WorldWideScience

Sample records for time temperature fields

  1. Real-time temperature field measurement based on acoustic tomography

    International Nuclear Information System (INIS)

    Bao, Yong; Jia, Jiabin; Polydorides, Nick

    2017-01-01

    Acoustic tomography can be used to measure the temperature field from the time-of-flight (TOF). In order to capture real-time temperature field changes and accurately yield quantitative temperature images, two improvements to the conventional acoustic tomography system are studied: simultaneous acoustic transmission and TOF collection along multiple ray paths, and an offline iteration reconstruction algorithm. During system operation, all the acoustic transceivers send modulated and filtered wideband Kasami sequences simultaneously to facilitate fast and accurate TOF measurements using cross-correlation detection. For image reconstruction, the iteration process is separated and executed offline beforehand to shorten computation time for online temperature field reconstruction. The feasibility and effectiveness of the developed methods are validated in the simulation study. The simulation results demonstrate that the proposed method can reduce the processing time per frame from 160 ms to 20 ms, while the reconstruction error remains less than 5%. Hence, the proposed method has great potential in the measurement of rapid temperature change with good temporal and spatial resolution. (paper)

  2. Correspondence between imaginary-time and real-time finite-temperature field theory

    International Nuclear Information System (INIS)

    Kobes, R.

    1990-01-01

    It is known that one-particle-irreducible graphs found using the imaginary-time formalism of finite-temperature field theory differ in general with those of the real-time formalism. Here it is shown that within the real-time formalism one can consider a sum of graphs, motivated by causality arguments, which at least in a number of simple examples agree with the corresponding analytically continued imaginary-time result. The occurrence of multiple statistical factors in this sum of graphs is discussed

  3. Finite temperature field theory

    CERN Document Server

    Das, Ashok

    1997-01-01

    This book discusses all three formalisms used in the study of finite temperature field theory, namely the imaginary time formalism, the closed time formalism and thermofield dynamics. Applications of the formalisms are worked out in detail. Gauge field theories and symmetry restoration at finite temperature are among the practical examples discussed in depth. The question of gauge dependence of the effective potential and the Nielsen identities are explained. The nonrestoration of some symmetries at high temperature (such as supersymmetry) and theories on nonsimply connected space-times are al

  4. CTCP temperature fields and stresses

    Directory of Open Access Journals (Sweden)

    Minjiang Zhang

    2017-11-01

    Full Text Available Cross-tensioned concrete pavements (CTCPs are used in the construction of continuous Portland cement concrete pavements. They eliminate the need for transverse joints and also restrict cracking of the pavement. A CTCP consists of three components, namely, the CTCP slab, the sand sliding layer (SSL, and the cement-stabilized macadam base, from top to down. The retard-bonded tendons (RBTs of the CTCP slab are arranged diagonally. In the present study, a detailed 3D finite element model was developed and used to examine the temperature fields and stresses of a CTCP by thermal-mechanical coupling analysis, and the results were compared with field measurements. The model investigations revealed that, under typical cloudless summer conditions, the temperature field of the CTCP varied nonlinearly with both time and depth. The resultant step-type temperature gradient of the CTCP represents a significant deviation from that of a conventional pavement and impacts the thermal contact resistance of the SSL. It was found that the SSL could effectively reduce the temperature stresses in the CTCP, and that the residual temperature stresses were effectively resisted by the staged cross-tensioned RBTs. The potential problem areas in the vicinity of the temperature stresses were also investigated by the finite element method and field tests. Keywords: Portland cement concrete pavement, Prestressed concrete pavement, Temperature stress, Temperature field, Finite element method, Retard-bonded tendon

  5. A comparison of the real-time and the imaginary-time formalisms of finite temperature field theory for 2,3, and 4-point Green's functions

    International Nuclear Information System (INIS)

    Aurenche, P.; Becherrawy, T.

    1991-07-01

    The predictions of the real-time and the imaginary-time formalisms of Finite Temperature Field Theory is compared. Retarded and advanced amplitudes are constructed in the real-time formalism which are linear combinations of the usual time-ordered thermo-field dynamics amplitudes. These amplitudes can be easily compared to the various analytically continued amplitudes of the imaginary-time formalism. Explicit calculation of the 2,3 and 4-point Green's functions in φ 3 field theory is done in the one and two-loop approximations, and the compatibility of the two formalisms is shown. (author) 17 refs., 12 figs

  6. Statistics of particle time-temperature histories.

    Energy Technology Data Exchange (ETDEWEB)

    Hewson, John C.; Lignell, David O.; Sun, Guangyuan

    2014-10-01

    Particles in non - isothermal turbulent flow are subject to a stochastic environment tha t produces a distribution of particle time - temperature histories. This distribution is a function of the dispersion of the non - isothermal (continuous) gas phase and the distribution of particles relative to that gas phase. In this work we extend the one - dimensional turbulence (ODT) model to predict the joint dispersion of a dispersed particle phase and a continuous phase. The ODT model predicts the turbulent evolution of continuous scalar fields with a model for the cascade of fluctuations to smaller sc ales (the 'triplet map') at a rate that is a function of the fully resolved one - dimens ional velocity field . Stochastic triplet maps also drive Lagrangian particle dispersion with finite Stokes number s including inertial and eddy trajectory - crossing effect s included. Two distinct approaches to this coupling between triplet maps and particle dispersion are developed and implemented along with a hybrid approach. An 'instantaneous' particle displacement model matches the tracer particle limit and provide s an accurate description of particle dispersion. A 'continuous' particle displacement m odel translates triplet maps into a continuous velocity field to which particles respond. Particles can alter the turbulence, and modifications to the stochastic rate expr ession are developed for two - way coupling between particles and the continuous phase. Each aspect of model development is evaluated in canonical flows (homogeneous turbulence, free - shear flows and wall - bounded flows) for which quality measurements are ava ilable. ODT simulations of non - isothermal flows provide statistics for particle heating. These simulations show the significance of accurately predicting the joint statistics of particle and fluid dispersion . Inhomogeneous turbulence coupled with the in fluence of the mean flow fields on particles of varying properties

  7. Dynamic compensation temperatures in a mixed spin-1 and spin-3/2 Ising system under a time-dependent oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Mustafa, E-mail: keskin@erciyes.edu.t [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Kantar, Ersin [Institute of Science, Erciyes University, 38039 Kayseri (Turkey)

    2010-09-15

    We study the existence of dynamic compensation temperatures in the mixed spin-1 and spin-3/2 Ising ferrimagnetic system Hamiltonian with bilinear and crystal-field interactions in the presence of a time-dependent oscillating external magnetic field on a hexagonal lattice. We employ the Glauber transitions rates to construct the mean-field dynamic equations. We investigate the time dependence of an average sublattice magnetizations, the thermal behavior of the dynamic sublattice magnetizations and the total magnetization. From these studies, we find the phases in the system, and characterize the nature (continuous or discontinuous) of transitions as well as obtain the dynamic phase transition (DPT) points and the dynamic compensation temperatures. We also present dynamic phase diagrams, including the compensation temperatures, in the five different planes. A comparison is made with the results of the available mixed spin Ising systems.

  8. Dynamic compensation temperatures in a mixed spin-1 and spin-3/2 Ising system under a time-dependent oscillating magnetic field

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Kantar, Ersin

    2010-01-01

    We study the existence of dynamic compensation temperatures in the mixed spin-1 and spin-3/2 Ising ferrimagnetic system Hamiltonian with bilinear and crystal-field interactions in the presence of a time-dependent oscillating external magnetic field on a hexagonal lattice. We employ the Glauber transitions rates to construct the mean-field dynamic equations. We investigate the time dependence of an average sublattice magnetizations, the thermal behavior of the dynamic sublattice magnetizations and the total magnetization. From these studies, we find the phases in the system, and characterize the nature (continuous or discontinuous) of transitions as well as obtain the dynamic phase transition (DPT) points and the dynamic compensation temperatures. We also present dynamic phase diagrams, including the compensation temperatures, in the five different planes. A comparison is made with the results of the available mixed spin Ising systems.

  9. Compton scattering at finite temperature: thermal field dynamics approach

    International Nuclear Information System (INIS)

    Juraev, F.I.

    2006-01-01

    Full text: Compton scattering is a classical problem of quantum electrodynamics and has been studied in its early beginnings. Perturbation theory and Feynman diagram technique enables comprehensive analysis of this problem on the basis of which famous Klein-Nishina formula is obtained [1, 2]. In this work this problem is extended to the case of finite temperature. Finite-temperature effects in Compton scattering is of practical importance for various processes in relativistic thermal plasmas in astrophysics. Recently Compton effect have been explored using closed-time path formalism with temperature corrections estimated [3]. It was found that the thermal cross section can be larger than that for zero-temperature by several orders of magnitude for the high temperature realistic in astrophysics [3]. In our work we use a main tool to account finite-temperature effects, a real-time finite-temperature quantum field theory, so-called thermofield dynamics [4, 5]. Thermofield dynamics is a canonical formalism to explore field-theoretical processes at finite temperature. It consists of two steps, doubling of Fock space and Bogolyubov transformations. Doubling leads to appearing additional degrees of freedom, called tilded operators which together with usual field operators create so-called thermal doublet. Bogolyubov transformations make field operators temperature-dependent. Using this formalism we treat Compton scattering at finite temperature via replacing in transition amplitude zero-temperature propagators by finite-temperature ones. As a result finite-temperature extension of the Klein-Nishina formula is obtained in which differential cross section is represented as a sum of zero-temperature cross section and finite-temperature correction. The obtained result could be useful in quantum electrodynamics of lasers and for relativistic thermal plasma processes in astrophysics where correct account of finite-temperature effects is important. (author)

  10. Stochastic field theory and finite-temperature supersymmetry

    International Nuclear Information System (INIS)

    Ghosh, P.; Bandyopadhyay, P.

    1988-01-01

    The finite-temperature behavior of supersymmetry is considered from the viewpoint of stochastic field theory. To this end, it is considered that Nelson's stochastic mechanics may be generalized to the quantization of a Fermi field when the classical analog of such a field is taken to be a scalar nonlocal field where the internal space is anisotropic in nature such that when quantized this gives rise to two internal helicities corresponding to fermion and antifermion. Stochastic field theory at finite temperature is then formulated from stochastic mechanics which incorporates Brownian motion in the external space as well as in the internal space of a particle. It is shown that when the anisotropy of the internal space is suppressed so that the internal time ξ 0 vanishes and the internal space variables are integrated out one has supersymmetry at finite temperature. This result is true for T = 0, also. However, at this phase equilibrium will be destroyed. Thus for a random process van Hove's result involving quantum mechanical operators, i.e., that when supersymmetry remains unbroken at T = 0 it will also remain unbroken at Tnot =0, occurs. However, this formalism indicates that when at T = 0 broken supersymmetry results, supersymmetry may be restored at a critical temperature T/sub c/

  11. Real-time finite-temperature correlators from AdS/CFT

    International Nuclear Information System (INIS)

    Barnes, Edwin; Vaman, Diana; Wu Chaolun; Arnold, Peter

    2010-01-01

    In this paper we use anti-de Sitter/conformal field theory correspondence ideas in conjunction with insights from finite-temperature real-time field theory formalism to compute 3-point correlators of N=4 super Yang-Mills operators, in real time and at finite temperature. To this end, we propose that the gravity field action is integrated only over the right and left quadrants of the Penrose diagram of the anti-de Sitter-Schwarzschild background, with a relative sign between the two terms. For concreteness we consider the case of a scalar field in the black hole background. Using the scalar field Schwinger-Keldysh bulk-to-boundary propagators, we give the general expression of a 3-point real-time Green's correlator. We then note that this particular prescription amounts to adapting the finite-temperature analog of Veltman's circling rules to tree-level Witten diagrams, and comment on the retarded and Feynman scalar bulk-to-boundary propagators. We subject our prescription to several checks: Kubo-Martin-Schwinger identities, the largest time equation, and the zero-temperature limit. When specializing to a particular retarded (causal) 3-point function, we find a very simple answer: the momentum-space correlator is given by three causal (two advanced and one retarded) bulk-to-boundary propagators, meeting at a vertex point which is integrated from spatial infinity to the horizon only. This result is expected based on analyticity, since the retarded n-point functions are obtained by analytic continuation from the imaginary-time Green's function, and based on causality considerations.

  12. Quantum fields at finite temperature and density

    International Nuclear Information System (INIS)

    Blaizot, J.P.

    1991-01-01

    These lectures are an elementary introduction to standard many-body techniques applied to the study of quantum fields at finite temperature and density: perturbative expansion, linear response theory, quasiparticles and their interactions, etc... We emphasize the usefulness of the imaginary time formalism in a wide class of problems, as opposed to many recent approaches based on real time. Properties of elementary excitations in an ultrarelativistic plasma at high temperature or chemical potential are discussed, and recent progresses in the study of the quark-gluon plasma are briefly reviewed

  13. Estimation of complete temperature fields from measured temperatures

    International Nuclear Information System (INIS)

    Clegg, S.T.; Roemer, R.B.

    1984-01-01

    In hyperthermia treatments, it is desirable to be able to predict complete tissue temperature fields from sampled temperatures taken at a few locations. This is a difficult problem in hyperthermia treatments since the tissue blood perfusion is unknown. An initial attempt to do this automatically using unconstrained optimization techniques to minimize the differences between steady state temperatures measured during a treatment and temperatures (at the same locations) predicted from treatment simulations has been previously reported. A second technique using transient temperatures following a step decrease in power has been developed. This technique, which appears to be able to better predict complete temperature fields is presented and both it and the steady state technique are applied to data from both simulated and experimental hyperthermia treatments. The results of applying the two techniques are compared for one-dimensional situations. One particularly important problem which the transient technique can solve (and the steady state technique does not seem to be able to do as well) is that of predicting the complete temperature field in situations where the true maximum and/or minimum temperatures present are not measured by the available instrumentation

  14. Current, temperature and confinement time scaling in toroidal reversed-field pinch experiments ZT-I and ZT-S

    International Nuclear Information System (INIS)

    Baker, D.A.; Burkhardt, L.C.; Di Marco, J.N.; Haberstich, A.; Hagenson, R.L.; Howell, R.B.; Karr, H.J.; Schofield, A.E.

    1977-01-01

    The scaling properties of a toroidal reversed-field Z pinch have been investigated over a limited range by comparing two experiments having conducting walls and discharge-tube minor diameters which differ by a factor of approximately 1.5. Both the confinement time of the plasma column and the electron temperature were found to increase about a factor of two with the increased minor diameter. Both the poloidal field diffusion and the decay of the toroidal reversed field were significantly reduced with the larger tube diameter. These results support the hypothesis that the loss of stability later in the discharge is caused by diffusion-induced deterioration of initially favourable plasma-field profiles to MHD unstable ones. This conclusion has been verified by stability analysis of the magnetic field profiles. Fusion reactor calculations show that small reactors are conceptually possible assuming good containment can be achieved for current densities approximately >20MAm -2 . (author)

  15. On the calculation of finite-temperature effects in field theories

    International Nuclear Information System (INIS)

    Brandt, F.T.; Frenkel, J.; Taylor, J.C.

    1991-03-01

    We discuss an alternative method for computing finite-temperature effects in field theories, within the framework of the imaginary-time formalism. Our approach allows for a systematic calculation of the high temperature expansion in terms of Riemann Zeta functions. The imaginary-time result is analytically continued to the complex plane. We are able to obtain the real-time limit of the real and the imaginary parts of the Green functions. (author)

  16. The influence of measurement and relaxation time on flux jumps in high temperature superconductors

    International Nuclear Information System (INIS)

    Yang Xiaobin; Zhou Youhe; Tu Shandong

    2010-01-01

    The influence of the magnetization and relaxation time on flux jumps in high temperature superconductors (HTSC) under varying magnetic field is studied using the fundamental electromagnetic field equations and the thermal diffusion equation; temperature variety corresponding to flux jump is also discussed. We find that for a low sweep rate of the applied magnetic field, the measurement and relaxation times can reduce flux jump and to constrain the number of flux jumps, even stabilizing the HTSC, since much heat produced by the motion of magnetic flux can transfer into coolant during the measurement and relaxation times. As high temperature superconductors are subjected to a high sweep rate or a strong pulsed magnetic field, magnetization undergoes from stability or oscillation to jump for different pause times. And the period of temperature oscillation is equal to the measurement and relaxation time.

  17. Diamond's temperature: Unruh effect for bounded trajectories and thermal time hypothesis

    International Nuclear Information System (INIS)

    Martinetti, Pierre; Rovelli, Carlo

    2003-01-01

    We study the Unruh effect for an observer with a finite lifetime, using the thermal time hypothesis. The thermal time hypothesis maintains that: (i) time is the physical quantity determined by the flow defined by a state over an observable algebra and (ii) when this flow is proportional to a geometric flow in spacetime, the temperature is the ratio between flow parameter and proper time. An eternal accelerated Unruh observer has access to the local algebra associated with a Rindler wedge. The flow defined by the Minkowski vacuum of a field theory over this algebra is proportional to a flow in spacetime and the associated temperature is the Unruh temperature. An observer with a finite lifetime has access to the local observable algebra associated with a finite spacetime region called a 'diamond'. The flow defined by the Minkowski vacuum of a (four-dimensional, conformally invariant) quantum field theory over this algebra is also proportional to a flow in spacetime. The associated temperature generalizes the Unruh temperature to finite lifetime observers. Furthermore, this temperature does not vanish even in the limit in which the acceleration is zero. The temperature associated with an inertial observer with lifetime Τ which we denote as 'diamond's temperature', is T D = 2 h/ π k b Τ. This temperature is related to the fact that a finite lifetime observer does not have access to all the degrees of freedom of the quantum field theory. However, we do not attempt to provide any physical interpretation of our proposed assignment of a temperature

  18. Perturbative algebraic quantum field theory at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, Falk

    2013-08-15

    We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.

  19. Perturbative algebraic quantum field theory at finite temperature

    International Nuclear Information System (INIS)

    Lindner, Falk

    2013-08-01

    We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.

  20. Temperature field due to time-dependent heat sources in a large rectangular grid - Derivation of analytical solution

    International Nuclear Information System (INIS)

    Claesson, J.; Probert, T.

    1996-01-01

    The temperature field in rock due to a large rectangular grid of heat releasing canisters containing nuclear waste is studied. The solution is by superposition divided into different parts. There is a global temperature field due to the large rectangular canister area, while a local field accounts for the remaining heat source problem. The global field is reduced to a single integral. The local field is also solved analytically using solutions for a finite line heat source and for an infinite grid of point sources. The local solution is reduced to three parts, each of which depends on two spatial coordinates only. The temperatures at the envelope of a canister are given by a single thermal resistance, which is given by an explicit formula. The results are illustrated by a few numerical examples dealing with the KBS-3 concept for storage of nuclear waste. 8 refs

  1. Experimental study of electric field influence on low temperature long-time relaxation in crystalline ferroelectrics

    International Nuclear Information System (INIS)

    Sahling, S.; Kolac, M.; Sahling, A.

    1987-01-01

    Calorimetric measurements with polycrystalline Pb 0.915 La 0.085 x(Zr 0.65 Ti 0.35 )O 3 were performed at helium temperatures in electric field E (0 ≤ E ≤ 4.3 kV/cm). Heat release after cooling from T 1 (1.3 K ≤ T 1 ≤ 35 K) to T 0 =1.3 K is very similar to that in amorphous metals and dielectrics. Experimental results disagree with the standard tunneling model. The observed release may be explained assuming the existence of a maximum energy is an element of f in the distribution function. The maximum relaxation time τ max was found as a function of T 1 . A similar heat release is observed after switching on or off the electric field. In dependent of T for 1.1 K ≤ T ≤ 3 K, proportional to E 2 with τ max ∼ E. No heat release was observed in the KH 2 PO 4 single crystal

  2. Testing of Commercial Milk Production Technology Using A Combination of High Temperature Short Time and Pulsed Electric Field

    OpenAIRE

    Hadi A; Widjanarko SB; Kusnadi J

    2016-01-01

    The development of milk processing technology has grown excessively, and it contains advantage and disadvantage. This study used mixed between PEF (Pulsed Electric Field) and High Temperature Short Time (HTST) to produce milk processed product which is effective and efficient in killing milk microorganism without changing its color, scent, and nutrient content of processed product, therefore producing commercial sterile milk product in accord with milk Indonesian National Standard (SNI). The ...

  3. Stochastic formulation of quantum field at finite temperature

    International Nuclear Information System (INIS)

    Lim, S.C.

    1989-01-01

    This paper reports that, based on an extension of the stochastic quantization method of Nelson, it is possible to obtain finite temperature fields in both the imaginary and real time formalisms which are usually quantized by using the functional integral technique

  4. Vacuum radiation induced by time dependent electric field

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-04-01

    Full Text Available Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  5. Vacuum radiation induced by time dependent electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo, E-mail: zhangbolfrc@caep.cn [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Zhang, Zhi-meng; Hong, Wei; He, Shu-Kai; Teng, Jian [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Gu, Yu-qiu, E-mail: yqgu@caep.cn [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China)

    2017-04-10

    Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED) will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  6. Correlation Models for Temperature Fields

    KAUST Repository

    North, Gerald R.

    2011-05-16

    This paper presents derivations of some analytical forms for spatial correlations of evolving random fields governed by a white-noise-driven damped diffusion equation that is the analog of autoregressive order 1 in time and autoregressive order 2 in space. The study considers the two-dimensional plane and the surface of a sphere, both of which have been studied before, but here time is introduced to the problem. Such models have a finite characteristic length (roughly the separation at which the autocorrelation falls to 1/e) and a relaxation time scale. In particular, the characteristic length of a particular temporal Fourier component of the field increases to a finite value as the frequency of the particular component decreases. Some near-analytical formulas are provided for the results. A potential application is to the correlation structure of surface temperature fields and to the estimation of large area averages, depending on how the original datastream is filtered into a distribution of Fourier frequencies (e.g., moving average, low pass, or narrow band). The form of the governing equation is just that of the simple energy balance climate models, which have a long history in climate studies. The physical motivation provided by the derivation from a climate model provides some heuristic appeal to the approach and suggests extensions of the work to nonuniform cases.

  7. Correlation Models for Temperature Fields

    KAUST Repository

    North, Gerald R.; Wang, Jue; Genton, Marc G.

    2011-01-01

    This paper presents derivations of some analytical forms for spatial correlations of evolving random fields governed by a white-noise-driven damped diffusion equation that is the analog of autoregressive order 1 in time and autoregressive order 2 in space. The study considers the two-dimensional plane and the surface of a sphere, both of which have been studied before, but here time is introduced to the problem. Such models have a finite characteristic length (roughly the separation at which the autocorrelation falls to 1/e) and a relaxation time scale. In particular, the characteristic length of a particular temporal Fourier component of the field increases to a finite value as the frequency of the particular component decreases. Some near-analytical formulas are provided for the results. A potential application is to the correlation structure of surface temperature fields and to the estimation of large area averages, depending on how the original datastream is filtered into a distribution of Fourier frequencies (e.g., moving average, low pass, or narrow band). The form of the governing equation is just that of the simple energy balance climate models, which have a long history in climate studies. The physical motivation provided by the derivation from a climate model provides some heuristic appeal to the approach and suggests extensions of the work to nonuniform cases.

  8. Temperature-Dependent Coercive Field Measured by a Quantum Dot Strain Gauge.

    Science.gov (United States)

    Chen, Yan; Zhang, Yang; Keil, Robert; Zopf, Michael; Ding, Fei; Schmidt, Oliver G

    2017-12-13

    Coercive fields of piezoelectric materials can be strongly influenced by environmental temperature. We investigate this influence using a heterostructure consisting of a single crystal piezoelectric film and a quantum dots containing membrane. Applying electric field leads to a physical deformation of the piezoelectric film, thereby inducing strain in the quantum dots and thus modifying their optical properties. The wavelength of the quantum dot emission shows butterfly-like loops, from which the coercive fields are directly derived. The results suggest that coercive fields at cryogenic temperatures are strongly increased, yielding values several tens of times larger than those at room temperature. We adapt a theoretical model to fit the measured data with very high agreement. Our work provides an efficient framework for predicting the properties of ferroelectric materials and advocating their practical applications, especially at low temperatures.

  9. Ultrafast Electric Field Pulse Control of Giant Temperature Change in Ferroelectrics

    Science.gov (United States)

    Qi, Y.; Liu, S.; Lindenberg, A. M.; Rappe, A. M.

    2018-01-01

    There is a surge of interest in developing environmentally friendly solid-state-based cooling technology. Here, we point out that a fast cooling rate (≈1011 K /s ) can be achieved by driving solid crystals to a high-temperature phase with a properly designed electric field pulse. Specifically, we predict that an ultrafast electric field pulse can cause a giant temperature decrease up to 32 K in PbTiO3 occurring on few picosecond time scales. We explain the underlying physics of this giant electric field pulse-induced temperature change with the concept of internal energy redistribution: the electric field does work on a ferroelectric crystal and redistributes its internal energy, and the way the kinetic energy is redistributed determines the temperature change and strongly depends on the electric field temporal profile. This concept is supported by our all-atom molecular dynamics simulations of PbTiO3 and BaTiO3 . Moreover, this internal energy redistribution concept can also be applied to understand electrocaloric effect. We further propose new strategies for inducing giant cooling effect with ultrafast electric field pulse. This Letter offers a general framework to understand electric-field-induced temperature change and highlights the opportunities of electric field engineering for controlled design of fast and efficient cooling technology.

  10. Investigations of Low Temperature Time Dependent Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sluys, W A; Robitz, E S; Young, B A; Bloom, J

    2002-09-30

    The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity. The resultant data was integrated into current available life prediction tools.

  11. A Generalized Time-Dependent Harmonic Oscillator at Finite Temperature

    International Nuclear Information System (INIS)

    Majima, H.; Suzuki, A.

    2006-01-01

    We show how a generalized time-dependent harmonic oscillator (GTHO) is extended to a finite temperature case by using thermo field dynamics (TFD). We derive the general time-dependent annihilation and creation operators for the system, and obtain the time-dependent quasiparticle annihilation and creation operators for the GTHO by using the temperature-dependent Bogoliubov transformation of TFD. We also obtain the thermal state as a two-mode squeezed vacuum state in the time-dependent case as well as in the time-independent case. The general formula is derived to calculate the thermal expectation value of operators

  12. Solar cooker effect test and temperature field simulation of radio telescope subreflector

    International Nuclear Information System (INIS)

    Chen, Deshen; Wang, Huajie; Qian, Hongliang; Zhang, Gang; Shen, Shizhao

    2016-01-01

    Highlights: • Solar cooker effect test of a telescope subreflector is conducted for the first time. • The cause and temperature distribution regularities are analyzed contrastively. • Simulation methods are proposed using light beam segmentation and tracking methods. • The validity of simulation methods is evaluated using the test results. - Abstract: The solar cooker effect can cause a local high temperature of the subreflector and can directly affect the working performance of the radio telescope. To study the daily temperature field and solar cooker effect of a subreflector, experimental studies are carried out with a 3-m-diameter radio telescope model for the first time. Initially, the solar temperature distribution rules, especially the solar cooker effect, are summarized according to the field test results under the most unfavorable conditions. Then, a numerical simulation for the solar temperature field of the subreflector is studied by light beam segmentation and tracking methods. Finally, the validity of the simulation methods is evaluated using the test results. The experimental studies prove that the solar cooker effect really exists and should not be overlooked. In addition, simulation methods for the subreflector temperature field proposed in this paper are effective. The research methods and conclusions can provide valuable references for thermal design, monitoring and control of similar high-precision radio telescopes.

  13. Temperature field investigation of the industrial autoclave ASCAMAT-230

    Directory of Open Access Journals (Sweden)

    Stolyanov A. V.

    2017-09-01

    Full Text Available Heterogeneity of the temperature field in the sterilization chambers of industrial autoclaves during heating and cooling phase is one of the problems in the development of new regime for product heat treatment on the preliminary selection and laboratory testing stages. This is the reason of studying the temperature field of the industrial autoclave ASCAMAT-230. The autoclave ASCAMAT-230 is a vertical autoclave of 230 liters capacity heated by three tubular electric heaters. Determination of temperature field parameters has been carried out according to the method for studying the temperature field of periodic devices' heating medium for sterilizing canned food. Six Thermochron iButton temperature loggers have been used to measure the temperatures in the sterilization chamber of the ASCAMAT-230 autoclave. Logger 1 has been put in the place of the standard thermometer installation, loggers 2 and 3, 5 and 6 – in the center and on periphery of the lower and upper parts of the autoclave respectively, logger 4 – in the center of the middle part of the autoclave's sterilization chamber. Temperature measurement in cans with the product has been carried out by temperature loggers from the Ellab TrackSense PRO complex. The loggers have been installed in two cans with homogeneous product located in the upper and lower parts of the autoclave. The time temperature dependences for the entire sterilization process, as well as for the heating and cooling stages have been constructed according to the acquired information. Based on these data conclusions about the uniformity of the temperature field inside the sterilization chamber of the autoclave ASCAMAT-230 during the heating, sterilization and cooling stages have been developed. Some recommendations for using the autoclave ASCAMAT-230 in the preliminary selection and verification of sterilization regimes for canned foods from hydrobionts, and also for the creation of an industrial autoclave control system

  14. Temperature/electric field scaling in Ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Hajjaji, Abdelowahed, E-mail: Hajjaji12@gmail.co [Laboratoire de Genie Electrique et Ferroelectricite, LGEF, INSA LYON, Bat. Gustave Ferrie, 69621 Villeurbanne Cedex (France); Guyomar, Daniel; Pruvost, Sebastien [Laboratoire de Genie Electrique et Ferroelectricite, LGEF, INSA LYON, Bat. Gustave Ferrie, 69621 Villeurbanne Cedex (France); Touhtouh, Samira [Laboratoire de Physique de la Matiere Condensee, LPMC, Departement de Physique, Faculte des Sciences, 24000 El-Jadida, Maroc (Morocco); Yuse, Kaori [Laboratoire de Genie Electrique et Ferroelectricite, LGEF, INSA LYON, Bat. Gustave Ferrie, 69621 Villeurbanne Cedex (France); Boughaleb, Yahia [Laboratoire de Physique de la Matiere Condensee, LPMC, Departement de Physique, Faculte des Sciences, 24000 El-Jadida, Maroc (Morocco)

    2010-07-01

    The effects of the field amplitude (E) and temperature on the polarization and their scaling relations were investigated on rhombohedral PMN-xPT ceramics. The scaling law was based on the physical symmetries of the problem and rendered it possible to express the temperature variation ({Delta}{theta}) as an electric field equivalent {Delta}E{sub eq}=({alpha}+2{beta}xP(E,{theta}{sub 0}))x{Delta}{theta}. Consequently, this was also the case for the relationship between the entropy ({Gamma}) and polarization (P). Rhombohedral Pb(Mg{sub 1/3}Nb{sub 2/3}){sub 0.75}Ti{sub 0.25}O{sub 3} ceramics were used for the verification. It was found that such an approach permitted the prediction of the maximal working temperature, using only purely electrical measurements. It indicates that the working temperature should not exceed 333 K. This value corresponds to the temperature maximum before the dramatic decrease of piezoelectric properties. Reciprocally, the polarization behavior under electrical field can be predicted, using only purely thermal measurements. The scaling law enabled a prediction of the piezoelectric properties (for example, d{sub 31}) under an electrical field replacing the temperature variation ({Delta}{theta}) by {Delta}E/({alpha}+2{beta}xp(E,{theta}{sub 0})). Inversely, predictions of the piezoelectric properties (d{sub 31}) as a function of temperature were permitted using purely only electrical measurements.

  15. Temperature/electric field scaling in Ferroelectrics

    International Nuclear Information System (INIS)

    Hajjaji, Abdelowahed; Guyomar, Daniel; Pruvost, Sebastien; Touhtouh, Samira; Yuse, Kaori; Boughaleb, Yahia

    2010-01-01

    The effects of the field amplitude (E) and temperature on the polarization and their scaling relations were investigated on rhombohedral PMN-xPT ceramics. The scaling law was based on the physical symmetries of the problem and rendered it possible to express the temperature variation (Δθ) as an electric field equivalent ΔE eq =(α+2βxP(E,θ 0 ))xΔθ. Consequently, this was also the case for the relationship between the entropy (Γ) and polarization (P). Rhombohedral Pb(Mg 1/3 Nb 2/3 ) 0.75 Ti 0.25 O 3 ceramics were used for the verification. It was found that such an approach permitted the prediction of the maximal working temperature, using only purely electrical measurements. It indicates that the working temperature should not exceed 333 K. This value corresponds to the temperature maximum before the dramatic decrease of piezoelectric properties. Reciprocally, the polarization behavior under electrical field can be predicted, using only purely thermal measurements. The scaling law enabled a prediction of the piezoelectric properties (for example, d 31 ) under an electrical field replacing the temperature variation (Δθ) by ΔE/(α+2βxp(E,θ 0 )). Inversely, predictions of the piezoelectric properties (d 31 ) as a function of temperature were permitted using purely only electrical measurements.

  16. Thermo field dynamics: a quantum field theory at finite temperature

    International Nuclear Information System (INIS)

    Mancini, F.; Marinaro, M.; Matsumoto, H.

    1988-01-01

    A brief review of the theory of thermo field dynamics (TFD) is presented. TFD is introduced and developed by Umezawa and his coworkers at finite temperature. The most significant concept in TFD is that of a thermal vacuum which satisfies some conditions denoted as thermal state conditions. The TFD permits to reformulate theories at finite temperature. There is no need in an additional principle to determine particle distributions at T ≠ 0. Temperature and other macroscopic parameters are introduced in the definition of the vacuum state. All operator formalisms used in quantum field theory at T=0 are preserved, although the field degrees of freedom are doubled. 8 refs

  17. Temperature field due to time-dependent heat sources in a large rectangular grid. Application for the KBS-3 repository

    International Nuclear Information System (INIS)

    Probert, T.; Claesson, Johan

    1997-04-01

    In the KBS-3 concept canisters containing nuclear waste are deposited along parallel tunnels over a large rectangular area deep below the ground surface. The temperature field in rock due to such a rectangular grid of heat-releasing canisters is studied. An analytical solution for this problem for any heat source has been presented in a preceding paper. The complete solution is summarized in this paper. The solution is by superposition divided into two main parts. There is a global temperature field due to the large rectangular canister area, while a local field accounts for the remaining heat source problem. In this sequel to the first report, the local solution is discussed in detail. The local solution consists of three parts corresponding to line heat sources along tunnels, point heat sources along a tunnel and a line heat source along a canister. Each part depends on two special variables only. These parts are illustrated in dimensionless form. Inside the repository the local temperature field is periodic in the horizontal directions and has a short extent in the vertical direction. This allows us to look at the solution in a parallelepiped around a canister. The solution in the parallelepiped is valid for all canisters that are not too close to the repository edges. The total temperature field is calculated for the KBS-3 case. The temperature field is calculated using a heat release that is valid for the first 10 000 years after deposition. The temperature field is shown in 23 figures in order to illustrate different aspects of the complex thermal process

  18. Temperature and entropy of Schwarzschild-de Sitter space-time

    International Nuclear Information System (INIS)

    Shankaranarayanan, S.

    2003-01-01

    In the light of recent interest in quantum gravity in de Sitter space, we investigate semiclassical aspects of four-dimensional Schwarzschild-de Sitter space-time using the method of complex paths. The standard semiclassical techniques (such as Bogoliubov coefficients and Euclidean field theory) have been useful to study quantum effects in space-times with single horizons; however, none of these approaches seem to work for Schwarzschild-de Sitter space-time or, in general, for space-times with multiple horizons. We extend the method of complex paths to space-times with multiple horizons and obtain the spectrum of particles produced in these space-times. We show that the temperature of radiation in these space-times is proportional to the effective surface gravity--the inverse harmonic sum of surface gravity of each horizon. For the Schwarzschild-de Sitter space-time, we apply the method of complex paths to three different coordinate systems--spherically symmetric, Painleve, and Lemaitre. We show that the equilibrium temperature in Schwarzschild-de Sitter space-time is the harmonic mean of cosmological and event horizon temperatures. We obtain Bogoliubov coefficients for space-times with multiple horizons by analyzing the mode functions of the quantum fields near the horizons. We propose a new definition of entropy for space-times with multiple horizons, analogous to the entropic definition for space-times with a single horizon. We define entropy for these space-times to be inversely proportional to the square of the effective surface gravity. We show that this definition of entropy for Schwarzschild-de Sitter space-time satisfies the D-bound conjecture

  19. MODELING OF TEMPERATURE FIELDS IN A SOLID HEAT ACCUMULLATORS

    Directory of Open Access Journals (Sweden)

    S. S. Belimenko

    2016-10-01

    Full Text Available Purpose. Currently, one of the priorities of energy conservation is a cost savings for heating in commercial and residential buildings by the stored thermal energy during the night and its return in the daytime. Economic effect is achieved due to the difference in tariffs for the cost of electricity in the daytime and at night. One of the most common types of devices that allow accumulating and giving the resulting heat are solid heat accumulators. The main purpose of the work: 1 software development for the calculation of the temperature field of a flat solid heat accumulator, working due to the heat energy accumulation in the volume of thermal storage material without phase transition; 2 determination the temperature distribution in its volumes at convective heat transfer. Methodology. To achieve the study objectives a heat transfer theory and Laplace integral transform were used. On its base the problems of determining the temperature fields in the channels of heat accumulators, having different cross-sectional shapes were solved. Findings. Authors have developed the method of calculation and obtained solutions for the determination of temperature fields in channels of the solid heat accumulator in conditions of convective heat transfer. Temperature fields over length and thickness of channels were investigated. Experimental studies on physical models and industrial equipment were conducted. Originality. For the first time the technique of calculating the temperature field in the channels of different cross-section for the solid heat accumulator in the charging and discharging modes was proposed. The calculation results are confirmed by experimental research. Practical value. The proposed technique is used in the design of solid heat accumulators of different power as well as full-scale production of them was organized.

  20. Calculations on the development in space and time of the temperature field around a repository of medium and high active wastes in a salt formation

    International Nuclear Information System (INIS)

    Delisle, G.

    1980-01-01

    The concept of nuclear waste disposal of th of the Federal Republic of Germany calls for the burial of the wastes within a salt formation. A small portion of the wastes will generate heat after the disposal procedure. A temperature rise within the salt formation, in space and time limited, will be the consequence. The temperature change at any point in the near or far field of the disporal area can be calculated with the aid of numerical models. The thermal parameters representative for the bulk material of the Zechstein formation in NW-Germany, on which the calculations are based, will be discussed in detail. The interrelation between the concentration of heat producing wastes in the disposal field and the maximum average temperature in the salt formation will be treated. By defining numerical models, which are based on assumed shapes of a salt dome and a disposal area, the temperature development in the near and far field of a nuclear repository are shown. (orig.) [de

  1. Blockspin transformations for finite temperature field theories with gauge fields

    International Nuclear Information System (INIS)

    Kerres, U.

    1996-08-01

    A procedure is proposed to study quantum field theories at zero or at finite temperature by a sequence of real space renormalization group (RG) or blockspin transformations. They transform to effective theories on coarser and coarser lattices. The ultimate aim is to compute constraint effective potentials, i.e. the free energy as a function of suitable order parameters. From the free energy one can read off the thermodynamic behaviour of the theory, in particular the existence and nature of phase transitions. In a finite temperature field theory one begins with either one or a sequence of transformations which transform the original theory into an effective theory on a three-dimensional lattice. Its effective action has temperature dependent coefficients. Thereafter one may proceed with further blockspin transformations of the three-dimensional theory. Assuming a finite volume, this can in principle be continued until one ends with a lattice with a single site. Its effective action is the constraint effective potential. In each RG-step, an integral over the high frequency part of the field, also called the fluctuation field, has to be performed. This is done by perturbation theory. It requires the knowledge of bare fluctuation field propagators and of interpolation operators which enter into the vertices. A detailed examination of these quantities is presented for scalar fields, abelian gauge fields and for Higgs fields, finite temperature is admitted. The lattice perturbation theory is complicated because the bare lattice propagators are complicated. This is due to a partial loss of translation invariance in each step. Therefore the use of translation invariant cutoffs in place of a lattice is also discussed. In case of gauge fields this is only possible as a continuum version of the blockspin method. (orig.)

  2. Thermo field theory versus imaginary time formalism

    International Nuclear Information System (INIS)

    Fujimoto, Y.; Nishino, H.; Grigjanis, R.

    1983-11-01

    We calculate a two-loop diagram at finite temperature to compare Thermo Field Theory (=Th.F.Th.) with the conventional imaginary time formalism (=Im.T.F.). The summation over the Matsubara frequency in Im.T.F. is carried out at two-loop level, and the result is shown to coincide with that of Th.F.Th. We confirm that in Im.T.F. the temperature dependent divergences cancel out at least in the calculation of effective potential of phi 4 theory, as in Th.F.Th. (author)

  3. Research on early-warning index of the spatial temperature field in concrete dams.

    Science.gov (United States)

    Yang, Guang; Gu, Chongshi; Bao, Tengfei; Cui, Zhenming; Kan, Kan

    2016-01-01

    Warning indicators of the dam body's temperature are required for the real-time monitoring of the service conditions of concrete dams to ensure safety and normal operations. Warnings theories are traditionally targeted at a single point which have limitations, and the scientific warning theories on global behavior of the temperature field are non-existent. In this paper, first, in 3D space, the behavior of temperature field has regional dissimilarity. Through the Ward spatial clustering method, the temperature field was divided into regions. Second, the degree of order and degree of disorder of the temperature monitoring points were defined by the probability method. Third, the weight values of monitoring points of each regions were explored via projection pursuit. Forth, a temperature entropy expression that can describe degree of order of the spatial temperature field in concrete dams was established. Fifth, the early-warning index of temperature entropy was set up according to the calculated sequential value of temperature entropy. Finally, project cases verified the feasibility of the proposed theories. The early-warning index of temperature entropy is conducive to the improvement of early-warning ability and safety management levels during the operation of high concrete dams.

  4. Phase structure of (φ4)3 field theory at finite temperature

    International Nuclear Information System (INIS)

    Efimov, G.V.

    1992-01-01

    Phase structure of φ 4 field theory in the space-time R 3 is investigated at arbitrary coupling constant and temperature. The critical values of the coupling constant and temperature, corresponding to the phase transitions in the system, are calculated by the canonical transformation method within formalism of thermo field dynamics. The Hamiltonians describing the system in each phase are obtained straightforwardly. Comparison with the two-dimensional case shows a crucial influence of higher order renormalization on the phase structure of the model. 13 refs.; 5 figs

  5. Topological transitions at finite temperatures: A real-time numerical approach

    International Nuclear Information System (INIS)

    Grigoriev, D.Yu.; Rubakov, V.A.; Shaposhnikov, M.E.

    1989-01-01

    We study topological transitions at finite temperatures within the (1+1)-dimensional abelian Higgs model by a numerical simulation in real time. Basic ideas of the real-time approach are presented and some peculiarities of the Metropolis technique are discussed. It is argued that the processes leading to topological transitions are of classical origin; the transitions can be observed by solving the classical field equations in real time. We show that the topological transitions actually pass via the sphaleron configuration. The transition rate as a function of temperature is found to be in good agreement with the analytical predictions. No extra suppression of the rate is observed. The conditions of applicability of our approach are discussed. The temperature interval where the low-temperature broken phase persists is estimated. (orig.)

  6. Effect of inhomogeneous temperature fields on acoustic streaming structures in resonators.

    Science.gov (United States)

    Červenka, Milan; Bednařík, Michal

    2017-06-01

    Acoustic streaming in 2D rectangular resonant channels filled with a fluid with a spatial temperature distribution is studied within this work. An inertial force is assumed for driving the acoustic field; the temperature inhomogeneity is introduced by resonator walls with prescribed temperature distribution. The method of successive approximations is employed to derive linear equations for calculation of primary acoustic and time-averaged secondary fields including the streaming velocity. The model equations have a standard form which allows their numerical integration using a universal solver; in this case, COMSOL Multiphysics was employed. The numerical results show that fluid temperature variations in the direction perpendicular to the resonator axis influence strongly the streaming field if the ratio of the channel width and the viscous boundary layer thickness is big enough; the streaming in the Rayleigh vortices can be supported as well as opposed, which can ultimately lead to the appearance of additional vortices.

  7. Theoretical temperature fields for the Stripa heater project. Vol. 1

    International Nuclear Information System (INIS)

    Chan, T.; Cook, N.G.W.; Tsang, C.F.

    1978-09-01

    The report concerns thermal conduction calculations for the three in-situ heater experiments at Stripa which constitute part of the Swedish-American Cooperative Program on Radioactive Waste Storage in Mined Caverns. A semianalytic solution based on the Green's function method has been developed for an array of arbitrary time-dependent finite line heaters in a semi-infinite medium. This method as well as a three dimensional numerical model using IFD (Integrated Finite Difference) technique has been applied to model the field situations at Stripa. Comparison has demonstrated that the finite line source solution for the rock temperature is in excellent agreement with the numerical model solution as well as with a closed form finite cylinder source solution. It was found that maximum temperature rise in the rock within the two year experiment period will be 178 0 C for the 3.6 kW full-scale heater experiment, 345 0 C for the full-scale experiment with a 5 kW central heater and eight 0.72 kW peripheral heaters, and less than 200 0 C for the time-scaled experiment. The ring of eight peripheral heaters in the second full-scale experiment will provide a nominally uniform temperature rise within its perimeter a few weeks after turn-on. The high temperature zone is localized throughout the duration of all three experiments. Nevertheless, the effect of different spacings on the thermal interaction between adjacent radioactive waste canisters will be demonstrated by the time-scaled experiment. Detailed results are presented in the form of tables, temperature profiles and contour plots. Predicted temperatures have been stored in an on-site computer for real-time comparison with field data. 56 figures, 7 tables

  8. Simultaneous measurement of magnetic field and temperature based on an etched TCFMI cascaded with an FBG

    Science.gov (United States)

    Yan, Guofeng; Zhang, Liang; He, Sailing

    2016-04-01

    In this paper, a dual-parameter measurement scheme based on an etched thin core fiber modal interferometer (TCMI) cascaded with a fiber Bragg grating (FBG) is proposed and experimentally demonstrated for simultaneous measurement of magnetic field and temperature. The magnetic field and temperature responses of the packaged TCFMI were first investigated, which showed that the magnetic field sensitivity could be highly enhanced by decreasing of the TCF diameter and the temperature-cross sensitivities were up to 3-7 Oe/°C at 1550 nm. Then, the theoretical analysis and experimental demonstration of the proposed dual-parameter sensing scheme were conducted. Experimental results show that, the reflection of the FBG has a magnetic field intensity and temperature sensitivities of -0.017 dB/Oe and 0.133 dB/°C, respectively, while the Bragg wavelength of the FBG is insensitive to magnetic field and has a temperature sensitivity of 13.23 pm/°C. Thus by using the sensing matrix method, the intensity of the magnetic field and the temperature variance can be measured, which enables magnetic field sensing under strict temperature environments. In the on-off time response test, the fabricated sensor exhibited high repeatability and short response time of ∼19.4 s. Meanwhile the reflective sensing probe type is more compact and practical for applications in hard-to-reach conditions.

  9. Quantum electrodynamics at finite temperatures in presence of an external field violating the vacuum stability

    International Nuclear Information System (INIS)

    Gavrilov, S.P.; Gitman, D.M.; Fradkin, E.S.

    1987-01-01

    A functional generating expectation values is obtained for QED at a finite temperature in presence of an external field violating the vacuum stability. Equations for connected Green's functions and the effective action for the mean field are derived. The Green function is obtained as an integral with respect of the proper time; the representation takes into account temperature effects in a constant homogeneous field. The polarization operator for the mean field in an external constant homogeneous field is calculated by means of the integral representation

  10. Classical limit for scalar fields at high temperature

    International Nuclear Information System (INIS)

    Buchmueller, W.; Jakovac, A.

    1998-01-01

    We study real-time correlation functions in scalar quantum field theories at temperature T=1/β. We show that the behaviour of soft, long-wavelength modes is determined by classical statistical field theory. The loss of quantum coherence is due to interactions with the soft modes of the thermal bath. The soft modes are separated from the hard modes by an infrared cutoff Λ<<1/(ℎβ). Integrating out the hard modes yields an effective theory for the soft modes. The infrared cutoff Λ controls corrections to the classical limit which are O(ℎβΛ). As an application, the plasmon damping rate is calculated. (orig.)

  11. Temperature field for radiative tomato peeling

    International Nuclear Information System (INIS)

    Cuccurullo, G; Giordano, L

    2017-01-01

    Nowadays peeling of tomatoes is performed by using steam or lye, which are expensive and polluting techniques, thus sustainable alternatives are searched for dry peeling and, among that, radiative heating seems to be a fairly promising method. This paper aims to speed up the prediction of surface temperatures useful for realizing dry-peeling, thus a 1D-analytical model for the unsteady temperature field in a rotating tomato exposed to a radiative heating source is presented. Since only short times are of interest for the problem at hand, the model involves a semi-infinite slab cooled by convective heat transfer while heated by a pulsating heat source. The model being linear, the solution is derived following the Laplace Transform method. A 3D finite element model of the rotating tomato is introduced as well in order to validate the analytical solution. A satisfactory agreement is attained. Therefore, two different ways to predict the onset of the peeling conditions are available which can be of help for proper design of peeling plants. Particular attention is paid to study surface temperature uniformity, that being a critical parameter for realizing an easy tomato peeling. (paper)

  12. Critical fields in high temperature superconductors

    International Nuclear Information System (INIS)

    Finnemore, D.K.

    1991-01-01

    An analysis of various methods to obtain the critical fields of the high temperature superconductors from experimental data is undertaken in order to find definitions of these variables that are consistent with the models used to define them. Characteristic critical fields of H c1 , H c2 and H c that occur in the Ginsburg-Landau theory are difficult to determine experimentally in the high temperature superconductors because there are additional physical phenomena that obscure the results. The lower critical field is difficult to measure because there are flux pinning and surface barrier effects to flux entry; the upper critical field is difficult because fluctuation effects are large at this phase boundary; the thermodynamic critical field is difficult because fluctuations make it difficult to know the field where the magnetization integral should be terminated. In addition to these critical fields there are at least two other cross-over fields. There is the so called irreversibility line where the vortices transform from a rigid flux line lattice to a fluid lattice and there is a second cross-over field associated with the transition from the fluctuation to the Abrikosov vortex regime. The presence of these new physical effects may require new vocabulary

  13. Nonstationary temperature field in the fuel element; Nestacionarno temperatursko polje u gorivnom elementu

    Energy Technology Data Exchange (ETDEWEB)

    Vehauc, A; Spasojevic, D [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1970-03-15

    Nonstationary temperature field in the fuel element was examined for spatial and time distribution of the specific power generated in the fuel element. Analytical method was developed for calculating the temperature variation in the fuel element of a nuclear reactor for a typical shape of the heat generation function. The method is based on series expansion of the temperature field by self functions and application of Laplace transformation in time coordinate. For numerical calculation of the temperature distribution a computer code was developed based on the proposed method and applied on the ZUSE-Z-23 computer. Razmatrano je nestacionarno temperatursko polje u preseku sipke gorivnog elementa za slucaj prostorne i vremenske raspodele specificne generacije snage u gorivnom elementu. Razradjen je analii postupak odredjivanja promene temperature u gorivu nuklearnog reaktora za tipican oblik funkcije generacije toplote. Postupak se zasniva na razvoju temperaturskog polja po sopstvenim funkcijama i primeni Laplasove transformacije po vremenskoj koordinati. Za efektivno nalazenje temperaturskog polja, postupak je programiran za digitalnu racunsku masinu ZUSE-Z-23 (author)

  14. Reflection and refraction of a transient temperature field at a plane interface using Cagniard-de Hoop approach.

    Science.gov (United States)

    Shendeleva, M L

    2001-09-01

    An instantaneous line heat source located in the medium consisting of two half-spaces with different thermal properties is considered. Green's functions for the temperature field are derived using the Laplace and Fourier transforms in time and space and their inverting by the Cagniard-de Hoop technique known in elastodynamics. The characteristic feature of the proposed approach consists in the application of the Cagniard-de Hoop method to the transient heat conduction problem. The idea is suggested by the fact that the Laplace transform in time reduces the heat conduction equation to a Helmholtz equation, as for the wave propagation. Derived solutions exhibit some wave properties. First, the temperature field is decomposed into the source field and the reflected field in one half-space and the transmitted field in the other. Second, the laws of reflection and refraction can be deduced for the rays of the temperature field. In this connection the ray concept is briefly discussed. It is shown that the rays, introduced in such a way that they are consistent with Snell's law do not represent the directions of heat flux in the medium. Numerical computations of the temperature field as well as diagrams of rays and streamlines of the temperature field are presented.

  15. Temperature field calculation for a metal charge of large cylindrical billets

    Energy Technology Data Exchange (ETDEWEB)

    Korovina, V M; Gurenko, V A; Bashnin, Yu A; Gordeeva, L I; Mernik, E B; Varakin, P I

    1979-09-01

    The temperature field of cylindrical blanks of 35KhN3MFA steel, cooled separately in the air and as-charged on rolled-out hearth was calculated. The temperature curves of the blanks cooled in the as-charged state were calculated with allowance for the variation of the external temperature with the time. The comparison of the experimental and of the calculated data has shown their satisfactory agreement for all practical purposes. This method of calculation can be used for any other problems with different linear, thermal and physical parameters of blanks.

  16. Chemical vapour deposition diamond. Charge carrier movement at low temperatures and use in time-critical applications

    International Nuclear Information System (INIS)

    Jansen, Hendrik

    2013-09-01

    Diamond, a wide band gap semiconductor with exceptional electrical properties, has found its way in diverse fields of application reaching from the usage as a sensor material for beam loss monitors at particle accelerator facilities, over laser windows, to UV light sensors in space applications, e.g. for space weather forecasting. Though often used at room temperature, little is known about the charge transport in diamond towards liquid helium temperatures. In this work the method of the transient current technique is employed at temperatures between room temperature and 2 K. The temperature and electric field strength dependence of the pulse shape, the charge carrier transit time, the drift velocity, the saturation velocity, and the low-field mobility is measured in detector-grade scCVD diamond. Furthermore, the usability of diamond in time-critical applications is tested, and the main results are presented.

  17. Chemical Vapour Deposition Diamond - Charge Carrier Movement at Low Temperatures and Use in Time-Critical Applications

    CERN Document Server

    Jansen, Hendrik; Pernegger, Heinz

    Diamond, a wide band gap semiconductor with exceptional electrical properties, has found its way in diverse fields of application reaching from the usage as a sensor material for beam loss monitors at particle accelerator facilities, to laser windows, to UV light sensors in space applications, e.g. for space weather forecasting. Though often used at room temperature, little is known about the charge transport in diamond towards liquid helium temperatures. In this work the method of the transient current technique is employed at temperatures between room temperature and 2 K. The temperature and electric field strength dependence of the pulse shape, the charge carrier transit time, the drift velocity, the saturation velocity, and the low-field mobility is measured in detector-grade scCVD diamond. Furthermore, the usability of diamond in time-critical applications is tested, and the main results are presented.

  18. Yeast cells proliferation on various strong static magnetic fields and temperatures

    International Nuclear Information System (INIS)

    Otabe, E S; Kuroki, S; Nikawa, J; Matsumoto, Y; Ooba, T; Kiso, K; Hayashi, H

    2009-01-01

    The effect of strong magnetic fields on activities of yeast cells were investigated. Experimental yeast cells were cultured in 5 ml of YPD(Yeast extract Peptone Dextrose) for the number density of yeast cells of 5.0 ±0.2 x 10 6 /ml with various temperatures and magnetic fields up to 10 T. Since the yeast cells were placed in the center of the superconducting magnet, the effect of magnetic force due to the diamagnetism and magnetic gradient was negligibly small. The yeast suspension was opened to air and cultured in shaking condition. The number of yeast cells in the yeast suspension was counted by a counting plate with an optical microscope, and the time dependence of the number density of yeast cells was measured. The time dependence of the number density of yeast cells, ρ, of initial part is analyzed in terms of Malthus equation as given by ρ = ρo exp(kt), where k is the growth coefficient. It is found that, the growth coefficient under the magnetic field is suppressed compared with the control. The growth coefficient decreasing as increasing magnetic field and is saturated at about 5 T. On the other hand, it is found that the suppression of growth of yeast cells by the magnetic field is diminished at high temperatures.

  19. Time-dependent electric field in Al/CdTe/Pt detectors

    Energy Technology Data Exchange (ETDEWEB)

    Turturici, A.A. [Dipartimento di Fisica e Chimica,Università di Palermo,Viale delle Scienze, Edificio 18, Palermo 90128 (Italy); Abbene, L., E-mail: leonardo.abbene@unipa.it [Dipartimento di Fisica e Chimica,Università di Palermo,Viale delle Scienze, Edificio 18, Palermo 90128 (Italy); Franc, J.; Grill, R.; Dědič, V. [Institute of Physics of Charles University, MFF, Ke Karlovu 5, Prague 2 (Czech Republic); Principato, F. [Dipartimento di Fisica e Chimica,Università di Palermo,Viale delle Scienze, Edificio 18, Palermo 90128 (Italy)

    2015-09-21

    Al/CdTe/Pt detectors are very attractive devices for high-resolution X-ray spectroscopy, even though they suffer from bias-induced time instability (polarization). Polarization phenomena cause a progressive time-degradation of the spectroscopic performance of the detectors, due to hole trapping and detrapping from deep acceptor levels that directly control the electric field distribution. In this work we present experimental investigations on the electric field profile of planar Al/CdTe/Pt detectors by means of Pockels effect measurements. The time/temperature dependence of the electric field was investigated in a long time window (up to 10 h) and the correlation with the reverse current transients was also studied. Two energy levels (0.62 eV and 1.16 eV) of the deep hole traps were measured, in agreement with our previous results obtained through electrical and spectroscopic approaches.

  20. European summer temperatures since Roman times

    International Nuclear Information System (INIS)

    Luterbacher, J; Werner, J P; Smerdon, J E; Fernández-Donado, L; González-Rouco, F J; Barriopedro, D; Ljungqvist, F C; Büntgen, U; Frank, D; Zorita, E; Wagner, S; Esper, J; McCarroll, D; Toreti, A; Jungclaus, J H; Bothe, O; Barriendos, M; Bertolin, C; Camuffo, D; Brázdil, R

    2016-01-01

    The spatial context is critical when assessing present-day climate anomalies, attributing them to potential forcings and making statements regarding their frequency and severity in a long-term perspective. Recent international initiatives have expanded the number of high-quality proxy-records and developed new statistical reconstruction methods. These advances allow more rigorous regional past temperature reconstructions and, in turn, the possibility of evaluating climate models on policy-relevant, spatio-temporal scales. Here we provide a new proxy-based, annually-resolved, spatial reconstruction of the European summer (June–August) temperature fields back to 755 CE based on Bayesian hierarchical modelling (BHM), together with estimates of the European mean temperature variation since 138 BCE based on BHM and composite-plus-scaling (CPS). Our reconstructions compare well with independent instrumental and proxy-based temperature estimates, but suggest a larger amplitude in summer temperature variability than previously reported. Both CPS and BHM reconstructions indicate that the mean 20th century European summer temperature was not significantly different from some earlier centuries, including the 1st, 2nd, 8th and 10th centuries CE. The 1st century (in BHM also the 10th century) may even have been slightly warmer than the 20th century, but the difference is not statistically significant. Comparing each 50 yr period with the 1951–2000 period reveals a similar pattern. Recent summers, however, have been unusually warm in the context of the last two millennia and there are no 30 yr periods in either reconstruction that exceed the mean average European summer temperature of the last 3 decades (1986–2015 CE). A comparison with an ensemble of climate model simulations suggests that the reconstructed European summer temperature variability over the period 850–2000 CE reflects changes in both internal variability and external forcing on multi-decadal time

  1. Quantum electrodynamics at a finite temperature with an external field destroying the stability of the vacuum

    International Nuclear Information System (INIS)

    Gavrilov, S.P.; Gitman, D.M.; Fradkin, E.S.

    1987-01-01

    A generating functional for expectation values is found for QED at a finite temperature with an external field which destroys the stability of the vacuum. The equations for connected Green functions and the effective action for the mean field are written out. Their representation is obtained in the form of an integral over the proper time for the Green function taking into account temperature effects in a constant uniform field. By means of this representation the polarization operator for the mean field in an external constant uniform field has been calculated

  2. TIME EVOLUTION OF WOUTHUYSEN-FIELD COUPLING

    International Nuclear Information System (INIS)

    Roy, Ishani; Shu Chiwang; Xu Wen; Fang Lizhi; Qiu Jingmei

    2009-01-01

    We study the Wouthuysen-Field (W-F) coupling at early universe with numerical solutions of the integrodifferential equation describing the kinetics of photons undergoing resonant scattering. The numerical solver is developed based on the weighted essentially nonoscillatory (WENO) scheme for the Boltzmann-like integrodifferential equation. This method has perfectly passed the tests of the analytic solution and conservation property of the resonant scattering equation. We focus on the time evolution of the Wouthuysen-Field (W-F) coupling in relation to the 21 cm emission and absorption at the epoch of reionization. We especially pay attention to the formation of the local Boltzmann distribution, e -(ν-ν 0 )/kT , of photon frequency spectrum around resonant frequency ν 0 within width ν l , i.e., |ν - ν 0 | ≤ ν l . We show that a local Boltzmann distribution will be formed if photons with frequency ∼ν 0 have undergone a 10,000 or more times of scattering, which corresponds to the order of 10 3 yr for neutral hydrogen density of the concordance ΛCDM model. The time evolution of the shape and width of the local Boltzmann distribution actually do not depend on the details of atomic recoil, photon sources, or initial conditions very much. However, the intensity of photon flux at the local Boltzmann distribution is substantially time dependent. The timescale of approaching the saturated intensity can be as long as 10 5 -10 6 yr for typical parameters of the ΛCDM model. The intensity of the local Boltzmann distribution at time less than 10 5 yr is significantly lower than that of the saturation state. Therefore, it may not be always reasonable to assume that the deviation of the spin temperature of 21 cm energy states from cosmic background temperature is mainly due to the W-F coupling if first stars or their emission/absorption regions evolved with a timescale equal to or less than Myr.

  3. Simulation of changes in temperature and pressure fields during high speed projectiles forming by explosion

    Directory of Open Access Journals (Sweden)

    Marković Miloš D.

    2016-01-01

    Full Text Available The Research in this paper considered the temperatures fields as the consequently influenced effects appeared by plastic deformation, in the explosively forming process aimed to design Explosively Formed Projectiles (henceforth EFP. As the special payloads of the missiles, used projectiles are packaged as the metal liners, joined with explosive charges, to design explosive propulsion effect. Their final form and velocity during shaping depend on distributed temperatures in explosively driven plastic deformation process. Developed simulation model consider forming process without metal cover of explosive charge, in aim to discover liner’s dynamical correlations of effective plastic strains and temperatures in the unconstrained detonation environment made by payload construction. The temperature fields of the liner’s copper material are considered in time, as the consequence of strain/stress displacements driven by explosion environmental thermodynamically fields of pressures and temperatures. Achieved final velocities and mass loses as the expected EFP performances are estimated regarding their dynamical shaping and thermal gradients behavior vs. effective plastic strains. Performances and parameters are presented vs. process time, numerically simulated by the Autodyne software package. [Projekat Ministarstva nauke Republike Srbije, br. III-47029

  4. Dynamics of Gauge Fields at High Temperature

    NARCIS (Netherlands)

    Nauta, B.J.

    2000-01-01

    An effective description of dynamical Bose fields is provided by the classical (high-temperature) limit of thermal field theory. The main subject of this thesis is to improve the ensuing classical field theory, that is, to include the dominant quantum corrections and to add counter terms for the

  5. Estimation of geothermal gradients from single temperature log-field cases

    International Nuclear Information System (INIS)

    Kutasov, I M; Eppelbaum, L V

    2009-01-01

    A geothermal gradient is one of the most frequently used parameters in logging geophysics. However, the drilling process greatly disturbs the temperature of the formations around the wellbore. For this reason, in order to determine with the required accuracy the formation temperatures and geothermal gradients, a certain length of shut-in time is required. It was shown earlier (Kutasov 1968 Freiberger Forshungshefte C 238 55–61, 1987 Geothermics 16 467–72) that at least two transient temperature surveys are needed to determine the geothermal gradient with adequate accuracy. However, in many cases only one temperature log is conducted in a shut-in borehole. For these cases, we propose an approximate method for the estimation of the geothermal gradient. The utilization of this method is demonstrated on four field examples

  6. Simulation on Temperature Field of Radiofrequency Lesions System Based on Finite Element Method

    International Nuclear Information System (INIS)

    Xiao, D; Qian, Z; Li, W; Qian, L

    2011-01-01

    This paper mainly describes the way to get the volume model of damaged region according to the simulation on temperature field of radiofrequency ablation lesion system in curing Parkinson's disease based on finite element method. This volume model reflects, to some degree, the shape and size of the damaged tissue during the treatment with all tendencies in different time or core temperature. By using Pennes equation as heat conduction equation of radiofrequency ablation of biological tissue, the author obtains the temperature distribution field of biological tissue in the method of finite element for solving equations. In order to establish damage models at temperature points of 60 deg. C, 65 deg. C, 70 deg. C, 75 deg. C, 80 deg. C, 85 deg. C and 90 deg. C while the time points are 30s, 60s, 90s and 120s, Parkinson's disease model of nuclei is reduced to uniform, infinite model with RF pin at the origin. Theoretical simulations of these models are displayed, focusing on a variety of conditions about the effective lesion size on horizontal and vertical. The results show the binary complete quadratic non-linear joint temperature-time models of the maximum damage diameter and maximum height. The models can comprehensively reflect the degeneration of target tissue caused by radio frequency temperature and duration. This lay the foundation for accurately monitor of clinical RF treatment of Parkinson's disease in the future.

  7. Visualizing and measuring the temperature field produced by medical diagnostic ultrasound using thermography

    International Nuclear Information System (INIS)

    Vachutka, J; Grec, P; Mornstein, V; Caruana, C J

    2008-01-01

    The heating of tissues by diagnostic ultrasound can pose a significant hazard particularly in the imaging of the unborn child. The demonstration of the temperature field in tissue is therefore an important objective in the teaching of biomedical physics to healthcare professionals. The temperature field in a soft tissue model was made visible and measured using thermography. Temperature data from the images were used to investigate the dependence of temperature increase within the model on ultrasound exposure time and distance from the transducer. The experiment will be used within a multi-professional biomedical physics teaching laboratory for enhancing learning regarding the principles of thermography and the thermal effects of ultrasound to medical and healthcare students and also for demonstrating the quantitative use of thermographic imaging to students of biophysics, medical physics and medical technology

  8. Analytical solution and numerical simulation of the liquid nitrogen freezing-temperature field of a single pipe

    Science.gov (United States)

    Cai, Haibing; Xu, Liuxun; Yang, Yugui; Li, Longqi

    2018-05-01

    Artificial liquid nitrogen freezing technology is widely used in urban underground engineering due to its technical advantages, such as simple freezing system, high freezing speed, low freezing temperature, high strength of frozen soil, and absence of pollution. However, technical difficulties such as undefined range of liquid nitrogen freezing and thickness of frozen wall gradually emerge during the application process. Thus, the analytical solution of the freezing-temperature field of a single pipe is established considering the freezing temperature of soil and the constant temperature of freezing pipe wall. This solution is then applied in a liquid nitrogen freezing project. Calculation results show that the radius of freezing front of liquid nitrogen is proportional to the square root of freezing time. The radius of the freezing front also decreases with decreased the freezing temperature, and the temperature gradient of soil decreases with increased distance from the freezing pipe. The radius of cooling zone in the unfrozen area is approximately four times the radius of the freezing front. Meanwhile, the numerical simulation of the liquid nitrogen freezing-temperature field of a single pipe is conducted using the Abaqus finite-element program. Results show that the numerical simulation of soil temperature distribution law well agrees with the analytical solution, further verifies the reliability of the established analytical solution of the liquid nitrogen freezing-temperature field of a single pipe.

  9. Temperature Field-Wind Velocity Field Optimum Control of Greenhouse Environment Based on CFD Model

    Directory of Open Access Journals (Sweden)

    Yongbo Li

    2014-01-01

    Full Text Available The computational fluid dynamics technology is applied as the environmental control model, which can include the greenhouse space. Basic environmental factors are set to be the control objects, the field information is achieved via the division of layers by height, and numerical characteristics of each layer are used to describe the field information. Under the natural ventilation condition, real-time requirements, energy consumption, and distribution difference are selected as index functions. The optimization algorithm of adaptive simulated annealing is used to obtain optimal control outputs. A comparison with full-open ventilation shows that the whole index can be reduced at 44.21% and found that a certain mutual exclusiveness exists between the temperature and velocity field in the optimal course. All the results indicate that the application of CFD model has great advantages to improve the control accuracy of greenhouse.

  10. Mathematical model of temperature field distribution in thin plates during polishing with a free abrasive

    Directory of Open Access Journals (Sweden)

    Avilov Alex

    2017-01-01

    Full Text Available The purpose of this paper is to estimate the dynamic characteristics of the heating process of thin plates during polishing with a free abrasive. A mathematical model of the temperature field distribution in space and time according to the plate thickness is based on Lagrange equation of the second kind in the thermodynamics of irreversible processes (variation principle Bio. The research results of thermo elasticity of thin plates (membranes will allow to correct the modes of polishing with a free abrasive to receive the exact reflecting surfaces of satellites reflector, to increase temperature stability and the ability of radio signal reflection, satellite precision guidance. Calculations of temperature fields in thin plates of different thicknesses (membranes is held in the Excel, a graphical characteristics of temperature fields in thin plates (membranes show non-linearity of temperature distribution according to the thickness of thin plates (membranes.

  11. Fine resolution 3D temperature fields off Kerguelen from instrumented penguins

    Science.gov (United States)

    Charrassin, Jean-Benoît; Park, Young-Hyang; Le Maho, Yvon; Bost, Charles-André

    2004-12-01

    The use of diving animals as autonomous vectors of oceanographic instruments is rapidly increasing, because this approach yields cost-efficient new information and can be used in previously poorly sampled areas. However, methods for analyzing the collected data are still under development. In particular, difficulties may arise from the heterogeneous data distribution linked to animals' behavior. Here we show how raw temperature data collected by penguin-borne loggers were transformed to a regular gridded dataset that provided new information on the local circulation off Kerguelen. A total of 16 king penguins ( Aptenodytes patagonicus) were equipped with satellite-positioning transmitters and with temperature-time-depth recorders (TTDRs) to record dive depth and sea temperature. The penguins' foraging trips recorded during five summers ranged from 140 to 600 km from the colony and 11,000 dives >100 m were recorded. Temperature measurements recorded during diving were used to produce detailed 3D temperature fields of the area (0-200 m). The data treatment included dive location, determination of the vertical profile for each dive, averaging and gridding of those profiles onto 0.1°×0.1° cells, and optimal interpolation in both the horizontal and vertical using an objective analysis. Horizontal fields of temperature at the surface and 100 m are presented, as well as a vertical section along the main foraging direction of the penguins. Compared to conventional temperature databases (Levitus World Ocean Atlas and historical stations available in the area), the 3D temperature fields collected from penguins are extremely finely resolved, by one order finer. Although TTDRs were less accurate than conventional instruments, such a high spatial resolution of penguin-derived data provided unprecedented detailed information on the upper level circulation pattern east of Kerguelen, as well as the iron-enrichment mechanism leading to a high primary production over the Kerguelen

  12. Occupant Time Period of Thermal Adaption to Change of Outdoor Air Temperature in Naturally Ventilated Buildings

    DEFF Research Database (Denmark)

    liu, weiwei; Wargocki, Pawel; Xiong, Jing

    2014-01-01

    The present work proposed a method to determine time period of thermal adaption of occupants in naturally ventilated building, based on the relationship between their neutral temperatures and running mean outdoor air temperature. Based on the data of the field investigation, the subjects’ time...

  13. Non-uniform temperature field measurement and simulation of a radio telescope’s main reflector under solar radiation

    International Nuclear Information System (INIS)

    Chen, Deshen; Qian, Hongliang; Wang, Huajie; Zhang, Gang; Fan, Feng; Shen, Shizhao

    2017-01-01

    Highlights: • Solar non-uniform temperature field test of a telescope’s reflector is conducted initially. • Time-varying distribution regularities are analyzed contrastively. • Simulation methods are proposed involving environmental factors and self-shadowing. • Refined discrimination method for the shadow distribution is put forward. • Validity of simulation methods is evaluated with the experimental data. - Abstract: To improve the ability of deep-space exploration, many astronomers around the world are actively engaged in the construction of large-aperture and high-precision radio telescopes. The temperature effect is one of three main factors affecting the reflector accuracy of radio telescopes. To study the daily non-uniform temperature field of the main reflector, experimental studies are first carried out with a 3-m-aperture radio telescope model. According to the test results for 16 working conditions, the distribution rule and time-varying regularity of the daily temperature field are summarized initially. Next, theoretical methods for the temperature field of the main reflector are studied considering multiple environmental parameters and self-shadows. Finally, the validity of the theoretical methods is evaluated with test results. The experimental study demonstrates that the non-uniform temperature distribution of the main reflector truly exists and should not be overlooked, and that the theoretical methods for the reflector temperature field proposed in this paper are effective. The research methods and conclusions can provide valuable references for thermal design, monitoring and control of similar high-precision radio telescopes.

  14. An objective algorithm for reconstructing the three-dimensional ocean temperature field based on Argo profiles and SST data

    Science.gov (United States)

    Zhou, Chaojie; Ding, Xiaohua; Zhang, Jie; Yang, Jungang; Ma, Qiang

    2017-12-01

    While global oceanic surface information with large-scale, real-time, high-resolution data is collected by satellite remote sensing instrumentation, three-dimensional (3D) observations are usually obtained from in situ measurements, but with minimal coverage and spatial resolution. To meet the needs of 3D ocean investigations, we have developed a new algorithm to reconstruct the 3D ocean temperature field based on the Array for Real-time Geostrophic Oceanography (Argo) profiles and sea surface temperature (SST) data. The Argo temperature profiles are first optimally fitted to generate a series of temperature functions of depth, with the vertical temperature structure represented continuously. By calculating the derivatives of the fitted functions, the calculation of the vertical temperature gradient of the Argo profiles at an arbitrary depth is accomplished. A gridded 3D temperature gradient field is then found by applying inverse distance weighting interpolation in the horizontal direction. Combined with the processed SST, the 3D temperature field reconstruction is realized below the surface using the gridded temperature gradient. Finally, to confirm the effectiveness of the algorithm, an experiment in the Pacific Ocean south of Japan is conducted, for which a 3D temperature field is generated. Compared with other similar gridded products, the reconstructed 3D temperature field derived by the proposed algorithm achieves satisfactory accuracy, with correlation coefficients of 0.99 obtained, including a higher spatial resolution (0.25° × 0.25°), resulting in the capture of smaller-scale characteristics. Finally, both the accuracy and the superiority of the algorithm are validated.

  15. THE NUMERICAL ALGORITHM FOR CALCULATING TEMPERATURE FIELDS OF THE PNEUMATIC TIRES DURING VULCANIZATION

    Directory of Open Access Journals (Sweden)

    S. G. Tikhomirov

    2015-01-01

    Full Text Available In the article discussed the mathematical formulation and numerical algorithm for solving the problem of calculating the temperature field in the process vulcanizing of the product, whose the thermal characteristics are depended on the temperature. As a mathematical model considered the system of differential equations of heat conduction, taking into account the change in the coefficients of thermal conductivity and heat density in multilayer product of the temperature. The system of equations is solved for a given initial distribution of temperature and for a given (time-dependent temperatures on the border of the product to the press-mold and to the diaphragm. On the border of the contacts of adjacent layers are given the condition of continuity of temperature and heat flux. Change of the thermal conductivity from the time is approximated by linear functions. The activation energy of the vulcanization process is determined on the basis of experimental data obtained in the control test samples using a reometer. Considering the function representing the corresponding integrals of the thermal conductivity, the original system of differential equations is transformed to an equivalent system of differential equations convenient for constructing numerical algorithms for solving the problem. The resulting system of partial differential equations derived using the method of finite-difference approximation is replaced by a system of algebraic equations. Solution of the system of algebraic equations is carried out under the scheme explicit difference approximation. In the article calculated the temperature field for the tire at given initial and boundary conditions. Stability and accuracy of the numerical algorithm for solving the problem is demonstrated by the calculations performed with different sampling step along the time and space coordinates. Assessment of the degree of completion of the process is carried out by calculated equivalent time for

  16. The hydraulic connectivity, perennial warming and relationship to seismicity of the Davis-Schrimpf Seep Field, Salton Trough, California from new and recent temperature time-series

    Science.gov (United States)

    Rao, Amar P.

    The Davis-Schrimpf Seep Field is a cluster of about 50 transtension-related geothermal seeps in the Imperial Valley, southeastern California. Five temperature time-series were collected from four features and compared to one another, against prior time-series, and to local seismicity. Loggers placed in separate vents within one seep returned moderate anti-correlation. Vents may selectively clog and unclog. Clogging frequencies explaining the observed level of negative correlation were given. Loggers placed in the same vent produced 87-92% positive correlation. It is therefore likely that the vast majority of temperature data measured with loggers possesses meaningful accuracy. Loggers placed in separate seeps exhibited correlation close to or greater than the statistically significant 60% threshold. I propose two lineaments provide a hydraulic connection between these seeps. Two Mw>3.0 earthquake swarms, including one Mw>4.0 event, within 24 kilometers showed possible linkage with >5 degree Celsius temperature perturbations. Seepage warmed 14.5-36.8 degrees Celsius over 5-7 years.

  17. Time-resolved VUV spectroscopy in the EXTRAP-T2 reversed field pinch

    International Nuclear Information System (INIS)

    Hedqvist, A.; Rachlew-Kaellne, E.

    1998-01-01

    Time-resolved VUV spectroscopy has been used to investigate the effects of impurities in a reversed field pinch operating with a resistive shell. Results of electron temperature, impurity ion densities, particle confinement time and Z eff together with a description of the interpretation and the equipment are presented. (author)

  18. The spatial distribution and time evolution of impact-generated magnetic fields

    Science.gov (United States)

    Crawford, D. A.; Schultz, P. H.

    1991-01-01

    The production of magnetic fields was revealed by laboratory hypervelocity impacts in easily vaporized targets. As quantified by pressure measurements, high frame-rate photography, and electrostatic probes, these impacts tend to produce large quantities of slightly ionized vapor, which is referred to as impact-generated plasma. Nonaligned electron density and temperature gradients within this plasma may lead to production of the observed magnetic fields. Past experiments were limited to measuring a single component of the impact-generated magnetic fields at only a few locations about the developing impact crater and consequently gave little information about the field production mechanism. To understand this mechanism, the techniques were extended to map the three components of the magnetic field both in space and time. By conducting many otherwise identical experiments with arrayed magnetic detectors, a preliminary 3-D picture was produced of impact-generated magnetic fields as they develop through time.

  19. Simulation of Temperature Field in HDPE Pipe Thermal Welding

    Directory of Open Access Journals (Sweden)

    LIU Li-jun

    2017-04-01

    Full Text Available For high density polyethylene pipe connection,welding technology is the key of the high density engineering plastic pressure pipe safety. And the temperature distribution in the welding process has a very important influence on the welding quality. Polyethylene pipe weld joints of one dimensional unsteady overall heat transfer model is established by MARC software and simulates temperature field and stress field distribution of the welding process,and the thermocouple temperature automatic acquisition system of welding temperature field changes were detected,and compared by simulation and experiment .The results show that,at the end of the heating,the temperature of the pipe does not reach the maximum,but reached the maximum at 300 s,which indicates that the latent heat of phase change in the process of pressure welding. In the process of pressure welding, the axial stress of the pipe is gradually changed from tensile stress to compressive stress.

  20. Finite spatial volume approach to finite temperature field theory

    International Nuclear Information System (INIS)

    Weiss, Nathan

    1981-01-01

    A relativistic quantum field theory at finite temperature T=β -1 is equivalent to the same field theory at zero temperature but with one spatial dimension of finite length β. This equivalence is discussed for scalars, for fermions, and for gauge theories. The relationship is checked for free field theory. The translation of correlation functions between the two formulations is described with special emphasis on the nonlocal order parameters of gauge theories. Possible applications are mentioned. (auth)

  1. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields

    Science.gov (United States)

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei

    2018-01-01

    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (Hc2) and critical temperature (Tc). The critical current (Ic) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new Ic measurement system that can carry out accurate Ic measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The Ic measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa2Cu3O7-x(YBCO) tapes Ic determination with different temperatures and magnetic fields.

  2. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields.

    Science.gov (United States)

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei

    2018-01-01

    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (H c2 ) and critical temperature (T c ). The critical current (I c ) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new I c measurement system that can carry out accurate I c measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The I c measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa 2 Cu 3 O 7-x (YBCO) tapes I c determination with different temperatures and magnetic fields.

  3. Time-resolved VUV spectroscopy in the EXTRAP-T2 reversed field pinch

    Science.gov (United States)

    Hedqvist, Anders; Rachlew-Källne, Elisabeth

    1998-09-01

    Time-resolved VUV spectroscopy has been used to investigate the effects of impurities in a reversed field pinch operating with a resistive shell. Results of electron temperature, impurity ion densities, particle confinement time and 0741-3335/40/9/004/img1 together with a description of the interpretation and the equipment are presented.

  4. Temperature Fields in Soft Tissue during LPUS Treatment: Numerical Prediction and Experiment Results

    International Nuclear Information System (INIS)

    Kujawska, Tamara; Wojcik, Janusz; Nowicki, Andrzej

    2010-01-01

    Recent research has shown that beneficial therapeutic effects in soft tissues can be induced by the low power ultrasound (LPUS). For example, increasing of cells immunity to stress (among others thermal stress) can be obtained through the enhanced heat shock proteins (Hsp) expression induced by the low intensity ultrasound. The possibility to control the Hsp expression enhancement in soft tissues in vivo stimulated by ultrasound can be the potential new therapeutic approach to the neurodegenerative diseases which utilizes the known feature of cells to increase their immunity to stresses through the Hsp expression enhancement. The controlling of the Hsp expression enhancement by adjusting of exposure level to ultrasound energy would allow to evaluate and optimize the ultrasound-mediated treatment efficiency. Ultrasonic regimes are controlled by adjusting the pulsed ultrasound waves intensity, frequency, duration, duty cycle and exposure time. Our objective was to develop the numerical model capable of predicting in space and time temperature fields induced by a circular focused transducer generating tone bursts in multilayer nonlinear attenuating media and to compare the numerically calculated results with the experimental data in vitro. The acoustic pressure field in multilayer biological media was calculated using our original numerical solver. For prediction of temperature fields the Pennes' bio-heat transfer equation was employed. Temperature field measurements in vitro were carried out in a fresh rat liver using the 15 mm diameter, 25 mm focal length and 2 MHz central frequency transducer generating tone bursts with the spatial peak temporal average acoustic intensity varied between 0.325 and 1.95 W/cm 2 , duration varied from 20 to 500 cycles at the same 20% duty cycle and the exposure time varied up to 20 minutes. The measurement data were compared with numerical simulation results obtained under experimental boundary conditions. Good agreement between the

  5. The Chamber for Studying Rice Response to Elevated Nighttime Temperature in Field

    Directory of Open Access Journals (Sweden)

    Song Chen

    2013-01-01

    Full Text Available An in situ temperature-controlled field chamber was developed for studying a large population of rice plant under different nighttime temperature treatments while maintaining conditions similar to those in the field during daytime. The system consists of a pipe hoop shed-type chamber with manually removable covers manipulated to provide a natural environment at daytime and a relatively stable and accurate temperature at night. Average air temperatures of 22.4 ± 0.3°C at setting of 22°C, 27.6 ± 0.4°C at 27°C, and 23.8 ± 0.7°C ambient conditions were maintained with the system. No significant horizontal and vertical differences in temperature were found and only slight changes in water temperatures were observed between the chambers and ambient conditions at 36 days after transplanting. A slight variation in CO2 concentration was observed at the end of the treatment during the day, but the 10-μmol CO2 mol−1 difference was too small to alter plant response. The present utilitarian system, which only utilizes an air conditioner/heater, is suitable for studying the effect of nighttime temperature on plant physiological responses with minimal perturbation of other environmental factors. At the same time, it will enable in situ screening of many rice genotypes.

  6. Temperature dependence of high field electromechanical coupling in ferroelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, P M; Cain, M G; Stewart, M, E-mail: paul.weaver@npl.co.u [National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW (United Kingdom)

    2010-04-28

    A study of the temperature dependence of the electromechanical response of ferroelectric lead zirconate titanate (PZT) ceramics at high electric fields (up to 1.3 kV mm{sup -1}) is reported. Simultaneous measurements were performed of strain, electric field and polarization to form a complete response map from room temperature up to 200 {sup 0}C. An electrostrictive model is shown to provide an accurate description of the electromechanical response to high levels of induced polarization and electric field. This provides a method for decoupling strain contributions from thermal expansion and polarization changes. Direct measurements of electrostriction and thermal expansion, above and below the Curie temperature, are reported. Electrostriction coefficients are shown to be temperature dependent in these ceramic materials, with different values above and below the Curie temperature.

  7. Remote sensing of temperature and wind using acoustic travel-time measurements

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Manuela; Fischer, Gabi; Raabe, Armin; Weisse, Frank [Leipzig Univ. (Germany). Inst. fuer Meteorologie; Ziemann, Astrid [Technische Univ. Dresden (Germany). Professur fuer Meteorologie

    2013-04-15

    A remote sensing technique to detect area-averaged temperature and flow properties within an area under investigation, utilizing acoustic travel-time measurements, is introduced. This technique uses the dependency of the speed of acoustic signals on the meteorological parameters temperature and wind along the propagation path. The method itself is scalable: It is applicable for investigation areas with an extent of some hundred square metres as well as for small-scale areas in the range of one square metre. Moreover, an arrangement of the acoustic transducers at several height levels makes it possible to determine profiles and gradients of the meteorological quantities. With the help of two examples the potential of this remote sensing technique for simultaneously measuring averaged temperature and flow fields is demonstrated. A comparison of time histories of temperature and wind values derived from acoustic travel-time measurements with point measurements shows a qualitative agreement whereas calculated root-mean-square errors differ for the two example applications. They amount to 1.4 K and 0.3 m/s for transducer distances of 60 m and 0.4 K and 0.2 m/s for transducer distances in the range of one metre. (orig.)

  8. Wall deffects in field theories at finite temperature

    International Nuclear Information System (INIS)

    Bazeia Filho, D.

    1985-01-01

    We discuss the effect of restauration of simmetry in field theories at finite temperature and its relation with wall deffects which appear as consequence of the instability of the constant field configuration. (M.W.O.) [pt

  9. Low temperature superconductor and aligned high temperature superconductor magnetic dipole system and method for producing high magnetic fields

    Science.gov (United States)

    Gupta, Ramesh; Scanlan, Ronald; Ghosh, Arup K.; Weggel, Robert J.; Palmer, Robert; Anerella, Michael D.; Schmalzle, Jesse

    2017-10-17

    A dipole-magnet system and method for producing high-magnetic-fields, including an open-region located in a radially-central-region to allow particle-beam transport and other uses, low-temperature-superconducting-coils comprised of low-temperature-superconducting-wire located in radially-outward-regions to generate high magnetic-fields, high-temperature-superconducting-coils comprised of high-temperature-superconducting-tape located in radially-inward-regions to generate even higher magnetic-fields and to reduce erroneous fields, support-structures to support the coils against large Lorentz-forces, a liquid-helium-system to cool the coils, and electrical-contacts to allow electric-current into and out of the coils. The high-temperature-superconducting-tape may be comprised of bismuth-strontium-calcium-copper-oxide or rare-earth-metal, barium-copper-oxide (ReBCO) where the rare-earth-metal may be yttrium, samarium, neodymium, or gadolinium. Advantageously, alignment of the large-dimension of the rectangular-cross-section or curved-cross-section of the high-temperature-superconducting-tape with the high-magnetic-field minimizes unwanted erroneous magnetic fields. Alignment may be accomplished by proper positioning, tilting the high-temperature-superconducting-coils, forming the high-temperature-superconducting-coils into a curved-cross-section, placing nonconducting wedge-shaped-material between windings, placing nonconducting curved-and-wedge-shaped-material between windings, or by a combination of these techniques.

  10. Temperature sensitivity analysis of polarity controlled electrostatically doped tunnel field-effect transistor

    Science.gov (United States)

    Nigam, Kaushal; Pandey, Sunil; Kondekar, P. N.; Sharma, Dheeraj

    2016-09-01

    The conventional tunnel field-effect transistors (TFETs) have shown potential to scale down in sub-22 nm regime due to its lower sub-threshold slope and robustness against short-channel effects (SCEs), however, sensitivity towards temperature variation is a major concern. Therefore, for the first time, we investigate temperature sensitivity analysis of a polarity controlled electrostatically doped tunnel field-effect transistor (ED-TFET). Different performance metrics and analog/RF figure-of-merits were considered and compared for both devices, and simulations were performed using Silvaco ATLAS device tool. We found that the variation in ON-state current in ED-TFET is almost temperature independent due to electrostatically doped mechanism, while, it increases in conventional TFET at higher temperature. Above room temperature, the variation in ION, IOFF, and SS sensitivity in ED-TFET are only 0.11%/K, 2.21%/K, and 0.63%/K, while, in conventional TFET the variations are 0.43%/K, 2.99%/K, and 0.71%/K, respectively. However, below room temperature, the variation in ED-TFET ION is 0.195%/K compared to 0.27%/K of conventional TFET. Moreover, it is analysed that the incomplete ionization effect in conventional TFET severely affects the drive current and the threshold voltage, while, ED-TFET remains unaffected. Hence, the proposed ED-TFET is less sensitive towards temperature variation and can be used for cryogenics as well as for high temperature applications.

  11. Microchip Electrophoresis at Elevated Temperatures and High Separation Field Strengths

    Science.gov (United States)

    Mitra, Indranil; Marczak, Steven P.; Jacobson, Stephen C.

    2014-01-01

    We report free-solution microchip electrophoresis performed at elevated temperatures and high separation field strengths. We used microfluidic devices with 11-cm long separation channels to conduct separations at temperatures between 22 (ambient) and 45 °C and field strengths from 100 to 1000 V/cm. To evaluate separation performance, N-glycans were used as a model system and labeled with 8-aminopyrene-1,3,6-trisulfonic acid to impart charge for electrophoresis and render them fluorescent. Typically, increased diffusivity at higher temperatures leads to increased axial dispersion and poor separation performance; however, we demonstrate that sufficiently high separation field strengths can be used to offset the impact of increased diffusivity in order to maintain separation efficiency. Efficiencies for these free-solution separations are the same at temperatures of 25, 35, and 45 °C with separation field strengths ≥500 V/cm. PMID:24114979

  12. Photon polarization tensor in the light front field theory at zero and finite temperatures

    International Nuclear Information System (INIS)

    Silva, Charles da Rocha; Perez, Silvana; Strauss, Stefan

    2012-01-01

    Full text: In recent years, light front quantized field theories have been successfully generalized to finite temperature. The light front frame was introduced by Dirac , and the quantization of field theories on the null-plane has found applications in many branches of physics. In order to obtain the thermal contribution, we consider the hard thermal loop approximation. This technique was developed by Braaten and Pisarski for the thermal quantum field theory at equal times and is particularly useful to extract the leading thermal contributions to the amplitudes in perturbative quantum field theories. In this work, we consider the light front quantum electrodynamics in (3+1) dimensions and evaluate the photon polarization tensor at one loop for both zero and finite temperatures. In the first case, we apply the dimensional regularization method to extract the finite contribution and find the transverse structure for the amplitude in terms of the light front coordinates. The result agrees with one-loop covariant calculation. For the thermal corrections, we generalize the hard thermal loop approximation to the light front and calculate the dominant temperature contribution to the polarization tensor, consistent with the Ward identity. In both zero as well as finite temperature calculations, we use the oblique light front coordinates. (author)

  13. Temperature-dependent dynamic mechanical properties of magnetorheological elastomers under magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Benxiang, E-mail: jubenxiang@qq.com [National Instrument Functional Materials Engineering Technology Research Center, Chongqing 400707 (China); Tang, Rui; Zhang, Dengyou; Yang, Bailian [National Instrument Functional Materials Engineering Technology Research Center, Chongqing 400707 (China); Yu, Miao; Liao, Changrong [College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2015-01-15

    Both anisotropic and isotropic magnetorheological elastomer (MRE) samples were fabricated by using as-prepared polyurethane (PU) matrix and carbonyl iron particles. Temperature-dependent dynamic mechanical properties of MRE were investigated and analyzed. Due to the unique structural features of as-prepared matrix, temperature has a greater impact on the properties of as-prepared MRE, especially isotropic MRE. With increasing of temperature and magnetic field, MR effect of isotropic MRE can reach up to as high as 4176.5% at temperature of 80 °C, and the mechanism of the temperature-dependent in presence of magnetic field was discussed. These results indicated that MRE is a kind of temperature-dependent material, and can be cycled between MRE and MR plastomer (MRP) by varying temperature. - Highlights: • Both anisotropic and isotropic MRE were fabricated by using as-prepared matrix. • Temperature-dependent properties of MRE under magnetic field were investigated. • As-prepared MRE can transform MRE to MRP by adjusting temperature.

  14. Diacetylene time-temperature indicators

    International Nuclear Information System (INIS)

    Patel, G.N.; Yee, K.C.

    1980-01-01

    An improved recording device is described, useful for measuring the integrated time-temperature or integrated radiation-dosage history of an article, comprising a substrate onto which an acetylenic compound, containing at least two conjugated c*c groups, in an inactive form, is deposited. The inactive form is capable of being converted by melt or solvent recrystallization to an active form, which undergoes 1,4-addition polymerization resulting in an irreversible, progressive color change. The color change produced at any given point in time represents an integrated time-temperature history of thermal annealing or integrated radiation-dosage history of exposure to actinic radiation to which an article has been exposed. Also described is a process for producing an inactive form of the acetylenic compound. A film and a fiber, made from the inactive form of an acetylenic compound are also described

  15. Interplay between temperature gradients field and C - E transformation in solidifying rolls

    Directory of Open Access Journals (Sweden)

    W. Wołczyński

    2009-07-01

    Full Text Available At first step of simulation a temperature field for solidifying cast steel and cast iron roll has been performed. The calculation does not take into account the convection in the liquid since convection has no influence on the proposed model for the localization of the C-E (columnar to equiaxed grains transformation. However, it allows to study the dynamics of temperature field temporal behavior in the middle of a mould. It is postulated that for the C-E transition a full accumulation of the heat in the mould has been observed (plateau at the T(t curve. The temporal range of plateau existence corresponds to the incubation time for the full equiaxed grains formation. At the second step of simulation temporal behavior of the temperature gradient field has been studied. Three ranges within temperature gradients field have been distinguished for the operating point situated at the middle of mould: a/ for the formation of columnar grains zone, ( and high temperature gradient 0>>T&0//>>∂∂−∂∂∂∂−∂∂>EttEtrTrT. T - temperature, r - roll radius. It is evident that the heat transfer across the mould decides on the temporal appearance of incubation during which the solidification is significantly arrested and competition between columnar and equiaxed growth occurs. Moreover solidification with positive temperature gradient transforms into solidification with negative temperature gradient (locally after the incubation. A simulation has been performed for the cast steel and cast iron rolls solidifying as in industry condition. Since the incubation divides the roll into to parts (first with columnar structure, second with equiaxed structure some experiments dealing with solidification have been made in laboratory scale. Finally, observations of the macrosegregation or microsegregation and phase or structure appearance in the cast iron ingot / roll (made in laboratory has also been done in order to confront them with theoretical predictions

  16. Nambu-Goldstone mechanism in real-time thermal field theory

    International Nuclear Information System (INIS)

    Zhou Bangrong

    1998-08-01

    In a one-generation fermion condensate scheme of electroweak symmetry breaking, it is proven that at finite temperature T below the symmetry restoration temperature T c , a massive Higgs boson and three massless Nambu-Goldstone bosons could emerge from the spontaneous breaking of electroweak group SU L (2)xU Y (1)→U Q (1) if the two fermion flavors in the one generation are mass-degenerate, thus the Goldstone Theorem is rigorously valid in this case. However, if the two fermion flavors have unequal masses, owing to 'thermal fluctuation', the Goldstone Theorem will be true only approximately for a very large momentum cut-off Λ in zero temperature fermion loop or for low energy scales. All possible pinch singularities are proven to cancel each other, as is expected in a real-time thermal field theory. (author)

  17. Excess electron mobility in ethane. Density, temperature, and electric field effects

    International Nuclear Information System (INIS)

    Doeldissen, W.; Schmidt, W.F.; Bakale, G.

    1980-01-01

    The excess electron mobility in liquid ethane was measured under orthobaric conditions as a function of temperature and electric field strength up to the critical temperature at 305.33 K. The low field mobility was found to rise strongly with temperature and exhibits a maximum value of 44 cm 2 V -1 s -1 at 2 0 below the critical temperature. At temperatures above 260 K the electron drift velocity shows a sublinear field dependence at high values of the electric field strength. These observations lead to the supposition that in liquid ethane a transition from transport via localized states to transport in extended states occurs. Measurements were also performed in fluid ethane at densities from 2.4 to 12.45 mol L -1 and temperatures from 290 to 340 K. On isochores in the vicinity of the critical density, an increase of the low field mobility with temperature was observed. This effect was found to disappear both at low (rho = 2.4 mol L -1 ) and high densities (rho greater than or equal to 9.2 mol L -1 ). In this density range, a sublinear field dependence of the drift velocities at high field strengths was noted. The critical velocity associated with the appearance of hot electrons was observed to decrease with higher densities indicating a smaller fractional energy transfer in electron molecule collisions. A compilation of electron mobilities in gaseous and liquid ethane shows that, up to densitiesof rho = 9.5 mol L -1 , μ proportional to n -1 is fulfilled if temperature effects are ignored. At intermediate densities, 9 mol L -1 -1 , a density dependence of μ proportional to rho -5 is found followed by a stronger mobility decrease toward the triple point. Positive ion mobilities measured under orthobaric conditions followed Walden's rule

  18. [The design of heat dissipation of the field low temperature box for storage and transportation].

    Science.gov (United States)

    Wei, Jiancang; Suin, Jianjun; Wu, Jian

    2013-02-01

    Because of the compact structure of the field low temperature box for storage and transportation, which is due to the same small space where the compressor, the condenser, the control circuit, the battery and the power supply device are all placed in, the design for heat dissipation and ventilation is of critical importance for the stability and reliability of the box. Several design schemes of the heat dissipation design of the box were simulated using the FLOEFD hot fluid analysis software in this study. Different distributions of the temperature field in every design scheme were constructed intimately in the present study. It is well concluded that according to the result of the simulation analysis, the optimal heat dissipation design is decent for the field low temperature box for storage and transportation, and the box can operate smoothly for a long time using the results of the design.

  19. Temperature measurement error due to the effects of time varying magnetic fields on thermocouples with ferromagnetic thermoelements

    International Nuclear Information System (INIS)

    McDonald, D.W.

    1977-01-01

    Thermocouples with ferromagnetic thermoelements (iron, Alumel, Nisil) are used extensively in industry. We have observed the generation of voltage spikes within ferromagnetic wires when the wires are placed in an alternating magnetic field. This effect has implications for thermocouple thermometry, where it was first observed. For example, the voltage generated by this phenomenon will contaminate the thermocouple thermal emf, resulting in temperature measurement error

  20. Dynamic phase transition in the kinetic spin-1 Blume-Capel model: Phase diagrams in the temperature and crystal-field interaction plane

    International Nuclear Information System (INIS)

    Keskin, M.; Canko, O.; Temizer, U.

    2007-01-01

    Within a mean-field approach, the stationary states of the kinetic spin-1 Blume-Capel model in the presence of a time-dependent oscillating external magnetic field is studied. The Glauber-type stochastic dynamics is used to describe the time evolution of the system and obtain the mean-field dynamic equation of motion. The dynamic phase-transition points are calculated and phase diagrams are presented in the temperature and crystal-field interaction plane. According to the values of the magnetic field amplitude, three fundamental types of phase diagrams are found: One exhibits a dynamic tricritical point, while the other two exhibit a dynamic zero-temperature critical point

  1. Zeta-function regularization approach to finite temperature effects in Kaluza-Klein space-times

    International Nuclear Information System (INIS)

    Bytsenko, A.A.; Vanzo, L.; Zerbini, S.

    1992-01-01

    In the framework of heat-kernel approach to zeta-function regularization, in this paper the one-loop effective potential at finite temperature for scalar and spinor fields on Kaluza-Klein space-time of the form M p x M c n , where M p is p-dimensional Minkowski space-time is evaluated. In particular, when the compact manifold is M c n = H n /Γ, the Selberg tracer formula associated with discrete torsion-free group Γ of the n-dimensional Lobachevsky space H n is used. An explicit representation for the thermodynamic potential valid for arbitrary temperature is found. As a result a complete high temperature expansion is presented and the roles of zero modes and topological contributions is discussed

  2. Room Temperature Silicene Field-Effect Transistors

    Science.gov (United States)

    Akinwande, Deji

    Silicene, a buckled Si analogue of graphene, holds significant promise for future electronics beyond traditional CMOS. In our predefined experiments via encapsulated delamination with native electrodes approach, silicene devices exhibit an ambipolar charge transport behavior, corroborating theories on Dirac band in Ag-free silicene. Monolayer silicene device has extracted field-effect mobility within the theoretical expectation and ON/OFF ratio greater than monolayer graphene, while multilayer silicene devices show decreased mobility and gate modulation. Air-stability of silicene devices depends on the number of layers of silicene and intrinsic material structure determined by growth temperature. Few or multi-layer silicene devices maintain their ambipolar behavior for days in contrast to minutes time scale for monolayer counterparts under similar conditions. Multilayer silicene grown at different temperatures below 300oC possess different intrinsic structures and yield different electrical property and air-stability. This work suggests a practical prospect to enable more air-stable silicene devices with layer and growth condition control, which can be leveraged for other air-sensitive 2D materials. In addition, we describe quantum and classical transistor device concepts based on silicene and related buckled materials that exploit the 2D topological insulating phenomenon. The transistor device physics offer the potential for ballistic transport that is robust against scattering and can be employed for both charge and spin transport. This work was supported by the ARO.

  3. Effect of a background electric field on the Hagedorn temperature

    International Nuclear Information System (INIS)

    Ferrer, E.J.; Incera, V. de la; Fradkin, E.S.

    1990-07-01

    We compute the one-loop free energy of the open neutral string gas in a constant electromagnetic background. Starting from this result we show that the Hagedorn temperature of this hot string gas depends on the background electric field. The larger the electric field, the lower the Hagedorn temperature is. (author). 13 refs

  4. Online monitoring of the two-dimensional temperature field in a boiler furnace based on acoustic computed tomography

    International Nuclear Information System (INIS)

    Zhang, Shiping; Shen, Guoqing; An, Liansuo; Niu, Yuguang

    2015-01-01

    Online monitoring of the temperature field is crucial to optimally adjust combustion within a boiler. In this paper, acoustic computed tomography (CT) technology was used to obtain the temperature profile of a furnace cross-section. The physical principles behind acoustic CT, acoustic signals and time delay estimation were studied. Then, the technique was applied to a domestic 600-MW coal-fired boiler. Acoustic CT technology was used to monitor the temperature field of the cross-section in the boiler furnace, and the temperature profile was reconstructed through ART iteration. The linear sweeping frequency signal was adopted as the sound source signal, whose sweeping frequency ranged from 500 to 3000 Hz with a sweeping cycle of 0.1 s. The generalized cross-correlation techniques with PHAT and ML were used as the time delay estimation method when the boiler was in different states. Its actual operation indicated that the monitored images accurately represented the combustion state of the boiler, and the acoustic CT system was determined to be accurate and reliable. - Highlights: • An online monitoring approach to monitor temperature field in a boiler furnace. • The paper provides acoustic CT technology to obtain the temperature profile of a furnace cross-section. • The temperature profile was reconstructed through ART iteration. • The technique is applied to a domestic 600-MW coal-fired boiler. • The monitored images accurately represent the combustion state of the boiler

  5. Probing High Temperature Superconductors with Magnetometry in Ultrahigh Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lu [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-07-26

    The objective of this research is to investigate the high-field magnetic properties of high temperature superconductors, materials that conduct electricity without loss. A technique known as high-resolution torque magnetometry that was developed to directly measure the magnetization of high temperature superconductors. This technique was implemented using the 65 Tesla pulsed magnetic field facility that is part of the National High Magnetic Field Laboratory at Los Alamos National Laboratory. This research addressed unanswered questions about the interplay between magnetism and superconductivity, determine the electronic structure of high temperature superconductors, and shed light on the mechanism of high temperature superconductivity and on potential applications of these materials in areas such as energy generation and power transmission. Further applications of the technology resolve the novel physical phenomena such as correlated topological insulators, and spin liquid state in quantum magnets.

  6. Effect of steady and time-harmonic magnetic fields on macrosegragation in alloy solidification

    Energy Technology Data Exchange (ETDEWEB)

    Incropera, F.P.; Prescott, P.J. [Purdue Univ., West Lafayette, IN (United States)

    1995-12-31

    Buoyancy-induced convection during the solidification of alloys can contribute significantly to the redistribution of alloy constituents, thereby creating large composition gradients in the final ingot. Termed macrosegregation, the condition diminishes the quality of the casting and, in the extreme, may require that the casting be remelted. The deleterious effects of buoyancy-driven flows may be suppressed through application of an external magnetic field, and in this study the effects of both steady and time-harmonic fields have been considered. For a steady magnetic field, extremely large field strengths would be required to effectively dampen convection patterns that contribute to macrosegregation. However, by reducing spatial variations in temperature and composition, turbulent mixing induced by a time-harmonic field reduces the number and severity of segregates in the final casting.

  7. Topics on field theories at finite temperature

    International Nuclear Information System (INIS)

    Eboli, O.J.P.

    1985-01-01

    The dynamics of a first order phase transition through the study of the decay rate of the false vacuum in the high temperature limit are analysed. An alternative approach to obtain the phase diagram of a field theory which is based on the study of the free energy of topological defects, is developed the behavior of coupling constants with the help of the Dyson-Schwinger equations at finite temperature, is evaluated. (author) [pt

  8. Field of Temperature Measurement by Virtual Instrumentation

    Directory of Open Access Journals (Sweden)

    Libor HARGAŠ

    2009-01-01

    Full Text Available This paper introduces about temperature determination for given dot of picture through image analysis. Heat transfer is the transition of thermal energy from a heated item to a cooler item. Main method of measurement of temperature in image is Pattern Matching, color scale detection and model detection. We can measure temperature dependency at time for selected point of thermo vision images. This measurement gives idea about the heat transfer at time dependences.

  9. Hybrid Prediction Model of the Temperature Field of a Motorized Spindle

    Directory of Open Access Journals (Sweden)

    Lixiu Zhang

    2017-10-01

    Full Text Available The thermal characteristics of a motorized spindle are the main determinants of its performance, and influence the machining accuracy of computer numerical control machine tools. It is important to accurately predict the thermal field of a motorized spindle during its operation to improve its thermal characteristics. This paper proposes a model to predict the temperature field of a high-speed and high-precision motorized spindle under different working conditions using a finite element model and test data. The finite element model considers the influence of the parameters of the cooling system and the lubrication system, and that of environmental conditions on the coefficient of heat transfer based on test data for the surface temperature of the motorized spindle. A genetic algorithm is used to optimize the coefficient of heat transfer of the spindle, and its temperature field is predicted using a three-dimensional model that employs this optimal coefficient. A prediction model of the 170MD30 temperature field of the motorized spindle is created and simulation data for the temperature field are compared with the test data. The results show that when the speed of the spindle is 10,000 rpm, the relative mean prediction error is 1.5%, and when its speed is 15,000 rpm, the prediction error is 3.6%. Therefore, the proposed prediction model can predict the temperature field of the motorized spindle with high accuracy.

  10. Determining the field emitter temperature during laser irradiation in the pulsed laser atom probe

    International Nuclear Information System (INIS)

    Kellogg, G.L.

    1981-01-01

    Three methods are discussed for determining the field emitter temperature during laser irradiation in the recently developed Pulsed Laser Atom Probe. A procedure based on the reduction of the lattice evaporation field with increasing emitter temperature is found to be the most convenient and reliable method between 60 and 500 K. Calibration curves (plots of the evaporation field versus temperature) are presented for dc and pulsed field evaporation of W, Mo, and Rh. These results show directly the important influence of the evaporation rate on the temperature dependence of the evaporation field. The possibility of a temperature calibration based on the ionic charge state distribution of field evaporated lattice atoms is also discussed. The shift in the charge state distributions which occurs when the emitter temperature is increased and the applied field strength is decreased at a constant rate of evaporation is shown to be due to the changing field and not the changing temperature. Nevertheless, the emitter temperature can be deduced from the charge state distribution for a specified evaporation rate. Charge state distributions as a function of field strength and temperature are presented for the same three materials. Finally, a preliminary experiment is reported which shows that the emitter temperature can be determined from field ion microscope observations of single atom surface diffusion over low index crystal planes. This last calibration procedure is shown to be very useful at higher temperatures (>600 K) where the other two methods become unreliable

  11. Heat source reconstruction from noisy temperature fields using an optimised derivative Gaussian filter

    Science.gov (United States)

    Delpueyo, D.; Balandraud, X.; Grédiac, M.

    2013-09-01

    The aim of this paper is to present a post-processing technique based on a derivative Gaussian filter to reconstruct heat source fields from temperature fields measured by infrared thermography. Heat sources can be deduced from temperature variations thanks to the heat diffusion equation. Filtering and differentiating are key-issues which are closely related here because the temperature fields which are processed are unavoidably noisy. We focus here only on the diffusion term because it is the most difficult term to estimate in the procedure, the reason being that it involves spatial second derivatives (a Laplacian for isotropic materials). This quantity can be reasonably estimated using a convolution of the temperature variation fields with second derivatives of a Gaussian function. The study is first based on synthetic temperature variation fields corrupted by added noise. The filter is optimised in order to reconstruct at best the heat source fields. The influence of both the dimension and the level of a localised heat source is discussed. Obtained results are also compared with another type of processing based on an averaging filter. The second part of this study presents an application to experimental temperature fields measured with an infrared camera on a thin plate in aluminium alloy. Heat sources are generated with an electric heating patch glued on the specimen surface. Heat source fields reconstructed from measured temperature fields are compared with the imposed heat sources. Obtained results illustrate the relevancy of the derivative Gaussian filter to reliably extract heat sources from noisy temperature fields for the experimental thermomechanics of materials.

  12. Modeling of the Temperature Field Recovery in the Oil Pool

    Science.gov (United States)

    Khabibullin, I. L.; Davtetbaev, A. Ya.; Mar'in, D. F.; Khisamov, A. A.

    2018-05-01

    This paper considers the problem on mathematical modeling of the temperature field recovery in the oil pool upon termination of injection of water into the pool. The problem is broken down into two stages: injection of water and temperature and pressure recovery upon termination of injection. A review of the existing mathematical models is presented, analytical solutions for a number of cases have been constructed, and a comparison of the analytical solutions of different models has been made. In the general form, the expression has been obtained that permits determining the temperature change in the oil pool upon termination of injection of water (recovery of the temperature field).

  13. Temperature dependency of silicon structures for magnetic field gradient sensing

    Science.gov (United States)

    Dabsch, Alexander; Rosenberg, Christoph; Stifter, Michael; Keplinger, Franz

    2018-02-01

    This work describes the temperature dependence of two sensors for magnetic field gradient sensors and demonstrates a structure to compensate for the drift of resonance frequency over a wide temperature range. The temperature effect of the sensing element is based on internal stresses induced by the thermal expansion of material, therefore FEM is used to determine the change of the eigenvalues of the sensing structure. The experimental setup utilizes a Helmholtz coil system to generate the magnetic field and to excite the MEMS structure with Lorentz forces. The MEMS structure is placed on a plate heated with resistors and cooled by a Peltier element to control the plate temperature. In the second part, we describe how one can exploit temperature sensitivity for temperature measurements and we show the opportunity to include the temperature effect to increase the sensitivity of single-crystal silicon made flux density gradient sensors.

  14. Kinetics of the spin-2 Blume-Capel model under a time-dependent oscillating external field

    International Nuclear Information System (INIS)

    Keskin, M.; Canko, O.; Ertas, M.

    2007-01-01

    Within a mean-field approach and using the Glauber-type stochastic dynamics, we study the kinetics of the spin-2 Blume-Capel model in the presence of a time-varying (sinusoidal) magnetic field. We investigate the time dependence of the average order parameter and the behavior of the average order parameter in a period, which is also called the dynamic order parameter, as a function of the reduced temperature. The nature (continuous and discontinuous) of the transition is characterized by the dynamic order parameter. The dynamic phase transition points are obtained and the phase diagrams are presented in the reduced magnetic field amplitude and reduced temperature plane. The phase diagrams exhibit one dynamic tricritical point; besides a disordered and an ordered phases, there are three phase coexistence regions that are strongly dependent on the interaction parameter

  15. Seedling Emergence and Phenotypic Response of Common Bean Germplasm to Different Temperatures under Controlled Conditions and in Open Field.

    Science.gov (United States)

    De Ron, Antonio M; Rodiño, Ana P; Santalla, Marta; González, Ana M; Lema, María J; Martín, Isaura; Kigel, Jaime

    2016-01-01

    Rapid and uniform seed germination and seedling emergence under diverse environmental conditions is a desirable characteristic for crops. Common bean genotypes (Phaseolus vulgaris L.) differ in their low temperature tolerance regarding growth and yield. Cultivars tolerant to low temperature during the germination and emergence stages and carriers of the grain quality standards demanded by consumers are needed for the success of the bean crop. The objectives of this study were (i) to screen the seedling emergence and the phenotypic response of bean germplasm under a range of temperatures in controlled chamber and field conditions to display stress-tolerant genotypes with good agronomic performances and yield potential, and (ii) to compare the emergence of bean seedlings under controlled environment and in open field conditions to assess the efficiency of genebanks standard germination tests for predicting the performance of the seeds in the field. Three trials were conducted with 28 dry bean genotypes in open field and in growth chamber under low, moderate, and warm temperature. Morpho-agronomic data were used to evaluate the phenotypic performance of the different genotypes. Cool temperatures resulted in a reduction of the rate of emergence in the bean genotypes, however, emergence and early growth of bean could be under different genetic control and these processes need further research to be suitably modeled. Nine groups arose from the Principal Component Analysis (PCA) representing variation in emergence time and proportion of emergence in the controlled chamber and in the open field indicating a trend to lower emergence in large and extra-large seeded genotypes. Screening of seedling emergence and phenotypic response of the bean germplasm under a range of temperatures in controlled growth chambers and under field conditions showed several genotypes, as landraces 272, 501, 593, and the cultivar Borlotto, with stress-tolerance at emergence, and high yield

  16. Seedling Emergence and Phenotypic Response of Common Bean Germplasm to Different Temperatures under Controlled Conditions and in Open Field

    Directory of Open Access Journals (Sweden)

    Antonio M. DE RON

    2016-08-01

    Full Text Available Rapid and uniform seed germination and seedling emergence under diverse environmental conditions is a desirable characteristic for crops. Common bean genotypes (Phaseolus vulgaris L. differ in their low temperature tolerance regarding growth and yield. Cultivars tolerant to low temperature during the germination and emergence stages and carriers of the grain quality standards demanded by consumers are needed for the success of the bean crop. The objectives of this study were i to screen the seedling emergence and the phenotypic response of bean germplasm under a range of temperatures in controlled chamber and field conditions to display stress-tolerant genotypes with good agronomic performances and yield potential, and ii to compare the emergence of bean seedlings under controlled environment and in open field conditions to assess the efficiency of genebanks standard germination tests for predicting the performance of the seeds in the field. Three trials were conducted with 28 dry bean genotypes in open field and in growth chamber under low, moderate and warm temperature. Morpho-agronomic data were used to evaluate the phenotypic performance of the different genotypes. Cool temperatures resulted in a reduction of the rate of emergence in the bean genotypes, however, emergence and early growth of bean could be under different genetic control and these processes need further research to be suitably modeled. Nine groups arose from the Principal Component Analysis (PCA representing variation in emergence time and proportion of emergence in the controlled chamber and in the open field indicating a trend to lower emergence in large and extra-large seeded genotypes. Screening of seedling emergence and phenotypic response of the bean germplasm under a range of temperatures in controlled growth chambers and under field conditions showed several genotypes, as landraces 272, 501, 593 and the cultivar Borlotto, with stress-tolerance at emergence and high

  17. General temperature field measurement by digital holography

    Czech Academy of Sciences Publication Activity Database

    Doleček, Roman; Psota, Pavel; Lédl, Vít; Vít, Tomáš; Václavík, Jan; Kopecký, V.

    2013-01-01

    Roč. 52, č. 1 (2013), A319-A325 ISSN 1559-128X Institutional support: RVO:61389021 Keywords : digital holography * temperature field measurement * tomography Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.649, year: 2013

  18. Quantum Field Theory at non zero temperature

    International Nuclear Information System (INIS)

    Alvarez-Estrada, R.

    1989-01-01

    The formulations of the Φ 4 Quantum Field Theory and of Quantum Electrodynamics in I+d dimensions (d spatial dimensions) at non-zero temperature are reviewed. The behaviours of all those theories in the regime of large distances and high temperatures are surveyed. Only results are reported, all technicalities being omitted. The leading high-temperature contributions to correlation functions, to all perturbative orders, in those theories turn out to be also given by simpler theories, having much milder (superrenormalizable) ultraviolet behaviour and special mass renormalizations. In particular, the triviality/non-triviality issue for the Φ 4 theory in 1+3 dimensions is discussed briefly. (Author)

  19. Peculiarities of the temperature dependences of trapped magnetic field in Y-HTSC ceramics

    International Nuclear Information System (INIS)

    Sukhanov, A.A.; Omel'chenko, V.I.

    2001-01-01

    The temperature dependence H t (T) of trapped magnetic field (TMF) in Y-HTSC ceramics are studied. For the fields-cooled trapping the H t (T) dependences coincide with the dependences of H t on trapping temperature T t . Both dependences fall off monotonously with increasing temperature, and for low fields they reach saturation as temperature is decreased. When the trapping is induced by the field pulse after zero cooling the H t (T t ) dependences show a maximum while the H t (T) curves drop monotonously with increase in temperature. In this case the rate of their dropping increases with decrease in pulse magnitude and the temperature of TMF vanishing decreases with T t and H. The results are discussed and it is shown that contrast to the Been model the theory based on the model of TMF in superconductive loops gives an adequate analytical description of the observed features of the temperature dependences of trapped magnetic field in the Y-HTSC ceramics

  20. Inverse estimation of the temperature field within a gas-filled duct section by use of acoustic data

    International Nuclear Information System (INIS)

    Kim, Tae-Kyoon; Ih, Jeong-Guon

    2015-01-01

    Knowledge of the temperature distribution of an in-duct gaseous medium is essential in the monitoring of combustion status. To obtain the temperature distribution, an inverse relationship based on the Radon transform is formulated by using the measured time retardation data from a set of acoustic sensors and actuators. The entire spatial distribution can be obtained by interpolating the estimated discrete temperature data using either a path-based or spaced-based method. An interpolation method then determines the precision of the final imaging result. The characteristics and performance of two interpolation methods are investigated in a simulation study by reconstructing the temperature distribution of a rectangular cross-section. To calculate the temperature field, the path-based interpolation method adopts a direct expression of temperature variation along the propagation path, whereas the space-based interpolation method uses data obtained at predetermined points deployed inside the field. The average reconstruction accuracy of the space-based interpolation for temperature fields with 1 and 4 local maxima is 22% and 183% better than that of path-based interpolation, respectively. Also, the space-based interpolation method is more robust with regard to measurement noise than the path-based interpolation method. (paper)

  1. Real-time optoacoustic monitoring of temperature in tissues

    International Nuclear Information System (INIS)

    Larina, Irina V; Larin, Kirill V; Esenaliev, Rinat O

    2005-01-01

    To improve the safety and efficacy of thermal therapy, it is necessary to map tissue temperature in real time with submillimetre spatial resolution. Accurate temperature maps may provide the necessary control of the boundaries of the heated regions and minimize thermal damage to surrounding normal tissues. Current imaging modalities fail to monitor tissue temperature in real time with high resolution and accuracy. We investigated a non-invasive optoacoustic method for accurate, real-time monitoring of tissue temperature during thermotherapy. In this study, we induced temperature gradients in tissue and tissue-like samples and monitored the temperature distribution using the optoacoustic technique. The fundamental harmonic of a Q-switched Nd : YAG laser (λ = 1064 nm) was used for optoacoustic wave generation and probing of tissue temperature. The tissue temperature was also monitored with a multi-sensor temperature probe inserted in the samples. Good agreement between optoacoustically measured and actual tissue temperatures was obtained. The accuracy of temperature monitoring was better than 1 0 C, while the spatial resolution was about 1 mm. These data suggest that the optoacoustic technique has the potential to be used for non-invasive, real-time temperature monitoring during thermotherapy

  2. Evaluation of the Precision of Satellite-Derived Sea Surface Temperature Fields

    Science.gov (United States)

    Wu, F.; Cornillon, P. C.; Guan, L.

    2016-02-01

    A great deal of attention has been focused on the temporal accuracy of satellite-derived sea surface temperature (SST) fields with little attention being given to their spatial precision. Specifically, the primary measure of the quality of SST fields has been the bias and variance of selected values minus co-located (in space and time) in situ values. Contributing values, determined by the location of the in situ values and the necessity that the satellite-derived values be cloud free, are generally widely separated in space and time hence provide little information related to the pixel-to-pixel uncertainty in the retrievals. But the main contribution to the uncertainty in satellite-derived SST retrievals relates to atmospheric contamination and because the spatial scales of atmospheric features are, in general, large compared with the pixel separation of modern infra-red sensors, the pixel-to-pixel uncertainty is often smaller than the accuracy determined from in situ match-ups. This makes selection of satellite-derived datasets for the study of submesoscale processes, for which the spatial structure of the upper ocean is significant, problematic. In this presentation we present a methodology to characterize the spatial precision of satellite-derived SST fields. The method is based on an examination of the high wavenumber tail of the 2-D spectrum of SST fields in the Sargasso Sea, a low energy region of the ocean close to the track of the MV Oleander, a container ship making weekly roundtrips between New York and Bermuda, with engine intake temperatures sampled every 75 m along track. Important spectral characteristics are the point at which the satellite-derived spectra separate from the Oleander spectra and the spectral slope following separation. In this presentation a number of high resolution 375 m to 10 km SST datasets are evaluated based on this approach.

  3. On the initial conditions of time-dependent mean-field equations of evolution. Pt. 2

    International Nuclear Information System (INIS)

    Troudet, T.; Paris-11 Univ., 91 - Orsay

    1986-01-01

    We analyze the problem so far untouched of determining the initial mean-field wavefunction in the context of zero-temperature mean-field descriptions of time-dependent expectation values and quantum fluctuations of nuclear observables. The nucleus, at zero temperature, is taken to be in a low-lying excited many-body eigenstate and is approximated by the corresponding RPA wavefunction as a continuous superposition of coherent states (i.e. Slater determinants). A generating function Gsub(A)(lambda) for time-dependent expectation values and quantum fluctuations is constructed within the formalism of functional integration. By applying the saddle-point method to the functional action of Gsub(A)(lambda) and then taking its lambda-derivatives, we recover the well-known TDHF theory and propose a simple determination of the initial Slater determinant for an appropriate mean-field description of time-dependent expectation values. The analog mean-field description of quadratic-quantum fluctuations proceeds similarly and in addition includes the contribution of the uncorrelated TDHF-RPA phonons coupled to collective excitations of the initial (static) mean-field configuration. When the collective TDHF-RPA excitations are solely taken into account, we obtain an improved version of the Balian-Veneroni dispersion formula by showing how to determine the initial mean-field wavefunction. By first taking the lambda-derivatives of Gsub(A)(lambda) before applying the saddle-point method, the initial mean-field wavefunction is found to be non-linearly coupled to the mean-field dynamics themselves. In return, and in contrast to the first quantization scheme, these both depend non-trivially upon the observable A being measured so that approximations must be proposed to simplify the resulting mean-field equations. (orig.)

  4. Micrometeorological function of paddy fields that control temperature conditions; Suiden no ondo kankyo kanwa kino

    Energy Technology Data Exchange (ETDEWEB)

    Oue, H; Fukushima, T [Ehime University, Ehime (Japan). Faculty of Agriculture; Maruyama, T [Kyoto University, Kyoto (Japan). Faculty of Agriculture

    1994-10-01

    A verification was conducted on the micrometeorological function of paddy fields that control temperature conditions. A movement measurement was executed in order to elucidate air temperature distribution in the paddy field area. The observation revealed the following matters: air temperatures over paddy fields and farm lands are lower than those at bare lands and paved areas; air temperatures downwind the paddy fields are lower than those in residential areas; and air temperatures on the paddy fields are lower than those on the farm lands. Measurement of the air temperature distribution in paddy fields revealed that a paddy field becomes a heat absorbing source in the process of breeze blowing over the paddy field, and alleviates the temperature environment in the downwind area. A discussion was given on the specificity of surface temperature of the paddy field from the above result. It is the feature of paddy fields in summer that the energy exceeding the radiated amount is distributed into latent heat around the noon of a day. The surface temperatures are in the decreasing order of non-irrigated bare land > irrigated bare land > atmometer water surface > farm land > paddy field. The upper limit for the paddy field surface was around 28{degree}C. Surface temperature forming factors were discussed, and the surface temperature parameters (relative humidity, evaporation efficiency, etc.) were derived on each type of the land surface. The surface temperatures on each land surface were calculated using the parameter values. The result revealed that a paddy field having high relative humidity and evaporation efficiency has an effect to suppress the surface temperatures. 6 refs., 10 figs., 1 tab.

  5. Time temperature indicators as devices intelligent packaging

    Directory of Open Access Journals (Sweden)

    Adriana Pavelková

    2013-01-01

    Full Text Available Food packaging is an important part of food production. Temperature is a one of crucial factor which affecting the quality and safety of food products during distribution, transport and storage. The one way of control of food quality and safety is the application of new packaging systems, which also include the intelligent or smart packaging. Intelligent packaging is a packaging system using different indicators for monitoring the conditions of production, but in particular the conditions during transport and storage. Among these indicators include the time-temperature indicators to monitor changes in temperature, which is exposed the product and to inform consumers about the potential risks associated with consumption of these products. Time temperature indicators are devices that show an irreversible change in a physical characteristic, usually color or shape, in response to temperature history. Some are designed to monitor the evolution of temperature with time along the distribution chain and others are designed to be used in the consumer packages.

  6. Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field

    KAUST Repository

    Zhang, Senfu; Zhang, Junwei; Zhang, Qiang; Barton, Craig; Neu, Volker; Zhao, Yuelei; Hou, Zhipeng; Wen, Yan; Gong, Chen; Kazakova, Olga; Wang, Wenhong; Peng, Yong; Garanin, Dmitry A.; Chudnovsky, Eugene M.; Zhang, Xixiang

    2018-01-01

    Magnetic skyrmions are topologically protected nanoscale spin textures exhibiting fascinating physical behaviors. Recent observations of room temperature skyrmions in sputtered multilayer films are an important step towards their use in ultra-low power devices. Such practical applications prefer skyrmions to be stable at zero magnetic fields and room temperature. Here, we report the creation of skyrmion lattices in Pt/Co/Ta multilayers by a scanning local field using magnetic force microscopy tips. We also show that those newly created skyrmion lattices are stable at both room temperature and zero fields. Lorentz transmission electron microscopy measurements reveal that the skyrmions in our films are of Néel-type. To gain a deeper understanding of the mechanism behind the creation of a skyrmion lattice by the scanning of local fields, we perform micromagnetic simulations and find the experimental results to be in agreement with our simulation data. This study opens another avenue for the creation of skyrmion lattices in thin films.

  7. Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field

    KAUST Repository

    Zhang, Senfu

    2018-03-29

    Magnetic skyrmions are topologically protected nanoscale spin textures exhibiting fascinating physical behaviors. Recent observations of room temperature skyrmions in sputtered multilayer films are an important step towards their use in ultra-low power devices. Such practical applications prefer skyrmions to be stable at zero magnetic fields and room temperature. Here, we report the creation of skyrmion lattices in Pt/Co/Ta multilayers by a scanning local field using magnetic force microscopy tips. We also show that those newly created skyrmion lattices are stable at both room temperature and zero fields. Lorentz transmission electron microscopy measurements reveal that the skyrmions in our films are of Néel-type. To gain a deeper understanding of the mechanism behind the creation of a skyrmion lattice by the scanning of local fields, we perform micromagnetic simulations and find the experimental results to be in agreement with our simulation data. This study opens another avenue for the creation of skyrmion lattices in thin films.

  8. Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field

    Science.gov (United States)

    Zhang, Senfu; Zhang, Junwei; Zhang, Qiang; Barton, Craig; Neu, Volker; Zhao, Yuelei; Hou, Zhipeng; Wen, Yan; Gong, Chen; Kazakova, Olga; Wang, Wenhong; Peng, Yong; Garanin, Dmitry A.; Chudnovsky, Eugene M.; Zhang, Xixiang

    2018-03-01

    Magnetic skyrmions are topologically protected nanoscale spin textures exhibiting fascinating physical behaviors. Recent observations of room temperature skyrmions in sputtered multilayer films are an important step towards their use in ultra-low power devices. Such practical applications prefer skyrmions to be stable at zero magnetic fields and room temperature. Here, we report the creation of skyrmion lattices in Pt/Co/Ta multilayers by a scanning local field using magnetic force microscopy tips. We also show that those newly created skyrmion lattices are stable at both room temperature and zero fields. Lorentz transmission electron microscopy measurements reveal that the skyrmions in our films are of Néel-type. To gain a deeper understanding of the mechanism behind the creation of a skyrmion lattice by the scanning of local fields, we perform micromagnetic simulations and find the experimental results to be in agreement with our simulation data. This study opens another avenue for the creation of skyrmion lattices in thin films.

  9. Electron temperature in field reversed configurations and theta pinches with closed magnetic field lines

    International Nuclear Information System (INIS)

    Newton, A.A.

    1986-01-01

    Field-reversed configurations (FRC) and theta pinches with trapped reversed bias field are essentially the same magnetic confinement systems using closed magnetic field lines inside an open-ended magnetic flux tube. A simple model of joule heating and parallel electron thermal conduction along the open flux lines to an external heat sink gives the electron temperature as Tsub(e)(eV) approx.= 0.05 Bsup(2/3)(G)Lsup(1/3)(cm), where B is the magnetic field and L is the coil length. This model appears to agree with measurements from present FRC experiments and past theta-pinch experiments which cover a range of 40-900 eV. The energy balance in the model is dominated by (a) parallel electron thermal conduction along the open field lines which has a steep temperature dependence, Q is proportional to Tsub(e)sup(7/2), and (b) the assumed rapid perpendicular transport in the plasma bulk which, in experiments to date, may be due to the small number of ion gyroradii across the plasma. (author)

  10. Time-temperature-sensitization and time-temperature-precipitation behavior of alloy 625

    International Nuclear Information System (INIS)

    Koehler, M.; Heubner, U.

    1996-01-01

    Time-Temperature-Sensitization diagrams have been established for a low-carbon version of alloy 625 (UNS N06625). Sensitization in terms of a 50 microm (2 mils) intergranular penetration criterion starts after about 3 h aging time at 750 C (soft annealed condition) or after less than 1 h aging time at 800 C (solution annealed condition) when tested according to ASTM-G 28 method A. Grain boundary precipitation of carbides occurs during aging of both the soft annealed and the solution annealed material, but the soft annealed material exhibits a more pronounced general precipitation of Ni 3 (Nb,Mo) phase giving rise to more distinct loss of ductility. Sensitization of alloy 625 may be retarded by lowering its iron content

  11. Numerical study of droplet evaporation in coupled high-temperature and electrostatic fields

    Directory of Open Access Journals (Sweden)

    Ziwen Zuo

    2015-03-01

    Full Text Available The evaporation of a sessile water droplet under the coupled electrostatic and high-temperature fields is studied numerically. The leaky dielectric model and boiling point evaporation model are used for calculating the electric force and heat mass transfer. The free surface is captured using the volume of fluid method accounting for the variable surface tension and the transition of physical properties across the interface. The flow behaviors and temperature evolutions in different applied fields are predicted. It shows that in the coupled fields, the external electrostatic field restrains the flow inside the droplet and keeps a steady circulation. The flow velocity is reduced due to the interaction between electric body force and the force caused by temperature gradient. The heat transfer from air into the droplet is reduced by the lower flow velocity. The evaporation rate of the droplet in the high-temperature field is decreased.

  12. First passage time problems in time-dependent fields

    International Nuclear Information System (INIS)

    Fletcher, J.E.; Havlin, S.; Weiss, G.H.

    1988-01-01

    This paper discusses the simplest first passage time problems for random walks and diffusion processes on a line segment. When a diffusing particle moves in a time-varying field, use of the adjoint equation does not lead to any simplification in the calculation of moments of the first passage time as is the case for diffusion in a time-invariant field. We show that for a discrete random walk in the presence of a sinusoidally varying field there is a resonant frequency omega* for which the mean residence time on the line segment in a minimum. It is shown that for a random walk on a line segment of length L the mean residence time goes like L 2 for large L when omega omega*, but when omega = omega* the dependence is proportional to L. The results of our simulation are numerical, but can be regarded as exact. Qualitatively similar results are shown to hold for diffusion processes by a perturbation expansion in powers of a dimensionless velocity. These results are extended to higher values of this parameter by a numerical solution of the forward equation

  13. Time independent mean-field theory

    International Nuclear Information System (INIS)

    Negele, J.W.

    1980-02-01

    The physical and theoretical motivations for the time-dependent mean-field theory are presented, and the successes and limitations of the time-dependent Hartree-Fock initial-vaue problem are reviewed. New theoretical developments are described in the treatment of two-body correlations and the formulation of a quantum mean-field theory of large-amplitude collective motion and tunneling decay. Finally, the mean-field theory is used to obtain new insights into the phenomenon of pion condensation in finite nuclei. 18 figures

  14. Temperature- and field-induced structural transitions in magnetic colloidal clusters

    Science.gov (United States)

    Hernández-Rojas, J.; Calvo, F.

    2018-02-01

    Magnetic colloidal clusters can form chain, ring, and more compact structures depending on their size. In the present investigation we examine the combined effects of temperature and external magnetic field on these configurations by means of extensive Monte Carlo simulations and a dedicated analysis based on inherent structures. Various thermodynamical, geometric, and magnetic properties are calculated and altogether provide evidence for possibly multiple structural transitions at low external magnetic field. Temperature effects are found to overcome the ordering effect of the external field, the melted stated being associated with low magnetization and a greater compactness. Tentative phase diagrams are proposed for selected sizes.

  15. Effects of a Guide Field on the Larmor Electric Field and Upstream Electron Temperature Anisotropy in Collisionless Asymmetric Magnetic Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Ek-In, Surapat; Ruffolo, David [Department of Physics, Faculty of Science, Mahidol University, Bangkok (Thailand); Malakit, Kittipat [Department of Physics, Faculty of Science and Techonology, Thammasat University, Pathum Thani (Thailand); Shay, Michael A. [Department of Physics and Astronomy, University of Delaware, Newark, DE (United States); Cassak, Paul A., E-mail: kmalakit@gmail.com [Department of Physics and Astronomy, West Virginia University, Morgantown, WV (United States)

    2017-08-20

    We perform the first study of the properties of the Larmor electric field (LEF) in collisionless asymmetric magnetic reconnection in the presence of an out-of-plane (guide) magnetic field for different sets of representative upstream parameters at Earth’s dayside magnetopause with an ion temperature greater than the electron temperature (the ion-to-electron temperature ratio fixed at 2) using two-dimensional particle-in-cell simulations. We show that the LEF does persist in the presence of a guide field. We study how the LEF thickness and strength change as a function of guide field and the magnetospheric temperature and reconnecting magnetic field strength. We find that the thickness of the LEF structure decreases, while its magnitude increases when a guide field is added to the reconnecting magnetic field. The added guide field makes the Larmor radius smaller, so the scaling with the magnetospheric ion Larmor radius is similar to that reported for the case without a guide field. Note, however, that the physics causing the LEF is not well understood, so future work in other parameter regimes is needed to fully predict the LEF for arbitrary conditions. We also find that a previously reported upstream electron temperature anisotropy arises in the vicinity of the LEF region both with and without a guide field. We argue that the generation of the anisotropy is linked to the existence of the LEF. The LEF can be used in combination with the electron temperature anisotropy as a signature to effectively identify dayside reconnection sites in observations.

  16. Effects of a Guide Field on the Larmor Electric Field and Upstream Electron Temperature Anisotropy in Collisionless Asymmetric Magnetic Reconnection

    International Nuclear Information System (INIS)

    Ek-In, Surapat; Ruffolo, David; Malakit, Kittipat; Shay, Michael A.; Cassak, Paul A.

    2017-01-01

    We perform the first study of the properties of the Larmor electric field (LEF) in collisionless asymmetric magnetic reconnection in the presence of an out-of-plane (guide) magnetic field for different sets of representative upstream parameters at Earth’s dayside magnetopause with an ion temperature greater than the electron temperature (the ion-to-electron temperature ratio fixed at 2) using two-dimensional particle-in-cell simulations. We show that the LEF does persist in the presence of a guide field. We study how the LEF thickness and strength change as a function of guide field and the magnetospheric temperature and reconnecting magnetic field strength. We find that the thickness of the LEF structure decreases, while its magnitude increases when a guide field is added to the reconnecting magnetic field. The added guide field makes the Larmor radius smaller, so the scaling with the magnetospheric ion Larmor radius is similar to that reported for the case without a guide field. Note, however, that the physics causing the LEF is not well understood, so future work in other parameter regimes is needed to fully predict the LEF for arbitrary conditions. We also find that a previously reported upstream electron temperature anisotropy arises in the vicinity of the LEF region both with and without a guide field. We argue that the generation of the anisotropy is linked to the existence of the LEF. The LEF can be used in combination with the electron temperature anisotropy as a signature to effectively identify dayside reconnection sites in observations.

  17. Effect of ageing time and temperature on the strain ageing behaviour of quenched zircaloy-4

    International Nuclear Information System (INIS)

    Rheem, K.S.; Park, W.K.; Yook, C.C.

    1977-01-01

    The strain ageing behaviour of quenched Zircaloy-4 has been studied as a function of ageing time and temperature in the temperature range 523-588 K for a short-ageing time of 1 to 52 seconds. A the test conditions, the strain ageing stress increased with ageing time and temperature at a strain rate of 5.55x10 -4 sec -1 . Applying stress on the quenched Zircaloy-4, the strain ageing effect indicated following two states: an initial stage having an activation energy of 0.39ev considered to be due to Snoek type ordering of interstitial oxygen atoms in the stress field of a dislocaiton and a second stage havingan activation energy of 0.60 ev, due to mainly long range diffusion of oxygen atoms. (author)

  18. Temperature dependence of the electric field gradient in AgPd and AgPt alloys

    International Nuclear Information System (INIS)

    Krolas, K.

    1977-07-01

    The measurements of temperature dependence of the electric field gradient (EFG) on 111 Cd nuclei in AgPd and AgPt alloys were performed using the time dependent perturbed angular correlation method. The EFG caused by impurities distributed in further coordination shells decrease stronaer with increasing temperature than the EFG due to single impurity being the nearest neighbour of the probe atom. These results were explained assuming different modes of thermal vibrations of single impurity atoms and impurity complexes in silver host lattice. (author)

  19. Sensitive element of multifunctional sensor for measuring temperature, strain and magnetic field induction

    Directory of Open Access Journals (Sweden)

    Druzhinin A. A.

    2017-12-01

    Full Text Available Sensitive element of multifunctional sensor for measuring temperature, strain and magnetic field induction has been developed based on the studies of electrical conductivity and magnetoresistance of silicon and germanium microcrystals in the temperature range 4.2—70 K, strain ±1.5*10–3 rel.un. and magnetic fields of 0—14 T. The feature of the sensitive element is the using of the p- and n-type conductivity germanium microcrystals as mechanical and magnetic field sensors, respectively, and the p-type silicon microcrystal — as temperature sensor. That allows providing the compensation of temperature influence on piezoresistance and on sensitivity to the magnetic field.

  20. Neutron scattering techniques for betaine calcium chloride dihydrate under applied external field (temperature, electric field and hydrostatic pressure)

    International Nuclear Information System (INIS)

    Hernandez, O.

    1997-01-01

    We have studied with neutron scattering techniques betaine calcium chloride dihydrate (BCCD), a dielectric aperiodic crystal which displays a Devil's staircase type phase diagram made up of several incommensurate and commensurate phases, having a range of stability very sensitive to temperature, electric field and hydrostatic pressure. We have measured a global hysteresis of δ(T) of about 2-3 K in the two incommensurate phases. A structural study of the modulated commensurate phases 1/4 and 1/5 allows us to evidence that the atomic modulation functions are anharmonic. The relevance of the modelization of the modulated structure by polar Ising pseudo-spins is then directly established. On the basis of group theory calculation in the four dimensional super-space, we interpret this anharmonic modulation as a soliton regime with respect to the lowest-temperature non modulated ferroelectric phase. The continuous character of the transition to the lowest-temperature non modulated phase and the diffuse scattering observed in this phase are accounted for the presence of ferroelectric domains separated by discommensurations. Furthermore, we have shown that X-rays induce in BCCD a strong variation with time of irradiation of the intensity of satellite peaks, and more specifically for third order ones. This is why the 'X-rays' structural model is found more harmonic than the 'neutron' one. Under electric field applied along the vector b axis, we confirm that commensurate phases with δ = even/odd are favoured and hence are polar along this direction. We have evidenced at 10 kV / cm two new higher order commensurate phases in the phase INC2, corroborating the idea of a 'complete' Devil's air-case phase diagram. A phenomenon of generalized coexistence of phases occurs above 5 kV / cm. We have characterized at high field phase transitions between 'coexisting' phases, which are distinguishable from classical lock-in transitions. Under hydrostatic pressure, our results contradict

  1. Stress analysis in high-temperature superconductors under pulsed field magnetization

    Science.gov (United States)

    Wu, Haowei; Yong, Huadong; Zhou, Youhe

    2018-04-01

    Bulk high-temperature superconductors (HTSs) have a high critical current density and can trap a large magnetic field. When bulk superconductors are magnetized by the pulsed field magnetization (PFM) technique, they are also subjected to a large electromagnetic stress, and the resulting thermal stress may cause cracking of the superconductor due to the brittle nature of the sample. In this paper, based on the H-formulation and the law of heat transfer, we can obtain the distributions of electromagnetic field and temperature, which are in qualitative agreement with experiment. After that, based on the dynamic equilibrium equations, the mechanical response of the bulk superconductor is determined. During the PFM process, the change in temperature has a dramatic effect on the radial and hoop stresses, and the maximum radial and hoop stress are 24.2 {{MPa}} and 22.6 {{MPa}}, respectively. The mechanical responses of a superconductor for different cases are also studied, such as the peak value of the applied field and the size of bulk superconductors. Finally, the stresses are also presented for different magnetization methods.

  2. Temperature dependence of critical magnetic fields for the Abelian Higgs model

    International Nuclear Information System (INIS)

    Magpantay, J.; Mukku, C.; Sayed, W.A.

    1981-05-01

    One loop temperature and external electromagnetic field effects on the Abelian Higgs model are studied using the momentum space heat kernel. We obtain expressions for the critical fields necessary for symmetry restoration at some finite temperature and display the critical B vs. T curve separating the broken and restored phases in the B-T plane. (author)

  3. Managing Perishables with Time and temperature History

    NARCIS (Netherlands)

    Ketzenberg, M.; Bloemhof, J.M.; Gaukler, G.

    2015-01-01

    We address the use and value of time and temperature information to manage perishables in the contextof a retailer that sells a random lifetime product subject to stochastic demand and lost sales. The product’s lifetime is largely determined by the temperature history and the flow time through the

  4. The external field dependence of the BCS critical temperature

    DEFF Research Database (Denmark)

    Frank, Rupert L.; Hainzl, Christian; Seiringer, Robert

    2016-01-01

    We consider the Bardeen-Cooper-Schrieffer free energy functional for particles interacting via a two-body potential on a microscopic scale and in the presence of weak external fields varying on a macroscopic scale. We study the influence of the external fields on the critical temperature. We show...

  5. Temperature profiles of time dependent tokamak plasmas from the parallel Ohm's law

    International Nuclear Information System (INIS)

    Micozzi, P.; Roccella, M.

    1993-01-01

    Profile consistency based on the parallel component of Ohm's law has been used to obtain electron temperature profiles. A resistive neoclassical term and a term that accounts for the bootstrap current contributions have been considered in Ohm's law. A numerical code has been developed to find solutions according to the MHD equilibrium equations. For stationary plasmas, the temperature profiles, obtained by a procedure in which a pseudo-parabolic shape of (J φ /R) is assumed and the peak temperature known from experiments is used, are close to the experimental data for several very different machines (JET, TFTR, ASDEX, ALCATOR-C and FT). The main feature of the model is its capability to provide an easy parametrization of Ohm's law also in non-stationary cases, without going through the complication of a detailed solution of the magnetic field diffusion equation. A rule for estimating a maximum value of the current diffusion time inside the plasma volume in such situations is given. This rule accounts for both the temperature profiles and the stabilization times in some non-stationary pulses observed in JET. (author). 28 refs, 12 figs

  6. Temperature dependence of magnetopolarons in a parabolic quantum dot in arbitrary magnetic fields

    International Nuclear Information System (INIS)

    Zhu Kadi; Gu Shiwei

    1993-10-01

    The temperature and the size dependence of a magnetopolaron in a harmonic quantum dot with an external magnetic field normal to the plane of the quantum dot are investigated theoretically. For a weak magnetic field (ω c LO ), both the cyclotron mass m * c+ and the cyclotron mass m * c- are the increasing functions of temperature, whereas for strong magnetic fields (ω c > ω LO ), the cyclotron mass m * c+ is the decreasing function of temperature, while the cyclotron mass m * c- is the increasing function of temperature. (author). 27 refs, 2 figs

  7. Installation for microwave investigations of high-temperature superconductivity in magnetic field

    CERN Document Server

    Akhvlediani, I G; Mamniashvili, G I; Chigvinadze, D G

    2002-01-01

    Paper describes advanced EPR-spectrometer RE 1306 designed to investigate into structure of magnetic flux in high-temperature superconductors (HTSC). To measure in low fields one uses power source generating current within 0-600 mA limits and 10-500 Gauss field. To ensure temperature studies of HTSC within up to approx 15 K range one used helium and nitrogen cold steam blowing through resonator of EPR-spectrometer. To stabilize specimen temperature prior to cold steams enter double tube one fixed one more heater

  8. Low-temperature field evaporation of Nb3Sn compound

    International Nuclear Information System (INIS)

    Ksenofontov, V.A.; Kul'ko, V.B.; Kutsenko, P.A.

    1986-01-01

    Investigation results on field evaporation of superconducting Nb 3 Sn compound wth A15 lattice are presented. Compound evaporation is shown to proceed in two stages. Evaporation field and ionic composition of evaporating material are determined. It is found out that in strong electric fields compound surface represents niobium skeleton, wich does not form regular image. Comparison of ion-microscopic and calculated images formed by low-temperature field evaporation indicates to possibility of sample surface reconstruction after preferable tin evaporation

  9. High temperature study of flexible silicon-on-insulator fin field-effect transistors

    KAUST Repository

    Diab, Amer El Hajj

    2014-09-29

    We report high temperature electrical transport characteristics of a flexible version of the semiconductor industry\\'s most advanced architecture: fin field-effect transistor on silicon-on-insulator with sub-20 nm fins and high-κ/metal gate stacks. Characterization from room to high temperature (150 °C) was completed to determine temperature dependence of drain current (Ids), gate leakage current (Igs), transconductance (gm), and extracted low-field mobility (μ0). Mobility degradation with temperature is mainly caused by phonon scattering. The other device characteristics show insignificant difference at high temperature which proves the suitability of inorganic flexible electronics with advanced device architecture.

  10. An application of modular inclusion to quantum field theory in curved space-time

    International Nuclear Information System (INIS)

    Summers, S.J.; Verch, R.

    1993-09-01

    Applying recent results by Borchers connecting geometric modular action, modular inclusion and the spectrum condition, earlier results by Kay and Wald concerning the temperature of physically significant states of the linear Hermitean scalar field propagating in the background of a space-time with a bifurcate Killing horizon are generalized. (orig.)

  11. Time-temperature equivalence in Martensite tempering

    Energy Technology Data Exchange (ETDEWEB)

    Hackenberg, Robert E. [Los Alamos National Laboratory; Thomas, Grant A. [CSM; Speer, John G. [CSM; Matlock, David K. [CSM; Krauss, George [CSM

    2008-06-16

    The relationship between time and temperature is of great consequence in many materials-related processes including the tempering of martensite. In 1945, Hollomon and Jaffe quantified the 'degree of tempering' as a function of both tempering time, t, and tempering temperature, T, using the expression, T(log t + c). Here, c is thought to be a material constant and appears to decrease linearly with increasing carbon content. The Hollomon-Jaffe tempering parameter is frequently cited in the literature. This work reviews the original derivation of the tempering parameter concept, and presents the use of the characteristics diffusion distance as an alternative time-temperature relationship during martensite tempering. During the tempering of martensite, interstitial carbon atoms diffuse to form carbides. In addition, austenite decomposes, dislocations and grain boundaries rearrange, associated with iron self diffusion. Since these are all diffusional processes, it is reasonable to expect the degree of tempering to relate to the extent of diffusion.

  12. Integrated passive and wireless sensor for magnetic fields, temperature and humidity

    KAUST Repository

    Li, Bodong; Yassine, Omar; Kosel, Jü rgen

    2013-01-01

    This paper presents a surface acoustic wave-based passive and wireless sensor that can measure magnetic field, temperature and humidity. A thin film giant magnetoimpedance sensor, a thermally sensitive LiNbO3 substrate and a humidity sensitive hydrogel are integrated together with a surface acoustic wave transducer to realize the multifunctional sensor. The device is characterized using a network analyzer under sequentially changing humidity, temperature and magnetic field conditions. The first hand results show the sensor response to all three sensing parameters with small temperature interference on the magnetic signals. © 2013 IEEE.

  13. Integrated passive and wireless sensor for magnetic fields, temperature and humidity

    KAUST Repository

    Li, Bodong

    2013-11-01

    This paper presents a surface acoustic wave-based passive and wireless sensor that can measure magnetic field, temperature and humidity. A thin film giant magnetoimpedance sensor, a thermally sensitive LiNbO3 substrate and a humidity sensitive hydrogel are integrated together with a surface acoustic wave transducer to realize the multifunctional sensor. The device is characterized using a network analyzer under sequentially changing humidity, temperature and magnetic field conditions. The first hand results show the sensor response to all three sensing parameters with small temperature interference on the magnetic signals. © 2013 IEEE.

  14. Design of 2D time-varying vector fields.

    Science.gov (United States)

    Chen, Guoning; Kwatra, Vivek; Wei, Li-Yi; Hansen, Charles D; Zhang, Eugene

    2012-10-01

    Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects.

  15. Time-temperature superposition in viscous liquids

    DEFF Research Database (Denmark)

    Olsen, Niels Boye; Dyre, Jeppe; Christensen, Tage Emil

    2001-01-01

    with a reduced time definition based on a recently proposed expression for the relaxation time, where G [infinity] reflects the fictive temperature. All parameters entering the reduced time were determined from independent measurements of the frequency-dependent shear modulus of the equilibrium liquid....

  16. Climate Prediction Center (CPC) Global Temperature Time Series

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global temperature time series provides time series charts using station based observations of daily temperature. These charts provide information about the...

  17. Design of 2D Time-Varying Vector Fields

    KAUST Repository

    Chen, Guoning

    2012-10-01

    Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects. © 1995-2012 IEEE.

  18. Design of 2D Time-Varying Vector Fields

    KAUST Repository

    Chen, Guoning; Kwatra, Vivek; Wei, Li-Yi; Hansen, Charles D.; Zhang, Eugene

    2012-01-01

    Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects. © 1995-2012 IEEE.

  19. Simulation of Temperature Field Distribution for Cutting the Temperated Glass by Ultraviolet Laser

    Science.gov (United States)

    Yang, B. J.; He, Y. C.; Dai, F.; Lin, X. C.

    2017-03-01

    The finite element software ANSYS was adopted to simulate the temperature field distribution for laser cutting tempered glass, and the influence of different process parameters, including laser power, glass thickness and cutting speed, on temperature field distribution was studied in detail. The results show that the laser power has a greater influence on temperature field distribution than other paremeters, and when the laser power gets to 60W, the highest temperature reaches 749°C, which is higher than the glass softening temperature. It reflects the material near the laser spot is melted and the molten slag is removed by the high-energy water beam quickly. Finally, through the water guided laser cutting tempered glass experiment the FEM theoretical analysis was verified.

  20. Non-uniform Solar Temperature Field on Large Aperture, Fully-Steerable Telescope Structure

    Science.gov (United States)

    Liu, Yan

    2016-09-01

    In this study, a 110-m fully steerable radio telescope was used as an analysis platform and the integral parametric finite element model of the antenna structure was built in the ANSYS thermal analysis module. The boundary conditions of periodic air temperature, solar radiation, long-wave radiation shadows of the surrounding environment, etc. were computed at 30 min intervals under a cloudless sky on a summer day, i.e., worstcase climate conditions. The transient structural temperatures were then analyzed under a period of several days of sunshine with a rational initial structural temperature distribution until the whole set of structural temperatures converged to the results obtained the day before. The non-uniform temperature field distribution of the entire structure and the main reflector surface RMS were acquired according to changes in pitch and azimuth angle over the observation period. Variations in the solar cooker effect over time and spatial distributions in the secondary reflector were observed to elucidate the mechanism of the effect. The results presented here not only provide valuable realtime data for the design, construction, sensor arrangement and thermal deformation control of actuators but also provide a troubleshooting reference for existing actuators.

  1. [Wireless Passive Body Sensor for Temperature Monitoring Using Near Field Communication Technology].

    Science.gov (United States)

    Shi, Bo; Zhang, Li; Zhang, Genxuan; Tsau, Young; Zhang, Sai; Li, Lei

    2017-01-01

    In this study, we designed a wireless body temperature sensor (WBTS) based on near field communication (NFC) technology. Just attaching the WBTS to a mobile phone with NFC function, the real-time body temperature of human subjects can be acquired by an application program without seperate power supply. The WBTS is mainly composed of a digital body temperature probe (d-BTP), a NFC unit and an antenna. The d-BTP acquires and processes body temperature data through a micro control er, and the NFC unit and antenna are used for wireless energy transmission and data communication between the mobile phone and WBTS. UART communication protocol is used in the communication between the d-BTP and NFC unit, and data compression technique is adopted for improving transmission efficiency and decreasing power loss. In tests, the error of WBTS is ±0.1 oC, in range of 32 oC to 42 oC. The WBTS has advantages of high accuracy, low power loss, strong anti-interference ability, dispensation with independent power supply etc., and it can be integrated into wearable apparatuses for temperature monitoring and health management.

  2. Research on the novel FBG detection system for temperature and strain field distribution

    Science.gov (United States)

    Liu, Zhi-chao; Yang, Jin-hua

    2017-10-01

    In order to collect the information of temperature and strain field distribution information, the novel FBG detection system was designed. The system applied linear chirped FBG structure for large bandwidth. The structure of novel FBG cover was designed as a linear change in thickness, in order to have a different response at different locations. It can obtain the temperature and strain field distribution information by reflection spectrum simultaneously. The structure of novel FBG cover was designed, and its theoretical function is calculated. Its solution is derived for strain field distribution. By simulation analysis the change trend of temperature and strain field distribution were analyzed in the conditions of different strain strength and action position, the strain field distribution can be resolved. The FOB100 series equipment was used to test the temperature in experiment, and The JSM-A10 series equipment was used to test the strain field distribution in experiment. The average error of experimental results was better than 1.1% for temperature, and the average error of experimental results was better than 1.3% for strain. There were individual errors when the strain was small in test data. It is feasibility by theoretical analysis, simulation calculation and experiment, and it is very suitable for application practice.

  3. Temperature field conduction solution by incomplete boundary condition

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, M; Petrasinovic, Lj; Djuric, M [Tehnoloski fakultet, Novi Sad (Yugoslavia); Perovic, N [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia)

    1977-01-01

    The problem of determination of one part boundary conditions temperatures for Fourier partial differential equation when the other part of boundary condition and derivates (heat fluxes) are known is a practical interest as it enables one to determine and accessible temperature by measuring temperatures on other side, of the wall. Method developed and applied here consist of transforming the Fourier partial differential equation by time discretisation in sets of pairs of ordinary differential equations for temperature and heat flux. Such pair of differential equations of first order was solved by Runge-Kutta method. The integration proceeds along space interval simultaneosly for all time intervals. It is interesting to note that this procedure does not require the initial condition.

  4. Topics in quantum field theories at finite temperature

    International Nuclear Information System (INIS)

    Kao, Y.C.

    1985-01-01

    Studies on four topics in quantum field theories at finite temperature are presented in this thesis. In Chapter 1, it is shown that the chiral anomaly has no finite temperature corrections by Fujikawa's path integral approach. Chapter 2 deals with the chiral condensate in the finite temperature Schwinger model. The cluster decomposition property is employed to find . No finite critical temperature is found and the chiral condensate vanishes only at infinite temperature. In Chapter 3, the finite temperature behavior of the fermion-number breaking (Rubakov-Callan) condensate around a 't Hooft-Polyakov monopole is studied. It is found that the Rubakov-Callan condensate is suppressed exponentially from the monopole core at high temperature. The limitation of the techniques is understanding the behavior of the condensate for all temperature is also discussed. Chapter 4 is on the topological mass terms in (2 + 1)-dimensional gauge theories. The authors finds that if the gauge bosons have no topological mass at tree level, no topological mass induced radiatively up to two-loop order in either Abelian or non-Abelian theories with massive fermions. The Pauli-Villars regularization is used for fermion loops. The one-loop contributions to the topological mass terms at finite temperature are calculated and the quantization constraints in this case are discussed

  5. Origin of non-quantum noise and time dependent thermo field dynamics

    International Nuclear Information System (INIS)

    Umezawa, H.

    1991-01-01

    Common features and physically profound differences are summarized between various kinds of noise in pure states caused by the Bogoliubov transformation in such diverse phenomena as the squeezed state in quantum optics, Hawking radiation around the eternal black hole, and thermal physics.All the thermal vacua form a set of states degenerate in eigenvalues of the Hamiltonian H-circumflex, i.e., the zero-hat energy states. The presence of these degenerate energy states exhibits the spontaneous breakdown of weak Bogoliubov symmetry. The thermal freedom is the freedom of moving through the states in this degenerate set. Considering a time-dependent movement of a thermal vacuum through the degenerate set, the time-dependent thermal field dynamics are obtained. With this formalism the authors set up a quasi-particle picture and analyze the spectral representation of the Heisenberg two point Green's function and the diagonalization of the quasi-particle Hamiltonian. The formalism will be used in discussion of the appearance of short time intermediate high-temperature states when the initial state is at practically zero temperature. (author). 28 refs

  6. Estimating relic magnetic fields from CMB temperature correlations

    International Nuclear Information System (INIS)

    Giovannini, Massimo

    2009-01-01

    The temperature and polarization inhomogeneities of the cosmic microwave background might bear the mark of predecoupling magnetism. The parameters of a putative magnetized background are hereby estimated, for the first time, from the observed temperature autocorrelation as well as from the measured temperature-polarization cross correlation.

  7. Temperature and curing time affect composite sorption and solubility

    Directory of Open Access Journals (Sweden)

    Fabrício Luscino Alves de Castro

    2013-04-01

    Full Text Available Objective: This study evaluated the effect of temperature and curing time on composite sorption and solubility. Material and Methods: Seventy five specimens (8×2 mm were prepared using a commercial composite resin (ICE, SDI. Three temperatures (10°C, 25°C and 60°C and five curing times (5 s, 10 s, 20 s, 40 s and 60 s were evaluated. The specimens were weighed on an analytical balance three times: A: before storage (M1; B: 7 days after storage (M2; C: 7 days after storage plus 1 day of drying (M3. The storage solution consisted of 75% alcohol/25% water. Sorption and solubility were calculated using these three weights and specimen dimensions. The data were analyzed using the Kruskal-Wallis and Mann-Whitney U Tests (α=5%. Results: The results showed that time, temperature and their interaction influenced the sorption and solubility of the composite (p0.05. The 60°C composite temperature led to lower values of sorption for all curing times when compared with the 10°C temperature (p0.05. Solubility was similar at 40 s and 60 s for all temperatures (p>0.05, but was higher at 10°C than at 60°C for all curing times (p0.05. Conclusions: In conclusion, higher temperatures or longer curing times led to lower sorption and solubility values for the composite tested; however, this trend was only significant in specific combinations of temperature and curing times.

  8. Temperature dependence of magnetic anisotropy and magnetostriction: Beyond the mean-field theory

    International Nuclear Information System (INIS)

    Millev, Y.; Faehnle, M.

    1994-05-01

    The first nonvanishing magnetic anisotropy coefficient is calculated as a function of temperature for any spin quantum number and all temperatures below the Curie temperature for the case of face-centred cubic symmetry within the random-phase approximation (RPA). A detailed and instructive comparison between the mean-field and the RPA predictions is carried out. The RPA magnetization curves are also given for the first time for spins S>1/2. Most of the theoretical considerations are quite general as regard lattice type and even decoupling scheme and can thus be applied straightforwardly to other cases of interest. The progress reported here has been attained with the help of a new simplified and improved parametric approach and of a recent calculation of the average occupation number of magnons within the RPA. In particular, the new approach makes unnecessary the solving of integral equations so that the proposed procedure is especially simple and practically versatile in applications to any particular anisotropic material. (author). Refs, 6 figs

  9. Review - X-ray diffraction measurements in high magnetic fields and at high temperatures

    Directory of Open Access Journals (Sweden)

    Yoshifuru Mitsui, Keiichi Koyama and Kazuo Watanabe

    2009-01-01

    Full Text Available A system was developed measuring x-ray powder diffraction in high magnetic fields up to 5 T and at temperatures from 283 to 473 K. The stability of the temperature is within 1 K over 6 h. In order to examine the ability of the system, the high-field x-ray diffraction measurements were carried out for Si and a Ni-based ferromagnetic shape-memory alloy. The results show that the x-ray powder diffraction measurements in high magnetic fields and at high temperatures are useful for materials research.

  10. High temperature annealing of fission tracks in fluorapatite, Santa Fe Springs oil field, Los Angeles Basin, California

    Science.gov (United States)

    Naeser, Nancy D.; Crowley, Kevin D.; McCulloh, Thane H.; Reaves, Chris M.; ,

    1990-01-01

    Annealing of fission tracks is a kinetic process dependent primarily on temperature and to a laser extent on time. Several kinetic models of apatite annealing have been proposed. The predictive capabilities of these models for long-term geologic annealing have been limited to qualitative or semiquantitative at best, because of uncertainties associated with (1) the extrapolation of laboratory observations to geologic conditions, (2) the thermal histories of field samples, and (3) to some extent, the effect of apatite composition on reported annealing temperatures. Thermal history in the Santa Fe Springs oil field, Los Angeles Basin, California, is constrained by an exceptionally well known burial history and present-day temperature gradient. Sediment burial histories are continuous and tightly constrained from about 9 Ma to present, with an important tie at 3.4 Ma. No surface erosion and virtually no uplift were recorded during or since deposition of these sediments, so the burial history is simple and uniquely defined. Temperature gradient (???40??C km-1) is well established from oil-field operations. Fission-track data from the Santa Fe Springs area should thus provide one critical field test of kinetic annealing models for apatite. Fission-track analysis has been performed on apatites from sandstones of Pliocene to Miocene age from a deep drill hole at Santa Fe Springs. Apatite composition, determined by electron microprobe, is fluorapatite [average composition (F1.78Cl0.01OH0.21)] with very low chlorine content [less than Durango apatite; sample means range from 0.0 to 0.04 Cl atoms, calculated on the basis of 26(O, F, Cl, OH)], suggesting that the apatite is not unusually resistant to annealing. Fission tracks are preserved in these apatites at exceptionally high present-day temperatures. Track loss is not complete until temperatures reach the extreme of 167-178??C (at 3795-4090 m depth). The temperature-time annealing relationships indicated by the new data

  11. Experimental investigation of optical fiber temperature sensors at cryogenic temperature and in high magnetic fields

    International Nuclear Information System (INIS)

    Tanaka, Y.; Ogata, M.; Nagashima, K.; Agawa, H.; Matsuura, S.; Kumagai, Y.

    2010-01-01

    If it is possible to monitor the conditions in the cryogenic equipments including the super-conducting magnets, the indication of failure can be detected beforehand and the reliability in the operation can improve. Optical fiber temperature sensing is an advantageous method in terms of heat invasion, electric insulation, etc. Therefore, the experiments which confirm the characteristics of optical fiber temperature sensors at cryogenic temperatures and in high magnetic fields were performed, and the possibility of measuring under these conditions was confirmed. However, since the resolution of temperature was a problem, the method of analysis that predicts the measurements was contrived, and the method to improve the problem was examined.

  12. Operation of SOI P-Channel Field Effect Transistors, CHT-PMOS30, under Extreme Temperatures

    Science.gov (United States)

    Patterson, Richard; Hammoud, Ahmad

    2009-01-01

    Electronic systems are required to operate under extreme temperatures in NASA planetary exploration and deep space missions. Electronics on-board spacecraft must also tolerate thermal cycling between extreme temperatures. Thermal management means are usually included in today s spacecraft systems to provide adequate temperature for proper operation of the electronics. These measures, which may include heating elements, heat pipes, radiators, etc., however add to the complexity in the design of the system, increases its cost and weight, and affects its performance and reliability. Electronic parts and circuits capable of withstanding and operating under extreme temperatures would reflect in improvement in system s efficiency, reducing cost, and improving overall reliability. Semiconductor chips based on silicon-on-insulator (SOI) technology are designed mainly for high temperature applications and find extensive use in terrestrial well-logging fields. Their inherent design offers advantages over silicon devices in terms of reduced leakage currents, less power consumption, faster switching speeds, and good radiation tolerance. Little is known, however, about their performance at cryogenic temperatures and under wide thermal swings. Experimental investigation on the operation of SOI, N-channel field effect transistors under wide temperature range was reported earlier [1]. This work examines the performance of P-channel devices of these SOI transistors. The electronic part investigated in this work comprised of a Cissoid s CHT-PMOS30, high temperature P-channel MOSFET (metal-oxide semiconductor field-effect transistor) device [2]. This high voltage, medium-power transistor is designed for geothermal well logging applications, aerospace and avionics, and automotive industry, and is specified for operation in the temperature range of -55 C to +225 C. Table I shows some specifications of this transistor [2]. The CHT-PMOS30 device was characterized at various temperatures

  13. Magnetic-field and temperature dependence of the energy gap in InN nanobelt

    Directory of Open Access Journals (Sweden)

    K. Aravind

    2012-03-01

    Full Text Available We present tunneling measurements on an InN nanobelt which shows signatures of superconductivity. Superconducting transition takes place at temperature of 1.3K and the critical magnetic field is measured to be about 5.5kGs. The energy gap extrapolated to absolute temperature is about 110μeV. As the magnetic field is decreased to cross the critical magnetic field, the device shows a huge zero-bias magnetoresistance ratio of about 400%. This is attributed to the suppression of quasiparticle subgap tunneling in the presence of superconductivity. The measured magnetic-field and temperature dependence of the superconducting gap agree well with the reported dependences for conventional metallic superconductors.

  14. High temperature study of flexible silicon-on-insulator fin field-effect transistors

    KAUST Repository

    Diab, Amer El Hajj; Sevilla, Galo T.; Ghoneim, Mohamed T.; Hussain, Muhammad Mustafa

    2014-01-01

    . Characterization from room to high temperature (150 °C) was completed to determine temperature dependence of drain current (Ids), gate leakage current (Igs), transconductance (gm), and extracted low-field mobility (μ0). Mobility degradation with temperature

  15. Uniqueness of time-independent electromagnetic fields

    DEFF Research Database (Denmark)

    Karlsson, Per W.

    1974-01-01

    As a comment on a recent paper by Steele, a more general uniqueness theorem for time-independent fields is mentioned. ©1974 American Institute of Physics......As a comment on a recent paper by Steele, a more general uniqueness theorem for time-independent fields is mentioned. ©1974 American Institute of Physics...

  16. Objective mapping of temperature field by stochastic inverse method using acoustic tomography experimental data of eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Rao, M.M.M.; Sadhuram, Y.

    . The data are revisited for objective mapping of the temperature fields using Stochastic Inverse Method. Hourly reciprocal transmissions were carried with time lag of 30 minutes between each direction. From the multipath arrival patterns, significant peaks...

  17. Spinor Field Nonlinearity and Space-Time Geometry

    Science.gov (United States)

    Saha, Bijan

    2018-03-01

    Within the scope of Bianchi type VI,VI0,V, III, I, LRSBI and FRW cosmological models we have studied the role of nonlinear spinor field on the evolution of the Universe and the spinor field itself. It was found that due to the presence of non-trivial non-diagonal components of the energy-momentum tensor of the spinor field in the anisotropic space-time, there occur some severe restrictions both on the metric functions and on the components of the spinor field. In this report we have considered a polynomial nonlinearity which is a function of invariants constructed from the bilinear spinor forms. It is found that in case of a Bianchi type-VI space-time, depending of the sign of self-coupling constants, the model allows either late time acceleration or oscillatory mode of evolution. In case of a Bianchi VI 0 type space-time due to the specific behavior of the spinor field we have two different scenarios. In one case the invariants constructed from bilinear spinor forms become trivial, thus giving rise to a massless and linear spinor field Lagrangian. This case is equivalent to the vacuum solution of the Bianchi VI 0 type space-time. The second case allows non-vanishing massive and nonlinear terms and depending on the sign of coupling constants gives rise to accelerating mode of expansion or the one that after obtaining some maximum value contracts and ends in big crunch, consequently generating space-time singularity. In case of a Bianchi type-V model there occur two possibilities. In one case we found that the metric functions are similar to each other. In this case the Universe expands with acceleration if the self-coupling constant is taken to be a positive one, whereas a negative coupling constant gives rise to a cyclic or periodic solution. In the second case the spinor mass and the spinor field nonlinearity vanish and the Universe expands linearly in time. In case of a Bianchi type-III model the space-time remains locally rotationally symmetric all the time

  18. On board short-time high temperature heat treatment of ballast water: a field trial under operational conditions.

    Science.gov (United States)

    Quilez-Badia, Gemma; McCollin, Tracy; Josefsen, Kjell D; Vourdachas, Anthony; Gill, Margaret E; Mesbahi, Ehsan; Frid, Chris L J

    2008-01-01

    A ballast water short-time high temperature heat treatment technique was applied on board a car-carrier during a voyage from Egypt to Belgium. Ballast water from three tanks was subjected for a few seconds to temperatures ranging from 55 degrees C to 80 degrees C. The water was heated using the vessel's heat exchanger steam and a second heat exchanger was used to pre-heat and cool down the water. The treatment was effective at causing mortality of bacteria, phytoplankton and zooplankton. The International Maritime Organization (IMO) standard was not agreed before this study was carried out, but comparing our results gives a broad indication that the IMO standard would have been met in some of the tests for the zooplankton, in all the tests for the phytoplankton; and probably on most occasions for the bacteria. Passing the water through the pump increased the kill rate but increasing the temperature above 55 degrees C did not improve the heat treatment's efficacy.

  19. On the evolution of a two component, two temperature, fully ionised plasma in electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Oeien, A H

    1975-01-01

    When inhomogenities and fields are not too strong, transients of distribution function, correlation functions and fields which may appear when the plasma evolves from an initial state out of equilibrium are derived, applying the multiple time scale method to the BBGKY and field equations. It is also shown that, at the end of an initial stage, kinetic equations and sets of approximate field equations will govern the evolution further on. In part II a study of the evolution further on is performed when conditions are such that distribution functions to lowest order may reach local Maxwellians with different temperatures for electrons and ions. Using the same method as above, the transient behaviour into a state where macroscopic and field equations take over the leadership in the evolution is derived, and the governing equations further on, together with correcting kinetic equations, are obtained up to an order of approximation higher than before. In part III a set of lower order and a set of higher order correcting kinetic equations from part II, which correspond partly to equations for the Chapman-Enskog and the Burnett levels of approximations, are solved qualitatively. New results for various transports of a two temperature plasma are obtained.

  20. Anisotropic temperature relaxation of plasmas in an external magnetic field

    International Nuclear Information System (INIS)

    Hassan, M.H.A.

    1977-01-01

    The magnetized kinetic equation derived in an earlier paper (Hassan and Watson, 1977) is used to study the problem of relaxation of anisotropic electron and ion temperatures in a magnetized plasma. In the case of anisotropic electron temperature relaxation, it is shown that for small anisotropies the exchange of energy within the electrons between the components parallel and perpendicular to the magnetic field direction determine the relaxation rate. For anisotropic ion temperature relaxation it is shown that the essential mechanism for relaxation is provided by energy transfer between ions and electrons, and that the expression for the relaxation rate perpendicular to the magnetic field contains a significant term proportional to ln eta 0 ln (msub(e)/msub(i)) (where eta 0 = Ωsub(e)/ksub(D)Vsub(e perpendicular to)), in addition to the term proportional to the Coulomb logarithm. (author)

  1. Experimental study on infrared radiation temperature field of concrete under uniaxial compression

    Science.gov (United States)

    Lou, Quan; He, Xueqiu

    2018-05-01

    Infrared thermography, as a nondestructive, non-contact and real-time monitoring method, has great significance in assessing the stability of concrete structure and monitoring its failure. It is necessary to conduct in depth study on the mechanism and application of infrared radiation (IR) of concrete failure under loading. In this paper, the concrete specimens with size of 100 × 100 × 100 mm were adopted to carry out the uniaxial compressions for the IR tests. The distribution of IR temperatures (IRTs), surface topography of IRT field and the reconstructed IR images were studied. The results show that the IRT distribution follows the Gaussian distribution, and the R2 of Gaussian fitting changes along with the loading time. The abnormities of R2 and AE counts display the opposite variation trends. The surface topography of IRT field is similar to the hyperbolic paraboloid, which is related to the stress distribution in the sample. The R2 of hyperbolic paraboloid fitting presents an upward trend prior to the fracture which enables to change the IRT field significantly. This R2 has a sharp drop in response to this large destruction. The normalization images of IRT field, including the row and column normalization images, were proposed as auxiliary means to analyze the IRT field. The row and column normalization images respectively show the transverse and longitudinal distribution of the IRT field, and they have clear responses to the destruction occurring on the sample surface. In this paper, the new methods and quantitative index were proposed for the analysis of IRT field, which have some theoretical and instructive significance for the analysis of the characteristics of IRT field, as well as the monitoring of instability and failure for concrete structure.

  2. Temperature-field phase diagram of extreme magnetoresistance.

    Science.gov (United States)

    Fallah Tafti, Fazel; Gibson, Quinn; Kushwaha, Satya; Krizan, Jason W; Haldolaarachchige, Neel; Cava, Robert Joseph

    2016-06-21

    The recent discovery of extreme magnetoresistance (XMR) in LaSb introduced lanthanum monopnictides as a new platform to study this effect in the absence of broken inversion symmetry or protected linear band crossing. In this work, we report XMR in LaBi. Through a comparative study of magnetotransport effects in LaBi and LaSb, we construct a temperature-field phase diagram with triangular shape that illustrates how a magnetic field tunes the electronic behavior in these materials. We show that the triangular phase diagram can be generalized to other topological semimetals with different crystal structures and different chemical compositions. By comparing our experimental results to band structure calculations, we suggest that XMR in LaBi and LaSb originates from a combination of compensated electron-hole pockets and a particular orbital texture on the electron pocket. Such orbital texture is likely to be a generic feature of various topological semimetals, giving rise to their small residual resistivity at zero field and subject to strong scattering induced by a magnetic field.

  3. Temperature dependence of the upper critical field of type II superconductors with fluctuation effects

    International Nuclear Information System (INIS)

    Mikitik, G.P.

    1992-01-01

    Fluctuations of the order parameter are taken into consideration in an analysis of the temperature dependence of the upper critical field of a type II superconductor with a three-dimensional superconductivity. This temperature dependence is of universal applicability, to all type II superconductors, if the magnetic fields and temperatures are expressed in appropriate units. This dependence is derived explicitly for the regions of strong and weak magnetic fields. The results are applied to high T c superconductors, for which fluctuation effects are important. For these superconductors, the H c2 (T) dependence is quite different from the linear dependence characteristic of the mean-field theory, over a broad range of magnetic fields

  4. Numerical Research on Magnetic Field, Temperature Field and Flow Field During Melting and Directionally Solidifying TiAl Alloys by Electromagnetic Cold Crucible

    Science.gov (United States)

    Chen, Ruirun; Yang, Yaohua; Gong, Xue; Guo, Jingjie; Su, Yanqing; Ding, Hongsheng; Fu, Hengzhi

    2017-12-01

    The electromagnetic cold crucible (EMCC) technique is an effective method to melt and directionally solidify reactive and high-temperature materials without contamination. The temperature field and fluid flow induced by the electromagnetic field are very important for melting and controlling the microstructure. In this article, a 3D EMCC model for calculating the magnetic field in the charges (TiAl alloys) using the T-Ω finite element method was established and verified. Magnetic fields in the charge under different electrical parameters, positions and dimensions of the charge were calculated and analyzed. The calculated results show that the magnetic field concentrates in the skin layer, and the magnetic flux density ( B) increases with increasing of the frequency, charge diameter and current. The maximum B in the charge is affected by the position of the charge in EMCC ( h 1) and the charge height ( h 2), which emerges at the middle of coils ( h c) when the relationship of h c < h 1 + h 2 < h c + δ is satisfied. Lower frequency and smaller charge diameter can improve the uniformity of the magnetic field in the charge. Consequently, the induced uniform electromagnetic stirring weakens the turbulence and improves temperature uniformity in the vicinity of the solid/liquid (S/L) interface, which is beneficial to forming a planar S/L interface during directional solidification. Based on the above conclusions, the TiAlNb alloy was successfully melted with lower power consumption and directionally solidified by the square EMCC.

  5. Temperature measurements in small holes drilled in superconducting bulk during pulsed field magnetization

    Science.gov (United States)

    Fujishiro, H.; Naito, T.; Furuta, D.; Kakehata, K.

    2010-11-01

    The time dependence of the temperatures T(z, t) has been measured along the thickness direction z in several drilled holes in a superconducting bulk during pulsed field magnetization (PFM) and the heat generation and heat transfer in the bulk have been discussed. In the previous paper [H. Fujishiro, S. Kawaguchi, K. Kakehata, A. Fujiwara, T. Tateiwa, T. Oka, Supercond. Sci. Technol. 19 (2006) S540], we calculated the T(z, t) profiles in the bulk by solving a three-dimensional heat-diffusion equation to reproduce the measured T(t) on the bulk surface; the heat generation took place adiabatically and the calculated T(z, t) was isothermal along the z direction. In this study, the measured T(z, t) at the top surface was higher than that at the bottom surface just after the pulse field application at t < 0.5 s, and then became isothermal with increasing time. These results suggest that the magnetic flux intrudes inhomogeneously into the bulk from the edge of the top surface and the periphery at the early stage. The inhomogeneous magnetic flux intrusion and the flux trap during PFM change depending on the strength of the pulsed field and the pulse number in the successive pulse field application.

  6. Time--temperature relation of embryonic development in the northwestern salamander, Ambystoma gracile

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H A

    1976-04-01

    A field and laboratory study on temperature-related embryonic development of Ambystoma gracile was made on a population from northwestern Washington. Natural spawning began in the beaver pond during early March, and the duration of embryonic development (stages 1 to 46) was about 62 days. Average water temperature in the pond during embryonic development was 8.5/sup 0/C (range, 4.4 to 14.3/sup 0/C). The laboratory data of embryonic development at constant temperatures show that the limits of temperature tolerance are about 5 to 22.5/sup 0/C. Rate of development was measured by determining time required to develop from first cleavage (stage 2) to gill circulation (stage 37); representative rates are 12.7 days at 20/sup 0/C, 27 days at 12/sup 0/C, and 89 days at 7/sup 0/C. Embryos of A. gracile have the slowest rate of development when compared with embryos of four other species of Ambystoma (maculatum, mexicanum, tigrinum, and jeffersonianum) and with embryos of three Pacific Northwest frogs (Ascaphus truei, Rana aurora, and Hyla regilla).

  7. High field magnetic anisotropy in praseodymium gallium garnet at low temperatures

    International Nuclear Information System (INIS)

    Wang Wei; Yue Yuan; Liu Gongqiang

    2011-01-01

    Research highlights: → A detailed analysis of crystal field effect is presented, and a set of new crystal field parameters is given to study the magnetic behaviors of the paramagnetic praseodymium gallium garnet (PrGaG). → The contribution of the exchange interaction between the praseodymium ions to the magnetic properties of PrGaG is further explored. Meanwhile, some characteristics of exchange interaction are revealed. → With the consideration of crystal field and exchange interaction, the available experiments are successfully fitted by our theoretical model. → Our theory suggests that PrGaG is ferromagnetic ordering at low temperatures, and the exchange interaction is anisotropic. - Abstract: In this paper, with the consideration of crystal field and exchange interaction between the rare-earth Pr 3+ ions, the magnetic anisotropy in praseodymium gallium garnet (PrGaG) in high magnetic fields and at low temperatures is theoretically analyzed. A set of relatively suitable CF parameters is obtained by studying the influence of the variations of nine CF parameters on the magnetization. However, only taking crystal field effect into account, theoretical calculations indicate that the experiments cannot be excellently interpreted. Then, the exchange interaction between Pr 3+ ion, which can be described as an effective exchange field H v = vM = vχH e = ηH e , is further considered. On the other hand, by evaluating the variation of the parameter η with the magnetic fields, our theory implies that PrGaG exhibits ferrimagnetic ordering at low temperatures, and the exchange interaction in PrGaG displays obvious anisotropy. Also, the theoretical data show better agreements with the experimental results.

  8. The feasibility of an infrared system for real-time visualization and mapping of ultrasound fields

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Adam; Nunn, John, E-mail: adam.shaw@npl.co.u [National Physical Laboratory, Teddington, Middlesex, TW11 0LW (United Kingdom)

    2010-06-07

    In treatment planning for ultrasound therapy, it is desirable to know the 3D structure of the ultrasound field. However, mapping an ultrasound field in 3D is very slow, with even a single planar raster scan taking typically several hours. Additionally, hydrophones that are used for field mapping are expensive and can be damaged in some therapy fields. So there is value in rapid methods which enable visualization and mapping of the ultrasound field in about 1 min. In this note we explore the feasibility of mapping the intensity distribution by measuring the temperature distribution produced in a thin sheet of absorbing material. A 0.2 mm thick acetate sheet forms a window in the wall of a water tank containing the transducer. The window is oriented at 45{sup 0} to the beam axis, and the distance from the transducer to the window can be varied. The temperature distribution is measured with an infrared camera; thermal images of the inclined plane could be viewed in real time or images could be captured for later analysis and 3D field reconstruction. We conclude that infrared thermography can be used to gain qualitative information about ultrasound fields. Thermal images are easily visualized with good spatial and thermal resolutions (0.044 mm and 0.05 {sup 0}C in our system). The focus and field structure such as side lobes can be identified in real time from the direct video output. 3D maps and image planes at arbitrary orientations to the beam axis can be obtained and reconstructed within a few minutes. In this note we are primarily interested in the technique for characterization of high intensity focused ultrasound (HIFU) fields, but other applications such as physiotherapy fields are also possible. (note)

  9. The feasibility of an infrared system for real-time visualization and mapping of ultrasound fields

    International Nuclear Information System (INIS)

    Shaw, Adam; Nunn, John

    2010-01-01

    In treatment planning for ultrasound therapy, it is desirable to know the 3D structure of the ultrasound field. However, mapping an ultrasound field in 3D is very slow, with even a single planar raster scan taking typically several hours. Additionally, hydrophones that are used for field mapping are expensive and can be damaged in some therapy fields. So there is value in rapid methods which enable visualization and mapping of the ultrasound field in about 1 min. In this note we explore the feasibility of mapping the intensity distribution by measuring the temperature distribution produced in a thin sheet of absorbing material. A 0.2 mm thick acetate sheet forms a window in the wall of a water tank containing the transducer. The window is oriented at 45 0 to the beam axis, and the distance from the transducer to the window can be varied. The temperature distribution is measured with an infrared camera; thermal images of the inclined plane could be viewed in real time or images could be captured for later analysis and 3D field reconstruction. We conclude that infrared thermography can be used to gain qualitative information about ultrasound fields. Thermal images are easily visualized with good spatial and thermal resolutions (0.044 mm and 0.05 0 C in our system). The focus and field structure such as side lobes can be identified in real time from the direct video output. 3D maps and image planes at arbitrary orientations to the beam axis can be obtained and reconstructed within a few minutes. In this note we are primarily interested in the technique for characterization of high intensity focused ultrasound (HIFU) fields, but other applications such as physiotherapy fields are also possible. (note)

  10. Quantum Quench Dynamics in the Transverse Field Ising Model at Non-zero Temperatures

    Science.gov (United States)

    Abeling, Nils; Kehrein, Stefan

    The recently discovered Dynamical Phase Transition denotes non-analytic behavior in the real time evolution of quantum systems in the thermodynamic limit and has been shown to occur in different systems at zero temperature [Heyl et al., Phys. Rev. Lett. 110, 135704 (2013)]. In this talk we present the extension of the analysis to non-zero temperature by studying a generalized form of the Loschmidt echo, the work distribution function, of a quantum quench in the transverse field Ising model. Although the quantitative behavior at non-zero temperatures still displays features derived from the zero temperature non-analyticities, it is shown that in this model dynamical phase transitions do not exist if T > 0 . This is a consequence of the system being initialized in a thermal state. Moreover, we elucidate how the Tasaki-Crooks-Jarzynski relation can be exploited as a symmetry relation for a global quench or to obtain the change of the equilibrium free energy density. This work was supported through CRC SFB 1073 (Project B03) of the Deutsche Forschungsgemeinschaft (DFG).

  11. Experimental study of thermoacoustic effects on a single plate. Pt. 1. Temperature fields

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, M.; Herman, C. [Johns Hopkins Univ., Baltimore, MD (USA). Dept. of Mech. Eng.

    2000-03-01

    The thermal interaction between a heated solid plate and the acoustically driven working fluid was investigated by visualizing and quantifying the temperature fields in the neighbourhood of the solid plate. A combination of holographic interferometry and high-speed cinematography was applied in the measurements. A better knowledge of these temperature fields is essential to develop systematic design methodologies for heat exchangers in oscillatory flows. The difference between heat transfer in oscillatory flows with zero mean velocity and steady-state flows is demonstrated in the paper. Instead of heat transfer from a heated solid surface to the colder bulk fluid, the visualized temperature fields indicated that heat was transferred from the working fluid into the stack plate at the edge of the plate. In the experiments, the thermoacoustic effect was visualized through the temperature measurements. A novel evaluation procedure that accounts for the influence of the acoustic pressure variations on the refractive index was applied to accurately reconstruct the high-speed, two-dimensional oscillating temperature distributions. (orig.)

  12. Simulation of temperature field for temperature-controlled radio frequency ablation using a hyperbolic bioheat equation and temperature-varied voltage calibration: a liver-mimicking phantom study.

    Science.gov (United States)

    Zhang, Man; Zhou, Zhuhuang; Wu, Shuicai; Lin, Lan; Gao, Hongjian; Feng, Yusheng

    2015-12-21

    This study aims at improving the accuracy of temperature simulation for temperature-controlled radio frequency ablation (RFA). We proposed a new voltage-calibration method in the simulation and investigated the feasibility of a hyperbolic bioheat equation (HBE) in the RFA simulation with longer durations and higher power. A total of 40 RFA experiments was conducted in a liver-mimicking phantom. Four mathematical models with multipolar electrodes were developed by the finite element method in COMSOL software: HBE with/without voltage calibration, and the Pennes bioheat equation (PBE) with/without voltage calibration. The temperature-varied voltage calibration used in the simulation was calculated from an experimental power output and temperature-dependent resistance of liver tissue. We employed the HBE in simulation by considering the delay time τ of 16 s. First, for simulations by each kind of bioheat equation (PBE or HBE), we compared the differences between the temperature-varied voltage-calibration and the fixed-voltage values used in the simulations. Then, the comparisons were conducted between the PBE and the HBE in the simulations with temperature-varied voltage calibration. We verified the simulation results by experimental temperature measurements on nine specific points of the tissue phantom. The results showed that: (1) the proposed voltage-calibration method improved the simulation accuracy of temperature-controlled RFA for both the PBE and the HBE, and (2) for temperature-controlled RFA simulation with the temperature-varied voltage calibration, the HBE method was 0.55 °C more accurate than the PBE method. The proposed temperature-varied voltage calibration may be useful in temperature field simulations of temperature-controlled RFA. Besides, the HBE may be used as an alternative in the simulation of long-duration high-power RFA.

  13. Effects of temperature on bleeding time and clotting time in normal male and female volunteers.

    Science.gov (United States)

    Valeri, C R; MacGregor, H; Cassidy, G; Tinney, R; Pompei, F

    1995-04-01

    This study was done to assess the effects of temperature on bleeding time and clotting time in normal male and female volunteers. Open study utilizing normal volunteers. University research laboratory. Fifty-four healthy male and female volunteers, ranging in age from 19 to 35 yrs, who were not receiving medications. The study was done and the samples of venous blood and shed blood collected at the template bleeding time site were obtained at a convenient time for each volunteer. Skin temperature was changed from +20 degrees to +38 degrees C and blood samples were obtained from the antecubital vein of each volunteer. The effect of local skin temperature ranging from +20 degrees to +38 degrees C on bleeding time was evaluated in 38 normal volunteers (19 male and 19 female). Skin temperature was maintained at +20 degrees to +38 degrees C by cooling or warming the forearm. At each temperature, measurements were made of complete blood count, bleeding time, and thromboxane B2 concentrations in shed blood collected at the template bleeding time site and in serum and plasma isolated from blood collected from the antecubital vein. Clotting time studies were measured in 16 normal volunteers (eight male and eight female) at temperatures ranging from +22 degrees to +37 degrees C. At +32 degrees C, the bleeding time was longer and hematocrit was lower in female than in male volunteers. However, at local skin temperatures of < +32 degrees C, both the males and females exhibited significantly increased bleeding times, which were associated with a reduction in shed blood thromboxane B2. Each 1 degree C decrease in temperature was associated with a 15% decrease in the shed blood thromboxane B2 concentration. Clotting times were three times longer at +22 degrees C than at +37 degrees C. Each 1 degree C reduction in the temperature of the clotted blood was associated with a 15% reduction in the serum thromboxane B2 concentration. Our data indicate that during surgical procedures, it

  14. Temperature and velocity measurement fields of fluids using a schlieren system.

    Science.gov (United States)

    Martínez-González, Adrian; Guerrero-Viramontes, J A; Moreno-Hernández, David

    2012-06-01

    This paper proposes a combined method for two-dimensional temperature and velocity measurements in liquid and gas flow using a schlieren system. Temperature measurements are made by relating the intensity level of each pixel in a schlieren image to the corresponding knife-edge position measured at the exit focal plane of the schlieren system. The same schlieren images were also used to measure the velocity of the fluid flow. The measurement is made by using particle image velocimetry (PIV). The PIV software used in this work analyzes motion between consecutive schlieren frames to obtain velocity fields. The proposed technique was applied to measure the temperature and velocity fields in the natural convection of water provoked by a heated rectangular plate.

  15. Temperature field simulation of complex structures in fire environment

    International Nuclear Information System (INIS)

    Li Weifen; Hao Zhiming; Li Minghai

    2010-01-01

    In this paper, the typical model of the system of dangerous goods - steel - wood composite structure including components of explosives is used as the research object. Using MARC program, the temperature field of the structure in the fire environment is simulated. Radiation, conduction and convection heat transfer within the gap of the structure are taken into account, contact heat transfer is also considered. The phenomenon of thermal decomposition of wood in high temperature is deal with by equivalent method. The results show that the temperature of the explosives is not high in the fire environment. The timber inside the composite structure has played a very good insulation effect of explosives.

  16. CFD analysis of the temperature field in emergency pump room in Loviisa NPP

    Energy Technology Data Exchange (ETDEWEB)

    Rämä, Tommi, E-mail: tommi.rama@fortum.com [Fortum Power and Heat, P.O.B. 100, FI-00048 Fortum (Finland); Toppila, Timo, E-mail: timo.toppila@fortum.com [Fortum Power and Heat, P.O.B. 100, FI-00048 Fortum (Finland); Kelavirta, Teemu, E-mail: teemu.kelavirta@fortum.com [Fortum Power and Heat, Loviisa Power Plant, P.O.B. 23, FI-07901 Loviisa (Finland); Martin, Pasi, E-mail: pasi.martin@fortum.com [Fortum Power and Heat, Loviisa Power Plant, P.O.B. 23, FI-07901 Loviisa (Finland)

    2014-11-15

    Highlights: • Laser scanned room geometry from Loviisa NPP was utilized for CFD simulation. • Uncertainty of CFD simulation was estimated using the Grid Convergence Index. • Measured temperature field of pump room was reproduced with CFD simulation. - Abstract: In the Loviisa Nuclear Power Plant (NPP) six emergency pumps belonging to the same redundancy are located in the same room. During a postulated accident the cooling of the room is needed as the engines of the emergency pumps generate heat. Cooling is performed with fans blowing air to the upper part of the room. Temperature limits have been given to the operating conditions of the main components in order to ensure their reliable operation. Therefore the temperature field of the room is important to know. Temperature measurements were made close to the most important components of the pump room to get a better understanding of the temperature field. For these measurements emergency pumps and cooling fan units were activated. To simulate conditions during a postulated accident additional warm-air heaters were used. Computational fluid dynamic (CFD) simulations were made to support plant measurements. For the CFD study one of the pump rooms of Loviisa NPP was scanned with a laser and this data converted to detailed 3-D geometry. Tetrahedral computation grid was created inside the geometry. Grid sensitivity studies were made, and the model was then validated against the power plant tests. With CFD the detailed temperature and flow fields of the whole room were produced. The used CFD model was able to reproduce the temperature field of the measurements. Two postulated accident cases were simulated. In the cases the operating cooling units were varied. The temperature profile of the room changes significantly depending on which units are cooling and which only circulating the air. The room average temperature stays approximately the same. The simulation results were used to ensure the acceptable operating

  17. Numerical analysis of temperature field improvement with nanoparticles designed to achieve critical power dissipation in magnetic hyperthermia

    Science.gov (United States)

    Tang, Yundong; Flesch, Rodolfo C. C.; Jin, Tao

    2017-07-01

    Magnetic nanoparticle (MNP) hyperthermia is a promising emerging therapy for cancer treatment that is minimally invasive and has been successfully used to treat different types of tumors. The power dissipation of MNPs, which is one of the most important factors during a hyperthermia treatment, is determined by the properties of MNPs and characteristics of the magnetic field. This paper proposes a method based on the finite element analysis for determining the value of the power dissipation of particles (PDP) that can maximize the average temperature of the tumor during treatment and at the same time guarantee that the maximum temperature is within the therapeutic range. The application of the critical PDP value can improve the effectiveness of the treatment since it increases the average temperature in the tumor region while limiting the damage to the healthy tissue that surrounds it. After the critical PDP is determined for a specific model, it is shown how the properties of the MNPs can be chosen to achieve the desired PDP value. The transient behavior of the temperature distribution for two different models considering blood vessels is analyzed as a case study, showing that the presence of a blood vessel inside the tumor region can significantly decrease the uniformity of the temperature field and also increase the treatment duration given its cooling effects. To present a solution that does not depend upon a good model of the tumor region, an alternative method that uses MNPs with low Curie temperature is proposed, given the temperature self-regulating properties of such MNPs. The results demonstrate that the uniformity of the temperature field can be significantly increased by combining the optimization procedure proposed in this paper with the use of low-Curie-temperature MNPs.

  18. Time-resolving electron temperature diagnostic for ALCATOR C

    International Nuclear Information System (INIS)

    Fairfax, S.A.

    1984-05-01

    A diagnostic that provides time-resolved central electron temperatures has been designed, built, and tested on the ALCATOR C Tokamak. The diagnostic uses an array of fixed-wavelength x-ray crystal monochromators to sample the x-ray continuum and determine the absolute electron temperature. The resolution and central energy of each channel were chosen to exclude any contributions from impurity line radiation. This document describes the need for such a diagnostic, the design methodology, and the results with typical ALCATOR C plasmas. Sawtooth (m = 1) temperature oscillations were observed after pellet fueling of the plasma. This is the first time that such oscillations have been observed with an x-ray temperature diagnostic

  19. Time-dependent two-temperature chemically non-equilibrium modelling of high-power Ar-N2 pulse-modulated inductively coupled plasmas at atmospheric pressure

    International Nuclear Information System (INIS)

    Tanaka, Yasunori

    2006-01-01

    A time-dependent, two-dimensional, two-temperature and chemical non-equilibrium model was developed for high-power Ar-N 2 pulse-modulated inductively coupled plasmas (PMICPs) at atmospheric pressure. The high-power PMICP is a new technique for sustaining high-power induction plasmas. It can control the plasma temperature and radical densities in the time domain. The PMICP promotes non-equilibrium effects by a sudden application of electric field, even in the high-power density plasmas. The developed model accounts separately for the time-dependent energy conservation equations of electrons and heavy particles. This model also considers reaction heat effects and energy transfer between electrons and heavy particles as well as enthalpy flow resulting from diffusion caused by the particle density gradient. Chemical non-equilibrium effects are also taken into account by solving time-dependent mass conservation equations for each particle, considering diffusion, convection and net production terms resulting from 30 chemical reactions. Transport and thermodynamic properties of Ar-N 2 plasmas are calculated self-consistently using the first order approximation of the Chapman-Enskog method at each position and iteration using the local particle composition, heavy particle temperature and electron temperature. This model is useful to discuss time evolution in temperature, gas flow fields and distribution of chemical species

  20. PCR detection of malaria parasites in desiccated Anopheles mosquitoes is uninhibited by storage time and temperature

    Directory of Open Access Journals (Sweden)

    Rider Mark A

    2012-06-01

    Full Text Available Abstract Background Reliable methods to preserve mosquito vectors for malaria studies are necessary for detecting Plasmodium parasites. In field settings, however, maintaining a cold chain of storage from the time of collection until laboratory processing, or accessing other reliable means of sample preservation is often logistically impractical or cost prohibitive. As the Plasmodium infection rate of Anopheles mosquitoes is a central component of the entomological inoculation rate and other indicators of transmission intensity, storage conditions that affect pathogen detection may bias malaria surveillance indicators. This study investigated the effect of storage time and temperature on the ability to detect Plasmodium parasites in desiccated Anopheles mosquitoes by real-time polymerase chain reaction (PCR. Methods Laboratory-infected Anopheles stephensi mosquitoes were chloroform-killed and stored over desiccant for 0, 1, 3, and 6 months while being held at four different temperatures: 28, 37, -20 and -80°C. The detection of Plasmodium DNA was evaluated by real-time PCR amplification of a 111 base pair region of block 4 of the merozoite surface protein. Results Varying the storage time and temperature of desiccated mosquitoes did not impact the sensitivity of parasite detection. A two-way factorial analysis of variance suggested that storage time and temperature were not associated with a loss in the ability to detect parasites. Storage of samples at 28°C resulted in a significant increase in the ability to detect parasite DNA, though no other positive associations were observed between the experimental storage treatments and PCR amplification. Conclusions Cold chain maintenance of desiccated mosquito samples is not necessary for real-time PCR detection of parasite DNA. Though field-collected mosquitoes may be subjected to variable conditions prior to molecular processing, the storage of samples over an inexpensive and logistically

  1. Dualities among one-time field theories with spin, emerging from a unifying two-time field theory

    International Nuclear Information System (INIS)

    Bars, Itzhak; Quelin, Guillaume

    2008-01-01

    The relation between two-time physics (2T-physics) and the ordinary one-time formulation of physics (1T-physics) is similar to the relation between a 3-dimensional object moving in a room and its multiple shadows moving on walls when projected from different perspectives. The multiple shadows as seen by observers stuck on the wall are analogous to the effects of the 2T-universe as experienced in ordinary 1T spacetime. In this paper we develop some of the quantitative aspects of this 2T to 1T relationship in the context of field theory. We discuss 2T field theory in d+2 dimensions and its shadows in the form of 1T field theories when the theory contains Klein-Gordon, Dirac and Yang-Mills fields, such as the standard model of particles and forces. We show that the shadow 1T field theories must have hidden relations among themselves. These relations take the form of dualities and hidden spacetime symmetries. A subset of the shadows are 1T field theories in different gravitational backgrounds (different space-times) such as the flat Minkowski spacetime, the Robertson-Walker expanding universe, AdS d-k xS k , and others, including singular ones. We explicitly construct the duality transformations among this conformally flat subset, and build the generators of their hidden SO(d,2) symmetry. The existence of such hidden relations among 1T field theories, which can be tested by both theory and experiment in 1T-physics, is part of the evidence for the underlying d+2 dimensional spacetime and the unifying 2T-physics structure

  2. Effect of electric field (at different temperatures) on germination of ...

    African Journals Online (AJOL)

    Chickpea (Cicer arietinum) seeds were exposed to electric field from zero to 1300 V for 15 min at three different temperatures (13, 16 and 19°C). It was found that the exposure of chickpea seeds to the electric field caused a change in water uptake capacity (and its coefficient) as compared to control. A new theoretical model ...

  3. Investigations on Temperature Fields during Laser Beam Melting by Means of Process Monitoring and Multiscale Process Modelling

    Directory of Open Access Journals (Sweden)

    J. Schilp

    2014-07-01

    Full Text Available Process monitoring and modelling can contribute to fostering the industrial relevance of additive manufacturing. Process related temperature gradients and thermal inhomogeneities cause residual stresses, and distortions and influence the microstructure. Variations in wall thickness can cause heat accumulations. These occur predominantly in filigree part areas and can be detected by utilizing off-axis thermographic monitoring during the manufacturing process. In addition, numerical simulation models on the scale of whole parts can enable an analysis of temperature fields upstream to the build process. In a microscale domain, modelling of several exposed single hatches allows temperature investigations at a high spatial and temporal resolution. Within this paper, FEM-based micro- and macroscale modelling approaches as well as an experimental setup for thermographic monitoring are introduced. By discussing and comparing experimental data with simulation results in terms of temperature distributions both the potential of numerical approaches and the complexity of determining suitable computation time efficient process models are demonstrated. This paper contributes to the vision of adjusting the transient temperature field during manufacturing in order to improve the resulting part's quality by simulation based process design upstream to the build process and the inline process monitoring.

  4. Stream temperature investigations: field and analytic methods

    Science.gov (United States)

    Bartholow, J.M.

    1989-01-01

    This document provides guidance to the user of the U.S. Fish and Wildlife Service’s Stream Network Temperature Model (SNTEMP). Planning a temperature study is discussed in terms of understanding the management objectives and ensuring that the questions will be accurately answered with the modeling approach being used. A sensitivity analysis of SNTEMP is presented to illustrate which input variables are most important in predicting stream temperatures. This information helps prioritize data collection activities, highlights the need for quality control, focuses on which parameters can be estimated rather than measured, and offers a broader perspective on management options in terms of knowing where the biggest temperature response will be felt. All of the major input variables for stream geometry, meteorology, and hydrology are discussed in detail. Each variable is defined, with guidance given on how to measure it, what kind of equipment to use, where to obtain it from another agency, and how to calculate it if the data are in a form other than that required by SNTEMP. Examples are presented for the various forms in which water temperature, discharge, and meteorological data are commonly found. Ranges of values for certain input variables that are difficult to measure of estimate are given. Particular attention is given to those variables not commonly understood by field biologists likely to be involved in a stream temperature study. Pertinent literature is cited for each variable, with emphasis on how other people have treated particular problems and on results they have found.

  5. All-Digital Time-Domain CMOS Smart Temperature Sensor with On-Chip Linearity Enhancement.

    Science.gov (United States)

    Chen, Chun-Chi; Chen, Chao-Lieh; Lin, Yi

    2016-01-30

    This paper proposes the first all-digital on-chip linearity enhancement technique for improving the accuracy of the time-domain complementary metal-oxide semiconductor (CMOS) smart temperature sensor. To facilitate on-chip application and intellectual property reuse, an all-digital time-domain smart temperature sensor was implemented using 90 nm Field Programmable Gate Arrays (FPGAs). Although the inverter-based temperature sensor has a smaller circuit area and lower complexity, two-point calibration must be used to achieve an acceptable inaccuracy. With the help of a calibration circuit, the influence of process variations was reduced greatly for one-point calibration support, reducing the test costs and time. However, the sensor response still exhibited a large curvature, which substantially affected the accuracy of the sensor. Thus, an on-chip linearity-enhanced circuit is proposed to linearize the curve and achieve a new linearity-enhanced output. The sensor was implemented on eight different Xilinx FPGA using 118 slices per sensor in each FPGA to demonstrate the benefits of the linearization. Compared with the unlinearized version, the maximal inaccuracy of the linearized version decreased from 5 °C to 2.5 °C after one-point calibration in a range of -20 °C to 100 °C. The sensor consumed 95 μW using 1 kSa/s. The proposed linearity enhancement technique significantly improves temperature sensing accuracy, avoiding costly curvature compensation while it is fully synthesizable for future Very Large Scale Integration (VLSI) system.

  6. Fermion bag approach to Hamiltonian lattice field theories in continuous time

    Science.gov (United States)

    Huffman, Emilie; Chandrasekharan, Shailesh

    2017-12-01

    We extend the idea of fermion bags to Hamiltonian lattice field theories in the continuous time formulation. Using a class of models we argue that the temperature is a parameter that splits the fermion dynamics into small spatial regions that can be used to identify fermion bags. Using this idea we construct a continuous time quantum Monte Carlo algorithm and compute critical exponents in the 3 d Ising Gross-Neveu universality class using a single flavor of massless Hamiltonian staggered fermions. We find η =0.54 (6 ) and ν =0.88 (2 ) using lattices up to N =2304 sites. We argue that even sizes up to N =10 ,000 sites should be accessible with supercomputers available today.

  7. Temperature rising characteristics of ammonium diurante in microwave fields

    International Nuclear Information System (INIS)

    Liu Bingguo; Peng JinHui; Huang Daifu; Zhang Libo; Hu Jinming; Zhuang Zebiao; Kong Dongcheng; Guo Shenghui; Li Chunxiang

    2010-01-01

    The temperature rising characteristics of ammonium diurante, triuranium octaoxide (U 3 O 8 ), and their mixture were investigated under microwave irradiation, aiming at exploring newly theoretical foundation for advanced metallurgical methods. The temperature rising curves showed that ammonium diurante had weak capability to absorb microwave energy, while triuranium octaoxide had the very strong absorption capability. The temperature of mixture containing 20% of U 3 O 8 could rise from room temperature to 1171 K within 280 s. The ability to absorb microwave energy for the mixture with different ratios increased with the increase in the amount of U 3 O 8 . These are in good agreement with the results of Maxwell-Garnett effective medium theory. It is feasible to calcine ammonium diurante by adding of small amounts of U 3 O 8 in microwave fields.

  8. Dynamic temperature fields under Mars landing sites and implications for supporting microbial life.

    Science.gov (United States)

    Ulrich, Richard; Kral, Tim; Chevrier, Vincent; Pilgrim, Robert; Roe, Larry

    2010-01-01

    While average temperatures on Mars may be too low to support terrestrial life-forms or aqueous liquids, diurnal peak temperatures over most of the planet can be high enough to provide for both, down to a few centimeters beneath the surface for some fraction of the time. A thermal model was applied to the Viking 1, Viking 2, Pathfinder, Spirit, and Opportunity landing sites to demonstrate the dynamic temperature fields under the surface at these well-characterized locations. A benchmark temperature of 253 K was used as a lower limit for possible metabolic activity, which corresponds to the minimum found for specific terrestrial microorganisms. Aqueous solutions of salts known to exist on Mars can provide liquid solutions well below this temperature. Thermal modeling has shown that 253 K is reached beneath the surface at diurnal peak heating for at least some parts of the year at each of these landing sites. Within 40 degrees of the equator, 253 K beneath the surface should occur for at least some fraction of the year; and, within 20 degrees , it will be seen for most of the year. However, any life-form that requires this temperature to thrive must also endure daily excursions to far colder temperatures as well as periods of the year where 253 K is never reached at all.

  9. CosmoTransitions: Computing cosmological phase transition temperatures and bubble profiles with multiple fields

    Science.gov (United States)

    Wainwright, Carroll L.

    2012-09-01

    /undershoot method. The path iteratively deforms in the direction opposite the forces perpendicular to the path until the perpendicular forces vanish (or become very small). To find the phase structure, the program finds and integrates the change in a phase's minimum with respect to temperature.Running time: Approximately 1 minute for full analysis of the two-scalar-field test model on a 2.5 GHz CPU.

  10. Numerical Simulation of Magnetic Field Effect on Cryocooler Regenerators: Temperature Distribution

    Directory of Open Access Journals (Sweden)

    Rajendra Kumar

    2017-01-01

    Full Text Available Regenerative types of cryogenic refrigerators (or cryocoolers employ magnetic intermetallic compounds of 3d and 4f elements to work well below 10 K. This paper presents the analysis of temperature distribution in regenerators of such cryocoolers under the influence of magnetic fields of 1 T, 3 T, and 4.3 T. Commercial code of finite element analysis (FEA package, ANSYS (APDL 14.5, is used to investigate the temperature distribution under above-mentioned fields. Er3Ni is selected as regenerator material and the criteria for its selection are discussed in detail. The cold end temperature is varied from 4.2 K to 10 K and hot end temperature is fixed at 20 K. The values obtained from FEA clearly show that the ineffectiveness of Er3Ni is at 8 K and 10 K at 3 T and 4.3 T.

  11. Investigation of linearity of the ITER outer vessel steady-state magnetic field sensors at high temperature

    Science.gov (United States)

    Entler, S.; Duran, I.; Kocan, M.; Vayakis, G.

    2017-07-01

    Three vacuum vessel sectors in ITER will be instrumented by the outer vessel steady-state magnetic field sensors. Each sensor unit features a pair of metallic Hall sensors with a sensing layer made of bismuth to measure tangential and normal components of the local magnetic field. The influence of temperature and magnetic field on the Hall coefficient was tested for the temperature range from 25 to 250 oC and the magnetic field range from 0 to 0.5 T. A fit of the Hall coefficient normalized temperature function independent of magnetic field was found, and a model of the Hall coefficient functional dependence at a wide range of temperature and magnetic field was built with the purpose to simplify the calibration procedure.

  12. Quark self-energy beyond the mean field at finite temperature

    International Nuclear Information System (INIS)

    Zhuang, P.

    1995-01-01

    The Nambu--Jona-Lasinio model, an effective low-energy model of QCD, is extended to the next to the leading order in the 1/N c expansion at finite temperature and density. The contributions to the quark self-energy and the constituent quark mass from the meson dressing are considered in a perturbative approach about the mean field. In particular, the temperature dependence of the quark mass is shown numerically at zero chemical potential. The correction to the quark mass from the meson dressing amounts to 20% compared to the result of the leading order at low temperature, and rapidly approaches zero at high temperature

  13. Temperature and driving field dependence of fatigue processes in PZT bulk ceramics

    International Nuclear Information System (INIS)

    Glaum, Julia; Granzow, Torsten; Schmitt, Ljubomira Ana; Kleebe, Hans-Joachim; Roedel, Juergen

    2011-01-01

    The temperature- and field-dependent degradation properties of bulk Pb(Zr,Ti)O 3 material (PZT) under a unipolar electric field were investigated. Unipolar cycling leads to the build-up of an internal bias field based on the agglomeration of charges at grain boundaries. A simple model was developed which describes the general dynamics of unipolar fatigue and its dependence on temperature and driving field. Comparing the large and small signal permittivity before and after fatigue led to the conclusion that domain walls became clamped by the agglomerated charges. This clamping effect could be visualized by transmission electron microscopy (TEM). Additionally, the TEM investigations revealed that unipolar fatigue leads to a weakening of the microstructure and to the development of microcracks.

  14. Finite temperature dynamics of a Holstein polaron: The thermo-field dynamics approach

    Science.gov (United States)

    Chen, Lipeng; Zhao, Yang

    2017-12-01

    Combining the multiple Davydov D2 Ansatz with the method of thermo-field dynamics, we study finite temperature dynamics of a Holstein polaron on a lattice. It has been demonstrated, using the hierarchy equations of motion method as a benchmark, that our approach provides an efficient, robust description of finite temperature dynamics of the Holstein polaron in the simultaneous presence of diagonal and off-diagonal exciton-phonon coupling. The method of thermo-field dynamics handles temperature effects in the Hilbert space with key numerical advantages over other treatments of finite-temperature dynamics based on quantum master equations in the Liouville space or wave function propagation with Monte Carlo importance sampling. While for weak to moderate diagonal coupling temperature increases inhibit polaron mobility, it is found that off-diagonal coupling induces phonon-assisted transport that dominates at high temperatures. Results on the mean square displacements show that band-like transport features dominate the diagonal coupling cases, and there exists a crossover from band-like to hopping transport with increasing temperature when including off-diagonal coupling. As a proof of concept, our theory provides a unified treatment of coherent and incoherent transport in molecular crystals and is applicable to any temperature.

  15. Anisotropic scalar field with cosmological time

    International Nuclear Information System (INIS)

    Kleber, A.; Teixeira, A.F.F.

    1978-04-01

    A static, nonsingular, plane-symmetric scalar field of long range is considered under the general relativity, and a one-parametric class of exact solutions with cosmological time is obtained, in harmonic coordinates. In the absence of any material source, the gravitation originated by the pure scalar field can be studied in detail. A velocity-dependent acceleration field is found, acting attractively on the component of the velocity normal to the plane of symmetry, and repulsively on the component parallel to that plane. Particles at rest are insensitive to the gravitation, although the time component of the energy momentum tensor is point dependent and positive definite

  16. Pretest Calculations of Temperature Changes for Field Thermal Conductivity Tests

    International Nuclear Information System (INIS)

    N.S. Brodsky

    2002-01-01

    A large volume fraction of the potential monitored geologic repository at Yucca Mountain may reside in the Tptpll (Tertiary, Paintbrush Group, Topopah Spring Tuff, crystal poor, lower lithophysal) lithostratigraphic unit. This unit is characterized by voids, or lithophysae, which range in size from centimeters to meters. A series of thermal conductivity field tests are planned in the Enhanced Characterization of the Repository Block (ECRB) Cross Drift. The objective of the pretest calculation described in this document is to predict changes in temperatures in the surrounding rock for these tests for a given heater power and a set of thermal transport properties. The calculation can be extended, as described in this document, to obtain thermal conductivity, thermal capacitance (density x heat capacity, J · m -3 · K -1 ), and thermal diffusivity from the field data. The work has been conducted under the ''Technical Work Plan For: Testing and Monitoring'' (BSC 2001). One of the outcomes of this analysis is to determine the initial output of the heater. This heater output must be sufficiently high that it will provide results in a reasonably short period of time (within several weeks or a month) and be sufficiently high that the heat increase is detectable by the instruments employed in the test. The test will be conducted in stages and heater output will be step increased as the test progresses. If the initial temperature is set too high, the experiment will not have as many steps and thus fewer thermal conductivity data points will result

  17. Non-linear dielectric signatures of entropy changes in liquids subject to time dependent electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Richert, Ranko [School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604 (United States)

    2016-03-21

    A model of non-linear dielectric polarization is studied in which the field induced entropy change is the source of polarization dependent retardation time constants. Numerical solutions for the susceptibilities of the system are obtained for parameters that represent the dynamic and thermodynamic behavior of glycerol. The calculations for high amplitude sinusoidal fields show a significant enhancement of the steady state loss for frequencies below that of the low field loss peak. Also at relatively low frequencies, the third harmonic susceptibility spectrum shows a “hump,” i.e., a maximum, with an amplitude that increases with decreasing temperature. Both of these non-linear effects are consistent with experimental evidence. While such features have been used to conclude on a temperature dependent number of dynamically correlated particles, N{sub corr}, the present result demonstrates that the third harmonic susceptibility display a peak with an amplitude that tracks the variation of the activation energy in a model that does not involve dynamical correlations or spatial scales.

  18. Optimization of temperature field of tobacco heat shrink machine

    Science.gov (United States)

    Yang, Xudong; Yang, Hai; Sun, Dong; Xu, Mingyang

    2018-06-01

    A company currently shrinking machine in the course of the film shrinkage is not compact, uneven temperature, resulting in poor quality of the shrinkage of the surface film. To solve this problem, the simulation and optimization of the temperature field are performed by using the k-epsilon turbulence model and the MRF model in fluent. The simulation results show that after the mesh screen structure is installed at the suction inlet of the centrifugal fan, the suction resistance of the fan can be increased and the eddy current intensity caused by the high-speed rotation of the fan can be improved, so that the internal temperature continuity of the heat shrinkable machine is Stronger.

  19. TEMPERATURE FIELDS IN THE ZONE OF CONNECTION BETWEEN WINDOW AND BUILDING ENVELOPE

    OpenAIRE

    V. V. Ivanov; A. N. Butenko; L. V. Karaseva

    2011-01-01

    Problem statement. To determine additional heat losses through window opening slopes, it is ne-cessary to calculate temperature fields of a wall in the zone of connection between window and building envelope. Two types of building envelopes are considered: solid brick wall and two-layer-wall of bricks and fiber foam concrete block interlayered with air.Results. The results obtained show the influence of a window on the temperature field of wall opening. Different types of wall structures are ...

  20. Study of Thermal-Field Emission Properties and Investigation of Temperature dependent Noise in the Emission Current form vertical Carbon nanotube emitters

    KAUST Repository

    Kolekar, Sadhu

    2017-05-05

    We have investigated temperature dependent field electron emission characteristics of vertical carbon nanotubes (CNTs). The generalized expression for electron emission from well defined cathode surface is given by Millikan and Lauritsen [1] for the combination of temperature and electric field effect. The same expression has been used to explain the electron emission characteristics from vertical CNT emitters. Furthermore, this has been applied to explain the electron emission for different temperatures ranging from room temperature to 1500 K. The real-time field electron emission images at room temperature and 1500 K are recorded by using Charge Coupled Device (CCD), in order to understand the effect of temperature on electron emission spots in image morphology (as indicated by ring like structures) and electron emission spot intensity of the emitters. Moreover, the field electron emission images can be used to calculate the total number of emitters per cm2 for electron emission. The calculated number of emitters per cm2 is 4.5x107 and, the actual number emitters per cm2 present for electron emission calculated from Atomic Force Microscopy (AFM) data is 1.2x1012. The measured Current-Voltage (I-V) characteristics obey the Folwer-Nordheim (F-N) type behavior. The fluctuations in the emission current are recorded at different temperatures and, temperature dependence of power spectral density obeys power law relation s(f)=I2/f2 with that of emission current and frequency.

  1. Noncommutative time in quantum field theory

    International Nuclear Information System (INIS)

    Salminen, Tapio; Tureanu, Anca

    2011-01-01

    We analyze, starting from first principles, the quantization of field theories, in order to find out to which problems a noncommutative time would possibly lead. We examine the problem in the interaction picture (Tomonaga-Schwinger equation), the Heisenberg picture (Yang-Feldman-Kaellen equation), and the path integral approach. They all indicate inconsistency when time is taken as a noncommutative coordinate. The causality issue appears as the key aspect, while the unitarity problem is subsidiary. These results are consistent with string theory, which does not admit a time-space noncommutative quantum field theory as its low-energy limit, with the exception of lightlike noncommutativity.

  2. Causality in finite temperature quantum field theory

    International Nuclear Information System (INIS)

    Paz, J.P.

    1991-01-01

    Some properties of various 'real time' formalisms are examined. The authors discuss conceptual (and sometimes very important) differences between the Niemi-Semmenoff method, the Closed Time Path formalism, and Thermo Field Dynamics. (author). 15 refs

  3. Temperature evolution in a magnetohydrodynamics simulation of a reversed-field pinch

    International Nuclear Information System (INIS)

    Onofri, M.; Malara, F.; Veltri, P.

    2010-01-01

    The temperature evolution in a magnetohydrodynamics (MHD) simulation of a reversed-field pinch (RFP) is investigated including thermal conductivity. For numerical reasons, an isotropic thermal conductivity is used, even though in a RFP plasma the parallel conductivity is much larger than the perpendicular one so that magnetic field lines tend to become isothermal. The system shows alternating multiple helicity states and quasi-single helicity states. Single-helical-axis states are formed when the amplitude of the dominant mode is above a determined threshold, as observed in experiments. The relation between heat transport and magnetic field topology that is observed in RFP experiments cannot be found in the simulation, since thermal conductivity is independent of the magnetic field. This difficulty should be taken into account in the numerical investigation of the RFP dynamics. In this paper, the first description of the temperature evolution in a compressible MHD simulation of a RFP is given.

  4. Dynamic phase transition in the kinetic spin-32 Blume-Capel model: Phase diagrams in the temperature and crystal-field interaction plane

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Canko, Osman; Deviren, Bayram

    2007-01-01

    We analyze, within a mean-field approach, the stationary states of the kinetic spin-32 Blume-Capel (BC) model by the Glauber-type stochastic dynamics and subject to a time-dependent oscillating external magnetic field. The dynamic phase transition (DPT) points are obtained by investigating the behavior of the dynamic magnetization as a function of temperature and as well as calculating the Liapunov exponent. Phase diagrams are constructed in the temperature and crystal-field interaction plane. We find five fundamental types of phase diagrams for the different values of the reduced magnetic field amplitude parameter (h) in which they present a disordered, two ordered phases and the coexistences phase regions. The phase diagrams also exhibit a dynamic double-critical end point for 0 5.06

  5. Boundary effects on quantum field theories

    International Nuclear Information System (INIS)

    Lee, Tae Hoon

    1991-01-01

    Quantum field theory in the S 1 *R 3 space-time is simply described by the imaginary time formalism. We generalize Schwinger-DeWitt proper-time technique which is very useful in zero temperature field theories to this case. As an example we calculate the one-loop effective potential of the finite temperature scala field theory by this technique.(Author)

  6. Temperature dependence of the μ+ hyperfine field in ferromagnets

    International Nuclear Information System (INIS)

    Nagamine, K.; Nirhida, N.; Hayano, R.S.; Yamazaki, T.; Brewes, J.H.; Fleming, D.G.

    1977-01-01

    The temperature dependences of the μ + hyperfine fields in Ni and in Fe were found to deviate from that of the saturation magnetization in opposite senses. Difference in the screening mechanism of conduction electrons around the μ + is considered, among several possible explanations. (Auth.)

  7. Theoretical upper critical field Hc2 for inhomogeneous high temperature superconductors

    International Nuclear Information System (INIS)

    Caixeiro, E.S.; Gonzalez, J.L.; Mello, E.V.L. de

    2004-01-01

    We present the theoretical upper critical field H c2 (T) of the high temperature superconductors (HTSC), calculated through a linearized Ginzburg-Landau equation modified to consider the intrinsic inhomogeneity of the HTSC. The unusual behavior of H c2 (T) for these compounds, and other properties like the Meissner and Nernst effects detected at temperatures much higher than the critical temperature T c of the sample, are explained by the approach

  8. ELECTRON TEMPERATURE FLUCTUATIONS AND CROSS-FIELD HEAT TRANSPORT IN THE EDGE OF DIII-D

    International Nuclear Information System (INIS)

    RUDAKOV, DL; BOEDO, JA; MOYER, RA; KRASENINNIKOV, S; MAHDAVI, MA; McKEE, GR; PORTER, GD; STANGEBY, PC; WATKINS, JG; WEST, WP; WHYTE, DG.

    2003-01-01

    OAK-B135 The fluctuating E x B velocity due to electrostatic turbulence is widely accepted as a major contributor to the anomalous cross-field transport of particles and heat in the tokamak edge and scrape-off layer (SOL) plasmas. This has been confirmed by direct measurements of the turbulent E x B transport in a number of experiments. Correlated fluctuations of the plasma radial velocity v r , density n, and temperature T e result in time-average fluxes of particles and heat given by (for electrons): Equation 1--Λ r ES = r > = 1/B varφ θ ; Equation 2--Q r ES = e (tilde v) r > ∼ 3/2 kT e Λ r ES + 3 n e /2 B varφ e (tilde E) θ > Q conv + Q cond . The first term in Equation 2 is referred to as convective and the second term as conductive heat flux. Experimental determination of fluxes given by Equations 1 and 2 requires simultaneous measurements of the density, temperature and poloidal electric field fluctuations with high spatial and temporal resolution. Langmuir probes provide most readily available (if not the only) tool for such measurements. However, fast measurements of electron temperature using probes are non-trivial and are not always performed. Thus, the contribution of the T e fluctuations to the turbulent fluxes is usually neglected. Here they report results of the studies of T e fluctuations and their effect on the cross-field transport in the SOL of DIII-D

  9. A surface acoustic wave passive and wireless sensor for magnetic fields, temperature, and humidity

    KAUST Repository

    Li, Bodong; Yassine, Omar; Kosel, Jü rgen

    2015-01-01

    In this paper, we report an integrated single-chip surface acoustic wave sensor with the capability of measuring magnetic field, temperature, and humidity. The sensor is fabricated using a thermally sensitive LiNbO3 substrate, a humidity sensitive hydrogel coating, and a magnetic field sensitive impedance load. The sensor response to individually and simultaneously changing magnetic field, temperature and humidity is characterized by connecting a network analyzer directly to the sensor. Analytical models for each measurand are derived and used to compensate noise due to cross sensitivities. The results show that all three measurands can be monitored in parallel with sensitivities of 75 ppm/°C, 0.13 dB/%R.H. (at 50%R.H.), 0.18 dB/Oe and resolutions of 0.1 °C, 0.4%R.H., 1 Oe for temperature, humidity and magnetic field, respectively. A passive wireless measurement is also conducted on a current line using, which shows the sensors capability to measure both temperature and current signals simultaneously.

  10. Distribution of temperature and moisture content fields in a rectangular beet pulp particle during convection drying

    Directory of Open Access Journals (Sweden)

    A. N. Ostrikov

    2018-01-01

    Full Text Available The mathematical model describing distribution of fields of temperatures and moisture contents in a particle of a squared beet press at convective drying is given. As the initial equations the differential equations of material and thermal balances in which transfer of warmth and weight is caused by phase transformations have been accepted. The algorithm of the numerical solution of a non-stationary regional problem of heat conductivity with variable heat and mass transfer coefficients of the dried-up product, boundary and entry conditions and also phase transition with mobile limit of the section of phases is developed for the solution of mathematical model. At the same time the initial system of the equations is given to a dimensionless look. For the solution of a problem of non-stationary heat conductivity the zone method of calculation of temperature fields when drying a beet press is used. Process of drying broke into some time intervals. Within each interval geometrical form of a particle, its density, heatphysical and mass-exchanged characteristics; initial distribution of temperature and moisture content on particle volume and also density of a mass and thermal stream with the evaporated moisture are constant. The zone method of the solution of a problem of the non-stationary three-dimensional equation of heat conductivity for a parallelepiped taking into account internal sources of warmth has been checked on experimental data of stationary drying of a beet press with use of basic data. For realization of a zone method dependences of change of the linear size of a particle of a beet press on spatial coordinate x and its moisture content in the course of drying are received. At constant values of moisture content and the sizes of the party of the dried-up particle on each step the method of a machine experiment has found the current values of coefficient of phase transformation on condition of the maximum rapprochement of settlement and

  11. Temperature fields in a growing solar silicon crystal

    Directory of Open Access Journals (Sweden)

    Kondrik A. I.

    2012-06-01

    Full Text Available The optimal thermal terms for growing by Czochralski method Si single-crystals, suitable for making photoelectric energy converters, has been defined by the computer simulation method. Dependences of temperature fields character and crystallization front form on the diameter of the crystal, stage and speed of growing, and also on correlation between diameter and height of the crystal has been studied.

  12. Dynamic temperature field in the ferromagnetic plate induced by moving high frequency inductor

    Directory of Open Access Journals (Sweden)

    Milošević-Mitić Vesna

    2014-01-01

    Full Text Available The subject of the paper is the temperature distribution in the thin metallic ferromagnetic plate influenced by moving linear high frequency induction heater. As a result of high frequency electromagnetic field, conducting currents appear in the part of the plate. Distribution of the eddy-current power across the plate thickness is obtained by use of complex analysis. The influences of the heater frequency, magnetic field intensity and plate thickness on the heat power density were discussed. By treating this power as a moving heat source, differential equations governing distribution of the temperature field are formulated. Temperature across the plate thickness is assumed to be in linear form. Differential equations are analytically solved by using integral-transform technique, Fourier finite-sine and finite-cosine transform and Laplace transform. The influence of the heater velocity to the plate temperature is presented on numerical examples based on theoretically obtained results. [Projekat Ministarstva nauke Republike Srbije, br. TR 35040 i br. TR 35011

  13. Direct numerical simulation of turbulent velocity-, pressure- and temperature-fields in channel flows

    International Nuclear Information System (INIS)

    Goetzbach, G.

    1977-10-01

    For the simulation of non stationary, three-dimensional, turbulent flow- and temperature-fields in channel flows with constant properties a method is presented which is based on a finite difference scheme of the complete conservation equations for mass, momentum and enthalpie. The fluxes of momentum and heat within the grid cells are described by sub-grid scale models. The sub-grid scale model for momentum introduced here is for the first time applicable to small Reynolds-numbers, rather coarse grids, and channels with space dependent roughness distributions. (orig.) [de

  14. Effect of rising time of rectangular pulse on inactivation of staphylococcus aureus by pulsed electric field

    Science.gov (United States)

    Zhang, Ruobing; Liang, Dapeng; Zheng, Nanchen; Xiao, Jianfu; Mo, Mengbin; Li, Jing

    2013-03-01

    Pulsed electric field (PEF) is a novel non-thermal food processing technology that involves the electric discharge of high voltage short pulses through the food product. In PEF study, rectangular pulses are most commonly used for inactivating microorganisms. However, little information is available on the inactivation effect of rising time of rectangular pulse. In this paper, inactivation effects, electric field strength, treatment time and conductivity on staphylococcus aureus inactivation were investigated when the pulse rising time is reduced from 2.5 μs to 200 ns. Experimental results showed that inactivation effect of PEF increased with electric field strength, solution conductivity and treatment time. Rising time of the rectangular pulse had a significant effect on the inactivation of staphylococcus aureus. Rectangular pulses with a rising time of 200 ns had a better inactivation effect than that with 2 μs. In addition, temperature increase of the solution treated by pulses with 200 ns rising time was lower than that with 2 μs. In order to obtain a given inactivation effect, treatment time required for the rectangular pulse with 200 ns rise time was shorter than that with 2 μs.

  15. Effect of rising time of rectangular pulse on inactivation of staphylococcus aureus by pulsed electric field

    International Nuclear Information System (INIS)

    Zhang, Ruobing; Liang, Dapeng; Xiao, Jianfu; Mo, Mengbin; Li, Jing; Zheng, Nanchen

    2013-01-01

    Pulsed electric field (PEF) is a novel non-thermal food processing technology that involves the electric discharge of high voltage short pulses through the food product. In PEF study, rectangular pulses are most commonly used for inactivating microorganisms. However, little information is available on the inactivation effect of rising time of rectangular pulse. In this paper, inactivation effects, electric field strength, treatment time and conductivity on staphylococcus aureus inactivation were investigated when the pulse rising time is reduced from 2.5 μs to 200 ns. Experimental results showed that inactivation effect of PEF increased with electric field strength, solution conductivity and treatment time. Rising time of the rectangular pulse had a significant effect on the inactivation of staphylococcus aureus. Rectangular pulses with a rising time of 200 ns had a better inactivation effect than that with 2 μs. In addition, temperature increase of the solution treated by pulses with 200 ns rising time was lower than that with 2 μs. In order to obtain a given inactivation effect, treatment time required for the rectangular pulse with 200 ns rise time was shorter than that with 2 μs.

  16. Martensitic transition near room temperature and the temperature- and magnetic-field-induced multifunctional properties of Ni49CuMn34In16 alloy

    Science.gov (United States)

    Sharma, V. K.; Chattopadhyay, M. K.; Khandelwal, A.; Roy, S. B.

    2010-11-01

    A near room-temperature martensitic transition is observed in the ferromagnetic austenite state of Ni50Mn34In16 alloy with 2% Cu substitution at the Ni site. Application of magnetic field in the martensite state induces a reverse martensitic transition in this alloy. dc magnetization, magnetoresistance and strain measurements in this alloy reveal that associated with this martensitic transition there exist a large magnetocaloric effect, a large magnetoresitance and a magnetic-field temperature-induced strain. This NiMnIn alloy system thus is an example of an emerging class of magnetic materials whose physical properties can be tuned by suitable chemical substitutions, to achieve magnetic-field and temperature-induced multifunctional properties at and around room temperature

  17. Visualization of particle trajectories in time-varying electromagnetic fields by CAVE-type virtual reality system

    International Nuclear Information System (INIS)

    Ohno, Nobuaki; Ohtani, Hiroaki; Horiuchi, Ritoku; Matsuoka, Daisuke

    2012-01-01

    The particle kinetic effects play an important role in breaking the frozen-in condition and exciting collisionless magnetic reconnection in high temperature plasmas. Because this effect is originating from a complex thermal motion near reconnection point, it is very important to examine particle trajectories using scientific visualization technique, especially in the presence of plasma instability. We developed interactive visualization environment for the particle trajectories in time-varying electromagnetic fields in the CAVE-type virtual reality system based on VFIVE, which is interactive visualization software for the CAVE system. From the analysis of ion trajectories using the particle simulation data, it was found that time-varying electromagnetic fields around the reconnection region accelerate ions toward the downstream region. (author)

  18. Polarization behaviour of polyvinylidenefluoride-polysulfone (PVDF: PSF) blends under high field and high temperature condition

    Science.gov (United States)

    Shrivas, Sandhya; Patel, Swarnim; Dubey, R. K.; Keller, J. M.

    2018-05-01

    Thermally stimulated discharge currents of PVDF: PSF blend samples in ratio 80:20 and 95:05 prepared by the solution cast technique have been studied as a function of polarizing field and polarizing temperature, the temperature corresponding to a peak in TSDC is found to be independent of polarizing field but dependent on the polarizing temperature.

  19. Stress- and Magnetic Field-Induced Martensitic Transformation at Cryogenic Temperatures in Fe-Mn-Al-Ni Shape Memory Alloys

    Science.gov (United States)

    Xia, Ji; Xu, Xiao; Miyake, Atsushi; Kimura, Yuta; Omori, Toshihiro; Tokunaga, Masashi; Kainuma, Ryosuke

    2017-12-01

    Stress-induced and magnetic-field-induced martensitic transformation behaviors at low temperatures were investigated for Fe-Mn-Al-Ni alloys. The magnetic-field-induced reverse martensitic transformation was directly observed by in situ optical microscopy. Magnetization measurements under pulsed magnetic fields up to 50 T were carried out at temperatures between 4.2 and 125 K on a single-crystal sample; full magnetic-field-induced reverse martensitic transformation was confirmed at all tested temperatures. Compression tests from 10 to 100 K were conducted on a single-crystal sample; full shape recovery was obtained at all tested temperatures. It was found that the temperature dependence of both the critical stress and critical magnetic field is small and that the transformation hysteresis is less sensitive to temperature even at cryogenic temperatures. The temperature dependence of entropy change during martensitic transformation up to 100 K was then derived using the Clausius-Clapeyron relation with critical stresses and magnetic fields.

  20. Time response of temperature sensors using neural networks

    International Nuclear Information System (INIS)

    Santos, Roberto Carlos dos

    2010-01-01

    In a PWR nuclear power plant, the primary coolant temperature and feedwater temperature are measured using RTDs (Resistance Temperature Detectors). These RTDs typically feed the plant's control and safety systems and must, therefore, be very accurate and have good dynamic performance. The response time of RTDs is characterized by a single parameter called the Plunge Time Constant defined as the time it takes the sensor output to achieve 63.2 percent of its final value after a step change in temperature. Nuclear reactor service conditions are difficult to reproduce in the laboratory, and an in-situ test method called LCSR (Loop Current Step Response) test was developed to measure remotely the response time of RTDs. >From this test, the time constant of the sensor is identified by means of the LCSR transformation that involves the dynamic response modal time constants determination using a nodal heat-transfer model. This calculation is not simple and requires specialized personnel. For this reason an Artificial Neural Network has been developed to predict the time constant of RTD from LCSR test transient. It eliminates the transformations involved in the LCSR application. A series of LCSR tests on RTDs generates the response transients of the sensors, the input data of the networks. Plunge tests are used to determine the time constants of the RTDs, the desired output of the ANN, trained using these sets of input/output data. This methodology was firstly applied to theoretical data simulating 10 RTDs with different time constant values, resulting in an average error of about 0.74 %. Experimental data from three different RTDs was used to predict time constant resulting in a maximum error of 3,34 %. The time constants values predicted from ANN were compared with those obtained from traditional way resulting in an average error of about 18 % and that shows the network is able to predict accurately the sensor time constant. (author)

  1. The stochastic versus the Euclidean approach to quantum fields on a static space-time

    International Nuclear Information System (INIS)

    De Angelis, G.F.; de Falco, D.

    1986-01-01

    Equations are presented which modify the definition of the Gaussian field in the Rindler chart in order to make contact with the Wightman state, the Hartle-Hawking state, and the Euclidean field. By taking Ornstein-Uhlenbeck processes the authors have chosen, in the sense of stochastic mechanics, to place precisely the Fulling modes in their harmonic oscillator ground state. In this respect, together with the periodicity of Minkowski space-time, the authors observe that the covariance of the Ornstein-Uhlenbeck process can be obtained by analytical continuation of the Wightman function of the harmonic oscillator at zero temperature

  2. Effective-field theory for dynamic phase diagrams of the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field

    Energy Technology Data Exchange (ETDEWEB)

    Ertaş, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Kocakaplan, Yusuf [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2013-12-15

    Dynamic phase diagrams are presented for the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field by use of the effective-field theory with correlations. The dynamic equation of the average magnetization is obtained for the square lattice by utilizing the Glauber-type stochastic process. Dynamic phase diagrams are presented in the reduced temperature and the magnetic field amplitude plane. We also investigated the effect of longitudinal field frequency. Finally, the discussion and comparison of the phase diagrams are given. - Highlights: • Dynamic behaviors in the spin-3/2 Blume–Capel system is investigated by the effective-field theory based on the Glauber-type stochastic dynamics. • The dynamic phase transitions and dynamic phase diagrams are obtained. • The effects of the longitudinal field frequency on the dynamic phase diagrams of the system are investigated. • Dynamic phase diagrams exhibit several ordered phases, coexistence phase regions and several critical points as well as a re-entrant behavior.

  3. Effective-field theory for dynamic phase diagrams of the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field

    International Nuclear Information System (INIS)

    Ertaş, Mehmet; Kocakaplan, Yusuf; Keskin, Mustafa

    2013-01-01

    Dynamic phase diagrams are presented for the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field by use of the effective-field theory with correlations. The dynamic equation of the average magnetization is obtained for the square lattice by utilizing the Glauber-type stochastic process. Dynamic phase diagrams are presented in the reduced temperature and the magnetic field amplitude plane. We also investigated the effect of longitudinal field frequency. Finally, the discussion and comparison of the phase diagrams are given. - Highlights: • Dynamic behaviors in the spin-3/2 Blume–Capel system is investigated by the effective-field theory based on the Glauber-type stochastic dynamics. • The dynamic phase transitions and dynamic phase diagrams are obtained. • The effects of the longitudinal field frequency on the dynamic phase diagrams of the system are investigated. • Dynamic phase diagrams exhibit several ordered phases, coexistence phase regions and several critical points as well as a re-entrant behavior

  4. Concurrence of dynamical phase transitions at finite temperature in the fully connected transverse-field Ising model

    Science.gov (United States)

    Lang, Johannes; Frank, Bernhard; Halimeh, Jad C.

    2018-05-01

    We construct the finite-temperature dynamical phase diagram of the fully connected transverse-field Ising model from the vantage point of two disparate concepts of dynamical criticality. An analytical derivation of the classical dynamics and exact diagonalization simulations are used to study the dynamics after a quantum quench in the system prepared in a thermal equilibrium state. The different dynamical phases characterized by the type of nonanalyticities that emerge in an appropriately defined Loschmidt-echo return rate directly correspond to the dynamical phases determined by the spontaneous breaking of Z2 symmetry in the long-time steady state. The dynamical phase diagram is qualitatively different depending on whether the initial thermal state is ferromagnetic or paramagnetic. Whereas the former leads to a dynamical phase diagram that can be directly related to its equilibrium counterpart, the latter gives rise to a divergent dynamical critical temperature at vanishing final transverse-field strength.

  5. Integrated fiber optic sensors for hot spot detection and temperature field reconstruction in satellites

    International Nuclear Information System (INIS)

    Rapp, S; Baier, H

    2010-01-01

    Large satellites are often equipped with more than 1000 temperature sensors during the test campaign. Hundreds of them are still used for monitoring during launch and operation in space. This means an additional mass and especially high effort in assembly, integration and verification on a system level. So the use of fiber Bragg grating temperature sensors is investigated as they offer several advantages. They are lightweight, small in size and electromagnetically immune, which fits well in space applications. Their multiplexing capability offers the possibility to build extensive sensor networks including dozens of sensors of different types, such as strain sensors, accelerometers and temperature sensors. The latter allow the detection of hot spots and the reconstruction of temperature fields via proper algorithms, which is shown in this paper. A temperature sensor transducer was developed, which can be integrated into satellite sandwich panels with negligible mechanical influence. Mechanical and thermal vacuum tests were performed to verify the space compatibility of the developed sensor system. Proper reconstruction algorithms were developed to estimate the temperature field and detect thermal hot spots on the panel surface. A representative hardware demonstrator has been built and tested, which shows the capability of using an integrated fiber Bragg grating temperature sensor network for temperature field reconstruction and hot spot detection in satellite structures

  6. Vesicle biomechanics in a time-varying magnetic field.

    Science.gov (United States)

    Ye, Hui; Curcuru, Austen

    2015-01-01

    Cells exhibit distortion when exposed to a strong electric field, suggesting that the field imposes control over cellular biomechanics. Closed pure lipid bilayer membranes (vesicles) have been widely used for the experimental and theoretical studies of cellular biomechanics under this electrodeformation. An alternative method used to generate an electric field is by electromagnetic induction with a time-varying magnetic field. References reporting the magnetic control of cellular mechanics have recently emerged. However, theoretical analysis of the cellular mechanics under a time-varying magnetic field is inadequate. We developed an analytical theory to investigate the biomechanics of a modeled vesicle under a time-varying magnetic field. Following previous publications and to simplify the calculation, this model treated the inner and suspending media as lossy dielectrics, the membrane thickness set at zero, and the electric resistance of the membrane assumed to be negligible. This work provided the first analytical solutions for the surface charges, electric field, radial pressure, overall translational forces, and rotational torques introduced on a vesicle by the time-varying magnetic field. Frequency responses of these measures were analyzed, particularly the frequency used clinically by transcranial magnetic stimulation (TMS). The induced surface charges interacted with the electric field to produce a biomechanical impact upon the vesicle. The distribution of the induced surface charges depended on the orientation of the coil and field frequency. The densities of these charges were trivial at low frequency ranges, but significant at high frequency ranges. The direction of the radial force on the vesicle was dependent on the conductivity ratio between the vesicle and the medium. At relatively low frequencies (biomechanics under a time-varying magnetic field. Biological effects of clinical TMS are not likely to occur via alteration of the biomechanics of brain

  7. TIMTEM - a digital program for the calculation of two-dimensional, non-linear temperature fields of reactor components of complex structure taking into account inhomogeneity and anisotropy

    International Nuclear Information System (INIS)

    Simon-Weidner, J.

    1975-05-01

    The digital program TIMTEM calculates twodimensional, nonlinear temperature fields of reactor components of complex structure; inhomogeneity and anisotropy are taken into account. Systems consisting of different materials and therefore having different temperature- and/or time-dependent material characteristics are allowed. Various local, time- and/or temperature-dependent boundary conditions can be considered, too, which may be locally different from each other or can be interconnected. (orig.) [de

  8. Towards the standardization of time--temperature parameter usage in elevated temperature data analysis

    International Nuclear Information System (INIS)

    Goldhoff, R.M.

    1975-01-01

    Work devoted to establishment of recommended practices for correlating and extrapolating relevant data on creep-rupture properties of materials at high temperatures is described. An analysis of the time-temperature parameter is included along with descriptions of analysis and evaluation methods. Results of application of the methods are compared

  9. On single-time reduction in quantum field theory

    International Nuclear Information System (INIS)

    Arkhipov, A.A.

    1984-01-01

    It is shown, how the causality and spectrality properties in qUantum field theory may help one to carry out a single-time reduction of the Bethe-Salpeter wave fUnction. The single-time reduction technique is not based on any concrete model of the quantum field theory. Axiomatic formulations underline the quantum field theory

  10. Temperature and Magnetic Field Driven Modifications in the I-V Features of Gold-DNA-Gold Structure

    Directory of Open Access Journals (Sweden)

    Nadia Mahmoudi Khatir

    2014-10-01

    Full Text Available The fabrication of Metal-DNA-Metal (MDM structure-based high sensitivity sensors from DNA micro-and nanoarray strands is a key issue in their development. The tunable semiconducting response of DNA in the presence of external electromagnetic and thermal fields is a gift for molecular electronics. The impact of temperatures (25–55 °C and magnetic fields (0–1200 mT on the current-voltage (I-V features of Au-DNA-Au (GDG structures with an optimum gap of 10 μm is reported. The I-V characteristics acquired in the presence and absence of magnetic fields demonstrated the semiconducting diode nature of DNA in GDG structures with high temperature sensitivity. The saturation current in the absence of magnetic field was found to increase sharply with the increase of temperature up to 45 °C and decrease rapidly thereafter. This increase was attributed to the temperature-assisted conversion of double bonds into single bond in DNA structures. Furthermore, the potential barrier height and Richardson constant for all the structures increased steadily with the increase of external magnetic field irrespective of temperature variations. Our observation on magnetic field and temperature sensitivity of I-V response in GDG sandwiches may contribute towards the development of DNA-based magnetic sensors.

  11. Revised Correlation between Odin/OSIRIS PMC Properties and Coincident TIMED/SABER Mesospheric Temperatures

    Science.gov (United States)

    Feofilov, A. G.; Petelina, S. V.; Kutepov, A. A.; Pesnell, W. D.; Goldberg, R. A.; Llewellyn, E. J.; Russell, J. M.

    2006-01-01

    The Optical Spectrograph and Infrared Imaging System (OSIRIS) instrument on board the Odin satellite detects Polar Mesospheric Clouds (PMCs) through the enhancement in the limb-scattered solar radiance. The Sounding of the Atmosphere using the Broadband Emission Radiometry (SABER) instrument on board the TIMED satellite is a limb scanning infrared radiometer that measures temperature and vertical profiles and energetic parameters for minor constituents in the mesosphere and lower thermosphere. The combination of OSIRIS and SABER data has been previously used to statistically derive thermal conditions for PMC existence [Petelina et al., 2005]. a, A.A. Kutepov, W.D. Pesnell, In this work, we employ the simultaneous common volume measurements of PMCs by OSIRIS and temperature profiles measured by SABER for the Northern Hemisphere summers of 2002-2005 and corrected in the polar region by accounting for the vibrational-vibrational energy exchange among the CO2 isotopes [Kutepov et al., 2006]. For each of 20 coincidences identified within plus or minus 1 degree latitude, plus or minus 2 degrees longitude and less than 1 hour time the frost point temperatures were calculated using the corresponding SABER temperature profile and water vapor densities of 1,3, and 10 ppmv. We found that the PMC presence and brightness correlated only with the temperature threshold that corresponds to the frost point. The absolute value of the temperature below the frost point, however, didn't play a significant role in the intensity of PMC signal for the majority of selected coincidences. The presence of several bright clouds at temperatures above the frost point is obviously related to the limitation of the limb geometry when some near- or far-field PMCs located at higher (and warmer) altitudes appear to be at lower altitudes.

  12. Sensory characteristics of meat cooked for prolonged times at low temperature

    DEFF Research Database (Denmark)

    Christensen, Line Bach; Gunvig, Annemarie; Tørngren, Mari Ann

    2012-01-01

    species, and cooking loss increased with increasing temperature. A done appearance was developed with increasing heating time at 58 °C in pork and beef, while in chicken the done appearance was only affected by temperature. Flavor attributes were less affected by the LTLT treatment for all species......The present study evaluated the sensory characteristics of low temperature long time (LTLT) treated Semitendinosus from pork and beef and Pectoralis profundus from chicken. Semitendinosus and Pectoralis profundus muscles were heat treated at 53°C and 58°C for Tc + 6 h, Tc + 17 h, and Tc + 30 h...... (only Semitendinosus from pork and beef). Tc was the time for the samples to equalize with the temperature in the water bath. Tenderness increased with increasing heating temperature and time in pork and beef, but not in chicken. Juiciness decreased with increasing heating temperature and time in all...

  13. Real-time reactor coolant system pressure/temperature limit system

    International Nuclear Information System (INIS)

    Newton, D.G.; Schemmel, R.R.; Van Scooter, W.E. Jr.

    1991-01-01

    This patent describes an system, used in controlling the operating of a nuclear reactor coolant system, which automatically calculates and displays allowable reactor coolant system pressure/temperature limits within the nuclear reactor coolant system based upon real-time inputs. It comprises: means for producing signals representative of real-time operating parameters of the nuclear reactor cooling system; means for developing pressure and temperature limits relating the real-time operating parameters of the nuclear reactor coolant system, for normal and emergency operation thereof; means for processing the signals representative of real-time operating parameters of the nuclear reactor coolant system to perform calculations of a best estimate of signals, check manual inputs against permissible valves and test data acquisition hardware for validity and over/under range; and means for comparing the representative signals with limits for the real-time operating parameters to produce a signal for a real-time display of the pressure and temperature limits and of the real-time operating parameters use an operator in controlling the operation of the nuclear reactor coolant system

  14. Numerical and experimental determination of surface temperature and moisture evolution in a field soil

    Science.gov (United States)

    Akinyemi, Olukayode D.; Mendes, Nathan

    2007-03-01

    Knowledge about the dynamics of soil moisture and heat, especially at the surface, provides important insights into the physical processes governing their interactions with the atmosphere, thereby improving the understanding of patterns of climate dynamics. In this context the paper presents the numerical and field experimental results of temperature and moisture evolution, which were measured on the surface of a sandy soil at Abeokuta, south-western Nigeria. An unconditionally stable numerical method was used, which linearizes the vapour concentration driving-potential term giving the moisture exchanged at the boundaries in terms of temperature and moisture content, and simultaneously solves the governing equations for each time step. The model avoids stability problems and limitations to low moisture contents and the usual assumption of constant thermal conductivity. Instantaneous temperature measurements were made at the surface using a thermocouple, while the gravimetric method was employed to determine the volumetric water contents at some specific hours of the experimental period. The observed experimental data compared fairly well with the predicted values, with both having correlation coefficients greater than 0.9 and consequently following a common diurnal trend. The sensitivity of the model was very high to the choice of simulation parameters, especially grid size refinement and time step. While the model underestimated the soil moisture content at 6 a.m. and 10 p.m., the measured temperatures were however overestimated. When compared to moisture content, average errors for temperature were low resulting in a minimal absolute difference in amplitude of 0.81 °C.

  15. Calculation of nonzero-temperature Casimir forces in the time domain

    International Nuclear Information System (INIS)

    Pan, Kai; Reid, M. T. Homer; McCauley, Alexander P.; Rodriguez, Alejandro W.; White, Jacob K.; Johnson, Steven G.

    2011-01-01

    We show how to compute Casimir forces at nonzero temperatures with time-domain electromagnetic simulations, for example, using a finite-difference time-domain (FDTD) method. Compared to our previous zero-temperature time-domain method, only a small modification is required, but we explain that some care is required to properly capture the zero-frequency contribution. We validate the method against analytical and numerical frequency-domain calculations, and show a surprising high-temperature disappearance of a nonmonotonic behavior previously demonstrated in a pistonlike geometry.

  16. New hybrid magnet system for structure research at highest magnetic fields and temperatures in the millikelvin region

    International Nuclear Information System (INIS)

    Smeibidl, Peter; Ehmler, Hartmut; Tennant, Alan; Bird, Mark

    2012-01-01

    The Helmholtz Centre Berlin (HZB) is a user facility for the study of structure and dynamics with neutrons and synchrotron radiation with special emphasis on experiments under extreme conditions. Neutron scattering is uniquely suited to study magnetic properties on a microscopic length scale, because neutrons have comparable wavelengths and, due to their magnetic moment, they interact with the atomic magnetic moments. At HZB a dedicated instrument for neutron scattering at extreme magnetic fields and low temperatures is under construction, the Extreme Environment Diffractometer ExED. It is projected according to the time-of-flight principle for elastic and inelastic neutron scattering and for the special geometric constraints of analysing samples in a high field magnet. The new hybrid magnet will not only allow for novel experiments, it will be at the forefront of development in magnet technology itself. With a set of superconducting and resistive coils a maximum field above 30 T will be possible. To compromise between the needs of the magnet design for highest fields and the concept of the neutron instrument, the magnetic field will be generated by means of a coned, resistive inner solenoid and a superconducting outer solenoid with horizontal field orientation. To allow for experiments down to Millikelvin Temperatures the installation of a 3 He or a dilution cryostat with a closed cycle precooling stage is foreseen.

  17. Effect of temperature and time on solvothermal synthesis of ...

    Indian Academy of Sciences (India)

    Effect of temperature and time study on solvothermal synthesis of BaTiO3 revealed that a moderate reaction temperature i.e. 185◦C and longer reaction time favour tetragonal phase stabiliza- tion. Dissolution–precipitation appears to be the transformation mechanism for the crystallization of BaTiO3 from particulate TiO2 ...

  18. Trapped field recovery of bulk superconductor magnets by static field magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z., E-mail: zigang@kaiyodai.ac.jp [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan); Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M. [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan)

    2011-11-15

    A series of initial trapped fields after ZFC or FC magnetization are used to simulate the attenuated trapped field. It is possible and easy to recover the lost trapped field and regain the best trapped field performance as before. In the re-magnetization process, the initial magnetic flux inside the bulk magnets will help to recover the trapped field. The optimum recovery field is recommended to be 2.5 times the saturation field of the bulk at LN2 temperature. Thanks to the trapped field of bulk high-temperature superconductors, they can be used as field-pole magnets in the high temperature superconducting (HTS) rotating machines. For example, an output power of 10 kW at 720 rpm was realized by an average trapped field of 0.56 T of eight melt-textured GdBa{sub 2}Cu{sub 3}O{sub y} (Gd-123) bulks at liquid nitrogen temperature in TUMSAT in 2004. Similarly to the HTS machines involving 1G or 2G wires, the trapped field of the bulk is possibly sensitive and even can be attenuated by the AC component field during the operation. Hence, it is necessary to recover the trapped field once being decreased to some extent in the practical application. From this point, we have investigated the trapped field recovery of HTS bulk magnets by static field magnetization in the paper. A series of different initial trapped fields after zero-field-cooling or field-cooling magnetization are used to simulate the attenuated trapped field. By comparing the trapped field peak and its distribution, the trapped field was found to be able to recover by the static field magnetization method with a stronger excitation field and the initial trapped flux inside the bulk also has an influence on the recovery process. The optimum recovery field was found to be about 2.5 times the saturated trapped field of the bulk at liquid nitrogen temperature, by which the bulk can regain the former best trapped field performance.

  19. Three-dimensional temperature fields of the North Patagonian Sea recorded by Magellanic penguins as biological sampling platforms

    Science.gov (United States)

    Sala, Juan E.; Pisoni, Juan P.; Quintana, Flavio

    2017-04-01

    Temperature is a primary determinant of biogeographic patterns and ecosystem processes. Standard techniques to study the ocean temperature in situ are, however, particularly limited by their time and spatial coverage, problems which might be partially mitigated by using marine top predators as biological platforms for oceanographic sampling. We used small archival tags deployed on 33 Magellanic penguins (Spheniscus magellanicus), and obtained 21,070 geo-localized profiles of water temperature, during late spring of 2008, 2011, 2012 and 2013; in a region of the North Patagonian Sea with limited oceanographic records in situ. We compared our in situ data of sea surface temperature (SST) with those available from satellite remote sensing; to describe the three-dimensional temperature fields around the area of influence of two important tidal frontal systems; and to study the inter-annual variation in the three-dimensional temperature fields. There was a strong positive relationship between satellite- and animal-derived SST data although there was an overestimation by remote-sensing by a maximum difference of +2 °C. Little inter-annual variability in the 3-dimensional temperature fields was found, with the exception of 2012 (and to a lesser extent in 2013) where the SST was significantly higher. In 2013, we found weak stratification in a region which was unexpected. In addition, during the same year, a warm small-scale vortex is indicated by the animal-derived temperature data. This allowed us to describe and better understand the dynamics of the water masses, which, so far, have been mainly studied by remote sensors and numerical models. Our results highlight again the potential of using marine top predators as biological platforms to collect oceanographic data, which will enhance and accelerate studies on the Southwest Atlantic Ocean. In a changing world, threatened by climate change, it is urgent to fill information gaps on the coupled ocean-atmosphere system

  20. Comparison of two fiber-optical temperature measurement systems in magnetic fields up to 9.4 Tesla.

    Science.gov (United States)

    Buchenberg, Waltraud B; Dadakova, Tetiana; Groebner, Jens; Bock, Michael; Jung, Bernd

    2015-05-01

    Precise temperature measurements in the magnetic field are indispensable for MR safety studies and for temperature calibration during MR-guided thermotherapy. In this work, the interference of two commonly used fiber-optical temperature measurement systems with the static magnetic field B0 was determined. Two fiber-optical temperature measurement systems, a GaAs-semiconductor and a phosphorescent phosphor ceramic, were compared for temperature measurements in B0 . The probes and a glass thermometer for reference were placed in an MR-compatible tube phantom within a water bath. Temperature measurements were carried out at three different MR systems covering static magnetic fields up to B0  = 9.4T, and water temperatures were changed between 25°C and 65°C. The GaAs-probe significantly underestimated absolute temperatures by an amount related to the square of B0 . A maximum difference of ΔT = -4.6°C was seen at 9.4T. No systematic temperature difference was found with the phosphor ceramic probe. For both systems, the measurements were not dependent on the orientation of the sensor to B0 . Temperature measurements with the phosphor ceramic probe are immune to magnetic fields up to 9.4T, whereas the GaAs-probes either require a recalibration inside the MR system or a correction based on the square of B0. © 2014 Wiley Periodicals, Inc.

  1. Near-Field Thermal Radiation for Solar Thermophotovoltaics and High Temperature Thermal Logic and Memory Applications

    Science.gov (United States)

    Elzouka, Mahmoud

    This dissertation investigates Near-Field Thermal Radiation (NFTR) applied to MEMS-based concentrated solar thermophotovoltaics (STPV) energy conversion and thermal memory and logics. NFTR is the exchange of thermal radiation energy at nano/microscale; when separation between the hot and cold objects is less than dominant radiation wavelength (˜1 mum). NFTR is particularly of interest to the above applications due to its high rate of energy transfer, exceeding the blackbody limit by orders of magnitude, and its strong dependence on separation gap size, surface nano/microstructure and material properties. Concentrated STPV system converts solar radiation to electricity using heat as an intermediary through a thermally coupled absorber/emitter, which causes STPV to have one of the highest solar-to-electricity conversion efficiency limits (85.4%). Modeling of a near-field concentrated STPV microsystem is carried out to investigate the use of STPV based solid-state energy conversion as high power density MEMS power generator. Numerical results for In 0.18Ga0.82Sb PV cell illuminated with tungsten emitter showed significant enhancement in energy transfer, resulting in output power densities as high as 60 W/cm2; 30 times higher than the equivalent far-field power density. On thermal computing, this dissertation demonstrates near-field heat transfer enabled high temperature NanoThermoMechanical memory and logics. Unlike electronics, NanoThermoMechanical memory and logic devices use heat instead of electricity to record and process data; hence they can operate in harsh environments where electronics typically fail. NanoThermoMechanical devices achieve memory and thermal rectification functions through the coupling of near-field thermal radiation and thermal expansion in microstructures, resulting in nonlinear heat transfer between two temperature terminals. Numerical modeling of a conceptual NanoThermoMechanical is carried out; results include the dynamic response under

  2. Temperature expansions for magnetic systems

    International Nuclear Information System (INIS)

    Cangemi, D.; Dunne, G.

    1996-01-01

    We derive finite temperature expansions for relativistic fermion systems in the presence of background magnetic fields, and with nonzero chemical potential. We use the imaginary-time formalism for the finite temperature effects, the proper-time method for the background field effects, and zeta function regularization for developing the expansions. We emphasize the essential difference between even and odd dimensions, focusing on 2+1 and 3+1 dimensions. We concentrate on the high temperature limit, but we also discuss the T=0 limit with nonzero chemical potential. Copyright copyright 1996 Academic Press, Inc

  3. Instantaneous temperature field measurements using planar laser-induced fluorescence.

    Science.gov (United States)

    Seitzman, J M; Kychakoff, G; Hanson, R K

    1985-09-01

    A single-pulse, laser-induced-fluorescence diagnostic for the measurement of two-dimensional temperature fields in combustion flows is described. The method uses sheet illumination from a tunable laser to excite planar laserinduced fluorescence in a stable tracer molecule, seeded at constant mole fraction into the flow field. The temporal resolution of this technique is determined by the laser pulse length. Experimental results are presented for a rodstabilized, premixed methane-air flame, using the Q(1) (22) line of the nitric oxide A(2) Sigma(+) (v = 0) ? X(2)II((1/2))(v = 0) transition (lambda approximately 225.6 nm).

  4. Experimental study of effect of magnetic field on anode temperature distribution in an ATON-type Hall thruster

    Science.gov (United States)

    Liu, Jinwen; Li, Hong; Mao, Wei; Ding, Yongjie; Wei, Liqiu; Li, Jianzhi; Yu, Daren; Wang, Xiaogang

    2018-05-01

    The energy deposition caused by the absorption of electrons by the anode is an important cause of power loss in a Hall thruster. The resulting anode heating is dangerous, as it can potentially reduce the thruster lifetime. In this study, by considering the ring shape of the anode of an ATON-type Hall thruster, the effects of the magnetic field strength and gradient on the anode ring temperature distribution are studied via experimental measurement. The results show that the temperature distribution is not affected by changes in the magnetic field strength and that the position of the peak temperature is essentially unchanged; however, the overall temperature does not change monotonically with the increase of the magnetic field strength and is positively correlated with the change in the discharge current. Moreover, as the magnetic field gradient increases, the position of the peak temperature gradually moves toward the channel exit and the temperature tends to decrease as a whole, regardless of the discharge current magnitude; in any case, the position of the peak temperature corresponds exactly to the intersection of the magnetic field cusp with the anode ring. Further theoretical analysis shows that the electrons, coming from the ionization region, travel along two characteristic paths to reach the anode under the guidance of the cusped magnetic field configuration. The change of the magnetic field strength or gradient changes the transfer of momentum and energy of the electrons in these two paths, which is the main reason for the changes in the temperature and distribution. This study is instructive for matching the design of the ring-shaped anode and the cusp magnetic field of an ATON-type Hall thruster.

  5. Matter fields in curved space-time

    International Nuclear Information System (INIS)

    Viet, Nguyen Ai; Wali, Kameshwar C.

    2000-01-01

    We study the geometry of a two-sheeted space-time within the framework of non-commutative geometry. As a prelude to the Standard Model in curved space-time, we present a model of a left- and a right- chiral field living on the two sheeted-space time and construct the action functionals that describe their interactions

  6. Temperature dependence of coercive field and fatigue in poly(vinylidene fluoride-trifluoroethylene) copolymer ultra-thin films

    International Nuclear Information System (INIS)

    Zhang Xiuli; Xu Haisheng; Zhang Yanni

    2011-01-01

    The experimental intrinsic coercive field of ferroelectric poly(vinylidene fluoride-trifluoethylene) copolymer films, with both bottom and top gold electrodes is measured at a wide temperature range. In the lower temperature region from -20 to 25 deg. C, the temperature dependence of coercive field shows good agreement with the prediction by the Landau-Ginzburg (LG) mean-field theory. In the higher temperature region from 25 to 80 deg. C, the coercive field shows a slow decrease with the increased temperature, where the LG theory is not applicable any more. The temperature-dependent changes in the polymer chains have been analysed. A reversible 'inherent fatigue' is observed from the partially recovered remanent polarization after re-annealing a fatigued P(VDF-TrFE) film. FTIR spectra indicate that the interchain spacing does not change from 10 to 10 7 switching cycles while the degree of all-trans ferroelectric phase decreases gradually with applied switching cycles. After a re-annealing treatment, ferroelectric phase recovers and dipoles at the boundary of crystallites acquire much higher energy.

  7. Temperature Dependence of Field-Effect Mobility in Organic Thin-Film Transistors: Similarity to Inorganic Transistors.

    Science.gov (United States)

    Okada, Jun; Nagase, Takashi; Kobayashi, Takashi; Naito, Hiroyoshi

    2016-04-01

    Carrier transport in solution-processed organic thin-film transistors (OTFTs) based on dioctylbenzothienobenzothiophene (C8-BTBT) has been investigated in a wide temperature range from 296 to 10 K. The field-effect mobility shows thermally activated behavior whose activation energy becomes smaller with decreasing temperature. The temperature dependence of field-effect mobility found in C8-BTBT is similar to that of others materials: organic semiconducting polymers, amorphous oxide semiconductors and hydrogenated amorphous silicon. These results indicate that hopping transport between isoenergetic localized states becomes dominated in a low temperature regime in these materials.

  8. Characterization, Modeling and Design Parameters Identification of Silicon Carbide Junction Field Effect Transistor for Temperature Sensor Applications

    Directory of Open Access Journals (Sweden)

    Sofiane Khachroumi

    2010-01-01

    Full Text Available Sensor technology is moving towards wide-band-gap semiconductors providing high temperature capable devices. Indeed, the higher thermal conductivity of silicon carbide, (three times more than silicon, permits better heat dissipation and allows better cooling and temperature management. Though many temperature sensors have already been published, little endeavours have been invested in the study of silicon carbide junction field effect devices (SiC-JFET as a temperature sensor. SiC-JFETs devices are now mature enough and it is close to be commercialized. The use of its specific properties versus temperatures is the major focus of this paper. The SiC-JFETs output current-voltage characteristics are characterized at different temperatures. The saturation current and its on-resistance versus temperature are successfully extracted. It is demonstrated that these parameters are proportional to the absolute temperature. A physics-based model is also presented. Relationships between on-resistance and saturation current versus temperature are introduced. A comparative study between experimental data and simulation results is conducted. Important to note, the proposed model and the experimental results reflect a successful agreement as far as a temperature sensor is concerned.

  9. Imulation of temperature field in swirl pulverized coal boiler

    Science.gov (United States)

    Lv, Wei; Wu, Weifeng; Chen, Chen; Chen, Weifeng; Qi, Guoli; Zhang, Songsong

    2018-02-01

    In order to achieve the goal of energy saving and emission reduction and energy efficient utilization, taking a 58MW swirl pulverized coal boiler as the research object, the three-dimensional model of the rotor is established. According to the principle of CFD, basic assumptions and boundary conditions are selected, the temperature field in the furnace of 6 kinds of working conditions is numerically solved, and the temperature distribution in the furnace is analyzed. The calculation results show that the temperature of the working condition 1 is in good agreement with the experimental data, and the error is less than 10%,the results provide a theoretical basis for the following calculation. Through the comparison of the results of the 6 conditions, it is found that the working condition 3 is the best operating condition of the pulverized coal boiler.

  10. Control of colloids with gravity, temperature gradients, and electric fields

    CERN Document Server

    Sullivan, M; Harrison, C; Austin, R H; Megens, M; Hollingsworth, A; Russel, W B; Cheng Zhen; Mason, T; Chaikin, P M

    2003-01-01

    We have used a variety of different applied fields to control the density, growth, and structure of colloidal crystals. Gravity exerts a body force proportional to the buoyant mass and in equilibrium produces a height-dependent concentration profile. A similar body force can be obtained with electric fields on charged particles (electrophoresis), a temperature gradient on all particles, or an electric field gradient on uncharged particles (dielectrophoresis). The last is particularly interesting since its magnitude and sign can be changed by tuning the applied frequency. We study these effects in bulk (making 'dielectrophoretic bottles' or traps), to control concentration profiles during nucleation and growth and near surfaces. We also study control of non-spherical and optically anisotropic particles with the light field from laser tweezers.

  11. Control of colloids with gravity, temperature gradients, and electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Matt [Department of Physics, Princeton University, Princeton, NJ (United States); Zhao Kun [Department of Physics, Princeton University, Princeton, NJ (United States); Harrison, Christopher [Department of Physics, Princeton University, Princeton, NJ (United States); Austin, Robert H [Department of Physics, Princeton University, Princeton, NJ (United States); Megens, Mischa [Department of Physics, Princeton University, Princeton, NJ (United States); Hollingsworth, Andrew [Department of Chemical Engineering, Princeton University, Princeton, NJ (United States); Russel, William B [Department of Chemical Engineering, Princeton University, Princeton, NJ (United States); Cheng Zhengdong [ExxonMobil Research, Annandale, NJ (United States); Mason, Thomas [ExxonMobil Research, Annandale, NJ (United States); Chaikin, P M [Department of Physics, Princeton University, Princeton, NJ (United States)

    2003-01-15

    We have used a variety of different applied fields to control the density, growth, and structure of colloidal crystals. Gravity exerts a body force proportional to the buoyant mass and in equilibrium produces a height-dependent concentration profile. A similar body force can be obtained with electric fields on charged particles (electrophoresis), a temperature gradient on all particles, or an electric field gradient on uncharged particles (dielectrophoresis). The last is particularly interesting since its magnitude and sign can be changed by tuning the applied frequency. We study these effects in bulk (making 'dielectrophoretic bottles' or traps), to control concentration profiles during nucleation and growth and near surfaces. We also study control of non-spherical and optically anisotropic particles with the light field from laser tweezers.

  12. Methodology for high-throughput field phenotyping of canopy temperature using airborne thermography

    Directory of Open Access Journals (Sweden)

    David Matthew Deery

    2016-12-01

    Full Text Available Lower canopy temperature (CT, resulting from increased stomatal conductance, has been associated with increased yield in wheat. Historically, CT has been measured with hand-held infrared thermometers. Using the hand-held CT method on large field trials is problematic, mostly because measurements are confounded by temporal weather changes during the time requiredto measure all plots. The hand-held CT method is laborious and yet the resulting heritability low, thereby reducing confidence in selection in large scale breeding endeavours.We have developed a reliable and scalable crop phenotyping method for assessing CT in large field experiments. The method involves airborne thermography from a manned helicopter using a radiometrically-calibrated thermal camera. Thermal image data is acquired from large experiments in the order of seconds, thereby enabling simultaneous measurement of CT on potentially 1,000s of plots. Effects of temporal weather variation when phenotyping large experiments using hand-held infrared thermometers are therefore reduced. The method is designed for cost-effective and large-scale use by the non-technical user and includes custom-developed software for data processing to obtain CT data on a single-plot basis for analysis.Broad-sense heritability was routinely greater than 0.50, and as high as 0.79, for airborne thermography CT measured near anthesis on a wheat experiment comprising 768 plots of size 2 x 6 m. Image analysis based on the frequency distribution of temperature pixels to remove the possible influence of background soil did not improve broad-sense heritability. Total imageacquisition and processing time was ca. 25 min and required only one person (excluding the helicopter pilot. The results indicate the potential to phenotype CT on large populations in genetics studies or for selection within a plant breeding program.

  13. The general use of the time-temperature-pressure superposition principle

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz

    This note is a supplement to Dynamic of Polymeric Liquids (DPL) section 3.6(a). DPL do only concern material functions and only the effect of the temperature on these. This is a short introduction to the general use of the time-temperature-pressure superposition principle.......This note is a supplement to Dynamic of Polymeric Liquids (DPL) section 3.6(a). DPL do only concern material functions and only the effect of the temperature on these. This is a short introduction to the general use of the time-temperature-pressure superposition principle....

  14. Calculation of the fuel temperature field under heat release and heat conductance transient conditions

    International Nuclear Information System (INIS)

    Kazakov, E.K.; Chernukhina, G.M.

    1974-01-01

    Results of calculation of the temperature distribution in an annular fuel element at transient thermal conductivity and heat release values are given. The calculation has been carried out by the mesh technique with the third-order boundary conditions for the inner surface assumed and with heat fluxes and temperatures at the zone boundaries to be equal. Three variants of solving the problem of a stationary temperature field are considered for failed fuel elements with clad flaking or cracks. The results obtained show the nonuniformity of the fuel element temperature field to depend strongly on the perturbation parameter at transient thermal conductivity and heat release values. In case of can flaking at a short length, the core temperature rises quickly after flaking. While evaluating superheating, one should take into account the symmetry of can flaking [ru

  15. Two-phase regime in the magnetic field-temperature phase diagram of a type-II superconductor

    International Nuclear Information System (INIS)

    Adams, L.L.A.; Halterman, Klaus; Valls, Oriol T.; Goldman, A.M.

    2004-01-01

    The magnetic field and temperature dependencies of the magnetic moments of superconducting crystals of V 3 Si have been studied. In a constant magnetic field and at temperatures somewhat below the superconducting transition temperature, the moments are hysteretic in temperature. However, the magnetic moment-magnetic field isotherms are reversible and exhibit features that formally resemble the pressure-volume isotherms of the liquid-gas transition. This suggests the existence of a first-order phase transition, a two-phase regime, and a critical point in the superconducting phase diagram. The two phases are disordered vortex configurations with the same magnetization, but with different vortex densities. The entropy change, determined from the data using the Clausius-Clapeyron equation, is consistent with estimates based on the difference in the vortex densities of the two phases

  16. Two-phase regime in the magnetic field-temperature phase diagram of a type-II superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Adams, L.L.A.; Halterman, Klaus; Valls, Oriol T.; Goldman, A.M

    2004-01-01

    The magnetic field and temperature dependencies of the magnetic moments of superconducting crystals of V{sub 3}Si have been studied. In a constant magnetic field and at temperatures somewhat below the superconducting transition temperature, the moments are hysteretic in temperature. However, the magnetic moment-magnetic field isotherms are reversible and exhibit features that formally resemble the pressure-volume isotherms of the liquid-gas transition. This suggests the existence of a first-order phase transition, a two-phase regime, and a critical point in the superconducting phase diagram. The two phases are disordered vortex configurations with the same magnetization, but with different vortex densities. The entropy change, determined from the data using the Clausius-Clapeyron equation, is consistent with estimates based on the difference in the vortex densities of the two phases.

  17. Conductance of partially disordered graphene: crossover from temperature-dependent to field-dependent variable-range hopping

    International Nuclear Information System (INIS)

    Cheah, C Y; Jaurigue, L C; Kaiser, A B; Gómez-Navarro, C

    2013-01-01

    We report an analysis of low-temperature measurements of the conductance of partially disordered reduced graphene oxide, finding that the data follow a simple crossover scenario. At room temperature, the conductance is dominated by two-dimensional (2D) electric field-assisted, thermally driven (Pollak–Riess) variable-range hopping (VRH) through highly disordered regions. However, at lower temperatures T, we find a smooth crossover to follow the exp(−E 0 /E) 1/3 field-driven (Shklovskii) 2D VRH conductance behaviour when the electric field E exceeds a specific crossover value E C (T) 2D =(E a E 0 1/3 /3) 3/4 determined by the scale factors E 0 and E a for the high-field and intermediate-field regimes respectively. Our crossover scenario also accounts well for experimental data reported by other authors for three-dimensional disordered carbon networks, suggesting wide applicability. (paper)

  18. Ambient temperature field measuring system for LHC superconducting dipoles

    International Nuclear Information System (INIS)

    Billan, J.; De Panfilis, S.; Giloteaux, D.; Pagano, O.

    1996-01-01

    It is foreseen to perform acceptance tests including field measurements of the collared coils assembly of the LHC superconducting dipoles to estimate, at an early production stage, the possible significant deviations from the expected multipole component value of these magnets. A sensitive measuring probe and efficient data acquisition are the consequence of a low magnetizing current necessary to limit the coils heating. This demands a high signals sensitivity and an enhanced signal-to-noise ratio to retrieve the higher multipole component. Moreover, the correlation with the multipoles content of the magnets at cryogenic temperature and nominal excitation current need to be identified before the manufacturing process may continue. The field probe of the mole-type is equipped with three radial rotating search coils, an angular encoder and gravity sensor. It has been designed to slide inside the bore of the dipole coils and to measure the local field at fixed positions. The field analysis resulting in terms of multipole components, field direction and field integrals, measured on four 10 m long, twin-aperture LHC dipole prototypes, will be described together with the performance of the measuring method

  19. Monolayer phosphorene under time-dependent magnetic field

    Science.gov (United States)

    Nascimento, J. P. G.; Aguiar, V.; Guedes, I.

    2018-02-01

    We obtain the exact wave function of a monolayer phosphorene under a low-intensity time-dependent magnetic field using the dynamical invariant method. We calculate the quantum-mechanical energy expectation value and the transition probability for a constant and an oscillatory magnetic field. For the former we observe that the Landau level energy varies linearly with the quantum numbers n and m and the magnetic field intensity B0. No transition takes place. For the latter, we observe that the energy oscillates in time, increasing linearly with the Landau level n and m and nonlinearly with the magnetic field. The (k , l) →(n , m) transitions take place only for l = m. We investigate the (0,0) →(n , 0) and (1 , l) and (2 , l) probability transitions.

  20. Real-Time Prediction of Temperature Elevation During Robotic Bone Drilling Using the Torque Signal.

    Science.gov (United States)

    Feldmann, Arne; Gavaghan, Kate; Stebinger, Manuel; Williamson, Tom; Weber, Stefan; Zysset, Philippe

    2017-09-01

    Bone drilling is a surgical procedure commonly required in many surgical fields, particularly orthopedics, dentistry and head and neck surgeries. While the long-term effects of thermal bone necrosis are unknown, the thermal damage to nerves in spinal or otolaryngological surgeries might lead to partial paralysis. Previous models to predict the temperature elevation have been suggested, but were not validated or have the disadvantages of computation time and complexity which does not allow real time predictions. Within this study, an analytical temperature prediction model is proposed which uses the torque signal of the drilling process to model the heat production of the drill bit. A simple Green's disk source function is used to solve the three dimensional heat equation along the drilling axis. Additionally, an extensive experimental study was carried out to validate the model. A custom CNC-setup with a load cell and a thermal camera was used to measure the axial drilling torque and force as well as temperature elevations. Bones with different sets of bone volume fraction were drilled with two drill bits ([Formula: see text]1.8 mm and [Formula: see text]2.5 mm) and repeated eight times. The model was calibrated with 5 of 40 measurements and successfully validated with the rest of the data ([Formula: see text]C). It was also found that the temperature elevation can be predicted using only the torque signal of the drilling process. In the future, the model could be used to monitor and control the drilling process of surgeries close to vulnerable structures.

  1. Thermal Stress FE Analysis of Large-scale Gas Holder Under Sunshine Temperature Field

    Science.gov (United States)

    Li, Jingyu; Yang, Ranxia; Wang, Hehui

    2018-03-01

    The temperature field and thermal stress of Man type gas holder is simulated by using the theory of sunshine temperature field based on ASHRAE clear-sky model and the finite element method. The distribution of surface temperature and thermal stress of gas holder under the given sunshine condition is obtained. The results show that the thermal stress caused by sunshine can be identified as one of the important factors for the failure of local cracked oil leakage which happens on the sunny side before on the shady side. Therefore, it is of great importance to consider the sunshine thermal load in the stress analysis, design and operation of large-scale steel structures such as the gas holder.

  2. Some tests of flat plate photovoltaic module cell temperatures in simulated field conditions

    Science.gov (United States)

    Griffith, J. S.; Rathod, M. S.; Paslaski, J.

    1981-01-01

    The nominal operating cell temperature (NOCT) of solar photovoltaic (PV) modules is an important characteristic. Typically, the power output of a PV module decreases 0.5% per deg C rise in cell temperature. Several tests were run with artificial sun and wind to study the parametric dependencies of cell temperature on wind speed and direction and ambient temperature. It was found that the cell temperature is extremely sensitive to wind speed, moderately so to wind direction and rather insensitive to ambient temperature. Several suggestions are made to obtain data more typical of field conditions.

  3. Determination of equilibrium electron temperature and times using an electron swarm model with BOLSIG+ calculated collision frequencies and rate coefficients

    International Nuclear Information System (INIS)

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; Ji, Wei

    2015-01-01

    Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Important swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. We show that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections

  4. Predicting long-term temperature increase for time-dependent SAR levels with a single short-term temperature response.

    Science.gov (United States)

    Carluccio, Giuseppe; Bruno, Mary; Collins, Christopher M

    2016-05-01

    Present a novel method for rapid prediction of temperature in vivo for a series of pulse sequences with differing levels and distributions of specific energy absorption rate (SAR). After the temperature response to a brief period of heating is characterized, a rapid estimate of temperature during a series of periods at different heating levels is made using a linear heat equation and impulse-response (IR) concepts. Here the initial characterization and long-term prediction for a complete spine exam are made with the Pennes' bioheat equation where, at first, core body temperature is allowed to increase and local perfusion is not. Then corrections through time allowing variation in local perfusion are introduced. The fast IR-based method predicted maximum temperature increase within 1% of that with a full finite difference simulation, but required less than 3.5% of the computation time. Even higher accelerations are possible depending on the time step size chosen, with loss in temporal resolution. Correction for temperature-dependent perfusion requires negligible additional time and can be adjusted to be more or less conservative than the corresponding finite difference simulation. With appropriate methods, it is possible to rapidly predict temperature increase throughout the body for actual MR examinations. © 2015 Wiley Periodicals, Inc.

  5. Review of resistance temperature detector time response characteristics. Safety evaluation report

    International Nuclear Information System (INIS)

    1981-08-01

    A Resistance Temperature Detector (RTD) is used extensively for monitoring water temperatures in nuclear reactor plants. The RTD element does not respond instantaneously to changes in water temperature, but rather there is a time delay before the element senses the temperature change, and in nuclear reactors this delay must be factored into the computation of safety setpoints. For this reason it is necessary to have an accurate description of the RTD time response. This report is a review of the current state of the art of describing and measuring this time response

  6. Thermo field dynamics in the treatment of the nuclear pairing problem at finite temperature

    International Nuclear Information System (INIS)

    Civitarese, O.; DePaoli, A.L.

    1993-01-01

    The use of the thermo field dynamics, in dealing with the study of nuclear properties at finite temperature, is discussed for the case of a nuclear Hamiltonian which includes a single-particle term and a monopole pairing residual two-body interaction. The rules of the thermo fields dynamics are applied to double the Hilbert space, thus accounting for the thermal occupation of single-particle states, and to construct dual spaces, both for single-particle (BCS) and collective (RPA) degrees of freedom. It is shown that the rules of the thermo field dynamics yield to a temperature dependence of the equations describing quasiparticle and phonon excitations which is similar to the one found in the more conventional finite temperature Wick's theorem approach, namely: By dealing with thermal averages. (orig.)

  7. Quantum fields in curved space-times

    International Nuclear Information System (INIS)

    Ashtekar, A.; Magnon, A.

    1975-01-01

    The problem of obtaining a quantum description of the (real) Klein-Gordon system in a given curved space-time is discussed. An algebraic approach is used. The *-algebra of quantum operators is constructed explicitly and the problem of finding its *-representation is reduced to that of selecting a suitable complex structure on the real vector space of the solutions of the (classical) Klein-Gordon equation. Since, in a static space-time, there already exists, a satisfactory quantum field theory, in this case one already knows what the 'correct' complex structure is. A physical characterization of this 'correct' complex structure is obtained. This characterization is used to extend quantum field theory to non-static space-times. Stationary space-times are considered first. In this case, the issue of extension is completely straightforward and the resulting theory is the natural generalization of the one in static space-times. General, non-stationary space-times are then considered. In this case the issue of extension is quite complicated and only a plausible extension is presented. Although the resulting framework is well-defined mathematically, the physical interpretation associated with it is rather unconventional. Merits and weaknesses of this framework are discussed. (author)

  8. Dynamic phase transition in the kinetic spin-32 Blume-Capel model: Phase diagrams in the temperature and crystal-field interaction plane

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)]. E-mail: keskin@erciyes.edu.tr; Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Deviren, Bayram [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2007-06-15

    We analyze, within a mean-field approach, the stationary states of the kinetic spin-32 Blume-Capel (BC) model by the Glauber-type stochastic dynamics and subject to a time-dependent oscillating external magnetic field. The dynamic phase transition (DPT) points are obtained by investigating the behavior of the dynamic magnetization as a function of temperature and as well as calculating the Liapunov exponent. Phase diagrams are constructed in the temperature and crystal-field interaction plane. We find five fundamental types of phase diagrams for the different values of the reduced magnetic field amplitude parameter (h) in which they present a disordered, two ordered phases and the coexistences phase regions. The phase diagrams also exhibit a dynamic double-critical end point for 05.06.

  9. Investigation on the hot melting temperature field simulation of HDPE water supply pipeline in gymnasium pool

    Science.gov (United States)

    Cai, Zhiqiang; Dai, Hongbin; Fu, Xibin

    2018-06-01

    In view of the special needs of the water supply and drainage system of swimming pool in gymnasium, the correlation of high density polyethylene (HDPE) pipe and the temperature field distribution during welding was investigated. It showed that the temperature field distribution has significant influence on the quality of welding. Moreover, the mechanical properties of the welded joint were analyzed by the bending test of the weld joint, and the micro-structure of the welded joint was evaluated by scanning electron microscope (SEM). The one-dimensional unsteady heat transfer model of polyethylene pipe welding joints was established by MARC. The temperature field distribution during welding process was simulated, and the temperature field changes during welding were also detected and compared by the thermo-couple temperature automatic acquisition system. Results indicated that the temperature of the end surface of the pipe does not reach the maximum value, when it is at the end of welding heating. Instead, it reaches the maximum value at 300 sand latent heat occurs during the welding process. It concludes that the weld quality is the highest when the welding pressure is 0.2 MPa, and the heating temperature of HDPE heat fusion welding is in the range of 210 °C-230 °C.

  10. Temperature-field measurements of a premixed butane/air circular impinging-flame using reference-beam interferometry

    International Nuclear Information System (INIS)

    Qi, J.A.; Leung, C.W.; Wong, W.O.; Probert, S.D.

    2006-01-01

    Reference-beam interferometry (RBI) was applied to study the axisymmetric temperature fields of a small-scale, low Reynolds-number, low-pressure and fuel-rich premixed butane/air circular-flame jet, when it was impinging vertically upwards onto a horizontal copper plate. By maintaining a Reynolds number, Re, of 500 and an equivalence ratio, φ, of 1.8, interferograms of the impinging-flame jet were obtained for various nozzle-to-plate-distances. Temperature fields of the flame were then determined using the inverse Abel transformation from the obtained interferograms. Temperatures at several locations were measured experimentally with a T-type thermocouple: they were used as a reference to help in the determination as well as the validation. In the present study, a non-contact method has been successfully developed to measure the temperature fields of a circular impinging gas-fired flame jet

  11. Electric-field-induced modification in Curie temperature of Co monolayer on Pt(111)

    Science.gov (United States)

    Nakamura, Kohji; Oba, Mikito; Akiyama, Toru; Ito, Tomonori; Weinert, Michael

    2015-03-01

    Magnetism induced by an external electric field (E-field) has received much attention as a potential approach for controlling magnetism at the nano-scale with the promise of ultra-low energy power consumption. Here, the E-field-induced modification of the Curie temperature for a prototypical transition-metal thin layer of a Co monolayer on Pt(111) is investigated by first-principles calculations by using the full-potential linearized augmented plane wave method that treats spin-spiral structures in an E-field. An applied E-field modifies the magnon (spin-spiral formation) energies by a few meV, which leads to a modification of the exchange pair interaction parameters within the classical Heisenberg model. With inclusion of the spin-orbit coupling (SOC), the magnetocrystalline anisotropy and the Dzyaloshinskii-Morita interaction are obtained by the second variation SOC method. An E-field-induced modification of the Curie temperature is demonstrated by Monte Carlo simulations, in which a change in the exchange interaction is found to play a key role.

  12. Room-temperature near-field reflection spectroscopy of single quantum wells

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Hvam, Jørn Marcher; Madsen, Steen

    1997-01-01

    . This technique suppresses efficiently the otherwise dominating far-field background and reduces topographic artifacts. We demonstrate its performance on a thin, strained near-surface CdS/ZnS single quantum well at room temperature. The optical structure of these topographically flat samples is due to Cd...

  13. FDTD analysis of human body-core temperature elevation due to RF far-field energy prescribed in the ICNIRP guidelines

    International Nuclear Information System (INIS)

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu

    2007-01-01

    This study investigated the relationship between the specific absorption rate and temperature elevation in an anatomically-based model named NORMAN for exposure to radio-frequency far fields in the ICNIRP guidelines (1998 Health Phys. 74 494-522). The finite-difference time-domain method is used for analyzing the electromagnetic absorption and temperature elevation in NORMAN. In order to consider the variability of human thermoregulation, parameters for sweating are derived and incorporated into a conventional sweating formula. First, we investigated the effect of blood temperature variation modeling on body-core temperature. The computational results show that the modeling of blood temperature variation was the dominant factor influencing the body-core temperature. This is because the temperature in the inner tissues is elevated via the circulation of blood whose temperature was elevated due to EM absorption. Even at different frequencies, the body-core temperature elevation at an identical whole-body average specific absorption rate (SAR) was almost the same, suggesting the effectiveness of the whole-body average SAR as a measure in the ICNIRP guidelines. Next, we discussed the effect of sweating on the temperature elevation and thermal time constant of blood. The variability of temperature elevation caused by the sweating rate was found to be 30%. The blood temperature elevation at the basic restriction in the ICNIRP guidelines of 0.4 W kg -1 is 0.25 0 C even for a low sweating rate. The thermal time constant of blood temperature elevation was 23 min and 52 min for a man with a lower and a higher sweating rate, respectively, which is longer than the average time of the SAR in the ICNIRP guidelines. Thus, the whole-body average SAR required for blood temperature elevation of 1 0 C was 4.5 W kg -1 in the model of a human with the lower sweating coefficients for 60 min exposure. From a comparison of this value with the basic restriction in the ICNIRP guidelines of

  14. FDTD analysis of human body-core temperature elevation due to RF far-field energy prescribed in the ICNIRP guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu [Department of Computer Science and Engineering, Nagoya Institute of Technology (Japan)

    2007-08-21

    This study investigated the relationship between the specific absorption rate and temperature elevation in an anatomically-based model named NORMAN for exposure to radio-frequency far fields in the ICNIRP guidelines (1998 Health Phys. 74 494-522). The finite-difference time-domain method is used for analyzing the electromagnetic absorption and temperature elevation in NORMAN. In order to consider the variability of human thermoregulation, parameters for sweating are derived and incorporated into a conventional sweating formula. First, we investigated the effect of blood temperature variation modeling on body-core temperature. The computational results show that the modeling of blood temperature variation was the dominant factor influencing the body-core temperature. This is because the temperature in the inner tissues is elevated via the circulation of blood whose temperature was elevated due to EM absorption. Even at different frequencies, the body-core temperature elevation at an identical whole-body average specific absorption rate (SAR) was almost the same, suggesting the effectiveness of the whole-body average SAR as a measure in the ICNIRP guidelines. Next, we discussed the effect of sweating on the temperature elevation and thermal time constant of blood. The variability of temperature elevation caused by the sweating rate was found to be 30%. The blood temperature elevation at the basic restriction in the ICNIRP guidelines of 0.4 W kg{sup -1} is 0.25 {sup 0}C even for a low sweating rate. The thermal time constant of blood temperature elevation was 23 min and 52 min for a man with a lower and a higher sweating rate, respectively, which is longer than the average time of the SAR in the ICNIRP guidelines. Thus, the whole-body average SAR required for blood temperature elevation of 1 {sup 0}C was 4.5 W kg{sup -1} in the model of a human with the lower sweating coefficients for 60 min exposure. From a comparison of this value with the basic restriction in the

  15. FDTD analysis of human body-core temperature elevation due to RF far-field energy prescribed in the ICNIRP guidelines.

    Science.gov (United States)

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu

    2007-08-21

    This study investigated the relationship between the specific absorption rate and temperature elevation in an anatomically-based model named NORMAN for exposure to radio-frequency far fields in the ICNIRP guidelines (1998 Health Phys. 74 494-522). The finite-difference time-domain method is used for analyzing the electromagnetic absorption and temperature elevation in NORMAN. In order to consider the variability of human thermoregulation, parameters for sweating are derived and incorporated into a conventional sweating formula. First, we investigated the effect of blood temperature variation modeling on body-core temperature. The computational results show that the modeling of blood temperature variation was the dominant factor influencing the body-core temperature. This is because the temperature in the inner tissues is elevated via the circulation of blood whose temperature was elevated due to EM absorption. Even at different frequencies, the body-core temperature elevation at an identical whole-body average specific absorption rate (SAR) was almost the same, suggesting the effectiveness of the whole-body average SAR as a measure in the ICNIRP guidelines. Next, we discussed the effect of sweating on the temperature elevation and thermal time constant of blood. The variability of temperature elevation caused by the sweating rate was found to be 30%. The blood temperature elevation at the basic restriction in the ICNIRP guidelines of 0.4 W kg(-1) is 0.25 degrees C even for a low sweating rate. The thermal time constant of blood temperature elevation was 23 min and 52 min for a man with a lower and a higher sweating rate, respectively, which is longer than the average time of the SAR in the ICNIRP guidelines. Thus, the whole-body average SAR required for blood temperature elevation of 1 degrees C was 4.5 W kg(-1) in the model of a human with the lower sweating coefficients for 60 min exposure. From a comparison of this value with the basic restriction in the ICNIRP

  16. Development of low temperature and high magnetic field X-ray diffraction facility

    Energy Technology Data Exchange (ETDEWEB)

    Shahee, Aga; Sharma, Shivani; Singh, K.; Lalla, N. P., E-mail: nplallaiuc82@gmail.com; Chaddah, P. [UGC-DAE Consortium for Scientific Research, University campus, Khandwa Road, Indore-452001 (India)

    2015-06-24

    The current progress of materials science regarding multifunctional materials (MFM) has put forward the challenges to understand the microscopic origin of their properties. Most of such MFMs have magneto-elastic correlations. To investigate the underlying mechanism it is therefore essential to investigate the structural properties in the presence of magnetic field. Keeping this in view low temperature and high magnetic field (LTHM) powder x-ray diffraction (XRD), a unique state-of-art facility in the country has been developed at CSR Indore. This setup works on symmetric Bragg Brentano geometry using a parallel incident x-ray beam from a rotating anode source working at 17 kW. Using this one can do structural studies at non-ambient conditions i.e. at low- temperatures (2-300 K) and high magnetic field (+8 to −8 T). The available scattering angle ranges from 5° to 115° 2θ with a resolution better than 0.1°. The proper functioning of the setup has been checked using Si sample. The effect of magnetic field on the structural properties has been demonstrated on Pr{sub 0.5}Sr{sub 0.5}MnO{sub 3} sample. Clear effect of field induced phase transition has been observed. Moreover, the effect of zero field cooled and field cooled conditions is also observed.

  17. Research, Development, and Field Testing of Thermochemical Recuperation for High Temperature Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Kurek, Harry; Kozlov, Aleksandr

    2014-03-31

    potential performance of TCR. • Phase II: Conduct research and development to take the validated technology concept from Phase I to a developmental state for a Phase 3, prototype field test. • Phase III: Design, fabricate, and prototype field testing of the TCR unit close coupled to an existing high temperature reheat furnace at a steel company for evaluation under industrial conditions The project was initiated on September 30, 2008. The report of Phase I results and conclusions was issued on October 30, 2009. The findings were reviewed by the project partners and the collective recommendation was to proceed with Phase II. Upon the work-conclusion, the Phase II report was issued on March 5, 2012. The scope of work involved the physical testing of a laboratory scale Recuperative Reformer (RR) to validate predicted performances from the feasibility study in Phase I (26% fuel reduction). Although the testing was a successful validation (21% fuel reduction mode), a technical issue 5 arose, namely a Methane Reforming Rate (MRR) roll off or non-sustaining of the methane reforming rate. GTI’s preliminary conclusions were that mechanism(s) producing the methane reforming rate reduction were not entirely known or understood and the chemical kinetics that triggered the roll off mechanism and/or other mechanisms needed to be further evaluated. GTI developed a plan to uncover the reason(s) for not sustaining a satisfactory Methane Reforming Rate (MRR) of the laboratory scale recuperator reformer (RR). The extended testing program consisted primarily of four tasks based on expected outcomes at that time. The project partners reviewed the proposal and recommended the proposed work extension to proceed and suspension of Phase III pending further review of the results of this work identified as Task 2.5. Additional Temperature Threshold Testing was undertaken by GTI and simultaneously independent analysis was carried out by the University of California Davis. Upon completion of the

  18. Fermion fields in η-ξ spacetime

    International Nuclear Information System (INIS)

    Gui, Y.

    1992-01-01

    Fermion fields in η-ζ spacetime are discussed. By the path-integral formulation of quantum field theory, we show that the (zero-temperature) Green's functions for Dirac fields on the Euclidean section in η-ζ spacetime are equal to the imaginary-time thermal Green's functions in Minkowski spacetime, and that the (zero-temperature) Green's functions on the Lorentzian section in η-ζ spacetime correspond to the real-time thermal Green's functions in Minkowski spacetime. The antiperiodicity of fermion fields in η-ζ spacetime originates from Lorentz transformation properties of the fields

  19. Methodology for Time-Domain Estimation of Storm-Time Electric Fields Using the 3D Earth Impedance

    Science.gov (United States)

    Kelbert, A.; Balch, C. C.; Pulkkinen, A. A.; Egbert, G. D.; Love, J. J.; Rigler, E. J.; Fujii, I.

    2016-12-01

    Magnetic storms can induce geoelectric fields in the Earth's electrically conducting interior, interfering with the operations of electric-power grid industry. The ability to estimate these electric fields at Earth's surface in close to real-time and to provide local short-term predictions would improve the ability of the industry to protect their operations. At any given time, the electric field at the Earth's surface is a function of the time-variant magnetic activity (driven by the solar wind), and the local electrical conductivity structure of the Earth's crust and mantle. For this reason, implementation of an operational electric field estimation service requires an interdisciplinary, collaborative effort between space science, real-time space weather operations, and solid Earth geophysics. We highlight in this talk an ongoing collaboration between USGS, NOAA, NASA, Oregon State University, and the Japan Meteorological Agency, to develop algorithms that can be used for scenario analyses and which might be implemented in a real-time, operational setting. We discuss the development of a time domain algorithm that employs discrete time domain representation of the impedance tensor for a realistic 3D Earth, known as the discrete time impulse response (DTIR), convolved with the local magnetic field time series, to estimate the local electric field disturbances. The algorithm is validated against measured storm-time electric field data collected in the United States and Japan. We also discuss our plans for operational real-time electric field estimation using 3D Earth impedances.

  20. Temperature and flow fields in samples heated in monoellipsoidal mirror furnaces

    Science.gov (United States)

    Rivas, D.; Haya, R.

    The temperature field in samples heated in monoellipsoidal mirror furnaces will be analyzed. The radiation heat exchange between the sample and the mirror is formulated analytically, taking into account multiple reflections at the mirror. It will be shown that the effect of these multiple reflections in the heating process is quite important, and, as a consequence, the effect of the mirror reflectance in the temperature field is quite strong. The conduction-radiation model will be used to simulate the heating process in the floating-zone technique in microgravity conditions; important parameters like the Marangoni number (that drives the thermocapillary flow in the melt), and the temperature gradient at the melt-crystal interface will be estimated. The model will be validated comparing with experimental data. The case of samples mounted in a wall-free configuration (as in the MAXUS-4 programme) will be also considered. Application to the case of compound samples (graphite-silicon-graphite) will be made; the melting of the silicon part and the surface temperature distribution in the melt will be analyzed. Of special interest is the temperature difference between the two graphite rods that hold the silicon part, since it drives the thermocapillary flow in the melt. This thermocapillary flow will be studied, after coupling the previous model with the convective effects. The possibility of counterbalancing this flow by the controlled vibration of the graphite rods will be studied as well. Numerical results show that suppressing the thermocapillary flow can be accomplished quite effectively.

  1. Quantum field theory in curved space-time

    International Nuclear Information System (INIS)

    Najmi, A.-H.

    1982-09-01

    The problem of constructing states for quantum field theories in nonstationary background space-times is set out. A formalism in which the problem of constructing states can be attacked more easily than at present is presented. The ansatz of energy-minimization as a means of constructing states is formulated in this formalism and its general solution for the free scalar field is found. It has been known, in specific cases, that such states suffer from the problem of unitary inequivalence (the pathology). An example in Minowski space-time is presented in which global operators, such as the particle-number operator, do not exist but all physical observables, such as the renormalized energy density are finite. This model has two Fock-sectors as its space of physical states. A simple extension of this model, i.e. enlarging the Fock-space of states is found not to remedy the pathology: in a Robertson-Walker space-time the quantum field acquires an infinite amount of renormalized energy density to the future of the hypersurface on which the energy density is minimized. Finally, the solution of the ansatz of energy minimization for the free, massive Hermitian fermion field is presented. (author)

  2. Temperature change of various ferrite particles with alternating magnetic field for hyperthermic application

    International Nuclear Information System (INIS)

    Kim, Dong-Hyun; Lee, Se-Ho; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Shim, In-Bo; Lee, Yong-Keun

    2005-01-01

    Various ferrites (Fe-, Li-, Ni/Zn/Cu-, Co-, Co/Ni, Ba- and Sr-ferrites) were investigated with respect to their application for hyperthermia. Temperature changes under an alternating magnetic field were observed. The area of hysteresis loop was much larger in the Ba- and Sr-ferrites than for that of the Fe-, Ni/Zn/Cu-, Li-, Co- and Co/Ni-ferrites. Co-ferrite exhibited the most applicable temperature change ΔT=19.25K (29.62W/gs), in distilled water when the field was 110A/m

  3. Relation between 1m depth temperature and average geothermal gradient at 75cm depth in geothermal fields

    OpenAIRE

    江原, 幸雄

    2009-01-01

    Shallow ground temperatures such as 1m depth temperature have been measured to delineate thermal anomalies of geothermal fields and also to estimate heat discharge rates from geothermal fields. As a result, a close linear relation between 1m depth temperature and average geothermal gradient at 75cm depth has been recognized in many geothermal fields and was used to estimate conductive heat discharge rates. However, such a linear relation may show that the shallow thermal regime in geothermal ...

  4. Influence of Non-uniform Temperature Field on Spectra of Fibre Bragg Grating

    International Nuclear Information System (INIS)

    Yan, Zhou; Xing-Fang, He; Xiao-Yong, Fang; Jie, Yuan; Li-Qun, Yin; Mao-Sheng, Cao

    2009-01-01

    We simulate the spectrum characteristics of fibre Bragg grating (FBG) with non-uniform temperature using the transmission matrix method, and the results are analysed. It is found that firstly the modulated coefficient of average refractive index is a very important parameter that influences the spectrum characteristic of the fibre Bragg grating, and secondly the spectrum curves are different in different temperature fields at the same parameter. Hence, we can determine the metrical temperature by analysing the spectrum of fibre Bragg grating

  5. Field measurements of temperature profile for floatovoltaic dryer in the tropics

    Science.gov (United States)

    Osman, F. A.; Ya'acob, M. E.; Iskandar, A. Noor

    2017-09-01

    Most of the equator region in a tropical climate zone experiences hot and humid weather but sometimes heavy rain and thunderstorms which occur stochastically in monsoon season. Sunlight which is the energy source can be harvested approximately 8 hours (on average basis) daily throughout the year which leads to the promotion of Solar PV technologies. This works projects the field performance for a new Floatovoltaic Dryer prototype with flexible PV roofing structures covering the top of the dryer system. The field measurements are collected on the lake of Engineering Faculty, UPM supported with 4-parameter weather station. Temperature profile with RH measurements inside the Floatovoltaic Dryer compartments as compared to direct-sun drying mechanism are the main contributions of this work and it projects more than 12 W of convection heat energy could be harvested by using the clean system. The field measurements imply various points of thermocouple and humidity sensor throughout the experiment. Temperature and humidity will be the main elements recorded to analyze the differences under monocrystalline PV panel as compared to natural drying.

  6. Effects of temperature and electric field on order parameters in ferroelectric hexagonal manganites

    Science.gov (United States)

    Zhang, C. X.; Yang, K. L.; Jia, P.; Lin, H. L.; Li, C. F.; Lin, L.; Yan, Z. B.; Liu, J.-M.

    2018-03-01

    In Landau-Devonshire phase transition theory, the order parameter represents a unique property for a disorder-order transition at the critical temperature. Nevertheless, for a phase transition with more than one order parameter, such behaviors can be quite different and system-dependent in many cases. In this work, we investigate the temperature (T) and electric field (E) dependence of the two order parameters in improper ferroelectric hexagonal manganites, addressing the phase transition from the high-symmetry P63/mmc structure to the polar P63cm structure. It is revealed that the trimerization as the primary order parameter with two components: the trimerization amplitude Q and phase Φ, and the spontaneous polarization P emerging as the secondary order parameter exhibit quite different stability behaviors against various T and E. The critical exponents for the two parameters Q and P are 1/2 and 3/2, respectively. As temperature increases, the window for the electric field E enduring the trimerization state will shrink. An electric field will break the Z2 part of the Z2×Z3 symmetry. The present work may shed light on the complexity of the vortex-antivortex domain structure evolution near the phase transition temperature.

  7. Temperature of thermal plasma jets: A time resolved approach

    Energy Technology Data Exchange (ETDEWEB)

    Sahasrabudhe, S N; Joshi, N K; Barve, D N; Ghorui, S; Tiwari, N; Das, A K, E-mail: sns@barc.gov.i [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai - 400 094 (India)

    2010-02-01

    Boltzmann Plot method is routinely used for temperature measurement of thermal plasma jets emanating from plasma torches. Here, it is implicitly assumed that the plasma jet is 'steady' in time. However, most of the experimenters do not take into account the variations due to ripple in the high current DC power supplies used to run plasma torches. If a 3-phase transductor type of power supply is used, then the ripple frequency is 150 Hz and if 3- phase SCR based power supply is used, then the ripple frequency is 300 Hz. The electrical power fed to plasma torch varies at ripple frequency. In time scale, it is about 3.3 to 6.7 ms for one cycle of ripple and it is much larger than the arc root movement times which are within 0.2 ms. Fast photography of plasma jets shows that the luminosity of plasma jet also varies exactly like the ripple in the power supply voltage and thus with the power. Intensity of line radiations varies nonlinearly with the instantaneous power fed to the torch and the simple time average of line intensities taken for calculation of temperature is not appropriate. In this paper, these variations and their effect on temperature determination are discussed and a method to get appropriate data is suggested. With a small adaptation discussed here, this method can be used to get temperature profile of plasma jet within a short time.

  8. Non-invasive body temperature measurement of wild chimpanzees using fecal temperature decline.

    Science.gov (United States)

    Jensen, Siv Aina; Mundry, Roger; Nunn, Charles L; Boesch, Christophe; Leendertz, Fabian H

    2009-04-01

    New methods are required to increase our understanding of pathologic processes in wild mammals. We developed a noninvasive field method to estimate the body temperature of wild living chimpanzees habituated to humans, based on statistically fitting temperature decline of feces after defecation. The method was established with the use of control measures of human rectal temperature and subsequent changes in fecal temperature over time. The method was then applied to temperature data collected from wild chimpanzee feces. In humans, we found good correspondence between the temperature estimated by the method and the actual rectal temperature that was measured (maximum deviation 0.22 C). The method was successfully applied and the average estimated temperature of the chimpanzees was 37.2 C. This simple-to-use field method reliably estimates the body temperature of wild chimpanzees and probably also other large mammals.

  9. Quantum theory of spinor field in four-dimensional Riemannian space-time

    International Nuclear Information System (INIS)

    Shavokhina, N.S.

    1996-01-01

    The review deals with the spinor field in the four-dimensional Riemannian space-time. The field beys the Dirac-Fock-Ivanenko equation. Principles of quantization of the spinor field in the Riemannian space-time are formulated which in a particular case of the plane space-time are equivalent to the canonical rules of quantization. The formulated principles are exemplified by the De Sitter space-time. The study of quantum field theory in the De Sitter space-time is interesting because it itself leads to a method of an invariant well for plane space-time. However, the study of the quantum spinor field theory in an arbitrary Riemannian space-time allows one to take into account the influence of the external gravitational field on the quantized spinor field. 60 refs

  10. Large low-field magnetoresistance of Fe3O4 nanocrystal at room temperature

    International Nuclear Information System (INIS)

    Mi, Shu; Liu, Rui; Li, Yuanyuan; Xie, Yong; Chen, Ziyu

    2017-01-01

    Superparamagnetic magnetite (Fe 3 O 4 ) nanoparticles with an average size of 6.5 nm and good monodispersion were synthesized and investigated by X-ray diffraction, Raman spectrometer, transmission electron microscopy and vibrating sample magnetometer. Corresponding low-field magnetoresistance (LFMR) was tested by physical property measurement system. A quite high LFMR has been observed at room temperature. For examples, at a field of 3000 Oe, the LFMR is −3.5%, and when the field increases to 6000 Oe, the LFMR is up to −5.1%. The electron spin polarization was estimated at 25%. This result is superior to the previous reports showing the LFMR of no more than 2% at room temperature. The conduction mechanism is proposed to be the tunneling of conduction electrons between adjacent grains considering that the monodisperse nanocrystals may supply more grain boundaries increasing the tunneling probability, and consequently enhancing the overall magnetoresistance. - Highlights: • Superparamagnetic Fe3O4 nanoparticles with small size were synthesized. • A quite high LFMR has been observed at room temperature. • The more grain boundaries increase the tunneling probability and enlarge the MR. • The fast response of the sample increase the MR at a low field.

  11. Infrared remote sensing for canopy temperature in paddy field and relationship between leaf temperature and leaf color

    International Nuclear Information System (INIS)

    Wakiyama, Y.

    2002-01-01

    Infrared remote sensing is used for crop monitoring, for example evaluation of water stress, detection of infected crops and estimation of transpiration and photosynthetic rates. This study was conducted to show another application of remote sensing information. The relationship between rice leaf temperature and chlorophyll content in the leaf blade was investigated by using thermography during the ripening period. The canopy of a rice community fertilized by top dressing was cooler than that not fertilized in a 1999 field experiment. In an experiment using thermocouples to measure leaf temperature, a rice leaf with high chlorophyll content was also cooler than that with a low chlorophyll content. Transpiration resistance and transpiration rate were measured with a porometer. Transpiration rate was higher with increasing chlorophyll content in the leaf blade. Stomatal aperture is related to chlorophyll content in the leaf blade. High degree of stomatal aperture is caused by high chlorophyll content in the leaf blade. As degree of stomatal aperture increases, transpiration rate increases. Therefore the rice leaf got cooler with increasing chlorophyll content in leaf blade. Paddy rice communities with different chlorophyll contents were provided with fertilization of different nitrogen levels on basal and top dressing in a 2000 field experiment. Canopy temperature of the rice community with high chlorophyll content was 0.85°C cooler than that of the rice community with low chlorophyll content. Results of this study revealed that infrared remote sensing could detect difference in chlorophyll contents in rice communities and could be used in fertilizer management in paddy fields. (author)

  12. Time-localized projectors in string field theory with an E-field

    International Nuclear Information System (INIS)

    Maccaferri, C.; Scherer Santos, R.J.; Tolla, D.D.

    2005-01-01

    We extend the analysis of Bonora et al. [hep-th/0409063] to the case of a constant electric field turned on the world volume and on a transverse direction of a D-brane. We show that time localization is still obtained by inverting the discrete eigenvalues of the lump solution. The lifetime of the unstable soliton is shown to depend on two free parameters: the b parameter and the value of the electric field. As a by-product, we construct the normalized diagonal basis of the star algebra in the B μν -field background

  13. Room-temperature deposition of diamond-like carbon field emitter on flexible substrates

    International Nuclear Information System (INIS)

    Chen, H.; Iliev, M.N.; Liu, J.R.; Ma, K.B.; Chu, W.-K.; Badi, N.; Bensaoula, A.; Svedberg, E.B.

    2006-01-01

    Room-temperature fabrication of diamond-like carbon electron field emitters on flexible polyimide substrate is reported. These thin film field emitters are made using an Ar gas cluster ion beam assisted C 6 vapor deposition method. The bond structure of the as-deposited diamond-like carbon film was studied using Raman spectroscopy. The field emission characteristics of the deposited films were also measured. Electron current densities over 15 mA/cm 2 have been recorded under an electrical field of about 65 V/μm. These diamond-like carbon field emitters are easy and inexpensive to fabricate. The results are promising for flexible field-emission fabrication without the need of complex patterning and tip shaping as compared to the Spindt-type field emitters

  14. Dual origin of room temperature sub-terahertz photoresponse in graphene field effect transistors

    Science.gov (United States)

    Bandurin, D. A.; Gayduchenko, I.; Cao, Y.; Moskotin, M.; Principi, A.; Grigorieva, I. V.; Goltsman, G.; Fedorov, G.; Svintsov, D.

    2018-04-01

    Graphene is considered as a promising platform for detectors of high-frequency radiation up to the terahertz (THz) range due to its superior electron mobility. Previously, it has been shown that graphene field effect transistors (FETs) exhibit room temperature broadband photoresponse to incoming THz radiation, thanks to the thermoelectric and/or plasma wave rectification. Both effects exhibit similar functional dependences on the gate voltage, and therefore, it was difficult to disentangle these contributions in previous studies. In this letter, we report on combined experimental and theoretical studies of sub-THz response in graphene field-effect transistors analyzed at different temperatures. This temperature-dependent study allowed us to reveal the role of the photo-thermoelectric effect, p-n junction rectification, and plasmonic rectification in the sub-THz photoresponse of graphene FETs.

  15. Time dependence of magnetization of high temperature superconductors

    International Nuclear Information System (INIS)

    Larkin, A.I.; Geshkenbein, V.B.

    1988-10-01

    Magnetization of high T c superconductors logarithmically decreases with time. There is a maximum in the temperature dependence of the coefficient at this logarithm. If one assumes that there do exist two kinds of pinning centers, then this dependence can be described in the Anderson theory of thermal creeps of Abrikosov's vortices. The temperature dependence of the critical current is also discussed. (author). 23 refs

  16. The Simulation of Temperature Field Based on 3D Modeling and Its Comparison versus Measured Temperature Distribution of Daqing Oilfield, NE China

    Science.gov (United States)

    Shi, Y.; Jiang, G.; Hu, S.

    2017-12-01

    Daqing, as the largest oil field of China with more than 50 years of exploration and production history for oil and gas, its geothermal energy utilization was started in 2000, with a main focus on district heating and direct use. In our ongoing study, data from multiple sources are collected, including BHT, DST, steady state temperature measurements in deep wells and thermophysical properties of formations. Based on these measurements, an elaborate investigation of the temperature field of Daqing Oilfield is made. Moreover, through exploration for oil and gas, subsurface geometry, depth, thickness and properties of the stratigraphic layers have been extensively delineated by well logs and seismic profiles. A 3D model of the study area is developed incorporating the information of structure, stratigraphy, basal heat flow, and petrophysical and thermophysical properties of strata. Based on the model, a simulation of the temperature field of Daqing Oilfield is generated. A purely conductive regime is presumed, as demonstrated by measured temperature log in deep wells. Wells W1, W2 and SK2 are used as key wells for model calibration. Among them, SK2, as part of the International Continental Deep Drilling Program, has a designed depth of 6400m, the steady state temperature measurement in the borehole has reached the depth of 4000m. The results of temperature distribution generated from simulation and investigation are compared, in order to evaluate the potential of applying the method to other sedimentary basins with limited borehole temperature measurements but available structural, stratigraphic and thermal regime information.

  17. Influence of temperature on patch residence time in parasitoids: physiological and behavioural mechanisms

    Science.gov (United States)

    Moiroux, Joffrey; Abram, Paul K.; Louâpre, Philippe; Barrette, Maryse; Brodeur, Jacques; Boivin, Guy

    2016-04-01

    Patch time allocation has received much attention in the context of optimal foraging theory, including the effect of environmental variables. We investigated the direct role of temperature on patch time allocation by parasitoids through physiological and behavioural mechanisms and its indirect role via changes in sex allocation and behavioural defences of the hosts. We compared the influence of foraging temperature on patch residence time between an egg parasitoid, Trichogramma euproctidis, and an aphid parasitoid, Aphidius ervi. The latter attacks hosts that are able to actively defend themselves, and may thus indirectly influence patch time allocation of the parasitoid. Patch residence time decreased with an increase in temperature in both species. The increased activity levels with warming, as evidenced by the increase in walking speed, partially explained these variations, but other mechanisms were involved. In T. euproctidis, the ability to externally discriminate parasitised hosts decreased at low temperature, resulting in a longer patch residence time. Changes in sex allocation with temperature did not explain changes in patch time allocation in this species. For A. ervi, we observed that aphids frequently escaped at intermediate temperature and defended themselves aggressively at high temperature, but displayed few defence mechanisms at low temperature. These defensive behaviours resulted in a decreased patch residence time for the parasitoid and partly explained the fact that A. ervi remained for a shorter time at the intermediate and high temperatures than at the lowest temperature. Our results suggest that global warming may affect host-parasitoid interactions through complex mechanisms including both direct and indirect effects on parasitoid patch time allocation.

  18. A new method for temperature-field reconstruction during ultrasound-monitored cryosurgery using potential-field analogy.

    Science.gov (United States)

    Thaokar, Chandrajit; Rossi, Michael R; Rabin, Yoed

    2016-02-01

    The current study aims at developing computational tools in order to gain information about the thermal history in areas invisible to ultrasound imaging during cryosurgery. This invisibility results from the high absorption rate of the ultrasound energy by the frozen region, which leads to an apparent opacity in the cryotreated area and a shadow behind it. A proof-of-concept for freezing-front estimation is demonstrated in the current study, using the new potential-field analogy method (PFAM). This method is further integrated with a recently developed temperature-field reconstruction method (TFRM) to estimate the temperature distribution within the frozen region. This study uses prostate cryosurgery as a developmental model and trans-rectal ultrasound imaging as a choice of practice. Results of this study indicate that the proposed PFAM is a viable and computationally inexpensive solution to estimate the extent of freezing in the acoustic shadow region. Comparison of PFAM estimations and experimental data shows an average mismatch of less than 2 mm in freezing-front location, which is comparable to the uncertainty in ultrasound imaging. Comparison of the integrated PFAM + TFRM scheme with a full-scale finite-elements analysis (FEA) indicates an average mismatch of 0.9 mm for the freezing front location and 0.1 mm for the lethal temperature isotherm of -45 °C. Comparison of the integrated PFAM + TFRM scheme with experimental temperature measurements show a difference in the range of 2 °C and 6 °C for selected points of measurement. Results of this study demonstrate the integrated PFAM + TFRM scheme as a viable and computationally inexpensive means to gain information about the thermal history in the frozen region during ultrasound-monitored cryosurgery. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Pressure, temperature, and electric field dependence of phase transformations in niobium modified 95/5 lead zirconate titanate

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Wen D.; Carlos Valadez, J.; Gallagher, John A.; Jo, Hwan R.; Lynch, Christopher S., E-mail: cslynch@seas.ucla.edu [Department of Mechanical and Aerospace Engineering, The University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095 (United States); Sahul, Raffi; Hackenberger, Wes [TRS Technologies, 2820 East College Avenue, State College, Pennsylvania 16801 (United States)

    2015-06-28

    Ceramic niobium modified 95/5 lead zirconate-lead titanate (PZT) undergoes a pressure induced ferroelectric to antiferroelectric phase transformation accompanied by an elimination of polarization and a volume reduction. Electric field and temperature drive the reverse transformation from the antiferroelectric to ferroelectric phase. The phase transformation was monitored under pressure, temperature, and electric field loading. Pressures and temperatures were varied in discrete steps from 0 MPa to 500 MPa and 25 °C to 125 °C, respectively. Cyclic bipolar electric fields were applied with peak amplitudes of up to 6 MV m{sup −1} at each pressure and temperature combination. The resulting electric displacement–electric field hysteresis loops were open “D” shaped at low pressure, characteristic of soft ferroelectric PZT. Just below the phase transformation pressure, the hysteresis loops took on an “S” shape, which split into a double hysteresis loop just above the phase transformation pressure. Far above the phase transformation pressure, when the applied electric field is insufficient to drive an antiferroelectric to ferroelectric phase transformation, the hysteresis loops collapse to linear dielectric behavior. Phase stability maps were generated from the experimental data at each of the temperature steps and used to form a three dimensional pressure–temperature–electric field phase diagram.

  20. Time dependent temperature distribution in pulsed Ti:sapphire lasers

    Science.gov (United States)

    Buoncristiani, A. Martin; Byvik, Charles E.; Farrukh, Usamah O.

    1988-01-01

    An expression is derived for the time dependent temperature distribution in a finite solid state laser rod for an end-pumped beam of arbitrary shape. The specific case of end pumping by circular (constant) or Gaussian beam is described. The temperature profile for a single pump pulse and for repetitive pulse operation is discussed. The particular case of the temperature distribution in a pulsed titanium:sapphire rod is considered.

  1. Velocity distribution of electrons in time-varying low-temperature plasmas: progress in theoretical procedures over the past 70 years

    Science.gov (United States)

    Makabe, Toshiaki

    2018-03-01

    A time-varying low-temperature plasma sustained by electrical powers with various kinds of fRequencies has played a key role in the historical development of new technologies, such as gas lasers, ozonizers, micro display panels, dry processing of materials, medical care, and so on, since World War II. Electrons in a time-modulated low-temperature plasma have a proper velocity spectrum, i.e. velocity distribution dependent on the microscopic quantum characteristics of the feed gas molecule and on the external field strength and the frequency. In order to solve and evaluate the time-varying velocity distribution, we have mostly two types of theoretical methods based on the classical and linear Boltzmann equations, namely, the expansion method using the orthogonal function and the procedure of non-expansional temporal evolution. Both methods have been developed discontinuously and progressively in synchronization with those technological developments. In this review, we will explore the historical development of the theoretical procedure to evaluate the electron velocity distribution in a time-varying low-temperature plasma over the past 70 years.

  2. Magnetic field and temperature dependence of the critical vortex velocity in type-II superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Grimaldi, G; Leo, A; Cirillo, C; Attanasio, C; Nigro, A; Pace, S [CNR-INFM Laboratorio Regionale SuperMat, Via Salvador Allende, I-84081 Baronissi (Italy)], E-mail: grimaldi@sa.infn.it

    2009-06-24

    We study the vortex dynamics in the instability regime induced by high dissipative states well above the critical current in Nb superconducting strips. The magnetic field and temperature behavior of the critical vortex velocity corresponding to the observed dynamic instability is ascribed to intrinsic non-equilibrium phenomena. The Larkin-Ovchinnikov (LO) theory of electronic instability in high velocity vortex motion has been applied to interpret the temperature dependence of the critical vortex velocity. The magnetic field dependence of the vortex critical velocity shows new features in the low-field regime not predicted by LO.

  3. Temperature measurement in a compressible flow field using laser-induced iodine fluorescence

    Science.gov (United States)

    Fletcher, D. G.; Mcdaniel, J. C.

    1987-01-01

    The thermometric capability of a two-line fluorescence technique using iodine seed molecules in air is investigated analytically and verified experimentally in a known steady compressible flow field. Temperatures ranging from 165 to 295 K were measured in the flowfield using two iodine transitions accessed with a 30-GHz dye-laser scan near 543 nm. The effect of pressure broadening on temperature measurement is evaluated.

  4. Concurrence of Quantum States: Algebraic Dynamical Method Study XXX Models in a Time-Depending Random External Field

    International Nuclear Information System (INIS)

    Fu Chuanji; Zhu Qinsheng; Wu Shaoyi

    2010-01-01

    Based on algebraic dynamics and the concept of the concurrence of the entanglement, we investigate the evolutive properties of the two-qubit entanglement that formed by Heisenberg XXX models under a time-depending external held. For this system, the property of the concurrence that is only dependent on the coupling constant J and total values of the external field is proved. Furthermore, we found that the thermal concurrence of the system under a static random external field is a function of the coupling constant J, temperature T, and the magnitude of external held. (general)

  5. Temperature has a causal effect on avian timing of reproduction

    NARCIS (Netherlands)

    Visser, M.E.; Holleman, L.J.M.; Caro, S.P.

    2009-01-01

    Many bird species reproduce earlier in years with high spring temperatures, but little is known about the causal effect of temperature. Temperature may have a direct effect on timing of reproduction but the correlation may also be indirect, for instance via food phenology. As climate change has led

  6. Dynamic temperature estimation and real time emergency rating of transmission cables

    DEFF Research Database (Denmark)

    Olsen, R. S.; Holboll, J.; Gudmundsdottir, Unnur Stella

    2012-01-01

    enables real time emergency ratings, such that the transmission system operator can make well-founded decisions during faults. Hereunder is included the capability of producing high resolution loadability vs. time schedules within few minutes, such that the TSO can safely control the system.......). It is found that the calculated temperature estimations are fairly accurate — within 1.5oC of the finite element method (FEM) simulation to which it is compared — both when looking at the temperature profile (time dependent) and the temperature distribution (geometric dependent). The methodology moreover...

  7. Electron mobility in nonpolar liquids: the effect of molecular structure, temperature and electric field

    International Nuclear Information System (INIS)

    Schmidt, W.F.

    1977-01-01

    A survey is given on the mobility of excess electrons in liquid hydrocarbons and related compounds. It was found that the mobility is strongly influenced by the molecular structure of the liquid, by the temperature, and by the electric field strength. The mobility in hydrocarbons increases as the shape of the molecule approaches a sphere. The temperature coefficient is positive in most liquids over a limited temperature although exceptions have been observed in liquid methane. The field dependence of the mobility in high mobility liquids (>10 cm 2 V -1 s -1 ) showed a decrease of the mobility at higher field strengths while in low mobility liquids ( 2 V -1 s -1 ) it showed an increase. These results are discussed on the basis of the extended and the localized electron models. The predictions of these theories are compared with the experimental results and conclusions on the validity of the underlying assumptions are drawn. (author)

  8. Numerical simulation of the temperature, electron density, and electric field distributions near the ionospheric reflection height after turn-on of a powerful HF wave

    International Nuclear Information System (INIS)

    Muldrew, D.B.

    1986-01-01

    The time variation of the electron temperature profile in the ionosphere following turn-on of a powerful 1-s HF pulse is determined numerically from the energy balance equation. Using this and the equations of motion and continuity for a plasma, the effect of heating and the pondermotive force of a powerful HF wave on the electron density and electric field distributions are determined by numerical simulation. The temperature variation and ponderomotive force modify the density distribution, and this new density distribution, in turn, modifies the electric field distribution of the HF wave. The density deviations grow for a few hundred milliseconds after HF turn-on and then begin to fluctuate in time. At all heights the wave number of the density deviations is approximately twice the wave number of the HF wave. For electric fields near reflection of about 6.0 V/m, the electric field distribution becomes complicated, apparently depending on Bragg scattering of the HF wave from the density deviations. Density impulses propagate away (up and down) from electric field maxima, at the ion thermal velocity, at both turn-on and turn-off of the HF wave

  9. 3D Online Submicron Scale Observation of Mixed Metal Powder's Microstructure Evolution in High Temperature and Microwave Compound Fields

    Directory of Open Access Journals (Sweden)

    Dan Kang

    2014-01-01

    Full Text Available In order to study the influence on the mechanical properties caused by microstructure evolution of metal powder in extreme environment, 3D real-time observation of the microstructure evolution of Al-Ti mixed powder in high temperature and microwave compound fields was realized by using synchrotron radiation computerized topography (SR-CT technique; the spatial resolution was enhanced to 0.37 μm/pixel through the designed equipment and the introduction of excellent reconstruction method for the first time. The process of microstructure evolution during sintering was clearly distinguished from 2D and 3D reconstructed images. Typical sintering parameters such as sintering neck size, porosity, and particle size of the sample were presented for quantitative analysis of the influence on the mechanical properties and the sintering kinetics during microwave sintering. The neck size-time curve was obtained and the neck growth exponent was 7.3, which indicated that surface diffusion was the main diffusion mechanism; the reason was the eddy current loss induced by the external microwave fields providing an additional driving force for mass diffusion on the particle surface. From the reconstructed images and the curve of porosity and average particle size versus temperature, it was believed that the presence of liquid phase aluminum accelerated the densification and particle growth.

  10. Self-interacting scalar fields at high-temperature

    Energy Technology Data Exchange (ETDEWEB)

    Deur, Alexandre [University of Virginia, Charlottesville, VA (United States)

    2017-06-15

    We study two self-interacting scalar field theories in their high-temperature limit using path integrals on a lattice. We first discuss the formalism and recover known potentials to validate the method. We then discuss how these theories can model, in the high-temperature limit, the strong interaction and General Relativity. For the strong interaction, the model recovers the known phenomenology of the nearly static regime of heavy quarkonia. The model also exposes a possible origin for the emergence of the confinement scale from the approximately conformal Lagrangian. Aside from such possible insights, the main purpose of addressing the strong interaction here - given that more sophisticated approaches already exist - is mostly to further verify the pertinence of the model in the more complex case of General Relativity for which non-perturbative methods are not as developed. The results have important implications on the nature of Dark Matter. In particular, non-perturbative effects naturally provide flat rotation curves for disk galaxies, without need for non-baryonic matter, and explain as well other observations involving Dark Matter such as cluster dynamics or the dark mass of elliptical galaxies. (orig.)

  11. Effect of temperature and magnetic field on disorder in semiconductor structures

    Energy Technology Data Exchange (ETDEWEB)

    Agrinskaya, N. V., E-mail: nina.agrins@mail.ioffe.ru; Kozub, V. I. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2017-02-15

    We present the results of consistent theoretical analysis of various factors that may lead to influence of temperature and external magnetic field on disorder in semiconductor structures. Main attention is paid to quantum well (QW) structures in which only QWs or both QW and barriers are doped (the doping level is assumed to be close to the value corresponding to the metal–insulator transition). The above factors include (i) ionization of localized states to the region of delocalized states above the mobility edge, which is presumed to exist in the impurity band; (ii) the coexistence in the upper and lower Hubbard bands (upon doping of QWs as well as barriers); in this case, in particular, the external magnetic field determines the relative contribution of the upper Hubbard band due to spin correlations at doubly filled sites; and (iii) the contribution of the exchange interaction at pairs of sites, in which the external magnetic field can affect the relation between ferromagnetic and antiferromagnetic configurations. All these factors, which affect the structure and degree of disorder, lead to specific features in the temperature dependence of resistivity and determine specific features of the magnetoresistance. Our conclusions are compared with available experimental data.

  12. The Electromagnetic Field of Elementary Time-Dependent Toroidal Sources

    International Nuclear Information System (INIS)

    Afanas'ev, G.N.; Stepanovskij, Yu.P.

    1994-01-01

    The radiation field of toroidal-like time-dependent current configurations is investigated. Time-dependent charge-current sources are found outside which the electromagnetic strengths disappear but the potentials survive. This can be used to carry out time-dependent Aharonov-Bohm-like experiments and the information transfer. Using the Neumann-Helmholtz parametrization of the current density we present the time-dependent electromagnetic field in a form convenient for applications. 17 refs

  13. Application of Abaqus to analysis of the temperature field in elements heated by moving heat sources

    Directory of Open Access Journals (Sweden)

    W. Piekarska

    2010-10-01

    Full Text Available Numerical analysis of thermal phenomena occurring during laser beam heating is presented in this paper. Numerical models of surface andvolumetric heat sources were presented and the influence of different laser beam heat source power distribution on temperature field wasanalyzed. Temperature field was obtained by a numerical solution the transient heat transfer equation with activity of inner heat sources using finite element method. Temperature distribution analysis in welded joint was performed in the ABAQUS/Standard solver. The DFLUXsubroutine was used for implementation of the movable welding heat source model. Temperature-depended thermophysical properties for steelwere assumed in computer simulations. Temperature distribution in laser beam surface heated and butt welded plates was numericallyestimated.

  14. Reversible and irreversible temperature-induced changes in exchange-biased planar Hall effect bridge (PHEB) magnetic field sensors

    DEFF Research Database (Denmark)

    Rizzi, G.; Lundtoft, N.C.; Østerberg, F.W.

    2012-01-01

    We investigate the changes of planar Hall effect bridge magnetic field sensors upon exposure to temperatures between 25° C and 90°C. From analyses of the sensor response vs. magnetic fields we extract the exchange bias field Hex, the uniaxial anisotropy field HK and the anisotropic...... magnetoresistance (AMR) of the exchange biased thin film at a given temperature and by comparing measurements carried out at elevated temperatures T with measurements carried out at 25° C after exposure to T, we can separate the reversible from the irreversible changes of the sensor. The results are not only...... relevant for sensor applications but also demonstrate the method as a useful tool for characterizing exchange-biased thin films....

  15. Adimensional temperature field of air around a horizontal heating cylinder empirical equations, for free convection

    Energy Technology Data Exchange (ETDEWEB)

    Diez, R.; Dolz, M. Belda, R.; Herraez, J.V.

    1988-01-01

    The analytical process follow to obtain the adimensional temperature field of air around a horizontal isothermal cylinder of 1 cm diameter and 10.5 length is presented. The equations defining the adimensional temperature variation with the adimensional distance are given for each semiplane that the total field was divide. Comparison of experimental results with obtained of that equations are also carried out and the validity in each case discussed.

  16. Mapping air temperature using time series analysis of LST : The SINTESI approach

    NARCIS (Netherlands)

    Alfieri, S.M.; De Lorenzi, F.; Menenti, M.

    2013-01-01

    This paper presents a new procedure to map time series of air temperature (Ta) at fine spatial resolution using time series analysis of satellite-derived land surface temperature (LST) observations. The method assumes that air temperature is known at a single (reference) location such as in gridded

  17. Electrical resistivity, Hall coefficient and electronic mobility in indium antimonide at different magnetic fields and temperatures

    International Nuclear Information System (INIS)

    Jee, Madan; Prasad, Vijay; Singh, Amita

    1995-01-01

    The electrical resistivity, Hall coefficient and electronic mobility of n-type and p-type crystals of indium antimonide have been measured from 25 degC-100 degC temperature range. It has been found by this measurement that indium antimonide is a compound semiconductor with a high mobility 10 6 cm 2 /V.S. The Hall coefficient R H was measured as a function of magnetic field strength H for a number of samples of both p and n-type using fields up to 12 kilo gauss. The Hall coefficient R h decreases with increasing magnetic fields as well as with increase in temperature of the sample. The electric field is more effective on samples with high mobilities and consequently the deviations from linearity are manifested at comparatively low values of the electric field. The measurement of R H in weak and strong magnetic fields makes it possible to determine the separate concentration of heavy and light holes. Measured values of Hall coefficient and electrical resistivity show that there is a little variation of ρ and R h with temperatures as well as with magnetic fields. (author). 12 refs., 5 tabs

  18. Design, fabrication and characterisation of a microfluidic time-temperature indicator

    Science.gov (United States)

    Schmitt, P.; Wedrich, K.; Müller, L.; Mehner, H.; Hoffmann, M.

    2017-11-01

    This paper describes a concept for a passive microfluidic time-temperature indicator (TTI) intended for intelligent food packaging. A microfluidic system is presented that makes use of the temperature-dependent flow of suitable food ingredients in a microcapillary. Based on the creeping distance inside the capillary, the time-temperature integral can be determined. A demonstrator of the microsystem has been designed, fabricated and characterised using liquid sugar alcohols as indicator fluids. To enable a first wireless read-out of the passive TTI, the sensor was read out using a commercial RFID equipment, and capacitive measurements have been carried out.

  19. Gauge fields in algebraically special space-times

    International Nuclear Information System (INIS)

    Torres del Castillo, G.F.

    1985-01-01

    It is shown that in an algebraically special space-time which admits a congruence of null strings, a source-free gauge field aligned with the congruence is determined by a matrix potential which has to satisfy a second-order differential equation with quadratic nonlinearities. The Einstein--Yang--Mills equations are then reduced to a scalar and two matrix equations. In the case of self-dual gauge fields in a self-dual space-time, the existence of an infinite set of conservation laws, of an associated linear system, and of infinitesimal Baecklund transformations is demonstrated. All the results apply for an arbitrary gauge group

  20. Linear electric field time-of-flight ion mass spectrometer

    Science.gov (United States)

    Funsten, Herbert O [Los Alamos, NM; Feldman, William C [Los Alamos, NM

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  1. Supersymmetry at finite temperature

    International Nuclear Information System (INIS)

    Clark, T.E.; Love, S.T.

    1983-01-01

    Finite-temperature supersymmetry (SUSY) is characterized by unbroken Ward identities for SUSY variations of ensemble averages of Klein-operator inserted imaginary time-ordered products of fields. Path-integral representations of these products are defined and the Feynman rules in superspace are given. The finite-temperature no-renormalization theorem is derived. Spontaneously broken SUSY at zero temperature is shown not to be restored at high temperature. (orig.)

  2. Analytical approach for evaluating temperature field of thermal modified asphalt pavement and urban heat island effect

    International Nuclear Information System (INIS)

    Chen, Jiaqi; Wang, Hao; Zhu, Hongzhou

    2017-01-01

    Highlights: • Derive an analytical approach to predict temperature fields of multi-layered asphalt pavement based on Green’s function. • Analyze the effects of thermal modifications on heat output from pavement to near-surface environment. • Evaluate pavement solutions for reducing urban heat island (UHI) effect. - Abstract: This paper aims to present an analytical approach to predict temperature fields in asphalt pavement and evaluate the effects of thermal modification on near-surface environment for urban heat island (UHI) effect. The analytical solution of temperature fields in the multi-layered pavement structure was derived with the Green’s function method, using climatic factors including solar radiation, wind velocity, and air temperature as input parameters. The temperature solutions were validated with an outdoor field experiment. By using the proposed analytical solution, temperature fields in the pavement with different pavement surface albedo, thermal conductivity, and layer combinations were analyzed. Heat output from pavement surface to the near-surface environment was studied as an indicator of pavement contribution to UHI effect. The analysis results show that increasing pavement surface albedo could decrease pavement temperature at various depths, and increase heat output intensity in the daytime but decrease heat output intensity in the nighttime. Using reflective pavement to mitigate UHI may be effective for an open street but become ineffective for the street surrounded by high buildings. On the other hand, high-conductivity pavement could alleviate the UHI effect in the daytime for both the open street and the street surrounded by high buildings. Among different combinations of thermal-modified asphalt mixtures, the layer combination of high-conductivity surface course and base course could reduce the maximum heat output intensity and alleviate the UHI effect most.

  3. Global analysis of the temperature and flow fields in samples heated in multizone resistance furnaces

    Science.gov (United States)

    Pérez-Grande, I.; Rivas, D.; de Pablo, V.

    The temperature field in samples heated in multizone resistance furnaces will be analyzed, using a global model where the temperature fields in the sample, the furnace and the insulation are coupled; the input thermal data is the electric power supplied to the heaters. The radiation heat exchange between the sample and the furnace is formulated analytically, taking into account specular reflections at the sample; for the solid sample the reflectance is both diffuse and specular, and for the melt it is mostly specular. This behavior is modeled through the exchange view factors, which depend on whether the sample is solid or liquid, and, therefore, they are not known a priori. The effect of this specular behavior in the temperature field will be analyzed, by comparing with the case of diffuse samples. A parameter of great importance is the thermal conductivity of the insulation material; it will be shown that the temperature field depends strongly on it. A careful characterization of the insulation is therefore necessary, here it will be done with the aid of experimental results, which will also serve to validate the model. The heating process in the floating-zone technique in microgravity conditions will be simulated; parameters like the Marangoni number or the temperature gradient at the melt-crystal interface will be estimated. Application to the case of compound samples (graphite-silicon-graphite) will be made; the temperature distribution in the silicon part will be studied, especially the temperature difference between the two graphite rods that hold the silicon, since it drives the thermocapillary flow in the melt. This flow will be studied, after coupling the previous model with the convective effects. The possibility of suppresing this flow by the controlled vibration of the graphite rods will be also analyzed. Numerical results show that the thermocapillary flow can indeed be counterbalanced quite effectively.

  4. Comparison of velocity and temperature fields for two types of spacers in an annular channel

    Directory of Open Access Journals (Sweden)

    Lávička David

    2012-04-01

    Full Text Available The paper deals with measurement of flow field using a modern laser method (PIV in an annular channel of very small dimension - a fuel cell model. The velocity field was measured in several positions and plains around the spacer. The measurement was extended also to record temperatures by thermocouples soldered into stainless-steel tube wall. The measurement was focused on cooling process of the preheated fuel cell tube model, where the tube was very slowly flooded with water. Main result of the paper is comparison of two spacer's designs with respect to measured velocity and temperature fields.

  5. Hawking temperature and scalar field fluctuations in the de-Sitter space

    International Nuclear Information System (INIS)

    Rozhanskij, L.V.

    1988-01-01

    It is shown that diffusion equation for scalar field fluctuations in the de-Sitter space corresponds to Hawking temperature. The relationship between stationary solution of the equation and Hartle-Hawking instanton at random space dimensionality and any type of gravitational effect has been established

  6. Spatial patterns in timing of the diurnal temperature cycle

    Directory of Open Access Journals (Sweden)

    T. R. H. Holmes

    2013-10-01

    Full Text Available This paper investigates the structural difference in timing of the diurnal temperature cycle (DTC over land resulting from choice of measuring device or model framework. It is shown that the timing can be reliably estimated from temporally sparse observations acquired from a constellation of low Earth-orbiting satellites given record lengths of at least three months. Based on a year of data, the spatial patterns of mean DTC timing are compared between temperature estimates from microwave Ka-band, geostationary thermal infrared (TIR, and numerical weather prediction model output from the Global Modeling and Assimilation Office (GMAO. It is found that the spatial patterns can be explained by vegetation effects, sensing depth differences and more speculatively the orientation of orographic relief features. In absolute terms, the GMAO model puts the peak of the DTC on average at 12:50 local solar time, 23 min before TIR with a peak temperature at 13:13 (both averaged over Africa and Europe. Since TIR is the shallowest observation of the land surface, this small difference represents a structural error that possibly affects the model's ability to assimilate observations that are closely tied to the DTC. The equivalent average timing for Ka-band is 13:44, which is influenced by the effect of increased sensing depth in desert areas. For non-desert areas, the Ka-band observations lag the TIR observations by only 15 min, which is in agreement with their respective theoretical sensing depth. The results of this comparison provide insights into the structural differences between temperature measurements and models, and can be used as a first step to account for these differences in a coherent way.

  7. The application of rational approximation in the calculation of a temperature field with a non-linear surface heat-transfer coefficient during quenching for 42CrMo steel cylinder

    Science.gov (United States)

    Cheng, Heming; Huang, Xieqing; Fan, Jiang; Wang, Honggang

    1999-10-01

    The calculation of a temperature field has a great influence upon the analysis of thermal stresses and stains during quenching. In this paper, a 42CrMo steel cylinder was used an example for investigation. From the TTT diagram of the 42CrMo steel, the CCT diagram was simulated by mathematical transformation, and the volume fraction of phase constituents was calculated. The thermal physical properties were treated as functions of temperature and the volume fraction of phase constituents. The rational approximation was applied to the finite element method. The temperature field with phase transformation and non-linear surface heat-transfer coefficients was calculated using this technique, which can effectively avoid oscillationin the numerical solution for a small time step. The experimental results of the temperature field calculation coincide with the numerical solutions.

  8. Temperature dependence of relaxation times in proton components of fatty acids

    International Nuclear Information System (INIS)

    Kuroda, Kagayaki; Iwabuchi, Taku; Saito, Kensuke; Obara, Makoto; Honda, Masatoshi; Imai, Yutaka

    2011-01-01

    We examined the temperature dependence of relaxation times in proton components of fatty acids in various samples in vitro at 11 tesla as a standard calibration data for quantitative temperature imaging of fat. The spin-lattice relaxation time, T 1 , of both the methylene (CH 2 ) chain and terminal methyl (CH 3 ) was linearly related to temperature (r>0.98, P 2 signal for calibration and observed the signal with 18% of CH 3 to estimate temperature. These findings suggested that separating the fatty acid components would significantly improve accuracy in quantitative thermometry for fat. Use of the T 1 of CH 2 seems promising in terms of reliability and reproducibility in measuring temperature of fat. (author)

  9. Electromagnetic-field equations in the six-dimensional space-time R6

    International Nuclear Information System (INIS)

    Teli, M.T.; Palaskar, D.

    1984-01-01

    Maxwell's equations (without monopoles) for electromagnetic fields are obtained in six-dimensional space-time. The equations possess structural symmetry in space and time, field and source densities. Space-time-symmetric conservation laws and field solutions are obtained. The results are successfully correlated with their four-dimensional space-time counterparts

  10. Model for the orientation, magnetic field, and temperature dependence of the specific heat of CeCu6

    International Nuclear Information System (INIS)

    Edelstein, A.S.

    1988-01-01

    The results of a model calculation of the orientation, magnetic field, and temperature dependence of the specific heat C of CeCu 6 are found to be in good agreement with the single-crystal data of Amato et al. The model incorporates both the Kondo and crystal-field effects. It is suggested that the low-temperature Wilson's ratio CTchi, where chi is the susceptibility, may not change in an applied field H and that both CT and chi at low temperatures as a function of H may be proportional to the many-body density of states at the energy μH

  11. Finite difference modelling of the temperature rise in non-linear medical ultrasound fields.

    Science.gov (United States)

    Divall, S A; Humphrey, V F

    2000-03-01

    Non-linear propagation of ultrasound can lead to increased heat generation in medical diagnostic imaging due to the preferential absorption of harmonics of the original frequency. A numerical model has been developed and tested that is capable of predicting the temperature rise due to a high amplitude ultrasound field. The acoustic field is modelled using a numerical solution to the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, known as the Bergen Code, which is implemented in cylindrical symmetric form. A finite difference representation of the thermal equations is used to calculate the resulting temperature rises. The model allows for the inclusion of a number of layers of tissue with different acoustic and thermal properties and accounts for the effects of non-linear propagation, direct heating by the transducer, thermal diffusion and perfusion in different tissues. The effect of temperature-dependent skin perfusion and variation in background temperature between the skin and deeper layers of the body are included. The model has been tested against analytic solutions for simple configurations and then used to estimate temperature rises in realistic obstetric situations. A pulsed 3 MHz transducer operating with an average acoustic power of 200 mW leads to a maximum steady state temperature rise inside the foetus of 1.25 degrees C compared with a 0.6 degree C rise for the same transmitted power under linear propagation conditions. The largest temperature rise occurs at the skin surface, with the temperature rise at the foetus limited to less than 2 degrees C for the range of conditions considered.

  12. Reliability of Degree-Day Models to Predict the Development Time of Plutella xylostella (L.) under Field Conditions.

    Science.gov (United States)

    Marchioro, C A; Krechemer, F S; de Moraes, C P; Foerster, L A

    2015-12-01

    The diamondback moth, Plutella xylostella (L.), is a cosmopolitan pest of brassicaceous crops occurring in regions with highly distinct climate conditions. Several studies have investigated the relationship between temperature and P. xylostella development rate, providing degree-day models for populations from different geographical regions. However, there are no data available to date to demonstrate the suitability of such models to make reliable projections on the development time for this species in field conditions. In the present study, 19 models available in the literature were tested regarding their ability to accurately predict the development time of two cohorts of P. xylostella under field conditions. Only 11 out of the 19 models tested accurately predicted the development time for the first cohort of P. xylostella, but only seven for the second cohort. Five models correctly predicted the development time for both cohorts evaluated. Our data demonstrate that the accuracy of the models available for P. xylostella varies widely and therefore should be used with caution for pest management purposes.

  13. Index summation in real time statistical field theory

    International Nuclear Information System (INIS)

    Carrington, M.E.; Fugleberg, T.; Irvine, D.S.; Pickering, D.

    2007-01-01

    We have written a Mathematica program that calculates the integrand corresponding to any amplitude in the closed-time-path formulation of real time statistical field theory. The program is designed so that it can be used by someone with no previous experience with Mathematica. It performs the contractions over the tensor indices that appear in real time statistical field theory and gives the result in the 1-2, Keldysh or RA basis. The program treats all fields as scalars, but the result can be applied to theories with dirac and lorentz structure by making simple adjustments. As an example, we have used the program to calculate the ward identity for the QED 3-point function, the QED 4-point function for two photons and two fermions, and the QED 5-point function for three photons and two fermions. In real time statistical field theory, there are seven 3-point functions, 15 4-point functions and 31 5-point functions. We produce a table that gives the results for all of these functions. In addition, we give a simple general expression for the KMS conditions between n-point green functions and vertex functions, in both the Keldysh and RA bases. (orig.)

  14. Two-time physics with gravitational and gauge field backgrounds

    International Nuclear Information System (INIS)

    Bars, Itzhak

    2000-01-01

    It is shown that all possible gravitational, gauge and other interactions experienced by particles in ordinary d dimensions (one time) can be described in the language of two-time physics in a spacetime with d+2 dimensions. This is obtained by generalizing the world line formulation of two-time physics by including background fields. A given two-time model, with a fixed set of background fields, can be gauged fixed from d+2 dimensions to (d-1)+1 dimensions to produce diverse one-time dynamical models, all of which are dually related to each other under the underlying gauge symmetry of the unified two-time theory. To satisfy the gauge symmetry of the two-time theory the background fields must obey certain coupled differential equations that are generally covariant and gauge invariant in the target (d+2)-dimensional spacetime. The gravitational background obeys a closed homothety condition while the gauge field obeys a differential equation that generalizes a similar equation derived by Dirac in 1936. Explicit solutions to these coupled equations show that the usual gravitational, gauge, and other interactions in d dimensions may be viewed as embedded in the higher (d+2)-dimensional space, thus displaying higher spacetime symmetries that otherwise remain hidden

  15. Respiratory alkalosis and primary hypocapnia in Labrador Retrievers participating in field trials in high-ambient-temperature conditions.

    Science.gov (United States)

    Steiss, Janet E; Wright, James C

    2008-10-01

    To determine whether Labrador Retrievers participating in field trials develop respiratory alkalosis and hypocapnia primarily in conditions of high ambient temperatures. 16 Labrador Retrievers. At each of 5 field trials, 5 to 10 dogs were monitored during a test (retrieval of birds over a variable distance on land [1,076 to 2,200 m]; 36 assessments); ambient temperatures ranged from 2.2 degrees to 29.4 degrees C. For each dog, rectal temperature was measured and a venous blood sample was collected in a heparinized syringe within 5 minutes of test completion. Blood samples were analyzed on site for Hct; pH; sodium, potassium, ionized calcium, glucose, lactate, bicarbonate, and total CO2 concentrations; and values of PvO2 and PvCO2. Scatterplots of each variable versus ambient temperature were reviewed. Regression analysis was used to evaluate the effect of ambient temperature ( 21 degrees C) on each variable. Compared with findings at ambient temperatures 21 degrees C; rectal temperature did not differ. Two dogs developed signs of heat stress in 1 test at an ambient temperature of 29 degrees C; their rectal temperatures were higher and PvCO2 values were lower than findings in other dogs. When running distances frequently encountered at field trials, healthy Labrador Retrievers developed hyperthermia regardless of ambient temperature. Dogs developed respiratory alkalosis and hypocapnia at ambient temperatures > 21 degrees C.

  16. Ba doped Fe3O4 nanocrystals: Magnetic field and temperature tuning dielectric and electrical transport

    Science.gov (United States)

    Dutta, Papia; Mandal, S. K.; Nath, A.

    2018-05-01

    Nanocrystalline BaFe2O4 has been prepared through low temperature pyrophoric reaction method. The structural, dielectric and electrical transport properties of BaFe2O4 are investigated in detail. AC electrical properties have been studied over the wide range of frequencies with applied dc magnetic fields and temperatures. The value of impedance is found to increase with increase in magnetic field attributing the magnetostriction property of the sample. The observed value of magneto-impedance and magnetodielectric is found to ∼32% and ∼33% at room temperature. Nyquist plots have been fitted using resistance-capacitor circuits at different magnetic fields and temperatures showing the dominant role of grain and grain boundaries of the sample. Metal-semiconductor transition ∼403 K has been discussed in terms of delocalized and localized charge carrier.We have estimated activation energy using Arrhenius relation indicating temperature dependent electrical relaxation process in the system. Ac conductivity follow a Jonscher’s single power law indicating the large and small polaronic hopping conduction mechanism in the system.

  17. Using microencapsulated fluorescent dyes for simultaneous measurement of temperature and velocity fields

    International Nuclear Information System (INIS)

    Vogt, J; Stephan, P

    2012-01-01

    In this paper, a novel particle image thermometry method based on microcapsules filled with a fluorescent dye solution is described. The microcapsules consist of a liquid core of hexadecane in which the dye is dissolved and a solid polymer shell. The combination of a temperature-sensitive dye (Pyrromethene 597-8C9) and a dye showing a relatively smaller temperature sensitivity (Pyrromethene 567) in hexadecane makes application of the ratiometric LIF possible. This is necessary to compensate for fluctuations of the illuminating pulsed Nd:YAG laser (532 nm) as well as the different particle sizes. The applicability of this measurement technique is demonstrated for a cubic test cell (10 × 10 × 10 mm 3 ) with flow and temperature fields driven by natural convection and a capillary tube (1.16 mm inner diameter) inducing a temperature gradient and a Hagen–Poiseuille velocity profile. For the first case, a light sheet illumination is used making two optical accesses necessary. In the second case an inverted microscope is used, so only one optical access is needed and a volume illumination is applied. The technique facilitates high-resolution measurements (first case: 79 × 79 μm 2 ; second case: 8 × 8 μm 2 ). Although the measurement uncertainty is high compared to LIF measurements with dissolved dyes, temperature fields can be reproduced very well, and the experimental results are in good agreement with numerical computations. (paper)

  18. A model for quantification of temperature profiles via germination times

    DEFF Research Database (Denmark)

    Pipper, Christian Bressen; Adolf, Verena Isabelle; Jacobsen, Sven-Erik

    2013-01-01

    Current methodology to quantify temperature characteristics in germination of seeds is predominantly based on analysis of the time to reach a given germination fraction, that is, the quantiles in the distribution of the germination time of a seed. In practice interpolation between observed...... time and a specific type of accelerated failure time models is provided. As a consequence the observed number of germinated seeds at given monitoring times may be analysed directly by a grouped time-to-event model from which characteristics of the temperature profile may be identified and estimated...... germination fractions at given monitoring times is used to obtain the time to reach a given germination fraction. As a consequence the obtained value will be highly dependent on the actual monitoring scheme used in the experiment. In this paper a link between currently used quantile models for the germination...

  19. Influence of the boundary conditions on a temperature field in the turbulent flow near the heated wall

    International Nuclear Information System (INIS)

    Bergant, R.; Tiselj, I.

    2002-01-01

    Direct Numerical Simulation (DNS) of the fully developed velocity and temperature fields in the two-dimensional turbulent channel flow was performed for friction Reynolds number Reτ = 150 and Prandtl number Pr 0.71. Two thermal boundary conditions (BCs), isothermal and isoflux, were carried out. The main difference between two ideal types of boundary conditions is in temperature fluctuations, which retain a nonzero value on the wall for isoflux BC, and zero for isothermal BC. Very interesting effect is seen in streamwise temperature auto-correlation functions. While the auto-correlation function for isothermal BC decreases close to zero in the observed computational domain, the decrease of the auto-correlation function for the isoflux BC is slower and remains well above zero. Therefore, another DNS at two times longer computational domain was performed, but results did not show any differences larger than the statistical uncertainty.(author)

  20. On a Correlation between the Ionospheric Electric Field and the Time Derivative of the Magnetic Field

    Directory of Open Access Journals (Sweden)

    R. R. Ilma

    2012-01-01

    Full Text Available A correlation of the ionospheric electric field and the time derivative of the magnetic field was noticed over thirty years ago and has yet to be explained. Here we report on another set of examples during the superstorm of November 2004. The electric field in the equatorial ionosphere, measured with the Jicamarca incoherent scatter radar, exhibited a 3 mV/m electric field pulse that was not seen in the interplanetary medium. It was, however, accompanied by a correlation with the time derivative of the magnetic field measured at two points in Peru. Our inclination was to assume that the field was inductive. However, the time scale of the pulse was too short for the magnetic field to penetrate the crust of the Earth. This means that the area threaded by ∂B/∂t was too small to create the observed electric field by induction. We suggest that the effect was caused by a modulation of the ring current location relative to the Earth due to the electric field. This electric field is required, as the magnetic field lines are considered frozen into the plasma in the magnetosphere. The closer location of the ring current to the Earth in turn increased the magnetic field at the surface.

  1. Temperature and cooling field dependent exchange coupling in [Cr/Gd]{sub 5} multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Z.W.; Chen, H.J.; Jiang, W.D.; Wang, J.F.; Yu, S.J. [Department of Physics, China Jiliang University, Hangzhou (China); Hou, Y.L.; Lu, B.; Ye, Q.L. [Department of Physics, Hangzhou Normal University, Hangzhou (China)

    2016-09-15

    Exchange coupling has been investigated in the [Cr/Gd]{sub 5} multilayers deposited at 25, 200, and 400 C, where the Neel temperature (T{sub N}) of antiferromagnetic Cr is slightly higher than the Curie temperature (T{sub C}) of ferromagnetic Gd. It was found that the exchange coupling existed not only at T{sub C} < T < T{sub N}, but also above the temperature (T{sub N}) of antiferromagnetic orderings with incommensurate spin-density wave structures transiting to paramagnetic state. These results can be discussed in terms of the crucial role played by the antiferromagnetic spins of Cr with commensurate spin-density wave structures in the vicinity of the Cr/Gd interfaces. Moreover, the exchange coupling of the multilayers grown at different temperatures exhibited different dependencies on the measuring temperature and the cooling field, respectively. Positive exchange bias was observed in the multilayers grown at 200 and 400 C. The interfacial roughness, grain size, and the antiferromagnetic orderings of Cr may be responsible for the anomalous exchange coupling of the multilayers. In addition, the competition between the exchange coupling at Cr/Gd interfaces and the external field-Cr surface magnetic coupling can explain the appearance of negative or positive exchange bias. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Larmor labeling by time-gradient magnetic fields

    International Nuclear Information System (INIS)

    Ioffe, Alexander; Bodnarchuk, Victor; Bussmann, Klaus; Mueller, Robert

    2007-01-01

    The Larmor labeling of neutrons, due to the Larmor precession of neutron spin in a magnetic field, opens the unique possibility for the development of neutron spin-echo (NSE) based on neutron scattering techniques, featuring an extremely high energy (momentum) resolution. Here, we present the experimental proof of a new method of the Larmor labeling using time-gradient magnetic fields

  3. SOI N-Channel Field Effect Transistors, CHT-NMOS80, for Extreme Temperatures

    Science.gov (United States)

    Patterson, Richard L.; Hammoud, Almad

    2009-01-01

    Extreme temperatures, both hot and cold, are anticipated in many of NASA space exploration missions as well as in terrestrial applications. One can seldom find electronics that are capable of operation under both regimes. Even for operation under one (hot or cold) temperature extreme, some thermal controls need to be introduced to provide appropriate ambient temperatures so that spacecraft on-board or field on-site electronic systems work properly. The inclusion of these controls, which comprise of heating elements and radiators along with their associated structures, adds to the complexity in the design of the system, increases cost and weight, and affects overall reliability. Thus, it would be highly desirable and very beneficial to eliminate these thermal measures in order to simplify system's design, improve efficiency, reduce development and launch costs, and improve reliability. These requirements can only be met through the development of electronic parts that are designed for proper and efficient operation under extreme temperature conditions. Silicon-on-insulator (SOI) based devices are finding more use in harsh environments due to the benefits that their inherent design offers in terms of reduced leakage currents, less power consumption, faster switching speeds, good radiation tolerance, and extreme temperature operability. Little is known, however, about their performance at cryogenic temperatures and under wide thermal swings. The objective of this work was to evaluate the performance of a new commercial-off-the-shelf (COTS) SOI parts over an extended temperature range and to determine the effects of thermal cycling on their performance. The results will establish a baseline on the suitability of such devices for use in space exploration missions under extreme temperatures, and will aid mission planners and circuit designers in the proper selection of electronic parts and circuits. The electronic part investigated in this work comprised of a CHT-NMOS80

  4. Photon propagators at finite temperature

    International Nuclear Information System (INIS)

    Yee, J.H.

    1982-07-01

    We have used the real time formalism to compute the one-loop finite temperature corrections to the photon self energies in spinor and scalar QED. We show that, for a real photon, only the transverse components develop the temperature-dependent masses, while, for an external static electromagnetic field applied to the finite temperature system, only the static electric field is screened by thermal fluctuations. After showing how to compute systematically the imaginary parts of the finite temperature Green functions, we have attempted to give a microscopic interpretation of the imaginary parts of the self energies. (author)

  5. Study on explosion field temperature testing system based on wireless data transmission

    International Nuclear Information System (INIS)

    Wang Xinling; Sun Yunqiang

    2011-01-01

    The accurate measurement of the transient temperature value produced by explosive blasting may provide the basis for distinguishing the types of the explosive, the power contrast of the explosive and the performance evaluation in the weapons research process. To solve the problems of the Universal Test System emplaced inconveniently and the stored testing system need to be recycled, it has designed the explosion field application in wireless sensor system of temperature measurement. The system based on PIC16F877A micro controller, CPLD complex programmable logic devices and nRF24L01 wireless transmission chip sensor. The system adopts the Tungsten-Rhenium Thermocouple as the temperature sensor, DS600 temperature sensor for cold temperature compensation. This system has arrangement convenient, high-speed data acquisition, trigger and working parameters of adjustable characteristics, has been successfully applied in a test system. (authors)

  6. Extension of Nelson's stochastic quantization to finite temperature using thermo field dynamics

    International Nuclear Information System (INIS)

    Kobayashi, K.; Yamanaka, Y.

    2011-01-01

    We present an extension of Nelson's stochastic quantum mechanics to finite temperature. Utilizing the formulation of Thermo Field Dynamics (TFD), we can show that Ito's stochastic equations for tilde and non-tilde particle positions reproduce the TFD-type Schroedinger equation which is equivalent to the Liouville-von Neumann equation. In our formalism, the drift terms in the Ito's stochastic equation have the temperature dependence and the thermal fluctuation is induced through the correlation of the non-tilde and tilde particles. We show that our formalism satisfies the position-momentum uncertainty relation at finite temperature. -- Highlights: → Utilizing TFD, we extend Nelson's stochastic method to finite temperature. → We introduce stochastic equations for tilde and non-tilde particles. → Our stochastic equations can reproduce the TFD-type Schroedinger equation. → Our formalism satisfies the uncertainly relation at finite temperature.

  7. Estimating the Ocean Flow Field from Combined Sea Surface Temperature and Sea Surface Height Data

    Science.gov (United States)

    Stammer, Detlef; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    This project was part of a previous grant at MIT that was moved over to the Scripps Institution of Oceanography (SIO) together with the principal investigator. The final report provided here is concerned only with the work performed at SIO since January 2000. The primary focus of this project was the study of the three-dimensional, absolute and time-evolving general circulation of the global ocean from a combined analysis of remotely sensed fields of sea surface temperature (SST) and sea surface height (SSH). The synthesis of those two fields was performed with other relevant physical data, and appropriate dynamical ocean models with emphasis on constraining ocean general circulation models by a combination of both SST and SSH data. The central goal of the project was to improve our understanding and modeling of the relationship between the SST and its variability to internal ocean dynamics, and the overlying atmosphere, and to explore the relative roles of air-sea fluxes and internal ocean dynamics in establishing anomalies in SST on annual and longer time scales. An understanding of those problems will feed into the general discussion on how SST anomalies vary with time and the extend to which they interact with the atmosphere.

  8. Near-Real-Time DMSP SSM/I-SSMIS Daily Polar Gridded Brightness Temperatures

    Data.gov (United States)

    National Aeronautics and Space Administration — The Near-Real-Time DMSP SSM/I-SSMIS Daily Polar Gridded Brightness Temperature product provides near-real-time brightness temperatures for both the Northern and...

  9. A p-version embedded model for simulation of concrete temperature fields with cooling pipes

    Directory of Open Access Journals (Sweden)

    Sheng Qiang

    2015-07-01

    Full Text Available Pipe cooling is an effective method of mass concrete temperature control, but its accurate and convenient numerical simulation is still a cumbersome problem. An improved embedded model, considering the water temperature variation along the pipe, was proposed for simulating the temperature field of early-age concrete structures containing cooling pipes. The improved model was verified with an engineering example. Then, the p-version self-adaption algorithm for the improved embedded model was deduced, and the initial values and boundary conditions were examined. Comparison of some numerical samples shows that the proposed model can provide satisfying precision and a higher efficiency. The analysis efficiency can be doubled at the same precision, even for a large-scale element. The p-version algorithm can fit grids of different sizes for the temperature field simulation. The convenience of the proposed algorithm lies in the possibility of locating more pipe segments in one element without the need of so regular a shape as in the explicit model.

  10. Trapped field recovery of bulk superconductor magnets by static field magnetization

    Science.gov (United States)

    Deng, Z.; Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M.

    2011-11-01

    Thanks to the trapped field of bulk high-temperature superconductors, they can be used as field-pole magnets in the high temperature superconducting (HTS) rotating machines. For example, an output power of 10 kW at 720 rpm was realized by an average trapped field of 0.56 T of eight melt-textured GdBa2Cu3Oy (Gd-123) bulks at liquid nitrogen temperature in TUMSAT in 2004. Similarly to the HTS machines involving 1G or 2G wires, the trapped field of the bulk is possibly sensitive and even can be attenuated by the AC component field during the operation. Hence, it is necessary to recover the trapped field once being decreased to some extent in the practical application. From this point, we have investigated the trapped field recovery of HTS bulk magnets by static field magnetization in the paper. A series of different initial trapped fields after zero-field-cooling or field-cooling magnetization are used to simulate the attenuated trapped field. By comparing the trapped field peak and its distribution, the trapped field was found to be able to recover by the static field magnetization method with a stronger excitation field and the initial trapped flux inside the bulk also has an influence on the recovery process. The optimum recovery field was found to be about 2.5 times the saturated trapped field of the bulk at liquid nitrogen temperature, by which the bulk can regain the former best trapped field performance.

  11. Magnetic-field-dependent microwave absorption in HgSe in weak magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Veinger, A. I., E-mail: Anatoly.Veinger@mail.ioffe.ru; Tisnek, T. V.; Kochman, I. V. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Okulov, V. I. [Russian Academy of Sciences, Ural Branch, Mikheev Institute of Metal Physics (Russian Federation)

    2017-02-15

    The low-temperature magnetoresistive effect in the semiconductor HgSe:Fe in weak magnetic fields at microwave frequencies is examined. The negative and positive components of magnetoabsorption based on the magnetoresistive effect in the degenerate conduction band are analyzed. The special features of experiments carried out in the investigated frequency range are noted. The momentum and electron-energy relaxation times are determined from the experimental field and temperature dependences.

  12. Real-Time Earthquake Monitoring with Spatio-Temporal Fields

    Science.gov (United States)

    Whittier, J. C.; Nittel, S.; Subasinghe, I.

    2017-10-01

    With live streaming sensors and sensor networks, increasingly large numbers of individual sensors are deployed in physical space. Sensor data streams are a fundamentally novel mechanism to deliver observations to information systems. They enable us to represent spatio-temporal continuous phenomena such as radiation accidents, toxic plumes, or earthquakes almost as instantaneously as they happen in the real world. Sensor data streams discretely sample an earthquake, while the earthquake is continuous over space and time. Programmers attempting to integrate many streams to analyze earthquake activity and scope need to write code to integrate potentially very large sets of asynchronously sampled, concurrent streams in tedious application code. In previous work, we proposed the field stream data model (Liang et al., 2016) for data stream engines. Abstracting the stream of an individual sensor as a temporal field, the field represents the Earth's movement at the sensor position as continuous. This simplifies analysis across many sensors significantly. In this paper, we undertake a feasibility study of using the field stream model and the open source Data Stream Engine (DSE) Apache Spark(Apache Spark, 2017) to implement a real-time earthquake event detection with a subset of the 250 GPS sensor data streams of the Southern California Integrated GPS Network (SCIGN). The field-based real-time stream queries compute maximum displacement values over the latest query window of each stream, and related spatially neighboring streams to identify earthquake events and their extent. Further, we correlated the detected events with an USGS earthquake event feed. The query results are visualized in real-time.

  13. How does the predicted geomagnetic main field variation alter the thermosphere-ionosphere storm-time response?

    Science.gov (United States)

    Maute, A. I.; Lu, G.; Richmond, A. D.

    2017-12-01

    Earth's magnetic main field plays an important role in the thermosphere-ionosphere (TI) system, as well as its coupling to Earth's magnetosphere. The ionosphere consists of a weakly ionized plasma strongly influenced by the main field and embedded in the thermosphere. Therefore, ion-neutral coupling and ionospheric electrodynamics can influence the plasma distribution and neutral dynamics. There are strong longitude variations of the TI storm response. At high latitude magnetosphere-ionosphere coupling is organized by the geomagnetic main field, leading in general to stronger northern middle latitude storm time response in the American sector due to the geomagnetic dipole location. In addition, the weak geomagnetic main field in the American sector leads to larger local ExB drift and can alter the plasma densities. During geomagnetic storms the intense energy input into the high latitude region is redistributed globally, leading to thermospheric heating, wind circulation changes and alterations of the ionospheric electrodynamics. The storm time changes are measurable in the plasma density, ion drift, temperature, neutral composition, and other parameters. All these changes depend, to some degree, on the geomagnetic main field which changes on decadal time scales. In this study, we employ a forecast model of the geomagnetic main field based on data assimilation and geodynamo modeling [Aubert et al., 2015]. The main field model predicts that in 50 years the South Atlantic Anomaly is further weakened by 2 mT and drifts westward by approximately 10o. The dipole axis moves northward and westward by 2o and 6o, respectively. Simulating the March 2015 geomagnetic storm with the Thermosphere-Ionosphere Electrodynamics General Circulation Model (TIE-GCM) driven by the Assimilative Mapping of Ionospheric Electrodynamics (AMIE), we evaluate the thermosphere-ionosphere response using the geomagnetic main field of 2015, 2065, and 2115. We compare the TI response for 2015 with

  14. Shape Effect on the Temperature Field during Microwave Heating Process

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2018-01-01

    Full Text Available Aiming at improving the food quality during microwave process, this article mainly focused on the numerical simulation of shape effect, which was evaluated by microwave power absorption capability and temperature distribution uniformity in a single sample heated in a domestic microwave oven. This article only took the electromagnetic field and heat conduction in solid into consideration. The Maxwell equations were used to calculate the distribution of microwave electromagnetic field distribution in the microwave cavity and samples; then the electromagnetic energy was coupled as the heat source in the heat conduction process in samples. Quantitatively, the power absorption capability and temperature distribution uniformity were, respectively, described by power absorption efficiency (PAE and the statistical variation of coefficient (COV. In addition, we defined the comprehensive evaluation coefficient (CEC to describe the usability of a specific sample. In accordance with volume or the wave numbers and penetration numbers in the radial and axial directions of samples, they can be classified into different groups. And according to the PAE, COV, and CEC value and the specific need of microwave process, an optimal sample shape and orientation could be decided.

  15. MODIS Land Surface Temperature time series reconstruction with Open Source GIS: A new quality of temperature based ecological indicators in complex terrain (Invited)

    Science.gov (United States)

    Neteler, M.

    2009-12-01

    In complex terrain like the Central European Alps, meteorological stations and ground surveys are usually sparsely and/or irregularly distributed and often favor agricultural areas. The application of traditional geospatial interpolation methods in complex terrain remains challenging and difficult to optimize. An alternative data source is remote sensing: high temporal resolution satellite data are continuously gaining interest since these data are intrinsically spatialized: continuous field of observations is obtained with this tool instead of point data. The increasing data availability suggests using these time series as surrogate to certain measures from meteorological stations, especially for temperature and related derivatives. The Terra and Aqua satellites with the Moderate Resolution Imaging Spectroradiometer (MODIS) provide four Earth coverages per day at various resolutions. We analyzed 8 years (2000 to 2008) of daily land surface temperature (LST) data from MODIS in an area located in the Southern European Alps. A method was developed to reconstruct incomplete maps (cloud coverage, invalid pixels) based on image statistics and on a model that includes additional GIS layers. The original LST map resolution of 1000m could be improved to 200m in this process which renders the resulting LST maps applicable at regional scales. We propose the use of these reconstructed daily LST time series as surrogate to meteorological observations especially in the area of epidemiological modeling where data are typically aggregated to decadal indicators. From these daily LST map series, derivable indicators include: 1) temperatures minima, means and maxima for annual/monthly/decadal periods; 2) unusual hot summers;3) the calculation of growing degree days, and 4) spring temperature increase or autumnal temperature decrease. Since more than 8 years of MODIS LST data are available today, even preliminary gradients can be extracted to assess multi-annual temperature trends

  16. Sensing Properties of a Novel Temperature Sensor Based on Field Assisted Thermal Emission

    Directory of Open Access Journals (Sweden)

    Zhigang Pan

    2017-02-01

    Full Text Available The existing temperature sensors using carbon nanotubes (CNTs are limited by low sensitivity, complicated processes, or dependence on microscopy to observe the experimental results. Here we report the fabrication and successful testing of an ionization temperature sensor featuring non-self-sustaining discharge. The sharp tips of nanotubes generate high electric fields at relatively low voltages, lowering the work function of electrons emitted by CNTs, and thereby enabling the safe operation of such sensors. Due to the temperature effect on the electron emission of CNTs, the collecting current exhibited an exponential increase with temperature rising from 20 °C to 100 °C. Additionally, a higher temperature coefficient of 0.04 K−1 was obtained at 24 V voltage applied on the extracting electrode, higher than the values of other reported CNT-based temperature sensors. The triple-electrode ionization temperature sensor is easy to fabricate and converts the temperature change directly into an electrical signal. It shows a high temperature coefficient and good application potential.

  17. Sphalerons and instantons at finite temperature

    International Nuclear Information System (INIS)

    Aoyama, H.; Goldberg, H.; Ryzak, Z.

    1988-01-01

    A variational Ansatz for a solution of the Euclidean time-dependent Weinberg-Salam field equations which connects topologically distinct vacua is presented. The Ansatz allows a unified description of real-time transitions involving baryon-number nonconservation from the zero-temperature (instanton) limit up to the electroweak transition temperature

  18. Functional relationship of room temperature and setting time of alginate impression material

    Directory of Open Access Journals (Sweden)

    Dyah Irnawati

    2009-09-01

    Full Text Available Background: Indonesia is a tropical country with temperature variation. A lot of dental clinics do not use air conditioner. The room temperature influences water temperature for mixing alginate impression materials. Purpose: The aim of this study was to investigate the functional relationship of room temperature and initial setting time of alginate impression materials. Methods: The New Kromopan® alginate (normal and fast sets were used. The initial setting time were tested at 23 (control, 24, 25, 26, 27, 28, 29, 30 and 31 degrees Celcius room temperatures (n = 5. The initial setting time was tested based on ANSI/ADA Specification no. 18 (ISO 1563. The alginate powder was mixed with distilled water (23/50 ratio, put in the metal ring mould, and the initial setting time was measured by test rod. Data were statistically analyzed by linear regression (α = 0.05. result: The initial setting times were 149.60 ± 0.55 (control and 96.40 ± 0.89 (31° C seconds for normal set, and 122.00 ± 1.00 (control and 69.60 ± 0.55 (31° C seconds for fast set. The coefficient of determination of room temperature to initial setting time of alginate were R2 = 0.74 (normal set and R2 = 0.88 (fast set. The regression equation for normal set was Y = 257.6 – 5.5 X (p < 0.01 and fast set was Y = 237.7 – 5.6 X (p < 0.01. Conclusions: The room temperature gave high contribution and became a strength predictor for initial setting time of alginates. The share contribution to the setting time was 0.74% for normal set and 0.88% for fast set alginates.

  19. Origin of temperature and field dependence of magnetic skyrmion size in ultrathin nanodots

    Science.gov (United States)

    Tomasello, R.; Guslienko, K. Y.; Ricci, M.; Giordano, A.; Barker, J.; Carpentieri, M.; Chubykalo-Fesenko, O.; Finocchio, G.

    2018-02-01

    Understanding the physical properties of magnetic skyrmions is important for fundamental research with the aim to develop new spintronic device paradigms where both logic and memory can be integrated at the same level. Here, we show a universal model based on the micromagnetic formalism that can be used to study skyrmion stability as a function of magnetic field and temperature. We consider ultrathin, circular ferromagnetic magnetic dots. Our results show that magnetic skyrmions with a small radius—compared to the dot radius—are always metastable, while large radius skyrmions form a stable ground state. The change of energy profile determines the weak (strong) size dependence of the metastable (stable) skyrmion as a function of temperature and/or field.

  20. Covariant gauges at finite temperature

    CERN Document Server

    Landshoff, Peter V

    1992-01-01

    A prescription is presented for real-time finite-temperature perturbation theory in covariant gauges, in which only the two physical degrees of freedom of the gauge-field propagator acquire thermal parts. The propagators for the unphysical degrees of freedom of the gauge field, and for the Faddeev-Popov ghost field, are independent of temperature. This prescription is applied to the calculation of the one-loop gluon self-energy and the two-loop interaction pressure, and is found to be simpler to use than the conventional one.

  1. Thermal inactivation of foot-and-mouth disease virus in milk using high-temperature, short-time pasteurization.

    Science.gov (United States)

    Tomasula, P M; Kozempel, M F; Konstance, R P; Gregg, D; Boettcher, S; Baxt, B; Rodriguez, L L

    2007-07-01

    Previous studies of laboratory simulation of high temperature, short time pasteurization (HTST) to eliminate foot-and-mouth disease virus (FMDV) in milk have shown that the virus is not completely inactivated at the legal pasteurization minimum (71.7 degrees C/15 s) but is inactivated in a flow apparatus at 148 degrees C with holding times of 2 to 3 s. It was the intent of this study to determine whether HTST pasteurization conducted in a continuous-flow pasteurizer that simulates commercial operation would enhance FMDV inactivation in milk. Cows were inoculated in the mammary gland with the field strain of FMDV (01/UK). Infected raw whole milk and 2% milk were then pasteurized using an Arm-field pilot-scale, continuous-flow HTST pasteurizer equipped with a plate-and-frame heat exchanger and a holding tube. The milk samples, containing FMDV at levels of up to 10(4) plaque-forming units/mL, were pasteurized at temperatures ranging from 72 to 95 degrees C at holding times of either 18.6 or 36 s. Pasteurization decreased virus infectivity by 4 log10 to undetectable levels in tissue culture. However, residual infectivity was still detectable for selected pasteurized milk samples, as shown by intramuscular and intradermal inoculation of milk into naïve steers. Although HTST pasteurization did not completely inactivate viral infectivity in whole and 2% milk, possibly because a fraction of the virus was protected by the milk fat and the casein proteins, it greatly reduced the risk of natural transmission of FMDV by milk.

  2. Temperature and magnetic field dependence of the Yosida-Kondo resonance for a single magnetic atom adsorbed on a surface

    International Nuclear Information System (INIS)

    Dino, Wilson Agerico; Kasai, Hideaki; Rodulfo, Emmanuel Tapas; Nishi, Mayuko

    2006-01-01

    Manifestations of the Kondo effect on an atomic length scale on and around a magnetic atom adsorbed on a nonmagnetic surface differ depending on the spectroscopic mode of operation of the scanning tunneling microscope. Two prominent signatures of the Kondo effect that can be observed at surfaces are the development of a sharp resonance (Yosida-Kondo resonance) at the Fermi level, which broadens with increasing temperature, and the splitting of this sharp resonance upon application of an external magnetic field. Until recently, observing the temperature and magnetic field dependence has been a challenge, because the experimental conditions strongly depend on the system's critical temperature, the so-called Kondo temperature T K . In order to clearly observe the temperature dependence, one needs to choose a system with a large T K . One can thus perform the experiments at temperatures T K . However, because the applied external magnetic field necessary to observe the magnetic field dependence scales with T K , one needs to choose a system with a very small T K . This in turn means that one should perform the experiments at very low temperatures, e.g., in the mK range. Here we discuss the temperature and magnetic field dependence of the Yosida-Kondo resonance for a single magnetic atom on a metal surface, in relation to recent experimental developments

  3. Field significance of performance measures in the context of regional climate model evaluation. Part 1: temperature

    Science.gov (United States)

    Ivanov, Martin; Warrach-Sagi, Kirsten; Wulfmeyer, Volker

    2018-04-01

    A new approach for rigorous spatial analysis of the downscaling performance of regional climate model (RCM) simulations is introduced. It is based on a multiple comparison of the local tests at the grid cells and is also known as "field" or "global" significance. New performance measures for estimating the added value of downscaled data relative to the large-scale forcing fields are developed. The methodology is exemplarily applied to a standard EURO-CORDEX hindcast simulation with the Weather Research and Forecasting (WRF) model coupled with the land surface model NOAH at 0.11 ∘ grid resolution. Monthly temperature climatology for the 1990-2009 period is analysed for Germany for winter and summer in comparison with high-resolution gridded observations from the German Weather Service. The field significance test controls the proportion of falsely rejected local tests in a meaningful way and is robust to spatial dependence. Hence, the spatial patterns of the statistically significant local tests are also meaningful. We interpret them from a process-oriented perspective. In winter and in most regions in summer, the downscaled distributions are statistically indistinguishable from the observed ones. A systematic cold summer bias occurs in deep river valleys due to overestimated elevations, in coastal areas due probably to enhanced sea breeze circulation, and over large lakes due to the interpolation of water temperatures. Urban areas in concave topography forms have a warm summer bias due to the strong heat islands, not reflected in the observations. WRF-NOAH generates appropriate fine-scale features in the monthly temperature field over regions of complex topography, but over spatially homogeneous areas even small biases can lead to significant deteriorations relative to the driving reanalysis. As the added value of global climate model (GCM)-driven simulations cannot be smaller than this perfect-boundary estimate, this work demonstrates in a rigorous manner the

  4. Time-dependent electron temperature diagnostics for high-power aluminum z-pinch plasmas

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Nash, T.J.; Mock, R.C.

    1996-08-01

    Time-resolved x-ray pinhole photographs and time-integrated radially-resolved x-ray crystal-spectrometer measurements of azimuthally-symmetric aluminum-wire implosions suggest that the densest phase of the pinch is composed of a hot plasma core surrounded by a cooler plasma halo. The slope of the free-bound x-ray continuum, provides a time-resolved, model-independent diagnostic of the core electron temperature. A simultaneous measurement of the time-resolved K-shell line spectra provides the electron temperature of the spatially averaged plasma. Together, the two diagnostics support a 1-D Radiation-Hydrodynamic model prediction of a plasma whose thermalization on axis produces steep radial gradients in temperature, from temperatures in excess of a kilovolt in the core to below a kilovolt in the surrounding plasma halo

  5. Effect of low-temperature long-time and high-temperature short-time blanching and frying treatments on the French fry quality of six Irish potato cultivars

    OpenAIRE

    Ngobese, Nomali Ziphorah; Workneh, Tilahun Seyoum; Siwela, Muthulisi

    2017-01-01

    Processing conditions are an important determinant of French fry quality. However, the effect of low-temperature long-time (LTLT) and high-temperature short-time (HTST) blanching and frying treatments has not been investigated in many cultivars. The current study investigates the effect of the sequential application of these treatments on French fries processed from six Irish potato cultivars (Fianna, Innovator, Mondial, Navigator, Panamera and Savanna). Blanching was effected at 75 °C for 10...

  6. Relativistic and nonrelativistic classical field theory on fivedimensional space-time

    International Nuclear Information System (INIS)

    Kunzle, H.P.; Duval, C.

    1985-07-01

    This paper is a sequel to earlier ones in which, on the one hand, classical field theories were described on a curved Newtonian space-time, and on the other hand, the Newtonian gravitation theory was formulated on a fivedimensional space-time with a metric of signature and a covariantly constant vector field. Here we show that Lagrangians for matter fields are easily formulated on this extended space-time from simple invariance arguments and that stress-energy tensors can be derived from them in the usual manner so that four-dimensional space-time expressions are obtained that are consistent in the relativistic as well as in the Newtonian case. In the former the theory is equivalent to General Relativity. When the magnitude of the distinguished vector field vanishes equations for the (covariant) Newtonian limit follow. We demonstrate this here explicity in the case of the Klein-Gordon/Schroedinger and the Dirac field and its covariant nonrelativistic analogue, the Levy-Leblond field. Especially in the latter example the covariant Newtonian theory simplifies dramatically in this fivedimensional form

  7. Measurement of temperature fields in specimens of quartz ceramic during surface ablation

    Science.gov (United States)

    Frolov, G. A.; Pasichnyi, V. V.; Suzdal'Tsev, E. I.; Tsyganenko, V. S.

    1989-08-01

    The authors propose a method of mounting thermocouples and have obtained temperature fields within specimens of pure and doped quartz ceramic. The linearity of the dependenceΔ * = fleft( {sqrt tau } right) for deep isotherms has been proved experimentally.

  8. Discontinuities of Green functions in field theory at finite temperature and density

    International Nuclear Information System (INIS)

    Kobes, R.L.; Semenoff, G.W.

    1985-01-01

    We derive systematic rules for calculating the imaginary parts of Minkowski space Green functions in quantum field theory at finite temperature and density. Self-energy corrections are used as an example of the application of these rules. (orig.)

  9. Canonical field quantization in an external time-dependent gravitational field

    International Nuclear Information System (INIS)

    Il'yn, S.B.; Tagirov, E.A.

    1975-01-01

    The Green functions of the quantum scalar fiels interacting with gravitation of the homogeneous isotropic closed Universe are studied. They have been determined as an expectation value of the time-ordered product of two field operators in the cyclic states of various, in general, unitary-nonequivalent representations of canonical commutation relations. The reqularity properties of these functions are shown to be the same as of the Feynman propagator obtained for arbitrary Riemannian space-time only in the representations that from a class unitary equivalence

  10. Mask CD relationship to temperature at the time backscatter is received

    Science.gov (United States)

    Zable, Harold; Kronmiller, Tom; Pearman, Ryan; Guthrie, Bill; Shirali, Nagesh; Masuda, Yukihiro; Kamikubo, Takashi; Nakayamada, Noriaki; Fujimura, Aki

    2017-07-01

    Mask writers need to be able to write sub-50nm features accurately. Nano-imprint lithography (NIL) masters need to create sub-20nm line and space (L:S) patterns reliably. Increasingly slower resists are deployed, but mask write times need to remain reasonable. The leading edge EBM-9500 offers 1200A/cm2 current density to shoot variable shaped beam (VSB) to write the masks. Last year, thermal effect correction (TEC) was introduced by NuFlare in the EBM-95001. It is a GPU-accelerated inline correction for the effect that the temperature of the resist has on CD. For example, a 100nm CD may print at 102nm where that area was at a comparably high temperature at the time of the shot. Since thermal effect is a temporal effect, the simulated temperature of the surface of the mask is dynamically updated for the effect of each shot in order to accurately predict the cumulative effect that is the temperature at the location of the shot at the time of the shot and therefore its impact on CD. The shot dose is changed to reverse the effects of the temperature change. This paper for the first time reveals an enhancement to this thermal model and a simulator for it. It turns out that the temperature at the time each location receives backscatter from other shots also make a difference to the CD. The effect is secondary, but still measurable for some resists and substrates. Results of a test-chip study will be presented. The computation required for the backscatter effect is substantial. It has been demonstrated that this calculation can be performed fast enough to be inline with the EBM-9500 with a reasonable-sized computing platform. Run-time results and the computing architecture will be presented.

  11. Dependence of Brownian and Néel relaxation times on magnetic field strength

    International Nuclear Information System (INIS)

    Deissler, Robert J.; Wu, Yong; Martens, Michael A.

    2014-01-01

    Purpose: In magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS) the relaxation time of the magnetization in response to externally applied magnetic fields is determined by the Brownian and Néel relaxation mechanisms. Here the authors investigate the dependence of the relaxation times on the magnetic field strength and the implications for MPI and MPS. Methods: The Fokker–Planck equation with Brownian relaxation and the Fokker–Planck equation with Néel relaxation are solved numerically for a time-varying externally applied magnetic field, including a step-function, a sinusoidally varying, and a linearly ramped magnetic field. For magnetic fields that are applied as a step function, an eigenvalue approach is used to directly calculate both the Brownian and Néel relaxation times for a range of magnetic field strengths. For Néel relaxation, the eigenvalue calculations are compared to Brown's high-barrier approximation formula. Results: The relaxation times due to the Brownian or Néel mechanisms depend on the magnitude of the applied magnetic field. In particular, the Néel relaxation time is sensitive to the magnetic field strength, and varies by many orders of magnitude for nanoparticle properties and magnetic field strengths relevant for MPI and MPS. Therefore, the well-known zero-field relaxation times underestimate the actual relaxation times and, in particular, can underestimate the Néel relaxation time by many orders of magnitude. When only Néel relaxation is present—if the particles are embedded in a solid for instance—the authors found that there can be a strong magnetization response to a sinusoidal driving field, even if the period is much less than the zero-field relaxation time. For a ferrofluid in which both Brownian and Néel relaxation are present, only one relaxation mechanism may dominate depending on the magnetic field strength, the driving frequency (or ramp time), and the phase of the magnetization relative to the

  12. Analysis on temperature dependent current mechanism of tunnel field-effect transistors

    Science.gov (United States)

    Lee, Junil; Kwon, Dae Woong; Kim, Hyun Woo; Kim, Jang Hyun; Park, Euyhwan; Park, Taehyung; Kim, Sihyun; Lee, Ryoongbin; Lee, Jong-Ho; Park, Byung-Gook

    2016-06-01

    In this paper, the total drain current (I D) of a tunnel FET (TFET) is decomposed into each current component with different origins to analyze the I D formation mechanisms of the TFET as a function of gate voltage (V GS). Transfer characteristics are firstly extracted with fabricated Silicon channel TFETs (Si TFETs) and silicon germanium channel TFETs (SiGe TFETs) at various temperatures. The subthreshold swings (SS) of both Si TFETs and SiGe TFETs get degraded and the SSs of SiGe TFETs get degraded more as temperature becomes higher. Then, all the I Ds measured at various temperatures are decomposed into each current component through technology computer aided design (TCAD) simulations with a good agreement with experimental data. As a result, it is revealed that Shockley-Read-Hall (SRH) recombination mainly contribute to the I D of a TFET before band to band tunneling (BTBT) occurs. Furthermore, the SS degradation by high temperature is explained successfully by the SRH recombination with electric field dependence.

  13. Dynamical response of the Ising model to the time dependent magnetic field with white noise

    Science.gov (United States)

    Akıncı, Ümit

    2018-03-01

    The effect of the white noise in time dependent magnetic field on the dynamic behavior of the Ising model has been investigated within the effective field theory based on Glauber type of stochastic process. Discrete white noise has been chosen from both Gaussian and uniform probability distributions. Detailed investigation on probability distribution of dynamical order parameter results that, both type of noise distributions yield the same probability distribution related to the dynamical order parameter, namely Gaussian probability distribution. The variation of the parameters that describe the probability distribution of dynamical order parameter (mean value and standard deviation) with temperature and strength of the noise have been inspected. Also, it has been shown that, rising strength of the noise can induce dynamical phase transition in the system.

  14. Thermotolerance in preirradiated intestine and its influence on time-temperature relationships

    International Nuclear Information System (INIS)

    Hume, S.P.; Marigold, J.C.; Manjil, L.G.

    1988-01-01

    The crypt compartment of mouse jejunum showed a transient increase in thermal susceptibility approximately 10 days after moderate X-ray doses to the abdomen (9-10 Gy). The increase in response was manifest as an increase in slope of the crypt dose-response curve but was limited to temperatures below 43 0 C. As a result, the 43 0 C inflexion in the Arrhenius plot (the relationship between treatment time and temperature) for thermal sensitivity of crypts was eliminated in preirradiated tissue, and the curve became monophasic over the range 42.0-44.5 0 C. At temperatures below 42 0 C, the curve again deviated. At supranormal temperatures of 42 0 C and below, the durations of hyperthermia needed for measurable effect were sufficient to allow thermotolerance to be expressed within the heating period. Neither the threshold heating times nor this thermotolerance were affected by prior irradiation. In the temperature range 42-43 0 C, an earlier development of thermotolerance could be demonstrated in control tissue by challenging with an acute high-temperature heat treatment. This thermotolerance was eliminated in preirradiated tissue, resulting in the apparent increase in sensitivity. The findings support the view that the complex nature of the time-temperature relationship seen in normal tissue in vivo is a manifestation of the ability of the tissue to progressively acquire a thermotolerant state during treatment at temperatures below approximately 43 0 C, so that the intrinsic sensitivity is modulated while being assessed

  15. Hyperfine fields for B and N in nickel

    Energy Technology Data Exchange (ETDEWEB)

    Hamagaki, H; Nakai, K [Tokyo Univ. (Japan). Faculty of Science; Nojiri, Y; Tanihata, I; Sugimoto, K [Osaka Univ., Toyonaka (Japan). Faculty of Science

    1976-11-01

    Hyperfine fields for non-magnetic impurity atoms of /sup 12/B and /sup 12/N in nickel have been investigated using a nuclear resonance method involving ..beta.. decay. The temperature dependence of the hyperfine fields and nuclear spin lattice relaxation time were also studied for /sup 12/B in Ni. Resonances were observed for recoil nuclei produced in the reactions /sup 11/B(d,p)/sup 12/B or /sup 10/B(/sup 3/He,n)/sup 12/N, implanted in polycrystalline Ni foils. A small correction to the Lorentz field was made because of a Co impurity in the Ni foils used. The sign of the hyperfine field was negative for B in Ni and positive for N. This result is in qualitative agreement with hyperfine field systematics for such impurities. Spin lattice relaxation time was determined from the time spectra of the ..beta..-decay asymmetry. Hyperfine fields measured in the given temperature range deviated significantly from the magnetization curve of Ni. At low temperatures spin lattice was long in comparison with /sup 12/B half life (11 ms), but became shorter around Curie temperature Tsub(c) (631 K), increasing again above this temperature. This is due to slowing down of spin fluctuations at a critical point of the ferromagnetic-paramagnetic phase transition.

  16. Analysis on temperature field and flow field of reactor core barrel openings for China experiment fast reactor

    International Nuclear Information System (INIS)

    Zhang Yabo; Yang Hongyi

    2008-01-01

    The paper gives analysis of the temperature and flow field around openings by software CFX, and figures out the flow direction around openings under CEFR normal condition. The calculation result is consistent with the test result of CAPX (the test-bed of decay heat removal system) and ground for the safety analysis later. (authors)

  17. Methodology for time-domain estimation of storm time geoelectric fields using the 3-D magnetotelluric response tensors

    Science.gov (United States)

    Kelbert, Anna; Balch, Christopher C.; Pulkkinen, Antti; Egbert, Gary D.; Love, Jeffrey J.; Rigler, E. Joshua; Fujii, Ikuko

    2017-07-01

    Geoelectric fields at the Earth's surface caused by magnetic storms constitute a hazard to the operation of electric power grids and related infrastructure. The ability to estimate these geoelectric fields in close to real time and provide local predictions would better equip the industry to mitigate negative impacts on their operations. Here we report progress toward this goal: development of robust algorithms that convolve a magnetic storm time series with a frequency domain impedance for a realistic three-dimensional (3-D) Earth, to estimate the local, storm time geoelectric field. Both frequency domain and time domain approaches are presented and validated against storm time geoelectric field data measured in Japan. The methods are then compared in the context of a real-time application.

  18. Imaging technique for real-time temperature monitoring during cryotherapy of lesions

    Science.gov (United States)

    Petrova, Elena; Liopo, Anton; Nadvoretskiy, Vyacheslav; Ermilov, Sergey

    2016-11-01

    Noninvasive real-time temperature imaging during thermal therapies is able to significantly improve clinical outcomes. An optoacoustic (OA) temperature monitoring method is proposed for noninvasive real-time thermometry of vascularized tissue during cryotherapy. The universal temperature-dependent optoacoustic response (ThOR) of red blood cells (RBCs) is employed to convert reconstructed OA images to temperature maps. To obtain the temperature calibration curve for intensity-normalized OA images, we measured ThOR of 10 porcine blood samples in the range of temperatures from 40°C to -16°C and analyzed the data for single measurement variations. The nonlinearity (ΔTmax) and the temperature of zero OA response (T0) of the calibration curve were found equal to 11.4±0.1°C and -13.8±0.1°C, respectively. The morphology of RBCs was examined before and after the data collection confirming cellular integrity and intracellular compartmentalization of hemoglobin. For temperatures below 0°C, which are of particular interest for cryotherapy, the accuracy of a single temperature measurement was ±1°C, which is consistent with the clinical requirements. Validation of the proposed OA temperature imaging technique was performed for slow and fast cooling of blood samples embedded in tissue-mimicking phantoms.

  19. Time dependent convection electric fields and plasma injection

    International Nuclear Information System (INIS)

    Kaye, S.M.; Kivelson, M.G.

    1979-01-01

    Large-scale electric fields associated with storms or substorms are responsible for inward convection and energization of plasma sheet plasma. Calculations based on steady state convection theory show that the response to such electric fields qualitatively accounts for many features of the injected particle distribution, but quantitative agreement with the theory has not yet been obtained. It is known that the predictions can be improved by introducing the concept of convection in response to a time dependent electric field. On the other hand, time dependent calculations are sensitive to the choice of initial conditions, and most models have failed to incorporate these conditions in a realistic and self-consistent manner. In this paper we present a more complete model consisting of realisic initial conditions and time dependent convection to explain a typical substorm-associated electron injection event. We find very good agreement between the observed electron flux changes and those predicted by our model

  20. Full spatial-field visualization of gas temperature in an air micro-glow discharge by calibrated Schlieren photography

    Science.gov (United States)

    Xiong, Qing; Xu, Le; Wang, Xia; Xiong, Lin; Huang, Qinghua; Chen, Qiang; Wang, Jingang; Peng, Wenxiong; Li, Jiarui

    2018-03-01

    Gas temperature is an important basic parameter for both fundamental research and applications of plasmas. In this work, efforts were made to visualize the full spatial field of gas temperature (T g) in a microdischarge with sharp T g gradients by a method of calibrated Schlieren (CS) photography. Compared to other two typical diagnostic approaches, optical emission spectroscopy (OES) and Rayleigh scattering, the proposed CS method exhibits the ability to capture the whole field of gas temperature using a single Schlieren image, even the discharge is of non-luminous zones like Faraday dark space (FDS). The image shows that the T g field in the studied micro-glow air discharge expands quickly with the increase of discharge currents, especially in the cathode region. The two-dimensional maps of gas temperature display a ‘W-shape’ with sharp gradients in both areas of negative and positive glows, slightly arched distributions in the positive column, and cooling zones in the FDS. The obtained T g fields show similar patterns to that of the discharge luminance. With an increase in discharge currents, more electric energy is dissipated by heating air gas and inducing constriction of the low-temperature FDS. Except in the vicinities of electrode boundaries, due to the interference from optical diffraction, the estimated gas temperature distributions are of acceptable accuracy, confirmed by the approaches of OES and UV Rayleigh scattering.

  1. Real time evolution at finite temperatures with operator space matrix product states

    International Nuclear Information System (INIS)

    Pižorn, Iztok; Troyer, Matthias; Eisler, Viktor; Andergassen, Sabine

    2014-01-01

    We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model. (paper)

  2. Real time evolution at finite temperatures with operator space matrix product states

    Science.gov (United States)

    Pižorn, Iztok; Eisler, Viktor; Andergassen, Sabine; Troyer, Matthias

    2014-07-01

    We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model.

  3. Neutron scattering techniques for betaine calcium chloride dihydrate under applied external field (temperature, electric field and hydrostatic pressure); Etude par diffusion de neutrons du chlorure de calcium et de betaine dihydrate sous champ externe applique (temperature, champ electrique et pression hydrostatique)

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, O

    1997-11-17

    We have studied with neutron scattering techniques betaine calcium chloride dihydrate (BCCD), a dielectric aperiodic crystal which displays a Devil`s staircase type phase diagram made up of several incommensurate and commensurate phases, having a range of stability very sensitive to temperature, electric field and hydrostatic pressure. We have measured a global hysteresis of {delta}(T) of about 2-3 K in the two incommensurate phases. A structural study of the modulated commensurate phases 1/4 and 1/5 allows us to evidence that the atomic modulation functions are anharmonic. The relevance of the modelization of the modulated structure by polar Ising pseudo-spins is then directly established. On the basis of group theory calculation in the four dimensional super-space, we interpret this anharmonic modulation as a soliton regime with respect to the lowest-temperature non modulated ferroelectric phase. The continuous character of the transition to the lowest-temperature non modulated phase and the diffuse scattering observed in this phase are accounted for the presence of ferroelectric domains separated by discommensurations. Furthermore, we have shown that X-rays induce in BCCD a strong variation with time of irradiation of the intensity of satellite peaks, and more specifically for third order ones. This is why the `X-rays` structural model is found more harmonic than the `neutron` one. Under electric field applied along the vector b axis, we confirm that commensurate phases with {delta} = even/odd are favoured and hence are polar along this direction. We have evidenced at 10 kV / cm two new higher order commensurate phases in the phase INC2, corroborating the idea of a `complete` Devil`s air-case phase diagram. A phenomenon of generalized coexistence of phases occurs above 5 kV / cm. We have characterized at high field phase transitions between `coexisting` phases, which are distinguishable from classical lock-in transitions. Under hydrostatic pressure, our results

  4. Field dependence of the current density of superconductors at high temperatures

    International Nuclear Information System (INIS)

    Hiergeist, R.; Hergt, R.; Erb, A.; Kummeth, P.; Winzer, K.

    1993-01-01

    An essential drawback of the high-T c superconductors (HTS) with respect to technical applications at liquid nitrogen temperature is the large degradation of their pinning properties in magnetic fields. For the field dependence of the volume pinning force often a high field tail due to thermally activated flux flow is observed. An exponential decay of the irreversible magnetization with increasing field was reported in the case of sintered material (YBCO) for the intergranular part of the magnetization while a power law decay was found for the intragranular part. Song et al. observed an exponential field dependence of the critical current density for proton-irradiated material which before irradiation showed a power law decay. Gladun et al. found an exponential decay for BSCCO-2223 tapes. The high field behaviour of BSCCO was shown to be governed by thermally activated flux creep with a logarithmic pinning barrier, which may result in an exponential decrease of the current with the external magnetic field, as argued recently by Ries et al. We will show in the present paper that the different HTS substance classes (YBCO, BSCCO, TBCCO) behave qualitatively in a similar way. (orig.)

  5. The Influence of Temperature on Time-Dependent Deformation and Failure in Granite: A Mesoscale Modeling Approach

    Science.gov (United States)

    Xu, T.; Zhou, G. L.; Heap, Michael J.; Zhu, W. C.; Chen, C. F.; Baud, Patrick

    2017-09-01

    An understanding of the influence of temperature on brittle creep in granite is important for the management and optimization of granitic nuclear waste repositories and geothermal resources. We propose here a two-dimensional, thermo-mechanical numerical model that describes the time-dependent brittle deformation (brittle creep) of low-porosity granite under different constant temperatures and confining pressures. The mesoscale model accounts for material heterogeneity through a stochastic local failure stress field, and local material degradation using an exponential material softening law. Importantly, the model introduces the concept of a mesoscopic renormalization to capture the co-operative interaction between microcracks in the transition from distributed to localized damage. The mesoscale physico-mechanical parameters for the model were first determined using a trial-and-error method (until the modeled output accurately captured mechanical data from constant strain rate experiments on low-porosity granite at three different confining pressures). The thermo-physical parameters required for the model, such as specific heat capacity, coefficient of linear thermal expansion, and thermal conductivity, were then determined from brittle creep experiments performed on the same low-porosity granite at temperatures of 23, 50, and 90 °C. The good agreement between the modeled output and the experimental data, using a unique set of thermo-physico-mechanical parameters, lends confidence to our numerical approach. Using these parameters, we then explore the influence of temperature, differential stress, confining pressure, and sample homogeneity on brittle creep in low-porosity granite. Our simulations show that increases in temperature and differential stress increase the creep strain rate and therefore reduce time-to-failure, while increases in confining pressure and sample homogeneity decrease creep strain rate and increase time-to-failure. We anticipate that the

  6. Quasi-Stationary Temperature Field of Two-Layer Half-Space with Moving Boundary

    Directory of Open Access Journals (Sweden)

    P. A. Vlasov

    2015-01-01

    Full Text Available Due to intensive introduction of mathematical modeling methods into engineering practice, analytical methods for solving problems of heat conduction theory along with computational methods become increasingly important. Despite the well-known limitations of the analytical method applicability, this trend is caused by many reasons. In particular, solutions of the appropriate problems presented in analytically closed form can be used to test the new efficient computational algorithms, to carry out a parametric study of the temperature field of the analyzed system and to explore specific features of its formation, to formulate and solve optimization problems. In addition, these solutions allow us to explore the possibility for simplifying mathematical model with retaining its adequacy to the studied process.The main goal of the conducted research is to provide an analytically closed-form solution to the problem of finding the quasi-stationary temperature field of the system, which is simulated by isotropic half-space with isotropic coating of constant thickness. The outer boundary of this system is exposed to the Gaussian-type heat flux and uniformly moves in parallel with itself.A two-dimensional mathematical model that takes into account the axial symmetry of the studied process has been used. After the transition to a moving coordinate system rigidly associated with a moving boundary the Hankel integral transform of zero order (with respect to the radial variable and the Laplace transform (with respect to the temporal variable were used. Next, the image of the Hankel transform for the stationary temperature field of the system with respect to the moving coordinate system was found using a limit theorem of operational calculus. This allowed representing the required quasi-stationary field in the form of an improper integral of the first kind, which depends on the parameters. This result obtained can be used to conduct a parametric study and solve

  7. A Delay Time Measurement of ULTRAS (Ultra-high Temperature Ultrasonic Response Analysis System) for a High Temperature Experiment

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Kim, Sang Baik

    2010-01-01

    The temperature measurement of very high temperature core melt is of importance in a high temperature as the molten pool experiment in which gap formation between core melt and the reactor lower head, and the effect of the gap on thermal behavior are to be measured. The existing temperature measurement techniques have some problems, which the thermocouple, one of the contact methods, is restricted to under 2000 .deg. C, and the infrared thermometry, one of the non-contact methods, is unable to measure an internal temperature and very sensitive to the interference from reacted gases. In order to solve these problems, the delay time technique of ultrasonic wavelets due to high temperature has two sorts of stage. As a first stage, a delay time measurement of ULTRAS (Ultra-high Temperature Ultrasonic Response Analysis System) is suggested. As a second stage, a molten material temperature was measured up to 2300 .deg. C. Also, the optimization design of the UTS (ultrasonic temperature sensor) with persistence at the high temperature was suggested in this paper. And the utilization of the theory suggested in this paper and the efficiency of the developed system are performed by special equipment and some experiments supported by KRISS (Korea Research Institute of Standard and Science)

  8. Charge transport in poly(p-phenylene vinylene) at low temperature and high electric field

    NARCIS (Netherlands)

    Katsouras, I.; Najafi, A.; Asadi, K.; Kronemeijer, A. J.; Oostra, A. J.; Koster, L. J. A.; de Leeuw, D. M.; Blom, P. W. M.

    Charge transport in poly(2-methoxy, 5-(2'-ethyl-hexyloxy)-p-phenylene vinylene) (MEH-PPV)-based hole-only diodes is investigated at high electric fields and low temperatures using a novel diode architecture. Charge carrier densities that are in the range of those in a field-effect transistor are

  9. Flowering time of butterfly nectar food plants is more sensitive to temperature than the timing of butterfly adult flight.

    Science.gov (United States)

    Kharouba, Heather M; Vellend, Mark

    2015-09-01

    1. Variation among species in their phenological responses to temperature change suggests that shifts in the relative timing of key life cycle events between interacting species are likely to occur under climate warming. However, it remains difficult to predict the prevalence and magnitude of these shifts given that there have been few comparisons of phenological sensitivities to temperature across interacting species. 2. Here, we used a broad-scale approach utilizing collection records to compare the temperature sensitivity of the timing of adult flight in butterflies vs. flowering of their potential nectar food plants (days per °C) across space and time in British Columbia, Canada. 3. On average, the phenology of both butterflies and plants advanced in response to warmer temperatures. However, the two taxa were differentially sensitive to temperature across space vs. across time, indicating the additional importance of nontemperature cues and/or local adaptation for many species. 4. Across butterfly-plant associations, flowering time was significantly more sensitive to temperature than the timing of butterfly flight and these sensitivities were not correlated. 5. Our results indicate that warming-driven shifts in the relative timing of life cycle events between butterflies and plants are likely to be prevalent, but that predicting the magnitude and direction of such changes in particular cases is going to require detailed, fine-scale data. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  10. Dynamic compensation temperature in the kinetic spin-1 Ising model in an oscillating external magnetic field on alternate layers of a hexagonal lattice

    International Nuclear Information System (INIS)

    Temizer, Umuet; Keskin, Mustafa; Canko, Osman

    2009-01-01

    The dynamic behavior of a two-sublattice spin-1 Ising model with a crystal-field interaction (D) in the presence of a time-varying magnetic field on a hexagonal lattice is studied by using the Glauber-type stochastic dynamics. The lattice is formed by alternate layers of spins σ=1 and S=1. For this spin arrangement, any spin at one lattice site has two nearest-neighbor spins on the same sublattice, and four on the other sublattice. The intersublattice interaction is antiferromagnetic. We employ the Glauber transition rates to construct the mean-field dynamical equations. Firstly, we study time variations of the average magnetizations in order to find the phases in the system, and the temperature dependence of the average magnetizations in a period, which is also called the dynamic magnetizations, to obtain the dynamic phase transition (DPT) points as well as to characterize the nature (continuous and discontinuous) of transitions. Then, the behavior of the total dynamic magnetization as a function of the temperature is investigated to find the types of the compensation behavior. Dynamic phase diagrams are calculated for both DPT points and dynamic compensation effect. Phase diagrams contain the paramagnetic (p) and antiferromagnetic (af) phases, the p+af and nm+p mixed phases, nm is the non-magnetic phase, and the compensation temperature or the L-type behavior that strongly depend on the interaction parameters. For D 0 >3.8275, H 0 is the magnetic field amplitude, the compensation effect does not appear in the system.

  11. Dynamic compensation temperature in the kinetic spin-1 Ising model in an oscillating external magnetic field on alternate layers of a hexagonal lattice

    Energy Technology Data Exchange (ETDEWEB)

    Temizer, Umuet [Department of Physics, Bozok University, 66100 Yozgat (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr; Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2009-10-15

    The dynamic behavior of a two-sublattice spin-1 Ising model with a crystal-field interaction (D) in the presence of a time-varying magnetic field on a hexagonal lattice is studied by using the Glauber-type stochastic dynamics. The lattice is formed by alternate layers of spins {sigma}=1 and S=1. For this spin arrangement, any spin at one lattice site has two nearest-neighbor spins on the same sublattice, and four on the other sublattice. The intersublattice interaction is antiferromagnetic. We employ the Glauber transition rates to construct the mean-field dynamical equations. Firstly, we study time variations of the average magnetizations in order to find the phases in the system, and the temperature dependence of the average magnetizations in a period, which is also called the dynamic magnetizations, to obtain the dynamic phase transition (DPT) points as well as to characterize the nature (continuous and discontinuous) of transitions. Then, the behavior of the total dynamic magnetization as a function of the temperature is investigated to find the types of the compensation behavior. Dynamic phase diagrams are calculated for both DPT points and dynamic compensation effect. Phase diagrams contain the paramagnetic (p) and antiferromagnetic (af) phases, the p+af and nm+p mixed phases, nm is the non-magnetic phase, and the compensation temperature or the L-type behavior that strongly depend on the interaction parameters. For D<2.835 and H{sub 0}>3.8275, H{sub 0} is the magnetic field amplitude, the compensation effect does not appear in the system.

  12. Near-real-time feedback control system for liver thermal ablations based on self-referenced temperature imaging

    International Nuclear Information System (INIS)

    Keserci, Bilgin M.; Kokuryo, Daisuke; Suzuki, Kyohei; Kumamoto, Etsuko; Okada, Atsuya; Khankan, Azzam A.; Kuroda, Kagayaki

    2006-01-01

    Our challenge was to design and implement a dedicated temperature imaging feedback control system to guide and assist in a thermal liver ablation procedure in a double-donut 0.5T open MR scanner. This system has near-real-time feedback capability based on a newly developed 'self-referenced' temperature imaging method using 'moving-slab' and complex-field-fitting techniques. Two phantom validation studies and one ex vivo experiment were performed to compare the newly developed self-referenced method with the conventional subtraction method and evaluate the ability of the feedback control system in the same MR scanner. The near-real-time feedback system was achieved by integrating the following primary functions: (1) imaging of the moving organ temperature; (2) on-line needle tip tracking; (3) automatic turn-on/off the heating devices; (4) a Windows operating system-based novel user-interfaces. In the first part of the validation studies, microwave heating was applied in an agar phantom using a fast spoiled gradient recalled echo in a steady state sequence. In the second part of the validation and ex vivo study, target visualization, treatment planning and monitoring, and temperature and thermal dose visualization with the graphical user interface of the thermal ablation software were demonstrated. Furthermore, MR imaging with the 'self-referenced' temperature imaging method has the ability to localize the hot spot in the heated region and measure temperature elevation during the experiment. In conclusion, we have demonstrated an interactively controllable feedback control system that offers a new method for the guidance of liver thermal ablation procedures, as well as improving the ability to assist ablation procedures in an open MR scanner

  13. Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images

    Science.gov (United States)

    Hengl, Tomislav; Heuvelink, Gerard B. M.; Perčec Tadić, Melita; Pebesma, Edzer J.

    2012-01-01

    A computational framework to generate daily temperature maps using time-series of publicly available MODIS MOD11A2 product Land Surface Temperature (LST) images (1 km resolution; 8-day composites) is illustrated using temperature measurements from the national network of meteorological stations (159) in Croatia. The input data set contains 57,282 ground measurements of daily temperature for the year 2008. Temperature was modeled as a function of latitude, longitude, distance from the sea, elevation, time, insolation, and the MODIS LST images. The original rasters were first converted to principal components to reduce noise and filter missing pixels in the LST images. The residual were next analyzed for spatio-temporal auto-correlation; sum-metric separable variograms were fitted to account for zonal and geometric space-time anisotropy. The final predictions were generated for time-slices of a 3D space-time cube, constructed in the R environment for statistical computing. The results show that the space-time regression model can explain a significant part of the variation in station-data (84%). MODIS LST 8-day (cloud-free) images are unbiased estimator of the daily temperature, but with relatively low precision (±4.1°C); however their added value is that they systematically improve detection of local changes in land surface temperature due to local meteorological conditions and/or active heat sources (urban areas, land cover classes). The results of 10-fold cross-validation show that use of spatio-temporal regression-kriging and incorporation of time-series of remote sensing images leads to significantly more accurate maps of temperature than if plain spatial techniques were used. The average (global) accuracy of mapping temperature was ±2.4°C. The regression-kriging explained 91% of variability in daily temperatures, compared to 44% for ordinary kriging. Further software advancement—interactive space-time variogram exploration and automated retrieval

  14. Electric-field assisted switching of magnetization in perpendicularly magnetized (Ga,Mn)As films at high temperatures

    Science.gov (United States)

    Wang, Hailong; Ma, Jialin; Yu, Xueze; Yu, Zhifeng; Zhao, Jianhua

    2017-01-01

    The electric-field effects on the magnetism in perpendicularly magnetized (Ga,Mn)As films at high temperatures have been investigated. An electric-field as high as 0.6 V nm-1 is applied by utilizing a solid-state dielectric Al2O3 film as a gate insulator. The coercive field, saturation magnetization and magnetic anisotropy have been clearly changed by the gate electric-field, which are detected via the anomalous Hall effect. In terms of the Curie temperature, a variation of about 3 K is observed as determined by the temperature derivative of the sheet resistance. In addition, electrical switching of the magnetization assisted by a fixed external magnetic field at 120 K is demonstrated, employing the gate-controlled coercive field. The above experimental results have been attributed to the gate voltage modulation of the hole density in (Ga,Mn)As films, since the ferromagnetism in (Ga,Mn)As is carrier-mediated. The limited modulation magnitude of magnetism is found to result from the strong charge screening effect introduced by the high hole concentration up to 1.10  ×  1021 cm-3, while the variation of the hole density is only about 1.16  ×  1020 cm-3.

  15. An important role of temperature dependent scattering time in understanding the high temperature thermoelectric behavior of strongly correlated system: La0.75Ba0.25CoO3.

    Science.gov (United States)

    Singh, Saurabh; Kumar, Devendra; Pandey, Sudhir K

    2017-03-15

    In the present work, we report the temperature dependent thermopower (α) behavior of La 0.75 Ba 0.25 CoO 3 compound in the temperature range 300-600 K. Using the Heikes formula, the estimated value of α corresponding to high-spin configuration of Co 3+ and Co 4+ ions is found to be  ∼16 [Formula: see text], which is close to the experimental value, ∼13 [Formula: see text], observed at  ∼600 K. The temperature dependent TE behavior of the compound is studied by combining the WIEN2K and BoltzTrap code. The self consistency field calculations show that the compound have ferromagnetic ground state structure. The electronic structure calculations give half metallic characteristic with a small gap of  ∼50 meV for down spin channel. The large and positive value for down spin channel is obtained due to the unique band structure shown by this spin channel. The temperature dependent relaxation time for both the spin-channel charge carriers is considered to study the thermopower data in temperature range 300-600 K. For evaluation of α, almost linear values of [Formula: see text] and a non-linear values of [Formula: see text] are taken into account. By taking the temperature dependent values of relaxation time for both the spin channels, the calculated values of α using two current model are found to be in good agreement with experimental values in the temperature range 300-600 K. At 300 K, the calculated value of electrical conductivity by using the same value of relaxation time, i.e. 0.1 [Formula: see text] 10 -14 seconds for spin-up and [Formula: see text] seconds for spin-dn channel, is found to be equal to the experimentally reported value.

  16. Nonequilibrium quantum field theories

    International Nuclear Information System (INIS)

    Niemi, A.J.

    1988-01-01

    Combining the Feynman-Vernon influence functional formalism with the real-time formulation of finite-temperature quantum field theories we present a general approach to relativistic quantum field theories out of thermal equilibrium. We clarify the physical meaning of the additional fields encountered in the real-time formulation of quantum statistics and outline diagrammatic rules for perturbative nonequilibrium computations. We derive a generalization of Boltzmann's equation which gives a complete characterization of relativistic nonequilibrium phenomena. (orig.)

  17. Research on the influence of driving harmonic on electromagnetic field and temperature field of permanent magnet synchronous motor

    Directory of Open Access Journals (Sweden)

    Qiu Hongbo

    2017-06-01

    Full Text Available At present, the drivers with different control methods are used in most of permanent magnet synchronous motors (PMSM. A current outputted by a driver contains a large number of harmonics that will cause the PMSM torque ripple, winding heating and rotor temperature rise too large and so on. In this paper, in order to determine the influence of the current harmonics on the motor performance, different harmonic currents were injected into the motor armature. Firstly, in order to study the influence of the current harmonic on the motor magnetic field, a novel decoupling method of the motor magnetic field was proposed. On this basis, the difference of harmonic content in an air gap magnetic field was studied, and the influence of a harmonic current on the air gap flux density was obtained. Secondly, by comparing the fluctuation of the motor torque in the fundamental and different harmonic currents, the influence of harmonic on a motor torque ripple was determined. Then, the influence of different current harmonics on the eddy current loss of the motor was compared and analyzed, and the influence of the drive harmonic on the eddy current loss was obtained. Finally, by using a finite element method (FEM, the motor temperature distribution with different harmonics was obtained.

  18. Vulnerability of field crops to midcentury temperature changes and yield effects in the Southwestern USA

    Science.gov (United States)

    Increased temperatures in the Southwestern United States will impact future crop production via multiple pathways. We used four methods to provide an illustrative analysis of midcentury temperature impacts to eight field crops. By midcentury, cropland area thermally suitable for maize cultivation is...

  19. A visualization instrument to investigate the mechanical-electro properties of high temperature superconducting tapes under multi-fields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Zhang, Xingyi, E-mail: zhangxingyi@lzu.edu.cn; Liu, Cong; Zhang, Wentao; Zhou, Jun; Zhou, YouHe [Key Laboratory of Mechanics on Disaster and Environment in Western China Attached to the Ministry of Education of China, Lanzhou University, Lanzhou, Gansu 730000, People’s Republic of China and Department of Mechanics and Engineering Sciences, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2016-07-15

    We construct a visible instrument to study the mechanical-electro behaviors of high temperature superconducting tape as a function of magnetic field, strain, and temperature. This apparatus is directly cooled by a commercial Gifford-McMahon cryocooler. The minimum temperature of sample can be 8.75 K. A proportion integration differentiation temperature control is used, which is capable of producing continuous variation of specimen temperature from 8.75 K to 300 K with an optional temperature sweep rate. We use an external loading device to stretch the superconducting tape quasi-statically with the maximum tension strain of 20%. A superconducting magnet manufactured by the NbTi strand is applied to provide magnetic field up to 5 T with a homogeneous range of 110 mm. The maximum fluctuation of the magnetic field is less than 1%. We design a kind of superconducting lead composed of YBa2Cu3O7-x coated conductor and beryllium copper alloy (BeCu) to transfer DC to the superconducting sample with the maximum value of 600 A. Most notably, this apparatus allows in situ observation of the electromagnetic property of superconducting tape using the classical magnetic-optical imaging.

  20. The Electron Temperature of a Partially Ionized Gas in an Electric Field

    Energy Technology Data Exchange (ETDEWEB)

    Robben, F

    1968-03-15

    The electron temperature of a partially ionized gas in an electric field can be determined by the collision rate for momentum transfer and the collision rate for energy transfer. Mean values of these rates are defined such that a simple expression for the electron temperature is obtained, and which depends, among other things, on the ratio of these mean rates. This ratio is calculated in the Lorentz approximation for power law cross sections, and also as a function of the degree of ionization for a helium plasma. It is pointed out that the complete results of refined transport theory can be used in calculating electron mobility and electron temperature in a multicomponent plasma without undue difficulty.

  1. The Electron Temperature of a Partially Ionized Gas in an Electric Field

    International Nuclear Information System (INIS)

    Robben, F.

    1968-03-01

    The electron temperature of a partially ionized gas in an electric field can be determined by the collision rate for momentum transfer and the collision rate for energy transfer. Mean values of these rates are defined such that a simple expression for the electron temperature is obtained, and which depends, among other things, on the ratio of these mean rates. This ratio is calculated in the Lorentz approximation for power law cross sections, and also as a function of the degree of ionization for a helium plasma. It is pointed out that the complete results of refined transport theory can be used in calculating electron mobility and electron temperature in a multicomponent plasma without undue difficulty

  2. Extension of PIV for measuring granular temperature field in dense fluidized beds.

    NARCIS (Netherlands)

    Dijkhuizen, W.; Bokkers, G.A.; Deen, N.G.; van Sint Annaland, M.; Kuipers, J.A.M.

    2007-01-01

    In this work a particle image velocimetry (PIV) technique has been extended to enable the simultaneous measurement of the instantaneous velocity and granular temperature fields. The PIV algorithm has been specifically optimized for dense granular systems and has been thoroughly tested with

  3. Contrasting effects of elevated CO2 and warming on temperature sensitivity of soil organic matter decomposition in a Chinese paddy field.

    Science.gov (United States)

    Chen, Zhaozhi; Wang, Bingyu; Wang, Jinyang; Pan, Genxing; Xiong, Zhengqin

    2015-10-01

    Climate changes including elevated CO2 and temperature have been known to affect soil carbon (C) storage, while the effects of climate changes on the temperature sensitivity of soil organic matter (SOM) are unclear. A 365-day laboratory incubation was used to investigate the temperature sensitivity for decomposition of labile (Q 10-L) and recalcitrant (Q 10-R) SOMs by comparing the time required to decompose a given amount of C at 25 and 35 °C. Soils were collected from a paddy field that was subjected to four treatments: ambient CO2 and temperature, elevated CO2 (500 μmol/mol), enhanced temperature (+2 °C), and their combination. The results showed that the temperature sensitivity of SOM decomposition increased with increasing SOM recalcitrance in this paddy soil (Q 10-L = 2.21 ± 0.16 vs. Q 10-R = 2.78 ± 0.42; mean ± SD). Elevated CO2 and enhanced temperature showed contrasting effects on the temperature sensitivity of SOM decomposition. Elevated CO2 stimulated Q 10-R but had no effect on Q 10-L; in contrast, enhanced temperature increased Q 10-L but had no effect on Q 10-R. Furthermore, the elevated CO2 combined with enhanced temperature treatment significantly increased Q 10-L and Q 10-R by 18.9 and 10.2 %, respectively, compared to the ambient conditions. Results suggested that the responses of SOM to temperature, especially for the recalcitrant SOM pool, were altered by climate changes. The greatly enhanced temperature sensitivity of SOM decomposition by elevated CO2 and temperature indicates that more CO2 will be released to the atmosphere and losses of soil C may be even greater than that previously expected in paddy field.

  4. Impact of Brake Pad Structure on Temperature and Stress Fields of Brake Disc

    OpenAIRE

    Wang, Guoshun; Fu, Rong

    2013-01-01

    Utilizing ABAQUS finite element software, the study established the relationship between a brake pad structure and distributions of temperature and thermal stress on brake disc. By introducing radial structure factor and circular structure factor concepts, the research characterized the effect of friction block radial and circumferential arrangement on temperature field of the brake disc. A method was proposed for improving heat flow distribution of the brake disc through optimizing the posit...

  5. Developing first time-series of land surface temperature from AATSR with uncertainty estimates

    Science.gov (United States)

    Ghent, Darren; Remedios, John

    2013-04-01

    Land surface temperature (LST) is the radiative skin temperature of the land, and is one of the key parameters in the physics of land-surface processes on regional and global scales. Earth Observation satellites provide the opportunity to obtain global coverage of LST approximately every 3 days or less. One such source of satellite retrieved LST has been the Advanced Along-Track Scanning Radiometer (AATSR); with LST retrieval being implemented in the AATSR Instrument Processing Facility in March 2004. Here we present first regional and global time-series of LST data from AATSR with estimates of uncertainty. Mean changes in temperature over the last decade will be discussed along with regional patterns. Although time-series across all three ATSR missions have previously been constructed (Kogler et al., 2012), the use of low resolution auxiliary data in the retrieval algorithm and non-optimal cloud masking resulted in time-series artefacts. As such, considerable ESA supported development has been carried out on the AATSR data to address these concerns. This includes the integration of high resolution auxiliary data into the retrieval algorithm and subsequent generation of coefficients and tuning parameters, plus the development of an improved cloud mask based on the simulation of clear sky conditions from radiance transfer modelling (Ghent et al., in prep.). Any inference on this LST record is though of limited value without the accompaniment of an uncertainty estimate; wherein the Joint Committee for Guides in Metrology quote an uncertainty as "a parameter associated with the result of a measurement that characterizes the dispersion of the values that could reasonably be attributed to the measurand that is the value of the particular quantity to be measured". Furthermore, pixel level uncertainty fields are a mandatory requirement in the on-going preparation of the LST product for the upcoming Sea and Land Surface Temperature (SLSTR) instrument on-board Sentinel-3

  6. Stratospheric Temperature Trends Observed by TIMED/SABER

    Science.gov (United States)

    Xian, T.; Tan, R.

    2017-12-01

    Trends in the stratospheric temperature are studied based on the temperature profile observation from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). The spatially trends are evaluated in different time scales ranging from decadal to monthly resolved. The results indicate a signature of BDC acceleration. There are strong warming trends (up to 9 K/decade) in the middle to upper stratosphere in the high latitude spring, summer, and autumn seasons, accompanied by strong cooling trends in the lower stratosphere. Besides, strong warming trends occurs through the whole stratosphere over the Southern Hemisphere, which confirms Antarctic ozone layer healing since 2000. In addition, the results demonstrate a significant warming trends in the middle of tropical stratosphere, which becomes strongest during June-July-August.

  7. Magnetism and thermodynamic properties of a spin-1/2 ferrimagnetic diamond XY chain in magnetic fields at finite temperatures

    International Nuclear Information System (INIS)

    Cheng, Tai-Min; Ma, Yan-Ming; Ge, Chong-Yuan; Sun, Shu-Sheng; Jia, Wei-Ye; Li, Qing-Yun; Shi, Xiao-Fei; Li, Lin; Zhu, Lin

    2013-01-01

    The elementary excitation spectra of a one-dimensional ferrimagnetic diamond chain in the spin-1/2 XY model at low temperatures have been calculated by using an invariant eigen-operator (IEO) method, the energies of elementary excitations in different specific cases are discussed, and the analytic solutions of three critical magnetic field intensities (H C1 , H C2 , and H peak ) are given. The magnetization versus external magnetic field curve displays a 1/3 magnetization plateau at low temperatures, in which H C1 is the critical magnetic field intensity from the disappearance of the 1/3 magnetization plateau to spin-flop states, H C2 is the critical magnetic field intensity from spin-flop states to the saturation magnetization, and H peak is the critical magnetic field intensity when the temperature magnetization shows a peak in the external magnetic field. The temperature dependences of the magnetic susceptibility and the specific heat show a double peak structure. The entropy and the magnetic susceptibility versus external magnetic field curves also exhibit a double peak structure, and the positions of the two peaks correspond to H C1 and H C2 , respectively. This derives from the competition among different types of energies: the temperature-dependent thermal disorder energy, the potential energy of the spin magnetic moment, the ferromagnetic exchange interaction energy, and the anti-ferromagnetic exchange interaction energy. However at low temperatures, the specific heat as a function of external magnetic field curve exhibits minima at the above two critical points (H C1 and H C2 ). The origins of the above phenomena are discussed in detail.

  8. Finite temperature Casimir effect for a massless fractional Klein-Gordon field with fractional Neumann conditions

    International Nuclear Information System (INIS)

    Eab, C. H.; Lim, S. C.; Teo, L. P.

    2007-01-01

    This paper studies the Casimir effect due to fractional massless Klein-Gordon field confined to parallel plates. A new kind of boundary condition called fractional Neumann condition which involves vanishing fractional derivatives of the field is introduced. The fractional Neumann condition allows the interpolation of Dirichlet and Neumann conditions imposed on the two plates. There exists a transition value in the difference between the orders of the fractional Neumann conditions for which the Casimir force changes from attractive to repulsive. Low and high temperature limits of Casimir energy and pressure are obtained. For sufficiently high temperature, these quantities are dominated by terms independent of the boundary conditions. Finally, validity of the temperature inversion symmetry for various boundary conditions is discussed

  9. Relationship of magnetic field strength and brightness of fine-structure elements in the solar temperature minimum region

    Science.gov (United States)

    Cook, J. W.; Ewing, J. A.

    1990-01-01

    A quantitative relationship was determined between magnetic field strength (or magnetic flux) from photospheric magnetograph observations and the brightness temperature of solar fine-structure elements observed at 1600 A, where the predominant flux source is continuum emission from the solar temperature minimum region. A Kitt Peak magnetogram and spectroheliograph observations at 1600 A taken during a sounding rocket flight of the High Resolution Telescope and Spectrograph from December 11, 1987 were used. The statistical distributions of brightness temperature in the quiet sun at 1600 A, and absolute value of magnetic field strength in the same area were determined from these observations. Using a technique which obtains the best-fit relationship of a given functional form between these two histogram distributions, a quantitative relationship was determined between absolute value of magnetic field strength B and brightness temperature which is essentially linear from 10 to 150 G. An interpretation is suggested, in which a basal heating occurs generally, while brighter elements are produced in magnetic regions with temperature enhancements proportional to B.

  10. Dynamic phase diagrams of a cylindrical Ising nanowire in the presence of a time dependent magnetic field

    International Nuclear Information System (INIS)

    Kantar, Ersin; Ertaş, Mehmet; Keskin, Mustafa

    2014-01-01

    The dynamic phase diagrams of a cylindrical Ising nanowire in the presence of a time dependent magnetic field are obtained by using the effective-field theory with correlations based on the Glauber-type stochastic dynamics. According to the values of interaction parameters, a number of interesting properties have been found in the dynamic phase diagrams, such as many dynamic critical points (tricritical point, double critical end point, critical end point, zero temperature critical point, multicritical point, tetracritical point, and triple point) as well as reentrant phenomena. - Highlights: • The cylindrical Ising nanowire is investigated within the Glauber dynamics based on EFT. • The time variations of average order parameters to find phases are studied. • The dynamic phase diagrams are found for the different interaction parameters. • The system displays the critical points as well as a reentrant behavior

  11. Dynamic phase diagrams of a cylindrical Ising nanowire in the presence of a time dependent magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kantar, Ersin; Ertaş, Mehmet, E-mail: mehmetertas@erciyes.edu.tr; Keskin, Mustafa

    2014-06-01

    The dynamic phase diagrams of a cylindrical Ising nanowire in the presence of a time dependent magnetic field are obtained by using the effective-field theory with correlations based on the Glauber-type stochastic dynamics. According to the values of interaction parameters, a number of interesting properties have been found in the dynamic phase diagrams, such as many dynamic critical points (tricritical point, double critical end point, critical end point, zero temperature critical point, multicritical point, tetracritical point, and triple point) as well as reentrant phenomena. - Highlights: • The cylindrical Ising nanowire is investigated within the Glauber dynamics based on EFT. • The time variations of average order parameters to find phases are studied. • The dynamic phase diagrams are found for the different interaction parameters. • The system displays the critical points as well as a reentrant behavior.

  12. Recovery time of high temperature superconducting tapes exposed in liquid nitrogen

    International Nuclear Information System (INIS)

    Sheng, Jie; Zeng, Weina; Yao, Zhihao; Zhao, Anfeng; Hu, Daoyu; Hong, Zhiyong

    2016-01-01

    Highlights: • A novel method based on a sequence of AC pulses is presented. • Liquid nitrogen temperature is used as criterion to judge whether the sample has recovered. • Recovery time of some tape doesn't increase with the amplitude of fault current. • This phenomenon is caused by boiling heat transfer process of liquid nitrogen. • This phenomenon can be used in optimizing both the limiting rate and reclosing system. - Abstract: The recovery time is a crucial parameter to high temperature superconducting tapes, especially in power applications. The cooperation between the reclosing device and the superconducting facilities mostly relies on the recovery time of the superconducting tapes. In this paper, a novel method is presented to measure the recovery time of several different superconducting samples. In this method criterion used to judge whether the sample has recovered is the liquid nitrogen temperature, instead of the critical temperature. An interesting phenomenon is observed during the testing of superconducting samples exposed in the liquid nitrogen. Theoretical explanations of this phenomenon are presented from the aspect of heat transfer. Optimization strategy of recovery characteristics based on this phenomenon is also briefly discussed.

  13. Temperature dependence of fluctuation time scales in spin glasses

    DEFF Research Database (Denmark)

    Kenning, Gregory G.; Bowen, J.; Sibani, Paolo

    2010-01-01

    Using a series of fast cooling protocols we have probed aging effects in the spin glass state as a function of temperature. Analyzing the logarithmic decay found at very long time scales within a simple phenomenological barrier model, leads to the extraction of the fluctuation time scale of the s...

  14. Quantum electrodynamics at high temperature. 2

    International Nuclear Information System (INIS)

    Alvarez-Estrada, R.F.

    1988-01-01

    The photon sector of QED in d = 3 spatial dimensions is analyzed at high temperature thereby generalizing nontrivially a previous study for d = 1. The imaginary time formalism and an improved renormalized perturbation theory which incorporates second order Debye screening are used. General results are presented for the leading high temperature contributions to all renormalized connected photon Green's functions for fixed external momenta (much smaller than the temperature) to all orders in the improved perturbation theory. Those leading contributions are ultraviolet finite, infrared convergent and gauge invariant, and display an interesting form of dimensional reduction at high temperature. A new path integral representations is given for the high temperature partition function with an external photon source, which is shown to generate all leading high temperature Green's functions mentioned above, and, so, it displays neatly the kind of dimensional reduction which makes QED to become simpler at high temperature. This limiting partition function corresponds to an imaginary time dependent electron positron field interacting with an electromagnetic field at zero imaginary time, and it depends on the renormalized electron mass and electric charge, the second order contribution to the usual renormalization constant Z 3 and a new mass term, which is associated to the photon field with vanishing Lorentz index. The new mass term corresponds to a finite number of diagrams in the high temperature improved perturbation theory and carriers ultraviolet divergences which are compensated for by other contributions (so that the leading high temperature Green's functions referred to above are ultraviolet finite). The dominant high temperature contributions to the renormalized thermodynamic potential to all perturbative orders: i) are given in terms of the above leading high-temperature contributions to the photon Green's functions (except for a few diagrams of low order in the

  15. Solar magnetic field studies using the 12 micron emission lines. I - Quiet sun time series and sunspot slices

    Science.gov (United States)

    Deming, Drake; Boyle, Robert J.; Jennings, Donald E.; Wiedemann, Gunter

    1988-01-01

    The use of the extremely Zeeman-sensitive IR emission line Mg I, at 12.32 microns, to study solar magnetic fields. Time series observations of the line in the quiet sun were obtained in order to determine the response time of the line to the five-minute oscillations. Based upon the velocity amplitude and average period measured in the line, it is concluded that it is formed in the temperature minimum region. The magnetic structure of sunspots is investigated by stepping a small field of view in linear 'slices' through the spots. The region of penumbral line formation does not show the Evershed outflow common in photospheric lines. The line intensity is a factor of two greater in sunspot penumbrae than in the photosphere, and at the limb the penumbral emission begins to depart from optical thinness, the line source function increasing with height. For a spot near disk center, the radial decrease in absolute magnetic field strength is steeper than the generally accepted dependence.

  16. Structure of Temperature Field on a Wall in Turbulent Flow (Statistics of Thermal Streaks, Heat Transfer)

    International Nuclear Information System (INIS)

    Hetsroni, G.; Mosyak, A.; Rozenblit, R.; Yarin, L.P.

    1998-01-01

    The present work deals with an experimental study of a temperature field on the wall in turbulent flow. The measurements of the local, instantaneous and average temperature of the wall were carried out by the hot-foil infrared technique. The detailed data on the average and fluctuation temperature distributions are presented. It is shown that temperature fluctuations, as normalized by the difference between the temperatures of the undisturbed fluid and the wall, do not change

  17. Elevated temperature alters the lunar timing of Planulation in the brooding coral Pocillopora damicornis.

    Directory of Open Access Journals (Sweden)

    Camerron M Crowder

    Full Text Available Reproductive timing in corals is associated with environmental variables including temperature, lunar periodicity, and seasonality. Although it is clear that these variables are interrelated, it remains unknown if one variable in particular acts as the proximate signaler for gamete and or larval release. Furthermore, in an era of global warming, the degree to which increases in ocean temperatures will disrupt normal reproductive patterns in corals remains unknown. Pocillopora damicornis, a brooding coral widely distributed in the Indo-Pacific, has been the subject of multiple reproductive ecology studies that show correlations between temperature, lunar periodicity, and reproductive timing. However, to date, no study has empirically measured changes in reproductive timing associated with increased seawater temperature. In this study, the effect of increased seawater temperature on the timing of planula release was examined during the lunar cycles of March and June 2012. Twelve brooding corals were removed from Hobihu reef in Nanwan Bay, southern Taiwan and placed in 23 and 28°C controlled temperature treatment tanks. For both seasons, the timing of planulation was found to be plastic, with the high temperature treatment resulting in significantly earlier peaks of planula release compared to the low temperature treatment. This suggests that temperature alone can influence the timing of larval release in Pocillopora damicornis in Nanwan Bay. Therefore, it is expected that continued increases in ocean temperature will result in earlier timing of reproductive events in corals, which may lead to either variations in reproductive success or phenotypic acclimatization.

  18. Dependent of electrical resistivity of thin wire on magnetic field and temperature

    International Nuclear Information System (INIS)

    Sadeghi, E.; Zare, M.

    2006-01-01

    Variation of electrical resistivity of Bismuth nano wire versus magnetic field the and temperature are considered. We study the size effect and surface scattering of the carrier in thin wire for systems with ellipsoidal Fermi surfaces. Results are in good agreement with experimental points

  19. Topological Field Theory of Time-Reversal Invariant Insulators

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiao-Liang; Hughes, Taylor; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    We show that the fundamental time reversal invariant (TRI) insulator exists in 4 + 1 dimensions, where the effective field theory is described by the 4 + 1 dimensional Chern-Simons theory and the topological properties of the electronic structure is classified by the second Chern number. These topological properties are the natural generalizations of the time reversal breaking (TRB) quantum Hall insulator in 2 + 1 dimensions. The TRI quantum spin Hall insulator in 2 + 1 dimensions and the topological insulator in 3 + 1 dimension can be obtained as descendants from the fundamental TRI insulator in 4 + 1 dimensions through a dimensional reduction procedure. The effective topological field theory, and the Z{sub 2} topological classification for the TRI insulators in 2+1 and 3+1 dimensions are naturally obtained from this procedure. All physically measurable topological response functions of the TRI insulators are completely described by the effective topological field theory. Our effective topological field theory predicts a number of novel and measurable phenomena, the most striking of which is the topological magneto-electric effect, where an electric field generates a magnetic field in the same direction, with an universal constant of proportionality quantized in odd multiples of the fine structure constant {alpha} = e{sup 2}/hc. Finally, we present a general classification of all topological insulators in various dimensions, and describe them in terms of a unified topological Chern-Simons field theory in phase space.

  20. Quantum entanglement of localized excited states at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Caputa, Paweł [Yukawa Institute for Theoretical Physics (YITP), Kyoto University,Kyoto 606-8502 (Japan); Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Simón, Joan; Štikonas, Andrius [School of Mathematics and Maxwell Institute for Mathematical Sciences,University of Edinburgh,King’s Buildings, Edinburgh EH9 3FD (United Kingdom); Takayanagi, Tadashi [Yukawa Institute for Theoretical Physics (YITP), Kyoto University,Kyoto 606-8502 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU),University of Tokyo,Kashiwa, Chiba 277-8582 (Japan)

    2015-01-20

    In this work we study the time evolutions of (Renyi) entanglement entropy of locally excited states in two dimensional conformal field theories (CFTs) at finite temperature. We consider excited states created by acting with local operators on thermal states and give both field theoretic and holographic calculations. In free field CFTs, we find that the growth of Renyi entanglement entropy at finite temperature is reduced compared to the zero temperature result by a small quantity proportional to the width of the localized excitations. On the other hand, in finite temperature CFTs with classical gravity duals, we find that the entanglement entropy approaches a characteristic value at late time. This behaviour does not occur at zero temperature. We also study the mutual information between the two CFTs in the thermofield double (TFD) formulation and give physical interpretations of our results.

  1. Emergence of entanglement with temperature and time in factorization-surface states

    Science.gov (United States)

    Chanda, Titas; Das, Tamoghna; Sadhukhan, Debasis; Pal, Amit Kumar; SenDe, Aditi; Sen, Ujjwal

    2018-01-01

    There exist zero-temperature states in quantum many-body systems that are fully factorized, thereby possessing vanishing entanglement, and hence being of no use as resource in quantum information processing tasks. Such states can become useful for quantum protocols when the temperature of the system is increased, and when the system is allowed to evolve under either the influence of an external environment, or a closed unitary evolution driven by its own Hamiltonian due to a sudden change in the system parameters. Using the one-dimensional anisotropic XY model in a uniform and an alternating transverse magnetic field, we show that entanglement of the thermal states, corresponding to the factorization points in the space of the system parameters, revives once or twice with increasing temperature. We also study the closed unitary evolution of the quantum spin chain driven out of equilibrium when the external magnetic fields are turned off, and show that considerable entanglement is generated during the dynamics, when the initial state has vanishing entanglement. Interestingly, we find that creation of entanglement for a pair of spins is possible when the system is made open to an external heat bath, interacting with the system through that spin-pair via a repetitive quantum interaction.

  2. The evolution of the temperature field during cavity collapse in liquid nitromethane. Part II: reactive case

    Science.gov (United States)

    Michael, L.; Nikiforakis, N.

    2018-02-01

    two- and three-dimensional simulations to examine the change in topology, temperatures, and reactive strength of the hot spots by the third dimension. It is apparent that belated ignition times can be avoided by the use of three-dimensional simulations. The effect of the chemical reactions on the topology and strength of the hot spots in the timescales considered is also studied, in a comparison between inert and reactive simulations where maximum temperature fields and their growth rates are examined.

  3. Time-Temperature Profiling of United Kingdom Consumers' Domestic Refrigerators.

    Science.gov (United States)

    Evans, Ellen W; Redmond, Elizabeth C

    2016-12-01

    Increased consumer demand for convenience and ready-to-eat food, along with changes to consumer food purchase and storage practices, have resulted in an increased reliance on refrigeration to maximize food safety. Previous research suggests that many domestic refrigerators operate at temperatures exceeding recommendations; however, the results of several studies were determined by means of one temperature data point, which, given temperature fluctuation, may not be a true indicator of actual continual operating temperatures. Data detailing actual operating temperatures and the effects of consumer practices on temperatures are limited. This study has collated the time-temperature profiles of domestic refrigerators in consumer kitchens (n = 43) over 6.5 days with concurrent self-reported refrigerator usage. Overall, the findings established a significant difference (P < 0.05) between one-off temperature (the recording of one temperature data point) and mean operating temperature. No refrigerator operated at ≤5.0°C for the entire duration of the study. Mean temperatures exceeding 5.0°C were recorded in the majority (91%) of refrigerators. No significant associations or differences were determined for temperature profiles and demographics, including household size, or refrigerator characteristics (age, type, loading, and location). A positive correlation (P < 0.05) between room temperature and refrigerator temperature was determined. Reported door opening frequency correlated with temperature fluctuation (P < 0.05). Thermometer usage was determined to be infrequent. Cumulatively, research findings have established that the majority of domestic refrigerators in consumer homes operate at potentially unsafe temperatures and that this is influenced by consumer usage. The findings from this study may be utilized to inform the development of shelf-life testing based on realistic domestic storage conditions. Furthermore, the data can inform the development of future

  4. Structure of the radial electric field and toroidal/poloidal flow in high temperature toroidal plasma

    International Nuclear Information System (INIS)

    Ida, Katsumi

    2001-01-01

    The structure of the radial electric field and toroidal/poloidal flow is discussed for the high temperature plasma in toroidal systems, tokamak and Heliotron type magnetic configurations. The spontaneous toroidal and poloidal flows are observed in the plasma with improved confinement. The radial electric field is mainly determined by the poloidal flow, because the contribution of toroidal flow to the radial electric field is small. The jump of radial electric field and poloidal flow are commonly observed near the plasma edge in the so-called high confinement mode (H-mode) plasmas in tokamaks and electron root plasma in stellarators including Heliotrons. In general the toroidal flow is driven by the momentum input from neutral beam injected toroidally. There is toroidal flow not driven by neutral beam in the plasma and it will be more significant in the plasma with large electric field. The direction of these spontaneous toroidal flows depends on the symmetry of magnetic field. The spontaneous toroidal flow driven by the ion temperature gradient is in the direction to increase the negative radial electric field in tokamak. The direction of spontaneous toroidal flow in Heliotron plasmas is opposite to that in tokamak plasma because of the helicity of symmetry of the magnetic field configuration. (author)

  5. Stochastic temperature and the Nicolai map

    International Nuclear Information System (INIS)

    Hueffel, H.

    1989-01-01

    Just as standard temperature can be related to the time coordinate of Euclidean space, a new concept of 'stochastic temperature' may be introduced by associating it to the Parisi-Wu time of stochastic quantization. The perturbative equilibrium limit for a self-interacting scalar field is studied, and a 'thermal' mass shift to one loop is shown. In addition one may interpret the underlying stochastic process as a Nicolai map at nonzero 'temperature'. 22 refs. (Author)

  6. Enhanced field emission of ZnO nanoneedle arrays via solution etching at room temperature

    DEFF Research Database (Denmark)

    Ma, Huanming; Qin, Zhiwei; Wang, Zaide

    2017-01-01

    ZnO nanoneedle arrays (ZnO nns) were synthesized by a facile two-step solution-phase method based on the etching of pre-synthesized ZnO nanowire arrays (ZnO nws) with flat ends at room temperature. Field emission measurement results showed that the turn-on electronic fields of ZnO nns and nws wer...

  7. Development and application of an empirical formula for the high temperature behavior of ferroelectric ceramics switched by electric field at room temperature

    Directory of Open Access Journals (Sweden)

    Dae Won Ji

    2017-05-01

    Full Text Available The strain changes during temperature rise of a poled lead titanate zirconate rectangular parallelepiped switched by electric field at room temperature are obtained by integrating thermal expansion coefficients that are measured using an invar-specimen. By estimating and analyzing pyroelectric and thermal expansion coefficients, first-order differential equations are constructed for polarization and strain changes during temperature increase. The solutions to the differential equations are found and used to calculate the high temperature behavior of the materials. It is shown that the predictions are well compared with measured responses. Finally, the developed formulae are applied to calculate strain butterfly loops from a polarization hysteresis loop at a high temperature.

  8. Mesospheric temperature estimation from meteor decay times of weak and strong meteor trails

    Science.gov (United States)

    Kim, Jeong-Han; Kim, Yong Ha; Jee, Geonhwa; Lee, Changsup

    2012-11-01

    Neutral temperatures near the mesopause region were estimated from the decay times of the meteor echoes observed by a VHF meteor radar during a period covering 2007 to 2009 at King Sejong Station (62.22°S, 58.78°W), Antarctica. While some previous studies have used all meteor echoes to determine the slope from a height profile of log inverse decay times for temperature estimation, we have divided meteor echoes into weak and strong groups of underdense meteor trails, depending on the strength of estimated relative electron line densities within meteor trails. We found that the slopes from the strong group are inappropriate for temperature estimation because the decay times of strong meteors are considerably scattered, whereas the slopes from the weak group clearly define the variation of decay times with height. We thus utilize the slopes only from the weak group in the altitude region between 86 km and 96 km to estimate mesospheric temperatures. The meteor estimated temperatures show a typical seasonal variation near the mesopause region and the monthly mean temperatures are in good agreement with SABER temperatures within a mean difference of 4.8 K throughout the year. The meteor temperatures, representing typically the region around the altitude of 91 km, are lower on average by 2.1 K than simultaneously measured SATI OH(6-2) rotational temperatures during winter (March-October).

  9. Performance of a Predictive Model for Calculating Ascent Time to a Target Temperature

    Directory of Open Access Journals (Sweden)

    Jin Woo Moon

    2016-12-01

    Full Text Available The aim of this study was to develop an artificial neural network (ANN prediction model for controlling building heating systems. This model was used to calculate the ascent time of indoor temperature from the setback period (when a building was not occupied to a target setpoint temperature (when a building was occupied. The calculated ascent time was applied to determine the proper moment to start increasing the temperature from the setback temperature to reach the target temperature at an appropriate time. Three major steps were conducted: (1 model development; (2 model optimization; and (3 performance evaluation. Two software programs—Matrix Laboratory (MATLAB and Transient Systems Simulation (TRNSYS—were used for model development, performance tests, and numerical simulation methods. Correlation analysis between input variables and the output variable of the ANN model revealed that two input variables (current indoor air temperature and temperature difference from the target setpoint temperature, presented relatively strong relationships with the ascent time to the target setpoint temperature. These two variables were used as input neurons. Analyzing the difference between the simulated and predicted values from the ANN model provided the optimal number of hidden neurons (9, hidden layers (3, moment (0.9, and learning rate (0.9. At the study’s conclusion, the optimized model proved its prediction accuracy with acceptable errors.

  10. An Evaluation of Subsurface Plumbing of a Hydrothermal Seep Field and Possible Influence from Local Seismicity from New Time-Series Data Collected at the Davis-Schrimpf Seep Field, Salton Trough, California

    Science.gov (United States)

    Rao, A.; Onderdonk, N.

    2016-12-01

    The Davis­-Schrimpf Seep Field (DSSF) is a group of approximately 50 geothermal mud seeps (gryphons) in the Salton Trough of southeastern California. Its location puts it in line with the mapped San Andreas Fault, if extended further south, as well as within the poorly-understood Brawley Seismic Zone. Much of the geomorphology, geochemistry, and other characteristics of the DSSF have been analyzed, but its subsurface structure remains unknown. Here we present data and interpretations from five new temperature time­series from four separate gryphons at the DSSF, and compare them both amongst themselves, and within the context of all previously collected data to identify possible patterns constraining the subsurface dynamics. Simultaneously collected time-series from different seeps were cross-correlated to quantify similarity. All years' time-series were checked against the record of local seismicity to identify any seismic influence on temperature excursions. Time-series captured from the same feature in different years were statistically summarized and the results plotted to examine their evolution over time. We found that adjacent vents often alternate in temperature, suggesting a switching of flow path of the erupted mud at the scale of a few meters or less. Noticeable warming over time was observed in most of the features with time-series covering multiple years. No synchronicity was observed between DSSF features' temperature excursions, and seismic events within a 24 kilometer radius covering most of the width of the surrounding Salton Trough.

  11. Variable-Field Analytical Ultracentrifugation: I. Time-Optimized Sedimentation Equilibrium

    Science.gov (United States)

    Ma, Jia; Metrick, Michael; Ghirlando, Rodolfo; Zhao, Huaying; Schuck, Peter

    2015-01-01

    Sedimentation equilibrium (SE) analytical ultracentrifugation (AUC) is a gold standard for the rigorous determination of macromolecular buoyant molar masses and the thermodynamic study of reversible interactions in solution. A significant experimental drawback is the long time required to attain SE, which is usually on the order of days. We have developed a method for time-optimized SE (toSE) with defined time-varying centrifugal fields that allow SE to be attained in a significantly (up to 10-fold) shorter time than is usually required. To achieve this, numerical Lamm equation solutions for sedimentation in time-varying fields are computed based on initial estimates of macromolecular transport properties. A parameterized rotor-speed schedule is optimized with the goal of achieving a minimal time to equilibrium while limiting transient sample preconcentration at the base of the solution column. The resulting rotor-speed schedule may include multiple over- and underspeeding phases, balancing the formation of gradients from strong sedimentation fluxes with periods of high diffusional transport. The computation is carried out in a new software program called TOSE, which also facilitates convenient experimental implementation. Further, we extend AUC data analysis to sedimentation processes in such time-varying centrifugal fields. Due to the initially high centrifugal fields in toSE and the resulting strong migration, it is possible to extract sedimentation coefficient distributions from the early data. This can provide better estimates of the size of macromolecular complexes and report on sample homogeneity early on, which may be used to further refine the prediction of the rotor-speed schedule. In this manner, the toSE experiment can be adapted in real time to the system under study, maximizing both the information content and the time efficiency of SE experiments. PMID:26287634

  12. Large low-field magnetoresistance of Fe{sub 3}O{sub 4} nanocrystal at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Shu, E-mail: mishu@buaa.edu.cn; Liu, Rui, E-mail: liurui1987@buaa.edu.cn; Li, Yuanyuan, E-mail: buaaliyuan@163.com; Xie, Yong, E-mail: xiey@buaa.edu.cn; Chen, Ziyu, E-mail: chenzy@buaa.edu.cn

    2017-04-15

    Superparamagnetic magnetite (Fe{sub 3}O{sub 4}) nanoparticles with an average size of 6.5 nm and good monodispersion were synthesized and investigated by X-ray diffraction, Raman spectrometer, transmission electron microscopy and vibrating sample magnetometer. Corresponding low-field magnetoresistance (LFMR) was tested by physical property measurement system. A quite high LFMR has been observed at room temperature. For examples, at a field of 3000 Oe, the LFMR is −3.5%, and when the field increases to 6000 Oe, the LFMR is up to −5.1%. The electron spin polarization was estimated at 25%. This result is superior to the previous reports showing the LFMR of no more than 2% at room temperature. The conduction mechanism is proposed to be the tunneling of conduction electrons between adjacent grains considering that the monodisperse nanocrystals may supply more grain boundaries increasing the tunneling probability, and consequently enhancing the overall magnetoresistance. - Highlights: • Superparamagnetic Fe3O4 nanoparticles with small size were synthesized. • A quite high LFMR has been observed at room temperature. • The more grain boundaries increase the tunneling probability and enlarge the MR. • The fast response of the sample increase the MR at a low field.

  13. Meteorological Reference Years of Daily Mean Temperature during the Slighting Time

    International Nuclear Information System (INIS)

    Marchante Jimenez, M.; Ramirez Santigosa, L.; Navarro Fernandez, A.; Mora Lopez, L.; Sidrach de Cardona Ortin, M.

    2002-01-01

    In this work the characterization of the daily mean temperature during the sunlight time has been analyzed. An algorithm for the hourly series generation from extreme daily values has been applied to evaluate the daily mean temperature during the sunlight time. A generic algorithm has been enhanced as a function of the sunrise time. This algorithm allows taking into account the fractions related to the sunrise and sunset hours. This methodology has been applied in data from 45 Spanish stations, uniformly distributed in the Iberian Peninsula. Data for a period of 14 years has been used in most of locations, and once the interest variable has been calculated, the meteorological reference year of the daily mean temperature during the sunlight time has been evaluated in each stations. The next step is the evaluation of the daily mean temperature during the sunlight time in any point into the zone of evaluation, not only in the measured stations. From the result data in each measured station, an geographic information system has been used in order to calculate the interpolation, obtaining maps with a data each 5 km. for each of the 365 days of the year. Then, this results can be superposed with the solar radiation evaluation obtaining the input data for the sizing of the photovoltaic grid connected system in any point of the Spanish geography. (Author) 64 refs

  14. Development of remote field ECT sensor for high temperature steam generator tubes

    International Nuclear Information System (INIS)

    Onoue, Akira; Yamada, Fumiaki; Imai, Yoshiyuki; Watanabe, Tomoo; Ozawa, Kazumasa

    2005-02-01

    Commercialized Fast Breeder Reactor (FBR)s have to achieve competitive unit price in electricity generation with other energy sources by reducing not only construction and fuel cost but also operation and maintenance cost, in order to be introduced in line with market principles. Operation and maintenance cost cannot be reduced until plant utilization factor is enhanced by shortening duration times of periodical inspections and expanding continuous operation periods. Critical paths in periodical inspections should be shortened to reduce entire duration time of a periodical inspections should be shortened to reduce entire duration time of a periodical inspection. and reduction of the inspection time is desired. Reflecting this background, as a research activity within the Feasibility Study for Future Commercialized FBRs, technology for volumetric inspection of SG heat transfer tubes in high temperature is being developed, in order to reduce the inspection time by skipping cooling down process. This report describes a series of experiments of heat-resistant remote field (RF) ECT probe to evaluate its defect detection performance on outer surface of heat transfer tubes. The results are summarized as listed below: (1) Defects can be detected in high temperature if sodium is drained, but cannot be detected if tube is submerged in liquid sodium. (2) The goal detection performance against round wall thinning is thought to be possibly achieved, because the measured S/N ratio exceeds 9.3 in detecting artificial round wall thinning with 10 mm width and depth beyond 10%. (3) Round wall slits can possibly detected because the S/N ratio exceeded 3.7 in detecting artificial round wall slits with 0.5 mm width and depth beyond 15%. (4) Defects of partial wall thinning are difficult to be detected, because the S/N ratio was less than 2.0 in detecting partial wall thinning with 10 mm width and 10 mm axial length and depth up to 20%. (5) In detecting defects of 12Cr steel tubes by

  15. An Integrated Approach to Estimate Instantaneous Near-Surface Air Temperature and Sensible Heat Flux Fields during the SEMAPHORE Experiment.

    Science.gov (United States)

    Bourras, Denis; Eymard, Laurence; Liu, W. Timothy; Dupuis, Hélène

    2002-03-01

    A new technique was developed to retrieve near-surface instantaneous air temperatures and turbulent sensible heat fluxes using satellite data during the Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment, which was conducted in 1993 under mainly anticyclonic conditions. The method is based on a regional, horizontal atmospheric temperature advection model whose inputs are wind vectors, sea surface temperature fields, air temperatures around the region under study, and several constants derived from in situ measurements. The intrinsic rms error of the method is 0.7°C in terms of air temperature and 9 W m2 for the fluxes, both at 0.16° × 0.16° and 1.125° × 1.125° resolution. The retrieved air temperature and flux horizontal structures are in good agreement with fields from two operational general circulation models. The application to SEMAPHORE data involves the First European Remote Sensing Satellite (ERS-1) wind fields, Advanced Very High Resolution Radiometer (AVHRR) SST fields, and European Centre for Medium-Range Weather Forecasts (ECMWF) air temperature boundary conditions. The rms errors obtained by comparing the estimations with research vessel measurements are 0.3°C and 5 W m2.

  16. Bias temperature instability in tunnel field-effect transistors

    Science.gov (United States)

    Mizubayashi, Wataru; Mori, Takahiro; Fukuda, Koichi; Ishikawa, Yuki; Morita, Yukinori; Migita, Shinji; Ota, Hiroyuki; Liu, Yongxun; O'uchi, Shinichi; Tsukada, Junichi; Yamauchi, Hiromi; Matsukawa, Takashi; Masahara, Meishoku; Endo, Kazuhiko

    2017-04-01

    We systematically investigated the bias temperature instability (BTI) of tunnel field-effect transistors (TFETs). The positive BTI and negative BTI mechanisms in TFETs are the same as those in metal-oxide-semiconductor FETs (MOSFETs). In TFETs, although traps are generated in high-k gate dielectrics by the bias stress and/or the interface state is degraded at the interfacial layer/channel interface, the threshold voltage (V th) shift due to BTI degradation is caused by the traps and/or the degradation of the interface state locating the band-to-band tunneling (BTBT) region near the source/gate edge. The BTI lifetime in n- and p-type TFETs is improved by applying a drain bias corresponding to the operation conditions.

  17. Coaxial monitoring of temperature field in selective pulsed laser melting

    Science.gov (United States)

    Liu, Che; Chen, Zhongyun; Cao, Hongzhong; Zhou, Jianhong

    2017-10-01

    Selective Laser Melting is a rapid manufacturing technology which produces complex parts layer by layer. The presence of thermal stress and thermal strain in the forming process often leads to defects in the formed parts. In order to detect fabricate errors and avoid failure which caused by thermal gradient in time. An infrared thermal imager and a high speed CCD camera were applied to build a coaxial optical system for real-time monitoring the temperature distribution and changing trend of laser affected zone in SLM forming process. Molten tracks were fabricated by SLM under different laser parameters such as frequency, pulse width. And the relationship between the laser parameters and the temperature distribution were all obtained and analyzed.

  18. Electric-field-induced modification of the magnon energy, exchange interaction, and curie temperature of transition-metal thin films.

    Science.gov (United States)

    Oba, M; Nakamura, K; Akiyama, T; Ito, T; Weinert, M; Freeman, A J

    2015-03-13

    The electric-field-induced modification in the Curie temperature of prototypical transition-metal thin films with the perpendicular magnetic easy axis, a freestanding Fe(001) monolayer and a Co monolayer on Pt(111), is investigated by first-principles calculations of spin-spiral structures in an external electric field (E field). An applied E field is found to modify the magnon (spin-spiral formation) energy; the change arises from the E-field-induced screening charge density in the spin-spiral states due to p-d hybridizations. The Heisenberg exchange parameters obtained from the magnon energy suggest an E-field-induced modification of the Curie temperature, which is demonstrated via Monte Carlo simulations that take the magnetocrystalline anisotropy into account.

  19. Perturbative study in quantum field theory at finite temperature, application to lepton pair production from a quark-gluon plasma

    International Nuclear Information System (INIS)

    Altherr, T.

    1989-12-01

    The main topic of this thesis is a perturbative study of Quantum Field Theory at Finite Temperature. The real-time formalism is used throughout this work. We show the cancellation of infrared and mass singularities in the case of the first order QCD corrections to lepton pair production from a quark-gluon plasma. Two methods of calculation are presented and give the same finite result in the limit of vanishing quark mass. These finite terms are analysed and give small corrections in the region of interest for ultra-relativistic heavy ions collisions, except for a threshold factor. Specific techniques for finite temperature calculations are explicited in the case of the fermionic self-energy in QED [fr

  20. FDTD analysis of temperature elevation in the lens of human and rabbit models due to near-field and far-field exposures at 2.45 GHz

    International Nuclear Information System (INIS)

    Oizumi, T.; Laakso, I.; Hirata, A.; Fujiwara, O.; Watanabe, S.; Taki, M.; Kojima, M.; Sasaki, H.; Sasaki, K.

    2013-01-01

    The eye is said to be one of the most sensitive organs to microwave heating. According to previous studies, the possibility of microwave-induced cataract formation has been experimentally investigated in rabbit and monkey eyes, but not for the human eye due to ethical reasons. In the present study, the temperature elevation in the lens, the skin around the eye and the core temperature of numerical human and rabbit models for far-field and near-field exposures at 2.45 GHz are investigated. The temperature elevations in the human and rabbit models were compared with the threshold temperatures for inducing cataracts, thermal pain in the skin and reversible health effects such as heat exhaustion or heat stroke. For plane-wave exposure, the core temperature elevation is shown to be essential both in the human and in the rabbit models as suggested in the international guidelines and standards. For localised exposure of the human eye, the temperature elevation of the skin was essential, and the lens temperature did not reach its threshold for thermal pain. On the other hand, the lens temperature elevation was found to be dominant for the rabbit eye. (authors)

  1. FDTD analysis of temperature elevation in the lens of human and rabbit models due to near-field and far-field exposures at 2.45 GHz.

    Science.gov (United States)

    Oizumi, Takuya; Laakso, Ilkka; Hirata, Akimasa; Fujiwara, Osamu; Watanabe, Soichi; Taki, Masao; Kojima, Masami; Sasaki, Hiroshi; Sasaki, Kazuyuki

    2013-07-01

    The eye is said to be one of the most sensitive organs to microwave heating. According to previous studies, the possibility of microwave-induced cataract formation has been experimentally investigated in rabbit and monkey eyes, but not for the human eye due to ethical reasons. In the present study, the temperature elevation in the lens, the skin around the eye and the core temperature of numerical human and rabbit models for far-field and near-field exposures at 2.45 GHz are investigated. The temperature elevations in the human and rabbit models were compared with the threshold temperatures for inducing cataracts, thermal pain in the skin and reversible health effects such as heat exhaustion or heat stroke. For plane-wave exposure, the core temperature elevation is shown to be essential both in the human and in the rabbit models as suggested in the international guidelines and standards. For localised exposure of the human eye, the temperature elevation of the skin was essential, and the lens temperature did not reach its threshold for thermal pain. On the other hand, the lens temperature elevation was found to be dominant for the rabbit eye.

  2. Temperature Dependence and Magnetic Field Dependence of Quantum Point Contacts in Si-Inversion Layers

    NARCIS (Netherlands)

    Wang, S.L.; Son, P.C. van; Wees, B.J. van; Klapwijk, T.M.

    1992-01-01

    The conductance of ballistic point contacts in high-mobility Si-inversion layers has been studied at several temperatures between 75 and 600 mK both without and in a magnetic field (up to 12T). When the width of constriction is varied in zero magnetic field, step-like features at multiples of 4e2/h

  3. Field Test of Boiler Primary Loop Temperature Controller

    Energy Technology Data Exchange (ETDEWEB)

    Glanville, P. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Rowley, P. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Schroeder, D. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Brand, L. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States)

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and, in some cases, return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential.

  4. Kiloampere, Variable-Temperature, Critical-Current Measurements of High-Field Superconductors.

    Science.gov (United States)

    Goodrich, L F; Cheggour, N; Stauffer, T C; Filla, B J; Lu, X F

    2013-01-01

    K to those measured on the same specimen in flowing helium gas ("gas" or I c gas) at the same temperature. These comparisons indicate the temperature control is effective over the superconducting wire length between the voltage taps, and this condition is valid for all types of sample investigated, including Nb-Ti, Nb3Sn, and MgB2 wires. The liquid/gas comparisons are used to study the variable-temperature measurement protocol that was necessary to obtain the "correct" critical current, which was assumed to be the I c liq. We also calibrated the magnetoresistance effect of resistive thermometers for temperatures from 4 K to 35 K and magnetic fields from 0 T to 16 T. This calibration reduces systematic errors in the variable-temperature data, but it does not affect the liquid/gas comparison since the same thermometers are used in both cases.

  5. Chiral anomalies in QED and QCD at finite temperature

    International Nuclear Information System (INIS)

    Alvarez-Estrada, R.F.

    1991-01-01

    Chiral anomalies (a) for QED and QCD at finite temperature are analyzed in imaginary- and real-time formalisms. Both triangle diagrams and functional methods are used. It is found that the expressions for a in terms of finite-temperature fields are formally similar to that for the zero-temperature anomaly as a function of zero-temperature fields, thereby generalizing previous work by other authors. (author). 20 refs.; 1 fig

  6. Analytical solution of transient temperature in continuous wave end-pumped laser slab: Reduction of temperature distribution and time of thermal response

    Directory of Open Access Journals (Sweden)

    Shibib Khalid S.

    2017-01-01

    Full Text Available An analytical solution of transient 3-D heat equation based on integral transform method is derived. The result are compared with numerical solution, and good agreements are obtained. Minimization of response time and temperature distribution through a laser slab are tested. It is found that the increasing in the lateral convection heat transfer coefficient can significantly reduce the response time and the temperature distribution while no effect on response time is observed when changing pumping profile from Gaussian to top hat beam in spite of the latter reduce the temperature distribution, also it is found that dividing the pumping power between two slab ends might reduce the temperature distribution and it has no effect on thermal response time.

  7. Distinctive Anthocyanin Accumulation Responses to Temperature and Natural UV Radiation of Two Field-Grown Vitis vinifera L. Cultivars

    Directory of Open Access Journals (Sweden)

    Ana Fernandes de Oliveira

    2015-01-01

    Full Text Available The responses of two red grape varieties, Bovale Grande (syn. Carignan and Cannonau (syn. Grenache, to temperature and natural UV radiation were studied in a three-years field experiment conducted in Sardinia (Italy, under Mediterranean climate conditions. Vines were covered with plastic films with different transmittances to UV radiation and compared to uncovered controls. Light intensity and spectral composition at the fruit zone were monitored and berry skin temperature was recorded from veraison. Total skin anthocyanin content (TSA and composition indicated positive but inconsistent effects of natural UV light. Elevated temperatures induced alterations to a greater extent, decreasing TSA and increasing the degree of derivatives acylation. In Cannonau total soluble solids increases were not followed by increasing TSA as in Bovale Grande, due to both lower phenolic potential and higher sensitivity to permanence of high temperatures. Multi linear regression analysis tested the effects of different ranges of temperature as source of variation on anthocyanin accumulation patterns. To estimate the thermal time for anthocyanin accumulation, the use of normal heat hours model had benefit from the addition of predictor variables that take into account the permanence of high (>35 °C and low (<15 °C and <17 °C temperatures during ripening.

  8. Measurability of quantum fields and the energy-time uncertainty relation

    International Nuclear Information System (INIS)

    Mensky, Mikhail B

    2011-01-01

    Quantum restrictions on the measurability of an electromagnetic field strength and their relevance to the energy-time uncertainty relation are considered. The minimum errors in measuring electromagnetic field strengths, as they were estimated by the author (1988) in the framework of the phenomenological method of restricted path integral (RPI), are compared with the analogous estimates found by Landau and Peierls (1931) and by Bohr and Rosenfeld (1933) with the help of certain measurement setups. RPI-based restrictions, including those of Landau and Peierls as a special case, hold for any measuring schemes meeting the strict definition of measurement. Their fundamental nature is confirmed by the fact that their associated field detectability condition has the form of the energy-time uncertainty relation. The weaker restrictions suggested by Bohr and Rosenfeld rely on an extended definition of measurement. The energy-time uncertainty relation, which is the condition for the electromagnetic field to be detectable, is applied to the analysis of how the near-field scanning microscope works. (methodological notes)

  9. Effect of temperature and time of pasteurization on the milk quality during storage

    Directory of Open Access Journals (Sweden)

    Abubakar

    2001-03-01

    Full Text Available A study on the effect of temperature and time of pasteurization on the milk quality during storage was carried out using fresh milk. The aim of the experiment was to asses the storage time of pasteurized milk for consumption without nutrient losses. A completely randomized factorial design, 2 x 8 was used, with pasteurization temperature (T, consisted of 2 levels, the low temperature long time (LTLT, i.e. fresh milk was warmed at 65oC for 30 minutes (T1 and the high temperature short time (HTST, i.e. fresh milk was warmed at 71oC for 15 seconds (T2; and storage time (S, consisted of 8 levels, i.e. 0, 3, 6, 9, 12, 15, 18, and 21 hours respectively, as the factors, with 3 replicates. Parameters measured were alcohol test, water, fat, and protein concentrations, and microbial population of pasteurized milk during storage. Data were analyzed using analysis of variance and simple linear regression. The result showed that water and fat concentrations and microbial population was not significantly different (P>0.05 in pasteurization temperature treatment, but was significantly different (P<0.05 due to storage time treatment. Meanwhile, the protein concentration was significantly different (P<0.05 either in pasteurization temperature or storage time. It was concluded that pasteurized milk was still suitable for consumption at 15-21 hours storage, while protein concentration tended to be better when was pasteurized at 65oC.

  10. Real time algorithm temperature compensation in tunable laser / VCSEL based WDM-PON system

    DEFF Research Database (Denmark)

    Iglesias Olmedo, Miguel; Rodes Lopez, Roberto; Pham, Tien Thang

    2012-01-01

    We report on a real time experimental validation of a centralized algorithm for temperature compensation of tunable laser/VCSEL at ONU and OLT, respectively. Locking to a chosen WDM channel is shown for temperature changes over 40°C.......We report on a real time experimental validation of a centralized algorithm for temperature compensation of tunable laser/VCSEL at ONU and OLT, respectively. Locking to a chosen WDM channel is shown for temperature changes over 40°C....

  11. Two-dimensional calculation by finite element method of velocity field and temperature field development in fast reactor fuel assembly. II

    International Nuclear Information System (INIS)

    Schmid, J.

    1985-11-01

    A package of updated computer codes for velocity and temperature field calculations for a fast reactor fuel subassembly (or its part) by the finite element method is described. Isoparametric triangular elements of the second degree are used. (author)

  12. Time development of electric fields and currents in space plasmas

    Directory of Open Access Journals (Sweden)

    A. T. Y. Lui

    2006-05-01

    Full Text Available Two different approaches, referred to as Bu and Ej, can be used to examine the time development of electric fields and currents in space plasmas based on the fundamental laws of physics. From the Bu approach, the required equation involves the generalized Ohm's law with some simplifying assumptions. From the Ej approach, the required equation can be derived from the equation of particle motion, coupled self-consistently with Maxwell's equation, and the definition of electric current density. Recently, some strong statements against the Ej approach have been made. In this paper, we evaluate these statements by discussing (1 some limitations of the Bu approach in solving the time development of electric fields and currents, (2 the procedure in calculating self-consistently the time development of the electric current in space plasmas without taking the curl of the magnetic field in some cases, and (3 the dependency of the time development of magnetic field on electric current. It is concluded that the Ej approach can be useful to understand some magnetospheric problems. In particular, statements about the change of electric current are valid theoretical explanations of change in magnetic field during substorms.

  13. High-Temperature-Short-Time Annealing Process for High-Performance Large-Area Perovskite Solar Cells.

    Science.gov (United States)

    Kim, Minjin; Kim, Gi-Hwan; Oh, Kyoung Suk; Jo, Yimhyun; Yoon, Hyun; Kim, Ka-Hyun; Lee, Heon; Kim, Jin Young; Kim, Dong Suk

    2017-06-27

    Organic-inorganic hybrid metal halide perovskite solar cells (PSCs) are attracting tremendous research interest due to their high solar-to-electric power conversion efficiency with a high possibility of cost-effective fabrication and certified power conversion efficiency now exceeding 22%. Although many effective methods for their application have been developed over the past decade, their practical transition to large-size devices has been restricted by difficulties in achieving high performance. Here we report on the development of a simple and cost-effective production method with high-temperature and short-time annealing processing to obtain uniform, smooth, and large-size grain domains of perovskite films over large areas. With high-temperature short-time annealing at 400 °C for 4 s, the perovskite film with an average domain size of 1 μm was obtained, which resulted in fast solvent evaporation. Solar cells fabricated using this processing technique had a maximum power conversion efficiency exceeding 20% over a 0.1 cm 2 active area and 18% over a 1 cm 2 active area. We believe our approach will enable the realization of highly efficient large-area PCSs for practical development with a very simple and short-time procedure. This simple method should lead the field toward the fabrication of uniform large-scale perovskite films, which are necessary for the production of high-efficiency solar cells that may also be applicable to several other material systems for more widespread practical deployment.

  14. Dynamical equations for time-ordered Green’s functions: from the Keldysh time-loop contour to equilibrium at finite and zero temperature

    International Nuclear Information System (INIS)

    Ness, H; Dash, L K

    2012-01-01

    We study the dynamical equation of the time-ordered Green’s function at finite temperature. We show that the time-ordered Green’s function obeys a conventional Dyson equation only at equilibrium and in the limit of zero temperature. In all other cases, i.e. finite temperature at equilibrium or non-equilibrium, the time-ordered Green’s function obeys instead a modified Dyson equation. The derivation of this result is obtained from the general formalism of the non-equilibrium Green’s functions on the Keldysh time-loop contour. At equilibrium, our result is fully consistent with the Matsubara temperature Green’s function formalism and also justifies rigorously the correction terms introduced in an ad hoc way with Hedin and Lundqvist. Our results show that one should use the appropriate dynamical equation for the time-ordered Green’s function when working beyond the equilibrium zero-temperature limit.

  15. Field tests reveal genetic variation for performance atlow temperatures in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Overgaard, Johannes; Sørensen, Jesper Givskov; Jensen, Louise Toft

    2010-01-01

    investigated a population of Drosophila melanogaster for performance at low temperature conditions in the field using release recapture assays and in the laboratory using standard cold resistance assays. The aim of the study was to get a better understanding of the nature and underlying mechanisms of the trait...

  16. Dynamic phase transitions in a cylindrical Ising nanowire under a time-dependent oscillating magnetic field

    International Nuclear Information System (INIS)

    Deviren, Bayram; Kantar, Ersin; Keskin, Mustafa

    2012-01-01

    The dynamic phase transitions in a cylindrical Ising nanowire system under a time-dependent oscillating external magnetic field for both ferromagnetic and antiferromagnetic interactions are investigated within the effective-field theory with correlations and the Glauber-type stochastic dynamics approach. The effective-field dynamic equations for the average longitudinal magnetizations on the surface shell and core are derived by employing the Glauber transition rates. Temperature dependence of the dynamic magnetizations, the dynamic total magnetization, the hysteresis loop areas and the dynamic correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic transitions as well as the dynamic phase transition temperatures and the compensation behaviors. The system strongly affected by the surface situations. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. According to the values of Hamiltonian parameters, five different types of compensation behaviors in the Néel classification nomenclature exist in the system. The system also exhibits a reentrant behavior. - Highlights: ► The dynamic aspects of a cylindrical Ising nanowire are investigated in detail. ► The dynamic magnetizations, hysteresis loop areas and correlations are calculated. ► We studied both the FM and AFM interactions within the EFT with correlations. ► Some characteristic phenomena are found depending on the interaction parameters. ► We obtained five different types of compensation behaviors and reentrant behavior.

  17. Dynamic phase transitions in a cylindrical Ising nanowire under a time-dependent oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Kantar, Ersin [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-07-15

    The dynamic phase transitions in a cylindrical Ising nanowire system under a time-dependent oscillating external magnetic field for both ferromagnetic and antiferromagnetic interactions are investigated within the effective-field theory with correlations and the Glauber-type stochastic dynamics approach. The effective-field dynamic equations for the average longitudinal magnetizations on the surface shell and core are derived by employing the Glauber transition rates. Temperature dependence of the dynamic magnetizations, the dynamic total magnetization, the hysteresis loop areas and the dynamic correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic transitions as well as the dynamic phase transition temperatures and the compensation behaviors. The system strongly affected by the surface situations. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. According to the values of Hamiltonian parameters, five different types of compensation behaviors in the Neel classification nomenclature exist in the system. The system also exhibits a reentrant behavior. - Highlights: Black-Right-Pointing-Pointer The dynamic aspects of a cylindrical Ising nanowire are investigated in detail. Black-Right-Pointing-Pointer The dynamic magnetizations, hysteresis loop areas and correlations are calculated. Black-Right-Pointing-Pointer We studied both the FM and AFM interactions within the EFT with correlations. Black-Right-Pointing-Pointer Some characteristic phenomena are found depending on the interaction parameters. Black-Right-Pointing-Pointer We obtained five different types of compensation behaviors and reentrant behavior.

  18. Monte Carlo steps per spin vs. time in the master equation II: Glauber kinetics for the infinite-range ising model in a static magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Suhk Kun [Chungbuk National University, Chungbuk (Korea, Republic of)

    2006-01-15

    As an extension of our previous work on the relationship between time in Monte Carlo simulation and time in the continuous master equation in the infinit-range Glauber kinetic Ising model in the absence of any magnetic field, we explored the same model in the presence of a static magnetic field. Monte Carlo steps per spin as time in the MC simulations again turns out to be proportional to time in the master equation for the model in relatively larger static magnetic fields at any temperature. At and near the critical point in a relatively smaller magnetic field, the model exhibits a significant finite-size dependence, and the solution to the Suzuki-Kubo differential equation stemming from the master equation needs to be re-scaled to fit the Monte Carlo steps per spin for the system with different numbers of spins.

  19. An investigation of methods for neutron dose measurement in high temperature irradiation fields

    Energy Technology Data Exchange (ETDEWEB)

    Kosako, Toshisou; Sugiura, Nobuyuki [Tokyo Univ. (Japan); Kudo, Kazuhiko [Kyushu Univ., Fukuoka (Japan)] [and others

    2000-10-01

    The Japan Atomic Energy Research Institute (JAERI) has been conducting the innovative basic research on high temperature since 1994, which is a series of high temperature irradiation studies using the High Temperature Engineering Test Reactor (HTTR). 'The Task Group for Evaluation of Irradiation Dose under High Temperature Radiation' was founded in the HTTR Utilization Research Committee, which is the promoting body of the innovative basic research. The present report is a summary of investigation which has been made by the Task Group on the present status and subjects of research and development of neutron detectors in high temperature irradiation fields, in view of contributing to high temperature irradiation research using the HTTR. Detectors investigated here in the domestic survey are the following five kinds of in-core detectors: 1) small fission counter, 2) small fission chamber, 3) self-powered detector, 4) activation detector, and 5) optical fiber. In addition, the research and development status in Russia has been investigated. The present report will also be useful as nuclear instrumentation of high temperature gas-cooled reactors. (author)

  20. Temperature measurements in ZT-40M

    International Nuclear Information System (INIS)

    Little, E.M.; Haberstich, A.; Thomas, K.S.; Watt, R.G.

    1983-01-01

    Electron temperatures derived from Thomson scattering and ultrasoft x-ray (USXR) measurements taken before and after machine modifications are compared for ZT-40M. Modifications were made to the magnetic field windings to reduce field errors and the joints in the aluminum shell were coated with joint compound to reduce resistance and make all joints electrically uniform. These modifications resulted in increased plasma lifetime in ZT-40M from less than 10 ms to over 20 ms. Thomson scattering measurements were made with a single-point Thomson scattering apparatus. The scattered spectrum is collected by a three-grating spectrometer. The soft x rays are collected by a two-foil differential transmission system whose foil ratios may be easily varied. Before modifications the Thomson scattering and soft x-ray temperatures agreed up until 3 to 4 ms into the discharge. After this time the Thomson scattering temperature decreased slowly while the soft x-ray ''temperature'' increased rapidly. field errors resulted in Thomson scattering and USXR ''temperature'' time histories remaining fairly flat out to 10 to 11 ms, but introduced a small discrepancy (about 50 eV) in the absolute value of the temperatures. This change may be due either to the change in foil thickness used or to changes in radial temperature profiles. Profile changes may have been caused by the addition of four poloidal limiters or improvements to the magnetic field topology. After modifications the temperatures from both Thomson scattering and USXR were lower and the plasma density was higher. This is probably a result of the lower plasma-wall interaction with the new configuration

  1. Calculation of Distribution Dynamics of Inhomogeneous Temperature Field in Range of Fuel Elements by Using FreeFem++

    Science.gov (United States)

    Amosova, E. V.; Shishkin, A. V.

    2017-11-01

    This article introduces the result of studying the heat exchange in the fuel element of the nuclear reactor fuel magazine. Fuel assemblies are completed as a bundle of cylindrical fuel elements located at the tops of a regular triangle. Uneven distribution of fuel rods in a nuclear reactor’s core forms the inhomogeneity of temperature fields. This article describes the developed method for heat exchange calculation with the account for impact of an inhomogeneous temperature field on the thermal-physical properties of materials and unsteady effects. The acquired calculation results are used for evaluating the tolerable temperature levels in protective case materials.

  2. The equilibrium magnetization of granular high temperature superconductors in low fields. Pt. 1

    International Nuclear Information System (INIS)

    Ruppel, S.; Michels, G.; Geus, H.; Kalenborn, J.; Schlabitz, W.; Wohlleben, D.

    1990-01-01

    We report the temperature and field dependence of the Meissner flux expulsion of sintered pellets of YBa 2 (Cu 1-x Fe x ) 3 O 7-y with 0≤x≤0.08. In all samples the flux expulsion remains incomplete (-4 πχ∼1/3) down to fields, which are much smaller than H c1 , but for H≤2 Oe they all finally exhibit a full Meissner effect and are therefore fully superconducting. The expulsion in 2 Oe decreases to near 30% by aging of the grain boundaries and goes back to near 100% after their reoxidation, all at a fixed and sharp T c of 93 K. The data are interpreted in terms of equilibrium properties of granular high temperature superconductors on the basis of an analysis, which is described in detail in the following paper. An average cross-section of the superconducting 'grains' in the CuO planes of 4 μm 2 is extracted from the temperature and field dependence of the spontaneous flux expulsion. These 'grains' lie within the much larger crystallographic grains and are bordered by planar defects. Superconducting loops around these planar defects are responsible for the final flux expulsion in H c can also be extracted from the data. One finds ΔT c ≤1 K in the orthorhombic phase (x ≤ 0.02), while in the quasitetragonal phase, ΔT c increases from 1 to 16 K for 0.02 < x ≤ 0.08. (orig.)

  3. Influence of electric field, hydrostatic pressure and temperature on the electric state in a Poschl-Teller quantum well

    International Nuclear Information System (INIS)

    Hakimyfard, A.; Barseghyan, M.G.; Kirakosyan, A.A.; Duque, C.A.

    2010-01-01

    Influence of the electric field and hydrostatic pressure on the electronic states in a Poschl-Teller quantum well is studied. In the framework of variational method the dependences of the ground state energy on the electric field and hydrostatic pressure are calculated for different values of the potential parameters and the temperature. It is shown that the increase in the electric field leads to the increase in the ground state energy, while the increase in the well width leads to the strengthening of the electric field effect. The ground state energy decreases with increasing pressure and increases with increasing temperature

  4. Time-temperature relationships for hyperthermal radiosensitisation in mouse intestine: influence of thermotolerance

    International Nuclear Information System (INIS)

    Hume, S.P.; Marigold, J.C.L.

    1985-01-01

    Thermal enhancement of radiation injury to the crypt compartment of mouse small intestinal mucosa has been measured as a function of heating time for temperatures in the range 41.0-44.0 0 C. All the hyperthermal treatments used were themselves subthreshold for gross tissue injury. With this limitation, thermoradiosensitisation increased linearly with duration of hyperthermia for temperatures in the range 42.3-44.0 0 C. Using temperatures below 42.0 0 C, there was a saturation in effect for treatments longer than approximately 40-90 min. For temperatures above the transition, a 1 0 C change was equivalent to a factor of 2.6 in heating time; below the transition, a 1 0 C change was equivalent to a factor of 5.4. Time-temperature relationships for thermoradiosensitisation in other rodent tissues are reviewed and compared with the general relationships for direct thermal injury, previously derived from experimental studies. The results are discussed with relevance to the interpretation of in vivo thermal enhancement of radiation injury. (Auth.)

  5. Application of SQUIDs to low temperature and high magnetic field measurements—Ultra low noise torque magnetometry

    Science.gov (United States)

    Arnold, F.; Naumann, M.; Lühmann, Th.; Mackenzie, A. P.; Hassinger, E.

    2018-02-01

    Torque magnetometry is a key method to measure the magnetic anisotropy and quantum oscillations in metals. In order to resolve quantum oscillations in sub-millimeter sized samples, piezo-electric micro-cantilevers were introduced. In the case of strongly correlated metals with large Fermi surfaces and high cyclotron masses, magnetic torque resolving powers in excess of 104 are required at temperatures well below 1 K and magnetic fields beyond 10 T. Here, we present a new broadband read-out scheme for piezo-electric micro-cantilevers via Wheatstone-type resistance measurements in magnetic fields up to 15 T and temperatures down to 200 mK. By using a two-stage superconducting-quantum interference device as a null detector of a cold Wheatstone bridge, we were able to achieve a magnetic moment resolution of Δm = 4 × 10-15 J/T at maximal field and 700 mK, outperforming conventional magnetometers by at least one order of magnitude in this temperature and magnetic field range. Exemplary de Haas-van Alphen measurement of a newly grown delafossite, PdRhO2, was used to show the superior performance of our setup.

  6. Temperature field in concrete when in contact with hot liquids

    International Nuclear Information System (INIS)

    Andrade Lima, F.R. de.

    1981-09-01

    In an HCDA (Hypothetical Core Disruptive Accident) it is postulated that liquid metal coolants and core materials come in contact with the retaining concrete structure. A mathematical model and an associated computer program was previously developed to describle the transient heat and mass transfer in the concrete. Implementations on the original program-USINT- are included to consider the variations of the thermal conductivity as a function of the temperature. Also a subroutine - PLOTTI - is incorporated to the program for the plotting of the results. The new program - USINTG - is used to calculate the temperature and pressure fields and the water released from concrete structures during a sodium leak simulation and with the concrete structures in contact with liquid sodium. No consideration about chemical reactions involving the sodium when in contact with concrete is considered. (Author) [pt

  7. The effect of melting temperature and time on the TiC particles

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Kun [Key Laboratory of Materials Liquid Structure and Heredity, Ministry of Education, Shandong University, Ji' nan 250061 (China); Liu Xiangfa, E-mail: xfliu@sdu.edu.c [Key Laboratory of Materials Liquid Structure and Heredity, Ministry of Education, Shandong University, Ji' nan 250061 (China)

    2009-09-18

    In the present work, the microstructure formation process and particle size distribution of TiC in Al-Ti-C master alloys are investigated by particle size analysis, which is based on the morphology characterizing from scanning electron microscopy (SEM). The TiC particle size distributions at different melting temperatures and during different melting times are researched. It is demonstrated that the TiC particle sizes increase with melting temperature and melting time elapsed. The micro size particles appear when the melting temperature is high enough.

  8. The effect of melting temperature and time on the TiC particles

    International Nuclear Information System (INIS)

    Jiang Kun; Liu Xiangfa

    2009-01-01

    In the present work, the microstructure formation process and particle size distribution of TiC in Al-Ti-C master alloys are investigated by particle size analysis, which is based on the morphology characterizing from scanning electron microscopy (SEM). The TiC particle size distributions at different melting temperatures and during different melting times are researched. It is demonstrated that the TiC particle sizes increase with melting temperature and melting time elapsed. The micro size particles appear when the melting temperature is high enough.

  9. Soliton pair creation at finite temperatures

    International Nuclear Information System (INIS)

    Grigoriev, D.Yu.; Rubakov, V.A.

    1988-01-01

    Creation of soliton-antisoliton pairs at finite temperature is considered within a (1+1)-dimensional model of a real scalar field. It is argued that at certain temperatures, the soliton pair creation in quantum theory can be investigated by studying classical field evolution in real time. The classical field equations are solved numerically, and the pair creation rate and average number of solitons are evaluated. No peculiar suppression of the rate is observed. Some results on the sphaleron transitions in (1+1)-dimensional abelian Higgs model are also presented. (orig.)

  10. A new modified-serpentine flow field for application in high temperature polymer electrolyte fuel cell

    DEFF Research Database (Denmark)

    Singdeo, Debanand; Dey, Tapobrata; Gaikwad, Shrihari

    2017-01-01

    field design is proposed and its usefulness for the fuel cell applications are evaluated in a high-temperature polymer electrolyte fuel cell. The proposed geometry retains some of the features of serpentine flow field such as multiple bends, while modifications are made in its in-plane flow path...

  11. Electric field measurement in the ionosphere using the time-of-flight technique

    International Nuclear Information System (INIS)

    Nakamura, Masato; Hayakawa, Hajime; Tsuruda, Koichiro

    1989-01-01

    The first successful electric field measurement in the ionosphere using the time-of-flight technique with a lithium ion beam was carried out on a S-520 sounding rocket launched from Kagoshima Space Center, Japan on January 15, 1987. The purpose of this experiment was to prove the validity of the time-of-flight technique when it is applied to the measurement of the dc electric field in the ionosphere. A time-coded ion beam was ejected from the rocket in the direction perpendicular to the Earth's magnetic field. The beam returned to the rocket twice per rocket spin when the initial beam direction was nearly perpendicular to the electric field. The electric field and the magnetic field were derived from the travel time of these return lithium ions. The accuracy of the electric field determination was ± 0.3 mV/m. The direction of the electric field was obtained from the direction of the returning ion beam after about one ion gyration. The main constituent of the measured electric field was a V x B field due to the rocket motion across the geomagnetic field. The ambient field was less than 1 mV/m. The magnetic field was measured with an accuracy of ± 2.7 nT in this experiment

  12. Fermions in interaction with time dependent fields

    International Nuclear Information System (INIS)

    Falkensteiner, P.; Grosse, H.

    1988-01-01

    We solve a two dimensional model describing the interaction of fermions with time dependent external fields. We work out the second quantized formulation and obtain conditions for equivalence of representations at different times. This implies the existence of sectors which describe charged states. We obtain the time dependence of charges and observe that charge differences become integer for unitary equivalent states. For scattering we require the equivalence of in- and out-representations; nevertheless charged sectors may be reached by suitable interactions and ionization is possible. 20 refs. (Author)

  13. Effect of temperature on Acoustic Evaluation of standing trees and logs: Part 2: Field Investigation

    Science.gov (United States)

    Shan Gao; Xiping Wang; Lihai Wang; R. Bruce Allison

    2013-01-01

    The objectives of this study were to investigate the effect of seasonal temperature changes on acoustic velocity measured on standing trees and green logs and to develop models for compensating temperature differences because acoustic measurements are performed in different climates and seasons. Field testing was conducted on 20 red pine (Pinus resinosa...

  14. Quantum dynamics at finite temperature: Time-dependent quantum Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Christov, Ivan P., E-mail: ivan.christov@phys.uni-sofia.bg

    2016-08-15

    In this work we investigate the ground state and the dissipative quantum dynamics of interacting charged particles in an external potential at finite temperature. The recently devised time-dependent quantum Monte Carlo (TDQMC) method allows a self-consistent treatment of the system of particles together with bath oscillators first for imaginary-time propagation of Schrödinger type of equations where both the system and the bath converge to their finite temperature ground state, and next for real time calculation where the dissipative dynamics is demonstrated. In that context the application of TDQMC appears as promising alternative to the path-integral related techniques where the real time propagation can be a challenge.

  15. Some results from a temperature evaluation of a cotton field with infrared thermometer for agricultural use

    International Nuclear Information System (INIS)

    Ovcharova, A.; Kolev, N.; Nedkov, N.

    2005-01-01

    The aims of the present study were connected with evaluation of the basic soil properties, distribution of thermal, hydrological and electronic soil properties and criteria for minimization of the measurement points, obtained in the cotton non-irrigated field of the Institute of durum wheat and cotton near Chirpan. It were measured crop temperature of cotton field and soil surface temperature distribution during the main vegetative stages. Using the energy balance equation and soil water balance equation was calculated the intensity of evapotranspiration during the days of measurements

  16. Temperature Field Prediction for Determining the Residual Stresses Under Heat Treatment of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    A. V. Livshits

    2014-01-01

    Full Text Available The article is devoted to non-stationary temperature field blanks from aluminum alloys during heat treatment. It consists of the introduction and two smaller paragraphs. In the introduction the author concerns the influence of residual stresses arising in the manufacturing process of details, on the strength of the whole aircraft construction and, consequently, on their technical and economic parameters, such as weight, reliability, efficiency, and cost. He also notes that the residual stresses appeared during the production of parts change their location, size and direction under the influence of the elastic deformations that occur during the exploitation of aircraft. Redistributed residual stresses may have a chaotic distribution that may cause overlap of these stresses on the stresses caused by the impact of workload of constructions and destruction or damage of aircraft components.The first paragraph is devoted to the existing methods and techniques for determining the residual stresses. The presented methods and techniques are analyzed to show the advantages and disadvantages of each of them. The conclusion is drawn that the method to determine the residual stresses is necessary, its cost is less than those of existing ones, and an error does not exceed 10%.In the second section, the author divides the problem of determining the residual stresses into two parts, and describes the solution methods of the first one. The first problem is to define the temperature field of the work piece. The author uses a Fourier equation with the definition of initial and boundary conditions to describe a mathematical model of the heat cycle of work piece cooling. He draws special attention here to the fact that it is complicated to determine the heat transfer coefficient, which characterizes the process of cooling the work piece during hardening because of its dependence on a number of factors, such as changing temperature-dependent material properties of

  17. Direct Observation of Field and Temperature Induced Domain Replication in Dipolar Coupled Perpendicular Anisotropy Films

    Energy Technology Data Exchange (ETDEWEB)

    Hauet, T.; Gunther, C.M.; Pfau, B.; Eisebitt, S.; Fischer, P.; Rick, R. L.; Thiele, J.-U.; Hellwig, O.; Schabes, M.E.

    2007-07-01

    Dipolar interactions in a soft/Pd/hard [CoNi/Pd]{sub 30}/Pd/[Co/Pd]{sub 20} multilayer system, where a thick Pd layer between two ferromagnetic units prevents direct exchange coupling, are directly revealed by combining magnetometry and state-of-the-art layer resolving soft x-ray imaging techniques with sub-100-nm spatial resolution. The domains forming in the soft layer during external magnetic field reversal are found to match the domains previously trapped in the hard layer. The low Curie temperature of the soft layer allows varying its intrinsic parameters via temperature and thus studying the competition with dipolar fields due to the domains in the hard layer. Micromagnetic simulations elucidate the role of [CoNi/Pd] magnetization, exchange, and anisotropy in the duplication process. Finally, thermally driven domain replication in remanence during temperature cycling is demonstrated.

  18. Real-time feedback for spatiotemporal field stabilization in MR systems.

    Science.gov (United States)

    Duerst, Yolanda; Wilm, Bertram J; Dietrich, Benjamin E; Vannesjo, S Johanna; Barmet, Christoph; Schmid, Thomas; Brunner, David O; Pruessmann, Klaas P

    2015-02-01

    MR imaging and spectroscopy require a highly stable, uniform background field. The field stability is typically limited by hardware imperfections, external perturbations, or field fluctuations of physiological origin. The purpose of the present work is to address these issues by introducing spatiotemporal field stabilization based on real-time sensing and feedback control. An array of NMR field probes is used to sense the field evolution in a whole-body MR system concurrently with regular system operation. The field observations serve as inputs to a proportional-integral controller that governs correction currents in gradient and higher-order shim coils such as to keep the field stable in a volume of interest. The feedback system was successfully set up, currently reaching a minimum latency of 20 ms. Its utility is first demonstrated by countering thermal field drift during an EPI protocol. It is then used to address respiratory field fluctuations in a T2 *-weighted brain exam, resulting in substantially improved image quality. Feedback field control is an effective means of eliminating dynamic field distortions in MR systems. Third-order spatial control at an update time of 100 ms has proven sufficient to largely eliminate thermal and breathing effects in brain imaging at 7 Tesla. © 2014 Wiley Periodicals, Inc.

  19. Some aspects of quantum field theory in non-Minkowskian space-times

    International Nuclear Information System (INIS)

    Toms, D.J.

    1980-01-01

    Several aspects of quantum field theory in space-times which are different from Minkowski space-time, either because of the presence of a non-zero curvature or as a consequence of the topology of the manifold, are discussed. The Casimir effect is a quantum field theory in a space-time which has a different topology. A short review of some of its popular derivations is presented with comments. Renormalization of interacting scalar field theories in a flat space-time with a non-Minkowskian topology is considered. The presence of a non-trivial topology can lead to additional non-local divergent terms in the Schwinger-Dyson equations for a general scalar field theory; however, the theory may be renormalized with the same choice of counterterms as in Minkowski space-time. Propagators can develop poles corresponding to the generation of a topological mass. Zeta-function regularization is shown to fit naturally into the functional approach to the effective potential. This formalism is used to calculate the effective potential for some scalar field theories in non-Minkowskian space-times. Topological mass generation is discussed, and it is shown how radiative corrections can lead to spontaneous symmetry breaking. One- and two-loop contributions to the vacuum energy density are obtained for both massless and massive fields. In the massive case the role of renormalization in removing non-local divergences is discussed

  20. Effect of electric field and temperature gradient on orientational dynamics of nematics encapsulated in a hallow cylindrical cavity

    Science.gov (United States)

    Zakharov, A. V.; Maslennikov, P. V.

    2018-05-01

    We have considered a homogeneously oriented liquid crystal (HOLC) microvolume, confined between two infinitely long horizontal coaxial cylinders subjected to both a temperature gradient ∇T and a radially applied electric field E . We have investigated dynamic field pumping, i.e. studied the interactions between director, velocity, electric fields, as well as a radially applied temperature gradient, where the inner cylinder is kept at a lower temperature than the outer one. In order to elucidate the role of ∇T and E in producing hydrodynamic flow, we have carried out a numerical study of a system of hydrodynamic equations including director reorientation, fluid flow, and temperature redistribution across the HOLC cavity. Calculations show that, under the effect of the named perturbations and at high curvature of the inner cylinder, the HOLC microvolume settles down to a nonstandard pumping regime with maximum flow in the vicinity of the cooler inner cylinder.