WorldWideScience

Sample records for time temperature enzyme

  1. The effect of water temperature on food transit time and digestive enzymes activity in Caspian kutum (Rutilus kutum larvae

    Directory of Open Access Journals (Sweden)

    Nahid Ghysvandi

    2014-07-01

    Full Text Available The present study investigates the effects of water temperature on digestive enzymes activity and food transit time in Caspian kutum (Rutilus kutum larvae. Caspian kutum larvae (532 ± 0.05 and 543 ± 0.02 mg were divided into two groups with three replicates and reared at different water temperature i.e. 25.6 ± 0.4°C (T1 and 18.4 ± 0.1°C (T2. At the end of the experiment, sampling of intestine was performed at 0, 1, 3, 5, 8, 16, 24 and 30 h after feeding from each treatment. In T2, food was observed until 24 h after feeding and the intestine was empty 29 h after feeding, while in T1 19 h after feeding the intestine was empty. Digestive enzymes activities were higher in T2 treatment. The peaks of trypsin and alkaline phosphatase enzymes activity were found 8 h after feeding in T1, while occurred 16 h after feeding in T2. The highest chymotrypsin and alpha-amylase enzymes activity were observed 5 and 8h after feeding in T1 and T2, respectively. These results confirmed remarkable effects of temperature on food transit time and digestive enzymes activity of Caspian kutum.

  2. Reorientational Dynamics of Enzymes Adsorbed on Quartz: A Temperature-Dependent Time-Resolved TIRF Anisotropy Study

    Science.gov (United States)

    Czeslik, C.; Royer, C.; Hazlett, T.; Mantulin, W.

    2003-01-01

    The preservation of enzyme activity and protein binding capacity upon protein adsorption at solid interfaces is important for biotechnological and medical applications. Because these properties are partly related to the protein flexibility and mobility, we have studied the internal dynamics and the whole-body reorientational rates of two enzymes, staphylococcal nuclease (SNase) and hen egg white lysozyme, over the temperature range of 20–80°C when the proteins are adsorbed at the silica/water interface and, for comparison, when they are dissolved in buffer. The data were obtained using a combination of two experimental techniques, total internal reflection fluorescence spectroscopy and time-resolved fluorescence anisotropy measurements in the frequency domain, with the protein Trp residues as intrinsic fluorescence probes. It has been found that the internal dynamics and the whole-body rotation of SNase and lysozyme are markedly reduced upon adsorption over large temperature ranges. At elevated temperatures, both protein molecules appear completely immobilized and the fractional amplitudes for the whole-body rotation, which are related to the order parameter for the local rotational freedom of the Trp residues, remain constant and do not approach zero. This behavior indicates that the angular range of the Trp reorientation within the adsorbed proteins is largely restricted even at high temperatures, in contrast to that of the dissolved proteins. The results of this study thus provide a deeper understanding of protein activity at solid surfaces. PMID:12668461

  3. Influence of high temperature and ethanol on thermostable lignocellulolytic enzymes

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia; Jørgensen, Henning

    2013-01-01

    the influence of temperature and ethanol on enzyme activity and stability in the distillation step, where most enzymes are inactivated due to high temperatures. Two enzyme mixtures, a mesophilic and a thermostable mixture, were exposed to typical process conditions [temperatures from 55 to 65 °C and up to 5...... % ethanol (w/v)] followed by specific enzyme activity analyses and SDS-PAGE. The thermostable and mesophilic mixture remained active at up to 65 and 55 °C, respectively. When the enzyme mixtures reached their maximum temperature limit, ethanol had a remarkable influence on enzyme activity, e.g., the more...... ethanol, the faster the inactivation. The reason could be the hydrophobic interaction of ethanol on the tertiary structure of the enzyme protein. The thermostable mixture was more tolerant to temperature and ethanol and could therefore be a potential candidate for recycling after distillation....

  4. On the Temperature Dependence of Enzyme-Catalyzed Rates.

    Science.gov (United States)

    Arcus, Vickery L; Prentice, Erica J; Hobbs, Joanne K; Mulholland, Adrian J; Van der Kamp, Marc W; Pudney, Christopher R; Parker, Emily J; Schipper, Louis A

    2016-03-29

    One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.

  5. Enzyme reactions and their time resolved measurements

    International Nuclear Information System (INIS)

    Hajdu, Janos

    1990-01-01

    This paper discusses experimental strategies in data collection with the Laue method and summarises recent results using synchrotron radiation. Then, an assessment is made of the progress towards time resolved studies with protein crystals and the problems that remain. The paper consists of three parts which respectively describe some aspects of Laue diffraction, recent examples of structural results from Laue diffraction, and kinetic Laue crystallography. In the first part, characteristics of Laue diffraction is discussed first, focusing on the harmonics problems, spatials problem, wavelength normalization, low resolution hole, data completeness, and uneven coverage of reciprocal space. Then, capture of the symmetry unique reflection set is discussed focusing on the effect of wavelength range on the number of reciprocal lattice points occupying diffracting positions, effect of crystal to film distance and the film area and shape on the number of reflections captured, and effect of crystal symmetry on the number of unique reflections within the number of reflections captured. The second part addresses the determination of the structure of turkey egg white lysozyme, and calcium binding in tomato bushy stunt virus. The third part describes the initiation of reactions in enzyme crystals, picosecond Laue diffraction at high energy storage rings, and detectors. (N.K.)

  6. Canceling effect leads temperature insensitivity of hydrolytic enzymes in soil

    Science.gov (United States)

    Razavi, Bahar S.; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Extracellular enzymes are important for decomposition of many macromolecules abundant in soil such as cellulose, hemicelluloses and proteins (Allison et al., 2010; Chen et al., 2012). The temperature sensitivity of enzymes responsible for organic matter decomposition is the most crucial parameter for prediction of the effects of global warming on carbon cycle. Temperature responses of biological systems are often expressed as a Q10 functions; The Q10 describes how the rate of a chemical reaction changes with a temperature increase for 10 °C The aim of this study was to test how the canceling effect will change with variation in temperature interval, during short-term incubation. We additionally investigated, whether canceling effect occurs in a broad range of concentrations (low to high) and whether it is similar for the set of hydrolytic enzymes within broad range of temperatures. To this end, we performed soil incubation over a temperature range of 0-40°C (with 5°C steps). We determined the activities of three enzymes involved in plant residue decomposition: β-glucosidase and cellobiohydrolase, which are commonly measured as enzymes responsible for degrading cellulose (Chen et al., 2012), and xylanase, which degrades xylooligosaccharides (short xylene chain) in to xylose, thus being responsible for breaking down hemicelluloses (German et al., 2011). Michaelis-Menten kinetics measured at each temperature allowed to calculate Q10 values not only for the whole reaction rates, but specifically for maximal reaction rate (Vmax) and substrate affinity (Km). Subsequently, the canceling effect - simultaneous increase of Vmax and Km with temperature was analyzed within 10 and 5 degree of temperature increase. Three temperature ranges (below 10, between 15 and 25, and above 30 °C) clearly showed non-linear but stepwise increase of temperature sensitivity of all three enzymes and allowed to conclude for predominance of psychrophilic, mesophilic and thermophilic

  7. Temperature and UV light affect the activity of marine cell-free enzymes

    Directory of Open Access Journals (Sweden)

    B. Thomson

    2017-09-01

    Full Text Available Microbial extracellular enzymatic activity (EEA is the rate-limiting step in the degradation of organic matter in the oceans. These extracellular enzymes exist in two forms: cell-bound, which are attached to the microbial cell wall, and cell-free, which are completely free of the cell. Contrary to previous understanding, cell-free extracellular enzymes make up a substantial proportion of the total marine EEA. Little is known about these abundant cell-free enzymes, including what factors control their activity once they are away from their sites (cells. Experiments were run to assess how cell-free enzymes (excluding microbes respond to ultraviolet radiation (UVR and temperature manipulations, previously suggested as potential control factors for these enzymes. The experiments were done with New Zealand coastal waters and the enzymes studied were alkaline phosphatase (APase, β-glucosidase, (BGase, and leucine aminopeptidase (LAPase. Environmentally relevant UVR (i.e. in situ UVR levels measured at our site reduced cell-free enzyme activities by up to 87 % when compared to controls, likely a consequence of photodegradation. This effect of UVR on cell-free enzymes differed depending on the UVR fraction. Ambient levels of UV radiation were shown to reduce the activity of cell-free enzymes for the first time. Elevated temperatures (15 °C increased the activity of cell-free enzymes by up to 53 % when compared to controls (10 °C, likely by enhancing the catalytic activity of the enzymes. Our results suggest the importance of both UVR and temperature as control mechanisms for cell-free enzymes. Given the projected warming ocean environment and the variable UVR light regime, it is possible that there could be major changes in the cell-free EEA and in the enzymes contribution to organic matter remineralization in the future.

  8. Protein stability and enzyme activity at extreme biological temperatures

    International Nuclear Information System (INIS)

    Feller, Georges

    2010-01-01

    Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 0 C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins. (topical review)

  9. Similar temperature dependencies of glycolytic enzymes: an evolutionary adaptation to temperature dynamics?

    Directory of Open Access Journals (Sweden)

    Cruz Luisa Ana B

    2012-12-01

    Full Text Available Abstract Background Temperature strongly affects microbial growth, and many microorganisms have to deal with temperature fluctuations in their natural environment. To understand regulation strategies that underlie microbial temperature responses and adaptation, we studied glycolytic pathway kinetics in Saccharomyces cerevisiae during temperature changes. Results Saccharomyces cerevisiae was grown under different temperature regimes and glucose availability conditions. These included glucose-excess batch cultures at different temperatures and glucose-limited chemostat cultures, subjected to fast linear temperature shifts and circadian sinoidal temperature cycles. An observed temperature-independent relation between intracellular levels of glycolytic metabolites and residual glucose concentration for all experimental conditions revealed that it is the substrate availability rather than temperature that determines intracellular metabolite profiles. This observation corresponded with predictions generated in silico with a kinetic model of yeast glycolysis, when the catalytic capacities of all glycolytic enzymes were set to share the same normalized temperature dependency. Conclusions From an evolutionary perspective, such similar temperature dependencies allow cells to adapt more rapidly to temperature changes, because they result in minimal perturbations of intracellular metabolite levels, thus circumventing the need for extensive modification of enzyme levels.

  10. Diacetylene time-temperature indicators

    International Nuclear Information System (INIS)

    Patel, G.N.; Yee, K.C.

    1980-01-01

    An improved recording device is described, useful for measuring the integrated time-temperature or integrated radiation-dosage history of an article, comprising a substrate onto which an acetylenic compound, containing at least two conjugated c*c groups, in an inactive form, is deposited. The inactive form is capable of being converted by melt or solvent recrystallization to an active form, which undergoes 1,4-addition polymerization resulting in an irreversible, progressive color change. The color change produced at any given point in time represents an integrated time-temperature history of thermal annealing or integrated radiation-dosage history of exposure to actinic radiation to which an article has been exposed. Also described is a process for producing an inactive form of the acetylenic compound. A film and a fiber, made from the inactive form of an acetylenic compound are also described

  11. Optimization of ultrasound-assisted extraction of pectinase enzyme from guava (Psidium guajava) peel: Enzyme recovery, specific activity, temperature, and storage stability.

    Science.gov (United States)

    Amid, Mehrnoush; Murshid, Fara Syazana; Manap, Mohd Yazid; Islam Sarker, Zaidul

    2016-01-01

    This study aimed to investigate the effects of the ultrasound-assisted extraction conditions on the yield, specific activity, temperature, and storage stability of the pectinase enzyme from guava peel. The ultrasound variables studied were sonication time (10-30 min), ultrasound temperature (30-50 °C), pH (2.0-8.0), and solvent-to-sample ratio (2:1 mL/g to 6:1 mL/g). The main goal was to optimize the ultrasound-assisted extraction conditions to maximize the recovery of pectinase from guava peel with the most desirable enzyme-specific activity and stability. Under the optimum conditions, a high yield (96.2%), good specific activity (18.2 U/mg), temperature stability (88.3%), and storage stability (90.3%) of the extracted enzyme were achieved. The optimal conditions were 20 min sonication time, 40 °C temperature, at pH 5.0, using a 4:1 mL/g solvent-to-sample ratio. The study demonstrated that optimization of ultrasound-assisted process conditions for the enzyme extraction could improve the enzymatic characteristics and yield of the enzyme.

  12. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  13. Theta, time reversal and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gaiotto, Davide [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada); Kapustin, Anton [Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States); Komargodski, Zohar [Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 76100 (Israel); Seiberg, Nathan [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States)

    2017-05-17

    SU(N) gauge theory is time reversal invariant at θ=0 and θ=π. We show that at θ=π there is a discrete ’t Hooft anomaly involving time reversal and the center symmetry. This anomaly leads to constraints on the vacua of the theory. It follows that at θ=π the vacuum cannot be a trivial non-degenerate gapped state. (By contrast, the vacuum at θ=0 is gapped, non-degenerate, and trivial.) Due to the anomaly, the theory admits nontrivial domain walls supporting lower-dimensional theories. Depending on the nature of the vacuum at θ=π, several phase diagrams are possible. Assuming area law for space-like loops, one arrives at an inequality involving the temperatures at which CP and the center symmetry are restored. We also analyze alternative scenarios for SU(2) gauge theory. The underlying symmetry at θ=π is the dihedral group of 8 elements. If deconfined loops are allowed, one can have two O(2)-symmetric fixed points. It may also be that the four-dimensional theory around θ=π is gapless, e.g. a Coulomb phase could match the underlying anomalies.

  14. Theta, time reversal and temperature

    International Nuclear Information System (INIS)

    Gaiotto, Davide; Kapustin, Anton; Komargodski, Zohar; Seiberg, Nathan

    2017-01-01

    SU(N) gauge theory is time reversal invariant at θ=0 and θ=π. We show that at θ=π there is a discrete ’t Hooft anomaly involving time reversal and the center symmetry. This anomaly leads to constraints on the vacua of the theory. It follows that at θ=π the vacuum cannot be a trivial non-degenerate gapped state. (By contrast, the vacuum at θ=0 is gapped, non-degenerate, and trivial.) Due to the anomaly, the theory admits nontrivial domain walls supporting lower-dimensional theories. Depending on the nature of the vacuum at θ=π, several phase diagrams are possible. Assuming area law for space-like loops, one arrives at an inequality involving the temperatures at which CP and the center symmetry are restored. We also analyze alternative scenarios for SU(2) gauge theory. The underlying symmetry at θ=π is the dihedral group of 8 elements. If deconfined loops are allowed, one can have two O(2)-symmetric fixed points. It may also be that the four-dimensional theory around θ=π is gapless, e.g. a Coulomb phase could match the underlying anomalies.

  15. Seasonal variation in the temperature sensitivity of proteolytic enzyme activity in temperate forest soils

    Science.gov (United States)

    Brzostek, Edward R.; Finzi, Adrien C.

    2012-03-01

    Increasing soil temperature has the potential to alter the activity of the extracellular enzymes that mobilize nitrogen (N) from soil organic matter (SOM) and ultimately the availability of N for primary production. Proteolytic enzymes depolymerize N from proteinaceous components of SOM into amino acids, and their activity is a principal driver of the within-system cycle of soil N. The objectives of this study were to investigate whether the soils of temperate forest tree species differ in the temperature sensitivity of proteolytic enzyme activity over the growing season and the role of substrate limitation in regulating temperature sensitivity. Across species and sampling dates, proteolytic enzyme activity had relatively low sensitivity to temperature with a mean activation energy (Ea) of 33.5 kJ mol-1. Ea declined in white ash, American beech, and eastern hemlock soils across the growing season as soils warmed. By contrast, Eain sugar maple soil increased across the growing season. We used these data to develop a species-specific empirical model of proteolytic enzyme activity for the 2009 calendar year and studied the interactive effects of soil temperature (ambient or +5°C) and substrate limitation (ambient or elevated protein) on enzyme activity. Declines in substrate limitation had a larger single-factor effect on proteolytic enzyme activity than temperature, particularly in the spring. There was, however, a large synergistic effect of increasing temperature and substrate supply on proteolytic enzyme activity. Our results suggest limited increases in N availability with climate warming unless there is a parallel increase in the availability of protein substrates.

  16. Low frequency enzyme dynamics as a function of temperature and hydration: A neutron scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Kurkal, V. [Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg (Germany); Daniel, R.M. [Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton (New Zealand); Finney, John L. [Department of Physics and Astronomy, University college, London, Gower Street, London WC1E 6BT, England (United Kingdom); Tehei, M. [Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton (New Zealand); Dunn, R.V. [Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton (New Zealand); Smith, Jeremy C. [Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg (Germany)], E-mail: biocomputing@iwr.uni-heidelberg.de

    2005-10-31

    The effect of hydration and temperature on the low-frequency dynamics of the enzyme Pig liver esterase has been investigated with incoherent neutron scattering experiments. The results suggest that at low temperature, increasing hydration results in lower flexibility of the protein. At higher temperatures, systems containing sufficient number of water molecules interacting with the protein exhibit increased flexibility. The environmental force constants indicate that the environment of the protein is more rigid below than it is above the dynamical transition temperature.

  17. Managing Perishables with Time and temperature History

    NARCIS (Netherlands)

    Ketzenberg, M.; Bloemhof, J.M.; Gaukler, G.

    2015-01-01

    We address the use and value of time and temperature information to manage perishables in the contextof a retailer that sells a random lifetime product subject to stochastic demand and lost sales. The product’s lifetime is largely determined by the temperature history and the flow time through the

  18. Evaluation of Macerating Pectinase Enzyme Activity under Various Temperature, pH and Ethanol Regimes

    Directory of Open Access Journals (Sweden)

    Andrew G. Reynolds

    2018-02-01

    Full Text Available The polygalacturonase (PGU, hemicellulase (mannanase and protease enzyme activities in commercial macerating, pectinase-enzyme preparations commonly used by wineries in Ontario (Scottzyme Color X and Color Pro were measured under various simulated process conditions (temperature, pH, and ethanol concentration. Treatments included three temperatures (15, 20 and 30 °C; pH = 3.0, 3.5, 4.0 and 5.0; ethanol = 0%, four pH levels (3.0, 3.5, 4.0 and 5.0; temperature = 15, 20, 30 and 50 °C; ethanol = 0%, and four ethanol concentrations ((2.5, 5, 7.5 and 10%; temperature = 20 °C and pH = 3.5. Polygalacturonase enzyme activity in Color X increased linearly with temperature at all pH levels, and increased with pH at all temperature regimes. Polygalacturonase activity decreased with increasing ethanol. Color X mannanase activity increased with temperatures between 15 and 40 °C, and decreased with increased pH between 3.0 and 5.0. Response of mannanase to ethanol was cubic with a sharp decrease between 8 and 10% ethanol. Protease activity increased linearly with temperatures between 20 and 40 °C. These data suggest that the PGU, mannanase and protease components in these enzyme products provide sufficient activities within the ranges of pH, temperature, and ethanol common during the initial stages of red wine fermentations, although low must temperatures (<20 °C and presence of ethanol would likely lead to sub-optimal enzyme activities.

  19. Understanding Biological Rates and their Temperature Dependence, from Enzymes to Ecosystems

    Science.gov (United States)

    Prentice, E.; Arcus, V. L.

    2017-12-01

    Temperature responses over various scales in biological systems follow a similar pattern; negative curvature results in an optimum temperature (Topt) for activity/growth/turnover, with decreases in rates on either side of Topt. Previously this downturn in rates at high temperatures has been attributed to enzyme denaturation, where a failing of the basic driving units of metabolism was used to describe curvature at the enzyme and organism level. However, recent developments in our understanding of the factors governing enzyme rates at different temperatures have guided a new understanding of the responses of biological systems. Enzymes catalyse reactions by driving the substrate through a high energy species, which is tightly bound to the enzyme. Macromolecular rate theory (MMRT) has recently been developed to account for the changes in the system brought about by this tight binding, specifically the change in the physical parameter heat capacity (ΔCǂp), and the effect this has on the temperature dependence of enzyme reactions. A negative ΔCǂp imparts the signature negative curvature to rates in the absence of denaturation, and finds that Topt, ΔCǂp and curvature are all correlated, placing constraints on biological systems. The simplest of cells comprise thousands of enzymatically catalysed reactions, functioning in series and in parallel in metabolic pathways to determine the overall growth rate of an organism. Intuitively, the temperature effects of enzymes play a role in determining the overall temperature dependence of an organism, in tandem with cellular level regulatory responses. However, the effect of individual Topt values and curvature on overall pathway behaviour is less apparent. Here, this is investigated in the context of MMRT through the in vitro characterisation of a six-step metabolic pathway to understand the steps in isolation and functioning in series. Pathway behaviour is found to be approximately an average of the properties of the

  20. Time-temperature superposition in viscous liquids

    DEFF Research Database (Denmark)

    Olsen, Niels Boye; Dyre, Jeppe; Christensen, Tage Emil

    2001-01-01

    with a reduced time definition based on a recently proposed expression for the relaxation time, where G [infinity] reflects the fictive temperature. All parameters entering the reduced time were determined from independent measurements of the frequency-dependent shear modulus of the equilibrium liquid....

  1. Similar temperature dependencies of glycolytic enzymes : An evolutionary adaptation to temperature dynamics?

    NARCIS (Netherlands)

    Cruz, L.A.B.; Hebly, M.; Duong, G.H.; Wahl, S.A.; Pronk, J.T.; Heijnen, J.J.; Daran-Lapujade, P.; Van Gulik, W.M.

    2012-01-01

    Background Temperature strongly affects microbial growth, and many microorganisms have to deal with temperature fluctuations in their natural environment. To understand regulation strategies that underlie microbial temperature responses and adaptation, we studied glycolytic pathway kinetics in

  2. Enzyme activity deviates due to spatial and temporal temperature profiles in commercial microtiter plate readers.

    Science.gov (United States)

    Grosch, Jan-Hendrik; Sieben, Michaela; Lattermann, Clemens; Kauffmann, Kira; Büchs, Jochen; Spieß, Antje C

    2016-03-01

    Microtiter plates (MTP) and automatized techniques are increasingly applied in the field of biotechnology. However, the susceptibility of MTPs to edge effects such as thermal gradients can lead to high variation of measured enzyme activities. In an effort to enhance experimental reliability, to quantify, and to minimize instrument-caused deviations in enzyme kinetics between two MTP-readers, we comprehensively quantified temperature distribution in 96-well MTPs. We demonstrated the robust application of the absorbance dye cresol red as easily applicable temperature indicator in cuvettes and MTPs and determined its accuracy to ±0.16°C. We then quantified temperature distributions in 96-well MTPs revealing temperature deviations over single MTP of up to 2.2°C and different patterns in two commercial devices (BioTek Synergy 4 and Synergy Mx). The obtained liquid temperature was shown to be substantially controlled by evaporation. The temperature-induced enzyme activity variation within MTPs amounted to about 20 %. Activity deviations between MTPs and to those in cuvettes were determined to 40 % due to deviations from the set temperature in MTPs. In conclusion, we propose a better control of experimental conditions in MTPs or alternative experimental systems for reliable determination of kinetic parameters for bioprocess development. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Digestive enzymes and gut morphometric parameters of threespine stickleback (Gasterosteus aculeatus): Influence of body size and temperature.

    Science.gov (United States)

    Hani, Younes Mohamed Ismail; Marchand, Adrien; Turies, Cyril; Kerambrun, Elodie; Palluel, Olivier; Bado-Nilles, Anne; Beaudouin, Rémy; Porcher, Jean-Marc; Geffard, Alain; Dedourge-Geffard, Odile

    2018-01-01

    Determining digestive enzyme activity is of potential interest to obtain and understand valuable information about fish digestive physiology, since digestion is an elementary process of fish metabolism. We described for the first time (i) three digestive enzymes: amylase, trypsin and intestinal alkaline phosphatase (IAP), and (ii) three gut morphometric parameters: relative gut length (RGL), relative gut mass (RGM) and Zihler's index (ZI) in threespine stickleback (Gasterosteus aculeatus), and we studied the effect of temperature and body size on these parameters. When mimicking seasonal variation in temperature, body size had no effect on digestive enzyme activity. The highest levels of amylase and trypsin activity were observed at 18°C, while the highest IAP activity was recorded at 20°C. When sticklebacks were exposed to three constant temperatures (16, 18 and 21°C), a temporal effect correlated to fish growth was observed with inverse evolution patterns between amylase activity and the activities of trypsin and IAP. Temperature (in both experiments) had no effect on morphometric parameters. However, a temporal variation was recorded for both RGM (in the second experiment) and ZI (in both experiments), and the later was correlated to fish body mass.

  4. Digestive enzymes and gut morphometric parameters of threespine stickleback (Gasterosteus aculeatus): Influence of body size and temperature

    Science.gov (United States)

    Marchand, Adrien; Turies, Cyril; Kerambrun, Elodie; Palluel, Olivier; Bado-Nilles, Anne; Beaudouin, Rémy; Porcher, Jean-Marc; Geffard, Alain; Dedourge-Geffard, Odile

    2018-01-01

    Determining digestive enzyme activity is of potential interest to obtain and understand valuable information about fish digestive physiology, since digestion is an elementary process of fish metabolism. We described for the first time (i) three digestive enzymes: amylase, trypsin and intestinal alkaline phosphatase (IAP), and (ii) three gut morphometric parameters: relative gut length (RGL), relative gut mass (RGM) and Zihler’s index (ZI) in threespine stickleback (Gasterosteus aculeatus), and we studied the effect of temperature and body size on these parameters. When mimicking seasonal variation in temperature, body size had no effect on digestive enzyme activity. The highest levels of amylase and trypsin activity were observed at 18°C, while the highest IAP activity was recorded at 20°C. When sticklebacks were exposed to three constant temperatures (16, 18 and 21°C), a temporal effect correlated to fish growth was observed with inverse evolution patterns between amylase activity and the activities of trypsin and IAP. Temperature (in both experiments) had no effect on morphometric parameters. However, a temporal variation was recorded for both RGM (in the second experiment) and ZI (in both experiments), and the later was correlated to fish body mass. PMID:29614133

  5. Time temperature indicators as devices intelligent packaging

    Directory of Open Access Journals (Sweden)

    Adriana Pavelková

    2013-01-01

    Full Text Available Food packaging is an important part of food production. Temperature is a one of crucial factor which affecting the quality and safety of food products during distribution, transport and storage. The one way of control of food quality and safety is the application of new packaging systems, which also include the intelligent or smart packaging. Intelligent packaging is a packaging system using different indicators for monitoring the conditions of production, but in particular the conditions during transport and storage. Among these indicators include the time-temperature indicators to monitor changes in temperature, which is exposed the product and to inform consumers about the potential risks associated with consumption of these products. Time temperature indicators are devices that show an irreversible change in a physical characteristic, usually color or shape, in response to temperature history. Some are designed to monitor the evolution of temperature with time along the distribution chain and others are designed to be used in the consumer packages.

  6. Time-temperature equivalence in Martensite tempering

    Energy Technology Data Exchange (ETDEWEB)

    Hackenberg, Robert E. [Los Alamos National Laboratory; Thomas, Grant A. [CSM; Speer, John G. [CSM; Matlock, David K. [CSM; Krauss, George [CSM

    2008-06-16

    The relationship between time and temperature is of great consequence in many materials-related processes including the tempering of martensite. In 1945, Hollomon and Jaffe quantified the 'degree of tempering' as a function of both tempering time, t, and tempering temperature, T, using the expression, T(log t + c). Here, c is thought to be a material constant and appears to decrease linearly with increasing carbon content. The Hollomon-Jaffe tempering parameter is frequently cited in the literature. This work reviews the original derivation of the tempering parameter concept, and presents the use of the characteristics diffusion distance as an alternative time-temperature relationship during martensite tempering. During the tempering of martensite, interstitial carbon atoms diffuse to form carbides. In addition, austenite decomposes, dislocations and grain boundaries rearrange, associated with iron self diffusion. Since these are all diffusional processes, it is reasonable to expect the degree of tempering to relate to the extent of diffusion.

  7. Enzyme catalysis captured using multiple structures from one crystal at varying temperatures

    Directory of Open Access Journals (Sweden)

    Sam Horrell

    2018-05-01

    Full Text Available High-resolution crystal structures of enzymes in relevant redox states have transformed our understanding of enzyme catalysis. Recent developments have demonstrated that X-rays can be used, via the generation of solvated electrons, to drive reactions in crystals at cryogenic temperatures (100 K to generate `structural movies' of enzyme reactions. However, a serious limitation at these temperatures is that protein conformational motion can be significantly supressed. Here, the recently developed MSOX (multiple serial structures from one crystal approach has been applied to nitrite-bound copper nitrite reductase at room temperature and at 190 K, close to the glass transition. During both series of multiple structures, nitrite was initially observed in a `top-hat' geometry, which was rapidly transformed to a `side-on' configuration before conversion to side-on NO, followed by dissociation of NO and substitution by water to reform the resting state. Density functional theory calculations indicate that the top-hat orientation corresponds to the oxidized type 2 copper site, while the side-on orientation is consistent with the reduced state. It is demonstrated that substrate-to-product conversion within the crystal occurs at a lower radiation dose at 190 K, allowing more of the enzyme catalytic cycle to be captured at high resolution than in the previous 100 K experiment. At room temperature the reaction was very rapid, but it remained possible to generate and characterize several structural states. These experiments open up the possibility of obtaining MSOX structural movies at multiple temperatures (MSOX-VT, providing an unparallelled level of structural information during catalysis for redox enzymes.

  8. Investigations of Low Temperature Time Dependent Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sluys, W A; Robitz, E S; Young, B A; Bloom, J

    2002-09-30

    The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity. The resultant data was integrated into current available life prediction tools.

  9. TOPICAL REVIEW: Protein stability and enzyme activity at extreme biological temperatures

    Science.gov (United States)

    Feller, Georges

    2010-08-01

    Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 °C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins.

  10. European summer temperatures since Roman times

    International Nuclear Information System (INIS)

    Luterbacher, J; Werner, J P; Smerdon, J E; Fernández-Donado, L; González-Rouco, F J; Barriopedro, D; Ljungqvist, F C; Büntgen, U; Frank, D; Zorita, E; Wagner, S; Esper, J; McCarroll, D; Toreti, A; Jungclaus, J H; Bothe, O; Barriendos, M; Bertolin, C; Camuffo, D; Brázdil, R

    2016-01-01

    The spatial context is critical when assessing present-day climate anomalies, attributing them to potential forcings and making statements regarding their frequency and severity in a long-term perspective. Recent international initiatives have expanded the number of high-quality proxy-records and developed new statistical reconstruction methods. These advances allow more rigorous regional past temperature reconstructions and, in turn, the possibility of evaluating climate models on policy-relevant, spatio-temporal scales. Here we provide a new proxy-based, annually-resolved, spatial reconstruction of the European summer (June–August) temperature fields back to 755 CE based on Bayesian hierarchical modelling (BHM), together with estimates of the European mean temperature variation since 138 BCE based on BHM and composite-plus-scaling (CPS). Our reconstructions compare well with independent instrumental and proxy-based temperature estimates, but suggest a larger amplitude in summer temperature variability than previously reported. Both CPS and BHM reconstructions indicate that the mean 20th century European summer temperature was not significantly different from some earlier centuries, including the 1st, 2nd, 8th and 10th centuries CE. The 1st century (in BHM also the 10th century) may even have been slightly warmer than the 20th century, but the difference is not statistically significant. Comparing each 50 yr period with the 1951–2000 period reveals a similar pattern. Recent summers, however, have been unusually warm in the context of the last two millennia and there are no 30 yr periods in either reconstruction that exceed the mean average European summer temperature of the last 3 decades (1986–2015 CE). A comparison with an ensemble of climate model simulations suggests that the reconstructed European summer temperature variability over the period 850–2000 CE reflects changes in both internal variability and external forcing on multi-decadal time

  11. Statistics of particle time-temperature histories.

    Energy Technology Data Exchange (ETDEWEB)

    Hewson, John C.; Lignell, David O.; Sun, Guangyuan

    2014-10-01

    Particles in non - isothermal turbulent flow are subject to a stochastic environment tha t produces a distribution of particle time - temperature histories. This distribution is a function of the dispersion of the non - isothermal (continuous) gas phase and the distribution of particles relative to that gas phase. In this work we extend the one - dimensional turbulence (ODT) model to predict the joint dispersion of a dispersed particle phase and a continuous phase. The ODT model predicts the turbulent evolution of continuous scalar fields with a model for the cascade of fluctuations to smaller sc ales (the 'triplet map') at a rate that is a function of the fully resolved one - dimens ional velocity field . Stochastic triplet maps also drive Lagrangian particle dispersion with finite Stokes number s including inertial and eddy trajectory - crossing effect s included. Two distinct approaches to this coupling between triplet maps and particle dispersion are developed and implemented along with a hybrid approach. An 'instantaneous' particle displacement model matches the tracer particle limit and provide s an accurate description of particle dispersion. A 'continuous' particle displacement m odel translates triplet maps into a continuous velocity field to which particles respond. Particles can alter the turbulence, and modifications to the stochastic rate expr ession are developed for two - way coupling between particles and the continuous phase. Each aspect of model development is evaluated in canonical flows (homogeneous turbulence, free - shear flows and wall - bounded flows) for which quality measurements are ava ilable. ODT simulations of non - isothermal flows provide statistics for particle heating. These simulations show the significance of accurately predicting the joint statistics of particle and fluid dispersion . Inhomogeneous turbulence coupled with the in fluence of the mean flow fields on particles of varying properties

  12. Composition, Enzymes Analysis and Retraction Time of Columellar ...

    African Journals Online (AJOL)

    With the aid of columellar muscle, snails retract the soft part into the shell when disturbed. The response time of three Giant African Land Snail (GALS) species: Archachatina marginata, Achatina achatina and Achatina fulica to touch and sodium chloride (NaCl) solution was examined. Chemical composition (protein, glucose ...

  13. High activity and low temperature optima of extracellular enzymes in Arctic sediments: implications for carbon cycling by heterotrophic microbial communities

    DEFF Research Database (Denmark)

    Arnosti, C.; Jørgensen, BB

    2003-01-01

    (chondroitin sulfate, fucoidan, xylan and pullulan) to determine the temperature-activity responses of hydrolysis of a related class of compounds. All 4 enzyme activities showed similarly low temperature optima in the range of 15 to 18degreesC. These temperature optima are considerably lower than most previous......The rate of the initial step in microbial remineralization of organic carbon, extracellular enzymatic hydrolysis, was investigated as a function of temperature in permanently cold sediments from 2 fjords on the west coast of Svalbard (Arctic Ocean). We used 4 structurally distinct polysaccharides...... reports of temperature optima for enzyme activities in marine sediments. At 0degreesC, close to the in situ temperature, these enzyme activities achieved 13 to 38% of their rates at optimum temperatures. In one experiment, sulfate reduction rates were measured in parallel with extracellular enzymatic...

  14. Temperature sensitivity of extracellular enzyme kinetics in subtropical wetland soils under different nutrient and water level conditions

    Science.gov (United States)

    Goswami, S.; Inglett, K.; Inglett, P.

    2012-12-01

    Microbial extracellular enzymes play an important role in the initial steps of soil organic matter decomposition and are involved in regulating nutrient cycle processes. Moreover, with the recent concern of climate change, microbial extracellular enzymes may affect the functioning (C losses, C sequestration, greenhouse gas emissions, vegetation changes) of different ecosystems. Hence, it is imperative to understand the biogeochemical processes that may be climate change sensitive. Here, we have measured the Michaelis Menten Kinetics [maximal rate of velocity (Vmax) and half-saturation constant (Km)] of 6 enzymes involved in soil organic matter decomposition (phosphatase, phosphodiesterase, β-D-glucosidase, cellobiohydrolase, leucine aminopeptidase, N-Acetyl-β-D glucosaminidase) in different nutrient(P) concentration both aerobically and anaerobically in Everglade water conservation area 2A (F1, F4-slough and U3-slough). Temperature sensitivity of different enzymes is assessed within soil of different P concentrations. We hypothesized that the temperature sensitivity of the enzyme changes with the biogeochemical conditions including water level and nutrient condition. Furthermore, we have tested specific hypothesis that higher P concentration will initiate more C demand for microbes leading to higher Vmax value for carbon processing enzymes in high P site. We found temperature sensitivity of all enzymes for Vmax and Km under both aerobic and anaerobic condition ranges from 0.6 to 3.2 for Vmax and 0.5 to 2.5 for Km. Q10 values of Km for glucosidase indicate more temperature sensitivity under anaerobic condition. Under aerobic condition higher temperature showed significant effect on Vmax for bisphosphatase between high P and low P site. Decreasing P concentration from F1 site to U3-S site had showed significant effect in all temperature on carbon processing enzyme. This suggests that in high P site, microbes will use more carbon-processing enzyme to get more carbon

  15. Modeling the effects of tree species and incubation temperature on soil's extracellular enzyme activity in 78-year-old tree plantations

    Science.gov (United States)

    Zhou, Xiaoqi; Wang, Shen S. J.; Chen, Chengrong

    2017-12-01

    Forest plantations have been widely used as an effective measure for increasing soil carbon (C), and nitrogen (N) stocks and soil enzyme activities play a key role in soil C and N losses during decomposition of soil organic matter. However, few studies have been carried out to elucidate the mechanisms behind the differences in soil C and N cycling by different tree species in response to climate warming. Here, we measured the responses of soil's extracellular enzyme activity (EEA) to a gradient of temperatures using incubation methods in 78-year-old forest plantations with different tree species. Based on a soil enzyme kinetics model, we established a new statistical model to investigate the effects of temperature and tree species on soil EEA. In addition, we established a tree species-enzyme-C/N model to investigate how temperature and tree species influence soil C/N contents over time without considering plant C inputs. These extracellular enzymes included C acquisition enzymes (β-glucosidase, BG), N acquisition enzymes (N-acetylglucosaminidase, NAG; leucine aminopeptidase, LAP) and phosphorus acquisition enzymes (acid phosphatases). The results showed that incubation temperature and tree species significantly influenced all soil EEA and Eucalyptus had 1.01-2.86 times higher soil EEA than coniferous tree species. Modeling showed that Eucalyptus had larger soil C losses but had 0.99-2.38 times longer soil C residence time than the coniferous tree species over time. The differences in the residual soil C and N contents between Eucalyptus and coniferous tree species, as well as between slash pine (Pinus elliottii Engelm. var. elliottii) and hoop pine (Araucaria cunninghamii Ait.), increase with time. On the other hand, the modeling results help explain why exotic slash pine can grow faster, as it has 1.22-1.38 times longer residual soil N residence time for LAP, which mediate soil N cycling in the long term, than native coniferous tree species like hoop pine and

  16. Effect of Bacillus cereus Enzymes on Milk Quality following Ultra High Temperature Processing

    Directory of Open Access Journals (Sweden)

    B. Janštová

    2006-01-01

    Full Text Available Using a model case of contamination of long-life semi-skimmed milk with the spores of six B. cereus strains, isolated from the farm environment and raw milk, proteolysis was monitored by measuring changes in protein content by infra-red spectroscopy; free tyrosine was measured by the Lowry method according to Juffs, and the reduction in casein fractions by SDS-PAGE. Lipolysis was monitored by the dilution extractive method. At a storage temperature of 4 °C for 4 months no enzyme processes were observed, whereas at a storage temperature of 24 °C a marked enzyme activity was found during maximum 3 weeks as well as sensory changes of UHT milk. After three weeks of storage, a reduction in protein content from 34.55 g l-1 milk to 29.46 ± 2.00 g l-1 milk, and a reduction in the free tyrosine from 0.65 to 2.13 ± 0.28 mg ml-1 was found, as well as increased molar contents of free fatty acids (FFA from 41.97 to 1617.22 ± 68.17 mmol kg-1 milk fat. After six days of storage, α-casein, β-casein and κ-casein dropped to 69 ± 10%, 56 ± 16% and 43 ± 10%, respectively. Majority of changes in UHT milk depended on the B. cereus strain used, initial microbial counts and the method of heat inactivation of spores.

  17. Some like it hot, some like it cold: Temperature dependent biotechnological applications and improvements in extremophilic enzymes.

    Science.gov (United States)

    Siddiqui, Khawar Sohail

    2015-12-01

    The full biotechnological exploitation of enzymes is still hampered by their low activity, low stability and high cost. Temperature-dependent catalytic properties of enzymes are a key to efficient and cost-effective translation to commercial applications. Organisms adapted to temperature extremes are a rich source of enzymes with broad ranging thermal properties which, if isolated, characterized and their structure-function-stability relationship elucidated, could underpin a variety of technologies. Enzymes from thermally-adapted organisms such as psychrophiles (low-temperature) and thermophiles (high-temperature) are a vast natural resource that is already under scrutiny for their biotechnological potential. However, psychrophilic and thermophilic enzymes show an activity-stability trade-off that necessitates the use of various genetic and chemical modifications to further improve their properties to suit various industrial applications. This review describes in detail the properties and biotechnological applications of both cold-adapted and thermophilic enzymes. Furthermore, the review critically examines ways to improve their value for biotechnology, concluding by proposing an integrated approach involving thermally-adapted, genetically and magnetically modified enzymes to make biocatalysis more efficient and cost-effective. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Post-cold-storage conditioning time affects soil denitrifying enzyme activity

    DEFF Research Database (Denmark)

    Chirinda, Ngonidzashe; Olesen, Jørgen Eivind; Porter, John Roy

    2011-01-01

    Soil denitrifying enzyme activity (DEA) is often assessed after cold storage. Previous studies using the short-term acetylene inhibition method have not considered conditioning time (post-cold-storage warm-up time prior to soil analysis) as a factor influencing results. We observed fluctuations...

  19. Real-Time Label-Free Direct Electronic Monitoring of Topoisomerase Enzyme Binding Kinetics on Graphene.

    Science.gov (United States)

    Zuccaro, Laura; Tesauro, Cinzia; Kurkina, Tetiana; Fiorani, Paola; Yu, Hak Ki; Knudsen, Birgitta R; Kern, Klaus; Desideri, Alessandro; Balasubramanian, Kannan

    2015-11-24

    Monolayer graphene field-effect sensors operating in liquid have been widely deployed for detecting a range of analyte species often under equilibrium conditions. Here we report on the real-time detection of the binding kinetics of the essential human enzyme, topoisomerase I interacting with substrate molecules (DNA probes) that are immobilized electrochemically on to monolayer graphene strips. By monitoring the field-effect characteristics of the graphene biosensor in real-time during the enzyme-substrate interactions, we are able to decipher the surface binding constant for the cleavage reaction step of topoisomerase I activity in a label-free manner. Moreover, an appropriate design of the capture probes allows us to distinctly follow the cleavage step of topoisomerase I functioning in real-time down to picomolar concentrations. The presented results are promising for future rapid screening of drugs that are being evaluated for regulating enzyme activity.

  20. Modeling the effects of tree species and incubation temperature on soil's extracellular enzyme activity in 78-year-old tree plantations

    Directory of Open Access Journals (Sweden)

    X. Zhou

    2017-12-01

    Full Text Available Forest plantations have been widely used as an effective measure for increasing soil carbon (C, and nitrogen (N stocks and soil enzyme activities play a key role in soil C and N losses during decomposition of soil organic matter. However, few studies have been carried out to elucidate the mechanisms behind the differences in soil C and N cycling by different tree species in response to climate warming. Here, we measured the responses of soil's extracellular enzyme activity (EEA to a gradient of temperatures using incubation methods in 78-year-old forest plantations with different tree species. Based on a soil enzyme kinetics model, we established a new statistical model to investigate the effects of temperature and tree species on soil EEA. In addition, we established a tree species–enzyme–C∕N model to investigate how temperature and tree species influence soil C∕N contents over time without considering plant C inputs. These extracellular enzymes included C acquisition enzymes (β-glucosidase, BG, N acquisition enzymes (N-acetylglucosaminidase, NAG; leucine aminopeptidase, LAP and phosphorus acquisition enzymes (acid phosphatases. The results showed that incubation temperature and tree species significantly influenced all soil EEA and Eucalyptus had 1.01–2.86 times higher soil EEA than coniferous tree species. Modeling showed that Eucalyptus had larger soil C losses but had 0.99–2.38 times longer soil C residence time than the coniferous tree species over time. The differences in the residual soil C and N contents between Eucalyptus and coniferous tree species, as well as between slash pine (Pinus elliottii Engelm. var. elliottii and hoop pine (Araucaria cunninghamii Ait., increase with time. On the other hand, the modeling results help explain why exotic slash pine can grow faster, as it has 1.22–1.38 times longer residual soil N residence time for LAP, which mediate soil N cycling in the long term, than native

  1. Reversible conformational transition gives rise to 'zig-zag' temperature dependence of the rate constant of irreversible thermoinactivation of enzymes.

    Science.gov (United States)

    Levitsky VYu; Melik-Nubarov, N S; Siksnis, V A; Grinberg VYa; Burova, T V; Levashov, A V; Mozhaev, V V

    1994-01-15

    We have obtained unusual 'zig-zag' temperature dependencies of the rate constant of irreversible thermoinactivation (k(in)) of enzymes (alpha-chymotrypsin, covalently modified alpha-chymotrypsin, and ribonuclease) in a plot of log k(in) versus reciprocal temperature (Arrhenius plot). These dependencies are characterized by the presence of both ascending and descending linear portions which have positive and negative values of the effective activation energy (Ea), respectively. A kinetic scheme has been suggested that fits best for a description of these zig-zag dependencies. A key element of this scheme is the temperature-dependent reversible conformational transition of enzyme from the 'low-temperature' native state to a 'high-temperature' denatured form; the latter form is significantly more stable against irreversible thermoinactivation than the native enzyme. A possible explanation for a difference in thermal stabilities is that low-temperature and high-temperature forms are inactivated according to different mechanisms. Existence of the suggested conformational transition was proved by the methods of fluorescence spectroscopy and differential scanning calorimetry. The values of delta H and delta S for this transition, determined from calorimetric experiments, are highly positive; this fact underlies a conclusion that this heat-induced transition is caused by an unfolding of the protein molecule. Surprisingly, in the unfolded high-temperature conformation, alpha-chymotrypsin has a pronounced proteolytic activity, although this activity is much smaller than that of the native enzyme.

  2. Effect of temperature and mixing speed on immobilization of crude enzyme from Aspergillus niger on chitosan for hydrolyzing cellulose

    Science.gov (United States)

    Hamzah, Afan; Gek Ela Kumala, P.; Ramadhani, Dwi; Maziyah, Nurul; Rahmah, Laila Nur; Soeprijanto, Widjaja, Arief

    2017-05-01

    Conversion of cellulose into reducing sugar through enzymatic hydrolysis has advantageous because it produces greater product yield, higher selectivity, require less energy, more moderate operating conditions and environment friendly. However, the nature of the enzyme that is difficult to separate and its expensive price become an obstacle. These obstacles can be overcome by immobilizing the enzyme on chitosan material so that the enzyme can be reused. Chitosan is chosen because it is cheap, inert, hydrophilic, and biocompatible. In this research, we use covalent attachment and combination between covalent attachment and cross-linking method for immobilizing crude enzyme. This research was focusing in study of Effect of temperature and mixing speed on Immobilization Enzyme From Aspergillus Niger on Chitosan For Hydrolyzing both soluble (Carboxymethylcellulose) and insoluble Cellulose (coconut husk). This Research was carried out by three main step. First, coconut husk was pre-treated mechanically and chemically, Second, Crude enzyme from Aspergillus niger strain was immobilized on chitosan in various immobilization condition. At last, the pre-treated coconut husk and Carboxymetylcellulose (CMC) were hydrolyzed by immobilized cellulose on chitosan for reducing sugar production. The result revealed that the most reducing sugar produced by immobilized enzyme on chitosan+GDA with immobilization condition at 30 °C and 125 rpm. Enzyme immobilized on chitosan cross-linked with GDA produced more reducing sugar from preteated coconut husk than enzyme immobilized on chitosan.

  3. Isolation and Screening of Thermo-Stable Cellulase Enzyme Fungal Producer at Different Temperature

    International Nuclear Information System (INIS)

    Noor Ashiqin Jamroo; Noor Azrimi Umor; Kamsani

    2015-01-01

    Thermo stable cellulase from fungi has high potential for industrial application. In this study, wild -type of fungal were isolate from different sources such as hot spring water, sea water, soft wood, rice straw and cow dung. The isolates were characterized by cultural and morphological observation. Based on morphological characteristics, the genera of all fungal cultures were identified namely Aspergillus fumigatus. The screening for thermo stable cellulase were done using 2 % carboxymethyl cellulose and congo red as an indicator at temperature 30, 37, 45 and 50 degree Celsius respectively. Out of 26 fungal isolates, only eight isolates were selected for further screening and showed the abilities to secrete cellulases by forming distinct halo zones on selective agar plate. The maximum halo zone ranging from 32 mm to 35 mm were obtained after 72 hour incubation at 50 degree Celsius by H2, SW1 and C1 isolates. As contrary other isolates showed halo zone range from 22 mm to 29 mm at same temperature. All the isolates showed the abilities to secrete cellulase enzyme at other temperature but lower when compared to 50 degree Celsius referred to the halo zone obtained. The SW1 isolates showed highest cellulolytic index which was 2.93 measured at 37 degree Celsius and 2.67 at 50 degree Celsius respectively. (author)

  4. Differences in the catalytic mechanisms of mesophilic and thermophilic indole-3-glycerol phosphate synthase enzymes at their adaptive temperatures

    International Nuclear Information System (INIS)

    Zaccardi, Margot J.; Mannweiler, Olga; Boehr, David D.

    2012-01-01

    Highlights: ► Catalytic mechanisms of thermophilic–mesophilic enzymes may differ. ► Product release is rate-determining for thermophilic IGPS at low temperatures. ► But at higher temperatures, proton transfer from the general acid is rate-limiting. ► Rate-determining step is different still for mesophilic IGPS. ► Both chemical and physical steps of catalysis are important for temperature adaptation. -- Abstract: Thermophilic enzymes tend to be less catalytically-active at lower temperatures relative to their mesophilic counterparts, despite having very similar crystal structures. An often cited hypothesis for this general observation is that thermostable enzymes have evolved a more rigid tertiary structure in order to cope with their more extreme, natural environment, but they are also less flexible at lower temperatures, leading to their lower catalytic activity under mesophilic conditions. An alternative hypothesis, however, is that complementary thermophilic–mesophilic enzyme pairs simply operate through different evolutionary-optimized catalytic mechanisms. In this communication, we present evidence that while the steps of the catalytic mechanisms for mesophilic and thermophilic indole-3-glycerol phosphate synthase (IGPS) enzymes are fundamentally similar, the identity of the rate-determining step changes as a function of temperature. Our findings indicate that while product release is rate-determining at 25 °C for thermophilic IGPS, near its adaptive temperature (75 °C), a proton transfer event, involving a general acid, becomes rate-determining. The rate-determining steps for thermophilic and mesophilic IGPS enzymes are also different at their respective, adaptive temperatures with the mesophilic IGPS-catalyzed reaction being rate-limited before irreversible CO 2 release, and the thermophilic IGPS-catalyzed reaction being rate limited afterwards.

  5. Climate Prediction Center (CPC) Global Temperature Time Series

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global temperature time series provides time series charts using station based observations of daily temperature. These charts provide information about the...

  6. Differences in the catalytic mechanisms of mesophilic and thermophilic indole-3-glycerol phosphate synthase enzymes at their adaptive temperatures.

    Science.gov (United States)

    Zaccardi, Margot J; Mannweiler, Olga; Boehr, David D

    2012-02-10

    Thermophilic enzymes tend to be less catalytically-active at lower temperatures relative to their mesophilic counterparts, despite having very similar crystal structures. An often cited hypothesis for this general observation is that thermostable enzymes have evolved a more rigid tertiary structure in order to cope with their more extreme, natural environment, but they are also less flexible at lower temperatures, leading to their lower catalytic activity under mesophilic conditions. An alternative hypothesis, however, is that complementary thermophilic-mesophilic enzyme pairs simply operate through different evolutionary-optimized catalytic mechanisms. In this communication, we present evidence that while the steps of the catalytic mechanisms for mesophilic and thermophilic indole-3-glycerol phosphate synthase (IGPS) enzymes are fundamentally similar, the identity of the rate-determining step changes as a function of temperature. Our findings indicate that while product release is rate-determining at 25°C for thermophilic IGPS, near its adaptive temperature (75°C), a proton transfer event, involving a general acid, becomes rate-determining. The rate-determining steps for thermophilic and mesophilic IGPS enzymes are also different at their respective, adaptive temperatures with the mesophilic IGPS-catalyzed reaction being rate-limited before irreversible CO2 release, and the thermophilic IGPS-catalyzed reaction being rate limited afterwards. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Study on the Correlation between Gene Expression and Enzyme Activity of Seven Key Enzymes and Ginsenoside Content in Ginseng in Over Time in Ji'an, China.

    Science.gov (United States)

    Yin, Juxin; Zhang, Daihui; Zhuang, Jianjian; Huang, Yi; Mu, Ying; Lv, Shaowu

    2017-12-11

    Panax ginseng is a traditional medicine. Fresh ginseng is one of the most important industries related to ginseng development, and fresh ginseng of varying ages has different medicinal properties. Previous research has not systematically reported the correlation between changes in key enzyme activity with changes in ginsenoside content in fresh ginseng over time. In this study, for the first time, we use ginseng samples of varying ages in Ji'an and systematically reported the changes in the activity of seven key enzymes (HMGR, FPS, SS, SE, DS, CYP450, and GT). We investigated the content of ginsenoside and gene expression of these key enzymes. Ginsenoside content was measured using HPLC. HPLC, GC-MS, and LC-MS were combined to measure the enzyme activity of the key enzymes. Quantitative PCR was used in the investigation of gene expression. By analyzing the correlation between the enzyme activity and the transcription level of the key enzymes with ginsenoside content, we found that DS and GT enzyme activities are significantly correlated with the ginsenoside content in different ages of ginseng. Our findings might provide a new strategy to discriminate between ginseng of different years. Meanwhile, this research provides important information for the in-depth study of ginsenoside biosynthesis.

  8. A quenched-flow system for measuring heterogeneous enzyme kinetics with sub-second time resolution

    DEFF Research Database (Denmark)

    Olsen, Johan Pelck; Kari, Jeppe; Borch, Kim

    2017-01-01

    of insoluble substrate. Perhaps for this reason, transient kinetics has rarely been reported for heterogeneous enzyme reactions. Here, we describe a quenched-flow system using peristaltic pumps and stirred substrate suspensions with a dead time below 100 ms. The general performance was verified by alkali...

  9. European summer temperatures since Roman times

    Czech Academy of Sciences Publication Activity Database

    Luterbacher, J.; Werner, J. P.; Smerdon, J. E.; Fernandez-Donado, L.; González-Rouco, J. F.; Barriopedro, D.; Ljungqvist, F. C.; Büntgen, Ulf; Zorita, E.; Wagner, S.; Esper, J.; McCarroll, D.; Toreti, A.; Frank, D.; Jungclaus, J.; Barriendos, M.; Bertolin, C.; Bothe, O.; Brázdil, Rudolf; Camuffo, D.; Dobrovolný, Petr; Gagen, M.; Garica-Bustamante, E.; Ge, Q.; Gomez-Navarro, J. J.; Guiot, J.; Hao, Z.; Hegerl, G.; Holmgren, K.; Klimenko, V. V.; Martin-Chivelet, J.; Pfister, C.; Roberts, N.; Schindler, A.; Schurer, A.; Solomina, O.; von Gunten, L.; Wahl, E.; Wanner, H.; Wetter, O.; Xoplaki, E.; Yuan, N.; Zanchettin, D.; Zhang, H.; Zerefos, C.

    2016-01-01

    Roč. 11, č. 2 (2016), č. článku 024001. ISSN 1748-9326 R&D Projects: GA ČR GA13-04291S Institutional support: RVO:67179843 Keywords : reconstructing climate anomalies * high-resolution paleoclimatology * northern-hemisphere temperature * tree-ring chronologies * last 1000 years * volcanic - eruptions * forcing reconstructions * bayesian algorithm * pmip simulations * past millennium * Common Era * heat waves * paleoclimatology * Bayesian hierarchical modelling * European summer temperature reconstruction * ensemble of climate model simulations * Medieval Climate Anomaly Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 4.404, year: 2016

  10. Modelling the Effects of Ageing Time of Starch on the Enzymatic Activity of Three Amylolytic Enzymes

    Science.gov (United States)

    Guerra, Nelson P.; Pastrana Castro, Lorenzo

    2012-01-01

    The effect of increasing ageing time (t) of starch on the activity of three amylolytic enzymes (Termamyl, San Super, and BAN) was investigated. Although all the enzymatic reactions follow michaelian kinetics, v max decreased significantly (P enzymes and the release of the reaction products to the medium. A similar effect was observed when the enzymatic reactions were carried out with unaged starches supplemented with different concentrations of gelatine [G]. The inhibition in the amylolytic activities was best mathematically described by using three modified forms of the Michaelis-Menten model, which included a term to consider, respectively, the linear, exponential, and hyperbolic inhibitory effects of t and [G]. PMID:22666116

  11. Time-temperature-sensitization and time-temperature-precipitation behavior of alloy 625

    International Nuclear Information System (INIS)

    Koehler, M.; Heubner, U.

    1996-01-01

    Time-Temperature-Sensitization diagrams have been established for a low-carbon version of alloy 625 (UNS N06625). Sensitization in terms of a 50 microm (2 mils) intergranular penetration criterion starts after about 3 h aging time at 750 C (soft annealed condition) or after less than 1 h aging time at 800 C (solution annealed condition) when tested according to ASTM-G 28 method A. Grain boundary precipitation of carbides occurs during aging of both the soft annealed and the solution annealed material, but the soft annealed material exhibits a more pronounced general precipitation of Ni 3 (Nb,Mo) phase giving rise to more distinct loss of ductility. Sensitization of alloy 625 may be retarded by lowering its iron content

  12. Temperature-Controlled Encapsulation and Release of an Active Enzyme in the Cavity of a Self-Assembled DNA Nanocage

    DEFF Research Database (Denmark)

    Juul, Sissel; Iacovelli, Federico; Falconi, Mattia

    2013-01-01

    ABSTRACT We demonstrate temperature-controlled encapsulation and release of the enzyme horseradish peroxidase using a preassembled and covalently closed three-dimensional DNA cage structure as a controllable encapsulation device. The utilized cage structure was covalently closed and composed of 12...... to fold into hairpin structures. As demonstrated by gel-electrophoretic and fluorophore-quenching experiments this design imposed a temperature-controlled conformational transition capability to the structure, which allowed entrance or release of an enzyme cargo at 37 C while ensuring retainment...

  13. Temperature sensitivity differences with depth and season between carbon, nitrogen, and phosphorus cycling enzyme activities in an ombrotrophic peatland system

    Science.gov (United States)

    Steinweg, J. M.; Kostka, J. E.; Hanson, P. J.; Schadt, C. W.

    2017-12-01

    Northern peatlands have large amounts of soil organic matter due to reduced decomposition. Breakdown of organic matter is initially mediated by extracellular enzymes, the activity of which may be controlled by temperature, moisture, and substrate availability, all of which vary seasonally throughout the year and with depth. In typical soils the majority of the microbial biomass and decomposition occurs within the top 30cm due to reduced organic matter inputs in the subsurface however peatlands by their very nature contain large amounts of organic matter throughout their depth profile. We hypothesized that potential enzyme activity would be greatest at the surface of the peat due to a larger microbial biomass compared to 40cm and 175cm below the surface and that temperature sensitivity would be greatest at the surface during winter but lowest during the summer due to high temperatures and enzyme efficiency. Peat samples were collected in February, July, and August 2012 from the DOE Spruce and Peatland Responses Under Climatic and Environmental Change project at Marcell Experimental Forest S1 bog. We measured potential activity of hydrolytic enzymes involved in three different nutrient cycles: beta-glucosidase (carbon), leucine amino peptidase (nitrogen), and phosphatase (phosphorus) at 15 temperature points ranging from 3°C to 65°C. Enzyme activity decreased with depth as expected but there was no concurrent change in activation energy (Ea). The reduction in enzyme activity with depth indicates a smaller pool which coincided with a decreased microbial biomass. Differences in enzyme activity with depth also mirrored the changes in peat composition from the acrotelm to the catotelm. Season did play a role in temperature sensitivity with Ea of β-glucosidase and phosphatase being the lowest in August as expected but leucine amino peptidase (a nitrogen acquiring enzyme) Ea was not influenced by season. As temperatures rise, especially in winter months, enzymatic

  14. Temperature has a causal effect on avian timing of reproduction

    NARCIS (Netherlands)

    Visser, M.E.; Holleman, L.J.M.; Caro, S.P.

    2009-01-01

    Many bird species reproduce earlier in years with high spring temperatures, but little is known about the causal effect of temperature. Temperature may have a direct effect on timing of reproduction but the correlation may also be indirect, for instance via food phenology. As climate change has led

  15. Real-time optoacoustic monitoring of temperature in tissues

    International Nuclear Information System (INIS)

    Larina, Irina V; Larin, Kirill V; Esenaliev, Rinat O

    2005-01-01

    To improve the safety and efficacy of thermal therapy, it is necessary to map tissue temperature in real time with submillimetre spatial resolution. Accurate temperature maps may provide the necessary control of the boundaries of the heated regions and minimize thermal damage to surrounding normal tissues. Current imaging modalities fail to monitor tissue temperature in real time with high resolution and accuracy. We investigated a non-invasive optoacoustic method for accurate, real-time monitoring of tissue temperature during thermotherapy. In this study, we induced temperature gradients in tissue and tissue-like samples and monitored the temperature distribution using the optoacoustic technique. The fundamental harmonic of a Q-switched Nd : YAG laser (λ = 1064 nm) was used for optoacoustic wave generation and probing of tissue temperature. The tissue temperature was also monitored with a multi-sensor temperature probe inserted in the samples. Good agreement between optoacoustically measured and actual tissue temperatures was obtained. The accuracy of temperature monitoring was better than 1 0 C, while the spatial resolution was about 1 mm. These data suggest that the optoacoustic technique has the potential to be used for non-invasive, real-time temperature monitoring during thermotherapy

  16. An amperometric enzyme biosensor for real-time measurements of cellobiohydrolase activity on insoluble cellulose

    DEFF Research Database (Denmark)

    Cruys-Bagger, Nicolaj; Guilin, Ren; Tatsumi, Hirosuke

    2012-01-01

    An amperometric enzyme biosensor for continuous detection of cellobiose has been implemented as an enzyme assay for cellulases. We show that the initial kinetics for cellobiohydrolase I, Cel7A from Trichoderma reesei, acting on different types of cellulose substrates, semi-crystalline and amorphous......, can be monitored directly and in real-time by an enzyme-modified electrode based on cellobiose dehydrogenase (CDH) from Phanerochaete chrysosporium (Pc). PcCDH was cross-linked and immobilized on the surface of a carbon paste electrode which contained a mediator, benzoquinone. An oxidation current...... of the reduced mediator, hydroquinone, produced by the CDH-catalyzed reaction with cellobiose, was recorded under constant-potential amperometry at +0.5 V (vs. Ag/AgCl). The CDH-biosensors showed high sensitivity (87.7 µA mM−1 cm−2), low detection limit (25 nM), and fast response time (t95% ∼ 3 s...

  17. Timely Endocytosis of Cytokinetic Enzymes Prevents Premature Spindle Breakage during Mitotic Exit.

    Directory of Open Access Journals (Sweden)

    Cheen Fei Chin

    2016-07-01

    Full Text Available Cytokinesis requires the spatio-temporal coordination of membrane deposition and primary septum (PS formation at the division site to drive acto-myosin ring (AMR constriction. It has been demonstrated that AMR constriction invariably occurs only after the mitotic spindle disassembly. It has also been established that Chitin Synthase II (Chs2p neck localization precedes mitotic spindle disassembly during mitotic exit. As AMR constriction depends upon PS formation, the question arises as to how chitin deposition is regulated so as to prevent premature AMR constriction and mitotic spindle breakage. In this study, we propose that cells regulate the coordination between spindle disassembly and AMR constriction via timely endocytosis of cytokinetic enzymes, Chs2p, Chs3p, and Fks1p. Inhibition of endocytosis leads to over accumulation of cytokinetic enzymes during mitotic exit, which accelerates the constriction of the AMR, and causes spindle breakage that eventually could contribute to monopolar spindle formation in the subsequent round of cell division. Intriguingly, the mitotic spindle breakage observed in endocytosis mutants can be rescued either by deleting or inhibiting the activities of, CHS2, CHS3 and FKS1, which are involved in septum formation. The findings from our study highlight the importance of timely endocytosis of cytokinetic enzymes at the division site in safeguarding mitotic spindle integrity during mitotic exit.

  18. Influence of temperature and solvent concentration on the kinetics of the enzyme carbonic anhydrase in carbon capture technology

    DEFF Research Database (Denmark)

    Gladis, Arne; Deslauriers, Maria Gundersen; Fosbøl, Philip Loldrup

    2017-01-01

    In this study the effect of carbonic anhydrase addition on the absorption of CO2 was investigated in a wetted wall column apparatus. Four different solvents: the primary amine monoethanolamine (MEA), the sterically hindered primary amine 2-amino-2-methyl-1-propanol (AMP), the tertiary amine N......-methyl-diethanolamine (MDEA) and the carbonate salt solution K2CO3 were compared in concentrations from 5 to 50 wt% in a temperature range of 298–328 K with and without enzyme. Necessary mass transfer parameters such as liquid side mass transfer coefficient and solvent and enzyme reaction rates were determined...

  19. Modifications of small intestine lysosomal enzymes after irradiation at different times of the day

    Energy Technology Data Exchange (ETDEWEB)

    Becciolini, A; Giache, V; Lanini, A; Cremonini, D; Drighi, E [Florence Univ. (Italy). Ist. di Radiologia

    1982-01-01

    The modification of lysosomal enzyme activities in animals irradiated with the same sublethal dose at 4 different times of the day is reported. The results confirmed the absence of circadian fluctuations in all the lysosomal enzymes and in protein content. A difference in behaviour between acid ..beta..-galactosidase and ..beta..-glucuronidase on the one hand and between acid phosphatase and cathepsin D on the other was evident in irradiated animals. The results showed that acid ..beta..-galactosidase and ..beta..-glucuronidase increase from the early intervals after irradiation and reach the highest activity between 36 and 48 h. At these intervals autolysis phenomena, heavy cellular alterations and numerous phlogosis cells are present in the epithelium. Only ..beta..-glucuronidase and acid ..beta..-galactosidase indicate the level of radiation injury.

  20. Real-time monitoring of enzyme-free strand displacement cascades by colorimetric assays

    Science.gov (United States)

    Duan, Ruixue; Wang, Boya; Hong, Fan; Zhang, Tianchi; Jia, Yongmei; Huang, Jiayu; Hakeem, Abdul; Liu, Nannan; Lou, Xiaoding; Xia, Fan

    2015-03-01

    The enzyme-free toehold-mediated strand displacement reaction has shown potential for building programmable DNA circuits, biosensors, molecular machines and chemical reaction networks. Here we report a simple colorimetric method using gold nanoparticles as signal generators for the real-time detection of the product of the strand displacement cascade. During the process the assembled gold nanoparticles can be separated, resulting in a color change of the solution. This assay can also be applied in complex mixtures, fetal bovine serum, and to detect single-base mismatches. These results suggest that this method could be of general utility to monitor more complex enzyme-free strand displacement reaction-based programmable systems or for further low-cost diagnostic applications.The enzyme-free toehold-mediated strand displacement reaction has shown potential for building programmable DNA circuits, biosensors, molecular machines and chemical reaction networks. Here we report a simple colorimetric method using gold nanoparticles as signal generators for the real-time detection of the product of the strand displacement cascade. During the process the assembled gold nanoparticles can be separated, resulting in a color change of the solution. This assay can also be applied in complex mixtures, fetal bovine serum, and to detect single-base mismatches. These results suggest that this method could be of general utility to monitor more complex enzyme-free strand displacement reaction-based programmable systems or for further low-cost diagnostic applications. Electronic supplementary information (ESI) available: Experimental procedures and analytical data are provided. See DOI: 10.1039/c5nr00697j

  1. Effect of temperature and time on solvothermal synthesis of ...

    Indian Academy of Sciences (India)

    Effect of temperature and time study on solvothermal synthesis of BaTiO3 revealed that a moderate reaction temperature i.e. 185◦C and longer reaction time favour tetragonal phase stabiliza- tion. Dissolution–precipitation appears to be the transformation mechanism for the crystallization of BaTiO3 from particulate TiO2 ...

  2. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Yanase, Shuhei; Yamada, Ryosuke; Ogino, Chiaki; Kondo, Akihiko [Kobe Univ. (Japan). Dept. of Chemical Science and Engineering; Hasunuma, Tomohisa; Tanaka, Tsutomu; Fukuda, Hideki [Kobe Univ. (Japan). Organization of Advanced Science and Technology

    2010-09-15

    To exploit cellulosic materials for fuel ethanol production, a microorganism capable of high temperature and simultaneous saccharification-fermentation has been required. However, a major drawback is the optimum temperature for the saccharification and fermentation. Most ethanol-fermenting microbes have an optimum temperature for ethanol fermentation ranging between 28 C and 37 C, while the activity of cellulolytic enzymes is highest at around 50 C and significantly decreases with a decrease in temperature. Therefore, in the present study, a thermotolerant yeast, Kluyveromyces marxianus, which has high growth and fermentation at elevated temperatures, was used as a producer of ethanol from cellulose. The strain was genetically engineered to display Trichoderma reesei endoglucanase and Aspergillus aculeatus {beta}-glucosidase on the cell surface, which successfully converts a cellulosic {beta}-glucan to ethanol directly at 48 C with a yield of 4.24 g/l from 10 g/l within 12 h. The yield (in grams of ethanol produced per gram of {beta}-glucan consumed) was 0.47 g/g, which corresponds to 92.2% of the theoretical yield. This indicates that high-temperature cellulose fermentation to ethanol can be efficiently accomplished using a recombinant K. marxianus strain displaying thermostable cellulolytic enzymes on the cell surface. (orig.)

  3. Time-Temperature Profiling of United Kingdom Consumers' Domestic Refrigerators.

    Science.gov (United States)

    Evans, Ellen W; Redmond, Elizabeth C

    2016-12-01

    Increased consumer demand for convenience and ready-to-eat food, along with changes to consumer food purchase and storage practices, have resulted in an increased reliance on refrigeration to maximize food safety. Previous research suggests that many domestic refrigerators operate at temperatures exceeding recommendations; however, the results of several studies were determined by means of one temperature data point, which, given temperature fluctuation, may not be a true indicator of actual continual operating temperatures. Data detailing actual operating temperatures and the effects of consumer practices on temperatures are limited. This study has collated the time-temperature profiles of domestic refrigerators in consumer kitchens (n = 43) over 6.5 days with concurrent self-reported refrigerator usage. Overall, the findings established a significant difference (P < 0.05) between one-off temperature (the recording of one temperature data point) and mean operating temperature. No refrigerator operated at ≤5.0°C for the entire duration of the study. Mean temperatures exceeding 5.0°C were recorded in the majority (91%) of refrigerators. No significant associations or differences were determined for temperature profiles and demographics, including household size, or refrigerator characteristics (age, type, loading, and location). A positive correlation (P < 0.05) between room temperature and refrigerator temperature was determined. Reported door opening frequency correlated with temperature fluctuation (P < 0.05). Thermometer usage was determined to be infrequent. Cumulatively, research findings have established that the majority of domestic refrigerators in consumer homes operate at potentially unsafe temperatures and that this is influenced by consumer usage. The findings from this study may be utilized to inform the development of shelf-life testing based on realistic domestic storage conditions. Furthermore, the data can inform the development of future

  4. Time dependent temperature distribution in pulsed Ti:sapphire lasers

    Science.gov (United States)

    Buoncristiani, A. Martin; Byvik, Charles E.; Farrukh, Usamah O.

    1988-01-01

    An expression is derived for the time dependent temperature distribution in a finite solid state laser rod for an end-pumped beam of arbitrary shape. The specific case of end pumping by circular (constant) or Gaussian beam is described. The temperature profile for a single pump pulse and for repetitive pulse operation is discussed. The particular case of the temperature distribution in a pulsed titanium:sapphire rod is considered.

  5. A rigidifying salt-bridge favors the activity of thermophilic enzyme at high temperatures at the expense of low-temperature activity.

    Science.gov (United States)

    Lam, Sonia Y; Yeung, Rachel C Y; Yu, Tsz-Ha; Sze, Kong-Hung; Wong, Kam-Bo

    2011-03-01

    Thermophilic enzymes are often less active than their mesophilic homologues at low temperatures. One hypothesis to explain this observation is that the extra stabilizing interactions increase the rigidity of thermophilic enzymes and hence reduce their activity. Here we employed a thermophilic acylphosphatase from Pyrococcus horikoshii and its homologous mesophilic acylphosphatase from human as a model to study how local rigidity of an active-site residue affects the enzymatic activity. Acylphosphatases have a unique structural feature that its conserved active-site arginine residue forms a salt-bridge with the C-terminal carboxyl group only in thermophilic acylphosphatases, but not in mesophilic acylphosphatases. We perturbed the local rigidity of this active-site residue by removing the salt-bridge in the thermophilic acylphosphatase and by introducing the salt-bridge in the mesophilic homologue. The mutagenesis design was confirmed by x-ray crystallography. Removing the salt-bridge in the thermophilic enzyme lowered the activation energy that decreased the activation enthalpy and entropy. Conversely, the introduction of the salt-bridge to the mesophilic homologue increased the activation energy and resulted in increases in both activation enthalpy and entropy. Revealed by molecular dynamics simulations, the unrestrained arginine residue can populate more rotamer conformations, and the loss of this conformational freedom upon the formation of transition state justified the observed reduction in activation entropy. Our results support the conclusion that restricting the active-site flexibility entropically favors the enzymatic activity at high temperatures. However, the accompanying enthalpy-entropy compensation leads to a stronger temperature-dependency of the enzymatic activity, which explains the less active nature of the thermophilic enzymes at low temperatures.

  6. A rigidifying salt-bridge favors the activity of thermophilic enzyme at high temperatures at the expense of low-temperature activity.

    Directory of Open Access Journals (Sweden)

    Sonia Y Lam

    2011-03-01

    Full Text Available Thermophilic enzymes are often less active than their mesophilic homologues at low temperatures. One hypothesis to explain this observation is that the extra stabilizing interactions increase the rigidity of thermophilic enzymes and hence reduce their activity. Here we employed a thermophilic acylphosphatase from Pyrococcus horikoshii and its homologous mesophilic acylphosphatase from human as a model to study how local rigidity of an active-site residue affects the enzymatic activity.Acylphosphatases have a unique structural feature that its conserved active-site arginine residue forms a salt-bridge with the C-terminal carboxyl group only in thermophilic acylphosphatases, but not in mesophilic acylphosphatases. We perturbed the local rigidity of this active-site residue by removing the salt-bridge in the thermophilic acylphosphatase and by introducing the salt-bridge in the mesophilic homologue. The mutagenesis design was confirmed by x-ray crystallography. Removing the salt-bridge in the thermophilic enzyme lowered the activation energy that decreased the activation enthalpy and entropy. Conversely, the introduction of the salt-bridge to the mesophilic homologue increased the activation energy and resulted in increases in both activation enthalpy and entropy. Revealed by molecular dynamics simulations, the unrestrained arginine residue can populate more rotamer conformations, and the loss of this conformational freedom upon the formation of transition state justified the observed reduction in activation entropy.Our results support the conclusion that restricting the active-site flexibility entropically favors the enzymatic activity at high temperatures. However, the accompanying enthalpy-entropy compensation leads to a stronger temperature-dependency of the enzymatic activity, which explains the less active nature of the thermophilic enzymes at low temperatures.

  7. A Generalized Time-Dependent Harmonic Oscillator at Finite Temperature

    International Nuclear Information System (INIS)

    Majima, H.; Suzuki, A.

    2006-01-01

    We show how a generalized time-dependent harmonic oscillator (GTHO) is extended to a finite temperature case by using thermo field dynamics (TFD). We derive the general time-dependent annihilation and creation operators for the system, and obtain the time-dependent quasiparticle annihilation and creation operators for the GTHO by using the temperature-dependent Bogoliubov transformation of TFD. We also obtain the thermal state as a two-mode squeezed vacuum state in the time-dependent case as well as in the time-independent case. The general formula is derived to calculate the thermal expectation value of operators

  8. Real-time monitoring of enzyme activity in a mesoporous silicon double layer

    Science.gov (United States)

    Orosco, Manuel M.; Pacholski, Claudia; Sailor, Michael J.

    2009-04-01

    The activity of certain proteolytic enzymes is often an indicator of disease states such as cancer, stroke and neurodegeneracy, so there is a need for rapid assays that can characterize the kinetics and substrate specificity of enzymatic reactions. Nanostructured membranes can efficiently separate biomolecules, but coupling a sensitive detection method to such a membrane remains difficult. Here, we demonstrate a single mesoporous nanoreactor that can isolate and quantify in real time the reaction products of proteases. The reactor consists of two layers of porous films electrochemically prepared from crystalline silicon. The upper layer, with large pore sizes (~100 nm in diameter), traps the protease and acts as the reactor. The lower layer, with smaller pore sizes (~6 nm), excludes the proteases and other large proteins and captures the reaction products. Infiltration of the digested fragments into the lower layer produces a measurable change in optical reflectivity, and this allows label-free quantification of enzyme kinetics in real time within a volume of ~5 nl.

  9. Influence of Sensor Ingestion Timing on Consistency of Temperature Measures

    National Research Council Canada - National Science Library

    Goodman, Daniel A; Kenefick, Robert W; Cadarette, Bruce S; Cheuvront, Samuel N

    2009-01-01

    ... (ITS) to measure core body temperature have been demonstrated. However, the effect of elapsed time between ITS ingestion and Tint measurement has not been thoroughly studied. Methods: Eight volunteers...

  10. Temperature and curing time affect composite sorption and solubility

    Directory of Open Access Journals (Sweden)

    Fabrício Luscino Alves de Castro

    2013-04-01

    Full Text Available Objective: This study evaluated the effect of temperature and curing time on composite sorption and solubility. Material and Methods: Seventy five specimens (8×2 mm were prepared using a commercial composite resin (ICE, SDI. Three temperatures (10°C, 25°C and 60°C and five curing times (5 s, 10 s, 20 s, 40 s and 60 s were evaluated. The specimens were weighed on an analytical balance three times: A: before storage (M1; B: 7 days after storage (M2; C: 7 days after storage plus 1 day of drying (M3. The storage solution consisted of 75% alcohol/25% water. Sorption and solubility were calculated using these three weights and specimen dimensions. The data were analyzed using the Kruskal-Wallis and Mann-Whitney U Tests (α=5%. Results: The results showed that time, temperature and their interaction influenced the sorption and solubility of the composite (p0.05. The 60°C composite temperature led to lower values of sorption for all curing times when compared with the 10°C temperature (p0.05. Solubility was similar at 40 s and 60 s for all temperatures (p>0.05, but was higher at 10°C than at 60°C for all curing times (p0.05. Conclusions: In conclusion, higher temperatures or longer curing times led to lower sorption and solubility values for the composite tested; however, this trend was only significant in specific combinations of temperature and curing times.

  11. A model for quantification of temperature profiles via germination times

    DEFF Research Database (Denmark)

    Pipper, Christian Bressen; Adolf, Verena Isabelle; Jacobsen, Sven-Erik

    2013-01-01

    Current methodology to quantify temperature characteristics in germination of seeds is predominantly based on analysis of the time to reach a given germination fraction, that is, the quantiles in the distribution of the germination time of a seed. In practice interpolation between observed...... time and a specific type of accelerated failure time models is provided. As a consequence the observed number of germinated seeds at given monitoring times may be analysed directly by a grouped time-to-event model from which characteristics of the temperature profile may be identified and estimated...... germination fractions at given monitoring times is used to obtain the time to reach a given germination fraction. As a consequence the obtained value will be highly dependent on the actual monitoring scheme used in the experiment. In this paper a link between currently used quantile models for the germination...

  12. High activity and low temperature optima of extracellular enzymes in Arctic sediments: implications for carbon cycling by heterotrophic microbial communities

    DEFF Research Database (Denmark)

    Arnosti, C.; Jørgensen, BB

    2003-01-01

    The rate of the initial step in microbial remineralization of organic carbon, extracellular enzymatic hydrolysis, was investigated as a function of temperature in permanently cold sediments from 2 fjords on the west coast of Svalbard (Arctic Ocean). We used 4 structurally distinct polysaccharides...... hydrolysis in order to determine the relative temperature responses of the initial and terminal steps in microbial remineralization of carbon. The temperature optimum of sulfate reduction, 21degreesC, was considerably lower than previous reports of sulfate reduction in marine sediments, but is consistent...... with recent studies of psychrophilic sulfate reducers isolated from Svalbard sediments. A calculation of potential carbon flow into the microbial food chain demonstrated that the activity of just one type of polysaccharide-hydrolyzing enzyme could in theory supply 21 to 100% of the carbon consumed via sulfate...

  13. Temperature dependence of fluctuation time scales in spin glasses

    DEFF Research Database (Denmark)

    Kenning, Gregory G.; Bowen, J.; Sibani, Paolo

    2010-01-01

    Using a series of fast cooling protocols we have probed aging effects in the spin glass state as a function of temperature. Analyzing the logarithmic decay found at very long time scales within a simple phenomenological barrier model, leads to the extraction of the fluctuation time scale of the s...

  14. Towards the standardization of time--temperature parameter usage in elevated temperature data analysis

    International Nuclear Information System (INIS)

    Goldhoff, R.M.

    1975-01-01

    Work devoted to establishment of recommended practices for correlating and extrapolating relevant data on creep-rupture properties of materials at high temperatures is described. An analysis of the time-temperature parameter is included along with descriptions of analysis and evaluation methods. Results of application of the methods are compared

  15. Time-resolving electron temperature diagnostic for ALCATOR C

    International Nuclear Information System (INIS)

    Fairfax, S.A.

    1984-05-01

    A diagnostic that provides time-resolved central electron temperatures has been designed, built, and tested on the ALCATOR C Tokamak. The diagnostic uses an array of fixed-wavelength x-ray crystal monochromators to sample the x-ray continuum and determine the absolute electron temperature. The resolution and central energy of each channel were chosen to exclude any contributions from impurity line radiation. This document describes the need for such a diagnostic, the design methodology, and the results with typical ALCATOR C plasmas. Sawtooth (m = 1) temperature oscillations were observed after pellet fueling of the plasma. This is the first time that such oscillations have been observed with an x-ray temperature diagnostic

  16. Hepatic enzyme decline after pediatric blunt trauma: a tool for timing child abuse?

    Science.gov (United States)

    Baxter, Amy L; Lindberg, Daniel M; Burke, Bonnie L; Shults, Justine; Holmes, James F

    2008-09-01

    Previous research in adult patients with blunt hepatic injuries has suggested a pattern of serum hepatic transaminase concentration decline. Evaluating this decline after pediatric blunt hepatic trauma could establish parameters for estimating the time of inflicted injuries. Deviation from a consistent transaminase resolution pattern could indicate a developing complication. Retrospective review of pediatric patients with injuries including blunt liver trauma admitted to one of four urban level 1 trauma centers from 1990 to 2000. Cases were excluded for shock, death within 48 h, complications, or inability to determine injury time. Transaminase concentration decline was modeled by individual patients, by injury grade, and as a ratio with regard to injury time. One hundred and seventy-six patients met inclusion criteria. The rate of aspartate aminotransferase (AST) clearance changed significantly over time. Alanine aminotransferase (ALT) fell more slowly. Of the 118 patients who had multiple measurements of AST, for 112 (95%) the first concentration obtained was the highest. When ALT was greater than AST, the injury was older than 12h (97% specificity (95% CI, 95-99%), sensitivity 42% (95% CI, 33-50%)). Patients with enzymes that rose after 14 h post-injury were more likely to develop complications (RR=24, 95% CI 10-58). Hepatic transaminases rise rapidly after uncomplicated blunt liver injury, then fall predictably. Persistently stable or increasing concentrations may indicate complications. ALT>AST indicates subacute injury.

  17. Time dependence of magnetization of high temperature superconductors

    International Nuclear Information System (INIS)

    Larkin, A.I.; Geshkenbein, V.B.

    1988-10-01

    Magnetization of high T c superconductors logarithmically decreases with time. There is a maximum in the temperature dependence of the coefficient at this logarithm. If one assumes that there do exist two kinds of pinning centers, then this dependence can be described in the Anderson theory of thermal creeps of Abrikosov's vortices. The temperature dependence of the critical current is also discussed. (author). 23 refs

  18. The PGI enzyme system and fitness response to temperature as a measure of environmental tolerance in an invasive species

    Directory of Open Access Journals (Sweden)

    Marie-Caroline Lefort

    2014-11-01

    Full Text Available In the field of invasion ecology, the determination of a species’ environmental tolerance, is a key parameter in the prediction of its potential distribution, particularly in the context of global warming. In poikilothermic species such as insects, temperature is often considered the most important abiotic factor that affects numerous life-history and fitness traits through its effect on metabolic rate. Therefore the response of an insect to challenging temperatures may provide key information as to its climatic and therefore spatial distribution. Variation in the phosphoglucose-6-isomerase (PGI metabolic enzyme-system has been proposed in some insects to underlie their relative fitness, and is recognised as a key enzyme in their thermal adaptation. However, in this context it has not been considered as a potential mechanism contributing to a species invasive cability. The present study aimed to compare the thermal tolerance of an invasive scarabaeid beetle, Costelytra zealandica (White with that of the closely related, and in part sympatrically occurring, congeneric non-invasive species C. brunneum (Broun, and to consider whether any correlation with particular PGI genotypes was apparent. Third instar larvae of each species were exposed to one of three different temperatures (10, 15 and 20 °C over six weeks and their fitness (survival and growth rate measured and PGI phenotyping performed via cellulose acetate electrophoresis. No consistent relationship between PGI genotypes and fitness was detected, suggesting that PGI may not be contributing to the invasion success and pest status of C. zealandica.

  19. Time response of temperature sensors using neural networks

    International Nuclear Information System (INIS)

    Santos, Roberto Carlos dos

    2010-01-01

    In a PWR nuclear power plant, the primary coolant temperature and feedwater temperature are measured using RTDs (Resistance Temperature Detectors). These RTDs typically feed the plant's control and safety systems and must, therefore, be very accurate and have good dynamic performance. The response time of RTDs is characterized by a single parameter called the Plunge Time Constant defined as the time it takes the sensor output to achieve 63.2 percent of its final value after a step change in temperature. Nuclear reactor service conditions are difficult to reproduce in the laboratory, and an in-situ test method called LCSR (Loop Current Step Response) test was developed to measure remotely the response time of RTDs. >From this test, the time constant of the sensor is identified by means of the LCSR transformation that involves the dynamic response modal time constants determination using a nodal heat-transfer model. This calculation is not simple and requires specialized personnel. For this reason an Artificial Neural Network has been developed to predict the time constant of RTD from LCSR test transient. It eliminates the transformations involved in the LCSR application. A series of LCSR tests on RTDs generates the response transients of the sensors, the input data of the networks. Plunge tests are used to determine the time constants of the RTDs, the desired output of the ANN, trained using these sets of input/output data. This methodology was firstly applied to theoretical data simulating 10 RTDs with different time constant values, resulting in an average error of about 0.74 %. Experimental data from three different RTDs was used to predict time constant resulting in a maximum error of 3,34 %. The time constants values predicted from ANN were compared with those obtained from traditional way resulting in an average error of about 18 % and that shows the network is able to predict accurately the sensor time constant. (author)

  20. The Effect of Temperature on the Enzyme-Catalyzed Reaction: Insights from Thermodynamics

    Science.gov (United States)

    Aledo, Juan Carlos; Jimenez-Riveres, Susana; Tena, Manuel

    2010-01-01

    When teaching the effect of temperature on biochemical reactions, the problem is usually oversimplified by confining the thermal effect to the catalytic constant, which is identified with the rate constant of the elementary limiting step. Therefore, only positive values for activation energies and values greater than 1 for temperature coefficients…

  1. Real-time temperature field measurement based on acoustic tomography

    International Nuclear Information System (INIS)

    Bao, Yong; Jia, Jiabin; Polydorides, Nick

    2017-01-01

    Acoustic tomography can be used to measure the temperature field from the time-of-flight (TOF). In order to capture real-time temperature field changes and accurately yield quantitative temperature images, two improvements to the conventional acoustic tomography system are studied: simultaneous acoustic transmission and TOF collection along multiple ray paths, and an offline iteration reconstruction algorithm. During system operation, all the acoustic transceivers send modulated and filtered wideband Kasami sequences simultaneously to facilitate fast and accurate TOF measurements using cross-correlation detection. For image reconstruction, the iteration process is separated and executed offline beforehand to shorten computation time for online temperature field reconstruction. The feasibility and effectiveness of the developed methods are validated in the simulation study. The simulation results demonstrate that the proposed method can reduce the processing time per frame from 160 ms to 20 ms, while the reconstruction error remains less than 5%. Hence, the proposed method has great potential in the measurement of rapid temperature change with good temporal and spatial resolution. (paper)

  2. Flexibility of Enzymes Suspended in Organic Solvents Probed by Time-Resolved Fluorescence Anisotropy. Evidence That Enzyme Activity and Enantioselectivity Are Directly Related to Enzyme Flexibility

    NARCIS (Netherlands)

    Broos, Jaap; Visser, Antonie J.W.G.; Engbersen, Johan F.J.; Verboom, Willem; Hoek, Arie van; Reinhoudt, David N.

    1995-01-01

    A time-resolved fluorescence anisotropy study on the molecular flexibility of active-site labeled anthraniloyl-α-chymotrypsin, dansylsubtilisin Carlsberg, and native subtilisin Carlsberg, suspended in organic solvents, is described. The internal rotational mobility of the fluorophore in the

  3. Development of Aa New Time Temperature Indicator for Enzymatic Validation of Pasteurization of Meat Products.

    Science.gov (United States)

    Brizio, Ana Paula Dutra Resem; Prentice, Carlos

    2015-06-01

    This paper presents the development of a new smart time-temperature indicator (TTI) of pasteurization whose operating principle is based on the complexation reaction between starch and iodine, and the subsequent action of an amylase on this complex causing its discoloration at a rate dependent on time and temperature of the medium. Laboratory simulations and tests in a manufacturing plant evaluated different enzyme concentrations in the TTI prototypes when exposed to pasteurization conditions. The results showed that the color response of the indicators was visually interpreted as adaptive to measurement using appropriate equipment, with satisfactory reliability in all conditions studied. The TTI containing 6.5% amylase was one whose best results were suited for use in validating the cooking of hams. When attached to the primary packaging of the product, this TTI indicated the pasteurization process inexpensively, easily, accurately, and nondestructively. © 2015 Institute of Food Technologists®

  4. Temperature and pH optima of enzyme activities produced by cellulolytic thermophilic fungi in batch and solid-state cultures

    Energy Technology Data Exchange (ETDEWEB)

    Grajek, W

    1986-01-01

    The temperature and pH optima of cellulolytic activities produced by thermophilic fungi in liquid and solid-state cultures were established. Some differences in optimal conditions for enzyme activities, which depended on culture methods, were confirmed. 10 references.

  5. Temperature of thermal plasma jets: A time resolved approach

    Energy Technology Data Exchange (ETDEWEB)

    Sahasrabudhe, S N; Joshi, N K; Barve, D N; Ghorui, S; Tiwari, N; Das, A K, E-mail: sns@barc.gov.i [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai - 400 094 (India)

    2010-02-01

    Boltzmann Plot method is routinely used for temperature measurement of thermal plasma jets emanating from plasma torches. Here, it is implicitly assumed that the plasma jet is 'steady' in time. However, most of the experimenters do not take into account the variations due to ripple in the high current DC power supplies used to run plasma torches. If a 3-phase transductor type of power supply is used, then the ripple frequency is 150 Hz and if 3- phase SCR based power supply is used, then the ripple frequency is 300 Hz. The electrical power fed to plasma torch varies at ripple frequency. In time scale, it is about 3.3 to 6.7 ms for one cycle of ripple and it is much larger than the arc root movement times which are within 0.2 ms. Fast photography of plasma jets shows that the luminosity of plasma jet also varies exactly like the ripple in the power supply voltage and thus with the power. Intensity of line radiations varies nonlinearly with the instantaneous power fed to the torch and the simple time average of line intensities taken for calculation of temperature is not appropriate. In this paper, these variations and their effect on temperature determination are discussed and a method to get appropriate data is suggested. With a small adaptation discussed here, this method can be used to get temperature profile of plasma jet within a short time.

  6. Time - Temperature Relationships of Test Head Fired and Backfires

    Science.gov (United States)

    Lawrence S. Davis; Robert E. Martin

    1960-01-01

    Time-temperature relations were measured during the course of a preliminary investigation of the thermal characteristics of forest fires. Observations on 5 head fires and 5 backfires in 8-year-old gallberry-palmetto roughs on the Alapaha Experimental Range near Tifton, Georgia, are the basis for this report.

  7. Time-temperature-transformation kinetics in SRL waste glass

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Bickford, D.F.; Karraker, D.G.

    1983-01-01

    Time-temperature-transformation (TTT) curves have been determined for SRL 165 waste glass. Extent and sequence of crystallization were determined by XRD and SEM. The incipient crystallization product, spinel, can be determined at one volume percent by magnetic susceptibility. The type and percentage of crystallization is correlated with waste glass durability. 20 references, 5 figures, 1 table

  8. "Deflategate": Time, Temperature, and Moisture Effects on Football Pressure

    Science.gov (United States)

    Blumenthal, Jack; Beljak, Lauren; Macatangay, Dahlia-Marie; Helmuth-Malone, Lilly; McWilliams, Catharina; Raptis, Sofia

    2016-01-01

    In a recent paper in "The Physics Teacher (TPT)", DiLisi and Rarick used the National Football League "Deflategate" controversy to introduce to physics students the physics of a bouncing ball. In this paper, we measure and analyze the environmental effects of time, ambient temperature, and moisture on the internal pressure of…

  9. Influence of different storage times and temperatures on blood gas ...

    African Journals Online (AJOL)

    The present study was designed to investigate the effects of storage temperature and time on blood gas and acid-base balance of ovine venous blood. Ten clinically healthy sheep were used in this study. A total number of 30 blood samples, were divided into three different groups, and were stored in a refrigerator adjusted ...

  10. Effect of Brewing Time and Temperature on the release of ...

    African Journals Online (AJOL)

    Michael Horsfall

    Moringa oleifera blended leaves sample at brewing temperature and time of 29oC and 2mins respectively. ... most countries they are taken as tea to treat diabetics, obesity, fever ... human and highly toxic to insects, making it an ideal.

  11. Studies on entrapping of enzymes and drugs in matrices by radiation-induced polymerization at low temperatures and their capabilities

    International Nuclear Information System (INIS)

    Yoshida, Masaru

    1980-03-01

    The author has studied a immobilization method for enzymes and drugs by means of radiation-induced polymerization at low temperatures in a supercooled state using glass-forming monomers. The proposed technique using glass-forming monomer has features as follows. (1) Inactivation of the bio-component by heat and radiation is almost eliminated due to the low temperature treatment. (2) Moulding or shaping of the mixture of monomer and bio-component in difference forms and sizes of polymerized composite is easy due to high viscosity of the supercooled monomer. (3) The carrier matrix may be selected from a wide range of hydrophilic and hydrophobic vinyl monomers and polymers. (4) No impurities such as a polymerization catalyst are introduced in the system. (5) A bio-component can be easily distributed in high stability, either concentrated on surface of the monomer or homogeneously within the monomer, due to large viscosity of the monomer. Furthermore, the author attempted practical usage of the technique in such as enzyme fixation for long continuous or repeated application (PART I) and controlled slow release of medicine in efficient and durable without secondary reaction (PART II). (author)

  12. High day- and night-time temperatures affect grain growth dynamics in contrasting rice genotypes.

    Science.gov (United States)

    Shi, Wanju; Yin, Xinyou; Struik, Paul C; Solis, Celymar; Xie, Fangming; Schmidt, Ralf C; Huang, Min; Zou, Yingbin; Ye, Changrong; Jagadish, S V Krishna

    2017-11-02

    Rice grain yield and quality are predicted to be highly vulnerable to global warming. Five genotypes including heat-tolerant and susceptible checks, a heat-tolerant near-isogenic line and two hybrids were exposed to control (31 °C/23 °C, day/night), high night-time temperature (HNT; 31 °C/30 °C), high day-time temperature (HDT; 38 °C/23 °C) and high day- and night-time temperature (HNDT; 38 °C/30 °C) treatments for 20 consecutive days during the grain-filling stage. Grain-filling dynamics, starch metabolism enzymes, temporal starch accumulation patterns and the process of chalk formation were quantified. Compensation between the rate and duration of grain filling minimized the impact of HNT, but irreversible impacts on seed-set, grain filling and ultimately grain weight were recorded with HDT and HNDT. Scanning electron microscopy demonstrated irregular and smaller starch granule formation affecting amyloplast build-up with HDT and HNDT, while a quicker but normal amylopast build-up was recorded with HNT. Our findings revealed temporal variation in the starch metabolism enzymes in all three stress treatments. Changes in the enzymatic activity did not derail starch accumulation under HNT when assimilates were sufficiently available, while both sucrose supply and the conversion of sucrose into starch were affected by HDT and HNDT. The findings indicate differential mechanisms leading to high day and high night temperature stress-induced loss in yield and quality. Additional genetic improvement is needed to sustain rice productivity and quality under future climates. © Society for Experimental Biology 2017.

  13. Revealing time bunching effect in single-molecule enzyme conformational dynamics.

    Science.gov (United States)

    Lu, H Peter

    2011-04-21

    In this perspective, we focus our discussion on how the single-molecule spectroscopy and statistical analysis are able to reveal enzyme hidden properties, taking the study of T4 lysozyme as an example. Protein conformational fluctuations and dynamics play a crucial role in biomolecular functions, such as in enzymatic reactions. Single-molecule spectroscopy is a powerful approach to analyze protein conformational dynamics under physiological conditions, providing dynamic perspectives on a molecular-level understanding of protein structure-function mechanisms. Using single-molecule fluorescence spectroscopy, we have probed T4 lysozyme conformational motions under the hydrolysis reaction of a polysaccharide of E. coli B cell walls by monitoring the fluorescence resonant energy transfer (FRET) between a donor-acceptor probe pair tethered to T4 lysozyme domains involving open-close hinge-bending motions. Based on the single-molecule spectroscopic results, molecular dynamics simulation, a random walk model analysis, and a novel 2D statistical correlation analysis, we have revealed a time bunching effect in protein conformational motion dynamics that is critical to enzymatic functions. Bunching effect implies that conformational motion times tend to bunch in a finite and narrow time window. We show that convoluted multiple Poisson rate processes give rise to the bunching effect in the enzymatic reaction dynamics. Evidently, the bunching effect is likely common in protein conformational dynamics involving in conformation-gated protein functions. In this perspective, we will also discuss a new approach of 2D regional correlation analysis capable of analyzing fluctuation dynamics of complex multiple correlated and anti-correlated fluctuations under a non-correlated noise background. Using this new method, we are able to map out any defined segments along the fluctuation trajectories and determine whether they are correlated, anti-correlated, or non-correlated; after which, a

  14. Modifications in the brush border enzymes of the small intestine after irradiation at different times of the day

    Energy Technology Data Exchange (ETDEWEB)

    Becciolini, A; Lanini, A; Giache, V; Balzi, M; Bini, R [Florence Univ. (Italy). Ist. di Radiologia

    1982-01-01

    The behaviour of the brush border enzyme activity of the intestinal epithelium after the same sublethal radiation dose to the abdomen at different times of the day was investigated. Three previously observed post-irradiation phases (initial increase of activity, reduction, and return to control values) were confirmed, although with some differences. A later return to normal of lactase was also confirmed. The same dose produced different behaviour of the enzyme activities both during the initial and the recovery phase, depending on the time of the day when irradiation was performed, i.e. on the functional condition of the epithelial cells.

  15. Spatial patterns in timing of the diurnal temperature cycle

    Directory of Open Access Journals (Sweden)

    T. R. H. Holmes

    2013-10-01

    Full Text Available This paper investigates the structural difference in timing of the diurnal temperature cycle (DTC over land resulting from choice of measuring device or model framework. It is shown that the timing can be reliably estimated from temporally sparse observations acquired from a constellation of low Earth-orbiting satellites given record lengths of at least three months. Based on a year of data, the spatial patterns of mean DTC timing are compared between temperature estimates from microwave Ka-band, geostationary thermal infrared (TIR, and numerical weather prediction model output from the Global Modeling and Assimilation Office (GMAO. It is found that the spatial patterns can be explained by vegetation effects, sensing depth differences and more speculatively the orientation of orographic relief features. In absolute terms, the GMAO model puts the peak of the DTC on average at 12:50 local solar time, 23 min before TIR with a peak temperature at 13:13 (both averaged over Africa and Europe. Since TIR is the shallowest observation of the land surface, this small difference represents a structural error that possibly affects the model's ability to assimilate observations that are closely tied to the DTC. The equivalent average timing for Ka-band is 13:44, which is influenced by the effect of increased sensing depth in desert areas. For non-desert areas, the Ka-band observations lag the TIR observations by only 15 min, which is in agreement with their respective theoretical sensing depth. The results of this comparison provide insights into the structural differences between temperature measurements and models, and can be used as a first step to account for these differences in a coherent way.

  16. In situ response time measurements of RTD temperature sensors

    International Nuclear Information System (INIS)

    Goncalves, I.M.P.

    1985-01-01

    The loop-current-step-response test provides a mean for determining the time constant of resistence thermometers. The test consist in heating the sensor a few degrees above ambient temperature by causing a step pertubation in the electric current that flows through the sensor leads. The developed mathematical transformation permits to use data collected during the internal heating transient to predict the sensor response to perturbations in fluid temperature. Experimental data obtained show that the time constant determined by method is within 15 percent of true value. The loop-current-step-response test is a remote in situ test, which can be performed with the sensor installed in the process. Consequently it takes account the local heat transfer conditions, and appropriated for nuclear power plants, where sensors are installed in points of difficult access. (author) [pt

  17. In-situ nanoelectrospray for high-throughput screening of enzymes and real-time monitoring of reactions.

    Science.gov (United States)

    Yang, Yuhan; Han, Feifei; Ouyang, Jin; Zhao, Yunling; Han, Juan; Na, Na

    2016-01-01

    The in-situ and high-throughput evaluation of enzymes and real-time monitoring of enzyme catalyzed reactions in liquid phase is quite significant in the catalysis industry. In-situ nanoelectrospray, the direct sampling and ionization method for mass spectrometry, has been applied for high-throughput evaluation of enzymes, as well as the on-line monitoring of reactions. Simply inserting a capillary into a liquid system with high-voltage applied, analytes in liquid reaction system can be directly ionized at the capillary tip with small volume consumption. With no sample pre-treatment or injection procedure, different analytes such as saccharides, amino acids, alkaloids, peptides and proteins can be rapidly and directly extracted from liquid phase and ionized at the capillary tip. Taking irreversible transesterification reaction of vinyl acetate and ethanol as an example, this technique has been used for the high-throughput evaluation of enzymes, fast optimizations, as well as real-time monitoring of reaction catalyzed by different enzymes. In addition, it is even softer than traditional electrospray ionization. The present method can also be used for the monitoring of other homogenous and heterogeneous reactions in liquid phases, which will show potentials in the catalysis industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Hydrolysis of native and heat-treated starches at sub-gelatinization temperature using granular starch hydrolyzing enzyme.

    Science.gov (United States)

    Uthumporn, U; Shariffa, Y N; Karim, A A

    2012-03-01

    The effect of heat treatment below the gelatinization temperature on the susceptibility of corn, mung bean, sago, and potato starches towards granular starch hydrolysis (35°C) was investigated. Starches were hydrolyzed in granular state and after heat treatment (50°C for 30 min) by using granular starch hydrolyzing enzyme for 24 h. Hydrolyzed heat-treated starches showed a significant increase in the percentage of dextrose equivalent compared to native starches, respectively, with corn 53% to 56%, mung bean 36% to 47%, sago 15% to 26%, and potato 12% to 15%. Scanning electron microscopy micrographs showed the presence of more porous granules and surface erosion in heat-treated starch compared to native starch. X-ray analysis showed no changes but with sharper peaks for all the starches, suggested that hydrolysis occurred on the amorphous region. The amylose content and swelling power of heat-treated starches was markedly altered after hydrolysis. Evidently, this enzyme was able to hydrolyze granular starches and heat treatment before hydrolysis significantly increased the degree of hydrolysis.

  19. Effects of temperature on bleeding time and clotting time in normal male and female volunteers.

    Science.gov (United States)

    Valeri, C R; MacGregor, H; Cassidy, G; Tinney, R; Pompei, F

    1995-04-01

    This study was done to assess the effects of temperature on bleeding time and clotting time in normal male and female volunteers. Open study utilizing normal volunteers. University research laboratory. Fifty-four healthy male and female volunteers, ranging in age from 19 to 35 yrs, who were not receiving medications. The study was done and the samples of venous blood and shed blood collected at the template bleeding time site were obtained at a convenient time for each volunteer. Skin temperature was changed from +20 degrees to +38 degrees C and blood samples were obtained from the antecubital vein of each volunteer. The effect of local skin temperature ranging from +20 degrees to +38 degrees C on bleeding time was evaluated in 38 normal volunteers (19 male and 19 female). Skin temperature was maintained at +20 degrees to +38 degrees C by cooling or warming the forearm. At each temperature, measurements were made of complete blood count, bleeding time, and thromboxane B2 concentrations in shed blood collected at the template bleeding time site and in serum and plasma isolated from blood collected from the antecubital vein. Clotting time studies were measured in 16 normal volunteers (eight male and eight female) at temperatures ranging from +22 degrees to +37 degrees C. At +32 degrees C, the bleeding time was longer and hematocrit was lower in female than in male volunteers. However, at local skin temperatures of < +32 degrees C, both the males and females exhibited significantly increased bleeding times, which were associated with a reduction in shed blood thromboxane B2. Each 1 degree C decrease in temperature was associated with a 15% decrease in the shed blood thromboxane B2 concentration. Clotting times were three times longer at +22 degrees C than at +37 degrees C. Each 1 degree C reduction in the temperature of the clotted blood was associated with a 15% reduction in the serum thromboxane B2 concentration. Our data indicate that during surgical procedures, it

  20. Low temperature and defoliation affect fructan-metabolizing enzymes in different regions of the rhizophores of Vernonia herbacea.

    Science.gov (United States)

    Portes, Maria Teresa; Figueiredo-Ribeiro, Rita de Cássia L; de Carvalho, Maria Angela M

    2008-10-09

    In addition to the storage function, fructans in Asteraceae from floras with seasonal growth have been associated with drought and freezing tolerance. Vernonia herbacea, native of the Brazilian Cerrado, bears underground reserve organs, rhizophores, accumulating inulin-type fructans. The rhizophore is a cauline branched system with positive geotropic growth, with the apex (distal region) presenting younger tissues; sprouting of new shoots occurs by development of buds located on the opposite end (proximal region). Plants induced to sprouting by excision of the aerial organs present increased 1-fructan exohydrolase (1-FEH) activity in the proximal region, while plants at the vegetative stage present high 1-sucrose:sucrose fructosyltransferase (1-SST) in the distal region. The aim of the present study was to analyze how low temperature (5 degrees C) could affect fructan-metabolizing enzymes and fructan composition in the different regions of the rhizophores of intact and excised plants. 1-SST and 1-fructan:fructan fructosyltransferase (1-FFT) were higher in the distal region decreasing towards the proximal region in intact plants at the vegetative phase, and were drastically diminished when cold and/or excision were imposed. In contrast, 1-FEH increased in the proximal region of treated plants, mainly in excised plants subjected to cold. The ratio fructo-oligo to fructo-polysaccharides was significantly higher in plants exposed to low temperature (1.17 in intact plants and 1.64 in excised plants) than in plants exposed to natural temperature conditions (0.84 in intact vegetative plants and 0.58 in excised plants), suggesting that oligosaccharides are involved in the tolerance of plants to low temperature via 1-FEH, in addition to 1-FFT. Principal component analysis indicated different response mechanisms in fructan metabolism under defoliation and low temperature, which could be interpreted as part of the strategies to undergo unfavorable environmental conditions

  1. Effects of ethylene on photosystem II and antioxidant enzyme activity in Bermuda grass under low temperature.

    Science.gov (United States)

    Hu, Zhengrong; Fan, Jibiao; Chen, Ke; Amombo, Erick; Chen, Liang; Fu, Jinmin

    2016-04-01

    The phytohormone ethylene has been reported to mediate plant response to cold stress. However, it is still debated whether the effect of ethylene on plant response to cold stress is negative or positive. The objective of the present study was to explore the role of ethylene in the cold resistance of Bermuda grass (Cynodon dactylon (L).Pers.). Under control (warm) condition, there was no obvious effect of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) or the antagonist Ag(+) of ethylene signaling on electrolyte leakage (EL) and malondialdehyde (MDA) content. Under cold stress conditions, ACC-treated plant leaves had a greater level of EL and MDA than the untreated leaves. However, the EL and MDA values were lower in the Ag(+) regime versus the untreated. In addition, after 3 days of cold treatment, ACC remarkably reduced the content of soluble protein and also altered antioxidant enzyme activity. Under control (warm) condition, there was no significant effect of ACC on the performance of photosystem II (PS II) as monitored by chlorophyll α fluorescence transients. However, under cold stress, ACC inhibited the performance of PS II. Under cold condition, ACC remarkably reduced the performance index for energy conservation from excitation to the reduction of intersystem electron acceptors (PI(ABS)), the maximum quantum yield of primary photochemistry (φP0), the quantum yield of electron transport flux from Q(A) to Q(B) (φE0), and the efficiency/probability of electron transport (ΨE0). Simultaneously, ACC increased the values of specific energy fluxes for absorption (ABS/RC) and dissipation (DI0/RC) after 3 days of cold treatment. Additionally, under cold condition, exogenous ACC altered the expressions of several related genes implicated in the induction of cold tolerance (LEA, SOD, POD-1 and CBF1, EIN3-1, and EIN3-2). The present study thus suggests that ethylene affects the cold tolerance of Bermuda grass by impacting the antioxidant system

  2. Anemia in chronic renal failure. Ferrokinetic, erythrocytes-survival time and enzymes of erythrocytes on chronic dialysed patients

    Energy Technology Data Exchange (ETDEWEB)

    Junkers, K; Jontofson, R; Meuret, G; Blume, K G; Heinze, V [Freie Univ. Berlin (F.R. Germany). Nuklearmedizinische Abt.; Freiburg Univ. (F.R. Germany). Nuklearmedizinische Abt.; Freiburg Univ. (F.R. Germany). Medizinische Poliklinik)

    1975-12-01

    Radio-iron utilization was nearly normal in these patients, only bilateral nephrectomized patients showed a reduced radio-iron utilization. Red blood half-life span was shortened in all patients, well corresponding to the degree of anemia. Parameters of erythropoesis like plasma iron clearance, bone marrow transit time, erythron iron turnover, non-erythron iron turnover and hemolysis iron turnover failed to quantitate disorders of red blood cell regeneration in these patients. No defect in red blood cell enzyme activity could be demonstrated. Enzymes of glycolysis were increased corresponding to the reduced erythrocyte half-life span.

  3. High-Temperature Short-Time Pasteurization System for Donor Milk in a Human Milk Bank Setting

    OpenAIRE

    Diana Escuder-Vieco; Irene Espinosa-Martos; Juan M. Rodríguez; Nieves Corzo; Antonia Montilla; Pablo Siegfried; Carmen R. Pallás-Alonso; Carmen R. Pallás-Alonso; Leónides Fernández

    2018-01-01

    Donor milk is the best alternative for the feeding of preterm newborns when mother's own milk is unavailable. For safety reasons, it is usually pasteurized by the Holder method (62.5°C for 30 min). Holder pasteurization results in a microbiological safe product but impairs the activity of many biologically active compounds such as immunoglobulins, enzymes, cytokines, growth factors, hormones or oxidative stress markers. High-temperature short-time (HTST) pasteurization has been proposed as an...

  4. Effect of Time and Temperature on Thickened Infant Formula.

    Science.gov (United States)

    Gosa, Memorie M; Dodrill, Pamela

    2017-04-01

    Unlike adult populations, who primarily depend on liquids for hydration alone, infants rely on liquids to provide them with hydration and nutrition. Speech-language pathologists working within pediatric medical settings often identify dysphagia in patients and subsequently recommend thickened liquids to reduce aspiration risk. Caregivers frequently report difficulty attempting to prepare infant formula to the prescribed thickness. This study was designed to determine (1) the relationship between consistencies in modified barium swallow studies and thickened infant formulas and (2) the effects of time and temperature on the resulting thickness of infant formula. Prepackaged barium consistencies and 1 standard infant formula that was thickened with rice cereal and with 2 commercially available thickening agents were studied. Thickness was determined via a line spread test after various time and temperature conditions were met. There were significant differences between the thickened formula and barium test consistencies. Formula thickened with rice cereal separated over time into thin liquid and solid residue. Formula thickened with a starch-based thickening agent was thicker than the desired consistency immediately after mixing, and it continued to thicken over time. The data from this project suggest that nectar-thick and honey-thick infant formulas undergo significant changes in flow rates within 30 minutes of preparation or if refrigerated and then reheated after 3 hours. Additional empirical evidence is warranted to determine the most reliable methods and safest products for thickening infant formula when necessary for effective dysphagia management.

  5. Stratospheric Temperature Trends Observed by TIMED/SABER

    Science.gov (United States)

    Xian, T.; Tan, R.

    2017-12-01

    Trends in the stratospheric temperature are studied based on the temperature profile observation from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). The spatially trends are evaluated in different time scales ranging from decadal to monthly resolved. The results indicate a signature of BDC acceleration. There are strong warming trends (up to 9 K/decade) in the middle to upper stratosphere in the high latitude spring, summer, and autumn seasons, accompanied by strong cooling trends in the lower stratosphere. Besides, strong warming trends occurs through the whole stratosphere over the Southern Hemisphere, which confirms Antarctic ozone layer healing since 2000. In addition, the results demonstrate a significant warming trends in the middle of tropical stratosphere, which becomes strongest during June-July-August.

  6. Taste and Temperature in Swallowing Transit Time after Stroke

    Directory of Open Access Journals (Sweden)

    Paula C. Cola

    2012-09-01

    Full Text Available Background: Oropharyngeal dysphagia is common in individuals after stroke. Taste and temperature are used in dysphagia rehabilitation. The influence of stimuli, such as taste and temperature, on swallowing biomechanics has been investigated in both healthy individuals and in individuals with neurological disease. However, some questions still remain unanswered, such as how the sequence of offered stimuli influences the pharyngeal response. The goal of the present study was to determine the influence of the sequence of stimuli, sour taste and cold temperature, on pharyngeal transit time during deglutition in individuals after stroke. Methods: The study included 60 individuals with unilateral ischemic stroke, 29 males and 31 females, aged 41–88 years (mean age: 66.2 years examined 0–50 days after ictus (median: 6 days, with mild to moderate oropharyngeal dysphagia. Exclusion criteria were hemorrhagic stroke patients, patients with decreased level of consciousness, and clinically unstable patients, as confirmed by medical evaluation. The individuals were divided into two groups of 30 individuals each. Group 1 received a nonrandomized sequence of stimuli (i.e. natural, cold, sour, and sour-cold and group 2 received a randomized sequence of stimuli. A videofluoroscopic swallowing study was performed to analyze the pharyngeal transit time. Four different stimuli (natural, cold, sour, and sour-cold were offered. The images were digitalized and specific software was used to measure the pharyngeal transit time. Since the values did not present regular distribution and uniform variances, nonparametric tests were performed. Results: Individuals in group 1 presented a significantly shorter pharyngeal transit time with the sour-cold stimulus than with the other stimuli. Individuals in group 2 did not show a significant difference in pharyngeal transit time between stimuli. Conclusions: The results showed that the sequence of offered stimuli influences

  7. TIME-TEMPERATURE-TRANSFORMATION (TTT) DIAGRAMS FOR FUTURE WASTE COMPOSITIONS

    International Nuclear Information System (INIS)

    Billings, A.; Edwards, T.

    2010-01-01

    As a part of the Waste Acceptance Product Specifications (WAPS) for Vitrified High-Level Waste Forms defined by the Department of Energy - Office of Environmental Management, the waste form stability must be determined for each of the projected high-level waste (HLW) types at the Savannah River Site (SRS). Specifically, WAPS 1.4.1 requires the glass transition temperature (T g ) to be defined and time-temperature-transformation (TTT) diagrams to be developed. The T g of a glass is an indicator of the approximate temperature where the supercooled liquid converts to a solid on cooling or conversely, where the solid begins to behave as a viscoelastic solid on heating. A TTT diagram identifies the crystalline phases that can form as a function of time and temperature for a given waste type or more specifically, the borosilicate glass waste form. In order to assess durability, the Product Consistency Test (PCT) was used and the durability results compared to the Environmental Assessment (EA) glass. The measurement of glass transition temperature and the development of TTT diagrams have already been performed for the seven Defense Waste Processing Facility (DWPF) projected compositions as defined in the Waste Form Compliance Plan (WCP) and in SRNL-STI-2009-00025. Additional phase transformation information exists for other projected compositions, but overall these compositions did not cover composition regions estimated for future waste processing. To develop TTT diagrams for future waste types, the Savannah River National Laboratory (SRNL) fabricated two caches of glass from reagent grade oxides to simulate glass compositions which would be likely processed with and without Al dissolution. These were used for glass transition temperature measurement and TTT diagram development. The glass transition temperatures of both glasses were measured using differential scanning calorimetry (DSC) and were recorded to be 448 C and 452 C. Using the previous TTT diagrams as guidance

  8. Correspondence between imaginary-time and real-time finite-temperature field theory

    International Nuclear Information System (INIS)

    Kobes, R.

    1990-01-01

    It is known that one-particle-irreducible graphs found using the imaginary-time formalism of finite-temperature field theory differ in general with those of the real-time formalism. Here it is shown that within the real-time formalism one can consider a sum of graphs, motivated by causality arguments, which at least in a number of simple examples agree with the corresponding analytically continued imaginary-time result. The occurrence of multiple statistical factors in this sum of graphs is discussed

  9. Time and Temperature Test Results for PFP Thermal Stabilization Furnaces

    International Nuclear Information System (INIS)

    COMPTON, J.A.

    2000-01-01

    The national standard for plutonium storage acceptability (standard DOE-STD-3013-99, generally known as ''the 3013 standard'') has been revised to clarify the requirement for processes that will produce acceptable storage materials. The 3013 standard (Reference 1) now states that ''Oxides shall be stabilized by heating the material in an oxidizing atmosphere to a Material Temperature of at least 950 C (1742 F) for not less than 2 hours.'' The process currently in use for producing stable oxides for storage at the Plutonium Finishing Plant (PFP) heats a furnace atmosphere to 1000 C and holds it there for 2 hours. The temperature of the material being stabilized is not measured directly during this process. The Plutonium Process Support Laboratories (PPSL) were requested to demonstrate that the process currently in use at PFP is an acceptable method of producing stable plutonium dioxide consistently. A spare furnace identical to the production furnaces was set up and tested under varying conditions with non-radioactive surrogate materials. Reference 2 was issued to guide the testing program. The process currently in use at the PFP for stabilizing plutonium-bearing powders was shown to heat all the material in the furnace to at least 950 C for at least 2 hours. The current process will work for (1) relatively pure plutonium dioxide, (2) dioxide powders mixed with up to 20 weight percent magnesium oxide, and (3) dioxide powders with up to 11 weight percent magnesium oxide and 20 weight percent magnesium nitrate hexahydrate. Time and temperature data were also consistent with a successful demonstration for a mixture containing 10 weight percent each of sodium and potassium chloride; however, the molten chloride salts destroyed the thermocouples in the powder and temperature data were unavailable for part of that run. These results assume that the current operating limits of no more than 2500 grams per furnace charge and a powder height of no more than 1.5 inches remain

  10. Constant pressure and temperature discrete-time Langevin molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Grønbech-Jensen, Niels [Department of Mechanical and Aerospace Engineering, University of California, Davis, California 95616 (United States); Department of Mathematics, University of California, Davis, California 95616 (United States); Farago, Oded [Department of Biomedical Engineering, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel)

    2014-11-21

    We present a new and improved method for simultaneous control of temperature and pressure in molecular dynamics simulations with periodic boundary conditions. The thermostat-barostat equations are built on our previously developed stochastic thermostat, which has been shown to provide correct statistical configurational sampling for any time step that yields stable trajectories. Here, we extend the method and develop a set of discrete-time equations of motion for both particle dynamics and system volume in order to seek pressure control that is insensitive to the choice of the numerical time step. The resulting method is simple, practical, and efficient. The method is demonstrated through direct numerical simulations of two characteristic model systems—a one-dimensional particle chain for which exact statistical results can be obtained and used as benchmarks, and a three-dimensional system of Lennard-Jones interacting particles simulated in both solid and liquid phases. The results, which are compared against the method of Kolb and Dünweg [J. Chem. Phys. 111, 4453 (1999)], show that the new method behaves according to the objective, namely that acquired statistical averages and fluctuations of configurational measures are accurate and robust against the chosen time step applied to the simulation.

  11. Temperature Stabilization of the NIFFTE Time Projection Chamber

    Science.gov (United States)

    Hicks, Caleb

    2017-09-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) is a collaboration measuring nuclear fission cross sections for use in advanced nuclear reactors. A neutron beam incident on targets of Uranium-235, Uranium-238, and Plutonium-239 is used to measure the neutron induced fission cross sections for these isotopes. A Time Projection Chamber (TPC) is used to record these reactions. Significant heat is generated by the readout cards mounted on the TPC, which are cooled by fans. One proposed measurement of the experiment is to compare the cross sections of the target to a proton target of gaseous hydrogen. A constant temperature inside the TPC's pressure vessel is desirable to maintain a constant number of hydrogen target atoms. In addition, a constant temperature minimizes the strain and wrinkles on an amplifying mesh inside the TPC. This poster describes the successful work to develop, build, and install a fan controller using a Raspberry Pi, an Arduino, and a custom circuit board to implement an algorithm called Proportional-Integral-Derivative control. This research was supported by US DOE MENP Grant DE-FG02-03ER41243.

  12. An elapsed time-temperature monitor for blood storage.

    Science.gov (United States)

    Harris, G E; Cloud, S; Myhre, B A

    1977-01-01

    Blood should not be allowed to exceed 10 C while being stored or transported. However, one cannot test the internal temperature of a unit of blood without contaminating it. Most blood banks have established an arbitrary time limit beyond which a blood unit cannot be kept out of the refrigerator. This method is ineffective if blood is stored in a satellite refrigerator, since the blood may be moved in and out of the refrigerator and the blood bank personnel will be unaware of it. An elapsed time indicator is described which employs a small condenser (E-Cell-Plessey Electronics) charged with a known amount of electricity. If the device is removed from the refrigerator, it begins to discharge at a known rate. The amount of time subsequently can be determined by the loss of charge. The prototype of this instrument has been found to be quite accurate and small (2 inches X 2 inches X 1 inch). It would be rather inexpensive if made in considerable numbers.

  13. Creep behavior of bone cement: a method for time extrapolation using time-temperature equivalence.

    Science.gov (United States)

    Morgan, R L; Farrar, D F; Rose, J; Forster, H; Morgan, I

    2003-04-01

    The clinical lifetime of poly(methyl methacrylate) (PMMA) bone cement is considerably longer than the time over which it is convenient to perform creep testing. Consequently, it is desirable to be able to predict the long term creep behavior of bone cement from the results of short term testing. A simple method is described for prediction of long term creep using the principle of time-temperature equivalence in polymers. The use of the method is illustrated using a commercial acrylic bone cement. A creep strain of approximately 0.6% is predicted after 400 days under a constant flexural stress of 2 MPa. The temperature range and stress levels over which it is appropriate to perform testing are described. Finally, the effects of physical aging on the accuracy of the method are discussed and creep data from aged cement are reported.

  14. FeCl3-catalyzed ethanol pretreatment of sugarcane bagasse boosts sugar yields with low enzyme loadings and short hydrolysis time.

    Science.gov (United States)

    Zhang, Hongdan; Zhang, Shuaishuai; Yuan, Hongyou; Lyu, Gaojin; Xie, Jun

    2018-02-01

    An organosolv pretreatment system consisting of 60% ethanol and 0.025 mol·L -1 FeCl 3 under various temperatures was developed in this study. During the pretreatment, the highest xylose yield was 11.4 g/100 g raw material, representing 49.8% of xylose in sugarcane bagasse. Structural features of raw material and pretreated substrates were characterized to better understand how hemicellulose removal and delignification affected subsequent enzymatic hydrolysis. The 160 °C pretreated solid presented a remarkable glucose yield of 93.8% for 72 h. Furthermore, the influence of different additives on the enzymatic hydrolysis of pretreated solid was investigated. The results indicated that the addition of Tween 80 shortened hydrolysis time to 6 h and allowed a 50% reduction of enzyme loading to achieve the same level of glucose yield. This work suggested that FeCl 3 -catalyzed organosolv pretreatment could improve the enzymatic hydrolysis significantly and reduce the hydrolysis time and enzyme dosage with the addition of Tween 80. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Temperature, humidity and time. Combined effects on radiochromic film dosimeters

    DEFF Research Database (Denmark)

    Abdel-Fattah, A.A.; Miller, A.

    1996-01-01

    The effects of both relative humidity and temperature during irradiation on the dose response of FWT-60-00 and Riso B3 radiochromic film dosimeters have been investigated in the relative humidity (RH) range 11-94% and temperature range 20-60 degrees C for irradiation by Co-60 photons and 10-Me......V electrons. The results show that humidity and temperature cannot be treated as independent variables, rather there appears to be interdependence between absorbed dose, temperature, and humidity. Dose rate does not seem to play a significant role. The dependence of temperature during irradiation is +0.......25 +/- 0.1% per degrees C for the FWT-60-00 dosimeters and +0.5 +/- 0.1% per degrees C For Riso B3 dosimeters at temperatures between 20 and 50 degrees C and at relative humidities between 20 and 53%. At extreme conditions both with respect to temperature and to humidity, the dosimeters show much stronger...

  16. The alteration of intracellular enzymes. III. The effect of temperature on the kinetics of altered and unaltered yeast catalase.

    Science.gov (United States)

    FRASER, M J; KAPLAN, J G

    1955-03-20

    1. The very large increase in catalase activity (Euler effect) which follows treatment of yeast cells with CHCl(3), UV and n-propanol is accompanied by highly significant changes in kinetic properties. With respect to the enzymatic decomposition of H(2)O(2), the thermodynamic constants of the activation process micro, DeltaHdouble dagger, DeltaSdouble dagger, DeltaFdouble dagger, decrease, following treatment of the intracellular enzyme, by 4.5 kcal., 4.5 kcal., 10.1 e.u. and 1.7 kcal., respectively, all these differences being significant at the 1 per cent level. 2. Similar differences exist between the untreated, intracellular enzyme on the one hand, and the extracted yeast and crystalline beef liver catalases on the other. Significant differences in these thermodynamic constants do not exist among the treated intracellular, extracted yeast, and crystalline liver catalases. 3. These data provide unequivocal confirmation of the phenomenon of enzyme alteration reported previously, and confirm previous evidence that the extracted and crystalline enzymes have also undergone enzyme alteration and have properties which are identical with, or very similar to, those of the catalase altered in situ. 4. With respect to the process of heat destruction of catalase, the greatly diminished stability to heat of the altered enzymes, previously reported, has been confirmed. The thermodynamic constants of activation of this process have likewise changed following alteration, in the case of micro, DeltaHdouble dagger, and DeltaSdouble dagger an increase of 20.6 kcal., 20.6 kcal., and 70 e.u., respectively, and of DeltaFdouble dagger a decrease of 2.8 kcal. 5. All these data have been shown to be consistent with, and in some cases predictable from, the interfacial hypothesis, which states that the unaltered catalase exists within the cell adsorbed to some interface, in a partially, but reversibly, unfolded configuration of relatively low specificity; enzyme alteration consists, in

  17. Uncertainty in temperature-based determination of time of death

    Science.gov (United States)

    Weiser, Martin; Erdmann, Bodo; Schenkl, Sebastian; Muggenthaler, Holger; Hubig, Michael; Mall, Gita; Zachow, Stefan

    2018-03-01

    Temperature-based estimation of time of death (ToD) can be performed either with the help of simple phenomenological models of corpse cooling or with detailed mechanistic (thermodynamic) heat transfer models. The latter are much more complex, but allow a higher accuracy of ToD estimation as in principle all relevant cooling mechanisms can be taken into account. The potentially higher accuracy depends on the accuracy of tissue and environmental parameters as well as on the geometric resolution. We investigate the impact of parameter variations and geometry representation on the estimated ToD. For this, numerical simulation of analytic heat transport models is performed on a highly detailed 3D corpse model, that has been segmented and geometrically reconstructed from a computed tomography (CT) data set, differentiating various organs and tissue types. From that and prior information available on thermal parameters and their variability, we identify the most crucial parameters to measure or estimate, and obtain an a priori uncertainty quantification for the ToD.

  18. Time-resolved monitoring of enzyme activity with ultrafast Hyper-CEST spectroscopy.

    Science.gov (United States)

    Döpfert, Jörg; Schnurr, Matthias; Kunth, Martin; Rose, Honor May; Hennig, Andreas; Schröder, Leif

    2017-12-23

    We propose a method to dynamically monitor the progress of an enzymatic reaction using NMR of hyperpolarized 129 Xe in a host-guest system. It is based on a displacement assay originally designed for fluorescence experiments that exploits the competitive binding of the enzymatic product on the one hand and a reporter dye on the other hand to a supramolecular host. Recently, this assay has been successfully transferred to NMR, using xenon as a reporter, cucurbit[6]uril as supramolecular host, and chemical exchange saturation transfer with hyperpolarized Xe (Hyper-CEST) as detection technique. Its advantage is that the enzyme acts on the unmodified substrate and that only the product is detected through immediate inclusion into the host. We here apply a method that drastically accelerates the acquisition of Hyper-CEST spectra in vitro using magnetic field gradients. This allows monitoring the dynamic progress of the conversion of lysine to cadaverine with a temporal resolution of ~30 s. Moreover, the method only requires to sample the very early onset of the reaction (Hyper-CEST results correlate with xenon T 2 measurements performed during the enzymatic reaction. This suggests that ultrafast Hyper-CEST spectroscopy can be used for dynamically monitoring enzymatic activity with NMR. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Fieldable, real-time enzyme immunoassay kits for drugs on surfaces

    Science.gov (United States)

    Chiappini, Michele W.; Wendel, Gregory J.; Duquette, Peter H.; Hamilton, Martha J.; Chudzik, Stephen J.; Chappa, Ralph A.

    1994-03-01

    Immunoassays (e.g., RIA, EIA) have been demonstrated to be useful for rapid, convenient detection and semiquantitative analysis of drugs. Thermedics Detection, Inc. manufactures a rapid, sensitive, self-contained, disposable, EIA device, developed by Bio-Metric Systems, Inc., designed to allow untrained personnel to perform in field situations. This format has been developed for drugs in biological fluids and on surfaces. The analyte in the test sample competes with an enzyme-analyte conjugate for a limited number of immobilized antibody sites. The AccuPRESS Test format can detect analytes at 10 ppb in biological fluids, water, and soil, and on surfaces, such as suitcases, vehicles, tables and hands, with positive results indicated by clearly visible color development within 5 minutes. This format is designed to have all dry components and to have an ambient shelf life of greater than one year. The format is available for cocaine and opiate derivatives, including heroin, and is readily adaptable for use with numerous other drugs, explosives, and environmental pollutants.

  20. Effects of chronic exposure to cadmium and temperature, alone or combined, on the threespine stickleback (Gasterosteus aculeatus): Interest of digestive enzymes as biomarkers.

    Science.gov (United States)

    Hani, Younes Mohamed Ismail; Turies, Cyril; Palluel, Olivier; Delahaut, Laurence; Gaillet, Véronique; Bado-Nilles, Anne; Porcher, Jean-Marc; Geffard, Alain; Dedourge-Geffard, Odile

    2018-06-01

    The development of predictive, sensitive and reliable biomarkers is of crucial importance for aquatic biomonitoring to assess the effects of chemical substances on aquatic organisms, especially when it comes to combined effects with other stressors (e.g. temperature). The first purpose of the present study was to evaluate the single and combined effects of 90 days of exposure to an environmental cadmium concentration (0.5 μg L -1 ) and two water temperatures (16 and 21 °C) on different parameters. These parameters are involved in (i) the antioxidant system (superoxide dismutase activity -SOD- and total glutathione levels -GSH-), (ii) the energy metabolism, i.e. energy reserves (glycogen, lipids, proteins) and digestive enzymes (trypsin, amylase, intestinal alkaline phosphatase -IAP-), and (iii) biometric parameters (weight, length, Fulton's condition factor, and the gonadosomatic index -GSI-) of threespine stickleback (Gasterosteus aculeatus). The second purpose was to determine the interest of the three digestive enzymes as biomarkers in comparison with the other parameters. The higher temperature (21 °C) impacted the anti-oxidant and energy reserve parameters. In liver, GSH levels increased on day 60, while SOD decreased on days 15 and 90, with a significant decrease of protein and lipid energy reserves on day 90. In muscle, the higher temperature decreased SOD activity only on day 90. G. aculeatus biometric parameters were also impacted by the higher temperature, which limited stickleback growth after 90 days of exposure. In female sticklebacks, the GSI peaked on day 60 and decreased sharply on day 90, while the highest values were reached at day 90 in the control groups, suggesting impaired reproduction in sticklebacks raised at 21 °C. These results suggest that 21 °C is an upper-limit temperature for long-term physiological processes in sticklebacks. In contrast, very low-concentration cadmium exposure had no effect on classical biomarkers

  1. Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice.

    Science.gov (United States)

    Ahmed, Nisar; Tetlow, Ian J; Nawaz, Sehar; Iqbal, Ahsan; Mubin, Muhammad; Nawaz ul Rehman, Muhammad Shah; Butt, Aisha; Lightfoot, David A; Maekawa, Masahiko

    2015-08-30

    High temperature during grain filling affects yield, starch amylose content and activity of starch biosynthesis enzymes in basmati rice. To investigate the physiological mechanisms underpinning the effects of high temperature on rice grain, basmati rice was grown under two temperature conditions - 32 and 22 °C - during grain filling. High temperature decreased the grain filling period from 32 to 26 days, reducing yield by 6%, and caused a reduction in total starch (3.1%) and amylose content (22%). Measurable activities of key enzymes involved in sucrose to starch conversion, sucrose synthase, ADP-glucose pyrophosphorylase, starch phosphorylase and soluble starch synthase in endosperms developed at 32 °C were lower than those at 22 °C compared with similar ripening stage on an endosperm basis. In particular, granule-bound starch synthase (GBSS) activity was significantly lower than corresponding activity in endosperms developing at 22 °C during all developmental stages analyzed. Results suggest changes in amylose/amylopectin ratio observed in plants grown at 32 °C was attributable to a reduction in activity of GBSS, the sole enzyme responsible for amylose biosynthesis. © 2014 Society of Chemical Industry.

  2. Bioethanol from lignocellulose - pretreatment, enzyme immobilization and hydrolysis kinetics

    DEFF Research Database (Denmark)

    Tsai, Chien Tai

    , the cost of enzyme is still the bottle neck, re-using the enzyme is apossible way to reduce the input of enzyme in the process. In the point view of engineering, the prediction of enzymatic hydrolysis kinetics under different substrate loading, enzyme combination is usful for process design. Therefore...... lignocellulose is the required high cellulase enzyme dosages that increase the processing costs. One method to decrease the enzyme dosage is to re-use BG, which hydrolyze the soluble substrate cellobiose. Based on the hypothesis that immobilized BG can be re-used, how many times the enzyme could be recycled...... liquid and pretreatment time can be reduced, the influence of substrate concentration, pretreatment time and temperature were investigated and optimized. Pretreatment of barley straw by [EMIM]Ac, correlative models were constructed using 3 different pretreatment parameters (temperature, time...

  3. Temperature, humidity and time., Combined effects on radiochromic film dosimeters

    International Nuclear Information System (INIS)

    Abdel-Fattah, A.A.; Miller, A.

    1996-01-01

    The effects of both relative humidity and temperature during irradiation on the dose response of FWT-60-00 and Riso B3 radiochromic film dosimeters have been investigated in the relative humidity (RH) range 11-94% and temperature range 20-60 o C for irradiation by 60 Co photons and 10-MeV electrons. The results show that humidity and temperature cannot be treated as independent variables, rather there appears to be interdependence between absorbed dose, temperature, and humidity. Dose rate does not seem to play a significant role. The dependence of temperature during irradiation is + 0.25 ± 0.1% per o C for the FWT-60-00 dosimeters and +0.5 ± 0.1% per o C for Riso B3 dosimeters at temperatures between 20 and 50 o C and at relative humidities between 20 and 53%. At extreme conditions both with respect to temperature and to humidity, the dosimeters show much stronger dependences. Whenever possible one should use dosimeters sealed in pouches under controlled intermediate humidity conditions (30-50%) or, if that is impractical, one should maintain conditions of calibration as close as possible to the conditions of use. Without that precaution, severe dosimetry errors may result. (author)

  4. Effect of incubation time, inoculum size, temperature, pasteurization time, goat milk powder and whey powder on ACE inhibitory activity in fermented milk by L. plantarum LP69.

    Science.gov (United States)

    Shu, Guowei; Yang, Hui; Chen, He; Zhang, Qiuhong; Tian, Yue

    2015-01-01

    Angiotensin I converting enzyme (ACE) plays an important physiological role in regulating hypertension. Lactic acid bacteria are known to produce ACE inhibitory peptides which can lower hypertension during fermentation. The effect of incubation time (0~36 h), inoculum size (3, 4, 5, 6 and 7%, v/v), temperature (25, 30, 35, 40 and 45°C), sterilization time (5, 10, 15, 20 and 25 min), concentration of goat milk powder (8, 10, 12, 14 and 16%, w/v) and whey powder (0.5, 0.6, 0.7, 0.8 and 0.9%, w/v) on ACE inhibitory peptides fermented from goat milk by Lactobacillus plantarum LP69 was investigated using single factor experiment. The optimal incubation time, inoculum size, temperature, pasteurization time, goat milk powder and whey powder in fermented milk by L. plantarum LP69 was 14 h, 3.0%, 35°C, 20 min, 14% and 0.70% for ACE inhibitory activity and 22 h, 3.0%, 40°C, 25 min, 16% and 0.60% for viable cell counts, respectively. The incubation time, inoculum size, temperature, pasteurization time, goat milk powder and whey powder had a significant influence on ACE inhibitory activity in fermented milk by Lactobacillus plantarum LP69, the results are beneficial for further screening of main factors by using fractional factorial designs.

  5. Firing technology in practice - temperature, residence time, corrosion; Feuerungstechnik in der Praxis - Temperatur, Verweilzeit, Korrosion

    Energy Technology Data Exchange (ETDEWEB)

    Freimann, P.; Holl, D. [Muellheizkraftwerk Betriebsgesellschaft mbH, Burgkirchen/Alz (Germany)

    1998-09-01

    In a circular dated 1st Sept. 1994, i.e., after the issue of the pertinent planning decision, the Federal Environmental Ministry, BMU, laid down uniform standards on measurements and the parameterisation of the evaluation system for different operation states and loads. Subsequently, TUeV, the German Technical Control Board, prepared the parameterisation curves on the basis of these specifications. The implementation of the BMU paper of 1st Sept. 1994 did not result in any advantage, nor did it lead to a reduction of plant emissions, nor to advantages in the operation of the waste-fuelled cogeneration plant. On the contrary, elevated gas consumption and operating trouble due to frequent feed stops worsened the operating state of the plant. Elevated crude gas temperature in the boiler reduced the lifetime of the two boilers to a critical degree. An operating temperature of 850 C and a residence time of approx. 1 sec. in Burgkirchen waste-fuelled cogeneration plant have not worsened emission values while rendering the plant operable again. [Deutsch] Durch Rundschreiben d. BMU vom 01.09.1994 - also nach Erlass des Planfeststellungsbeschlusses - wurden einheitliche Vorgaben ueber Messungen und Parametrierung des Auswertesystems fuer die verschiedenen Betriebs- bzw. Lastzustaende erlassen. Unter Beruecksichtigung dieser Vorgaben wurden vom TUeV die Parametrierungskurven erstellt. Die Umsetzung des BMU-Papieres vom 01.09.1994 ergab keinerlei Vorteile, weder gab es eine Verringerung der anlagenbedingten Emissionen noch Vorteile fuer den Betrieb des MHKW`s. Im Gegenteil, erhoehte Gasverbraeuche und Betriebsstoerungen durch oftmalige Beschickungsstops verschlechterten den Betriebszustand. Erhoehte Rohgastemperatur im Kessel reduzierten die Lebensdauer der beiden Kessel kritisch. Der Betrieb mit 850 C und mit einer Verweilzeit von ca. 1 sec. fuehrt im MHKW Burgkirchen zu keiner Verschlechterung der Emissionswerte, macht aber die Anlagen wieder betreibbar. (orig./SR)

  6. Near-Real-Time DMSP SSM/I-SSMIS Daily Polar Gridded Brightness Temperatures

    Data.gov (United States)

    National Aeronautics and Space Administration — The Near-Real-Time DMSP SSM/I-SSMIS Daily Polar Gridded Brightness Temperature product provides near-real-time brightness temperatures for both the Northern and...

  7. Time-Resolved Surface Temperature Measurement for Pulsed Ablative Thrusters

    National Research Council Canada - National Science Library

    Antonsen, Erik

    2003-01-01

    .... The diagnostic draws on heritage from the experimental dynamic crack propagation community which has used photovoltaic infrared detectors to measure temperature rise in materials in the process of fracture...

  8. Applying Time Series Analysis Model to Temperature Data in Greenhouses

    Directory of Open Access Journals (Sweden)

    Abdelhafid Hasni

    2011-03-01

    Full Text Available The objective of the research is to find an appropriate Seasonal Auto-Regressive Integrated Moving Average (SARIMA Model for fitting the inside air temperature (Tin of a naturally ventilated greenhouse under Mediterranean conditions by considering the minimum of Akaike Information Criterion (AIC. The results of fitting were as follows: the best SARIMA Model for fitting air temperature of greenhouse is SARIMA (1,0,0 (1,0,224.

  9. Ultrafast time-resolved spectroscopy of xanthophylls at low temperature.

    Science.gov (United States)

    Cong, Hong; Niedzwiedzki, Dariusz M; Gibson, George N; Frank, Harry A

    2008-03-20

    Many of the spectroscopic features and photophysical properties of xanthophylls and their role in energy transfer to chlorophyll can be accounted for on the basis of a three-state model. The characteristically strong visible absorption of xanthophylls is associated with a transition from the ground state S0 (1(1)Ag-) to the S2 (1(1)Bu+) excited state. The lowest lying singlet state denoted S1 (2(1)Ag-), is a state into which absorption from the ground state is symmetry forbidden. Ultrafast optical spectroscopic studies and quantum computations have suggested the presence of additional excited singlet states in the vicinity of S1 (2(1)Ag-) and S2 (1(1)Bu+). One of these is denoted S* and has been suggested in previous work to be associated with a twisted molecular conformation of the molecule in the S1 (2(1)Ag-) state. In this work, we present the results of a spectroscopic investigation of three major xanthophylls from higher plants: violaxanthin, lutein, and zeaxanthin. These molecules have systematically increasing extents of pi-electron conjugation from nine to eleven conjugated carbon-carbon double bonds. All-trans isomers of the molecules were purified by high-performance liquid chromatography (HPLC) and studied by steady-state and ultrafast time-resolved optical spectroscopy at 77 K. Analysis of the data using global fitting techniques has revealed the inherent spectral properties and ultrafast dynamics of the excited singlet states of each of the molecules. Five different global fitting models were tested, and it was found that the data are best explained using a kinetic model whereby photoexcitation results in the promotion of the molecule into the S2 (1(1)Bu+) state that subsequently undergoes decay to a vibrationally hot S1 (1(1)Ag-) state and with the exception of violaxanthin also to the S* state. The vibrationally hot S1 (1(1)Ag-) state then cools to a vibrationally relaxed S1 (2(1)Ag-) state in less than a picosecond. It was also found that a portion

  10. Hepatic Enzyme Decline after Pediatric Blunt Trauma: A Tool for Timing Child Abuse?

    Science.gov (United States)

    Baxter, Amy L.; Lindberg, Daniel M.; Burke, Bonnie L.; Shults, Justine; Holmes, James F.

    2008-01-01

    Objectives: Previous research in adult patients with blunt hepatic injuries has suggested a pattern of serum hepatic transaminase concentration decline. Evaluating this decline after pediatric blunt hepatic trauma could establish parameters for estimating the time of inflicted injuries. Deviation from a consistent transaminase resolution pattern…

  11. High Temperature Ultrasonic Transducer for Real-time Inspection

    Science.gov (United States)

    Amini, Mohammad Hossein; Sinclair, Anthony N.; Coyle, Thomas W.

    A broadband ultrasonic transducer with a novel porous ceramic backing layer is introduced to operate at 700 °C. 36° Y-cut lithium niobate (LiNbO3) single crystal was selected for the piezoelectric element. By appropriate choice of constituent materials, porosity and pore size, the acoustic impedance and attenuation of a zirconia-based backing layer were optimized. An active brazing alloy with high temperature and chemical stability was selected to bond the transducer layers together. Prototype transducers have been tested at temperatures up to 700 °C. The experiments confirmed that transducer integrity was maintained.

  12. Research on floral timing by ambient temperature comes into blossom

    NARCIS (Netherlands)

    Verhage, D.S.L.; Angenent, G.C.; Immink, R.G.H.

    2014-01-01

    The floral transition is an essential process in the life cycle of flower-bearing plants, because their reproductive success depends on it. To determine the right moment of flowering, plants respond to many environmental signals, including day length, light quality, and temperature. Small changes in

  13. A Delay Time Measurement of ULTRAS (Ultra-high Temperature Ultrasonic Response Analysis System) for a High Temperature Experiment

    International Nuclear Information System (INIS)

    Koo, Kil Mo; Kim, Sang Baik

    2010-01-01

    The temperature measurement of very high temperature core melt is of importance in a high temperature as the molten pool experiment in which gap formation between core melt and the reactor lower head, and the effect of the gap on thermal behavior are to be measured. The existing temperature measurement techniques have some problems, which the thermocouple, one of the contact methods, is restricted to under 2000 .deg. C, and the infrared thermometry, one of the non-contact methods, is unable to measure an internal temperature and very sensitive to the interference from reacted gases. In order to solve these problems, the delay time technique of ultrasonic wavelets due to high temperature has two sorts of stage. As a first stage, a delay time measurement of ULTRAS (Ultra-high Temperature Ultrasonic Response Analysis System) is suggested. As a second stage, a molten material temperature was measured up to 2300 .deg. C. Also, the optimization design of the UTS (ultrasonic temperature sensor) with persistence at the high temperature was suggested in this paper. And the utilization of the theory suggested in this paper and the efficiency of the developed system are performed by special equipment and some experiments supported by KRISS (Korea Research Institute of Standard and Science)

  14. Temperature dependence on the time and momentum spectra in germanium

    International Nuclear Information System (INIS)

    Schultz, P.J.; MacKenzie, I.K.

    1982-01-01

    Recent measurements using the slow-#betta# + beam at Brookhaven, have suggested a thermally activated trapping mechanism which inhibited positron diffusion in single-crystal Ge. Supporting evidence has now been obtained from both Doppler broadening and lifetime measurements but, in both cases, the temperature dependence was so weak that it required the use of dual digital stabilization and unusual statistical precision in both types of spectrometry. (Auth.)

  15. Effects of Temperature on Time Dependent Rheological Characteristics of Koumiss

    Directory of Open Access Journals (Sweden)

    Serdal Sabancı

    2016-04-01

    Full Text Available The rheological properties of koumiss were investigated at different temperatures (4, 10, and 20°C. Experimental shear stress–shear rate data were fitted to different rheological models. The consistency of koumiss was predicted by using the power-law model since it described the consistency of koumiss best with highest regression coefficient and lowest errors (root mean square error and chi-square. Koumiss exhibited shear thinning behavior (n

  16. Mapping air temperature using time series analysis of LST : The SINTESI approach

    NARCIS (Netherlands)

    Alfieri, S.M.; De Lorenzi, F.; Menenti, M.

    2013-01-01

    This paper presents a new procedure to map time series of air temperature (Ta) at fine spatial resolution using time series analysis of satellite-derived land surface temperature (LST) observations. The method assumes that air temperature is known at a single (reference) location such as in gridded

  17. Susceptibilities of Candidatus Liberibacter asiaticus-infected and noninfected Diaphorina citri to entomopathogenic fungi and their detoxification enzyme activities under different temperatures.

    Science.gov (United States)

    Hussain, Mubasher; Akutse, Komivi Senyo; Lin, Yongwen; Chen, Shiman; Huang, Wei; Zhang, Jinguan; Idrees, Atif; Qiu, Dongliang; Wang, Liande

    2018-03-25

    Some entomopathogenic fungi species, Isaria fumosorosea, and Hirsutella citriformis were found to be efficient against the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). However, the susceptibility to these fungi increases when the psyllid infected with Candidatus Liberibacter asiaticus (Las), which is transmitted by D. citri and causes citrus greening disease. In this study, we examined the Las-infected and Las-uninfected D. citri susceptibility to entomopathogenic fungi at different temperature regimes (5-40°C). When D. citri adults exposed to cold temperature (5°C), they showed less susceptibility to entomopathogenic fungi as compared with control (27°C). Irrespective of infection with Las, a significantly positive correlation was observed between temperature and percentage mortality caused by different isolates of I. fumosorosea, 3A Ifr, 5F Ifr, PS Ifr, and H. citriformis isolates, HC3D and 2H. In contrast, a significantly negative correlation was found between temperature and percentage mortality for 3A Ifr for both Las-infected and Las-uninfected psyllids. Detoxification enzymes, Glutathione S-transferase levels in D. citri showed a negative correlation, whereas cytochrome P450 and general esterase levels were not correlated with changes in temperature. These findings revealed that detoxification enzymes and general esterase levels are not correlated with altered susceptibility to entomopathogenic fungi at the different temperature regimes. Conclusively, temperature fluctuations tested appear to be a significant factor impacting the management strategies of D. citri using entomopathogenic fungi. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  18. Suppressed Acrylamide Formation during Baking in Yeast-Leavened Bread Based on added Asparaginase, Baking Time and Temperature Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Mashaer Matouri

    2018-01-01

    Full Text Available  Background and Objective: Acrylamide as a toxic substance for human beings is produced by Maillard reaction at high temperatures. In this research, this reaction can be inhibited based on using aspariganse enzyme, controlling the cooking time and temperature during baking in yeast-leavened bread.Material and Methods: In this study, a response surface methodology 5-level-3-factor central composite design was applied to study the effects of asparaginase (300-900 U Kg-1 of flour, baking temperature (230-280°C and baking time (13-16 min on acrylamide formation in yeast-leavened wheat bread.Results and Conclusion: Added asparaginase showed a reducing effect on acrylamide formation (p≤0.0001. Baking temperature significantly increased the acrylamide content in bread (p≤0.0001. A strong correlation was found between the baking temperature and acrylamide formation. Baking time and its interaction with asparaginase had a low but significant reducing effect on acrylamide content in bread (p≤0.0001. Three parameters of the cooking temperature and time as well as enzyme concentration have been optimized using response surface methodology, their values obtained 245.71°C, 14.55 min and 752.15 U Kg-1, respectively. Enzymatic process could be suggested as a safe and convenient method for preventing acrylamide formation in bread making.Conflict of interest: The authors declare no conflict of interest. 

  19. Predicting long-term temperature increase for time-dependent SAR levels with a single short-term temperature response.

    Science.gov (United States)

    Carluccio, Giuseppe; Bruno, Mary; Collins, Christopher M

    2016-05-01

    Present a novel method for rapid prediction of temperature in vivo for a series of pulse sequences with differing levels and distributions of specific energy absorption rate (SAR). After the temperature response to a brief period of heating is characterized, a rapid estimate of temperature during a series of periods at different heating levels is made using a linear heat equation and impulse-response (IR) concepts. Here the initial characterization and long-term prediction for a complete spine exam are made with the Pennes' bioheat equation where, at first, core body temperature is allowed to increase and local perfusion is not. Then corrections through time allowing variation in local perfusion are introduced. The fast IR-based method predicted maximum temperature increase within 1% of that with a full finite difference simulation, but required less than 3.5% of the computation time. Even higher accelerations are possible depending on the time step size chosen, with loss in temporal resolution. Correction for temperature-dependent perfusion requires negligible additional time and can be adjusted to be more or less conservative than the corresponding finite difference simulation. With appropriate methods, it is possible to rapidly predict temperature increase throughout the body for actual MR examinations. © 2015 Wiley Periodicals, Inc.

  20. Real time algorithm temperature compensation in tunable laser / VCSEL based WDM-PON system

    DEFF Research Database (Denmark)

    Iglesias Olmedo, Miguel; Rodes Lopez, Roberto; Pham, Tien Thang

    2012-01-01

    We report on a real time experimental validation of a centralized algorithm for temperature compensation of tunable laser/VCSEL at ONU and OLT, respectively. Locking to a chosen WDM channel is shown for temperature changes over 40°C.......We report on a real time experimental validation of a centralized algorithm for temperature compensation of tunable laser/VCSEL at ONU and OLT, respectively. Locking to a chosen WDM channel is shown for temperature changes over 40°C....

  1. factor high order fuzzy time series with applications to temperature

    African Journals Online (AJOL)

    HOD

    In this paper, a novel two – factor high – order fuzzy time series forecasting method based on .... to balance between local and global exploitations of the swarms. While, .... Although, there were a number of outliers but, the spread at the spot in ...

  2. The Impact of Central and Peripheral Cyclooxygenase Enzyme Inhibition on Exercise-Induced Elevations in Core Body Temperature.

    NARCIS (Netherlands)

    Veltmeijer, M.T.W.; Veeneman, D.; Bongers, C.C.W.G.; Netea, M.G.; Meer, J.W.M. van der; Eijsvogels, T.M.H.; Hopman, M.T.E.

    2017-01-01

    PURPOSE: Exercise increases core body temperature (TC) due to metabolic heat production. However, the exercise-induced release of inflammatory cytokines including interleukin-6 (IL-6) may also contribute to the rise in TC by increasing the hypothalamic temperature set point. This study investigated

  3. Selection, assessment of virulence to Alphitobius diaperinus, and Pr1 enzyme production of Beauveria bassiana (Bals. Vuill. isolates cultured at stress temperatures

    Directory of Open Access Journals (Sweden)

    Kelly Christiane Constanski

    2015-12-01

    Full Text Available The entomopathogenic fungus Beauveria bassiana is a promising agent for use in insect control. Its pathogenic activity, as well as other factors such as temperature that can interfere with its development, should be assessed, thus, establishing the foundations for B. bassiana use in biological control programs. The objective of this study was to select and induce tolerance of B. bassiana isolates to high and low temperatures and to assess their virulence before and after exposure to those temperatures. A pre-selection test was performed, in which the tolerance of isolates to stress temperatures was tested and compared to the ideal growth temperature of 25 °C for this organism. For the isolates/temperature combinations resulting in growth, conidia germination and colony-forming units (CFUs were assessed. The isolates Unioeste 4 and Unioeste 40 exhibited >95% germinated conidia at 16 and 31 °C. Thereafter, they underwent four consecutive passages at maximum and minimum tolerated temperatures (10 and 37 °C. A significant difference in germination was observed between the two isolates at all temperatures tested. More CFUs were observed for Unioeste 4 compared to Unioeste 40 at all temperatures, and in the case of the latter, there was no difference in CFU formation at 10 and 25 °C. For both isolates, decreased vegetative growth was observed at 37 °C. Recovery of virulence was observed in both isolates, as determined by insect mortality. No relationship was observed between production of the enzyme Pr1 and the virulence of the isolates.

  4. Effects of sintering time and temperature to the characteristics of FeCrAl powder compacts formed at elevated temperature

    Science.gov (United States)

    Rahman, M. M.; Rahman, H. Y.; Awang, M. A. A.; Sopyan, I.

    2018-01-01

    This paper presents the outcomes of an experimental investigation on the effect of sintering schedule, i.e., holding time and temperature to the final properties of FeCrAl powder compacts prepared through uniaxial die compaction process at above room temperature. The feedstock was prepared by mechanically mixing iron powder ASC 100.29 with chromium (22 wt%) and aluminium (11 wt%) for 30 min at room temperature. A cylindrical shape die was filled with the powder mass and heated for one hour for uniform heating of the die assembly together with the powder mass. Once the temperature reached to the setup temperature, i.e., 150°C, the powder mass was formed by applying an axial pressure of 425 MPa simultaneously from upward and downward directions. The as-pressed green compacts were then cooled to room temperature and subsequently sintered in argon gas fired furnace at a rate of 5°C/min for three different holding times, i.e., 30, 60, and 90 min at three different sintering temperatures, i.e., 800, 900, and 1000°C. The sintered samples were characterized for their density, electrical resistivity, bending strength, and microstructure. The results revealed that the sample sintered at 1000°C for 90 min achieved the better characteristics.

  5. Elevated temperature alters the lunar timing of Planulation in the brooding coral Pocillopora damicornis.

    Directory of Open Access Journals (Sweden)

    Camerron M Crowder

    Full Text Available Reproductive timing in corals is associated with environmental variables including temperature, lunar periodicity, and seasonality. Although it is clear that these variables are interrelated, it remains unknown if one variable in particular acts as the proximate signaler for gamete and or larval release. Furthermore, in an era of global warming, the degree to which increases in ocean temperatures will disrupt normal reproductive patterns in corals remains unknown. Pocillopora damicornis, a brooding coral widely distributed in the Indo-Pacific, has been the subject of multiple reproductive ecology studies that show correlations between temperature, lunar periodicity, and reproductive timing. However, to date, no study has empirically measured changes in reproductive timing associated with increased seawater temperature. In this study, the effect of increased seawater temperature on the timing of planula release was examined during the lunar cycles of March and June 2012. Twelve brooding corals were removed from Hobihu reef in Nanwan Bay, southern Taiwan and placed in 23 and 28°C controlled temperature treatment tanks. For both seasons, the timing of planulation was found to be plastic, with the high temperature treatment resulting in significantly earlier peaks of planula release compared to the low temperature treatment. This suggests that temperature alone can influence the timing of larval release in Pocillopora damicornis in Nanwan Bay. Therefore, it is expected that continued increases in ocean temperature will result in earlier timing of reproductive events in corals, which may lead to either variations in reproductive success or phenotypic acclimatization.

  6. Sensory characteristics of meat cooked for prolonged times at low temperature

    DEFF Research Database (Denmark)

    Christensen, Line Bach; Gunvig, Annemarie; Tørngren, Mari Ann

    2012-01-01

    species, and cooking loss increased with increasing temperature. A done appearance was developed with increasing heating time at 58 °C in pork and beef, while in chicken the done appearance was only affected by temperature. Flavor attributes were less affected by the LTLT treatment for all species......The present study evaluated the sensory characteristics of low temperature long time (LTLT) treated Semitendinosus from pork and beef and Pectoralis profundus from chicken. Semitendinosus and Pectoralis profundus muscles were heat treated at 53°C and 58°C for Tc + 6 h, Tc + 17 h, and Tc + 30 h...... (only Semitendinosus from pork and beef). Tc was the time for the samples to equalize with the temperature in the water bath. Tenderness increased with increasing heating temperature and time in pork and beef, but not in chicken. Juiciness decreased with increasing heating temperature and time in all...

  7. Flowering time of butterfly nectar food plants is more sensitive to temperature than the timing of butterfly adult flight.

    Science.gov (United States)

    Kharouba, Heather M; Vellend, Mark

    2015-09-01

    1. Variation among species in their phenological responses to temperature change suggests that shifts in the relative timing of key life cycle events between interacting species are likely to occur under climate warming. However, it remains difficult to predict the prevalence and magnitude of these shifts given that there have been few comparisons of phenological sensitivities to temperature across interacting species. 2. Here, we used a broad-scale approach utilizing collection records to compare the temperature sensitivity of the timing of adult flight in butterflies vs. flowering of their potential nectar food plants (days per °C) across space and time in British Columbia, Canada. 3. On average, the phenology of both butterflies and plants advanced in response to warmer temperatures. However, the two taxa were differentially sensitive to temperature across space vs. across time, indicating the additional importance of nontemperature cues and/or local adaptation for many species. 4. Across butterfly-plant associations, flowering time was significantly more sensitive to temperature than the timing of butterfly flight and these sensitivities were not correlated. 5. Our results indicate that warming-driven shifts in the relative timing of life cycle events between butterflies and plants are likely to be prevalent, but that predicting the magnitude and direction of such changes in particular cases is going to require detailed, fine-scale data. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  8. Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images

    NARCIS (Netherlands)

    Hengl, T.; Heuvelink, G.B.M.; Percec Tadic, M.; Pebesma, E.J.

    2012-01-01

    A computational framework to generate daily temperature maps using time-series of publicly available MODIS MOD11A2 product Land Surface Temperature (LST) images (1 km resolution; 8-day composites) is illustrated using temperature measurements from the national network of meteorological stations

  9. The case of the missing mechanism : How does temperature influence seasonal timing in endotherms?

    NARCIS (Netherlands)

    Caro, Samuel P; Schaper, Sonja V; Hut, Roelof A; Ball, Gregory F; Visser, Marcel E

    2013-01-01

    Temperature has a strong effect on the seasonal timing of life-history stages in both mammals and birds, even though these species can regulate their body temperature under a wide range of ambient temperatures. Correlational studies showing this effect have recently been supported by experiments

  10. Relation between Euclidean and real time calculations of Green functions at finite temperature

    International Nuclear Information System (INIS)

    Bochkarev, A.

    1993-01-01

    We find a relation between the semiclassical approximation of the temperature (Matsubara) two-point correlator and the corresponding classical Green function in real time at finite temperature. The anharmonic oscillator at finite temperature is used to illustrate our statement, which is however of rather general origin

  11. Time-temperature-transformation diagram of Zr-based Zr-Al-Cu-Ni metallic glasses

    International Nuclear Information System (INIS)

    Goh, T.T.; Li, Y.; Ng, S.C.

    1996-01-01

    The critical cooling rates R c for glass formation in four Zr-based Zr-Al-Cu-Ni alloys were determined using techniques developed by Uhlmann based on theories of homogeneous nucleation, crystal growth and transformation kinetics. It involves the construction of a time-temperature-transformation curve which requires the knowledge of the viscosity-temperature curve of the alloys. Two types of viscosity-temperature expressions, namely Andrade expression and Doolittle expression, were used to model the viscosity of the Zr-based alloys and the choice of the viscosity-temperature expression which gives the best estimate of the calculated time-temperature-transformation curve is discussed. (author)

  12. Interrelated temperature dependence of bulk etch rate and track length saturation time in CR-39 detector

    International Nuclear Information System (INIS)

    Azooz, A.A.; Al-Jubbori, M.A.

    2013-01-01

    Highlights: • New empirical parameterization of CR-39 bulk etch rate. • Bulk etch rates measurements using two different methods give consistent results. • Temperature independence of track saturation length. • Two empirical relation between bulk etch rate and temperature are suggested. • Simple inverse relation between bulk etch rate and track saturation time. -- Abstract: Experimental measurements of the etching solution temperature dependence of bulk etch rate using two independent methods revealed a few interesting properties. It is found that while the track saturation length is independent of etching temperature, the etching time needed to reach saturation is strongly temperature-dependent. It is demonstrated that there is systematic simple inverse relation between track saturation time, and etching solution temperature. In addition, and although, the relation between the bulk etch rate and etching solution temperature can be reasonably described by a modified form of the Arrhenius equation, better fits can be obtained by another equation suggested in this work

  13. Pancreatic Enzymes

    Science.gov (United States)

    ... Contact Us DONATE NOW GENERAL DONATION PURPLESTRIDE Pancreatic enzymes Home Facing Pancreatic Cancer Living with Pancreatic Cancer ... and see a registered dietitian. What are pancreatic enzymes? Pancreatic enzymes help break down fats, proteins and ...

  14. Timing of initiation of enzyme replacement therapy after diagnosis of type 1 Gaucher disease: effect on incidence of avascular necrosis

    Science.gov (United States)

    Mistry, Pramod K; Deegan, Patrick; Vellodi, Ashok; Cole, J Alexander; Yeh, Michael; Weinreb, Neal J

    2009-01-01

    Data from the International Collaborative Gaucher Group Gaucher Registry were analysed to assess the relationship between enzyme replacement therapy with imiglucerase (ERT) and incidence of avascular necrosis (AVN) in type 1 Gaucher disease (GD1), and to determine whether the time interval between diagnosis and initiation of ERT influences the incidence rate of AVN. All patients with GD1 enrolled in the Gaucher Registry who received ERT and did not report AVN prior to starting therapy (n = 2700) were included. The incidence rate of AVN following initiation of ERT was determined. An incidence rate of AVN of 13·8 per 1000 person-years was observed in patients receiving ERT. Patients who initiated ERT within 2 years of diagnosis had an incidence rate of 8·1 per 1000 person-years; patients who started ERT ≥2 years after diagnosis had an incidence rate of 16·6 per 1000 person-years. The adjusted incidence rate ratio was 0·59 [95% confidence interval (CI) 0·36–0·96, P = 0·0343]. Splenectomy was an independent risk factor for AVN (adjusted incidence rate ratio 2·23, 95% CI 1·61–3·08, P < 0·0001). In conclusion, the risk of AVN was reduced among patients who initiated ERT within 2 years of diagnosis, compared to initiating treatment ≥2 years after diagnosis. A higher risk of AVN was observed among patients who had previously undergone splenectomy. PMID:19732054

  15. Review of resistance temperature detector time response characteristics. Safety evaluation report

    International Nuclear Information System (INIS)

    1981-08-01

    A Resistance Temperature Detector (RTD) is used extensively for monitoring water temperatures in nuclear reactor plants. The RTD element does not respond instantaneously to changes in water temperature, but rather there is a time delay before the element senses the temperature change, and in nuclear reactors this delay must be factored into the computation of safety setpoints. For this reason it is necessary to have an accurate description of the RTD time response. This report is a review of the current state of the art of describing and measuring this time response

  16. PASTEURISASI HIGH TEMPERATURE SHORT TIME (HTST) SUSU TERHADAP Listeria monocytogenes PADA PENYIMPANAN REFRIGERATOR

    OpenAIRE

    SABIL, SYAHRIANA

    2015-01-01

    2015 SYAHRIANA SABIL (I 111 11 273). Pasteurisasi High Temperature Short Time (HTST) Susu terhadap Listeria monocytogenes pada Penyimpanan Refrigerator. Dibimbing oleh RATMAWATI MALAKA dan FARIDA NUR YULIATI. Pasteurisasi High Temperature Short Time (HTST) merupakan proses pemanasan susu di bawah titik didih yang diharapkan dapat membunuh Listeria monocytogenes (L. monocytogenes) karena bersifat patogen dan mengakibatkan listeriosis yang merupakan penyakit zoonosis. Tu...

  17. Occupant Time Period of Thermal Adaption to Change of Outdoor Air Temperature in Naturally Ventilated Buildings

    DEFF Research Database (Denmark)

    liu, weiwei; Wargocki, Pawel; Xiong, Jing

    2014-01-01

    The present work proposed a method to determine time period of thermal adaption of occupants in naturally ventilated building, based on the relationship between their neutral temperatures and running mean outdoor air temperature. Based on the data of the field investigation, the subjects’ time...

  18. The Impact of Central and Peripheral Cyclooxygenase Enzyme Inhibition on Exercise-Induced Elevations in Core Body Temperature.

    Science.gov (United States)

    Veltmeijer, Matthijs T W; Veeneman, Dineke; Bongers, Coen C C W; Netea, Mihai G; van der Meer, Jos W; Eijsvogels, Thijs M H; Hopman, Maria T E

    2017-05-01

    Exercise increases core body temperature (T C ) due to metabolic heat production. However, the exercise-induced release of inflammatory cytokines including interleukin-6 (IL-6) may also contribute to the rise in T C by increasing the hypothalamic temperature set point. This study investigated whether the exercise-induced increase in T C is partly caused by an altered hypothalamic temperature set point. Fifteen healthy, active men age 36 ± 14 y were recruited. Subjects performed submaximal treadmill exercise in 3 randomized test conditions: (1) 400 mg ibuprofen and 1000 mg acetaminophen (IBU/APAP), (2) 1000 mg acetaminophen (APAP), and (3) a control condition (CTRL). Acetaminophen and ibuprofen were used to block the effect of IL-6 at a central and peripheral level, respectively. T C , skin temperature, and heart rate were measured continuously during the submaximal exercise tests. Baseline values of T C , skin temperature, and heart rate did not differ across conditions. Serum IL-6 concentrations increased in all 3 conditions. A significantly lower peak T C was observed in IBU/APAP (38.8°C ± 0.4°C) vs CTRL (39.2°C ± 0.5°C, P = .02) but not in APAP (38.9°C ± 0.4°C) vs CTRL. Similarly, a lower ΔT C was observed in IBU/APAP (1.7°C ± 0.3°C) vs CTRL (2.0°C ± 0.5°C, P exercise compared with a CTRL. This observation suggests that a prostaglandin-E2-induced elevated hypothalamic temperature set point may contribute to the exercise-induced rise in T C .

  19. High temperature, short time pasteurization temperatures inversely affect bacterial numbers during refrigerated storage of pasteurized fluid milk.

    Science.gov (United States)

    Ranieri, M L; Huck, J R; Sonnen, M; Barbano, D M; Boor, K J

    2009-10-01

    The grade A Pasteurized Milk Ordinance specifies minimum processing conditions of 72 degrees C for at least 15 s for high temperature, short time (HTST) pasteurized milk products. Currently, many US milk-processing plants exceed these minimum requirements for fluid milk products. To test the effect of pasteurization temperatures on bacterial numbers in HTST pasteurized milk, 2% fat raw milk was heated to 60 degrees C, homogenized, and treated for 25 s at 1 of 4 different temperatures (72.9, 77.2, 79.9, or 85.2 degrees C) and then held at 6 degrees C for 21 d. Aerobic plate counts were monitored in pasteurized milk samples at d 1, 7, 14, and 21 postprocessing. Bacterial numbers in milk processed at 72.9 degrees C were lower than in milk processed at 85.2 degrees C on each sampling day, indicating that HTST fluid milk-processing temperatures significantly affected bacterial numbers in fluid milk. To assess the microbial ecology of the different milk samples during refrigerated storage, a total of 490 psychrotolerant endospore-forming bacteria were identified using DNA sequence-based subtyping methods. Regardless of processing temperature, >85% of the isolates characterized at d 0, 1, and 7 postprocessing were of the genus Bacillus, whereas more than 92% of isolates characterized at d 14 and 21 postprocessing were of the genus Paenibacillus, indicating that the predominant genera present in HTST-processed milk shifted from Bacillus spp. to Paenibacillus spp. during refrigerated storage. In summary, 1) HTST processing temperatures affected bacterial numbers in refrigerated milk, with higher bacterial numbers in milk processed at higher temperatures; 2) no significant association was observed between genus isolated and pasteurization temperature, suggesting that the genera were not differentially affected by the different processing temperatures; and 3) although typically present at low numbers in raw milk, Paenibacillus spp. are capable of growing to numbers that can

  20. Influence of temperature on patch residence time in parasitoids: physiological and behavioural mechanisms

    Science.gov (United States)

    Moiroux, Joffrey; Abram, Paul K.; Louâpre, Philippe; Barrette, Maryse; Brodeur, Jacques; Boivin, Guy

    2016-04-01

    Patch time allocation has received much attention in the context of optimal foraging theory, including the effect of environmental variables. We investigated the direct role of temperature on patch time allocation by parasitoids through physiological and behavioural mechanisms and its indirect role via changes in sex allocation and behavioural defences of the hosts. We compared the influence of foraging temperature on patch residence time between an egg parasitoid, Trichogramma euproctidis, and an aphid parasitoid, Aphidius ervi. The latter attacks hosts that are able to actively defend themselves, and may thus indirectly influence patch time allocation of the parasitoid. Patch residence time decreased with an increase in temperature in both species. The increased activity levels with warming, as evidenced by the increase in walking speed, partially explained these variations, but other mechanisms were involved. In T. euproctidis, the ability to externally discriminate parasitised hosts decreased at low temperature, resulting in a longer patch residence time. Changes in sex allocation with temperature did not explain changes in patch time allocation in this species. For A. ervi, we observed that aphids frequently escaped at intermediate temperature and defended themselves aggressively at high temperature, but displayed few defence mechanisms at low temperature. These defensive behaviours resulted in a decreased patch residence time for the parasitoid and partly explained the fact that A. ervi remained for a shorter time at the intermediate and high temperatures than at the lowest temperature. Our results suggest that global warming may affect host-parasitoid interactions through complex mechanisms including both direct and indirect effects on parasitoid patch time allocation.

  1. Diamond's temperature: Unruh effect for bounded trajectories and thermal time hypothesis

    International Nuclear Information System (INIS)

    Martinetti, Pierre; Rovelli, Carlo

    2003-01-01

    We study the Unruh effect for an observer with a finite lifetime, using the thermal time hypothesis. The thermal time hypothesis maintains that: (i) time is the physical quantity determined by the flow defined by a state over an observable algebra and (ii) when this flow is proportional to a geometric flow in spacetime, the temperature is the ratio between flow parameter and proper time. An eternal accelerated Unruh observer has access to the local algebra associated with a Rindler wedge. The flow defined by the Minkowski vacuum of a field theory over this algebra is proportional to a flow in spacetime and the associated temperature is the Unruh temperature. An observer with a finite lifetime has access to the local observable algebra associated with a finite spacetime region called a 'diamond'. The flow defined by the Minkowski vacuum of a (four-dimensional, conformally invariant) quantum field theory over this algebra is also proportional to a flow in spacetime. The associated temperature generalizes the Unruh temperature to finite lifetime observers. Furthermore, this temperature does not vanish even in the limit in which the acceleration is zero. The temperature associated with an inertial observer with lifetime Τ which we denote as 'diamond's temperature', is T D = 2 h/ π k b Τ. This temperature is related to the fact that a finite lifetime observer does not have access to all the degrees of freedom of the quantum field theory. However, we do not attempt to provide any physical interpretation of our proposed assignment of a temperature

  2. Treponema pallidum 3-Phosphoglycerate Mutase Is a Heat-Labile Enzyme That May Limit the Maximum Growth Temperature for the Spirochete

    Science.gov (United States)

    Benoit, Stéphane; Posey, James E.; Chenoweth, Matthew R.; Gherardini, Frank C.

    2001-01-01

    In the causative agent of syphilis, Treponema pallidum, the gene encoding 3-phosphoglycerate mutase, gpm, is part of a six-gene operon (tro operon) that is regulated by the Mn-dependent repressor TroR. Since substrate-level phosphorylation via the Embden-Meyerhof pathway is the principal way to generate ATP in T. pallidum and Gpm is a key enzyme in this pathway, Mn could exert a regulatory effect on central metabolism in this bacterium. To study this, T. pallidum gpm was cloned, Gpm was purified from Escherichia coli, and antiserum against the recombinant protein was raised. Immunoblots indicated that Gpm was expressed in freshly extracted infective T. pallidum. Enzyme assays indicated that Gpm did not require Mn2+ while 2,3-diphosphoglycerate (DPG) was required for maximum activity. Consistent with these observations, Mn did not copurify with Gpm. The purified Gpm was stable for more than 4 h at 25°C, retained only 50% activity after incubation for 20 min at 34°C or 10 min at 37°C, and was completely inactive after 10 min at 42°C. The temperature effect was attenuated when 1 mM DPG was added to the assay mixture. The recombinant Gpm from pSLB2 complemented E. coli strain PL225 (gpm) and restored growth on minimal glucose medium in a temperature-dependent manner. Increasing the temperature of cultures of E. coli PL225 harboring pSLB2 from 34 to 42°C resulted in a 7- to 11-h period in which no growth occurred (compared to wild-type E. coli). These data suggest that biochemical properties of Gpm could be one contributing factor to the heat sensitivity of T. pallidum. PMID:11466272

  3. Low-temperature effect on enzyme activities involved in sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings.

    Science.gov (United States)

    Rosa, Mariana; Hilal, Mirna; González, Juan A; Prado, Fernando E

    2009-04-01

    The effect of low temperature on growth, sucrose-starch partitioning and related enzymes in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) was studied. The growth of cotyledons and growing axes in seedlings grown at 25/20 degrees C (light/dark) and shifted to 5/5 degrees C was lower than in those only growing at 25/20 degrees C (unstressed). However, there were no significant differences between low-temperature control and salt-treated seedlings. The higher activities of sucrose phosphate synthase (SPS, EC 2.4.1.14) and soluble acid invertase (acid INV, EC 3.2.1.25) were observed in salt-stressed cotyledons; however, the highest acid INV activity was observed in unstressed cotyledons. ADP-glucose pyrophosphorylase (ADP-GPPase, EC 2.7.7.27) was higher in unstressed cotyledons than in stressed ones. However, between 0 and 4days the highest value was observed in salt-stressed cotyledons. The lowest value of ADP-GPPase was observed in salt-acclimated cotyledons. Low temperature also affected sucrose synthase (SuSy, EC 2.4.1.13) activity in salt-treated cotyledons. Sucrose and glucose were higher in salt-stressed cotyledons, but fructose was essentially higher in low-temperature control. Starch was higher in low-temperature control; however, the highest content was observed at 0day in salt-acclimated cotyledons. Results demonstrated that low temperature induces different responses on sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons. Data also suggest that in salt-treated cotyledons source-sink relations (SSR) are changed in order to supply soluble sugars and proline for the osmotic adjustment. Relationships between starch formation and SuSy activity are also discussed.

  4. The general use of the time-temperature-pressure superposition principle

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz

    This note is a supplement to Dynamic of Polymeric Liquids (DPL) section 3.6(a). DPL do only concern material functions and only the effect of the temperature on these. This is a short introduction to the general use of the time-temperature-pressure superposition principle.......This note is a supplement to Dynamic of Polymeric Liquids (DPL) section 3.6(a). DPL do only concern material functions and only the effect of the temperature on these. This is a short introduction to the general use of the time-temperature-pressure superposition principle....

  5. Performance of a Predictive Model for Calculating Ascent Time to a Target Temperature

    Directory of Open Access Journals (Sweden)

    Jin Woo Moon

    2016-12-01

    Full Text Available The aim of this study was to develop an artificial neural network (ANN prediction model for controlling building heating systems. This model was used to calculate the ascent time of indoor temperature from the setback period (when a building was not occupied to a target setpoint temperature (when a building was occupied. The calculated ascent time was applied to determine the proper moment to start increasing the temperature from the setback temperature to reach the target temperature at an appropriate time. Three major steps were conducted: (1 model development; (2 model optimization; and (3 performance evaluation. Two software programs—Matrix Laboratory (MATLAB and Transient Systems Simulation (TRNSYS—were used for model development, performance tests, and numerical simulation methods. Correlation analysis between input variables and the output variable of the ANN model revealed that two input variables (current indoor air temperature and temperature difference from the target setpoint temperature, presented relatively strong relationships with the ascent time to the target setpoint temperature. These two variables were used as input neurons. Analyzing the difference between the simulated and predicted values from the ANN model provided the optimal number of hidden neurons (9, hidden layers (3, moment (0.9, and learning rate (0.9. At the study’s conclusion, the optimized model proved its prediction accuracy with acceptable errors.

  6. Mesospheric temperature estimation from meteor decay times of weak and strong meteor trails

    Science.gov (United States)

    Kim, Jeong-Han; Kim, Yong Ha; Jee, Geonhwa; Lee, Changsup

    2012-11-01

    Neutral temperatures near the mesopause region were estimated from the decay times of the meteor echoes observed by a VHF meteor radar during a period covering 2007 to 2009 at King Sejong Station (62.22°S, 58.78°W), Antarctica. While some previous studies have used all meteor echoes to determine the slope from a height profile of log inverse decay times for temperature estimation, we have divided meteor echoes into weak and strong groups of underdense meteor trails, depending on the strength of estimated relative electron line densities within meteor trails. We found that the slopes from the strong group are inappropriate for temperature estimation because the decay times of strong meteors are considerably scattered, whereas the slopes from the weak group clearly define the variation of decay times with height. We thus utilize the slopes only from the weak group in the altitude region between 86 km and 96 km to estimate mesospheric temperatures. The meteor estimated temperatures show a typical seasonal variation near the mesopause region and the monthly mean temperatures are in good agreement with SABER temperatures within a mean difference of 4.8 K throughout the year. The meteor temperatures, representing typically the region around the altitude of 91 km, are lower on average by 2.1 K than simultaneously measured SATI OH(6-2) rotational temperatures during winter (March-October).

  7. Real-Time Enzyme Kinetics by Quantitative NMR Spectroscopy and Determination of the Michaelis-Menten Constant Using the Lambert-W Function

    Science.gov (United States)

    Her, Cheenou; Alonzo, Aaron P.; Vang, Justin Y.; Torres, Ernesto; Krishnan, V. V.

    2015-01-01

    Enzyme kinetics is an essential part of a chemistry curriculum, especially for students interested in biomedical research or in health care fields. Though the concept is routinely performed in undergraduate chemistry/biochemistry classrooms using other spectroscopic methods, we provide an optimized approach that uses a real-time monitoring of the…

  8. Little enzyme; Shoryo no tobun ga koso wo kappatsuka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-05

    It was discovered that the enzymatic heat-resistance increased by the addition of the trehalose in which the researcher of Institute of Physical and Chemical Research (it is given) is one of the disaccharides to the enzyme process. By this, it becomes possible that enzyme reaction is more promoted under the high temperature. They obtained this idea, because the yeast formed the trehalose over the room temperature for the protection of self it. In the example of some enzyme reaction, the about 20 times the speed has been obtained under 60 degrees C in comparison with the under ordinary temperature. Too the similar example has mainly been otherwise accepted. (translated by NEDO)

  9. Temperature effects on the immature development time of Culex eduardoi Casal and Garcia (Diptera: Culicidae)

    Energy Technology Data Exchange (ETDEWEB)

    Loetti, V.; Schweigmann, N.J.; Burroni, N.E., E-mail: nburroni@ege.fcen.uba.a [Universidad de Buenos Aires (Argentina). Facultad de Ciencias Exactas y Naturales. Grupo de Estudio de Mosquitos

    2011-01-15

    The effect of constant temperatures on the development time from first instar to adult emergence was studied in Culex eduardoi Casal and Garcia reared at 7, 10, 15, 20, 25, 30 or 33 deg C. Data were adjusted to the linear degree-day model and the nonlinear Briere model. According to the linear model, the development time was inversely related to the rearing temperatures between 7 deg C and 25 deg C. Maximum mortality (100%) was recorded at temperatures > 30 deg C. According to the linear model, the development threshold temperature and thermal constant were 5.7 deg C and 188.8 degree days, respectively. The lower and upper threshold temperatures and the optimum temperature for the nonlinear model were -2.3, 30.0 and 28.1 deg C, respectively. (author)

  10. The influence of measurement and relaxation time on flux jumps in high temperature superconductors

    International Nuclear Information System (INIS)

    Yang Xiaobin; Zhou Youhe; Tu Shandong

    2010-01-01

    The influence of the magnetization and relaxation time on flux jumps in high temperature superconductors (HTSC) under varying magnetic field is studied using the fundamental electromagnetic field equations and the thermal diffusion equation; temperature variety corresponding to flux jump is also discussed. We find that for a low sweep rate of the applied magnetic field, the measurement and relaxation times can reduce flux jump and to constrain the number of flux jumps, even stabilizing the HTSC, since much heat produced by the motion of magnetic flux can transfer into coolant during the measurement and relaxation times. As high temperature superconductors are subjected to a high sweep rate or a strong pulsed magnetic field, magnetization undergoes from stability or oscillation to jump for different pause times. And the period of temperature oscillation is equal to the measurement and relaxation time.

  11. Effective enhancement of polylactic acid-degrading enzyme production by Amycolatopsis sp. strain SCM_MK2-4 using statistical and one-factor-at-a-time approaches.

    Science.gov (United States)

    Penkhrue, Watsana; Kanpiengjai, Apinun; Khanongnuch, Chartchai; Masaki, Kazuo; Pathom-Aree, Wasu; Punyodom, Winita; Lumyong, Saisamorn

    2017-08-09

    This study aims to find the optimal medium and conditions for polylactic acid (PLA)-degrading enzyme production by Amycolatopsis sp. SCM_MK2-4. Screening of the most effective components in the enzyme production medium by Plackett-Burman design revealed that the silk cocoon and PLA film were the most significant variables enhancing the PLA-degrading enzyme production. After an response surface methodology, a maximum amount of PLA-degrading enzyme activity at 0.74 U mL -1 was predicted and successfully validated at 95% after 0.39% (w/v) silk cocoon and 1.62% (w/v) PLA film were applied to the basal medium. The optimal initial pH value, temperature, and inoculum size were evaluated by a method considering one-factor-at-a-time. The values were recorded at an initial pH in the range of 7.5-9.0, a temperature of 30-32°C, and an inoculum size of 4-10%. The highest activity of approximately 0.95 U mL -1 was achieved after 4 days of cultivation using the optimized medium and under optimized conditions in a shake flask. Upscaling to the use of a 3-L stirred tank fermenter was found to be successful with a PLA-degrading activity of 5.53 U mL -1 ; which represents a 51-fold increase in the activity compared with that obtained from the nonoptimized medium and conditions in the shake flask.

  12. Dynamic temperature estimation and real time emergency rating of transmission cables

    DEFF Research Database (Denmark)

    Olsen, R. S.; Holboll, J.; Gudmundsdottir, Unnur Stella

    2012-01-01

    enables real time emergency ratings, such that the transmission system operator can make well-founded decisions during faults. Hereunder is included the capability of producing high resolution loadability vs. time schedules within few minutes, such that the TSO can safely control the system.......). It is found that the calculated temperature estimations are fairly accurate — within 1.5oC of the finite element method (FEM) simulation to which it is compared — both when looking at the temperature profile (time dependent) and the temperature distribution (geometric dependent). The methodology moreover...

  13. Calculation of nonzero-temperature Casimir forces in the time domain

    International Nuclear Information System (INIS)

    Pan, Kai; Reid, M. T. Homer; McCauley, Alexander P.; Rodriguez, Alejandro W.; White, Jacob K.; Johnson, Steven G.

    2011-01-01

    We show how to compute Casimir forces at nonzero temperatures with time-domain electromagnetic simulations, for example, using a finite-difference time-domain (FDTD) method. Compared to our previous zero-temperature time-domain method, only a small modification is required, but we explain that some care is required to properly capture the zero-frequency contribution. We validate the method against analytical and numerical frequency-domain calculations, and show a surprising high-temperature disappearance of a nonmonotonic behavior previously demonstrated in a pistonlike geometry.

  14. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags

    Directory of Open Access Journals (Sweden)

    Benjamin H. Letcher

    2016-02-01

    Full Text Available Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59°C, identified a clear warming trend (0.63 °C decade−1 and a widening of the synchronized period (29 d decade−1. We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (∼0.05% average drop in RMSE with 10% fewer days with data. Missing all data for a year decreased performance (∼0.6 °C jump in RMSE, but this decrease was moderated when data were available from other streams in the network.

  15. Effect of different levels of alpha tocopherol on performance traits, serum antioxidant enzymes, and trace elements in Japanese quail ( Coturnix coturnix japonica under low ambient temperature

    Directory of Open Access Journals (Sweden)

    Assar Ali Shah

    Full Text Available ABSTRACT This study was designed to find the effect of vitamin E supplementation on growth, serum antioxidant enzymes, and some trace elements in Japanese quail (Coturnix coturnix japonica under low ambient temperature. A total of 180 day-old Japanese quails were randomly divided into four groups and provided with 0 (group A, 50 (group B, 100 (group C, and 150 IU/kg (group D vitamin E (dl-α-tocopherol acetate under an average temperature of 9±0.5 °C for an experimental period of 42 days. The result showed that feed intake per day, body weight, weight gain per day, and feed conversion ratio did not differ significantly between the groups. Serum concentrations of superoxide and glutathione peroxidase were significantly high in birds supplemented with 150 mg/kg of vitamin E. The concentration of aspartate aminotransferase was not significantly affected between the control and treated groups; however, alanine transaminase concentration significantly reduced in group D. Zinc concentration in the blood increased significantly in group D, with no significant effect on copper and manganese between the control and treated groups. Vitamin E at the level of 150 IU/kg of feed improves the blood antioxidant status and zinc concentration, with no effect on the performance traits of quail reared under low ambient temperature.

  16. A Key Enzyme of the NAD+ Salvage Pathway in Thermus thermophilus: Characterization of Nicotinamidase and the Impact of Its Gene Deletion at High Temperatures.

    Science.gov (United States)

    Taniguchi, Hironori; Sungwallek, Sathidaphorn; Chotchuang, Phatcharin; Okano, Kenji; Honda, Kohsuke

    2017-09-01

    NAD (NAD + ) is a cofactor related to many cellular processes. This cofactor is known to be unstable, especially at high temperatures, where it chemically decomposes to nicotinamide and ADP-ribose. Bacteria, yeast, and higher organisms possess the salvage pathway for reconstructing NAD + from these decomposition products; however, the importance of the salvage pathway for survival is not well elucidated, except for in pathogens lacking the NAD + de novo synthesis pathway. Herein, we report the importance of the NAD + salvage pathway in the thermophilic bacterium Thermus thermophilus HB8 at high temperatures. We identified the gene encoding nicotinamidase (TTHA0328), which catalyzes the first reaction of the NAD + salvage pathway. This recombinant enzyme has a high catalytic activity against nicotinamide ( K m of 17 μM, k cat of 50 s -1 , k cat / K m of 3.0 × 10 3 s -1 · mM -1 ). Deletion of this gene abolished nicotinamide deamination activity in crude extracts of T. thermophilus and disrupted the NAD + salvage pathway in T. thermophilus Disruption of the salvage pathway led to the severe growth retardation at a higher temperature (80°C), owing to the drastic decrease in the intracellular concentrations of NAD + and NADH. IMPORTANCE NAD + and other nicotinamide cofactors are essential for cell metabolism. These molecules are unstable and decompose, even under the physiological conditions in most organisms. Thermophiles can survive at high temperatures where NAD + decomposition is, in general, more rapid. This study emphasizes that NAD + instability and its homeostasis can be one of the important factors for thermophile survival in extreme temperatures. Copyright © 2017 American Society for Microbiology.

  17. Discrimination of Temperature and Strain in Brillouin Optical Time Domain Analysis Using a Multicore Optical Fiber.

    Science.gov (United States)

    Zaghloul, Mohamed A S; Wang, Mohan; Milione, Giovanni; Li, Ming-Jun; Li, Shenping; Huang, Yue-Kai; Wang, Ting; Chen, Kevin P

    2018-04-12

    Brillouin optical time domain analysis is the sensing of temperature and strain changes along an optical fiber by measuring the frequency shift changes of Brillouin backscattering. Because frequency shift changes are a linear combination of temperature and strain changes, their discrimination is a challenge. Here, a multicore optical fiber that has two cores is fabricated. The differences between the cores' temperature and strain coefficients are such that temperature (strain) changes can be discriminated with error amplification factors of 4.57 °C/MHz (69.11 μ ϵ /MHz), which is 2.63 (3.67) times lower than previously demonstrated. As proof of principle, using the multicore optical fiber and a commercial Brillouin optical time domain analyzer, the temperature (strain) changes of a thermally expanding metal cylinder are discriminated with an error of 0.24% (3.7%).

  18. Discrimination of Temperature and Strain in Brillouin Optical Time Domain Analysis Using a Multicore Optical Fiber

    Directory of Open Access Journals (Sweden)

    Mohamed A. S. Zaghloul

    2018-04-01

    Full Text Available Brillouin optical time domain analysis is the sensing of temperature and strain changes along an optical fiber by measuring the frequency shift changes of Brillouin backscattering. Because frequency shift changes are a linear combination of temperature and strain changes, their discrimination is a challenge. Here, a multicore optical fiber that has two cores is fabricated. The differences between the cores’ temperature and strain coefficients are such that temperature (strain changes can be discriminated with error amplification factors of 4.57 °C/MHz (69.11 μ ϵ /MHz, which is 2.63 (3.67 times lower than previously demonstrated. As proof of principle, using the multicore optical fiber and a commercial Brillouin optical time domain analyzer, the temperature (strain changes of a thermally expanding metal cylinder are discriminated with an error of 0.24% (3.7%.

  19. High-Temperature Short-Time Pasteurization System for Donor Milk in a Human Milk Bank Setting

    Directory of Open Access Journals (Sweden)

    Diana Escuder-Vieco

    2018-05-01

    Full Text Available Donor milk is the best alternative for the feeding of preterm newborns when mother's own milk is unavailable. For safety reasons, it is usually pasteurized by the Holder method (62.5°C for 30 min. Holder pasteurization results in a microbiological safe product but impairs the activity of many biologically active compounds such as immunoglobulins, enzymes, cytokines, growth factors, hormones or oxidative stress markers. High-temperature short-time (HTST pasteurization has been proposed as an alternative for a better preservation of some of the biological components of human milk although, at present, there is no equipment available to perform this treatment under the current conditions of a human milk bank. In this work, the specific needs of a human milk bank setting were considered to design an HTST equipment for the continuous and adaptable (time-temperature combination processing of donor milk. Microbiological quality, activity of indicator enzymes and indices for thermal damage of milk were evaluated before and after HTST treatment of 14 batches of donor milk using different temperature and time combinations and compared to the results obtained after Holder pasteurization. The HTST system has accurate and simple operation, allows the pasteurization of variable amounts of donor milk and reduces processing time and labor force. HTST processing at 72°C for, at least, 10 s efficiently destroyed all vegetative forms of microorganisms present initially in raw donor milk although sporulated Bacillus sp. survived this treatment. Alkaline phosphatase was completely destroyed after HTST processing at 72 and 75°C, but γ-glutamil transpeptidase showed higher thermoresistance. Furosine concentrations in HTST-treated donor milk were lower than after Holder pasteurization and lactulose content for HTST-treated donor milk was below the detection limit of analytical method (10 mg/L. In conclusion, processing of donor milk at 72°C for at least 10 s in

  20. High-Temperature Short-Time Pasteurization System for Donor Milk in a Human Milk Bank Setting.

    Science.gov (United States)

    Escuder-Vieco, Diana; Espinosa-Martos, Irene; Rodríguez, Juan M; Corzo, Nieves; Montilla, Antonia; Siegfried, Pablo; Pallás-Alonso, Carmen R; Fernández, Leónides

    2018-01-01

    Donor milk is the best alternative for the feeding of preterm newborns when mother's own milk is unavailable. For safety reasons, it is usually pasteurized by the Holder method (62.5°C for 30 min). Holder pasteurization results in a microbiological safe product but impairs the activity of many biologically active compounds such as immunoglobulins, enzymes, cytokines, growth factors, hormones or oxidative stress markers. High-temperature short-time (HTST) pasteurization has been proposed as an alternative for a better preservation of some of the biological components of human milk although, at present, there is no equipment available to perform this treatment under the current conditions of a human milk bank. In this work, the specific needs of a human milk bank setting were considered to design an HTST equipment for the continuous and adaptable (time-temperature combination) processing of donor milk. Microbiological quality, activity of indicator enzymes and indices for thermal damage of milk were evaluated before and after HTST treatment of 14 batches of donor milk using different temperature and time combinations and compared to the results obtained after Holder pasteurization. The HTST system has accurate and simple operation, allows the pasteurization of variable amounts of donor milk and reduces processing time and labor force. HTST processing at 72°C for, at least, 10 s efficiently destroyed all vegetative forms of microorganisms present initially in raw donor milk although sporulated Bacillus sp. survived this treatment. Alkaline phosphatase was completely destroyed after HTST processing at 72 and 75°C, but γ-glutamil transpeptidase showed higher thermoresistance. Furosine concentrations in HTST-treated donor milk were lower than after Holder pasteurization and lactulose content for HTST-treated donor milk was below the detection limit of analytical method (10 mg/L). In conclusion, processing of donor milk at 72°C for at least 10 s in this HTST system

  1. High-Temperature Short-Time Pasteurization System for Donor Milk in a Human Milk Bank Setting

    Science.gov (United States)

    Escuder-Vieco, Diana; Espinosa-Martos, Irene; Rodríguez, Juan M.; Corzo, Nieves; Montilla, Antonia; Siegfried, Pablo; Pallás-Alonso, Carmen R.; Fernández, Leónides

    2018-01-01

    Donor milk is the best alternative for the feeding of preterm newborns when mother's own milk is unavailable. For safety reasons, it is usually pasteurized by the Holder method (62.5°C for 30 min). Holder pasteurization results in a microbiological safe product but impairs the activity of many biologically active compounds such as immunoglobulins, enzymes, cytokines, growth factors, hormones or oxidative stress markers. High-temperature short-time (HTST) pasteurization has been proposed as an alternative for a better preservation of some of the biological components of human milk although, at present, there is no equipment available to perform this treatment under the current conditions of a human milk bank. In this work, the specific needs of a human milk bank setting were considered to design an HTST equipment for the continuous and adaptable (time-temperature combination) processing of donor milk. Microbiological quality, activity of indicator enzymes and indices for thermal damage of milk were evaluated before and after HTST treatment of 14 batches of donor milk using different temperature and time combinations and compared to the results obtained after Holder pasteurization. The HTST system has accurate and simple operation, allows the pasteurization of variable amounts of donor milk and reduces processing time and labor force. HTST processing at 72°C for, at least, 10 s efficiently destroyed all vegetative forms of microorganisms present initially in raw donor milk although sporulated Bacillus sp. survived this treatment. Alkaline phosphatase was completely destroyed after HTST processing at 72 and 75°C, but γ-glutamil transpeptidase showed higher thermoresistance. Furosine concentrations in HTST-treated donor milk were lower than after Holder pasteurization and lactulose content for HTST-treated donor milk was below the detection limit of analytical method (10 mg/L). In conclusion, processing of donor milk at 72°C for at least 10 s in this HTST system

  2. Time-Lapse and Slow-Motion Tracking of Temperature Changes: Response Time of a Thermometer

    Science.gov (United States)

    Moggio, L.; Onorato, P.; Gratton, L. M.; Oss, S.

    2017-01-01

    We propose the use of a smartphone based time-lapse and slow-motion video techniques together with tracking analysis as valuable tools for investigating thermal processes such as the response time of a thermometer. The two simple experimental activities presented here, suitable also for high school and undergraduate students, allow one to measure…

  3. Imaging technique for real-time temperature monitoring during cryotherapy of lesions

    Science.gov (United States)

    Petrova, Elena; Liopo, Anton; Nadvoretskiy, Vyacheslav; Ermilov, Sergey

    2016-11-01

    Noninvasive real-time temperature imaging during thermal therapies is able to significantly improve clinical outcomes. An optoacoustic (OA) temperature monitoring method is proposed for noninvasive real-time thermometry of vascularized tissue during cryotherapy. The universal temperature-dependent optoacoustic response (ThOR) of red blood cells (RBCs) is employed to convert reconstructed OA images to temperature maps. To obtain the temperature calibration curve for intensity-normalized OA images, we measured ThOR of 10 porcine blood samples in the range of temperatures from 40°C to -16°C and analyzed the data for single measurement variations. The nonlinearity (ΔTmax) and the temperature of zero OA response (T0) of the calibration curve were found equal to 11.4±0.1°C and -13.8±0.1°C, respectively. The morphology of RBCs was examined before and after the data collection confirming cellular integrity and intracellular compartmentalization of hemoglobin. For temperatures below 0°C, which are of particular interest for cryotherapy, the accuracy of a single temperature measurement was ±1°C, which is consistent with the clinical requirements. Validation of the proposed OA temperature imaging technique was performed for slow and fast cooling of blood samples embedded in tissue-mimicking phantoms.

  4. Effect of semen extender and storage temperature on ram sperm motility over time

    Science.gov (United States)

    Storage of ram semen for long period of time depends on a number of factors, including type of extender and storage temperature. A study compared the effect of semen extender and storage temperature on motility of ram semen stored for 72 h. Semen collected via electroejaculator from 5 mature Katahd...

  5. Multi-species time-history measurements during high-temperature acetone and 2-butanone pyrolysis

    KAUST Repository

    Lam, Kingyiu; Ren, Wei; Pyun, Sunghyun; Farooq, Aamir; Davidson, David Frank; Hanson, Ronald Kenneth

    2013-01-01

    High-temperature acetone and 2-butanone pyrolysis studies were conducted behind reflected shock waves using five species time-history measurements (ketone, CO, CH3, CH4 and C2H4). Experimental conditions covered temperatures of 1100-1600 Kat 1.6 atm

  6. Temperature affects the timing of spawning and migration of North Sea mackerel

    DEFF Research Database (Denmark)

    Jansen, Teunis; Gislason, Henrik

    2011-01-01

    Climate change accentuates the need for knowing how temperature impacts the life history and productivity of economically and ecologically important species of fish. We examine the influence of temperature on the timing of the spawning and migrations of North Sea Mackerel using data from larvae C...

  7. Impact of landfill liner time-temperature history on the service life of HDPE geomembranes.

    Science.gov (United States)

    Rowe, R Kerry; Islam, M Z

    2009-10-01

    The observed temperatures in different landfills are used to establish a number of idealized time-temperature histories for geomembrane liners in municipal solid waste (MSW) landfills. These are then used for estimating the service life of different HDPE geomembranes. The predicted antioxidant depletion times (Stage I) are between 7 and 750 years with the large variation depending on the specific HDPE geomembrane product, exposure conditions, and most importantly, the magnitude and duration of the peak liner temperature. The higher end of the range corresponds to data from geomembranes aged in simulated landfill liner tests and a maximum liner temperature of 37 degrees C. The lower end of the range corresponds to a testing condition where geomembranes were immersed in a synthetic leachate and a maximum liner temperature of 60 degrees C. The total service life of the geomembranes was estimated to be between 20 and 3300 years depending on the time-temperature history examined. The range illustrates the important role that time-temperature history could play in terms of geomembrane service life. The need for long-term monitoring of landfill liner temperature and for geomembrane ageing studies that will provide improved data for assessing the likely long-term performance of geomembranes in MSW landfills are highlighted.

  8. Evaluation of the effect of temperature and time of incubation on ...

    African Journals Online (AJOL)

    The complete blood count (CBC) is one of the most common tests requested by physicians. The results of this test are affected by different factors such as temperature and time of incubation. Therefore, the aim of this study was to evaluate changes in CBC results at room temperature (RT). In a cross-sectional study, ...

  9. Preparation and characterization of room temperature ionic liquid/single-walled carbon nanotube nanocomposites and their application to the direct electrochemistry of heme-containing proteins/enzymes

    International Nuclear Information System (INIS)

    Du, Pan; Liu, Shuna; Wu, Ping; Cai, Chenxin

    2007-01-01

    This work describes the formation and possible electrochemical application of a novel nanocomposite based on single-walled carbon nanotubes (SWNTs) and imidazolium-based room-temperature ionic liquids (RTILs) of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim]BF 4 , a hydrophilic RTIL) and 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]PF 6 , a hydrophobic RTIL). The nanocomposites ([bmim]BF 4 -SWNTs, and [bmim]PF 6 -SWNTs) were formed by simply grinding the SWNTs with the respective RTIL. The results of the X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy indicated that the nanocomposites were formed by adsorption of an imidazolium ion on the surface of SWNTs via the 'cation-π' interaction. SEM images showed that [bmim]BF 4 -SWNTs (or [bmim]PF 6 -SWNTs) nanocomposites could uniformly cover the surface of a glassy carbon (GC) electrode resulting in a RTILs-SWNTs/GC modified electrode with a high stability. The RTILs-SWNTs composite could be readily used as a matrix to immobilize heme-containing proteins/enzymes (myoglobin, cytochrome c, and horseradish peroxidase) without undergoing denaturation, as was verified by UV-vis and circular dichroic (CD) spectroscopic results. The voltammetric results showed that heme-containing proteins/enzymes entrapped in RTILs-SWNTs composites displayed a pair of well-defined, stable redox peaks, which were ascribed to their direct electron-transfer reactions. The results of controlled experiments showed that the positive charged imidazolium ion played a significant effect on the electrochemical parameters, such as the redox peak separation and the value of the formal potentials, etc., of the electron-transfer reaction of non-neutral species dissolved in solution or immobilized on the electrode surface. Further results demonstrated that the heme-containing proteins/enzymes entrapped in RTILs-SWNTs composites could still retain their bioelectrocatalytic activity toward the reduction of oxygen and hydrogen

  10. Effect of temperature and time of pasteurization on the milk quality during storage

    Directory of Open Access Journals (Sweden)

    Abubakar

    2001-03-01

    Full Text Available A study on the effect of temperature and time of pasteurization on the milk quality during storage was carried out using fresh milk. The aim of the experiment was to asses the storage time of pasteurized milk for consumption without nutrient losses. A completely randomized factorial design, 2 x 8 was used, with pasteurization temperature (T, consisted of 2 levels, the low temperature long time (LTLT, i.e. fresh milk was warmed at 65oC for 30 minutes (T1 and the high temperature short time (HTST, i.e. fresh milk was warmed at 71oC for 15 seconds (T2; and storage time (S, consisted of 8 levels, i.e. 0, 3, 6, 9, 12, 15, 18, and 21 hours respectively, as the factors, with 3 replicates. Parameters measured were alcohol test, water, fat, and protein concentrations, and microbial population of pasteurized milk during storage. Data were analyzed using analysis of variance and simple linear regression. The result showed that water and fat concentrations and microbial population was not significantly different (P>0.05 in pasteurization temperature treatment, but was significantly different (P<0.05 due to storage time treatment. Meanwhile, the protein concentration was significantly different (P<0.05 either in pasteurization temperature or storage time. It was concluded that pasteurized milk was still suitable for consumption at 15-21 hours storage, while protein concentration tended to be better when was pasteurized at 65oC.

  11. SMAP L1B Radiometer Half-Orbit Time-Ordered Brightness Temperatures V003

    Data.gov (United States)

    National Aeronautics and Space Administration — This Level-1B (L1B) product provides calibrated estimates of time-ordered geolocated brightness temperatures measured by the Soil Moisture Active Passive (SMAP)...

  12. Natural convection in square enclosure induced by inner circular cylinder with time-periodic pulsating temperature

    KAUST Repository

    Huang, Zhu; Zhang, Wei; Xi, Guang

    2015-01-01

    The periodic unsteady natural convection flow and heat transfer in a square enclosure containing a concentric circular cylinder is numerically studied. The temperature of the inner circular cylinder fluctuates periodically with time at higher

  13. Time-dependent electron temperature diagnostics for high-power aluminum z-pinch plasmas

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Nash, T.J.; Mock, R.C.

    1996-08-01

    Time-resolved x-ray pinhole photographs and time-integrated radially-resolved x-ray crystal-spectrometer measurements of azimuthally-symmetric aluminum-wire implosions suggest that the densest phase of the pinch is composed of a hot plasma core surrounded by a cooler plasma halo. The slope of the free-bound x-ray continuum, provides a time-resolved, model-independent diagnostic of the core electron temperature. A simultaneous measurement of the time-resolved K-shell line spectra provides the electron temperature of the spatially averaged plasma. Together, the two diagnostics support a 1-D Radiation-Hydrodynamic model prediction of a plasma whose thermalization on axis produces steep radial gradients in temperature, from temperatures in excess of a kilovolt in the core to below a kilovolt in the surrounding plasma halo

  14. The defective phosphoribosyl diphosphate synthase in a temperature-sensitive prs-2 mutant of Escherichia coli is compensated by increased enzyme synthesis

    DEFF Research Database (Denmark)

    Post, David A.; Switzer, Robert L.; Hove-Jensen, Bjarne

    1996-01-01

    An Escherichia coli strain which is temperature-sensitive for growth due to a mutation (prs-2) causing a defective phosphoribosyl diphosphate (PRPP) synthase has been characterized. The temperature-sensitive mutation was mapped to a 276 bp HindIII-BssHII DNA fragment located within the open reading...... temperature shift to 42 degrees C. The other mutation was a C -> T transition located 39 bp upstream of the G -> A mutation, i.e. outside the coding sequence and close to the Shine-Dalgarno sequence. Cells harbouring only the C -> T mutation in a plasmid contained approximately three times as much PRPP...

  15. Expression of S1P metabolizing enzymes and receptors correlate with survival time and regulate cell migration in glioblastoma multiforme.

    Science.gov (United States)

    Bien-Möller, Sandra; Lange, Sandra; Holm, Tobias; Böhm, Andreas; Paland, Heiko; Küpper, Johannes; Herzog, Susann; Weitmann, Kerstin; Havemann, Christoph; Vogelgesang, Silke; Marx, Sascha; Hoffmann, Wolfgang; Schroeder, Henry W S; Rauch, Bernhard H

    2016-03-15

    A signaling molecule which is involved in proliferation and migration of malignant cells is the lipid mediator sphingosine-1-phosphate (S1P). There are hints for a potential role of S1P signaling in malignant brain tumors such as glioblastoma multiforme (GBM) which is characterized by a poor prognosis. Therefore, a comprehensive expression analysis of S1P receptors (S1P1-S1P5) and S1P metabolizing enzymes in human GBM (n = 117) compared to healthy brain (n = 10) was performed to evaluate their role for patient´s survival. Furthermore, influence of S1P receptor inhibition on proliferation and migration were studied in LN18 GBM cells. Compared to control brain, mRNA levels of S1P1, S1P2, S1P3 and S1P generating sphingosine kinase-1 were elevated in GBM. Kaplan-Meier analyses demonstrated an association between S1P1 and S1P2 with patient´s survival times. In vitro, an inhibitory effect of the SphK inhibitor SKI-II on viability of LN18 cells was shown. S1P itself had no effect on viability but stimulated LN18 migration which was blocked by inhibition of S1P1 and S1P2. The participation of S1P1 and S1P2 in LN18 migration was further supported by siRNA-mediated silencing of these receptors. Immunoblots and inhibition experiments suggest an involvement of the PI3-kinase/AKT1 pathway in the chemotactic effect of S1P in LN18 cells.In summary, our data argue for a role of S1P signaling in proliferation and migration of GBM cells. Individual components of the S1P pathway represent prognostic factors for patients with GBM. Perspectively, a selective modulation of S1P receptor subtypes could represent a therapeutic approach for GBM patients and requires further evaluation.

  16. Temperature dependence of 1H NMR relaxation time, T2, for intact and neoplastic plant tissues

    Science.gov (United States)

    Lewa, Czesław J.; Lewa, Maria

    Temperature dependences of the spin-spin proton relaxation time, T2, have been shown for normal and tumorous tissues collected from kalus culture Nicotiana tabacum and from the plant Kalanchoe daigremontiana. For neoplastic plant tissues, time T2 was increased compared to that for intact plants, a finding similar to that for animal and human tissues. The temperature dependences obtained were compared to analogous relations observed with animal tissues.

  17. Thermotolerance in preirradiated intestine and its influence on time-temperature relationships

    International Nuclear Information System (INIS)

    Hume, S.P.; Marigold, J.C.; Manjil, L.G.

    1988-01-01

    The crypt compartment of mouse jejunum showed a transient increase in thermal susceptibility approximately 10 days after moderate X-ray doses to the abdomen (9-10 Gy). The increase in response was manifest as an increase in slope of the crypt dose-response curve but was limited to temperatures below 43 0 C. As a result, the 43 0 C inflexion in the Arrhenius plot (the relationship between treatment time and temperature) for thermal sensitivity of crypts was eliminated in preirradiated tissue, and the curve became monophasic over the range 42.0-44.5 0 C. At temperatures below 42 0 C, the curve again deviated. At supranormal temperatures of 42 0 C and below, the durations of hyperthermia needed for measurable effect were sufficient to allow thermotolerance to be expressed within the heating period. Neither the threshold heating times nor this thermotolerance were affected by prior irradiation. In the temperature range 42-43 0 C, an earlier development of thermotolerance could be demonstrated in control tissue by challenging with an acute high-temperature heat treatment. This thermotolerance was eliminated in preirradiated tissue, resulting in the apparent increase in sensitivity. The findings support the view that the complex nature of the time-temperature relationship seen in normal tissue in vivo is a manifestation of the ability of the tissue to progressively acquire a thermotolerant state during treatment at temperatures below approximately 43 0 C, so that the intrinsic sensitivity is modulated while being assessed

  18. Temperature dependence of relaxation times in proton components of fatty acids

    International Nuclear Information System (INIS)

    Kuroda, Kagayaki; Iwabuchi, Taku; Saito, Kensuke; Obara, Makoto; Honda, Masatoshi; Imai, Yutaka

    2011-01-01

    We examined the temperature dependence of relaxation times in proton components of fatty acids in various samples in vitro at 11 tesla as a standard calibration data for quantitative temperature imaging of fat. The spin-lattice relaxation time, T 1 , of both the methylene (CH 2 ) chain and terminal methyl (CH 3 ) was linearly related to temperature (r>0.98, P 2 signal for calibration and observed the signal with 18% of CH 3 to estimate temperature. These findings suggested that separating the fatty acid components would significantly improve accuracy in quantitative thermometry for fat. Use of the T 1 of CH 2 seems promising in terms of reliability and reproducibility in measuring temperature of fat. (author)

  19. Temperature dependence of fluorescence decay time and emission spectrum of bismuth germanate

    International Nuclear Information System (INIS)

    Melcher, C.L.; Liberman, A.; Schweitzer, J.S.; Simonetti, J.

    1985-01-01

    Bismuth germanate has become an increasingly popular replacement for NaI(Tl) scintillators in recent years, mainly due to its higher detection efficiency. However, its scintillation efficiency and fluorescence decay time are strongly temperature dependent. Optimum performance of detector systems which employ BGO crystals depends on knowledge of the BGO pulse shape and intensity and its emission spectrum at the operating temperature of the detector. Measurements of these quantities are presented over the temperature range -47 0 C to +111 0 C. Although the emission spectrum shifts only slightly over this temperature range, the scintillation efficiency and fluorescence decay time are strongly temperature dependent. In addition to the usefulness of these data for optimizing detector design, the results imply that luminescence quenching in BGO cannot be characterized by a single thermal activation to a radiationless transition but that a more complex model is required to characterize the light output from BGO crystals

  20. The effect of melting temperature and time on the TiC particles

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Kun [Key Laboratory of Materials Liquid Structure and Heredity, Ministry of Education, Shandong University, Ji' nan 250061 (China); Liu Xiangfa, E-mail: xfliu@sdu.edu.c [Key Laboratory of Materials Liquid Structure and Heredity, Ministry of Education, Shandong University, Ji' nan 250061 (China)

    2009-09-18

    In the present work, the microstructure formation process and particle size distribution of TiC in Al-Ti-C master alloys are investigated by particle size analysis, which is based on the morphology characterizing from scanning electron microscopy (SEM). The TiC particle size distributions at different melting temperatures and during different melting times are researched. It is demonstrated that the TiC particle sizes increase with melting temperature and melting time elapsed. The micro size particles appear when the melting temperature is high enough.

  1. Design, fabrication and characterisation of a microfluidic time-temperature indicator

    Science.gov (United States)

    Schmitt, P.; Wedrich, K.; Müller, L.; Mehner, H.; Hoffmann, M.

    2017-11-01

    This paper describes a concept for a passive microfluidic time-temperature indicator (TTI) intended for intelligent food packaging. A microfluidic system is presented that makes use of the temperature-dependent flow of suitable food ingredients in a microcapillary. Based on the creeping distance inside the capillary, the time-temperature integral can be determined. A demonstrator of the microsystem has been designed, fabricated and characterised using liquid sugar alcohols as indicator fluids. To enable a first wireless read-out of the passive TTI, the sensor was read out using a commercial RFID equipment, and capacitive measurements have been carried out.

  2. The effect of melting temperature and time on the TiC particles

    International Nuclear Information System (INIS)

    Jiang Kun; Liu Xiangfa

    2009-01-01

    In the present work, the microstructure formation process and particle size distribution of TiC in Al-Ti-C master alloys are investigated by particle size analysis, which is based on the morphology characterizing from scanning electron microscopy (SEM). The TiC particle size distributions at different melting temperatures and during different melting times are researched. It is demonstrated that the TiC particle sizes increase with melting temperature and melting time elapsed. The micro size particles appear when the melting temperature is high enough.

  3. Rheological and micro-Raman time-series characterization of enzyme sol–gel solution toward morphological control of electrospun fibers

    International Nuclear Information System (INIS)

    Oriero, Dennis A; Weakley, Andrew T; Aston, D Eric

    2012-01-01

    Rheological and micro-Raman time-series characterizations were used to investigate the chemical evolutionary changes of silica sol–gel mixtures for electrospinning fibers to immobilize an enzyme (tyrosinase). Results of dynamic rheological measurements agreed with the expected structural transitions associated with reacting sol–gel systems. The electrospinning sols exhibited shear-thinning behavior typical of a power law model. Ultrafine (200–300 nm diameter) fibers were produced at early and late times within the reaction window of approximately one hour from initial mixing of sol solutions with and without enzyme; diameter distributions of these fibers showed much smaller deviations than expected. The enzyme markedly increased magnitudes of both elastic and viscous moduli but had no significant impact on final fiber diameters, suggesting that the shear-thinning behavior of both sol–gel mixtures is dominant in the fiber elongation process. The time course and scale for the electrospinning batch fabrication show strong correlations between the magnitudes in rheological property changes over time and the chemical functional group evolution obtained from micro-Raman time-series analysis of the reacting sol–gel systems.

  4. Rheological and micro-Raman time-series characterization of enzyme sol–gel solution toward morphological control of electrospun fibers

    Science.gov (United States)

    Oriero, Dennis A; Weakley, Andrew T; Aston, D Eric

    2012-01-01

    Rheological and micro-Raman time-series characterizations were used to investigate the chemical evolutionary changes of silica sol–gel mixtures for electrospinning fibers to immobilize an enzyme (tyrosinase). Results of dynamic rheological measurements agreed with the expected structural transitions associated with reacting sol–gel systems. The electrospinning sols exhibited shear-thinning behavior typical of a power law model. Ultrafine (200–300 nm diameter) fibers were produced at early and late times within the reaction window of approximately one hour from initial mixing of sol solutions with and without enzyme; diameter distributions of these fibers showed much smaller deviations than expected. The enzyme markedly increased magnitudes of both elastic and viscous moduli but had no significant impact on final fiber diameters, suggesting that the shear-thinning behavior of both sol–gel mixtures is dominant in the fiber elongation process. The time course and scale for the electrospinning batch fabrication show strong correlations between the magnitudes in rheological property changes over time and the chemical functional group evolution obtained from micro-Raman time-series analysis of the reacting sol–gel systems. PMID:27877486

  5. ICF implosion hotspot ion temperature diagnostic techniques based on neutron time-of-flight method

    International Nuclear Information System (INIS)

    Tang Qi; Song Zifeng; Chen Jiabin; Zhan Xiayu

    2013-01-01

    Ion temperature of implosion hotspot is a very important parameter for inertial confinement fusion. It reflects the energy level of the hotspot, and it is very sensitive to implosion symmetry and implosion speed. ICF implosion hotspot ion temperature diagnostic techniques based on neutron time-of-flight method were described. A neutron TOF spectrometer was developed using a ultrafast plastic scintillator as the neutron detector. Time response of the spectrometer has 1.1 ns FWHM and 0.5 ns rising time. TOF spectrum resolving method based on deconvolution and low pass filter was illuminated. Implosion hotspot ion temperature in low neutron yield and low ion temperature condition at Shenguang-Ⅲ facility was acquired using the diagnostic techniques. (authors)

  6. Topological transitions at finite temperatures: A real-time numerical approach

    International Nuclear Information System (INIS)

    Grigoriev, D.Yu.; Rubakov, V.A.; Shaposhnikov, M.E.

    1989-01-01

    We study topological transitions at finite temperatures within the (1+1)-dimensional abelian Higgs model by a numerical simulation in real time. Basic ideas of the real-time approach are presented and some peculiarities of the Metropolis technique are discussed. It is argued that the processes leading to topological transitions are of classical origin; the transitions can be observed by solving the classical field equations in real time. We show that the topological transitions actually pass via the sphaleron configuration. The transition rate as a function of temperature is found to be in good agreement with the analytical predictions. No extra suppression of the rate is observed. The conditions of applicability of our approach are discussed. The temperature interval where the low-temperature broken phase persists is estimated. (orig.)

  7. Real time evolution at finite temperatures with operator space matrix product states

    International Nuclear Information System (INIS)

    Pižorn, Iztok; Troyer, Matthias; Eisler, Viktor; Andergassen, Sabine

    2014-01-01

    We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model. (paper)

  8. Real time evolution at finite temperatures with operator space matrix product states

    Science.gov (United States)

    Pižorn, Iztok; Eisler, Viktor; Andergassen, Sabine; Troyer, Matthias

    2014-07-01

    We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model.

  9. Control of nanoparticle agglomeration through variation of the time-temperature profile in chemical vapor synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Djenadic, Ruzica; Winterer, Markus, E-mail: markus.winterer@uni-due.de [Universität Duisburg-Essen, Nanoparticle Process Technology, Faculty of Engineering and CENIDE (Germany)

    2017-02-15

    The influence of the time-temperature history on the characteristics of nanoparticles such as size, degree of agglomeration, or crystallinity is investigated for chemical vapor synthesis (CVS). A simple reaction-coagulation-sintering model is used to describe the CVS process, and the results of the model are compared to experimental data. Nanocrystalline titania is used as model material. Titania nanoparticles are generated from titanium-tetraisopropoxide (TTIP) in a hot-wall reactor. Pure anatase particles and mixtures of anatase, rutile (up to 11 vol.%), and brookite (up to 29 vol.%) with primary particle sizes from 1.7 nm to 10.5 nm and agglomerate particle sizes from 24.3 nm to 55.6 nm are formed depending on the particle time-temperature history. An inductively heated furnace with variable inductor geometry is used as a novel system to control the time-temperature profile in the reactor externally covering a large wall temperature range from 873 K to 2023 K. An appropriate choice of inductor geometry, i.e. time-temperature profile, can significantly reduce the degree of agglomeration. Other particle characteristics such as crystallinity are also substantially influenced by the time-temperature profile.

  10. Functional relationship of room temperature and setting time of alginate impression material

    Directory of Open Access Journals (Sweden)

    Dyah Irnawati

    2009-09-01

    Full Text Available Background: Indonesia is a tropical country with temperature variation. A lot of dental clinics do not use air conditioner. The room temperature influences water temperature for mixing alginate impression materials. Purpose: The aim of this study was to investigate the functional relationship of room temperature and initial setting time of alginate impression materials. Methods: The New Kromopan® alginate (normal and fast sets were used. The initial setting time were tested at 23 (control, 24, 25, 26, 27, 28, 29, 30 and 31 degrees Celcius room temperatures (n = 5. The initial setting time was tested based on ANSI/ADA Specification no. 18 (ISO 1563. The alginate powder was mixed with distilled water (23/50 ratio, put in the metal ring mould, and the initial setting time was measured by test rod. Data were statistically analyzed by linear regression (α = 0.05. result: The initial setting times were 149.60 ± 0.55 (control and 96.40 ± 0.89 (31° C seconds for normal set, and 122.00 ± 1.00 (control and 69.60 ± 0.55 (31° C seconds for fast set. The coefficient of determination of room temperature to initial setting time of alginate were R2 = 0.74 (normal set and R2 = 0.88 (fast set. The regression equation for normal set was Y = 257.6 – 5.5 X (p < 0.01 and fast set was Y = 237.7 – 5.6 X (p < 0.01. Conclusions: The room temperature gave high contribution and became a strength predictor for initial setting time of alginates. The share contribution to the setting time was 0.74% for normal set and 0.88% for fast set alginates.

  11. Magnetically responsive enzyme powders

    Energy Technology Data Exchange (ETDEWEB)

    Pospiskova, Kristyna, E-mail: kristyna.pospiskova@upol.cz [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2015-04-15

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction.

  12. Apple detection using infrared thermal image, 3: Real-time temperature measurement of apple tree

    International Nuclear Information System (INIS)

    Zhang, S.H.; Takahashi, T.; Fukuchi, H.; Sun, M.; Terao, H.

    1998-01-01

    In Part 1, we reported the thermal distribution characteristics and the identification methods of apples, leaves and branches by using the infrared thermal image at the specific time. This paper reports the temperature changing characteristics and the relationships among apples, leaves and air temperature based on the information measured by the infrared thermal image equipment in the real-time for 24 hours. As a result, it was confirmed that the average temperature of apples was 1 degree C or more higher than the one of the leaves, and the average temperature of the leaves was almost same as the air temperature within daytime and about 3 hours period after sunset. It was also clarified for a remarkable temperature difference not to exist for midnight and the early morning between the apples and the leaves, and both became almost as well as the air temperature. Moreover, a binary image was easily obtained and the apples could be detected by using this temperature difference informat

  13. Thermal time constant: optimising the skin temperature predictive modelling in lower limb prostheses using Gaussian processes.

    Science.gov (United States)

    Mathur, Neha; Glesk, Ivan; Buis, Arjan

    2016-06-01

    Elevated skin temperature at the body/device interface of lower-limb prostheses is one of the major factors that affect tissue health. The heat dissipation in prosthetic sockets is greatly influenced by the thermal conductive properties of the hard socket and liner material employed. However, monitoring of the interface temperature at skin level in lower-limb prosthesis is notoriously complicated. This is due to the flexible nature of the interface liners used which requires consistent positioning of sensors during donning and doffing. Predicting the residual limb temperature by monitoring the temperature between socket and liner rather than skin and liner could be an important step in alleviating complaints on increased temperature and perspiration in prosthetic sockets. To predict the residual limb temperature, a machine learning algorithm - Gaussian processes is employed, which utilizes the thermal time constant values of commonly used socket and liner materials. This Letter highlights the relevance of thermal time constant of prosthetic materials in Gaussian processes technique which would be useful in addressing the challenge of non-invasively monitoring the residual limb skin temperature. With the introduction of thermal time constant, the model can be optimised and generalised for a given prosthetic setup, thereby making the predictions more reliable.

  14. Engineering Cellulase Enzymes for Bioenergy

    Science.gov (United States)

    Atreya, Meera Elizabeth

    methods. Protein engineering targets to improve cellulases include reducing enzyme inhibition, improving inter-enzyme synergy, and increasing enzyme thermotolerance. Ameliorating enzyme inhibition could improve catalytic activity and thus the speed of conversion from biomass to fermentable sugars. Improved enzyme synergy could reduce the enzyme loading required to achieve equivalent biomass conversion. Finally, thermostable enzymes could enable more biomass to be processed at a time, due to high temperatures decreasing the viscosity of biomass slurries. A high-temperature enzyme saccharification reaction could also decrease the risk of contamination in the resulting concentrated sugar solution. Throughout my PhD, I have explored research projects broadly across all of these topics, with the most success in addressing the issue of enzyme inhibition. Cellulase enzyme Cel7A is the most abundant cellulase employed by natural systems for cellulose hydrolysis. Cellobiohydrolase enzymes like Cel7A break down cellulose into cellobiose (two glucose molecules). Unfortunately, upon cleavage, this product molecule interferes with continued hydrolysis activity of Cel7A; the strong binding of cellobiose in the active site can obstruct the enzyme from processing down the cellulase chain. This phenomenon, known as product inhibition, is a bottleneck to efficient biomass breakdown. Using insights from computational protein modeling studies, I experimentally generated and tested mutant Cel7A enzymes for improved tolerance to cellobiose. Indeed, this strategy yielded Cel7A enzymes exhibiting reduced product inhibition, including some mutants completely impervious to cellobiose. The improvements in tolerance to cellobiose, however, resulted in an overall reduction of enzyme activity for the mutants tested. Nevertheless, my findings substantiated computational reports with experimental evidence and pinpointed an amino acid residue in the Cel7A product binding site that is of interest for

  15. Adjustment of sleep and the circadian temperature rhythm after flights across nine time zones

    Science.gov (United States)

    Gander, Philippa H.; Myhre, Grete; Graeber, R. Curtis; Lauber, John K.; Andersen, Harald T.

    1989-01-01

    The adjustment of sleep-wake patterns and the circadian temperature rhythm was monitored in nine Royal Norwegian Airforce volunteers operating P-3 aircraft during a westward training deployment across nine time zones. Subjects recorded all sleep and nap times, rated nightly sleep quality, and completed personality inventories. Rectal temperature, heart rate, and wrist activity were continuously monitored. Adjustment was slower after the return eastward flight than after the outbound westward flight. The eastward flight produced slower readjustment of sleep timing to local time and greater interindividual variability in the patterns of adjustment of sleep and temperature. One subject apparently exhibited resynchronization by partition, with the temperature rhythm undergoing the reciprocal 15-h delay. In contrast, average heart rates during sleep were significantly elevated only after westward flight. Interindividual differences in adjustment of the temperature rhythm were correlated with some of the personality measures. Larger phase delays in the overall temperature waveform (as measured on the 5th day after westward flight) were exhibited by extraverts, and less consistently by evening types.

  16. Interaction of on-site and near real time measured turbidity and enzyme activity in stream water.

    Science.gov (United States)

    Stadler, Philipp; Farnleitner, Andreas H.; Zessner, Matthias

    2013-04-01

    On-site and on-line systems that provide an integrated surveillance of physicochemical and microbiological parameters gain significance in water quality monitoring. Particular relating to diffuse pollution from agricultural areas and use-orientated protection of waters the detection of faecal pollution is a fundamental part. For the near real time and on-site detection of microbiological faecal pollution of water, the beta-D- Glucuronidase (GLUC) enzymatic activity has been suggested as a surrogate parameter. Due to possible short measure intervals of three hours, this method has high potential as a water quality monitoring tool. While cultivation based standard determination takes more than one working day (Cabral 2010) the potential advantage of detecting the GLUC activity is the high temporal measuring resolution. Yet, there is still a big gap of knowledge on the sensitivity and specificity concerning the faecal indication capacity of GLUC in relation to standard assays (Cabral 2010). Interference effects of physicochemical parameters on the enzymatic activity respectively fluorescence have been discussed (Molina-Munoz et al. 2007; Tryland and Fiksdal 1998, Biswal et al. 2003). Results from a monitoring of a rivulet in an agricultural catchment in Lower Austria (HOAL - Hydrological Open Air Laboratory) are presented here. The HOAL offers technical resources that allow measurements at high temporal and spatial resolution and to apply various hydrological methods in one catchment. Two automated enzymatic measuring devices (Coliguard, mbOnline, Austria) and physicochemical in-stream measurements are used, as well as in-stream spectroscopy (spectrolyser, s::can, Austria). Accuracy of both enzymatic measuring devices is compared through diverse hydrological and seasonal conditions. Reference analyses by cultivation based determination were performed. Data from Coliguard devices is combined with physicochemical and spectroscopy data to gain information about the

  17. Climate change (elevated CO{sub 2}, elevated temperature and moderate drought) triggers the antioxidant enzymes' response of grapevine cv. Tempranillo, avoiding oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Salazar-Parra, C.; Aguirreolea, J.; Sanchez-Diaz, M.; Irigoyen, J.J.; Morales, F. (Departamento de Biologia Vegetal, Seccion Biologia Vegetal (Unidad Asociada al CSIC, EEAD, Zaragoza e ICVV, Logrono), Facultades de Ciencias y Farmacia, Universidad de Navarra, Pamplona (Spain))

    2012-07-01

    Photosynthetic carbon fixation (A{sub N}) and photosynthetic electron transport rate (ETR) are affected by different environmental stress factors, such as those associated with climate change. Under stress conditions, it can be generated an electron excess that cannot be consumed, which can react with O{sub 2}, producing reactive oxygen species. This work was aimed to evaluate the influence of climate change (elevated CO{sub 2}, elevated temperature and moderate drought) on the antioxidant status of grapevine (Vitis vinifera) cv. Tempranillo leaves, from veraison to ripeness. The lowest ratios between electrons generated (ETR) and consumed (A{sub N} + respiration + photorespiration) were observed in plants treated with elevated CO{sub 2} and elevated temperature. In partially irrigated plants under current ambient conditions, electrons not consumed seemed to be diverted to alternative ways. Oxidative damage to chlorophylls and carotenoids was not observed. However, these plants had increases in thiobarbituric acid reacting substances, an indication of lipid peroxidation. These increases matched well with an early rise of H{sub 2}O{sub 2} and antioxidant enzyme activities, superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11) and catalase (EC 1.11.1.6). Enzymatic activities were maintained high until ripeness. In conclusion, plants grown under current ambient conditions and moderate drought were less efficient to cope with oxidative damage than well-irrigated plants, and more interestingly, plants grown under moderate drought but treated with elevated CO{sub 2} and elevated temperature were not affected by oxidative damage, mainly because of higher rates of electrons consumed in photosynthetic carbon fixation. (Author)

  18. Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images

    Science.gov (United States)

    Hengl, Tomislav; Heuvelink, Gerard B. M.; Perčec Tadić, Melita; Pebesma, Edzer J.

    2012-01-01

    A computational framework to generate daily temperature maps using time-series of publicly available MODIS MOD11A2 product Land Surface Temperature (LST) images (1 km resolution; 8-day composites) is illustrated using temperature measurements from the national network of meteorological stations (159) in Croatia. The input data set contains 57,282 ground measurements of daily temperature for the year 2008. Temperature was modeled as a function of latitude, longitude, distance from the sea, elevation, time, insolation, and the MODIS LST images. The original rasters were first converted to principal components to reduce noise and filter missing pixels in the LST images. The residual were next analyzed for spatio-temporal auto-correlation; sum-metric separable variograms were fitted to account for zonal and geometric space-time anisotropy. The final predictions were generated for time-slices of a 3D space-time cube, constructed in the R environment for statistical computing. The results show that the space-time regression model can explain a significant part of the variation in station-data (84%). MODIS LST 8-day (cloud-free) images are unbiased estimator of the daily temperature, but with relatively low precision (±4.1°C); however their added value is that they systematically improve detection of local changes in land surface temperature due to local meteorological conditions and/or active heat sources (urban areas, land cover classes). The results of 10-fold cross-validation show that use of spatio-temporal regression-kriging and incorporation of time-series of remote sensing images leads to significantly more accurate maps of temperature than if plain spatial techniques were used. The average (global) accuracy of mapping temperature was ±2.4°C. The regression-kriging explained 91% of variability in daily temperatures, compared to 44% for ordinary kriging. Further software advancement—interactive space-time variogram exploration and automated retrieval

  19. Time-dependent radiolytic yields at room temperature and temperature-dependent absorption spectra of the solvated electrons in polyols

    International Nuclear Information System (INIS)

    Lin Mingzhang; Mostafavi, M.; Lampre, I.; Muroya, Y.; Katsumura, Y.

    2007-01-01

    The molar extinction coefficients at the absorption maximum of the solvated electron spectrum have been evaluated to be 900, 970, and 1000 mol -1 ·m 2 for 1,2-ethanediol (12ED), 1,2-propanediol (12PD), and 1,3-propanediol (13PD), respectively. These values are two-third or three-fourth of the value usually reported in the published report. Picosecond pulse radiolysis studies have aided in depicting the radiolytic yield of the solvated electron in these solvents as a function of time from picosecond to microsecond. The radiolytic yield in these viscous solvents is found to be strongly different from that of the water solution. The temperature dependent absorption spectra of the solvated electron in 12ED, 12PD, and 13PD have been also investigated. In all the three solvents, the optical spectra shift to the red with increasing temperature. While the shape of the spectra does not change in 13PD, a widening on the blue side of the absorption band is observed in 12ED and 12PD at elevated temperatures. (authors)

  20. Tracing temperature in a nanometer size region in a picosecond time period.

    Science.gov (United States)

    Nakajima, Kaoru; Kitayama, Takumi; Hayashi, Hiroaki; Matsuda, Makoto; Sataka, Masao; Tsujimoto, Masahiko; Toulemonde, Marcel; Bouffard, Serge; Kimura, Kenji

    2015-08-21

    Irradiation of materials with either swift heavy ions or slow highly charged ions leads to ultrafast heating on a timescale of several picosecond in a region of several nanometer. This ultrafast local heating result in formation of nanostructures, which provide a number of potential applications in nanotechnologies. These nanostructures are believed to be formed when the local temperature rises beyond the melting or boiling point of the material. Conventional techniques, however, are not applicable to measure temperature in such a localized region in a short time period. Here, we propose a novel method for tracing temperature in a nanometer region in a picosecond time period by utilizing desorption of gold nanoparticles around the ion impact position. The feasibility is examined by comparing with the temperature evolution predicted by a theoretical model.

  1. Real-time three-dimensional temperature mapping in photothermal therapy with optoacoustic tomography

    Science.gov (United States)

    Oyaga Landa, Francisco Javier; Deán-Ben, Xosé Luís.; Sroka, Ronald; Razansky, Daniel

    2017-07-01

    Ablation and photothermal therapy are widely employed medical protocols where the selective destruction of tissue is a necessity as in cancerous tissue removal or vascular and brain abnormalities. Tissue denaturation takes place when the temperature reaches a threshold value while the time of exposure determines the lesion size. Therefore, the spatio-temporal distribution of temperature plays a crucial role in the outcome of these clinical interventions. We demonstrate fast volumetric temperature mapping with optoacoustic tomography based on real-time optoacoustic readings from the treated region. The performance of the method was investigated in tissue-mimicking phantom experiments. The new ability to non-invasively measure temperature volumetrically in an entire treated region with high spatial and temporal resolutions holds potential for improving safety and efficacy of thermal ablation and to advance the general applicability of laser-based therapy.

  2. Combined effects of temperature and metal exposure on the fatty acid composition of cell membranes, antioxidant enzyme activities and lipid peroxidation in yellow perch (Perca flavescens)

    International Nuclear Information System (INIS)

    Fadhlaoui, Mariem; Couture, Patrice

    2016-01-01

    Highlights: • The fatty acid composition of yellow perch muscle at 9 °C was enhanced in monounsaturated and polyunsaturated fatty acids compared to fish maintained at 28 °C. • The thermal adjustment of muscle phospholipid fatty acid profiles is likely due to modifications of desaturase and elongase activities. • Exposure to Ni and Cd modified muscle phospholipid fatty acid composition in a temperature-dependent manner. • The higher fatty polyinsaturation in cold-acclimated fish did not increase their vulnerability to peroxidation. • Lower concentrations of malondialdehyde were measured in warm-acclimated, Ni-exposed fish, suggesting an overcompensation of antioxidant mechanisms that could explain their lower condition. - Abstract: The aim of this study was to investigate the combined effects of temperature and metal contamination (cadmium and nickel) on phospholipid fatty acid composition, antioxidant enzyme activities and lipid peroxidation in fish. Yellow perch were acclimated to two different temperatures (9 °C and 28 °C) and exposed either to Cd or Ni (respectively 4 μg/L and 600 μg/L) for seven weeks. Superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase activities and glutathione concentration were measured as indicators of antioxidant capacities, while malondialdehyde concentration was used as an indicator of lipid peroxidation. Poikilotherms including fish counteract the effects of temperature on phospholipid fatty acid ordering by remodelling their composition to maintain optimal fluidity. Accordingly, in our study, the fatty acid composition of yellow perch muscle at 9 °C was enhanced in monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) compared to fish maintained at 28 °C, in agreement with the theory of homeoviscous adaptation. Using ratios of various fatty acids as surrogates for desaturase and elongase activities, our data suggests that modification of the activity of these enzymes is

  3. Combined effects of temperature and metal exposure on the fatty acid composition of cell membranes, antioxidant enzyme activities and lipid peroxidation in yellow perch (Perca flavescens)

    Energy Technology Data Exchange (ETDEWEB)

    Fadhlaoui, Mariem; Couture, Patrice, E-mail: patrice.couture@ete.inrs.ca

    2016-11-15

    Highlights: • The fatty acid composition of yellow perch muscle at 9 °C was enhanced in monounsaturated and polyunsaturated fatty acids compared to fish maintained at 28 °C. • The thermal adjustment of muscle phospholipid fatty acid profiles is likely due to modifications of desaturase and elongase activities. • Exposure to Ni and Cd modified muscle phospholipid fatty acid composition in a temperature-dependent manner. • The higher fatty polyinsaturation in cold-acclimated fish did not increase their vulnerability to peroxidation. • Lower concentrations of malondialdehyde were measured in warm-acclimated, Ni-exposed fish, suggesting an overcompensation of antioxidant mechanisms that could explain their lower condition. - Abstract: The aim of this study was to investigate the combined effects of temperature and metal contamination (cadmium and nickel) on phospholipid fatty acid composition, antioxidant enzyme activities and lipid peroxidation in fish. Yellow perch were acclimated to two different temperatures (9 °C and 28 °C) and exposed either to Cd or Ni (respectively 4 μg/L and 600 μg/L) for seven weeks. Superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase activities and glutathione concentration were measured as indicators of antioxidant capacities, while malondialdehyde concentration was used as an indicator of lipid peroxidation. Poikilotherms including fish counteract the effects of temperature on phospholipid fatty acid ordering by remodelling their composition to maintain optimal fluidity. Accordingly, in our study, the fatty acid composition of yellow perch muscle at 9 °C was enhanced in monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) compared to fish maintained at 28 °C, in agreement with the theory of homeoviscous adaptation. Using ratios of various fatty acids as surrogates for desaturase and elongase activities, our data suggests that modification of the activity of these enzymes is

  4. Time-Dependent Behavior of Shrinkage Strain for Early Age Concrete Affected by Temperature Variation

    OpenAIRE

    Qin, Yu; Yi, Zhijian; Wang, Weina; Wang, Di

    2017-01-01

    Shrinkage has been proven to be an important property of early age concrete. The shrinkage strain leads to inherent engineering problems, such as cracking and loss of prestress. Atmospheric temperature is an important factor in shrinkage strain. However, current research does not provide much attention to the effect of atmospheric temperature on shrinkage of early age concrete. In this paper, a laboratory study was undertaken to present the time-dependent shrinkage of early age concrete under...

  5. Pt-Rh alloys. Investigation of creep rate and rupture time at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Trumic, Biserka; Gomidzelovic, Lidija; Marjanovic, Sasa; Ivanovic, Aleksandra; Dimitrijevic, Silvana [Belgrade Univ., Bor (Serbia). Inst. of Mining and Metallurgy; Krstic, Vesna

    2013-02-01

    The results of experimental investigation of creep rate and rupture time of the alloys of Pt-Rh system are presented in this paper. Selected alloys with 7-40 wt.-% Rh content were examined using a universal device for tensile testing of materials at high temperatures, and monitoring structure changes of the samples by electron microscopy. Investigations were performed in the temperature range between 1200 C and 1700 C at a stress between 2 MPa and 15 MPa. (orig.)

  6. Natural convection in square enclosure induced by inner circular cylinder with time-periodic pulsating temperature

    KAUST Repository

    Huang, Zhu

    2015-03-01

    The periodic unsteady natural convection flow and heat transfer in a square enclosure containing a concentric circular cylinder is numerically studied. The temperature of the inner circular cylinder fluctuates periodically with time at higher averaged value while the temperature of the enclosure keeps lower constant, and the natural convection is driven by the temperature difference. The two-dimensional natural convection is simulated with high accuracy temporal spectral method and local radial basis functions method. The Rayleigh number is studied in the range 103 ≤ Ra ≤ 106, the temperature pulsating period ranges from 0.01 to 100 and the temperature pulsating amplitudes are a = 0.5, 1.0 and 1.5. Numerical results reveal that the fluid flow and heat transfer is strongly dependent on the pulsating temperature of inner cylinder. Comparing with the steady state natural convection, the heat transfer is enhanced generally for the time-periodic unsteady natural convection, and the local maximum heat transfer rate is observed for Ra = 105 and 106. Moreover, the phenomenon of backward heat transfer is discussed quantitatively. Also, the influence of pulsating temperature on the unsteady fluid flow and heat transfer are discussed and analyzed.

  7. 3D Printed "Earable" Smart Devices for Real-Time Detection of Core Body Temperature.

    Science.gov (United States)

    Ota, Hiroki; Chao, Minghan; Gao, Yuji; Wu, Eric; Tai, Li-Chia; Chen, Kevin; Matsuoka, Yasutomo; Iwai, Kosuke; Fahad, Hossain M; Gao, Wei; Nyein, Hnin Yin Yin; Lin, Liwei; Javey, Ali

    2017-07-28

    Real-time detection of basic physiological parameters such as blood pressure and heart rate is an important target in wearable smart devices for healthcare. Among these, the core body temperature is one of the most important basic medical indicators of fever, insomnia, fatigue, metabolic functionality, and depression. However, traditional wearable temperature sensors are based upon the measurement of skin temperature, which can vary dramatically from the true core body temperature. Here, we demonstrate a three-dimensional (3D) printed wearable "earable" smart device that is designed to be worn on the ear to track core body temperature from the tympanic membrane (i.e., ear drum) based on an infrared sensor. The device is fully integrated with data processing circuits and a wireless module for standalone functionality. Using this smart earable device, we demonstrate that the core body temperature can be accurately monitored regardless of the environment and activity of the user. In addition, a microphone and actuator are also integrated so that the device can also function as a bone conduction hearing aid. Using 3D printing as the fabrication method enables the device to be customized for the wearer for more personalized healthcare. This smart device provides an important advance in realizing personalized health care by enabling real-time monitoring of one of the most important medical parameters, core body temperature, employed in preliminary medical screening tests.

  8. Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring.

    Science.gov (United States)

    Reilly, John; Glisic, Branko

    2018-03-01

    Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM) analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc.) and generalized displacement (deflection, rotation, etc.) to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature-deformation-displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i) the range of raw temperatures on the structure, and (ii) the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University.

  9. A space and time scale-dependent nonlinear geostatistical approach for downscaling daily precipitation and temperature

    KAUST Repository

    Jha, Sanjeev Kumar

    2015-07-21

    A geostatistical framework is proposed to downscale daily precipitation and temperature. The methodology is based on multiple-point geostatistics (MPS), where a multivariate training image is used to represent the spatial relationship between daily precipitation and daily temperature over several years. Here, the training image consists of daily rainfall and temperature outputs from the Weather Research and Forecasting (WRF) model at 50 km and 10 km resolution for a twenty year period ranging from 1985 to 2004. The data are used to predict downscaled climate variables for the year 2005. The result, for each downscaled pixel, is daily time series of precipitation and temperature that are spatially dependent. Comparison of predicted precipitation and temperature against a reference dataset indicates that both the seasonal average climate response together with the temporal variability are well reproduced. The explicit inclusion of time dependence is explored by considering the climate properties of the previous day as an additional variable. Comparison of simulations with and without inclusion of time dependence shows that the temporal dependence only slightly improves the daily prediction because the temporal variability is already well represented in the conditioning data. Overall, the study shows that the multiple-point geostatistics approach is an efficient tool to be used for statistical downscaling to obtain local scale estimates of precipitation and temperature from General Circulation Models. This article is protected by copyright. All rights reserved.

  10. Enzyme Informatics

    Science.gov (United States)

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  11. Temperature gradient method for lipid phase diagram construction using time-resolved x-ray diffraction

    International Nuclear Information System (INIS)

    Caffrey, M.; Hing, F.S.

    1987-01-01

    A method that enables temperature-composition phase diagram construction at unprecedented rates is described and evaluated. The method involves establishing a known temperature gradient along the length of a metal rod. Samples of different compositions contained in long, thin-walled capillaries are positioned lengthwise on the rod and equilibrated such that the temperature gradient is communicated into the sample. The sample is then moved through a focused, monochromatic synchrotron-derived x-ray beam and the image-intensified diffraction pattern from the sample is recorded on videotape continuously in live-time as a function of position and, thus, temperature. The temperature at which the diffraction pattern changes corresponds to a phase boundary, and the phase(s) existing (coexisting) on either side of the boundary can be identified on the basis of the diffraction pattern. Repeating the measurement on samples covering the entire composition range completes the phase diagram. These additional samples can be conveniently placed at different locations around the perimeter of the cylindrical rod and rotated into position for diffraction measurement. Temperature-composition phase diagrams for the fully hydrated binary mixtures, dimyristoylphosphatidylcholine (DMPC)/dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine (DPPE)/DPPC, have been constructed using the new temperature gradient method. They agree well with and extend the results obtained by other techniques. In the DPPE/DPPC system structural parameters as a function of temperature in the various phases including the subgel phase are reported. The potential limitations of this steady-state method are discussed

  12. Time domain reflectometry measured moisture content of sewage sludge compost across temperatures.

    Science.gov (United States)

    Cai, Lu; Chen, Tong-Bin; Gao, Ding; Liu, Hong-Tao; Chen, Jun; Zheng, Guo-Di

    2013-01-01

    Time domain reflectometry (TDR) is a prospective measurement technology for moisture content of sewage sludge composting material; however, a significant dependence upon temperature has been observed. The objective of this study was to assess the impacts of temperature upon moisture content measurement and determine if TDR could be used to monitor moisture content in sewage sludge compost across a range of temperatures. We also investigated the combined effects of temperature and conductivity on moisture content measurement. The results revealed that the moisture content of composting material could be determined by TDR using coated probes, even when the measured material had a moisture content of 0.581 cm(3)cm(-3), temperature of 70°C and conductivity of 4.32 mS cm(-1). TDR probes were calibrated as a function of dielectric properties that included temperature effects. When the bulk temperature varied from 20°C to 70°C, composting material with 0.10-0.70 cm(3)cm(-3) moisture content could be measured by TDR using coated probes, and calibrations based on different temperatures minimized the errors. Copyright © 2012. Published by Elsevier Ltd.

  13. Comparison of setting time and temperature hydration in mortar with substituent ceramic

    International Nuclear Information System (INIS)

    Rodrigues, R.A.; Alves, L.S.; Evangelista, A.C.J.; Almeida, V.C.

    2011-01-01

    The workability of mortar is determined mainly by the kinetics of hydration of the hydraulic binder, the process of gelation / hydration of this material in aqueous solutions is significantly influenced by the presence of additives. As a result, this work aims at studying changes in setting time and temperature of hydration of mortars with 10, 15 and 30% of Portland cement replaced by residues of porcelain and ceramic bricks. The influence of these residues in the cement hydration process was studied by testing takes time, temperature, hydration and X-ray diffraction. The results indicate that the mortar setting time not changed significantly since the temperature of hydration has a minor variation on what is preferred because it reduces the microcracks created in mortar during drying.(author)

  14. Effect of ageing time and temperature on the strain ageing behaviour of quenched zircaloy-4

    International Nuclear Information System (INIS)

    Rheem, K.S.; Park, W.K.; Yook, C.C.

    1977-01-01

    The strain ageing behaviour of quenched Zircaloy-4 has been studied as a function of ageing time and temperature in the temperature range 523-588 K for a short-ageing time of 1 to 52 seconds. A the test conditions, the strain ageing stress increased with ageing time and temperature at a strain rate of 5.55x10 -4 sec -1 . Applying stress on the quenched Zircaloy-4, the strain ageing effect indicated following two states: an initial stage having an activation energy of 0.39ev considered to be due to Snoek type ordering of interstitial oxygen atoms in the stress field of a dislocaiton and a second stage havingan activation energy of 0.60 ev, due to mainly long range diffusion of oxygen atoms. (author)

  15. Time and temperature dependence of cascade induced defect production in in situ experiments and computer simulation

    International Nuclear Information System (INIS)

    Ishino, Shiori

    1993-01-01

    Understanding of the defect production and annihilation processes in a cascade is important in modelling of radiation damage for establishing irradiation correlation. In situ observation of heavy ion radiation damage has a great prospect in this respect. Time and temperature dependence of formation and annihilation of vacancy clusters in a cascade with a time resolution of 30 ms has been studied with a facility which comprises a heavy ion accelerator and an electron microscope. Formation and annihilation rates of defect clusters have been separately measured by this technique. The observed processes have been analysed by simple kinetic equations, taking into account the sink effect of surface and the defect clusters themselves together with the annihilation process due to thermal emission of vacancies from the defect clusters. Another tool to study time and temperature dependence of defect production in a cascade is computer simulation. Recent results of molecular dynamics calculations on the temperature dependence of cascade evolution are presented, including directional and temperature dependence of the lengths of replacement collision sequences, temperature dependence of the process to reach thermal equilibrium and so on. These results are discussed under general time frame of radiation damage evolution covering from 10 -15 to 10 9 s, and several important issues for the general understanding have been identified. (orig.)

  16. On the zero temperature limit of the Kubo-transformed quantum time correlation function

    Science.gov (United States)

    Hernández de la Peña, Lisandro

    2014-04-01

    The zero temperature limit of several quantum time correlation functions is analysed. It is shown that while the canonical quantum time correlation function retains the full dynamical information as temperature approaches zero, the Kubo-transformed and the thermally symmetrised quantum time correlation functions lose all dynamical information at this limit. This is shown to be a consequence of the projection onto the ground state, via the limiting process of the quantities ? and ?, either together as a product, or separately. Although these findings would seem to suggest that finite-temperature methods commonly used to estimate Kubo correlation functions would be incapable of retaining any ground state dynamics, we propose a route for recovering in principle all dynamical information at the ground state. It is first shown that the usual frequency space relation between canonical and Kubo correlation functions also holds for microcanonical time correlation functions. Since the Kubo-transformed microcanonical correlation function can be obtained from the usual finite-temperature function by including a projection onto the corresponding microcanonical ensemble, finite-temperature methods, properly modified to incorporate such a constraint, can be used to capture full quantum dynamics at any arbitrary energy state, including the ground state. This approach is illustrated with the application of centroid dynamics to the ground state dynamics of the harmonic oscillator.

  17. The time of day effects of warm temperature on flowering time involve PIF4 and PIF5

    Science.gov (United States)

    Thines, Bryan C.; Duarte, Maritza I.; Harmon, Frank G.

    2014-01-01

    Warm temperature promotes flowering in Arabidopsis thaliana and this response involves multiple signalling pathways. To understand the temporal dynamics of temperature perception, tests were carried out to determine if there was a daily window of enhanced sensitivity to warm temperature (28 °C). Warm temperature applied during daytime, night-time, or continuously elicited earlier flowering, but the effects of each treatment were unequal. Plants exposed to warm night (WN) conditions flowered nearly as early as those in constant warm (CW) conditions, while treatment with warm days (WD) caused later flowering than either WN or CW. Flowering in each condition relied to varying degrees on the activity of CO , FT , PIF4 , and PIF5 , as well as the action of unknown genes. The combination of signalling pathways involved in flowering depended on the time of the temperature cue. WN treatments caused a significant advance in the rhythmic expression waveform of CO, which correlated with pronounced up-regulation of FT expression, while WD caused limited changes in CO expression and no stimulation of FT expression. WN- and WD-induced flowering was partially CO independent and, unexpectedly, dependent on PIF4 and PIF5 . pif4-2, pif5-3, and pif4-2 pif5-3 mutants had delayed flowering under all three warm conditions. The double mutant was also late flowering in control conditions. In addition, WN conditions alone imposed selective changes to PIF4 and PIF5 expression. Thus, the PIF4 and PIF5 transcription factors promote flowering by at least two means: inducing FT expression in WN and acting outside of FT by an unknown mechanism in WD. PMID:24574484

  18. Mask CD relationship to temperature at the time backscatter is received

    Science.gov (United States)

    Zable, Harold; Kronmiller, Tom; Pearman, Ryan; Guthrie, Bill; Shirali, Nagesh; Masuda, Yukihiro; Kamikubo, Takashi; Nakayamada, Noriaki; Fujimura, Aki

    2017-07-01

    Mask writers need to be able to write sub-50nm features accurately. Nano-imprint lithography (NIL) masters need to create sub-20nm line and space (L:S) patterns reliably. Increasingly slower resists are deployed, but mask write times need to remain reasonable. The leading edge EBM-9500 offers 1200A/cm2 current density to shoot variable shaped beam (VSB) to write the masks. Last year, thermal effect correction (TEC) was introduced by NuFlare in the EBM-95001. It is a GPU-accelerated inline correction for the effect that the temperature of the resist has on CD. For example, a 100nm CD may print at 102nm where that area was at a comparably high temperature at the time of the shot. Since thermal effect is a temporal effect, the simulated temperature of the surface of the mask is dynamically updated for the effect of each shot in order to accurately predict the cumulative effect that is the temperature at the location of the shot at the time of the shot and therefore its impact on CD. The shot dose is changed to reverse the effects of the temperature change. This paper for the first time reveals an enhancement to this thermal model and a simulator for it. It turns out that the temperature at the time each location receives backscatter from other shots also make a difference to the CD. The effect is secondary, but still measurable for some resists and substrates. Results of a test-chip study will be presented. The computation required for the backscatter effect is substantial. It has been demonstrated that this calculation can be performed fast enough to be inline with the EBM-9500 with a reasonable-sized computing platform. Run-time results and the computing architecture will be presented.

  19. Temperature and entropy of Schwarzschild-de Sitter space-time

    International Nuclear Information System (INIS)

    Shankaranarayanan, S.

    2003-01-01

    In the light of recent interest in quantum gravity in de Sitter space, we investigate semiclassical aspects of four-dimensional Schwarzschild-de Sitter space-time using the method of complex paths. The standard semiclassical techniques (such as Bogoliubov coefficients and Euclidean field theory) have been useful to study quantum effects in space-times with single horizons; however, none of these approaches seem to work for Schwarzschild-de Sitter space-time or, in general, for space-times with multiple horizons. We extend the method of complex paths to space-times with multiple horizons and obtain the spectrum of particles produced in these space-times. We show that the temperature of radiation in these space-times is proportional to the effective surface gravity--the inverse harmonic sum of surface gravity of each horizon. For the Schwarzschild-de Sitter space-time, we apply the method of complex paths to three different coordinate systems--spherically symmetric, Painleve, and Lemaitre. We show that the equilibrium temperature in Schwarzschild-de Sitter space-time is the harmonic mean of cosmological and event horizon temperatures. We obtain Bogoliubov coefficients for space-times with multiple horizons by analyzing the mode functions of the quantum fields near the horizons. We propose a new definition of entropy for space-times with multiple horizons, analogous to the entropic definition for space-times with a single horizon. We define entropy for these space-times to be inversely proportional to the square of the effective surface gravity. We show that this definition of entropy for Schwarzschild-de Sitter space-time satisfies the D-bound conjecture

  20. Influence of time presetting procedure for rapid local heat;.ng on brazing temperature conditions

    International Nuclear Information System (INIS)

    Lezhnin, G.P.; Tul'skikh, V.E.

    1985-01-01

    Correlation of known and suggested presetting procedures for heating period during induction brazing was conducted. It is shown that brazing time must be established considering heat propagation during heating in order to obtain the assigned joint temperature regardless of heating rate change. Methods for temperature calculation in assigned zones of the joint are suggested. The suggested presetting procedure for heating time was applied for induction vacuum brazing of a tube of 12Kh18N10T steel to a pipe connection of VT20 alloy

  1. Phyocyanin extraction from microalgae Spirulina platensis assisted by ultrasound irradiation: effect of time and temperature

    Directory of Open Access Journals (Sweden)

    Hadiyanto

    2016-08-01

    Full Text Available This research was aimed to extract phycocyanin from microalgae Spirulina platensis using an extraction assisted by ultrasound irradiation. The extraction was conducted by using variable of extraction time, temperature and ultrasound frequency, while ethanol was used as solvent. The results show that the yield of phycocyanin extract was 15.97% at constant frequency of 42 kHz and 11.24% at constant frequency of 28 kHz, while the soxhlet extraction method obtained yield at 11.13%. The ultrasound could reduce the extraction time from 4 hrs (conventional to 20 minutes, while the optimum temperature of extraction was found at 55°C.

  2. Effect of ageing time and temperature on corrosion behaviour of aluminum alloy 2014

    Science.gov (United States)

    Gadpale, Vikas; Banjare, Pragya N.; Manoj, Manoranjan Kumar

    2018-03-01

    In this paper, the effect of corrosion behaviour of aluminium alloy 2014 were studied by potentiodynamic polarization in 1 mole of NaCl solution of aged sample. The experimental testing results concluded that, corrosion resistance of Aluminum alloy 2014 degraded with the increasing the temperature (150°C & 200°C) and time of ageing. Corroded surface of the aged specimens was tested under optical microscopes for microstructures for phase analysis. Optical micrographs of corroded surfaces showed general corrosion and pitting corrosion. The corrosion resistance of lower ageing temperature and lower ageing time is higher because of its fine distribution of precipitates in matrix phase.

  3. A Statistical Method to Predict Flow Permanence in Dryland Streams from Time Series of Stream Temperature

    Directory of Open Access Journals (Sweden)

    Ivan Arismendi

    2017-12-01

    Full Text Available Intermittent and ephemeral streams represent more than half of the length of the global river network. Dryland freshwater ecosystems are especially vulnerable to changes in human-related water uses as well as shifts in terrestrial climates. Yet, the description and quantification of patterns of flow permanence in these systems is challenging mostly due to difficulties in instrumentation. Here, we took advantage of existing stream temperature datasets in dryland streams in the northwest Great Basin desert, USA, to extract critical information on climate-sensitive patterns of flow permanence. We used a signal detection technique, Hidden Markov Models (HMMs, to extract information from daily time series of stream temperature to diagnose patterns of stream drying. Specifically, we applied HMMs to time series of daily standard deviation (SD of stream temperature (i.e., dry stream channels typically display highly variable daily temperature records compared to wet stream channels between April and August (2015–2016. We used information from paired stream and air temperature data loggers as well as co-located stream temperature data loggers with electrical resistors as confirmatory sources of the timing of stream drying. We expanded our approach to an entire stream network to illustrate the utility of the method to detect patterns of flow permanence over a broader spatial extent. We successfully identified and separated signals characteristic of wet and dry stream conditions and their shifts over time. Most of our study sites within the entire stream network exhibited a single state over the entire season (80%, but a portion of them showed one or more shifts among states (17%. We provide recommendations to use this approach based on a series of simple steps. Our findings illustrate a successful method that can be used to rigorously quantify flow permanence regimes in streams using existing records of stream temperature.

  4. A statistical method to predict flow permanence in dryland streams from time series of stream temperature

    Science.gov (United States)

    Arismendi, Ivan; Dunham, Jason B.; Heck, Michael; Schultz, Luke; Hockman-Wert, David

    2017-01-01

    Intermittent and ephemeral streams represent more than half of the length of the global river network. Dryland freshwater ecosystems are especially vulnerable to changes in human-related water uses as well as shifts in terrestrial climates. Yet, the description and quantification of patterns of flow permanence in these systems is challenging mostly due to difficulties in instrumentation. Here, we took advantage of existing stream temperature datasets in dryland streams in the northwest Great Basin desert, USA, to extract critical information on climate-sensitive patterns of flow permanence. We used a signal detection technique, Hidden Markov Models (HMMs), to extract information from daily time series of stream temperature to diagnose patterns of stream drying. Specifically, we applied HMMs to time series of daily standard deviation (SD) of stream temperature (i.e., dry stream channels typically display highly variable daily temperature records compared to wet stream channels) between April and August (2015–2016). We used information from paired stream and air temperature data loggers as well as co-located stream temperature data loggers with electrical resistors as confirmatory sources of the timing of stream drying. We expanded our approach to an entire stream network to illustrate the utility of the method to detect patterns of flow permanence over a broader spatial extent. We successfully identified and separated signals characteristic of wet and dry stream conditions and their shifts over time. Most of our study sites within the entire stream network exhibited a single state over the entire season (80%), but a portion of them showed one or more shifts among states (17%). We provide recommendations to use this approach based on a series of simple steps. Our findings illustrate a successful method that can be used to rigorously quantify flow permanence regimes in streams using existing records of stream temperature.

  5. Control of insects and mites in grain using a high temperature/short time (HTST) technique.

    Science.gov (United States)

    Mourier; Poulsen

    2000-07-01

    Wheat infested with grain mites (Acari) and Sitophilus granarius, and maize infested with Prostephanus truncatus, were exposed to hot air in a CIMBRIA HTST Microline toaster((R)). Inlet temperatures of the hot air were in the range of 150-750 degrees C decreasing to outlet temperatures in the range of 100-300 degrees C during the exposure period. A rotating drum, connected to a natural-gas burner was fed with grain which was in constant movement along the drum and thereby mixed thoroughly during the process. The capacity of the toaster was 1000 kg per hour.Complete control of grain mites and adult S. granarius in wheat was obtained with an inlet temperature of 300-350 degrees C and an average residence time in the drum of 6 s. More than 99% mortality was obtained for all stages of S. granarius with an inlet temperature of 300-350 degrees C and an average exposure period of 40 s. For control of P. truncatus in maize, an inlet temperature of 700 degrees C resulted in a complete disinfestation when the exposure time was 19 s.The reduction in grain moisture content was 0.5-1% at treatments giving 100% control. Germination tests indicate that it is possible to choose a combination of inlet temperatures and exposure periods which effectively kills mites and insects in small grains, without harming the functional properties of the grain.Economy of the method was considered to be competitive with fumigation using phosphine.

  6. A Real-Time Temperature Data Transmission Approach for Intelligent Cooling Control of Mass Concrete

    Directory of Open Access Journals (Sweden)

    Peng Lin

    2014-01-01

    Full Text Available The primary aim of the study presented in this paper is to propose a real-time temperature data transmission approach for intelligent cooling control of mass concrete. A mathematical description of a digital temperature control model is introduced in detail. Based on pipe mounted and electrically linked temperature sensors, together with postdata handling hardware and software, a stable, real-time, highly effective temperature data transmission solution technique is developed and utilized within the intelligent mass concrete cooling control system. Once the user has issued the relevant command, the proposed programmable logic controllers (PLC code performs all necessary steps without further interaction. The code can control the hardware, obtain, read, and perform calculations, and display the data accurately. Hardening concrete is an aggregate of complex physicochemical processes including the liberation of heat. The proposed control system prevented unwanted structural change within the massive concrete blocks caused by these exothermic processes based on an application case study analysis. In conclusion, the proposed temperature data transmission approach has proved very useful for the temperature monitoring of a high arch dam and is able to control thermal stresses in mass concrete for similar projects involving mass concrete.

  7. Interactions between particulate air pollution and temperature in air pollution mortality time series studies

    International Nuclear Information System (INIS)

    Roberts, Steven

    2004-01-01

    In many community time series studies on the effect of particulate air pollution on mortality, particulate air pollution is modeled additively. In this study, we investigated the interaction between daily particulate air pollution and daily mean temperature in Cook County, Illinois and Allegheny County, Pennsylvania, using data for the period 1987-1994. This was done through the use of joint particulate air pollution-temperature response surfaces and by stratifying the effect of particulate air pollution on mortality by temperature. Evidence that the effect of particulate air pollution on mortality may depend on temperature is found. However, the results were sensitive to the number of degrees of freedom used in the confounder adjustments, the particulate air pollution exposure measure, and how the effects of temperature on mortality are modeled. The results were less sensitive to the estimation method used--generalized linear models and natural cubic splines or generalized additive models and smoothing splines. The results of this study suggest that in community particulate air pollution mortality time series studies the possibility of an interaction between daily particulate air pollution and daily mean temperature should be considered

  8. Meteorological Reference Years of Daily Mean Temperature during the Slighting Time

    International Nuclear Information System (INIS)

    Marchante Jimenez, M.; Ramirez Santigosa, L.; Navarro Fernandez, A.; Mora Lopez, L.; Sidrach de Cardona Ortin, M.

    2002-01-01

    In this work the characterization of the daily mean temperature during the sunlight time has been analyzed. An algorithm for the hourly series generation from extreme daily values has been applied to evaluate the daily mean temperature during the sunlight time. A generic algorithm has been enhanced as a function of the sunrise time. This algorithm allows taking into account the fractions related to the sunrise and sunset hours. This methodology has been applied in data from 45 Spanish stations, uniformly distributed in the Iberian Peninsula. Data for a period of 14 years has been used in most of locations, and once the interest variable has been calculated, the meteorological reference year of the daily mean temperature during the sunlight time has been evaluated in each stations. The next step is the evaluation of the daily mean temperature during the sunlight time in any point into the zone of evaluation, not only in the measured stations. From the result data in each measured station, an geographic information system has been used in order to calculate the interpolation, obtaining maps with a data each 5 km. for each of the 365 days of the year. Then, this results can be superposed with the solar radiation evaluation obtaining the input data for the sizing of the photovoltaic grid connected system in any point of the Spanish geography. (Author) 64 refs

  9. LITERATURE REVIEW OF PUO2 CALCINATION TIME AND TEMPERATURE DATA FOR SPECIFIC SURFACE AREA

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, G.

    2012-03-06

    The literature has been reviewed in December 2011 for calcination data of plutonium oxide (PuO{sub 2}) from plutonium oxalate Pu(C{sub 2}O{sub 4}){sub 2} precipitation with respect to the PuO{sub 2} specific surface area (SSA). A summary of the literature is presented for what are believed to be the dominant factors influencing SSA, the calcination temperature and time. The PuO{sub 2} from Pu(C{sub 2}O{sub 4}){sub 2} calcination data from this review has been regressed to better understand the influence of calcination temperature and time on SSA. Based on this literature review data set, calcination temperature has a bigger impact on SSA versus time. However, there is still some variance in this data set that may be reflecting differences in the plutonium oxalate preparation or different calcination techniques. It is evident from this review that additional calcination temperature and time data for PuO{sub 2} from Pu(C{sub 2}O{sub 4}){sub 2} needs to be collected and evaluated to better define the relationship. The existing data set has a lot of calcination times that are about 2 hours and therefore may be underestimating the impact of heating time on SSA. SRNL recommends that more calcination temperature and time data for PuO{sub 2} from Pu(C{sub 2}O{sub 4}){sub 2} be collected and this literature review data set be augmented to better refine the relationship between PuO{sub 2} SSA and its calcination parameters.

  10. Concentration of Umami Compounds in Pork Meat and Cooking Juice with Different Cooking Times and Temperatures.

    Science.gov (United States)

    Rotola-Pukkila, Minna K; Pihlajaviita, Seija T; Kaimainen, Mika T; Hopia, Anu I

    2015-12-01

    This study examined the concentrations of umami compounds in pork loins cooked at 3 different temperatures and 3 different lengths of cooking times. The pork loins were cooked with the sous vide technique. The free amino acids (FAAs), glutamic acid and aspartic acid; the 5'-nucleotides, inosine-5'-monophosphate (IMP) and adenosine-5'-monophosphate (AMP); and corresponding nucleoside inosine of the cooked meat and its released juice were determined by high-performance liquid chromatography. Under the experimental conditions used, the cooking temperature played a more important role than the cooking time in the concentration of the analyzed compounds. The amino acid concentrations in the meat did not remain constant under these experimental conditions. The most notable effect observed was that of the cooking temperature and the higher amino acid concentrations in the released juice of meat cooked at 80 °C compared with 60 and 70 °C. This is most likely due to the heat induced hydrolysis of proteins and peptides releasing water soluble FAAs from the meat into the cooking juice. In this experiment, the cooking time and temperature had no influence on the IMP concentrations observed. However, the AMP concentrations increased with the increasing temperature and time. This suggests that the choice of time and temperature in sous vide cooking affects the nucleotide concentration of pork meat. The Sous vide technique proved to be a good technique to preserve the cooking juice and the results presented here show that cooking juice is rich in umami compounds, which can be used to provide a savory or brothy taste. © 2015 Institute of Food Technologists®

  11. Artificial Enzymes, "Chemzymes"

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M

    2008-01-01

    Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models that successf......Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models...... that successfully perform Michaelis-Menten catalysis under enzymatic conditions (i.e., aqueous medium, neutral pH, ambient temperature) and for those that do, very high rate accelerations are seldomly seen. This review will provide a brief summary of the recent developments in artificial enzymes, so called...... "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well...

  12. Time trends in minimum mortality temperatures in Castile-La Mancha (Central Spain): 1975-2003

    Science.gov (United States)

    Miron, Isidro J.; Criado-Alvarez, Juan José; Diaz, Julio; Linares, Cristina; Mayoral, Sheila; Montero, Juan Carlos

    2008-03-01

    The relationship between air temperature and human mortality is described as non-linear, with mortality tending to rise in response to increasingly hot or cold ambient temperatures from a given minimum mortality or optimal comfort temperature, which varies from some areas to others according to their climatic and socio-demographic characteristics. Changes in these characteristics within any specific region could modify this relationship. This study sought to examine the time trend in the maximum temperature of minimum organic-cause mortality in Castile-La Mancha, from 1975 to 2003. The analysis was performed by using daily series of maximum temperatures and organic-cause mortality rates grouped into three decades (1975-1984, 1985-1994, 1995-2003) to compare confidence intervals ( p ARIMA models (Box-Jenkins) and cross-correlation functions (CCF) at seven lags. We observed a significant decrease in comfort temperature (from 34.2°C to 27.8°C) between the first two decades in the Province of Toledo, along with a growing number of significant lags in the summer CFF (1, 3 and 5, respectively). The fall in comfort temperature is attributable to the increase in the effects of heat on mortality, due, in all likelihood, to the percentage increase in the elderly population.

  13. Probing Ligand Exchange in the P450 Enzyme CYP121 from Mycobacterium tuberculosis: Dynamic Equilibrium of the Distal Heme Ligand as a Function of pH and Temperature.

    Science.gov (United States)

    Fielding, Andrew J; Dornevil, Kednerlin; Ma, Li; Davis, Ian; Liu, Aimin

    2017-12-06

    CYP121 is a cytochrome P450 enzyme from Mycobacterium tuberculosis that catalyzes the formation of a C-C bond between the aromatic groups of its cyclodityrosine substrate (cYY). The crystal structure of CYP121 in complex with cYY reveals that the solvent-derived ligand remains bound to the ferric ion in the enzyme-substrate complex. Whereas in the generally accepted P450 mechanism, binding of the primary substrate in the active-site triggers the release of the solvent-derived ligand, priming the metal center for reduction and subsequent O 2 binding. Here we employed sodium cyanide to probe the metal-ligand exchange of the enzyme and the enzyme-substrate complex. The cyano adducts were characterized by UV-vis, EPR, and ENDOR spectroscopies and X-ray crystallography. A 100-fold increase in the affinity of cyanide binding to the enzyme-substrate complex over the ligand-free enzyme was observed. The crystal structure of the [CYP121(cYY)CN] ternary complex showed a rearrangement of the substrate in the active-site, when compared to the structure of the binary [CYP121(cYY)] complex. Transient kinetic studies showed that cYY binding resulted in a lower second-order rate constant (k on (CN) ) but a much more stable cyanide adduct with 3 orders of magnitude slower k off (CN) rate. A dynamic equilibrium between multiple high- and low-spin species for both the enzyme and enzyme-substrate complex was also observed, which is sensitive to changes in both pH and temperature. Our data reveal the chemical and physical properties of the solvent-derived ligand of the enzyme, which will help to understand the initial steps of the catalytic mechanism.

  14. Relaxation Behavior by Time-Salt and Time-Temperature Superpositions of Polyelectrolyte Complexes from Coacervate to Precipitate

    Directory of Open Access Journals (Sweden)

    Samim Ali

    2018-01-01

    Full Text Available Complexation between anionic and cationic polyelectrolytes results in solid-like precipitates or liquid-like coacervate depending on the added salt in the aqueous medium. However, the boundary between these polymer-rich phases is quite broad and the associated changes in the polymer relaxation in the complexes across the transition regime are poorly understood. In this work, the relaxation dynamics of complexes across this transition is probed over a wide timescale by measuring viscoelastic spectra and zero-shear viscosities at varying temperatures and salt concentrations for two different salt types. We find that the complexes exhibit time-temperature superposition (TTS at all salt concentrations, while the range of overlapped-frequencies for time-temperature-salt superposition (TTSS strongly depends on the salt concentration (Cs and gradually shifts to higher frequencies as Cs is decreased. The sticky-Rouse model describes the relaxation behavior at all Cs. However, collective relaxation of polyelectrolyte complexes gradually approaches a rubbery regime and eventually exhibits a gel-like response as Cs is decreased and limits the validity of TTSS.

  15. Short-time, high temperature mechanical testing of electrically conductive materials

    International Nuclear Information System (INIS)

    Marion, R.H.; Karnes, C.H.

    1975-10-01

    Design and performance details are given for a facility which was developed to obtain the mechanical properties of materials under high heating rate or transient temperature conditions and medium strain rates. The system is shown to be applicable to materials possessing electrical resistivities ranging from that of aluminum to that of graphite without taxing the heating capability. Heating rates as high as 2000 0 K/s in graphite are attained under controlled conditions. Methods of measuring temperature and the effects of expected temperature distributions are discussed. A method for measuring strain valid for transient temperature conditions to 3000 0 K is described. Results are presented for the stress-strain behavior of 316 stainless steel and ATJ(S) graphite obtained for heating times of a few seconds. (auth)

  16. INVESTIGATIONS INTO THE INFLUENCE OF GRAPHITIZATION-TIME AND -TEMPERATURE ON THE ASH CONTENT OF ELECTROGRAPHITE

    Energy Technology Data Exchange (ETDEWEB)

    Wege, E

    1963-06-15

    The de-ashing of carbon bodies at higher temperatures was found to be relatively speedy procedure. Under equal conditions, after equal time perrods, the ratio between momentary ash content and original ash content is constant, low final ash content means low original ash content. Since the ash content of the packing dust affects the graphitization system, it seemed possible to increase the de-ashing rate by the use of purex packrng dust, or to decrease the de-ashing rate by the use of impure packing dust. Since the de-ashing speed is dependent on the temperature, small differences in the effective temperature will affect the ash content considerably. Thus, in order to prevent large differences in the final product as far as the ash content is concerned, it is suggested that the most uniform furnace temperatures be ensured. (P.C.H.)

  17. Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    John Reilly

    2018-03-01

    Full Text Available Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc. and generalized displacement (deflection, rotation, etc. to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature–deformation–displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i the range of raw temperatures on the structure, and (ii the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University.

  18. Time-temperature relationships for hyperthermal radiosensitisation in mouse intestine: influence of thermotolerance

    International Nuclear Information System (INIS)

    Hume, S.P.; Marigold, J.C.L.

    1985-01-01

    Thermal enhancement of radiation injury to the crypt compartment of mouse small intestinal mucosa has been measured as a function of heating time for temperatures in the range 41.0-44.0 0 C. All the hyperthermal treatments used were themselves subthreshold for gross tissue injury. With this limitation, thermoradiosensitisation increased linearly with duration of hyperthermia for temperatures in the range 42.3-44.0 0 C. Using temperatures below 42.0 0 C, there was a saturation in effect for treatments longer than approximately 40-90 min. For temperatures above the transition, a 1 0 C change was equivalent to a factor of 2.6 in heating time; below the transition, a 1 0 C change was equivalent to a factor of 5.4. Time-temperature relationships for thermoradiosensitisation in other rodent tissues are reviewed and compared with the general relationships for direct thermal injury, previously derived from experimental studies. The results are discussed with relevance to the interpretation of in vivo thermal enhancement of radiation injury. (Auth.)

  19. Real-time reactor coolant system pressure/temperature limit system

    International Nuclear Information System (INIS)

    Newton, D.G.; Schemmel, R.R.; Van Scooter, W.E. Jr.

    1991-01-01

    This patent describes an system, used in controlling the operating of a nuclear reactor coolant system, which automatically calculates and displays allowable reactor coolant system pressure/temperature limits within the nuclear reactor coolant system based upon real-time inputs. It comprises: means for producing signals representative of real-time operating parameters of the nuclear reactor cooling system; means for developing pressure and temperature limits relating the real-time operating parameters of the nuclear reactor coolant system, for normal and emergency operation thereof; means for processing the signals representative of real-time operating parameters of the nuclear reactor coolant system to perform calculations of a best estimate of signals, check manual inputs against permissible valves and test data acquisition hardware for validity and over/under range; and means for comparing the representative signals with limits for the real-time operating parameters to produce a signal for a real-time display of the pressure and temperature limits and of the real-time operating parameters use an operator in controlling the operation of the nuclear reactor coolant system

  20. Trend analysis of air temperature and precipitation time series over Greece: 1955-2010

    Science.gov (United States)

    Marougianni, G.; Melas, D.; Kioutsioukis, I.; Feidas, H.; Zanis, P.; Anandranistakis, E.

    2012-04-01

    In this study, a database of air temperature and precipitation time series from the network of Hellenic National Meteorological Service has been developed in the framework of the project GEOCLIMA, co-financed by the European Union and Greek national funds through the Operational Program "Competitiveness and Entrepreneurship" of the Research Funding Program COOPERATION 2009. Initially, a quality test was applied to the raw data and then missing observations have been imputed with a regularized, spatial-temporal expectation - maximization algorithm to complete the climatic record. Next, a quantile - matching algorithm was applied in order to verify the homogeneity of the data. The processed time series were used for the calculation of temporal annual and seasonal trends of air temperature and precipitation. Monthly maximum and minimum surface air temperature and precipitation means at all available stations in Greece were analyzed for temporal trends and spatial variation patterns for the longest common time period of homogenous data (1955 - 2010), applying the Mann-Kendall test. The majority of the examined stations showed a significant increase in the summer maximum and minimum temperatures; this could be possibly physically linked to the Etesian winds, because of the less frequent expansion of the low over the southeastern Mediterranean. Summer minimum temperatures have been increasing at a faster rate than that of summer maximum temperatures, reflecting an asymmetric change of extreme temperature distributions. Total annual precipitation has been significantly decreased at the stations located in western Greece, as well as in the southeast, while the remaining areas exhibit a non-significant negative trend. This reduction is very likely linked to the positive phase of the NAO that resulted in an increase in the frequency and persistence of anticyclones over the Mediterranean.

  1. A linearization time-domain CMOS smart temperature sensor using a curvature compensation oscillator.

    Science.gov (United States)

    Chen, Chun-Chi; Chen, Hao-Wen

    2013-08-28

    This paper presents an area-efficient time-domain CMOS smart temperature sensor using a curvature compensation oscillator for linearity enhancement with a -40 to 120 °C temperature range operability. The inverter-based smart temperature sensors can substantially reduce the cost and circuit complexity of integrated temperature sensors. However, a large curvature exists on the temperature-to-time transfer curve of the inverter-based delay line and results in poor linearity of the sensor output. For cost reduction and error improvement, a temperature-to-pulse generator composed of a ring oscillator and a time amplifier was used to generate a thermal sensing pulse with a sufficient width proportional to the absolute temperature (PTAT). Then, a simple but effective on-chip curvature compensation oscillator is proposed to simultaneously count and compensate the PTAT pulse with curvature for linearization. With such a simple structure, the proposed sensor possesses an extremely small area of 0.07 mm2 in a TSMC 0.35-mm CMOS 2P4M digital process. By using an oscillator-based scheme design, the proposed sensor achieves a fine resolution of 0.045 °C without significantly increasing the circuit area. With the curvature compensation, the inaccuracy of -1.2 to 0.2 °C is achieved in an operation range of -40 to 120 °C after two-point calibration for 14 packaged chips. The power consumption is measured as 23 mW at a sample rate of 10 samples/s.

  2. Determination of new time-temperature-transformation diagrams for lead-calcium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, F.; Lambertin, M. [Arts et Metiers Paristech, LaBoMaP, ENSAM, Rue porte de Paris, 71250 Cluny (France); Delfaut-Durut, L. [CEA, centre de Valduc [SEMP, LECM], 21120 Is-sur-Tille (France); Maitre, A. [SPCTS, UFR Sciences et techniques, 87060 Limoges (France); Vilasi, M. [LCSM, Universite Nancy I, 54506 Vandoeuvre les Nancy (France)

    2008-12-01

    The Pb-Ca is an age hardening alloy that allows for an increase in the hardness compared to pure lead. The hardening is obtained after different successive ageing transformations. In addition, this hardening is followed by an overageing which induces a softening. The ageing and overageing transformation mechanisms are now well identified in lead-calcium alloys. In this paper, we propose to represent the domain of stability of each transformation via time-temperature-transformation diagrams for a calcium concentration from 600 to 1280 ppm and in a range of temperatures from -20 to 180 C. These diagrams are constructed with the data obtained by in situ ageing with metallographic observations, hardness and electrical resistance measurements. The specificities of lead-calcium such as its fast ageing at ambient temperature and its overageing over time required the design of specific devices to be able to identify the characteristics of these alloys. (author)

  3. Zeta-function regularization approach to finite temperature effects in Kaluza-Klein space-times

    International Nuclear Information System (INIS)

    Bytsenko, A.A.; Vanzo, L.; Zerbini, S.

    1992-01-01

    In the framework of heat-kernel approach to zeta-function regularization, in this paper the one-loop effective potential at finite temperature for scalar and spinor fields on Kaluza-Klein space-time of the form M p x M c n , where M p is p-dimensional Minkowski space-time is evaluated. In particular, when the compact manifold is M c n = H n /Γ, the Selberg tracer formula associated with discrete torsion-free group Γ of the n-dimensional Lobachevsky space H n is used. An explicit representation for the thermodynamic potential valid for arbitrary temperature is found. As a result a complete high temperature expansion is presented and the roles of zero modes and topological contributions is discussed

  4. Determination of time constants of reactor pressure and temperature sensors: the dynamic data system method

    International Nuclear Information System (INIS)

    Wu, S.M.; Hsu, M.C.; Chow, M.C.

    1979-01-01

    A new modeling technique is introduced for on-line sensor time constant identification, both for the resistance temperature detector (RTD) and for the pressure sensor using power plant operational data. The sensor's time constant is estimated from a real characteristic root of the fitted autoregressive moving average model. The RTD's time constant values were identified to be 8.4 s, with a standard deviation of 1.2 s. The pressure sensor time constant was identified to be 28.6 ms, with a standard deviation of 3.5 ms

  5. Quantum dynamics at finite temperature: Time-dependent quantum Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Christov, Ivan P., E-mail: ivan.christov@phys.uni-sofia.bg

    2016-08-15

    In this work we investigate the ground state and the dissipative quantum dynamics of interacting charged particles in an external potential at finite temperature. The recently devised time-dependent quantum Monte Carlo (TDQMC) method allows a self-consistent treatment of the system of particles together with bath oscillators first for imaginary-time propagation of Schrödinger type of equations where both the system and the bath converge to their finite temperature ground state, and next for real time calculation where the dissipative dynamics is demonstrated. In that context the application of TDQMC appears as promising alternative to the path-integral related techniques where the real time propagation can be a challenge.

  6. Analysis of Temperature and Wind Measurements from the TIMED Mission: Comparison with UARS Data

    Science.gov (United States)

    Huang, Frank; Mayr, Hans; Killeen, Tim; Russell, Jim; Reber, Skip

    2004-01-01

    We report on an analysis of temperature and wind data based respectively on measurements with the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and TIDI (TIMED Doppler Interferometer) instruments on the TIMED (Thermosphere-Ionosphere-Mesosphere-Energetics and Dynamics) mission. Comparisons are made with corresponding results obtained from the HRDI (High Resolution Doppler Imager), MLS (Microwave Limb Sounder) and CLAES (Cryogenic Limb Array Etalon Spectrometer) instruments on the UARS (Upper Atmosphere Research Satellite) spacecraft. The TIMED and UARS instruments have important common and uncommon properties in their sampling of the data as a function local solar time. For comparison between the data from the two satellite missions, we present the derived diurnal tidal and zonal-mean variations of temperature and winds, obtained as functions of season, latitude, and altitude. The observations are also compared with results from the Numerical Spectral Model (NSM).

  7. On-line measurements of response time of temperature and pressure sensors in PWRs

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    2004-01-01

    A review of modern techniques for in-situ response time testing of resistance temperature detectors (RTDs), and pressure, level and flow transmitters is presented. These techniques have been developed and validated for use in pressurized and boiling water reactors. The significance of the modern techniques is that they permit testing of installed sensors at process operating conditions and thereby provide the actual in-service response times of the sensors. (author)

  8. Compositional and Mechanical Properties of Peanuts Roasted to Equivalent Colors using Different Time/Temperature Combinations

    Science.gov (United States)

    Peanuts in North America and Europe are primarily consumed after dry roasting. Standard industry practice is to roast peanuts to a specific surface color (Hunter L-value) for a given application; however, equivalent surface colors can be attained using different roast temperature/time combinations,...

  9. High day- and night-time temperatures affect grain growth dynamics in contrasting rice genotypes

    NARCIS (Netherlands)

    Shi, Wanju; Yin, Xinyou; Struik, Paul C.; Solis, Celymar; Xie, Fangming; Schmidt, Ralf C.; Huang, Min; Zou, Yingbin; Ye, Changrong; Jagadish, S.V.K.

    2017-01-01

    Rice grain yield and quality are predicted to be highly vulnerable to global warming. Five genotypes including heat-tolerant and susceptible checks, a heat-tolerant near-isogenic line and two hybrids were exposed to control (31 °C/23 °C, day/night), high night-time temperature (HNT; 31 °C/30 °C),

  10. Volatile compound profile of sous-vide cooked lamb loins at different temperature-time combinations.

    Science.gov (United States)

    Roldán, Mar; Ruiz, Jorge; Del Pulgar, José Sánchez; Pérez-Palacios, Trinidad; Antequera, Teresa

    2015-02-01

    Lamb loins were subjected to sous-vide cooking at different combinations of temperature (60 and 80°C) and time (6 and 24h) to assess the effect on the volatile compound profile. Major chemical families in cooked samples were aliphatic hydrocarbons and aldehydes. The volatile compound profile in sous-vide cooked lamb loin was affected by the cooking temperature and time. Volatile compounds arising from lipid oxidation presented a high abundance in samples cooked at low or moderate cooking conditions (60°C for 6 and 24h, 80°C for 6h), while a more intense time and temperature combination (80°C for 24h) resulted on a higher concentration of volatile compounds arising from Strecker degradations of amino acids, as 2-methylpropanal and 3-methylbutanal. Therefore, sous-vide cooking at moderately high temperatures for long times would result in the formation of a stronger meaty flavor and roast notes in lamb meat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Optimizing headspace sampling temperature and time for analysis of volatile oxidation products in fish oil

    DEFF Research Database (Denmark)

    Rørbæk, Karen; Jensen, Benny

    1997-01-01

    Headspace-gas chromatography (HS-GC), based on adsorption to Tenax GR(R), thermal desorption and GC, has been used for analysis of volatiles in fish oil. To optimize sam sampling conditions, the effect of heating the fish oil at various temperatures and times was evaluated from anisidine values (AV...

  12. Torrefaction of agricultural by-products: Effects of temperature and time on energy yields

    Science.gov (United States)

    Agricultural by-products, such as apple, grape, olive, and tomato pomaces as well as almond and walnut shells, were torrefied at different temperatures and times. Torrefaction of biomass involves heating in an inert atmosphere to remove volatile components for improved grindability and increased ene...

  13. Influence of temperature and hydroxide concentration on the settling time of hydroxy-catalysis bonds

    International Nuclear Information System (INIS)

    Reid, S.; Cagnoli, G.; Elliffe, E.; Faller, J.; Hough, J.; Martin, I.; Rowan, S.

    2007-01-01

    Many applications using bonded optical components have stringent requirements on the strength, rigidity, stability and alignment of the bonds. Hydroxy-catalysis bonding fulfills these requirements. Here we investigate methods by which the bonding time may be extended to better aid the precise prealignment of optical components through controlling the temperature and concentration of the bonding solution

  14. Body temperature predicts the direction of internal desynchronization in humans isolated from time cues

    NARCIS (Netherlands)

    Daan, Serge; Honma, Sato; Honma, Ken-ichi

    2013-01-01

    This publication presents a new analysis of experiments that were carried out in human subjects in isolation from time cues, under supervision of Jurgen Aschoff and Rutger Wever at the Max Planck Institute for Behavioural Physiology (Erling-Andechs, Germany, 1964-1974). Mean rectal temperatures

  15. Postmortem time estimation using body temperature and a finite-element computer model

    NARCIS (Netherlands)

    Hartog, E.A. den; Lotens, W.A.

    2004-01-01

    In the Netherlands most murder victims are found 2-24 h after the crime. During this period, body temperature decrease is the most reliable method to estimate the postmortem time (PMT). Recently, two murder cases were analysed in which currently available methods did not provide a su.ciently

  16. Effect of storage time and temperature on the rheological and microstructural properties of gluten

    NARCIS (Netherlands)

    Nicolas, Y.; Smit, R.J.M.; van Aalst, H.; Esselink, F.J.; Weegels, P.L.; Agterof, W.G.M.

    2003-01-01

    To investigate the effects of frozen storage on the rheological and microstructural properties of gluten, two model systems were investigated: System A, gluten and water; System B, gluten, water, and NaCl. The storage time was varied from 1 to 16 weeks and the storage temperature was varied from -5

  17. Recovery time of high temperature superconducting tapes exposed in liquid nitrogen

    International Nuclear Information System (INIS)

    Sheng, Jie; Zeng, Weina; Yao, Zhihao; Zhao, Anfeng; Hu, Daoyu; Hong, Zhiyong

    2016-01-01

    Highlights: • A novel method based on a sequence of AC pulses is presented. • Liquid nitrogen temperature is used as criterion to judge whether the sample has recovered. • Recovery time of some tape doesn't increase with the amplitude of fault current. • This phenomenon is caused by boiling heat transfer process of liquid nitrogen. • This phenomenon can be used in optimizing both the limiting rate and reclosing system. - Abstract: The recovery time is a crucial parameter to high temperature superconducting tapes, especially in power applications. The cooperation between the reclosing device and the superconducting facilities mostly relies on the recovery time of the superconducting tapes. In this paper, a novel method is presented to measure the recovery time of several different superconducting samples. In this method criterion used to judge whether the sample has recovered is the liquid nitrogen temperature, instead of the critical temperature. An interesting phenomenon is observed during the testing of superconducting samples exposed in the liquid nitrogen. Theoretical explanations of this phenomenon are presented from the aspect of heat transfer. Optimization strategy of recovery characteristics based on this phenomenon is also briefly discussed.

  18. Effect of temperature and hydraulic retention time on hydrogen producing granules: Homoacetogenesis and morphological characteristics

    International Nuclear Information System (INIS)

    Abreu, A. A.; Danko, A. S.; Alves, M. M.

    2009-01-01

    The effect of temperature and hydraulic retention time (HRT) on the homoacetogenesisi and on the morphological characteristics of hydrogen producing granules was investigated. Hydrogen was produced using an expanded granular sludge blanket (EGSB) reactor, fed with glucose and L-arabinose, under mesophilic (37 degree centigrade), thermophilic (55 degree centigrade), and hyper thermophilic (70 degree centigrade) conditions. (Author)

  19. Comparison of Microbial Communities in Swine Manure at Various Temperatures and storage times.

    Science.gov (United States)

    Lim, Joung-Soo; Yang, Seung Hak; Kim, Bong-Soo; Lee, Eun Young

    2018-01-26

    This study was designed to investigate the effects of temperature and storage time on the evolution of bacterial communities in swine manure. Manure was stored at -20°C, 4°C, 20°C, or 37°C and sampled at 7-day intervals over 28 days of storage, for a total of 5 time points. To assess the bacterial species present, 16S ribosomal RNA gene sequences were analyzed using pyrosequencing. After normalization, 113,934 sequence reads were obtained, with an average length of 466.6 ± 4.4 bp. The diversity indices of the communities reduced as temperature and storage time increased, and the slopes of rarefaction curves decreased from the second week in samples stored at -20 °C and 4 °C. These results indicate that the richness of the bacterial community in the manure reduced as temperature and storage time increased. Firmicutes were the dominant phylum in all samples examined, ranging from 89.3% to 98.8% of total reads, followed by Actinobacteria, which accounted for 0.6% to 7.9%. A change in community composition was observed in samples stored at 37 °C during the first 7 days, indicating that temperature plays an important role in determining the microbiota of swine manure. Clostridium, Turicibacter, Streptococcus, and Lactobacillus within Firmicutes, and Corynebacterium within Actinobacteria were the most dominant genera in fresh manure and all stored samples. Based on our findings, we propose Clostridium as an indicator genus of swine manure decomposition in an anaerobic environment. The proportions of dominant genera changed in samples stored at 20 °C and 37 °C during the fourth week. Based on these results, it was concluded that the microbial communities of swine manure change rapidly as storage time and temperature increase.

  20. Flavourzyme, an Enzyme Preparation with Industrial Relevance: Automated Nine-Step Purification and Partial Characterization of Eight Enzymes.

    Science.gov (United States)

    Merz, Michael; Eisele, Thomas; Berends, Pieter; Appel, Daniel; Rabe, Swen; Blank, Imre; Stressler, Timo; Fischer, Lutz

    2015-06-17

    Flavourzyme is sold as a peptidase preparation from Aspergillus oryzae. The enzyme preparation is widely and diversely used for protein hydrolysis in industrial and research applications. However, detailed information about the composition of this mixture is still missing due to the complexity. The present study identified eight key enzymes by mass spectrometry and partially by activity staining on native polyacrylamide gels or gel zymography. The eight enzymes identified were two aminopeptidases, two dipeptidyl peptidases, three endopeptidases, and one α-amylase from the A. oryzae strain ATCC 42149/RIB 40 (yellow koji mold). Various specific marker substrates for these Flavourzyme enzymes were ascertained. An automated, time-saving nine-step protocol for the purification of all eight enzymes within 7 h was designed. Finally, the purified Flavourzyme enzymes were biochemically characterized with regard to pH and temperature profiles and molecular sizes.

  1. Influence of temperature and brewing time of nettle (Urtica dioica L.) infusions on vitamin C content

    Science.gov (United States)

    Wolska, Jolanta; Czop, Michał; Jakubczyk, Karolina; Janda, Katarzyna

    Stinging nettle (Urtica dioica L.) can be found in temperate climate zones of Europe, Africa and America Nettle may be a source of nutritional ingredients, mineral salts, vitamins and antioxidants. The aim of the study was to determine the effect of temperature and brewing time Urtica dioica L. infusions from different parts of this plant on vitamin C (ascorbic acid) content. Infusions of nettle leaf, stem and root were prepared at room temperature, 50°C, 60°C, 70°C and 80°C for 10 minutes. Leaf infusions were also brewed for 5, 10, 15 and 20 minutes at initial water temperature of 60°C. The amount of vitamin C was determined by the spectrophotometric method. The best temperature of brewing nettle infusions, in terms of vitamin C concentration, is between 50 °C and 60 °C as it is sufficient to extract the substance, yet not high enough to destroy it. The optimal time of brewing appeared to be 10 minutes as the prolonged exposure to high temperature appeared to be detrimental for ascorbic acid as well.

  2. The effect of temperature and Pasteurization time on Staphylococcus aureus isolates from dairy products

    Science.gov (United States)

    Yaniarti, Maria Nia; Amarantini, Charis; Budiarso, Tri Yahya

    2017-11-01

    Staphylococcus aureus is a potential pathogenic bacterial cause of disease in humans and animals due to the ability of adhesion to epithelial tissue. Many cases of food poisoning are caused by S. aureus bacteria. Therefore, the purpose of this study was to determine the effect of temperature and time on the growth of S. aureus isolates from milk products. The samples are derived from previous research namely pasteurized milk, street vendor and café milk, milk powder, and sweetened condensed milk products. The treatment temperatures and times studied were temperature 60 °C, 65 °C, 70 °C, 75 °C, 80 °C, and 30, 35, 40, 45, 50, 55, and 60 minutes. The results show that at temperatures of 60 °C and 65 °C, S. aureus isolates did not grow at 60 minutes. All isolates of S. aureus died when the temperatures were increased to 70 °C and 80 °C, at 50 and 20 minutes, respectively.

  3. PCR detection of malaria parasites in desiccated Anopheles mosquitoes is uninhibited by storage time and temperature

    Directory of Open Access Journals (Sweden)

    Rider Mark A

    2012-06-01

    Full Text Available Abstract Background Reliable methods to preserve mosquito vectors for malaria studies are necessary for detecting Plasmodium parasites. In field settings, however, maintaining a cold chain of storage from the time of collection until laboratory processing, or accessing other reliable means of sample preservation is often logistically impractical or cost prohibitive. As the Plasmodium infection rate of Anopheles mosquitoes is a central component of the entomological inoculation rate and other indicators of transmission intensity, storage conditions that affect pathogen detection may bias malaria surveillance indicators. This study investigated the effect of storage time and temperature on the ability to detect Plasmodium parasites in desiccated Anopheles mosquitoes by real-time polymerase chain reaction (PCR. Methods Laboratory-infected Anopheles stephensi mosquitoes were chloroform-killed and stored over desiccant for 0, 1, 3, and 6 months while being held at four different temperatures: 28, 37, -20 and -80°C. The detection of Plasmodium DNA was evaluated by real-time PCR amplification of a 111 base pair region of block 4 of the merozoite surface protein. Results Varying the storage time and temperature of desiccated mosquitoes did not impact the sensitivity of parasite detection. A two-way factorial analysis of variance suggested that storage time and temperature were not associated with a loss in the ability to detect parasites. Storage of samples at 28°C resulted in a significant increase in the ability to detect parasite DNA, though no other positive associations were observed between the experimental storage treatments and PCR amplification. Conclusions Cold chain maintenance of desiccated mosquito samples is not necessary for real-time PCR detection of parasite DNA. Though field-collected mosquitoes may be subjected to variable conditions prior to molecular processing, the storage of samples over an inexpensive and logistically

  4. Thermal sterilization of heat-sensitive products using high-temperature short-time sterilization.

    Science.gov (United States)

    Mann, A; Kiefer, M; Leuenberger, H

    2001-03-01

    High-temperature short-time (HTST) sterilization with a continuous-flow sterilizer, developed for this study, was evaluated. The evaluation was performed with respect to (a) the chemical degradation of two heat-sensitive drugs in HTST range (140-160 degrees C) and (b) the microbiological effect of HTST sterilization. Degradation kinetics of two heat-sensitive drugs showed that a high peak temperature sterilization process resulted in less chemical degradation for the same microbiological effect than a low peak temperature process. Both drugs investigated could be sterilized with acceptable degradation at HTST conditions. For the evaluation of the microbiological effect, Bacillus stearothermophilus ATCC 7953 spores were used as indicator bacteria. Indicator spore kinetics (D(T), z value, k, and E(a)), were determined in the HTST range. A comparison between the Bigelow model (z value concept) and the Arrhenius model, used to describe the temperature coefficient of the microbial inactivation, demonstrated that the Bigelow model is more accurate in prediction of D(T) values in the HTST range. The temperature coefficient decreased with increasing temperature. The influence of Ca(2+) ions and pH value on the heat resistance of the indicator spores, which is known under typical sterilization conditions, did not change under HTST conditions.

  5. Temperature variation in metal ceramic technology analyzed using time domain optical coherence tomography

    Science.gov (United States)

    Sinescu, Cosmin; Topala, Florin I.; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.

    2014-01-01

    The quality of dental prostheses is essential in providing good quality medical services. The metal ceramic technology applied in dentistry implies ceramic sintering inside the dental oven. Every ceramic material requires a special sintering chart which is recommended by the producer. For a regular dental technician it is very difficult to evaluate if the temperature inside the oven remains the same as it is programmed on the sintering chart. Also, maintaining the calibration in time is an issue for the practitioners. Metal ceramic crowns develop a very accurate pattern for the ceramic layers depending on the temperature variation inside the oven where they are processed. Different patterns were identified in the present study for the samples processed with a variation in temperature of +30 °C to +50 °C, respectively - 30 0°C to -50 °C. The OCT imagistic evaluations performed for the normal samples present a uniform spread of the ceramic granulation inside the ceramic materials. For the samples sintered at a higher temperature an alternation between white and darker areas between the enamel and opaque layers appear. For the samples sintered at a lower temperature a decrease in the ceramic granulation from the enamel towards the opaque layer is concluded. The TD-OCT methods can therefore be used efficiently for the detection of the temperature variation due to the ceramic sintering inside the ceramic oven.

  6. Time series modelling of global mean temperature for managerial decision-making.

    Science.gov (United States)

    Romilly, Peter

    2005-07-01

    Climate change has important implications for business and economic activity. Effective management of climate change impacts will depend on the availability of accurate and cost-effective forecasts. This paper uses univariate time series techniques to model the properties of a global mean temperature dataset in order to develop a parsimonious forecasting model for managerial decision-making over the short-term horizon. Although the model is estimated on global temperature data, the methodology could also be applied to temperature data at more localised levels. The statistical techniques include seasonal and non-seasonal unit root testing with and without structural breaks, as well as ARIMA and GARCH modelling. A forecasting evaluation shows that the chosen model performs well against rival models. The estimation results confirm the findings of a number of previous studies, namely that global mean temperatures increased significantly throughout the 20th century. The use of GARCH modelling also shows the presence of volatility clustering in the temperature data, and a positive association between volatility and global mean temperature.

  7. Revised Correlation between Odin/OSIRIS PMC Properties and Coincident TIMED/SABER Mesospheric Temperatures

    Science.gov (United States)

    Feofilov, A. G.; Petelina, S. V.; Kutepov, A. A.; Pesnell, W. D.; Goldberg, R. A.; Llewellyn, E. J.; Russell, J. M.

    2006-01-01

    The Optical Spectrograph and Infrared Imaging System (OSIRIS) instrument on board the Odin satellite detects Polar Mesospheric Clouds (PMCs) through the enhancement in the limb-scattered solar radiance. The Sounding of the Atmosphere using the Broadband Emission Radiometry (SABER) instrument on board the TIMED satellite is a limb scanning infrared radiometer that measures temperature and vertical profiles and energetic parameters for minor constituents in the mesosphere and lower thermosphere. The combination of OSIRIS and SABER data has been previously used to statistically derive thermal conditions for PMC existence [Petelina et al., 2005]. a, A.A. Kutepov, W.D. Pesnell, In this work, we employ the simultaneous common volume measurements of PMCs by OSIRIS and temperature profiles measured by SABER for the Northern Hemisphere summers of 2002-2005 and corrected in the polar region by accounting for the vibrational-vibrational energy exchange among the CO2 isotopes [Kutepov et al., 2006]. For each of 20 coincidences identified within plus or minus 1 degree latitude, plus or minus 2 degrees longitude and less than 1 hour time the frost point temperatures were calculated using the corresponding SABER temperature profile and water vapor densities of 1,3, and 10 ppmv. We found that the PMC presence and brightness correlated only with the temperature threshold that corresponds to the frost point. The absolute value of the temperature below the frost point, however, didn't play a significant role in the intensity of PMC signal for the majority of selected coincidences. The presence of several bright clouds at temperatures above the frost point is obviously related to the limitation of the limb geometry when some near- or far-field PMCs located at higher (and warmer) altitudes appear to be at lower altitudes.

  8. Quantifying cardinal temperatures and thermal time required for germination of Silybum marianum seed

    Directory of Open Access Journals (Sweden)

    Ghasem Parmoon

    2015-04-01

    Full Text Available The response of seed germination to environmental factors can be estimated by nonlinear regression. The present study was performed to compare four nonlinear regression models (segmented, beta, beta modified, and dent-like to describe the germination rate–temperature relationships of milk thistle (Silybum marianum L. at six constant temperatures, with the aim of identifying the cardinal temperatures and thermal times required to reach different germination percentiles. Models and statistical indices were calibrated using an iterative optimization method and their performance was compared by root mean square error (RMSE, coefficient of determination (R2 and Akaike information criterion correction (AICc. The beta model was found to be the best model for predicting the required time to reach 50% germination (D50, (R2 = 0.99; RMSE = 0.004; AICc = − 276.97. Based on the model outputs, the base, optimum, and maximum temperatures of seed germination were 5.19 ± 0.79, 24.01 ± 0.11, and 34.32 ± 0.36 °C, respectively. The thermal times required for 50% and 90% germination were 4.99 and 7.38 degree-days, respectively.

  9. Remote sensing of temperature and wind using acoustic travel-time measurements

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Manuela; Fischer, Gabi; Raabe, Armin; Weisse, Frank [Leipzig Univ. (Germany). Inst. fuer Meteorologie; Ziemann, Astrid [Technische Univ. Dresden (Germany). Professur fuer Meteorologie

    2013-04-15

    A remote sensing technique to detect area-averaged temperature and flow properties within an area under investigation, utilizing acoustic travel-time measurements, is introduced. This technique uses the dependency of the speed of acoustic signals on the meteorological parameters temperature and wind along the propagation path. The method itself is scalable: It is applicable for investigation areas with an extent of some hundred square metres as well as for small-scale areas in the range of one square metre. Moreover, an arrangement of the acoustic transducers at several height levels makes it possible to determine profiles and gradients of the meteorological quantities. With the help of two examples the potential of this remote sensing technique for simultaneously measuring averaged temperature and flow fields is demonstrated. A comparison of time histories of temperature and wind values derived from acoustic travel-time measurements with point measurements shows a qualitative agreement whereas calculated root-mean-square errors differ for the two example applications. They amount to 1.4 K and 0.3 m/s for transducer distances of 60 m and 0.4 K and 0.2 m/s for transducer distances in the range of one metre. (orig.)

  10. The effect of temperature and time of extraction on the quality of Semi Refined Carrageenan (SRC

    Directory of Open Access Journals (Sweden)

    Heriyanto Heri

    2018-01-01

    Full Text Available Euchema cottonii is a good source of kappa-carrageenan and can be found cultivated in the Indonesia coastal areas in which one of them is in Banten Province. Carrageenans have many applications and are utilized in human food and pet-food industry. Carrageenans are also utilized in non-food industry such as pharmaceuticals, cosmetics, printing and textile formulations. Hence, the present study features on the cooking process cooking time and cooking temperature. The effects of these parameters on carrageenan quality such as gel viscosity and gel strength were studied. The process of extraction of carrageenan was conducted with variations temperature: 60, 70, and 80 °C and the variation of time: 1, 2, and 3 hours. Alkaline substance used was KOH with 8% concentration and the ratio of solvent to dry seaweed 8:1. From the present investigation, it was observed that SRC extraction reached the best condition at temperature 70 °C for 2 hours with the value of yield 30.20%, 5.90% moisture content, 18.34% ash content, sulfate content of 6.94%, viscosity of 190 cP, and the gel strength 714.45 g / cm2. The treatment of temperature and extraction time significantly affected the quality of the SRC yield parameter, viscosity and gel strength.

  11. Effect of Temperature, Time, and Material Thickness on the Dehydration Process of Tomato

    Directory of Open Access Journals (Sweden)

    A. F. K. Correia

    2015-01-01

    Full Text Available This study aimed to evaluate the effects of temperature, time, and thickness of tomatoes fruits during adiabatic drying process. Dehydration, a simple and inexpensive process compared to other conservation methods, is widely used in the food industry in order to ensure a long shelf life for the product due to the low water activity. This study aimed to obtain the best processing conditions to avoid losses and keep product quality. Factorial design and surface response methodology were applied to fit predictive mathematical models. In the dehydration of tomatoes through the adiabatic process, temperature, time, and sample thickness, which greatly contribute to the physicochemical and sensory characteristics of the final product, were evaluated. The optimum drying conditions were 60°C with the lowest thickness level and shorter time.

  12. Time and temperature reduction of the sealing process of porous aluminium oxide films with organic additives

    International Nuclear Information System (INIS)

    Bautista, A.; Lopez, V.; Otero, E.; Lizarbe, R.; Gonzalez, J.A.

    1998-01-01

    Different sealing processes of anode coating in aluminium oxide have been industrially used for more than 30 years. In two of the preceding decades a great effort was realized to reduce costs in the traditional hydrothermal sealing in deionized boiling water (SHT), a very expensive process due to its endurance and high temperature on which it develops. New sealing procedures are proposed, on which by means of the use of organic additives, the time or the temperature of the SHT is essentially reduced. (Author) 10 refs

  13. Influence of annealing time and temperature on the Fe3Al intermetallic alloys microstructure modification

    Directory of Open Access Journals (Sweden)

    K. Garbala

    2011-04-01

    Full Text Available There is an industry interesting in intermetallic alloys in recent years. There are widely possibilities to adopt this kind of materials for structural units. More expensive materials can be replaced by them. A property which limits their wider application is the low plasticity at environment and elevated temperatures. In paper the results of the thermal microstructure modification are shown. To this end, the influence of annealing time and temperature on the intermetallic phase Fe3Al grain size was investigated. The impact of these factors on micro-hardness was examined as well. It was found that these operations cause the grain size reduction and the micro-hardness decrease.

  14. Devolatilization kinetics of woody biomass at short residence times and high heating rates and peak temperatures

    DEFF Research Database (Denmark)

    Johansen, Joakim M.; Gadsbøll, Rasmus; Thomsen, Jesper

    2016-01-01

    This work combines experimental and computational fluid dynamics (CFD) results to derive global kinetics for biomass (pine wood) devolatilization during heating rates on the order of 105Ks-1, bulk flow peak temperatures between 1405 and 1667K, and particle residence times below 0.1s. Experiments......Jmol-1. The accuracy of the derived global kinetics was supported by comparing predictions to experimental results from a 15kW furnace. The work emphasizes the importance of characterizing the temperature history of the biomass particles when deriving pyrolysis kinetics. The present results indicate...

  15. Long-term creep modeling of wood using time temperature superposition principle

    OpenAIRE

    Gamalath, Sandhya Samarasinghe

    1991-01-01

    Long-term creep and recovery models (master curves) were developed from short-term data using the time temperature superposition principle (TTSP) for kiln-dried southern pine loaded in compression parallel-to-grain and exposed to constant environmental conditions (~70°F, ~9%EMC). Short-term accelerated creep (17 hour) and recovery (35 hour) data were collected for each specimen at a range of temperature (70°F-150°F) and constant moisture condition of 9%. The compressive stra...

  16. Quantitative production of compound I from a cytochrome P450 enzyme at low temperatures. Kinetics, activation parameters, and kinetic isotope effects for oxidation of benzyl alcohol.

    Science.gov (United States)

    Wang, Qin; Sheng, Xin; Horner, John H; Newcomb, Martin

    2009-08-05

    Cytochrome P450 enzymes are commonly thought to oxidize substrates via an iron(IV)-oxo porphyrin radical cation transient termed Compound I, but kinetic studies of P450 Compounds I are essentially nonexistent. We report production of Compound I from cytochrome P450 119 (CYP119) in high conversion from the corresponding Compound II species at low temperatures in buffer mixtures containing 50% glycerol by photolysis with 365 nm light from a pulsed lamp. Compound I was studied as a reagent in oxidations of benzyl alcohol and its benzylic mono- and dideuterio isotopomers. Pseudo-first-order rate constants obtained at -50 degrees C with concentrations of substrates between 1.0 and 6.0 mM displayed saturation kinetics that gave binding constants for the substrate in the Compound I species (K(bind)) and first-order rate constants for the oxidation reactions (k(ox)). Representative results are K(bind) = 214 M(-1) and k(ox) = 0.48 s(-1) for oxidation of benzyl alcohol. For the dideuterated substrate C(6)H(5)CD(2)OH, kinetics were studied between -50 and -25 degrees C, and a van't Hoff plot for complexation and an Arrhenius plot for the oxidation reaction were constructed. The H/D kinetic isotope effects (KIEs) at -50 degrees C were resolved into a large primary KIE (P = 11.9) and a small, inverse secondary KIE (S = 0.96). Comparison of values extrapolated to 22 degrees C of both the rate constant for oxidation of C(6)H(5)CD(2)OH and the KIE for the nondeuterated and dideuterated substrates to values obtained previously in laser flash photolysis experiments suggested that tunneling could be a significant component of the total rate constant at -50 degrees C.

  17. Time lapse microscopy of temperature control during self-assembly of 3D DNA crystals

    Science.gov (United States)

    Conn, Fiona W.; Jong, Michael Alexander; Tan, Andre; Tseng, Robert; Park, Eunice; Ohayon, Yoel P.; Sha, Ruojie; Mao, Chengde; Seeman, Nadrian C.

    2017-10-01

    DNA nanostructures are created by exploiting the high fidelity base-pairing interactions of double-stranded branched DNA molecules. These structures present a convenient medium for the self-assembly of macroscopic 3D crystals. In some self-assemblies in this system, crystals can be formed by lowering the temperature, and they can be dissolved by raising it. The ability to monitor the formation and melting of these crystals yields information that can be used to monitor crystal formation and growth. Here, we describe the development of an inexpensive tool that enables direct observation of the crystal growth process as a function of both time and temperature. Using the hanging-drop crystallization of the well-characterized 2-turn DNA tensegrity triangle motif for our model system, its response to temperature has been characterized visually.

  18. The impact of baking time and bread storage temperature on bread crumb properties.

    Science.gov (United States)

    Bosmans, Geertrui M; Lagrain, Bert; Fierens, Ellen; Delcour, Jan A

    2013-12-15

    Two baking times (9 and 24 min) and storage temperatures (4 and 25 °C) were used to explore the impact of heat exposure during bread baking and subsequent storage on amylopectin retrogradation, water mobility, and bread crumb firming. Shorter baking resulted in less retrogradation, a less extended starch network and smaller changes in crumb firmness and elasticity. A lower storage temperature resulted in faster retrogradation, a more rigid starch network with more water inclusion and larger changes in crumb firmness and elasticity. Crumb to crust moisture migration was lower for breads baked shorter and stored at lower temperature, resulting in better plasticized biopolymer networks in crumb. Network stiffening, therefore, contributed less to crumb firmness. A negative relation was found between proton mobilities of water and biopolymers in the crumb gel network and crumb firmness. The slope of this linear function was indicative for the strength of the starch network. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Changes in setting time of alginate impression material with different water temperature

    Directory of Open Access Journals (Sweden)

    Decky J. Indrani

    2013-03-01

    Full Text Available Background: Previous studies showed that setting process of alginates can be influenced by temperature. Purpose: To determine the changes in setting time due to differences in water temperature and to determine the correlation between water temperature and the setting time. Methods: Seven groups of dough alginate were prepared by mixing alginate powder and water, each using a temperature between 13° C–28° C with a interval of 2.5° C. A sample mold (Θ = 30 mm, t = 16 mm was placed on a flat plate and filled with doug alginate. Immediately the flat end of a polished acrylic rod was placed in contact with the surface of dough alginate. Setting time of alginat was measured from the starting of the mix to the time when the alginate does not adhere to the end of the rod. Setting time alginate data were analyzed using one way ANOVA, LSD and Pearson. Results: Setting time of alginate with water temperature between 13° C–28° C were 87 to 119.4 seconds and were significantly different (p < 0.01. The setting time between group were also significantly different (p<0.01. There was an inverse correlation between water temperature and the setting time (r = -0.968. Conclusion: Water temperature between 13° C–28°C with a difference of 2.5° C produced significant differences in alginate setting time; the lower the water temperature being used the longer the setting time was produced.Latar belakang: Penelitian-penelitian sebelumnya menunjukkan bahwa proses pengerasan alginat dapat dipengaruhi oleh suhu. Tujuan: Mengetahui perubahan waktu pengerasan alginat akibat perbedaan suhu air serta mengetahui hubungan antara suhu air dan waktu pengerasan. Metode: Tujuh kelompok adonan alginat yang dipersiapkan dengan mencampur bubuk alginat dan air, masingmasing menggunakan suhu antara 13°C–28° C dengan interval 2,5° C. Pengukuran waktu pengerasan alginat dilakukan sesuai dengan spesifikasi ADA no.18. Sebuah cetakan sampel terbuat dari pralon berbentuk

  20. Studies on the preparation of immobilized enzymes by radio-polymerization, 10

    International Nuclear Information System (INIS)

    Amarakone, S.P.; Hayashi, Toru; Kawashima, Koji.

    1983-01-01

    β-Galactosidase of E. coli origin was immobilized in the form of beads by the radiopolymerization of different combinations of monomers using a gamma irradiation technique. With the dialysed enzyme, recoveries of over 300 % could be obtained on suitable monomer combinations containing magnesium and sodium acrylates. The recovery of the enzyme also depended on the irradiation time. The immobilized enzyme had better pH and temperature stability and was less affected by the presence of metal ions in the medium, compared to the native enzyme. The optimum pH and temperatures of the immobilized enzyme were different from those of the native enzyme and were 7.0 to 7.5 and 50 deg C respectively. The immobilized enzyme was used in a column for the continuous determination of lactose with a standard type autoanalyser. Good linearity could be observed even up to 3 % lactose in the sample. (author)

  1. [Real time diagnostics of instantaneous temperature of combustion and explosion process by modern spectroscopy].

    Science.gov (United States)

    Zhou, Xue-tie; Wang, Jun-de; Li, Yan; Liu, Da-bing

    2003-04-01

    The combustion temperature is one of the important parameters to express flame combustion and explosion characteristics. It will effectively guide the design and manufacture of new model explosives, industrial explosive materials, and weapons. The recent developments and applications of real time diagnostics of instantaneous temperature of combustion and explosion processes by modern spectroscopic methods, such as atomic absorption-emission method, atomic emission two-line spectroscopy, atomic emission multiline spectroscopy, molecular rotation-vibration spectroscopy, coherent anti-stokes Raman scattering (CARS) and plane laser-induced fluorescence (PLIF), were reviewed in this paper. The maximum time resolution of atomic absorption-emission method is 25 microseconds. The time resolution of atomic emission two-line spectroscopy can reach 0.1 microsecond. These two methods can completely suit the need of real time and instantaneous temperature diagnostics of violent explosion and flame combustion. Other methods will also provide new effective research methods for the processes and characteristics of combustion, flame and explosion.

  2. Development of High Temperature Short Time Vertebrate-Blood Pasteurization Equipment for Tsetse Fly Diets

    Energy Technology Data Exchange (ETDEWEB)

    Moravek, I; Lach, J [Department of Manufacturing Systems, Slovak Technical University Namestie Slobody 17 812 31 Bratislava (Slovakia); Takac, P [Institute of Zoology, SAV, Bratislava (Slovakia)

    2012-07-15

    Tsetse flies feed only on vertebrate blood, but the collection and processing of blood is expensive, it must be stored at -20{sup o}C requiring costly storage rooms and reliable electricity, and it must be irradiated to reduce bacterial contamination. This is tolerable for small colonies, but as colony size increases to service large- scale programmes, the supply and processing of blood becomes critical. Blood is normally collected from cattle at slaughter. This process is necessarily not aseptic, and large-scale collection is only possible where the animals are suspended for bleeding. One alternative to blood decontamination is using the High Temperature Short time Pasteurization (HTST) method. The food processing industry uses pasteurization to reduce bacterial load in a wide range of products. Our previous results indicated that for the control of the blood pasteurization process, to reach satisfactory bacteriological purity and at the same time to prevent the blood from coagulating, it is important to study temperature and time and also some other parameters that could predict blood coagulation. Crucial for blood coagulation is to study blood viscosity. Classical heat exchangers are not suitable for blood pasteurization. In such equipment the blood coagulation depends on temperature and time. Besides the relatively low temperatures, blood is coagulating with cumulative time until total shutdown of blood flow. After a series of experiments we found a solution using microwave systems. To verify the microwave heating concept, we built an experimental workstation. First we verified the accuracy of the applicator design from the aspect of output adaptation to the power source. Also we installed measuring equipment. This system complies with the requirements of quick heating with sufficiently high heat accumulation. By utilizing standard components for the base of the microwave generator, it is possible to markedly reduce the final price of the equipment. (author)

  3. Real-time finite-temperature correlators from AdS/CFT

    International Nuclear Information System (INIS)

    Barnes, Edwin; Vaman, Diana; Wu Chaolun; Arnold, Peter

    2010-01-01

    In this paper we use anti-de Sitter/conformal field theory correspondence ideas in conjunction with insights from finite-temperature real-time field theory formalism to compute 3-point correlators of N=4 super Yang-Mills operators, in real time and at finite temperature. To this end, we propose that the gravity field action is integrated only over the right and left quadrants of the Penrose diagram of the anti-de Sitter-Schwarzschild background, with a relative sign between the two terms. For concreteness we consider the case of a scalar field in the black hole background. Using the scalar field Schwinger-Keldysh bulk-to-boundary propagators, we give the general expression of a 3-point real-time Green's correlator. We then note that this particular prescription amounts to adapting the finite-temperature analog of Veltman's circling rules to tree-level Witten diagrams, and comment on the retarded and Feynman scalar bulk-to-boundary propagators. We subject our prescription to several checks: Kubo-Martin-Schwinger identities, the largest time equation, and the zero-temperature limit. When specializing to a particular retarded (causal) 3-point function, we find a very simple answer: the momentum-space correlator is given by three causal (two advanced and one retarded) bulk-to-boundary propagators, meeting at a vertex point which is integrated from spatial infinity to the horizon only. This result is expected based on analyticity, since the retarded n-point functions are obtained by analytic continuation from the imaginary-time Green's function, and based on causality considerations.

  4. Impact of Air Temperature on London Ambulance Call-Out Incidents and Response Times

    Directory of Open Access Journals (Sweden)

    Marliyyah A. Mahmood

    2017-08-01

    Full Text Available Ambulance services are in operation around the world and yet, until recently, ambulance data has only been used for operational purposes rather than for assessing public health. Ambulance call-out data offers new and valuable (near real-time information that can be used to assess the impact of environmental conditions, such as temperature, upon human health. A detailed analysis of London ambulance data at a selection of dates between 2003 and 2015 is presented and compared to London temperature data. In London, the speed of ambulance response begins to suffer when the mean daily air temperature drops below 2 °C or rises above 20 °C. This is explained largely by the increased number of calls past these threshold temperatures. The baseline relationships established in this work will inform the prediction of likely changes in ambulance demand (and illness types that may be caused by seasonal temperature changes and the increased frequency and intensity of extreme/severe weather events, exacerbated by climate change, in the future.

  5. Time series modelling of increased soil temperature anomalies during long period

    Science.gov (United States)

    Shirvani, Amin; Moradi, Farzad; Moosavi, Ali Akbar

    2015-10-01

    Soil temperature just beneath the soil surface is highly dynamic and has a direct impact on plant seed germination and is probably the most distinct and recognisable factor governing emergence. Autoregressive integrated moving average as a stochastic model was developed to predict the weekly soil temperature anomalies at 10 cm depth, one of the most important soil parameters. The weekly soil temperature anomalies for the periods of January1986-December 2011 and January 2012-December 2013 were taken into consideration to construct and test autoregressive integrated moving average models. The proposed model autoregressive integrated moving average (2,1,1) had a minimum value of Akaike information criterion and its estimated coefficients were different from zero at 5% significance level. The prediction of the weekly soil temperature anomalies during the test period using this proposed model indicated a high correlation coefficient between the observed and predicted data - that was 0.99 for lead time 1 week. Linear trend analysis indicated that the soil temperature anomalies warmed up significantly by 1.8°C during the period of 1986-2011.

  6. Temperature effect on gastric emptying time of hybrid grouper (Epinephelus spp.)

    Energy Technology Data Exchange (ETDEWEB)

    De, Moumita; Ghaffar, Mazlan Abd. [School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Das, Simon K. [School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia and Marine Ecosystem Research Centre (EKOMAR), Faculty of Science and Technology, Universiti (Malaysia)

    2014-09-03

    Knowledge of fish gastric emptying time is a necessary component for understanding the fish feeding rates, energy budgets and commercial production of fishes in aquaculture. The hybrid grouper Epinephelus spp. is getting popular as a culture species in Malaysia for their faster growth rate compared to commonly cultured grouper species (giant grouper Epinephelus lanceolatus and tiger grouper Epinephelus fuscoguttatus). There are data suggests that elevated sea water temperature affects gastric emptying time (GET) of fishes. Hence, this study aims to study the GET of hybrid grouper at different temperature (22, 26, 30, 34°C) in laboratory condition with commercial diet pellet. The gastric emptying times (GETs) at different temperatures were determined X-radiographically, using barium sulfate (BaSO{sub 4}) as a contrast medium food marker. The food marker and X-radiography showed that initial voidance of fecal matter began 4-6 h after feeding at all temperature. The fastest GET (13 h) was obsereved in the 30°C group, whereas the longest (17 h) GET was seen in 22°C group fed with artificial diet pellet. Not much differences in GET were recorded between the 26 and 34°C groups as 34°C groups fed lesser amount compared to 26°C groups. Nevertheless a substantial delay in GET was observed in the 22°C group. The findings of this study suggest to culture hybrid grouper between 26 to 30°C with commercial diet pellet as this temperature ranges proliferate the faster digestion process which may contribute faster growth rate of this commerical important fish species. Overall, these findings may have important consequences for optimization of commercial production of hybrid grouper.

  7. Temperature effect on gastric emptying time of hybrid grouper (Epinephelus spp.)

    Science.gov (United States)

    De, Moumita; Ghaffar, Mazlan Abd.; Das, Simon K.

    2014-09-01

    Knowledge of fish gastric emptying time is a necessary component for understanding the fish feeding rates, energy budgets and commercial production of fishes in aquaculture. The hybrid grouper Epinephelus spp. is getting popular as a culture species in Malaysia for their faster growth rate compared to commonly cultured grouper species (giant grouper Epinephelus lanceolatus and tiger grouper Epinephelus fuscoguttatus). There are data suggests that elevated sea water temperature affects gastric emptying time (GET) of fishes. Hence, this study aims to study the GET of hybrid grouper at different temperature (22, 26, 30, 34°C) in laboratory condition with commercial diet pellet. The gastric emptying times (GETs) at different temperatures were determined X-radiographically, using barium sulfate (BaSO4) as a contrast medium food marker. The food marker and X-radiography showed that initial voidance of fecal matter began 4-6 h after feeding at all temperature. The fastest GET (13 h) was obsereved in the 30°C group, whereas the longest (17 h) GET was seen in 22°C group fed with artificial diet pellet. Not much differences in GET were recorded between the 26 and 34°C groups as 34°C groups fed lesser amount compared to 26°C groups. Nevertheless a substantial delay in GET was observed in the 22°C group. The findings of this study suggest to culture hybrid grouper between 26 to 30°C with commercial diet pellet as this temperature ranges proliferate the faster digestion process which may contribute faster growth rate of this commerical important fish species. Overall, these findings may have important consequences for optimization of commercial production of hybrid grouper.

  8. Temperature effect on gastric emptying time of hybrid grouper (Epinephelus spp.)

    International Nuclear Information System (INIS)

    De, Moumita; Ghaffar, Mazlan Abd.; Das, Simon K.

    2014-01-01

    Knowledge of fish gastric emptying time is a necessary component for understanding the fish feeding rates, energy budgets and commercial production of fishes in aquaculture. The hybrid grouper Epinephelus spp. is getting popular as a culture species in Malaysia for their faster growth rate compared to commonly cultured grouper species (giant grouper Epinephelus lanceolatus and tiger grouper Epinephelus fuscoguttatus). There are data suggests that elevated sea water temperature affects gastric emptying time (GET) of fishes. Hence, this study aims to study the GET of hybrid grouper at different temperature (22, 26, 30, 34°C) in laboratory condition with commercial diet pellet. The gastric emptying times (GETs) at different temperatures were determined X-radiographically, using barium sulfate (BaSO 4 ) as a contrast medium food marker. The food marker and X-radiography showed that initial voidance of fecal matter began 4-6 h after feeding at all temperature. The fastest GET (13 h) was obsereved in the 30°C group, whereas the longest (17 h) GET was seen in 22°C group fed with artificial diet pellet. Not much differences in GET were recorded between the 26 and 34°C groups as 34°C groups fed lesser amount compared to 26°C groups. Nevertheless a substantial delay in GET was observed in the 22°C group. The findings of this study suggest to culture hybrid grouper between 26 to 30°C with commercial diet pellet as this temperature ranges proliferate the faster digestion process which may contribute faster growth rate of this commerical important fish species. Overall, these findings may have important consequences for optimization of commercial production of hybrid grouper

  9. Rational optimization of drug-target residence time: Insights from inhibitor binding to the S. aureus FabI enzyme-product complex

    Science.gov (United States)

    Chang, Andrew; Schiebel, Johannes; Yu, Weixuan; Bommineni, Gopal R.; Pan, Pan; Baxter, Michael V.; Khanna, Avinash; Sotriffer, Christoph A.; Kisker, Caroline; Tonge, Peter J.

    2013-01-01

    Drug-target kinetics has recently emerged as an especially important facet of the drug discovery process. In particular, prolonged drug-target residence times may confer enhanced efficacy and selectivity in the open in vivo system. However, the lack of accurate kinetic and structural data for series of congeneric compounds hinders the rational design of inhibitors with decreased off-rates. Therefore, we chose the Staphylococcus aureus enoyl-ACP reductase (saFabI) - an important target for the development of new anti-staphylococcal drugs - as a model system to rationalize and optimize the drug-target residence time on a structural basis. Using our new, efficient and widely applicable mechanistically informed kinetic approach, we obtained a full characterization of saFabI inhibition by a series of 20 diphenyl ethers complemented by a collection of 9 saFabI-inhibitor crystal structures. We identified a strong correlation between the affinities of the investigated saFabI diphenyl ether inhibitors and their corresponding residence times, which can be rationalized on a structural basis. Due to its favorable interactions with the enzyme, the residence time of our most potent compound exceeds 10 hours. In addition, we found that affinity and residence time in this system can be significantly enhanced by modifications predictable by a careful consideration of catalysis. Our study provides a blueprint for investigating and prolonging drug-target kinetics and may aid in the rational design of long-residence-time inhibitors targeting the essential saFabI enzyme. PMID:23697754

  10. Effect of Pouring Time and Storage Temperature on Dimensional Stability of Casts Made from Irreversible Hydrocolloid

    Directory of Open Access Journals (Sweden)

    M. Farzin

    2010-12-01

    Full Text Available Objective: The aim of this study was to evaluate the dimensional stability of casts made from an alginate impression material poured immediately and stored after specific periods.Materials and Methods: The common alginate used in Iran (Super; Iralgin, Golchai Co.,Tehran, Iran was tested. A master model was mounted on a special device and used to obtain the impressions. These impressions were stored at 23°C (SD=1 and 4°C (SD=1 in100% relative humidity, then poured with gypsum immediately and again after 12, 25, 45 and 60 minutes. The casts were measured with a traveling microscope with the precision of 0.5 micrometer.Results: The dimensional stability of the alginate and impressions were both significantly time and temperature dependent. The impressions were dimensionally stable significantly until 12 minutes of storage at room temperature and until 45 minutes of storage at 4°C(SD=1.Conclusion: The dimensional stability of the alginate impressions was influenced by the storage time and environment temperature, but a humid environment and 4°C (SD=1temperature may delay the pouring.

  11. Effects of temperature and time on deoxynivalenol (DON and zearalenone (ZON content in corn

    Directory of Open Access Journals (Sweden)

    Jauković Marko

    2014-01-01

    Full Text Available Fumonisins are Fusarium mycotoxins that occur in corn and corn-based foods and they have been implicated in several animal and human diseases. Their effect on human health is unclear, however, fumonisins are considered to be risk factors for cancer. Baking, frying, and extrusion cooking of corn at high temperatures (190°C reduce fumonisin concentrations in foods, with the amount of reduction achieved depending on cooking time, temperature, recipe, and other factors. The aim of this work was to evaluate the effectiveness of temperature (200 and 220 °C and time (15 and 20 min on the detoxification of corn flour deliberately contaminated with DON and ZON. After processing at 200°C for 15 min, an average of 12% and after 20 min an average of 15% of DON was lost. At 200°C ZON content was reduced by 22% (after 15 min and by 27% (after 20 min. Higher temperature (220°C did not significantly affect further reduction of DON or ZON content. The process was only partially effective in both cases. [Projekat Ministarstva nauke Republike Srbije, br. TR-31023 i br. TR-31053

  12. Increasing temperature causes flowering onset time changes of alpine ginger Roscoea in the Central Himalayas

    Directory of Open Access Journals (Sweden)

    Dharmalingam Mohandass

    2015-09-01

    Full Text Available Recent herbarium-based phenology assessments of many plant species have found significant responses to global climate change over the previous century. In this study, we investigate how the flowering phenology of three alpine ginger Roscoea species responses to climate change over the century from 1913 to 2011, by comparing between herbarium-based phenology records and direct flowering observations. According to the observations, flowering onset of the three alpine ginger species occurred either 22 days earlier or was delayed by 8–30 days when comparing the mean peak flowering date between herbarium-based phenology records and direct flowering observations. It is likely that this significant change in flowering onset is due to increased annual minimum and maximum temperatures and mean annual temperature by about 0.053°C per year. Our results also show that flowering time changes occurred due to an increasing winter–spring minimum temperature and monsoon minimum temperature, suggesting that these Roscoea species respond greatly to climate warming resulting in changes on flowering times.

  13. Temperature Trends in the Polar Mesosphere between 2002-2007 using TIMED/SABER Data

    Science.gov (United States)

    Goldberg, Richard A.; Kutepov, Alexander A.; Pesnell, William Dean; Latteck, Ralph; Russell, James M.

    2008-01-01

    The TIMED Satellite was launched on December 7, 2001 to study the dynamics and energy of the mesosphere and lower thermosphere. The TIMED/SABER instrument is a limb scanning infrared radiometer designed to measure a large number of minor constituents as well as the temperature of the region. In this study, we have concentrated on the polar mesosphere, to investigate the temperature characteristics as a function of spatial and temporal considerations. We used the recently revised SABER dataset (1.07) that contains improved temperature retrievals in the Earth polar summer regions. Weekly averages are used to make comparisons between the winter and summer, as well as to study the variability in different quadrants of each hemisphere. For each year studied, the duration of polar summer based on temperature measurements compares favorably with the PMSE (Polar Mesospheric Summer Echoes) season measured by radar at the ALOMAR Observatory in Norway (69 N). The PMSE period should also define the summer period suitable for the occurrence of polar mesospheric clouds. The unusual short and relatively warm polar summer in the northern hemisphere

  14. Temperature profiles of time dependent tokamak plasmas from the parallel Ohm's law

    International Nuclear Information System (INIS)

    Micozzi, P.; Roccella, M.

    1993-01-01

    Profile consistency based on the parallel component of Ohm's law has been used to obtain electron temperature profiles. A resistive neoclassical term and a term that accounts for the bootstrap current contributions have been considered in Ohm's law. A numerical code has been developed to find solutions according to the MHD equilibrium equations. For stationary plasmas, the temperature profiles, obtained by a procedure in which a pseudo-parabolic shape of (J φ /R) is assumed and the peak temperature known from experiments is used, are close to the experimental data for several very different machines (JET, TFTR, ASDEX, ALCATOR-C and FT). The main feature of the model is its capability to provide an easy parametrization of Ohm's law also in non-stationary cases, without going through the complication of a detailed solution of the magnetic field diffusion equation. A rule for estimating a maximum value of the current diffusion time inside the plasma volume in such situations is given. This rule accounts for both the temperature profiles and the stabilization times in some non-stationary pulses observed in JET. (author). 28 refs, 12 figs

  15. The Effect of Temperature and Drying Method on Drying Time and Color Quality of Mint

    Directory of Open Access Journals (Sweden)

    H Bahmanpour

    2017-10-01

    Full Text Available Introduction Mint (Mentha spicata L. cbelongs to the Lamiaceae family, is an herbaceous, perennial, aromatic and medicinal plant that cultivated for its essential oils and spices. Since the essential oil is extracted from dried plant, choosing the appropriate drying method is essential for gaining high quality essential oil.Vacuum drying technology is an alternative to conventional drying methods and reported by many authors as an efficient method for improving the drying quality especially color characteristics. On the other side, solar dryers are also useful for saving time and energy. In this study the effect of two method of dryings including vacuum-infrared versus solar at three different conventional temperatures (30, 40 and 50°C on mint plant is evaluated while factorial experiment with randomized complete block is applied. Drying time as well as color characteristics areconsidered for evaluation of each method of drying. Materials and Methods Factorial experiment with randomized complete block was applied in order to evaluate the effect of drying methods (vacuum-infrared versus solar and temperature (30, 40 and 50°C on drying time and color characteristics of mint. The initially moisture content of mint leaves measured according to the standard ASABE S358.2 during 24 hours inside an oven at 104 °C. Drying the samples continued until the moisture content (which real time measured reached to 10% wet basis. The components of a vacuum dryer consisted of a cylindrical vacuum chamber (0.335 m3 and a vacuum pump (piston version. The temperature of the chamber was controlled using three infrared bulbs using on-off controller. Temperature and weight of the products registered real time using a data acquisition system. The components of a solar dryer were consisting of a solar collector and a temperature control system which was turning the exhaust fan on and off in order to maintain the specific temperature. A date acquisition system was

  16. Proximate effects of temperature versus evolved intrinsic constraints for embryonic development times among temperate and tropical songbirds

    Science.gov (United States)

    Ton, Riccardo; Martin, Thomas E.

    2017-01-01

    The relative importance of intrinsic constraints imposed by evolved physiological trade-offs versus the proximate effects of temperature for interspecific variation in embryonic development time remains unclear. Understanding this distinction is important because slow development due to evolved trade-offs can yield phenotypic benefits, whereas slow development from low temperature can yield costs. We experimentally increased embryonic temperature in free-living tropical and north temperate songbird species to test these alternatives. Warmer temperatures consistently shortened development time without costs to embryo mass or metabolism. However, proximate effects of temperature played an increasingly stronger role than intrinsic constraints for development time among species with colder natural incubation temperatures. Long development times of tropical birds have been thought to primarily reflect evolved physiological trade-offs that facilitate their greater longevity. In contrast, our results indicate a much stronger role of temperature in embryonic development time than currently thought.

  17. Effect of time and temperature on grain size of V and V-Cr-Ti alloys

    International Nuclear Information System (INIS)

    Natesan, K.; Rink, D.L.

    1996-01-01

    Grain growth studies were conducted to evaluate the effect of time and temperature on the grain size of pure V, V-4 wt.%Cr-4 wt.%Ti, and V-5 wt.%Cr-5 wt.%Ti alloys. The temperatures used in the study were 500, 650, 800, and 1000 degrees C, and exposure times ranged between 100 and ∼5000 h. All three materials exhibited negligible grain growth at 500, 650, and 800 degrees C, even after ∼5000 h. At 1000 degrees C, pure V showed substantial grain growth after only 100 h, and V-4Cr-4Ti showed growth after 2000 h, while V-5Cr-5Ti showed no grain growth after exposure for up to 2000 h

  18. Local temperature fine-tunes the timing of spring migration in birds

    DEFF Research Database (Denmark)

    Tøttrup, Anders P.; Rainio, Kalle; Coppack, Timothy

    2010-01-01

    and predict consequences of climatic change for migratory birds. In order to better understand migration phenology and adaptation in environmental changes, we here assess the scale at which weather affects timing of spring migration in passerine birds. We use three commonly used proxies of spring......-time climatic conditions: (1) vegetation "greenness" (NDVI) in Europe, (2) local spring temperatures in northern Europe, and (3) the North Atlantic Oscillation Index (NAO) as predictors of the phenology of avian migration as well as the strength of their effect on different subsets of populations...... breeding area. Local temperature was the best single predictor of phenology with the highest explanatory power achieved in combination with NAO. Furthermore, early individuals are more affected by climatic variation compared to individuals on later passage, indicating that climatic change affects subsets...

  19. Short communication: Changes in body temperature of calves up to 2 months of age as affected by time of day, age, and ambient temperature.

    Science.gov (United States)

    Hill, T M; Bateman, H G; Suarez-Mena, F X; Dennis, T S; Schlotterbeck, R L

    2016-11-01

    Extensive measurements of calf body temperature are limited in the literature. In this study, body temperatures were collected by taping a data logger to the skin over the tail vein opposing the rectum of Holstein calves between 4 and 60d of age during 3 different periods of the summer and fall. The summer period was separated into moderate (21-33°C average low to high) and hot (25-37°C) periods, whereas the fall exhibited cool (11-19°C) ambient temperatures. Tail temperatures were compared in a mixed model ANOVA using ambient temperature, age of calf, and time of day (10-min increments) as fixed effects and calf as a random effect. Measures within calf were modeled as repeated effects of type autoregressive 1. Calf temperature increased 0.0325°C (±0.00035) per 1°C increase in ambient temperature. Body temperature varied in a distinct, diurnal pattern with time of day, with body temperatures being lowest around 0800h and highest between 1700 and 2200h. During periods of hot weather, the highest calf temperature was later in the day (~2200h). Calf minimum, maximum, and average body temperatures were all higher in hot than in moderate periods and higher in moderate than in cool periods. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. A diagnostic for time-resolved spatial profiles measurements on the ion temperature on JET

    International Nuclear Information System (INIS)

    Brocken, H.J.B.M.; Ven, H.W van der.

    1980-05-01

    A neutral particle scattering experiment for a continuous measurement of the ion temperature and ion density of the JET plasma in the hydrogen and deuterium phase is proposed. Space- and time-resolved measurements are possible by injection of a mono-energetic particle beam into the plasma and from the analysis of the velocity distribution of the scattered particles. The requirements on the injection system are specified and a suitable analyzer system is described

  1. Time dependent shear stress and temperature distribution over an insulated flat plate moving at hypersonic speed.

    Science.gov (United States)

    Rodkiewicz, C. M.; Gupta, R. N.

    1971-01-01

    The laminar two-dimensional flow over a stepwise accelerated flat plate moving with hypersonic speed at zero angle of attack is analysed. The governing equations in the self-similar form are linearized and solved numerically for small times. The solutions obtained are the deviations of the velocity and the temperature profiles from those of steady state. The presented results may be used to find the first order boundary layer induced pressure on the plate.

  2. The influence of temperature and reaction time in the degradation of natural rubber latex

    International Nuclear Information System (INIS)

    Siti Zaleha Isa; Rosiyah Yahya; Aziz Hassan; Mohd Tahir

    2007-01-01

    Liquid natural rubber (LNR /LENR) should be considered as a new material instead of a new type of rubber though they have the same configuration as the rubber used. In this work, thermal degradation of natural rubber latex was carried out to obtain LNR/LENR by varying the reaction time at different temperatures. The degraded polymers were characterized structurally using FTIR and NMR spectroscopies and the average molecular weights were determined by membrane-osmometry and viscometry. (author)

  3. Comparison of time-restricted and ad libitum self-feeding on the growth, feeding behavior and daily digestive enzyme profiles of Atlantic salmon

    Science.gov (United States)

    Shi, Ce; Liu, Ying; Yi, Mengmeng; Zheng, Jimeng; Tian, Huiqin; Du, Yishuai; Li, Xian; Sun, Guoxiang

    2017-07-01

    Although it has been hypothesized that a predictable feeding regime in animals allows physiological variables to be adjusted to maximize nutrient utilization and, hence, better growth performance, the assumption has rarely been tested. This study compares the effects of time-restricted versus free access self-feeding on the growth, feeding behavior and daily digestive enzyme rhythms of Atlantic salmon ( Salmo salar). In an experiment that lasted 6 weeks, fish (109.9 g) were divided into two groups: group 1 had free access to a self-feeder (FA); group 2 received three meals per day (2 h per meal) at dawn, midday and dusk via a time-restricted self-feeder (TR). At the end of the experiment, the fish were sampled every 3 h over a 24-h period. The results showed that the TR fish quickly synchronized their feeding behavior to the feeding window and their blood glucose showed a significant postprandial increase, while FA fish displayed no statistically significant rhythms ( P>0.05). Pepsin activity of TR fish also showed a significant daily rhythm ( P0.05). In conclusion, the study failed to confirm a link between the entrainment of daily digestive enzyme profiles and growth performance, with the TR group showing comparatively poor blood glucose regulation.

  4. Effect of temperature on oxidative stress parameters and enzyme activity in tissues of Cape river crab (Potamanautes perlatus) following exposure to silver nanoparticles (AgNPs)

    CSIR Research Space (South Africa)

    Walters, Chavon R

    2016-01-01

    Full Text Available of oxidative stress was studied in the gills and hepatopancreas of the Cape River crab Potamonautes perlatus. Responses were assessed through activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and the nonenzymatic...

  5. CARBON CRYOGEL MICROSPHERE FOR ETHYL LEVULINATE PRODUCTION: EFFECT OF CARBONIZATION TEMPERATURE AND TIME

    Directory of Open Access Journals (Sweden)

    MUZAKKIR M. ZAINOL

    2016-07-01

    Full Text Available The side products of biomass and bio-fuel industry have shown potential in producing carbon catalyst. The carbon cryogel was synthesized from ligninfurfural mixture based on the following details: 1.0 of lignin to furfural (L/F ratio, 1.0 of lignin to water (L/W ratio, and 8M of acid concentration. The lignin-furfural sol-gel mixture, initially prepared via polycondensation reaction at 90 °C for 30 min, was followed by freeze drying and carbonization process. Effects of carbonization temperature and time were investigated on the total acidity and surface area of the carbon cryogel. Furthermore, the effects of these parameters were studied on the ethyl levulinate yield through esterification reaction of levulinic acid in ethanol. The esterification reaction was conducted at reflux temperature, 10 h of reaction time, 19 molar ratio of ethanol to levulinic acid, and 15.0 wt.% carbon cryogel loading. Based on the carbonization temperature and time studies, the carbon cryogel carbonized at 500 °C and 4 h exhibited good performance as solid acid catalyst. Large total surface area and acidity significantly influenced the catalytic activity of carbon cryogel with 80.0 wt.% yield of ethyl levulinate. Thus, carbon cryogel is highly potential as acid catalyst for the esterification of levulinic acid with ethanol.

  6. Developmental Times of Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) at Constant Temperatures and Applications in Forensic Entomology.

    Science.gov (United States)

    Yang, Yong-Qiang; Li, Xue-Bo; Shao, Ru-Yue; Lyu, Zhou; Li, Hong-Wei; Li, Gen-Ping; Xu, Lyu-Zi; Wan, Li-Hua

    2016-09-01

    The characteristic life stages of infesting blowflies (Calliphoridae) such as Chrysomya megacephala (Fabricius) are powerful evidence for estimating the death time of a corpse, but an established reference of developmental times for local blowfly species is required. We determined the developmental rates of C. megacephala from southwest China at seven constant temperatures (16-34°C). Isomegalen and isomorphen diagrams were constructed based on the larval length and time for each developmental event (first ecdysis, second ecdysis, wandering, pupariation, and eclosion), at each temperature. A thermal summation model was constructed by estimating the developmental threshold temperature D0 and the thermal summation constant K. The thermal summation model indicated that, for complete development from egg hatching to eclosion, D0 = 9.07 ± 0.54°C and K = 3991.07 ± 187.26 h °C. This reference can increase the accuracy of estimations of postmortem intervals in China by predicting the growth of C. megacephala. © 2016 American Academy of Forensic Sciences.

  7. Time-temperature dependent variations in beta-carotene contents in carrot using different spectrophotometric techniques

    Science.gov (United States)

    Ullah, Rahat; Khan, Saranjam; Shah, Attaullah; Ali, Hina; Bilal, Muhammad

    2018-05-01

    The current study presents time dependent variations in the concentration of beta-carotene in carrot under different storage-temperature conditions using UV–VIS and Raman spectrophotometric techniques. The UV–VIS absorption spectra of beta-carotene extracted from carrot shows three distinct absorption peaks at 442, 467, and 500 nm with maximum absorption at 467 nm. These absorption peaks are very much reproducible and are assigned to β-carotene. Similarly, Raman spectra of carrot samples also confirmed the three main Raman peaks of beta-carotene at shift positions 1003, 1150, and 1515 cm‑1. An overall decrease in beta-carotene content has been observed for time-temperature conditions. These results depict a decrease of about 40% in the content of beta-carotene when carrot samples were stored in a refrigerator (4 °C) for the first 20 d, whereas a decrease of about 25% was observed when carrot samples were stored in a freezer (‑16 °C) for the same period. The objective of this study is to investigate the possible use of Raman spectroscopy and UV–VIS spectroscopy for quick and detailed analysis of changes (degradation) in beta-carotene content associated with time and temperature in storage (frozen foods) in order to promote quality foods for consumers. Future study with a greater focus on the concentration/content of beta-carotene in other fruits/vegetables is also desirable.

  8. Effect of frying temperature and time on image characterizations of pellet snacks.

    Science.gov (United States)

    Mohammadi Moghaddam, Toktam; BahramParvar, Maryam; Razavi, Seyed M A

    2015-05-01

    The development of non-destructive methods for the evaluation of food properties has important advantages for the food processing industries. So, the aim of this study was to evaluate the effects of frying temperature (150, 170, and 190 °C) and time (0.5, 1.5, 2.5, 3.5 and 4.5 min) on image properties (L*, a* and b*, fractal dimension, correlation, entropy, contrast and homogeneity) of pellet snacks. Textures were computed separately for eight channels (RGB, R, G, B, U, V, H and S). Enhancing the frying time from 0.5 min to 2.5 min increased the fractal dimension; but its increase from 2.5 min to 4.5 min could not expand the samples. Then, the highest volume of pellet snacks was observed at 2.5 min. Features derived from the image texture contained better information than color features. The best result was for U channel which showed that increasing the frying time increased the contrast, entropy and correlation. Developing the frying temperature up to 170 °C decreased contrast, entropy and correlation of images; however these factors were increased when frying temperature was 190 °C. These results were invert for homogeneity.

  9. Enzyme stabilization for pesticide degradation

    Energy Technology Data Exchange (ETDEWEB)

    Rivers, D.B.; Frazer, F.R. III; Mason, D.W.; Tice, T.R.

    1988-01-01

    Enzymes offer inherent advantages and limitations as active components of formulations used to decontaminate soil and equipment contaminated with toxic materials such as pesticides. Because of the catalytic nature of enzymes, each molecule of enzyme has the potential to destroy countless molecules of a contaminating toxic compound. This degradation takes place under mild environmental conditions of pH, temperature, pressure, and solvent. The basic limitation of enzymes is their degree of stability during storage and application conditions. Stabilizing methods such as the use of additives, covalent crosslinking, covalent attachment, gel entrapment, and microencapsulation have been directed developing an enzyme preparation that is stable under extremes of pH, temperature, and exposure to organic solvents. Initial studies were conducted using the model enzymes subtilisin and horseradish peroxidase.

  10. Moderate reagent mixing on an orbital shaker reduces the incubation time of enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Kumar, Saroj; Ahirwar, Rajesh; Rehman, Ishita; Nahar, Pradip

    2017-07-01

    Rapid diagnostic tests can be developed using ELISA for detection of diseases in emergency conditions. Conventional ELISA takes 1-2 days, making it unsuitable for rapid diagnostics. Here, we report the effect of reagents mixing via shaking or vortexing on the assay timing of ELISA. A 48-min protocol of ELISA involving 12-min incubations with reagent mixing at 750 rpm for every step was optimized. Contrary to this, time-optimized control ELISA performed without mixing produced similar results in 8 h, leaving a time gain of 7 h using the developed protocol. Collectively, the findings suggest the development of ELISA-based rapid diagnostics. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Time, stress, and temperature-dependent deformation in nanostructured copper: Stress relaxation tests and simulations

    International Nuclear Information System (INIS)

    Yang, Xu-Sheng; Wang, Yun-Jiang; Wang, Guo-Yong; Zhai, Hui-Ru; Dai, L.H.; Zhang, Tong-Yi

    2016-01-01

    In the present work, stress relaxation tests, high-resolution transmission electron microscopy (HRTEM), and molecular dynamics (MD) simulations were conducted on coarse-grained (cg), nanograined (ng), and nanotwinned (nt) copper at temperatures of 22 °C (RT), 30 °C, 40 °C, 50 °C, and 75 °C. The comprehensive investigations provide sufficient information for the building-up of a formula to describe the time, stress, and temperature-dependent deformation and clarify the relationship among the strain rate sensitivity parameter, stress exponent, and activation volume. The typically experimental curves of logarithmic plastic strain rate versus stress exhibited a three staged relaxation process from a linear high stress relaxation region to a subsequent nonlinear stress relaxation region and finally to a linear low stress relaxation region, which only showed-up at the test temperatures higher than 22 °C, 22 °C, and 30 °C, respectively, in the tested cg-, ng-, and nt-Cu specimens. The values of stress exponent, stress-independent activation energy, and activation volume were determined from the experimental data in the two linear regions. The determined activation parameters, HRTEM images, and MD simulations consistently suggest that dislocation-mediated plastic deformation is predominant in all tested cg-, ng-, and nt-Cu specimens in the initial linear high stress relaxation region at the five relaxation temperatures, whereas in the linear low stress relaxation region, the grain boundary (GB) diffusion-associated deformation is dominant in the ng- and cg-Cu specimens, while twin boundary (TB) migration, i.e., twinning and detwinning with parallel partial dislocations, governs the time, stress, and temperature-dependent deformation in the nt-Cu specimens.

  12. Strength and Anisotropy in Tournemire Shale: Temperature, Pressure and Time Dependences

    Science.gov (United States)

    Bonnelye, A.; Schubnel, A.; Zhi, G.; David, C.; Dick, P.

    2017-12-01

    Time and temperature dependent rock deformation has both scientific and socio-economic implications for natural hazards, the oil and gas industry and nuclear waste disposal. During the past decades, most studies on brittle creep have focused on igneous rocks and porous sedimentary rocks. To our knowledge, only few studies have been carried out on the brittle creep behavior of shale. We conducted a series of creep experiments on shale specimens coming from the French Institute for Nuclear Safety (IRSN) underground research laboratory located in Tournemire, France, under two different temperatures (26°C, 75°C) and confining pressures (10 MPa, 80 MPa), for three orientations (σ1along, perpendicular and 45° to bedding). In these long-term experiments (approximately 10 days), stress and strains were recorded continuously, while ultrasonic acoustic velocities were recorded every 1 15 minutes. The brittle creep failure stress of our Tournemire shale samples was systematically observed 50% higher than its short-term peak strength, with larger final axial strain accumulated. During creep, ultrasonic wave velocities first decreased, and then increased gradually. The magnitude of elastic wave velocity variations showed an important orientation and temperature dependence: velocities measured perpendicular to bedding showed increased variation, variation that was enhanced at higher temperature and higher pressure. The case of complete elastic anisotropy reversal was observed for sample deformed perpendicular to bedding, with amount of axial strain needed to reach anisotropy reversal reduced at higher temperature. SEM observations highlight the competition between crack growth, sealing/healing, and possibly mineral rotation, pressure solution or anisotropic compaction during creep defromation. Our study highlights that the short-term peak strength has little meaning in shale material, which can over-consolidate importantly by `plastic' flow. In addition, we show that elastic

  13. Temperature and time stability of whole blood lactate: implications for feasibility of pre-hospital measurement

    Directory of Open Access Journals (Sweden)

    Watkins Timothy R

    2011-05-01

    Full Text Available Abstract Background To determine the time and temperature stability of whole blood lactate using experimental conditions applicable to the out-of-hospital environment. Findings We performed a prospective, clinical laboratory-based study at an academic hospital. Whole blood lactate was obtained by venipuncture from five post-prandial, resting subjects. Blood was stored in lithium heparinized vacutainers in three temperature conditions: 1 room temperature (20°C, 2 wrapped in a portable, instant ice pack (0°C, or 3 wet ice (0°C. Lactate concentrations (mmol/L were measured at 0, 5, 10, 20, and 30 minutes after sampling, and compared using repeated measures analysis of variance. Mean baseline lactate among resting subjects (N = 5 was 1.24 mmol/L (95%CI: 0.49,1.98 mmol/L. After 30 minutes, lactate concentration increased, on average, by 0.08 mmol/L (95%CI: 0.02,0.13 mmol/L, 0.18 mmol/L (95%CI: 0.07,0.28 mmol/L, and 0.36 mmol/L (95%CI: 0.24,0.47 mmol/L when stored in wet ice, ice pack, and room temperature, respectively. The increase in lactate was similar in samples wrapped in portable ice pack or stored in wet ice at all time points (p > 0.05, and met criteria for equivalence at 30 minutes. However, lactate measurements from whole blood stored at room temperature were significantly greater, on average, than wet ice or portable ice pack within five and ten minutes, respectively (p Conclusions Whole blood lactate measurements using samples stored in a portable ice pack are similar to wet ice for up to 30 minutes. These conditions are applicable to the out-of-hospital environment, and should inform future studies of pre-hospital measurement of lactate.

  14. The influence of storage time and temperature on the measurement of serum, plasma and urine osmolality.

    Science.gov (United States)

    Bezuidenhout, Karla; Rensburg, Megan A; Hudson, Careen L; Essack, Younus; Davids, M Razeen

    2016-07-01

    Many clinical laboratories require that specimens for serum and urine osmolality determination be processed within 3 h of sampling or need to arrive at the laboratory on ice. This protocol is based on the World Health Organization report on sample storage and stability, but the recommendation lacks good supporting data. We studied the effect of storage temperature and time on osmolality measurements. Blood and urine samples were obtained from 16 patients and 25 healthy volunteers. Baseline serum, plasma and urine osmolality measurements were performed within 30 min. Measurements were then made at 3, 6, 12, 24 and 36 h on samples stored at 4-8℃ and room temperature. We compared baseline values with subsequent measurements and used difference plots to illustrate changes in osmolality. At 4-8℃, serum and plasma osmolality were stable for up to 36 h. At room temperature, serum and plasma osmolality were very stable for up to 12 h. At 24 and 36 h, changes from baseline osmolality were statistically significant and exceeded the total allowable error of 1.5% but not the reference change value of 4.1%. Urine osmolality was extremely stable at room temperature with a mean change of less than 1 mosmol/kg at 36 h. Serum and plasma samples can be stored at room temperature for up to 36 h before measuring osmolality. Cooling samples to 4-8℃ may be useful when delays in measurement beyond 12 h are anticipated. Urine osmolality is extremely stable for up to 36 h at room temperature. © The Author(s) 2015.

  15. Femtosecond Time-Resolved Resonance-Enhanced CARS of Gaseous Iodine at Room Temperature

    International Nuclear Information System (INIS)

    He Ping; Fan Rong-Wei; Xia Yuan-Qin; Yu Xin; Chen De-Ying; Yao Yong

    2011-01-01

    Time-resolved resonance-enhanced coherent anti-Stokes Raman scattering (CARS) is applied to investigate molecular dynamics in gaseous iodine. 40 fs laser pulses are applied to create and monitor the high vibrational states of iodine at room temperature (corresponding to a vapor pressure as low as about 35 Pa) by femtosecond time-resolved CARS. Depending on the time delay between the probe pulse and the pump/Stokes pulse pairs, the high vibrational states both on the electronically ground states and the excited states can be detected as oscillations in the CARS transient signal. It is proved that the femtosecond time-resolved CARS technique is a promising candidate for investigating the molecular dynamics of a low concentration system and can be applied to environmental and atmospheric monitoring measurements. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  16. Evolution of a major drug metabolizing enzyme defect in the domestic cat and other felidae: phylogenetic timing and the role of hypercarnivory.

    Directory of Open Access Journals (Sweden)

    Binu Shrestha

    2011-03-01

    Full Text Available The domestic cat (Felis catus shows remarkable sensitivity to the adverse effects of phenolic drugs, including acetaminophen and aspirin, as well as structurally-related toxicants found in the diet and environment. This idiosyncrasy results from pseudogenization of the gene encoding UDP-glucuronosyltransferase (UGT 1A6, the major species-conserved phenol detoxification enzyme. Here, we established the phylogenetic timing of disruptive UGT1A6 mutations and explored the hypothesis that gene inactivation in cats was enabled by minimal exposure to plant-derived toxicants. Fixation of the UGT1A6 pseudogene was estimated to have occurred between 35 and 11 million years ago with all extant Felidae having dysfunctional UGT1A6. Out of 22 additional taxa sampled, representative of most Carnivora families, only brown hyena (Parahyaena brunnea and northern elephant seal (Mirounga angustirostris showed inactivating UGT1A6 mutations. A comprehensive literature review of the natural diet of the sampled taxa indicated that all species with defective UGT1A6 were hypercarnivores (>70% dietary animal matter. Furthermore those species with UGT1A6 defects showed evidence for reduced amino acid constraint (increased dN/dS ratios approaching the neutral selection value of 1.0 as compared with species with intact UGT1A6. In contrast, there was no evidence for reduced amino acid constraint for these same species within UGT1A1, the gene encoding the enzyme responsible for detoxification of endogenously generated bilirubin. Our results provide the first evidence suggesting that diet may have played a permissive role in the devolution of a mammalian drug metabolizing enzyme. Further work is needed to establish whether these preliminary findings can be generalized to all Carnivora.

  17. Multi-species time-history measurements during high-temperature acetone and 2-butanone pyrolysis

    KAUST Repository

    Lam, Kingyiu

    2013-01-01

    High-temperature acetone and 2-butanone pyrolysis studies were conducted behind reflected shock waves using five species time-history measurements (ketone, CO, CH3, CH4 and C2H4). Experimental conditions covered temperatures of 1100-1600 Kat 1.6 atm, for mixtures of 0.25-1.5% ketone in argon. During acetone pyrolysis, the CO concentration time-history was found to be strongly sensitive to the acetone dissociation rate constant κ1 (CH3COCH3 → CH3 + CH3CO), and this could be directly determined from the CO time-histories, yielding κ1(1.6 atm) = 2.46 × 1014 exp(-69.3 [kcal/mol]/RT) s-1 with an uncertainty of ±25%. This rate constant is in good agreement with previous shock tube studies from Sato and Hidaka (2000) [3] and Saxena et al. (2009) [4] (within 30%) at temperatures above 1450 K, but is at least three times faster than the evaluation from Sato and Hidaka at temperatures below 1250 K. Using this revised κ1 value with the recent mechanism of Pichon et al. (2009) [5], the simulated profiles during acetone pyrolysis show excellent agreement with all five species time-history measurements. Similarly, the overall 2-butanone decomposition rate constant κtot was inferred from measured 2-butanone time-histories, yielding κ tot(1.5 atm) = 6.08 × 1013 exp(-63.1 [kcal/mol]/RT) s -1 with an uncertainty of ±35%. This rate constant is approximately 30% faster than that proposed by Serinyel et al. (2010) [11] at 1119 K, and approximately 100% faster at 1412 K. Using the measured 2-butanone and CO time-histories and an O-atom balance analysis, a missing removal pathway for methyl ketene was identified. The rate constant for the decomposition of methyl ketene was assumed to be the same as the value for the ketene decomposition reaction. Using the revised κtot value and adding the methyl ketene decomposition reaction to the Serinyel et al. mechanism, the simulated profiles during 2-butanone pyrolysis show good agreement with the measurements for all five species.

  18. Real-Time Prediction of Temperature Elevation During Robotic Bone Drilling Using the Torque Signal.

    Science.gov (United States)

    Feldmann, Arne; Gavaghan, Kate; Stebinger, Manuel; Williamson, Tom; Weber, Stefan; Zysset, Philippe

    2017-09-01

    Bone drilling is a surgical procedure commonly required in many surgical fields, particularly orthopedics, dentistry and head and neck surgeries. While the long-term effects of thermal bone necrosis are unknown, the thermal damage to nerves in spinal or otolaryngological surgeries might lead to partial paralysis. Previous models to predict the temperature elevation have been suggested, but were not validated or have the disadvantages of computation time and complexity which does not allow real time predictions. Within this study, an analytical temperature prediction model is proposed which uses the torque signal of the drilling process to model the heat production of the drill bit. A simple Green's disk source function is used to solve the three dimensional heat equation along the drilling axis. Additionally, an extensive experimental study was carried out to validate the model. A custom CNC-setup with a load cell and a thermal camera was used to measure the axial drilling torque and force as well as temperature elevations. Bones with different sets of bone volume fraction were drilled with two drill bits ([Formula: see text]1.8 mm and [Formula: see text]2.5 mm) and repeated eight times. The model was calibrated with 5 of 40 measurements and successfully validated with the rest of the data ([Formula: see text]C). It was also found that the temperature elevation can be predicted using only the torque signal of the drilling process. In the future, the model could be used to monitor and control the drilling process of surgeries close to vulnerable structures.

  19. All-Digital Time-Domain CMOS Smart Temperature Sensor with On-Chip Linearity Enhancement.

    Science.gov (United States)

    Chen, Chun-Chi; Chen, Chao-Lieh; Lin, Yi

    2016-01-30

    This paper proposes the first all-digital on-chip linearity enhancement technique for improving the accuracy of the time-domain complementary metal-oxide semiconductor (CMOS) smart temperature sensor. To facilitate on-chip application and intellectual property reuse, an all-digital time-domain smart temperature sensor was implemented using 90 nm Field Programmable Gate Arrays (FPGAs). Although the inverter-based temperature sensor has a smaller circuit area and lower complexity, two-point calibration must be used to achieve an acceptable inaccuracy. With the help of a calibration circuit, the influence of process variations was reduced greatly for one-point calibration support, reducing the test costs and time. However, the sensor response still exhibited a large curvature, which substantially affected the accuracy of the sensor. Thus, an on-chip linearity-enhanced circuit is proposed to linearize the curve and achieve a new linearity-enhanced output. The sensor was implemented on eight different Xilinx FPGA using 118 slices per sensor in each FPGA to demonstrate the benefits of the linearization. Compared with the unlinearized version, the maximal inaccuracy of the linearized version decreased from 5 °C to 2.5 °C after one-point calibration in a range of -20 °C to 100 °C. The sensor consumed 95 μW using 1 kSa/s. The proposed linearity enhancement technique significantly improves temperature sensing accuracy, avoiding costly curvature compensation while it is fully synthesizable for future Very Large Scale Integration (VLSI) system.

  20. Time--temperature relation of embryonic development in the northwestern salamander, Ambystoma gracile

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H A

    1976-04-01

    A field and laboratory study on temperature-related embryonic development of Ambystoma gracile was made on a population from northwestern Washington. Natural spawning began in the beaver pond during early March, and the duration of embryonic development (stages 1 to 46) was about 62 days. Average water temperature in the pond during embryonic development was 8.5/sup 0/C (range, 4.4 to 14.3/sup 0/C). The laboratory data of embryonic development at constant temperatures show that the limits of temperature tolerance are about 5 to 22.5/sup 0/C. Rate of development was measured by determining time required to develop from first cleavage (stage 2) to gill circulation (stage 37); representative rates are 12.7 days at 20/sup 0/C, 27 days at 12/sup 0/C, and 89 days at 7/sup 0/C. Embryos of A. gracile have the slowest rate of development when compared with embryos of four other species of Ambystoma (maculatum, mexicanum, tigrinum, and jeffersonianum) and with embryos of three Pacific Northwest frogs (Ascaphus truei, Rana aurora, and Hyla regilla).

  1. Extracting the temperature of hot carriers in time- and angle-resolved photoemission

    International Nuclear Information System (INIS)

    Ulstrup, Søren; Hofmann, Philip; Johannsen, Jens Christian; Grioni, Marco

    2014-01-01

    The interaction of light with a material's electronic system creates an out-of-equilibrium (non-thermal) distribution of optically excited electrons. Non-equilibrium dynamics relaxes this distribution on an ultrafast timescale to a hot Fermi-Dirac distribution with a well-defined temperature. The advent of time- and angle-resolved photoemission spectroscopy (TR-ARPES) experiments has made it possible to track the decay of the temperature of the excited hot electrons in selected states in the Brillouin zone, and to reveal their cooling in unprecedented detail in a variety of emerging materials. It is, however, not a straightforward task to determine the temperature with high accuracy. This is mainly attributable to an a priori unknown position of the Fermi level and the fact that the shape of the Fermi edge can be severely perturbed when the state in question is crossing the Fermi energy. Here, we introduce a method that circumvents these difficulties and accurately extracts both the temperature and the position of the Fermi level for a hot carrier distribution by tracking the occupation statistics of the carriers measured in a TR-ARPES experiment

  2. Extracting the temperature of hot carriers in time- and angle-resolved photoemission.

    Science.gov (United States)

    Ulstrup, Søren; Johannsen, Jens Christian; Grioni, Marco; Hofmann, Philip

    2014-01-01

    The interaction of light with a material's electronic system creates an out-of-equilibrium (non-thermal) distribution of optically excited electrons. Non-equilibrium dynamics relaxes this distribution on an ultrafast timescale to a hot Fermi-Dirac distribution with a well-defined temperature. The advent of time- and angle-resolved photoemission spectroscopy (TR-ARPES) experiments has made it possible to track the decay of the temperature of the excited hot electrons in selected states in the Brillouin zone, and to reveal their cooling in unprecedented detail in a variety of emerging materials. It is, however, not a straightforward task to determine the temperature with high accuracy. This is mainly attributable to an a priori unknown position of the Fermi level and the fact that the shape of the Fermi edge can be severely perturbed when the state in question is crossing the Fermi energy. Here, we introduce a method that circumvents these difficulties and accurately extracts both the temperature and the position of the Fermi level for a hot carrier distribution by tracking the occupation statistics of the carriers measured in a TR-ARPES experiment.

  3. Drosophila mitotypes determine developmental time in a diet and temperature dependent manner.

    Science.gov (United States)

    Towarnicki, Samuel G; Ballard, J William O

    2017-07-01

    It is well known that specific mitochondrial (mt) DNA mutations can reduce organismal fitness and influence mitochondrial-nuclear interactions. However, determining specific mtDNA mutations that are beneficial has been elusive. In this study, we vary the diet and environmental temperature to study larval development time of two Drosophila melanogaster mitotypes (Alstonville and Dahomey), in two nuclear genetic backgrounds, and investigate developmental differences through weight, feeding rate, and movement. To manipulate the diet, we utilize the nutritional geometric framework to manipulate isocaloric diets of differing macronutrient ratios (1:2 and 1:16 protein: carbohydrate (P:C) ratios) and raise flies at three temperatures (19°C, 23°C and 27°C). Larvae with Dahomey mtDNA develop more slowly than Alstonville when fed the 1:2 P:C diet at all temperatures and developed more quickly when fed the 1:16 P:C diet at 23°C and 27°C. We determined that Dahomey larvae eat more, move less, and weigh more than Alstonville larvae when raised on the 1:16 P:C diet and that these physiological responses are modified by temperature. We suggest that 1 (or more) of 4 mtDNA changes is likely responsible for the observed effects and posit the mtDNA changes moderate a physiological trade-off between consumption and foraging. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Dynamical equations for time-ordered Green’s functions: from the Keldysh time-loop contour to equilibrium at finite and zero temperature

    International Nuclear Information System (INIS)

    Ness, H; Dash, L K

    2012-01-01

    We study the dynamical equation of the time-ordered Green’s function at finite temperature. We show that the time-ordered Green’s function obeys a conventional Dyson equation only at equilibrium and in the limit of zero temperature. In all other cases, i.e. finite temperature at equilibrium or non-equilibrium, the time-ordered Green’s function obeys instead a modified Dyson equation. The derivation of this result is obtained from the general formalism of the non-equilibrium Green’s functions on the Keldysh time-loop contour. At equilibrium, our result is fully consistent with the Matsubara temperature Green’s function formalism and also justifies rigorously the correction terms introduced in an ad hoc way with Hedin and Lundqvist. Our results show that one should use the appropriate dynamical equation for the time-ordered Green’s function when working beyond the equilibrium zero-temperature limit.

  5. Reference of Temperature and Time during tempering process for non-stoichiometric FTO films

    Science.gov (United States)

    Yang, J. K.; Liang, B.; Zhao, M. J.; Gao, Y.; Zhang, F. C.; Zhao, H. L.

    2015-10-01

    In order to enhance the mechanical strength of Low-E glass, Fluorine-doped tin oxide (FTO) films have to be tempered at high temperatures together with glass substrates. The effects of tempering temperature (600 °C ~ 720 °C) and time (150 s ~ 300 s) on the structural and electrical properties of FTO films were investigated. The results show all the films consist of non-stoichiometric, polycrystalline SnO2 without detectable amounts of fluoride. 700 °C and 260 s may be the critical tempering temperature and time, respectively. FTO films tempered at 700 °C for 260 s possesses the resistivity of 7.54 × 10-4 Ω•cm, the average transmittance in 400 ~ 800 nm of ~80%, and the calculated emissivity of 0.38. Hall mobility of FTO films tempered in this proper condition is mainly limited by the ionized impurity scattering. The value of [O]/[Sn] at the film surface is much higher than the stoichiometric value of 2.0 of pure crystalline SnO2.

  6. Simple DNA extraction of urine samples: Effects of storage temperature and storage time.

    Science.gov (United States)

    Ng, Huey Hian; Ang, Hwee Chen; Hoe, See Ying; Lim, Mae-Lynn; Tai, Hua Eng; Soh, Richard Choon Hock; Syn, Christopher Kiu-Choong

    2018-06-01

    Urine samples are commonly analysed in cases with suspected illicit drug consumption. In events of alleged sample mishandling, urine sample source identification may be necessary. A simple DNA extraction procedure suitable for STR typing of urine samples was established on the Promega Maxwell ® 16 paramagnetic silica bead platform. A small sample volume of 1.7mL was used. Samples were stored at room temperature, 4°C and -20°C for 100days to investigate the influence of storage temperature and time on extracted DNA quantity and success rate of STR typing. Samples stored at room temperature exhibited a faster decline in DNA yield with time and lower typing success rates as compared to those at 4°C and -20°C. This trend can likely be attributed to DNA degradation. In conclusion, this study presents a quick and effective DNA extraction protocol from a small urine volume stored for up to 100days at 4°C and -20°C. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Real time thermal hydraulic model for high temperature gas-cooled reactor core

    International Nuclear Information System (INIS)

    Sui Zhe; Sun Jun; Ma Yuanle; Zhang Ruipeng

    2013-01-01

    A real-time thermal hydraulic model of the reactor core was described and integrated into the simulation system for the high temperature gas-cooled pebble bed reactor nuclear power plant, which was developed in the vPower platform, a new simulation environment for nuclear and fossil power plants. In the thermal hydraulic model, the helium flow paths were established by the flow network tools in order to obtain the flow rates and pressure distributions. Meanwhile, the heat structures, representing all the solid heat transfer elements in the pebble bed, graphite reflectors and carbon bricks, were connected by the heat transfer network in order to solve the temperature distributions in the reactor core. The flow network and heat transfer network were coupled and calculated in real time. Two steady states (100% and 50% full power) and two transients (inlet temperature step and flow step) were tested that the quantitative comparisons of the steady results with design data and qualitative analysis of the transients showed the good applicability of the present thermal hydraulic model. (authors)

  8. Time-resolved and temperature tuneable measurements of fluorescent intensity using a smartphone fluorimeter.

    Science.gov (United States)

    Hossain, Md Arafat; Canning, John; Yu, Zhikang; Ast, Sandra; Rutledge, Peter J; Wong, Joseph K-H; Jamalipour, Abbas; Crossley, Maxwell J

    2017-05-30

    A smartphone fluorimeter capable of time-based fluorescence intensity measurements at various temperatures is reported. Excitation is provided by an integrated UV LED (λ ex = 370 nm) and detection obtained using the in-built CMOS camera. A Peltier is integrated to allow measurements of the intensity over T = 10 to 40 °C. All components are controlled using a smartphone battery powered Arduino microcontroller and a customised Android application that allows sequential fluorescence imaging and quantification every δt = 4 seconds. The temperature dependence of fluorescence intensity for four emitters (rhodamine B, rhodamine 6G, 5,10,15,20-tetraphenylporphyrin and 6-(1,4,8,11-tetraazacyclotetradecane)2-ethyl-naphthalimide) are characterised. The normalised fluorescence intensity over time of the latter chemosensor dye complex in the presence of Zn 2+ is observed to accelerate with an increasing rate constant, k = 1.94 min -1 at T = 15 °C and k = 3.64 min -1 at T = 30 °C, approaching a factor of ∼2 with only a change in temperature of ΔT = 15 °C. Thermally tuning these twist and bend associated rates to optimise sensor approaches and device applications is proposed.

  9. Influence of acidification, pasteurization, centrifugation and storage time and temperature on watermelon juice quality.

    Science.gov (United States)

    Tarazona-Díaz, Martha Patricia; Aguayo, Encarna

    2013-12-01

    Watermelon juice has gained increasing popularity among consumers as a rich natural source of functional compounds such as lycopene and citrulline. However, the final quality of the juice depends significantly on its acidification, pasteurization, centrifugation and storage time and temperature. In this study, these characteristics were assessed in watermelon juice pasteurized at 87.7 °C for 20 s and stored for up to 30 days at 4 or 8 °C. The acidifier citric acid provided an adequate sensory quality, similar to natural watermelon juice. Centrifugation and pasteurization significantly reduced the red color, bioactive compounds (lycopene, antioxidant capacity and total polyphenols) and sensory quality of the juice, particularly when the storage time was extended and a temperature of 8 °C was used (P ≤ 0.05). All treated juices were microbiologically safe for up to 30 days when stored at 4 or 8 °C. In terms of sensory acceptability, only non-centrifuged juices stored for up to 20 days at 4 °C remained above the commercial limit. The present results suggest that using a non-centrifugation process and a storage temperature of 4 °C yields a watermelon juice that better retains its sensory and functional qualities. © 2013 Society of Chemical Industry.

  10. Time-dependent deformation at elevated temperatures in basalt from El Hierro, Stromboli and Teide volcanoes

    Science.gov (United States)

    Benson, P. M.; Fahrner, D.; Harnett, C. E.; Fazio, M.

    2014-12-01

    Time dependent deformation describes the process whereby brittle materials deform at a stress level below their short-term material strength (Ss), but over an extended time frame. Although generally well understood in engineering (where it is known as static fatigue or "creep"), knowledge of how rocks creep and fail has wide ramifications in areas as diverse as mine tunnel supports and the long term stability of critically loaded rock slopes. A particular hazard relates to the instability of volcano flanks. A large number of flank collapses are known such as Stromboli (Aeolian islands), Teide, and El Hierro (Canary Islands). Collapses on volcanic islands are especially complex as they necessarily involve the combination of active tectonics, heat, and fluids. Not only does the volcanic system generate stresses that reach close to the failure strength of the rocks involved, but when combined with active pore fluid the process of stress corrosion allows the rock mass to deform and creep at stresses far lower than Ss. Despite the obvious geological hazard that edifice failure poses, the phenomenon of creep in volcanic rocks at elevated temperatures has yet to be thoroughly investigated in a well controlled laboratory setting. We present new data using rocks taken from Stromboli, El Heirro and Teide volcanoes in order to better understand the interplay between the fundamental rock mechanics of these basalts and the effects of elevated temperature fluids (activating stress corrosion mechanisms). Experiments were conducted over short (30-60 minute) and long (8-10 hour) time scales. For this, we use the method of Heap et al., (2011) to impose a constant stress (creep) domain deformation monitored via non-contact axial displacement transducers. This is achieved via a conventional triaxial cell to impose shallow conditions of pressure (<25 MPa) and temperature (<200 °C), and equipped with a 3D laboratory seismicity array (known as acoustic emission, AE) to monitor the micro

  11. Analytical solution of transient temperature in continuous wave end-pumped laser slab: Reduction of temperature distribution and time of thermal response

    Directory of Open Access Journals (Sweden)

    Shibib Khalid S.

    2017-01-01

    Full Text Available An analytical solution of transient 3-D heat equation based on integral transform method is derived. The result are compared with numerical solution, and good agreements are obtained. Minimization of response time and temperature distribution through a laser slab are tested. It is found that the increasing in the lateral convection heat transfer coefficient can significantly reduce the response time and the temperature distribution while no effect on response time is observed when changing pumping profile from Gaussian to top hat beam in spite of the latter reduce the temperature distribution, also it is found that dividing the pumping power between two slab ends might reduce the temperature distribution and it has no effect on thermal response time.

  12. Predictability of monthly temperature and precipitation using automatic time series forecasting methods

    Science.gov (United States)

    Papacharalampous, Georgia; Tyralis, Hristos; Koutsoyiannis, Demetris

    2018-02-01

    We investigate the predictability of monthly temperature and precipitation by applying automatic univariate time series forecasting methods to a sample of 985 40-year-long monthly temperature and 1552 40-year-long monthly precipitation time series. The methods include a naïve one based on the monthly values of the last year, as well as the random walk (with drift), AutoRegressive Fractionally Integrated Moving Average (ARFIMA), exponential smoothing state-space model with Box-Cox transformation, ARMA errors, Trend and Seasonal components (BATS), simple exponential smoothing, Theta and Prophet methods. Prophet is a recently introduced model inspired by the nature of time series forecasted at Facebook and has not been applied to hydrometeorological time series before, while the use of random walk, BATS, simple exponential smoothing and Theta is rare in hydrology. The methods are tested in performing multi-step ahead forecasts for the last 48 months of the data. We further investigate how different choices of handling the seasonality and non-normality affect the performance of the models. The results indicate that: (a) all the examined methods apart from the naïve and random walk ones are accurate enough to be used in long-term applications; (b) monthly temperature and precipitation can be forecasted to a level of accuracy which can barely be improved using other methods; (c) the externally applied classical seasonal decomposition results mostly in better forecasts compared to the automatic seasonal decomposition used by the BATS and Prophet methods; and (d) Prophet is competitive, especially when it is combined with externally applied classical seasonal decomposition.

  13. Effect of austempering temperature and time on mechanical properties of SAE 9260 steel

    Science.gov (United States)

    Dalwatkar, Ranjit; Prabhu, N.; Singh, R. K. P.

    2018-04-01

    This work describes the effect of austempering heat treatment on microstrcuture and mechanical properties of SAE 9260 steel. Steel samples, austenitized at 900 °C for one hour, were isothermally heat treated in the temperature range 300,325 and 350 °C for different times. Microstructural characterization was carried out using optical and scanning electron microscopes. The microstructure of the austempered samples consisted of bainitic ferrite and retained austenite. The volume fraction of retained austenite was determined using X-ray diffraction. Isothermal heat treatment at 350 °C for 20 min, resulted in a retained austenite content of around 38% in the microstructure. Increase in isothermal transformation temperature led to an increase in the fraction of retained austenite. Also, good combination of strength and ductility was obtained in the samples with increased amounts of retained austenite.

  14. Apparatus for dynamic measurement of gases released from materials heated under programmed temperature-time control

    International Nuclear Information System (INIS)

    Early, J.W.; Abernathey, R.M.

    1982-04-01

    This apparatus, a prototype of one being constructed for hotcell examination of irradiated nuclear materials, measures dynamic release rates and integrated volumes of individual gases from materials heated under controlled temperature-time programs. It consists of an inductively heated vacuum furnace connected to a quadrupole mass spectrometer. A computerized control system with data acquisition provides scanning rates down to 1s and on-line tabular and graphic displays. Heating rates are up to 1300 0 C/min to a maximum temperature of 2000 0 C. The measurement range is about 10 -6 to 10 -2 torr-liter/s for H 2 , CH 4 , H 2 O, N 2 , and CO and 10 -8 to 10 -2 torr-liter/s for He, Kr, and Xe. Applications are described for measurements of Kr and Xe in mixed oxide fuel, various gases in UO 2 pellets, and He in 238 PuO 2 power and heat sources

  15. MOSS spectroscopic camera for imaging time resolved plasma species temperature and flow speed

    International Nuclear Information System (INIS)

    Michael, Clive; Howard, John

    2000-01-01

    A MOSS (Modulated Optical Solid-State) spectroscopic camera has been devised to monitor the spatial and temporal variations of temperatures and flow speeds of plasma ion species, the Doppler broadening measurement being made of spectroscopic lines specified. As opposed to a single channel MOSS spectrometer, the camera images light from plasma onto an array of light detectors, being mentioned 2D imaging of plasma ion temperatures and flow speeds. In addition, compared to a conventional grating spectrometer, the MOSS camera shows an excellent light collecting performance which leads to the improvement of signal to noise ratio and of time resolution. The present paper first describes basic items of MOSS spectroscopy, then follows MOSS camera with an emphasis on the optical system of 2D imaging. (author)

  16. Joint Temperature-Lasing Mode Compensation for Time-of-Flight LiDAR Sensors

    Directory of Open Access Journals (Sweden)

    Anas Alhashimi

    2015-12-01

    Full Text Available We propose an expectation maximization (EM strategy for improving the precision of time of flight (ToF light detection and ranging (LiDAR scanners. The novel algorithm statistically accounts not only for the bias induced by temperature changes in the laser diode, but also for the multi-modality of the measurement noises that is induced by mode-hopping effects. Instrumental to the proposed EM algorithm, we also describe a general thermal dynamics model that can be learned either from just input-output data or from a combination of simple temperature experiments and information from the laser’s datasheet. We test the strategy on a SICK LMS 200 device and improve its average absolute error by a factor of three.

  17. MOSS spectroscopic camera for imaging time resolved plasma species temperature and flow speed

    Energy Technology Data Exchange (ETDEWEB)

    Michael, Clive; Howard, John [Australian National Univ., Plasma Research Laboratory, Canberra (Australia)

    2000-03-01

    A MOSS (Modulated Optical Solid-State) spectroscopic camera has been devised to monitor the spatial and temporal variations of temperatures and flow speeds of plasma ion species, the Doppler broadening measurement being made of spectroscopic lines specified. As opposed to a single channel MOSS spectrometer, the camera images light from plasma onto an array of light detectors, being mentioned 2D imaging of plasma ion temperatures and flow speeds. In addition, compared to a conventional grating spectrometer, the MOSS camera shows an excellent light collecting performance which leads to the improvement of signal to noise ratio and of time resolution. The present paper first describes basic items of MOSS spectroscopy, then follows MOSS camera with an emphasis on the optical system of 2D imaging. (author)

  18. Cold-Adapted Enzymes

    Science.gov (United States)

    Georlette, D.; Bentahir, M.; Claverie, P.; Collins, T.; D'amico, S.; Delille, D.; Feller, G.; Gratia, E.; Hoyoux, A.; Lonhienne, T.; Meuwis, M.-a.; Zecchinon, L.; Gerday, Ch.

    In the last few years, increased attention has been focused on enzymes produced by cold-adapted micro-organisms. It has emerged that psychrophilic enzymes represent an extremely powerful tool in both protein folding investigations and for biotechnological purposes. Such enzymes are characterised by an increased thermosensitivity and, most of them, by a higher catalytic efficiency at low and moderate temperatures, when compared to their mesophilic counterparts. The high thermosensitivity probably originates from an increased flexibility of either a selected area of the molecular edifice or the overall protein structure, providing enhanced abilities to undergo conformational changes during catalysis at low temperatures. Structure modelling and recent crystallographic data have allowed to elucidate the structural parameters that could be involved in this higher resilience. It was demonstrated that each psychrophilic enzyme adopts its own adaptive strategy. It appears, moreover, that there is a continuum in the strategy of protein adaptation to temperature, as the previously mentioned structural parameters are implicated in the stability of thermophilic proteins. Additional 3D crystal structures, site-directed and random mutagenesis experiments should now be undertaken to further investigate the stability-flexibility-activity relationship.

  19. Temperature-Controlled High-Speed AFM: Real-Time Observation of Ripple Phase Transitions.

    Science.gov (United States)

    Takahashi, Hirohide; Miyagi, Atsushi; Redondo-Morata, Lorena; Scheuring, Simon

    2016-11-01

    With nanometer lateral and Angstrom vertical resolution, atomic force microscopy (AFM) has contributed unique data improving the understanding of lipid bilayers. Lipid bilayers are found in several different temperature-dependent states, termed phases; the main phases are solid and fluid phases. The transition temperature between solid and fluid phases is lipid composition specific. Under certain conditions some lipid bilayers adopt a so-called ripple phase, a structure where solid and fluid phase domains alternate with constant periodicity. Because of its narrow regime of existence and heterogeneity ripple phase and its transition dynamics remain poorly understood. Here, a temperature control device to high-speed atomic force microscopy (HS-AFM) to observe dynamics of phase transition from ripple phase to fluid phase reversibly in real time is developed and integrated. Based on HS-AFM imaging, the phase transition processes from ripple phase to fluid phase and from ripple phase to metastable ripple phase to fluid phase could be reversibly, phenomenologically, and quantitatively studied. The results here show phase transition hysteresis in fast cooling and heating processes, while both melting and condensation occur at 24.15 °C in quasi-steady state situation. A second metastable ripple phase with larger periodicity is formed at the ripple phase to fluid phase transition when the buffer contains Ca 2+ . The presented temperature-controlled HS-AFM is a new unique experimental system to observe dynamics of temperature-sensitive processes at the nanoscopic level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Time Series Data Analysis of Wireless Sensor Network Measurements of Temperature.

    Science.gov (United States)

    Bhandari, Siddhartha; Bergmann, Neil; Jurdak, Raja; Kusy, Branislav

    2017-05-26

    Wireless sensor networks have gained significant traction in environmental signal monitoring and analysis. The cost or lifetime of the system typically depends on the frequency at which environmental phenomena are monitored. If sampling rates are reduced, energy is saved. Using empirical datasets collected from environmental monitoring sensor networks, this work performs time series analyses of measured temperature time series. Unlike previous works which have concentrated on suppressing the transmission of some data samples by time-series analysis but still maintaining high sampling rates, this work investigates reducing the sampling rate (and sensor wake up rate) and looks at the effects on accuracy. Results show that the sampling period of the sensor can be increased up to one hour while still allowing intermediate and future states to be estimated with interpolation RMSE less than 0.2 °C and forecasting RMSE less than 1 °C.

  1. Influence of different maceration time and temperatures on total phenols, colour and sensory properties of Cabernet Sauvignon wines.

    Science.gov (United States)

    Şener, Hasan; Yildirim, Hatice Kalkan

    2013-12-01

    Maceration and fermentation time and temperatures are important factors affecting wine quality. In this study different maceration times (3 and 6 days) and temperatures (15  and 25 ) during production of red wine (Vitis vinifera L. Cabernet Sauvignon) were investigated. In all wines standard wine chemical parameters and some specific parameters as total phenols, tartaric esters, total flavonols and colour parameters (CD, CI, T, dA%, %Y, %R, %B, CIELAB values) were determined. Sensory evaluation was performed by descriptive sensory analysis. The results demonstrated not only the importance of skin contact time and temperature during maceration but also the effects of transition temperatures (different maceration and fermentation temperatures) on wine quality as a whole. The results of sensory descriptive analyses revealed that the temperature significantly affected the aroma and flavour attributes of wines. The highest scores for 'cassis', 'clove', 'fresh fruity' and 'rose' characters were obtained in wines produced at low temperature (15 ) of maceration (6 days) and fermentation.

  2. Variability of OH rotational temperatures on time scales from hours to 15 years by kinetic temperature variations, emission layer changes, and non-LTE effects

    Science.gov (United States)

    Noll, Stefan

    2016-07-01

    Rotational temperatures derived from hydroxyl (OH) line emission are frequently used to study atmospheric temperatures at altitudes of about 87 km. While the measurement only requires intensities of a few bright lines of an OH band, the interpretation can be complicated. Ground-based temperatures are averages for the entire, typically 8 km wide emission layer. Variations in the rotational temperature are then caused by changes of the kinetic temperature and the OH emission profile. The latter can also be accompanied by differences in the layer-averaged efficiency of the thermalisation of the OH rotational level populations. Since this especially depends on the frequency of collisions with O_2, which is low at high altitudes, the non-local thermodynamic equilibrium (non-LTE) contribution to the measured temperatures can be significant and variable. In order to understand the impact of the different sources of OH rotational temperature variations from time scales of hours to a solar cycle, we have studied spectra from the astronomical echelle spectrographs X-shooter and UVES located at Cerro Paranal in Chile. While the X-shooter data spanning 3.5 years allowed us to measure temperatures for 25 OH and two O_2 bands, the UVES spectra cover no more than 10 OH bands simultaneously but a period of about 15 years. These data have been complemented by kinetic temperature and OH and O_2 emission profiles from the multi-channel radiometer SABER on the TIMED satellite. Taking the O_2 and SABER kinetic temperatures as reference and considering the different band-dependent emission profiles, we could evaluate the contribution of non-LTE effects to the measured OH rotational temperatures depending on line set, band, and time. Non-LTE contributions are significant for most bands and can exceed 10 K. The amplitudes of their average nocturnal and seasonal variation are of the order of 1 to 2 K.

  3. Rumination time and reticuloruminal temperature as possible predictors of dystocia in dairy cows.

    Science.gov (United States)

    Kovács, L; Kézér, F L; Ruff, F; Szenci, O

    2017-02-01

    The objectives of this study were to explore changes of rumination time and reticuloruminal pH and temperature of dairy cows and heifers (means ± standard deviation; age = 5.8 ± 1.9; parity = 2.7 ± 1.4; body condition score = 3.2 ± 0.2) with eutocic (EUT, n = 10) and dystocic calving (DYS, n = 8). The recording period lasted from 3 d before calving until 7 d in milk. For the comparison of rumination time and reticuloruminal characteristics between groups, time to return to baseline (the time interval required to return to baseline from the delivery of the calf) and area under the curve (AUC; both for prepartum and postpartum periods) were calculated for each parameter. Rumination time decreased from baseline 28 h before calving both for EUT and DYS cows; after 20 h before calving, it decreased to 32.4 ± 2.3 and 13.2 ± 2.0 min/4 h between 8 and 4 h before delivery in EUT and DYS cows, respectively, and then it decreased below 10 and 5 min during the last 4 h before calving. Until 12 h after delivery, rumination time reached 42.6 ± 2.7 and 51.0 ± 3.1 min/4 h in DYS and EUT dams, respectively; however, AUC and time to return to baseline suggested lower rumination activity in DYS cows than in EUT dams for the 168-h postpartum observational period. Reticuloruminal pH decreased from baseline 56 h before calving both for EUT and DYS cows, but did not differ between groups before delivery. Reticuloruminal pH showed a decreasing tendency and clear diurnal variation after calving for both EUT and DYS cows, with slightly higher AUC values in DYS cows. In DYS cows, reticuloruminal temperature decreased from baseline 32 h before calving by 0.23 ± 0.02°C, whereas in EUT cows such a decrease was found only 20 h before delivery (0.48 ± 0.05°C). The AUC of reticuloruminal temperature calculated for the prepartum period was greater in EUT cows than in DYS cows. During the first 4 h after calving, reticuloruminal temperature decreased from 39.68 ± 0.09 to 38.96 ± 0.10

  4. The relative importance of water temperature and residence time in predicting cyanobacteria abundance in regulated rivers.

    Science.gov (United States)

    Cha, YoonKyung; Cho, Kyung Hwa; Lee, Hyuk; Kang, Taegu; Kim, Joon Ha

    2017-11-01

    Despite a growing awareness of the problems associated with cyanobacterial blooms in rivers, and particularly in regulated rivers, the drivers of bloom formation and abundance in rivers are not well understood. We developed a Bayesian hierarchical model to assess the relative importance of predictors of summer cyanobacteria abundance, and to test whether the relative importance of each predictor varies by site, using monitoring data from 16 sites in the four major rivers of South Korea. The results suggested that temperature and residence time, but not nutrient levels, are important predictors of summer cyanobacteria abundance in rivers. Although the two predictors were of similar significance across the sites, the residence time was marginally better in accounting for the variation in cyanobacteria abundance. The model with spatial hierarchy demonstrated that temperature played a consistently significant role at all sites, and showed no effect from site-specific factors. In contrast, the importance of residence time varied significantly from site to site. This variation was shown to depend on the trophic state, indicated by the chlorophyll-a and total phosphorus levels. Our results also suggested that the magnitude of weir inflow is a key factor determining the cyanobacteria abundance under baseline conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Developing first time-series of land surface temperature from AATSR with uncertainty estimates

    Science.gov (United States)

    Ghent, Darren; Remedios, John

    2013-04-01

    Land surface temperature (LST) is the radiative skin temperature of the land, and is one of the key parameters in the physics of land-surface processes on regional and global scales. Earth Observation satellites provide the opportunity to obtain global coverage of LST approximately every 3 days or less. One such source of satellite retrieved LST has been the Advanced Along-Track Scanning Radiometer (AATSR); with LST retrieval being implemented in the AATSR Instrument Processing Facility in March 2004. Here we present first regional and global time-series of LST data from AATSR with estimates of uncertainty. Mean changes in temperature over the last decade will be discussed along with regional patterns. Although time-series across all three ATSR missions have previously been constructed (Kogler et al., 2012), the use of low resolution auxiliary data in the retrieval algorithm and non-optimal cloud masking resulted in time-series artefacts. As such, considerable ESA supported development has been carried out on the AATSR data to address these concerns. This includes the integration of high resolution auxiliary data into the retrieval algorithm and subsequent generation of coefficients and tuning parameters, plus the development of an improved cloud mask based on the simulation of clear sky conditions from radiance transfer modelling (Ghent et al., in prep.). Any inference on this LST record is though of limited value without the accompaniment of an uncertainty estimate; wherein the Joint Committee for Guides in Metrology quote an uncertainty as "a parameter associated with the result of a measurement that characterizes the dispersion of the values that could reasonably be attributed to the measurand that is the value of the particular quantity to be measured". Furthermore, pixel level uncertainty fields are a mandatory requirement in the on-going preparation of the LST product for the upcoming Sea and Land Surface Temperature (SLSTR) instrument on-board Sentinel-3

  6. Hepatitis C virus epitope exposure and neutralization by antibodies is affected by time and temperature

    DEFF Research Database (Denmark)

    Sabo, Michelle C; Luca, Vincent C; Ray, Stuart C

    2012-01-01

    A recent study with flaviviruses suggested that structural dynamics of the virion impact antibody neutralization via exposure of ostensibly cryptic epitopes. To determine whether this holds true for the distantly related hepatitis C virus (HCV), whose neutralizing epitopes may be obscured...... by a glycan shield, apolipoprotein interactions, and the hypervariable region on the E2 envelope protein, we assessed how time and temperature of pre-incubation altered monoclonal antibody (MAb) neutralization of HCV. Notably, several MAbs showed increased inhibitory activity when pre-binding was performed...

  7. Effect of frying temperature and time on image characterizations of pellet snacks

    OpenAIRE

    Mohammadi Moghaddam, Toktam; BahramParvar, Maryam; Razavi, Seyed M. A.

    2014-01-01

    The development of non-destructive methods for the evaluation of food properties has important advantages for the food processing industries. So, the aim of this study was to evaluate the effects of frying temperature (150, 170, and 190 °C) and time (0.5, 1.5, 2.5, 3.5 and 4.5 min) on image properties (L*, a* and b*, fractal dimension, correlation, entropy, contrast and homogeneity) of pellet snacks. Textures were computed separately for eight channels (RGB, R, G, B, U, V, H and S). Enhancing...

  8. Time resolved IR-LIGS experiments for gas-phase trace detection and temperature measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fantoni, R.; Giorgi, M. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione; Snels, M. [CNR, Tito Scalo, Potenza (Italy). Istituto per i Materiali Speciali; Latzel, H.

    1997-01-01

    Time resolved Laser Induced Grating Spectroscopy (LIGS) has been performed to detect different gases in mixtures at atmospheric pressure or higher. The possibility of trace detection of minor species and of temperature measurements has been demonstrated for various molecular species either of environmental interest or involved in combustion processes. In view of the application of tracing unburned hydrocarbons in combustion chambers, the coupling of the IR-LIGS technique with imaging detection has been considered and preliminary results obtained in small size ethylene/air flames are shown.

  9. Galactomannan enzyme immunoassay and quantitative Real Time PCR as tools to evaluate the exposure and response in a rat model of aspergillosis after posaconazole prophylaxis.

    Science.gov (United States)

    Cendejas-Bueno, Emilio; Forastiero, Agustina; Ruiz, Isabel; Mellado, Emilia; Buitrago, María José; Gavaldà, Joan; Gomez-Lopez, Alicia

    2016-11-01

    A steroid-immunosuppressed rat model of invasive pulmonary aspergillosis was use to examine the usefulness of galactomannan enzyme immunoassay (GM) and quantitative real time PCR (RT-PCR) in evaluating the association between response and exposure after a high dose of prophylactic posaconazole. Two different strains of Aspergillus fumigatus with different in vitro posaconazole susceptibility were used. Serum concentrations demonstrated similar posaconazole exposure for all treated animals. However, response to posaconazole relied on the in vitro susceptibility of the infecting strain. After prophylaxis, galactomannan index and fungal burden only decreased in those animals infected with the most susceptible strain. This study demonstrated that both biomarkers may be useful tools for predicting efficacy of antifungal compounds in prophylaxis. Copyright © 2015 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  10. Circadian time structure of circulating plasma lipid peroxides, antioxidant enzymes and other small molecules in peptic ulcers.

    Science.gov (United States)

    Singh, Ranjana; Singh, Rajesh Kumar; Masood, Tariq; Tripathi, Anil Kumar; Mahdi, Abbas Ali; Singh, Raj Kumar; Schwartzkopff, Othild; Cornelissen, Germaine

    2015-12-07

    The circadian rhythm, as part of a broad time structure (chronome) of lipid peroxides and antioxidant defense mechanisms may relate to prevention, efficacy and management of preventive and curative chronotherapy. Fifty newly diagnosed patients with peptic ulcers, 30-45 years of age, and 60 age-matched clinically healthy volunteers were synchronized for one week with diurnal activity from about 06:00 to about 22:00 and nocturnal rest. Breakfast was served around 08:30, lunch around 13:30 and dinner around 20:30. Drugs known to affect the free-radical systems were not taken. Blood samples were collected at 6-hour intervals for 24h under standardized, presumably 24-hour synchronized conditions. Plasma lipid peroxides, in the form of malondialdehyde (MDA), blood superoxide dismutase (SOD), glutathione peroxide (GPx), glutathione reductase (GR), catalase (CAT) activities, and serum total protein, albumin, ascorbic acid, total serum cholesterol, and HDL-cholesterol concentrations were determined. By population-mean cosinor analysis, a marked circadian variation was demonstrated for all variables in healthy subjects and in ulcer patients (pascorbic acid, and HDL-C. They also had smaller circadian amplitude of SOD, CAT, GPx, GR, ascorbic acid, T-C, and HDL-C, but larger circadian amplitude of MDA and albumin. As compared to healthy subjects, the circadian acrophase of ulcer patients occurred later for MDA and GR and earlier for GPx. Mapping circadian rhythms, important chronome components that include trends with age and extra-circadian components characterizing antioxidants and pro-oxidants, is needed for exploring their putative role as markers in the treatment and management of peptic ulcers. Copyright © 2015. Published by Elsevier B.V.

  11. Fluorescent carbon dot-gated multifunctional mesoporous silica nanocarriers for redox/enzyme dual-responsive targeted and controlled drug delivery and real-time bioimaging.

    Science.gov (United States)

    Wang, Ying; Cui, Yu; Zhao, Yating; He, Bing; Shi, Xiaoli; Di, Donghua; Zhang, Qiang; Wang, Siling

    2017-08-01

    A distinctive and personalized nanocarrier is described here for controlled and targeted antitumor drug delivery and real-time bioimaging by combining a redox/enzyme dual-responsive disulfide-conjugated carbon dot with mesoporous silica nanoparticles (MSN-SS-CD HA ). The carbon dot with controlling and targeting abilities was prepared through a polymerizing reaction by applying citric acid and HA as starting materials (named CD HA ). The as-prepared MSN-SS-CD HA exhibited not only superior photostability and excellent biocompatibility, but also the ability to target A549 cells with overexpression of CD44 receptors. Upon loading the antitumor drug, doxorubicin (DOX), into the mesoporous channels of MSN nanoparticles, CD HA with a diameter size of 3nm completely blocked the pore entrance of DOX-encapsulated MSN nanoparticles with a pore size of about 3nm, thus preventing the premature leakage of DOX and increasing the antitumor activity until being triggered by specific stimuli in the tumor environment. The results of the cell imaging and cytotoxicity studies demonstrated that the redox/enzyme dual-responsive DOX-encapsulated MSN-SS-CD HA nanoparticles can selectively deliver and control the release of DOX into tumor cells. Ex vivo fluorescence images showed a much stronger fluorescence of MSN-SS-CD HA -DOX in the tumor site than in normal tissues, greatly facilitating the accumulation of DOX in the target tissue. However, its counterpart, MSN-SH-DOX exhibited no or much lower tumor cytotoxicity and drug accumulation in tumor tissue. In addition, MSN-SS-CD was also used as a control to investigate the ability of MSN-SS-CD HA to target A549 cells. The results obtained indicated that MSN-SS-CD HA possessed a higher cellular uptake through the CD44 receptor-mediated endocytosis compared with MSN-SS-CD in the A549 cells. Such specific redox/enzyme dual-responsive targeted nanocarriers are a useful strategy achieving selective controlled and targeted delivery of

  12. Decay Time Measurement for Different Energy Depositions of Plastic Scintillator Fabricated by High Temperature Polymerization Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Tae Hoon; Kim, Yong-Kyun [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    Plastic scintillators are based on organic fluorite. They have many advantages such as fast rise and decay time, high optical transmission, ease of manufacturing, low cost, and large available size. For these reasons they are widely used for particle identification. Also, protection of people against a variety of threats (such as nuclear, radiological, and explosive) represents a true challenge along with the continuing development of science and technology. The plastic scintillator is widely used in various devise, which serves for nuclear, photonics, quantum, and high-energy physics. The plastic scintillator is probably the most widely used organic detector, and polystyrene is one of the most widely used materials in the making of the plastic scintillator detector. Thus, a styrene monomer as a solvent was used to fabricate the plastic scintillator by using high temperature polymerization reaction, and then the emission wavelength and the decay times for different energy depositions were measured by using the fabricated plastic scintillator. A plastic scintillator was fabricated to measure decay time for different energy depositions using the high temperature polymerization. Emission wavelength was measured of 426.05 nm to confirm a scintillator property using the spectrophotometer. Four gamma-ray sources (Cs-137, Co-60, Na-22, and Ba-133) were used to evaluate effect for decay time of different energy depositions. The average decay time of the fabricated plastic scintillator was measured to approximately 4.72 ns slightly higher more than commercial plastic scintillator. In future, light output and linearity will be measured to evaluate other property compared with the commercial scintillator.

  13. Decay Time Measurement for Different Energy Depositions of Plastic Scintillator Fabricated by High Temperature Polymerization Reaction

    International Nuclear Information System (INIS)

    Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Tae Hoon; Kim, Yong-Kyun

    2016-01-01

    Plastic scintillators are based on organic fluorite. They have many advantages such as fast rise and decay time, high optical transmission, ease of manufacturing, low cost, and large available size. For these reasons they are widely used for particle identification. Also, protection of people against a variety of threats (such as nuclear, radiological, and explosive) represents a true challenge along with the continuing development of science and technology. The plastic scintillator is widely used in various devise, which serves for nuclear, photonics, quantum, and high-energy physics. The plastic scintillator is probably the most widely used organic detector, and polystyrene is one of the most widely used materials in the making of the plastic scintillator detector. Thus, a styrene monomer as a solvent was used to fabricate the plastic scintillator by using high temperature polymerization reaction, and then the emission wavelength and the decay times for different energy depositions were measured by using the fabricated plastic scintillator. A plastic scintillator was fabricated to measure decay time for different energy depositions using the high temperature polymerization. Emission wavelength was measured of 426.05 nm to confirm a scintillator property using the spectrophotometer. Four gamma-ray sources (Cs-137, Co-60, Na-22, and Ba-133) were used to evaluate effect for decay time of different energy depositions. The average decay time of the fabricated plastic scintillator was measured to approximately 4.72 ns slightly higher more than commercial plastic scintillator. In future, light output and linearity will be measured to evaluate other property compared with the commercial scintillator

  14. Nuclear grade cable thermal life model by time temperature superposition algorithm based on Matlab GUI

    International Nuclear Information System (INIS)

    Lu Yanyun; Gu Shenjie; Lou Tianyang

    2014-01-01

    Background: As nuclear grade cable must endure harsh environment within design life, it is critical to predict cable thermal life accurately owing to thermal aging, which is one of dominant factors of aging mechanism. Purpose: Using time temperature superposition (TTS) method, the aim is to construct nuclear grade cable thermal life model, predict cable residual life and develop life model interactive interface under Matlab GUI. Methods: According to TTS, nuclear grade cable thermal life model can be constructed by shifting data groups at various temperatures to preset reference temperature with translation factor which is determined by non linear programming optimization. Interactive interface of cable thermal life model developed under Matlab GUI consists of superposition mode and standard mode which include features such as optimization of translation factor, calculation of activation energy, construction of thermal aging curve and analysis of aging mechanism., Results: With calculation result comparison between superposition and standard method, the result with TTS has better accuracy than that with standard method. Furthermore, confidence level of nuclear grade cable thermal life with TTS is higher than that with standard method. Conclusion: The results show that TTS methodology is applicable to thermal life prediction of nuclear grade cable. Interactive Interface under Matlab GUI achieves anticipated functionalities. (authors)

  15. Influence of water activity, temperature and time on mycotoxins production on barley rootlets.

    Science.gov (United States)

    Ribeiro, J M M; Cavaglieri, L R; Fraga, M E; Direito, G M; Dalcero, A M; Rosa, C A R

    2006-02-01

    The objective of this study was to determine the ochratoxin (OT) and aflatoxin (AF) production by three strains of Aspergillus spp. under different water activities, temperature and incubation time on barley rootlets (BR). Aspergillus ochraceus and Aspergillus flavus were able to produce mycotoxins on BR. Aspergillus ochraceus produced ochratoxin A (OTA) at 0.80 water activity (a(w)), at 25 and 30 degrees C as optimal environmental conditions. The OTA production varies at different incubation days depending on a(w). Aflatoxin B(1) (AFB1) accumulation was obtained at 25 degrees C, at 0.80 and 0.95 a(w), after 14 and 21 incubation days respectively. Temperature was a critical factor influencing OTA and AFB(1) production. This study demonstrates that BR support OTA and AFB(1) production at relatively low water activity (0.80 a(w)) and high temperatures (25-30 degrees C). The study of ecophysiological parameters and their interactions would determine the prevailing environmental factors, which enhance the mycotoxin production on BR used as animal feed.

  16. A soft-computing methodology for noninvasive time-spatial temperature estimation.

    Science.gov (United States)

    Teixeira, César A; Ruano, Maria Graça; Ruano, António E; Pereira, Wagner C A

    2008-02-01

    The safe and effective application of thermal therapies is restricted due to lack of reliable noninvasive temperature estimators. In this paper, the temporal echo-shifts of backscattered ultrasound signals, collected from a gel-based phantom, were tracked and assigned with the past temperature values as radial basis functions neural networks input information. The phantom was heated using a piston-like therapeutic ultrasound transducer. The neural models were assigned to estimate the temperature at different intensities and points arranged across the therapeutic transducer radial line (60 mm apart from the transducer face). Model inputs, as well as the number of neurons were selected using the multiobjective genetic algorithm (MOGA). The best attained models present, in average, a maximum absolute error less than 0.5 degrees C, which is pointed as the borderline between a reliable and an unreliable estimator in hyperthermia/diathermia. In order to test the spatial generalization capacity, the best models were tested using spatial points not yet assessed, and some of them presented a maximum absolute error inferior to 0.5 degrees C, being "elected" as the best models. It should be also stressed that these best models present implementational low-complexity, as desired for real-time applications.

  17. Optimization of basic parameters in temperature-programmed gas chromatographic separations of multi-component samples within a given time

    NARCIS (Netherlands)

    Repka, D.; Krupcik, J.; Brunovska, A.; Leclercq, P.A.; Rijks, J.A.

    1989-01-01

    A new procedure is introduced for the optimization of column peak capacity in a given time. The opitmization focuses on temperature-programmed operating conditions, notably the initial temperature and hold time, and the programming rate. Based conceptually upon Lagrange functions, experiments were

  18. Temperature Observation Time and Type Influence Estimates of Heat-Related Mortality in Seven U.S. Cities.

    Science.gov (United States)

    Davis, Robert E; Hondula, David M; Patel, Anjali P

    2016-06-01

    Extreme heat is a leading weather-related cause of mortality in the United States, but little guidance is available regarding how temperature variable selection impacts heat-mortality relationships. We examined how the strength of the relationship between daily heat-related mortality and temperature varies as a function of temperature observation time, lag, and calculation method. Long time series of daily mortality counts and hourly temperature for seven U.S. cities with different climates were examined using a generalized additive model. The temperature effect was modeled separately for each hour of the day (with up to 3-day lags) along with different methods of calculating daily maximum, minimum, and mean temperature. We estimated the temperature effect on mortality for each variable by comparing the 99th versus 85th temperature percentiles, as determined from the annual time series. In three northern cities (Boston, MA; Philadelphia, PA; and Seattle, WA) that appeared to have the greatest sensitivity to heat, hourly estimates were consistent with a diurnal pattern in the heat-mortality response, with strongest associations for afternoon or maximum temperature at lag 0 (day of death) or afternoon and evening of lag 1 (day before death). In warmer, southern cities, stronger associations were found with morning temperatures, but overall the relationships were weaker. The strongest temperature-mortality relationships were associated with maximum temperature, although mean temperature results were comparable. There were systematic and substantial differences in the association between temperature and mortality based on the time and type of temperature observation. Because the strongest hourly temperature-mortality relationships were not always found at times typically associated with daily maximum temperatures, temperature variables should be selected independently for each study location. In general, heat-mortality was more closely coupled to afternoon and maximum

  19. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr; Šnajdr, Jaroslav; Merhautová, Věra; Dobiášová, Petra; Cajthaml, Tomáš; Valášková, Vendula

    2013-01-01

    Roč. 56, JAN 2013 (2013), s. 60-68 ISSN 0038-0717 R&D Projects: GA MŠk(CZ) LA10001; GA MŠk(CZ) ME10152; GA MZe QH72216 Institutional support: RVO:61388971 Keywords : Extracellular enzymes * Forest soil * Lignocellulose Subject RIV: EE - Microbiology, Virology Impact factor: 4.410, year: 2013

  20. Effects of time-temperature profiles on glow curves of germanium-doped optical fibre

    Science.gov (United States)

    Lam, S. E.; Alawiah, A.; Bradley, D. A.; Mohd Noor, N.

    2017-08-01

    The Germanium (Ge) doped silica optical fibres have demonstrated the great potential to be developed as a thermoluminescent (TL) dosimeter that can be used in various applications in radiotherapy, diagnostic radiology, UV dosimetry system and food irradiation industry. Different time-temperature profile (TTP) parameters of the TL reader have been employed by many researchers in various of TL studies. Nevertheless, none of those studies adequately addressed the effects of the reader's preheat temperature and heating rate on the kinetic parameters of the TL glow curve specifically, the Ge-doped silica optical fibres. This research addresses the issue of TTP parameters with special attention to the determination of the kinetic parameters of the glow curve. The glow curve responses were explored and the kinetic parameters were analyzed by the WinGCF software, to show the effect of the preheat temperature and heating rate of the reader on Ge-doped fibre irradiated with 18 Gy of 6 MV photons radiation. The effect of TTP parameters was discussed and compared against the commercial fibre and tailored made fibre of 6 mol% Ge-doped of flat and cylindrical shape. The deconvolution of glow peaks and the kinetic parameters were obtained by the WinGCF software. This enables to fit accurately (1.5%temperature was used to read commercial fibre (50 °C) and cylindrical fibre (80 °C and 160 °C). It is found that the glow peaks of cylindrical fibre exhibit the highest peak integral as compared to flat and commercial fibres. This study revealed the possible relationship between the reader's TTP parameters and the kinetic parameters of TL glow curves for the commercial and tailored made Ge-doped silica optical fibres.

  1. Flow characteristics of a pilot-scale high temperature, short time pasteurizer.

    Science.gov (United States)

    Tomasula, P M; Kozempel, M F

    2004-09-01

    In this study, we present a method for determining the fastest moving particle (FMP) and residence time distribution (RTD) in a pilot-scale high temperature, short time (HTST) pasteurizer to ensure that laboratory or pilot-scale HTST apparatus meets the Pasteurized Milk Ordinance standards for pasteurization of milk and can be used for obtaining thermal inactivation data. The overall dimensions of the plate in the pasteurizer were 75 x 115 mm, with a thickness of 0.5 mm and effective diameter of 3.0 mm. The pasteurizer was equipped with nominal 21.5- and 52.2-s hold tubes, and flow capacity was variable from 0 to 20 L/h. Tracer studies were used to determine FMP times and RTD data to establish flow characteristics. Using brine milk as tracer, the FMP time for the short holding section was 18.6 s and for the long holding section was 36 s at 72 degrees C, compared with the nominal times of 21.5 and 52.2 s, respectively. The RTD study indicates that the short hold section was 45% back mixed and 55% plug flow for whole milk at 72 degrees C. The long hold section was 91% plug and 9% back mixed for whole milk at 72 degrees C. This study demonstrates that continuous laboratory and pilot-scale pasteurizers may be used to study inactivation of microorganisms only if the flow conditions in the holding tube are established for comparison with commercial HTST systems.

  2. Neutron time-of-flight ion temperature diagnostic for inertial confinement fusion experiments

    International Nuclear Information System (INIS)

    Chrien, R.E.; Simmons, D.F.; Holmberg, D.L.

    1992-01-01

    We are constructing a T i diagnostic for low neutron yield (5 x 10 7 to above 10 9 ) d-d and d-t targets in the Nova facility at Livermore. The diagnostic measures the neutron energy spread with 960 scintillator-photomultiplier detectors located 28 m from the target and operates in the single-hit mode. Each detector can measure a single neutron arrival with time resolution of 1 ns or better. The arrival time distribution is constructed from the results of typically 200--500 detector measurements. The ion temperature is determined from the spread in neutron energy ΔE n ∝ T i 1/2 , which is related to the arrival time spread by Δt/t = 1(1/2 ΔE n /E n ). Each neutron arrival is detected by using a photomultiplier tube to observe the recoil proton from elastic scattering in a fast plastic scintillator. The timing electronics for each channel consist of a novel constant fraction-like discriminator and a multiple hit time-to-digital converter (TDC). The overall system design, together with single channel performance data, is presented

  3. Time response prediction of Brazilian Nuclear Power Plant temperature sensors using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Roberto Carlos dos; Pereira, Iraci Martinez, E-mail: rcsantos@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This work presents the results of the time constants values predicted from ANN using Angra I Brazilian nuclear power plant data. The signals obtained from LCSR loop current step response test sensors installed in the process presents noise end fluctuations that are inherent of operational conditions. Angra I nuclear power plant has 20 RTDs as part of the protection reactor system. The results were compared with those obtained from traditional way. Primary coolant RTDs (Resistance Temperature Detector) typically feed the plant's control and safety systems and must, therefore, be very accurate and have good dynamic performance. An in-situ test method called LCSR - loop current step response test was developed to measure remotely the response time of RTDs. In the LCSR method, the response time of the sensor is identified by means of the LCSR transformation that involves the dynamic response modal time constants determination using a nodal heat transfer model. For this reason, this calculation is not simple and requires specialized personnel. This work combines the two methodologies, Plunge test and LCSR test, using neural networks. With the use of neural networks it will not be necessary to use the LCSR transformation to determine sensor's time constant and this leads to more robust results. (author)

  4. Time response prediction of Brazilian Nuclear Power Plant temperature sensors using neural networks

    International Nuclear Information System (INIS)

    Santos, Roberto Carlos dos; Pereira, Iraci Martinez

    2011-01-01

    This work presents the results of the time constants values predicted from ANN using Angra I Brazilian nuclear power plant data. The signals obtained from LCSR loop current step response test sensors installed in the process presents noise end fluctuations that are inherent of operational conditions. Angra I nuclear power plant has 20 RTDs as part of the protection reactor system. The results were compared with those obtained from traditional way. Primary coolant RTDs (Resistance Temperature Detector) typically feed the plant's control and safety systems and must, therefore, be very accurate and have good dynamic performance. An in-situ test method called LCSR - loop current step response test was developed to measure remotely the response time of RTDs. In the LCSR method, the response time of the sensor is identified by means of the LCSR transformation that involves the dynamic response modal time constants determination using a nodal heat transfer model. For this reason, this calculation is not simple and requires specialized personnel. This work combines the two methodologies, Plunge test and LCSR test, using neural networks. With the use of neural networks it will not be necessary to use the LCSR transformation to determine sensor's time constant and this leads to more robust results. (author)

  5. Global Model of Time-Modulated Electronegative Discharges for Neutral Radical and Electron Temperature Control

    Science.gov (United States)

    Kim, Sungjin; Lieberman, M. A.; Lichtenberg, A. J.

    2003-10-01

    Control and reduction of neutral radical flux/ion flux ratio and electron temperature Te is required for next generation etching in the microelectronics industry. We investigate time-modulated power for these purposes using a volume-averaged (global) oxygen discharge model, We consider pressures of 10-50 mTorr and plasma densities of 10^10-10^11 cm-3. In this regime, the discharge is found to be weakly electronegative. The modulation period and the duty ratio (on-time/period) are varied to determine the optimum conditions for reduction of FR= O-atom flux/ion flux and T_e. Two chambers with different height/diameter ratios (SMART Contract SM99-10051.

  6. The effects of temperature for development time, fecundity and reproduction on some ornamental aphid species

    Directory of Open Access Journals (Sweden)

    Nihal OZDER

    2013-06-01

    Full Text Available The development time, survivorship and reproduction of the Sarucallis kahawaluokalani (Kirkaldy, Eucallipterus tiliae L., Capitophorus elaeagni del Guercio, Aphis nerii Boyer de Fonscolombe, Cinara cedri Mimeur were studied on the Lagerstroemia indica L., Tilia tomentosa Moench, Elaeagnus angustifolia L., Nerium oleander L. and Cedrus libani Loud. at four constant temperatures (20C, 22.5C, 25C and 27.5C. Total nymphal development time ranged from 7.78 d at 22.5C to 9.81 d at 25C of C.elaeagni, 9.32 d at 25C to 12.5 d at 20C of E. tiliae, 7.08 d at 27,5C to 11.14 d at 20C of S. kahawaluokalani, 15.85 d at 25C to 12.57 d at 20C of A. nerii and 13.00 d at 20C to 10.07 d at 25C of C. cedri. The intrinsic rate of increase (rm at 22.5C had the highest value for S. kahawaluokalani and C. elaeagni (0.5703 and (0.2945 among all tested constant temperatures. The calculated rm was higher at 25C for E. tiliae (1.4124 and C. cedri (0.2975 and at 20C A. nerii (0.2648. That the optimal temperature for E. tiliae and C.cedri on T. tomentosa and C. libani was 25C, for C. elaeagni and E. tiliae was 22.5C on E. angustifolia and T. tomentosa and for A. nerii was 20C on N. oleander.

  7. Estimating the time and temperature relationship for causation of deep-partial thickness skin burns.

    Science.gov (United States)

    Abraham, John P; Plourde, Brian; Vallez, Lauren; Stark, John; Diller, Kenneth R

    2015-12-01

    The objective of this study is to develop and present a simple procedure for evaluating the temperature and exposure-time conditions that lead to causation of a deep-partial thickness burn and the effect that the immediate post-burn thermal environment can have on the process. A computational model has been designed and applied to predict the time required for skin burns to reach a deep-partial thickness level of injury. The model includes multiple tissue layers including the epidermis, dermis, hypodermis, and subcutaneous tissue. Simulated exposure temperatures ranged from 62.8 to 87.8°C (145-190°F). Two scenarios were investigated. The first and worst case scenario was a direct exposure to water (characterized by a large convection coefficient) with the clothing left on the skin following the exposure. A second case consisted of a scald insult followed immediately by the skin being washed with cool water (20°C). For both cases, an Arrhenius injury model was applied whereby the extent and depth of injury were calculated and compared for the different post-burn treatments. In addition, injury values were compared with experiment data from the literature to assess verification of the numerical methodology. It was found that the clinical observations of injury extent agreed with the calculated values. Furthermore, inundation with cool water decreased skin temperatures more quickly than the clothing insulating case and led to a modest decrease in the burn extent. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  8. Mixing times towards demographic equilibrium in insect populations with temperature variable age structures.

    Science.gov (United States)

    Damos, Petros

    2015-08-01

    In this study, we use entropy related mixing rate modules to measure the effects of temperature on insect population stability and demographic breakdown. The uncertainty in the age of the mother of a randomly chosen newborn, and how it is moved after a finite act of time steps, is modeled using a stochastic transformation of the Leslie matrix. Age classes are represented as a cycle graph and its transitions towards the stable age distribution are brought forth as an exact Markov chain. The dynamics of divergence, from a non equilibrium state towards equilibrium, are evaluated using the Kolmogorov-Sinai entropy. Moreover, Kullback-Leibler distance is applied as information-theoretic measure to estimate exact mixing times of age transitions probabilities towards equilibrium. Using empirically data, we show that on the initial conditions and simulated projection's trough time, that population entropy can effectively be applied to detect demographic variability towards equilibrium under different temperature conditions. Changes in entropy are correlated with the fluctuations of the insect population decay rates (i.e. demographic stability towards equilibrium). Moreover, shorter mixing times are directly linked to lower entropy rates and vice versa. This may be linked to the properties of the insect model system, which in contrast to warm blooded animals has the ability to greatly change its metabolic and demographic rates. Moreover, population entropy and the related distance measures that are applied, provide a means to measure these rates. The current results and model projections provide clear biological evidence why dynamic population entropy may be useful to measure population stability. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Optimizing residence time, temperature and speed to improve TMP pulp properties and reduce energy

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, M.; Xu, E.; Cort, B.; Boileau, I.; Waller, A.

    1997-04-01

    The concept of reducing energy consumption in pulp mills by increasing the disc speed of refining has been established using single disc and double disc refiners in both pilot plant and mill applications. The RTS study evaluated in this paper reviews the effect of high-speed single disc refining coupled with shortdwell-high pressure retention conditions. Coupling these variables permitted evaluation of an optimum residence time, temperature and speed (RTS) operational window. The objective of the RTS conditions to sufficiently soften the wood chips through high temperature such that the fibre is more receptive to initial defiberization at high intensity. The improved pulp from the primary refiner at high intensity could potentially demonstrate improvements in physical pulp properties at a reduced specific energy requirement. The spruce/fir RTS-TMP described here required significantly less specific energy and produced TMP with slightly improved strength properties and equivalent optical properties compared to conventional TMP pulp. Studies on the radiate pine furnish indicated that the physical pulp property/specific energy relationships could be adjusted by manipulating the residence time. 4 refs., 10 tabs., 10 figs.

  10. Effect of Anneal temperature and Time on Change of Texture and Hardness of Al-Cu-Mg

    International Nuclear Information System (INIS)

    Masrukan; Adolf Asih, S.

    2000-01-01

    Observation of the effect of annealing temperature to its texture and hardness of the Al-Cu-Mg has been done. In this experiments aluminium alloy powder and 5 pieces cubes of this alloy with size of 8 x 8 x 8 mm 3 were used. The powder was not annealed, 2 pieces cube were annealed for 20 hours at temperatures of 200 o C and 300 o respectively, finally 3 pieces cube were annealed at temperature of 400 o C. Texture measurement was done using x-ray diffraction with wave length of 1.78892 A using inverse pole figure method. The hardness testing results at constant temperature of 400 o C and various time indicated that the hardness values are decreased with increasing annealed time. Also, at hardness testing for constant time and various annealing temperatures indicated that the hardness values decreased with increasing annealing temperature

  11. Natural variability of atmospheric temperatures and geomagnetic intensity over a wide range of time scales.

    Science.gov (United States)

    Pelletier, Jon D

    2002-02-19

    The majority of numerical models in climatology and geomagnetism rely on deterministic finite-difference techniques and attempt to include as many empirical constraints on the many processes and boundary conditions applicable to their very complex systems. Despite their sophistication, many of these models are unable to reproduce basic aspects of climatic or geomagnetic dynamics. We show that a simple stochastic model, which treats the flux of heat energy in the atmosphere by convective instabilities with random advection and diffusive mixing, does a remarkable job at matching the observed power spectrum of historical and proxy records for atmospheric temperatures from time scales of one day to one million years (Myr). With this approach distinct changes in the power-spectral form can be associated with characteristic time scales of ocean mixing and radiative damping. Similarly, a simple model of the diffusion of magnetic intensity in Earth's core coupled with amplification and destruction of the local intensity can reproduce the observed 1/f noise behavior of Earth's geomagnetic intensity from time scales of 1 (Myr) to 100 yr. In addition, the statistics of the fluctuations in the polarity reversal rate from time scales of 1 Myr to 100 Myr are consistent with the hypothesis that reversals are the result of variations in 1/f noise geomagnetic intensity above a certain threshold, suggesting that reversals may be associated with internal fluctuations rather than changes in mantle thermal or magnetic boundary conditions.

  12. Elevated temperature inelastic analysis of metallic media under time varying loads using state variable theories

    International Nuclear Information System (INIS)

    Kumar, V.; Mukherjee, S.

    1977-01-01

    In the present paper a general time-dependent inelastic analysis procedure for three-dimensional bodies subjected to arbitrary time varying mechanical and thermal loads using these state variable theories is presented. For the purpose of illustrations, the problems of hollow spheres, cylinders and solid circular shafts subjected to various combinations of internal and external pressures, axial force (or constraint) and torque are analyzed using the proposed solution procedure. Various cyclic thermal and mechanical loading histories with rectangular or sawtooth type waves with or without hold-time are considered. Numerical results for these geometrical shapes for various such loading histories are presented using Hart's theory (Journal of Engineering Materials and Technology 1976). The calculations are performed for nickel in the temperature range of 25 0 C to 400 0 C. For integrating forward in time, a method of solving a stiff system of ordinary differential equations is employed which corrects the step size and order of the method automatically. The limit loads for hollow spheres and cylinders are calculated using the proposed method and Hart's theory, and comparisons are made against the known theoretical results. The numerical results for other loading histories are discussed in the context of Hart's state variable type constitutive relations. The significance of phenomena such as strain rate sensitivity, Bauschinger's effect, crep recovery, history dependence and material softening with regard to these multiaxial problems are discussed in the context of Hart's theory

  13. BINARY: an optical freezing array for assessing temperature and time dependence of heterogeneous ice nucleation

    Directory of Open Access Journals (Sweden)

    C. Budke

    2015-02-01

    Full Text Available A new optical freezing array for the study of heterogeneous ice nucleation in microliter-sized droplets is introduced, tested and applied to the study of immersion freezing in aqueous Snomax® suspensions. In the Bielefeld Ice Nucleation ARraY (BINARY ice nucleation can be studied simultaneously in 36 droplets at temperatures down to −40 °C (233 K and at cooling rates between 0.1 and 10 K min−1. The droplets are separated from each other in individual compartments, thus preventing a Wegener–Bergeron–Findeisen type water vapor transfer between droplets as well as avoiding the seeding of neighboring droplets by formation and surface growth of frost halos. Analysis of freezing and melting occurs via an automated real-time image analysis of the optical brightness of each individual droplet. As an application ice nucleation in water droplets containing Snomax® at concentrations from 1 ng mL−1 to 1 mg mL−1 was investigated. Using different cooling rates, a small time dependence of ice nucleation induced by two different classes of ice nucleators (INs contained in Snomax® was detected and the corresponding heterogeneous ice nucleation rate coefficient was quantified. The observed time dependence is smaller than those of other types of INs reported in the literature, suggesting that the BINARY setup is suitable for quantifying time dependence for most other INs of atmospheric interest, making it a useful tool for future investigations.

  14. BINARY: an optical freezing array for assessing temperature and time dependence of heterogeneous ice nucleation

    Science.gov (United States)

    Budke, C.; Koop, T.

    2015-02-01

    A new optical freezing array for the study of heterogeneous ice nucleation in microliter-sized droplets is introduced, tested and applied to the study of immersion freezing in aqueous Snomax® suspensions. In the Bielefeld Ice Nucleation ARraY (BINARY) ice nucleation can be studied simultaneously in 36 droplets at temperatures down to -40 °C (233 K) and at cooling rates between 0.1 and 10 K min-1. The droplets are separated from each other in individual compartments, thus preventing a Wegener-Bergeron-Findeisen type water vapor transfer between droplets as well as avoiding the seeding of neighboring droplets by formation and surface growth of frost halos. Analysis of freezing and melting occurs via an automated real-time image analysis of the optical brightness of each individual droplet. As an application ice nucleation in water droplets containing Snomax® at concentrations from 1 ng mL-1 to 1 mg mL-1 was investigated. Using different cooling rates, a small time dependence of ice nucleation induced by two different classes of ice nucleators (INs) contained in Snomax® was detected and the corresponding heterogeneous ice nucleation rate coefficient was quantified. The observed time dependence is smaller than those of other types of INs reported in the literature, suggesting that the BINARY setup is suitable for quantifying time dependence for most other INs of atmospheric interest, making it a useful tool for future investigations.

  15. SABER (TIMED) and MLS (UARS) Temperature Observations of Mesospheric and Stratospheric QBO and Related Tidal Variations

    Science.gov (United States)

    Huang, Frank T.; Mayr, Hans G.; Reber, Carl A.; Russell, James; Mlynczak, Marty; Mengel, John

    2006-01-01

    More than three years of temperature observations from the SABER (TIMED) and MLS WARS) instruments are analyzed to study the annual and inter-annual variations extending from the stratosphere into the upper mesosphere. The SABER measurements provide data from a wide altitude range (15 to 95 km) for the years 2002 to 2004, while the MLS data were taken in the 16 to 55 km altitude range a decade earlier. Because of the sampling properties of SABER and MLS, the variations with local solar time must be accounted for when estimating the zonal mean variations. An algorithm is thus applied that delineates with Fourier analysis the year-long variations of the migrating tides and zonal mean component. The amplitude of the diurnal tide near the equator shows a strong semiannual periodicity with maxima near equinox, which vary from year to year to indicate the influence from the Quasi-biennial Oscillation (QBO) in the zonal circulation. The zonal mean QBO temperature variations are analyzed over a range of latitudes and altitudes, and the results are presented for latitudes from 48"s to 48"N. New results are obtained for the QBO, especially in the upper stratosphere and mesosphere, and at mid-latitudes. At Equatorial latitudes, the QBO amplitudes show local peaks, albeit small, that occur at different altitudes. From about 20 to 40 km, and within about 15" of the Equator, the amplitudes can approach 3S K for the stratospheric QBO or SQBO. For the mesospheric QBO or MQBO, we find peaks near 70 km, with temperature amplitudes reaching 3.5"K, and near 85 km, the amplitudes approach 2.5OK. Morphologically, the amplitude and phase variations derived from the SABER and MLS measurements are in qualitative agreement. The QBO amplitudes tend to peak at the Equator but then increase again pole-ward of about 15" to 20'. The phase progression with altitude varies more gradually at the Equator than at mid-latitudes. A comparison of the observations with results from the Numerical Spectral

  16. Influence of variable heat transfer coefficient of fireworks and crackers on thermal explosion critical ambient temperature and time to ignition

    Directory of Open Access Journals (Sweden)

    Guo Zerong

    2016-01-01

    Full Text Available To study the effect of variable heat transfer coefficient of fireworks and crackers on thermal explosion critical ambient temperature and time to ignition, considering the heat transfer coefficient as the power function of temperature, mathematical thermal explosion steady state and unsteady-state model of finite cylindrical fireworks and crackers with complex shell structures are established based on two-dimensional steady state thermal explosion theory. The influence of variable heat transfer coefficient on thermal explosion critical ambient temperature and time to ignition are analyzed. When heat transfer coefficient is changing with temperature and in the condition of natural convection heat transfer, critical ambient temperature lessen, thermal explosion time to ignition shorten. If ambient temperature is close to critical ambient temperature, the influence of variable heat transfer coefficient on time to ignition become large. For firework with inner barrel in example analysis, the critical ambient temperature of propellant is 463.88 K and the time to ignition is 4054.9s at 466 K, 0.26 K and 450.8s less than without considering the change of heat transfer coefficient respectively. The calculation results show that the influence of variable heat transfer coefficient on thermal explosion time to ignition is greater in this example. Therefore, the effect of variable heat transfer coefficient should be considered into thermal safety evaluation of fireworks to reduce potential safety hazard.

  17. Lifetime Prediction of Nano-Silica based Glass Fibre/Epoxy composite by Time Temperature Superposition Principle

    Science.gov (United States)

    Anand, Abhijeet; Banerjee, Poulami; Prusty, Rajesh Kumar; Ray, Bankin Chandra

    2018-03-01

    The incorporation of nano fillers in Fibre reinforced polymer (FRP) composites has been a source of experimentation for researchers. Addition of nano fillers has been found to improve mechanical, thermal as well as electrical properties of Glass fibre reinforced polymer (GFRP) composites. The in-plane mechanical properties of GFRP composite are mainly controlled by fibers and therefore exhibit good values. However, composite exhibits poor through-thickness properties, in which the matrix and interface are the dominant factors. Therefore, it is conducive to modify the matrix through dispersion of nano fillers. Creep is defined as the plastic deformation experienced by a material for a temperature at constant stress over a prolonged period of time. Determination of Master Curve using time-temperature superposition principle is conducive for predicting the lifetime of materials involved in naval and structural applications. This is because such materials remain in service for a prolonged time period before failure which is difficult to be kept marked. However, the failure analysis can be extrapolated from its behaviour in a shorter time at an elevated temperature as is done in master creep analysis. The present research work dealt with time-temperature analysis of 0.1% SiO2-based GFRP composites fabricated through hand-layup method. Composition of 0.1% for SiO2nano fillers with respect to the weight of the fibers was observed to provide optimized flexural properties. Time and temperature dependence of flexural properties of GFRP composites with and without nano SiO2 was determined by conducting 3-point bend flexural creep tests over a range of temperature. Stepwise isothermal creep tests from room temperature (30°C) to the glass transition temperature Tg (120°C) were performed with an alternative creep/relaxation period of 1 hour at each temperature. A constant stress of 40MPa was applied during the creep tests. The time-temperature superposition principle was

  18. Relationship between the Arctic oscillation and surface air temperature in multi-decadal time-scale

    Science.gov (United States)

    Tanaka, Hiroshi L.; Tamura, Mina

    2016-09-01

    In this study, a simple energy balance model (EBM) was integrated in time, considering a hypothetical long-term variability in ice-albedo feedback mimicking the observed multi-decadal temperature variability. A natural variability was superimposed on a linear warming trend due to the increasing radiative forcing of CO2. The result demonstrates that the superposition of the natural variability and the background linear trend can offset with each other to show the warming hiatus for some period. It is also stressed that the rapid warming during 1970-2000 can be explained by the superposition of the natural variability and the background linear trend at least within the simple model. The key process of the fluctuating planetary albedo in multi-decadal time scale is investigated using the JRA-55 reanalysis data. It is found that the planetary albedo increased for 1958-1970, decreased for 1970-2000, and increased for 2000-2012, as expected by the simple EBM experiments. The multi-decadal variability in the planetary albedo is compared with the time series of the AO mode and Barents Sea mode of surface air temperature. It is shown that the recent AO negative pattern showing warm Arctic and cold mid-latitudes is in good agreement with planetary albedo change indicating negative anomaly in high latitudes and positive anomaly in mid-latitudes. Moreover, the Barents Sea mode with the warm Barents Sea and cold mid-latitudes shows long-term variability similar to planetary albedo change. Although further studies are needed, the natural variabilities of both the AO mode and Barents Sea mode indicate some possible link to the planetary albedo as suggested by the simple EBM to cause the warming hiatus in recent years.

  19. Production, optimization and characterization of fibrinolytic enzyme by Bacillus subtilis RJAS19.

    Science.gov (United States)

    Kumar, D J Mukesh; Rakshitha, R; Vidhya, M Annu; Jennifer, P Sharon; Prasad, Sandip; Kumar, M Ravi; Kalaichelvan, P T

    2014-04-01

    The present study aimed at the production, purification and characterization of fibrinolytic nattokinase enzyme from the bacteria isolated from natto food. For the purpose, a fibrinolytic bacterium was isolated and identified as Bacillus subtilis based on 16S rDNA sequence analysis. The strain was employed for the production and optimization of fibrinolytic enzyme. The strain showed better enzyme production during 72nd h of incubation time with 50 degrees C at the pH 9. The lactose and peptone were found to be increasing the enzyme production rate. The enzyme produced was purified and also characterized with the help of SDS-PAGE analysis. The activity and stability profile of the purified enzyme was tested against different temperature and pH. The observations suggesting that the potential of fibrinolytic enzyme produced by Bacillus subtilis RJAS 19 for its applications in preventive medicines.

  20. Temperature analysis with voltage-current time differential operation of electrochemical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Leta Yar-Li; Glass, Robert Scott; Fitzpatrick, Joseph Jay; Wang, Gangqiang; Henderson, Brett Tamatea; Lourdhusamy, Anthoniraj; Steppan, James John; Allmendinger, Klaus Karl

    2018-01-02

    A method for temperature analysis of a gas stream. The method includes identifying a temperature parameter of an affected waveform signal. The method also includes calculating a change in the temperature parameter by comparing the affected waveform signal with an original waveform signal. The method also includes generating a value from the calculated change which corresponds to the temperature of the gas stream.

  1. Hybrid analysis for indicating patients with breast cancer using temperature time series.

    Science.gov (United States)

    Silva, Lincoln F; Santos, Alair Augusto S M D; Bravo, Renato S; Silva, Aristófanes C; Muchaluat-Saade, Débora C; Conci, Aura

    2016-07-01

    Breast cancer is the most common cancer among women worldwide. Diagnosis and treatment in early stages increase cure chances. The temperature of cancerous tissue is generally higher than that of healthy surrounding tissues, making thermography an option to be considered in screening strategies of this cancer type. This paper proposes a hybrid methodology for analyzing dynamic infrared thermography in order to indicate patients with risk of breast cancer, using unsupervised and supervised machine learning techniques, which characterizes the methodology as hybrid. The dynamic infrared thermography monitors or quantitatively measures temperature changes on the examined surface, after a thermal stress. In the dynamic infrared thermography execution, a sequence of breast thermograms is generated. In the proposed methodology, this sequence is processed and analyzed by several techniques. First, the region of the breasts is segmented and the thermograms of the sequence are registered. Then, temperature time series are built and the k-means algorithm is applied on these series using various values of k. Clustering formed by k-means algorithm, for each k value, is evaluated using clustering validation indices, generating values treated as features in the classification model construction step. A data mining tool was used to solve the combined algorithm selection and hyperparameter optimization (CASH) problem in classification tasks. Besides the classification algorithm recommended by the data mining tool, classifiers based on Bayesian networks, neural networks, decision rules and decision tree were executed on the data set used for evaluation. Test results support that the proposed analysis methodology is able to indicate patients with breast cancer. Among 39 tested classification algorithms, K-Star and Bayes Net presented 100% classification accuracy. Furthermore, among the Bayes Net, multi-layer perceptron, decision table and random forest classification algorithms, an

  2. Experimental effects of immersion time and water temperature on body condition, burying depth and timing of spawning of the tellinid bivalve Macoma balthica

    Science.gov (United States)

    de Goeij, Petra; Honkoop, Pieter J.

    2003-03-01

    The burying depth of many bivalve molluscs on intertidal mudflats varies throughout the year and differs between places. Many factors are known to influence burying depth on a seasonal or spatial scale, with temperature and tidal regime probably being very important. Burying depth, body condition and gonadal development of Macoma balthica were followed throughout winter and spring in an experiment in which water temperature and immersion time were manipulated. Unexpectedly, relative water temperature, in contrast to the prediction, did not generally affect body condition or burying depth. This was probably a consequence of the exceptionally overall low water temperatures during the experimental winter. Differences in temperature did, however, result in different timing of spawning: M. balthica spawned earlier at higher spring temperatures. Longer immersion times led to higher body condition only late in spring, but led to deeper burying throughout almost the whole period. There was no effect of immersion time on the timing of spawning. We conclude that a longer immersion time leads to deeper burying, independent of body condition. We also conclude that burying behaviour of M. balthica is not determined by the moment of spawning.

  3. SHOVAV-JUEL. A one dimensional space-time kinetic code for pebble-bed high-temperature reactors with temperature and Xenon feedback

    International Nuclear Information System (INIS)

    Nabbi, R.; Meister, G.; Finken, R.; Haben, M.

    1982-09-01

    The present report describes the modelling basis and the structure of the neutron kinetics-code SHOVAV-Juel. Information for users is given regarding the application of the code and the generation of the input data. SHOVAV-Juel is a one-dimensional space-time-code based on a multigroup diffusion approach for four energy groups and six groups of delayed neutrons. It has been developed for the analysis of the transient behaviour of high temperature reactors with pebble-bed core. The reactor core is modelled by horizontal segments to which different materials compositions can be assigned. The temperature dependence of the reactivity is taken into account by using temperature dependent neutron cross sections. For the simulation of transients in an extended time range the time dependence of the reactivity absorption by Xenon-135 is taken into account. (orig./RW)

  4. Effectiveness of mouse minute virus inactivation by high temperature short time treatment technology: a statistical assessment.

    Science.gov (United States)

    Murphy, Marie; Quesada, Guillermo Miro; Chen, Dayue

    2011-11-01

    Viral contamination of mammalian cell cultures in GMP manufacturing facility represents a serious safety threat to biopharmaceutical industry. Such adverse events usually require facility shutdown for cleaning/decontamination, and thus result in significant loss of production and/or delay of product development. High temperature short time (HTST) treatment of culture media has been considered as an effective method to protect GMP facilities from viral contaminations. Log reduction factor (LRF) has been commonly used to measure the effectiveness of HTST treatment for viral inactivation. However, in order to prevent viral contaminations, HTST treatment must inactivate all infectious viruses (100%) in the medium batch since a single virus is sufficient to cause contamination. Therefore, LRF may not be the most appropriate indicator for measuring the effectiveness of HTST in preventing viral contaminations. We report here the use of the probability to achieve complete (100%) virus inactivation to assess the effectiveness of HTST treatment. By using mouse minute virus (MMV) as a model virus, we have demonstrated that the effectiveness of HTST treatment highly depends upon the level of viral contaminants in addition to treatment temperature and duration. We believe that the statistical method described in this report can provide more accurate information about the power and potential limitation of technologies such as HTST in our shared quest to mitigate the risk of viral contamination in manufacturing facilities. Copyright © 2011 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  5. Sensory stability of whole mango juice: influence of temperature and storage time

    Directory of Open Access Journals (Sweden)

    Anderson do Nascimento Oliveira

    2012-12-01

    Full Text Available This study investigated the degradation kinetics of the sensory attributes of commercial whole mango (cv. Ubá juice and evaluated its sensory acceptability during storage. Samples of the product were stored in a BOD incubator at 25, 35, and 45 ºC under 24 hours light (650 lux for 120 days. Sensory analyses (Quantitative Descriptive Analysis - QDA were conducted with trained panel and consumers. The correlations between sensory and physicochemical characteristics (instrumental color and vitamin C content were also assessed. Flavor, aroma, and color vary with temperature and time of storage. Aroma and flavor were most affected by temperature with values of Q10 and Ea equal to 4.16 and 25.31 kcal.mol-1; and 3.61 and 22.80 kcal.mol-1, respectively. The sensory changes observed by the trained panel are related to the degradation of vitamin C and changes in the color coordinates (L* and ΔE* of mango juice. However, consumers were unable to detect changes in the overall quality of the juices. It was observed that the QDA can be a useful tool to assess shelf-life.

  6. Weighted reciprocal of temperature, weighted thermal flux, and their applications in finite-time thermodynamics.

    Science.gov (United States)

    Sheng, Shiqi; Tu, Z C

    2014-01-01

    The concepts of weighted reciprocal of temperature and weighted thermal flux are proposed for a heat engine operating between two heat baths and outputting mechanical work. With the aid of these two concepts, the generalized thermodynamic fluxes and forces can be expressed in a consistent way within the framework of irreversible thermodynamics. Then the efficiency at maximum power output for a heat engine, one of key topics in finite-time thermodynamics, is investigated on the basis of a generic model under the tight-coupling condition. The corresponding results have the same forms as those of low-dissipation heat engines [ M. Esposito, R. Kawai, K. Lindenberg and C. Van den Broeck Phys. Rev. Lett. 105 150603 (2010)]. The mappings from two kinds of typical heat engines, such as the low-dissipation heat engine and the Feynman ratchet, into the present generic model are constructed. The universal efficiency at maximum power output up to the quadratic order is found to be valid for a heat engine coupled symmetrically and tightly with two baths. The concepts of weighted reciprocal of temperature and weighted thermal flux are also transplanted to the optimization of refrigerators.

  7. Real-time transmission electron microscope observation of gold nanoclusters diffusing into silicon at room temperature

    International Nuclear Information System (INIS)

    Ishida, Tadashi; Nakajima, Yuuki; Fujita, Hiroyuki; Endo, Junji; Collard, Dominique

    2009-01-01

    Gold diffusion into silicon at room temperature was observed in real time with atomic resolution. Gold nanoclusters were formed on a silicon surface by an electrical discharge between a silicon tip and a gold coated tip inside an ultrahigh-vacuum transmission electron microscope (TEM) specimen chamber. At the moment of the gold nanocluster deposition, the gold nanoclusters had a crystalline structure. The crystalline structure gradually disappeared due to the interdiffusion between silicon and gold as observed after the deposition of gold nanoclusters. The shape of the nanocluster gradually changed due to the gold diffusion into the damaged silicon. The diffusion front between silicon and gold moved toward the silicon side. From the observations of the diffusion front, the gold diffusivity at room temperature was extracted. The extracted activation energy, 0.21 eV, matched the activation energy in bulk diffusion between damaged silicon and gold. This information is useful for optimizing the hybridization between solid-state and biological nanodevices in which gold is used as an adhesive layer between the two devices.

  8. The time of day differently influences fatigue and locomotor activity: is body temperature a key factor?

    Science.gov (United States)

    Machado, Frederico Sander Mansur; Rodovalho, Gisele Vieira; Coimbra, Cândido Celso

    2015-03-01

    The aim of this study was to verify the possible interactions between exercise capacity and spontaneous locomotor activity (SLA) during the oscillation of core body temperature (Tb) that occurs during the light/dark cycle. Wistar rats (n=11) were kept at an animal facility under a light/dark cycle of 14/10h at an ambient temperature of 23°C and water and food ad libitum. Initially, in order to characterize the daily oscillation in SLA and Tb of the rats, these parameters were continuously recorded for 24h using an implantable telemetric sensor (G2 E-Mitter). The animals were randomly assigned to two progressive exercise test protocols until fatigue during the beginning of light and dark-phases. Fatigue was defined as the moment rats could not keep pace with the treadmill. We assessed the time to fatigue, workload and Tb changes induced by exercise. Each test was separated by 3days. Our results showed that exercise capacity and heat storage were higher during the light-phase (plocomotor physical activity have an important inherent component (r=0.864 and r=0.784, respectively, plocomotor activity are not directly associated, both are strongly influenced by daily cycles of light and dark. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Shock tube/time-of-flight mass spectrometer for high temperature kinetic studies

    International Nuclear Information System (INIS)

    Tranter, Robert S.; Giri, Binod R.; Kiefer, John H.

    2007-01-01

    A shock tube (ST) with online, time-of-flight mass spectrometric (TOF-MS) detection has been constructed for the study of elementary reactions at high temperature. The ST and TOF-MS are coupled by a differentially pumped molecular beam sampling interface, which ensures that the samples entering the TOF-MS are not contaminated by gases drawn from the cold end wall thermal boundary layer in the ST. Additionally, the interface allows a large range of postshock pressures to be used in the shock tube while maintaining high vacuum in the TOF-MS. The apparatus and the details of the sampling system are described along with an analysis in which cooling of the sampled gases and minimization of thermal boundary layer effects are discussed. The accuracy of kinetic measurements made with the apparatus has been tested by investigating the thermal unimolecular dissociation of cyclohexene to ethylene and 1,3-butadiene, a well characterized reaction for which considerable literature data that are in good agreement exist. The experiments were performed at nominal reflected shock wave pressures of 600 and 1300 Torr, and temperatures ranging from 1260 to 1430 K. The rate coefficients obtained are compared with the earlier shock tube studies and are found to be in very good agreement. As expected no significant difference is observed in the rate constant between pressures of 600 and 1300 Torr

  10. A real-time heat strain risk classifier using heart rate and skin temperature

    International Nuclear Information System (INIS)

    Buller, Mark J; Latzka, William A; Yokota, Miyo; Tharion, William J; Moran, Daniel S

    2008-01-01

    Heat injury is a real concern to workers engaged in physically demanding tasks in high heat strain environments. Several real-time physiological monitoring systems exist that can provide indices of heat strain, e.g. physiological strain index (PSI), and provide alerts to medical personnel. However, these systems depend on core temperature measurement using expensive, ingestible thermometer pills. Seeking a better solution, we suggest the use of a model which can identify the probability that individuals are 'at risk' from heat injury using non-invasive measures. The intent is for the system to identify individuals who need monitoring more closely or who should apply heat strain mitigation strategies. We generated a model that can identify 'at risk' (PSI ≥ 7.5) workers from measures of heart rate and chest skin temperature. The model was built using data from six previously published exercise studies in which some subjects wore chemical protective equipment. The model has an overall classification error rate of 10% with one false negative error (2.7%), and outperforms an earlier model and a least squares regression model with classification errors of 21% and 14%, respectively. Additionally, the model allows the classification criteria to be adjusted based on the task and acceptable level of risk. We conclude that the model could be a valuable part of a multi-faceted heat strain management system. (note)

  11. On methodical problems in estimating geological temperature and time from measurements of fission tracks in apatite

    International Nuclear Information System (INIS)

    Jonckheere, R.

    2003-01-01

    The results of apatite fission-track modelling are only as accurate as the method, and depend on the assumption that the processes involved in the annealing of fossil tracks over geological times are the same as those responsible for the annealing of induced fission tracks in laboratory experiments. This has hitherto been assumed rather than demonstrated. The present critical discussion identifies a number of methodical problems from an examination of the available data on age standards, borehole samples and samples studied in the framework of geological investigations. These problems are related to low- ( 60 deg. C) annealing on a geological timescale and to the procedures used for calculating temperature-time paths from the fission-track data. It is concluded that it is not established that the relationship between track length and track density and the appearance of unetchable gaps, observed in laboratory annealing experiments on induced tracks, can be extrapolated to the annealing of fossil tracks on a geological timescale. This in turn casts doubt on the central principle of equivalent time. That such uncertainties still exist is in no small part due to an insufficient understanding of the formation, structure and properties of fission tracks at the atomic scale and to a lack of attention to the details of track revelation. The methodical implications of discrepancies between fission track results and the independent geological evidence are rarely considered. This presents a strong case for the re-involvement of track physicists in fundamental fission track research

  12. The analytical description of high temperature tensile creep for cavitating materials subjected to time variable loads

    International Nuclear Information System (INIS)

    Bocek, M.

    A phenomenological cavitation model is presented by means of which the life time as well as the creep curve equations can be calculated for cavitating materials subjected to time variable tensile loads. The model precludes the proportionality between the damage A and the damage rate (dA/dt) resp. Both are connected by the life time function tau. The latter is derived from static stress rupture tests and contains the loading conditions. From this model the life fraction rule (LFR) is derived. The model is used to calculate the creep curves of cavitating materials subjected at high temperatures to non-stationary tensile loading conditions. In the present paper the following loading procedures are considered: creep at constant load F and true stress s; creep at linear load increase ((dF/dt)=const) and creep at constant load amplitude cycling (CLAC). For these loading procedures the creep equations for cavitating and non-cavitating specimens are derived. Under comparable conditions the creep rate of cavitating materials are higher than for non-cavitating ones. (author)

  13. Relation between time-temperature transformation and continuous heating transformation diagrams of metallic glassy alloys

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Inoue, Akihisa

    2005-01-01

    The time-temperature transformation (TTT) diagrams for the onset of devitrification of the Ge-Ni-La and Cu-Hf-Ti glassy alloys were calculated from the isothermal differential calorimetry data using an Arrhenius equation. The continuous heating transformation (CHT) diagrams for the onset of devitrification of the glassy alloys were subsequently recalculated from TTT diagrams. The recalculation method used for conversion of the TTT into CHT diagrams produces reasonable results and is not sensitive to the type of the devitrification reaction (polymorphous or primary transformation). The diagrams allow to perform a comparison of the stabilities of glassy alloys on a long-term scale. The relationship between these diagrams is discussed

  14. Time-dependent fracture of materials at elevated temperature for solar thermal power systems

    International Nuclear Information System (INIS)

    Gupta, G.D.

    1979-01-01

    Various Solar Thermal Power Systems are briefly described. The components of solar power systems in which time-dependent fracture problems become important are identified. Typical materials of interest, temperature ranges, and stress states are developed; and the number of cycles during the design life of these systems are indicated. The ASME Code procedures used by designers to predict the life of these components are briefly described. Some of the major problems associated with the use of these ASME procedures in the design of solar components are indicated. Finally, a number of test and development needs are identified which would enable the designers to predict the life of the solar power system components with a reasonable degree of confidence

  15. Time-dependent Hartree-Fock approach to nuclear ``pasta'' at finite temperature

    Science.gov (United States)

    Schuetrumpf, B.; Klatt, M. A.; Iida, K.; Maruhn, J. A.; Mecke, K.; Reinhard, P.-G.

    2013-05-01

    We present simulations of neutron-rich matter at subnuclear densities, like supernova matter, with the time-dependent Hartree-Fock approximation at temperatures of several MeV. The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter. This matter evolves into spherical, rod-like, and slab-like shapes and mixtures thereof. The simulations employ a full Skyrme interaction in a periodic three-dimensional grid. By an improved morphological analysis based on Minkowski functionals, all eight pasta shapes can be uniquely identified by the sign of only two valuations, namely the Euler characteristic and the integral mean curvature. In addition, we propose the variance in the cell density distribution as a measure to distinguish pasta matter from uniform matter.

  16. Time-Dependent Hartree-Fock Approach to Nuclear Pasta at Finite Temperature

    International Nuclear Information System (INIS)

    Schuetrumpf, B; Maruhn, J A; Klatt, M A; Mecke, K; Reinhard, P-G; Iida, K

    2013-01-01

    We present simulations of neutron-rich matter at subnuclear densities, like supernova matter, with the time-dependent Hartree-Fock approximation at temperatures of several MeV. The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter. This matter evolves into spherical, rod-like, and slab-like shapes and mixtures thereof. The simulations employ a full Skyrme interaction in a periodic three-dimensional grid. By an improved morphological analysis based on Minkowski functionals, all eight pasta shapes can be uniquely identified by the sign of only two valuations, namely the Euler characteristic and the integral mean curvature.

  17. Time-Dependent Hartree-Fock Approach to Nuclear Pasta at Finite Temperature

    Science.gov (United States)

    Schuetrumpf, B.; Klatt, M. A.; Iida, K.; Maruhn, J. A.; Mecke, K.; Reinhard, P.-G.

    2013-03-01

    We present simulations of neutron-rich matter at subnuclear densities, like supernova matter, with the time-dependent Hartree-Fock approximation at temperatures of several MeV. The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter. This matter evolves into spherical, rod-like, and slab-like shapes and mixtures thereof. The simulations employ a full Skyrme interaction in a periodic three-dimensional grid. By an improved morphological analysis based on Minkowski functionals, all eight pasta shapes can be uniquely identified by the sign of only two valuations, namely the Euler characteristic and the integral mean curvature.

  18. Talisia esculenta seed quality in function of drying temperatures and times

    Directory of Open Access Journals (Sweden)

    Edson Almeida Cardoso

    2015-02-01

    Full Text Available Talisia esculenta Radlk is a species of the Sapindaceae family native to the Amazon region. Its fruits are principally obtained by collecting in natura; its propagation is by seeds, which are of the recalcitrant type, with low longevity and sensitivity to dehydration. We evaluated the effects of different drying times and temperatures on T. esculenta seeds. The seeds were dried in a forced-air oven at 40, 45, and 50°C for periods of 0, 6, 12, 24, 30, and36 hours, using four replications of 25 seeds each. Tests were conducted to determine seed quality: moisture contents, emergence percentage, first counts, emergence speed index and the length and dry weight of the seedlings. The data was submitted to analysis of variance and polynomial regression, at a 5% level of probability. T. esculenta seeds should be dried at 40 or 45°C for no more than six hours for best initial seedling growth.

  19. Influence of the harvesting time, temperature and drying period on basil (Ocimum basilicum L. essential oil

    Directory of Open Access Journals (Sweden)

    José Luiz S. Carvalho Filho

    Full Text Available Ocimum basilicum L. essential oil with high concentration of linalool is valuable in international business. O. basilicum essential oil is widely used as seasoning and in cosmetic industry. To assure proper essential oil yield and quality, it is crucial to determine which environmental and processing factors are affecting its composition. The goal of our work is to evaluate the effects of harvesting time, temperature, and drying period on the yield and chemical composition of O. basilicum essential oil. Harvestings were performed 40 and 93 days after seedling transplantation. Harvesting performed at 8:00 h and 12:00 h provided higher essential oil yield. After five days drying, the concentration of linalool raised from 45.18% to 86.80%. O. basilicum should be harvested during morning and the biomass dried at 40ºC for five days to obtain linalool rich essential oil.

  20. Effect of temperature, time, and milling process on yield, flavonoid, and total phenolic content of Zingiber officinale water extract

    Science.gov (United States)

    Andriyani, R.; Kosasih, W.; Ningrum, D. R.; Pudjiraharti, S.

    2017-03-01

    Several parameters such as temperature, time of extraction, and size of simplicia play significant role in medicinal herb extraction. This study aimed to investigate the effect of those parameters on yield extract, flavonoid, and total phenolic content in water extract of Zingiber officinale. The temperatures used were 50, 70 and 90°C and the extraction times were 30, 60 and 90 min. Z. officinale in the form of powder and chips were used to study the effect of milling treatment. The correlation among those variables was analysed using ANOVA two-way factors without replication. The result showed that time and temperature did not influence the yield of extract of Powder simplicia. However, time of extraction influenced the extract of simplicia treated without milling process. On the other hand, flavonoid and total phenolic content were not influenced by temperature, time, and milling treatment.

  1. Effect of the Preheating Temperature on Process Time in Friction Stir Welding of Al 6061-T6

    DEFF Research Database (Denmark)

    Jabbari, Masoud

    2013-01-01

    This paper presents the results obtained and the deductions made from an analytical modeling involving friction stir welding of Al 6061-T6. A new database was developed to simulate the contact temperature between the tool and the workpiece. A second-order equation is proposed for simulating...... the temperature in the contact boundary and the thermal history during the plunge phase. The effect of the preheating temperature on the process time was investigated with the proposed model. The results show that an increase of the preheating time leads to a decrease in the process time up to the plunge...

  2. Reticulo-rumen temperature as a predictor of calving time in primiparous and parous Holstein females.

    Science.gov (United States)

    Costa, J B G; Ahola, J K; Weller, Z D; Peel, R K; Whittier, J C; Barcellos, J O J

    2016-06-01

    The objective of this research was to define and analyze drops in reticulo-rumen temperature (Trr) as an indicator of calving time in Holstein females. Data were collected from 111 primiparous and 150 parous Holstein females between November 2012 and March 2013. Between -15 and -5 d relative to anticipated calving date, each female received an orally administered temperature sensing reticulo-rumen bolus that collected temperatures hourly. Daily mean Trr was calculated from d -5 to 0 relative to using all Trr values (A-Trr) or only Trr values ≥37.7°C (W-Trr) not altered by water intake. To identify a Trr drop, 2 methodologies for computing the baseline temperature were used. Generalized linear models (GLM) were used to estimate the probability of calving within the next 12 or 24 h for primiparous, parous, and all females, based on the size of the Trr drop. For all GLM, a large drop in Trr corresponded with a large estimated probability of calving. The predictive power of the GLM was assessed using receiver-operating characteristic (ROC) curves. The ROC curve analyses showed that all models, regardless of methodology in calculation of the baseline or tested category (primiparous or parous), were able to predict calving; however, area under the ROC curve values, an indication of prediction quality, were greater for methods predicting calving within 24 h. Further comparisons between GLM for primiparous and parous, and using baseline 1 and 2, provide insight on the differences in predictive performance. Based on the GLM, Trr drops of 0.2, 0.3, and 0.4°C were identified as useful indicators of parturition and further analyzed using sensitivity, specificity, and diagnostic odds ratios. Based on sensitivity, specificity, and diagnostic odds ratios, the best indicator of calving was an average Trr drop ≥0.2°C, regardless of methodology used to compute the baseline or category of animal evaluated. Copyright © 2016 American Dairy Science Association. Published by

  3. Sintering of nickel catalysts. Effects of time, atmosphere, temperature, nickel-carrier interactions, and dopants

    Energy Technology Data Exchange (ETDEWEB)

    Sehested, Jens; Gelten, Johannes A.P.; Helveg, Stig [Haldor Topsoee A/S, Nymoellevej 55, DK-2800 Kgs. Lyngby (Denmark)

    2006-08-01

    Supported nickel catalysts are widely used in the steam-reforming process for industrial scale production of hydrogen and synthesis gas. This paper provides a study of sintering in nickel-based catalysts (Ni/Al{sub 2}O{sub 3} and Ni/MgAl{sub 2}O{sub 4}). Specifically the influence of time, temperature, atmosphere, nickel-carrier interactions and dopants on the rate of sintering is considered. To probe the sintering kinetics, all catalysts were analyzed by sulfur chemisorption to determine the Ni surface area. Furthermore selected samples were further analyzed using X-ray diffraction (XRD), mercury porosimetry, BET area measurements, and electron microscopy (EM). The observed sintering rates as a function of time, temperature, and P{sub H{sub 2}O}/P{sub H{sub 2}} ratio were consistent with recent model predictions [J. Sehested, J.A.P. Gelten, I.N. Remediakis, H. Bengaard, J.K. Norskov, J. Catal. 223 (2004) 432] over a broad range of environmental conditions. However, exposing the catalysts to severe sintering conditions the loss of nickel surface area is faster than model predictions and the deviation is attributed to a change in the sintering mechanism and nickel removal by nickel-carrier interactions. Surprisingly, alumina-supported Ni particles grow to sizes larger than the particle size of the carrier indicating that the pore diameter does not represent an upper limit for Ni particle growth. The effects of potassium promotion and sulfur poisoning on the rates of sintering were also investigated. No significant effects of the dopants were observed after ageing at ambient pressure. However, at high pressures of steam and hydrogen (31bar and H{sub 2}O:H{sub 2}=10:1) potassium promotion increased the sintering rate relative to that of the unpromoted catalyst. Sulfur also enhances the rate of sintering at high pressures, but the effect of sulfur is less than for potassium. (author)

  4. Time Temperature-Precipitation Behavior in An Al-Cu-Li Alloy 2195

    Science.gov (United States)

    Chen, P. S.; Bhat, B. N.

    1999-01-01

    Al-Cu-Li alloy 2195, with its combination of good cryogenic properties, low density, and high modulus, has been selected by NASA to be the main structural alloy of the Super Light Weight Tank (SLWT) for the Space Shuttle. Alloy 2195 is strengthened by an aging treatment that precipitates a particular precipitate, labeled as T1(Al2CuLi). Other phases, such as GP zone, (theta)', (theta)", theta, (delta)', S' are also present in this alloy when artificially aged. Cryogenic strength and fracture toughness are critical to the -SLWT application, since the SLWT will house liquid oxygen and hydrogen. Motivation for the Time-Temperature-Precipitation (TTP) study at lower temperature (lower than 350 F) comes in part from a recent study by Chen, The study found that the cryogenic fracture toughness of alloy 2195 is greatly influenced by the phases present in the matrix and subgrain boundaries. Therefore, the understanding of TTP behavior can help develop a guideline to select appropriate heat treatment conditions for the desirable applications. The study of TTP behavior at higher temperature (400 to 1000 F) was prompted by the fact that the SLWT requires a welded construction. Heat conduction from the weld pool affects the microstructure in the heat-affected zone (HAZ), which leads to changes in the mechanical properties. Furthermore, the SLWT may need repair welding for more than one time and any additional thermal cycles will increase precipitate instability and promote phase transformation. As a result considerable changes in HAZ microstructure and mechanical properties are expected during the construction of the SLWT. Therefore, the TTP diagrams can serve to understand the thermal history of the alloy by analyzing the welded microstructure. In the case welding, the effects of thermal cycles on the microstructure and mechanical properties can be predicted with the aid of the TTP diagrams. The 2195 alloy (nominally Al + 4 pct Cu + 1 pct Li + 0.3 pct Ag + 0.3 pct Mg + 0

  5. Effect of low-temperature long-time and high-temperature short-time blanching and frying treatments on the French fry quality of six Irish potato cultivars

    OpenAIRE

    Ngobese, Nomali Ziphorah; Workneh, Tilahun Seyoum; Siwela, Muthulisi

    2017-01-01

    Processing conditions are an important determinant of French fry quality. However, the effect of low-temperature long-time (LTLT) and high-temperature short-time (HTST) blanching and frying treatments has not been investigated in many cultivars. The current study investigates the effect of the sequential application of these treatments on French fries processed from six Irish potato cultivars (Fianna, Innovator, Mondial, Navigator, Panamera and Savanna). Blanching was effected at 75 °C for 10...

  6. [Automated analyzer of enzyme immunoassay].

    Science.gov (United States)

    Osawa, S

    1995-09-01

    Automated analyzers for enzyme immunoassay can be classified by several points of view: the kind of labeled antibodies or enzymes, detection methods, the number of tests per unit time, analytical time and speed per run. In practice, it is important for us consider the several points such as detection limits, the number of tests per unit time, analytical range, and precision. Most of the automated analyzers on the market can randomly access and measure samples. I will describe the recent advance of automated analyzers reviewing their labeling antibodies and enzymes, the detection methods, the number of test per unit time and analytical time and speed per test.

  7. Sex, season, and time of day interact to affect body temperatures of the Giant Gartersnake

    Science.gov (United States)

    Wylie, G.D.; Casazza, Michael L.; Halstead, B.J.; Gregory, C.J.

    2009-01-01

    1.We examined multiple hypotheses regarding differences in body temperatures of the Giant Gartersnake using temperature-sensitive radio telemetry and an information-theoretic analytical approach.2.Giant Gartersnakes selected body temperatures near 30 ??C, and males and females had similar body temperatures most of the year, except during the midsummer gestation period.3.Seasonal differences in the body temperatures of males and females may relate to both the costs associated with thermoregulatory behavior, such as predation, and the benefits associated with maintaining optimal body temperatures, such as successful incubation.

  8. Time-resolved temperature measurements in a rapid compression machine using quantum cascade laser absorption in the intrapulse mode

    KAUST Repository

    Nasir, Ehson Fawad; Farooq, Aamir

    2016-01-01

    A temperature sensor based on the intrapulse absorption spectroscopy technique has been developed to measure in situ temperature time-histories in a rapid compression machine (RCM). Two quantum-cascade lasers (QCLs) emitting near 4.55μm and 4.89μm

  9. Predicting outgrowth and inactivation of Clostridium perfringens in meat products during low temperature long time heat treatment

    DEFF Research Database (Denmark)

    Duan, Zhi; Holst Hansen, Terese; Hansen, Tina Beck

    OBJECTIVE Sous-vide cooking and molecular gastronomy has started a wave of experimenting with Low Temperature Long Time (LTLT) heat treatments. Heat treatments, at temperatures as low as 50°C, have been suggested by celebrity chefs. LTLT treatments often take hours to reach to the final core...

  10. A real time measurement of junction temperature variation in high power IGBT modules for wind power converter application

    DEFF Research Database (Denmark)

    Ghimire, Pramod; Pedersen, Kristian Bonderup; de Vega, Angel Ruiz

    2014-01-01

    This paper presents a real time measurement of on-state forward voltage and estimating the junction temperature for a high power IGBT module during a power converter operation. The power converter is realized as it can be used for a wind turbine system. The peak of the junction temperature is dec...

  11. TIME-TEMPERATURE-TRANSFORMATION DIAGRAMS FOR THE SLUDGE BATCH 3 - FRIT 418 GLASS SYSTEM

    International Nuclear Information System (INIS)

    Billings, A.; Edwards, Tommy

    2009-01-01

    As a part of the Waste Acceptance Product Specifications (WAPS) for Vitrified High-Level Waste Forms defined by the Department of Energy - Office of Environmental Management, the phase stability must be determined for each of the projected high-level waste (HLW) types at the Savannah River Site (SRS). Specifically, WAPS 1.4.1 requires the glass transition temperature (Tg) to be defined and time-temperature-transformation (TTT) diagrams to be developed. The Tg of a glass is an indicator of the approximate temperature where the supercooled liquid converts to a solid on cooling or conversely, where the solid begins to behave as a viscoelastic solid on heating. A TTT diagram identifies the crystalline phases that can form as a function of time and temperature for a given waste type or more specifically, the borosilicate glass waste form. In order to assess durability, the Product Consistency Test (PCT) was used and the durability results compared to the Environmental Assessment (EA) glass. The measurement of glass transition temperature and the development of TTT diagrams have already been performed for the seven Defense Waste Processing Facility (DWPF) projected compositions as defined in the Waste Form Compliance Plan (WCP). These measurements were performed before DWPF start-up and the results were incorporated in Volume 7 of the Waste Form Qualification Report (WQR). Additional information exists for other projected compositions, but overall these compositions did not consider some of the processing scenarios now envisioned for DWPF to accelerate throughput. Changes in DWPF processing strategy have required this WAPS specification to be revisited to ensure that the resulting phases have been bounded. Frit 418 was primarily used to process HLW Sludge Batch 3 (SB3) at 38% waste loading (WL) through the DWPF. The Savannah River National Laboratory (SRNL) fabricated a cache of glass from reagent grade oxides to simulate the SB3-Frit 418 system at a 38 wt % WL for glass

  12. Effect of Irrigation Timing on Root Zone Soil Temperature, Root Growth and Grain Yield and Chemical Composition in Corn

    Directory of Open Access Journals (Sweden)

    Xuejun Dong

    2016-05-01

    Full Text Available High air temperatures during the crop growing season can reduce harvestable yields in major agronomic crops worldwide. Repeated and prolonged high night air temperature stress may compromise plant growth and yield. Crop varieties with improved heat tolerance traits as well as crop management strategies at the farm scale are thus needed for climate change mitigation. Crop yield is especially sensitive to night-time warming trends. Current studies are mostly directed to the elevated night-time air temperature and its impact on crop growth and yield, but less attention is given to the understanding of night-time soil temperature management. Delivering irrigation water through drip early evening may reduce soil temperature and thus improve plant growth. In addition, corn growers typically use high-stature varieties that inevitably incur excessive respiratory carbon loss from roots and transpiration water loss under high night temperature conditions. The main objective of this study was to see if root-zone soil temperature can be reduced through drip irrigation applied at night-time, vs. daytime, using three corn hybrids of different above-ground architecture in Uvalde, TX where day and night temperatures during corn growing season are above U.S. averages. The experiment was conducted in 2014. Our results suggested that delivering well-water at night-time through drip irrigation reduced root-zone soil temperature by 0.6 °C, increase root length five folds, plant height 2%, and marginally increased grain yield by 10%. However, irrigation timing did not significantly affect leaf chlorophyll level and kernel crude protein, phosphorous, fat and starch concentrations. Different from our hypothesis, the shorter, more compact corn hybrid did not exhibit a higher yield and growth as compared with taller hybrids. As adjusting irrigation timing would not incur an extra cost for farmers, the finding reported here had immediate practical implications for farm

  13. The effect of temperature and time on the formation of amylose- lysophosphatidylcholine inclusion complexes

    NARCIS (Netherlands)

    Ahmadi-Abhari, S.; Woortman, A.J.J.; Oudhuis, A.A.C.M.; Hamer, R.J.; Loos, K.

    2014-01-01

    The formation of amylose inclusion complexes could help to decrease the susceptibility of starch granules against amylase digestion. We studied the formation of amyloselysophosphatidylcholine (LPC) inclusion complexes at temperatures at and below the gelatinization temperature of starch, using DSC,

  14. Second RPA dynamics at finite temperature: time-evolutions of dynamical operators

    International Nuclear Information System (INIS)

    Jang, S.

    1989-01-01

    Time-evolutions of dynamical operators, in particular the generalized density matrix comprising both diagonal and off-diagonal elements, are investigated within the framework of second RPA dynamics at finite temperature. The calculation of the density matrix previously carried out through the appliance of the second RPA master equation by retaining only the slowly oscillating coupling terms is extended to include in the interaction Hamiltonian both the rapidly and slowly oscillating coupling terms. The extended second RPA master equation, thereby formulated without making use of the so-called resonant approximation, is analytically solved and a closed expression for the generalized density matrix is extracted. We provide illustrative examples of the generalized density matrix for various specific initial conditions. We turn particularly our attention to the Poisson distribution type of initial condition for which we deduce specifically a particular form of the density matrix from the solution of the Fokker-Planck equation for the coherent state representation. The relation of the Fokker-Planck equation to the second RPA master equation and its properties are briefly discussed. The oversight incurred in the time-evolution of operators by the resonant approximation is elucidated. The first and second moments of collective coordinates are also computed in relation to the expectation value of various dynamical operators involved in the extended master equation

  15. Temperature- and supply voltage-independent time references for wireless sensor networks

    CERN Document Server

    De Smedt, Valentijn; Dehaene, Wim

    2015-01-01

    This book investigates the possible circuit solutions to overcome the temperature- and supply voltage-sensitivity of fully-integrated time references for ultra-low-power communication in wireless sensor networks. The authors provide an elaborate theoretical introduction and literature study to enable full understanding of the design challenges and shortcomings of current oscillator implementations.  Furthermore, a closer look to the short-term as well as the long-term frequency stability of integrated oscillators is taken. Next, a design strategy is developed and applied to 5 different oscillator topologies and 1 sensor interface.All 6 implementations are subject to an elaborate study of frequency stability, phase noise, and power consumption. In the final chapter all blocks are compared to the state of the art. The main goals of this book are: • to provide a comprehensive overview of timing issues and solutions in wireless sensor networks; • to gain understanding of all underlying mechanisms by starti...

  16. The influence of annealing temperature and time on the efficiency of pentacene: PTCDI organic solar cells

    Directory of Open Access Journals (Sweden)

    Mehmet Biber

    Full Text Available In this study, fabrication of a polycyclic aromatic hydrocarbon/Perylene Tetracarboxylic Di-Imide (PTCDI, donor/acceptor solar cells are presented using physical vapour deposition technique in a 1000 class glove box. An ITO/PEDOT:PSS/Pentacene/PTCDI/Al (ITO = Indium Tin Oxide and PEDOT:PSS = poly(3,4-ethylenedioxythiophene polystyrene sulfonate solar cell has been obtained and the power conversion efficiency, PCE (η of about 0.33% has been obtained under simulated solar illumination of 300 W/m2. Furthermore, the effects of annealing temperatures (at 100 and 150 °C and of annealing (at 100 °C times for 5 and 10 min. on the power conversion efficiency, η of the solar cells have also been investigated. In general, it has been seen that the thermal annealing deteriorated the characteristics parameters of Pentacene/PTCDI solar cell such that both fill factor, FF and η decreased after annealing and with increase of annealing time. Atomic force microscopy (AFM images showed that the phase segregation and grain size increased and the surface roughness of Pentacene film decreased and these effects reduced the η value. The η values of the solar cell have been determined as 0.33%, 0.12% and 0.06% for pre-annealing, annealing at 100 and 150 °C, respectively. Keywords: Organic solar cells, PTCDI, Pentacene, Annealing

  17. New insights into soil temperature time series modeling: linear or nonlinear?

    Science.gov (United States)

    Bonakdari, Hossein; Moeeni, Hamid; Ebtehaj, Isa; Zeynoddin, Mohammad; Mahoammadian, Abdolmajid; Gharabaghi, Bahram

    2018-03-01

    Soil temperature (ST) is an important dynamic parameter, whose prediction is a major research topic in various fields including agriculture because ST has a critical role in hydrological processes at the soil surface. In this study, a new linear methodology is proposed based on stochastic methods for modeling daily soil temperature (DST). With this approach, the ST series components are determined to carry out modeling and spectral analysis. The results of this process are compared with two linear methods based on seasonal standardization and seasonal differencing in terms of four DST series. The series used in this study were measured at two stations, Champaign and Springfield, at depths of 10 and 20 cm. The results indicate that in all ST series reviewed, the periodic term is the most robust among all components. According to a comparison of the three methods applied to analyze the various series components, it appears that spectral analysis combined with stochastic methods outperformed the seasonal standardization and seasonal differencing methods. In addition to comparing the proposed methodology with linear methods, the ST modeling results were compared with the two nonlinear methods in two forms: considering hydrological variables (HV) as input variables and DST modeling as a time series. In a previous study at the mentioned sites, Kim and Singh Theor Appl Climatol 118:465-479, (2014) applied the popular Multilayer Perceptron (MLP) neural network and Adaptive Neuro-Fuzzy Inference System (ANFIS) nonlinear methods and considered HV as input variables. The comparison results signify that the relative error projected in estimating DST by the proposed methodology was about 6%, while this value with MLP and ANFIS was over 15%. Moreover, MLP and ANFIS models were employed for DST time series modeling. Due to these models' relatively inferior performance to the proposed methodology, two hybrid models were implemented: the weights and membership function of MLP and

  18. Effect of different temperature-time combinations on lipid and protein oxidation of sous-vide cooked lamb loins.

    Science.gov (United States)

    Roldan, Mar; Antequera, Teresa; Armenteros, Monica; Ruiz, Jorge

    2014-04-15

    Forty-five lamb loins were subjected to sous-vide cooking at different combinations of temperature (60, 70 and 80 °C) and time (6, 12 and 24 h) to assess the effect on the oxidative stability of lipids and proteins. Heating induced both lipid and protein oxidation in lamb loins. Higher cooking temperature-time combinations increased conjugated dienes and decreased thiobarbituric reactive substances (TBARS) values and hexanal. Total protein carbonyls increased throughout time at all cooking temperatures considered, while α-aminoadipic (AAS) and γ-glutamic semialdehydes (GGS) increased when cooking at 60 °C but not at 80 °C. Links between the decrease in secondary compounds from lipid oxidation due to cooking at higher temperatures and for longer times with the increased levels of 3-methylbutanal and greater differences between total protein carbonyls and AAS plus GGS were hypothesised. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. The effect of post-treatment time and temperature on cerium-based conversion coatings on Al 2024-T3

    Energy Technology Data Exchange (ETDEWEB)

    Heller, Daimon K [Missouri University of Science and Technology, 101 Straumanis Hall, 401 West 16th Street, Rolla, MO 65409 (United States)], E-mail: dkhvwb@mst.edu; Fahrenholtz, William G. [Missouri University of Science and Technology, 101 Straumanis Hall, 401 West 16th Street, Rolla, MO 65409 (United States)], E-mail: billf@mst.edu; O' Keefe, Matthew J. [Missouri University of Science and Technology, 101 Straumanis Hall, 401 West 16th Street, Rolla, MO 65409 (United States)

    2010-02-15

    Corrosion performance, morphology, and electrochemical characteristics of cerium-based conversion coatings on Al 2024-T3 were examined as a function of phosphate post-treatment time and temperature. Corrosion resistance improved after post-treatment in 2.5 wt.% NH{sub 4}H{sub 2}PO{sub 4} for times up to 10 min or temperatures up to 85 deg. C. Electrochemical impedance spectroscopy and polarization testing correlated to neutral salt spray corrosion performance. Hydrated cerium oxide and peroxide species present in the as-deposited coatings were transformed to CePO{sub 4}.H{sub 2}O for post-treatments at longer times and/or higher temperatures. Based on these results, processes active during post-treatment are kinetically dependent and strongly influenced by the post-treatment time and temperature.

  20. Palmyra Atoll, 2006 Sea Surface Temperature and Meteorological Enhanced Mooring - CRED CREWS Near Real Time and Historical Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Site Palmyra Atoll, (5.88467, -162.10281 ) ARGOS ID 307-001. Time series data from this mooring provide high resolution sea surface temperature and conductivity, and...

  1. Saipan 2005 Sea Surface Temperature and Meteorological Enhanced Mooring - CRED CREWS Near Real Time and Historical Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Site Saipan, CNMI (15.2375N, 145.72283W) ARGOS Buoy ID 26105 Time series data from this mooring provide high resolution sea surface temperature, and surface...

  2. Maro Reef, NWHI 2004 Sea Surface Temperature and Meterological Standard Mooring - CRED CREWS Near Real Time and Historical Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Site - Maro Reef, NW Hawaiian Islands (25.44643, -170.63366 ) ARGOS ID 21531 Time series data from this mooring provide high resolution sea surface temperature,...

  3. Temperature abuse timing affects the quality deterioration of commercially packaged ready-to-eat baby spinach

    Science.gov (United States)

    Temperature abuse of fresh-cut products occurs routinely during transportation and retail store display. However, the stage of product shelf life during temperature abuse and its impact on sensory attributes and product quality have not been studied. This study evaluated the effect of temperature ab...

  4. Enzymic saccharification of some pretreated agricultural wastes

    Energy Technology Data Exchange (ETDEWEB)

    El-Gammal, S.M.A.; Sadek, M.A.

    1988-01-01

    Cellulosie wastes, artichoke leaves and stalks, sugar-cane bagasse and fennel seeds after extraction of essential oils were treated with various concentrations of peracetic acid at 100/sup 0/C, 60/sup 0/C and room temperature several times, washed with water and ethanol and air dried. The degree of enzymatic solubilization of each treated cellulosic waste was measured with Aspergillus niger cellulase (Endo-1,4-B-Glucanase; 1,4-(1,3; 1,4)-..beta..-D-glucan 4-glucanohydrolase; EC 3. 2.1.4). Artichoke waste and sugar-cane bagasse were solubilized more efectively by the enzymethan fennel waste. Data are presented describing the effect of time, enzyme and substrate concentration on the rate of enzymic hydrolysis. Infrared spectra of the treated and untreated cellulosic materials were recorded.

  5. The effects of time, temperature and rotation of water on the corrosion rate of different types of steels

    International Nuclear Information System (INIS)

    Muhamad Daud; Jamaliah Shariff.

    1984-01-01

    By using hot plate/magnetic stirrer and immersion technique, the steel corroded uniformly and their corrosion rates vary due to type of steel, time of immersion, temperature and rotation of water. Therefore the rate of general corrosion, or sealing, of steel alloys is influenced by a number of factors, those best established being the composition of the metal, time, temperature, velocity, cleanliness or roughness of the metal surface and direct contact with solutions of the other materials. (author)

  6. Time-resolved x-ray diffraction measurement of C60 under high pressure and temperature using synchrotron radiation

    International Nuclear Information System (INIS)

    Horikawa, T; Suito, K; Kobayashi, M; Onodera, A

    2002-01-01

    C 60 has been studied by means of time-resolved x-ray diffraction measurements using synchrotron radiation. Diffraction patterns were recorded at intervals of 1-10 min for samples under high pressure (12.5 and 14.3 GPa) and high temperature (up to 800 deg. C) for, at the longest, 3 h. Time, pressure, and temperature dependences of the C 60 structure are presented and the relevance to the hardness of materials derived from C 60 is discussed

  7. The Threshold Temperature and Lag Effects on Daily Excess Mortality in Harbin, China: A Time Series Analysis

    Directory of Open Access Journals (Sweden)

    Hanlu Gao

    2017-04-01

    Full Text Available Background: A large number of studies have reported the relationship between ambient temperature and mortality. However, few studies have focused on the effects of high temperatures on cardio-cerebrovascular diseases mortality (CCVDM and their acute events (ACCVDM. Objective: To assess the threshold temperature and time lag effects on daily excess mortality in Harbin, China. Methods: A generalized additive model (GAM with a Poisson distribution was used to investigate the relative risk of mortality for each 1 °C increase above the threshold temperature and their time lag effects in Harbin, China. Results: High temperature threshold was 26 °C in Harbin. Heat effects were immediate and lasted for 0–6 and 0–4 days for CCVDM and ACCVDM, respectively. The acute cardiovascular disease mortality (ACVDM seemed to be more sensitive to temperature than cardiovascular disease mortality (CVDM with higher death risk and shorter time lag effects. The lag effects lasted longer for cerebrovascular disease mortality (CBDM than CVDM; so did ACBDM compared to ACVDM. Conclusion: Hot temperatures increased CCVDM and ACCVDM in Harbin, China. Public health intervention strategies for hot temperatures adaptation should be concerned.

  8. Detection of Variations in Air Temperature at Different Time Scales During the Period 1889-1998 at Firenze, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P.V. [Central Research Institute for Dryland Agriculture, Santoshnagar, Saidabad, Hyderabad, 500059, Andhra Pradesh (India); Bindi, M. [DISAT-UNIFI, P.le delle Cascine 18, 50144, Firenze (Italy); Crisci, A. [LaMMA-Laboratorio per la Meteorologia, Climatologia e la Modellistica Ambientale, Campi Bisenzio (Italy); Maracchi, G. [IATA-CNR, P.le delle Cascine 18, 50144 Firenze (Italy)

    2005-09-01

    In an attempt to contribute to studies on global climatic change, 110 years of temperature data for Firenze, Italy, were analysed. Means and trends of annual and monthly temperatures (minimum, maximum and average) were analysed at three different time scales: short (20 years), medium (36-38 years) and long (55 years). Comparative changes in extreme events viz. frosts in the first and second parts of the 20th century were also analysed. At short time scales, climatic change was found in minimum and average temperatures but not in maximum temperatures. At all three time scales, the annual means of minimum, maximum and average temperatures were significantly warmer in the last part than in the early part of the 20th century. The monthly mean temperatures showed significant warming of winter months. Over the last four decades, minimum, maximum and average temperatures had warmed by 0.4, 0.43 and 0.4C per decade, respectively, and if this trend continues, they will be warmer by 4C by the end of the 21st century. The significant decline in days with subzero temperatures and frosts in the last half of the 20th century, further substantiated the occurrence of climate change at this site.

  9. Chemical vapour deposition diamond. Charge carrier movement at low temperatures and use in time-critical applications

    International Nuclear Information System (INIS)

    Jansen, Hendrik

    2013-09-01

    Diamond, a wide band gap semiconductor with exceptional electrical properties, has found its way in diverse fields of application reaching from the usage as a sensor material for beam loss monitors at particle accelerator facilities, over laser windows, to UV light sensors in space applications, e.g. for space weather forecasting. Though often used at room temperature, little is known about the charge transport in diamond towards liquid helium temperatures. In this work the method of the transient current technique is employed at temperatures between room temperature and 2 K. The temperature and electric field strength dependence of the pulse shape, the charge carrier transit time, the drift velocity, the saturation velocity, and the low-field mobility is measured in detector-grade scCVD diamond. Furthermore, the usability of diamond in time-critical applications is tested, and the main results are presented.

  10. Chemical Vapour Deposition Diamond - Charge Carrier Movement at Low Temperatures and Use in Time-Critical Applications

    CERN Document Server

    Jansen, Hendrik; Pernegger, Heinz

    Diamond, a wide band gap semiconductor with exceptional electrical properties, has found its way in diverse fields of application reaching from the usage as a sensor material for beam loss monitors at particle accelerator facilities, to laser windows, to UV light sensors in space applications, e.g. for space weather forecasting. Though often used at room temperature, little is known about the charge transport in diamond towards liquid helium temperatures. In this work the method of the transient current technique is employed at temperatures between room temperature and 2 K. The temperature and electric field strength dependence of the pulse shape, the charge carrier transit time, the drift velocity, the saturation velocity, and the low-field mobility is measured in detector-grade scCVD diamond. Furthermore, the usability of diamond in time-critical applications is tested, and the main results are presented.

  11. Effect of cooking time and temperature on the heterocyclic amine content of fried beef patties.

    Science.gov (United States)

    Knize, M G; Dolbeare, F A; Carroll, K L; Moore, D H; Felton, J S

    1994-07-01

    The mutagenic heterocyclic amines 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (DiMeIQx) were measured in ground-beef patties fried at 150, 190 and 230 degrees C for 2-10 min on each side. Heterocyclic amines were purified using solid-phase extraction and analysed by HPLC. Recovery-corrected amounts of each heterocyclic amine were determined by the method of standard addition based on spiked samples with recoveries ranging from 40 to 70%. Mutagenic activity measured by the Ames/Salmonella test was determined for each sample. The amounts of MeIQx, PhIP, DiMeIQx and IQ increased with time and temperature of cooking. 3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) and 2-amino-9H-pyrido[2,3-b]indole (A alpha C) were not detected in any sample. The mutagenic activity response measured for the meat extracts (TA98 revertants) was similar to the mutagenic activity calculated from the mass of heterocyclic amines present. The rate of formation of PhIP in a model system containing creatinine and phenylalanine heated in 80% diethylene glycol was compared with PhIP formation during meat frying. The apparent heats of activation were 6.5 kcal/mol in the model system compared with 6.0 kcal/mol in the fried meat patties. The increase in PhIP and MeIQx formation fitted an exponential function over the range 0 to 11 min and from 150 to 230 degrees C. This report shows clearly that increases in cooking temperature and time can have a profound effect on the amounts of heterocyclic amines generated and subsequently consumed in the diet.

  12. Real-time PCR and enzyme-linked fluorescent assay methods for detecting Shiga-toxin-producing Escherichia coli in mincemeat samples.

    Science.gov (United States)

    Stefan, A; Scaramagli, S; Bergami, R; Mazzini, C; Barbanera, M; Perelle, S; Fach, P

    2007-03-01

    This work aimed to compare real-time polymerase chain reaction (PCR) with the commercially available enzyme-linked fluorescent assay (ELFA) VIDAS ECOLI O157 for detecting Escherichia coli O157 in mincemeat. In addition, a PCR-based survey on Shiga-toxin-producing E. coli (STEC) in mincemeat collected in Italy is presented. Real-time PCR assays targeting the stx genes and a specific STEC O157 sequence (SILO157, a small inserted locus of STEC O157) were tested for their sensitivity on spiked mincemeat samples. After overnight enrichment, the presence of STEC cells could be clearly determined in the 25 g samples containing 10 bacterial cells, while the addition of five bacteria provided equivocal PCR results with Ct values very close to or above the threshold of 40. The PCR tests proved to be more sensitive than the ELFA-VIDAS ECOLI O157, whose detection level started from 50 bacterial cells/25 g of mincemeat. The occurrence of STEC in 106 mincemeat (bovine, veal) samples collected from September to November 2004 at five different points of sale in Italy (one point of sale in Arezzo, Tuscany, central Italy, two in Mantova, Lombardy, Northern Italy, and two in Bologna, Emilia-Romagna, upper-central Italy) was less than 1%. Contamination by the main STEC O-serogroups representing a major public health concern, including O26, O91, O111, O145, and O157, was not detected. This survey indicates that STEC present in these samples are probably not associated with pathogenesis in humans.

  13. Influence of the incubation temperature and the batch components on the sensitivity of an enzyme-linked immunosorbent assay to detect Aujeszky's disease virus glycoprotein E (gE).

    Science.gov (United States)

    Cay, A B; Van der Stede, Y

    2010-12-01

    Although licensed batches of an enzyme-linked immunosorbent assay (ELISA) for Aujeszky's disease virus (ADV) were used, and the assays were performed within an ISO/IEC 17025 accredited quality control system, certain routine runs of the ADV ELISA were not validated using the quality system criteria, even when all technical parameters were controlled. Incubation at different temperatures and batch composition were identified as parameters that could result in non-validated assays/runs. Therefore, the effect of incubation temperature and batch composition on the analytical sensitivity of the ELISA was investigated. The World Organisation for Animal Health (OIE) standard reference serum ADV1 was diluted 1:8 and tested in 94 different glycoprotein E ELISA runs performed with different batches and different incubation temperatures. The incubation temperature and batch components had a significant influence on the qualitative result for the OIE standard reference serum. An incubation temperature of at least 22 degrees C was recommended, based on the results of this analysis. Which of the batch components caused these differences in sensitivity was not investigated further.

  14. A gene encoding an abscisic acid biosynthetic enzyme (LsNCED4) collocates with the high temperature germination locus Htg6.1 in lettuce (Lactuca sp.).

    Science.gov (United States)

    Argyris, Jason; Truco, María José; Ochoa, Oswaldo; McHale, Leah; Dahal, Peetambar; Van Deynze, Allen; Michelmore, Richard W; Bradford, Kent J

    2011-01-01

    Thermoinhibition, or failure of seeds to germinate when imbibed at warm temperatures, can be a significant problem in lettuce (Lactuca sativa L.) production. The reliability of stand establishment would be improved by increasing the ability of lettuce seeds to germinate at high temperatures. Genes encoding germination- or dormancy-related proteins were mapped in a recombinant inbred line population derived from a cross between L. sativa cv. Salinas and L. serriola accession UC96US23. This revealed several candidate genes that are located in the genomic regions containing quantitative trait loci (QTLs) associated with temperature and light requirements for germination. In particular, LsNCED4, a temperature-regulated gene in the biosynthetic pathway for abscisic acid (ABA), a germination inhibitor, mapped to the center of a previously detected QTL for high temperature germination (Htg6.1) from UC96US23. Three sets of sister BC(3)S(2) near-isogenic lines (NILs) that were homozygous for the UC96US23 allele of LsNCED4 at Htg6.1 were developed by backcrossing to cv. Salinas and marker-assisted selection followed by selfing. The maximum temperature for germination of NIL seed lots with the UC96US23 allele at LsNCED4 was increased by 2-3°C when compared with sister NIL seed lots lacking the introgression. In addition, the expression of LsNCED4 was two- to threefold lower in the former NIL lines as compared to expression in the latter. Together, these data strongly implicate LsNCED4 as the candidate gene responsible for the Htg6.1 phenotype and indicate that decreased ABA biosynthesis at high imbibition temperatures is a major factor responsible for the increased germination thermotolerance of UC96US23 seeds.

  15. Effect of ambient temperature on emergency department visits in Shanghai, China: a time series study.

    Science.gov (United States)

    Zhang, Yue; Yan, Chenyang; Kan, Haidong; Cao, Junshan; Peng, Li; Xu, Jianming; Wang, Weibing

    2014-11-25

    Many studies have examined the association between ambient temperature and mortality. However, less evidence is available on the temperature effects on gender- and age-specific emergency department visits, especially in developing countries. In this study, we examined the short-term effects of daily ambient temperature on emergency department visits (ED visits) in Shanghai. Daily ED visits and daily ambient temperatures between January 2006 and December 2011 were analyzed. After controlling for secular and seasonal trends, weather, air pollution and other confounding factors, a Poisson generalized additive model (GAM) was used to examine the associations between ambient temperature and gender- and age-specific ED visits. A moving average lag model was used to evaluate the lag effects of temperature on ED visits. Low temperature was associated with an overall 2.76% (95% confidence interval (CI): 1.73 to 3.80) increase in ED visits per 1°C decrease in temperature at Lag1 day, 2.03% (95% CI: 1.04 to 3.03) and 2.45% (95% CI: 1.40 to 3.52) for males and females. High temperature resulted in an overall 1.78% (95% CI: 1.05 to 2.51) increase in ED visits per 1°C increase in temperature on the same day, 1.81% (95% CI: 1.08 to 2.54) among males and 1.75% (95% CI: 1.03 to 2.49) among females. The cold effect appeared to be more acute among younger people aged effects were consistent on individuals aged ≥65 years. In contrast, the effects of high temperature were relatively consistent over all age groups. These findings suggest a significant association between ambient temperature and ED visits in Shanghai. Both cold and hot temperatures increased the relative risk of ED visits. This knowledge has the potential to advance prevention efforts targeting weather-sensitive conditions.

  16. Enzymic hydrolysis of xylans. I. A high xylanase and beta-xylosidase producing strain of Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, D.

    1981-01-01

    Aspergillus niger, strain 110.42 (CBS) was selected as a producer of high xylanolytic activities. The time course of xylanase and beta-xylosidase production as well as the effect of pH and temperature on the activity of these enzymes were studied. High-performance liquid chromatography analysis of the enzymic degradation of arabinoxylan showed a nearly complete conversion to pentose sugars. Aspects of using crude xylanase preparations for enzymic saccharification of xylans are discussed.

  17. A Modified Thermal Time Model Quantifying Germination Response to Temperature for C3 and C4 Species in Temperate Grassland

    Directory of Open Access Journals (Sweden)

    Hongxiang Zhang

    2015-07-01

    Full Text Available Thermal-based germination models are widely used to predict germination rate and germination timing of plants. However, comparison of model parameters between large numbers of species is rare. In this study, seeds of 27 species including 12 C4 and 15 C3 species were germinated at a range of constant temperatures from 5 °C to 40 °C. We used a modified thermal time model to calculate germination parameters at suboptimal temperatures. Generally, the optimal germination temperature was higher for C4 species than for C3 species. The thermal time constant for the 50% germination percentile was significantly higher for C3 than C4 species. The thermal time constant of perennials was significantly higher than that of annuals. However, differences in base temperatures were not significant between C3 and C4, or annuals and perennial species. The relationship between germination rate and seed mass depended on plant functional type and temperature, while the base temperature and thermal time constant of C3 and C4 species exhibited no significant relationship with seed mass. The results illustrate differences in germination characteristics between C3 and C4 species. Seed mass does not affect germination parameters, plant life cycle matters, however.

  18. APPLICATION OF SOFT COMPUTING TECHNIQUES FOR PREDICTING COOLING TIME REQUIRED DROPPING INITIAL TEMPERATURE OF MASS CONCRETE

    Directory of Open Access Journals (Sweden)

    Santosh Bhattarai

    2017-07-01

    Full Text Available Minimizing the thermal cracks in mass concrete at an early age can be achieved by removing the hydration heat as quickly as possible within initial cooling period before the next lift is placed. Recognizing the time needed to remove hydration heat within initial cooling period helps to take an effective and efficient decision on temperature control plan in advance. Thermal properties of concrete, water cooling parameters and construction parameter are the most influencing factors involved in the process and the relationship between these parameters are non-linear in a pattern, complicated and not understood well. Some attempts had been made to understand and formulate the relationship taking account of thermal properties of concrete and cooling water parameters. Thus, in this study, an effort have been made to formulate the relationship for the same taking account of thermal properties of concrete, water cooling parameters and construction parameter, with the help of two soft computing techniques namely: Genetic programming (GP software “Eureqa” and Artificial Neural Network (ANN. Relationships were developed from the data available from recently constructed high concrete double curvature arch dam. The value of R for the relationship between the predicted and real cooling time from GP and ANN model is 0.8822 and 0.9146 respectively. Relative impact on target parameter due to input parameters was evaluated through sensitivity analysis and the results reveal that, construction parameter influence the target parameter significantly. Furthermore, during the testing phase of proposed models with an independent set of data, the absolute and relative errors were significantly low, which indicates the prediction power of the employed soft computing techniques deemed satisfactory as compared to the measured data.

  19. TA [B] Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloys over Multiple Time Scales

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Vikas [Purdue Univ., West Lafayette, IN (United States)

    2017-03-06

    DoE-NETL partnered with Purdue University to predict the creep and associated microstructure evolution of tungsten-based refractory alloys. Researchers use grain boundary (GB) diagrams, a new concept, to establish time-dependent creep resistance and associated microstructure evolution of grain boundaries/intergranular films GB/IGF controlled creep as a function of load, environment, and temperature. The goal was to conduct a systematic study that includes the development of a theoretical framework, multiscale modeling, and experimental validation using W-based body-centered-cubic alloys, doped/alloyed with one or two of the following elements: nickel, palladium, cobalt, iron, and copper—typical refractory alloys. Prior work has already established and validated a basic theory for W-based binary and ternary alloys; the study conducted under this project extended this proven work. Based on interface diagrams phase field models were developed to predict long term microstructural evolution. In order to validate the models nanoindentation creep data was used to elucidate the role played by the interface properties in predicting long term creep strength and microstructure evolution.

  20. Nuclear Pasta at Finite Temperature with the Time-Dependent Hartree-Fock Approach

    International Nuclear Information System (INIS)

    Schuetrumpf, B; Maruhn, J A; Klatt, M A; Mecke, K; Reinhard, P-G; Iida, K

    2016-01-01

    We present simulations of neutron-rich matter at sub-nuclear densities, like supernova matter. With the time-dependent Hartree-Fock approximation we can study the evolution of the system at temperatures of several MeV employing a full Skyrme interaction in a periodic three-dimensional grid [1].The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter.The matter evolves into spherical, rod-like, connected rod-like and slab-like shapes. Further we observe gyroid-like structures, discussed e.g. in [2], which are formed spontaneously choosing a certain value of the simulation box length. The ρ-T-map of pasta shapes is basically consistent with the phase diagrams obtained from QMD calculations [3]. By an improved topological analysis based on Minkowski functionals [4], all observed pasta shapes can be uniquely identified by only two valuations, namely the Euler characteristic and the integral mean curvature.In addition we propose the variance in the cell-density distribution as a measure to distinguish pasta matter from uniform matter. (paper)

  1. Nuclear Pasta at Finite Temperature with the Time-Dependent Hartree-Fock Approach

    Science.gov (United States)

    Schuetrumpf, B.; Klatt, M. A.; Iida, K.; Maruhn, J. A.; Mecke, K.; Reinhard, P.-G.

    2016-01-01

    We present simulations of neutron-rich matter at sub-nuclear densities, like supernova matter. With the time-dependent Hartree-Fock approximation we can study the evolution of the system at temperatures of several MeV employing a full Skyrme interaction in a periodic three-dimensional grid [1]. The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter. The matter evolves into spherical, rod-like, connected rod-like and slab-like shapes. Further we observe gyroid-like structures, discussed e.g. in [2], which are formed spontaneously choosing a certain value of the simulation box length. The ρ-T-map of pasta shapes is basically consistent with the phase diagrams obtained from QMD calculations [3]. By an improved topological analysis based on Minkowski functionals [4], all observed pasta shapes can be uniquely identified by only two valuations, namely the Euler characteristic and the integral mean curvature. In addition we propose the variance in the cell-density distribution as a measure to distinguish pasta matter from uniform matter.

  2. Experimental study of electric field influence on low temperature long-time relaxation in crystalline ferroelectrics

    International Nuclear Information System (INIS)

    Sahling, S.; Kolac, M.; Sahling, A.

    1987-01-01

    Calorimetric measurements with polycrystalline Pb 0.915 La 0.085 x(Zr 0.65 Ti 0.35 )O 3 were performed at helium temperatures in electric field E (0 ≤ E ≤ 4.3 kV/cm). Heat release after cooling from T 1 (1.3 K ≤ T 1 ≤ 35 K) to T 0 =1.3 K is very similar to that in amorphous metals and dielectrics. Experimental results disagree with the standard tunneling model. The observed release may be explained assuming the existence of a maximum energy is an element of f in the distribution function. The maximum relaxation time τ max was found as a function of T 1 . A similar heat release is observed after switching on or off the electric field. In dependent of T for 1.1 K ≤ T ≤ 3 K, proportional to E 2 with τ max ∼ E. No heat release was observed in the KH 2 PO 4 single crystal

  3. Nanosecond time-resolved characterization of a pentacene-based room-temperature MASER

    Science.gov (United States)

    Salvadori, Enrico; Breeze, Jonathan D.; Tan, Ke-Jie; Sathian, Juna; Richards, Benjamin; Fung, Mei Wai; Wolfowicz, Gary; Oxborrow, Mark; Alford, Neil McN.; Kay, Christopher W. M.

    2017-01-01

    The performance of a room temperature, zero-field MASER operating at 1.45 GHz has been examined. Nanosecond laser pulses, which are essentially instantaneous on the timescale of the spin dynamics, allow the visible-to-microwave conversion efficiency and temporal response of the MASER to be measured as a function of excitation energy. It is observed that the timing and amplitude of the MASER output pulse are correlated with the laser excitation energy: at higher laser energy, the microwave pulses have larger amplitude and appear after shorter delay than those recorded at lower laser energy. Seeding experiments demonstrate that the output variation may be stabilized by an external source and establish the minimum seeding power required. The dynamics of the MASER emission may be modeled by a pair of first order, non-linear differential equations, derived from the Lotka-Volterra model (Predator-Prey), where by the microwave mode of the resonator is the predator and the spin polarization in the triplet state of pentacene is the prey. Simulations allowed the Einstein coefficient of stimulated emission, the spin-lattice relaxation and the number of triplets contributing to the MASER emission to be estimated. These are essential parameters for the rational improvement of a MASER based on a spin-polarized triplet molecule. PMID:28169331

  4. Time-temperature characteristics of the various heat-affected zones in HT-9 weldments

    International Nuclear Information System (INIS)

    Foulds, J.R.

    1984-01-01

    Temperatures at different distances from the fusion boundary were measured during GTA weld depositing MTS-4 filler wire on 9.52-mm (3/8 in.) thick HT-9 plate. Peak temperature measurements indicate each of the heat-affected regions to be austenitized. An exponential expression has been used to describe the cooling curves as a function of peak temperature (or distance) from the fusion boundary

  5. A comparison of the real-time and the imaginary-time formalisms of finite temperature field theory for 2,3, and 4-point Green's functions

    International Nuclear Information System (INIS)

    Aurenche, P.; Becherrawy, T.

    1991-07-01

    The predictions of the real-time and the imaginary-time formalisms of Finite Temperature Field Theory is compared. Retarded and advanced amplitudes are constructed in the real-time formalism which are linear combinations of the usual time-ordered thermo-field dynamics amplitudes. These amplitudes can be easily compared to the various analytically continued amplitudes of the imaginary-time formalism. Explicit calculation of the 2,3 and 4-point Green's functions in φ 3 field theory is done in the one and two-loop approximations, and the compatibility of the two formalisms is shown. (author) 17 refs., 12 figs

  6. Temperature and diet effect on the pepsin enzyme activities, digestive somatic index and relative gut length of Malabar blood snapper (Lutjanus malabaricus Bloch & Schneider, 1801

    Directory of Open Access Journals (Sweden)

    Sabuj Kanti Mazumder

    2018-02-01

    Full Text Available An integrated experiment was performed on juvenile Malabar blood snapper (Lutjanus malabaricus to investigate the effect of temperature and diet in their pepsin activities in relation with digestive somatic index (IDS and relative gut length (RGL. One hundred twenty L. malabaricus juvenile (13–15 cm were equally distributed among four exposed temperature treatments (22, 26, 30 and 34 °C representing their seasonal range and to account for end of century predicted temperatures, and two diets as commercial pellet and natural shrimp. After 7 days of acclimation period fish were reared for 30 days in twenty four 400 l glass aquaria at a stocking density of 5 fish tank−1. All treatments were three replications. The result showed that, IDS and RGL gradually decreased with increasing temperature up to 30 °C and again increase at 34 °C. And the values were also higher in pellet feeding fish than shrimp feeding fish at all the temperatures. Alternatively, in pepsin activity, an increased activity was seen between 26 °C to 30 °C and this activity was significantly higher than the 22 °C and 34 °C (P < 0.05. In general, highest pepsin activity was observed among fish which fed on a natural shrimp diet reared at temperature 30 °C (5.47 ± 1.60 U mg protein−1, followed by those at 26, 34 and 22 °C (P < 0.05 at both diet however, no mortalities were observed. These results could be used as a basis for selecting a suitable diet for maximizing the growth and sustainable aquaculture coping with global warming.

  7. Large-strain time-temperature equivalence in high density polyethylene for prediction of extreme deformation and damage

    Directory of Open Access Journals (Sweden)

    Gray G.T.

    2012-08-01

    Full Text Available Time-temperature equivalence is a widely recognized property of many time-dependent material systems, where there is a clear predictive link relating the deformation response at a nominal temperature and a high strain-rate to an equivalent response at a depressed temperature and nominal strain-rate. It has been found that high-density polyethylene (HDPE obeys a linear empirical formulation relating test temperature and strain-rate. This observation was extended to continuous stress-strain curves, such that material response measured in a load frame at large strains and low strain-rates (at depressed temperatures could be translated into a temperature-dependent response at high strain-rates and validated against Taylor impact results. Time-temperature equivalence was used in conjuction with jump-rate compression tests to investigate isothermal response at high strain-rate while exluding adiabatic heating. The validated constitutive response was then applied to the analysis of Dynamic-Tensile-Extrusion of HDPE, a tensile analog to Taylor impact developed at LANL. The Dyn-Ten-Ext test results and FEA found that HDPE deformed smoothly after exiting the die, and after substantial drawing appeared to undergo a pressure-dependent shear damage mechanism at intermediate velocities, while it fragmented at high velocities. Dynamic-Tensile-Extrusion, properly coupled with a validated constitutive model, can successfully probe extreme tensile deformation and damage of polymers.

  8. Co-immobilization of multiple enzymes by metal coordinated nucleotide hydrogel nanofibers: improved stability and an enzyme cascade for glucose detection.

    Science.gov (United States)

    Liang, Hao; Jiang, Shuhui; Yuan, Qipeng; Li, Guofeng; Wang, Feng; Zhang, Zijie; Liu, Juewen

    2016-03-21

    Preserving enzyme activity and promoting synergistic activity via co-localization of multiple enzymes are key topics in bionanotechnology, materials science, and analytical chemistry. This study reports a facile method for co-immobilizing multiple enzymes in metal coordinated hydrogel nanofibers. Specifically, four types of protein enzymes, including glucose oxidase, Candida rugosa lipase, α-amylase, and horseradish peroxidase, were respectively encapsulated in a gel nanofiber made of Zn(2+) and adenosine monophosphate (AMP) with a simple mixing step. Most enzymes achieved quantitative loading and retained full activity. At the same time, the entrapped enzymes were more stable against temperature variation (by 7.5 °C), protease attack, extreme pH (by 2-fold), and organic solvents. After storing for 15 days, the entrapped enzyme still retained 70% activity while the free enzyme nearly completely lost its activity. Compared to nanoparticles formed with AMP and lanthanide ions, the nanofiber gels allowed much higher enzyme activity. Finally, a highly sensitive and selective biosensor for glucose was prepared using the gel nanofiber to co-immobilize glucose oxidase and horseradish peroxidase for an enzyme cascade system. A detection limit of 0.3 μM glucose with excellent selectivity was achieved. This work indicates that metal coordinated materials using nucleotides are highly useful for interfacing with biomolecules.

  9. Stability of Enzymes in Granular Enzyme Products for Laundry Detergents

    DEFF Research Database (Denmark)

    Biran, Suzan; Bach, Poul; Simonsen, Ole

    Enzymes have long been of interest to the detergent industry due to their ability to improve the cleaning efficiency of synthetic detergents, contribute to shortening washing times, and reduce energy and water consumption, provision of environmentally friendlier wash water effluents and fabric care....... However, incorporating enzymes in detergent formulations gives rise to numerous practical problems due to their incompatibility with and stability against various detergent components. In powdered detergent formulations, these issues can be partly overcome by physically isolating the enzymes in separate...... particles. However, enzymes may loose a significant part of their activity over a time period of several weeks. Possible causes of inactivation of enzymes in a granule may be related to the release of hydrogen peroxide from the bleaching chemicals in a moisture-containing atmosphere, humidity, autolysis...

  10. Study on Real-Time Simulation Analysis and Inverse Analysis System for Temperature and Stress of Concrete Dam

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2015-01-01

    Full Text Available In the concrete dam construction, it is very necessary to strengthen the real-time monitoring and scientific management of concrete temperature control. This paper constructs the analysis and inverse analysis system of temperature stress simulation, which is based on various useful data collected in real time in the process of concrete construction. The system can produce automatically data file of temperature and stress calculation and then achieve the remote real-time simulation calculation of temperature stress by using high performance computing techniques, so the inverse analysis can be carried out based on a basis of monitoring data in the database; it fulfills the automatic feedback calculation according to the error requirement and generates the corresponding curve and chart after the automatic processing and analysis of corresponding results. The system realizes the automation and intellectualization of complex data analysis and preparation work in simulation process and complex data adjustment in the inverse analysis process, which can facilitate the real-time tracking simulation and feedback analysis of concrete temperature stress in construction process and enable you to discover problems timely, take measures timely, and adjust construction scheme and can well instruct you how to ensure project quality.

  11. Photoperiodism and Enzyme Activity

    Science.gov (United States)

    Queiroz, Orlando; Morel, Claudine

    1974-01-01

    Metabolic readjustments after a change from long days to short days appear, in Kalanchoe blossfeldiana, to be achieved through the operation of two main mechanisms: variation in enzyme capacity, and circadian rhythmicity. After a lag time, capacity in phosphoenolpyruvate carboxylase and capacity in aspartate aminotransferase increase exponentially and appear to be allometrically linked during 50 to 60 short days; then a sudden fall takes place in the activity of the former. Malic enzyme and alanine aminotransferase behave differently. Thus, the operation of the two sections of the pathway (before and after the malate step) give rise to a continuously changing functional compartmentation in the pathway. Circadian rhythmicity, on the other hand, produces time compartmentation through phase shifts and variation in amplitude, independently for each enzyme. These characteristics suggest that the operation of a so-called biological clock would be involved. We propose the hypothesis that feedback regulation would be more accurate and efficient when applied to an already oscillating, clock-controlled enzyme system. PMID:16658749

  12. Predicting Near Real-Time Inundation Occurrence from Complimentary Satellite Microwave Brightness Temperature Observations

    Science.gov (United States)

    Fisher, C. K.; Pan, M.; Wood, E. F.

    2017-12-01

    Throughout the world, there is an increasing need for new methods and data that can aid decision makers, emergency responders and scientists in the monitoring of flood events as they happen. In many regions, it is possible to examine the extent of historical and real-time inundation occurrence from visible and infrared imagery provided by sensors such as MODIS or the Landsat TM; however, this is not possible in regions that are densely vegetated or are under persistent cloud cover. In addition, there is often a temporal mismatch between the sampling of a particular sensor and a given flood event, leading to limited observations in near real-time. As a result, there is a need for alternative methods that take full advantage of complimentary remotely sensed data sources, such as available microwave brightness temperature observations (e.g., SMAP, SMOS, AMSR2, AMSR-E, and GMI), to aid in the estimation of global flooding. The objective of this work was to develop a high-resolution mapping of inundated areas derived from multiple satellite microwave sensor observations with a daily temporal resolution. This system consists of first retrieving water fractions from complimentary microwave sensors (AMSR-2 and SMAP) which may spatially and temporally overlap in the region of interest. Using additional information in a Random Forest classifier, including high resolution topography and multiple datasets of inundated area (both historical and empirical), the resulting retrievals are spatially downscaled to derive estimates of the extent of inundation at a scale relevant to management and flood response activities ( 90m or better) instead of the relatively coarse resolution water fractions, which are limited by the microwave sensor footprints ( 5-50km). Here we present the training and validation of this method for the 2015 floods that occurred in Houston, Texas. Comparing the predicted inundation against historical occurrence maps derived from the Landsat TM record and MODIS

  13. Change in air temperature over Sudan and South Sudan with time ...

    African Journals Online (AJOL)

    Annual mean air temperature for Sudan and South Sudan for the three periods 1900-1940, 1961- 1990 and 1981-2010 for 12 stations was analyzed with objectives of studying changes in air temperature over the area during the last century and also to study the linkages between mean, maximum and minimum air ...

  14. Galileo SSI and Cassini ISS Observations of Io's Pele Hotspot: Temperatures, Areas, and Variation with Time

    Science.gov (United States)

    Radebaugh, J.; McEwen, A. S.; Milazzo, M.; Davies, A. G.; Keszthelyi, L. P.; Geissler, P.

    2002-01-01

    Temperatures of Io's Pele hotspot were found using dual-filter observations from Galileo and Cassini. Temperatures average 1375 K, but vary widely over tens of minutes. Dropoff in emission with rotation consistent with lava fountaining at a lava lake. Additional information is contained in the original extended abstract.

  15. Effects of Elevated Ambient Temperature on Reproductive Outcomes and Offspring Growth Depend on Exposure Time

    Directory of Open Access Journals (Sweden)

    Huda Yahia Hamid

    2012-01-01

    Full Text Available Reproductive performance has been shown to be greatly affected by changes in environmental factors, such as temperature. However, it is also crucial to identify the particular stage of pregnancy that is most adversely affected by elevated ambient temperature. The aims of this study were to determine the effect on reproductive outcomes of exposure to elevated ambient temperature during different stages of pregnancy and to determine the effect of prenatal heat stress on offspring growth. Sixty pregnant rats were used in this study. The rats were divided equally into four groups as group 1 (control, group 2 (exposed to elevated temperature following implantation, group 3 (exposed to elevated temperature during pre- and periimplantation, and group 4 (exposed to elevated temperature during pre- and periimplantation and following implantation. Groups 3 and 4 had prolonged gestation periods, reduced litter sizes, and male-biased sex ratios. Moreover, the growth patterns of group 3 and 4 pups were adversely affected by prenatal exposure to elevated temperature. The differences between group 1 and group 3 and between group 1 and group 4 were highly significant. However, no significant differences were observed between groups 1 and 2 in the gestation length, sex ratios, and growth patterns. Thus, it can be concluded that exposure to elevated ambient temperature during pre- and periimplantation has stronger adverse effects on reproductive outcomes and offspring growth than postimplantation exposure.

  16. The effect of temperature and time on the formation of amylose- lysophosphatidylcholine inclusion complexes

    NARCIS (Netherlands)

    Ahmadiabhari, Salomeh; Woortman, Albert J. J.; Oudhuis, A. A. C. M. (Lizette); Hamer, Rob J.; Loos, Katja

    The formation of amylose inclusion complexes could help to decrease the susceptibility of starch granules against amylase digestion. We studied the formation of amylose-lysophosphatidylcholine (LPC) inclusion complexes at temperatures at and below the gelatinization temperature of starch, using DSC,

  17. The effect of temperature and time on the formation of amylose–lysophosphatidylcholine inclusion complexes

    NARCIS (Netherlands)

    Ahmadi-Abhari, S.; Woortman, A.J.J.; Oudhuis, A.A.C.M.; Hamer, R.J.; Loos, K.

    2014-01-01

    The formation of amylose inclusion complexes could help to decrease the susceptibility of starch granules against amylase digestion. We studied the formation of amylose–lysophosphatidylcholine (LPC) inclusion complexes at temperatures at and below the gelatinization temperature of starch, using DSC,

  18. The effect of skin temperature on performance during a 7.5-km cycling time trial

    NARCIS (Netherlands)

    Levels, K.; de Koning, J.J.; Foster Jr., C.C.; Daanen, H.A.M.

    2012-01-01

    Aerobic exercise performance is seriously compromised in the heat. Possibly, a high skin temperature causes a rating of perceived exertion (RPE)-mediated decrease in exercise intensity. The purpose of this study was to determine the effect of skin temperature on power output during a 7.5-km cycling

  19. A space and time scale-dependent nonlinear geostatistical approach for downscaling daily precipitation and temperature

    KAUST Repository

    Jha, Sanjeev Kumar; Mariethoz, Gregoire; Evans, Jason; McCabe, Matthew; Sharma, Ashish

    2015-01-01

    precipitation and daily temperature over several years. Here, the training image consists of daily rainfall and temperature outputs from the Weather Research and Forecasting (WRF) model at 50 km and 10 km resolution for a twenty year period ranging from 1985

  20. Long-term sea surface temperature baselines - time series, spatial covariation and implications for biological processes

    DEFF Research Database (Denmark)

    MacKenzie, Brian; Schiedek, D.

    2007-01-01

    to 2 years. These differences suggest that spatial variations in physical oceanographic phenomena and sampling heterogeneities associated with opportunistic sampling could affect perceptions of biological responses to temperature fluctuations. The documentation that the coastally measured temperatures...... questions at large spatial scales, such as the response of species distributions and phenologies to climate change. In this study we investigate the spatial synchrony of long-term sea surface temperatures in the North Sea-Baltic Sea region as measured daily at four coastal sites (Marsdiep, Netherlands...... at coastal sites co-varied strongly with each other and with opportunistically measured offshore temperatures despite separation distances between measuring locations of 20-1200 km. This covariance is probably due to the influence of large-scale atmospheric processes on regional temperatures...

  1. Time- and temperature-dependent autolysis of urinary bladder epithelium during ex vivo preservation.

    Science.gov (United States)

    Erman, Andreja; Veranič, Peter

    2011-07-01

    Morphological and functional preservation of urinary bladder epithelium-urothelium after extirpation from an organism enables physiological studies of that tissue and provides the basis for successful organ transplantations. The aim of this study was to determine the optimal temperature for maintaining urothelium in ex vivo conditions. Mouse urinary bladders were kept at the three temperatures usually used for maintaining tissue during transportation: at the temperature of melting ice (1°C), at room temperature (22-24°C), and at the body temperature of most mammals (37°C). Autolytic structural changes were followed with electron microscopy, while destruction of cytoskeleton and intercellular junctions was observed by immunolabeling. The first ultrastructural changes, swelling of mitochondria and necrosis of individual cells, became evident 30 min after extirpation if the tissue was kept at 1°C. After 60 and 120 min in ex vivo conditions, the most severe changes with increasing plasma membrane ruptures were detected at 1°C, while at room temperature only mild changes were detected. At 37°C, the extent of ultrastructural changes was between those of the other two experimental temperatures. Autolytic destruction of cytoskeleton and intercellular junctions was not observed before 2 h after extirpation. After 4 h, severe degradation of cytokeratin 20 and microtubules were found at 1°C and 37°C, while being almost undisturbed at room temperature. On the other hand, the reduction of desmoplakin and ZO-1 labeling was more evident at 37°C than at 1°C and room temperature. These findings provide evidence that room temperature is most appropriate for short ex vivo preservation of urothelial tissue.

  2. The effects of heating temperatures and time on deformation energy and oil yield of sunflower bulk seeds in compression loading

    Science.gov (United States)

    Kabutey, A.; Herak, D.; Sigalingging, R.; Demirel, C.

    2018-02-01

    The deformation energy (J) and percentage oil yield (%) of sunflower bulk seeds under the influence of heat treatment temperatures and heating time were examined in compression test using the universal compression testing machine and vessel diameter of 60 mm with a plunger. The heat treatment temperatures were between 40 and 100 °C and the heating time at specific temperatures of 40 and 100 °C ranged from 15 to 75 minutes. The bulk sunflower seeds were measured at a pressing height of 60 mm and pressed at a maximum force of 100 kN and speed of 5 mm/min. Based on the compression results, the deformation energy and oil yield increased along with increasing heat treatment temperatures. The results were statistically significant (p 0.05).

  3. Antarctic Iceberg Tracking Based on Time Series of Aqua AMSRE Microwave Brightness Temperature Measurements

    Science.gov (United States)

    Blonski, Slawomir; Peterson, Craig

    2006-01-01

    Observations of icebergs are identified as one of the requirements for the GEOSS (Global Earth Observation System of Systems) in the area of reducing loss of life and property from natural and human-induced disasters. However, iceberg observations are not included among targets in the GEOSS 10-Year Implementation Plan, and thus there is an unfulfilled need for iceberg detection and tracking in the near future. Large Antarctic icebergs have been tracked by the National Ice Center and by the academic community using a variety of satellite sensors including both passive and active microwave imagers, such as SSM/I (Special Sensor Microwave/Imager) deployed on the DMSP (Defense Meteorological Satellite Program) spacecraft. Improvements provided in recent years by NASA and non-NASA satellite radars, scatterometers, and radiometers resulted in an increased number of observed icebergs and even prompted a question: Is The Number of Antarctic Icebergs Really Increasing? [D.G. Long, J. Ballantyne, and C. Bertoia, Eos, Transactions of the American Geophysical Union 83 (42): 469 & 474, 15 October 2002]. AMSR-E (Advanced Microwave Scanning Radiometer for the Earth Observing System) represents an improvement over SSM/I, its predecessor. AMSR-E has more measurement channels and higher spatial resolution than SSM/I. For example, the instantaneous field of view of the AMSR-E s 89-GHz channels is 6 km by 4 km versus 16 km by 14 km for SSM/I s comparable 85-GHz channels. AMSR-E, deployed on the Aqua satellite, scans across a 1450-km swath and provides brightness temperature measurements with nearglobal coverage every one or two days. In polar regions, overlapping swaths generate coverage up to multiple times per day and allow for creation of image time series with high temporal resolution. Despite these advantages, only incidental usage of AMSR-E data for iceberg tracking has been reported so far, none in an operational environment. Therefore, an experiment was undertaken in the RPC

  4. Antarctic Iceberg Tracking Based on Time Series of Aqua AMSR-E Microwave Brightness Temperature Measurements

    Science.gov (United States)

    Blonski, S.; Peterson, C. A.

    2006-12-01

    Observations of icebergs are identified as one of the requirements for the GEOSS (Global Earth Observation System of Systems) in the area of reducing loss of life and property from natural and human-induced disasters. However, iceberg observations are not included among targets in the GEOSS 10-Year Implementation Plan, and thus there is an unfulfilled need for iceberg detection and tracking in the near future. Large Antarctic icebergs have been tracked by the National Ice Center and by the academic community using a variety of satellite sensors including both passive and active microwave imagers, such as SSM/I (Special Sensor Microwave/Imager) deployed on the DMSP (Defense Meteorological Satellite Program) spacecraft. Improvements provided in recent years by NASA and non-NASA satellite radars, scatterometers, and radiometers resulted in an increased number of observed icebergs and even prompted a question: `Is The Number of Antarctic Icebergs Really Increasing?' [D.G. Long, J. Ballantyne, and C. Bertoia, Eos, AGU Transactions 83(42):469&474, 15 October 2002]. AMSR-E (Advanced Microwave Scanning Radiometer for the Earth Observing System) represents an improvement over SSM/I, its predecessor. AMSR-E has more measurement channels and higher spatial resolution than SSM/I. For example, the instantaneous field of view of the AMSR-E's 89-GHz channels is 6 km by 4 km versus 16 km by 14 km for SSM/I's comparable 85-GHz channels. AMSR-E, deployed on the Aqua satellite, scans across a 1450-km swath and provides brightness temperature measurements with near-global coverage every one or two days. In polar regions, overlapping swaths generate coverage up to multiple times per day and allow for creation of image time series with high temporal resolution. Despite these advantages, only incidental usage of AMSR-E data for iceberg tracking has been reported so far, none in an operational environment. Therefore, an experiment was undertaken in the RPC (Rapid Prototyping Capability

  5. Measuring temperature dependence of soil respiration: importance of incubation time, soil type, moisture content and model fits

    Science.gov (United States)

    Schipper, L. A.; Robinson, J.; O'Neill, T.; Ryburn, J.; Arcus, V. L.

    2015-12-01

    Developing robust models of the temperature response and sensitivity of soil respiration is critical for determining changes carbon cycling in response to climate change and at daily to annual time scales. Currently, approaches for measuring temperature dependence of soil respiration generally use long incubation times (days to weeks and months) at a limited number of incubation temperatures. Long incubation times likely allow thermal adaptation by the microbial population so that results are poorly representative of in situ soil responses. Additionally, too few incubation temperatures allows for the fit and justification of many different predictive equations, which can lead to inaccuracies when used for carbon budgeting purposes. We have developed a method to rapidly determine the response of soil respiration rate to wide range of temperatures. An aluminium block with 44 sample slots is heated at one end and cooled at the other to give a temperature gradient from 0 to 55°C at about one degree increments. Soil respiration is measured within 5 hours to minimise the possibility of thermal adaptation. We have used this method to demonstrate the similarity of temperature sensitivity of respiration for different soils from the same location across seasons. We are currently testing whether long-term (weeks to months) incubation alter temperature response and sensitivity that occurs in situ responses. This method is also well suited for determining the most appropriate models of temperature dependence and sensitivity of soil respiration (including macromolecular rate theory MMRT). With additional testing, this method is expected to be a more reliable method of measuring soil respiration rate for soil quality and modelling of soil carbon processes.

  6. Temperature and time variations during osteotomies performed with different piezosurgical devices: an in vitro study.

    Science.gov (United States)

    Delgado-Ruiz, R A; Sacks, D; Palermo, A; Calvo-Guirado, J L; Perez-Albacete, C; Romanos, G E

    2016-09-01

    The aim of this experimental in vitro study was to evaluate the effects of the piezoelectric device in temperature and time variations in standardized osteotomies performed with similar tip inserts in bovine bone blocks. Two different piezosurgical devices were used the OE-F15(®) (Osada Inc., Los Angeles, California, USA) and the Surgybone(®) (Silfradent Inc., Sofia, Forli Cesena, Italy). Serrated inserts with similar geometry were coupled with each device (ST94 insert/test A and P0700 insert/test B). Osteotomies 10 mm long and 3 mm deep were performed in bone blocks resembling type II (dense) and type IV (soft) bone densities with and without irrigation. Thermal changes and time variations were recorded. The effects of bone density, irrigation, and device on temperature changes and time necessary to accomplish the osteotomies were analyzed. Thermal analysis showed significant higher temperatures during piezosurgery osteotomies in hard bone without irrigation (P  0.05). Time analysis showed that the mean time values necessary to perform osteotomies were shorter in soft bone than in dense bone (P piezosurgery osteotomies in dense bone without irrigation; the time to perform the osteotomy with piezosurgery is shorter in soft bone compared to hard bone; and the piezosurgical device have a minimal influence in the temperature and time variations when a similar tip design is used during piezosurgery osteotomies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Description of an identification method of thermocouple time constant based on application of recursive numerical filtering to temperature fluctuation

    International Nuclear Information System (INIS)

    Bernardin, B.; Le Guillou, G.; Parcy, JP.

    1981-04-01

    Usual spectral methods, based on temperature fluctuation analysis, aiming at thermocouple time constant identification are using an equipment too much sophisticated for on-line application. It is shown that numerical filtering is optimal for this application, the equipment is simpler than for spectral methods and less samples of signals are needed for the same accuracy. The method is described and a parametric study was performed using a temperature noise simulator [fr

  8. Time evolution of temperature fluctuation in a non-equilibrated system

    International Nuclear Information System (INIS)

    Bhattacharyya, Trambak; Garg, Prakhar; Sahoo, Raghunath; Samantray, Prasant

    2016-01-01

    The evolution equation for inhomogeneous and anisotropic temperature fluctuation inside a medium is derived within the ambit of Boltzmann Transport Equation (BTE) for a hot gas of massless particles. Also, specializing to a situation created after a heavy-ion collision (HIC), we analyze the Fourier space variation of temperature fluctuation of the medium using its temperature profile. The effect of viscosity on the variation of fluctuations in the latter case is investigated and possible implications for early universe cosmology, and its connection with HICs are also explored. (orig.)

  9. Time evolution of temperature fluctuation in a non-equilibrated system

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Trambak; Garg, Prakhar; Sahoo, Raghunath [Indian Institute of Technology Indore, Discipline of Physics, School of Basic Sciences, Simrol (India); Samantray, Prasant [Indian Institute of Technology Indore, Centre of Astronomy, School of Basic Sciences, Simrol (India)

    2016-09-15

    The evolution equation for inhomogeneous and anisotropic temperature fluctuation inside a medium is derived within the ambit of Boltzmann Transport Equation (BTE) for a hot gas of massless particles. Also, specializing to a situation created after a heavy-ion collision (HIC), we analyze the Fourier space variation of temperature fluctuation of the medium using its temperature profile. The effect of viscosity on the variation of fluctuations in the latter case is investigated and possible implications for early universe cosmology, and its connection with HICs are also explored. (orig.)

  10. Surface Temperature Variation Prediction Model Using Real-Time Weather Forecasts

    Science.gov (United States)

    Karimi, M.; Vant-Hull, B.; Nazari, R.; Khanbilvardi, R.

    2015-12-01

    Combination of climate change and urbanization are heating up cities and putting the lives of millions of people in danger. More than half of the world's total population resides in cities and urban centers. Cities are experiencing urban Heat Island (UHI) effect. Hotter days are associated with serious health impacts, heart attaches and respiratory and cardiovascular diseases. Densely populated cities like Manhattan, New York can be affected by UHI impact much more than less populated cities. Even though many studies have been focused on the impact of UHI and temperature changes between urban and rural air temperature, not many look at the temperature variations within a city. These studies mostly use remote sensing data or typical measurements collected by local meteorological station networks. Local meteorological measurements only have local coverage and cannot be used to study the impact of UHI in a city and remote sensing data such as MODIS, LANDSAT and ASTER have with very low resolution which cannot be used for the purpose of this study. Therefore, predicting surface temperature in urban cities using weather data can be useful.Three months of Field campaign in Manhattan were used to measure spatial and temporal temperature variations within an urban setting by placing 10 fixed sensors deployed to measure temperature, relative humidity and sunlight. Fixed instrument shelters containing relative humidity, temperature and illumination sensors were mounted on lampposts in ten different locations in Manhattan (Vant-Hull et al, 2014). The shelters were fixed 3-4 meters above the ground for the period of three months from June 23 to September 20th of 2013 making measurements with the interval of 3 minutes. These high resolution temperature measurements and three months of weather data were used to predict temperature variability from weather forecasts. This study shows that the amplitude of spatial and temporal variation in temperature for each day can be predicted

  11. The association of season and temperature with adverse pregnancy outcome in two German states, a time-series analysis.

    Directory of Open Access Journals (Sweden)

    Jennyfer Wolf

    Full Text Available A seasonality of low birth weight (LBW and preterm birth (PTB has been described for most regions and there is evidence that this pattern is caused by ambient outdoor temperature. However, the association as such, the direction of effect and the critical time of exposure remain controversial.Logistic, time-series regression was performed on nearly 300,000 births from two German states to study the association between season and daily mean temperature and changes in daily proportions of term LBW (tLBW or PTB. Analyses were adjusted for time-varying factors. Temperature exposures were examined during different periods of pregnancy.Weak evidence for an association between season of conception, season of birth or ambient outdoor temperature and tLBW or PTB was found. Results of analyses of temperature were not consistent between the two states. Different sources of bias which would have artificially led to stronger findings were detected and are described.No clear evidence for an association between season of conception, season of birth or temperature and tLBW or PTB was found. In the study of pregnancy outcome different sources of bias can be identified which can potentially explain heterogeneous findings of the past.

  12. Flavanols, proanthocyanidins and antioxidant activity changes during cocoa (Theobroma cacao L.) roasting as affected by temperature and time of processing.

    Science.gov (United States)

    Ioannone, F; Di Mattia, C D; De Gregorio, M; Sergi, M; Serafini, M; Sacchetti, G

    2015-05-01

    The effect of roasting on the content of flavanols and proanthocyanidins and on the antioxidant activity of cocoa beans was investigated. Cocoa beans were roasted at three temperatures (125, 135 and 145 °C), for different times, to reach moisture contents of about 2 g 100 g(-1). Flavanols and proanthocyanidins were determined, and the antioxidant activity was tested by total phenolic index (TPI), ferric reducing antioxidant power (FRAP) and total radical trapping antioxidant parameter (TRAP) methods. The rates of flavanol and total proanthocyanidin loss increased with roasting temperatures. Moisture content of the roasted beans being equal, high temperature-short time processes minimised proanthocyanidins loss. Moisture content being equal, the average roasting temperature (135 °C) determined the highest TPI and FRAP values and the highest temperature (145 °C) determined the lowest TPI values. Moisture content being equal, low temperature-long time roasting processes maximised the chain-breaking activity, as determined by the TRAP method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Inverse heat transfer analysis of a functionally graded fin to estimate time-dependent base heat flux and temperature distributions

    International Nuclear Information System (INIS)

    Lee, Haw-Long; Chang, Win-Jin; Chen, Wen-Lih; Yang, Yu-Ching

    2012-01-01

    Highlights: ► Time-dependent base heat flux of a functionally graded fin is inversely estimated. ► An inverse algorithm based on the conjugate gradient method and the discrepancy principle is applied. ► The distributions of temperature in the fin are determined as well. ► The influence of measurement error and measurement location upon the precision of the estimated results is also investigated. - Abstract: In this study, an inverse algorithm based on the conjugate gradient method and the discrepancy principle is applied to estimate the unknown time-dependent base heat flux of a functionally graded fin from the knowledge of temperature measurements taken within the fin. Subsequently, the distributions of temperature in the fin can be determined as well. It is assumed that no prior information is available on the functional form of the unknown base heat flux; hence the procedure is classified as the function estimation in inverse calculation. The temperature data obtained from the direct problem are used to simulate the temperature measurements. The influence of measurement errors and measurement location upon the precision of the estimated results is also investigated. Results show that an excellent estimation on the time-dependent base heat flux and temperature distributions can be obtained for the test case considered in this study.

  14. Time-resolved temperature measurements in a rapid compression machine using quantum cascade laser absorption in the intrapulse mode

    KAUST Repository

    Nasir, Ehson Fawad

    2016-07-16

    A temperature sensor based on the intrapulse absorption spectroscopy technique has been developed to measure in situ temperature time-histories in a rapid compression machine (RCM). Two quantum-cascade lasers (QCLs) emitting near 4.55μm and 4.89μm were operated in pulsed mode, causing a frequency "down-chirp" across two ro-vibrational transitions of carbon monoxide. The down-chirp phenomenon resulted in large spectral tuning (δν ∼2.8cm-1) within a single pulse of each laser at a high pulse repetition frequency (100kHz). The wide tuning range allowed the application of the two-line thermometry technique, thus making the sensor quantitative and calibration-free. The sensor was first tested in non-reactive CO-N2 gas mixtures in the RCM and then applied to cases of n-pentane oxidation. Experiments were carried out for end of compression (EOC) pressures and temperatures ranging 9.21-15.32bar and 745-827K, respectively. Measured EOC temperatures agreed with isentropic calculations within 5%. Temperature rise measured during the first-stage ignition of n-pentane is over-predicted by zero-dimensional kinetic simulations. This work presents, for the first time, highly time-resolved temperature measurements in reactive and non-reactive rapid compression machine experiments. © 2016 Elsevier Ltd.

  15. Time series analysis of the association between ambient temperature and cerebrovascular morbidity in the elderly in Shanghai, China

    Science.gov (United States)

    Zhang, Xian-Jing; Ma, Wei-Ping; Zhao, Nai-Qing; Wang, Xi-Ling

    2016-01-01

    Research on the association between ambient temperature and cerebrovascular morbidity is scarce in China. In this study, we applied mixed generalized additive model (MGAM) to daily counts of cerebrovascular disease of Shanghai residents aged 65 years or older from 2007-2011, stratified by gender. Weighted daily mean temperature up to lags of one week was smoothed by natural cubic spline, and was added into the model to assess both linear and nonlinear effects of temperature. We found that when the mean temperature increased by 1 °C, the male cases of cerebrovascular disease reduced by 0.95% (95% Confidence Interval (CI): 0.80%, 1.10%) or reduced by 0.34% (95% CI: -0.68, 1.36%) in conditions of temperature was below or above 27 °C. However, for every 1 °C increase in temperature, the female cases of cerebrovascular disease increased b