman propagator in QFT, nontrivial function of the orientation data, and implying a notion of "timeless ordering".

  10. Alternative Hamiltonian representation for gravity

    Energy Technology Data Exchange (ETDEWEB)

    Rosas-RodrIguez, R [Instituto de Fisica, Universidad Autonoma de Puebla, Apdo. Postal J-48, 72570, Puebla, Pue. (Mexico)

    2007-11-15

    By using a Hamiltonian formalism for fields wider than the canonical one, we write the Einstein vacuum field equations in terms of alternative variables. This variables emerge from the Ashtekar's formalism for gravity.

  11. Alternative Hamiltonian representation for gravity

    International Nuclear Information System (INIS)

    Rosas-RodrIguez, R

    2007-01-01

    By using a Hamiltonian formalism for fields wider than the canonical one, we write the Einstein vacuum field equations in terms of alternative variables. This variables emerge from the Ashtekar's formalism for gravity

  12. Topics in quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Lamon, Raphael

    2010-06-29

    Quantum gravity is an attempt to unify general relativity with quantum mechanics which are the two highly successful fundamental theories of theoretical physics. The main difficulty in this unification arises from the fact that, while general relativity describes gravity as a macroscopic geometrical theory, quantum mechanics explains microscopic phenomena. As a further complication, not only do both theories describe different scales but also their philosophical ramifications and the mathematics used to describe them differ in a dramatic way. Consequently, one possible starting point of an attempt at a unification is quantum mechanics, i.e. particle physics, and try to incorporate gravitation. This pathway has been chosen by particle physicists which led to string theory. On the other hand, loop quantum gravity (LQG) chooses the other possibility, i.e. it takes the geometrical aspects of gravity seriously and quantizes geometry. The first part of this thesis deals with a generalization of loop quantum cosmology (LQC) to toroidal topologies. LQC is a quantization of homogenous solutions of Einstein's field equations using tools from LQG. First the general concepts of closed topologies is introduced with special emphasis on Thurston's theorem and its consequences. It is shown that new degrees of freedom called Teichmueller parameters come into play and their dynamics can be described by a Hamiltonian. Several numerical solutions for a toroidal universe are presented and discussed. Following the guidelines of LQG this dynamics are rewritten using the Ashtekar variables and numerical solutions are shown. However, in order to find a suitable Hilbert space a canonical transformation must be performed. On the other hand this transformation makes the quantization of geometrical quantities less tractable such that two different ways are presented. It is shown that in both cases the spectrum of such geometrical operators depends on the initial value problem

  13. Topics in quantum gravity

    International Nuclear Information System (INIS)

    Lamon, Raphael

    2010-01-01

    Quantum gravity is an attempt to unify general relativity with quantum mechanics which are the two highly successful fundamental theories of theoretical physics. The main difficulty in this unification arises from the fact that, while general relativity describes gravity as a macroscopic geometrical theory, quantum mechanics explains microscopic phenomena. As a further complication, not only do both theories describe different scales but also their philosophical ramifications and the mathematics used to describe them differ in a dramatic way. Consequently, one possible starting point of an attempt at a unification is quantum mechanics, i.e. particle physics, and try to incorporate gravitation. This pathway has been chosen by particle physicists which led to string theory. On the other hand, loop quantum gravity (LQG) chooses the other possibility, i.e. it takes the geometrical aspects of gravity seriously and quantizes geometry. The first part of this thesis deals with a generalization of loop quantum cosmology (LQC) to toroidal topologies. LQC is a quantization of homogenous solutions of Einstein's field equations using tools from LQG. First the general concepts of closed topologies is introduced with special emphasis on Thurston's theorem and its consequences. It is shown that new degrees of freedom called Teichmueller parameters come into play and their dynamics can be described by a Hamiltonian. Several numerical solutions for a toroidal universe are presented and discussed. Following the guidelines of LQG this dynamics are rewritten using the Ashtekar variables and numerical solutions are shown. However, in order to find a suitable Hilbert space a canonical transformation must be performed. On the other hand this transformation makes the quantization of geometrical quantities less tractable such that two different ways are presented. It is shown that in both cases the spectrum of such geometrical operators depends on the initial value problem. Furthermore, we

  14. Massive Gravity

    OpenAIRE

    de Rham, Claudia

    2014-01-01

    We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware–Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alt...

  15. Deep structure of Pyrenees range (SW Europe) imaged by joint inversion of gravity and teleseismic delay time

    Science.gov (United States)

    Dufréchou, G.; Tiberi, C.; Martin, R.; Bonvalot, S.; Chevrot, S.; Seoane, L.

    2018-04-01

    We present a new model of the lithosphere and asthenosphere structure down to 300 km depth beneath the Pyrenees from the joint inversion of recent gravity and teleseismic data. Unlike previous studies, crustal correction were not applied on teleseismic data in order (i) to preserve the consistency between gravity data, which are mainly sensitive to the density structure of the crust.lithosphere, and travel time data, and (ii) to avoid the introduction of biases resulting from crustal reductions. The density model down to 100 km depth is preferentially used here to discuss the lithospheric structure of the Pyrenees, whereas the asthenospheric structure from 100 km to 300 km depth is discussed from our velocity model. The absence of a high density anomaly in our model between 30-100 km depth (except the Labourd density anomaly) in the northern part of the Pyrenees seems to preclude eclogitization of the subducted Iberian crust at the scale of the entire Pyrenean range. Local eclogitization of the deep Pyrenean crust beneath the western part of the Axial Zone (West of Andorra) associated with the positive Central density anomaly is proposed. The Pyrenean lithosphere in density and velocity models appears segmented from East to West. No clear relation between the along-strike segmentation and mapped major faults is visible in our models. The Pyrenees' lithosphere segments are associated to different seismicity pattern in the Pyrenees suggesting a possible relation between the deep structure of the Pyrenees and its seismicity in the upper crust. The concentration of earthquakes localized just straight up the Central density anomaly can result of the subsidence and/or delamination of an eclogitized Pyrenean deep root. The velocity model in the asthenosphere is similar to previous studies. The absence of a high-velocity anomaly in the upper mantle and transition zone (i.e. 125 to 225 km depth) seems to preclude the presence of a detached oceanic lithosphere beneath the

  16. Leisure time physical activity, screen time, social background, and environmental variables in adolescents.

    Science.gov (United States)

    Mota, Jorge; Gomes, Helena; Almeida, Mariana; Ribeiro, José Carlos; Santos, Maria Paula

    2007-08-01

    This study analyzes the relationships between leisure time physical activity (LTPA), sedentary behaviors, socioeconomic status, and perceived environmental variables. The sample comprised 815 girls and 746 boys. In girls, non-LTPA participants reported significantly more screen time. Girls with safety concerns were more likely to be in the non-LTPA group (OR = 0.60) and those who agreed with the importance of aesthetics were more likely to be in the active-LTPA group (OR = 1.59). In girls, an increase of 1 hr of TV watching was a significant predictor of non-LTPA (OR = 0.38). LTPA for girls, but not for boys, seems to be influenced by certain modifiable factors of the built environment, as well as by time watching TV.

  17. Classical Weyl transverse gravity

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Ichiro [University of the Ryukyus, Department of Physics, Faculty of Science, Nishihara, Okinawa (Japan)

    2017-05-15

    We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge-fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally invariant scalar tensor gravity and the WTDiff gravity is a ''fake'' symmetry. We find it possible to extend this proof to all matter fields, i.e. the Weyl-invariant scalar, vector and spinor fields. Fourthly, it is explicitly shown that in the WTDiff gravity the Schwarzschild black hole metric and a charged black hole one are classical solutions to the equations of motion only when they are expressed in the Cartesian coordinate system. Finally, we consider the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology and provide some exact solutions. (orig.)

  18. Quantum astrometric observables I: time delay in classical and quantum gravity

    NARCIS (Netherlands)

    Khavkine, I.

    2012-01-01

    A class of diffeomorphism invariant, physical observables, so-called astrometric observables, is introduced. A particularly simple example, the time delay, which expresses the difference between two initially synchronized proper time clocks in relative inertial motion, is analyzed in detail. It is

  19. Dynamics of macroeconomic and financial variables in different time horizons

    OpenAIRE

    Kim Karlsson, Hyunjoo

    2012-01-01

    This dissertation consists of an introductory chapter and four papers dealing with financial issues of open economies, which can be in two broad categorizations: 1) exchange rate movements and 2) stock market interdependence. The first paper covers how the exchange rate changes affect the prices of internationally traded goods. With the variables (the price of exports in exporters’ currency and the exchange rate, both of which are in logarithmic form) being cointegrated, a model with both lon...

  20. Noise Reduction, Atmospheric Pressure Admittance Estimation and Long-Period Component Extraction in Time-Varying Gravity Signals Using Ensemble Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Linsong Wang

    2015-01-01

    Full Text Available Time-varying gravity signals, with their nonlinear, non-stationary and multi-scale characteristics, record the physical responses of various geodynamic processes and consist of a blend of signals with various periods and amplitudes, corresponding to numerous phenomena. Superconducting gravimeter (SG records are processed in this study using a multi-scale analytical method and corrected for known effects to reduce noise, to study geodynamic phenomena using their gravimetric signatures. Continuous SG (GWR-C032 gravity and barometric data are decomposed into a series of intrinsic mode functions (IMFs using the ensemble empirical mode decomposition (EEMD method, which is proposed to alleviate some unresolved issues (the mode mixing problem and the end effect of the empirical mode decomposition (EMD. Further analysis of the variously scaled signals is based on a dyadic filter bank of the IMFs. The results indicate that removing the high-frequency IMFs can reduce the natural and man-made noise in the data, which are caused by electronic device noise, Earth background noise and the residual effects of pre-processing. The atmospheric admittances based on frequency changes are estimated from the gravity and the atmospheric pressure IMFs in various frequency bands. These time- and frequency-dependent admittance values can be used effectively to improve the atmospheric correction. Using the EEMD method as a filter, the long-period IMFs are extracted from the SG time-varying gravity signals spanning 7 years. The resulting gravity residuals are well correlated with the gravity effect caused by the _ polar motion after correcting for atmospheric effects.

  1. Towards the entropy of gravity time-dependent models via the Cardy-Verlinde formula

    International Nuclear Information System (INIS)

    Obregon, Octavio; Patino, Leonardo; Quevedo, Hernando

    2003-01-01

    For models with several time-dependent components, generalized entropies can be defined. This is shown for the Bianchi type IX model. We first derive the Cardy-Verlinde formula under the assumption that the first law of thermodynamics is valid. This leads to an explicit expression of the total entropy associated with this type of universe. Assuming the validity of the Cardy entropy formula, we obtain expressions for the corresponding Bekenstein, Bekenstein-Hawking and Hubble entropies. We discuss the validity of the Cardy-Verlinde formula and possible extensions of the outlined procedure to other time-dependent models

  2. Corrigendum to ``Time stability of spring and superconducting gravimeters through the analysis of very long gravity record'' [J. Geodyn. 80, (2014) 20-33

    Science.gov (United States)

    Calvo, M.; Hinderer, J.; Rosat, S.; Legros, H.; Boy, J.-P.; Ducarme, B.; Zürn, W.

    2017-05-01

    In the paper ;Time stability of spring and superconducting gravimeters through the analysis of very long gravity record; by M. Calvo et al. (J. Geodyn. Vol. 80, pp. 20-33, doi:10.1016/j.jog.2014.04.009), Figs. 13 and 16 are incorrect.

  3. a Perturbation Approach to Translational Gravity

    Science.gov (United States)

    Julve, J.; Tiemblo, A.

    2013-05-01

    Within a gauge formulation of 3+1 gravity relying on a nonlinear realization of the group of isometries of space-time, a natural expansion of the metric tensor arises and a simple choice of the gravity dynamical variables is possible. We show that the expansion parameter can be identified with the gravitational constant and that the first-order depends only on a diagonal matrix in the ensuing perturbation approach. The explicit first-order solution is calculated in the static isotropic case, and its general structure is worked out in the harmonic gauge.

  4. Planar attitude motion of a satellite with a variable mass distribution in field of gravity of attracting center

    Science.gov (United States)

    Burov, Alexander; Kosenko, Ivan

    2018-05-01

    Dynamics of a spacecraft with a variable mass distribution in a central field of Newtonian attraction is considered. Using another viewpoint one can regard sufficiently compact formation instead of a spacecraft. This formation can vary distances between its particular spacecrafts thus implementing pulsing motions of the system as a whole. Within the so-called "satellite approximation" the equations of spatial attitude motion are obtained. Rules of the mass redistribution providing prescribed in advance attitude motions are indicated. For classes of relative equilibria previously found and existing under appropriate rules of the mass redistribution, stability study is performed. The investigation splits into two topics: (a) general dynamical consideration for the planar attitude satellite motion with use of the KAM theory; (b) constructing the families of periodic solutions represented by means of convergent series in powers of eccentricity and describing satellite motions emanating from its relative equilibria.

  5. On time-frequence analysis of heart rate variability

    NARCIS (Netherlands)

    H.G. van Steenis (Hugo)

    2002-01-01

    textabstractThe aim of this research is to develop a time-frequency method suitable to study HRV in greater detail. The following approach was used: • two known time-frequency representations were applied to HRV to understand its advantages and disadvantages in describing HRV in frequency and in

  6. Stringy models of modified gravity: space-time defects and structure formation

    International Nuclear Information System (INIS)

    Mavromatos, Nick E.; Sakellariadou, Mairi; Yusaf, Muhammad Furqaan

    2013-01-01

    Starting from microscopic models of space-time foam, based on brane universes propagating in bulk space-times populated by D0-brane defects (''D-particles''), we arrive at effective actions used by a low-energy observer on the brane world to describe his/her observations of the Universe. These actions include, apart from the metric tensor field, also scalar (dilaton) and vector fields, the latter describing the interactions of low-energy matter on the brane world with the recoiling point-like space-time defect (D-particle). The vector field is proportional to the recoil velocity of the D-particle and as such it satisfies a certain constraint. The vector breaks locally Lorentz invariance, which however is assumed to be conserved on average in a space-time foam situation, involving the interaction of matter with populations of D-particle defects. In this paper we clarify the role of fluctuations of the vector field on structure formation and galactic growth. In particular we demonstrate that, already at the end of the radiation era, the (constrained) vector field associated with the recoil of the defects provides the seeds for a growing mode in the evolution of the Universe. Such a growing mode survives during the matter dominated era, provided the variance of the D-particle recoil velocities on the brane is larger than a critical value. We note that in this model, as a result of specific properties of D-brane dynamics in the bulk, there is no issue of overclosing the brane Universe for large defect densities. Thus, in these models, the presence of defects may be associated with large-structure formation. Although our string inspired models do have (conventional, from a particle physics point of view) dark matter components, nevertheless it is interesting that the role of ''extra'' dark matter is also provided by the population of massive defects. This is consistent with the weakly interacting character of the D-particle defects, which predominantly interact only

  7. Handling Time-dependent Variables : Antibiotics and Antibiotic Resistance

    NARCIS (Netherlands)

    Munoz-Price, L. Silvia; Frencken, Jos F.; Tarima, Sergey; Bonten, Marc

    2016-01-01

    Elucidating quantitative associations between antibiotic exposure and antibiotic resistance development is important. In the absence of randomized trials, observational studies are the next best alternative to derive such estimates. Yet, as antibiotics are prescribed for varying time periods,

  8. Response to gravity by Zea mays seedlings. I. Time course of the response

    Science.gov (United States)

    Bandurski, R. S.; Schulze, A.; Dayanandan, P.; Kaufman, P. B.

    1984-01-01

    Gravistimulation induces an asymmetric distribution of free indole-3-acetic acid (IAA) in the cortex-epidermis of the Zea mays L. cv 'Stowells Evergreen' mesocotyl within 15 minutes, the shortest time tested. IAA was measured by an isotope dilution method as the pentaflurobenzyl ester. The per cent IAA in the lower half of the mescotyl cortex was 56 to 57% at 15, 30, and 90 minutes after stimulus initiation. Curvature is detectable in the mescotyl within 3 minutes after beginning gravitropic stimulation. The rate of curvature of the mesocotyl increases during the first 60 minutes to maximum of about 30 degrees per hour. Thus, the growth asymmetry continues to increase for 45 minutes after hormone asymmetry is established. Free IAA occurs predominantly in the stele of the mesocotyl whereas esterified IAA is mainly in the mesocotyl cortex-epidermis. This compartmentation may permit determining in which tissue the hormone asymmetry arises. Current data suggest the asymmetry originated in the stele.

  9. Massive bosons interacting with gravity: No standard solutions in Robertson-Walker space-time

    International Nuclear Information System (INIS)

    Zecca, A.

    2009-01-01

    The problem of the interaction of boson and gravitational field is formulated in the Robertson-Walker space-time. It consist the simultaneous solution of the boson and of the Einstein field equation whose source is the energy momentum tensor of the boson field. By direct verification it is shown that the problem does not admit solutions in the class of massive standard solutions, previously determined, of the boson field equation. Also there cannot be solutions, in case of massive interacting boson, that are superpositions of standard solutions. The case of massless boson field is left open. The result is essentially due to the very special form of the Einstein tensor in Robertson-Walker metric.

  10. Real-time monitoring of high-gravity corn mash fermentation using in situ raman spectroscopy.

    Science.gov (United States)

    Gray, Steven R; Peretti, Steven W; Lamb, H Henry

    2013-06-01

    In situ Raman spectroscopy was employed for real-time monitoring of simultaneous saccharification and fermentation (SSF) of corn mash by an industrial strain of Saccharomyces cerevisiae. An accurate univariate calibration model for ethanol was developed based on the very strong 883 cm(-1) C-C stretching band. Multivariate partial least squares (PLS) calibration models for total starch, dextrins, maltotriose, maltose, glucose, and ethanol were developed using data from eight batch fermentations and validated using predictions for a separate batch. The starch, ethanol, and dextrins models showed significant prediction improvement when the calibration data were divided into separate high- and low-concentration sets. Collinearity between the ethanol and starch models was avoided by excluding regions containing strong ethanol peaks from the starch model and, conversely, excluding regions containing strong saccharide peaks from the ethanol model. The two-set calibration models for starch (R(2)  = 0.998, percent error = 2.5%) and ethanol (R(2)  = 0.999, percent error = 2.1%) provide more accurate predictions than any previously published spectroscopic models. Glucose, maltose, and maltotriose are modeled to accuracy comparable to previous work on less complex fermentation processes. Our results demonstrate that Raman spectroscopy is capable of real time in situ monitoring of a complex industrial biomass fermentation. To our knowledge, this is the first PLS-based chemometric modeling of corn mash fermentation under typical industrial conditions, and the first Raman-based monitoring of a fermentation process with glucose, oligosaccharides and polysaccharides present. Copyright © 2013 Wiley Periodicals, Inc.

  11. Late time acceleration of the 3-space in a higher dimensional steady state universe in dilaton gravity

    International Nuclear Information System (INIS)

    Akarsu, Özgür; Dereli, Tekin

    2013-01-01

    We present cosmological solutions for (1+3+n)-dimensional steady state universe in dilaton gravity with an arbitrary dilaton coupling constant w and exponential dilaton self-interaction potentials in the string frame. We focus particularly on the class in which the 3-space expands with a time varying deceleration parameter. We discuss the number of the internal dimensions and the value of the dilaton coupling constant to determine the cases that are consistent with the observed universe and the primordial nucleosynthesis. The 3-space starts with a decelerated expansion rate and evolves into accelerated expansion phase subject to the values of w and n, but ends with a Big Rip in all cases. We discuss the cosmological evolution in further detail for the cases w = 1 and w = ½ that permit exact solutions. We also comment on how the universe would be conceived by an observer in four dimensions who is unaware of the internal dimensions and thinks that the conventional general relativity is valid at cosmological scales

  12. Late time acceleration of the 3-space in a higher dimensional steady state universe in dilaton gravity

    Science.gov (United States)

    Akarsu, Özgür; Dereli, Tekin

    2013-02-01

    We present cosmological solutions for (1+3+n)-dimensional steady state universe in dilaton gravity with an arbitrary dilaton coupling constant w and exponential dilaton self-interaction potentials in the string frame. We focus particularly on the class in which the 3-space expands with a time varying deceleration parameter. We discuss the number of the internal dimensions and the value of the dilaton coupling constant to determine the cases that are consistent with the observed universe and the primordial nucleosynthesis. The 3-space starts with a decelerated expansion rate and evolves into accelerated expansion phase subject to the values of w and n, but ends with a Big Rip in all cases. We discuss the cosmological evolution in further detail for the cases w = 1 and w = ½ that permit exact solutions. We also comment on how the universe would be conceived by an observer in four dimensions who is unaware of the internal dimensions and thinks that the conventional general relativity is valid at cosmological scales.

  13. Magnetized strange quark matter in f(R, T) gravity with bilinear and special form of time varying deceleration parameter

    Science.gov (United States)

    Sahoo, P. K.; Sahoo, Parbati; Bishi, Binaya K.; Aygün, Sezgin

    2018-04-01

    In this paper, we have studied homogeneous and anisotropic locally rotationally symmetric (LRS) Bianchi type-I model with magnetized strange quark matter (MSQM) distribution and cosmological constant Λ in f(R, T) gravity where R is the Ricci scalar and T the trace of matter source. The exact solutions of the field equations are obtained under bilinear and special form of time varying deceleration parameter (DP). Firstly, we have considered two specific forms of bilinear DP with a single parameter of the form: q = α(1-t)/1+t and q = -αt/1+t, which leads to the constant or linear nature of the function based on the constant α. Second one is the special form of the DP as q = - 1 + β/1+aβ. From the results obtained here, one can observe that in the early universe magnetic flux has more effects and it reduces gradually in the later stage. For t → ∞, we get p → -Bc and ρ → Bc. The behaviour of strange quark matter along with magnetic epoch gives an idea of accelerated expansion of the universe as per the observations of the type Ia Supernovae.

  14. Surgeon and type of anesthesia predict variability in surgical procedure times.

    Science.gov (United States)

    Strum, D P; Sampson, A R; May, J H; Vargas, L G

    2000-05-01

    Variability in surgical procedure times increases the cost of healthcare delivery by increasing both the underutilization and overutilization of expensive surgical resources. To reduce variability in surgical procedure times, we must identify and study its sources. Our data set consisted of all surgeries performed over a 7-yr period at a large teaching hospital, resulting in 46,322 surgical cases. To study factors associated with variability in surgical procedure times, data mining techniques were used to segment and focus the data so that the analyses would be both technically and intellectually feasible. The data were subdivided into 40 representative segments of manageable size and variability based on headers adopted from the common procedural terminology classification. Each data segment was then analyzed using a main-effects linear model to identify and quantify specific sources of variability in surgical procedure times. The single most important source of variability in surgical procedure times was surgeon effect. Type of anesthesia, age, gender, and American Society of Anesthesiologists risk class were additional sources of variability. Intrinsic case-specific variability, unexplained by any of the preceding factors, was found to be highest for shorter surgeries relative to longer procedures. Variability in procedure times among surgeons was a multiplicative function (proportionate to time) of surgical time and total procedure time, such that as procedure times increased, variability in surgeons' surgical time increased proportionately. Surgeon-specific variability should be considered when building scheduling heuristics for longer surgeries. Results concerning variability in surgical procedure times due to factors such as type of anesthesia, age, gender, and American Society of Anesthesiologists risk class may be extrapolated to scheduling in other institutions, although specifics on individual surgeons may not. This research identifies factors associated

  15. Real-time laser cladding control with variable spot size

    Science.gov (United States)

    Arias, J. L.; Montealegre, M. A.; Vidal, F.; Rodríguez, J.; Mann, S.; Abels, P.; Motmans, F.

    2014-03-01

    Laser cladding processing has been used in different industries to improve the surface properties or to reconstruct damaged pieces. In order to cover areas considerably larger than the diameter of the laser beam, successive partially overlapping tracks are deposited. With no control over the process variables this conduces to an increase of the temperature, which could decrease mechanical properties of the laser cladded material. Commonly, the process is monitored and controlled by a PC using cameras, but this control suffers from a lack of speed caused by the image processing step. The aim of this work is to design and develop a FPGA-based laser cladding control system. This system is intended to modify the laser beam power according to the melt pool width, which is measured using a CMOS camera. All the control and monitoring tasks are carried out by a FPGA, taking advantage of its abundance of resources and speed of operation. The robustness of the image processing algorithm is assessed, as well as the control system performance. Laser power is decreased as substrate temperature increases, thus maintaining a constant clad width. This FPGA-based control system is integrated in an adaptive laser cladding system, which also includes an adaptive optical system that will control the laser focus distance on the fly. The whole system will constitute an efficient instrument for part repair with complex geometries and coating selective surfaces. This will be a significant step forward into the total industrial implementation of an automated industrial laser cladding process.

  16. Concentrated Hitting Times of Randomized Search Heuristics with Variable Drift

    DEFF Research Database (Denmark)

    Lehre, Per Kristian; Witt, Carsten

    2014-01-01

    Drift analysis is one of the state-of-the-art techniques for the runtime analysis of randomized search heuristics (RSHs) such as evolutionary algorithms (EAs), simulated annealing etc. The vast majority of existing drift theorems yield bounds on the expected value of the hitting time for a target...

  17. Generating k-independent variables in constant time

    DEFF Research Database (Denmark)

    Christiani, Tobias Lybecker; Pagh, Rasmus

    2014-01-01

    The generation of pseudorandom elements over finite fields is fundamental to the time, space and randomness complexity of randomized algorithms and data structures. We consider the problem of generating k-independent random values over a finite field F in a word RAM model equipped with constant...

  18. Stability Criteria for Differential Equations with Variable Time Delays

    Science.gov (United States)

    Schley, D.; Shail, R.; Gourley, S. A.

    2002-01-01

    Time delays are an important aspect of mathematical modelling, but often result in highly complicated equations which are difficult to treat analytically. In this paper it is shown how careful application of certain undergraduate tools such as the Method of Steps and the Principle of the Argument can yield significant results. Certain delay…

  19. Start time variability and predictability in railroad train and engine freight and passenger service employees.

    Science.gov (United States)

    2014-04-01

    Start time variability in work schedules is often hypothesized to be a cause of railroad employee fatigue because unpredictable work start times prevent employees from planning sleep and personal activities. This report examines work start time diffe...

  20. Holocene Climate Variability on the Centennial and Millennial Time Scale

    Directory of Open Access Journals (Sweden)

    Eun Hee Lee

    2014-12-01

    Full Text Available There have been many suggestions and much debate about climate variability during the Holocene. However, their complex forcing factors and mechanisms have not yet been clearly identified. In this paper, we have examined the Holocene climate cycles and features based on the wavelet analyses of 14C, 10Be, and 18O records. The wavelet results of the 14C and 10Be data show that the cycles of ~2180-2310, ~970, ~500-520, ~350-360, and ~210-220 years are dominant, and the ~1720 and ~1500 year cycles are relatively weak and subdominant. In particular, the ~2180-2310 year periodicity corresponding to the Hallstatt cycle is constantly significant throughout the Holocene, while the ~970 year cycle corresponding to the Eddy cycle is mainly prominent in the early half of the Holocene. In addition, distinctive signals of the ~210-220 year period corresponding to the de Vries cycle appear recurrently in the wavelet distribution of 14C and 10Be, which coincide with the grand solar minima periods. These de Vries cycle events occurred every ~2270 years on average, implying a connection with the Hallstatt cycle. In contrast, the wavelet results of 18O data show that the cycles of ~1900-2000, ~900-1000, and ~550-560 years are dominant, while the ~2750 and ~2500 year cycles are subdominant. The periods of ~2750, ~2500, and ~1900 years being derived from the 18O records of NGRIP, GRIP and GISP2 ice cores, respectively, are rather longer or shorter than the Hallstatt cycle derived from the 14C and 10Be records. The records of these three sites all show the ~900-1000 year periodicity corresponding to the Eddy cycle in the early half of the Holocene.

  1. Insights into shallow magmatic processes at Kīlauea Volcano, Hawaiʻi, from a multiyear continuous gravity time series

    Science.gov (United States)

    Poland, Michael P.; Carbone, Daniele

    2016-01-01

    Continuous gravity data collected near the summit eruptive vent at Kīlauea Volcano, Hawaiʻi, during 2011–2015 show a strong correlation with summit-area surface deformation and the level of the lava lake within the vent over periods of days to weeks, suggesting that changes in gravity reflect variations in volcanic activity. Joint analysis of gravity and lava level time series data indicates that over the entire time period studied, the average density of the lava within the upper tens to hundreds of meters of the summit eruptive vent remained low—approximately 1000–1500 kg/m3. The ratio of gravity change (adjusted for Earth tides and instrumental drift) to lava level change measured over 15 day windows rose gradually over the course of 2011–2015, probably reflecting either (1) a small increase in the density of lava within the eruptive vent or (2) an increase in the volume of lava within the vent due to gradual vent enlargement. Superimposed on the overall time series were transient spikes of mass change associated with inflation and deflation of Kīlauea's summit and coincident changes in lava level. The unexpectedly strong mass variations during these episodes suggest magma flux to and from the shallow magmatic system without commensurate deformation, perhaps indicating magma accumulation within, and withdrawal from, void space—a process that might not otherwise be apparent from lava level and deformation data alone. Continuous gravity data thus provide unique insights into magmatic processes, arguing for continued application of the method at other frequently active volcanoes.

  2. Measuring wood specific gravity, correctly

    Science.gov (United States)

    G. Bruce Williamson; Michael C. Wiemann

    2010-01-01

    The specific gravity (SG) of wood is a measure of the amount of structural material a tree species allocates to support and strength. In recent years, wood specific gravity, traditionally a forester’s variable, has become the domain of ecologists exploring the universality of plant functional traits and conservationists estimating global carbon stocks. While these...

  3. Variable valve timing in a homogenous charge compression ignition engine

    Science.gov (United States)

    Lawrence, Keith E.; Faletti, James J.; Funke, Steven J.; Maloney, Ronald P.

    2004-08-03

    The present invention relates generally to the field of homogenous charge compression ignition engines, in which fuel is injected when the cylinder piston is relatively close to the bottom dead center position for its compression stroke. The fuel mixes with air in the cylinder during the compression stroke to create a relatively lean homogeneous mixture that preferably ignites when the piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. The present invention utilizes internal exhaust gas recirculation and/or compression ratio control to control the timing of ignition events and combustion duration in homogeneous charge compression ignition engines. Thus, at least one electro-hydraulic assist actuator is provided that is capable of mechanically engaging at least one cam actuated intake and/or exhaust valve.

  4. Scaling in quantum gravity

    Directory of Open Access Journals (Sweden)

    J. Ambjørn

    1995-07-01

    Full Text Available The 2-point function is the natural object in quantum gravity for extracting critical behavior: The exponential falloff of the 2-point function with geodesic distance determines the fractal dimension dH of space-time. The integral of the 2-point function determines the entropy exponent γ, i.e. the fractal structure related to baby universes, while the short distance behavior of the 2-point function connects γ and dH by a quantum gravity version of Fisher's scaling relation. We verify this behavior in the case of 2d gravity by explicit calculation.

  5. A relational solution to the problem of time in quantum mechanics and quantum gravity: a fundamental mechanism for quantum decoherence

    International Nuclear Information System (INIS)

    Gambini, Rodolfo; Porto, Rafael A; Pullin, Jorge

    2004-01-01

    The use of a relational time in quantum mechanics is a framework in which one promotes to quantum operators all variables in a system, and later chooses one of the variables to operate like a 'clock'. Conditional probabilities are computed for variables of the system to take certain values when the 'clock' specifies a certain time. This framework is attractive in contexts where the assumption of usual quantum mechanics of the existence of an external, perfectly classical clock, appears unnatural, as in quantum cosmology. Until recently, there were problems with such constructions in ordinary quantum mechanics with additional difficulties in the context of constrained theories like general relativity. A scheme we recently introduced to consistently discretize general relativity removed such obstacles. Since the clock is now an object subject to quantum fluctuations, the resulting evolution in time is not exactly unitary and pure states decohere into mixed states. Here we work out in detail the type of decoherence generated, and we find it to be of Lindblad type. This is attractive since it implies that one can have loss of coherence without violating the conservation of energy. We apply the framework to a simple cosmological model to illustrate how a quantitative estimate of the effect could be computed. For most quantum systems it appears to be too small to be observed, although certain macroscopic quantum systems could in the future provide a testing ground for experimental observation

  6. Effects of implementing time-variable postgraduate training programmes on the organization of teaching hospital departments.

    Science.gov (United States)

    van Rossum, Tiuri R; Scheele, Fedde; Sluiter, Henk E; Paternotte, Emma; Heyligers, Ide C

    2018-01-31

    As competency-based education has gained currency in postgraduate medical education, it is acknowledged that trainees, having individual learning curves, acquire the desired competencies at different paces. To accommodate their different learning needs, time-variable curricula have been introduced making training no longer time-bound. This paradigm has many consequences and will, predictably, impact the organization of teaching hospitals. The purpose of this study was to determine the effects of time-variable postgraduate education on the organization of teaching hospital departments. We undertook exploratory case studies into the effects of time-variable training on teaching departments' organization. We held semi-structured interviews with clinical teachers and managers from various hospital departments. The analysis yielded six effects: (1) time-variable training requires flexible and individual planning, (2) learners must be active and engaged, (3) accelerated learning sometimes comes at the expense of clinical expertise, (4) fast-track training for gifted learners jeopardizes the continuity of care, (5) time-variable training demands more of supervisors, and hence, they need protected time for supervision, and (6) hospital boards should support time-variable training. Implementing time-variable education affects various levels within healthcare organizations, including stakeholders not directly involved in medical education. These effects must be considered when implementing time-variable curricula.

  7. Massive Conformal Gravity

    International Nuclear Information System (INIS)

    Faria, F. F.

    2014-01-01

    We construct a massive theory of gravity that is invariant under conformal transformations. The massive action of the theory depends on the metric tensor and a scalar field, which are considered the only field variables. We find the vacuum field equations of the theory and analyze its weak-field approximation and Newtonian limit.

  8. Massive gravity from bimetric gravity

    International Nuclear Information System (INIS)

    Baccetti, Valentina; Martín-Moruno, Prado; Visser, Matt

    2013-01-01

    We discuss the subtle relationship between massive gravity and bimetric gravity, focusing particularly on the manner in which massive gravity may be viewed as a suitable limit of bimetric gravity. The limiting procedure is more delicate than currently appreciated. Specifically, this limiting procedure should not unnecessarily constrain the background metric, which must be externally specified by the theory of massive gravity itself. The fact that in bimetric theories one always has two sets of metric equations of motion continues to have an effect even in the massive gravity limit, leading to additional constraints besides the one set of equations of motion naively expected. Thus, since solutions of bimetric gravity in the limit of vanishing kinetic term are also solutions of massive gravity, but the contrary statement is not necessarily true, there is no complete continuity in the parameter space of the theory. In particular, we study the massive cosmological solutions which are continuous in the parameter space, showing that many interesting cosmologies belong to this class. (paper)

  9. Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations

    Science.gov (United States)

    Meyer, Catrin I.; Ern, Manfred; Hoffmann, Lars; Trinh, Quang Thai; Alexander, M. Joan

    2018-01-01

    statistical basis. The complete HIRDLS measurement period from January 2005 to March 2008 is covered. The seasonal and latitudinal distributions of gravity wave activity as observed by AIRS and HIRDLS agree well. A strong annual cycle at mid- and high latitudes is found in time series of gravity wave variances at 42 km, which has its maxima during wintertime and its minima during summertime. The variability is largest during austral wintertime at 60° S. Variations in the zonal winds at 2.5 hPa are associated with large variability in gravity wave variances. Altogether, gravity wave variances of AIRS and HIRDLS are complementary to each other. Large parts of the gravity wave spectrum are covered by joint observations. This opens up fascinating vistas for future gravity wave research.

  10. Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations

    Directory of Open Access Journals (Sweden)

    C. I. Meyer

    2018-01-01

    compared on a statistical basis. The complete HIRDLS measurement period from January 2005 to March 2008 is covered. The seasonal and latitudinal distributions of gravity wave activity as observed by AIRS and HIRDLS agree well. A strong annual cycle at mid- and high latitudes is found in time series of gravity wave variances at 42 km, which has its maxima during wintertime and its minima during summertime. The variability is largest during austral wintertime at 60° S. Variations in the zonal winds at 2.5 hPa are associated with large variability in gravity wave variances. Altogether, gravity wave variances of AIRS and HIRDLS are complementary to each other. Large parts of the gravity wave spectrum are covered by joint observations. This opens up fascinating vistas for future gravity wave research.

  11. Evaluation of Online Log Variables That Estimate Learners' Time Management in a Korean Online Learning Context

    Science.gov (United States)

    Jo, Il-Hyun; Park, Yeonjeong; Yoon, Meehyun; Sung, Hanall

    2016-01-01

    The purpose of this study was to identify the relationship between the psychological variables and online behavioral patterns of students, collected through a learning management system (LMS). As the psychological variable, time and study environment management (TSEM), one of the sub-constructs of MSLQ, was chosen to verify a set of time-related…

  12. Constructing Proxy Variables to Measure Adult Learners' Time Management Strategies in LMS

    Science.gov (United States)

    Jo, Il-Hyun; Kim, Dongho; Yoon, Meehyun

    2015-01-01

    This study describes the process of constructing proxy variables from recorded log data within a Learning Management System (LMS), which represents adult learners' time management strategies in an online course. Based on previous research, three variables of total login time, login frequency, and regularity of login interval were selected as…

  13. Between-centre variability versus variability over time in DXA whole body measurements evaluated using a whole body phantom

    Energy Technology Data Exchange (ETDEWEB)

    Louis, Olivia [Department of Radiology, AZ-VUB, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel (Belgium)]. E-mail: olivia.louis@az.vub.ac.be; Verlinde, Siska [Belgian Study Group for Pediatric Endocrinology (Belgium); Thomas, Muriel [Belgian Study Group for Pediatric Endocrinology (Belgium); De Schepper, Jean [Department of Pediatrics, AZ-VUB, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussel (Belgium)

    2006-06-15

    This study aimed to compare the variability of whole body measurements, using dual energy X-ray absorptiometry (DXA), among geographically distinct centres versus that over time in a given centre. A Hologic-designed 28 kg modular whole body phantom was used, including high density polyethylene, gray polyvinylchloride and aluminium. It was scanned on seven Hologic QDR 4500 DXA devices, located in seven centres and was also repeatedly (n = 18) scanned in the reference centre, over a time span of 5 months. The mean between-centre coefficient of variation (CV) ranged from 2.0 (lean mass) to 5.6% (fat mass) while the mean within-centre CV ranged from 0.3 (total mass) to 4.7% (total area). Between-centre variability compared well with within-centre variability for total area, bone mineral content and bone mineral density, but was significantly higher for fat (p < 0.001), lean (p < 0.005) and total mass (p < 0.001). Our results suggest that, even when using the same device, the between-centre variability remains a matter of concern, particularly where body composition is concerned.

  14. Seasonal and local time variability of ripples from airglow imager observations in US and Japan

    Directory of Open Access Journals (Sweden)

    J. Yue

    2010-07-01

    Full Text Available Ripples as seen in airglow imagers are small wavy structures with short horizontal wavelengths (<15 km. Ripples are thought to form as the result of local instabilities, which are believed to occur when the amplitude of gravity waves becomes large enough. We have investigated ripple formation based on years of airglow imager observations located at Fort Collins, Colorado (41° N, 105° W and Misato Observatory, Japan (34° N, 135° E/Shigaraki MU Observatory (35° N, 136° E. Na temperature-wind lidar observations are employed to detect convective and dynamic instabilities in the mesosphere and lower thermosphere (MLT region over Fort Collins, Colorado. Seasonal variation of the ripple occurrence in Colorado is compared to that of the lidar-measured instability. The occurrence frequency of ripples varies semiannually, with maxima occurring during solstices and minima during equinoxes in both Colorado and Japan. However, the probability of convective and dynamic instabilities varies annually with a peak in Colorado winter. The seasonal variation of the occurrence frequency of ripples correlates with that of the gravity wave variances in the MLT. Ripple occurrence over Colorado also shows strong local time dependence, but it bears little resemblance to the local time dependence of instability probability.

  15. Gravity brake

    Science.gov (United States)

    Lujan, Richard E.

    2001-01-01

    A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.

  16. Analogue Gravity

    Directory of Open Access Journals (Sweden)

    Barceló Carlos

    2005-12-01

    Full Text Available Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.

  17. Quantum Gravity

    OpenAIRE

    Alvarez, Enrique

    2004-01-01

    Gravitons should have momentum just as photons do; and since graviton momentum would cause compression rather than elongation of spacetime outside of matter; it does not appear that gravitons are compatible with Swartzchild's spacetime curvature. Also, since energy is proportional to mass, and mass is proportional to gravity; the energy of matter is proportional to gravity. The energy of matter could thus contract space within matter; and because of the inter-connectedness of space, cause the...

  18. Online Synthesis for Operation Execution Time Variability on Digital Microfluidic Biochips

    DEFF Research Database (Denmark)

    Alistar, Mirela; Pop, Paul

    2014-01-01

    have assumed that each biochemical operation in an application is characterized by a worst-case execution time (wcet). However, during the execution of the application, due to variability and randomness in biochemical reactions, operations may finish earlier than their wcets. In this paper we propose...... an online synthesis strategy that re-synthesizes the application at runtime when operations experience variability in their execution time, obtaining thus shorter application execution times. The proposed strategy has been evaluated using several benchmarks....

  19. The quantization of gravity

    CERN Document Server

    Gerhardt, Claus

    2018-01-01

    A unified quantum theory incorporating the four fundamental forces of nature is one of the major open problems in physics. The Standard Model combines electro-magnetism, the strong force and the weak force, but ignores gravity. The quantization of gravity is therefore a necessary first step to achieve a unified quantum theory. In this monograph a canonical quantization of gravity has been achieved by quantizing a geometric evolution equation resulting in a gravitational wave equation in a globally hyperbolic spacetime. Applying the technique of separation of variables we obtain eigenvalue problems for temporal and spatial self-adjoint operators where the temporal operator has a pure point spectrum with eigenvalues $\\lambda_i$ and related eigenfunctions, while, for the spatial operator, it is possible to find corresponding eigendistributions for each of the eigenvalues $\\lambda_i$, if the Cauchy hypersurface is asymptotically Euclidean or if the quantized spacetime is a black hole with a negative cosmological ...

  20. Age and Sex Differences in Intra-Individual Variability in a Simple Reaction Time Task

    Science.gov (United States)

    Ghisletta, Paolo; Renaud, Olivier; Fagot, Delphine; Lecerf, Thierry; de Ribaupierre, Anik

    2018-01-01

    While age effects in reaction time (RT) tasks across the lifespan are well established for level of performance, analogous findings have started appearing also for indicators of intra-individual variability (IIV). Children are not only slower, but also display more variability than younger adults in RT. Yet, little is known about potential…

  1. Ehrenfest's principle in quantum gravity

    International Nuclear Information System (INIS)

    Greensite, J.

    1991-01-01

    The Ehrenfest principle d t = is proposed as (part of) a definition of the time variable in canonical quantum gravity. This principle selects a time direction in superspace, and provides a conserved, positive definite probability measure. An exact solution of the Ehrenfest condition is obtained, which leads to constant-time surfaces in superspace generated by the operator d/dτ=ΛθxΛ, where Λ is the gradient operator in superspace, and θ is the phase of the Wheeler-DeWitt wavefunction Φ; the constant-time surfaces are determined by this solution up to a choice of initial t=0 surface. This result holds throughout superspace, including classically forbidden regions and in the neighborhood of caustics; it also leads to ordinary quantum field theory and classical gravity in regions of superspace where the phase satisfies vertical stroked t θvertical stroke>>vertical stroked t ln(Φ * Φ)vertical stroke and (d t θ) 2 >>vertical stroked t 2 θvertical stroke. (orig.)

  2. Important variables in explaining real-time peak price in the independent power market of Ontario

    International Nuclear Information System (INIS)

    Rueda, I.E.A.; Marathe, A.

    2005-01-01

    This paper uses support vector machines (SVM) based learning algorithm to select important variables that help explain the real-time peak electricity price in the Ontario market. The Ontario market was opened to competition only in May 2002. Due to the limited number of observations available, finding a set of variables that can explain the independent power market of Ontario (IMO) real-time peak price is a significant challenge for the traders and analysts. The kernel regressions of the explanatory variables on the IMO real-time average peak price show that non-linear dependencies exist between the explanatory variables and the IMO price. This non-linear relationship combined with the low variable-observation ratio rule out conventional statistical analysis. Hence, we use an alternative machine learning technique to find the important explanatory variables for the IMO real-time average peak price. SVM sensitivity analysis based results find that the IMO's predispatch average peak price, the actual import peak volume, the peak load of the Ontario market and the net available supply after accounting for load (energy excess) are some of the most important variables in explaining the real-time average peak price in the Ontario electricity market. (author)

  3. Analogue Gravity

    Directory of Open Access Journals (Sweden)

    Carlos Barceló

    2011-05-01

    Full Text Available Analogue gravity is a research programme which investigates analogues of general relativistic gravitational fields within other physical systems, typically but not exclusively condensed matter systems, with the aim of gaining new insights into their corresponding problems. Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.

  4. Analysis of Modal Travel Time Variability Due to Mesoscale Ocean Structure

    National Research Council Canada - National Science Library

    Smith, Amy

    1997-01-01

    .... First, for an open ocean environment away from strong boundary currents, the effects of randomly phased linear baroclinic Rossby waves on acoustic travel time are shown to produce a variable overall...

  5. Tunable Superconducting Gravity Gradiometer for Mars Climate, Atmosphere, and Gravity Field Investigation

    Science.gov (United States)

    Griggs, C. E.; Paik, H. J.; Moody, M. V.; Han, S.-C.; Rowlands, D. D.; Lemoine, F. G.; Shirron, P. J.

    2015-01-01

    We are developing a compact tensor superconducting gravity gradiometer (SGG) for obtaining gravimetric measurements from planetary orbits. A new and innovative design gives a potential sensitivity of approximately 10(sup -4) E Hz(sup - 1/2)( 1 E = 10(sup -9 S(sup -2) in the measurement band up to 0.1 Hz (suitale for short wavelength static gravity) and of approximately 10(sup -4) E Hz(sup - 1/2) in the frequency band less than 1 mHz (for long wavelength time-variable gravity) from the same device with a baseline just over 10 cm. The measurement band and sensitiy can be optimally tuned in-flight during the mission by changing resonance frequencies, which allows meaurements of both static and time-variable gravity fields from the same mission. Significant advances in the technologies needed for space-based cryogenic instruments have been made in the last decade. In particular, the use of cryocoolers will alleviate the previously severe constraint on mission lifetime imposed by the use of liquid helium, enabling mission durations in the 5 - 10 year range.

  6. Dissociable effects of practice variability on learning motor and timing skills.

    Science.gov (United States)

    Caramiaux, Baptiste; Bevilacqua, Frédéric; Wanderley, Marcelo M; Palmer, Caroline

    2018-01-01

    Motor skill acquisition inherently depends on the way one practices the motor task. The amount of motor task variability during practice has been shown to foster transfer of the learned skill to other similar motor tasks. In addition, variability in a learning schedule, in which a task and its variations are interweaved during practice, has been shown to help the transfer of learning in motor skill acquisition. However, there is little evidence on how motor task variations and variability schedules during practice act on the acquisition of complex motor skills such as music performance, in which a performer learns both the right movements (motor skill) and the right time to perform them (timing skill). This study investigated the impact of rate (tempo) variability and the schedule of tempo change during practice on timing and motor skill acquisition. Complete novices, with no musical training, practiced a simple musical sequence on a piano keyboard at different rates. Each novice was assigned to one of four learning conditions designed to manipulate the amount of tempo variability across trials (large or small tempo set) and the schedule of tempo change (randomized or non-randomized order) during practice. At test, the novices performed the same musical sequence at a familiar tempo and at novel tempi (testing tempo transfer), as well as two novel (but related) sequences at a familiar tempo (testing spatial transfer). We found that practice conditions had little effect on learning and transfer performance of timing skill. Interestingly, practice conditions influenced motor skill learning (reduction of movement variability): lower temporal variability during practice facilitated transfer to new tempi and new sequences; non-randomized learning schedule improved transfer to new tempi and new sequences. Tempo (rate) and the sequence difficulty (spatial manipulation) affected performance variability in both timing and movement. These findings suggest that there is a

  7. Ultrasonic hydrometer. [Specific gravity of electrolyte

    Science.gov (United States)

    Swoboda, C.A.

    1982-03-09

    The disclosed ultrasonic hydrometer determines the specific gravity (density) of the electrolyte of a wet battery, such as a lead-acid battery. The hydrometer utilizes a transducer that when excited emits an ultrasonic impulse that traverses through the electrolyte back and forth between spaced sonic surfaces. The transducer detects the returning impulse, and means measures the time t between the initial and returning impulses. Considering the distance d between the spaced sonic surfaces and the measured time t, the sonic velocity V is calculated with the equation V = 2d/t. The hydrometer also utilizes a thermocouple to measure the electrolyte temperature. A hydrometer database correlates three variable parameters including sonic velocity in and temperature and specific gravity of the electrolyte, for temperature values between 0 and 40/sup 0/C and for specific gravity values between 1.05 and 1.30. Upon knowing two parameters (the calculated sonic velocity and the measured temperature), the third parameter (specific gravity) can be uniquely found in the database. The hydrometer utilizes a microprocessor for data storage and manipulation.

  8. Using exogenous variables in testing for monotonic trends in hydrologic time series

    Science.gov (United States)

    Alley, William M.

    1988-01-01

    One approach that has been used in performing a nonparametric test for monotonic trend in a hydrologic time series consists of a two-stage analysis. First, a regression equation is estimated for the variable being tested as a function of an exogenous variable. A nonparametric trend test such as the Kendall test is then performed on the residuals from the equation. By analogy to stagewise regression and through Monte Carlo experiments, it is demonstrated that this approach will tend to underestimate the magnitude of the trend and to result in some loss in power as a result of ignoring the interaction between the exogenous variable and time. An alternative approach, referred to as the adjusted variable Kendall test, is demonstrated to generally have increased statistical power and to provide more reliable estimates of the trend slope. In addition, the utility of including an exogenous variable in a trend test is examined under selected conditions.

  9. Time dependent analysis of assay comparability: a novel approach to understand intra- and inter-site variability over time

    Science.gov (United States)

    Winiwarter, Susanne; Middleton, Brian; Jones, Barry; Courtney, Paul; Lindmark, Bo; Page, Ken M.; Clark, Alan; Landqvist, Claire

    2015-09-01

    We demonstrate here a novel use of statistical tools to study intra- and inter-site assay variability of five early drug metabolism and pharmacokinetics in vitro assays over time. Firstly, a tool for process control is presented. It shows the overall assay variability but allows also the following of changes due to assay adjustments and can additionally highlight other, potentially unexpected variations. Secondly, we define the minimum discriminatory difference/ratio to support projects to understand how experimental values measured at different sites at a given time can be compared. Such discriminatory values are calculated for 3 month periods and followed over time for each assay. Again assay modifications, especially assay harmonization efforts, can be noted. Both the process control tool and the variability estimates are based on the results of control compounds tested every time an assay is run. Variability estimates for a limited set of project compounds were computed as well and found to be comparable. This analysis reinforces the need to consider assay variability in decision making, compound ranking and in silico modeling.

  10. Teleparallel equivalent of Lovelock gravity

    Science.gov (United States)

    González, P. A.; Vásquez, Yerko

    2015-12-01

    There is a growing interest in modified gravity theories based on torsion, as these theories exhibit interesting cosmological implications. In this work inspired by the teleparallel formulation of general relativity, we present its extension to Lovelock gravity known as the most natural extension of general relativity in higher-dimensional space-times. First, we review the teleparallel equivalent of general relativity and Gauss-Bonnet gravity, and then we construct the teleparallel equivalent of Lovelock gravity. In order to achieve this goal, we use the vielbein and the connection without imposing the Weitzenböck connection. Then, we extract the teleparallel formulation of the theory by setting the curvature to null.

  11. Determination of the fundamental scale of gravity and the number of space-time dimensions from high energetic particle interactions

    International Nuclear Information System (INIS)

    Ruppert, J.; Rahmede, C.; Bleicher, M.

    2005-01-01

    Within the ADD-model, we elaborate an idea by Vacavant and Hinchliffe [J. Phys. G 27 (2001) 1839] and show quantitatively how to determine the fundamental scale of TeV-gravity and the number of compactified extra dimensions from data at LHC. We demonstrate that the ADD-model leads to strong correlations between the missing E T in gravitons at different center of mass energies. This correlation puts strong constraints on this model for extra dimensions, if probed at s=5.5 TeV and s=14 TeV at LHC

  12. Time-of-flight depth image enhancement using variable integration time

    Science.gov (United States)

    Kim, Sun Kwon; Choi, Ouk; Kang, Byongmin; Kim, James Dokyoon; Kim, Chang-Yeong

    2013-03-01

    Time-of-Flight (ToF) cameras are used for a variety of applications because it delivers depth information at a high frame rate. These cameras, however, suffer from challenging problems such as noise and motion artifacts. To increase signal-to-noise ratio (SNR), the camera should calculate a distance based on a large amount of infra-red light, which needs to be integrated over a long time. On the other hand, the integration time should be short enough to suppress motion artifacts. We propose a ToF depth imaging method to combine advantages of short and long integration times exploiting an imaging fusion scheme proposed for color imaging. To calibrate depth differences due to the change of integration times, a depth transfer function is estimated by analyzing the joint histogram of depths in the two images of different integration times. The depth images are then transformed into wavelet domains and fused into a depth image with suppressed noise and low motion artifacts. To evaluate the proposed method, we captured a moving bar of a metronome with different integration times. The experiment shows the proposed method could effectively remove the motion artifacts while preserving high SNR comparable to the depth images acquired during long integration time.

  13. Resting heart rate variability is associated with ex-Gaussian metrics of intra-individual reaction time variability.

    Science.gov (United States)

    Spangler, Derek P; Williams, DeWayne P; Speller, Lassiter F; Brooks, Justin R; Thayer, Julian F

    2018-03-01

    The relationships between vagally mediated heart rate variability (vmHRV) and the cognitive mechanisms underlying performance can be elucidated with ex-Gaussian modeling-an approach that quantifies two different forms of intra-individual variability (IIV) in reaction time (RT). To this end, the current study examined relations of resting vmHRV to whole-distribution and ex-Gaussian IIV. Subjects (N = 83) completed a 5-minute baseline while vmHRV (root mean square of successive differences; RMSSD) was measured. Ex-Gaussian (sigma, tau) and whole-distribution (standard deviation) estimates of IIV were derived from reaction times on a Stroop task. Resting vmHRV was found to be inversely related to tau (exponential IIV) but not to sigma (Gaussian IIV) or the whole-distribution standard deviation of RTs. Findings suggest that individuals with high vmHRV can better prevent attentional lapses but not difficulties with motor control. These findings inform the differential relationships of cardiac vagal control to the cognitive processes underlying human performance. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Methods for removal of unwanted signals from gravity time-series: Comparison using linear techniques complemented with analysis of system dynamics

    Science.gov (United States)

    Valencio, Arthur; Grebogi, Celso; Baptista, Murilo S.

    2017-10-01

    The presence of undesirable dominating signals in geophysical experimental data is a challenge in many subfields. One remarkable example is surface gravimetry, where frequencies from Earth tides correspond to time-series fluctuations up to a thousand times larger than the phenomena of major interest, such as hydrological gravity effects or co-seismic gravity changes. This work discusses general methods for the removal of unwanted dominating signals by applying them to 8 long-period gravity time-series of the International Geodynamics and Earth Tides Service, equivalent to the acquisition from 8 instruments in 5 locations representative of the network. We compare three different conceptual approaches for tide removal: frequency filtering, physical modelling, and data-based modelling. Each approach reveals a different limitation to be considered depending on the intended application. Vestiges of tides remain in the residues for the modelling procedures, whereas the signal was distorted in different ways by the filtering and data-based procedures. The linear techniques employed were power spectral density, spectrogram, cross-correlation, and classical harmonics decomposition, while the system dynamics was analysed by state-space reconstruction and estimation of the largest Lyapunov exponent. Although the tides could not be completely eliminated, they were sufficiently reduced to allow observation of geophysical events of interest above the 10 nm s-2 level, exemplified by a hydrology-related event of 60 nm s-2. The implementations adopted for each conceptual approach are general, so that their principles could be applied to other kinds of data affected by undesired signals composed mainly by periodic or quasi-periodic components.

  15. Effects of storage time and temperature on pH, specific gravity, and crystal formation in urine samples from dogs and cats.

    Science.gov (United States)

    Albasan, Hasan; Lulich, Jody P; Osborne, Carl A; Lekcharoensuk, Chalermpol; Ulrich, Lisa K; Carpenter, Kathleen A

    2003-01-15

    To determine effects of storage temperature and time on pH and specific gravity of and number and size of crystals in urine samples from dogs and cats. Randomized complete block design. 31 dogs and 8 cats. Aliquots of each urine sample were analyzed within 60 minutes of collection or after storage at room or refrigeration temperatures (20 vs 6 degrees C [68 vs 43 degrees F]) for 6 or 24 hours. Crystals formed in samples from 11 of 39 (28%) animals. Calcium oxalate (CaOx) crystals formed in vitro in samples from 1 cat and 8 dogs. Magnesium ammonium phosphate (MAP) crystals formed in vitro in samples from 2 dogs. Compared with aliquots stored at room temperature, refrigeration increased the number and size of crystals that formed in vitro; however, the increase in number and size of MAP crystals in stored urine samples was not significant. Increased storage time and decreased storage temperature were associated with a significant increase in number of CaOx crystals formed. Greater numbers of crystals formed in urine aliquots stored for 24 hours than in aliquots stored for 6 hours. Storage time and temperature did not have a significant effect on pH or specific gravity. Urine samples should be analyzed within 60 minutes of collection to minimize temperature- and time-dependent effects on in vitro crystal formation. Presence of crystals observed in stored samples should be validated by reevaluation of fresh urine.

  16. Predictor variables for a half marathon race time in recreational male runners.

    Science.gov (United States)

    Rüst, Christoph Alexander; Knechtle, Beat; Knechtle, Patrizia; Barandun, Ursula; Lepers, Romuald; Rosemann, Thomas

    2011-01-01

    The aim of this study was to investigate predictor variables of anthropometry, training, and previous experience in order to predict a half marathon race time for future novice recreational male half marathoners. Eighty-four male finishers in the 'Half Marathon Basel' completed the race distance within (mean and standard deviation, SD) 103.9 (16.5) min, running at a speed of 12.7 (1.9) km/h. After multivariate analysis of the anthropometric characteristics, body mass index (r = 0.56), suprailiacal (r = 0.36) and medial calf skin fold (r = 0.53) were related to race time. For the variables of training and previous experience, speed in running of the training sessions (r = -0.54) were associated with race time. After multivariate analysis of both the significant anthropometric and training variables, body mass index (P = 0.0150) and speed in running during training (P = 0.0045) were related to race time. Race time in a half marathon might be partially predicted by the following equation (r(2) = 0.44): Race time (min) = 72.91 + 3.045 * (body mass index, kg/m(2)) -3.884 * (speed in running during training, km/h) for recreational male runners. To conclude, variables of both anthropometry and training were related to half marathon race time in recreational male half marathoners and cannot be reduced to one single predictor variable.

  17. Neutron Stars : Magnetism vs Gravity

    Indian Academy of Sciences (India)

    however, in the magnetosphere, electromagnetic forces dominate over gravity : Fgr = mg ~ 10-18 Newton ; Fem = e V B ~ 10-5 Newton; (for a single electron of mass m and charge e ) ; Hence, the electromagnetic force is 1013 times stronger than gravity !!

  18. Simulating Gravity

    Science.gov (United States)

    Pipinos, Savas

    2010-01-01

    This article describes one classroom activity in which the author simulates the Newtonian gravity, and employs the Euclidean Geometry with the use of new technologies (NT). The prerequisites for this activity were some knowledge of the formulae for a particle free fall in Physics and most certainly, a good understanding of the notion of similarity…

  19. Cellular gravity

    NARCIS (Netherlands)

    F.C. Gruau; J.T. Tromp (John)

    1999-01-01

    textabstractWe consider the problem of establishing gravity in cellular automata. In particular, when cellular automata states can be partitioned into empty, particle, and wall types, with the latter enclosing rectangular areas, we desire rules that will make the particles fall down and pile up on

  20. Singularity resolution in quantum gravity

    International Nuclear Information System (INIS)

    Husain, Viqar; Winkler, Oliver

    2004-01-01

    We examine the singularity resolution issue in quantum gravity by studying a new quantization of standard Friedmann-Robertson-Walker geometrodynamics. The quantization procedure is inspired by the loop quantum gravity program, and is based on an alternative to the Schroedinger representation normally used in metric variable quantum cosmology. We show that in this representation for quantum geometrodynamics there exists a densely defined inverse scale factor operator, and that the Hamiltonian constraint acts as a difference operator on the basis states. We find that the cosmological singularity is avoided in the quantum dynamics. We discuss these results with a view to identifying the criteria that constitute 'singularity resolution' in quantum gravity

  1. Cosmological tests of modified gravity.

    Science.gov (United States)

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.

  2. Real-time variables dictionary (RTVD), and expert system for development of real-time applications in nuclear power plants

    International Nuclear Information System (INIS)

    Senra Martinez, A.; Schirru, R.; Dutra Thome Filho, Z.

    1990-01-01

    It is presented in this paper a computerized methodology based on a data dictionary managed by an expert system called Real-Time Variables Dictionary (RTVD). This system is very usefull for development of real-time applications in nuclear power plants. It is described in details the RTVD functions and its implantation in a VAX 8600 computer. It is also pointed out the concepts of artificial intelligence used in teh RTVD

  3. Kelvin wave coupling from TIMED and GOCE: Inter/intra-annual variability and solar activity effects

    Science.gov (United States)

    Gasperini, Federico; Forbes, Jeffrey M.; Doornbos, Eelco N.; Bruinsma, Sean L.

    2018-06-01

    The primary mechanism through which energy and momentum are transferred from the lower atmosphere to the thermosphere is through the generation and propagation of atmospheric waves. It is becoming increasingly evident that a few waves from the tropical wave spectrum preferentially propagate into the thermosphere and contribute to modify satellite drag. Two of the more prominent and well-established tropical waves are Kelvin waves: the eastward-propagating 3-day ultra-fast Kelvin wave (UFKW) and the eastward-propagating diurnal tide with zonal wave number 3 (DE3). In this work, Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperatures at 110 km and Gravity field and steady-state Ocean Circulation Explorer (GOCE) neutral densities and cross-track winds near 260 km are used to demonstrate vertical coupling in this height regime due to the UFKW and DE3. Significant inter- and intra-annual variability is found in DE3 and the UFKW, with evidence of latitudinal broadening and filtering of the latitude structures with height due to the effect of dissipation and mean winds. Additionally, anti-correlation between the vertical penetration of these waves to the middle thermosphere and solar activity level is established and explained through the effect of molecular dissipation.

  4. Preferences for travel time variability – A study of Danish car drivers

    DEFF Research Database (Denmark)

    Hjorth, Katrine; Rich, Jeppe

    Travel time variability (TTV) is a measure of the extent of unpredictability in travel times. It is generally accepted that TTV has a negative effect on travellers’ wellbeing and overall utility of travelling, and valuation of variability is an important issue in transport demand modelling...... preferences, to exclude non-traders, and to avoid complicated issues related to scheduled public transport services. The survey uses customised Internet questionnaires, containing a series of questions related to the traveller’s most recent morning trip to work, e.g.: • Travel time experienced on this day......, • Number of stops along the way, their duration, and whether these stops involved restrictions on time of day, • Restrictions regarding departure time from home or arrival time at work, • How often such a trip was made within the last month and the range of experienced travel times, • What the traveller...

  5. Stability of Delayed Hopfield Neural Networks with Variable-Time Impulses

    Directory of Open Access Journals (Sweden)

    Yangjun Pei

    2014-01-01

    Full Text Available In this paper the globally exponential stability criteria of delayed Hopfield neural networks with variable-time impulses are established. The proposed criteria can also be applied in Hopfield neural networks with fixed-time impulses. A numerical example is presented to illustrate the effectiveness of our theoretical results.

  6. Lyapunov-based constrained engine torque control using electronic throttle and variable cam timing

    NARCIS (Netherlands)

    Feru, E.; Lazar, M.; Gielen, R.H.; Kolmanovsky, I.V.; Di Cairano, S.

    2012-01-01

    In this paper, predictive control of a spark ignition engine equipped with an electronic throttle and a variable cam timing actuator is considered. The objective is to adjust the throttle angle and the engine cam timing in order to reduce the exhaust gas emissions while maintaining fast and

  7. Norm-times : a design for production time and variability reduction for Faes Cases

    NARCIS (Netherlands)

    Karandeinos, Georgios

    2008-01-01

    This project deals with the production process of Faes Cases business unit. This company is producing custom-made packaging and sells standard solutions with customized interior. During the last years, it was observed that the throughput time of the production is increasing and is hard to forecast

  8. Correlates of adolescent sleep time and variability in sleep time: the role of individual and health related characteristics.

    Science.gov (United States)

    Moore, Melisa; Kirchner, H Lester; Drotar, Dennis; Johnson, Nathan; Rosen, Carol; Redline, Susan

    2011-03-01

    Adolescents are predisposed to short sleep duration and irregular sleep patterns due to certain host characteristics (e.g., age, pubertal status, gender, ethnicity, socioeconomic class, and neighborhood distress) and health-related variables (e.g., ADHD, asthma, birth weight, and BMI). The aim of the current study was to investigate the relationship between such variables and actigraphic measures of sleep duration and variability. Cross-sectional study of 247 adolescents (48.5% female, 54.3% ethnic minority, mean age of 13.7years) involved in a larger community-based cohort study. Significant univariate predictors of sleep duration included gender, minority ethnicity, neighborhood distress, parent income, and BMI. In multivariate models, gender, minority status, and BMI were significantly associated with sleep duration (all pminority adolescents, and those of a lower BMI obtaining more sleep. Univariate models demonstrated that age, minority ethnicity, neighborhood distress, parent education, parent income, pubertal status, and BMI were significantly related to variability in total sleep time. In the multivariate model, age, minority status, and BMI were significantly related to variability in total sleep time (all pminority adolescents, and those of a lower BMI obtaining more regular sleep. These data show differences in sleep patterns in population sub-groups of adolescents which may be important in understanding pediatric health risk profiles. Sub-groups that may particularly benefit from interventions aimed at improving sleep patterns include boys, overweight, and minority adolescents. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Simulating variable-density flows with time-consistent integration of Navier-Stokes equations

    Science.gov (United States)

    Lu, Xiaoyi; Pantano, Carlos

    2017-11-01

    In this talk, we present several features of a high-order semi-implicit variable-density low-Mach Navier-Stokes solver. A new formulation to solve pressure Poisson-like equation of variable-density flows is highlighted. With this formulation of the numerical method, we are able to solve all variables with a uniform order of accuracy in time (consistent with the time integrator being used). The solver is primarily designed to perform direct numerical simulations for turbulent premixed flames. Therefore, we also address other important elements, such as energy-stable boundary conditions, synthetic turbulence generation, and flame anchoring method. Numerical examples include classical non-reacting constant/variable-density flows, as well as turbulent premixed flames.

  10. Efficient conservative ADER schemes based on WENO reconstruction and space-time predictor in primitive variables

    Science.gov (United States)

    Zanotti, Olindo; Dumbser, Michael

    2016-01-01

    We present a new version of conservative ADER-WENO finite volume schemes, in which both the high order spatial reconstruction as well as the time evolution of the reconstruction polynomials in the local space-time predictor stage are performed in primitive variables, rather than in conserved ones. To obtain a conservative method, the underlying finite volume scheme is still written in terms of the cell averages of the conserved quantities. Therefore, our new approach performs the spatial WENO reconstruction twice: the first WENO reconstruction is carried out on the known cell averages of the conservative variables. The WENO polynomials are then used at the cell centers to compute point values of the conserved variables, which are subsequently converted into point values of the primitive variables. This is the only place where the conversion from conservative to primitive variables is needed in the new scheme. Then, a second WENO reconstruction is performed on the point values of the primitive variables to obtain piecewise high order reconstruction polynomials of the primitive variables. The reconstruction polynomials are subsequently evolved in time with a novel space-time finite element predictor that is directly applied to the governing PDE written in primitive form. The resulting space-time polynomials of the primitive variables can then be directly used as input for the numerical fluxes at the cell boundaries in the underlying conservative finite volume scheme. Hence, the number of necessary conversions from the conserved to the primitive variables is reduced to just one single conversion at each cell center. We have verified the validity of the new approach over a wide range of hyperbolic systems, including the classical Euler equations of gas dynamics, the special relativistic hydrodynamics (RHD) and ideal magnetohydrodynamics (RMHD) equations, as well as the Baer-Nunziato model for compressible two-phase flows. In all cases we have noticed that the new ADER

  11. X-ray spectra and time variability of active galactic nuclei

    International Nuclear Information System (INIS)

    Mushotzky, R.F.

    1984-02-01

    The X-ray spectra of broad line active galactic nuclei (AGN) of all types (Seyfert I's, NELG's, broadline radio galaxies) are well fit by a power law in the .5 to 100 keV band of man energy slope alpha .68 + or - .15. There is, as yet, no strong evidence for time variability of this slope in a given object. The constraints that this places on simple models of the central energy source are discussed. BL Lac objects have quite different X-ray spectral properties and show pronounced X-ray spectral variability. On time scales longer than 12 hours most radio quiet AGN do not show strong, delta I/I .5, variability. The probability of variability of these AGN seems to be inversely related to their luminosity. However characteristics timescales for variability have not been measured for many objects. This general lack of variability may imply that most AGN are well below the Eddington limit. Radio bright AGN tend to be more variable than radio quiet AGN on long, tau approx 6 month, timescales

  12. A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method.

    Science.gov (United States)

    Yang, Jun-He; Cheng, Ching-Hsue; Chan, Chia-Pan

    2017-01-01

    Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir's water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting model summarily has three foci. First, this study uses five imputation methods to directly delete the missing value. Second, we identified the key variable via factor analysis and then deleted the unimportant variables sequentially via the variable selection method. Finally, the proposed model uses a Random Forest to build the forecasting model of the reservoir's water level. This was done to compare with the listing method under the forecasting error. These experimental results indicate that the Random Forest forecasting model when applied to variable selection with full variables has better forecasting performance than the listing model. In addition, this experiment shows that the proposed variable selection can help determine five forecast methods used here to improve the forecasting capability.

  13. A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method

    Directory of Open Access Journals (Sweden)

    Jun-He Yang

    2017-01-01

    Full Text Available Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir’s water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting model summarily has three foci. First, this study uses five imputation methods to directly delete the missing value. Second, we identified the key variable via factor analysis and then deleted the unimportant variables sequentially via the variable selection method. Finally, the proposed model uses a Random Forest to build the forecasting model of the reservoir’s water level. This was done to compare with the listing method under the forecasting error. These experimental results indicate that the Random Forest forecasting model when applied to variable selection with full variables has better forecasting performance than the listing model. In addition, this experiment shows that the proposed variable selection can help determine five forecast methods used here to improve the forecasting capability.

  14. Energy decay of a variable-coefficient wave equation with nonlinear time-dependent localized damping

    Directory of Open Access Journals (Sweden)

    Jieqiong Wu

    2015-09-01

    Full Text Available We study the energy decay for the Cauchy problem of the wave equation with nonlinear time-dependent and space-dependent damping. The damping is localized in a bounded domain and near infinity, and the principal part of the wave equation has a variable-coefficient. We apply the multiplier method for variable-coefficient equations, and obtain an energy decay that depends on the property of the coefficient of the damping term.

  15. Reaction Time Variability in Children With ADHD Symptoms and/or Dyslexia

    OpenAIRE

    Gooch, Debbie; Snowling, Margaret J.; Hulme, Charles

    2012-01-01

    Reaction time (RT) variability on a Stop Signal task was examined among children with attention deficit hyperactivity disorder (ADHD) symptoms and/or dyslexia in comparison to typically developing (TD) controls. Children’s go-trial RTs were analyzed using a novel ex-Gaussian method. Children with ADHD symptoms had increased variability in the fast but not the slow portions of their RT distributions compared to those without ADHD symptoms. The RT distributions of children with d...

  16. Competency-Based, Time-Variable Education in the Health Professions: Crossroads.

    Science.gov (United States)

    Lucey, Catherine R; Thibault, George E; Ten Cate, Olle

    2018-03-01

    Health care systems around the world are transforming to align with the needs of 21st-century patients and populations. Transformation must also occur in the educational systems that prepare the health professionals who deliver care, advance discovery, and educate the next generation of physicians in these evolving systems. Competency-based, time-variable education, a comprehensive educational strategy guided by the roles and responsibilities that health professionals must assume to meet the needs of contemporary patients and communities, has the potential to catalyze optimization of educational and health care delivery systems. By designing educational and assessment programs that require learners to meet specific competencies before transitioning between the stages of formal education and into practice, this framework assures the public that every physician is capable of providing high-quality care. By engaging learners as partners in assessment, competency-based, time-variable education prepares graduates for careers as lifelong learners. While the medical education community has embraced the notion of competencies as a guiding framework for educational institutions, the structure and conduct of formal educational programs remain more aligned with a time-based, competency-variable paradigm.The authors outline the rationale behind this recommended shift to a competency-based, time-variable education system. They then introduce the other articles included in this supplement to Academic Medicine, which summarize the history of, theories behind, examples demonstrating, and challenges associated with competency-based, time-variable education in the health professions.

  17. Bianchi Type-V Bulk Viscous Cosmic String in f(R,T Gravity with Time Varying Deceleration Parameter

    Directory of Open Access Journals (Sweden)

    Bïnaya K. Bishi

    2015-01-01

    Full Text Available We study the Bianchi type-V string cosmological model with bulk viscosity in f(R,T theory of gravity by considering a special form and linearly varying deceleration parameter. This is an extension of the earlier work of Naidu et al., 2013, where they have constructed the model by considering a constant deceleration parameter. Here we find that the cosmic strings do not survive in both models. In addition we study some physical and kinematical properties of both models. We observe that in one of our models these properties are identical to the model obtained by Naidu et al., 2013, and in the other model the behavior of these parameters is different.

  18. Towards a quantum gravity

    International Nuclear Information System (INIS)

    Romney, B.; Barrau, A.; Vidotto, F.; Le Meur, H.; Noui, K.

    2011-01-01

    The loop quantum gravity is the only theory that proposes a quantum description of space-time and therefore of gravitation. This theory predicts that space is not infinitely divisible but that is has a granular structure at the Planck scale (10 -35 m). Another feature of loop quantum gravity is that it gets rid of the Big-Bang singularity: our expanding universe may come from the bouncing of a previous contracting universe, in this theory the Big-Bang is replaced with a big bounce. The loop quantum theory predicts also the huge number of quantum states that accounts for the entropy of large black holes. (A.C.)

  19. The swan song in context: long-time-scale X-ray variability of NGC 4051

    Science.gov (United States)

    Uttley, P.; McHardy, I. M.; Papadakis, I. E.; Guainazzi, M.; Fruscione, A.

    1999-07-01

    On 1998 May 9-11, the highly variable, low-luminosity Seyfert 1 galaxy NGC 4051 was observed in an unusual low-flux state by BeppoSAX, RXTE and EUVE. We present fits of the 4-15keV RXTE spectrum and BeppoSAX MECS spectrum obtained during this observation, which are consistent with the interpretation that the source had switched off, leaving only the spectrum of pure reflection from distant cold matter. We place this result in context by showing the X-ray light curve of NGC 4051 obtained by our RXTE monitoring campaign over the past two and a half years, which shows that the low state lasted for ~150d before the May observations (implying that the reflecting material is >10^17cm from the continuum source) and forms part of a light curve showing distinct variations in long-term average flux over time-scales > months. We show that the long-time-scale component to X-ray variability is intrinsic to the primary continuum and is probably distinct from the variability at shorter time-scales. The long-time-scale component to variability maybe associated with variations in the accretion flow of matter on to the central black hole. As the source approaches the low state, the variability process becomes non-linear. NGC 4051 may represent a microcosm of all X-ray variability in radio-quiet active galactic nuclei (AGNs), displaying in a few years a variety of flux states and variability properties which more luminous AGNs may pass through on time-scales of decades to thousands of years.

  20. Long time scale hard X-ray variability in Seyfert 1 galaxies

    Science.gov (United States)

    Markowitz, Alex Gary

    This dissertation examines the relationship between long-term X-ray variability characteristics, black hole mass, and luminosity of Seyfert 1 Active Galactic Nuclei. High dynamic range power spectral density functions (PSDs) have been constructed for six Seyfert 1 galaxies. These PSDs show "breaks" or characteristic time scales, typically on the order of a few days. There is resemblance to PSDs of lower-mass Galactic X-ray binaries (XRBs), with the ratios of putative black hole masses and variability time scales approximately the same (106--7) between the two classes of objects. The data are consistent with a linear correlation between Seyfert PSD break time scale and black hole mass estimate; the relation extrapolates reasonably well over 6--7 orders of magnitude to XRBs. All of this strengthens the case for a physical similarity between Seyfert galaxies and XRBs. The first six years of RXTE monitoring of Seyfert 1s have been systematically analyzed to probe hard X-ray variability on multiple time scales in a total of 19 Seyfert is in an expansion of the survey of Markowitz & Edelson (2001). Correlations between variability amplitude, luminosity, and black hole mass are explored, the data support the model of PSD movement with black hole mass suggested by the PSD survey. All of the continuum variability results are consistent with relatively more massive black holes hosting larger X-ray emission regions, resulting in 'slower' observed variability. Nearly all sources in the sample exhibit stronger variability towards softer energies, consistent with softening as they brighten. Direct time-resolved spectral fitting has been performed on continuous RXTE monitoring of seven Seyfert is to study long-term spectral variability and Fe Kalpha variability characteristics. The Fe Kalpha line displays a wide range of behavior but varies less strongly than the broadband continuum. Overall, however, there is no strong evidence for correlated variability between the line and

  1. Low-Energy Real-Time OS Using Voltage Scheduling Algorithm for Variable Voltage Processors

    OpenAIRE

    Okuma, Takanori; Yasuura, Hiroto

    2001-01-01

    This paper presents a real-time OS based on $ mu $ITRON using proposed voltage scheduling algorithm for variable voltage processors which can vary supply voltage dynamically. The proposed voltage scheduling algorithms assign voltage level for each task dynamically in order to minimize energy consumption under timing constraints. Using the presented real-time OS, running tasks with low supply voltage leads to drastic energy reduction. In addition, the presented voltage scheduling algorithm is ...

  2. Continuous performance task in ADHD: Is reaction time variability a key measure?

    Science.gov (United States)

    Levy, Florence; Pipingas, Andrew; Harris, Elizabeth V; Farrow, Maree; Silberstein, Richard B

    2018-01-01

    To compare the use of the Continuous Performance Task (CPT) reaction time variability (intraindividual variability or standard deviation of reaction time), as a measure of vigilance in attention-deficit hyperactivity disorder (ADHD), and stimulant medication response, utilizing a simple CPT X-task vs an A-X-task. Comparative analyses of two separate X-task vs A-X-task data sets, and subgroup analyses of performance on and off medication were conducted. The CPT X-task reaction time variability had a direct relationship to ADHD clinician severity ratings, unlike the CPT A-X-task. Variability in X-task performance was reduced by medication compared with the children's unmedicated performance, but this effect did not reach significance. When the coefficient of variation was applied, severity measures and medication response were significant for the X-task, but not for the A-X-task. The CPT-X-task is a useful clinical screening test for ADHD and medication response. In particular, reaction time variability is related to default mode interference. The A-X-task is less useful in this regard.

  3. Improvements in GRACE Gravity Fields Using Regularization

    Science.gov (United States)

    Save, H.; Bettadpur, S.; Tapley, B. D.

    2008-12-01

    The unconstrained global gravity field models derived from GRACE are susceptible to systematic errors that show up as broad "stripes" aligned in a North-South direction on the global maps of mass flux. These errors are believed to be a consequence of both systematic and random errors in the data that are amplified by the nature of the gravity field inverse problem. These errors impede scientific exploitation of the GRACE data products, and limit the realizable spatial resolution of the GRACE global gravity fields in certain regions. We use regularization techniques to reduce these "stripe" errors in the gravity field products. The regularization criteria are designed such that there is no attenuation of the signal and that the solutions fit the observations as well as an unconstrained solution. We have used a computationally inexpensive method, normally referred to as "L-ribbon", to find the regularization parameter. This paper discusses the characteristics and statistics of a 5-year time-series of regularized gravity field solutions. The solutions show markedly reduced stripes, are of uniformly good quality over time, and leave little or no systematic observation residuals, which is a frequent consequence of signal suppression from regularization. Up to degree 14, the signal in regularized solution shows correlation greater than 0.8 with the un-regularized CSR Release-04 solutions. Signals from large-amplitude and small-spatial extent events - such as the Great Sumatra Andaman Earthquake of 2004 - are visible in the global solutions without using special post-facto error reduction techniques employed previously in the literature. Hydrological signals as small as 5 cm water-layer equivalent in the small river basins, like Indus and Nile for example, are clearly evident, in contrast to noisy estimates from RL04. The residual variability over the oceans relative to a seasonal fit is small except at higher latitudes, and is evident without the need for de-striping or

  4. Gravity field and ocean tides modeling for precise orbit determination of doris satellites

    Czech Academy of Sciences Publication Activity Database

    Štěpánek, P.; Bezděk, Aleš; Kostelecký, J.; Filler, V.

    2016-01-01

    Roč. 13, č. 1 (2016), s. 27-40 ISSN 1214-9705 R&D Projects: GA MŠk(CZ) LG14026 Grant - others:GA ČR(CZ) GC15-24730J Institutional support: RVO:67985815 Keywords : gravity field truncation degree * ocean tides * time variable gravity Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.699, year: 2016

  5. Constraining Nonperturbative Strong-Field Effects in Scalar-Tensor Gravity by Combining Pulsar Timing and Laser-Interferometer Gravitational-Wave Detectors

    Directory of Open Access Journals (Sweden)

    Lijing Shao

    2017-10-01

    Full Text Available Pulsar timing and laser-interferometer gravitational-wave (GW detectors are superb laboratories to study gravity theories in the strong-field regime. Here, we combine these tools to test the mono-scalar-tensor theory of Damour and Esposito-Farèse (DEF, which predicts nonperturbative scalarization phenomena for neutron stars (NSs. First, applying Markov-chain Monte Carlo techniques, we use the absence of dipolar radiation in the pulsar-timing observations of five binary systems composed of a NS and a white dwarf, and eleven equations of state (EOSs for NSs, to derive the most stringent constraints on the two free parameters of the DEF scalar-tensor theory. Since the binary-pulsar bounds depend on the NS mass and the EOS, we find that current pulsar-timing observations leave scalarization windows, i.e., regions of parameter space where scalarization can still be prominent. Then, we investigate if these scalarization windows could be closed and if pulsar-timing constraints could be improved by laser-interferometer GW detectors, when spontaneous (or dynamical scalarization sets in during the early (or late stages of a binary NS (BNS evolution. For the early inspiral of a BNS carrying constant scalar charge, we employ a Fisher-matrix analysis to show that Advanced LIGO can improve pulsar-timing constraints for some EOSs, and next-generation detectors, such as the Cosmic Explorer and Einstein Telescope, will be able to improve those bounds for all eleven EOSs. Using the late inspiral of a BNS, we estimate that for some of the EOSs under consideration, the onset of dynamical scalarization can happen early enough to improve the constraints on the DEF parameters obtained by combining the five binary pulsars. Thus, in the near future, the complementarity of pulsar timing and direct observations of GWs on the ground will be extremely valuable in probing gravity theories in the strong-field regime.

  6. Quantum gravity

    International Nuclear Information System (INIS)

    Isham, C.

    1989-01-01

    Gravitational effects are seen as arising from a curvature in spacetime. This must be reconciled with gravity's apparently passive role in quantum theory to achieve a satisfactory quantum theory of gravity. The development of grand unified theories has spurred the search, with forces being of equal strength at a unification energy of 10 15 - 10 18 GeV, with the ''Plank length'', Lp ≅ 10 -35 m. Fundamental principles of general relativity and quantum mechanics are outlined. Gravitons are shown to have spin-0, as mediators of gravitation force in the classical sense or spin-2 which are related to the quantisation of general relativity. Applying the ideas of supersymmetry to gravitation implies partners for the graviton, especially the massless spin 3/2 fermion called a gravitino. The concept of supersymmetric strings is introduced and discussed. (U.K.)

  7. Quantum gravity

    International Nuclear Information System (INIS)

    Markov, M.A.; West, P.C.

    1984-01-01

    This book discusses the state of the art of quantum gravity, quantum effects in cosmology, quantum black-hole physics, recent developments in supergravity, and quantum gauge theories. Topics considered include the problems of general relativity, pregeometry, complete cosmological theories, quantum fluctuations in cosmology and galaxy formation, a new inflationary universe scenario, grand unified phase transitions and the early Universe, the generalized second law of thermodynamics, vacuum polarization near black holes, the relativity of vacuum, black hole evaporations and their cosmological consequences, currents in supersymmetric theories, the Kaluza-Klein theories, gauge algebra and quantization, and twistor theory. This volume constitutes the proceedings of the Second Seminar on Quantum Gravity held in Moscow in 1981

  8. Modified Pressure-Correction Projection Methods: Open Boundary and Variable Time Stepping

    KAUST Repository

    Bonito, Andrea

    2014-10-31

    © Springer International Publishing Switzerland 2015. In this paper, we design and study two modifications of the first order standard pressure increment projection scheme for the Stokes system. The first scheme improves the existing schemes in the case of open boundary condition by modifying the pressure increment boundary condition, thereby minimizing the pressure boundary layer and recovering the optimal first order decay. The second scheme allows for variable time stepping. It turns out that the straightforward modification to variable time stepping leads to unstable schemes. The proposed scheme is not only stable but also exhibits the optimal first order decay. Numerical computations illustrating the theoretical estimates are provided for both new schemes.

  9. Modified Pressure-Correction Projection Methods: Open Boundary and Variable Time Stepping

    KAUST Repository

    Bonito, Andrea; Guermond, Jean-Luc; Lee, Sanghyun

    2014-01-01

    © Springer International Publishing Switzerland 2015. In this paper, we design and study two modifications of the first order standard pressure increment projection scheme for the Stokes system. The first scheme improves the existing schemes in the case of open boundary condition by modifying the pressure increment boundary condition, thereby minimizing the pressure boundary layer and recovering the optimal first order decay. The second scheme allows for variable time stepping. It turns out that the straightforward modification to variable time stepping leads to unstable schemes. The proposed scheme is not only stable but also exhibits the optimal first order decay. Numerical computations illustrating the theoretical estimates are provided for both new schemes.

  10. Evidence for a time-invariant phase variable in human ankle control.

    Directory of Open Access Journals (Sweden)

    Robert D Gregg

    Full Text Available Human locomotion is a rhythmic task in which patterns of muscle activity are modulated by state-dependent feedback to accommodate perturbations. Two popular theories have been proposed for the underlying embodiment of phase in the human pattern generator: a time-dependent internal representation or a time-invariant feedback representation (i.e., reflex mechanisms. In either case the neuromuscular system must update or represent the phase of locomotor patterns based on the system state, which can include measurements of hundreds of variables. However, a much simpler representation of phase has emerged in recent designs for legged robots, which control joint patterns as functions of a single monotonic mechanical variable, termed a phase variable. We propose that human joint patterns may similarly depend on a physical phase variable, specifically the heel-to-toe movement of the Center of Pressure under the foot. We found that when the ankle is unexpectedly rotated to a position it would have encountered later in the step, the Center of Pressure also shifts forward to the corresponding later position, and the remaining portion of the gait pattern ensues. This phase shift suggests that the progression of the stance ankle is controlled by a biomechanical phase variable, motivating future investigations of phase variables in human locomotor control.

  11. Variability of African Farming Systems from Phenological Analysis of NDVI Time Series

    Science.gov (United States)

    Vrieling, Anton; deBeurs, K. M.; Brown, Molly E.

    2011-01-01

    Food security exists when people have access to sufficient, safe and nutritious food at all times to meet their dietary needs. The natural resource base is one of the many factors affecting food security. Its variability and decline creates problems for local food production. In this study we characterize for sub-Saharan Africa vegetation phenology and assess variability and trends of phenological indicators based on NDVI time series from 1982 to 2006. We focus on cumulated NDVI over the season (cumNDVI) which is a proxy for net primary productivity. Results are aggregated at the level of major farming systems, while determining also spatial variability within farming systems. High temporal variability of cumNDVI occurs in semiarid and subhumid regions. The results show a large area of positive cumNDVI trends between Senegal and South Sudan. These correspond to positive CRU rainfall trends found and relate to recovery after the 1980's droughts. We find significant negative cumNDVI trends near the south-coast of West Africa (Guinea coast) and in Tanzania. For each farming system, causes of change and variability are discussed based on available literature (Appendix A). Although food security comprises more than the local natural resource base, our results can perform an input for food security analysis by identifying zones of high variability or downward trends. Farming systems are found to be a useful level of analysis. Diversity and trends found within farming system boundaries underline that farming systems are dynamic.

  12. Electrical Activity in a Time-Delay Four-Variable Neuron Model under Electromagnetic Induction

    Directory of Open Access Journals (Sweden)

    Keming Tang

    2017-11-01

    Full Text Available To investigate the effect of electromagnetic induction on the electrical activity of neuron, the variable for magnetic flow is used to improve Hindmarsh–Rose neuron model. Simultaneously, due to the existence of time-delay when signals are propagated between neurons or even in one neuron, it is important to study the role of time-delay in regulating the electrical activity of the neuron. For this end, a four-variable neuron model is proposed to investigate the effects of electromagnetic induction and time-delay. Simulation results suggest that the proposed neuron model can show multiple modes of electrical activity, which is dependent on the time-delay and external forcing current. It means that suitable discharge mode can be obtained by selecting the time-delay or external forcing current, which could be helpful for further investigation of electromagnetic radiation on biological neuronal system.

  13. Predictor variables for a half marathon race time in recreational male runners

    Directory of Open Access Journals (Sweden)

    Rüst CA

    2011-08-01

    Full Text Available Christoph Alexander Rüst1, Beat Knechtle1,2, Patrizia Knechtle2, Ursula Barandun1, Romuald Lepers3, Thomas Rosemann11Institute of General Practice and Health Services Research, University of Zurich, Zurich, Switzerland; 2Gesundheitszentrum St Gallen, St Gallen, Switzerland; 3INSERM U887, University of Burgundy, Faculty of Sport Sciences, Dijon, FranceAbstract: The aim of this study was to investigate predictor variables of anthropometry, training, and previous experience in order to predict a half marathon race time for future novice recreational male half marathoners. Eighty-four male finishers in the ‘Half Marathon Basel’ completed the race distance within (mean and standard deviation, SD 103.9 (16.5 min, running at a speed of 12.7 (1.9 km/h. After multivariate analysis of the anthropometric characteristics, body mass index (r = 0.56, suprailiacal (r = 0.36 and medial calf skin fold (r = 0.53 were related to race time. For the variables of training and previous experience, speed in running of the training sessions (r = –0.54 were associated with race time. After multivariate analysis of both the significant anthropometric and training variables, body mass index (P = 0.0150 and speed in running during training (P = 0.0045 were related to race time. Race time in a half marathon might be partially predicted by the following equation (r2 = 0.44: Race time (min = 72.91 + 3.045 * (body mass index, kg/m2 –3.884 * (speed in running during training, km/h for recreational male runners. To conclude, variables of both anthropometry and training were related to half marathon race time in recreational male half marathoners and cannot be reduced to one single predictor variable.Keywords: anthropometry, body fat, skin-folds, training, endurance

  14. BAYESIAN TECHNIQUES FOR COMPARING TIME-DEPENDENT GRMHD SIMULATIONS TO VARIABLE EVENT HORIZON TELESCOPE OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junhan; Marrone, Daniel P.; Chan, Chi-Kwan; Medeiros, Lia; Özel, Feryal; Psaltis, Dimitrios, E-mail: junhankim@email.arizona.edu [Department of Astronomy and Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States)

    2016-12-01

    The Event Horizon Telescope (EHT) is a millimeter-wavelength, very-long-baseline interferometry (VLBI) experiment that is capable of observing black holes with horizon-scale resolution. Early observations have revealed variable horizon-scale emission in the Galactic Center black hole, Sagittarius A* (Sgr A*). Comparing such observations to time-dependent general relativistic magnetohydrodynamic (GRMHD) simulations requires statistical tools that explicitly consider the variability in both the data and the models. We develop here a Bayesian method to compare time-resolved simulation images to variable VLBI data, in order to infer model parameters and perform model comparisons. We use mock EHT data based on GRMHD simulations to explore the robustness of this Bayesian method and contrast it to approaches that do not consider the effects of variability. We find that time-independent models lead to offset values of the inferred parameters with artificially reduced uncertainties. Moreover, neglecting the variability in the data and the models often leads to erroneous model selections. We finally apply our method to the early EHT data on Sgr A*.

  15. Consequences of energy conservation violation: late time solutions of Λ(T)CDM subclass of f(R,T) gravity using dynamical system approach

    Energy Technology Data Exchange (ETDEWEB)

    Shabani, Hamid [University of Sistan and Baluchestan, Physics Department, Faculty of Sciences, Zahedan (Iran, Islamic Republic of); Ziaie, Amir Hadi [Islamic Azad University, Department of Physics, Kahnooj Branch, Kerman (Iran, Islamic Republic of)

    2017-05-15

    Very recently, Josset and Perez (Phys. Rev. Lett. 118:021102, 2017) have shown that a violation of the energy-momentum tensor (EMT) could result in an accelerated expansion state via the appearance of an effective cosmological constant, in the context of unimodular gravity. Inspired by this outcome, in this paper we investigate cosmological consequences of a violation of the EMT conservation in a particular class of f(R,T) gravity when only the pressure-less fluid is present. In this respect, we focus on the late time solutions of models of the type f(R,T) = R + βΛ(-T). As the first task, we study the solutions when the conservation of EMT is respected, and then we proceed with those in which violation occurs. We have found, provided that the EMT conservation is violated, that there generally exist two accelerated expansion solutions of which the stability properties depend on the underlying model. More exactly, we obtain a dark energy solution for which the effective equation of state depends on the model parameters and a de Sitter solution. We present a method to parametrize the Λ(-T) function, which is useful in a dynamical system approach and has been employed in the model. Also, we discuss the cosmological solutions for models with Λ(-T) = 8πG(-T){sup α} in the presence of ultra-relativistic matter. (orig.)

  16. Is nonrelativistic gravity possible?

    International Nuclear Information System (INIS)

    Kocharyan, A. A.

    2009-01-01

    We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of Horava gravity are locally identical.

  17. A search for time variability and its possible regularities in linear polarization of Be stars

    International Nuclear Information System (INIS)

    Huang, L.; Guo, Z.H.; Hsu, J.C.; Huang, L.

    1989-01-01

    Linear polarization measurements are presented for 14 Be stars obtained at McDonald Observatory during four observing runs from June to November of 1983. Methods of observation and data reduction are described. Seven of eight program stars which were observed on six or more nights exhibited obvious polarimetric variations on time-scales of days or months. The incidence is estimated as 50% and may be as high as 93%. No connection can be found between polarimetric variability and rapid periodic light or spectroscopic variability for our stars. Ultra-rapid variability on time-scale of minutes was searched for with negative results. In all cases the position angles also show variations indicating that the axis of symmetry of the circumstellar envelope changes its orientation in space. For the Be binary CX Dra the variations in polarization seems to have a period which is just half of the orbital period

  18. On the physical processes which lie at the bases of time variability of GRBs

    International Nuclear Information System (INIS)

    Ruffini, R.; Bianco, C. L.; Fraschetti, F.; Xue, S-S.

    2001-01-01

    The relative-space-time-transformation (RSTT) paradigm and the interpretation of the burst-structure (IBS) paradigm are applied to probe the origin of the time variability of GRBs. Again GRB 991216 is used as a prototypical case, thanks to the precise data from the CGRO, RXTE and Chandra satellites. It is found that with the exception of the relatively inconspicuous but scientifically very important signal originating from the initial proper gamma ray burst (P-GRB), all the other spikes and time variabilities can be explained by the interaction of the accelerated-baryonic-matter pulse with inhomogeneities in the interstellar matter. This can be demonstrated by using the RSTT paradigm as well as the IBS paradigm, to trace a typical spike observed in arrival time back to the corresponding one in the laboratory time. Using these paradigms, the identification of the physical nature of the time variability of the GRBs can be made most convincingly. It is made explicit the dependence of a) the intensities of the afterglow, b) the spikes amplitude and c) the actual time structure on the Lorentz gamma factor of the accelerated-baryonic-matter pulse. In principle it is possible to read off from the spike structure the detailed density contrast of the interstellar medium in the host galaxy, even at very high redshift

  19. Dimensional reduction in quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Hooft, G [Rijksuniversiteit Utrecht (Netherlands). Inst. voor Theoretische Fysica

    1994-12-31

    The requirement that physical phenomena associated with gravitational collapse should be duly reconciled with the postulates of quantum mechanics implies that at a Planckian scale our world is not 3+1 dimensional. Rather, the observable degrees of freedom can best be described as if they were Boolean variables defined on a two- dimensional lattice, evolving with time. This observation, deduced from not much more than unitarity, entropy and counting arguments, implies severe restrictions on possible models of quantum gravity. Using cellular automata as an example it is argued that this dimensional reduction implies more constraints than the freedom we have in constructing models. This is the main reason why so-far no completely consistent mathematical models of quantum black holes have been found. (author). 13 refs, 2 figs.

  20. Gravity Before Einstein and Schwinger Before Gravity

    Science.gov (United States)

    Trimble, Virginia L.

    2012-05-01

    Julian Schwinger was a child prodigy, and Albert Einstein distinctly not; Schwinger had something like 73 graduate students, and Einstein very few. But both thought gravity was important. They were not, of course, the first, nor is the disagreement on how one should think about gravity that is being highlighted here the first such dispute. The talk will explore, first, several of the earlier dichotomies: was gravity capable of action at a distance (Newton), or was a transmitting ether required (many others). Did it act on everything or only on solids (an odd idea of the Herschels that fed into their ideas of solar structure and sunspots)? Did gravitational information require time for its transmission? Is the exponent of r precisely 2, or 2 plus a smidgeon (a suggestion by Simon Newcomb among others)? And so forth. Second, I will try to say something about Scwinger's lesser known early work and how it might have prefigured his "source theory," beginning with "On the Interaction of Several Electrons (the unpublished, 1934 "zeroth paper," whose title somewhat reminds one of "On the Dynamics of an Asteroid," through his days at Berkeley with Oppenheimer, Gerjuoy, and others, to his application of ideas from nuclear physics to radar and of radar engineering techniques to problems in nuclear physics. And folks who think good jobs are difficult to come by now might want to contemplate the couple of years Schwinger spent teaching elementary physics at Purdue before moving on to the MIT Rad Lab for war work.

  1. Tensor Galileons and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Chatzistavrakidis, Athanasios [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Khoo, Fech Scen [Department of Physics and Earth Sciences, Jacobs University Bremen,Campus Ring 1, 28759 Bremen (Germany); Roest, Diederik [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Schupp, Peter [Department of Physics and Earth Sciences, Jacobs University Bremen,Campus Ring 1, 28759 Bremen (Germany)

    2017-03-13

    The particular structure of Galileon interactions allows for higher-derivative terms while retaining second order field equations for scalar fields and Abelian p-forms. In this work we introduce an index-free formulation of these interactions in terms of two sets of Grassmannian variables. We employ this to construct Galileon interactions for mixed-symmetry tensor fields and coupled systems thereof. We argue that these tensors are the natural generalization of scalars with Galileon symmetry, similar to p-forms and scalars with a shift-symmetry. The simplest case corresponds to linearised gravity with Lovelock invariants, relating the Galileon symmetry to diffeomorphisms. Finally, we examine the coupling of a mixed-symmetry tensor to gravity, and demonstrate in an explicit example that the inclusion of appropriate counterterms retains second order field equations.

  2. Improved theory of time domain reflectometry with variable coaxial cable length for electrical conductivity measurements

    Science.gov (United States)

    Although empirical models have been developed previously, a mechanistic model is needed for estimating electrical conductivity (EC) using time domain reflectometry (TDR) with variable lengths of coaxial cable. The goals of this study are to: (1) derive a mechanistic model based on multisection tra...

  3. Using Derivative Estimates to Describe Intraindividual Variability at Multiple Time Scales

    Science.gov (United States)

    Deboeck, Pascal R.; Montpetit, Mignon A.; Bergeman, C. S.; Boker, Steven M.

    2009-01-01

    The study of intraindividual variability is central to the study of individuals in psychology. Previous research has related the variance observed in repeated measurements (time series) of individuals to traitlike measures that are logically related. Intraindividual measures, such as intraindividual standard deviation or the coefficient of…

  4. The reliable solution and computation time of variable parameters Logistic model

    OpenAIRE

    Pengfei, Wang; Xinnong, Pan

    2016-01-01

    The reliable computation time (RCT, marked as Tc) when applying a double precision computation of a variable parameters logistic map (VPLM) is studied. First, using the method proposed, the reliable solutions for the logistic map are obtained. Second, for a time-dependent non-stationary parameters VPLM, 10000 samples of reliable experiments are constructed, and the mean Tc is then computed. The results indicate that for each different initial value, the Tcs of the VPLM are generally different...

  5. Predictor variables for half marathon race time in recreational female runners

    OpenAIRE

    Knechtle, Beat; Knechtle, Patrizia; Barandun, Ursula; Rosemann, Thomas; Lepers, Romuald

    2011-01-01

    INTRODUCTION: The relationship between skin-fold thickness and running performance has been investigated from 100 m to the marathon distance, except the half marathon distance. OBJECTIVE: To investigate whether anthropometry characteristics or training practices were related to race time in 42 recreational female half marathoners to determine the predictor variables of half-marathon race time and to inform future novice female half marathoners. METHODS: Observational field study at the ‘Half ...

  6. A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method

    OpenAIRE

    Jun-He Yang; Ching-Hsue Cheng; Chia-Pan Chan

    2017-01-01

    Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir's water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting m...

  7. A study of applying variable valve timing to highly rated diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Stone, C R; Leonard, H J [comps.; Brunel Univ., Uxbridge (United Kingdom); Charlton, S J [comp.; Bath Univ. (United Kingdom)

    1992-10-01

    The main objective of the research was to use Simulation Program for Internal Combustion Engines (SPICE) to quantify the potential offered by Variable Valve Timing (VVT) in improving engine performance. A model has been constructed of a particular engine using SPICE. The model has been validated with experimental data, and it has been shown that accurate predictions are made when the valve timing is changed. (author)

  8. Intraindividual Stepping Reaction Time Variability Predicts Falls in Older Adults With Mild Cognitive Impairment

    OpenAIRE

    Bunce, D; Haynes, BI; Lord, SR; Gschwind, YJ; Kochan, NA; Reppermund, S; Brodaty, H; Sachdev, PS; Delbaere, K

    2017-01-01

    Background: Reaction time measures have considerable potential to aid neuropsychological assessment in a variety of health care settings. One such measure, the intraindividual reaction time variability (IIV), is of particular interest as it is thought to reflect neurobiological disturbance. IIV is associated with a variety of age-related neurological disorders, as well as gait impairment and future falls in older adults. However, although persons diagnosed with Mild Cognitive Impairment (MCI)...

  9. Error Analysis of a Fractional Time-Stepping Technique for Incompressible Flows with Variable Density

    KAUST Repository

    Guermond, J.-L.; Salgado, Abner J.

    2011-01-01

    In this paper we analyze the convergence properties of a new fractional time-stepping technique for the solution of the variable density incompressible Navier-Stokes equations. The main feature of this method is that, contrary to other existing algorithms, the pressure is determined by just solving one Poisson equation per time step. First-order error estimates are proved, and stability of a formally second-order variant of the method is established. © 2011 Society for Industrial and Applied Mathematics.

  10. Bounds of Double Integral Dynamic Inequalities in Two Independent Variables on Time Scales

    Directory of Open Access Journals (Sweden)

    S. H. Saker

    2011-01-01

    Full Text Available Our aim in this paper is to establish some explicit bounds of the unknown function in a certain class of nonlinear dynamic inequalities in two independent variables on time scales which are unbounded above. These on the one hand generalize and on the other hand furnish a handy tool for the study of qualitative as well as quantitative properties of solutions of partial dynamic equations on time scales. Some examples are considered to demonstrate the applications of the results.

  11. GPS Imaging of Time-Variable Earthquake Hazard: The Hilton Creek Fault, Long Valley California

    Science.gov (United States)

    Hammond, W. C.; Blewitt, G.

    2016-12-01

    The Hilton Creek Fault, in Long Valley, California is a down-to-the-east normal fault that bounds the eastern edge of the Sierra Nevada/Great Valley microplate, and lies half inside and half outside the magmatically active caldera. Despite the dense coverage with GPS networks, the rapid and time-variable surface deformation attributable to sporadic magmatic inflation beneath the resurgent dome makes it difficult to use traditional geodetic methods to estimate the slip rate of the fault. While geologic studies identify cumulative offset, constrain timing of past earthquakes, and constrain a Quaternary slip rate to within 1-5 mm/yr, it is not currently possible to use geologic data to evaluate how the potential for slip correlates with transient caldera inflation. To estimate time-variable seismic hazard of the fault we estimate its instantaneous slip rate from GPS data using a new set of algorithms for robust estimation of velocity and strain rate fields and fault slip rates. From the GPS time series, we use the robust MIDAS algorithm to obtain time series of velocity that are highly insensitive to the effects of seasonality, outliers and steps in the data. We then use robust imaging of the velocity field to estimate a gridded time variable velocity field. Then we estimate fault slip rate at each time using a new technique that forms ad-hoc block representations that honor fault geometries, network complexity, connectivity, but does not require labor-intensive drawing of block boundaries. The results are compared to other slip rate estimates that have implications for hazard over different time scales. Time invariant long term seismic hazard is proportional to the long term slip rate accessible from geologic data. Contemporary time-invariant hazard, however, may differ from the long term rate, and is estimated from the geodetic velocity field that has been corrected for the effects of magmatic inflation in the caldera using a published model of a dipping ellipsoidal

  12. Spontaneous variability of pre-dialysis concentrations of uremic toxins over time in stable hemodialysis patients.

    Directory of Open Access Journals (Sweden)

    Sunny Eloot

    Full Text Available Numerous outcome studies and interventional trials in hemodialysis (HD patients are based on uremic toxin concentrations determined at one single or a limited number of time points. The reliability of these studies however entirely depends on how representative these cross-sectional concentrations are. We therefore investigated the variability of predialysis concentrations of uremic toxins over time.Prospectively collected predialysis serum samples of the midweek session of week 0, 1, 2, 3, 4, 8, 12, and 16 were analyzed for a panel of uremic toxins in stable chronic HD patients (N = 18 while maintaining dialyzer type and dialysis mode during the study period.Concentrations of the analyzed uremic toxins varied substantially between individuals, but also within stable HD patients (intra-patient variability. For urea, creatinine, beta-2-microglobulin, and some protein-bound uremic toxins, Intra-class Correlation Coefficient (ICC was higher than 0.7. However, for phosphorus, uric acid, symmetric and asymmetric dimethylarginine, and the protein-bound toxins hippuric acid and indoxyl sulfate, ICC values were below 0.7, implying a concentration variability within the individual patient even exceeding 65% of the observed inter-patient variability.Intra-patient variability may affect the interpretation of the association between a single concentration of certain uremic toxins and outcomes. When performing future outcome and interventional studies with uremic toxins other than described here, one should quantify their intra-patient variability and take into account that for solutes with a large intra-patient variability associations could be missed.

  13. Numerical Solution of the Time-Dependent Navier–Stokes Equation for Variable Density–Variable Viscosity. Part I

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe; Xin, H.; Neytcheva, M.

    2015-01-01

    Roč. 20, č. 2 (2015), s. 232-260 ISSN 1392-6292 Institutional support: RVO:68145535 Keywords : variable density * phase-field model * Navier-Stokes equations * preconditioning * variable viscosity Subject RIV: BA - General Mathematics Impact factor: 0.468, year: 2015 http://www.tandfonline.com/doi/abs/10.3846/13926292.2015.1021395

  14. Noncommutative gravity

    International Nuclear Information System (INIS)

    Schupp, P.

    2007-01-01

    Heuristic arguments suggest that the classical picture of smooth commutative spacetime should be replaced by some kind of quantum / noncommutative geometry at length scales and energies where quantum as well as gravitational effects are important. Motivated by this idea much research has been devoted to the study of quantum field theory on noncommutative spacetimes. More recently the focus has started to shift back to gravity in this context. We give an introductory overview to the formulation of general relativity in a noncommutative spacetime background and discuss the possibility of exact solutions. (author)

  15. Application of several variable-valve-timing concepts to an LHR engine

    Science.gov (United States)

    Morel, T.; Keribar, R.; Sawlivala, M.; Hakim, N.

    1987-01-01

    The paper discusses advantages provided by electronically controlled hydraulically activated valves (ECVs) when applied to low heat rejection (LHR) engines. The ECV concept provides additional engine control flexibility by allowing for a variable valve timing as a function of speed and load, or for a given transient condition. The results of a study carried out to assess the benefits that this flexibility can offer to an LHR engine indicated that, when judged on the benefits to BSFC, volumetric efficiency, and peak firing pressure, ECVs would provide only modest benefits in comparison to conventional valve profiles. It is noted, however, that once installed on the engine, the ECVs would permit a whole range of certain more sophisticated variable valve timing strategies not otherwise possible, such as high compression cranking, engine braking, cylinder cutouts, and volumetric efficiency timing with engine speed.

  16. Synthesis of Biochemical Applications on Digital Microfluidic Biochips with Operation Execution Time Variability

    DEFF Research Database (Denmark)

    Alistar, Mirela; Pop, Paul

    2015-01-01

    that each biochemical operation in an application is characterized by a worst-case execution time (wcet). However, during the execution of the application, due to variability and randomness in biochemical reactions, operations may finish earlier than their wcetswcets, resulting in unexploited slack...... in the schedule. In this paper, we first propose an online synthesis strategy that re-synthesizes the application at runtime when operations experience variability in their execution time, exploiting thus the slack to obtain shorter application completion times. We also propose a quasi-static synthesis strategy...... approaches have been proposed for the synthesis of digital microfluidic biochips, which, starting from a biochemical application and a given biochip architecture, determine the allocation, resource binding, scheduling, placement and routing of the operations in the application. Researchers have assumed...

  17. Continuous-variable quantum computing in optical time-frequency modes using quantum memories.

    Science.gov (United States)

    Humphreys, Peter C; Kolthammer, W Steven; Nunn, Joshua; Barbieri, Marco; Datta, Animesh; Walmsley, Ian A

    2014-09-26

    We develop a scheme for time-frequency encoded continuous-variable cluster-state quantum computing using quantum memories. In particular, we propose a method to produce, manipulate, and measure two-dimensional cluster states in a single spatial mode by exploiting the intrinsic time-frequency selectivity of Raman quantum memories. Time-frequency encoding enables the scheme to be extremely compact, requiring a number of memories that are a linear function of only the number of different frequencies in which the computational state is encoded, independent of its temporal duration. We therefore show that quantum memories can be a powerful component for scalable photonic quantum information processing architectures.

  18. Three-Factor Market-Timing Models with Fama and French's Spread Variables

    Directory of Open Access Journals (Sweden)

    Joanna Olbryś

    2010-01-01

    Full Text Available The traditional performance measurement literature has attempted to distinguish security selection, or stock-picking ability, from market-timing, or the ability to predict overall market returns. However, the literature finds that it is not easy to separate ability into such dichotomous categories. Some researchers have developed models that allow the decomposition of manager performance into market-timing and selectivity skills. The main goal of this paper is to present modified versions of classical market-timing models with Fama and French’s spread variables SMB and HML, in the case of Polish equity mutual funds. (original abstract

  19. Conformal Gravity

    International Nuclear Information System (INIS)

    Hooft, G.

    2012-01-01

    The dynamical degree of freedom for the gravitational force is the metric tensor, having 10 locally independent degrees of freedom (of which 4 can be used to fix the coordinate choice). In conformal gravity, we split this field into an overall scalar factor and a nine-component remainder. All unrenormalizable infinities are in this remainder, while the scalar component can be handled like any other scalar field such as the Higgs field. In this formalism, conformal symmetry is spontaneously broken. An imperative demand on any healthy quantum gravity theory is that black holes should be described as quantum systems with micro-states as dictated by the Hawking-Bekenstein theory. This requires conformal symmetry that may be broken spontaneously but not explicitly, and this means that all conformal anomalies must cancel out. Cancellation of conformal anomalies yields constraints on the matter sector as described by some universal field theory. Thus black hole physics may eventually be of help in the construction of unified field theories. (author)

  20. Time-varying surrogate data to assess nonlinearity in nonstationary time series: application to heart rate variability.

    Science.gov (United States)

    Faes, Luca; Zhao, He; Chon, Ki H; Nollo, Giandomenico

    2009-03-01

    We propose a method to extend to time-varying (TV) systems the procedure for generating typical surrogate time series, in order to test the presence of nonlinear dynamics in potentially nonstationary signals. The method is based on fitting a TV autoregressive (AR) model to the original series and then regressing the model coefficients with random replacements of the model residuals to generate TV AR surrogate series. The proposed surrogate series were used in combination with a TV sample entropy (SE) discriminating statistic to assess nonlinearity in both simulated and experimental time series, in comparison with traditional time-invariant (TIV) surrogates combined with the TIV SE discriminating statistic. Analysis of simulated time series showed that using TIV surrogates, linear nonstationary time series may be erroneously regarded as nonlinear and weak TV nonlinearities may remain unrevealed, while the use of TV AR surrogates markedly increases the probability of a correct interpretation. Application to short (500 beats) heart rate variability (HRV) time series recorded at rest (R), after head-up tilt (T), and during paced breathing (PB) showed: 1) modifications of the SE statistic that were well interpretable with the known cardiovascular physiology; 2) significant contribution of nonlinear dynamics to HRV in all conditions, with significant increase during PB at 0.2 Hz respiration rate; and 3) a disagreement between TV AR surrogates and TIV surrogates in about a quarter of the series, suggesting that nonstationarity may affect HRV recordings and bias the outcome of the traditional surrogate-based nonlinearity test.

  1. Vaidya spacetime in massive gravity's rainbow

    Directory of Open Access Journals (Sweden)

    Yaghoub Heydarzade

    2017-11-01

    Full Text Available In this paper, we will analyze the energy dependent deformation of massive gravity using the formalism of massive gravity's rainbow. So, we will use the Vainshtein mechanism and the dRGT mechanism for the energy dependent massive gravity, and thus analyze a ghost free theory of massive gravity's rainbow. We study the energy dependence of a time-dependent geometry, by analyzing the radiating Vaidya solution in this theory of massive gravity's rainbow. The energy dependent deformation of this Vaidya metric will be performed using suitable rainbow functions.

  2. Intraindividual variability in reaction time before and after neoadjuvant chemotherapy in women diagnosed with breast cancer.

    Science.gov (United States)

    Yao, Christie; Rich, Jill B; Tirona, Kattleya; Bernstein, Lori J

    2017-12-01

    Women treated with chemotherapy for breast cancer experience subtle cognitive deficits. Research has focused on mean performance level, yet recent work suggests that within-person variability in reaction time performance may underlie cognitive symptoms. We examined intraindividual variability (IIV) in women diagnosed with breast cancer and treated with neoadjuvant chemotherapy. Patients (n = 28) were assessed at baseline before chemotherapy (T1), approximately 1 month after chemotherapy but prior to surgery (T2), and after surgery about 9 months post chemotherapy (T3). Healthy women of similar age and education (n = 20) were assessed at comparable time intervals. Using a standardized regression-based approach, we examined changes in mean performance level and IIV (eg, intraindividual standard deviation) on a Stroop task and self-report measures of cognitive function from T1 to T2 and T1 to T3. At T1, women with breast cancer were more variable than controls as task complexity increased. Change scores from T1 to T2 were similar between groups on all Stroop performance measures. From T1 to T3, controls improved more than women with breast cancer. IIV was more sensitive than mean reaction time in capturing group differences. Additional analyses showed increased cognitive symptoms reported by women with breast cancer from T1 to T3. Specifically, change in language symptoms was positively correlated with change in variability. Women with breast cancer declined in attention and inhibitory control relative to pretreatment performance. Future studies should include measures of variability, because they are an important sensitive indicator of change in cognitive function. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Towards a More Biologically-meaningful Climate Characterization: Variability in Space and Time at Multiple Scales

    Science.gov (United States)

    Christianson, D. S.; Kaufman, C. G.; Kueppers, L. M.; Harte, J.

    2013-12-01

    fine-spatial scales (sub-meter to 10-meter) shows greater temperature variability with warmer mean temperatures. This is inconsistent with the inherent assumption made in current species distribution models that fine-scale variability is static, implying that current projections of future species ranges may be biased -- the direction and magnitude requiring further study. While we focus our findings on the cross-scaling characteristics of temporal and spatial variability, we also compare the mean-variance relationship between 1) experimental climate manipulations and observed conditions and 2) temporal versus spatial variance, i.e., variability in a time-series at one location vs. variability across a landscape at a single time. The former informs the rich debate concerning the ability to experimentally mimic a warmer future. The latter informs space-for-time study design and analyses, as well as species persistence via a combined spatiotemporal probability of suitable future habitat.

  4. Southern Africa Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data base (14,559 records) was received in January 1986. Principal gravity parameters include elevation and observed gravity. The observed gravity values are...

  5. NGS Absolute Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Absolute Gravity data (78 stations) was received in July 1993. Principal gravity parameters include Gravity Value, Uncertainty, and Vertical Gradient. The...

  6. Gravity on-shell diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Enrico [Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States); Trnka, Jaroslav [Center for Quantum Mathematics and Physics (QMAP),Department of Physics, University of California,Davis, CA 95616 (United States)

    2016-11-22

    We study on-shell diagrams for gravity theories with any number of supersymmetries and find a compact Grassmannian formula in terms of edge variables of the graphs. Unlike in gauge theory where the analogous form involves only dlog-factors, in gravity there is a non-trivial numerator as well as higher degree poles in the edge variables. Based on the structure of the Grassmannian formula for N=8 supergravity we conjecture that gravity loop amplitudes also possess similar properties. In particular, we find that there are only logarithmic singularities on cuts with finite loop momentum and that poles at infinity are present, in complete agreement with the conjecture presented in http://dx.doi.org/10.1007/JHEP06(2015)202.

  7. Group field theory and simplicial quantum gravity

    International Nuclear Information System (INIS)

    Oriti, D

    2010-01-01

    We present a new group field theory for 4D quantum gravity. It incorporates the constraints that give gravity from BF theory and has quantum amplitudes with the explicit form of simplicial path integrals for first-order gravity. The geometric interpretation of the variables and of the contributions to the quantum amplitudes is manifest. This allows a direct link with other simplicial gravity approaches, like quantum Regge calculus, in the form of the amplitudes of the model, and dynamical triangulations, which we show to correspond to a simple restriction of the same.

  8. The first-passage time distribution for the diffusion model with variable drift

    DEFF Research Database (Denmark)

    Blurton, Steven Paul; Kesselmeier, Miriam; Gondan, Matthias

    2017-01-01

    across trials. This extra flexibility allows accounting for slow errors that often occur in response time experiments. So far, the predicted response time distributions were obtained by numerical evaluation as analytical solutions were not available. Here, we present an analytical expression...... for the cumulative first-passage time distribution in the diffusion model with normally distributed trial-to-trial variability in the drift. The solution is obtained with predefined precision, and its evaluation turns out to be extremely fast.......The Ratcliff diffusion model is now arguably the most widely applied model for response time data. Its major advantage is its description of both response times and the probabilities for correct as well as incorrect responses. The model assumes a Wiener process with drift between two constant...

  9. Countermovement jump height: gender and sport-specific differences in the force-time variables.

    Science.gov (United States)

    Laffaye, Guillaume; Wagner, Phillip P; Tombleson, Tom I L

    2014-04-01

    The goal of this study was to assess (a) the eccentric rate of force development, the concentric force, and selected time variables on vertical performance during countermovement jump, (b) the existence of gender differences in these variables, and (c) the sport-specific differences. The sample was composed of 189 males and 84 females, all elite athletes involved in college and professional sports (primarily football, basketball, baseball, and volleyball). The subjects performed a series of 6 countermovement jumps on a force plate (500 Hz). Average eccentric rate of force development (ECC-RFD), total time (TIME), eccentric time (ECC-T), Ratio between eccentric and total time (ECC-T:T) and average force (CON-F) were extracted from force-time curves and the vertical jumping performance, measured by impulse momentum. Results show that CON-F (r = 0.57; p differ between both sexes (p differ, showing a similar temporal structure. The best way to jump high is to increase CON-F and ECC-RFD thus minimizing the ECC-T. Principal component analysis (PCA) accounted for 76.8% of the JH variance and revealed that JH is predicted by a temporal and a force component. Furthermore, the PCA comparison made among athletes revealed sport-specific signatures: volleyball players revealed a temporal-prevailing profile, a weak-force with large ECC-T:T for basketball players and explosive and powerful profiles for football and baseball players.

  10. Low Computational Signal Acquisition for GNSS Receivers Using a Resampling Strategy and Variable Circular Correlation Time

    Directory of Open Access Journals (Sweden)

    Yeqing Zhang

    2018-02-01

    Full Text Available For the objective of essentially decreasing computational complexity and time consumption of signal acquisition, this paper explores a resampling strategy and variable circular correlation time strategy specific to broadband multi-frequency GNSS receivers. In broadband GNSS receivers, the resampling strategy is established to work on conventional acquisition algorithms by resampling the main lobe of received broadband signals with a much lower frequency. Variable circular correlation time is designed to adapt to different signal strength conditions and thereby increase the operation flexibility of GNSS signal acquisition. The acquisition threshold is defined as the ratio of the highest and second highest correlation results in the search space of carrier frequency and code phase. Moreover, computational complexity of signal acquisition is formulated by amounts of multiplication and summation operations in the acquisition process. Comparative experiments and performance analysis are conducted on four sets of real GPS L2C signals with different sampling frequencies. The results indicate that the resampling strategy can effectively decrease computation and time cost by nearly 90–94% with just slight loss of acquisition sensitivity. With circular correlation time varying from 10 ms to 20 ms, the time cost of signal acquisition has increased by about 2.7–5.6% per millisecond, with most satellites acquired successfully.

  11. Trend Change Detection in NDVI Time Series: Effects of Inter-Annual Variability and Methodology

    Science.gov (United States)

    Forkel, Matthias; Carvalhais, Nuno; Verbesselt, Jan; Mahecha, Miguel D.; Neigh, Christopher S.R.; Reichstein, Markus

    2013-01-01

    Changing trends in ecosystem productivity can be quantified using satellite observations of Normalized Difference Vegetation Index (NDVI). However, the estimation of trends from NDVI time series differs substantially depending on analyzed satellite dataset, the corresponding spatiotemporal resolution, and the applied statistical method. Here we compare the performance of a wide range of trend estimation methods and demonstrate that performance decreases with increasing inter-annual variability in the NDVI time series. Trend slope estimates based on annual aggregated time series or based on a seasonal-trend model show better performances than methods that remove the seasonal cycle of the time series. A breakpoint detection analysis reveals that an overestimation of breakpoints in NDVI trends can result in wrong or even opposite trend estimates. Based on our results, we give practical recommendations for the application of trend methods on long-term NDVI time series. Particularly, we apply and compare different methods on NDVI time series in Alaska, where both greening and browning trends have been previously observed. Here, the multi-method uncertainty of NDVI trends is quantified through the application of the different trend estimation methods. Our results indicate that greening NDVI trends in Alaska are more spatially and temporally prevalent than browning trends. We also show that detected breakpoints in NDVI trends tend to coincide with large fires. Overall, our analyses demonstrate that seasonal trend methods need to be improved against inter-annual variability to quantify changing trends in ecosystem productivity with higher accuracy.

  12. Low Computational Signal Acquisition for GNSS Receivers Using a Resampling Strategy and Variable Circular Correlation Time

    Science.gov (United States)

    Zhang, Yeqing; Wang, Meiling; Li, Yafeng

    2018-01-01

    For the objective of essentially decreasing computational complexity and time consumption of signal acquisition, this paper explores a resampling strategy and variable circular correlation time strategy specific to broadband multi-frequency GNSS receivers. In broadband GNSS receivers, the resampling strategy is established to work on conventional acquisition algorithms by resampling the main lobe of received broadband signals with a much lower frequency. Variable circular correlation time is designed to adapt to different signal strength conditions and thereby increase the operation flexibility of GNSS signal acquisition. The acquisition threshold is defined as the ratio of the highest and second highest correlation results in the search space of carrier frequency and code phase. Moreover, computational complexity of signal acquisition is formulated by amounts of multiplication and summation operations in the acquisition process. Comparative experiments and performance analysis are conducted on four sets of real GPS L2C signals with different sampling frequencies. The results indicate that the resampling strategy can effectively decrease computation and time cost by nearly 90–94% with just slight loss of acquisition sensitivity. With circular correlation time varying from 10 ms to 20 ms, the time cost of signal acquisition has increased by about 2.7–5.6% per millisecond, with most satellites acquired successfully. PMID:29495301

  13. GEODYNAMIC WAVES AND GRAVITY

    Directory of Open Access Journals (Sweden)

    A. V. Vikulin

    2014-01-01

    Full Text Available  Gravity phenomena related to the Earth movements in the Solar System and through the Galaxy are reviewed. Such movements are manifested by geological processes on the Earth and correlate with geophysical fields of the Earth. It is concluded that geodynamic processes and the gravity phenomena (including those of cosmic nature are related.  The state of the geomedium composed of blocks is determined by stresses with force moment and by slow rotational waves that are considered as a new type of movements [Vikulin, 2008, 2010]. It is shown that the geomedium has typical rheid properties [Carey, 1954], specifically an ability to flow while being in the solid state [Leonov, 2008]. Within the framework of the rotational model with a symmetric stress tensor, which is developed by the authors [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013], such movement of the geomedium may explain the energy-saturated state of the geomedium and a possibility of its movements in the form of vortex geological structures [Lee, 1928]. The article discusses the gravity wave detection method based on the concept of interactions between gravity waves and crustal blocks [Braginsky et al., 1985]. It is concluded that gravity waves can be recorded by the proposed technique that detects slow rotational waves. It is shown that geo-gravitational movements can be described by both the concept of potential with account of gravitational energy of bodies [Kondratyev, 2003] and the nonlinear physical acoustics [Gurbatov et al., 2008]. Based on the combined description of geophysical and gravitational wave movements, the authors suggest a hypothesis about the nature of spin, i.e. own moment as a demonstration of the space-time ‘vortex’ properties.  

  14. A new variable interval schedule with constant hazard rate and finite time range.

    Science.gov (United States)

    Bugallo, Mehdi; Machado, Armando; Vasconcelos, Marco

    2018-05-27

    We propose a new variable interval (VI) schedule that achieves constant probability of reinforcement in time while using a bounded range of intervals. By sampling each trial duration from a uniform distribution ranging from 0 to 2 T seconds, and then applying a reinforcement rule that depends linearly on trial duration, the schedule alternates reinforced and unreinforced trials, each less than 2 T seconds, while preserving a constant hazard function. © 2018 Society for the Experimental Analysis of Behavior.

  15. DYNAMIC RESPONSE OF THICK PLATES ON TWO PARAMETER ELASTIC FOUNDATION UNDER TIME VARIABLE LOADING

    OpenAIRE

    Ozgan, Korhan; Daloglu, Ayse T.

    2014-01-01

    In this paper, behavior of foundation plates with transverse shear deformation under time variable loading is presented using modified Vlasov foundation model. Finite element formulation of thick plates on elastic foundation is derived by using an 8-noded finite element based on Mindlin plate theory. Selective reduced integration technique is used to avoid shear locking problem which arises when smaller plate thickness is considered for the evaluation of the stiffness matrices. After comparis...

  16. Antipersistent dynamics in short time scale variability of self-potential signals

    OpenAIRE

    Cuomo, V.; Lanfredi, M.; Lapenna, V.; Macchiato, M.; Ragosta, M.; Telesca, L.

    2000-01-01

    Time scale properties of self-potential signals are investigated through the analysis of the second order structure function (variogram), a powerful tool to investigate the spatial and temporal variability of observational data. In this work we analyse two sequences of self-potential values measured by means of a geophysical monitoring array located in a seismically active area of Southern Italy. The range of scales investigated goes from a few minutes to several days. It is shown that signal...

  17. The relativistic gravity train

    Science.gov (United States)

    Seel, Max

    2018-05-01

    The gravity train that takes 42.2 min from any point A to any other point B that is connected by a straight-line tunnel through Earth has captured the imagination more than most other applications in calculus or introductory physics courses. Brachystochron and, most recently, nonlinear density solutions have been discussed. Here relativistic corrections are presented. It is discussed how the corrections affect the time to fall through Earth, the Sun, a white dwarf, a neutron star, and—the ultimate limit—the difference in time measured by a moving, a stationary and the fiducial observer at infinity if the density of the sphere approaches the density of a black hole. The relativistic gravity train can serve as a problem with approximate and exact analytic solutions and as numerical exercise in any introductory course on relativity.

  18. Antimatter gravity experiment

    International Nuclear Information System (INIS)

    Brown, R.E.; Camp, J.B.; Darling, T.W.

    1990-01-01

    An experiment is being developed to measure the acceleration of the antiproton in the gravitational field of the earth. Antiprotons of a few MeV from the LEAR facility at CERN will be slowed, captured, cooled to a temperature of about 10 K, and subsequently launched a few at a time into a drift tube where the effect of gravity on their motion will be determined by a time-of-flight method. Development of the experiment is proceeding at Los Alamos using normal matter. The fabrication of a drift tube that will produce a region of space in which gravity is the dominant force on moving ions is of major difficulty. This involves a study of methods of minimizing the electric fields produced by spatially varying work functions on conducting surfaces. Progress in a number of areas is described, with stress on the drift-tube development

  19. Enhanced Requirements for Assessment in a Competency-Based, Time-Variable Medical Education System.

    Science.gov (United States)

    Gruppen, Larry D; Ten Cate, Olle; Lingard, Lorelei A; Teunissen, Pim W; Kogan, Jennifer R

    2018-03-01

    Competency-based, time-variable medical education has reshaped the perceptions and practices of teachers, curriculum designers, faculty developers, clinician educators, and program administrators. This increasingly popular approach highlights the fact that learning among different individuals varies in duration, foundation, and goal. Time variability places particular demands on the assessment data that are so necessary for making decisions about learner progress. These decisions may be formative (e.g., feedback for improvement) or summative (e.g., decisions about advancing a student). This article identifies challenges to collecting assessment data and to making assessment decisions in a time-variable system. These challenges include managing assessment data, defining and making valid assessment decisions, innovating in assessment, and modeling the considerable complexity of assessment in real-world settings and richly interconnected social systems. There are hopeful signs of creativity in assessment both from researchers and practitioners, but the transition from a traditional to a competency-based medical education system will likely continue to create much controversy and offer opportunities for originality and innovation in assessment.

  20. Simultaneous measurement of gravity acceleration and gravity gradient with an atom interferometer

    International Nuclear Information System (INIS)

    Sorrentino, F.; Lien, Y.-H.; Rosi, G.; Tino, G. M.; Bertoldi, A.; Bodart, Q.; Cacciapuoti, L.; Angelis, M. de; Prevedelli, M.

    2012-01-01

    We demonstrate a method to measure the gravitational acceleration with a dual cloud atom interferometer; the use of simultaneous atom interferometers reduces the effect of seismic noise on the gravity measurement. At the same time, the apparatus is capable of accurate measurements of the vertical gravity gradient. The ability to determine the gravity acceleration and gravity gradient simultaneously and with the same instrument opens interesting perspectives in geophysical applications.

  1. Discrete-time bidirectional associative memory neural networks with variable delays

    International Nuclear Information System (INIS)

    Liang Jinling; Cao Jinde; Ho, Daniel W.C.

    2005-01-01

    Based on the linear matrix inequality (LMI), some sufficient conditions are presented in this Letter for the existence, uniqueness and global exponential stability of the equilibrium point of discrete-time bidirectional associative memory (BAM) neural networks with variable delays. Some of the stability criteria obtained in this Letter are delay-dependent, and some of them are delay-independent, they are less conservative than the ones reported so far in the literature. Furthermore, the results provide one more set of easily verified criteria for determining the exponential stability of discrete-time BAM neural networks

  2. Discrete-time bidirectional associative memory neural networks with variable delays

    Science.gov (United States)

    Liang, variable delays [rapid communication] J.; Cao, J.; Ho, D. W. C.

    2005-02-01

    Based on the linear matrix inequality (LMI), some sufficient conditions are presented in this Letter for the existence, uniqueness and global exponential stability of the equilibrium point of discrete-time bidirectional associative memory (BAM) neural networks with variable delays. Some of the stability criteria obtained in this Letter are delay-dependent, and some of them are delay-independent, they are less conservative than the ones reported so far in the literature. Furthermore, the results provide one more set of easily verified criteria for determining the exponential stability of discrete-time BAM neural networks.

  3. Active Response Gravity Offload and Method

    Science.gov (United States)

    Dungan, Larry K. (Inventor); Valle, Paul S. (Inventor); Bankieris, Derek R. (Inventor); Lieberman, Asher P. (Inventor); Redden, Lee (Inventor); Shy, Cecil (Inventor)

    2015-01-01

    A variable gravity field simulator can be utilized to provide three dimensional simulations for simulated gravity fields selectively ranging from Moon, Mars, and micro-gravity environments and/or other selectable gravity fields. The gravity field simulator utilizes a horizontally moveable carriage with a cable extending from a hoist. The cable can be attached to a load which experiences the effects of the simulated gravity environment. The load can be a human being or robot that makes movements that induce swinging of the cable whereby a horizontal control system reduces swinging energy. A vertical control system uses a non-linear feedback filter to remove noise from a load sensor that is in the same frequency range as signals from the load sensor.

  4. Molecular dynamics based enhanced sampling of collective variables with very large time steps

    Science.gov (United States)

    Chen, Pei-Yang; Tuckerman, Mark E.

    2018-01-01

    Enhanced sampling techniques that target a set of collective variables and that use molecular dynamics as the driving engine have seen widespread application in the computational molecular sciences as a means to explore the free-energy landscapes of complex systems. The use of molecular dynamics as the fundamental driver of the sampling requires the introduction of a time step whose magnitude is limited by the fastest motions in a system. While standard multiple time-stepping methods allow larger time steps to be employed for the slower and computationally more expensive forces, the maximum achievable increase in time step is limited by resonance phenomena, which inextricably couple fast and slow motions. Recently, we introduced deterministic and stochastic resonance-free multiple time step algorithms for molecular dynamics that solve this resonance problem and allow ten- to twenty-fold gains in the large time step compared to standard multiple time step algorithms [P. Minary et al., Phys. Rev. Lett. 93, 150201 (2004); B. Leimkuhler et al., Mol. Phys. 111, 3579-3594 (2013)]. These methods are based on the imposition of isokinetic constraints that couple the physical system to Nosé-Hoover chains or Nosé-Hoover Langevin schemes. In this paper, we show how to adapt these methods for collective variable-based enhanced sampling techniques, specifically adiabatic free-energy dynamics/temperature-accelerated molecular dynamics, unified free-energy dynamics, and by extension, metadynamics, thus allowing simulations employing these methods to employ similarly very large time steps. The combination of resonance-free multiple time step integrators with free-energy-based enhanced sampling significantly improves the efficiency of conformational exploration.

  5. Describing temporal variability of the mean Estonian precipitation series in climate time scale

    Science.gov (United States)

    Post, P.; Kärner, O.

    2009-04-01

    Applicability of the random walk type models to represent the temporal variability of various atmospheric temperature series has been successfully demonstrated recently (e.g. Kärner, 2002). Main problem in the temperature modeling is connected to the scale break in the generally self similar air temperature anomaly series (Kärner, 2005). The break separates short-range strong non-stationarity from nearly stationary longer range variability region. This is an indication of the fact that several geophysical time series show a short-range non-stationary behaviour and a stationary behaviour in longer range (Davis et al., 1996). In order to model series like that the choice of time step appears to be crucial. To characterize the long-range variability we can neglect the short-range non-stationary fluctuations, provided that we are able to model properly the long-range tendencies. The structure function (Monin and Yaglom, 1975) was used to determine an approximate segregation line between the short and the long scale in terms of modeling. The longer scale can be called climate one, because such models are applicable in scales over some decades. In order to get rid of the short-range fluctuations in daily series the variability can be examined using sufficiently long time step. In the present paper, we show that the same philosophy is useful to find a model to represent a climate-scale temporal variability of the Estonian daily mean precipitation amount series over 45 years (1961-2005). Temporal variability of the obtained daily time series is examined by means of an autoregressive and integrated moving average (ARIMA) family model of the type (0,1,1). This model is applicable for daily precipitation simulating if to select an appropriate time step that enables us to neglet the short-range non-stationary fluctuations. A considerably longer time step than one day (30 days) is used in the current paper to model the precipitation time series variability. Each ARIMA (0

  6. An Epidemic Model of Computer Worms with Time Delay and Variable Infection Rate

    Directory of Open Access Journals (Sweden)

    Yu Yao

    2018-01-01

    Full Text Available With rapid development of Internet, network security issues become increasingly serious. Temporary patches have been put on the infectious hosts, which may lose efficacy on occasions. This leads to a time delay when vaccinated hosts change to susceptible hosts. On the other hand, the worm infection is usually a nonlinear process. Considering the actual situation, a variable infection rate is introduced to describe the spread process of worms. According to above aspects, we propose a time-delayed worm propagation model with variable infection rate. Then the existence condition and the stability of the positive equilibrium are derived. Due to the existence of time delay, the worm propagation system may be unstable and out of control. Moreover, the threshold τ0 of Hopf bifurcation is obtained. The worm propagation system is stable if time delay is less than τ0. When time delay is over τ0, the system will be unstable. In addition, numerical experiments have been performed, which can match the conclusions we deduce. The numerical experiments also show that there exists a threshold in the parameter a, which implies that we should choose appropriate infection rate β(t to constrain worm prevalence. Finally, simulation experiments are carried out to prove the validity of our conclusions.

  7. Newtonian gravity in loop quantum gravity

    OpenAIRE

    Smolin, Lee

    2010-01-01

    We apply a recent argument of Verlinde to loop quantum gravity, to conclude that Newton's law of gravity emerges in an appropriate limit and setting. This is possible because the relationship between area and entropy is realized in loop quantum gravity when boundaries are imposed on a quantum spacetime.

  8. Curved backgrounds in emergent gravity

    Science.gov (United States)

    Chaurasia, Shikha; Erlich, Joshua; Zhou, Yiyu

    2018-06-01

    Field theories that are generally covariant but nongravitational at tree level typically give rise to an emergent gravitational interaction whose strength depends on a physical regulator. We consider emergent gravity models in which scalar fields assume the role of clock and rulers, addressing the problem of time in quantum gravity. We discuss the possibility of nontrivial dynamics for clock and ruler fields, and describe some of the consequences of those dynamics for the emergent gravitational theory.

  9. Absolute gravity measurements in California

    Science.gov (United States)

    Zumberge, M. A.; Sasagawa, G.; Kappus, M.

    1986-08-01

    An absolute gravity meter that determines the local gravitational acceleration by timing a freely falling mass with a laser interferometer has been constructed. The instrument has made measurements at 11 sites in California, four in Nevada, and one in France. The uncertainty in the results is typically 10 microgal. Repeated measurements have been made at several of the sites; only one shows a substantial change in gravity.

  10. The quest for quantum gravity

    International Nuclear Information System (INIS)

    Au, G.

    1995-03-01

    One of the greatest challenges facing theoretical physics lies in reconciling Einstein's classical theory of gravity - general relativity -with quantum field theory. Although both theories have been experimentally supported in their respective regimes, they are as compatible as a square peg and a round hole. This article summarises the current status of the superstring approach to the problem, the status of the Ashtekar program, and problem of time in quantum gravity

  11. Gravity as Quantum Entanglement Force

    OpenAIRE

    Lee, Jae-Weon; Kim, Hyeong-Chan; Lee, Jungjai

    2010-01-01

    We conjecture that the total quantum entanglement of matter and vacuum in the universe tends to increase with time, like entropy, and that an effective force is associated with this tendency. We also suggest that gravity and dark energy are types of quantum entanglement forces, similar to Verlinde's entropic force, and give holographic dark energy with an equation of state comparable to current observational data. This connection between quantum entanglement and gravity could give some new in...

  12. The quest for quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Au, G

    1995-03-01

    One of the greatest challenges facing theoretical physics lies in reconciling Einstein`s classical theory of gravity - general relativity -with quantum field theory. Although both theories have been experimentally supported in their respective regimes, they are as compatible as a square peg and a round hole. This article summarises the current status of the superstring approach to the problem, the status of the Ashtekar program, and problem of time in quantum gravity.

  13. Intraindividual variability in reaction time predicts cognitive outcomes 5 years later.

    Science.gov (United States)

    Bielak, Allison A M; Hultsch, David F; Strauss, Esther; Macdonald, Stuart W S; Hunter, Michael A

    2010-11-01

    Building on results suggesting that intraindividual variability in reaction time (inconsistency) is highly sensitive to even subtle changes in cognitive ability, this study addressed the capacity of inconsistency to predict change in cognitive status (i.e., cognitive impairment, no dementia [CIND] classification) and attrition 5 years later. Two hundred twelve community-dwelling older adults, initially aged 64-92 years, remained in the study after 5 years. Inconsistency was calculated from baseline reaction time performance. Participants were assigned to groups on the basis of their fluctuations in CIND classification over time. Logistic and Cox regressions were used. Baseline inconsistency significantly distinguished among those who remained or transitioned into CIND over the 5 years and those who were consistently intact (e.g., stable intact vs. stable CIND, Wald (1) = 7.91, p < .01, Exp(β) = 1.49). Average level of inconsistency over time was also predictive of study attrition, for example, Wald (1) = 11.31, p < .01, Exp(β) = 1.24. For both outcomes, greater inconsistency was associated with a greater likelihood of being in a maladaptive group 5 years later. Variability based on moderately cognitively challenging tasks appeared to be particularly sensitive to longitudinal changes in cognitive ability. Mean rate of responding was a comparable predictor of change in most instances, but individuals were at greater relative risk of being in a maladaptive outcome group if they were more inconsistent rather than if they were slower in responding. Implications for the potential utility of intraindividual variability in reaction time as an early marker of cognitive decline are discussed. (c) 2010 APA, all rights reserved

  14. Statistical estimation of absolute gravity values | Aku | Science World ...

    African Journals Online (AJOL)

    Gravity measurements at stations in northwestern Nigeria were assumed to be random variables. Gravity data collected was used to illustrate the gravity network adjustment theories. Residuals of the network were inspected to detect gross errors by standardizing the residuals. Computed standard deviation for unit weight ...

  15. Stochastic Gravity: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Hu Bei Lok

    2008-05-01

    Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein–Langevin equation, which has, in addition, sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bitensor, which describes the fluctuations of quantum-matter fields in curved spacetimes. A new improved criterion for the validity of semiclassical gravity may also be formulated from the viewpoint of this theory. In the first part of this review we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to the correlation functions. The functional approach uses the Feynman–Vernon influence functional and the Schwinger–Keldysh closed-time-path effective action methods. In the second part, we describe three applications of stochastic gravity. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic-gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, using the Einstein–Langevin equation, we discuss the backreaction of Hawking radiation and the behavior of metric fluctuations for both the quasi-equilibrium condition of a black-hole in a box and the fully nonequilibrium condition of an evaporating black hole spacetime. Finally, we briefly discuss the theoretical structure of stochastic gravity in relation to quantum gravity and point out

  16. Dilaton gravity, Poisson sigma models and loop quantum gravity

    International Nuclear Information System (INIS)

    Bojowald, Martin; Reyes, Juan D

    2009-01-01

    Spherically symmetric gravity in Ashtekar variables coupled to Yang-Mills theory in two dimensions and its relation to dilaton gravity and Poisson sigma models are discussed. After introducing its loop quantization, quantum corrections for inverse triad components are shown to provide a consistent deformation without anomalies. The relation to Poisson sigma models provides a covariant action principle of the quantum-corrected theory with effective couplings. Results are also used to provide loop quantizations of spherically symmetric models in arbitrary D spacetime dimensions.

  17. Variable Neighbourhood Search and Mathematical Programming for Just-in-Time Job-Shop Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Sunxin Wang

    2014-01-01

    Full Text Available This paper presents a combination of variable neighbourhood search and mathematical programming to minimize the sum of earliness and tardiness penalty costs of all operations for just-in-time job-shop scheduling problem (JITJSSP. Unlike classical E/T scheduling problem with each job having its earliness or tardiness penalty cost, each operation in this paper has its earliness and tardiness penalties, which are paid if the operation is completed before or after its due date. Our hybrid algorithm combines (i a variable neighbourhood search procedure to explore the huge feasible solution spaces efficiently by alternating the swap and insertion neighbourhood structures and (ii a mathematical programming model to optimize the completion times of the operations for a given solution in each iteration procedure. Additionally, a threshold accepting mechanism is proposed to diversify the local search of variable neighbourhood search. Computational results on the 72 benchmark instances show that our algorithm can obtain the best known solution for 40 problems, and the best known solutions for 33 problems are updated.

  18. Dissecting Time- from Tumor-Related Gene Expression Variability in Bilateral Breast Cancer

    Directory of Open Access Journals (Sweden)

    Maurizio Callari

    2018-01-01

    Full Text Available Metachronous (MBC and synchronous bilateral breast tumors (SBC are mostly distinct primaries, whereas paired primaries and their local recurrences (LRC share a common origin. Intra-pair gene expression variability in MBC, SBC, and LRC derives from time/tumor microenvironment-related and tumor genetic background-related factors and pairs represents an ideal model for trying to dissect tumor-related from microenvironment-related variability. Pairs of tumors derived from women with SBC (n = 18, MBC (n = 11, and LRC (n = 10 undergoing local-regional treatment were profiled for gene expression; similarity between pairs was measured using an intraclass correlation coefficient (ICC computed for each gene and compared using analysis of variance (ANOVA. When considering biologically unselected genes, the highest correlations were found for primaries and paired LRC, and the lowest for MBC pairs. By instead limiting the analysis to the breast cancer intrinsic genes, correlations between primaries and paired LRC were enhanced, while lower similarities were observed for SBC and MBC. Focusing on stromal-related genes, the ICC values decreased for MBC and were significantly different from SBC. These findings indicate that it is possible to dissect intra-pair gene expression variability into components that are associated with genetic origin or with time and microenvironment by using specific gene subsets.

  19. Elevated temperature inelastic analysis of metallic media under time varying loads using state variable theories

    International Nuclear Information System (INIS)

    Kumar, V.; Mukherjee, S.

    1977-01-01

    In the present paper a general time-dependent inelastic analysis procedure for three-dimensional bodies subjected to arbitrary time varying mechanical and thermal loads using these state variable theories is presented. For the purpose of illustrations, the problems of hollow spheres, cylinders and solid circular shafts subjected to various combinations of internal and external pressures, axial force (or constraint) and torque are analyzed using the proposed solution procedure. Various cyclic thermal and mechanical loading histories with rectangular or sawtooth type waves with or without hold-time are considered. Numerical results for these geometrical shapes for various such loading histories are presented using Hart's theory (Journal of Engineering Materials and Technology 1976). The calculations are performed for nickel in the temperature range of 25 0 C to 400 0 C. For integrating forward in time, a method of solving a stiff system of ordinary differential equations is employed which corrects the step size and order of the method automatically. The limit loads for hollow spheres and cylinders are calculated using the proposed method and Hart's theory, and comparisons are made against the known theoretical results. The numerical results for other loading histories are discussed in the context of Hart's state variable type constitutive relations. The significance of phenomena such as strain rate sensitivity, Bauschinger's effect, crep recovery, history dependence and material softening with regard to these multiaxial problems are discussed in the context of Hart's theory

  20. Retention time variability as a mechanism for animal mediated long-distance dispersal.

    Directory of Open Access Journals (Sweden)

    Vishwesha Guttal

    Full Text Available Long-distance dispersal (LDD events, although rare for most plant species, can strongly influence population and community dynamics. Animals function as a key biotic vector of seeds and thus, a mechanistic and quantitative understanding of how individual animal behaviors scale to dispersal patterns at different spatial scales is a question of critical importance from both basic and applied perspectives. Using a diffusion-theory based analytical approach for a wide range of animal movement and seed transportation patterns, we show that the scale (a measure of local dispersal of the seed dispersal kernel increases with the organisms' rate of movement and mean seed retention time. We reveal that variations in seed retention time is a key determinant of various measures of LDD such as kurtosis (or shape of the kernel, thinkness of tails and the absolute number of seeds falling beyond a threshold distance. Using empirical data sets of frugivores, we illustrate the importance of variability in retention times for predicting the key disperser species that influence LDD. Our study makes testable predictions linking animal movement behaviors and gut retention times to dispersal patterns and, more generally, highlights the potential importance of animal behavioral variability for the LDD of seeds.

  1. Multiscale time irreversibility of heart rate and blood pressure variability during orthostasis

    International Nuclear Information System (INIS)

    Chladekova, L; Czippelova, B; Turianikova, Z; Tonhajzerova, I; Calkovska, A; Javorka, M; Baumert, M

    2012-01-01

    Time irreversibility is a characteristic feature of non-equilibrium, complex systems such as the cardiovascular control mediated by the autonomic nervous system (ANS). Time irreversibility analysis of heart rate variability (HRV) and blood pressure variability (BPV) represents a new approach to assess cardiovascular regulatory mechanisms. The aim of this paper was to assess the changes in HRV and BPV irreversibility during the active orthostatic test (a balance of ANS shifted towards sympathetic predominance) in 28 healthy young subjects. We used three different time irreversibility indices—Porta’s, Guzik's and Ehler's indices (P%, G% and E, respectively) derived from data segments containing 1000 beat-to-beat intervals on four timescales. We observed an increase in the HRV and a decrease in the BPV irreversibility during standing compared to the supine position. The postural change in irreversibility was confirmed by surrogate data analysis. The differences were more evident in G% and E than P% and for higher scale factors. Statistical analysis showed a close relationship between G% and E. Contrary to this, the association between P% and G% and P% and E was not proven. We conclude that time irreversibility of beat-to-beat HRV and BPV is significantly altered during orthostasis, implicating involvement of the autonomous nervous system in its generation. (paper)

  2. Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions.

    Science.gov (United States)

    Swingedouw, Didier; Ortega, Pablo; Mignot, Juliette; Guilyardi, Eric; Masson-Delmotte, Valérie; Butler, Paul G; Khodri, Myriam; Séférian, Roland

    2015-03-30

    While bidecadal climate variability has been evidenced in several North Atlantic paleoclimate records, its drivers remain poorly understood. Here we show that the subset of CMIP5 historical climate simulations that produce such bidecadal variability exhibits a robust synchronization, with a maximum in Atlantic Meridional Overturning Circulation (AMOC) 15 years after the 1963 Agung eruption. The mechanisms at play involve salinity advection from the Arctic and explain the timing of Great Salinity Anomalies observed in the 1970s and the 1990s. Simulations, as well as Greenland and Iceland paleoclimate records, indicate that coherent bidecadal cycles were excited following five Agung-like volcanic eruptions of the last millennium. Climate simulations and a conceptual model reveal that destructive interference caused by the Pinatubo 1991 eruption may have damped the observed decreasing trend of the AMOC in the 2000s. Our results imply a long-lasting climatic impact and predictability following the next Agung-like eruption.

  3. Variability of Cost and Time Delivery of Educational Buildings in Nigeria

    Directory of Open Access Journals (Sweden)

    Aghimien, Douglas Omoregie

    2017-09-01

    Full Text Available Cost and time overrun in construction projects has become a reoccurring problem in construction industries around the world especially in developing countries. This situation is unhealthy for public educational buildings which are executed with limited government funds, and are in most cases time sensitive, as they need to cater for the influx of students into the institutions. This study therefore assessed the variability of cost and time delivery of educational buildings in Nigeria, using a study of selected educational buildings within the country. A pro forma was used to gather cost and time data on selected building projects, while structured questionnaire was used to harness information on the possible measures for reducing the variability from the construction participants that were involved in the delivery of these projects. Paired sample t-test, percentage, relative importance index, and Kruskal-Walis test were adopted for data analyses. The study reveals that there is a significant difference between the initial and final cost of delivering educational buildings, as an average of 4.87% deviation, with a sig. p-value of 0.000 was experienced on all assessed projects. For time delivery, there is also a significant difference between the initial estimated time and final time of construction as a whopping 130% averaged deviation with a sig. p-value of 0.000 was discovered. To remedy these problems, the study revealed that prompt payment for executed works, predicting market price fluctuation and inculcating it into the initial estimate, and owner’s involvement at the planning and design phase are some of the possible measures to be adopted.

  4. Quantum Gravity (2nd edn)

    International Nuclear Information System (INIS)

    Husain, Viqar

    2008-01-01

    There has been a flurry of books on quantum gravity in the past few years. The first edition of Kiefer's book appeared in 2004, about the same time as Carlo Rovelli's book with the same title. This was soon followed by Thomas Thiemann's 'Modern Canonical Quantum General Relativity'. Although the main focus of each of these books is non-perturbative and non-string approaches to the quantization of general relativity, they are quite orthogonal in temperament, style, subject matter and mathematical detail. Rovelli and Thiemann focus primarily on loop quantum gravity (LQG), whereas Kiefer attempts a broader introduction and review of the subject that includes chapters on string theory and decoherence. Kiefer's second edition attempts an even wider and somewhat ambitious sweep with 'new sections on asymptotic safety, dynamical triangulation, primordial black holes, the information-loss problem, loop quantum cosmology, and other topics'. The presentation of these current topics is necessarily brief given the size of the book, but effective in encapsulating the main ideas in some cases. For instance the few pages devoted to loop quantum cosmology describe how the mini-superspace reduction of the quantum Hamiltonian constraint of LQG becomes a difference equation, whereas the discussion of 'dynamical triangulations', an approach to defining a discretized Lorentzian path integral for quantum gravity, is less detailed. The first few chapters of the book provide, in a roughly historical sequence, the covariant and canonical metric variable approach to the subject developed in the 1960s and 70s. The problem(s) of time in quantum gravity are nicely summarized in the chapter on quantum geometrodynamics, followed by a detailed and effective introduction of the WKB approach and the semi-classical approximation. These topics form the traditional core of the subject. The next three chapters cover LQG, quantization of black holes, and quantum cosmology. Of these the chapter on LQG is

  5. Quantum gravity and quantum cosmology

    CERN Document Server

    Papantonopoulos, Lefteris; Siopsis, George; Tsamis, Nikos

    2013-01-01

    Quantum gravity has developed into a fast-growing subject in physics and it is expected that probing the high-energy and high-curvature regimes of gravitating systems will shed some light on how to eventually achieve an ultraviolet complete quantum theory of gravity. Such a theory would provide the much needed information about fundamental problems of classical gravity, such as the initial big-bang singularity, the cosmological constant problem, Planck scale physics and the early-time inflationary evolution of our Universe.   While in the first part of this book concepts of quantum gravity are introduced and approached from different angles, the second part discusses these theories in connection with cosmological models and observations, thereby exploring which types of signatures of modern and mathematically rigorous frameworks can be detected by experiments. The third and final part briefly reviews the observational status of dark matter and dark energy, and introduces alternative cosmological models.   ...

  6. Separating different scales of motion in time series of meteorological variables

    International Nuclear Information System (INIS)

    Eskridge, R.E.; Rao, S.T.; Porter, P.S.

    1997-01-01

    In this study, four methods are evaluated for detecting and tracking changes in time series of climate variables. The PEST algorithm and the monthly anomaly technique are shown to have shortcomings, while the wavelet transform and Kolmogorov-Zurbenko (KZ) filter methods are shown to be capable of separating time scales with minimal errors. The behavior of the filters are examined by transfer functions. The KZ filter, anomaly technique, and PEST were also applied to temperature data to estimate long-term trends. The KZ filter provides estimates with about 10 times higher confidence than the other methods. Advantages of the KZ filter over the wavelet transform method are that it may be applied to datasets containing missing observations and is very easy to use. 10 refs., 8 figs., 1 tab

  7. Use of a prototype pulse oximeter for time series analysis of heart rate variability

    Science.gov (United States)

    González, Erika; López, Jehú; Hautefeuille, Mathieu; Velázquez, Víctor; Del Moral, Jésica

    2015-05-01

    This work presents the development of a low cost pulse oximeter prototype consisting of pulsed red and infrared commercial LEDs and a broad spectral photodetector used to register time series of heart rate and oxygen saturation of blood. This platform, besides providing these values, like any other pulse oximeter, processes the signals to compute a power spectrum analysis of the patient heart rate variability in real time and, additionally, the device allows access to all raw and analyzed data if databases construction is required or another kind of further analysis is desired. Since the prototype is capable of acquiring data for long periods of time, it is suitable for collecting data in real life activities, enabling the development of future wearable applications.

  8. Antipersistent dynamics in short time scale variability of self-potential signals

    Directory of Open Access Journals (Sweden)

    M. Ragosta

    2000-06-01

    Full Text Available Time scale properties of self-potential signals are investigated through the analysis of the second order structure function (variogram, a powerful tool to investigate the spatial and temporal variability of observational data. In this work we analyse two sequences of self-potential values measured by means of a geophysical monitoring array located in a seismically active area of Southern Italy. The range of scales investigated goes from a few minutes to several days. It is shown that signal fluctuations are characterised by two time scale ranges in which self-potential variability appears to follow slightly different dynamical behaviours. Results point to the presence of fractal, non stationary features expressing a long term correlation with scaling coefficients which are the clue of stabilising mechanisms. In the scale ranges in which the series show scale invariant behaviour, self-potentials evolve like fractional Brownian motions with anticorrelated increments typical of processes regulated by negative feedback mechanisms (antipersistence. On scales below about 6 h the strength of such an antipersistence appears to be slightly greater than that observed on larger time scales where the fluctuations are less efficiently stabilised.

  9. Walking speed-related changes in stride time variability: effects of decreased speed

    Directory of Open Access Journals (Sweden)

    Dubost Veronique

    2009-08-01

    Full Text Available Abstract Background Conflicting results have been reported regarding the relationship between stride time variability (STV and walking speed. While some studies failed to establish any relationship, others reported either a linear or a non-linear relationship. We therefore sought to determine the extent to which decrease in self-selected walking speed influenced STV among healthy young adults. Methods The mean value, the standard deviation and the coefficient of variation of stride time, as well as the mean value of stride velocity were recorded while steady-state walking using the GAITRite® system in 29 healthy young adults who walked consecutively at 88%, 79%, 71%, 64%, 58%, 53%, 46% and 39% of their preferred walking speed. Results The decrease in stride velocity increased significantly mean values, SD and CoV of stride time (p Conclusion The results support the assumption that gait variability increases while walking speed decreases and, thus, gait might be more unstable when healthy subjects walk slower compared with their preferred walking speed. Furthermore, these results highlight that a decrease in walking speed can be a potential confounder while evaluating STV.

  10. Investigation of a rotary valving system with variable valve timing for internal combustion engines

    Science.gov (United States)

    Cross, Paul C.; Hansen, Craig N.

    1994-11-01

    The objective of the program was to provide a functional demonstration of the Hansen Rotary Valving System with Variable Valve Timing (HRVS/VVT), capable of throttleless inlet charge control, as an alternative to conventional poppet-valves for use in spark ignited internal combustion engines. The goal of this new technology is to secure benefits in fuel economy, broadened torque band, vibration reduction, and overhaul accessibility. Additionally, use of the variable valve timing capability to vary the effective compression ratio is expected to improve multifuel tolerance and efficiency. Efforts directed at the design of HRVS components proved to be far more extensive than had been anticipated, ultimately requiring that proof-trial design/development work be performed. Although both time and funds were exhausted before optical or ion-probe types of in-cylinder investigation could be undertaken, a great deal of laboratory data was acquired during the course of the design/development work. This laboratory data is the basis for the information presented in this final report.

  11. A Real-Time Analysis Method for Pulse Rate Variability Based on Improved Basic Scale Entropy

    Directory of Open Access Journals (Sweden)

    Yongxin Chou

    2017-01-01

    Full Text Available Base scale entropy analysis (BSEA is a nonlinear method to analyze heart rate variability (HRV signal. However, the time consumption of BSEA is too long, and it is unknown whether the BSEA is suitable for analyzing pulse rate variability (PRV signal. Therefore, we proposed a method named sliding window iterative base scale entropy analysis (SWIBSEA by combining BSEA and sliding window iterative theory. The blood pressure signals of healthy young and old subjects are chosen from the authoritative international database MIT/PhysioNet/Fantasia to generate PRV signals as the experimental data. Then, the BSEA and the SWIBSEA are used to analyze the experimental data; the results show that the SWIBSEA reduces the time consumption and the buffer cache space while it gets the same entropy as BSEA. Meanwhile, the changes of base scale entropy (BSE for healthy young and old subjects are the same as that of HRV signal. Therefore, the SWIBSEA can be used for deriving some information from long-term and short-term PRV signals in real time, which has the potential for dynamic PRV signal analysis in some portable and wearable medical devices.

  12. Sodium bicarbonate ingestion and individual variability in time-to-peak pH.

    Science.gov (United States)

    Sparks, Andy; Williams, Emily; Robinson, Amy; Miller, Peter; Bentley, David J; Bridge, Craig; Mc Naughton, Lars R

    2017-01-01

    This study determined variability in time-to-peak pH after consumption of 300 mg kg - 1 of sodium bicarbonate. Seventeen participants (mean ± SD: age 21.38 ± 1.5 years; mass 75.8 ± 5.8 kg; height 176.8 ± 7.6 cm) reported to the laboratory where a resting capillary sample was taken. Then, 300 mg kg -1 of NaHCO 3 in 450 ml of flavoured water was ingested. Participants rested for 90 min and repeated blood samples were procured at 10 min intervals for 60 min and then every 5 min until 90 min. Blood pH concentrations were measured. Results suggested that time-to-peak pH (64.41 ± 18.78 min) was variable with a range of 10-85 min and a coefficient of variation of 29.16%. A bimodal distribution occurred, at 65 and 75 min. In conclusion, athletes, when using NaHCO 3 as an ergogenic aid, should determine their time-to-peak pH to best utilize the added buffering capacity this substance allows.

  13. Variable dead time counters. 1 - theoretical responses and the effects of neutron multiplication

    International Nuclear Information System (INIS)

    Lees, E.W.; Hooton, B.W.

    1978-10-01

    A theoretical expression is derived for calculating the response of any variable dead time counter (VDC) used in the passive assay of plutonium by neutron counting of the natural spontaneous fission activity. The effects of neutron multiplication in the sample arising from interactions of the original spontaneous fission neutrons is shown to modify the linear relationship between VDC signal and Pu mass. Numerical examples are shown for the Euratom VDC and a systematic investigation of the various factors affecting neutron multiplication is reported. Limited comparisons between the calculations and experimental data indicate provisional validity of the calculations. (author)

  14. Smart Device for the Determination of Heart Rate Variability in Real Time

    Directory of Open Access Journals (Sweden)

    David Naranjo-Hernández

    2017-01-01

    Full Text Available This work presents a first approach to the design, development, and implementation of a smart device for the real-time measurement and detection of alterations in heart rate variability (HRV. The smart device follows a modular design scheme, which consists of an electrocardiogram (ECG signal acquisition module, a processing module and a wireless communications module. From five-minute ECG signals, the processing module algorithms perform a spectral estimation of the HRV. The experimental results demonstrate the viability of the smart device and the proposed processing algorithms.

  15. Global exponential stability for discrete-time neural networks with variable delays

    International Nuclear Information System (INIS)

    Chen Wuhua; Lu Xiaomei; Liang Dongying

    2006-01-01

    This Letter provides new exponential stability criteria for discrete-time neural networks with variable delays. The main technique is to reduce exponential convergence estimation of the neural network solution to that of one component of the corresponding solution by constructing Lyapunov function based on M-matrix. By introducing the tuning parameter diagonal matrix, the delay-independent and delay-dependent exponential stability conditions have been unified in the same mathematical formula. The effectiveness of the new results are illustrated by three examples

  16. Boundedness and stability for recurrent neural networks with variable coefficients and time-varying delays

    International Nuclear Information System (INIS)

    Liang Jinling; Cao Jinde

    2003-01-01

    In this Letter, the problems of boundedness and stability for a general class of non-autonomous recurrent neural networks with variable coefficients and time-varying delays are analyzed via employing Young inequality technique and Lyapunov method. Some simple sufficient conditions are given for boundedness and stability of the solutions for the recurrent neural networks. These results generalize and improve the previous works, and they are easy to check and apply in practice. Two illustrative examples and their numerical simulations are also given to demonstrate the effectiveness of the proposed results

  17. Time-dependent inelastic analysis of metallic media using constitutive relations with state variables

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, V; Mukherjee, S [Cornell Univ., Ithaca, N.Y. (USA)

    1977-03-01

    A computational technique in terms of stress, strain and displacement rates is presented for the solution of boundary value problems for metallic structural elements at uniform elevated temperatures subjected to time varying loads. This method can accommodate any number of constitutive relations with state variables recently proposed by other researchers to model the inelastic deformation of metallic media at elevated temperatures. Numerical solutions are obtained for several structural elements subjected to steady loads. The constitutive relations used for these numerical solutions are due to Hart. The solutions are discussed in the context of the computational scheme and Hart's theory.

  18. Resolución del Response Time Variability Problem mediante tabu search

    OpenAIRE

    Corominas Subias, Albert; García Villoria, Alberto; Pastor Moreno, Rafael

    2009-01-01

    El Response Time Variability Problem (RTVP) es un problema combinatorio de scheduling publicado recientemente en la literatura. Dicho problema de optimización combinatoria es muy fácil de formular pero muy difícil de resolver de forma exacta (es NP-hard). El RTVP se presenta cuando productos, clientes o tareas se han de secuenciar minimizando la variabilidad entre los instantes de tiempo en los que reciben los recursos que ellos necesitan. Este problema tiene una gran cantidad de aplicaciones...

  19. Miniaturised Gravity Sensors for Remote Gravity Surveys.

    Science.gov (United States)

    Middlemiss, R. P.; Bramsiepe, S. G.; Hough, J.; Paul, D. J.; Rowan, S.; Samarelli, A.; Hammond, G.

    2016-12-01

    Gravimetry lets us see the world from a completely different perspective. The ability to measure tiny variations in gravitational acceleration (g), allows one to see not just the Earth's gravitational pull, but the influence of smaller objects. The more accurate the gravimeter, the smaller the objects one can see. Gravimetry has applications in many different fields: from tracking magma moving under volcanoes before eruptions; to locating hidden tunnels. The top commercial gravimeters weigh tens of kg and cost at least $100,000, limiting the situations in which they can be used. By contrast, smart phones use a MEMS (microelectromechanical system) accelerometer that can measure the orientation of the device. These are not nearly sensitive or stable enough to be used for the gravimetry but they are cheap, light-weight and mass-producible. At Glasgow University we have developed a MEMS device with both the stability and sensitivity for useful gravimetric measurements. This was demonstrated by a measurement of the Earth tides - the first time this has been achieved with a MEMS sensor. A gravimeter of this size opens up the possiblility for new gravity imaging modalities. Thousands of gravimeters could be networked over a survey site, storing data on an SD card or communicating wirelessly to a remote location. These devices could also be small enough to be carried by a UAVs: airborne gravity surveys could be carried out at low altitude by mulitple UAVs, or UAVs could be used to deliver ground based gravimeters to remote or inaccessible locations.

  20. Sensitivity of adaptive enrichment trial designs to accrual rates, time to outcome measurement, and prognostic variables

    Directory of Open Access Journals (Sweden)

    Tianchen Qian

    2017-12-01

    Full Text Available Adaptive enrichment designs involve rules for restricting enrollment to a subset of the population during the course of an ongoing trial. This can be used to target those who benefit from the experimental treatment. Trial characteristics such as the accrual rate and the prognostic value of baseline variables are typically unknown when a trial is being planned; these values are typically assumed based on information available before the trial starts. Because of the added complexity in adaptive enrichment designs compared to standard designs, it may be of special concern how sensitive the trial performance is to deviations from assumptions. Through simulation studies, we evaluate the sensitivity of Type I error, power, expected sample size, and trial duration to different design characteristics. Our simulation distributions mimic features of data from the Alzheimer's Disease Neuroimaging Initiative cohort study, and involve two subpopulations based on a genetic marker. We investigate the impact of the following design characteristics: the accrual rate, the time from enrollment to measurement of a short-term outcome and the primary outcome, and the prognostic value of baseline variables and short-term outcomes. To leverage prognostic information in baseline variables and short-term outcomes, we use a semiparametric, locally efficient estimator, and investigate its strengths and limitations compared to standard estimators. We apply information-based monitoring, and evaluate how accurately information can be estimated in an ongoing trial.

  1. Multi-Objective Flexible Flow Shop Scheduling Problem Considering Variable Processing Time due to Renewable Energy

    Directory of Open Access Journals (Sweden)

    Xiuli Wu

    2018-03-01

    Full Text Available Renewable energy is an alternative to non-renewable energy to reduce the carbon footprint of manufacturing systems. Finding out how to make an alternative energy-efficient scheduling solution when renewable and non-renewable energy drives production is of great importance. In this paper, a multi-objective flexible flow shop scheduling problem that considers variable processing time due to renewable energy (MFFSP-VPTRE is studied. First, the optimization model of the MFFSP-VPTRE is formulated considering the periodicity of renewable energy and the limitations of energy storage capacity. Then, a hybrid non-dominated sorting genetic algorithm with variable local search (HNSGA-II is proposed to solve the MFFSP-VPTRE. An operation and machine-based encoding method is employed. A low-carbon scheduling algorithm is presented. Besides the crossover and mutation, a variable local search is used to improve the offspring’s Pareto set. The offspring and the parents are combined and those that dominate more are selected to continue evolving. Finally, two groups of experiments are carried out. The results show that the low-carbon scheduling algorithm can effectively reduce the carbon footprint under the premise of makespan optimization and the HNSGA-II outperforms the traditional NSGA-II and can solve the MFFSP-VPTRE effectively and efficiently.

  2. MODELING THE TIME VARIABILITY OF SDSS STRIPE 82 QUASARS AS A DAMPED RANDOM WALK

    International Nuclear Information System (INIS)

    MacLeod, C. L.; Ivezic, Z.; Bullock, E.; Kimball, A.; Sesar, B.; Westman, D.; Brooks, K.; Gibson, R.; Becker, A. C.; Kochanek, C. S.; Kozlowski, S.; Kelly, B.; De Vries, W. H.

    2010-01-01

    We model the time variability of ∼9000 spectroscopically confirmed quasars in SDSS Stripe 82 as a damped random walk (DRW). Using 2.7 million photometric measurements collected over 10 yr, we confirm the results of Kelly et al. and Kozlowski et al. that this model can explain quasar light curves at an impressive fidelity level (0.01-0.02 mag). The DRW model provides a simple, fast (O(N) for N data points), and powerful statistical description of quasar light curves by a characteristic timescale (τ) and an asymptotic rms variability on long timescales (SF ∞ ). We searched for correlations between these two variability parameters and physical parameters such as luminosity and black hole mass, and rest-frame wavelength. Our analysis shows SF ∞ to increase with decreasing luminosity and rest-frame wavelength as observed previously, and without a correlation with redshift. We find a correlation between SF ∞ and black hole mass with a power-law index of 0.18 ± 0.03, independent of the anti-correlation with luminosity. We find that τ increases with increasing wavelength with a power-law index of 0.17, remains nearly constant with redshift and luminosity, and increases with increasing black hole mass with a power-law index of 0.21 ± 0.07. The amplitude of variability is anti-correlated with the Eddington ratio, which suggests a scenario where optical fluctuations are tied to variations in the accretion rate. However, we find an additional dependence on luminosity and/or black hole mass that cannot be explained by the trend with Eddington ratio. The radio-loudest quasars have systematically larger variability amplitudes by about 30%, when corrected for the other observed trends, while the distribution of their characteristic timescale is indistinguishable from that of the full sample. We do not detect any statistically robust differences in the characteristic timescale and variability amplitude between the full sample and the small subsample of quasars detected

  3. Selective attrition and intraindividual variability in response time moderate cognitive change.

    Science.gov (United States)

    Yao, Christie; Stawski, Robert S; Hultsch, David F; MacDonald, Stuart W S

    2016-01-01

    Selection of a developmental time metric is useful for understanding causal processes that underlie aging-related cognitive change and for the identification of potential moderators of cognitive decline. Building on research suggesting that time to attrition is a metric sensitive to non-normative influences of aging (e.g., subclinical health conditions), we examined reason for attrition and intraindividual variability (IIV) in reaction time as predictors of cognitive performance. Three hundred and four community dwelling older adults (64-92 years) completed annual assessments in a longitudinal study. IIV was calculated from baseline performance on reaction time tasks. Multilevel models were fit to examine patterns and predictors of cognitive change. We show that time to attrition was associated with cognitive decline. Greater IIV was associated with declines on executive functioning and episodic memory measures. Attrition due to personal health reasons was also associated with decreased executive functioning compared to that of individuals who remained in the study. These findings suggest that time to attrition is a useful metric for representing cognitive change, and reason for attrition and IIV are predictive of non-normative influences that may underlie instances of cognitive loss in older adults.

  4. Complexity and time asymmetry of heart rate variability are altered in acute mental stress.

    Science.gov (United States)

    Visnovcova, Z; Mestanik, M; Javorka, M; Mokra, D; Gala, M; Jurko, A; Calkovska, A; Tonhajzerova, I

    2014-07-01

    We aimed to study the complexity and time asymmetry of short-term heart rate variability (HRV) as an index of complex neurocardiac control in response to stress using symbolic dynamics and time irreversibility methods. ECG was recorded at rest and during and after two stressors (Stroop, arithmetic test) in 70 healthy students. Symbolic dynamics parameters (NUPI, NCI, 0V%, 1V%, 2LV%, 2UV%), and time irreversibility indices (P%, G%, E) were evaluated. Additionally, HRV magnitude was quantified by linear parameters: spectral powers in low (LF) and high frequency (HF) bands. Our results showed a reduction of HRV complexity in stress (lower NUPI with both stressors, lower NCI with Stroop). Pattern classification analysis revealed significantly higher 0V% and lower 2LV% with both stressors, indicating a shift in sympathovagal balance, and significantly higher 1V% and lower 2UV% with Stroop. An unexpected result was found in time irreversibility: significantly lower G% and E with both stressors, P% index significantly declined only with arithmetic test. Linear HRV analysis confirmed vagal withdrawal (lower HF) with both stressors; LF significantly increased with Stroop and decreased with arithmetic test. Correlation analysis revealed no significant associations between symbolic dynamics and time irreversibility. Concluding, symbolic dynamics and time irreversibility could provide independent information related to alterations of neurocardiac control integrity in stress-related disease.

  5. Complexity and time asymmetry of heart rate variability are altered in acute mental stress

    International Nuclear Information System (INIS)

    Visnovcova, Z; Mestanik, M; Javorka, M; Mokra, D; Calkovska, A; Tonhajzerova, I; Gala, M; Jurko, A

    2014-01-01

    We aimed to study the complexity and time asymmetry of short-term heart rate variability (HRV) as an index of complex neurocardiac control in response to stress using symbolic dynamics and time irreversibility methods. ECG was recorded at rest and during and after two stressors (Stroop, arithmetic test) in 70 healthy students. Symbolic dynamics parameters (NUPI, NCI, 0V%, 1V%, 2LV%, 2UV%), and time irreversibility indices (P%, G%, E) were evaluated. Additionally, HRV magnitude was quantified by linear parameters: spectral powers in low (LF) and high frequency (HF) bands. Our results showed a reduction of HRV complexity in stress (lower NUPI with both stressors, lower NCI with Stroop). Pattern classification analysis revealed significantly higher 0V% and lower 2LV% with both stressors, indicating a shift in sympathovagal balance, and significantly higher 1V% and lower 2UV% with Stroop. An unexpected result was found in time irreversibility: significantly lower G% and E with both stressors, P% index significantly declined only with arithmetic test. Linear HRV analysis confirmed vagal withdrawal (lower HF) with both stressors; LF significantly increased with Stroop and decreased with arithmetic test. Correlation analysis revealed no significant associations between symbolic dynamics and time irreversibility. Concluding, symbolic dynamics and time irreversibility could provide independent information related to alterations of neurocardiac control integrity in stress-related disease. (paper)

  6. A model for estimating pathogen variability in shellfish and predicting minimum depuration times.

    Science.gov (United States)

    McMenemy, Paul; Kleczkowski, Adam; Lees, David N; Lowther, James; Taylor, Nick

    2018-01-01

    Norovirus is a major cause of viral gastroenteritis, with shellfish consumption being identified as one potential norovirus entry point into the human population. Minimising shellfish norovirus levels is therefore important for both the consumer's protection and the shellfish industry's reputation. One method used to reduce microbiological risks in shellfish is depuration; however, this process also presents additional costs to industry. Providing a mechanism to estimate norovirus levels during depuration would therefore be useful to stakeholders. This paper presents a mathematical model of the depuration process and its impact on norovirus levels found in shellfish. Two fundamental stages of norovirus depuration are considered: (i) the initial distribution of norovirus loads within a shellfish population and (ii) the way in which the initial norovirus loads evolve during depuration. Realistic assumptions are made about the dynamics of norovirus during depuration, and mathematical descriptions of both stages are derived and combined into a single model. Parameters to describe the depuration effect and norovirus load values are derived from existing norovirus data obtained from U.K. harvest sites. However, obtaining population estimates of norovirus variability is time-consuming and expensive; this model addresses the issue by assuming a 'worst case scenario' for variability of pathogens, which is independent of mean pathogen levels. The model is then used to predict minimum depuration times required to achieve norovirus levels which fall within possible risk management levels, as well as predictions of minimum depuration times for other water-borne pathogens found in shellfish. Times for Escherichia coli predicted by the model all fall within the minimum 42 hours required for class B harvest sites, whereas minimum depuration times for norovirus and FRNA+ bacteriophage are substantially longer. Thus this study provides relevant information and tools to assist

  7. Analysis of agility, reaction time and balance variables at badminton players aged 9-14 years

    Directory of Open Access Journals (Sweden)

    Seydi Ahmet Ağaoğlu

    2017-12-01

    Full Text Available Aim: The aim of this study was investigated agility, static and dynamic balance and reaction time variables of badminton players aged between 9-14 and relate with among variables. Material and Methods: In Samsun, 19 males (sport age, 3.42±1.64 years and 12 females (3.00±1.28 years active badminton players were voluntarily participated in who are in 9-14 ages range. Agility was measured by “T” test, CSMI-Tecnobody Pk-252 isokinetic balance system measuring instrument was used to test static balance and dynamic balance and Mozart Lafayette reaction measuring instrument was used to test visual and auditory reaction times of players. Spearman correlation analysis was applied so as to correlation analysis. The level of significance was taken as p<0.05. Results: For female athletes, a positive relation was determined between the agility and the perimeter (mm used (r=0.727; p<0.01 through the static balance measure double foot and eyes are open. For male athletes, a positive relation was determined between the visual reaction time and the perimeter (mm used (r=0.725; p<0.01 through the static balance measure dominant foot and eyes are open. For male and female athletes were not found any correlation between reaction time and dynamic balance. Conclusion: It was determined that audio (ears and visual (eyes reaction time was effective on balance. While badminton players are closed eyes, audio sensors are more influence on balance test through measure dominant foot.

  8. The Cause of Gravity

    OpenAIRE

    Byrne, Michael

    1999-01-01

    Einstein said that gravity is an acceleration like any other acceleration. But gravity causes relativistic effects at non-relativistic speeds; so gravity could have relativistic origins. And since the strong force is thought to cause most of mass, and mass is proportional to gravity; the strong force is therefore also proportional to gravity. The strong force could thus cause relativistic increases of mass through the creation of virtual gluons; along with a comparable contraction of space ar...

  9. Effects of time-variable exposure regimes of the insecticide chlorpyrifos on freshwater invertebrate communities in microcosms

    NARCIS (Netherlands)

    Zafar, M.I.; Wijngaarden, van R.; Roessink, I.; Brink, van den P.J.

    2011-01-01

    The present study compared the effects of different time-variable exposure regimes having the same time-weighted average (TWA) concentration of the organophosphate insecticide chlorpyrifos on freshwater invertebrate communities to enable extrapolation of effects across exposure regimes. The

  10. Vestibular stimulation interferes with the dynamics of an internal representation of gravity.

    Science.gov (United States)

    De Sá Teixeira, Nuno Alexandre; Hecht, Heiko; Diaz Artiles, Ana; Seyedmadani, Kimia; Sherwood, David P; Young, Laurence R

    2017-11-01

    The remembered vanishing location of a moving target has been found to be displaced downward in the direction of gravity (representational gravity) and more so with increasing retention intervals, suggesting that the visual spatial updating recruits an internal model of gravity. Despite being consistently linked with gravity, few inquiries have been made about the role of vestibular information in these trends. Previous experiments with static tilting of observers' bodies suggest that under conflicting cues between the idiotropic vector and vestibular signals, the dynamic drift in memory is reduced to a constant displacement along the body's main axis. The present experiment aims to replicate and extend these outcomes while keeping the observers' bodies unchanged in relation to physical gravity by varying the gravito-inertial acceleration using a short-radius centrifuge. Observers were shown, while accelerated to varying degrees, targets moving along several directions and were required to indicate the perceived vanishing location after a variable interval. Increases of the gravito-inertial force (up to 1.4G), orthogonal to the idiotropic vector, did not affect the direction of representational gravity, but significantly disrupted its time course. The role and functioning of an internal model of gravity for spatial perception and orientation are discussed in light of the results.

  11. Lung lesion doubling times: values and variability based on method of volume determination

    International Nuclear Information System (INIS)

    Eisenbud Quint, Leslie; Cheng, Joan; Schipper, Matthew; Chang, Andrew C.; Kalemkerian, Gregory

    2008-01-01

    Purpose: To determine doubling times (DTs) of lung lesions based on volumetric measurements from thin-section CT imaging. Methods: Previously untreated patients with ≥ two thin-section CT scans showing a focal lung lesion were identified. Lesion volumes were derived using direct volume measurements and volume calculations based on lesion area and diameter. Growth rates (GRs) were compared by tissue diagnosis and measurement technique. Results: 54 lesions were evaluated including 8 benign lesions, 10 metastases, 3 lymphomas, 15 adenocarcinomas, 11 squamous carcinomas, and 7 miscellaneous lung cancers. Using direct volume measurements, median DTs were 453, 111, 15, 181, 139 and 137 days, respectively. Lung cancer DTs ranged from 23-2239 days. There were no significant differences in GRs among the different lesion types. There was considerable variability among GRs using different volume determination methods. Conclusions: Lung cancer doubling times showed a substantial range, and different volume determination methods gave considerably different DTs

  12. Modelling a variable valve timing spark ignition engine using different neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Beham, M. [BMW AG, Munich (Germany); Yu, D.L. [John Moores University, Liverpool (United Kingdom). Control Systems Research Group

    2004-10-01

    In this paper different neural networks (NN) are compared for modelling a variable valve timing spark-ignition (VVT SI) engine. The overall system is divided for each output into five neural multi-input single output (MISO) subsystems. Three kinds of NN, multilayer Perceptron (MLP), pseudo-linear radial basis function (PLRBF), and local linear model tree (LOLIMOT) networks, are used to model each subsystem. Real data were collected when the engine was under different operating conditions and these data are used in training and validation of the developed neural models. The obtained models are finally tested in a real-time online model configuration on the test bench. The neural models run independently of the engine in parallel mode. The model outputs are compared with process output and compared among different models. These models performed well and can be used in the model-based engine control and optimization, and for hardware in the loop systems. (author)

  13. Industrial implementation of spatial variability control by real-time SPC

    Science.gov (United States)

    Roule, O.; Pasqualini, F.; Borde, M.

    2016-10-01

    Advanced technology nodes require more and more information to get the wafer process well setup. The critical dimension of components decreases following Moore's law. At the same time, the intra-wafer dispersion linked to the spatial non-uniformity of tool's processes is not capable to decrease in the same proportions. APC systems (Advanced Process Control) are being developed in waferfab to automatically adjust and tune wafer processing, based on a lot of process context information. It can generate and monitor complex intrawafer process profile corrections between different process steps. It leads us to put under control the spatial variability, in real time by our SPC system (Statistical Process Control). This paper will outline the architecture of an integrated process control system for shape monitoring in 3D, implemented in waferfab.

  14. Real-time Continuous Assessment Method for Mental and Physiological Condition using Heart Rate Variability

    Science.gov (United States)

    Yoshida, Yutaka; Yokoyama, Kiyoko; Ishii, Naohiro

    It is necessary to monitor the daily health condition for preventing stress syndrome. In this study, it was proposed the method assessing the mental and physiological condition, such as the work stress or the relaxation, using heart rate variability at real time and continuously. The instantanuous heart rate (HR), and the ratio of the number of extreme points (NEP) and the number of heart beats were calculated for assessing mental and physiological condition. In this method, 20 beats heart rate were used to calculate these indexes. These were calculated in one beat interval. Three conditions, which are sitting rest, performing mental arithmetic and watching relaxation movie, were assessed using our proposed algorithm. The assessment accuracies were 71.9% and 55.8%, when performing mental arithmetic and watching relaxation movie respectively. In this method, the mental and physiological condition was assessed using only 20 regressive heart beats, so this method is considered as the real time assessment method.

  15. The effect of time trial cycling position on physiological and aerodynamic variables.

    Science.gov (United States)

    Fintelman, D M; Sterling, M; Hemida, H; Li, F-X

    2015-01-01

    To reduce aerodynamic resistance cyclists lower their torso angle, concurrently reducing Peak Power Output (PPO). However, realistic torso angle changes in the range used by time trial cyclists have not yet been examined. Therefore the aim of this study was to investigate the effect of torso angle on physiological parameters and frontal area in different commonly used time trial positions. Nineteen well-trained male cyclists performed incremental tests on a cycle ergometer at five different torso angles: their preferred torso angle and at 0, 8, 16 and 24°. Oxygen uptake, carbon dioxide expiration, minute ventilation, gross efficiency, PPO, heart rate, cadence and frontal area were recorded. The frontal area provides an estimate of the aerodynamic drag. Overall, results showed that lower torso angles attenuated performance. Maximal values of all variables, attained in the incremental test, decreased with lower torso angles (P aerodynamic drag and physiological functioning.

  16. Dissociating neural variability related to stimulus quality and response times in perceptual decision-making.

    Science.gov (United States)

    Bode, Stefan; Bennett, Daniel; Sewell, David K; Paton, Bryan; Egan, Gary F; Smith, Philip L; Murawski, Carsten

    2018-03-01

    According to sequential sampling models, perceptual decision-making is based on accumulation of noisy evidence towards a decision threshold. The speed with which a decision is reached is determined by both the quality of incoming sensory information and random trial-by-trial variability in the encoded stimulus representations. To investigate those decision dynamics at the neural level, participants made perceptual decisions while functional magnetic resonance imaging (fMRI) was conducted. On each trial, participants judged whether an image presented under conditions of high, medium, or low visual noise showed a piano or a chair. Higher stimulus quality (lower visual noise) was associated with increased activation in bilateral medial occipito-temporal cortex and ventral striatum. Lower stimulus quality was related to stronger activation in posterior parietal cortex (PPC) and dorsolateral prefrontal cortex (DLPFC). When stimulus quality was fixed, faster response times were associated with a positive parametric modulation of activation in medial prefrontal and orbitofrontal cortex, while slower response times were again related to more activation in PPC, DLPFC and insula. Our results suggest that distinct neural networks were sensitive to the quality of stimulus information, and to trial-to-trial variability in the encoded stimulus representations, but that reaching a decision was a consequence of their joint activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Quantitative estimation of time-variable earthquake hazard by using fuzzy set theory

    Science.gov (United States)

    Deyi, Feng; Ichikawa, M.

    1989-11-01

    In this paper, the various methods of fuzzy set theory, called fuzzy mathematics, have been applied to the quantitative estimation of the time-variable earthquake hazard. The results obtained consist of the following. (1) Quantitative estimation of the earthquake hazard on the basis of seismicity data. By using some methods of fuzzy mathematics, seismicity patterns before large earthquakes can be studied more clearly and more quantitatively, highly active periods in a given region and quiet periods of seismic activity before large earthquakes can be recognized, similarities in temporal variation of seismic activity and seismic gaps can be examined and, on the other hand, the time-variable earthquake hazard can be assessed directly on the basis of a series of statistical indices of seismicity. Two methods of fuzzy clustering analysis, the method of fuzzy similarity, and the direct method of fuzzy pattern recognition, have been studied is particular. One method of fuzzy clustering analysis is based on fuzzy netting, and another is based on the fuzzy equivalent relation. (2) Quantitative estimation of the earthquake hazard on the basis of observational data for different precursors. The direct method of fuzzy pattern recognition has been applied to research on earthquake precursors of different kinds. On the basis of the temporal and spatial characteristics of recognized precursors, earthquake hazards in different terms can be estimated. This paper mainly deals with medium-short-term precursors observed in Japan and China.

  18. Time variability of C-reactive protein: implications for clinical risk stratification.

    Directory of Open Access Journals (Sweden)

    Peter Bogaty

    Full Text Available C-reactive protein (CRP is proposed as a screening test for predicting risk and guiding preventive approaches in coronary artery disease (CAD. However, the stability of repeated CRP measurements over time in subjects with and without CAD is not well defined. We sought to determine the stability of serial CRP measurements in stable subjects with distinct CAD manifestations and a group without CAD while carefully controlling for known confounders.We prospectively studied 4 groups of 25 stable subjects each 1 a history of recurrent acute coronary events; 2 a single myocardial infarction ≥7 years ago; 3 longstanding CAD (≥7 years that had never been unstable; 4 no CAD. Fifteen measurements of CRP were obtained to cover 21 time-points: 3 times during one day; 5 consecutive days; 4 consecutive weeks; 4 consecutive months; and every 3 months over the year. CRP risk threshold was set at 2.0 mg/L. We estimated variance across time-points using standard descriptive statistics and Bayesian hierarchical models.Median CRP values of the 4 groups and their pattern of variability did not differ substantially so all subjects were analyzed together. The median individual standard deviation (SD CRP values within-day, within-week, between-weeks and between-months were 0.07, 0.19, 0.36 and 0.63 mg/L, respectively. Forty-six percent of subjects changed CRP risk category at least once and 21% had ≥4 weekly and monthly CRP values in both low and high-risk categories.Considering its large intra-individual variability, it may be problematic to rely on CRP values for CAD risk prediction and therapeutic decision-making in individual subjects.

  19. Trends and variability in streamflow and snowmelt runoff timing in the southern Tianshan Mountains

    Science.gov (United States)

    Shen, Yan-Jun; Shen, Yanjun; Fink, Manfred; Kralisch, Sven; Chen, Yaning; Brenning, Alexander

    2018-02-01

    Streamflow and snowmelt runoff timing of mountain rivers are susceptible to climate change. Trends and variability in streamflow and snowmelt runoff timing in four mountain basins in the southern Tianshan were analyzed in this study. Streamflow trends were detected by Mann-Kendall tests and changes in snowmelt runoff timing were analyzed based on the winter/spring snowmelt runoff center time (WSCT). Pearson's correlation coefficient was further calculated to analyze the relationships between climate variables, streamflow and WSCT. Annual streamflow increased significantly in past decades in the southern Tianshan, especially in spring and winter months. However, the relations between streamflow and temperature/precipitation depend on the different streamflow generation processes. Annual precipitation plays a vital role in controlling recharge in the Toxkon basin, while the Kaidu and Huangshuigou basins are governed by both precipitation and temperature. Seasonally, temperature has a strong effect on streamflow in autumn and winter, while summer streamflow appears more sensitive to changes in precipitation. However, temperature is the dominant factor for streamflow in the glacierized Kunmalik basin at annual and seasonal scales. An uptrend in streamflow begins in the 1990s at both annual and seasonal scales, which is generally consistent with temperature and precipitation fluctuations. Average WSCT dates in the Kaidu and Huangshuigou basins are earlier than in the Toxkon and Kunmalik basins, and shifted towards earlier dates since the mid-1980s in all the basins. It is plausible that WSCT dates are more sensitive to warmer temperature in spring period compared to precipitation, except for the Huangshuigou basin. Taken together, these findings are useful for applications in flood risk regulation, future hydropower projects and integrated water resources management.

  20. A stochastic fractional dynamics model of space-time variability of rain

    Science.gov (United States)

    Kundu, Prasun K.; Travis, James E.

    2013-09-01

    varies in space and time in a highly irregular manner and is described naturally in terms of a stochastic process. A characteristic feature of rainfall statistics is that they depend strongly on the space-time scales over which rain data are averaged. A spectral model of precipitation has been developed based on a stochastic differential equation of fractional order for the point rain rate, which allows a concise description of the second moment statistics of rain at any prescribed space-time averaging scale. The model is thus capable of providing a unified description of the statistics of both radar and rain gauge data. The underlying dynamical equation can be expressed in terms of space-time derivatives of fractional orders that are adjusted together with other model parameters to fit the data. The form of the resulting spectrum gives the model adequate flexibility to capture the subtle interplay between the spatial and temporal scales of variability of rain but strongly constrains the predicted statistical behavior as a function of the averaging length and time scales. We test the model with radar and gauge data collected contemporaneously at the NASA TRMM ground validation sites located near Melbourne, Florida and on the Kwajalein Atoll, Marshall Islands in the tropical Pacific. We estimate the parameters by tuning them to fit the second moment statistics of radar data at the smaller spatiotemporal scales. The model predictions are then found to fit the second moment statistics of the gauge data reasonably well at these scales without any further adjustment.

  1. Scale-invariant gravity: geometrodynamics

    International Nuclear Information System (INIS)

    Anderson, Edward; Barbour, Julian; Foster, Brendan; Murchadha, Niall O

    2003-01-01

    We present a scale-invariant theory, conformal gravity, which closely resembles the geometrodynamical formulation of general relativity (GR). While previous attempts to create scale-invariant theories of gravity have been based on Weyl's idea of a compensating field, our direct approach dispenses with this and is built by extension of the method of best matching w.r.t. scaling developed in the parallel particle dynamics paper by one of the authors. In spatially compact GR, there is an infinity of degrees of freedom that describe the shape of 3-space which interact with a single volume degree of freedom. In conformal gravity, the shape degrees of freedom remain, but the volume is no longer a dynamical variable. Further theories and formulations related to GR and conformal gravity are presented. Conformal gravity is successfully coupled to scalars and the gauge fields of nature. It should describe the solar system observations as well as GR does, but its cosmology and quantization will be completely different

  2. Gravity a very short introduction

    CERN Document Server

    Clifton, Timothy

    2017-01-01

    Gravity is one of the four fundamental interactions that exist in nature. It also has the distinction of being the oldest, weakest, and most difficult force to quantize. Understanding gravity is not only essential for understanding the motion of objects on Earth, but also the motion of all celestial objects, and even the expansion of the Universe itself. It was the study of gravity that led Einstein to his profound realizations about the nature of space and time. Gravity is not only universal, it is also essential for understanding the behavior of the Universe, and all astrophysical bodies within it. In this Very Short Introduction Timothy Clifton looks at the development of our understanding of gravity since the early observations of Kepler and Newtonian theory. He discusses Einstein's theory of gravity, which now supplants Newton's, showing how it allows us to understand why the frequency of light changes as it passes through a gravitational field, why GPS satellites need their clocks corrected as they orbi...

  3. Cosmic censorship in quantum Einstein gravity

    Science.gov (United States)

    Bonanno, A.; Koch, B.; Platania, A.

    2017-05-01

    We study the quantum gravity modification of the Kuroda-Papapetrou model induced by the running of the Newton’s constant at high energy in quantum Einstein gravity. We argue that although the antiscreening character of the gravitational interaction favours the formation of a naked singularity, quantum gravity effects turn the classical singularity into a ‘whimper’ singularity which remains naked for a finite amount of advanced time.

  4. Predictor variables for half marathon race time in recreational female runners

    Directory of Open Access Journals (Sweden)

    Beat Knechtle

    2011-01-01

    Full Text Available INTRODUCTION: The relationship between skin-fold thickness and running performance has been investigated from 100 m to the marathon distance, except the half marathon distance. OBJECTIVE: To investigate whether anthropometry characteristics or training practices were related to race time in 42 recreational female half marathoners to determine the predictor variables of half-marathon race time and to inform future novice female half marathoners. METHODS: Observational field study at the 'Half Marathon Basel' in Switzerland. RESULTS: In the bivariate analysis, body mass (r = 0.60, body mass index (r = 0.48, body fat (r = 0.56, skin-fold at pectoral (r = 0.61, mid-axilla (r = 0.69, triceps (r = 0.49, subscapular (r = 0.61, abdominal (r = 0.59, suprailiac (r = 0.55 medial calf (r = 0.53 site, and speed of the training sessions (r = -0.68 correlated to race time. Mid-axilla skin-fold (p = 0.04 and speed of the training sessions (p = 0.0001 remained significant after multi-variate analysis. Race time in a half marathon might be predicted by the following equation (r² = 0.71: Race time (min = 166.7 + 1.7x (mid-axilla skin-fold, mm - 6.4x (speed in training, km/h. Running speed during training was related to skinfold thickness at mid-axilla (r = -0.31, subscapular (r = -0.38, abdominal (r = -0.44, suprailiacal (r = -0.41, the sum of eight skin-folds (r = -0.36 and percent body fat (r = -0.31. CONCLUSION: Anthropometric and training variables were related to half-marathon race time in recreational female runners. Skin-fold thicknesses at various upper body locations were related to training intensity. High running speed in training appears to be important for fast half-marathon race times and may reduce upper body skin-fold thicknesses in recreational female half marathoners.

  5. Predictor variables for half marathon race time in recreational female runners.

    Science.gov (United States)

    Knechtle, Beat; Knechtle, Patrizia; Barandun, Ursula; Rosemann, Thomas; Lepers, Romuald

    2011-01-01

    The relationship between skin-fold thickness and running performance has been investigated from 100 m to the marathon distance, except the half marathon distance. To investigate whether anthropometry characteristics or training practices were related to race time in 42 recreational female half marathoners to determine the predictor variables of half-marathon race time and to inform future novice female half marathoners. Observational field study at the 'Half Marathon Basel' in Switzerland. In the bivariate analysis, body mass (r = 0.60), body mass index (r = 0.48), body fat (r = 0.56), skin-fold at pectoral (r = 0.61), mid-axilla (r = 0.69), triceps (r = 0.49), subscapular (r = 0.61), abdominal (r = 0.59), suprailiac (r = 0.55) medial calf (r = 0.53) site, and speed of the training sessions (r = -0.68) correlated to race time. Mid-axilla skin-fold (p = 0.04) and speed of the training sessions (p = 0.0001) remained significant after multi-variate analysis. Race time in a half marathon might be predicted by the following equation (r² = 0.71): Race time (min) = 166.7 + 1.7x (mid-axilla skin-fold, mm) - 6.4x (speed in training, km/h). Running speed during training was related to skinfold thickness at mid-axilla (r = -0.31), subscapular (r = -0.38), abdominal (r = -0.44), suprailiacal (r = -0.41), the sum of eight skin-folds (r = -0.36) and percent body fat (r = -0.31). Anthropometric and training variables were related to half-marathon race time in recreational female runners. Skin-fold thicknesses at various upper body locations were related to training intensity. High running speed in training appears to be important for fast half-marathon race times and may reduce upper body skin-fold thicknesses in recreational female half marathoners.

  6. First order formalism for quantum gravity

    International Nuclear Information System (INIS)

    Gleiser, M.; Holman, R.; Neto, N.P.

    1987-05-01

    We develop a first order formalism for the quantization of gravity. We take as canonical variables both the induced metric and the extrinsic curvature of the (d - 1) -dimensional hypersurfaces obtained by the foliation of the d - dimensional spacetime. After solving the constraint algebra we use the Dirac formalism to quantize the theory and obtain a new representation for the Wheeler-DeWitt equation, defined in the functional space of the extrinsic curvature. We also show how to obtain several different representations of the Wheeler-DeWitt equation by considering actions differing by a total divergence. In particular, the intrinsic and extrinsic time approaches appear in a natural way, as do equivalent representations obtained by functional Fourier transforms of appropriate variables. We conclude with some remarks about the construction of the Hilbert space within the first order formalism. 10 refs

  7. Drivers of time-activity budget variability during breeding in a pelagic seabird.

    Directory of Open Access Journals (Sweden)

    Gavin M Rishworth

    Full Text Available During breeding, animal behaviour is particularly sensitive to environmental and food resource availability. Additionally, factors such as sex, body condition, and offspring developmental stage can influence behaviour. Amongst seabirds, behaviour is generally predictably affected by local foraging conditions and has therefore been suggested as a potentially useful proxy to indicate prey state. However, besides prey availability and distribution, a range of other variables also influence seabird behavior, and these need to be accounted for to increase the signal-to-noise ratio when assessing specific characteristics of the environment based on behavioural attributes. The aim of this study was to use continuous, fine-scale time-activity budget data from a pelagic seabird (Cape gannet, Morus capensis to determine the influence of intrinsic (sex and body condition and extrinsic (offspring and time variables on parent behaviour during breeding. Foraging trip duration and chick provisioning rates were clearly sex-specific and associated with chick developmental stage. Females made fewer, longer foraging trips and spent less time at the nest during chick provisioning. These sex-specific differences became increasingly apparent with chick development. Additionally, parents in better body condition spent longer periods at their nests and those which returned later in the day had longer overall nest attendance bouts. Using recent technological advances, this study provides new insights into the foraging behaviour of breeding seabirds, particularly during the post-guarding phase. The biparental strategy of chick provisioning revealed in this study appears to be an example where the costs of egg development to the female are balanced by paternal-dominated chick provisioning particularly as the chick nears fledging.

  8. Increasing work-time influence: consequences for flexibility, variability, regularity and predictability.

    Science.gov (United States)

    Nabe-Nielsen, Kirsten; Garde, Anne Helene; Aust, Birgit; Diderichsen, Finn

    2012-01-01

    This quasi-experimental study investigated how an intervention aiming at increasing eldercare workers' influence on their working hours affected the flexibility, variability, regularity and predictability of the working hours. We used baseline (n = 296) and follow-up (n = 274) questionnaire data and interviews with intervention-group participants (n = 32). The work units in the intervention group designed their own intervention comprising either implementation of computerised self-scheduling (subgroup A), collection of information about the employees' work-time preferences by questionnaires (subgroup B), or discussion of working hours (subgroup C). Only computerised self-scheduling changed the working hours and the way they were planned. These changes implied more flexible but less regular working hours and an experience of less predictability and less continuity in the care of clients and in the co-operation with colleagues. In subgroup B and C, the participants ended up discussing the potential consequences of more work-time influence without actually implementing any changes. Employee work-time influence may buffer the adverse effects of shift work. However, our intervention study suggested that while increasing the individual flexibility, increasing work-time influence may also result in decreased regularity of the working hours and less continuity in the care of clients and co-operation with colleagues.

  9. Seasonal and Static Gravity Field of Mars from MGS, Mars Odyssey and MRO Radio Science

    Science.gov (United States)

    Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2016-01-01

    We present a spherical harmonic solution of the static gravity field of Mars to degree and order 120, GMM-3, that has been calculated using the Deep Space Network tracking data of the NASA Mars missions, Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). We have also jointly determined spherical harmonic solutions for the static and time-variable gravity field of Mars, and the Mars k 2 Love numbers, exclusive of the gravity contribution of the atmosphere. Consequently, the retrieved time-varying gravity coefficients and the Love number k 2 solely yield seasonal variations in the mass of the polar caps and the solid tides of Mars, respectively. We obtain a Mars Love number k 2 of 0.1697 +/-0.0027 (3- sigma). The inclusion of MRO tracking data results in improved seasonal gravity field coefficients C 30 and, for the first time, C 50 . Refinements of the atmospheric model in our orbit determination program have allowed us to monitor the odd zonal harmonic C 30 for approx.1.5 solar cycles (16 years). This gravity model shows improved correlations with MOLA topography up to 15% larger at higher harmonics ( l = 60–80) than previous solutions.

  10. Chiral gravity, log gravity, and extremal CFT

    International Nuclear Information System (INIS)

    Maloney, Alexander; Song Wei; Strominger, Andrew

    2010-01-01

    We show that the linearization of all exact solutions of classical chiral gravity around the AdS 3 vacuum have positive energy. Nonchiral and negative-energy solutions of the linearized equations are infrared divergent at second order, and so are removed from the spectrum. In other words, chirality is confined and the equations of motion have linearization instabilities. We prove that the only stationary, axially symmetric solutions of chiral gravity are BTZ black holes, which have positive energy. It is further shown that classical log gravity--the theory with logarithmically relaxed boundary conditions--has finite asymptotic symmetry generators but is not chiral and hence may be dual at the quantum level to a logarithmic conformal field theories (CFT). Moreover we show that log gravity contains chiral gravity within it as a decoupled charge superselection sector. We formally evaluate the Euclidean sum over geometries of chiral gravity and show that it gives precisely the holomorphic extremal CFT partition function. The modular invariance and integrality of the expansion coefficients of this partition function are consistent with the existence of an exact quantum theory of chiral gravity. We argue that the problem of quantizing chiral gravity is the holographic dual of the problem of constructing an extremal CFT, while quantizing log gravity is dual to the problem of constructing a logarithmic extremal CFT.

  11. Decreased reaction time variability is associated with greater cardiovascular responses to acute stress.

    Science.gov (United States)

    Wawrzyniak, Andrew J; Hamer, Mark; Steptoe, Andrew; Endrighi, Romano

    2016-05-01

    Cardiovascular (CV) responses to mental stress are prospectively associated with poor CV outcomes. The association between CV responses to mental stress and reaction times (RTs) in aging individuals may be important but warrants further investigation. The present study assessed RTs to examine associations with CV responses to mental stress in healthy, older individuals using robust regression techniques. Participants were 262 men and women (mean age = 63.3 ± 5.5 years) from the Whitehall II cohort who completed a RT task (Stroop) and underwent acute mental stress (mirror tracing) to elicit CV responses. Blood pressure, heart rate, and heart rate variability were measured at baseline, during acute stress, and through a 75-min recovery. RT measures were generated from an ex-Gaussian distribution that yielded three predictors: mu-RT, sigma-RT, and tau-RT, the mean, standard deviation, and mean of the exponential component of the normal distribution, respectively. Decreased intraindividual RT variability was marginally associated with greater systolic (B = -.009, SE = .005, p = .09) and diastolic (B = -.004, SE = .002, p = .08) blood pressure reactivity. Decreased intraindividual RT variability was associated with impaired systolic blood pressure recovery (B = -.007, SE = .003, p = .03) and impaired vagal tone (B = -.0047, SE = .0024, p = .045). Study findings offer tentative support for an association between RTs and CV responses. Despite small effect sizes and associations not consistent across predictors, these data may point to a link between intrinsic neuronal plasticity and CV responses. © 2016 The Authors. Psychophysiology published by Wiley Periodicals, Inc. on behalf of Society for Psychophysiological Research.

  12. Variable School Start Times and Middle School Student's Sleep Health and Academic Performance.

    Science.gov (United States)

    Lewin, Daniel S; Wang, Guanghai; Chen, Yao I; Skora, Elizabeth; Hoehn, Jessica; Baylor, Allison; Wang, Jichuan

    2017-08-01

    Improving sleep health among adolescents is a national health priority and implementing healthy school start times (SSTs) is an important strategy to achieve these goals. This study leveraged the differences in middle school SST in a large district to evaluate associations between SST, sleep health, and academic performance. This cross-sectional study draws data from a county-wide surveillance survey. Participants were three cohorts of eighth graders (n = 26,440). The school district is unique because SST ranged from 7:20 a.m. to 8:10 a.m. Path analysis and probit regression were used to analyze associations between SST and self-report measures of weekday sleep duration, grades, and homework controlling for demographic variables (sex, race, and socioeconomic status). The independent contributions of SST and sleep duration to academic performance were also analyzed. Earlier SST was associated with decreased sleep duration (χ 2  = 173, p academic performance, and academic effort. Path analysis models demonstrated the independent contributions of sleep duration, SST, and variable effects for demographic variables. This is the first study to evaluate the independent contributions of SST and sleep to academic performance in a large sample of middle school students. Deficient sleep was prevalent, and the earliest SST was associated with decrements in sleep and academics. These findings support the prioritization of policy initiatives to implement healthy SST for younger adolescents and highlight the importance of sleep health education disparities among race and gender groups. Copyright © 2017 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  13. Intraindividual Variability in Basic Reaction Time Predicts Middle-Aged and Older Pilots’ Flight Simulator Performance

    Science.gov (United States)

    2013-01-01

    Objectives. Intraindividual variability (IIV) is negatively associated with cognitive test performance and is positively associated with age and some neurological disorders. We aimed to extend these findings to a real-world task, flight simulator performance. We hypothesized that IIV predicts poorer initial flight performance and increased rate of decline in performance among middle-aged and older pilots. Method. Two-hundred and thirty-six pilots (40–69 years) completed annual assessments comprising a cognitive battery and two 75-min simulated flights in a flight simulator. Basic and complex IIV composite variables were created from measures of basic reaction time and shifting and divided attention tasks. Flight simulator performance was characterized by an overall summary score and scores on communication, emergencies, approach, and traffic avoidance components. Results. Although basic IIV did not predict rate of decline in flight performance, it had a negative association with initial performance for most flight measures. After taking into account processing speed, basic IIV explained an additional 8%–12% of the negative age effect on initial flight performance. Discussion. IIV plays an important role in real-world tasks and is another aspect of cognition that underlies age-related differences in cognitive performance. PMID:23052365

  14. Intraindividual variability in basic reaction time predicts middle-aged and older pilots' flight simulator performance.

    Science.gov (United States)

    Kennedy, Quinn; Taylor, Joy; Heraldez, Daniel; Noda, Art; Lazzeroni, Laura C; Yesavage, Jerome

    2013-07-01

    Intraindividual variability (IIV) is negatively associated with cognitive test performance and is positively associated with age and some neurological disorders. We aimed to extend these findings to a real-world task, flight simulator performance. We hypothesized that IIV predicts poorer initial flight performance and increased rate of decline in performance among middle-aged and older pilots. Two-hundred and thirty-six pilots (40-69 years) completed annual assessments comprising a cognitive battery and two 75-min simulated flights in a flight simulator. Basic and complex IIV composite variables were created from measures of basic reaction time and shifting and divided attention tasks. Flight simulator performance was characterized by an overall summary score and scores on communication, emergencies, approach, and traffic avoidance components. Although basic IIV did not predict rate of decline in flight performance, it had a negative association with initial performance for most flight measures. After taking into account processing speed, basic IIV explained an additional 8%-12% of the negative age effect on initial flight performance. IIV plays an important role in real-world tasks and is another aspect of cognition that underlies age-related differences in cognitive performance.

  15. Constructing the reduced dynamical models of interannual climate variability from spatial-distributed time series

    Science.gov (United States)

    Mukhin, Dmitry; Gavrilov, Andrey; Loskutov, Evgeny; Feigin, Alexander

    2016-04-01

    We suggest a method for empirical forecast of climate dynamics basing on the reconstruction of reduced dynamical models in a form of random dynamical systems [1,2] derived from observational time series. The construction of proper embedding - the set of variables determining the phase space the model works in - is no doubt the most important step in such a modeling, but this task is non-trivial due to huge dimension of time series of typical climatic fields. Actually, an appropriate expansion of observational time series is needed yielding the number of principal components considered as phase variables, which are to be efficient for the construction of low-dimensional evolution operator. We emphasize two main features the reduced models should have for capturing the main dynamical properties of the system: (i) taking into account time-lagged teleconnections in the atmosphere-ocean system and (ii) reflecting the nonlinear nature of these teleconnections. In accordance to these principles, in this report we present the methodology which includes the combination of a new way for the construction of an embedding by the spatio-temporal data expansion and nonlinear model construction on the basis of artificial neural networks. The methodology is aplied to NCEP/NCAR reanalysis data including fields of sea level pressure, geopotential height, and wind speed, covering Northern Hemisphere. Its efficiency for the interannual forecast of various climate phenomena including ENSO, PDO, NAO and strong blocking event condition over the mid latitudes, is demonstrated. Also, we investigate the ability of the models to reproduce and predict the evolution of qualitative features of the dynamics, such as spectral peaks, critical transitions and statistics of extremes. This research was supported by the Government of the Russian Federation (Agreement No. 14.Z50.31.0033 with the Institute of Applied Physics RAS) [1] Y. I. Molkov, E. M. Loskutov, D. N. Mukhin, and A. M. Feigin, "Random

  16. Fuzzy central tendency measure for time series variability analysis with application to fatigue electromyography signals.

    Science.gov (United States)

    Xie, Hong-Bo; Dokos, Socrates

    2013-01-01

    A new method, namely fuzzy central tendency measure (fCTM) analysis, that could enable measurement of the variability of a time series, is presented in this study. Tests on simulated data sets show that fCTM is superior to the conventional central tendency measure (CTM) in several respects, including improved relative consistency and robustness to noise. The proposed fCTM method was applied to electromyograph (EMG) signals recorded during sustained isometric contraction for tracking local muscle fatigue. The results showed that the fCTM increased significantly during the development of muscle fatigue, and it was more sensitive to the fatigue phenomenon than mean frequency (MNF), the most commonly-used muscle fatigue indicator.

  17. Variable speed wind turbine control by discrete-time sliding mode approach.

    Science.gov (United States)

    Torchani, Borhen; Sellami, Anis; Garcia, Germain

    2016-05-01

    The aim of this paper is to propose a new design variable speed wind turbine control by discrete-time sliding mode approach. This methodology is designed for linear saturated system. The saturation constraint is reported on inputs vector. To this end, the back stepping design procedure is followed to construct a suitable sliding manifold that guarantees the attainment of a stabilization control objective. It is well known that the mechanisms are investigated in term of the most proposed assumptions to deal with the damping, shaft stiffness and inertia effect of the gear. The objectives are to synthesize robust controllers that maximize the energy extracted from wind, while reducing mechanical loads and rotor speed tracking combined with an electromagnetic torque. Simulation results of the proposed scheme are presented. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Development of a time-variable nuclear pulser for half life measurements

    International Nuclear Information System (INIS)

    Zahn, Guilherme S.; Domienikan, Claudio; Carvalhaes, Roberto P. M.; Genezini, Frederico A.

    2013-01-01

    In this work a time-variable pulser system with an exponentially-decaying pulse frequency is presented, which was developed using the low-cost, open-source Arduino microcontroler plataform. In this system, the microcontroller produces a TTL signal in the selected rate and a pulse shaper board adjusts it to be entered in an amplifier as a conventional pulser signal; both the decay constant and the initial pulse rate can be adjusted using a user-friendly control software, and the pulse amplitude can be adjusted using a potentiometer in the pulse shaper board. The pulser was tested using several combinations of initial pulse rate and decay constant, and the results show that the system is stable and reliable, and is suitable to be used in half-life measurements.

  19. Development of a time-variable nuclear pulser for half life measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, Guilherme S.; Domienikan, Claudio; Carvalhaes, Roberto P. M.; Genezini, Frederico A. [Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP. P.O. Box 11049, Sao Paulo, 05422-970 (Brazil)

    2013-05-06

    In this work a time-variable pulser system with an exponentially-decaying pulse frequency is presented, which was developed using the low-cost, open-source Arduino microcontroler plataform. In this system, the microcontroller produces a TTL signal in the selected rate and a pulse shaper board adjusts it to be entered in an amplifier as a conventional pulser signal; both the decay constant and the initial pulse rate can be adjusted using a user-friendly control software, and the pulse amplitude can be adjusted using a potentiometer in the pulse shaper board. The pulser was tested using several combinations of initial pulse rate and decay constant, and the results show that the system is stable and reliable, and is suitable to be used in half-life measurements.

  20. The Superheavy Elements and Anti-Gravity

    Science.gov (United States)

    Anastasovski, Petar K.

    2004-02-01

    The essence of any propulsion concept is to overcome gravity. Anti-gravity is a natural means to achieve this. Thus, the technology to pursue anti-gravity, by using superheavy elements, may provide a new propulsion paradigm. The theory of superluminal relativity provides a hypothesis for existence of elements with atomic number up to Z = 145, some of which may possess anti-gravity properties. Analysis results show that curved space-time exists demonstrating both gravitic and anti-gravitic properties not only around nuclei but inside the nuclei as well. Two groups of elements (Z Hawking, in honour of Stephen W. Hawking.

  1. Similar star formation rate and metallicity variability time-scales drive the fundamental metallicity relation

    Science.gov (United States)

    Torrey, Paul; Vogelsberger, Mark; Hernquist, Lars; McKinnon, Ryan; Marinacci, Federico; Simcoe, Robert A.; Springel, Volker; Pillepich, Annalisa; Naiman, Jill; Pakmor, Rüdiger; Weinberger, Rainer; Nelson, Dylan; Genel, Shy

    2018-06-01

    The fundamental metallicity relation (FMR) is a postulated correlation between galaxy stellar mass, star formation rate (SFR), and gas-phase metallicity. At its core, this relation posits that offsets from the mass-metallicity relation (MZR) at a fixed stellar mass are correlated with galactic SFR. In this Letter, we use hydrodynamical simulations to quantify the time-scales over which populations of galaxies oscillate about the average SFR and metallicity values at fixed stellar mass. We find that Illustris and IllustrisTNG predict that galaxy offsets from the star formation main sequence and MZR oscillate over similar time-scales, are often anticorrelated in their evolution, evolve with the halo dynamical time, and produce a pronounced FMR. Our models indicate that galaxies oscillate about equilibrium SFR and metallicity values - set by the galaxy's stellar mass - and that SFR and metallicity offsets evolve in an anticorrelated fashion. This anticorrelated variability of the metallicity and SFR offsets drives the existence of the FMR in our models. In contrast to Illustris and IllustrisTNG, we speculate that the SFR and metallicity evolution tracks may become decoupled in galaxy formation models dominated by feedback-driven globally bursty SFR histories, which could weaken the FMR residual correlation strength. This opens the possibility of discriminating between bursty and non-bursty feedback models based on the strength and persistence of the FMR - especially at high redshift.

  2. The reliable solution and computation time of variable parameters logistic model

    Science.gov (United States)

    Wang, Pengfei; Pan, Xinnong

    2018-05-01

    The study investigates the reliable computation time (RCT, termed as T c) by applying a double-precision computation of a variable parameters logistic map (VPLM). Firstly, by using the proposed method, we obtain the reliable solutions for the logistic map. Secondly, we construct 10,000 samples of reliable experiments from a time-dependent non-stationary parameters VPLM and then calculate the mean T c. The results indicate that, for each different initial value, the T cs of the VPLM are generally different. However, the mean T c trends to a constant value when the sample number is large enough. The maximum, minimum, and probable distribution functions of T c are also obtained, which can help us to identify the robustness of applying a nonlinear time series theory to forecasting by using the VPLM output. In addition, the T c of the fixed parameter experiments of the logistic map is obtained, and the results suggest that this T c matches the theoretical formula-predicted value.

  3. The analytical description of high temperature tensile creep for cavitating materials subjected to time variable loads

    International Nuclear Information System (INIS)

    Bocek, M.

    A phenomenological cavitation model is presented by means of which the life time as well as the creep curve equations can be calculated for cavitating materials subjected to time variable tensile loads. The model precludes the proportionality between the damage A and the damage rate (dA/dt) resp. Both are connected by the life time function tau. The latter is derived from static stress rupture tests and contains the loading conditions. From this model the life fraction rule (LFR) is derived. The model is used to calculate the creep curves of cavitating materials subjected at high temperatures to non-stationary tensile loading conditions. In the present paper the following loading procedures are considered: creep at constant load F and true stress s; creep at linear load increase ((dF/dt)=const) and creep at constant load amplitude cycling (CLAC). For these loading procedures the creep equations for cavitating and non-cavitating specimens are derived. Under comparable conditions the creep rate of cavitating materials are higher than for non-cavitating ones. (author)

  4. Time variability of X-ray binaries: observations with INTEGRAL. Modeling

    International Nuclear Information System (INIS)

    Cabanac, Clement

    2007-01-01

    The exact origin of the observed X and Gamma ray variability in X-ray binaries is still an open debate in high energy astrophysics. Among others, these objects are showing aperiodic and quasi-periodic luminosity variations on timescales as small as the millisecond. This erratic behavior must put constraints on the proposed emission processes occurring in the vicinity of the neutrons star or the stellar mass black-hole held by these objects. We propose here to study their behavior following 3 different ways: first we examine the evolution of a particular X-ray source discovered by INTEGRAL, IGR J19140+0951. Using timing and spectral data given by different instruments, we show that the source type is plausibly consistent with a High Mass X-ray Binary hosting a neutrons star. Subsequently, we propose a new method dedicated to the study of timing data coming from coded mask aperture instruments. Using it on INTEGRAL/ISGRI real data, we detect the presence of periodic and quasi-periodic features in some pulsars and micro-quasars at energies as high as a hundred keV. Finally, we suggest a model designed to describe the low frequency variability of X-ray binaries in their hardest state. This model is based on thermal comptonization of soft photons by a warm corona in which a pressure wave is propagating in cylindrical geometry. By computing both numerical simulations and analytical solution, we show that this model should be suitable to describe some of the typical features observed in X-ray binaries power spectra in their hard state and their evolution such as aperiodic noise and low frequency quasi-periodic oscillations. (author) [fr

  5. Statistical Learning and Adaptive Decision-Making Underlie Human Response Time Variability in Inhibitory Control

    Directory of Open Access Journals (Sweden)

    Ning eMa

    2015-08-01

    Full Text Available Response time (RT is an oft-reported behavioral measure in psychological and neurocognitive experiments, but the high level of observed trial-to-trial variability in this measure has often limited its usefulness. Here, we combine computational modeling and psychophysics to examine the hypothesis that fluctuations in this noisy measure reflect dynamic computations in human statistical learning and corresponding cognitive adjustments. We present data from the stop-signal task, in which subjects respond to a go stimulus on each trial, unless instructed not to by a subsequent, infrequently presented stop signal. We model across-trial learning of stop signal frequency, P(stop, and stop-signal onset time, SSD (stop-signal delay, with a Bayesian hidden Markov model, and within-trial decision-making with an optimal stochastic control model. The combined model predicts that RT should increase with both expected P(stop and SSD. The human behavioral data (n=20 bear out this prediction, showing P(stop and SSD both to be significant, independent predictors of RT, with P(stop being a more prominent predictor in 75% of the subjects, and SSD being more prominent in the remaining 25%. The results demonstrate that humans indeed readily internalize environmental statistics and adjust their cognitive/behavioral strategy accordingly, and that subtle patterns in RT variability can serve as a valuable tool for validating models of statistical learning and decision-making. More broadly, the modeling tools presented in this work can be generalized to a large body of behavioral paradigms, in order to extract insights about cognitive and neural processing from apparently quite noisy behavioral measures. We also discuss how this behaviorally validated model can then be used to conduct model-based analysis of neural data, in order to help identify specific brain areas for representing and encoding key computational quantities in learning and decision-making.

  6. Assessing the Time Variability of Jupiter's Tropospheric Properties from 1996 to 2011

    Science.gov (United States)

    Orton, G. S.; Fletcher, L. N.; Yanamandra-Fisher, P. A.; Simon-Miller, A. A.; Greco, J.; Wakefield, L.

    2012-01-01

    We acquired and analyzed mid-infrared images of Jupiter's disk at selected wavelengths from NASA's Infrared Telescope Facility (IRTF) from 1996 to 2011, including a period of large-scale changes of cloud color and albedo. We derived the 100-300 mbar temperature structure, together with tracers of vertical motion: the thickness of a 600- mbar cloud layer, the 300-mbar abundance of the condensable gas NH3, and the 400- mbar para- vs. ortho-H2 ratio. The biggest visual change was detected in the normally dark South Equatorial Belt (SEB) that 'faded' to a light color in 2010, during which both cloud thickness and NH3 abundance rose; both returned to their pre-fade levels in 2011, as the SEB regained its normal dark color. The cloud thickness in Jupiter's North Temperate Belt (NTB) increased in 2002, coincident with its visible brightening, and its NH3 abundance spiked in 2002-2003. Jupiter's Equatorial Zone (EZ), a region marked by more subtle but widespread color and albedo change, showed high cloud thickness variability between 2007 and 2009. In Jupiter's North Equatorial Belt (NEB), the cloud thickened in 2005, then slowly decreased to a minimum value in 2010-2011. No temperature variations were associated with any of these changes, but we discovered temperature oscillations of approx.2-4 K in all regions, with 4- or 8-year periods and phasing that was dissimilar in the different regions. There was also no detectable change in the para- vs. ortho-H2 ratio over time, leading to the possibility that it is driven from much deeper atmospheric levels and may be time-invariant. Our future work will continue to survey the variability of these properties through the Juno mission, which arrives at Jupiter in 2016, and to connect these observations with those made using raster-scanned images from 1980 to 1993 (Orton et al. 1996 Science 265, 625).

  7. Statistical learning and adaptive decision-making underlie human response time variability in inhibitory control.

    Science.gov (United States)

    Ma, Ning; Yu, Angela J

    2015-01-01

    Response time (RT) is an oft-reported behavioral measure in psychological and neurocognitive experiments, but the high level of observed trial-to-trial variability in this measure has often limited its usefulness. Here, we combine computational modeling and psychophysics to examine the hypothesis that fluctuations in this noisy measure reflect dynamic computations in human statistical learning and corresponding cognitive adjustments. We present data from the stop-signal task (SST), in which subjects respond to a go stimulus on each trial, unless instructed not to by a subsequent, infrequently presented stop signal. We model across-trial learning of stop signal frequency, P(stop), and stop-signal onset time, SSD (stop-signal delay), with a Bayesian hidden Markov model, and within-trial decision-making with an optimal stochastic control model. The combined model predicts that RT should increase with both expected P(stop) and SSD. The human behavioral data (n = 20) bear out this prediction, showing P(stop) and SSD both to be significant, independent predictors of RT, with P(stop) being a more prominent predictor in 75% of the subjects, and SSD being more prominent in the remaining 25%. The results demonstrate that humans indeed readily internalize environmental statistics and adjust their cognitive/behavioral strategy accordingly, and that subtle patterns in RT variability can serve as a valuable tool for validating models of statistical learning and decision-making. More broadly, the modeling tools presented in this work can be generalized to a large body of behavioral paradigms, in order to extract insights about cognitive and neural processing from apparently quite noisy behavioral measures. We also discuss how this behaviorally validated model can then be used to conduct model-based analysis of neural data, in order to help identify specific brain areas for representing and encoding key computational quantities in learning and decision-making.

  8. Spectral analysis of uneven time series of geological variables; Analisis espectral de series temporales de variables geologicas con muestreo irregular

    Energy Technology Data Exchange (ETDEWEB)

    Pardo-Iguzquiza, E.; Rodriguez-Tovar, F. J.

    2013-06-01

    In geosciences the sampling of a time series tends to afford uneven results, sometimes because the sampling itself is random or because of hiatuses or even completely missing data or due to difficulties involved in the conversion of data from a spatial to a time scale when the sedimentation rate was not constant. Whatever the case, the best solution does not lie in interpolation but rather in resorting to a method that deals with the irregular data. We show here how the use of the smoothed Lomb-Scargle periodogram is both a practical and efficient choice. We describe the effects on the estimated power spectrum of the type of irregular sampling, the number of data, interpolation, and the presence of drift. We propose the permutation test as being an efficient way of calculating statistical confidence levels. By applying the Lomb-Scargle periodogram to a synthetic series with a known spectral content we are able to confirm the validity of this method in the face of the difficulties mentioned above. A case study with real data, including hiatuses, representing the thickness of the annual banding in a stalagmite, is chosen to demonstrate an application using the statistical and physical interpretation of spectral peaks. (Author)

  9. Sensitivity of Variables with Time for Degraded RC Shear Wall with Low Steel Ratio under Seismic Load

    International Nuclear Information System (INIS)

    Park, Jun Hee; Choun, Young Sun; Choi, In Kil

    2011-01-01

    Various factors lead to the degradation of reinforced concrete (RC) shear wall over time. The steel section loss, concrete spalling and strength of material have been considered for the structural analysis of degraded shear wall. When all variables with respect to degradation are considered for probabilistic evaluation of degraded shear wall, many of time and effort were demanded. Therefore, it is required to define important variables related to structural behavior for effectively conducting probabilistic seismic analysis of structures with age-related degradation. In this study, variables were defined by applying the function of time to consider degradation with time. Importance of variables with time on the seismic response was investigated by conducting sensitivity analysis

  10. Methods for assessment of climate variability and climate changes in different time-space scales

    International Nuclear Information System (INIS)

    Lobanov, V.; Lobanova, H.

    2004-01-01

    Main problem of hydrology and design support for water projects connects with modern climate change and its impact on hydrological characteristics as observed as well as designed. There are three main stages of this problem: - how to extract a climate variability and climate change from complex hydrological records; - how to assess the contribution of climate change and its significance for the point and area; - how to use the detected climate change for computation of design hydrological characteristics. Design hydrological characteristic is the main generalized information, which is used for water management and design support. First step of a research is a choice of hydrological characteristic, which can be as a traditional one (annual runoff for assessment of water resources, maxima, minima runoff, etc) as well as a new one, which characterizes an intra-annual function or intra-annual runoff distribution. For this aim a linear model has been developed which has two coefficients connected with an amplitude and level (initial conditions) of seasonal function and one parameter, which characterizes an intensity of synoptic and macro-synoptic fluctuations inside a year. Effective statistical methods have been developed for a separation of climate variability and climate change and extraction of homogeneous components of three time scales from observed long-term time series: intra annual, decadal and centural. The first two are connected with climate variability and the last (centural) with climate change. Efficiency of new methods of decomposition and smoothing has been estimated by stochastic modeling and well as on the synthetic examples. For an assessment of contribution and statistical significance of modern climate change components statistical criteria and methods have been used. Next step has been connected with a generalization of the results of detected climate changes over the area and spatial modeling. For determination of homogeneous region with the same

  11. New Tree-Ring Evidence from the Pyrenees Reveals Western Mediterranean Climate Variability since Medieval Times

    Czech Academy of Sciences Publication Activity Database

    Büntgen, Ulf; Krusic, P. J.; Verstege, A.; Sanguesa-Barreda, G.; Wagner, S.; Camarero, J. J.; Ljungqvist, F. C.; Zorita, E.; Oppenheimer, C.; Konter, O.; Tegel, W.; Gärtner, H.; Cherubini, P.; Reinig, F.; Esper, J.

    2017-01-01

    Roč. 30, č. 14 (2017), s. 5295-5318 ISSN 0894-8755 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : Europe * Volcanoes * Climate variability * Interannual variability * Multidecadal variability * Trends Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 4.161, year: 2016

  12. North atlantic multidecadal climate variability: An investigation of dominant time scales and processes

    NARCIS (Netherlands)

    Frankcombe, L.M.|info:eu-repo/dai/nl/304829838; von der Heydt, A.S.|info:eu-repo/dai/nl/245567526; Dijkstra, H.A.|info:eu-repo/dai/nl/073504467

    2010-01-01

    The issue of multidecadal variability in the North Atlantic has been an important topic of late. It is clear that there are multidecadal variations in several climate variables in the North Atlantic, such as sea surface temperature and sea level height. The details of this variability, in particular

  13. Intraindividual Stepping Reaction Time Variability Predicts Falls in Older Adults With Mild Cognitive Impairment.

    Science.gov (United States)

    Bunce, David; Haynes, Becky I; Lord, Stephen R; Gschwind, Yves J; Kochan, Nicole A; Reppermund, Simone; Brodaty, Henry; Sachdev, Perminder S; Delbaere, Kim

    2017-06-01

    Reaction time measures have considerable potential to aid neuropsychological assessment in a variety of health care settings. One such measure, the intraindividual reaction time variability (IIV), is of particular interest as it is thought to reflect neurobiological disturbance. IIV is associated with a variety of age-related neurological disorders, as well as gait impairment and future falls in older adults. However, although persons diagnosed with Mild Cognitive Impairment (MCI) are at high risk of falling, the association between IIV and prospective falls is unknown. We conducted a longitudinal cohort study in cognitively intact (n = 271) and MCI (n = 154) community-dwelling adults aged 70-90 years. IIV was assessed through a variety of measures including simple and choice hand reaction time and choice stepping reaction time tasks (CSRT), the latter administered as a single task and also with a secondary working memory task. Logistic regression did not show an association between IIV on the hand-held tasks and falls. Greater IIV in both CSRT tasks, however, did significantly increase the risk of future falls. This effect was specific to the MCI group, with a stronger effect in persons exhibiting gait, posture, or physiological impairment. The findings suggest that increased stepping IIV may indicate compromised neural circuitry involved in executive function, gait, and posture in persons with MCI increasing their risk of falling. IIV measures have potential to assess neurobiological disturbance underlying physical and cognitive dysfunction in old age, and aid fall risk assessment and routine care in community and health care settings. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Time-dependence in relativistic collisionless shocks: theory of the variable

    Energy Technology Data Exchange (ETDEWEB)

    Spitkovsky, A

    2004-02-05

    We describe results from time-dependent numerical modeling of the collisionless reverse shock terminating the pulsar wind in the Crab Nebula. We treat the upstream relativistic wind as composed of ions and electron-positron plasma embedded in a toroidal magnetic field, flowing radially outward from the pulsar in a sector around the rotational equator. The relativistic cyclotron instability of the ion gyrational orbit downstream of the leading shock in the electron-positron pairs launches outward propagating magnetosonic waves. Because of the fresh supply of ions crossing the shock, this time-dependent process achieves a limit-cycle, in which the waves are launched with periodicity on the order of the ion Larmor time. Compressions in the magnetic field and pair density associated with these waves, as well as their propagation speed, semi-quantitatively reproduce the behavior of the wisp and ring features described in recent observations obtained using the Hubble Space Telescope and the Chandra X-Ray Observatory. By selecting the parameters of the ion orbits to fit the spatial separation of the wisps, we predict the period of time variability of the wisps that is consistent with the data. When coupled with a mechanism for non-thermal acceleration of the pairs, the compressions in the magnetic field and plasma density associated with the optical wisp structure naturally account for the location of X-ray features in the Crab. We also discuss the origin of the high energy ions and their acceleration in the equatorial current sheet of the pulsar wind.

  15. Mixing times towards demographic equilibrium in insect populations with temperature variable age structures.

    Science.gov (United States)

    Damos, Petros

    2015-08-01

    In this study, we use entropy related mixing rate modules to measure the effects of temperature on insect population stability and demographic breakdown. The uncertainty in the age of the mother of a randomly chosen newborn, and how it is moved after a finite act of time steps, is modeled using a stochastic transformation of the Leslie matrix. Age classes are represented as a cycle graph and its transitions towards the stable age distribution are brought forth as an exact Markov chain. The dynamics of divergence, from a non equilibrium state towards equilibrium, are evaluated using the Kolmogorov-Sinai entropy. Moreover, Kullback-Leibler distance is applied as information-theoretic measure to estimate exact mixing times of age transitions probabilities towards equilibrium. Using empirically data, we show that on the initial conditions and simulated projection's trough time, that population entropy can effectively be applied to detect demographic variability towards equilibrium under different temperature conditions. Changes in entropy are correlated with the fluctuations of the insect population decay rates (i.e. demographic stability towards equilibrium). Moreover, shorter mixing times are directly linked to lower entropy rates and vice versa. This may be linked to the properties of the insect model system, which in contrast to warm blooded animals has the ability to greatly change its metabolic and demographic rates. Moreover, population entropy and the related distance measures that are applied, provide a means to measure these rates. The current results and model projections provide clear biological evidence why dynamic population entropy may be useful to measure population stability. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Quantum W3 gravity

    International Nuclear Information System (INIS)

    Schoutens, K.; van Nieuwenhuizen, P.; State Univ. of New York, Stony Brook, NY

    1991-11-01

    We briefly review some results in the theory of quantum W 3 gravity in the chiral gauge. We compare them with similar results in the analogous but simpler cases of d = 2 induced gauge theories and d = 2 induced gravity

  17. Urine specific gravity test

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003587.htm Urine specific gravity test To use the sharing features on this page, please enable JavaScript. Urine specific gravity is a laboratory test that shows the concentration ...

  18. Cadiz, California Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (32 records) were gathered by Mr. Seth I. Gutman for AridTech Inc., Denver, Colorado using a Worden Prospector gravity meter. This data base...

  19. Andes 1997 Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Central Andes gravity data (6,151 records) were compiled by Professor Gotze and the MIGRA Group. This data base was received in April, 1997. Principal gravity...

  20. DNAG Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Decade of North American Geology (DNAG) gravity grid values, spaced at 6 km, were used to produce the Gravity Anomaly Map of North America (1987; scale...

  1. Gravity wave astronomy

    International Nuclear Information System (INIS)

    Pinheiro, R.

    1979-01-01

    The properties and production of gravitational radiation are described. The prospects for their detection are considered including the Weber apparatus and gravity-wave telescopes. Possibilities of gravity-wave astronomy are noted

  2. Northern Oklahoma Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (710 records) were compiled by Professor Ahern. This data base was received in June 1992. Principal gravity parameters include latitude,...

  3. Idaho State Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (24,284 records) were compiled by the U. S. Geological Survey. This data base was received on February 23, 1993. Principal gravity...

  4. A Stochastic Model of Space-Time Variability of Tropical Rainfall: I. Statistics of Spatial Averages

    Science.gov (United States)

    Kundu, Prasun K.; Bell, Thomas L.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Global maps of rainfall are of great importance in connection with modeling of the earth s climate. Comparison between the maps of rainfall predicted by computer-generated climate models with observation provides a sensitive test for these models. To make such a comparison, one typically needs the total precipitation amount over a large area, which could be hundreds of kilometers in size over extended periods of time of order days or months. This presents a difficult problem since rain varies greatly from place to place as well as in time. Remote sensing methods using ground radar or satellites detect rain over a large area by essentially taking a series of snapshots at infrequent intervals and indirectly deriving the average rain intensity within a collection of pixels , usually several kilometers in size. They measure area average of rain at a particular instant. Rain gauges, on the other hand, record rain accumulation continuously in time but only over a very small area tens of centimeters across, say, the size of a dinner plate. They measure only a time average at a single location. In making use of either method one needs to fill in the gaps in the observation - either the gaps in the area covered or the gaps in time of observation. This involves using statistical models to obtain information about the rain that is missed from what is actually detected. This paper investigates such a statistical model and validates it with rain data collected over the tropical Western Pacific from ship borne radars during TOGA COARE (Tropical Oceans Global Atmosphere Coupled Ocean-Atmosphere Response Experiment). The model incorporates a number of commonly observed features of rain. While rain varies rapidly with location and time, the variability diminishes when averaged over larger areas or longer periods of time. Moreover, rain is patchy in nature - at any instant on the average only a certain fraction of the observed pixels contain rain. The fraction of area covered by

  5. Variable flip angle excitation for reduced acquisition time magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mills, T.C.; Ortendahl, D.A.; Hylton, N.M.; Carlson, J.W.; Crooks, L.E.; Kaufman, L.

    1987-01-01

    This paper describes an MRI technique which can be used to acquire images at short TR values while maintaining the sensitivity to disease found in longer TR images. For spin echo imaging there are three acquisition parameters that can be set in the imaging protocol; TR, the repetition interval; TE, the time of echo and Θ, the excitation flip angle. Standard imaging techniques set Θ to 90 degrees regardless of the TR value. With Θ fixed, imaging systems have been optimized by varying the value for TE and TR with the results in general indicating the need for long TR values. However, if the flip angle is included as a variable acquisition parameter the optimal operating point can be changed. The solution to the Bloch equation shows a functional relationship between the flip angle and the ratio TR/T1. This functionality was first observed by Ernst and Anderson as a method to increase the signal generated in fourier transform magnetic resonance spectroscopy. When TR/T1<1 the optimum flip angle for producing maximum magnetization in the transverse plane is less then 90 degrees. Therefore, by reducing both TR and flip angle it is possible to maintain signal intensity while reducing the time of data acquisition

  6. Strings and quantum gravity

    International Nuclear Information System (INIS)

    Vega, H.J. de

    1990-01-01

    One of the main challenges in theoretical physics today is the unification of all interactions including gravity. At present, string theories appear as the most promising candidates to achieve such a unification. However, gravity has not completely been incorporated in string theory, many technical and conceptual problems remain and a full quantum theory of gravity is still non-existent. Our aim is to properly understand strings in the context of quantum gravity. Attempts towards this are reviewed. (author)

  7. Study on a new type variable valve lift timing mechanism with a three dimensional cam; Sanjigen cam ni yoru shinkahen valve lift timing kiko ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ogura, M; Song, C [Nippon Institute of Technology, Saitama (Japan)

    1997-10-01

    The variable valve timing mechanism was invented to get a torque band at wide engine speed, and to reduce a compression job and pumping loss by a miler cycle at partial load. In this paper, the new type variable valve timing mechanism applying a three dimensional cam was proposed. Also, the feature of mechanism and the control system was done obviously. Further, about a miler cycle, a thermodynamics -like consideration was described. 5 refs., 8 figs.

  8. Arctic energy budget in relation to sea-ice variability on monthly to annual time scales

    Science.gov (United States)

    Krikken, Folmer; Hazeleger, Wilco

    2015-04-01

    The strong decrease in Arctic sea-ice in recent years has triggered a strong interest in Arctic sea-ice predictions on seasonal to decadal time scales. Hence, it is key to understand physical processes that provide enhanced predictability beyond persistence of sea ice anomalies. The authors report on an analysis of natural variability of Arctic sea-ice from an energy budget perspective, using 15 CMIP5 climate models, and comparing these results to atmospheric and oceanic reanalyses data. We quantify the persistence of sea ice anomalies and the cross-correlation with the surface and top energy budget components. The Arctic energy balance components primarily indicate the important role of the seasonal sea-ice albedo feedback, in which sea-ice anomalies in the melt season reemerge in the growth season. This is a robust anomaly reemergence mechanism among all 15 climate models. The role of ocean lies mainly in storing heat content anomalies in spring, and releasing them in autumn. Ocean heat flux variations only play a minor role. The role of clouds is further investigated. We demonstrate that there is no direct atmospheric response of clouds to spring sea-ice anomalies, but a delayed response is evident in autumn. Hence, there is no cloud-ice feedback in late spring and summer, but there is a cloud-ice feedback in autumn, which strengthens the ice-albedo feedback. Anomalies in insolation are positively correlated with sea-ice variability. This is primarily a result of reduced multiple-reflection of insolation due to an albedo decrease. This effect counteracts the sea-ice albedo effect up to 50%. ERA-Interim and ORAS4 confirm the main findings from the climate models.

  9. The variability of SE2 tide extracted from TIMED/SABER observations

    Science.gov (United States)

    Li, X.; Wan, W.; Ren, Z.

    2017-12-01

    Based on the temperature observations of the TIMED/SABER in mesosphere/lower thermosphere region (70-110 km altitudes) and at the low latitude and midlatitude (45°S-45°N) from 2002 to 2012, the variability of the nonmigrating tide SE2 with 1 day resolution is analyzed. It is found that the climatological features (large-scale variability) of the semidiurnal nonmigrating tide with zonal wave number 2 (SE2) tide are similar with the results from the previous research works. The SE2 tide manifests mainly at the low-mid latitudes around ±30°. The northern hemisphere tidal amplitudes below 110 km are larger than the southern hemisphere tide. SE2 peaks below 110 km mainly present between 100 and 110 km altitude. The tidal amplitudes below 110 km occur a north-south asymmetry about the equator in the annual variation: in the southern hemisphere, SE2 occurs with an obvious annual variation with a maximum of tidal amplitudes in December, while in the northern one, the semiannual variations with maximum at the equinoxes. Herein, owing to the high-resolution tidal data, we could research the short-term (day-to-day) variations of SE2. We found that the day-to-day variations manifest mainly at between 100 and 110 km altitudes; it increases gradually with latitudes, and it is stronger at the low-mid latitudes; it is relatively slightly stronger around solstices than equinoxes; and it does not present a remarkably interannual variation. The SE2 day-to-day variations may be composed by the absolute amplitudes' variance and the impact of the wave phases, and the latter ones are more important.

  10. Discrete gravity

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1990-07-01

    This paper discusses the following: constructing a bit-string universe; quantized space-time; combinatorial hierarchy labels; gravitational stabilization of the proton; quantum geons; cosmological consequences; the proton-electron mass ratio, weak- electromagnetic unification; and sewgut

  11. Geometric Liouville gravity

    International Nuclear Information System (INIS)

    La, H.

    1992-01-01

    A new geometric formulation of Liouville gravity based on the area preserving diffeo-morphism is given and a possible alternative to reinterpret Liouville gravity is suggested, namely, a scalar field coupled to two-dimensional gravity with a curvature constraint

  12. Covariant w∞ gravity

    NARCIS (Netherlands)

    Bergshoeff, E.; Pope, C.N.; Stelle, K.S.

    1990-01-01

    We discuss the notion of higher-spin covariance in w∞ gravity. We show how a recently proposed covariant w∞ gravity action can be obtained from non-chiral w∞ gravity by making field redefinitions that introduce new gauge-field components with corresponding new gauge transformations.

  13. Induced quantum conformal gravity

    International Nuclear Information System (INIS)

    Novozhilov, Y.V.; Vassilevich, D.V.

    1988-11-01

    Quantum gravity is considered as induced by matter degrees of freedom and related to the symmetry breakdown in the low energy region of a non-Abelian gauge theory of fundamental fields. An effective action for quantum conformal gravity is derived where both the gravitational constant and conformal kinetic term are positive. Relation with induced classical gravity is established. (author). 15 refs

  14. Quantum Gravity Phenomenology

    OpenAIRE

    Amelino-Camelia, Giovanni

    2003-01-01

    Comment: 9 pages, LaTex. These notes were prepared while working on an invited contribution to the November 2003 issue of Physics World, which focused on quantum gravity. They intend to give a non-technical introduction (accessible to readers from outside quantum gravity) to "Quantum Gravity Phenomenology"

  15. The potential of ground gravity measurements to validate GRACE data

    Directory of Open Access Journals (Sweden)

    D. Crossley

    2003-01-01

    Full Text Available New satellite missions are returning high precision, time-varying, satellite measurements of the Earth’s gravity field. The GRACE mission is now in its calibration/- validation phase and first results of the gravity field solutions are imminent. We consider here the possibility of external validation using data from the superconducting gravimeters in the European sub-array of the Global Geodynamics Project (GGP as ‘ground truth’ for comparison with GRACE. This is a pilot study in which we use 14 months of 1-hour data from the beginning of GGP (1 July 1997 to 30 August 1998, when the Potsdam instrument was relocated to South Africa. There are 7 stations clustered in west central Europe, and one station, Metsahovi in Finland. We remove local tides, polar motion, local and global air pressure, and instrument drift and then decimate to 6-hour samples. We see large variations in the time series of 5–10µgal between even some neighboring stations, but there are also common features that correlate well over the 427-day period. The 8 stations are used to interpolate a minimum curvature (gridded surface that extends over the geographical region. This surface shows time and spatial coherency at the level of 2– 4µgal over the first half of the data and 1–2µgal over the latter half. The mean value of the surface clearly shows a rise in European gravity of about 3µgal over the first 150 days and a fairly constant value for the rest of the data. The accuracy of this mean is estimated at 1µgal, which compares favorably with GRACE predictions for wavelengths of 500 km or less. Preliminary studies of hydrology loading over Western Europe shows the difficulty of correlating the local hydrology, which can be highly variable, with large-scale gravity variations.Key words. GRACE, satellite gravity, superconducting gravimeter, GGP, ground truth

  16. SOLAR CYCLE VARIABILITY AND SURFACE DIFFERENTIAL ROTATION FROM Ca II K-LINE TIME SERIES DATA

    Energy Technology Data Exchange (ETDEWEB)

    Scargle, Jeffrey D.; Worden, Simon P. [NASA Ames Research Center, Moffett Field, CA, 94035 (United States); Keil, Stephen L. [National Solar Observatory, P.O. Box 57, Sunspot, NM 88349 (United States)

    2013-07-01

    Analysis of over 36 yr of time series data from the NSO/AFRL/Sac Peak K-line monitoring program elucidates 5 components of the variation of the 7 measured chromospheric parameters: (a) the solar cycle (period {approx} 11 yr), (b) quasi-periodic variations (periods {approx} 100 days), (c) a broadband stochastic process (wide range of periods), (d) rotational modulation, and (e) random observational errors, independent of (a)-(d). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these parameters. Time-frequency analysis illuminates periodic and quasi-periodic signals, details of frequency modulation due to differential rotation, and in particular elucidates the rather complex harmonic structure (a) and (b) at timescales in the range {approx}0.1-10 yr. These results using only full-disk data suggest that similar analyses will be useful for detecting and characterizing differential rotation in stars from stellar light curves such as those being produced by NASA's Kepler observatory. Component (c) consists of variations over a range of timescales, in the manner of a 1/f random process with a power-law slope index that varies in a systematic way. A time-dependent Wilson-Bappu effect appears to be present in the solar cycle variations (a), but not in the more rapid variations of the stochastic process (c). Component (d) characterizes differential rotation of the active regions. Component (e) is of course not characteristic of solar variability, but the fact that the observational errors are quite small greatly facilitates the analysis of the other components. The data analyzed in this paper can be found at the National Solar Observatory Web site http://nsosp.nso.edu/cak{sub m}on/, or by file transfer protocol at ftp://ftp.nso.edu/idl/cak.parameters.

  17. The loop quantum gravity black hole

    Science.gov (United States)

    Pullin, Jorge; Gambini, Rodolfo

    2013-04-01

    We study the quantization of vacuum spherically symmetric space-times. We use variables adapted to spherical symmetry but do not fix the gauge further. One is left with a diffeomorphism constraint and a Hamiltonian constraint. Rescaling the latter turns the constraint algebra into a true Lie algebra and allows to implement the Dirac quantization procedure. We find exactly the physical states annihilated by all constraints using loop quantum gravity techniques. The space-time metric can be recovered as an evolving constant of the motion in terms of Dirac observables. The singularity is resolved as was anticipated in previous semiclassical studies. The quantum theory has new observables with respect to the classical theory that may play a role in discussions of ``firewalls'' during black hole evaporation.

  18. Canonical quantum gravity and consistent discretizations

    Indian Academy of Sciences (India)

    Abstract. This paper covers some developments in canonical quantum gravity that ... derstanding the real Ashtekar variables four dimensionally [4], or the recent work ... Traditionally, canonical formulations of general relativity considered as canonical variables the metric on a spatial slice qab and a canonically conjugate.

  19. Quantum gravity as Escher's dragon

    International Nuclear Information System (INIS)

    Smilga, A.V.

    2003-01-01

    The main obstacle in attempts to construct a consistent quantum gravity is the absence of independent flat time. This can in principle be cured by going out to higher dimensions. The modern paradigm assumes that the fundamental theory of everything is some form of string theory living in space of more than four dimensions. We advocate another possibility that the fundamental theory is a form of D = 4 higher derivative gravity. This class of theories has a nice feature of renormalizability, so that perturbative calculations are feasible. There are also finite N = 4 supersymmetric conformal supergravity theories. This possibility is particularly attractive. Einstein's gravity is obtained in a natural way as an effective low-energy theory. The N= 1 supersymmetric version of the theory has a natural higher dimensional interpretation due to V.I. Ogievetsky and E.S. Sokatchev, which involves embedding our curved Minkowski spacetime manifold into flat eight-dimensional space. Assuming that a variant of the finite N = 4 theory also admits a similar interpretation, this may eventually allow one to construct consistent quantum theory of gravity. We argue, however, that, even though future gravity theory will probably use higher dimensions as construction scaffolds, its physical content and meaning should refer to four dimensions, where an observer lives

  20. The persistence of the gravity signal in flax roots

    Science.gov (United States)

    Hasenstein, Karl H.

    Although the presentation time of gravitropism has been studied, no data exist as to how long a reorientation stimulus affects the gravitropic response of a root. We tested the duration of gravitropic curvature in roots of Linum usitatissimum after reversing a one hour, 90 degree gravistimulus by increasing time intervals in vertical orientation before clinorotating the roots and acquiring infrared digital images. Clinorotation was performed either parallel or perpendicular to the gravity vector. Under either condition the gravistimulus affected curvature during clinorotation only between two to three minutes. Maximal curvature after one minute of vertical reorientation was 15 degrees within one hour. After three minutes in vertical orientation the observed curvature was not statistically different from vertically growing roots. In both orientations, maximum curvature occurred after 1hr. Perpendicular (horizontal) clinorotation showed decreasing curvature with increasing reorientation time. Parallel (vertical) clinorotation resulted in greater variability to the reorientation time. These data indicate that the gravity stimulus operates essentially memory free and that clinorotation affects the gravity response. Therefore all aspects of clinorotation need to be studied before an assessment of clinostats for the simulation of microgravity is possible and a time limit for memory effects of mechanostimulation can be determined.

  1. Nonlinear dynamic modeling of a simple flexible rotor system subjected to time-variable base motions

    Science.gov (United States)

    Chen, Liqiang; Wang, Jianjun; Han, Qinkai; Chu, Fulei

    2017-09-01

    Rotor systems carried in transportation system or under seismic excitations are considered to have a moving base. To study the dynamic behavior of flexible rotor systems subjected to time-variable base motions, a general model is developed based on finite element method and Lagrange's equation. Two groups of Euler angles are defined to describe the rotation of the rotor with respect to the base and that of the base with respect to the ground. It is found that the base rotations would cause nonlinearities in the model. To verify the proposed model, a novel test rig which could simulate the base angular-movement is designed. Dynamic experiments on a flexible rotor-bearing system with base angular motions are carried out. Based upon these, numerical simulations are conducted to further study the dynamic response of the flexible rotor under harmonic angular base motions. The effects of base angular amplitude, rotating speed and base frequency on response behaviors are discussed by means of FFT, waterfall, frequency response curve and orbits of the rotor. The FFT and waterfall plots of the disk horizontal and vertical vibrations are marked with multiplications of the base frequency and sum and difference tones of the rotating frequency and the base frequency. Their amplitudes will increase remarkably when they meet the whirling frequencies of the rotor system.

  2. Reprocessing WFC3/IR Exposures Affected by Time-Variable Backgrounds

    Science.gov (United States)

    Brammer, G.

    2016-11-01

    The background seen in WFC3/IR observations frequently shows strong time-dependent behavior above the constant flux expected for zodiacal continuum light. This is often caused by an emission line of helium at 1.083 μm excited in the sun-illuminated upper atmosphere, when seen in the filters (F105W, F110W) and grisms (G102, G141) sensitive to the feature. The default behavior of the calwf3 pipeline assumes constant source-plus-background fluxes when it performs up-the-ramp fitting to identify cosmic rays and determine the average count rate within a MULTIACCUM IR exposure. calwf3 provides undesirable results in the presence of strongly variable backgrounds, primarily in the form of elevated and non-Gaussian noise in the FLT products. Here we describe methods to improve the noise properties of the reduced products. In the first, we simply turn off the calwf3 crcorr step, treating the IR detector as if it were a CCD, i.e., accumulating flux and reading it out at the end of the exposure. Next, we artificially flatten the ramps in the IMA products and then allow calwf3 to proceed as normal fitting the ramp and identifying CRs. Either of these procedures enable recovery of datasets otherwise corrupted beyond repair and have no discernible effects on photometry of sources in deep combined images.

  3. Ghost quintessence in fractal gravity

    Indian Academy of Sciences (India)

    In this study, using the time-like fractal theory of gravity, we mainly focus on the ghost ... Here a(t) is the cosmic scale factor and it measures the expansion of the Universe. ..... effectively appear as self-conserved dark energy, with a non-trivial ...

  4. Ghost quintessence in fractal gravity

    Indian Academy of Sciences (India)

    In this study, using the time-like fractal theory of gravity, we mainly focus on the ghost dark energy model which was recently suggested to explain the present acceleration of the cosmic expansion. Next, we establish a connection between the quintessence scalar field and fractal ghost dark energy density.

  5. Influence of climate variability on anchovy reproductive timing off northern Chile

    Science.gov (United States)

    Contreras-Reyes, Javier E.; Canales, T. Mariella; Rojas, Pablo M.

    2016-12-01

    We investigated the relationship between environmental variables and the Gonadosomatic Monthly Mean (GMM) index of anchovy (Engraulis ringens) to understand how the environment affects the dynamics of anchovy reproductive timing. The data examined corresponds to biological information collected from samples of the landings off northern Chile (18°21‧S, 24°00‧S) during the period 1990-2010. We used the Humboldt Current Index (HCI) and the Multivariate ENSO Index (MEI), which combine several physical-oceanographic factors in the Tropical and South Pacific regions. Using the GMM index, we studied the dynamics of anchovy reproductive timing at different intervals of length, specifically females with a length between 11.5 and 14 cm (medium class) and longer than 14 cm (large class). Seasonal Autoregressive Integrated Mobile Average (SARIMA) was used to predict missing observations. The trends of the environment and reproductive indexes were explored via the Breaks For Additive Season and Trend (BFAST) statistical technique and the relationship between these indexes via cross-correlation functions (CCF) analysis. Our results showed that the habitat of anchovy switched from cool to warm condition, which also influenced gonad development. This was revealed by two and three significant changes (breaks) in the trend of the HCI and MEI indexes, and two significant breaks in the GMM of each time series of anchovy females (medium and large). Negative cross-correlation between the MEI index and GMM of medium and large class females was found, indicating that as the environment gets warmer (positive value of MEI) a decrease in the reproductive activity of anchovy can be expected. Correlation between the MEI index and larger females was stronger than with medium females. Additionally, our results indicate that the GMM index of anchovy for both length classes reaches two maximums per year; the first from August to September and the second from December to January. The

  6. Variability in Benthic Exchange Rate, Depth, and Residence Time Beneath a Shallow Coastal Estuary

    Science.gov (United States)

    Russoniello, Christopher J.; Heiss, James W.; Michael, Holly A.

    2018-03-01

    Hydrodynamically driven benthic exchange of water between the water column and shallow seabed aquifer is a significant and dynamic component of coastal and estuarine fluid budgets. Associated exchange of solutes promotes ecologically important chemical reactions, so quantifying benthic exchange rates, depths, and residence times constrains coastal chemical cycling estimates. We present the first combined field, numerical, and analytical modeling investigation of wave-induced exchange. Temporal variability of exchange was calculated with data collected by instruments deployed in a shallow estuary for 11 days. Differential pressure sensors recorded pressure gradients across the seabed, and up- and down-looking ADCPs recorded currents and pressures to determine wave parameters, surface-water currents, and water depth. Wave-induced exchange was calculated (1) directly from differential pressure measurements, and indirectly with an analytical model based on wave parameters from (2) ADCP and (3) wind data. Wave-induced exchange from pressure measurements and ADCP-measured wave parameters matched well, but both exceeded wind-based values. Exchange induced by tidal pumping and current-bed form interaction—the other primary drivers in shallow coastal waters were calculated from tidal stage variation and ADCP-measured currents. Exchange from waves (mean = 20.0 cm/d; range = 1.75-92.3 cm/d) greatly exceeded exchange due to tides (mean = 3.7 cm/d) and current-bed form interaction (mean = 6.5 × 10-2 cm/d). Groundwater flow models showed aquifer properties affect wave-driven benthic exchange: residence time and depth increased and exchange rates decreased with increasing hydraulic diffusivity (ratio of aquifer permeability to compressibility). This new understanding of benthic exchange will help managers assess its control over chemical fluxes to marine systems.

  7. Field Soil Water Retention of the Prototype Hanford Barrier and Its Variability with Space and Time

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.

    2015-08-14

    Engineered surface barriers are used to isolate underlying contaminants from water, plants, animals, and humans. To understand the flow processes within a barrier and the barrier’s ability to store and release water, the field hydraulic properties of the barrier need to be known. In situ measurement of soil hydraulic properties and their variation over time is challenging because most measurement methods are destructive. A multiyear test of the Prototype Hanford Barrier (PHB) has yielded in situ soil water content and pressure data for a nine-year period. The upper 2 m layer of the PHB is a silt loam. Within this layer, water content and water pressure were monitored at multiple depths at 12 water balance stations using a neutron probe and heat dissipation units. Valid monitoring data from 1995 to 2003 for 4 depths at 12 monitoring stations were used to determine the field water retention of the silt loam layer. The data covered a wide range of wetness, from near saturation to the permanent wilt point, and each retention curve contained 51 to 96 data points. The data were described well with the commonly used van Genuchten water retention model. It was found that the spatial variation of the saturated and residual water content and the pore size distribution parameter were relatively small, while that of the van Genuchten alpha was relatively large. The effects of spatial variability of the retention properties appeared to be larger than the combined effects of added 15% w/w pea gravel and plant roots on the properties. Neither of the primary hydrological processes nor time had a detectible effect on the water retention of the silt loam barrier.

  8. Time series analysis of embodied interaction: Movement variability and complexity matching as dyadic properties

    Directory of Open Access Journals (Sweden)

    Leonardo Zapata-Fonseca

    2016-12-01

    Full Text Available There is a growing consensus that a fuller understanding of social cognition depends on more systematic studies of real-time social interaction. Such studies require methods that can deal with the complex dynamics taking place at multiple interdependent temporal and spatial scales, spanning sub-personal, personal, and dyadic levels of analysis. We demonstrate the value of adopting an extended multi-scale approach by re-analyzing movement time series generated in a study of embodied dyadic interaction in a minimal virtual reality environment (a perceptual crossing experiment. Reduced movement variability revealed an interdependence between social awareness and social coordination that cannot be accounted for by either subjective or objective factors alone: it picks out interactions in which subjective and objective conditions are convergent (i.e. elevated coordination is perceived as clearly social, and impaired coordination is perceived as socially ambiguous. This finding is consistent with the claim that interpersonal interaction can be partially constitutive of direct social perception. Clustering statistics (Allan Factor of salient events revealed fractal scaling. Complexity matching defined as the similarity between these scaling laws was significantly more pronounced in pairs of participants as compared to surrogate dyads. This further highlights the multi-scale and distributed character of social interaction and extends previous complexity matching results from dyadic conversation to nonverbal social interaction dynamics. Trials with successful joint interaction were also associated with an increase in local coordination. Consequently, a local coordination pattern emerges on the background of complex dyadic interactions in the PCE task and makes joint successful performance possible.

  9. Combination of GRACE monthly gravity field solutions from different processing strategies

    Science.gov (United States)

    Jean, Yoomin; Meyer, Ulrich; Jäggi, Adrian

    2018-02-01

    We combine the publicly available GRACE monthly gravity field time series to produce gravity fields with reduced systematic errors. We first compare the monthly gravity fields in the spatial domain in terms of signal and noise. Then, we combine the individual gravity fields with comparable signal content, but diverse noise characteristics. We test five different weighting schemes: equal weights, non-iterative coefficient-wise, order-wise, or field-wise weights, and iterative field-wise weights applying variance component estimation (VCE). The combined solutions are evaluated in terms of signal and noise in the spectral and spatial domains. Compared to the individual contributions, they in general show lower noise. In case the noise characteristics of the individual solutions differ significantly, the weighted means are less noisy, compared to the arithmetic mean: The non-seasonal variability over the oceans is reduced by up to 7.7% and the root mean square (RMS) of the residuals of mass change estimates within Antarctic drainage basins is reduced by 18.1% on average. The field-wise weighting schemes in general show better performance, compared to the order- or coefficient-wise weighting schemes. The combination of the full set of considered time series results in lower noise levels, compared to the combination of a subset consisting of the official GRACE Science Data System gravity fields only: The RMS of coefficient-wise anomalies is smaller by up to 22.4% and the non-seasonal variability over the oceans by 25.4%. This study was performed in the frame of the European Gravity Service for Improved Emergency Management (EGSIEM; http://www.egsiem.eu) project. The gravity fields provided by the EGSIEM scientific combination service (ftp://ftp.aiub.unibe.ch/EGSIEM/) are combined, based on the weights derived by VCE as described in this article.

  10. Scales of gravity

    International Nuclear Information System (INIS)

    Dvali, Gia; Kolanovic, Marko; Nitti, Francesco; Gabadadze, Gregory

    2002-01-01

    We propose a framework in which the quantum gravity scale can be as low as 10 -3 eV. The key assumption is that the standard model ultraviolet cutoff is much higher than the quantum gravity scale. This ensures that we observe conventional weak gravity. We construct an explicit brane-world model in which the brane-localized standard model is coupled to strong 5D gravity of infinite-volume flat extra space. Because of the high ultraviolet scale, the standard model fields generate a large graviton kinetic term on the brane. This kinetic term 'shields' the standard model from the strong bulk gravity. As a result, an observer on the brane sees weak 4D gravity up to astronomically large distances beyond which gravity becomes five dimensional. Modeling quantum gravity above its scale by the closed string spectrum we show that the shielding phenomenon protects the standard model from an apparent phenomenological catastrophe due to the exponentially large number of light string states. The collider experiments, astrophysics, cosmology and gravity measurements independently point to the same lower bound on the quantum gravity scale, 10 -3 eV. For this value the model has experimental signatures both for colliders and for submillimeter gravity measurements. Black holes reveal certain interesting properties in this framework

  11. Quantum Gravity (Cambridge Monographs on Mathematical Physics)

    International Nuclear Information System (INIS)

    Kiefer, C

    2005-01-01

    The most difficult unsolved problem in fundamental theoretical physics is the consistent implementation of the gravitational interaction into a quantum framework, which would lead to a theory of quantum gravity. Although a final answer is still pending, several promising attempts do exist. Despite the general title, this book is about one of them - loop quantum gravity. This approach proceeds from the idea that a direct quantization of Einstein's theory of general relativity is possible. In contrast to string theory, it presupposes that the unification of all interactions is not needed as a prerequisite for quantum gravity. Usually one divides theories of quantum general relativity into covariant and canonical approaches. Covariant theories employ four-dimensional concepts in its formulation, one example being the path integral approach. Canonical theories start from a classical Hamiltonian version of the theory in which spacetime is foliated into spacelike hypersurfaces. Loop quantum gravity is a variant of the canonical approach, the oldest being quantum geometrodynamics where the fundamental configuration variable is the three-metric. Loop quantum gravity has developed from a new choice of canonical variables introduced by Abhay Ashtekar in 1986, the new configuration variable being a connection defined on a three-manifold. Instead of the connection itself, the loop approach employs a non-local version in which the connection is integrated over closed loops. This is similar to the Wilson loops used in gauge theories. Carlo Rovelli is one of the pioneers of loop quantum gravity which he started to develop with Lee Smolin in two papers written in 1988 and 1990. In his book, he presents a comprehensive and competent overview of this approach and provides at the same time the necessary technical background in order to make the treatment self-contained. In fact, half of the book is devoted to 'preparations' giving a detailed account of Hamiltonian mechanics, quantum

  12. A new method for optimization of low-thrust gravity-assist sequences

    Science.gov (United States)

    Maiwald, V.

    2017-09-01

    Recently missions like Hayabusa and Dawn have shown the relevance and benefits of low-thrust spacecraft concerning the exploration of our solar system. In general, the efficiency of low-thrust propulsion is one means of improving mission payload mass. At the same time, gravity-assist maneuvers can serve as mission enablers, as they have the capability to provide "free energy." A combination of both, gravity-assist and low-thrust propulsion, has the potential to generally improve mission performance, i.e. planning and optimization of gravity-assist sequences for low-thrust missions is a desirable asset. Currently no established methods exist to include the gravity-assist partners as optimization variable for low-thrust missions. The present paper explains how gravity-assists are planned and optimized, including the gravity-assist partners, for high-thrust missions and discusses the possibility to transfer the established method, based on the Tisserand Criterion, to low-thrust missions. It is shown how the Tisserand Criterion needs to be adapted using a correction term for the low-thrust situation. It is explained why this necessary correction term excludes an a priori evaluation of sequences and therefore their planning and an alternate approach is proposed. Preliminary results of this method, by application of a Differential Evolution optimization algorithm, are presented and discussed, showing that the method is valid but can be improved. Two constraints on the search space are briefly presented for that aim.

  13. Expressing Environment Assumptions and Real-time Requirements for a Distributed Embedded System with Shared Variables

    DEFF Research Database (Denmark)

    Tjell, Simon; Fernandes, João Miguel

    2008-01-01

    In a distributed embedded system, it is often necessary to share variables among its computing nodes to allow the distribution of control algorithms. It is therefore necessary to include a component in each node that provides the service of variable sharing. For that type of component, this paper...

  14. [Modelling the effect of local climatic variability on dengue transmission in Medellin (Colombia) by means of time series analysis].

    Science.gov (United States)

    Rúa-Uribe, Guillermo L; Suárez-Acosta, Carolina; Chauca, José; Ventosilla, Palmira; Almanza, Rita

    2013-09-01

    Dengue fever is a major impact on public health vector-borne disease, and its transmission is influenced by entomological, sociocultural and economic factors. Additionally, climate variability plays an important role in the transmission dynamics. A large scientific consensus has indicated that the strong association between climatic variables and disease could be used to develop models to explain the incidence of the disease. To develop a model that provides a better understanding of dengue transmission dynamics in Medellin and predicts increases in the incidence of the disease. The incidence of dengue fever was used as dependent variable, and weekly climatic factors (maximum, mean and minimum temperature, relative humidity and precipitation) as independent variables. Expert Modeler was used to develop a model to better explain the behavior of the disease. Climatic variables with significant association to the dependent variable were selected through ARIMA models. The model explains 34% of observed variability. Precipitation was the climatic variable showing statistically significant association with the incidence of dengue fever, but with a 20 weeks delay. In Medellin, the transmission of dengue fever was influenced by climate variability, especially precipitation. The strong association dengue fever/precipitation allowed the construction of a model to help understand dengue transmission dynamics. This information will be useful to develop appropriate and timely strategies for dengue control.

  15. The Superheavy Elements and Anti-Gravity

    International Nuclear Information System (INIS)

    Anastasovski, Petar K.

    2004-01-01

    The essence of any propulsion concept is to overcome gravity. Anti-gravity is a natural means to achieve this. Thus, the technology to pursue anti-gravity, by using superheavy elements, may provide a new propulsion paradigm. The theory of superluminal relativity provides a hypothesis for existence of elements with atomic number up to Z = 145, some of which may possess anti-gravity properties. Analysis results show that curved space-time exists demonstrating both gravitic and anti-gravitic properties not only around nuclei but inside the nuclei as well. Two groups of elements (Z < 64 and 63 < Z <145) exist that demonstrate these capabilities. The nuclei of the first group of elements have the masses with only the property of gravity. The nuclei of the elements of the second group have the masses with both properties: gravity and anti-gravity in two different ranges of curved space-time around the nuclei.. The hypothetical element with Z = 145 is the unique among all elements whose nucleus has only anti-gravity property. It is proposed that this element be named Hawking, in honour of Stephen W. Hawking

  16. A study of fluid flow and combustion with variable valve timing

    Energy Technology Data Exchange (ETDEWEB)

    Soederberg, F

    1998-10-01

    The effects of variable valve timing (VVT) were examined by in-cylinder Laser Doppler Velocimetry flow measurements and heat-release calculations. A single-cylinder Volvo B5254 engine was used for all experiments and the valve timing was altered by phasing or exchanging the camshaft. Special cam lobes were developed for simulation of throttle-less operation. With the standard double camshaft, a tumbling flow was generated and with valve deactivation, a swirling flow was generated. The turbulence was increased with valve deactivation. This increased the combustion rate making lean burn possible. The standard camshaft with inlet valve deactivation and late cam phasing had a faster combustion at {lambda} = 1.8 than the standard camshaft with normal cam phasing at {lambda} = 1.0. Early and late inlet valve closing was used for enabling throttle-less operation. Early inlet valve closing (EIVC) generated a very slow tumble with low turbulence. Late inlet valve closing generated both very high and low turbulence. The net indicated efficiency was improved with up to 10%. Some reduction was observed for the gross indicated efficiency, due to a too large reduction in effective compression ratio. A very stable combustion was obtained for EIVC with gasoline, possibly due to a sheering flow over the inlet valves resulting in improved fuel-air preparation. Wavelet analysis was used for dividing LDV flow measurements into time and frequency resolved information. The technique rendered the same flow results as the moving window technique, but with a separation of the turbulence into different frequencies. The choice of wavelet was shown not to be crucial. The frequency resolved turbulence was studied for tumble and swirl. A tumbling flow had a larger transfer of energy from low frequency turbulence into high frequency turbulence than a swirling flow. This is caused by the tumble breakdown. A correlation against heat-release indicated that high frequency turbulence have a larger

  17. Variability in benthic exchange rate, depth, and residence time beneath a shallow coastal estuary

    Science.gov (United States)

    Russoniello, C. J.; Michael, H. A.; Heiss, J.

    2017-12-01

    Hydrodynamically-driven exchange of water between the water column and shallow seabed aquifer, benthic exchange, is a significant and dynamic component of coastal and estuarine fluid budgets, but wave-induced benthic exchange has not been measured in the field. Mixing between surface water and groundwater solutes promotes ecologically important chemical reactions, so quantifying benthic exchange rates, depths, and residence times, constrains estimates of coastal chemical cycling. In this study, we present the first field-based direct measurements of wave-induced exchange and compare it to exchange induced by the other primary drivers of exchange - tides, and currents. We deployed instruments in a shallow estuary to measure benthic exchange and temporal variability over an 11-day period. Differential pressure sensors recorded pressure gradients across the seabed, and up-and down-looking ADCPs recorded currents and pressures from which wave parameters, surface-water currents, and water depth were determined. Wave-induced exchange was calculated directly from 1) differential pressure measurements, and indirectly with an analytical solution based on wave parameters from 2) ADCP and 3) weather station data. Groundwater flow models were used to assess the effects of aquifer properties on benthic exchange depth and residence time. Benthic exchange driven by tidal pumping or current-bedform interaction was calculated from tidal stage variation and from ADCP-measured currents at the bed, respectively. Waves were the primary benthic exchange driver (average = 20.0 cm/d, maximum = 92.3 cm/d) during the measurement period. Benthic exchange due to tides (average = 3.7 cm/d) and current-bedform interaction (average = 6.5x10-2 cm/d) was much lower. Wave-induced exchange calculated from pressure measurements and ADCP-measured wave parameters matched well, but wind-based rates underestimated wave energy and exchange. Groundwater models showed that residence time and depth increased

  18. Newtonian quantum gravity

    International Nuclear Information System (INIS)

    Jones, K.R.W.

    1995-01-01

    We develop a nonlinear quantum theory of Newtonian gravity consistent with an objective interpretation of the wavefunction. Inspired by the ideas of Schroedinger, and Bell, we seek a dimensional reduction procedure to map complex wavefunctions in configuration space onto a family of observable fields in space-time. Consideration of quasi-classical conservation laws selects the reduced one-body quantities as the basis for an explicit quasi-classical coarse-graining. These we interpret as describing the objective reality of the laboratory. Thereafter, we examine what may stand in the role of the usual Copenhagen observer to localise this quantity against macroscopic dispersion. Only a tiny change is needed, via a generically attractive self-potential. A nonlinear treatment of gravitational self-energy is thus advanced. This term sets a scale for all wavepackets. The Newtonian cosmology is thus closed, without need of an external observer. Finally, the concept of quantisation is re-interpreted as a nonlinear eigenvalue problem. To illustrate, we exhibit an elementary family of gravitationally self-bound solitary waves. Contrasting this theory with its canonically quantised analogue, we find that the given interpretation is empirically distinguishable, in principle. This result encourages deeper study of nonlinear field theories as a testable alternative to canonically quantised gravity. (author). 46 refs., 5 figs

  19. Is quantum gravity unpredictable

    International Nuclear Information System (INIS)

    Gross, D.J.

    1984-01-01

    An investigation of Hawking's proposal that the inclusion of topologically non-trivial manifolds in the functional integral of quantum gravity leads to the loss of quantum coherence is carried out. We discuss some of the problems associated with Hawking's Dollar-matrix theory, including the breakdown of the connection between symmetry principles and conservation laws. It is proposed to use Kaluza-Klein theories to study this issue, since these theories contain well-defined euclidean instantons. These can be used to perform explicit semiclassical calculations of the effects of space-time foam. A general method is presented for constructing Kaluza-Klein instantons based on solutions of ordinary Yang-Mills theory. It is argued that none of these will lead to a breakdown of quantum mechanics. The physical effects of space-time foam are discussed in some detail using explicit instantons of a four-dimensional Kaluza-Klein theory. (orig.)

  20. Effects of the lateral amplitude and regularity of upper body fluctuation on step time variability evaluated using return map analysis.

    Science.gov (United States)

    Chidori, Kazuhiro; Yamamoto, Yuji

    2017-01-01

    The aim of this study was to evaluate the effects of the lateral amplitude and regularity of upper body fluctuation on step time variability. Return map analysis was used to clarify the relationship between step time variability and a history of falling. Eleven healthy, community-dwelling older adults and twelve younger adults participated in the study. All of the subjects walked 25 m at a comfortable speed. Trunk acceleration was measured using triaxial accelerometers attached to the third lumbar vertebrae (L3) and the seventh cervical vertebrae (C7). The normalized average magnitude of acceleration, the coefficient of determination ($R^2$) of the return map, and the step time variabilities, were calculated. Cluster analysis using the average fluctuation and the regularity of C7 fluctuation identified four walking patterns in the mediolateral (ML) direction. The participants with higher fluctuation and lower regularity showed significantly greater step time variability compared with the others. Additionally, elderly participants who had fallen in the past year had higher amplitude and a lower regularity of fluctuation during walking. In conclusion, by focusing on the time evolution of each step, it is possible to understand the cause of stride and/or step time variability that is associated with a risk of falls.

  1. Influence of variable heat transfer coefficient of fireworks and crackers on thermal explosion critical ambient temperature and time to ignition

    Directory of Open Access Journals (Sweden)

    Guo Zerong

    2016-01-01

    Full Text Available To study the effect of variable heat transfer coefficient of fireworks and crackers on thermal explosion critical ambient temperature and time to ignition, considering the heat transfer coefficient as the power function of temperature, mathematical thermal explosion steady state and unsteady-state model of finite cylindrical fireworks and crackers with complex shell structures are established based on two-dimensional steady state thermal explosion theory. The influence of variable heat transfer coefficient on thermal explosion critical ambient temperature and time to ignition are analyzed. When heat transfer coefficient is changing with temperature and in the condition of natural convection heat transfer, critical ambient temperature lessen, thermal explosion time to ignition shorten. If ambient temperature is close to critical ambient temperature, the influence of variable heat transfer coefficient on time to ignition become large. For firework with inner barrel in example analysis, the critical ambient temperature of propellant is 463.88 K and the time to ignition is 4054.9s at 466 K, 0.26 K and 450.8s less than without considering the change of heat transfer coefficient respectively. The calculation results show that the influence of variable heat transfer coefficient on thermal explosion time to ignition is greater in this example. Therefore, the effect of variable heat transfer coefficient should be considered into thermal safety evaluation of fireworks to reduce potential safety hazard.

  2. Einstein gravity emerging from quantum weyl gravity

    International Nuclear Information System (INIS)

    Zee, A.

    1983-01-01

    We advocate a conformal invariant world described by the sum of the Weyl, Dirac, and Yang-Mills action. Quantum fluctuations bring back Einstein gravity so that the long-distance phenomenology is as observed. Formulas for the induced Newton's constant and Eddington's constant are derived in quantized Weyl gravity. We show that the analogue of the trace anomaly for the Weyl action is structurally similar to that for the Yang-Mills action

  3. Time Course of Heart Rate Variability Response to PM2.5 Exposure from Secondhand Smoke.

    Directory of Open Access Journals (Sweden)

    Jennifer L Garza

    Full Text Available Exposure to secondhand smoke (SHS has been associated with decreased heart rate variability (HRV. However, the time course of this association is unclear. Therefore, the objective of this study was to investigate the association between 15-240 minute SHS-related fine particulate matter (PM2.5 moving averages and indices of HRV.With a panel study design, we used personal monitors to continuously measure PM2.5 and HRV of 35 participants who were exposed to SHS for approximately 6 hours.We observed negative, significant associations between 5-minute HRV indices and 15 minute PM2.5 moving averages and 240 minute PM2.5 moving averages: there was a significant (p<0.01 7.5% decrease in the 5-minute square root of the mean squared differences of successive normal heart beats associated with (RMSSD, and a significant (p<0.01 14.7% decrease in the 5-minute high frequency (HF power associated with the 15 minute PM2.5 moving averages; there was also a significant (p<0.01 46.9% decrease in the 5-minute RMSSD, and a significant (p<0.01 77.7% decrease in the 5-minute high frequency (HF power associated with the 240 minute PM2.5 moving averages.Our findings that exposure to SHS related PM2.5 was associated with HRV support the hypothesis that SHS can affect the cardiovascular system. The negative associations reported between short and longer term PM2.5 and HRV indicate adverse effects of SHS on the cardiovascular system.

  4. Computational procedure of optimal inventory model involving controllable backorder rate and variable lead time with defective units

    Science.gov (United States)

    Lee, Wen-Chuan; Wu, Jong-Wuu; Tsou, Hsin-Hui; Lei, Chia-Ling

    2012-10-01

    This article considers that the number of defective units in an arrival order is a binominal random variable. We derive a modified mixture inventory model with backorders and lost sales, in which the order quantity and lead time are decision variables. In our studies, we also assume that the backorder rate is dependent on the length of lead time through the amount of shortages and let the backorder rate be a control variable. In addition, we assume that the lead time demand follows a mixture of normal distributions, and then relax the assumption about the form of the mixture of distribution functions of the lead time demand and apply the minimax distribution free procedure to solve the problem. Furthermore, we develop an algorithm procedure to obtain the optimal ordering strategy for each case. Finally, three numerical examples are also given to illustrate the results.

  5. Hypocretin measurement: shelf age of radioimmunoassay kit, but not freezer time, influences assay variability.

    Science.gov (United States)

    Keating, Glenda; Bliwise, Donald L; Saini, Prabhjyot; Rye, David B; Trotti, Lynn Marie

    2017-09-01

    The hypothalamic peptide hypocretin 1 (orexin A) may be assayed in cerebrospinal fluid to diagnose narcolepsy type 1. This testing is not commercially available, and factors contributing to assay variability have not previously been comprehensively explored. In the present study, cerebrospinal fluid hypocretin concentrations were determined in duplicate in 155 patient samples, across a range of sleep disorders. Intra-assay variability of these measures was analyzed. Inter-assay correlation between samples tested at Emory and at Stanford was high (r = 0.79, p hypocretin values, such that kits closer to expiration exhibit significantly more variability.

  6. AN EXPERIMENTAL INVESTIGATION OF THE EFFECTS OF VARIABLE VALVE TIMING ON THE PERFORMANCE IN SPARK IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    Ali AKBAŞ

    2001-01-01

    Full Text Available In this study, an alternative prototype has been designed and constructed for variable valve timing systems which are used in spark ignition engines. The effects of intake valve timing and lift changing on engine performance have been investigated without changing the opening duration of the valves. A four stroke, single cylinder, spark ignition engine has been used for these experiments.

  7. Explicit Bounds to Some New Gronwall-Bellman-Type Delay Integral Inequalities in Two Independent Variables on Time Scales

    Directory of Open Access Journals (Sweden)

    Fanwei Meng

    2011-01-01

    Full Text Available Some new Gronwall-Bellman-type delay integral inequalities in two independent variables on time scales are established, which provide a handy tool in the research of qualitative and quantitative properties of solutions of delay dynamic equations on time scales. The established inequalities generalize some of the results in the work of Zhang and Meng 2008, Pachpatte 2002, and Ma 2010.

  8. BOOK REVIEW: Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity

    Science.gov (United States)

    Husain, Viqar

    2012-03-01

    Research on quantum gravity from a non-perturbative 'quantization of geometry' perspective has been the focus of much research in the past two decades, due to the Ashtekar-Barbero Hamiltonian formulation of general relativity. This approach provides an SU(2) gauge field as the canonical configuration variable; the analogy with Yang-Mills theory at the kinematical level opened up some research space to reformulate the old Wheeler-DeWitt program into what is now known as loop quantum gravity (LQG). The author is known for his work in the LQG approach to cosmology, which was the first application of this formalism that provided the possibility of exploring physical questions. Therefore the flavour of the book is naturally informed by this history. The book is based on a set of graduate-level lectures designed to impart a working knowledge of the canonical approach to gravitation. It is more of a textbook than a treatise, unlike three other recent books in this area by Kiefer [1], Rovelli [2] and Thiemann [3]. The style and choice of topics of these authors are quite different; Kiefer's book provides a broad overview of the path integral and canonical quantization methods from a historical perspective, whereas Rovelli's book focuses on philosophical and formalistic aspects of the problems of time and observables, and gives a development of spin-foam ideas. Thiemann's is much more a mathematical physics book, focusing entirely on the theory of representing constraint operators on a Hilbert space and charting a mathematical trajectory toward a physical Hilbert space for quantum gravity. The significant difference from these books is that Bojowald covers mainly classical topics until the very last chapter, which contains the only discussion of quantization. In its coverage of classical gravity, the book has some content overlap with Poisson's book [4], and with Ryan and Shepley's older work on relativistic cosmology [5]; for instance the contents of chapter five of the

  9. The affine quantum gravity programme

    International Nuclear Information System (INIS)

    Klauder, John R

    2002-01-01

    The central principle of affine quantum gravity is securing and maintaining the strict positivity of the matrix { g-hat ab (x)} composed of the spatial components of the local metric operator. On spectral grounds, canonical commutation relations are incompatible with this principle, and they must be replaced by noncanonical, affine commutation relations. Due to the partial second-class nature of the quantum gravitational constraints, it is advantageous to use the recently developed projection operator method, which treats all quantum constraints on an equal footing. Using this method, enforcement of regularized versions of the gravitational operator constraints is formulated quite naturally by means of a novel and relatively well-defined functional integral involving only the same set of variables that appears in the usual classical formulation. It is anticipated that skills and insight to study this formulation can be developed by studying special, reduced-variable models that still retain some basic characteristics of gravity, specifically a partial second-class constraint operator structure. Although perturbatively nonrenormalizable, gravity may possibly be understood nonperturbatively from a hard-core perspective that has proved valuable for specialized models. Finally, developing a procedure to pass to the genuine physical Hilbert space involves several interconnected steps that require careful coordination

  10. A Study of Mesoscale Gravity Waves over the North Atlantic with Satellite Observations and a Mesoscale Model

    Science.gov (United States)

    Wu, Dong L.; Zhang, Fuqing

    2004-01-01

    Satellite microwave data are used to study gravity wave properties and variabilities over the northeastern United States and the North Atlantic in the December-January periods. The gravity waves in this region, found in many winters, can reach the stratopause with growing amplitude. The Advanced Microwave Sounding Unit-A (AMSU-A) observations show that the wave occurrences are correlated well with the intensity and location of the tropospheric baroclinic jet front systems. To further investigate the cause(s) and properties of the North Atlantic gravity waves, we focus on a series of wave events during 19-21 January 2003 and compare AMSU-A observations to simulations from a mesoscale model (MM5). The simulated gravity waves compare qualitatively well with the satellite observations in terms of wave structures, timing, and overall morphology. Excitation mechanisms of these large-amplitude waves in the troposphere are complex and subject to further investigations.

  11. Change in intraindividual variability over time as a key metric for defining performance-based cognitive fatigability.

    Science.gov (United States)

    Wang, Chao; Ding, Mingzhou; Kluger, Benzi M

    2014-03-01

    Cognitive fatigability is conventionally quantified as the increase over time in either mean reaction time (RT) or error rate from two or more time periods during sustained performance of a prolonged cognitive task. There is evidence indicating that these mean performance measures may not sufficiently reflect the response characteristics of cognitive fatigue. We hypothesized that changes in intraindividual variability over time would be a more sensitive and ecologically meaningful metric for investigations of fatigability of cognitive performance. To test the hypothesis fifteen young adults were recruited. Trait fatigue perceptions in various domains were assessed with the Multidimensional Fatigue Index (MFI). Behavioral data were then recorded during performance of a three-hour continuous cued Stroop task. Results showed that intraindividual variability, as quantified by the coefficient of variation of RT, increased linearly over the course of three hours and demonstrated a significantly greater effect size than mean RT or accuracy. Change in intraindividual RT variability over time was significantly correlated with relevant subscores of the MFI including reduced activity, reduced motivation and mental fatigue. While change in mean RT over time was also correlated with reduced motivation and mental fatigue, these correlations were significantly smaller than those associated with intraindividual RT variability. RT distribution analysis using an ex-Gaussian model further revealed that change in intraindividual variability over time reflects an increase in the exponential component of variance and may reflect attentional lapses or other breakdowns in cognitive control. These results suggest that intraindividual variability and its change over time provide important metrics for measuring cognitive fatigability and may prove useful for inferring the underlying neuronal mechanisms of both perceptions of fatigue and objective changes in performance. Copyright © 2014

  12. Time-Dependent Drug Administration in Hypertension and its Effect on Blood Pressure Variability

    Directory of Open Access Journals (Sweden)

    Magdás Annamária

    2017-06-01

    Full Text Available Background: Optimizing blood pressure variability seems to represent a new therapeutic target in the management of hypertension. It is emphasized that scheduling at least one antihypertensive agent at bedtime, has the ability to reduce blood pressure.

  13. Time-Dependent Drug Administration in Hypertension and its Effect on Blood Pressure Variability

    OpenAIRE

    Magdás Annamária; Podoleanu Cristian; Tusa Anna-Boróka; Găburoi Adina; Incze Alexandru

    2017-01-01

    Background: Optimizing blood pressure variability seems to represent a new therapeutic target in the management of hypertension. It is emphasized that scheduling at least one antihypertensive agent at bedtime, has the ability to reduce blood pressure.

  14. Constant versus variable response signal delays in speed accuracy trade-offs : Effects of advance preparation for processing time

    OpenAIRE

    Miller, Jeff; Sproesser, Gudrun; Ulrich, Rolf

    2008-01-01

    In two experiments, we used response signals (RSs) to control processing time and trace out speed accuracy trade-off (SAT) functions in a difficult perceptual discrimination task. Each experiment compared performance in blocks of trials with constant and, hence, temporally predictable RS lags against performance in blocks with variable, unpredictable RS lags. In both experiments, essentially equivalent SAT functions were observed with constant and variable RS lags. We conclude that there is l...

  15. The generalized second law of thermodynamics in generalized gravity theories

    International Nuclear Information System (INIS)

    Wu Shaofeng; Yang Guohong; Wang Bin; Zhang Pengming

    2008-01-01

    We investigate the generalized second law of thermodynamics (GSL) in generalized theories of gravity. We examine the total entropy evolution with time including the horizon entropy, the non-equilibrium entropy production, and the entropy of all matter, field and energy components. We derive a universal condition to protect the generalized second law and study its validity in different gravity theories. In Einstein gravity (even in the phantom-dominated universe with a Schwarzschild black hole), Lovelock gravity and braneworld gravity, we show that the condition to keep the GSL can always be satisfied. In f(R) gravity and scalar-tensor gravity, the condition to protect the GSL can also hold because the temperature should be positive, gravity is always attractive and the effective Newton constant should be an approximate constant satisfying the experimental bounds

  16. Integrated assessment of space, time, and management-related variability of soil hydraulic properties

    Energy Technology Data Exchange (ETDEWEB)

    Es, H.M. van; Ogden, C.B.; Hill, R.L.; Schindelbeck, R.R.; Tsegaye, T.

    1999-12-01

    Computer-based models that simulate soil hydrologic processes and their impacts on crop growth and contaminant transport depend on accurate characterization of soil hydraulic properties. Soil hydraulic properties have numerous sources of variability related to spatial, temporal, and management-related processes. Soil type is considered to be the dominant source of variability, and parameterization is typically based on soil survey databases. This study evaluated the relative significance of other sources of variability: spatial and temporal at multiple scales, and management-related factors. Identical field experiments were conducted for 3 yr. at two sites in New York on clay loam and silt loam soils, and at two sites in Maryland on silt loam and sandy loam soils, all involving replicated plots with plow-till and no-till treatments. Infiltrability was determined from 2054 measurements using parameters, and Campbell's a and b parameters were determined based on water-retention data from 875 soil cores. Variance component analysis showed that differences among the sites were the most important source of variability for a (coefficient of variation, CV = 44%) and b (CV = 23%). Tillage practices were the most important source of variability for infiltrability (CV = 10%). For all properties, temporal variability was more significant than field-scale spatial variability. Temporal and tillage effects were more significant for the medium- and fine-textured soils, and correlated to initial soil water conditions. The parameterization of soil hydraulic properties solely based on soil type may not be appropriate for agricultural lands since soil-management factors are more significant. Sampling procedures should give adequate recognition to soil-management and temporal processes at significant sources of variability to avoid biased results.

  17. TIME VARIABILITY OF EMISSION LINES FOR FOUR ACTIVE T TAURI STARS. I. OCTOBER–DECEMBER IN 2010

    International Nuclear Information System (INIS)

    Chou, Mei-Yin; Takami, Michihiro; Karr, Jennifer L.; Shang Hsien; Liu, Hauyu Baobab; Manset, Nadine; Beck, Tracy; Pyo, Tae-Soo; Chen, Wen-Ping; Panwar, Neelam

    2013-01-01

    We present optical spectrophotometric monitoring of four active T Tauri stars (DG Tau, RY Tau, XZ Tau, RW Aur A) at high spectral resolution (R ∼> 1 × 10 4 ), to investigate the correlation between time variable mass ejection seen in the jet/wind structure of the driving source and time variable mass accretion probed by optical emission lines. This may allow us to constrain the understanding of the jet/wind launching mechanism, the location of the launching region, and the physical link with magnetospheric mass accretion. In 2010, observations were made at six different epochs to investigate how daily and monthly variability might affect such a study. We perform comparisons between the line profiles we observed and those in the literature over a period of decades and confirm the presence of time variability separate from the daily and monthly variability during our observations. This is so far consistent with the idea that these line profiles have a long-term variability (3-20 yr) related to episodic mass ejection suggested by the structures in the extended flow components. We also investigate the correlations between equivalent widths and between luminosities for different lines. We find that these correlations are consistent with the present paradigm of steady magnetospheric mass accretion and emission line regions that are close to the star.

  18. TIME VARIABILITY OF EMISSION LINES FOR FOUR ACTIVE T TAURI STARS. I. OCTOBER-DECEMBER IN 2010

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Mei-Yin; Takami, Michihiro; Karr, Jennifer L.; Shang Hsien; Liu, Hauyu Baobab [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Manset, Nadine [Canada-France-Hawaii Telescope, 65-1238 Mamalahoa Hwy, Kamuela, HI 96743 (United States); Beck, Tracy [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Pyo, Tae-Soo [Subaru Telescope, 650 North Aohoku Place, Hilo, HI 96720 (United States); Chen, Wen-Ping; Panwar, Neelam [Institute of Astronomy, National Central University, Taoyuan County 32001, Taiwan (China)

    2013-04-15

    We present optical spectrophotometric monitoring of four active T Tauri stars (DG Tau, RY Tau, XZ Tau, RW Aur A) at high spectral resolution (R {approx}> 1 Multiplication-Sign 10{sup 4}), to investigate the correlation between time variable mass ejection seen in the jet/wind structure of the driving source and time variable mass accretion probed by optical emission lines. This may allow us to constrain the understanding of the jet/wind launching mechanism, the location of the launching region, and the physical link with magnetospheric mass accretion. In 2010, observations were made at six different epochs to investigate how daily and monthly variability might affect such a study. We perform comparisons between the line profiles we observed and those in the literature over a period of decades and confirm the presence of time variability separate from the daily and monthly variability during our observations. This is so far consistent with the idea that these line profiles have a long-term variability (3-20 yr) related to episodic mass ejection suggested by the structures in the extended flow components. We also investigate the correlations between equivalent widths and between luminosities for different lines. We find that these correlations are consistent with the present paradigm of steady magnetospheric mass accretion and emission line regions that are close to the star.

  19. Gravity Probe B Inspection

    Science.gov (United States)

    2000-01-01

    The space vehicle Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. In this photograph, engineer Gary Reynolds is inspecting the inside of the probe neck during probe thermal repairs. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Gravity Probe B, Stanford University)

  20. Extension of loop quantum gravity to f(R) theories.

    Science.gov (United States)

    Zhang, Xiangdong; Ma, Yongge

    2011-04-29

    The four-dimensional metric f(R) theories of gravity are cast into connection-dynamical formalism with real su(2) connections as configuration variables. Through this formalism, the classical metric f(R) theories are quantized by extending the loop quantization scheme of general relativity. Our results imply that the nonperturbative quantization procedure of loop quantum gravity is valid not only for general relativity but also for a rather general class of four-dimensional metric theories of gravity.