WorldWideScience

Sample records for time surfaces subsidence

  1. Time-dependent inversion of surface subsidence due to dynamic reservoir compaction

    NARCIS (Netherlands)

    Muntendam-Bos, A.G.; Kroon, I.C.; Fokker, P.A.

    2008-01-01

    We introduce a novel, time-dependent inversion scheme for resolving temporal reservoir pressure drop from surface subsidence observations (from leveling or GPS data, InSAR, tiltmeter monitoring) in a single procedure. The theory is able to accommodate both the absence of surface subsidence estimates

  2. Protection of pipelines affected by surface subsidence

    International Nuclear Information System (INIS)

    Luo, Y.; Peng, S.S.; Chen, H.J.

    1998-01-01

    Surface subsidence resulting from underground coal mining can cause problems for buried pipelines. A technique for assessing the level of stress on a subsidence-affected pipeline is introduced. The main contributors to the stress are identified, and mitigation techniques for reducing the stress are proposed. The proposed mitigation techniques were then successfully tested. 13 refs., 8 figs., 2 tabs

  3. Prediction of reservoir compaction and surface subsidence

    Energy Technology Data Exchange (ETDEWEB)

    De Waal, J.A.; Smits, R.M.M.

    1988-06-01

    A new loading-rate-dependent compaction model for unconsolidated clastic reservoirs is presented that considerably improves the accuracy of predicting reservoir rock compaction and surface subsidence resulting from pressure depletion in oil and gas fields. The model has been developed on the basis of extensive laboratory studies and can be derived from a theory relating compaction to time-dependent intergranular friction. The procedure for calculating reservoir compaction from laboratory measurements with the new model is outlined. Both field and laboratory compaction behaviors appear to be described by one single normalized, nonlinear compaction curve. With the new model, the large discrepancies usually observed between predictions based on linear compaction models and actual (nonlinear) field behavior can be explained.

  4. Underground coal mine subsidence impacts on surface water

    International Nuclear Information System (INIS)

    Stump, D.E. Jr.

    1992-01-01

    This paper reports that subsidence from underground coal mining alters surface water discharge and availability. The magnitude and areal extent of these impacts are dependent on many factors, including the amount of subsidence, topography, geology, climate, surface water - ground water interactions, and fractures in the overburden. There alterations may have positive and/or negative impacts. One of the most significant surface water impacts occurred in July 1957 near West Pittston, Pennsylvania. Subsidence in the Knox Mine under the Coxton Yards of the Lehigh Valley Railroad allowed part of the discharge in the Susquehanna River to flow into the mine and create a crater 200 feet in diameter and 300 feet deep. Fourteen railroad gondola cars fell into the hole which was eventually filled with rock, sand, and gravel. Other surface water impacts from subsidence may include the loss of water to the ground water system, the gaining of water from the ground water system, the creation of flooded subsidence troughs, the increasing of impoundment storage capacity, the relocation of water sources (springs), and the alteration of surface drainage patterns

  5. Regional Land Subsidence Analysis in Eastern Beijing Plain by InSAR Time Series and Wavelet Transforms

    Directory of Open Access Journals (Sweden)

    Mingliang Gao

    2018-02-01

    Full Text Available Land subsidence is the disaster phenomenon of environmental geology with regionally surface altitude lowering caused by the natural or man-made factors. Beijing, the capital city of China, has suffered from land subsidence since the 1950s, and extreme groundwater extraction has led to subsidence rates of more than 100 mm/year. In this study, we employ two SAR datasets acquired by Envisat and TerraSAR-X satellites to investigate the surface deformation in Beijing Plain from 2003 to 2013 based on the multi-temporal InSAR technique. Furthermore, we also use observation wells to provide in situ hydraulic head levels to perform the evolution of land subsidence and spatial-temporal changes of groundwater level. Then, we analyze the accumulated displacement and hydraulic head level time series using continuous wavelet transform to separate periodic signal components. Finally, cross wavelet transform (XWT and wavelet transform coherence (WTC are implemented to analyze the relationship between the accumulated displacement and hydraulic head level time series. The results show that the subsidence centers in the northern Beijing Plain is spatially consistent with the groundwater drop funnels. According to the analysis of well based results located in different areas, the long-term groundwater exploitation in the northern subsidence area has led to the continuous decline of the water level, resulting in the inelastic and permanent compaction, while for the monitoring wells located outside the subsidence area, the subsidence time series show obvious elastic deformation characteristics (seasonal characteristics as the groundwater level changes. Moreover, according to the wavelet transformation, the land subsidence time series at monitoring well site lags several months behind the groundwater level change.

  6. Magnitude and extent of land subsidence in central Mexico revealed by regional InSAR ALOS time-series survey

    Science.gov (United States)

    Chaussard, E.; Wdowinski, S.; Amelung, F.; Cabral-Cano, E.

    2013-05-01

    Massive groundwater extraction is very common in Mexico and is well known to result in land subsidence. However, most surveys dedicated to land subsidence focus on one single city, mainly Mexico City, and thus fail to provide a comprehensive picture of the problem. Here we use a space-based radar remote sensing technique, known as Interferometric Synthetic Aperture Radar (InSAR) to detect land subsidence in the entire central Mexico area. We used data from the Japanese satellite ALOS, processed over 600 SAR images acquired between 2007-2011 and produced over 3000 interferograms to cover and area of 200,000 km2 in central Mexico. We identify land subsidence in twenty-one areas, including seventeen cities, namely from east to west, Puebla, Mexico city, Toluca de Lerdo, Queretaro, San Luis de la Paz, south of San Luis de la Paz, Celaya, south of Villa de Reyes, San Luis Potosi, west of Villa de Arista, Morelia, Salamanca, Irapuato, Silao, Leon, Aguascalientes, north of Aguascalientes, Zamora de Hidalgo, Guadalajara, Ahuacatlan, and Tepic. Subsidence rates of 30 cm/yr are observed in Mexico City, while in the other locations typical rates of 5-10 cm/yr are noticed. Regional surveys of this type are necessary for the development of hazard mitigation plans and efficient use of ground-based monitoring. We additionally correlate subsidence with land use, surface geology, and faults distribution and suggest that groundwater extraction for agricultural, urban, and industrial uses are the main causes of land subsidence. We also reveal that the limits of the subsiding areas often correlate with existing faults, motion on these faults being driven by water extraction rather than by tectonic activity. In all the subsiding locations we observe high ground velocity gradients emphasizing the significant risks associated with land subsidence in central Mexico. Averaged 2007-2011 ground velocity map from ALOS InSAR time-series in central Mexico, revealing land subsidence in 21

  7. Estimation of surface subsidence at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Givens, C.A.; Valdivia, M.A.; Saeb, S.; Francke, C.T.; Patchet, S.J.

    1995-01-01

    Subsidence effects at the WIPP site wee estimated using numerical methods as well as the influence function method and NCB method because single universally accepted method is not available for salt. The use of parallel methods and the agreement between their results greatly enhanced the confidence in the analysis because the prediction would not depend on the assumptions inherent in a single method

  8. Monitoring of Surface Subsidence of the Mining Area Based on Sbas

    Science.gov (United States)

    Zhu, Y.; Zhou, S.; Zang, D.; Lu, T.

    2018-05-01

    This paper has collected 7 scenes of L band PALSAR sensor radar data of a mine in FengCheng city, jiangxi province, using the Small-baseline Subset (SBAS) method to invert the surface subsidence of the mine. Baselines of interference less than 800m has been chosen to constitute short baseline differential interference atlas, using pixels whose average coherent coefficient was larger than or equal to 0.3 as like high coherent point target, using singular value decomposition (SVD) method to calculate deformation phase sequence based on these high coherent points, and the accumulation of settlements of study area of different period had been obtained, so as to reflect the ground surface settlement evolution of the settlement of the area. The results of the study has showed that: SBAS technology has overcome coherent problem of the traditionality D-InSAR technique, continuous deformation field of surface mining in time dimension of time could been obtained, characteristics of ground surface settlement of mining subsidence in different period has been displayed, so to improve the accuracy and reliability of the monitoring results.

  9. Discussion: some new findings from surface subsidence monitoring over longwall panels

    International Nuclear Information System (INIS)

    Luo, Y.; Peng, S.S.; Arioglu, E.

    1992-01-01

    The article consists of a discussion of the paper, 'some new findings from surface subsidence monitoring over longwall panels' and a reply by the paper's authors, Luo and Peng. The reviewer, Arioglu, regards the paper favourably but suggests that surface subsidence can be represented by an exponential expression, and that there is a regression equation linking possible subsidence, pillar loading and the height-to-width ratio of the pillars left. Luo and Peng reply with their reasons for preferring their original linear regression model to the non-linear models suggested by Arioglu. 4 figs

  10. Experimental Study on the Microstructure Evolution of Mixed Disposal Paste in Surface Subsidence Areas

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2016-05-01

    Full Text Available The integrated disposal of surface subsidence pits and surface solid waste can be realized by backfilling a surface subsidence area with a paste made from the solid wastes of mines, such as tailings and waste rock. The microstructures of these wastes determine the macroscopic properties of a paste backfill. This paper presents an experimental study on the internal structure evolution of pasty fluid mixed with different waste rock concentrations (10%, 30%, and 50% and cement dosages (1% and 2% under damage. To this end, a real-time computed tomography (CT scan is conducted using medical CT and a small loading device. Results show that UCS (uniaxial compressive strength increases when the amount of cement increases. Given a constant amount of cement, UCS increases first and then decreases as waste rock content increases. UCS is maximized at 551 kPa when the waste rock content is 30%. The paste body is a typical medium used to investigate initial damage, which mainly consists of microholes, pores, and microcracks. The initial damages also exhibit a high degree of random inhomogeneity. After loading, cracks are initiated and expand gradually from the original damage location until the overall damages are generated. The mesostructure evolution model of the paste body is divided into six categories, and this mesostructure is reasonable when the waste rock content is 30%.

  11. Analysis of Land Subsidence Monitoring in Mining Area with Time-Series Insar Technology

    Science.gov (United States)

    Sun, N.; Wang, Y. J.

    2018-04-01

    Time-series InSAR technology has become a popular land subsidence monitoring method in recent years, because of its advantages such as high accuracy, wide area, low expenditure, intensive monitoring points and free from accessibility restrictions. In this paper, we applied two kinds of satellite data, ALOS PALSAR and RADARSAT-2, to get the subsidence monitoring results of the study area in two time periods by time-series InSAR technology. By analyzing the deformation range, rate and amount, the time-series analysis of land subsidence in mining area was realized. The results show that InSAR technology could be used to monitor land subsidence in large area and meet the demand of subsidence monitoring in mining area.

  12. InSAR detects increase in surface subsidence caused by an Arctic tundra fire

    Science.gov (United States)

    Liu, Lin; Jafarov, Elchin E.; Schaefer, Kevin M.; Jones, Benjamin M.; Zebker, Howard A.; Williams, Christopher A.; Rogan, John; Zhang, Tingjun

    2014-01-01

    Wildfire is a major disturbance in the Arctic tundra and boreal forests, having a significant impact on soil hydrology, carbon cycling, and permafrost dynamics. This study explores the use of the microwave Interferometric Synthetic Aperture Radar (InSAR) technique to map and quantify ground surface subsidence caused by the Anaktuvuk River fire on the North Slope of Alaska. We detected an increase of up to 8 cm of thaw-season ground subsidence after the fire, which is due to a combination of thickened active layer and permafrost thaw subsidence. Our results illustrate the effectiveness and potential of using InSAR to quantify fire impacts on the Arctic tundra, especially in regions underlain by ice-rich permafrost. Our study also suggests that surface subsidence is a more comprehensive indicator of fire impacts on ice-rich permafrost terrain than changes in active layer thickness alone.

  13. Numerical modelling of surface subsidence arising from longwall mining of steeply inclined coal seams

    Energy Technology Data Exchange (ETDEWEB)

    Nejad, M.A.; Reddish, D.J. [University of Nottingham, Nottingham (United Kingdom). School of Chemical, Environmental and Mining Engineering

    1998-12-31

    The paper presents results from and the methodology of a numerical modelling investigation into the surface ground movements above longwall mining of inclined and steep seams with varying panel configurations. A modelling approach was developed using a finite difference numercial model Fast Lagrangian Analysis of Continua (FLAC). On the basis of this methodology, representative surface subsidence profiles were simulated and the results of simulations were validated against the UK data using the Subsidence Engineer`s Handbook (SEH) and influence function methods. Furthermore, the proposed methodology was applied to two UK case histories for validation purposes. 15 refs., 7 figs., 3 tabs.

  14. Prediction of abrupt reservoir compaction and surface subsidence due to pore collapse in carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Smits, R.M.M.; de Waal, A.; van Kooten, J.F.C.

    1986-01-01

    A new procedure has been developed to predict the abrupt in-situ compaction and the associated surface subsidence above high-porosity carbonate fields showing pore collapse. The approach is based on an extensive laboratory compaction study in which the effects of carbonate type, porosity, core preparation, pore saturant, horizontal to vertical stress ratio and loading rate on the pore collapse behaviour were investigated. For each carbonate type a trendline was established describing the relationship between the porosity after collapse and the vertical effective stress. This trendline concept, in combination with existing subsidence models, enables reservoir compaction and surface subsidence to be predicted on the basis of wireline porosity logs. Static and dynamic elastic constants were found to be uncorrelated during pore collapse. The position of the trendline depends strongly on carbonate type, pore saturant, loading rate and stress ratio. Therefore procedures are given to derive the correct in-situ trendline from laboratory compaction experiments.

  15. Prediction of abrupt reservoir compaction and surface subsidence caused by pore collapse in carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Smits, R.M.M.; De Waal, J.A.; Van Kootan, J.F.C.

    1988-06-01

    A new procedure has been developed to predict the abrupt in-situ compaction and the associated surface subsidence above high-porosity carbonate fields that show pore collapse. The approach is based on an extensive laboratory compaction study in which the effects of carbonate type, porosity, core preparation, pore saturant, horizontal/vertical stress ratio, and loading rate on pore-collapse behavior were investigated. For a number of carbonate types, a trendline was established that describes the relationship between the porosity after collapse and the vertical effective stress. This trendline concept, in combination with existing subsidence models, enables reservoir compaction and surface subsidence to be predicted on the basis of wireline porosity logs. Static and dynamic elastic constants were found to be uncorrelated during pore collapse. The position of the trendline depends strongly on carbonate type, pore saturant, loading rate, and stress ratio. Therefore, procedures are given to derive the correct in-situ trendline from laboratory compaction experiments.

  16. Reduction of surface subsidence risk by fly ash exploitation as filling material in deep mining areas

    Czech Academy of Sciences Publication Activity Database

    Trčková, Jiřina; Šperl, Jan

    2010-01-01

    Roč. 53, č. 2 (2010), s. 251-258 ISSN 0921-030X Institutional research plan: CEZ:AV0Z30460519 Keywords : undermining * subsidence of the surface * impact reduction Subject RIV: DO - Wilderness Conservation Impact factor: 1.398, year: 2010 www.springerlink.com/content/y8257893528lp56w/

  17. Experimental 3-D modelling of surface subsidence affected by underground mining activities

    Czech Academy of Sciences Publication Activity Database

    Trčková, Jiřina

    2009-01-01

    Roč. 109, č. 12 (2009), s. 739-744 ISSN 0038-223X R&D Projects: GA AV ČR IAA2119402 Institutional research plan: CEZ:AV0Z30460519 Keywords : undermining * subsidence of surface * 3-D experimental model Subject RIV: DO - Wilderness Conservation Impact factor: 0.216, year: 2009

  18. InSAR Remote Sensing of Localized Surface Layer Subsidence in New Orleans, LA

    Science.gov (United States)

    An, K.; Jones, C. E.; Blom, R. G.; Kent, J. D.; Ivins, E. R.

    2015-12-01

    More than half of Louisiana's drinking water is dependent on groundwater, and extraction of these resources along with high oil and gas production has contributed to localized subsidence in many parts of New Orleans. This increases the vulnerability of levee failure during intense storms such as Hurricane Katrina in 2005, before which rapid subsidence had already been identified and contributed to the failing levees and catastrophic flooding. An interferogram containing airborne radar data from NASA's UAVSAR was combined with local geographic information systems (GIS) data for 2009-12 to help identify the sources of subsidence and mask out unrelated features such as surface water. We have observed the highest vertical velocity rates at the NASA Michoud Assembly Facility (high water use) and Norco (high oil/gas production). Many other notable features such as the: Bonnet-Carre Spillway, MRGO canal, levee lines along the Lower 9th Ward and power plants, are also showing concerning rates of subsidence. Even new housing loads, soil type differences, and buried beach sands seem to have modest correlations with patterns seen in UAVSAR. Current hurricane protection and coastal restoration efforts still have not incorporated late 20th century water level and geodetic data into their projections. Using SAR interferometry and local GIS datasets, areas of subsidence can be identified in a more efficient and economical manner, especially for emergency response.

  19. Subsidence Evaluation of High-Speed Railway in Shenyang Based on Time-Series Insar

    Science.gov (United States)

    Zhang, Yun; Wei, Lianhuan; Li, Jiayu; Liu, Shanjun; Mao, Yachun; Wu, Lixin

    2018-04-01

    More and more high-speed railway are under construction in China. The slow settlement along high-speed railway tracks and newly-built stations would lead to inhomogeneous deformation of local area, and the accumulation may be a threat to the safe operation of high-speed rail system. In this paper, surface deformation of the newly-built high-speed railway station as well as the railway lines in Shenyang region will be retrieved by time series InSAR analysis using multi-orbit COSMO-SkyMed images. This paper focuses on the non-uniform subsidence caused by the changing of local environment along the railway. The accuracy of the settlement results can be verified by cross validation of the results obtained from two different orbits during the same period.

  20. Finite element modeling of surface subsidence induced by underground coal mining

    International Nuclear Information System (INIS)

    Su, D.W.H.

    1992-01-01

    The ability to predict the effects of longwall mining on topography and surface structures is important for any coal company in making permit applications and anticipating potential mining problems. The sophisticated finite element model described and evaluated in this paper is based upon five years of underground and surface observations and evolutionary development of modeling techniques and attributes. The model provides a very powerful tool to address subsidence and other ground control questions. The model can be used to calculate postmining stress and strain conditions at any horizon between the mine and the ground surface. This holds the promise of assisting in the prediction of mining-related hydrological effects

  1. Time series analysis of Mexico City subsidence constrained by radar interferometry

    Science.gov (United States)

    Doin, Marie-Pierre; Lopez-Quiroz, Penelope; Yan, Yajing; Bascou, Pascale; Pinel, Virginie

    2010-05-01

    In Mexico City, subsidence rates reach up to 40 cm/yr mainly due to soil compaction led by the over exploitation of the Mexico Basin aquifer. The Mexico Valley, an endoreic basin surrounded by mountains, was in the past covered by large lakes. After the Spanish conquest, the lakes have almost completely disappeared, being progressively replaced by buildings of the current Mexican capital. The simplified hydrogeologic structure includes a superficial 50 to 300 m thick lacustrine aquitard overlying a thicker aquifer made of alluvial deposits. The aquitard layer plays a crucial role in the subsidence process due to the extremely high compressibility of its clay deposits separated by a less compressible sand layer where the biggest buildings of the city are anchored. The aquifer over-exploitation leads to a large scale 30m depression of its piezometric level, inducing water downwards flow in the clays, yielding compaction and subsidence. In order to quantitatively link subsidence to water pumping, the Mexico city subsidence needs to be mapped and analyzed through space and time. We map its spatial and temporal patterns by differential radar interferometry, using 38 ENVISAT images acquired between end of 2002 and beginning of 2007. We employ both a Permanent Scatterer (PS) and a small baseline (SBAS) approach. The main difficulty consists in the severe unwrapping problems mostly due to the high deformation rate. We develop a specific SBAS approach based on 71 differential interferograms with a perpendicular baseline smaller than 500 m and a temporal baseline smaller than 9 months, forming a redundant network linking all images: (1) To help the unwrapping step, we use the fact that the deformation shape is stable for similar time intervals during the studied period. As a result, a stack of the five best interferograms can be used to reduce the number of fringes in wrapped interferograms. (2) Based on the redundancy of the interferometric data base, we quantify the

  2. Estimating the Impact of Urban Expansion on Land Subsidence Using Time Series of DMSP Night-Time Light Satellite Imagery

    Science.gov (United States)

    Jiao, S.; Yu, J.; Wang, Y.; Zhu, L.; Zhou, Q.

    2018-04-01

    In recent decades, urbanization has resulted a massive increase in the amount of infrastructure especially large buildings in large cities worldwide. There has been a noticeable expansion of entire cities both horizontally and vertically. One of the common consequences of urban expansion is the increase of ground loads, which may trigger land subsidence and can be a potential threat of public safety. Monitoring trends of urban expansion and land subsidence using remote sensing technology is needed to ensure safety along with urban planning and development. The Defense Meteorological Satellite Program Operational Line scan System (DMSP/OLS) Night-Time Light (NTL) images have been used to study urbanization at a regional scale, proving the capability of recognizing urban expansion patterns. In the current study, a normalized illuminated urban area dome volume (IUADV) based on inter-calibrated DMSP/OLS NTL images is shown as a practical approach for estimating urban expansion of Beijing at a single period in time and over subsequent years. To estimate the impact of urban expansion on land subsidence, IUADV was correlated with land subsidence rates obtained using the Stanford Method for Persistent Scatterers (StaMPS) approach within the Persistent Scatterers InSAR (PSInSAR) methodology. Moderate correlations are observed between the urban expansion based on the DMSP/OLS NTL images and land subsidence. The correlation coefficients between the urban expansion of each year and land subsidence tends to gradually decrease over time (Coefficient of determination R = 0.80 - 0.64 from year 2005 to year 2010), while the urban expansion of two sequential years exhibit an opposite trend (R = 0.29 - 0.57 from year 2005 to year 2010) except for the two sequential years between 2007 and 2008 (R = 0.14).

  3. Coastal city subsidence in Shenzhen (China), monitored using multi-frequency radar interferometry time-series techniques

    Science.gov (United States)

    Liu, Peng; Li, Yongsheng; Singleton, Andrew; Li, Qingquan; Zhang, Jingfa; Li, Zhenhong

    2014-05-01

    In just 26 years, the coastal city of Shenzhen (Southern China) has been transformed from a small fishing village to a modern city with a population exceeding 8.5 million people. Following its designation as a Special Economic Zone in the 1980s, the city became a test bed for China's economic reforms and currently leads many new practices in urban planning. The rapid economic development was matched by a sharp increase in the demand for usable land and consequently, extensive coastal reclamation has been undertaken by piling rock fragments from nearby hills onto the seabed. However, it has recently been reported that new apartments, offices and transport networks built on the reclaimed land have become unusable due to ground subsidence. The additional threat of coastal inundation from sea-level rise also requires serious consideration. InSAR time-series techniques (such as Persistent Scatterer and Small Baseline InSAR) are capable of detecting sub-centimetre elevation changes of the Earth's surface over large areas and at a density far exceeding the capabilities of a GPS network - particularly for such an urban environment as Shenzhen. This study uses numerous independent tracks of SAR data (two ENVISAT C-band tracks and two ALOS L-band tracks) to determine the surface movements between 2004 and 2013. Quantitative comparative analyses are carried out in the overlapping area between two adjacent tracks, and thus no ground data is required to validate InSAR results. The results show greatest subsidence in coastal areas with the areas of reclaimed land also predominantly undergoing subsidence. The combination of different ascending and descending tracks allows 2D velocity fields to be estimated and it will be important to determine whether the subsidence from the recently reclaimed land is consolidation or part of a longer-term trend. This ability to provide accurate measurements of ground stability for the city of Shenzhen will help focus investigations into areas of

  4. Monitoring and modeling of sinkhole-related subsidence in west-central Florida mapped from InSAR and surface observations

    Science.gov (United States)

    Kiflu, H.; Oliver-Cabrera, T.; Robinson, T.; Wdowinski, S.; Kruse, S.

    2017-12-01

    Sinkholes in Florida cause millions of dollars in damage to infrastructure each year. Methods of early detection of sinkhole-related subsidence are clearly desirable. We have completed two years of monitoring of selected sinkhole-prone areas in west central Florida with XXX data and analysis with XXX algorithms. Filters for selecting targets with high signal-to-noise ratio and subsidence over this time window (XX-2015-XX-2017) are being used to select sites for ground study. A subset of the buildings with InSAR-detected subsidence indicated show clear structural indications of subsidence in the form of cracks in walls and roofs. Comsol Multiphysics models have been developed to describe subsidence at the rates identified from the InSAR analysis (a few mm/year) and on spatial scales observed from surface observations, including structural deformation of buildings and ground penetrating radar images of subsurface deformation (length scales of meters to tens of meters). These models assume cylindrical symmetry and deformation of elastic and poroelastic layers over a growing sphering void.

  5. Land Subsidence Monitoring by InSAR Time Series Technique Derived From ALOS-2 PALSAR-2 over Surabaya City, Indonesia

    Science.gov (United States)

    Aditiya, A.; Takeuchi, W.; Aoki, Y.

    2017-12-01

    Surabaya is the second largest city in Indonesia and the capital of East Java Province with rapid population and industrialization. The impact of urbanization in the big city can suffer potential disasters either nature or anthropogenic such as land subsidence and flood. The pattern of land subsidence need to be mapped for the purposes of planning and structuring the city as well as taking appropriate policy in anticipating and mitigating the impact. This research has used interferometric Synthetic Aperture Radar (InSAR) Small Baseline Subset (SBAS) technique and applied time series analysis to investigate land subsidence occured. The technique includes the process of focusing the SAR data, incorporating the precise orbit, generating interferogram and phase unwrapping using SNAPHU algorithms. The results showed land subsidence has been detected during 2014-2017 over Surabaya city area using ALOS-2/PALSAR-2 images data. These results reveal the subsidence has observed in several area in Surabaya in particular northern part reach up to ∼2 cm/year. The fastest subsidence occurs in highly populated areas suffer vulnerable to flooding and sea level rise impact. In urban areas we found a correlation between land subsidence with residential or industrial land use. It concludes that land subsidence is mainly caused by ground water consumption for industrial and residential use respectively.

  6. Real-time monitoring of seismicity and deformation during the Bárdarbunga rifting event and associated caldera subsidence

    Science.gov (United States)

    Jónsdóttir, Kristín; Ófeigsson, Benedikt; Vogfjörd, Kristín; Roberts, Matthew; Barsotti, Sara; Gudmundsson, Gunnar; Hensch, Martin; Bergsson, Bergur; Kjartansson, vilhjálmur; Erlendsson, Pálmi; Friðriksdóttir, Hildur; Hreinsdóttir, Sigrún; Guðmundsson, Magnús; Sigmundsson, Freysteinn; Árnadóttir, Thóra; Heimisson, Elías; Hjorleifsdóttir, Vala; Soring, Jón; Björnsson, Bogi; Oddsson, Björn

    2015-04-01

    data and models based on remote sensing were presented, further supporting the interpretations of lateral movements of magma. The rapid evolution of the dyke called for a quick response to install new seismic and GPS stations to improve constraints for the intrusion (seismic locations and deformation). The subsidence of the caldera called for innovative thinking, resulting in a high-rate cGPS instrument together with a strong motion sensor being installed on the ice surface. Moreover, specially designed broadband glacier seismometers have been installed. Surveillance flights continue to be carried out to monitor ice surface changes and provide important data on caldera deformation. Monitoring information and interpretations of geophysical data have been made accessible to the public. Automated and manually checked earthquake locations are presented on web based maps and updated every five minutes. In addition cGPS time-series and maps showing GPS deformation vectors together with the color coded temporal evolution of the earthquake sequence are presented and updated regularly on IMO's webpage. Several examples of near-real-time data transfer, analysis and online visualization will be presented.

  7. Regional subsidence modelling in Murcia city (SE Spain using 1-D vertical finite element analysis and 2-D interpolation of ground surface displacements

    Directory of Open Access Journals (Sweden)

    S. Tessitore

    2015-11-01

    Full Text Available Subsidence is a hazard that may have natural or anthropogenic origin causing important economic losses. The area of Murcia city (SE Spain has been affected by subsidence due to groundwater overexploitation since the year 1992. The main observed historical piezometric level declines occurred in the periods 1982–1984, 1992–1995 and 2004–2008 and showed a close correlation with the temporal evolution of ground displacements. Since 2008, the pressure recovery in the aquifer has led to an uplift of the ground surface that has been detected by the extensometers. In the present work an elastic hydro-mechanical finite element code has been used to compute the subsidence time series for 24 geotechnical boreholes, prescribing the measured groundwater table evolution. The achieved results have been compared with the displacements estimated through an advanced DInSAR technique and measured by the extensometers. These spatio-temporal comparisons have showed that, in spite of the limited geomechanical data available, the model has turned out to satisfactorily reproduce the subsidence phenomenon affecting Murcia City. The model will allow the prediction of future induced deformations and the consequences of any piezometric level variation in the study area.

  8. Subsidence caused by an underground nuclear explosion

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, W W [Environmental Research Corp., Alexandria, VA (United States)

    1970-05-15

    An underground nuclear detonation creates a cavity, which may be followed by the formation of a rubble chimney and possibly by a surface subsidence crater. A knowledge of the mechanisms of surface and subsurface subsidence is valuable not only because of the potential engineering uses of the chimneys and craters that may form, but also for the prevention of surface damage. Some of the parameters that are of interest in the subsidence phenomenon are the height and volume of the chimney, the porosity of the chimney, the crater size (depth and radius) and shape, and the time required after detonation for formation of the chimney or crater. The influence of the properties of the subsidence medium on the geometry of the subsidence crater must be considered. The conditions under which partial or complete subsidence is prevented must also be studied. The applicability of the relations that have been developed for the flow of bulk solids for relatively small masses and low pressures to the subsidence problem associated with nuclear explosions is examined. Rational modifications are made to describe the subsidence problem. Sensitivity of the subsidence parameters to material properties and the prevailing geometry is shown. Comparison with observed results at the Nevada Test Site is made and the variations encountered are found to be within reasonable limits. The chimney size and subsidence crater dimensions are found to be a function of the bulking characteristics of the medium, the strength parameters, the dimensions of the subsurface cavity, and the depth of the cavity. The great influence of the strength parameters on the collapse times is shown. For a given medium, the prevention of subsidence is dependent on the cavity size. (author)

  9. Prognosis of surface subsidence affected by underground exploitation of ore vein deposits of Rozna type

    Czech Academy of Sciences Publication Activity Database

    Hortvík, Karel; Staš, Lubomír

    2005-01-01

    Roč. 15, č. 1 (2005), s. 296-301 ISSN 1003-6326 R&D Projects: GA ČR GP105/02/P026 Institutional research plan: CEZ:AV0Z3086906 Keywords : mining * subsidence * prognosis Subject RIV: DH - Mining, incl. Coal Mining Impact factor: 0.302, year: 2005

  10. Measurement of long-term land subsidence by combination of InSAR and time series analysis - Application study to Kanto Plains of Japan -

    Science.gov (United States)

    Deguchi, T.; Rokugawa, S.; Matsushima, J.

    2009-04-01

    InSAR is an application technique of synthetic aperture radars and is now drawing attention as a methodology capable of measuring subtle surface deformation over a wide area with a high spatial resolution. In this study, the authors applied the method of measuring long-term land subsidence by combining InSAR and time series analysis to Kanto Plains of Japan using 28 images of ENVISAT/ASAR data. In this measuring method, the value of land deformation is set as an unknown parameter and the optimal solution to the land deformation amount is derived by applying a smoothness-constrained inversion algorithm. The vicinity of the Kanto Plain started to subside in the 1910s, and became exposed to extreme land subsidence supposedly in accordance with the reconstruction efforts after the Second World War and the economic development activities. The main causes of the land subsidence include the intake of underground water for the use in industries, agriculture, waterworks, and other fields. In the Kujukuri area, the exploitation of soluble natural gas also counts. The Ministry of Environment reported in its documents created in fiscal 2006 that a total of 214 km2 in Tokyo and the six prefectures around the Plain had undergone a subsidence of 1 cm or more per a year. As a result of long-term land subsidence over approximately five and a half years from 13th January, 2003, to 30th June, 2008, unambiguous land deformation was detected in six areas: (i) Haneda Airport, (ii) Urayasu City, (iii) Kasukabe-Koshigaya, (iv) Southern Kanagawa, (v) Toride-Ryugasaki, and (vi) Kujukuri in Chiba Prefecture. In particular, the results for the Kujukuri area were compared with the leveling data taken around the same area to verify the measuring accuracy. The comparative study revealed that the regression formula between the results obtained by time series analysis and those by the leveling can be expressed as a straight line with a gradient of approximately 1, though including a bias of about

  11. Long term subsidence movements and behavior of subsidence-damaged structures

    International Nuclear Information System (INIS)

    Mahar, J.W.; Marino, G.G.

    1999-01-01

    Surface ground movement related to sag mine subsidence has been monitored above Illinois abandoned room and pillar coal workings for periods of more than 15 years. The long term movement related to a specific mine subsidence is typically small relative to the initial displacements but have caused crack and tilt damage in both repaired and unrepaired structures. Seasonal variations in ground surface elevations are superimposed on the downward movement related to mine subsidence. Thus it is necessary to measure long term subsidence movement at about the same time each year in order to minimize environmental factors. This paper presents long term monitoring data from five subsidence sags in central and southern Illinois. The abandoned coal mine workings are located at depths of 160 to 460 ft below the ground surface. measured residual mine subsidence ranges between 1.4 and 3.6 in. 4.4 to 15 years after mine failure. The magnitude of downward displacement is greater than settlement design values (1 in.) and are at rates (0.0004 to 0.0056 ft/month) that cause damage to structures. Most of the damage in unrepaired structures occurs along existing cracks and separations. In all five cases, the ground movements are continuing at residual rates. Sag subsidence movement in Illinois takes place for a minimum of five years after the damage is manifested at the ground surface. A classification of say development is provided based on the displacement-time data

  12. Data Acquisition for Land Subsidence Control

    Science.gov (United States)

    Zhu, Y.; Balke, K.

    2009-12-01

    For controlling land subsidence caused by groundwater over-exploitation, loading of engineered structures, mining and other anthropogenic activities in this fast changing world, a large variety of different data of various scales of concerning areas are needed for scientific study and administrative operational purposes. The economical, social and environmental impacts of anthropogenic land subsidence have long been recognized by many scientific institutions and management authorities based on results of monitoring and analysis at an interdisciplinary level. The land subsidence information systems composed of the surface and subsurface monitoring nets (monitoring and development wells, GPS stations and other facilities) and local data processing centers as a system management tool in Shanghai City was started with the use of GPS technology to monitor land subsidence in 1998. After years of experiences with a set of initiatives by adopting adequate countermeasures, the particular attention given to new improved methodologies to monitor and model the process of land subsidence in a simple and timely way, this is going to be promoted in the whole Yangtze River Delta region in China, where land subsidence expands in the entire region of urban cluster. The Delta land subsidence monitoring network construction aims to establish an efficient and coordinated water resource management system. The land subsidence monitoring network records "living history" of land subsidence, produces detailed scheduled reports and environmental impact statements. For the different areas with local factors and site characteristics, parallel packages need to be designed for predicting changes, land sensitivity and uncertainty analysis, especially for the risk analysis in the rapid growth of megacities and urban areas. In such cases, the new models with new types of local data and the new ways of data acquisition provide the best information for the decision makers for their mitigating

  13. Integration of InSAR and GIS in the Study of Surface Faults Caused by Subsidence-Creep-Fault Processes in Celaya, Guanajuato, Mexico

    International Nuclear Information System (INIS)

    Avila-Olivera, Jorge A.; Farina, Paolo; Garduno-Monroy, Victor H.

    2008-01-01

    In Celaya city, Subsidence-Creep-Fault Processes (SCFP) began to become visible at the beginning of the 1980s with the sprouting of the crackings that gave rise to the surface faults 'Oriente' and 'Poniente'. At the present time, the city is being affected by five surface faults that display a preferential NNW-SSE direction, parallel to the regional faulting system 'Taxco-San Miguel de Allende'. In order to study the SCFP in the city, the first step was to obtain a map of surface faults, by integrating in a GIS field survey and an urban city plan. The following step was to create a map of the current phreatic level decline in city with the information of deep wells and using the 'kriging' method in order to obtain a continuous surface. Finally the interferograms maps resulted of an InSAR analysis of 9 SAR images covering the time interval between July 12 of 2003 and May 27 of 2006 were integrated to a GIS. All the maps generated, show how the surface faults divide the city from North to South, in two zones that behave in a different way. The difference of the phreatic level decline between these two zones is 60 m; and the InSAR study revealed that the Western zone practically remains stable, while sinkings between the surface faults 'Oriente' and 'Universidad Pedagogica' are present, as well as in portions NE and SE of the city, all of these sinkings between 7 and 10 cm/year

  14. Coal mine subsidence

    International Nuclear Information System (INIS)

    Rahall, N.J.

    1991-05-01

    This paper examines the efficacy of the Department of the Interior's Office of Surface Mining Reclamation and Enforcement's (OSMRE) efforts to implement the federally assisted coal mine subsidence insurance program. Coal mine subsidence, a gradual settling of the earth's surface above an underground mine, can damage nearby land and property. To help protect property owners from subsidence-related damage, the Congress passed legislation in 1984 authorizing OSMRE to make grants of up to $3 million to each state to help the states establish self-sustaining, state-administered insurance programs. Of the 21 eligible states, six Colorado, Indiana, Kentucky, Ohio, West Virginia, and Wyoming applied for grants. This paper reviews the efforts of these six states to develop self-sustaining insurance programs and assessed OSMRE's oversight of those efforts

  15. Coal mine subsidence

    International Nuclear Information System (INIS)

    Darmody, R.G.; Hetzler, R.T.; Simmons, F.W.

    1992-01-01

    Longwall coal mining in southern Illinois occurs beneath some of the best agricultural land in the U.S. This region is characterized by highly productive, nearly level, and somewhat poorly drained soils. Subsidence from longwall mining causes changes in surface topography which alters surface and subsurface hydrology. These changes can adversely affect agricultural land by creating wet or ponded areas that can be deleterious to crop production. While most subsided areas show little impact from subsidence, some areas experience total crop failure. Coal companies are required by law to mitigate subsidence damage to cropland. The objective of this paper is to test the effectiveness of mitigation in restoring grain yields to their pre-mined levels. The research was conducted on sites selected to represent conventional mitigation techniques on the predominate soils in the area. Corn (Zea mays L.) and soybean [Glycine max.(L.) Merr] yields in 1988, 1989, 1990, and 1991 from mitigated areas were compared to yields from nearby undisturbed areas

  16. Integration of InSAR and GIS in the Study of Surface Faults Caused by Subsidence-Creep-Fault Processes in Celaya, Guanajuato, Mexico

    Science.gov (United States)

    Avila-Olivera, Jorge A.; Farina, Paolo; Garduño-Monroy, Victor H.

    2008-05-01

    In Celaya city, Subsidence-Creep-Fault Processes (SCFP) began to become visible at the beginning of the 1980s with the sprouting of the crackings that gave rise to the surface faults "Oriente" and "Poniente". At the present time, the city is being affected by five surface faults that display a preferential NNW-SSE direction, parallel to the regional faulting system "Taxco-San Miguel de Allende". In order to study the SCFP in the city, the first step was to obtain a map of surface faults, by integrating in a GIS field survey and an urban city plan. The following step was to create a map of the current phreatic level decline in city with the information of deep wells and using the "kriging" method in order to obtain a continuous surface. Finally the interferograms maps resulted of an InSAR analysis of 9 SAR images covering the time interval between July 12 of 2003 and May 27 of 2006 were integrated to a GIS. All the maps generated, show how the surface faults divide the city from North to South, in two zones that behave in a different way. The difference of the phreatic level decline between these two zones is 60 m; and the InSAR study revealed that the Western zone practically remains stable, while sinkings between the surface faults "Oriente" and "Universidad Pedagógica" are present, as well as in portions NE and SE of the city, all of these sinkings between 7 and 10 cm/year.

  17. Geospatial subsidence hazard modelling at Sterkfontein Caves ...

    African Journals Online (AJOL)

    The geo-hazard subsidence model includes historic subsidence occurrances, terrain (water flow) and water accumulation. Water accumulating on the surface will percolate and reduce the strength of the soil mass, possibly inducing subsidence. Areas for further geotechnical investigation are identified, demonstrating that a ...

  18. Subsidence in tropical peatlands: Estimating CO2 fluxes from peatlands in Southeast Asia

    Science.gov (United States)

    Hoyt, A.; Harvey, C. F.; Seppalainen, S. S.; Chaussard, E.

    2017-12-01

    Tropical peatlands of Southeast Asia are an important global carbon stock. However, they are being rapidly deforested and drained. Peatland drainage facilitates peat decomposition, releases sequestered peat carbon to the atmosphere as CO2, and leads to subsidence of the peat surface. As a result, subsidence measurements can be used to monitor peatland carbon loss over time. Until now, subsidence measurements have been primarily limited to ground-based point measurements using subsidence poles. Here we demonstrate a powerful method to measure peatland subsidence rates across much larger areas than ever before. Using remotely sensed InSAR data, we map subsidence rates across thousands of square kilometers in Southeast Asia and validate our results against ground-based subsidence measurements. The method allows us to monitor subsidence in remote locations, providing unprecedented spatial information, and the first comprehensive survey of land uses such as degraded peatlands, burnt and open areas, shrub lands, and smallholder farmlands. Strong spatial patterns emerged, with the highest subsidence rates occurring at the centers of peat domes, where the peat is thickest and drainage depths are likely to be largest. Peatland subsidence rates were also strongly dependent on current and historical land use, with typical subsidence rates ranging from 2-4 cm/yr. Finally, we scaled up our results to calculate total annual emissions from peat decomposition in degraded peatlands.

  19. InSAR Time Series Analysis of Natural and Anthropogenic Coastal Plain Subsidence: The Case of Sibari (Southern Italy

    Directory of Open Access Journals (Sweden)

    Giuseppe Cianflone

    2015-11-01

    Full Text Available We applied the Small Baseline Subset multi-temporal InSAR technique (SBAS to two SAR datasets acquired from 2003 up to 2013 by Envisat (ESA, European Space Agency and COSMO-SkyMed (ASI, Italian Space Agency satellites to investigate spatial and temporal patterns of land subsidence in the Sibari Plain (Southern Italy. Subsidence processes (up to ~20 mm/yr were investigated comparing geological, hydrogeological, and land use information with interferometric results. We suppose a correlation between subsidence and thickness of the Plio-Quaternary succession suggesting an active role of the isostatic compensation. Furthermore, the active back thrusting in the Corigliano Gulf could trigger a flexural subsidence mechanism even if fault activity and earthquakes do not seem play a role in the present subsidence. In this context, the compaction of Holocene deposits contributes to ground deformation. Despite the rapid urbanization of the area in the last 50 years, we do not consider the intensive groundwater pumping and related water table drop as the main triggering cause of subsidence phenomena, in disagreement with some previous publications. Our interpretation for the deformation fields related to natural and anthropogenic factors would be a comprehensive and exhaustive justification to the complexity of subsidence processes in the Sibari Plain.

  20. CORS911:Real-Time Subsidence Monitoring of the Napoleonville Salt Dome Sinkhole Using GPS

    Science.gov (United States)

    Kent, J. D.

    2013-12-01

    The sinkhole associated with the Napoleonville salt dome in Assumption Parish, Louisiana, threatens the stability of Highway 70 - a state maintained route. To mitigate the potential damaging effects to the highway and address issues of public safety, a program of research and decision support has been implemented to provide long-term measurements of the surface stability using continuous operating GPS reference stations (CORS). Four CORS sites were installed in the vicinity of the sinkhole to measure the horizontal and vertical motions of each site relative to each other and a fixed location outside the study area. Differential motions measured by a integrity monitoring software are summarized for response agencies tasked with ensuring public safety and stability of the Highway, a designated hurricane evacuation route. Implementation experience and intermediate findings will be shared and discussed. Strategies for monitoring random and systematic biases detected in the system are presented. Figure depicting the location of CORS sites used to monitor surface stability along Highway 70 near the Bayou Corne Sinkhole.

  1. TerraSAR-X time-series interferometry detects human-induce subsidence in the Historical Centre of Hanoi, Vietnam

    Science.gov (United States)

    Le, Tuan; Chang, Chung-Pai; Nguyen, Xuan

    2016-04-01

    Hanoi was the capital of 12 Vietnamese dynasties, where the most historical relics, archaeological ruins and ancient monuments are located over Vietnam. However, those heritage assets are threatened by the land subsidence process occurred in recent decades, which mainly triggered by massive groundwater exploitation and construction activities. In this work, we use a set of high resolution TerraSAR-X images to map small-scale land subsidence patterns in the Historical Centre of Hanoi from April 2012 to November 2013. Images oversampling is integrated into the Small Baseline InSAR processing chain in order to enlarge the monitoring coverage by increasing the point-wise measurements, maintaining the monitoring scale of single building and monument. We analyzed over 2.4 million radar targets on 13.9 km2 area of interest based on 2 main sites: The Citadel, the Old Quarter and French Quarter. The highest subsidence rate recorded is -14.2 mm/year. Most of the heritage assets are considered as stable except the Roman Catholic Archdiocese and the Ceramic Mosaic Mural with the subsidence rates are -14.2 and -13.7 mm/year, respectively. Eventually, optical image and soil properties map are used to determine the causes of subsidence patterns. The result shows the strong relationships between the existing construction sites, the component of sediments and land subsidence processes that occurred in the study site.

  2. Subsidence and current strain patterns on Tenerife Island (Canary Archipelago, Spain) derived from continuous GNSS time series (2008-2015)

    Science.gov (United States)

    Sánchez-Alzola, A.; Martí, J.; García-Yeguas, A.; Gil, A. J.

    2016-11-01

    In this paper we present the current crustal deformation model of Tenerife Island derived from daily CGPS time series processing (2008-2015). Our results include the position time series, a global velocity estimation and the current crustal deformation on the island in terms of strain tensors. We detect a measurable subsidence of 1.5-2 mm/yr. in the proximities of the Cañadas-Teide-Pico Viejo (CTPV) complex. These values are higher in the central part of the complex and could be explained by a lateral spreading of the elastic lithosphere combined with the effect of the drastic descent of the water table in the island experienced during recent decades. The results show that the Anaga massif is stable in both its horizontal and vertical components. The strain tensor analysis shows a 70 nstrain/yr. E-W compression in the central complex, perpendicular to the 2004 sismo-volcanic area, and 50 nstrain/yr. SW-NE extension towards the Northeast ridge. The residual velocity and strain patterns coincide with a decline in volcanic activity since the 2004 unrest.

  3. Long Term Subsidence Analysis and Soil Fracturing Zonation Based on InSAR Time Series Modelling in Northern Zona Metropolitana del Valle de Mexico

    Directory of Open Access Journals (Sweden)

    Gabriela Llanet Siles

    2015-05-01

    Full Text Available In this study deformation processes in northern Zona Metropolitana del Valle de Mexico (ZMVM are evaluated by means of advanced multi-temporal interferometry. ERS and ENVISAT time series, covering approximately an 11-year period (between 1999 and 2010, were produced showing mainly linear subsidence behaviour for almost the entire area under study, but increasing rates that reach up to 285 mm/yr. Important non-linear deformation was identified in certain areas, presumably suggesting interaction between subsidence and other processes. Thus, a methodology for identification of probable fracturing zones based on discrimination and modelling of the non-linear (quadratic function component is presented. This component was mapped and temporal subsidence evolution profiles were constructed across areas where notable acceleration (maximum of 8 mm/yr2 or deceleration (maximum of −9 mm/yr2 is found. This methodology enables location of potential soil fractures that could impact relevant infrastructure such as the Tunel Emisor Oriente (TEO (along the structure rates exceed 200 mm/yr. Additionally, subsidence behaviour during wet and dry seasons is tackled in partially urbanized areas. This paper provides useful information for geological risk assessment in the area.

  4. Coal mine subsidence and structures

    International Nuclear Information System (INIS)

    Gray, R.E.

    1988-01-01

    Underground coal mining has occurred beneath 32 x 10 9 m 2 (8 million acres) of land in the United States and will eventually extend beneath 162 x 10 9 m 2 (40 million acres). Most of this mining has taken place and will take place in the eastern half of the United States. In areas of abandoned mines where total extraction was not achieved, roof collapse, crushing of coal pillars, or punching of coal pillars into softer mine floor or roof rock is now resulting in sinkhole or trough subsidence tens or even hundreds of years after mining. Difference in geology, in mining, and building construction practice between Europe and the United States preclude direct transfer of European subsidence engineering experience. Building damage cannot be related simply to tensile and compressive strains at the ground surface. Recognition of the subsidence damage role played by ground-structure interaction and by structural details is needed

  5. Relating large-scale subsidence to convection development in Arctic mixed-phase marine stratocumulus

    Science.gov (United States)

    Young, Gillian; Connolly, Paul J.; Dearden, Christopher; Choularton, Thomas W.

    2018-02-01

    Large-scale subsidence, associated with high-pressure systems, is often imposed in large-eddy simulation (LES) models to maintain the height of boundary layer (BL) clouds. Previous studies have considered the influence of subsidence on warm liquid clouds in subtropical regions; however, the relationship between subsidence and mixed-phase cloud microphysics has not specifically been studied. For the first time, we investigate how widespread subsidence associated with synoptic-scale meteorological features can affect the microphysics of Arctic mixed-phase marine stratocumulus (Sc) clouds. Modelled with LES, four idealised scenarios - a stable Sc, varied droplet (Ndrop) or ice (Nice) number concentrations, and a warming surface (representing motion southwards) - were subjected to different levels of subsidence to investigate the cloud microphysical response. We find strong sensitivities to large-scale subsidence, indicating that high-pressure systems in the ocean-exposed Arctic regions have the potential to generate turbulence and changes in cloud microphysics in any resident BL mixed-phase clouds.Increased cloud convection is modelled with increased subsidence, driven by longwave radiative cooling at cloud top and rain evaporative cooling and latent heating from snow growth below cloud. Subsidence strengthens the BL temperature inversion, thus reducing entrainment and allowing the liquid- and ice-water paths (LWPs, IWPs) to increase. Through increased cloud-top radiative cooling and subsequent convective overturning, precipitation production is enhanced: rain particle number concentrations (Nrain), in-cloud rain mass production rates, and below-cloud evaporation rates increase with increased subsidence.Ice number concentrations (Nice) play an important role, as greater concentrations suppress the liquid phase; therefore, Nice acts to mediate the strength of turbulent overturning promoted by increased subsidence. With a warming surface, a lack of - or low - subsidence

  6. Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands

    Science.gov (United States)

    Hendriks, Rob F. A.; van den Akker, Jan J. A.

    2017-04-01

    Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands In the Netherlands, about 8% of the area is covered by peat soils. Most of these soils are in use for dairy farming and, consequently, are drained. Drainage causes decomposition of peat by oxidation and accordingly leads to surface subsidence and greenhouse gas emission. Submerged drains that enhance submerged infiltration of water from ditches during the dry and warm summer half year were, and are still, studied in The Netherlands as a promising tool for reducing peat decomposition by raising groundwater levels. For this purpose, several pilot field studies in the Western part of the Dutch peat area were conducted. Besides the effectiveness of submerged drains in reducing peat decomposition and subsidence by raising groundwater tables, some other relevant or expected effects of these drains were studied. Most important of these are water management and loading of surface water with nutrients nitrogen, phosphorus and sulphate. Because most of these parameters are not easy to assess and all of them are strongly depending on the meteorological conditions during the field studies some of these studies were modelled. The SWAP model was used for evaluating the hydrological results on groundwater table and water discharge and recharge. Effects of submerged drains were assessed by comparing the results of fields with and without drains. An empirical relation between deepest groundwater table and subsidence was used to convert effects on groundwater table to effects on subsidence. With the SWAP-ANIMO model nutrient loading of surface water was modelled on the basis of field results on nutrient concentrations . Calibrated models were used to assess effects in the present situation, as thirty-year averages, under extreme weather

  7. Differential subsidence in Mexico City and implications to its Collective Transport System (Metro).

    Science.gov (United States)

    Solano Rojas, D. E.; Wdowinski, S.; Cabral-Cano, E.; Osmanoglu, B.

    2017-12-01

    Mexico City is one of the fastest subsiding metropolis in the world. At displacement rates ranging from 0 to -380 [mm/yr], the complex geological setting is subjected to differential subsidence, which has led to damage, operation interruptions, and accidents to the Collective Transport System, or Metro. The Metro plays a critical role in Mexico City, carrying more than four million passengers per day. However, no previous study has focused on the deformation monitoring along the 93 km of the Metro surface railways, mainly because of the limitations of the traditional geodetic techniques. In this study, we use high-resolution Interferometric Synthetic Aperture Radar (InSAR) observations to monitor land subsidence throughout the city and quantify differential subsidence along surface Metro lines. Our analysis is based on 34 TerraSAR-X StripMap scenes acquired from May 2011 to June 2013 and 36 COSMO-SkyMed Stripmap scenes acquired from June 2011 to June 2012. The data were processed using the StaMPS InSAR time series technique, obtaining point densities of up to 4827 points/km2. Our post-processing methodologies include the following two components: (1) Detection of differential subsidence along the metro lines by calculating subsidence gradients, and (2) Detection of apparent uplift—areas subsiding slower than their surroundings—by using spatial frequency filtering. The two analyses allow us to recognize four main consequences of differential subsidence in the Metro system: 1. Deflection in elevated railways, 2. Deflection in street-level railways, 3. Columns with decreased loading capacity, and 4. Apparent uplift affecting surrounding infrastructure. Our results aim at shortening the large gap between scientific geodetic studies and applicable engineering parameters that can be used by local authorities in the city for maintenance and new lines development.

  8. Subsidence prediction in Estonia's oil shale mines

    International Nuclear Information System (INIS)

    Pastarus, J.R.; Toomik, A.

    2000-01-01

    This paper analysis the stability of the mining blocks in Estonian oil shale mines, where the room-and-pillar mining system is used. The pillars are arranged in a singular grid. The oil shale bed is embedded at the depth of 40-75 m. The processes in overburden rocks and pillars have caused the subsidence of the ground surface. The conditional thickness and sliding rectangle methods performed calculations. The results are presented by conditional thickness contours. Error does not exceed 4%. Model allows determining the parameters of spontaneous collapse of the pillars and surface subsidence. The surface subsidence parameters will be determined by conventional calculation scheme. Proposed method suits for stability analysis, failure prognosis and monitoring. 8 refs

  9. Subsidence in the holocene delta of The Netherlands

    NARCIS (Netherlands)

    Vonhögen, L.M.; Doornenbal, P.J.; Lange, G. de; Fokker, P.A.; Gunnink, J.L.

    2010-01-01

    The low-lying part of The Netherlands is very vulnerable in terms of surface subsidence due to peat oxidation and peat/clay compaction. To gain knowledge about this kind of subsidence and the factors driving it, a study was performed in which as many surface elevation data were collected as possible

  10. Subsidence from an artificial permafrost warming experiment.

    Science.gov (United States)

    Gelvin, A.; Wagner, A. M.; Lindsey, N.; Dou, S.; Martin, E. R.; Ekblaw, I.; Ulrich, C.; James, S. R.; Freifeld, B. M.; Daley, T. M.; Saari, S.; Ajo Franklin, J. B.

    2017-12-01

    Using fiber optic sensing technologies (seismic, strain, and temperature) we installed a geophysical detection system to predict thaw subsidence in Fairbanks, Alaska, United States. Approximately 5 km of fiber optic was buried in shallow trenches (20 cm depth), in an area with discontinuous permafrost, where the top of the permafrost is approximately 4 - 4.5m below the surface. The thaw subsidence was enforced by 122 60-Watt vertical heaters installed over a 140 m2 area where seismic, strain, and temperature were continuously monitored throughout the length of the fiber. Several vertical thermistor strings were also recording ground temperatures to a depth of 10 m in parallel to the fiber optic to verify the measurements collected from the fiber optic cable. GPS, Electronic Distance Measurement (EDM) Traditional and LiDAR (Light and Detection and Ranging) scanning were used to investigate the surface subsidence. The heaters were operating for approximately a three month period starting in August, 2016. During the heating process the soil temperatures at the heater element increased from 3.5 to 45 °C at a depth of 3 - 4 m. It took approximately 7 months for the temperature at the heater elements to recover to their initial temperature. The depth to the permafrost table was deepened by about 1 m during the heating process. By the end of the active heating, the surface had subsided approximately 8 cm in the heating section where permafrost was closest to the surface. This was conclusively confirmed with GPS, EDM, and LiDAR. An additional LiDAR survey was performed about seven months after the heaters were turned off (in May 2017). A total subsidence of approximately 20 cm was measured by the end of the passive heating process. This project successfully demonstrates that this is a viable approach for simulating both deep permafrost thaw and the resulting surface subsidence.

  11. Measurement of Subsidence in the Yangbajain Geothermal Fields from TerraSAR-X

    Science.gov (United States)

    Li, Yongsheng; Zhang, Jingfa; Li, Zhenhong

    2016-08-01

    Yangbajain contains the largest geothermal energy power station in China. Geothermal explorations in Yangbajain first started in 1976, and two plants were subsequently built in 1981 and 1986. A large amount of geothermal fluids have been extracted since then, leading to considerable surface subsidence around the geothermal fields. In this paper, InSAR time series analysis is applied to map the subsidence of the Yangbajain geothermal fields during the period from December 2011 to November 2012 using 16 senses of TerraSAR-X stripmap SAR images. Due to its high resolution and short repeat cycle, TerraSAR-X provides detailed surface deformation information at the Yangbajain geothermal fields.

  12. Research of the refilling use in order to reduce the subsidence effects in the surface; Investigacion del Empleo de Relleno Consolidado para Reducir los Efectos de la Subsidencia en Superficie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    The development of the research has been performed with a practical immediate purpose in the works of the Company Coto Minero de Narcea, S. A., a producer of anthracite in Asturias West Bassin. This is due to the fact that the work mining of the 2, 3 and 6 seams, essential to continue the production activities, is at present almost in vertical coincidence with surface installations of the mine making it necessary to use a filling material specially selected and layed in the works to minimize the subsidence effects. The prediction of these effects in order to reduce them to admissible bounds has been made through the application of the computer program SUBSIMCO, developed on the basis of the empirical calculation methods and the experience collected by the VNIMI Institute of Leningrad. The results controlled up to now, through accurate measuring, show a satisfactory coincidence with the predictions of theoretical calculations, proving at the same time the effectiveness of the filling process designed and the correct adaptation of the calculus method.

  13. Timing of deformation and rapid subsidence in the northern Altiplano, Peru: Insights from detrital zircon geochronology of the Ayaviri hinterland basin

    Science.gov (United States)

    Horton, B. K.; Perez, N. D.; Saylor, J. E.

    2011-12-01

    increases in Miocene sediment accumulation rates may reflect rapid subsidence driven by local thrust loading or piecemeal removal of lower crust/lithosphere, hypotheses to be considered by ongoing paleoelevation studies in the region. This approach highlights the potential for detrital zircon U-Pb geochronology to constrain deformation timing and tempo of sedimentation in proximal, coarse-grained basin-fill successions that are typically not amenable to chronostratigraphic techniques.

  14. Subsidized childcare and child development in Colombia: effects of Hogares Comunitarios de Bienestar as a function of timing and length of exposure.

    Science.gov (United States)

    Bernal, Raquel; Fernández, Camila

    2013-11-01

    Rigorous evidence regarding the impact of early care and education on children's development comes primarily from high-income nations. A few studies from Latin America and the Caribbean have identified benefits of conditional cash transfer and home visiting programs on children's development. However, there is still controversy around the impact and cost-effectiveness of childcare approaches. Further research is needed to understand how scaled-up childcare settings may support the development of low-income children in Latin America. To that end, the present study sought to identify the effects of exposure to a subsidized childcare program in Colombia on children's nutritional status, cognitive and socioemotional development. This community-based program, known as Hogares Comunitarios de Bienestar (HCB), serves 800 thousand low-income children under age 6, delivering home-based childcare, supplementary nutrition, and psychosocial stimulation. We analyzed data on 10,173 program beneficiary children (ages 3-6) collected in 2007. We compared beneficiary children who had been in the program for a long time with beneficiary children who had been in the program for a month or less, by age group, to estimate program exposure effects. We used a matching estimator to correct for self-selection into different exposure levels. Results indicated that cognitive development improved 0.15 to 0.3 of a standard deviation (SD) after at least 15 months of exposure for children between 3 and 6 years of age. Socioemotional skills improved 0.12 to 0.3 SD for children older than 3 after at least 15 months of program exposure. No significant gains were found for nutritional status. The estimated benefit-cost ratio ranged from 1.0 to 2.7, depending upon varying discount rates. Findings lend support for a potentially effective strategy to promote the development of low-income children in Colombia and other developing nations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Current Land Subsidence in Tianjin, China Recorded by Three Continuous GPS stations (2010-2014)

    Science.gov (United States)

    Jia, X.; Jing, Q.; Yan, B.; Yu, J.; Gan, W.; Wang, G.

    2014-12-01

    In the past two decades, Global Positioning System (GPS) technologies have been frequently applied to urban subsidence studies, both as a complement, and an alternative to conventional surveying methods. These studies have demonstrated that high-accuracy GPS techniques are an efficient tool in tracking long-term land subsidence. A great number of Continuously Operating Reference GPS Stations (CORS) have been installed in China during the past five years. Considerable land subsidence has been observed from CORS stations installed in several large cities. This study investigated GPS time series observed at three CORS in Tianjin: TJBD (2010-2014), TJBH (2010-2014), and TJWQ (2010-2014). Tianjin is one of the largest cities that is experiencing severe land subsidence problems in China. The observations at the three GPS sites indicate different subsidence rates. The average subsidence rate over four years are 0.2 cm/year at TJBD, 2 cm/year at TJBH, and 4.4 cm/year at TJWQ. The GPS station TJBD is located at Baodi, Tianjin. This area is the least economically developed and have the smallest population compared to the other two areas. Over 80% of water usage in Baodi is for agriculture and only less than 15% is from groundwater. The rapid subsidence at TJBH and TJWQ were caused by huge groundwater withdrawals associate with rapid urban and industrial developments in Binhai and Wuqing. Wuqing district, with a unique location advantage called "Corridor of Beijing and Tianjin", has been experiencing major urbanization. The population has reached 1,053,300 and the water usage has reached 350 million cubic meters in 2012. Over 25% of water usage is from groundwater. Significant annual and half-annual seasonal ground surface fluctuation has been observed from all three GPS stations. The peak-to-peak amplitude of the annual signal is 1.5 cm.

  16. Method of predicting surface deformation in the form of sinkholes

    Energy Technology Data Exchange (ETDEWEB)

    Chudek, M.; Arkuszewski, J.

    1980-06-01

    Proposes a method for predicting probability of sinkhole shaped subsidence, number of funnel-shaped subsidences and size of individual funnels. The following factors which influence the sudden subsidence of the surface in the form of funnels are analyzed: geologic structure of the strata between mining workings and the surface, mining depth, time factor, and geologic disolocations. Sudden surface subsidence is observed only in the case of workings situated up to a few dozen meters from the surface. Using the proposed method is explained with some examples. It is suggested that the method produces correct results which can be used in coal mining and in ore mining. (1 ref.) (In Polish)

  17. Towards a global land subsidence map

    NARCIS (Netherlands)

    Erkens, G.; Sutanudjaja, E. H.

    2015-01-01

    Land subsidence is a global problem, but a global land subsidence map is not available yet. Such map is crucial to raise global awareness of land subsidence, as land subsidence causes extensive damage (probably in the order of billions of dollars annually). With the global land subsidence map

  18. Ring-fault activity at subsiding calderas studied from analogue experiments and numerical modeling

    Science.gov (United States)

    Liu, Y. K.; Ruch, J.; Vasyura-Bathke, H.; Jonsson, S.

    2017-12-01

    Several subsiding calderas, such as the ones in the Galápagos archipelago and the Axial seamount in the Pacific Ocean have shown a complex but similar ground deformation pattern, composed of a broad deflation signal affecting the entire volcanic edifice and of a localized subsidence signal focused within the caldera. However, it is still debated how deep processes at subsiding calderas, including magmatic pressure changes, source locations and ring-faulting, relate to this observed surface deformation pattern. We combine analogue sandbox experiments with numerical modeling to study processes involved from initial subsidence to later collapse of calderas. The sandbox apparatus is composed of a motor driven subsiding half-piston connected to the bottom of a glass box. During the experiments the observation is done by five digital cameras photographing from various perspectives. We use Photoscan, a photogrammetry software and PIVLab, a time-resolved digital image correlation tool, to retrieve time-series of digital elevation models and velocity fields from acquired photographs. This setup allows tracking the processes acting both at depth and at the surface, and to assess their relative importance as the subsidence evolves to a collapse. We also use the Boundary Element Method to build a numerical model of the experiment setup, which comprises contracting sill-like source in interaction with a ring-fault in elastic half-space. We then compare our results from these two approaches with the examples observed in nature. Our preliminary experimental and numerical results show that at the initial stage of magmatic withdrawal, when the ring-fault is not yet well formed, broad and smooth deflation dominates at the surface. As the withdrawal increases, narrower subsidence bowl develops accompanied by the upward propagation of the ring-faulting. This indicates that the broad deflation, affecting the entire volcano edifice, is primarily driven by the contraction of the

  19. Calibration of a Land Subsidence Model Using InSAR Data via the Ensemble Kalman Filter.

    Science.gov (United States)

    Li, Liangping; Zhang, Meijing; Katzenstein, Kurt

    2017-11-01

    The application of interferometric synthetic aperture radar (InSAR) has been increasingly used to improve capabilities to model land subsidence in hydrogeologic studies. A number of investigations over the last decade show how spatially detailed time-lapse images of ground displacements could be utilized to advance our understanding for better predictions. In this work, we use simulated land subsidences as observed measurements, mimicking InSAR data to inversely infer inelastic specific storage in a stochastic framework. The inelastic specific storage is assumed as a random variable and modeled using a geostatistical method such that the detailed variations in space could be represented and also that the uncertainties of both characterization of specific storage and prediction of land subsidence can be assessed. The ensemble Kalman filter (EnKF), a real-time data assimilation algorithm, is used to inversely calibrate a land subsidence model by matching simulated subsidences with InSAR data. The performance of the EnKF is demonstrated in a synthetic example in which simulated surface deformations using a reference field are assumed as InSAR data for inverse modeling. The results indicate: (1) the EnKF can be used successfully to calibrate a land subsidence model with InSAR data; the estimation of inelastic specific storage is improved, and uncertainty of prediction is reduced, when all the data are accounted for; and (2) if the same ensemble is used to estimate Kalman gain, the analysis errors could cause filter divergence; thus, it is essential to include localization in the EnKF for InSAR data assimilation. © 2017, National Ground Water Association.

  20. Consideration on the restoring plan in the subsidence prone areas through the development of ground stability assessment techniques

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S.O.; Kwon, K.S.; Kim, I.H.; Cho, W.J.; Shin, H.S.; Lee, J.R.; Song, W.K.; Synn, J.H.; Park, C. [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    Most of the ground stability analysis on the subsidence prone areas used to be performed through the conventional routine work which consist of a geological survey, a review of the ragged mining map, a trace-investigation on the surface subsidence, a coring job on the prone areas, a rock mass classification, and a two dimensional numerical analysis. Through the above works, we could analyze the stability problems of a surface structure and the tendency of a surface subsidence. However so many problems have been pointed out during the analysis of the subsidence problem owing to the lack of quantitative data in geological survey, the unreliability of the input data for numerical analysis. Also new techniques for ground stability on subsidence area which can replace the conventional passive method are requested among the civil and mining engineers for the safety control of the surface structure including the road and tunnel. In this study, the basic mechanism for the surface subsidence was surveyed first, and the proper input data for the two and three dimensional numerical analysis was selected. And these results were applied to Si-Heung Mine. According to the two dimensional numerical analysis, there is no possibility of surface subsidence even though tension failure was developed up to the region three times to the height of the cavity. Meanwhile the existing data for joints and the ground water was re-evaluated in order to analyze their effects on the subsidence. If we can recognize the characteristics of the spatial data on them in the future, the effect of the joint and ground water on the subsidence can be found out more precisely through the combination with GIS. Finally a finite difference numerical method was applied to Si-Heung Mine in the three dimension. But it was revealed that there are some problems in the three dimensional technique. In other words, it is difficult to obtain the exact spatial coordinates of the cavity, and the researcher should have

  1. Complex surface deformation of Akutan volcano, Alaska revealed from InSAR time series

    Science.gov (United States)

    Wang, Teng; DeGrandpre, Kimberly; Lu, Zhong; Freymueller, Jeffrey T.

    2018-02-01

    Akutan volcano is one of the most active volcanoes in the Aleutian arc. An intense swarm of volcano-tectonic earthquakes occurred across the island in 1996. Surface deformation after the 1996 earthquake sequence has been studied using Interferometric Synthetic Aperture Radar (InSAR), yet it is hard to determine the detailed temporal behavior and spatial extent of the deformation due to decorrelation and the sparse temporal sampling of SAR data. Atmospheric delay anomalies over Akutan volcano are also strong, bringing additional technical challenges. Here we present a time series InSAR analysis from 2003 to 2016 to reveal the surface deformation in more detail. Four tracks of Envisat data acquired from 2003 to 2010 and one track of TerraSAR-X data acquired from 2010 to 2016 are processed to produce high-resolution surface deformation, with a focus on studying two transient episodes of inflation in 2008 and 2014. For the TerraSAR-X data, the atmospheric delay is estimated and removed using the common-master stacking method. These derived deformation maps show a consistently uplifting area on the northeastern flank of the volcano. From the TerraSAR-X data, we quantify the velocity of the subsidence inside the caldera to be as high as 10 mm/year, and identify another subsidence area near the ground cracks created during the 1996 swarm.

  2. Application of InSAR and gravimetric surveys for developing construction codes in zones of land subsidence induced by groundwater extraction: case study of Aguascalientes, Mexico

    Directory of Open Access Journals (Sweden)

    J. Pacheco-Martínez

    2015-11-01

    Full Text Available Interferometric Synthetic Aperture Radar (InSAR has become a valuable tool for surface deformation monitoring, including land subsidence associated with groundwater extraction. Another useful tools for studying Earth's surface processes are geophysical methods such as Gravimetry. In this work we present the application of InSAR analysis and gravimetric surveying to generate valuable information for risk management related to land subsidence and surface faulting. Subsidence of the city of Aguascalientes, Mexico is presented as study case. Aguascalientes local governments have addressed land subsidence issues by including new requirements for new constructions projects in the State Urban Construction Code. Nevertheless, the resulting zoning proposed in the code is still subjective and not clearly defined. Our work based on gravimetric and InSAR surveys is aimed for improving the subsidence hazard zoning proposed in the State Urban Code in a more comprehensive way. The study includes a 2007–2011 ALOS InSAR time-series analysis of the Aguascalientes valley, an interpretation of the compete Bouguer gravimetric anomaly of the Aguascalientes urban area, and the application of time series and gravimetric anomaly maps for improve the subsidence hazard zoning of Aguascalientes City.

  3. Detecting and monitoring UCG subsidence with InSAR

    Energy Technology Data Exchange (ETDEWEB)

    Mellors, R J; Foxall, W; Yang, X

    2012-03-23

    The use of interferometric synthetic aperture radar (InSAR) to measure surface subsidence caused by Underground Coal Gasification (UCG) is tested. InSAR is a remote sensing technique that uses Synthetic Aperture Radar images to make spatial images of surface deformation and may be deployed from satellite or an airplane. With current commercial satellite data, the technique works best in areas with little vegetation or farming activity. UCG subsidence is generally caused by roof collapse, which adversely affects UCG operations due to gas loss and is therefore important to monitor. Previous studies have demonstrated the usefulness of InSAR in measuring surface subsidence related to coal mining and surface deformation caused by a coal mining roof collapse in Crandall Canyon, Utah is imaged as a proof-of-concept. InSAR data is collected and processed over three known UCG operations including two pilot plants (Majuba, South Africa and Wulanchabu, China) and an operational plant (Angren, Uzbekistan). A clear f eature showing approximately 7 cm of subsidence is observed in the UCG field in Angren. Subsidence is not observed in the other two areas, which produce from deeper coal seams and processed a smaller volume. The results show that in some cases, InSAR is a useful tool to image UCG related subsidence. Data from newer satellites and improved algorithms will improve effectiveness.

  4. How to deal with subsidence in the Dutch delta?

    Science.gov (United States)

    Stouthamer, Esther; Erkens, Gilles

    2017-04-01

    In many deltas worldwide subsidence still is an underestimated problem, while the threat posed by land subsidence to low-lying urbanizing and urbanized deltas exceeds the threat of sea-level rise induced by climate change. Human-induced subsidence is driven by the extraction of hydrocarbons and groundwater, drainage of phreatic groundwater, and loading by buildings and infrastructure. The consequences of subsidence are increased flood risk and flood water depth, rising groundwater levels relative to the land surface, land loss, damage to buildings and infrastructure, and salinization of ground and surface water.. The Netherlands has a long history of subsidence. Large-scale drainage of the extensive peatlands in the western and northern parts of the Netherlands started approximately 1000 years ago as a result of rapid population growth. Subsidence is still ongoing due to (1) continuous drainage of the former peatland, which is now mainly in use as agricultural land and built-up area, (2) expansion of the built-up area and the infrastructural network, (3) salt mining and the extraction of gas in the northern Netherlands. Mitigating subsidence and its negative impacts requires understanding of the relative contribution of the drivers contributing to total subsidence, accurate predictions of land subsidence under different management scenarios, and its impacts. Such understanding enables the development of effective and sustainable management strategies. In the Netherlands, a lot of effort is put into water management aiming at amongst others the protection against floods and the ensuring agricultural activities, but a specific policy focusing on subsidence is lacking. The development of strategies to cope with subsidence is very challenging, because (1) the exact contribution of different drivers of subsidence to total subsidence is spatially different within the Netherlands, (2) there is no single problem owner, which makes it difficult to recognize this a common

  5. Impact of rock salt creep law choice on subsidence calculations for hydrocarbon reservoirs overlain by evaporite caprocks

    NARCIS (Netherlands)

    Marketos, G.; Spiers, C.J.; Govers, R.

    2016-01-01

    Accurate forward modeling of surface subsidence above producing hydrocarbons reservoirs requires an understanding of the mechanisms determining how ground deformation and subsidence evolve. Here we focus entirely on rock salt, which overlies a large number of reservoirs worldwide, and specifically

  6. Assessing the long-term impact of subsidence and global climate change on emergency evacuation routes in coastal Louisiana.

    Science.gov (United States)

    2012-12-01

    Subsidence forecast models for coastal Louisiana were developed to estimate the change in surface elevations of evacuation routes for the years 2015, 2025, 2050, and 2100. Geophysical and anthropogenic subsidence estimates were derived from on-going ...

  7. Subsidence Modeling of the Over-exploited Granular Aquifer System in Aguascalientes, Mexico

    Science.gov (United States)

    Solano Rojas, D. E.; Pacheco, J.; Wdowinski, S.; Minderhoud, P. S. J.; Cabral-Cano, E.; Albino, F.

    2017-12-01

    The valley of Aguascalientes in central Mexico experiences subsidence rates of up to 100 [mm/yr] due to overexploitation of its aquifer system, as revealed from satellite-based geodetic observations. The spatial pattern of the subsidence over the valley is inhomogeneous and affected by shallow faulting. The understanding of the subsoil mechanics is still limited. A better understanding of the subsidence process in Aguascalientes is needed to provide insights for future subsidence in the valley. We present here a displacement-constrained finite-element subsidence model, based on the USGS MODFLOW software. The construction of our model relies on 3 main inputs: (1) groundwater level time series obtained from extraction wells' hydrographs, (2) subsurface lithostratigraphy interpreted from well drilling logs, and (3) hydrogeological parameters obtained from field pumping tests. The groundwater level measurements were converted to pore pressure in our model's layers, and used in Terzaghi's equation for calculating effective stress. We then used the effective stress along with the displacement obtained from geodetic observations to constrain and optimize five geo-mechanical parameters: compression ratio, reloading ratio, secondary compression index, over consolidation ratio, and consolidation coefficient. Finally, we use the NEN-Bjerrum linear stress model formulation for settlements to determine elastic and visco-plastic strain, accounting for the aquifer system units' aging effect. Preliminary results show higher compaction response in clay-saturated intervals (i.e. aquitards) of the aquifer system, as reflected in the spatial pattern of the surface deformation. The forecasted subsidence for our proposed scenarios show a much more pronounced deformation when we consider higher groundwater extraction regimes.

  8. Resolving the Subsidence Anomaly of the East Tasman Plateau Using New Insights from the Cascade Seamount, Southwest Tasman Sea

    Science.gov (United States)

    Vorsanger, S. L.; Scher, H.; Johnson, S.; Mundana, R.; Sauermilch, I.; Duggan, B.; Whittaker, J. M.

    2017-12-01

    The Cascade Seamount is a wave-planated feature located on the microcontinent of the East Tasman Plateau (ETP). The minimum subsidence rate of the Seamount and the ETP can be estimated by dividing the present-day depth of the wave-cut surface (640 m) by the age of Cascade Seamount basalts as determined by potassium-argon (K-Ar) dating (33.4 and 36 Ma). This approach yields a subsidence rate of 18 m/Myr. However, significantly more rapid subsidence rates of the East Tasman Plateau (ETP) — upon which the Cascade Seamount rests — since the Eocene-Oligocene transition have been proposed utilizing a nearby sediment core, Ocean Drilling Program (ODP) Site 1172. Late Eocene paleodepths determined by Stickley et al. (2004) using sedimentological and biostratigraphic techniques, indicate a subsidence rate of 85 m/Myr for the ETP. These two results present a paradox, which implies that the ETP subsided at a rate greater than the Seamount itself, over the same time interval. It also implies that the seamount formed above sea level. The subsidence ambiguity may be attributed to the presence of a turbidity current deposit in the sediment core, or uncertainty in the age and/or location of the K-Ar dated basalts of the Cascade Seamount. Statistical analysis of the published grain size measurements will be used to test for the presence of a turbidity current deposit in ODP Site 1172. We will also measure 87Sr/86Sr ratios of marine carbonate samples from conglomerates obtained from the Cascade Seamount during the August 2016 RV Investigator voyage (IN2016_E01) to confirm the age of the wave planated surfaces by Strontium Isotope Stratigraphy. This will allow for a more robust calculation for the subsidence of the ETP which was a critical barrier in the Tasmanian Gateway that allowed for the formation of the Antarctic Circumpolar Current.

  9. Application of InSAR and Gravimetry for Land Subsidence Hazard Zoning in Aguascalientes, Mexico

    OpenAIRE

    Pacheco-Martínez, Jesús; Cabral-Cano, Enrique; Wdowinski, Shimon; Hernández-Marín, Martín; Ortiz-Lozano, José; Zermeño-de-León, Mario

    2015-01-01

    In this work we present an application of InSAR and gravimetric surveys for risk management related to land subsidence and surface ground faulting generation. A subsidence velocity map derived from the 2007–2011 ALOS SAR imagery and a sediment thicknesses map obtained from the inversion of gravimetric data were integrated with a surface fault map to produce a subsidence hazard zoning in the city of Aguascalientes, Mexico. The resulting zoning is presented together with specific recommendation...

  10. Mine subsidence event at Washington West Apartments

    International Nuclear Information System (INIS)

    Wilson, D.B.; Weber, M.W.; Purdy, J.; Acker, P.

    1994-01-01

    A major mine subsidence event occurred in Scranton, PA in early 1993. The initial damage included breakage of gas and water lines, cracking of pavements and sidewalks, and architectural damage to the seven-story apartment building that houses about 150 elderly persons. Visible damage include a 3/4-in dilation of the expansion joint separating the building, approximately 200 interior and exterior cracks, and distress to utility lines. The Office of Surface mining Reclamation and Enforcement (OSM) funded an integrated geotechnical and structural engineering investigation to determine the cause of the subsidence, the limits of affected areas, and the nature of damage to the building. Work included interior surveys, exterior surveys, installation of crack gages, eight subsurface borings, review of building design drawings, review of geologic and mining data, and structural analysis of the rigid steel frame building. The surveys showed the building had undergone movements consisting of a lateral translation, a longitudinal differential settlement, and a transverse differential settlement. Preliminary structural analyses showed that the differential settlements had introduced significant additional stresses in some of the building columns. This paper provides a case history of the cause and effects of the subsidence event. The techniques used to collect and analyze the data are presented along with the findings of the geotechnical and structural engineering investigations. The paper also describes emergency actions that were implemented, the remedial alternatives that were considered, and the method selected as the recommended alternative

  11. Lava Lake Level Drop and Related Ground Subsidence in the Nyiragongo Main Crater (D.R.Congo) Measured by Close-Range Photogrammetry and InSAR Time-Series

    Science.gov (United States)

    Smets, B.; d'Oreye, N.; Samsonov, S. V.; Nobile, A.; Geirsson, H.; Kervyn, F.

    2015-12-01

    Nyiragongo volcano is the most active African volcano and among the most active volcanoes on Earth. It is also among the infrequent volcanoes that host a long-lived lava lake. The morphology of the Nyiragongo main crater is characterized by 2 levels of remnant platforms partly preserved and attached to its inner flanks, which correspond to former lava lake levels, and by a bottom "active" platform, which delimits the current active lava lake. The elevation of the bottom platform increases through time, with successive lava lake overflows. After a period of low level between late 2010 and August 2011, the lava lake next came back to its highest level. However, on September 30, 2011, it started a long and progressive fall, reaching ~70 m below the bottom platform in July 2014. This recent evolution of the lava lake, which occurred at the same time period as eruptive events at the neighboring Nyamulagira volcano, was accompanied by a ground subsidence of the bottom platform, leading to the appearance of ring fissures. This ground deformation is restricted to the bottom platform and, hence, suggests a very shallow source for the observed movement. All these changes in the Nyiragongo main crater were recorded by time-series of photographs, allowing the 3D reconstruction of the crater using close-range photogrammetric techniques and, hence, a detailed measurement of the observed changes. The ground subsidence was also recorded by time-series of RADARSAT-2 and CosmoSky-Med SAR interferograms, providing more detailed information on the velocity of deformation. Based on field data and the photogrammetric and InSAR time-series measurements, several hypotheses on the cause(s) of these changes in the Nyiragongo crater are discussed. The present work also highlights the potential of close-range photogrammetry and high-resolution InSAR to study and monitor active volcanoes in Equatorial environment.

  12. Survey of land subsidence – case study: The land subsidence ...

    Indian Academy of Sciences (India)

    This is a new phenomenon and in this research the geometrical properties of the fissures of recharge ... by ground water, the creation of small sinkholes followed ... Figure 1. The location of artificial recharge plan in. Hamadan. The Gharechai River is a source of artificial .... land subsidence and shape the cracks and fissures.

  13. Natural versus anthropogenic subsidence of Venice.

    Science.gov (United States)

    Tosi, Luigi; Teatini, Pietro; Strozzi, Tazio

    2013-09-26

    We detected land displacements of Venice by Persistent Scatterer Interferometry using ERS and ENVISAT C-band and TerraSAR-X and COSMO-SkyMed X-band acquisitions over the periods 1992-2010 and 2008-2011, respectively. By reason of the larger observation period, the C-band sensors was used to quantify the long-term movements, i.e. the subsidence component primarily ascribed to natural processes. The high resolution X-band satellites reveal a high effectiveness to monitor short-time movements as those induced by human activities. Interpolation of the two datasets and removal of the C-band from the X-band map allows discriminating between the natural and anthropogenic components of the subsidence. A certain variability characterizes the natural subsidence (0.9 ± 0.7 mm/yr), mainly because of the heterogeneous nature and age of the lagoon subsoil. The 2008 displacements show that man interventions are responsible for movements ranging from -10 to 2 mm/yr. These displacements are generally local and distributed along the margins of the city islands.

  14. Post-depositional fracturing and subsidence of pumice flow deposits: Lascar Volcano, Chile.

    Science.gov (United States)

    Whelley, Patrick L; Jay, J; Calder, E S; Pritchard, M E; Cassidy, N J; Alcaraz, S; Pavez, A

    Unconsolidated pyroclastic flow deposits of the 1993 eruption of Lascar Volcano, Chile, have, with time, become increasingly dissected by a network of deeply penetrating fractures. The fracture network comprises orthogonal sets of decimeter-wide linear voids that form a pseudo-polygonal grid visible on the deposit surface. In this work, we combine shallow surface geophysical imaging tools with remote sensing observations and direct field measurements of the deposit to investigate these fractures and their underlying causal mechanisms. Based on ground penetrating radar images, the fractures are observed to have propagated to depths of up to 10 m. In addition, orbiting radar interferometry shows that deposit subsidence of up to 1 cm/year -1 occurred between 1993 and 1996 with continued subsidence occurring at a slower rate thereafter. In situ measurements show that 1 m below the surface, the 1993 deposits remain 5°C to 15°C hotter, 18 years after emplacement, than adjacent deposits. Based on the observed subsidence as well as estimated cooling rates, the fractures are inferred to be the combined result of deaeration, thermal contraction, and sedimentary compaction in the months to years following deposition. Significant environmental factors, including regional earthquakes in 1995 and 2007, accelerated settling at punctuated moments in time. The spatially variable fracture pattern relates to surface slope and lithofacies variations as well as substrate lithology. Similar fractures have been reported in other ignimbrites but are generally exposed only in cross section and are often attributed to formation by external forces. Here we suggest that such interpretations should be invoked with caution, and deformation including post-emplacement subsidence and fracturing of loosely packed ash-rich deposits in the months to years post-emplacement is a process inherent in the settling of pyroclastic material.

  15. Study on the Rule of Super Strata Movement and Subsidence

    Science.gov (United States)

    Yao, Shunli; Yuan, Hongyong; Jiang, Fuxing; Chen, Tao; Wu, Peng

    2018-01-01

    The movement of key strata is related to the safety of the whole earth’s surface for coal mining under super strata. Based on the key strata theory, the paper comprehensively analyzes the characteristics of the subsidence before and after the instability of the super strata by studing through FLAC3D and microseismic dynamic monitoring of the surface rock movement observation. The stability of the super strata movement is analyzed according to the characteristic value of the subsidence. The subsidence law and quantitative indexes under the control of the super rock strata that provides basis for the prevention and control of surface risk, optimize mining area and face layout and reasonably set mining boundary around mining area. It provides basis for the even growth of mine safety production and regional public safety.

  16. Flooding hazards from sea extremes and subsidence

    DEFF Research Database (Denmark)

    Sørensen, Carlo; Vognsen, Karsten; Broge, Niels

    2015-01-01

    of tide gauge records, statistics that allow also for projections of SLR, meteorological variability, and extremes with a very low probability of occurrence are provided. Land movement is researched with a focus on short term surface height variability in the groundwater-ocean interface that, together...... with longer term processes, may cause substantial subsidence and impact future water management and adaptation strategies in flood prone coastal areas. Field studies’ results from repeated precise levelling, GPS setups, and ocean and groundwater level monitoring in Thyborøn and Aarhus are integrated...

  17. U.S. Geological Survey Subsidence Interest Group conference, Edwards Air Force Base, Antelope Valley, California, November 18-19, 1992; abstracts and summary

    Science.gov (United States)

    Prince, Keith R.; Galloway, Devin L.; Leake, Stanley A.

    1995-01-01

    Land subsidence, the loss of surface elevation as a result of the removal of subsurface support, affects every state in the United States. More than 17,000 mi2 of land in the United States has been lowered by the various processes that produce land subsidence with annual costs from resulting flooding and structural damage that exceed $125 million. It is estimated that an additional $400 million is spent nationwide in attempts to control subsidence. Common causes of land subsidence include the removal of oil, gas, and water from underground reservoirs; dissolution of limestone aquifers (sinkholes); underground mining activities; drainage of organic soils; and hydrocompaction (the initial wetting of dry soils). Overdrafting of aquifers is the major cause of areally extensive land subsidence, and as ground-water pumping increases, land subsidence also will increase. Land subsidence and its effects on engineering structures have been recognized for centuries, but it was not until this century that the processes that produce land subsidence were identified and understood. In 1928, while working with field data from a test of the Dakota Sandstone aquifer, O.E. Meinzer of the U.S. Geological Survey recognized the compressibility of aquifers. Around the same time, Karl Terzaghi, a soil scientist working at Harvard University, developed the one-dimensional consolidation theory that provided a quantitative means of predicting soil compaction resulting from the drainage of compressible soils. Thus, with the recognition of the compressibility of aquifers (Meinzer), and the development of a quantitative means of predicting soil compaction as a consequence of the reduction of intergranular pore pressure (Terzaghi), the theory of aquifer-system compaction was formed. With the widespread availa- bility of electric power in rural areas, and the advent of the deep turbine pump, ground-water withdrawals increased dramatically throughout the country in the 1940's and 1950's. Along

  18. Offshore gravimetric and subsidence monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Stenvold, Torkjell

    2008-06-15

    The introduction (Chapter 1) is complemented by the introductions given in Chapters 2 to 8. I am the first author of the articles in chapter 2 and 8. For the 5 articles in between I am a coauthor, and the sum of my contributions to those articles (as quantified by the respective first authors) represents about one article. Chapter 2 contains the article 'High-precision relative depth and subsidence mapping from seafloor water-pressure measurements' by Stenvold et al. (2006), published in the SPE Journal. It was submitted in March 2005, and a revised version that also contained results from the Troll 2005 survey (August) was submitted in February 2006. The method of obtaining high-precision relative depth measurements by the use of mobile pressure gauges is presented. Intra-survey and inter-survey depth repeatabilities from six surveys are presented, and the individual contributing errors are discussed and estimated. Average reservoir compressibility for the Troll field between 2002 and 2005 is obtained by matching measured subsidence with modeled subsidence. Chapter 3 contains the article 'A new seafloor gravimeter' by Sasagawa et al. (2003), published in Geophysics. It was submitted in September 2001, and a revised version was submitted in August 2002. This article describes the ROVDOG (Remotely operated Vehicledeployed Deep-Ocean Gravimeter) in detail. Gravity and pressure repeatability results from the two first Troll surveys in 1998 and 2000 are presented. Data reduction, instrumental and environmental corrections are also presented. Chapter 4 contains the article 'Precision of seafloor gravity and pressure measurements for reservoir monitoring' by Zumberge et al., and was submitted 29 February 2008 to Geophysics. This builds on the article by Sasagawa et al. (Chapter 3). Improvements and upto date intra- and inter survey repeatability results are presented. The emphasis is on gravity results since the relative depth measurements

  19. Application of InSAR and Gravimetry for Land Subsidence Hazard Zoning in Aguascalientes, Mexico

    Directory of Open Access Journals (Sweden)

    Jesús Pacheco-Martínez

    2015-12-01

    Full Text Available In this work we present an application of InSAR and gravimetric surveys for risk management related to land subsidence and surface ground faulting generation. A subsidence velocity map derived from the 2007–2011 ALOS SAR imagery and a sediment thicknesses map obtained from the inversion of gravimetric data were integrated with a surface fault map to produce a subsidence hazard zoning in the city of Aguascalientes, Mexico. The resulting zoning is presented together with specific recommendations about geotechnical studies needed for further evaluation of surface faulting in these hazard zones. The derived zoning map consists in four zones including null hazard (stable terrain without subsidence, low hazard (areas prone to subsidence, medium hazard (zones with subsidence and high hazard (zones with surface faulting. InSAR results displayed subsidence LOS velocities up to 10 cm/year and two subsidence areas unknown before this study. Gravimetric results revealed that the thicker sediment sequence is located toward north of Aguascalientes City reaching up to 600 m in thickness, which correspond to a high subsidence LOS velocity zone (up to 6 cm/year.

  20. Subsidizing R&D cooperatives

    NARCIS (Netherlands)

    Hinloopen, J.

    2001-01-01

    A framework is developed with which the implementation of two commonly used R&D-stimulating policies can be evaluated: providing R&D subsidies and sustaining the formation of R&D cooperatives. Subsidized R&D cooperatives can also be analyzed. The analysis shows that providing R&D subsidies is more

  1. Traces of warping subsided tectonic blocks on Miranda, Enceladus, Titan

    Science.gov (United States)

    Kochemasov, G.

    2007-08-01

    Icy satellites of the outer Solar system have very large range of sizes - from kilometers to thousands of kilometers. Bodies less than 400-500 km across have normally irregular shapes , often presenting simple Plato's polyhedrons woven by standing inertiagravity waves (see an accompanying abstract of Kochemasov). Larger bodies with enhanced gravity normally are rounded off and have globular shapes but far from ideal spheres. This is due to warping action of inertia-gravity waves of various wavelengths origin of which is related to body movements in elliptical keplerian orbits with periodically changing accelerations (alternating accelerations cause periodically changing forces acting upon a body what means oscillations of its spheres in form of standing warping waves). The fundamental wave 1 and its first overtone wave 2 produce ubiquitous tectonic dichotomy - two segmental structure and tectonic sectoring superimposed on this dichotomy. Two kinds of tectonic blocks (segments and sectors) are formed: uplifted (+) and subsided (-). Uplifting means increasing planetary radius of blocks, subsiding - decreasing radius (as a sequence subsiding blocks diminishing their surfaces must be warped, folded, wrinkled; uplifting blocks increasing their surfaces tend to be deeply cracked, fallen apart). To level changing angular momenta of blocks subsided areas are filled with denser material than uplifted ones (one of the best examples is Earth with its oceanic basins filled with dense basalts and uplifted continents built of less dense on average andesitic material). Icy satellites follow the same rule. Their warped surfaces show differing chemistries or structures of constructive materials. Uplifted blocks are normally built with light (by color and density) water ice. Subsided blocks - depressions, "seas', "lakes", coronas - by somewhat denser material differing in color from water ice (very sharply - Iapetus, moderately - Europa, slightly - many saturnian satellites). A very

  2. Interferograms showing land subsidence and uplift in Las Vegas Valley, Nevada, 1992-99

    Science.gov (United States)

    Pavelko, Michael T.; Hoffmann, Jörn; Damar, Nancy A.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the Nevada Department of Conservation and Natural Resources-Division of Water Resources and the Las Vegas Valley Water District, compiled 44 individual interferograms and 1 stacked interferogram comprising 29 satellite synthetic aperture radar acquisitions of Las Vegas Valley, Nevada, from 1992 to 1999. The interferograms, which depict short-term, seasonal, and long-term trends in land subsidence and uplift, are viewable with an interactive map. The interferograms show that land subsidence and uplift generally occur in localized areas, are responsive to ground-water pumpage and artificial recharge, and, in part, are fault controlled. Information from these interferograms can be used by water and land managers to mitigate land subsidence and associated damage. Land subsidence attributed to ground-water pumpage has been documented in Las Vegas Valley since the 1940s. Damage to roads, buildings, and other engineered structures has been associated with this land subsidence. Land uplift attributed to artificial recharge and reduced pumping has been documented since the 1990s. Measuring these land-surface changes with traditional benchmark and Global Positioning System surveys can be costly and time consuming, and results typically are spatially and temporally sparse. Interferograms are relatively inexpensive and provide temporal and spatial resolutions previously not achievable. The interferograms are viewable with an interactive map. Landsat images from 1993 and 2000 are viewable for frames of reference to locate areas of interest and help determine land use. A stacked interferogram for 1992-99 is viewable to visualize the cumulative vertical displacement for the period represented by the individual interferograms. The interactive map enables users to identify and estimate the magnitude of vertical displacement, visually analyze deformation trends, and view interferograms and Landsat images side by side. The

  3. A Picture of Subsidized Households 2009

    Data.gov (United States)

    Department of Housing and Urban Development — Picture of Subsidized Households describes the nearly 5 million households living in HUD-subsidized housing in the United States for the year 2009. Picture 2009...

  4. A Picture of Subsidized Housholds 2008

    Data.gov (United States)

    Department of Housing and Urban Development — Picture of Subsidized Households describes the nearly 5 million households living in HUD-subsidized housing in the United States for the year 2008. Picture 2008...

  5. Establishment of a Subsidence Superstation in the Mississippi Delta: Integrating sediment core, SET, GPS and vertical strainmeter data to understand subsidence

    Science.gov (United States)

    Steckler, M. S.; Allison, M. A.; Bridgeman, J.; Dixon, T. H.; Hatfield, W.; A Karegar, M.; Tornqvist, T. E.; Zumberge, M. A.; Wyatt, F. K.

    2017-12-01

    There is a great need for coordinated efforts to monitor and better understand subsidence rates in low-elevation coastal zones by integrating different, complementary techniques at carefully selected sites. We present recent efforts to establish a subsidence superstation in the Mississippi Delta. The site is 2 km from the river near Myrtle Grove, Louisiana, at a CRMS (Coastwide Reference Monitoring System) site. The CRMS site consists of a surface elevation table (SET) and marker horizon established in 2008. The surface elevation relative to a rod driven to refusal (26 m) and the sedimentation above the marker horizon is measured semiannually. Adjacent to this site we have added three borehole optical fiber strainmeters that have been providing continuous records of displacement between the near-surface and depths of 10, 26, and 42 m. The instruments provide unprecedented resolution for compaction studies (see Hatfield et al. abstract). We regularly record teleseismic events with amplitudes <1 μm. The records also show a number of days-long compaction and rebound events of less than 1 mm, resulting from changes in the weather and water level. We have attached GPS to each of the wells. For the deepest well, the GPS is anchored to the bottom of the well with the base of the optical strainmeter. For the other two wells, the GPS is anchored to the upper casing of the well. While drilling the wells, a 5" diameter continuous core was collected reaching the Pleistocene boundary at 37 m depth (see Bridgeman et al. abstract). The silty uppermost 10 m, comprised of proximal overbank deposits, reveal up to 5-6 m of subsidence over the past 3000 years. In contrast, the surficial sediments ( 70 cm) are almost entirely organic matter and show little subsidence. The SET shows only 0.4 mm/yr for a 7.4 yr time window. Over the first year, the strainmeters show no long-term compaction or extension greater than ± 0.5 mm. Precise processing of the available GPS data indicates the

  6. Monitoring Subsidence in California with InSAR

    Science.gov (United States)

    Farr, T. G.; Jones, C. E.; Liu, Z.; Neff, K. L.; Gurrola, E. M.; Manipon, G.

    2016-12-01

    Subsidence caused by groundwater pumping in the rich agricultural area of California's Central Valley has been a problem for decades. Over the last few years, interferometric synthetic aperture radar (InSAR) observations from satellite and aircraft platforms have been used to produce maps of subsidence with cm accuracy. We are continuing work reported previously, using ESA's Sentinel-1 to extend our maps of subsidence in time and space, in order to eventually cover all of California. The amount of data to be processed has expanded exponentially in the course of our work and we are now transitioning to the use of the ARIA project at JPL to produce the time series. ARIA processing employs large Amazon cloud instances to process single or multiple frames each, scaling from one to many (20+) instances working in parallel to meet the demand (700 GB InSAR products within 3 hours). The data are stored in Amazon long-term storage and an http view of the products are available for users of the ARIA system to download the products. Higher resolution InSAR data were also acquired along the California Aqueduct by the NASA UAVSAR from 2013 - 2016. Using multiple scenes acquired by these systems, we are able to produce time series of subsidence at selected locations and transects showing how subsidence varies both spatially and temporally. The maps show that subsidence is continuing in areas with a history of subsidence and that the rates and areas affected have increased due to increased groundwater extraction during the extended western US drought. Our maps also identify and quantify new, localized areas of accelerated subsidence. The California Department of Water Resources (DWR) funded this work to provide the background and an update on subsidence in the Central Valley to support future policy. Geographic Information System (GIS) files are being furnished to DWR for further analysis of the 4 dimensional subsidence time-series maps. Part of this work was carried out at the

  7. Land subsidence of coastal areas of Jiangsu Province, China: historical review and present situation

    Directory of Open Access Journals (Sweden)

    J. Q. Zhu

    2015-11-01

    Full Text Available Surface faults related to land subsidence have been observed in coastal cities, such as Nantong, Yancheng, and Lian Yungang, in Jiangsu Province (CAJS since the early 1970s. Nowadays, increases flooding and rising sea levels are attributed to subsidence caused by groundwater pumping. In this work we present a brief description of land subsidence in CAJS, we examine the mechanisms of land subsidence induced mainly by groundwater pumping and its evolution and economic implications as well as the implemented measures by the local government to prevent new damage.

  8. Land subsidence of coastal areas of Jiangsu Province, China: historical review and present situation

    Science.gov (United States)

    Zhu, J. Q.; Yang, Y.; Yu, J.; Gong, X. L.

    2015-11-01

    Surface faults related to land subsidence have been observed in coastal cities, such as Nantong, Yancheng, and Lian Yungang, in Jiangsu Province (CAJS) since the early 1970s. Nowadays, increases flooding and rising sea levels are attributed to subsidence caused by groundwater pumping. In this work we present a brief description of land subsidence in CAJS, we examine the mechanisms of land subsidence induced mainly by groundwater pumping and its evolution and economic implications as well as the implemented measures by the local government to prevent new damage.

  9. Innovative repair of subsidence damage

    International Nuclear Information System (INIS)

    Marino, G.G.

    1992-01-01

    In order to improve handling of subsidence damages the Illinois Mine Subsidence Insurance Fund supported the development of novel cost-effective methods of repair. The research in developing the repairs was directed towards the most common and costly damages that had been observed. As a result repair techniques were designed for structurally cracked foundations in the tension zone; structurally cracked foundations in the compression zone; and damaged or undamaged tilted foundations. When appropriate the postulated methods would result in: 1. significant cost savings (over conventional procedures); 2. a structural capacity greater than when the foundation was uncracked; and 3. an aesthetic appeal. All the postulated repair methodologies were laboratory and/or field tested. This paper will summarize the essentials of each technique developed and the test results

  10. Investigation of subsidence event over multiple seam mining area

    International Nuclear Information System (INIS)

    Kohli, K.K.

    1999-01-01

    An investigation was performed to determine the sequence of events which caused the 1987 surface subsidence and related damage to several homes in Walker County, Alabama, USA. Surface affects compared to mine maps indicated the subsidence to be mine related. However, two coal seams had been worked under this area. The upper seam, the American seam, ranged from 250 to 280 feet beneath the surface in the area in question. It was mined-out before 1955 by room-and-pillar method leaving in place narrow-long pillars to support the overburden strata, and abandoned in 1955. The lower seam, the Mary Lee seam, ranged from 650 to 700 feet beneath the surface. The Mary Lee seam had been abandoned in 1966 and subsequently became flooded. The dewatering of the Mary Lee seam workings in 1985 caused the submerged pillars to be exposed to the atmosphere. Due to multiple seam mining and the fact that workings had been inundated then dewatered, a subsurface investigation ensued to determine the sequence and ultimate cause of surface subsidence. Core sample tests with fracture analysis in conjunction with down-the-hole TV camera inspections provided necessary information to determine that the subsidence started in the lower seam and progressed through the upper coal seam to the surface. Evidence from the investigation program established that dewatering of the lower seam workings caused the marginally stable support pillars and the roof to collapse. This failure triggered additional subsidence in the upper seam which broadened the area of influence at the surface

  11. Halting Land Subsidence in Tucson, Arizona: Examining the Poroelastic Response to Artificial Recharge

    Science.gov (United States)

    Miller, M. M.; Shirzaei, M.; Argus, D. F.

    2017-12-01

    Overexploitation of groundwater results in stressed aquifer systems and surface deformation in the form of land subsidence. Differential land subsidence can lead to earth fissures, which threaten buildings and infrastructure. Therefore, careful water management is necessary to ensure aquifer resources are withdrawn and replenished at a sustainable yield to preserve supplies and minimize surface deformation. Tucson, Arizona is a semi-arid desert city that is reliant on a semi-confined alluvial aquifer system for much of the water supply. To understand the poroelastic response of the aquifer system over time, we analyze data from wells equipped with extensometers, InSAR time series, and GPS. From 1990-2005, compaction of fine-grained, aquitard material is measured up to 8.5 mm/yr at well sites equipped with extensometers. This induces permanent aquifer storage volume losses up to 4.1%. Yet, interferograms from Envisat and RadarSAT-2 C-band satellites, which yield multitemporal deformation maps at high resolution, reveal that subsidence remarkably slows by the late 2000s and nearly halts by 2015. We infer this deceleration corresponds to heightened artificial recharge efforts to bank Colorado River water delivered via canal. After groundwater levels recover, residual compaction continues for just a 6.6-year interval, which suggests a high value for vertical hydraulic conductivity up to 9.8 x10-4 m/day. Successful water management and conservation plans help the city preserve existing and replenish depleted groundwater reserves, decelerate land subsidence, and likely reduce the risks associated with earth fissuring.

  12. Surveys for detection and measurement of subsidence resulting from solution mining--why, what and how

    International Nuclear Information System (INIS)

    Piper, T.B.

    1983-01-01

    Subsidence resulting from solution mining is usually expressed at the earth's surface by downwarping or change in elevation. Areas of several tens or hundreds of acres are involved. These settlements can sometimes be accommodated by buildings and other installations if the subsidence is gentle or the area is large. On the other hand, mineral extraction sometimes results in collapse of a relatively small area (on the order of a few acres) known as a sinkhole. The relationship between these two events has not been demonstrated. Subsidence can be detected by measurements made in the area involved by either access or non-access methods. The results provide early warning of surface downwarping and can be used as input in operating decisions. Precise levelling of a network of shallow monuments has shown a high level of applicability to solution mining sites and offers the maximum cost-benefit ratio. Time vs. settlement plots and summary contour maps serve to present the data and identify areas of concern

  13. Compaction and subsidence of the Groningen gas field in the Netherlands

    NARCIS (Netherlands)

    Thienen-Visser, K. van; Pruiksma, J.P.; Breunese, J.N.

    2015-01-01

    The Groningen gas field in the Netherlands is Europe’s largest gas field. It has been produced since 1963 and production is expected to continue until 2080. The pressure decline in the field causes compaction in the reservoir which is observed as subsidence at the surface. Measured subsidence is

  14. Subsidence monitoring program at Cyprus Coal's Colorado operations

    International Nuclear Information System (INIS)

    Stewart, C.L.; Shoemaker, J.E.

    1992-01-01

    Published subsidence data for the western United States is limited in comparison with data for the east. This paper summarizes the results of a subsidence monitoring program above two longwall panels at the Foidel Creek Mine located in northwest Colorado. The monitoring area is characterized by overburden ranging from 1000 ft to 1100 ft in thickness. the surface slope parallels the dip of the bedding at approximately 5 deg. Average mining height is 9 ft. Smax averaged 3.4 ft. Draw angles averaged 15 deg for up-dip ribsides and 19 deg for down-dip ribsides. A site-specific profile function is developed from the data

  15. The future of subsidence modelling: compaction and subsidence due to gas depletion of the Groningen gas field in the Netherlands

    NARCIS (Netherlands)

    Thienen-Visser, K. van; Fokker, P.A.

    2017-01-01

    The Groningen gas field has shown considerable compaction and subsidence since starting production in the early 1960s. The behaviour is understood from the geomechanical response of the reservoir pressure depletion. By integrating surface movement measurements and modelling, the model parameters can

  16. Investigation of a subsidence event near Flushing, Ohio

    International Nuclear Information System (INIS)

    Ledney, C.M.; Hawk, J.L.

    1994-01-01

    An investigation was undertaken to determine the cause and extent of events which caused problems to a number of residences along State Route 149 near Flushing, Belmont County, Ohio. The events began in 1988 and continued through 1991 and affected nine homes. The type of problems occurring, as well as surface effects, compared to available mine maps of the area, indicated the problems were caused by subsidence from coal mining. The mining occurred in the Pittsburgh seam at a depth of between 180 and 220 feet. The mining beneath the site took place between 1975 and 1977 and was of the room and pillar type. A subsurface investigation was performed, along with ''down the hole'' video camera inspections to provide necessary subsurface information for analysis of the subsidence event. Factors of safety were calculated for pillars throughout the mine. Based on this analysis, it was determined that pillar failure caused the subsidence event. Once a determination was made as to the likely cause of the subsidence, the data was re-examined to determine the possible location of pillar failure, as well as the type and extent of subsidence. This analysis involved the use of RQD versus depth plots and the compilation of isopach maps of the mine overburden and the Sewickley Sandstone. The trend of the two maps suggested that a relationship existed between the sandstone thickness, the overburden and the surface expression of the subsidence. In order to determine this relationship, the two maps were combined into a second order map showing the mine overburden--Sewickley Sandstone thickness ratios. The combination was accomplished by computer matrix operations using the grid values of the two previous maps that were generated by kriging. It was concluded that the ratio of the Sewickley Sandstone thickness to the mine overburden had a tremendous effect on the amount of damage that occurred to specific residences

  17. Shallow Faulting in Morelia, Mexico, Based on Seismic Tomography and Geodetically Detected Land Subsidence

    Science.gov (United States)

    Cabral-Cano, E.; Arciniega-Ceballos, A.; Vergara-Huerta, F.; Chaussard, E.; Wdowinski, S.; DeMets, C.; Salazar-Tlaczani, L.

    2013-12-01

    Subsidence has been a common occurrence in several cities in central Mexico for the past three decades. This process causes substantial damage to the urban infrastructure and housing in several cities and it is a major factor to be considered when planning urban development, land-use zoning and hazard mitigation strategies. Since the early 1980's the city of Morelia in Central Mexico has experienced subsidence associated with groundwater extraction in excess of natural recharge from rainfall. Previous works have focused on the detection and temporal evolution of the subsidence spatial distribution. The most recent InSAR analysis confirms the permanence of previously detected rapidly subsiding areas such as the Rio Grande Meander area and also defines 2 subsidence patches previously undetected in the newly developed suburban sectors west of Morelia at the Fraccionamiento Del Bosque along, south of Hwy. 15 and another patch located north of Morelia along Gabino Castañeda del Rio Ave. Because subsidence-induced, shallow faulting develops at high horizontal strain localization, newly developed a subsidence areas are particularly prone to faulting and fissuring. Shallow faulting increases groundwater vulnerability because it disrupts discharge hydraulic infrastructure and creates a direct path for transport of surface pollutants into the underlying aquifer. Other sectors in Morelia that have been experiencing subsidence for longer time have already developed well defined faults such as La Colina, Central Camionera, Torremolinos and La Paloma faults. Local construction codes in the vicinity of these faults define a very narrow swath along which housing construction is not allowed. In order to better characterize these fault systems and provide better criteria for future municipal construction codes we have surveyed the La Colina and Torremolinos fault systems in the western sector of Morelia using seismic tomographic techniques. Our results indicate that La Colina Fault

  18. Characterizing land subsidence mechanisms as a function of urban basin geohazards using space geodesy

    Science.gov (United States)

    Bawden, G. W.

    2016-12-01

    Land subsidence in urban basins will likely become a more significant geohazard in many of the global sedimentary basins as population growth, resource availability, and climate change compound natural and anthropogenic contributors that influence basin elevation. Coastal basins are at the greatest risk where land subsidence is additive to sea level rise, thereby increasing the rate of exposure to coastal populations. Land surface elevation change is a function of many different parameters, including: elastic and inelastic surface response to managed and natural groundwater levels; anthropogenic activities (hydrocarbon extraction, wastewater injection, fracking, geothermal production, and mass redistribution); local tectonic deformation and regional tectonic drivers (such as repeated uplift and subsidence cycles above subduction zones); climate change (influencing the timing, magnitude, nature and duration of seasonal/annual precipitation and permafrost extent); material properties of the basin sediments (influencing susceptibility to soil compaction, oxidization, and dissolution); post glacial rebound; isostatic flexure associated with sea-level and local mass changes; and large scale gravitational processes (such as growth faults and landslides). Geodetic measurements, such as InSAR and GPS, help track spatial and temporal changes in both relative and absolute basin elevation thereby helping to characterize the mechanism(s) driving the geohazards. In addition to a number of commercial radar satellites, European Space Agency's Sentinel-1a/b satellites are beginning to provide a wealth of data over many basin targets with C-band (5.5 cm wavelength). The NISAR (NASA-ISRO Synthetic Aperture Radar) L-band (24 cm wavelength) mission (anticipated 2021 launch) will image nearly every basin globally every 12 days and data from the mission will help characterize land subsidence and many other solid-Earth and hydrologic geohazards that impact urban basins.

  19. The ground subsidence anomaly investigation around Ambala, India by InSAR and spatial analyses: Why and how the Ambala city behaves as the most significant subsidence region in the Northwest India?

    Science.gov (United States)

    Kim, J.; Lin, S. Y.; Tsai, Y.; Singh, S.; Singh, T.

    2017-12-01

    A large ground deformation which may be caused by a significant groundwater depletion of the Northwest India Aquifer has been successfully observed throughout space geodesy techniques (Tsai et al, 2016). Employing advanced time-series ScanSAR InSAR analysis and Gravity Recovery and Climate Experiment (GRACE) satellites data, it revealed 400-km wide huge ground deformation in and around Haryana. It was further notified that the Ambala city located in northern Haryana district shown the most significant ground subsidence with maximum cumulative deformation up to 0.2 meters within 3 years in contrast to the nearby cities such as Patiala and Chandigarh that did not present similar subsidence. In this study, we investigated the details of "Ambala Anomaly" employing advanced time-series InSAR and spatial analyses together with local geology and anthropogenic contexts and tried to identify the factors causing such a highly unique ground deformation pattern. To explore the pattern and trend of Ambala' subsidence, we integrated the time-series deformation results of both ascending L-band PALSAR-1 (Phased Array type L-band Synthetic Aperture Radar) from 2007/1 to 2011/1 and descending C-band ASAR (Advanced Synthetic Aperture Radar) from 2008/9 to 2010/8 to process the 3D decomposition, expecting to reveal the asymmetric movement of the surface. In addition. The spatial analyses incorporating detected ground deformations and local economical/social factors were then applied for the interpretation of "Ambala Anomaly". The detailed interrelationship of driving factors of the "Ambala Anomaly" and the spatial pattern of corresponding ground subsidence will be further demonstrated. After all, we determined the uniqueness of Ambala subsidence possibly be driven by both anthropogenic behaviors including the rapid growth rate of population and constructing of industrial centers as well as the natural geological characteristics and sediment deposition.

  20. Subsidence rates at the southern Salton Sea consistent with reservoir depletion

    Science.gov (United States)

    Barbour, Andrew J.; Evans, Eileen; Hickman, Stephen H.; Eneva, Mariana

    2016-01-01

    Space geodetic measurements from the Envisat satellite between 2003 and 2010 show that subsidence rates near the southeastern shoreline of the Salton Sea in Southern California are up to 52mmyr−1 greater than the far-field background rate. By comparing these measurements with model predictions, we find that this subsidence appears to be dominated by poroelastic contraction associated with ongoing geothermal fluid production, rather than the purely fault-related subsidence proposed previously. Using a simple point source model, we suggest that the source of this proposed volumetric strain is at depths between 1.0 km and 2.4 km (95% confidence interval), comparable to generalized boundaries of the Salton Sea geothermal reservoir. We find that fault slip on two previously imaged tectonic structures, which are part of a larger system of faults in the Brawley Seismic Zone, is not an adequate predictor of surface velocity fields because the magnitudes of the best fitting slip rates are often greater than the full plate boundary rate and at least 2 times greater than characteristic sedimentation rates in this region. Large-scale residual velocity anomalies indicate that spatial patterns predicted by fault slip are incompatible with the observations.

  1. Subsidence rates at the southern Salton Sea consistent with reservoir depletion

    Science.gov (United States)

    Barbour, Andrew J.; Evans, Eileen L.; Hickman, Stephen H.; Eneva, Mariana

    2016-07-01

    Space geodetic measurements from the Envisat satellite between 2003 and 2010 show that subsidence rates near the southeastern shoreline of the Salton Sea in Southern California are up to 52mmyr-1 greater than the far-field background rate. By comparing these measurements with model predictions, we find that this subsidence appears to be dominated by poroelastic contraction associated with ongoing geothermal fluid production, rather than the purely fault-related subsidence proposed previously. Using a simple point source model, we suggest that the source of this proposed volumetric strain is at depths between 1.0 km and 2.4 km (95% confidence interval), comparable to generalized boundaries of the Salton Sea geothermal reservoir. We find that fault slip on two previously imaged tectonic structures, which are part of a larger system of faults in the Brawley Seismic Zone, is not an adequate predictor of surface velocity fields because the magnitudes of the best fitting slip rates are often greater than the full plate boundary rate and at least 2 times greater than characteristic sedimentation rates in this region. Large-scale residual velocity anomalies indicate that spatial patterns predicted by fault slip are incompatible with the observations.

  2. September 2016 Bayou Choctaw Subsidence Report

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, Dylan Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lord, Anna C. Snider [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    Subsidence monitoring is a crucial component to understanding cavern integrity of salt storage caverns. This report looks at historical and current data at the Bayou Choctaw Strategic Petroleum Reserve Site. Data from the most recent land-based annual surveys, GPS, and tiltmeter indicate the subsidence rates across the site are approximately 0.0 ft./yr. Because of this, there is no evidence from the subsidence survey to suggest any of the DOE caverns have been structurally compromised.

  3. Coastal Flooding Hazards due to storm surges and subsidence

    DEFF Research Database (Denmark)

    Sørensen, Carlo; Knudsen, Per; Andersen, Ole B.

    Flooding hazard and risk mapping are major topics in low-lying coastal areas before even considering the adverse effects of sea level rise (SLR) due to climate change. While permanent inundation may be a prevalent issue, more often floods related to extreme events (storm surges) have the largest...... damage potential.Challenges are amplified in some areas due to subsidence from natural and/or anthropogenic causes. Subsidence of even a few mm/y may over time greatly impair the safety against flooding of coastal communities and must be accounted for in order to accomplish the economically most viable...

  4. Monitoring ground subsidence in Shanghai maglev area using two kinds of SAR data

    Science.gov (United States)

    Wu, Jicang; Zhang, Lina; Chen, Jie; Li, Tao

    2012-11-01

    Shanghai maglev is a very fast traffic tool, so it is very strict with the stability of the roadbed. However, the ground subsidence is a problem in Shanghai because of the poor geological condition and human-induced factors. So it is necessary to monitor ground subsidence in the area along the Shanghai maglev precisely and frequently. Traditionally, a precise levelling method is used to survey along the track. It is expensive and time consuming, and can only get the ground subsidence information on sparse benchmarks. Recently, the small baseline differential SAR technique plays a valuable part in monitoring ground subsidence, which can extract ground subsidence information with high spatial resolution in a wide area. In this paper, L-band ALOS PALSAR data and C-band Envisat ASAR data are used to extract ground subsidence information using the SBAS method in the Shanghai maglev area. The results show that the general pattern of ground subsidence from InSAR processing of two differential bands of SAR images is similar. Both results show that there is no significant ground subsidence on the maglev line. Near the railway line, there are a few places with subsidence rates at about -20 mm/y or even more, such as Chuansha town, the junction of the maglev and Waihuan road.

  5. Assessment of South Pars Gas Field Subsidence Due To Gas Withdrawal

    Directory of Open Access Journals (Sweden)

    Akbar Ghazifard

    2014-12-01

    Full Text Available Withdrawal of oil and gas from reservoirs causes a decrease in pore pressure and an increase in effective stress which results to a reservoir compaction. Reservoir compaction will result in surface subsidence through the elastic response of the subsurface. Usually in order to determine the subsidence above a hydrocarbon field, the reservoir compaction must be first calculated and then the effect of this compaction on the surface should be modeled. The use of the uniaxial compaction theory is more prevalent and an accepted method for determining the amount of reservoir compaction. But despite of the reservoir compaction calculation method, there are many methods with different advantages and shortcomings for modeling of surface subsidence. In this study, a simple analytical method and semi‌-analytical methods (AEsubs software were used for modeling of the surface subsidence of the South Pars gas field at the end of the production period.

  6. An influence function method based subsidence prediction program for longwall mining operations in inclined coal seams

    Energy Technology Data Exchange (ETDEWEB)

    Yi Luo; Jian-wei Cheng [West Virginia University, Morgantown, WV (United States). Department of Mining Engineering

    2009-09-15

    The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though many empirical prediction methods have been developed, these methods are inflexible for varying geological and mining conditions. An influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, significant modifications have been made to the original Knothe function to produce an asymmetrical influence function. The empirical equations for final subsidence parameters derived from US subsidence data and Chinese empirical values have been incorporated into the mathematical models to improve the prediction accuracy. A corresponding computer program is developed. A number of subsidence cases for longwall mining operations in coal seams with varying inclination angles have been used to demonstrate the applicability of the developed subsidence prediction model. 9 refs., 8 figs.

  7. Real time ray tracing of skeletal implicit surfaces

    DEFF Research Database (Denmark)

    Rouiller, Olivier; Bærentzen, Jakob Andreas

    Modeling and rendering in real time is usually done via rasterization of polygonal meshes. We present a method to model with skeletal implicit surfaces and an algorithm to ray trace these surfaces in real time in the GPU. Our skeletal representation of the surfaces allows to create smooth models...

  8. 30 CFR 817.121 - Subsidence control.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Subsidence control. 817.121 Section 817.121... ACTIVITIES § 817.121 Subsidence control. (a) Measures to prevent or minimize damage. (1) The permittee must... control plan prepared pursuant to § 784.20 of this chapter. (c) Repair of damage—(1) Repair of damage to...

  9. Subsidence and Rebound in California's Central Valley: Effects of Pumping, Geology, and Precipitation

    Science.gov (United States)

    Farr, T. G.; Fairbanks, A.

    2017-12-01

    Recent rains in California caused a pause, and even a reversal in some areas, of the subsidence that has plagued the Central Valley for decades. The 3 main drivers of surface deformation in the Central Valley are: Subsurface hydro-geology, precipitation and surface water deliveries, and groundwater pumping. While the geology is relatively fixed in time, water inputs and outputs vary greatly both in time and space. And while subsurface geology and water inputs are reasonably well-known, information about groundwater pumping amounts and rates is virtually non-existent in California. We have derived regional maps of surface deformation in the region for the period 2006 - present which allow reconstruction of seasonal and long-term changes. In order to understand the spatial and temporal patterns of subsidence and rebound in the Central Valley, we have been compiling information on the geology and water inputs and have attempted to infer pumping rates using maps of fallowed fields and published pumping information derived from hydrological models. In addition, the spatial and temporal patterns of hydraulic head as measured in wells across the region allow us to infer the spatial and temporal patterns of groundwater pumping and recharge more directly. A better understanding of how different areas (overlying different stratigraphy) of the Central Valley respond to water inputs and outputs will allow a predictive capability, potentially defining sustainable pumping rates related to water inputs. * work performed under contract to NASA and the CA Dept. of Water Resources

  10. Subsidence above in situ vitrification: Evaluation for Hanford applications

    International Nuclear Information System (INIS)

    Dershowitz, W.S.; Plum, R.L.; Luey, J.

    1995-08-01

    Pacific Northwest Laboratory (PNL)is evaluating methods to extend the applicability of the in situ vitrification (ISV) process. One method being evaluated is the initiation of the ISV process in the soil subsurface rather than the traditional start from the surface. The subsurface initiation approach will permit extension of the ISV treatment depth beyond that currently demonstrated and allow selective treatment of contamination in a geologic formation. A potential issue associated with the initiation of the ISV process in the soil subsurface is the degree of subsidence and its effect on the ISV process. The reduction in soil porosity caused by the vitrification process will result in a volume decrease for the vitrified soils. Typical volume reduction observed for ISV melts initiated at the surface are on the order of 20% to 30% of the melt thickness. Movement of in-situ materials into the void space created during an ISV application in the soil subsurface could result in surface settlements that affect the ISV process and the processing equipment. Golder Associates, Inc., of Redmond, Washington investigated the potential for subsidence events during application of ISV in the soil subsurface. Prediction of soil subsidence above an ISV melt required the following analyses: the effect of porosity reduction during ISV, failure of fused materials surrounding the ISV melt, bulking of disturbed materials above the melt, and propagation of strains to the surface

  11. Subsidence characterization and modeling for engineered facilities in Arizona, USA

    Directory of Open Access Journals (Sweden)

    M. L. Rucker

    2015-11-01

    Full Text Available Several engineered facilities located on deep alluvial basins in southern Arizona, including flood retention structures (FRS and a coal ash disposal facility, have been impacted by up to as much as 1.8 m of differential land subsidence and associated earth fissuring. Compressible basin alluvium depths are as deep as about 300 m, and historic groundwater level declines due to pumping range from 60 to more than 100 m at these facilities. Addressing earth fissure-inducing ground strain has required alluvium modulus characterization to support finite element modeling. The authors have developed Percolation Theory-based methodologies to use effective stress and generalized geo-material types to estimate alluvium modulus as a function of alluvium lithology, depth and groundwater level. Alluvial material modulus behavior may be characterized as high modulus gravel-dominated, low modulus sand-dominated, or very low modulus fines-dominated (silts and clays alluvium. Applied at specific aquifer stress points, such as significant pumping wells, this parameter characterization and quantification facilitates subsidence magnitude modeling at its' sources. Modeled subsidence is then propagated over time across the basin from the source(s using a time delay exponential decay function similar to the soil mechanics consolidation coefficient, only applied laterally. This approach has expanded subsidence modeling capabilities on scales of engineered facilities of less than 2 to more than 15 km.

  12. Land subsidence and hydrodynamic compaction of sedimentary basins

    Directory of Open Access Journals (Sweden)

    H. Kooi

    1998-01-01

    Full Text Available A one-dimensional model is used to investigate the relationship between land subsidence and compaction of basin sediments in response to sediment loading. Analysis of the model equations and numerical experiments demonstrate quasi-linear systems behaviour and show that rates of land subsidence due to compaction: (i can attain a significant fraction (>40% of the long-term sedimentation rate; (ii are hydrodynamically delayed with respect to sediment loading. The delay is controlled by a compaction response time τc that can reach values of 10-5-107 yr for thick shale sequences. Both the behaviour of single sediment layers and multiple-layer systems are analysed. Subsequently the model is applied to the coastal area of the Netherlands to illustrate that lateral variability in compaction-derived land subsidence in sedimentary basins largely reflects the spatial variability in both sediment loading and compaction response time. Typical rates of compaction-derived subsidence predicted by the model are of the order of 0.1 mm/yr but may reach values in excess of 1 mm/yr under favourable conditions.

  13. Subsidence of the South Polar Terrain and global tectonic of Enceladus

    Science.gov (United States)

    Czechowski, Leszek

    2016-04-01

    compressional surface features do not have to be dominant. The SPT is compressed, so "tiger stripes" could exist for long time. Only after significant subsidence (below 1200 m) the regime of stresses changes to compressional. We suppose that it means the end of activity in a given region. Acknowledgments This work was partially supported by the National Science Centre (grant 2011/01/B/ST10/06653). Computer resources of Interdisciplinary Centre for Mathematical and Computational Modeling of University of Warsaw were also used in the research References [1] Spencer, J. R., et al. (2009) Enceladus: An Active Cryovolcanic Satellite, in: M.K. Dougherty et al. (eds.), Saturn from Cassini-Huygens, Springer Science, p. 683. [2] Czechowski L. (2015) Mass loss as a driving mechanism of tectonics of Enceladus 46th Lunar and Planetary Science Conference 2030.pdf. [3] Czechowski, L., (2014) Some remarks on the early evolution of Enceladus. Planet. Sp. Sc. 104, 185-199.

  14. Fault Length Vs Fault Displacement Evaluation In The Case Of Cerro Prieto Pull-Apart Basin (Baja California, Mexico) Subsidence

    Science.gov (United States)

    Glowacka, E.; Sarychikhina, O.; Nava Pichardo, F. A.; Farfan, F.; Garcia Arthur, M. A.; Orozco, L.; Brassea, J.

    2013-05-01

    The Cerro Prieto pull-apart basin is located in the southern part of San Andreas Fault system, and is characterized by high seismicity, recent volcanism, tectonic deformation and hydrothermal activity (Lomnitz et al, 1970; Elders et al., 1984; Suárez-Vidal et al., 2008). Since the Cerro Prieto geothermal field production started, in 1973, significant subsidence increase was observed (Glowacka and Nava, 1996, Glowacka et al., 1999), and a relation between fluid extraction rate and subsidence rate has been suggested (op. cit.). Analysis of existing deformation data (Glowacka et al., 1999, 2005, Sarychikhina 2011) points to the fact that, although the extraction changes influence the subsidence rate, the tectonic faults control the spatial extent of the observed subsidence. Tectonic faults act as water barriers in the direction perpendicular to the fault, and/or separate regions with different compaction, and as effect the significant part of the subsidence is released as vertical displacement on the ground surface along fault rupture. These faults ruptures cause damages to roads and irrigation canals and water leakage. Since 1996, a network of geotechnical instruments has operated in the Mexicali Valley, for continuous recording of deformation phenomena. To date, the network (REDECVAM: Mexicali Valley Crustal Strain Measurement Array) includes two crackmeters and eight tiltmeters installed on, or very close to, the main faults; all instruments have sampling intervals in the 1 to 20 minutes range. Additionally, there are benchmarks for measuring vertical fault displacements for which readings are recorded every 3 months. Since the crackmeter measures vertical displacement on the fault at one place only, the question appears: can we use the crackmeter data to evaluate how long is the lenth of the fractured fault, and how quickly it grows, so we can know where we can expect fractures in the canals or roads? We used the Wells and Coppersmith (1994) relations between

  15. Time-space coordination of mining operations for protection of the surface. [Poland

    Energy Technology Data Exchange (ETDEWEB)

    Stranz, B

    1975-01-01

    In Polish mines, more than 41 percent of coal resources beneath built-up areas can be extracted. In 1973 an analysis of the mining and geological conditions was conducted in one of the mines, principally from the point of view of suitably coordinated mining advance with caving. Various possible systems of extraction were analyzed for three time periods up to 1985. A detailed inventory was prepared of surface structures in the whole concession area, particular attention being paid to industrial and social or communal areas. Preliminary and final predictions were made of deformation indices for various time periods, including predicted subsidences, and dynamic and static horizontal strains. The optimum variant was chosen, and capital expenditure and economic effects were taken into account. Solutions worked out for various sectors of the overall problem were presented to the mine management in the form of programmes for advancing the mining face in individual panels and seams so as to obtain maximum possible production with roof caving, under protected buildings.

  16. Land Subsidence International Symposium held in Venice

    Science.gov (United States)

    The Third International Symposium on Land Subsidence was held March 18-25, 1984, in Venice, Italy. Sponsors were the Ground-Water Commission of the International Association of Hydrological Sciences (IAHS), the United Nations Educational, Scientific, and Cultural Organization (UNESCO), the Italian National Research Council (CNR), the Italian Regions of Veneto and Emilia-Romagna, the Italian Municipalities of Venice, Ravenna, and Modena, the Venice Province, and the European Research Office. Cosponsors included the International Association of Hydrogeologists (IAH), the International Society for Soil Mechanics and Foundation Engineering (ISSMFE), and the Association of Geoscientists for International Development (AGID).Organized within the framework of UNESCO's International Hydrological Program, the symposium brought together over 200 international interdisciplinary specialists in the problems of land subsidence due to fluid and mineral withdrawal. Because man's continuing heavy development of groundwater, gas, oil, and minerals is changing the natural regime and thus causing more and more subsiding areas in the world, there had been sufficient new land subsidence occurrence, problems, research, and remedial measures since the 1976 Second International Symposium held in Anaheim, California, to develop a most interesting program of nearly 100 papers from about 30 countries. The program consisted of papers covering case histories of fluid and mineral withdrawal, engineering theory and analysis, karst “sink-hole”-type subsidence, subsidence due to dewatering of organic deposits or due to application of water (hydrocompaction), instrumentation, legal, socioeconomic, and environmental effects of land subsidence, and remedial works.

  17. Assessing the Land Subsidence Governance in Ningbo City: By a Close Study of the Building Collapse at the Strictly Protected Land Subsidence Area

    Science.gov (United States)

    Yu, Xia

    2016-04-01

    Ningbo is a coastal city in East China, its land subsidence problem was noticed in the 1960s. However, scientific management was insufficient at that time, so with the fast city development from the 1980s, groundwater was used by a large amount of small factories, and tall buildings were built on the land. It was in 2008, scientists predicted that if without doing anything to prevent the land from subsiding, the city will be covered by the East Sea in 2030. From then on, the local government implied several policies, such as shut down most of the groundwater pumping wells, set up a new authority to enhance the cooperation among different administration departments, and also set up a land subsidence monitoring center for the city. Recently, it is declared that a Stereo regulatory system of land subsidence governance has been achieved. However, in 2012, a 23-years old building in the city center collapsed. According to the City Planning 2009, this building is located just in the strictly protected land subsidence area. The experts, however, think that land subsidence is not the main reason, since there are many illegal changes to the building during the past 23 years. The aim of my research is to assess the land subsidence governance in Ningbo city. I studied the collapsed building, how it was built, what has changed after building, how the environment changed in this area, and how this area became the strictly protected land subsidence area, and what kind of protections have been made. Actually, during the case study I discuss the land subsidence governance design of Ningbo, and to see what practices and lessons we can learn from this case.

  18. Scattering of a TEM wave from a time varying surface

    Science.gov (United States)

    Elcrat, Alan R.; Harder, T. Mark; Stonebraker, John T.

    1990-03-01

    A solution is given for reflection of a plane wave with TEM polarization from a planar surface with time varying properties. These properties are given in terms of the currents on the surface. The solution is obtained by numerically solving a system of differential-delay equations in the time domain.

  19. On the use of InSAR technology to assess land subsidence in Jakarta coastal flood plain

    Science.gov (United States)

    Koudogbo, Fifame; Duro, Javier; Garcia Robles, Javier; Arnaud, Alain; Abidin, Hasanuddin Z.

    2014-05-01

    Jakarta is the capital of Indonesia and is home to approximately 10 million people on the coast of the Java Sea. It is situated on the northern coastal alluvial plane of Java which shares boundaries with West Java Province in the south and in the east, and with Banten Province in the west. The Capital District of Jakarta (DKI) sits in the lowest lying areas of the basin. Its topography varies, with the northern part just meters above current sea level and lying on a flood plain. Subsequently, this portion of the city frequently floods. The southern part of the city is hilly. Thirteen major rivers flow through Jakarta to the Java Sea. The Ciliwung River is the most significant river and divides the city West to East. In the last three decades, urban growing of Jakarta has been very fast in sectors as industry, trade, transportation, real estate, among others. This exponential development has caused several environmental issues; land subsidence is one of them. Subsidence in Jakarta has been known since the early part of the 20th century. It is mainly due to groundwater extraction, the fast development (construction load), soil natural consolidation and tectonics. Evidence of land subsidence exists through monitoring with GPS, level surveys and InSAR investigations. InSAR states for "Interferometric Synthetic Aperture Radar". Its principle is based on comparing the distance between the satellite and the ground in consecutive satellite passes over the same area on the Earth's surface. Radar satellites images record, with very high precision, the distance travelled by the radar signal that is emitted by the satellite is registered. When this distance is compared through time, InSAR technology can provide highly accurate ground deformation measurements. ALTAMIRA INFORMATION, company specialized in ground motion monitoring, has developed GlobalSARTM, which combines several processing techniques and algorithms based on InSAR technology, to achieve ground motion

  20. Calculation of paleohydraulic parameters of a fluvial system under spatially variable subsidence, of the Ericson sandstone, South western Wyoming

    Science.gov (United States)

    Snyder, H.; Leva-Lopez, J.

    2017-12-01

    During the late Campanian age in North America fluvial systems drained the highlands of the Sevier orogenic belt and travelled east towards the Western Interior Seaway. One of such systems deposited the Canyon Creek Member (CCM) of the Ericson Formation in south-western Wyoming. At this time the fluvial system was being partially controlled by laterally variable subsidence caused by incipient Laramide uplifts. These uplifts rather than real topographic features were only areas of reduced subsidence at the time of deposition of the CCM. Surface expression at that time must have been minimum, only minute changes in slope and accommodation. Outcrops around these Laramide structures, in particular both flanks of the Rock Springs Uplift, the western side of the Rawlins uplift and the north flank of the Uinta Mountains, have been sampled to study the petrography, grain size, roundness and sorting of the CCM, which along with the cross-bed thickness and bar thickness allowed calculation of the hydraulic parameters of the rivers that deposited the CCM. This study reveals how the fluvial system evolved and responded to the very small changes in subsidence and slope. Furthermore, the petrography will shed light on the provenance of these sandstones and on the relative importance of Sevier sources versus Laramide sources. This work is framed in a larger study that shows how incipient Laramide structural highs modified the behavior, style and architecture of the fluvial system, affecting its thickness, facies characteristics and net-to-gross both down-dip and along strike across the basin.

  1. Sources of subsidence at the Salton Sea Geothermal Field

    Science.gov (United States)

    Barbour, Andrew J.; Evans, Eileen; Hickman, Stephen H.; Eneva, Mariana

    2016-01-01

    At the Salton Sea Geothermal Field (SSGF) in Southern California, surface deformation associated with geologic processes including sediment compaction, tectonic strain, and fault slip may be augmented by energy production activities. Separating the relative contributions from natural and anthropogenic sources is especially important at the SSGF, which sits at the apex of a complex tectonic transition zone connecting the southern San Andreas Fault with the Imperial Fault; but this has been a challenging task so far. Here we analyze vertical surface velocities obtained from the persistent scatterer InSAR method and find that two of the largest subsidence anomalies can be represented by a set of volumetric strain nuclei at depths comparable to geothermal well completion zones. In contrast, the rates needed to achieve an adequate fit to the magnitudes of subsidence are almost an order of magnitude greater than rates reported for annual changes in aggregate net-production volume, suggesting that the physical mechanism responsible for subsidence at the SSGF is a complicated interplay between natural and anthropogenic sources.

  2. Improving the influence function method to take topography into the calculation of mining subsidence

    OpenAIRE

    Cai , Yinfei; Verdel , Thierry; Deck , Olivier; LI , Xiao-Jong

    2016-01-01

    International audience; The classic influence function method is often used in the calculation of mining subsidence caused by stratiform underground excavations. Theoretically,its use is limited to the subsidence predictions under the condition of horizontal ground surface. In order to improve the original influence function method to take topographic variations into account. Due to real-world mining conditions that are usually complicated, it is difficult to separate topography influences fr...

  3. Mechanisms of subsidence for induced damage and techniques for analysis

    International Nuclear Information System (INIS)

    Drumm, E.C.; Bennett, R.M.; Kane, W.F.

    1988-01-01

    Structural damage due to mining induced subsidence is a function of the nature of the structure and its position on the subsidence profile. A point on the profile may be in the tensile zone, the compressive zone, or the no-deformation zone at the bottom of the profile. Damage to structures in the tension zone is primarily due to a reduction of support during vertical displacement of the ground surface, and to shear stresses between the soil and structure resulting from horizontal displacements. The damage mechanisms due to tension can be investigated effectively using a two-dimensional plane stress analysis. Structures in the compression zone are subjected to positive moments in the footing and large compressive horizontal stresses in the foundation walls. A plane strain analysis of the foundation wall is utilized to examine compression zone damage mechanisms. The structural aspects affecting each mechanism are identified and potential mitigation techniques are summarized

  4. Investigation of correlation of the variations in land subsidence (detected by continuous GPS measurements) and methodological data in the surrounding areas of Lake Urmia

    Science.gov (United States)

    Moghtased-Azar, K.; Mirzaei, A.; Nankali, H. R.; Tavakoli, F.

    2012-11-01

    Lake Urmia, a salt lake in the north-west of Iran, plays a valuable role in the environment, wildlife and economy of Iran and the region, but now faces great challenges for survival. The Lake is in immediate and great danger and is rapidly going to become barren desert. As a result, the increasing demands upon groundwater resources due to expanding metropolitan and agricultural areas are a serious challenge in the surrounding regions of Lake Urmia. The continuous GPS measurements around the lake illustrate significant subsidence rate between 2005 and 2009. The objective of this study was to detect and specify the non-linear correlation of land subsidence and temperature activities in the region from 2005 to 2009. For this purpose, the cross wavelet transform (XWT) was carried out between the two types of time series, namely vertical components of GPS measurements and daily temperature time series. The significant common patterns are illustrated in the high period bands from 180-218 days band (~6-7 months) from September 2007 to February 2009. Consequently, the satellite altimetry data confirmed that the maximum rate of linear trend of water variation in the lake from 2005 to 2009, is associated with time interval from September 2007 to February 2009. This event was detected by XWT as a critical interval to be holding the strong correlation between the land subsidence phenomena and surface temperature. Eventually the analysis can be used for modeling and prediction purposes and probably stave off the damage from subsidence phenomena.

  5. Study on Land Subsidence Incangzhou Area Basedon SENTINEL-1A/B Data

    Science.gov (United States)

    Zhou, H.; Wang, Y.; Yan, S.

    2017-09-01

    This paper, obtaining 39scenesof images of the Sentinel-1 A/B, monitored the Cangzhou area subsidence from Mar. 2015 to Dec. 2016 basing on using PS-InSAR technique. The annual average subsidence rate and accumulative subsidence were obtained. The results showed that the ground surface of Xian County,Cang County, Cangzhou urban area had a rebound trend; Qing County, the east of Cang County ,the west of Nanpi County and Dongguang County appeared obvious subsidence, and the accumulated subsidence in Hezhuang village of Dongguang County reached 47 mm. And from that the main reason leading to these obvious subsidence was over-exploitation of ground-water. At last, it analyzed the settlement of the High-Speed Railway (HR) which was north from the Machang town of QingCounty and south to the Lian town of Dongguang County in Cangzhou.The relative deformation of the HR between the two sections which was Lierzhuang village of Cang County and Chenxin village of Nanpi County arrived at 30 mm. Moreover, this paper discussed the application of Sentinel-1 A/B SAR images in monitoring urban land subsidence and the results provided important basic data for the relevant departments.

  6. Investigation of the Active layer thickness and ground subsidence in Taimyr

    Science.gov (United States)

    Grebenets, V. I.; Tolmanov, V. A.; Streletskiy, D. A.

    2017-12-01

    The active layer of permafrost (ALT) is highly unstable and dynamic in space and time. Soil undergoes frost heave during the freezing process, and ground subsidence during the thawing. The problem of the development of soil sediments' deformations in ALT is relevant as for natural objects (influence on runoff, changing of landscape and vegetation, etc.), so for industrial infrastructure (pipelines, roads, buildings and structures). The observations in the frame of the CALM program in Taimyr were carried out since 2005 (site R-32) with the measurements of the geodetic level of soil surface since 2007. The results of these measurements were processed and the maps of thawing and changes in meso- and micro-relief were constructed. The differentiation of seasonally thawed layer and ground subsidence in different micro-landscape conditions was investigated. The depth of seasonal thawing and the changes of surface movements were found to be determined by three main systems: a) the weather conditions and the climate trends; b) the permafrost-lithological conditions and drainage; c) the micro-landscape characteristics. It was established that for the Norilsk region (Taimyr) the trend in increasing ALT was 0.3 cm / year (for the period of observations 2005-2016) with a certain slowdown in the last 3 to 4 years. Increase in the depth of the ALT was related to the rising Summer temperatures and reduction of the cold period. A strong high impact of the summer precipitation conditions was revealed: in rather cold summer of 2012, with large amount of precipitation mainly in the warmest month (July), the defrosting was the highest. In the year with the record-breaking number of positive degree days (from all the 85 years of regular meteorological observations) but anomalously dry year 2013 (in July - less than 10 mm atmospheric precipitation), the thawing was minimal at the R-32 site. It is interesting that the ground subsidence in 2012 was 30-40% less, than in 2013. This is due

  7. Review: Regional land subsidence accompanying groundwater extraction

    Science.gov (United States)

    Galloway, Devin L.; Burbey, Thomas J.

    2011-01-01

    The extraction of groundwater can generate land subsidence by causing the compaction of susceptible aquifer systems, typically unconsolidated alluvial or basin-fill aquifer systems comprising aquifers and aquitards. Various ground-based and remotely sensed methods are used to measure and map subsidence. Many areas of subsidence caused by groundwater pumping have been identified and monitored, and corrective measures to slow or halt subsidence have been devised. Two principal means are used to mitigate subsidence caused by groundwater withdrawal—reduction of groundwater withdrawal, and artificial recharge. Analysis and simulation of aquifer-system compaction follow from the basic relations between head, stress, compressibility, and groundwater flow and are addressed primarily using two approaches—one based on conventional groundwater flow theory and one based on linear poroelasticity theory. Research and development to improve the assessment and analysis of aquifer-system compaction, the accompanying subsidence and potential ground ruptures are needed in the topic areas of the hydromechanical behavior of aquitards, the role of horizontal deformation, the application of differential synthetic aperture radar interferometry, and the regional-scale simulation of coupled groundwater flow and aquifer-system deformation to support resource management and hazard mitigation measures.

  8. Spectroscopic determination of optimal hydration time of zircon surface

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez R, E. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Garcia R, G. [Instituto Tecnologico de Toluca, Division de Estudios del Posgrado, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico); Garcia G, N., E-mail: eduardo.ordonez@inin.gob.m [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Av. Colon y Av. Tollocan, 50180 Toluca, Estado de Mexico (Mexico)

    2010-07-01

    When a mineral surface is immersed in an aqueous solution, it develops and electric charge produced by the amphoteric dissociation of hydroxyl groups created by the hydration of the solid surface. This is one influential surface property. The complete hydration process takes a time which is specific for each mineral species. The knowledge of the aqueous solution contact time for complete surface hydration is mandatory for further surface phenomena studies. This study deals with the optimal hydration time of the raw zircon (ZrSiO{sub 4}) surface comparing the classical potentiometric titrations with a fluorescence spectroscopy technique. The latter is easy and rea liable as it demands only one sample batch to determine the optimal time to ensure a total hydration of the zircon surface. The analytical results of neutron activation analysis showed the presence of trace quantities of Dy{sup 3+}, Eu{sup 3+} and Er{sup 3} in the bulk of zircon. The Dy{sup 3+} is structured in the zircon crystalline lattice and undergoes the same chemical reactions as zircon. Furthermore, the Dy{sup 3+} has a good fluorescent response whose intensity is enhanced by hydration molecules. The results show that, according to the potentiometric analysis, the hydration process for each batch (at least 8 sample batches) takes around 2 h, while the spectrometric method indicates only 5 minutes from only one batch. Both methods showed that the zircon surface have a 16 h optimal hydration time. (Author)

  9. Spectroscopic determination of optimal hydration time of zircon surface

    International Nuclear Information System (INIS)

    Ordonez R, E.; Garcia R, G.; Garcia G, N.

    2010-01-01

    When a mineral surface is immersed in an aqueous solution, it develops and electric charge produced by the amphoteric dissociation of hydroxyl groups created by the hydration of the solid surface. This is one influential surface property. The complete hydration process takes a time which is specific for each mineral species. The knowledge of the aqueous solution contact time for complete surface hydration is mandatory for further surface phenomena studies. This study deals with the optimal hydration time of the raw zircon (ZrSiO 4 ) surface comparing the classical potentiometric titrations with a fluorescence spectroscopy technique. The latter is easy and rea liable as it demands only one sample batch to determine the optimal time to ensure a total hydration of the zircon surface. The analytical results of neutron activation analysis showed the presence of trace quantities of Dy 3+ , Eu 3+ and Er 3 in the bulk of zircon. The Dy 3+ is structured in the zircon crystalline lattice and undergoes the same chemical reactions as zircon. Furthermore, the Dy 3+ has a good fluorescent response whose intensity is enhanced by hydration molecules. The results show that, according to the potentiometric analysis, the hydration process for each batch (at least 8 sample batches) takes around 2 h, while the spectrometric method indicates only 5 minutes from only one batch. Both methods showed that the zircon surface have a 16 h optimal hydration time. (Author)

  10. Wettability and Contact Time on a Biomimetic Superhydrophobic Surface

    Science.gov (United States)

    Liang, Yunhong; Peng, Jian; Li, Xiujuan; Huang, Jubin; Qiu, Rongxian; Zhang, Zhihui; Ren, Luquan

    2017-01-01

    Inspired by the array microstructure of natural superhydrophobic surfaces (lotus leaf and cicada wing), an array microstructure was successfully constructed by high speed wire electrical discharge machining (HS-WEDM) on the surfaces of a 7075 aluminum alloy without any chemical treatment. The artificial surfaces had a high apparent contact angle of 153° ± 1° with a contact angle hysteresis less than 5° and showed a good superhydrophobic property. Wettability, contact time, and the corresponding superhydrophobic mechanism of artificial superhydrophobic surface were investigated. The results indicated that the micro-scale array microstructure was an important factor for the superhydrophobic surface, while different array microstructures exhibited different effects on the wettability and contact time of the artificial superhydrophobic surface. The length (L), interval (S), and height (H) of the array microstructure are the main influential factors on the wettability and contact time. The order of importance of these factors is H > S > L for increasing the apparent contact angle and reducing the contact time. The method, using HS-WEDM to fabricate superhydrophobic surface, is simple, low-cost, and environmentally friendly and can easily control the wettability and contact time on the artificial surfaces by changing the array microstructure. PMID:28772613

  11. Bacterial growth efficiency in a tropical estuary: Seasonal variability subsidized by allochthonous carbon

    Digital Repository Service at National Institute of Oceanography (India)

    Ram, A.S.P.; Nair, S.; Chandramohan, D.

    between primary production of carbon and amount of carbon consumed by bacteria. Despite the two systems being subsidized by allochthonous inputs, the low BGE in the coastal waters may be attributable to the nature and time interval in the supply...

  12. A theoretical model of subsidence caused by petroleum production: Big Hill Field, Jefferson County, Texas

    International Nuclear Information System (INIS)

    Hill, D.W.; Sharp, J.M. Jr.

    1993-01-01

    In the Texas Gulf Coastal Plain, there is a history of oil and gas production extending over 2 to 5 decades. Concurrent with this production history, there has been unprecedented population growth accompanied by vastly increased groundwater demands. Land subsidence on both local and regional bases in this geologic province has been measured and predicted in several studies. The vast majority of these studies have addressed the problem from the standpoint of groundwater usage while only a few have considered the effects of oil and gas production. Based upon field-based computational techniques (Helm, 1984), a model has been developed to predict land subsidence caused by oil and gas production. This method is applied to the Big Hill Field in Jefferson County, Texas. Inputs include production data from a series of wells in this field and lithologic data from electric logs of these same wells. Outputs include predicted amounts of subsidence, the time frame of subsidence, and sensitivity analyses of compressibility and hydraulic conductivity estimates. Depending upon estimated compressibility, subsidence, to date, is predicted to be as high as 20 cm. Similarly, depending upon estimated vertical hydraulic conductivity, the time frame may be decades for this subsidence. These same methods can be applied to other oil/gas fields with established production histories as well as new fields when production scenarios are assumed. Where subsidence has been carefully measured above petroleum reservoir, the model may be used inversely to calculate sediment compressibilities

  13. Regional subsidence history and 3D visualization with MATLAB of the Vienna Basin, central Europe

    Science.gov (United States)

    Lee, E.; Novotny, J.; Wagreich, M.

    2013-12-01

    This study reconstructed the subsidence history by the backstripping and 3D visualization techniques, to understand tectonic evolution of the Neogene Vienna Basin. The backstripping removes the compaction effect of sediment loading and quantifies the tectonic subsidence. The amount of decompaction was calculated by porosity-depth relationships evaluated from seismic velocity data acquired from two boreholes. About 100 wells have been investigated to quantify the subsidence history of the Vienna Basin. The wells have been sorted into 10 groups; N1-4 in the northern part, C1-4 in the central part and L1-2 in the northernmost and easternmost parts, based on their position within the same block bordered by major faults. To visualize 3D subsidence maps, the wells were arranged to a set of 3D points based on their map location (x, y) and depths (z1, z2, z3 ...). The division of the stratigraphic column and age range was arranged based on the Central Paratethys regional Stages. In this study, MATLAB, a numerical computing environment, was used to calculate the TPS interpolation function. The Thin-Plate Spline (TPS) can be employed to reconstruct a smooth surface from a set of 3D points. The basic physical model of the TPS is based on the bending behavior of a thin metal sheet that is constrained only by a sparse set of fixed points. In the Lower Miocene, 3D subsidence maps show strong evidence that the pre-Neogene basement of the Vienna Basin was subsiding along borders of the Alpine-Carpathian nappes. This subsidence event is represented by a piggy-back basin developed on top of the NW-ward moving thrust sheets. In the late Lower Miocene, Group C and N display a typical subsidence pattern for the pull-apart basin with a very high subsidence event (0.2 - 1.0 km/Ma). After the event, Group N shows remarkably decreasing subsidence, following the thin-skinned extension which was regarded as the extension model of the Vienna Basin in the literature. But the subsidence in

  14. Time-dependent image potential at a metal surface

    International Nuclear Information System (INIS)

    Alducin, M.; Diez Muino, R.; Juaristi, J.I.

    2003-01-01

    Transient effects in the image potential induced by a point charge suddenly created in front of a metal surface are studied. The time evolution of the image potential is calculated using linear response theory. Two different time scales are defined: (i) the time required for the creation of the image potential and (ii) the time it takes to converge to its stationary value. Their dependence on the distance of the charge to the surface is discussed. The effect of the electron gas damping is also analyzed. For a typical metallic density, the order of magnitude of the creation time is 0.1 fs, whereas for a charge created close to the surface the convergence time is around 1-2 fs

  15. Has land subsidence changed the flood hazard potential? A case example from the Kujukuri Plain, Chiba Prefecture, Japan

    Directory of Open Access Journals (Sweden)

    H. L. Chen

    2015-11-01

    Full Text Available Coastal areas are subject to flood hazards because of their topographic features, social development and related human activities. The Kujukuri Plain, Chiba Prefecture, Japan, is located nearby the Tokyo metropolitan area and it faces to the Pacific Ocean. In the Kujukuri Plain, widespread occurrence of land subsidence has been caused by exploitation of groundwater, extraction of natural gas dissolved in brine, and natural consolidation of the Holocene and landfill deposits. The locations of land subsidence include areas near the coast, and it may increase the flood hazard potential. Hence, it is very important to evaluate flood hazard potential by taking into account the temporal change of land elevation caused by land subsidence, and to prepare hazard maps for protecting the surface environment and for developing an appropriate land-use plan. In this study, flood hazard assessments at three different times, i.e., 1970, 2004, and 2013 are implemented by using a flood hazard model based on Multicriteria Decision Analysis with Geographical Information System techniques. The model incorporates six factors: elevation, depression area, river system, ratio of impermeable area, detention ponds, and precipitation. Main data sources used are 10 m resolution topography data, airborne laser scanning data, leveling data, Landsat-TM data, two 1:30 000 scale river watershed maps, and precipitation data from observation stations around the study area and Radar data. The hazard assessment maps for each time are obtained by using an algorithm that combines factors with weighted linear combinations. The assignment of the weight/rank values and their analysis are realized by the application of the Analytic Hierarchy Process method. This study is a preliminary work to investigate flood hazards on the Kujukuri Plain. A flood model will be developed to simulate more detailed change of the flood hazard influenced by land subsidence.

  16. Leveraging Subsidence in Permafrost with Remotely Sensed Active Layer Thickness (ReSALT) Products

    Science.gov (United States)

    Schaefer, K. M.; Chen, A.; Chen, J.; Chen, R. H.; Liu, L.; Michaelides, R. J.; Moghaddam, M.; Parsekian, A.; Tabatabaeenejad, A.; Thompson, J. A.; Zebker, H. A.; Meyer, F. J.

    2017-12-01

    The Remotely Sensed Active Layer Thickness (ReSALT) product uses the Interferometric Synthetic Aperture Radar (InSAR) technique to measure ground subsidence in permafrost regions. Seasonal subsidence results from the expansion of soil water into ice as the surface soil or active layer freezes and thaws each year. Subsidence trends result from large-scale thaw of permafrost and from the melting and subsequent drainage of excess ground ice in permafrost-affected soils. The attached figure shows the 2006-2010 average seasonal subsidence from ReSALT around Barrow, Alaska. The average active layer thickness (the maximum surface thaw depth during summer) is 30-40 cm, resulting in an average seasonal subsidence of 1-3 cm. Analysis of the seasonal subsidence and subsidence trends provides valuable insights into important permafrost processes, such as the freeze/thaw of the active layer, large-scale thawing due to climate change, the impact of fire, and infrastructure vulnerability. ReSALT supports the Arctic-Boreal Vulnerability Experiment (ABoVE) field campaign in Alaska and northwest Canada and is a precursor for a potential NASA-ISRO Synthetic Aperture Radar (NISAR) product. ReSALT includes uncertainties for all parameters and is validated against in situ measurements from the Circumpolar Active Layer Monitoring (CALM) network, Ground Penetrating Radar and mechanical probe measurements. Here we present examples of ReSALT products in Alaska to highlight the untapped potential of the InSAR technique to understand permafrost dynamics, with a strong emphasis on the underlying processes that drive the subsidence.

  17. Impact of coal mining subsidence on farmland in eastern China

    International Nuclear Information System (INIS)

    Hu, Z.; Hu, F.; Li, J.; Li, H.

    1997-01-01

    This paper discusses damage characteristics of farmland due to coal mining subsidence in eastern China. The landscape of the mining subsidence trough has been divided into three zones; central zone, trough margin zone an dinner-edge zone. Each zone had a specific characteristic of deformation. The water accumulation, prone (downward sloping) land and fissures are typical damage characteristics of the subsidence landscape in eastern China. Based on soils analysis at different positions of the subsidence trough, the impact of mining subsidence on soil properties was identified. The physical properties of soil sensitive to mining subsidence were bulk density, water content and hydraulic conductivity, and they showed worsening form the top to the centre of the subsidence trough. Except for soil electrical conductivity, the tested soil chemical properties were not so sensitive to mining subsidence. They may however change after subsidence. An accumulation of salt was found in both new and old subsidence areas and the old subsidence area had a higher salt content. The soil biomass C in newly subsided land showed a decreasing trend from the top to the centre of the subsidence trough, but no obvious trend was observed in the old subsidence areas. Based on the soil analysis of subsided land, soil erosion was identified as a serious problem, most severe in the middle of the prone land. 4 refs., 5 figs., 1 tab

  18. Integrating wireless sensor network for monitoring subsidence phenomena

    Science.gov (United States)

    Marturià, Jordi; Lopez, Ferran; Gigli, Giovanni; Intrieri, Emanuele; Mucchi, Lorenzo; Fornaciai, Alessandro

    2016-04-01

    An innovative wireless sensor network (WSN) for the 3D superficial monitoring of deformations (such as landslides and subsidence) is being developed in the frame of the Wi-GIM project (Wireless sensor network for Ground Instability Monitoring - LIFE12 ENV/IT/001033). The surface movement is detected acquiring the position (x, y and z) by integrating large bandwidth technology able to detect the 3D coordinates of the sensor with a sub-meter error, with continuous wave radar, which allows decreasing the error down to sub-cm. The Estació neighborhood in Sallent is located over the old potassium mine Enrique. This zone has been affected by a subsidence process over more than twenty years. The implementation of a wide network for ground auscultation has allowed monitoring the process of subsidence since 1997. This network consists of: i) a high-precision topographic leveling network to control the subsidence in surface; ii) a rod extensometers network to monitor subsurface deformation; iii) an automatic Leica TCA Total Station to monitor building movements; iv) an inclinometers network to measure the horizontal displacements on subsurface and v) a piezometer to measure the water level. Those networks were implemented within an alert system for an organized an efficient response of the civil protection authorities in case of an emergency. On 23rd December 2008, an acceleration of subsoil movements (of approx. 12-18 cm/year) provoked the activation of the emergency plan by the Catalan Civil Protection. This implied the preventive and scheduled evacuation of the neighbours (January 2009) located in the area with a higher risk of collapse: around 120 residents of 43 homes. As a consequence, the administration implemented a compensation plan for the evacuation of the whole neighbourhood residents and the demolition of 405 properties. In this work, the adaptation and integration process of Wi-GIM system with those conventional monitoring network are presented for its testing

  19. Rapid subsidence in damaging sinkholes: Measurement by high-precision leveling and the role of salt dissolution

    Science.gov (United States)

    Desir, G.; Gutiérrez, F.; Merino, J.; Carbonel, D.; Benito-Calvo, A.; Guerrero, J.; Fabregat, I.

    2018-02-01

    Investigations dealing with subsidence monitoring in active sinkholes are very scarce, especially when compared with other ground instability phenomena like landslides. This is largely related to the catastrophic behaviour that typifies most sinkholes in carbonate karst areas. Active subsidence in five sinkholes up to ca. 500 m across has been quantitatively characterised by means of high-precision differential leveling. The sinkholes occur on poorly indurated alluvium underlain by salt-bearing evaporites and cause severe damage on various human structures. The leveling data have provided accurate information on multiple features of the subsidence phenomena with practical implications: (1) precise location of the vaguely-defined edges of the subsidence zones and their spatial relationships with surveyed surface deformation features; (2) spatial deformation patterns and relative contribution of subsidence mechanisms (sagging versus collapse); (3) accurate subsidence rates and their spatial variability with maximum and mean vertical displacement rates ranging from 1.0 to 11.8 cm/yr and 1.9 to 26.1 cm/yr, respectively; (4) identification of sinkholes that experience continuous subsidence at constant rates or with significant temporal changes; and (5) rates of volumetric surface changes as an approximation to rates of dissolution-induced volumetric depletion in the subsurface, reaching as much as 10,900 m3/yr in the largest sinkhole. The high subsidence rates as well as the annual volumetric changes are attributed to rapid dissolution of high-solubility salts.

  20. Robust processing of mining subsidence monitoring data

    Energy Technology Data Exchange (ETDEWEB)

    Mingzhong, Wang; Guogang, Huang [Pingdingshan Mining Bureau (China); Yunjia, Wang; Guogangli, [China Univ. of Mining and Technology, Xuzhou (China)

    1997-12-31

    Since China began to do research on mining subsidence in 1950s, more than one thousand lines have been observed. Yet, monitoring data sometimes contain quite a lot of outliers because of the limit of observation and geological mining conditions. In China, nowdays, the method of processing mining subsidence monitoring data is based on the principle of the least square method. It is possible to produce lower accuracy, less reliability, or even errors. For reason given above, the authors, according to Chinese actual situation, have done some research work on the robust processing of mining subsidence monitoring data in respect of how to get prediction parameters. The authors have derived related formulas, designed some computational programmes, done a great quantity of actual calculation and simulation, and achieved good results. (orig.)

  1. November 2016 West Hackberry Subsidence Report

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, Dylan Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lord, Anna C. Snider [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    Subsidence monitoring is a critical component to understanding the cavern integrity of salt storage caverns. This report looks at historical and recent data from two of the three West Hackberry dome cavern operators. DOE SPR and LA Storage are coordinating subsidence surveys to create a comprehensive understanding of ground movement above the dome. Data from annual level and rod surveys, GPS, and tiltmeter data show the sites are experiencing typical ground movement. The highest subsidence rate is seen in the middle of the DOE SPR site at just under one inch per year with less ground movement around the edge of the site. A GPS and tiltmeter instrument in the northeast areas of the DOE SPR site has not seen any trend change since the devices were installed in 2013. Comparison between recent ground movement data and historical trends suggest that there is no reason to believe that any DOE SPR or LA Storage caverns have been structurally compromised.

  2. Robust processing of mining subsidence monitoring data

    Energy Technology Data Exchange (ETDEWEB)

    Wang Mingzhong; Huang Guogang [Pingdingshan Mining Bureau (China); Wang Yunjia; Guogangli [China Univ. of Mining and Technology, Xuzhou (China)

    1996-12-31

    Since China began to do research on mining subsidence in 1950s, more than one thousand lines have been observed. Yet, monitoring data sometimes contain quite a lot of outliers because of the limit of observation and geological mining conditions. In China, nowdays, the method of processing mining subsidence monitoring data is based on the principle of the least square method. It is possible to produce lower accuracy, less reliability, or even errors. For reason given above, the authors, according to Chinese actual situation, have done some research work on the robust processing of mining subsidence monitoring data in respect of how to get prediction parameters. The authors have derived related formulas, designed some computational programmes, done a great quantity of actual calculation and simulation, and achieved good results. (orig.)

  3. Catastrophic subsidence: An environmental hazard, shelby county, Alabama

    Science.gov (United States)

    Lamoreaux, Philip E.; Newton, J. G.

    1986-03-01

    Induced sinkholes (catastrophic subsidence) are those caused or accelerated by human activities These sinkholes commonly result from a water level decline due to pumpage Construction activities in a cone of depression greatly increases the likelihood of sinkhole occurrence Almost all occur where cavities develop in unconsolidated deposits overlying solution openings in carbonate rocks. Triggering mechanisms resulting from water level declines are (1) loss of buoyant support of the water, (2) increased gradient and water velocity, (3) water-level fluctuations, and (4) induced recharge Construction activities triggering sinkhole development include ditching, removing overburden, drilling, movement of heavy equipment, blasting and the diversion and impoundment of drainage Triggering mechanisms include piping, saturation, and loading Induced sinkholes resulting from human water development/management activities are most predictable in a youthful karst area impacted by groundwater withdrawals Shape, depth, and timing of catastrophic subsidence can be predicted in general terms Remote sensing techniques are used in prediction of locations of catastrophic subsidence. This provides a basis for design and relocation of structures such as a gas pipeline, dam, or building Utilization of techniques and a case history of the relocation of a pipeline are described

  4. Anthropogenic and geologic influences on subsidence in the vicinity of New Orleans, Louisiana

    Science.gov (United States)

    Jones, Cathleen E.; An, Karen; Blom, Ronald G.; Kent, Joshua D.; Ivins, Erik R.; Bekaert, David

    2016-05-01

    New measurements of ongoing subsidence of land proximal to the city of New Orleans, Louisiana, and including areas around the communities of Norco and Lutcher upriver along the Mississippi are reported. The rates of vertical motion are derived from interferometric synthetic aperture radar (InSAR) applied to Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data acquired on 16 June 2009 and 2 July 2012. The subsidence trends are similar to those reported for 2002-2004 in parts of New Orleans where observations overlap, in particular in Michoud, the 9th Ward, and Chalmette, but are measured at much higher spatial resolution (6 m). The spatial associations of cumulative surface movements suggest that the most likely drivers of subsidence are groundwater withdrawal and surficial drainage/dewatering activities. High subsidence rates are observed localized around some major industrial facilities and can affect nearby flood control infrastructure. Substantial subsidence is observed to occur rapidly from shallow compaction in highly localized areas, which is why it could be missed in subsidence surveys relying on point measurements at limited locations.

  5. Evaluating Land Subsidence Rates and Their Implications for Land Loss in the Lower Mississippi River Basin

    Directory of Open Access Journals (Sweden)

    Lei Zou

    2015-12-01

    Full Text Available High subsidence rates, along with eustatic sea-level change, sediment accumulation and shoreline erosion have led to widespread land loss and the deterioration of ecosystem health around the Lower Mississippi River Basin (LMRB. A proper evaluation of the spatial pattern of subsidence rates in the LMRB is the key to understanding the mechanisms of the submergence, estimating its potential impacts on land loss and the long-term sustainability of the region. Based on the subsidence rate data derived from benchmark surveys from 1922 to 1995, this paper constructed a subsidence rate surface for the region through the empirical Bayesian kriging (EBK interpolation method. The results show that the subsidence rates in the region ranged from 1.7 to 29 mm/year, with an average rate of 9.4 mm/year. Subsidence rates increased from north to south as the outcome of both regional geophysical conditions and anthropogenic activities. Four areas of high subsidence rates were found, and they are located in Orleans, Jefferson, Terrebonne and Plaquemines parishes. A projection of future landscape loss using the interpolated subsidence rates reveals that areas below zero elevation in the LMRB will increase from 3.86% in 2004 to 19.79% in 2030 and 30.88% in 2050. This translates to a growing increase of areas that are vulnerable to land loss from 44.3 km2/year to 240.7 km2/year from 2011 to 2050. Under the same scenario, Lafourche, Plaquemines and Terrebonne parishes will experience serious loss of wetlands, whereas Orleans and Jefferson parishes will lose significant developed land, and Lafourche parish will endure severe loss of agriculture land.

  6. Long-Term Land Subsidence Monitoring of Beijing (China Using the Small Baseline Subset (SBAS Technique

    Directory of Open Access Journals (Sweden)

    Bo Hu

    2014-04-01

    Full Text Available Advanced techniques of multi-temporal InSAR (MT-InSAR represent a valuable tool in ground subsidence studies allowing remote investigation of the behavior of mass movements in long time intervals by using large datasets of SAR images covering the same area and acquired at different epochs. Beijing is susceptible to subsidence, producing undesirable environmental impacts and affecting dense population. Excessive groundwater withdrawal is thought to be the primary cause of land subsidence, and rapid urbanization and economic development, mass construction of skyscrapers, highways and underground engineering facilities (e.g., subway are also contributing factors. In this paper, a spatial–temporal analysis of the land subsidence in Beijing was performed using one of the MT-InSAR techniques, referred to as Small Baseline Subset (SBAS. This technique allows monitoring the temporal evolution of a deformation phenomenon, via the generation of mean deformation velocity maps and displacement time series from a data set of acquired SAR images. 52 C-band ENVISAT ASAR images acquired from June 2003 to August 2010 were used to produce a linear deformation rate map and to derive time series of ground deformation. The results show that there are three large subsidence funnels within this study area, which separately located in Balizhuang-Dajiaoting in Chaoyang district, Wangjing-Laiguangying Chaoyang district, Gaoliying Shunyi district. The maximum settlement center is Wangsiying-Tongzhou along the Beijing express; the subsidence velocity exceeds 110 mm/y in the LOS direction. In particular, we compared the achieved results with leveling measurements that are assumed as reference. The estimated long-term subsidence results obtained by SBAS approach agree well with the development of the over-exploitation of ground water, indicating that SBAS techniques is adequate for the retrieval of land subsidence in Beijing from multi-temporal SAR data.

  7. Monitoring Mining Subsidence Using A Combination of Phase-Stacking and Offset-Tracking Methods

    Directory of Open Access Journals (Sweden)

    Hongdong Fan

    2015-07-01

    Full Text Available An approach to study the mechanism of mining-induced subsidence, using a combination of phase-stacking and sub-pixel offset-tracking methods, is reported. In this method, land subsidence with a small deformation gradient was calculated using time-series differential interferometric synthetic aperture radar (D-InSAR data, whereas areas with greater subsidence were calculated by a sub-pixel offset-tracking method. With this approach, time-series data for mining subsidence were derived in Yulin area using 11 TerraSAR-X (TSX scenes from 13 December 2012 to 2 April 2013. The maximum mining subsidence and velocity values were 4.478 m and 40 mm/day, respectively, which were beyond the monitoring capabilities of D-InSAR and advanced InSAR. The results were compared with the GPS field survey data, and the root mean square errors (RMSE of the results in the strike and dip directions were 0.16 m and 0.11 m, respectively. Four important results were obtained from the time-series subsidence in this mining area: (1 the mining-induced subsidence entered the residual deformation stage within about 44 days; (2 the advance angle of influence changed from 75.6° to 80.7°; (3 the prediction parameters of mining subsidence; (4 three-dimensional deformation. This method could be used to predict the occurrence of mining accidents and to help in the restoration of the ecological environment after mining activities have ended.

  8. Land subsidence in the San Joaquin Valley, California, USA, 2007-14

    Science.gov (United States)

    Sneed, Michelle; Brandt, Justin

    2015-01-01

    Rapid land subsidence was recently measured using multiple methods in two areas of the San Joaquin Valley (SJV): between Merced and Fresno (El Nido), and between Fresno and Bakersfield (Pixley). Recent land-use changes and diminished surface-water availability have led to increased groundwater pumping, groundwater-level declines, and land subsidence. Differential land subsidence has reduced the flow capacity of water-conveyance systems in these areas, exacerbating flood hazards and affecting the delivery of irrigation water. Vertical land-surface changes during 2007–2014 were determined by using Interferometric Synthetic Aperture Radar (InSAR), Continuous Global Positioning System (CGPS), and extensometer data. Results of the InSAR analysis indicate that about 7600 km2 subsided 50–540 mm during 2008–2010; CGPS and extensometer data indicate that these rates continued or accelerated through December 2014. The maximum InSAR-measured rate of 270 mm yr−1 occurred in the El Nido area, and is among the largest rates ever measured in the SJV. In the Pixley area, the maximum InSAR-measured rate during 2008–2010 was 90 mm yr−1. Groundwater was an important part of the water supply in both areas, and pumping increased when land use changed or when surface water was less available. This increased pumping caused groundwater-level declines to near or below historical lows during the drought periods 2007–2009 and 2012–present. Long-term groundwater-level and land-subsidence monitoring in the SJV is critical for understanding the interconnection of land use, groundwater levels, and subsidence, and evaluating management strategies that help mitigate subsidence hazards to infrastructure while optimizing water supplies.

  9. Housing building with steel framing system in subsidence zones: Pertinence and Sustainability

    Directory of Open Access Journals (Sweden)

    Luis Alfredo Hernádez Castillo

    2014-04-01

    Full Text Available The phenomenon of subsidence caused by the extraction of groundwater is a problem that occurs in different places around the world. Particularly in the Mexican Republic is a situation that affects several cities in at least eight states located in the central region. Given the particular nature of the subsoil that occurs in these regions affected, subsidence can generate cracks and fractures that are evident on the surface of the soil causing differential settlement affecting all types of construction causing considerable damage to the structural elements of the dwellings. The materials traditionally used for housing construction such as masonry and concrete among others, have stiffness characteristics that make them especially vulnerable to these effects. In contrast, steel is an excellent choice for use due to their structural characteristics, such as its high tensile strength, ductility, compressive good performance, high efficiency in weight — strength ratio, among other qualities. The cold formed thin-walled steel elements, are another type of very light profiles, although its use has been known for several decades, is in recent times that have extended their application, mainly in housing construction, and to a lesser scale commercial and industrial construction. The main advantage of this material is that it retains the mechanical properties of steel, but with a significant reduction in the weight of the items. The most common use of this type of profile is in the manufacture of structural frames as standard modules, the most common form it is assembly profile channel with rigid edge section and section profiles of single channel, with different dimensions and sizes. In full-scale testing and numerical simulation models, the system exhibits an excellent performance under differential displacements as those caused by subsidence, accepting considerable deformations without reaching the failure of structural elements. In the goodness of

  10. Protein sequences bound to mineral surfaces persist into deep time

    DEFF Research Database (Denmark)

    Demarchi, Beatrice; Hall, Shaun; Roncal-Herrero, Teresa

    2016-01-01

    of Laetoli (3.8 Ma) and Olduvai Gorge (1.3 Ma) in Tanzania. By tracking protein diagenesis back in time we find consistent patterns of preservation, demonstrating authenticity of the surviving sequences. Molecular dynamics simulations of struthiocalcin-1 and -2, the dominant proteins within the eggshell......, reveal that distinct domains bind to the mineral surface. It is the domain with the strongest calculated binding energy to the calcite surface that is selectively preserved. Thermal age calculations demonstrate that the Laetoli and Olduvai peptides are 50 times older than any previously authenticated...

  11. Geomechanics of subsidence above single and multi-seam coal mining

    Directory of Open Access Journals (Sweden)

    A.M. Suchowerska Iwanec

    2016-06-01

    Full Text Available Accurate prediction of surface subsidence due to the extraction of underground coal seams is a significant challenge in geotechnical engineering. This task is further compounded by the growing trend for coal to be extracted from seams either above or below previously extracted coal seams, a practice known as multi-seam mining. In order to accurately predict the subsidence above single and multi-seam longwall panels using numerical methods, constitutive laws need to appropriately represent the mechanical behaviour of coal measure strata. The choice of the most appropriate model is not always straightforward. This paper compares predictions of surface subsidence obtained using the finite element method, considering a range of well-known constitutive models. The results show that more sophisticated and numerically taxing constitutive laws do not necessarily lead to more accurate predictions of subsidence when compared to field measurements. The advantages and limitations of using each particular constitutive law are discussed. A comparison of the numerical predictions and field measurements of surface subsidence is also provided.

  12. Review of subsidence and stabilization techniques

    International Nuclear Information System (INIS)

    Fernando, D.A.

    1988-01-01

    In Britain the damage caused by underground coal mining operations approximates to about 100 million pounds Sterling per annum, most of the damage resulting from longwall mining operations. Causes of subsidence can be attributed to the following factors: (1) roof failure (2) pillar failure (3) floor movements. Currently, in Britain, the mining industry is undergoing a state of decline for economic reasons. Consequently, the number of old coal sites available for development schemes has increased. Therefore, the problems associated with subsidence can be segregated into two parts. The first being the mitigation of the effects of subsidence on structures on actively mined areas. The second being the stabilization and rehabilitation of ground over and around old mine sites for new development schemes. In the former case the stabilization techniques employed may be local or global, depending on the problems encountered in any particular area. In the latter case, generally, grouting techniques are employed. This paper aims to review the causes of subsidence and the techniques used to minimize its effect on structures. Also, more economic alternative methods of ground stabilization techniques are described and proposed, to be used in this area of ground engineering

  13. Subsidence of Surtsey volcano, 1967-1991

    Science.gov (United States)

    Moore, J.G.; Jakobsson, S.; Holmjarn, J.

    1992-01-01

    The Surtsey marine volcano was built on the southern insular shelf of Iceland, along the seaward extension of the east volcanic zone, during episodic explosive and effusive activity from 1963 to 1967. A 1600-m-long, east-west line of 42 bench marks was established across the island shortly after volcanic activity stopped. From 1967 to 1991 a series of leveling surveys measured the relative elevation of the original bench marks, as well as additional bench marks installed in 1979, 1982 and 1985. Concurrent measurements were made of water levels in a pit dug on the north coast, in a drill hole, and along the coastline exposed to the open ocean. These surveys indicate that the dominant vertical movement of Surtsey is a general subsidence of about 1.1??0.3 m during the 24-year period of observations. The rate of subsidence decreased from 15-20 cm/year for 1967-1968 to 1-2 cm/year in 1991. Greatest subsidence is centered about the eastern vent area. Through 1970, subsidence was locally greatest where the lava plain is thinnest, adjacent to the flanks of the eastern tephra cone. From 1982 onward, the region closest to the hydrothermal zone, which is best developed in the vicinity of the eastern vent, began showing less subsidence relative to the rest of the surveyed bench marks. The general subsidence of the island probably results from compaction of the volcanic material comprising Surtsey, compaction of the sea-floor sediments underlying the island, and possibly downwarping of the lithosphere due to the laod of Surtsey. The more localized early downwarping near the eastern tephra cone is apparently due to greater compaction of tephra relative to lava. The later diminished local subsidence near the hydrothermal zone is probably due to a minor volume increase caused by hydrous alteration of glassy tephra. However, this volume increase is concentrated at depth beneath the bottom of the 176-m-deep cased drillhole. ?? 1992 Springer-Verlag.

  14. Coral ages and island subsidence, Hilo drill hole

    Science.gov (United States)

    Moore, J.G.; Ingram, B.L.; Ludwig, K. R.; Clague, D.A.

    1996-01-01

    A 25.8-m-thick sedimentary section containing coral fragments occurs directly below a surface lava flow (the ???1340 year old Panaewa lava flow) at the Hilo drill hole. Ten coral samples from this section dated by accelerator mass spectrometry (AMS) radiocarbon and five by thermal infrared multispectral scanner (TIMS) 230Th/U methods show good agreement. The calcareous unit is 9790 years old at the bottom and 1690 years old at the top and was deposited in a shallow lagoon behind an actively growing reef. This sedimentary unit is underlain by a 34-m-thick lava flow which in turn overlies a thin volcaniclastic silt with coral fragments that yield a single 14C date of 10,340 years. The age-depth relations of the dated samples can be compared with proposed eustatic sea level curves after allowance for island subsidence is taken. Island subsidence averages 2.2 mm/yr for the last 47 years based on measurements from a tide gage near the drill hole or 2.5-2.6 mm/yr for the last 500,000 years based on the ages and depths of a series of drowned coral reefs offshore from west Hawaii. The age-depth measurements of coral fragments are more consistent with eustatic sea levels as determined by coral dating at Barbados and Albrolhos Islands than those based on oxygen isotopic data from deep sea cores. The Panaewa lava flow entered a lagoon underlain by coral debris and covered the drill site with 30.9 m of lava of which 11 m was above sea level. This surface has now subsided to 4.2 m above sea level, but it demonstrates how a modern lava flow entering Hilo Bay would not only change the coastline but could extensively modify the offshore shelf.

  15. Subsidence Contours for South Louisiana; UTM 15N NAD83; LRA (2005); [subsidence_contours

    Data.gov (United States)

    Louisiana Geographic Information Center — The GIS data shapefile represents average subsidence contour intervals (0.02 cm/year over 10,000 years) for Coastal LA derived from the following: Kulp, M.A., 2000,...

  16. Subsidence Induced Faulting Hazard risk maps in Mexico City and Morelia, central Mexico

    Science.gov (United States)

    Cabral-Cano, E.; Solano-Rojas, D.; Hernández-Espriu, J.; Cigna, F.; Wdowinski, S.; Osmanoglu, B.; Falorni, G.; Bohane, A.; Colombo, D.

    2012-12-01

    Subsidence and surface faulting have affected urban areas in Central Mexico for decades and the process has intensified as a consequence of urban sprawl and economic growth. This process causes substantial damages to the urban infrastructure and housing structures and in several cities it is becoming a major factor to be considered when planning urban development, land use zoning and hazard mitigation strategies in the next decades. Subsidence is usually associated with aggressive groundwater extraction rates and a general decrease of aquifer static level that promotes soil consolidation, deformation and ultimately, surface faulting. However, local stratigraphic and structural conditions also play an important role in the development and extension of faults. Despite its potential for damaging housing, and other urban infrastructure, the economic impact of this phenomena is poorly known, in part because detailed, city-wide subsidence induced faulting risk maps have not been published before. Nevertheless, modern remote sensing techniques are most suitable for this task. We present the results of a risk analysis for subsidence induced surface faulting in two cities in central Mexico: Morelia and Mexico City. Our analysis in Mexico City and Morelia is based on a risk matrix using the horizontal subsidence gradient from a Persistent Scatterer InSAR (Morelia) and SqueeSAR (Mexico City) analysis and 2010 census population distribution data from Mexico's National Institute of Statistics and Geography. Defining subsidence induced surface faulting vulnerability within these urbanized areas is best determined using both magnitude and horizontal subsidence gradient. Our Morelia analysis (597,000 inhabitants with localized subsidence rates up to 80 mm/yr) shows that 7% of the urbanized area is under a high to very high risk level, and 14% of its population (11.7% and 2.3% respectively) lives within these areas. In the case of the Mexico City (15'490,000 inhabitants for the

  17. Analysis of surface movements from undermining in time

    Czech Academy of Sciences Publication Activity Database

    Doležalová, Hana; Kajzar, Vlastimil; Souček, Kamil; Staš, Lubomír

    2012-01-01

    Roč. 9, č. 3 (2012), s. 389-400 ISSN 1214-9705. [Czech - Polish Workshop on Recent Geodynamics of the Sudeten and Adjacent Areas /12./. Jugowice, 20.10.2012-22.10.2012] R&D Projects: GA MŠk(CZ) ED1.1.00/02.0070; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : GNSS * mining subsidence * horizontal displacements Subject RIV: DH - Mining, incl. Coal Mining Impact factor: 0.530, year: 2011 http://www.irsm.cas.cz/abstracts/AGG/03_12/14.Dolezalova.pdf

  18. Characterization of the multi-component driving land subsidence using Persistent Scatterer Interferometry technique: the Ravenna case of study (Italy)

    Science.gov (United States)

    Bonì, Roberta; Fiaschi, Simone; Calcaterra, Domenico; Di Martire, Diego; Ibrahim, Ahmed; Meisina, Claudia; Perini, Luisa; Ramondini, Massimo; Tessitore, Serena; Floris, Mario

    2015-04-01

    Land subsidence represents a kind of hazard, which affects an increasing number of worldwide regions, densely populated, causing damage to the environment and infrastructures. Settlements can be related to multiple processes both natural and anthropic (i.e. vadose zone processes, soil consolidation, aquifer compaction, solid and fluid extraction and load-induced compaction) which take place at different spatio-temporal scale. Over the last decades, advanced subsidence studies exploited Synthetic-Aperture Radar (SAR) data, a recent remote sensing tool, to investigate land subsidence phenomena around the world. In particular, Persistent Scatterer Interferometry (PSI) technique, allowing a quantitative estimation at high resolution of the surface deformations, has already been successfully applied to monitor the phenomenon evolution; PSI measurements represent the cumulative displacement, deriving from the contribution of natural and anthropic components, both superficial and deep. The overlapping of several causative factors makes more difficult to accurately interpret the resulting deformations; therefore, it is essential to implement a suitable methodology to distinguish the shallow and deep components of motion. The aim of our research is to introduce a PSI-based approach not only to monitoring but also to understand the land subsidence mechanism, in order to disentangle the natural and anthropic components of motion. The methodology consists of three main phases: 1) Post-processing elaborations (i.e. interpolation of the cumulated displacements and isokinetics map implementation); 2) Characterization of the subsidence areas (i.e. subsidence pattern recognition by means of automatic time series classification); 3) Mechanisms recognition (i.e. identification of the predisposing and triggering factors and comparison with lito-technical model of subsoil, and with earth measurements). In this work, the methodology has been applied to the Ravenna area, Italy, using

  19. The influence of subsidence attributable to coal mining on the environment, development and restoration: some examples from western Europe and South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Bell, F.G.; Genske, D.D. [University of Natal, Durban (South Africa). Dept. of Geology & Applied Geology

    2001-02-01

    One of the consequences of coal mining is subsidence, and it is associated with past and present mine workings. Indeed, old abandoned coal mines worked by the room-and-pillar method, which occur at shallow depth, often present a potential hazard as pillars collapse or voids migrate to the surface. Frequently, the situation is compounded by the fact that such workings are unrecorded. Subsidence prediction in such cases is impossible. In longwall mining, the total extraction of panels takes place, the working face being supported, while support is removed from behind the working face allowing the roof to collapse. Subsidence consequent on longwall mining can be regarded as more or less contemporaneous with mining and is normally predictable. This means that it is possible to develop an area after subsidence due to longwall mining has occurred or to incorporate features into the design of buildings and structures that will accommodate ground movements generated by subsidence. The nature of subsidence can be affected by discontinuities in the surface strata or the presence of superficial deposits. Of course, subsidence can adversely affect existing buildings and structures which do not incorporate special design features. In severe cases of subsidence damage, buildings may have to be demolished. Important buildings may be restored. Another problem associated with subsidence is flooding due to notable lowering of the ground surface. Examples of such problems and solutions are highlighted by the examples given.

  20. Alternatives to control subsidence at low-level radioactive waste burial sites

    International Nuclear Information System (INIS)

    Phillips, S.J.; Carlson, R.A.

    1981-09-01

    A substantial quantity of low-level radioactive and hazardous wastes has been interred in shallow land burial structures throughout the United States. Many of these structures (trenches, pits, and landfills) have experienced geotechnical subsidence problems and may require stabilization. Ground surface manifestations of subsidence include: large cracks, basins, and cave-ins. Subsidence is primarily caused by void filling, and physicochemical degradation and solubilization of buried wastes. These surface features represent a potential for increased contamination transport to the biosphere via water, air, biologic, and direct pathways. Engineering alternatives for the reduction of buried waste and matrix materials voids are identified and discussed. The advantages, disadvantages, and costs of each alternative are evaluated. Falling mass, pile driving and in situ incineration engineering alternatives were selected for further development

  1. Time-Dependent Liquid Transport on a Biomimetic Topological Surface.

    Science.gov (United States)

    Yu, Cunlong; Li, Chuxin; Gao, Can; Dong, Zhichao; Wu, Lei; Jiang, Lei

    2018-05-02

    Liquid drops impacting on a solid surface is a familiar phenomenon. On rainy days, it is quite important for leaves to drain off impacting raindrops. Water can bounce off or flow down a water-repellent leaf easily, but with difficulty on a hydrophilic leaf. Here, we show an interesting phenomenon in which impacting drops on the hydrophilic pitcher rim of Nepenthes alata can spread outward to prohibit water filling the pitcher tank. We mimic the peristome surface through a designed 3D printing and replicating way and report a time-dependently switchable liquid transport based on biomimetic topological structures, where surface curvature can work synergistically with the surface microtextures to manipulate the switchable spreading performance. Motived by this strange behavior, we construct a large-scaled peristome-mimetic surface in a 3D profile, demonstrating the ability to reduce the need to mop or to squeegee drops that form during the drop impacting process on pipes or other curved surfaces in food processing, moisture transfer, heat management, etc.

  2. Decay of surface nanostructures via long-time-scale dynamics

    International Nuclear Information System (INIS)

    Voter, A.F.; Stanciu, N.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have developed a new approach for extending the time scale of molecular dynamics simulations. For infrequent-event systems, the category that includes most diffusive events in the solid phase, this hyperdynamics method can extend the simulation time by a few orders of magnitude compared to direct molecular dynamics. The trajectory is run on a potential surface that has been biased to raise the energy in the potential basins without affecting the transition state region. The method is described and applied to surface and bulk diffusion processes, achieving microsecond and millisecond simulation times. The authors have also developed a new parallel computing method that is efficient for small system sizes. The combination of the hyperdynamics with this parallel replica dynamics looks promising as a general materials simulation tool

  3. Integrated geophysical survey in defining subsidence features on a golf course

    Science.gov (United States)

    Xia, J.; Miller, R.D.

    2007-01-01

    Subsidence was observed at several places on the Salina Municipal Golf Course in areas known to be built over a landfill in Salina, Kansas. High-resolution magnetic survey (???5400 m2), multi-channel electrical resistivity profiling (three 154 m lines) and microgravity profiling (23 gravity-station values) were performed on a subsidence site (Green 16) to aid in determining boundaries and density deficiency of the landfill in the vicinity of the subsidence. Horizontal boundaries of the landfill were confidently defined by both magnetic anomalies and the pseudo-vertical gradient of total field magnetic anomalies. Furthermore, the pseudo-vertical gradient of magnetic anomalies presented a unique anomaly at Green 16, which provided a criterion for predicting other spots with subsidence potential using the same gradient property. Results of multi-channel electrical resistivity profiling (ERP) suggested the bottom limit of the landfill at Green 16 was around 21 m below the ground surface based on the vertical gradient of electric resistivity and a priori information on the depth of the landfill. ERP results also outlined several possible landfill bodies based on their low resistivity values. Microgravity results suggested a -0.14 g cm-3 density deficiency at Green 16 that could equate to future surface subsidence of as much as 1.5 m due to gradual compaction. ?? 2007 Nanjing Institute of Geophysical Prospecting.

  4. Land subsidence in the southwestern Mojave Desert, California, 1992–2009

    Science.gov (United States)

    Brandt, Justin; Sneed, Michelle

    2017-07-19

    Groundwater has been the primary source of domestic, agricultural, and municipal water supplies in the southwestern Mojave Desert, California, since the early 1900s. Increased demands on water supplies have caused groundwater-level declines of more than 100 feet (ft) in some areas of this desert between the 1950s and the 1990s (Stamos and others, 2001; Sneed and others, 2003). These water-level declines have caused the aquifer system to compact, resulting in land subsidence. Differential land subsidence (subsidence occurring at different rates across the landscape) can alter surface drainage routes and damage surface and subsurface infrastructure. For example, fissuring across State Route 247 at Lucerne Lake has required repairs as has pipeline infrastructure near Troy Lake.Land subsidence within the Mojave River and Morongo Groundwater Basins of the southwestern Mojave Desert has been evaluated using InSAR, ground-based measurements, geology, and analyses of water levels between 1992 and 2009 (years in which InSAR data were collected). The results of the analyses were published in three USGS reports— Sneed and others (2003), Stamos and others (2007), and Solt and Sneed (2014). Results from the latter two reports were integrated with results from other USGS/ MWA cooperative groundwater studies into the broader scoped USGS Mojave Groundwater Resources Web site (http://ca.water.usgs.gov/ mojave/). This fact sheet combines the detailed analyses from the three subsidence reports, distills them into a longer-term context, and provides an assessment of options for future monitoring.

  5. Evaluation of subsidence hazard in mantled karst setting: a case study from Val d'Orléans (France)

    Science.gov (United States)

    Perrin, Jérôme; Cartannaz, Charles; Noury, Gildas; Vanoudheusden, Emilie

    2015-04-01

    Soil subsidence/collapse is a major geohazard occurring in karst region. It occurs as suffosion or dropout sinkholes developing in the soft cover. Less frequently it corresponds to a breakdown of karst void ceiling (i.e., collapse sinkhole). This hazard can cause significant engineering challenges. Therefore decision-makers require the elaboration of methodologies for reliable predictions of such hazards (e.g., karst subsidence susceptibility and hazards maps, early-warning monitoring systems). A methodological framework was developed to evaluate relevant conditioning factors favouring subsidence (Perrin et al. submitted) and then to combine these factors to produce karst subsidence susceptibility maps. This approach was applied to a mantled karst area south of Paris (Val d'Orléans). Results show the significant roles of the overburden lithology (presence/absence of low-permeability layer) and of the karst aquifer piezometric surface position within the overburden. In parallel, an experimental site has been setup to improve the understanding of key processes leading to subsidence/collapse and includes piezometers for measurements of water levels and physico-chemical parameters in both the alluvial and karst aquifers as well as surface deformation monitoring. Results should help in designing monitoring systems to anticipate occurrence of subsidence/collapse. Perrin J., Cartannaz C., Noury G., Vanoudheusden E. 2015. A multicriteria approach to karst subsidence hazard mapping supported by Weights-of-Evidence analysis. Submitted to Engineering Geology.

  6. THE STANDARD MILLING TIME OF FLAT SURFACES WITHOUT OUTLINE RESTRICTIONS

    Directory of Open Access Journals (Sweden)

    Leszek Skoczylas

    2016-09-01

    Full Text Available Knowing the standard operating times of technological operations is essential element in the business operations of every production enterprise. It is the basis for establishing the production capacity, planning the production schedule, or even calculating costs. The article presents a variety of methods used in the calculation of standard worktime of technological operations. An especially important distinction was made between calculating the total machining time and the actual cutting time. Through the examination of various machined flat surfaces, the results of worktime calculations from CATIA and the authored mathematical model are presented.

  7. How to deal with subsidence in the Dutch delta?

    NARCIS (Netherlands)

    Stouthamer, E.; Erkens, G.

    2017-01-01

    In many deltas worldwide subsidence still is an underestimated problem, while the threat posed by land subsidence low-lying urbanizing and urbanized deltas exceeds the threat of sea-level rise induced by climate change. Human-induced subsidence is driven by the extraction of hydrocarbons and

  8. THE CORRELATION ANALYSIS OF SUBSIDENCE MONITORING BY D-INSAR AND THE CHANGE OF URBAN CONSTRUCTION LAND

    Directory of Open Access Journals (Sweden)

    K. J. Yang

    2017-05-01

    Full Text Available The change of urban construction land affect the subsidence directly or indirectly, the method of D-InSAR has centimeter level or even millimeter accuracy that can provide a reliable and accurate data for the research of correlation analysis of subsidence monitoring by D-InSAR and the change of urban construction land. This article takes Guiyang, Nanning city as example, using 3m level TerraSAR data to construct the Subsidence model by interferometric measurement, then compared with the Chinese national land use change remote sensing survey database at the same measure time to have a correlation analysis GIS research between subsidence and the change of urban construction land. The results shows that the integral correlation coefficient achieved 0.78 between subsidence and the change of urban construction land, the major construction area and the high density construction area are with severe land subsidence. In addition, the correlation coefficient increased from the main city to the suburbs, indicates that some of the main city causes permanent settlement and is difficult to recover. It also shows that some area subsidence caused by long-term mining or other natural factors has no strong correlation with the change of urban construction land, therefore, the results of D-InSAR subsidence monitoring have a reaction on urban construction planning, guiding urban planning to high stability, low settlement area.

  9. Geothermal-subsidence research program plan and review

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, N.E.; Noble, J.E.; Simkin, T.L.

    1980-09-01

    The revised Geothermal Subsidence Research Plan (GSRP) presented here is the result of two years of research based on the recommendations of a technical advisory committee and on the DOE/DGE's wish to include specific components applicable to the geopressure resources on the Gulf Coast. This revised plan describes events leading up to FY 1979 and 1980 and the resulting research activities completed for that period. At the time of this writing most of the projects are completed; this document summarizes the accomplishments of the GSRP during FY 1979 and 1980 and includes recommendations for the FY 1981 and 1982 programs.

  10. Historic, Recent, and Future Subsidence, Sacramento-San Joaquin Delta, California, USA

    Directory of Open Access Journals (Sweden)

    Steven J Deverel

    2010-08-01

    Full Text Available To estimate and understand recent subsidence, we collected elevation and soils data on Bacon and Sherman islands in 2006 at locations of previous elevation measurements. Measured subsidence rates on Sherman Island from 1988 to 2006 averaged 1.23 cm/year (0.5 in/yr and ranged from 0.7 to 1.7 cm/year (0.3 to 0.7 in/year. Subsidence rates on Bacon Island from 1978 to 2006 averaged 2.2 cm/year (0.9 in/yr and ranged from 1.5 to 3.7 cm/year (0.6 to 1.5 in/yr. Changing land-management practices and decreasing soil organic matter content have resulted in decreasing subsidence rates. On Sherman Island, rates from 1988 to 2006 were about 35% of 1910 to 1988 rates. For Bacon Island, rates from 1978 to 2006 were about 40% less than the 1926-1958 rates. To help understand causes and estimate future subsidence, we developed a subsidence model, SUBCALC, that simulates oxidation and carbon losses, consolidation, wind erosion, and burning and changing soil organic matter content. SUBCALC results agreed well with measured land-surface elevation changes. We predicted elevation decreases from 2007 to 2050 will range from a few centimeters to over 1.3 m (4.3 ft. The largest elevation declines will occur in the central Sacramento-San Joaquin Delta. From 2007 to 2050, the most probable estimated increase in volume below sea level is 349,956,000 million cubic meters (281,300 acre-feet. Consequences of this continuing subsidence include increased drainage loads of water quality constituents of concern, seepage onto islands, and decreased arability.

  11. Structural Analysis for Subsidence of Stacked B-25 Boxes

    International Nuclear Information System (INIS)

    Jones, W.E.

    2003-01-01

    The Savannah River Site (SRS) and other U.S. Department of Energy (DOE) sites use shallow land burial facilities (i.e., trenches) to dispose low-level radioactive waste. However, at SRS and other DOE sites, waste containers with up to 90 percent void space are disposed in the shallow land burial facilities. Corrosion and degradation of these containers can result in significant subsidence over time, which can compromise the integrity of the long-term cover. This in turn can lead to increased water infiltration through the long-term cover into the waste and subsequent increased radionuclide transport into the environment. Understanding and predicting shallow-buried, low-level waste subsidence behavior is necessary for evaluating cost-effective and appropriate stabilization required to maintain cover system long-term stability and viability, and to obtain stakeholder acceptance of the long-term implications of waste disposal practices. Two methods (dynamic compaction and static surcharge) have been used at SRS to accelerate waste and container consolidation and reduce potential subsidence prior to long term cover construction. Dynamic compaction comprises repeatedly dropping a heavy (20 ton) weight from about a 40-ft height to consolidate the waste and containers. Static surcharge is the use of a thick (15 ft to 30 ft) soil cover to consolidate the underlying materials over a longer time period (three to six months in this case). Quasi-static modeling of a stack of four B-25 boxes at various stags of corrosion with an applied static surcharge has been conducted and is presented herein

  12. Integrating interferometric SAR data with levelling measurements of land subsidence using geostatistics

    NARCIS (Netherlands)

    Zhou, Y.; Stein, A.; Molenaar, M.

    2003-01-01

    Differential Synthetic Aperture Radar (SAR) interferometric (D-InSAR) data of ground surface deformation are affected by several error sources associated with image acquisitions and data processing. In this paper, we study the use of D-InSAR for quantifying land subsidence due to groundwater

  13. Subsidence due to Excessive Groundwater Withdrawal in the San Joaquin Valley, California

    Science.gov (United States)

    Corbett, F.; Harter, T.; Sneed, M.

    2011-12-01

    Francis Corbett1, Thomas Harter1 and Michelle Sneed2 1Department of Land Air and Water Resources, University of California, Davis. 2U.S. Geological Survey Western Remote Sensing and Visualization Center, Sacramento. Abstract: Groundwater development within the Central Valley of California began approximately a century ago. Water was needed to supplement limited surface water supplies for the burgeoning population and agricultural industries, especially within the arid but fertile San Joaquin Valley. Groundwater levels have recovered only partially during wet years from drought-induced lows creating long-term groundwater storage overdraft. Surface water deliveries from Federal and State sources led to a partial alleviation of these pressure head declines from the late 1960s. However, in recent decades, surface water deliveries have declined owing to increasing environmental pressures, whilst water demands have remained steady. Today, a large portion of the San Joaquin Valley population, and especially agriculture, rely upon groundwater. Groundwater levels are again rapidly declining except in wet years. There is significant concern that subsidence due to groundwater withdrawal, first observed at a large scale in the middle 20th century, will resume as groundwater resources continue to be depleted. Previous subsidence has led to problems such as infrastructure damage and flooding. To provide a support tool for groundwater management on a naval air station in the southern San Joaquin Valley (Tulare Lake Basin), a one-dimensional MODFLOW subsidence model covering the period 1925 to 2010 was developed incorporating extensive reconstruction of historical subsidence and water level data from various sources. The stratigraphy used for model input was interpreted from geophysical logs and well completion reports. Gaining good quality data proved problematic, and often values needed to be estimated. In part, this was due to the historical lack of awareness/understanding of

  14. New information on regional subsidence and soil fracturing in Mexico City Valley

    Directory of Open Access Journals (Sweden)

    G. Auvinet

    2015-11-01

    Full Text Available In this paper, updated information about regional subsidence in Mexico City downtown area is presented. Data obtained by R. Gayol in 1891, are compared with information obtained recently from surveys using the reference points of Sistema de Aguas de la Ciudad de México (2008 and on the elevation of a cloud of points on the ground surface determined using Light Detection and Ranging (LiDAR technology. In addition, this paper provides an overview of recent data obtained from systematic studies focused on understanding soil fracturing associated with regional land subsidence and mapping of areas susceptible to cracking in Mexico City Valley.

  15. Subsidence Induced Faulting Hazard Zonation Using Persistent Scatterer Interferometry and Horizontal Gradient Mapping in Mexican Urban Areas

    Science.gov (United States)

    Cabral-Cano, E.; Cigna, F.; Osmanoglu, B.; Dixon, T.; Wdowinski, S.

    2011-12-01

    Subsidence and faulting have affected Mexico city for more than a century and the process is becoming widespread throughout larger urban areas in central Mexico. This process causes substantial damages to the urban infrastructure and housing structures and will certainly become a major factor to be considered when planning urban development, land use zoning and hazard mitigation strategies in the next decades. Subsidence is usually associated with aggressive groundwater extraction rates and a general decrease of aquifer static level that promotes soil consolidation, deformation and ultimately, surface faulting. However, local stratigraphic and structural conditions also play an important role in the development and extension of faults. In all studied cases stratigraphy of the uppermost sediment strata and the structure of the underlying volcanic rocks impose a much different subsidence pattern which is most suitable for imaging through satellite geodetic techniques. We present examples from several cities in central Mexico: a) Mexico-Chalco. Very high rates of subsidence, up to 370 mm/yr are observed within this lacustrine environment surrounded by Pliocene-Quaternary volcanic structures. b) Aguascalientes where rates up to 90 mm/yr in the past decade are observed, is controlled by a stair stepped N-S trending graben that induces nucleation of faults along the edges of contrasting sediment package thicknesses. c) Morelia presents subsidence rates as high as 80 mm/yr. Differential deformation is observed across major basin-bounding E-W trending faults and with higher subsidence rates on their hanging walls, where the thickest sequences of compressible Quaternary sediments crop out. Our subsidence and faulting study in urban areas of central Mexico is based on a horizontal gradient analysis using displacement maps from Persistent Scatterer InSAR that allows definition of areas with high vulnerability to surface faulting. Correlation of the surface subsidence pattern

  16. Land subsidence caused by a single water extraction well and rapid water infiltration

    Directory of Open Access Journals (Sweden)

    I. Martinez-Noguez

    2015-11-01

    Full Text Available Nowadays several parts of the world suffer from land subsidence. This setting of the earth surface occurs due to different factors such as earth quakes, mining activities, and gas, oil and water withdrawal. This research presents a numerical study of the influence of land subsidence caused by a single water extraction well and rapid water infiltration into structural soil discontinuities. The numerical simulation of the infiltration was based on a two-phase flow-model for porous media, and for the deformation a Mohr–Coulomb model was used. A two-layered system with a fault zone is presented. First a single water extraction well is simulated producing a cone-shaped (conical water level depletion, which can cause land subsidence. Land Subsidence can be further increased if a hydrological barrier as a result of a discontinuity, exists. After water extraction a water column is applied on the top boundary for one hours in order to represent a strong storm which produces rapid water infiltration through the discontinuity as well as soil deformation. Both events are analysed and compared in order to characterize deformation of both elements and to get a better understanding of the land subsidence and new fracture formations.

  17. Review of corrective measures to stabilize subsidence in shallow-land burial trenches

    International Nuclear Information System (INIS)

    Roop, R.D.; Staub, W.P.; Hunsaker, D.B. Jr.; Ketelle, R.H.; Lee, D.W.; Pin, F.G.; Witten, A.J.

    1983-05-01

    Shallow-land burial of low-level radioactive wastes is frequently followed by subsidence: the slumping, cave-in, or depression of the trench's surface. This report describes and evaluates the measures proposed for correcting subsidence, including roller compaction, grouting, explosives, surcharging, falling mass, pile driving, in situ incineration, and accelerated decomposition. Subsidence, which has occurred at all the major waste disposal sites, has two major causes: filling of packing voids (spaces between waste containers) and filling of interior voids (spaces within containers). Four additional mechanisms also contribute to subsidence: collapse of trench walls, chemical and biological degradation, soil consolidation, and shrink and swell phenomena. Corrective measures for subsidence are evaluated on three criteria: effectiveness, applicability, and cost. The evaluation indicates that one method, falling mass, is considered to be effective, widely applicable, and relatively low in cost, suggesting that this would be the most generally useful technique and would yield the greatest payoff from further development and field trials. There are many uncertainties associated with the cost and effectiveness of corrective measures which can best be resolved by experimental field demonstrations. Site-specific analyses for each disposal area are recommended, to determine which techniques are appropriate and to evaluate the overall desirability of applying corrective measures

  18. Determination of Soft Lithology Causes The Land Subsidence in Coastal Semarang City by Resistivity Methods

    Science.gov (United States)

    Widada, Sugeng; Saputra, Sidhi; Hariadi

    2018-02-01

    Semarang City is located in the northern coastal plain of Java which is geologically composed of alluvial deposits. The process of the sediment diagenesis has caused a land subsidence. On the other hand, the development of the industrial, service, education and housing sectors has increased the number of building significantly. The number of building makes the pressure of land surface increased, and finally, this also increased the rate of land subsidence. The drilling data indicates that not all layers of lithology are soft layers supporting the land subsidence. However, vertical distribution of the soft layer is still unclear. This study used Resistivity method to map out the soft zone layers of lithology. Schlumberger electrode configuration with sounding system method was selected to find a good vertical resolution and maximum depth. The results showed that the lithology layer with resistivity less than 3 ohm is a layer of clay and sandy clay that has the low bearing capacity so easily compressed by pressure load. A high land subsidence is happening in the thick soft layer. The thickness of that layer is smaller toward the direction of avoiding the beach. The improvement of the bearing capacity of this layer is expected to be a solution to the problem of land subsidence.

  19. BasinVis 1.0: A MATLAB®-based program for sedimentary basin subsidence analysis and visualization

    Science.gov (United States)

    Lee, Eun Young; Novotny, Johannes; Wagreich, Michael

    2016-06-01

    Stratigraphic and structural mapping is important to understand the internal structure of sedimentary basins. Subsidence analysis provides significant insights for basin evolution. We designed a new software package to process and visualize stratigraphic setting and subsidence evolution of sedimentary basins from well data. BasinVis 1.0 is implemented in MATLAB®, a multi-paradigm numerical computing environment, and employs two numerical methods: interpolation and subsidence analysis. Five different interpolation methods (linear, natural, cubic spline, Kriging, and thin-plate spline) are provided in this program for surface modeling. The subsidence analysis consists of decompaction and backstripping techniques. BasinVis 1.0 incorporates five main processing steps; (1) setup (study area and stratigraphic units), (2) loading well data, (3) stratigraphic setting visualization, (4) subsidence parameter input, and (5) subsidence analysis and visualization. For in-depth analysis, our software provides cross-section and dip-slip fault backstripping tools. The graphical user interface guides users through the workflow and provides tools to analyze and export the results. Interpolation and subsidence results are cached to minimize redundant computations and improve the interactivity of the program. All 2D and 3D visualizations are created by using MATLAB plotting functions, which enables users to fine-tune the results using the full range of available plot options in MATLAB. We demonstrate all functions in a case study of Miocene sediment in the central Vienna Basin.

  20. Plate boundary deformation and man-made subsidence around geothermal fields on the Reykjanes Peninsula, Iceland

    KAUST Repository

    Keiding, Marie

    2010-07-01

    We present Interferometric Synthetic Aperture Radar (InSAR) data from 1992-1999 and 2003-2008 as well as GPS data from 2000-2009 for the active plate boundary on the Reykjanes Peninsula, southwest Iceland. The geodetic data reveal deformation mainly due to plate spreading, anthropogenic subsidence caused by geothermal fluid extraction and, possibly, increasing pressure in a geothermal system. Subsidence of around 10. cm is observed during the first 2. years of production at the Reykjanes geothermal power plant, which started operating in May 2006. We model the surface subsidence around the new power plant using point and ellipsoidal pressure sources in an elastic halfspace. Short-lived swarms of micro-earthquakes as well as aseismic fault movement are observed near the geothermal field following the start of production, possibly triggered by the stresses induced by geothermal fluid extraction. © 2010 Elsevier B.V.

  1. Plate boundary deformation and man-made subsidence around geothermal fields on the Reykjanes Peninsula, Iceland

    KAUST Repository

    Keiding, Marie; Á rnadó ttir, Thó ra; Jonsson, Sigurjon; Decriem, Judicaë l; Hooper, Andrew John

    2010-01-01

    We present Interferometric Synthetic Aperture Radar (InSAR) data from 1992-1999 and 2003-2008 as well as GPS data from 2000-2009 for the active plate boundary on the Reykjanes Peninsula, southwest Iceland. The geodetic data reveal deformation mainly due to plate spreading, anthropogenic subsidence caused by geothermal fluid extraction and, possibly, increasing pressure in a geothermal system. Subsidence of around 10. cm is observed during the first 2. years of production at the Reykjanes geothermal power plant, which started operating in May 2006. We model the surface subsidence around the new power plant using point and ellipsoidal pressure sources in an elastic halfspace. Short-lived swarms of micro-earthquakes as well as aseismic fault movement are observed near the geothermal field following the start of production, possibly triggered by the stresses induced by geothermal fluid extraction. © 2010 Elsevier B.V.

  2. Taphonomic expressions of sedimentary hiatuses: field observations on bioclastic concentrations and sequence anatomy in low, moderate and high subsidence settings

    Science.gov (United States)

    Kidwell, S. M.

    1993-07-01

    Field studies of post-Palaeozoic siliciclastic records reveal a strong concordance between different types of bioclastic concentrations and discontinuity surfaces within third-order sequences (≈ 1 My duration), supporting the use of taphonomic criteria in establishing the relative magnitudes of sedimentary hiatuses. Comparison of records across a spectrum of subsidence rates, however (from ≤ 10 m to > 1 km/My), shows that, along with appreciable changes in sequence anatomy, the nature of surface-mantling bioclastic concentrations also changes. The most significant surfaces (second- and third-order sequence boundaries, surfaces or intervals of maximum transgression, transgressive surfaces) tend to be either bare or mantled with taphonomically complex hiatal and lag concentrations. These were more consistently encountered in low subsidence than in moderate subsidence records. In high subsidence records, major surfaces were more often mantled by composite or event concentrations, if they were bioclastic at all. In all subsidence settings, comparatively minor surfaces (parasequence boundaries, bed set boundaries and bedding planes) were bare or mantled with relatively simple event and composite concentrations. Although all fossil assemblages are biased taphonomically to some degree, relative degrees of bias should almost certainly vary among discontinuities as a general rule, suggesting specific adjustments in sampling strategies for evolutionary studies.

  3. Spatial prediction of ground subsidence susceptibility using an artificial neural network.

    Science.gov (United States)

    Lee, Saro; Park, Inhye; Choi, Jong-Kuk

    2012-02-01

    Ground subsidence in abandoned underground coal mine areas can result in loss of life and property. We analyzed ground subsidence susceptibility (GSS) around abandoned coal mines in Jeong-am, Gangwon-do, South Korea, using artificial neural network (ANN) and geographic information system approaches. Spatial data of subsidence area, topography, and geology, as well as various ground-engineering data, were collected and used to create a raster database of relevant factors for a GSS map. Eight major factors causing ground subsidence were extracted from the existing ground subsidence area: slope, depth of coal mine, distance from pit, groundwater depth, rock-mass rating, distance from fault, geology, and land use. Areas of ground subsidence were randomly divided into a training set to analyze GSS using the ANN and a test set to validate the predicted GSS map. Weights of each factor's relative importance were determined by the back-propagation training algorithms and applied to the input factor. The GSS was then calculated using the weights, and GSS maps were created. The process was repeated ten times to check the stability of analysis model using a different training data set. The map was validated using area-under-the-curve analysis with the ground subsidence areas that had not been used to train the model. The validation showed prediction accuracies between 94.84 and 95.98%, representing overall satisfactory agreement. Among the input factors, "distance from fault" had the highest average weight (i.e., 1.5477), indicating that this factor was most important. The generated maps can be used to estimate hazards to people, property, and existing infrastructure, such as the transportation network, and as part of land-use and infrastructure planning.

  4. Investigation of correlation of the variations in land subsidence (detected by continuous GPS measurements and methodological data in the surrounding areas of Lake Urmia

    Directory of Open Access Journals (Sweden)

    K. Moghtased-Azar

    2012-11-01

    Full Text Available Lake Urmia, a salt lake in the north-west of Iran, plays a valuable role in the environment, wildlife and economy of Iran and the region, but now faces great challenges for survival. The Lake is in immediate and great danger and is rapidly going to become barren desert. As a result, the increasing demands upon groundwater resources due to expanding metropolitan and agricultural areas are a serious challenge in the surrounding regions of Lake Urmia. The continuous GPS measurements around the lake illustrate significant subsidence rate between 2005 and 2009. The objective of this study was to detect and specify the non-linear correlation of land subsidence and temperature activities in the region from 2005 to 2009. For this purpose, the cross wavelet transform (XWT was carried out between the two types of time series, namely vertical components of GPS measurements and daily temperature time series. The significant common patterns are illustrated in the high period bands from 180–218 days band (~6–7 months from September 2007 to February 2009. Consequently, the satellite altimetry data confirmed that the maximum rate of linear trend of water variation in the lake from 2005 to 2009, is associated with time interval from September 2007 to February 2009. This event was detected by XWT as a critical interval to be holding the strong correlation between the land subsidence phenomena and surface temperature. Eventually the analysis can be used for modeling and prediction purposes and probably stave off the damage from subsidence phenomena.

  5. Flooding and subsidence in the Thames Gateway: impact on insurance loss potential

    Science.gov (United States)

    Royse, Katherine; Horn, Diane; Eldridge, Jillian; Barker, Karen

    2010-05-01

    In the UK, household buildings insurance generally covers loss and damage to the insured property from a range of natural and human perils, including windstorm, flood, subsidence, theft, accidental fire and winter freeze. Consequently, insurers require a reasoned view on the likely scale of losses that they may face to assist in strategic planning, reinsurance structuring, regulatory returns and general risk management. The UK summer 2007 flood events not only provided a clear indication of the scale of potential losses that the industry could face from an individual event, with £3 billion in claims, but also identified a need for insurers and reinsurers to better understand how events may correlate in time and space, and how to most effectively use the computational models of extreme events that are commonly applied to reflect these correlations. In addition to the potential for temporal clustering of events such as windstorms and floods, there is a possibility that seemingly uncorrelated natural perils, such as floods and subsidence, may impact an insurer's portfolio. Where aggregations of large numbers of new properties are planned, such as in the Thames Gateway, consideration of the potential future risk of aggregate losses due to the combination of perils such as subsidence and flood is increasingly important within the insurance company's strategic risk management process. Whilst perils such as subsidence and flooding are generally considered independent within risk modelling, the potential for one event to influence the magnitude and likelihood of the other should be taken into account when determining risk level. In addition, the impact of correlated, but distinctive, loss causing events on particular property types may be significant, particularly if a specific property is designed to protect against one peril but is potentially susceptible to another. We suggest that flood events can lead to increased subsidence risk due to the weight of additional water

  6. Real Time Surface Registration for PET Motion Tracking

    DEFF Research Database (Denmark)

    Wilm, Jakob; Olesen, Oline Vinter; Paulsen, Rasmus Reinhold

    2011-01-01

    to create point clouds representing parts of the patient's face. The movement is estimated by a rigid registration of the point clouds. The registration should be done using a robust algorithm that can handle partial overlap and ideally operate in real time. We present an optimized Iterative Closest Point......Head movement during high resolution Positron Emission Tomography brain studies causes blur and artifacts in the images. Therefore, attempts are being made to continuously monitor the pose of the head and correct for this movement. Specifically, our method uses a structured light scanner system...... algorithm that operates at 10 frames per second on partial human face surfaces. © 2011 Springer-Verlag....

  7. Evaluation of mining subsidence using GPS data

    Czech Academy of Sciences Publication Activity Database

    Doležalová, Hana; Kajzar, Vlastimil; Souček, Kamil; Staš, Lubomír

    2009-01-01

    Roč. 6, č. 3 (2009), s. 359-367 ISSN 1214-9705. [Czech - Polish Workshop on recent geodynamics of the Sudeten and adjacent areas /9./. Náchod, 12.11.2009-15.11.2009] R&D Projects: GA ČR GA105/07/1586 Institutional research plan: CEZ:AV0Z30860518 Keywords : undermining * subsidence depression * tectonic faults Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.275, year: 2009 http://apps.isiknowledge.com/full_record.do?product=UA&search_mode

  8. Deepwater Horizon - Estimating surface oil volume distribution in real time

    Science.gov (United States)

    Lehr, B.; Simecek-Beatty, D.; Leifer, I.

    2011-12-01

    Spill responders to the Deepwater Horizon (DWH) oil spill required both the relative spatial distribution and total oil volume of the surface oil. The former was needed on a daily basis to plan and direct local surface recovery and treatment operations. The latter was needed less frequently to provide information for strategic response planning. Unfortunately, the standard spill observation methods were inadequate for an oil spill this size, and new, experimental, methods, were not ready to meet the operational demands of near real-time results. Traditional surface oil estimation tools for large spills include satellite-based sensors to define the spatial extent (but not thickness) of the oil, complemented with trained observers in small aircraft, sometimes supplemented by active or passive remote sensing equipment, to determine surface percent coverage of the 'thick' part of the slick, where the vast majority of the surface oil exists. These tools were also applied to DWH in the early days of the spill but the shear size of the spill prevented synoptic information of the surface slick through the use small aircraft. Also, satellite images of the spill, while large in number, varied considerably in image quality, requiring skilled interpretation of them to identify oil and eliminate false positives. Qualified staff to perform this task were soon in short supply. However, large spills are often events that overcome organizational inertia to the use of new technology. Two prime examples in DWH were the application of hyper-spectral scans from a high-altitude aircraft and more traditional fixed-wing aircraft using multi-spectral scans processed by use of a neural network to determine, respectively, absolute or relative oil thickness. But, with new technology, come new challenges. The hyper-spectral instrument required special viewing conditions that were not present on a daily basis and analysis infrastructure to process the data that was not available at the command

  9. Methods for monitoring land subsidence and earth fissures in the Western USA

    Directory of Open Access Journals (Sweden)

    K. C. Fergason

    2015-11-01

    Full Text Available Depletion of groundwater resources in many deep alluvial basin aquifers in the Western USA is causing land subsidence, as it does in many regions worldwide. Land subsidence can severely and adversely impact infrastructure by changing the ground elevation, ground slope (grade and through the development of ground cracks known as earth fissures that can erode into large gullies. Earth fissures have the potential to compromise the foundations of dams, levees, and other infrastructure and cause failure. Subsequent to an evaluation of the overall subsidence experienced in the vicinity of subsidence-impacted infrastructure, a detailed investigation to search for earth fissures, and design and/or mitigation of potentially effected infrastructure, a focused monitoring system should be designed and implemented. Its purpose is to provide data, and ultimately knowledge, to reduce the potential adverse impacts of land subsidence and earth fissure development to the pertinent infrastructure. This risk reduction is realized by quantifying the rate and distribution of ground deformation, and to detect ground rupture if it occurs, in the vicinity of the infrastructure. The authors have successfully designed and implemented monitoring systems capable of quantifying rates and distributions of ground subsidence and detection of ground rupture at multiple locations throughout the Western USA for several types of infrastructure including dams, levees, channels, basins, roadways, and mining facilities. Effective subsidence and earth fissure monitoring requires understanding and quantification of historic subsidence, estimation of potential future subsidence, delineation of the risk for earth fissures that could impact infrastructure, and motivation and resources to continue monitoring through time. A successful monitoring system provides the means to measure ground deformation, grade changes, displacement, and anticipate and assess the potential for earth fissuring

  10. The Measurement and Interpretation of Surface Wave Group Arrival Times

    Science.gov (United States)

    Masters, G.; Kane, D.; Morrow, J.; Zhou, Y.; Tromp, J.

    2005-12-01

    We have recently developed an efficient technique for measuring the relative group arrival times of surface waves by using cross-correlation and cluster analysis of waveform envelope functions. Applying the analysis to minor arc Love and Rayleigh waves in the frequency band 7 to 35 mHz for all events over magnitude 5.5 results in a dataset of over 200,000 measurements at each frequency for long period Rayleigh waves (frequency less than 25 mHz) and about 100,000 measurements at the shorter periods. Analysis of transverse components results in about half as many Love wave measurements. Simple ray theory inversions of the relative arrival times for apparent group velocity produce maps which are accurate representations of the data (often over 90% variance reduction of the relative arrival times) and which show features strongly correlated with tectonics and crustal thickness. The apparent group velocity variations can be extremely large: 30% velocity variations for 20 mHz Rayleigh waves and 40% variations for 30 mHz Rayleigh waves and can have abrupt lateral changes. This raises the concern that non-ray theory effects could be important. Indeed, a recent analysis by Dahlen and Zhou (personal communication) suggests that the group arrival times should be a functions of both the group velocity AND the phase velocity. The simplest way to test the interpretation of the measurements is to perform the analysis on synthetic seismograms computed for a realistic model of the Earth. Here, we use the SEM with a model which incorporates realistic crust and mantle structure. We are currently computing synthetics for a suite of roughly 1000 events recorded globally that extend to a period of 18 seconds. We shall present the results of applying both ray-based and finite frequency inversions to the synthetic data as well as evaluating the effects of off path propagation at short periods using surface wave ray tracing.

  11. Tectonic subsidence analyses of miogeoclinal strata from mesozoic marginal basin of Peru

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, W.J.

    1988-01-01

    The Western Peruvian trough is composed of an eastern miogeoclinical facies of carbonate and clastic strata, and a western eugeoclinal facies consisting of a succession of volcanic and sedimentary rocks. In norther and central Peru, the miogeocline is located between a tectonic hinge adjacent to platformal facies of the Maranon geanticline on the east, and an outer marginal high bounded by the Cordillera Blanca fault and Tapacocha axis on the west. Miogeoclinal and platformal strata in southern Peru occur in a broad belt between Arequipa and Lago Titicaca. A marginal basin setting has been proposed for the Western Peruvian trough and the several kilometers of subsidence in the basin has been attributed to back-arc extension and crustal thinning. As a test of this model, quantitative tectonic subsidence curves were constructed from representative sections within miogeoclinar strata from four localities. Preliminary results indicate that the calculated curves have the same overall form as the age-depth curve for ocean floor, suggesting that subsidence was controlled by cooling and thermal contraction of heated lithosphere. The slopes of the curves are less than those for subsidence of oceanic lithosphere. However, they are in agreement with geologic evidence that the miogeocline accumulated on continental crust. Significant variations in the timing of onset, duration, and magnitude of subsidence are observed between sections from northern and southern Peru.

  12. Subsidence over AML and its causes - A case study

    International Nuclear Information System (INIS)

    Peng, S.S.; Lin, P.M.; Hsiung, S.M.

    1988-01-01

    Subsidence over abandoned mined lands can be attributed to several causes. For purposes of compensation and liability and developing remedial measures, it is essential to identify the real causes. The detailed procedures for a subsidence investigation and the keys to identify and determine the causes and severity of the damages are illustrated and discussed through a case study in this paper. A subsidence check list has been developed for investigation purposes. The case discussed in this paper is a mining-related subsidence. The associated subsidence index was 60%. The damage to the dwelling was due to tension. The major damage was developed within two days. A crackmeter was installed on the exterior wall to monitor the house movement. An inclinometer casing and a Sondex casing were installed in a borehole to monitor the ground movement. The results of the geotechnical instrumentation are presented to illustrate the procedures developed for investigating the subsidence cases over the abandoned mine lands

  13. KUD SERVICE LEVEL IN FARMER SUBSIDIZE FERTILIZER (Case Study in District Banguntapan Bantul Yogyakarta

    Directory of Open Access Journals (Sweden)

    Sipri Paramita

    2014-01-01

    Full Text Available The purpose of the study was to determine: (1 the level of service in the provision of subsidized fertilizer cooperatives of farmers on the timeliness, accuracy number, precision type, right quality, right place and the right price, (2 factors that affect the level of service cooperatives in the procurement of subsidized fertilizer at the farm level. Descriptively and purposive of the 90 samples taken at random, were analyzed with analysis of the test sample Kolmogorov-Smirnov, the proportion of single test, and correlation analysis. Obtained results: (1 service cooperatives in the procurement of subsidized fertilizer at the farm level right time, right quantity, right price, right quality and the right target is good, (2 service cooperatives have an inverse correlation with the presence of other distributors. Other factors not directly affect the effectiveness of the service cooperatives

  14. Transient space-time surface waves characterization using Gabor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, L; Wilkie-Chancellier, N; Caplain, E [Universite de Cergy Pontoise, ENS Cachan, UMR CNRS 8029, Laboratoire Systemes et Applications des Techniques de l' Information et de l' Energie (SATIE), 5 mail Gay-Lussac, F 9500 Cergy-Pontoise (France); Glorieux, C; Sarens, B, E-mail: nicolas.wilkie-chancellier@u-cergy.f [Katholieke Universiteit Leuven, Laboratorium voor Akoestiek en Thermische Fysica (LATF), Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2009-11-01

    Laser ultrasonics allow the observation of transient surface waves along their propagation media and their interaction with encountered objects like cracks, holes, borders. In order to characterize and localize these transient aspects in the Space-Time-Wave number-Frequency domains, the 1D, 2D and 3D Gabor transforms are presented. The Gabor transform enables the identification of several properties of the local wavefronts such as their shape, wavelength, frequency, attenuation, group velocity and the full conversion sequence along propagation. The ability of local properties identification by Gabor transform is illustrated by two experimental studies: Lamb waves generated by an annular source on a circular quartz and Lamb wave interaction with a fluid droplet. In both cases, results obtained with Gabor transform enable ones to identify the observed local waves.

  15. Space geodesy: subsidence and flooding in New Orleans.

    Science.gov (United States)

    Dixon, Timothy H; Amelung, Falk; Ferretti, Alessandro; Novali, Fabrizio; Rocca, Fabio; Dokka, Roy; Sella, Giovanni; Kim, Sang-Wan; Wdowinski, Shimon; Whitman, Dean

    2006-06-01

    It has long been recognized that New Orleans is subsiding and is therefore susceptible to catastrophic flooding. Here we present a new subsidence map for the city, generated from space-based synthetic-aperture radar measurements, which reveals that parts of New Orleans underwent rapid subsidence in the three years before Hurricane Katrina struck in August 2005. One such area is next to the Mississippi River-Gulf Outlet (MRGO) canal, where levees failed during the peak storm surge: the map indicates that this weakness could be explained by subsidence of a metre or more since their construction.

  16. Ensemble of ground subsidence hazard maps using fuzzy logic

    Science.gov (United States)

    Park, Inhye; Lee, Jiyeong; Saro, Lee

    2014-06-01

    Hazard maps of ground subsidence around abandoned underground coal mines (AUCMs) in Samcheok, Korea, were constructed using fuzzy ensemble techniques and a geographical information system (GIS). To evaluate the factors related to ground subsidence, a spatial database was constructed from topographic, geologic, mine tunnel, land use, groundwater, and ground subsidence maps. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 70/30 for training and validation of the models. The relationships between the detected ground-subsidence area and the factors were identified and quantified by frequency ratio (FR), logistic regression (LR) and artificial neural network (ANN) models. The relationships were used as factor ratings in the overlay analysis to create ground-subsidence hazard indexes and maps. The three GSH maps were then used as new input factors and integrated using fuzzy-ensemble methods to make better hazard maps. All of the hazard maps were validated by comparison with known subsidence areas that were not used directly in the analysis. As the result, the ensemble model was found to be more effective in terms of prediction accuracy than the individual model.

  17. Large networks of artificial radar reflectors to monitor land subsidence in natural lowlying coastal areas

    Science.gov (United States)

    Tosi, Luigi; Strozzi, Tazio; Teatini, Pietro

    2014-05-01

    Deltas, lagoons, estuaries are generally much prone to land subsidence. They are also very sensitive to land lowering due to their small elevation with respect to the mean sea level, also in view of the expected eustatic sea rise due to climate changes. Land subsidence can be presently monitored with an impressive accuracy by Persistent Scatterer Interferometry (PSI) on the large megacities that are often located on lowlying coastlands, e.g., Shanghai (China) on the Yangtze River delta, Dhaka (Bangladesh) on the Gange River delta, New Orleans (Louisiana) on the Mississippi river delta. Conversely, the land movements of the portions of these transitional coastlands where natural environments still persist are very challenging to be measured. The lack of anthropogenic structures strongly limits the use of PSI and the difficult accessibility caused by the presence of marshlands, tidal marshes, channels, and ponds yield traditional methodologies, such as levelling and GPS, both time-consuming and costly. In this contribution we present a unique experimental study aimed at using a large network of artificial radar reflectors to measure land subsidence in natural coastal areas. The test site is the 60-km long, 10-15 km wide lagoon of Venice, Italy, where previous PSI investigations revealed the lack of radar reflectors in large portions of the northern and southern lagoon basins (e.g., Teatini et al., 2011). A network of 57 trihedral corner reflectors (TCRs) were established between the end of 2006 and the beginning of 2007 and monitored by ENVISAT ASAR and TerraSAR-X acquisitions covering the time period from 2007 to 2011 (Strozzi et al., 2012). The application has provided general important insights on the possibility of controlling land subsidence using this approach. For example: (i) relatively small-size (from 0.5 to 1.0 m edge length) and cheap (few hundred euros) TCRs suffice to be clearly detectable from the radar sensors because of the low backscattering

  18. A poroelastic reservoir model for predicting subsidence and mapping subsurface pressure fronts

    International Nuclear Information System (INIS)

    Du, J.; Olson, J.E.

    2001-01-01

    A forward model was constructed to numerically predict surface subsidence and reservoir compaction following the approach of Segall [Pure Appl. Phys. 139 (1992) 536]. A nucleus of poroelastic strain is numerically integrated over a rectangular prism assuming constant pressure change. This fundamental geometry allows a reservoir to be divided into many small cubic blocks in a manner similar to reservoir simulation. The subsidence and compaction effects of the pressure change throughout the reservoir are calculated by the superposition of results from each individual block. Using forward modeling, pressure boundary conditions can be acquired from pressure test data or reservoir simulation predictions. An inversion model also was developed that can track pressure fronts in a subsurface reservoir using surface displacements. The capability of the inversion model was demonstrated using synthetic examples of one-well and four-well cases with different layouts of surface observation locations. The impact of noise on the inversion result is also included

  19. A Simple Model to Describe the Relationship among Rainfall, Groundwater and Land Subsidence under a Heterogeneous Aquifer

    Science.gov (United States)

    Zheng, Y. Y.; Chen, Y. L.; Lin, H. R.; Huang, S. Y.; Yeh, T. C. J.; Wen, J. C.

    2017-12-01

    Land subsidence is a very serious problem of Zhuoshui River alluvial fan, Taiwan. The main reason of land subsidence is a compression of soil, but the compression measured in the wide area is very extensive (Maryam et al., 2013; Linlin et al., 2014). Chen et al. [2010] studied the linear relationship between groundwater level and subsurface altitude variations from Global Positioning System (GPS) station in Zhuoshui River alluvial fan. But the subsurface altitude data were only from two GPS stations. Their distributions are spared and small, not enough to express the altitude variations of Zhuoshui River alluvial fan. Hung et al. [2011] used Interferometry Synthetic Aperture Radar (InSAR) to measure the surface subsidence in Zhuoshui River alluvial fan, but haven't compared with groundwater level. The study compares the correlation between rainfall events and groundwater level and compares the correlation between groundwater level and subsurface altitude, these two correlation affected by heterogeneous soil. From these relationships, a numerical model is built to simulate the land subsidence variations and estimate the coefficient of aquifer soil compressibility. Finally, the model can estimate the long-term land subsidence. Keywords: Land Subsidence, InSAR, Groundwater Level, Numerical Model, Correlation Analyses

  20. Formation mechanism of land subsidence in the North China Plain

    Science.gov (United States)

    Guo, Haipeng; Cheng, Guoming

    2014-05-01

    Land subsidence is a progressive and gradual geological disaster, whose development is irreversible. Due to rapid development of industrialization and urbanization, land subsidence occurs commonly in the North China Plain, and has become the main environmental factor impacting sustainable economic and social development. This study presents a brief review on the current situation of land subsidence in the North China Plain. Then the hydrologic, hydrogeologic and anthropogenic conditions favorable for the formation of land subsidence are analyzed, indicating that the formation of land subsidence is mainly determined by local geological condition and enabling conditions, e.g. long-term excessive exploitation of groundwater and engineering construction. A correlation analysis was conducted in both the North China Plain and Cangzhou region, a typical area where severe land subsidence occurs, of the quantitative relationship between deep groundwater yield and the land subsidence. The analysis results indicate that the land subsidence volume accounts for 40% to 44% of deep water yield in the North China Plain, indirectly showing the proportion of released water from compressibility of the aquifer and the aquitard in deep groundwater yield. In Cangzhou region, this proportion was calculated as 58%, far greater than that of the North China Plain. This is induced by the local lithologic structure and recharge condition of deep groundwater in Cangzhou region. The analysis of soil samples in Cangzhou region shows that strong relations exist among different physical parameters, and good change laws of compression with depth and pressure are found for soil samples. The hydraulic conductivities of clay are six orders of magnitude greater than those of the aquifer, implying the strong hypothesis of land subsidence. This analysis provides data and scientific basis for further study on formation mechanism of land subsidence in Cangzhou region and objective evaluation of its

  1. Threat of land subsidence in and around Kolkata City and East ...

    Indian Academy of Sciences (India)

    ile wetland to minimize the adverse environmental impacts of groundwater development. This study, for the first time, indicates the threat of possible land subsidence due to unrestricted groundwater abstraction in the EKW and also out- lines a groundwater management plan for sustain- able development of groundwater in ...

  2. Uplift and Subsidence Associated with the Great Aceh-Andaman Earthquake of 2004

    Science.gov (United States)

    2006-01-01

    based on data from JPL's Topex/Poseidon satellite. The model was used to determine the relative sea surface height at each location at the time each image was acquired, a critical component used to quantify the deformation. The scientists' method of using satellite imagery to recognize changes in elevation relative to sea surface height and of using a tidal model to place quantitative bounds on coseismic uplift or subsidence is a novel approach that can be adapted to other forms of remote sensing and can be applied to other subduction zones in tropical regions. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  3. The Monitoring and Spatial-Temporal Evolution Characteristic Analysis for Land Subsidence in Beijing

    Science.gov (United States)

    Zhou, Q.; Zhao, W.; Yu, J.

    2018-05-01

    At present the land subsidence has been the main geological disaster in the plain area of China, and became one of the most serious disaster that restrict the social and economic sustainable development, it also is an important content in the project of national geographic conditions monitoring. With the development of economy and society, Beijing as the capital of China has experienced significant population growth in the last few decades which led to over-exploitation of the ground water to meet the water demand of more than 20 million inhabitants, especially in the urban region with high population density. However, the rainfall and surface runoff can't satisfy the need of aquifer recharge that product the land subsidence. As China's political center and a metropolis, there are a lot of large constructions, underground traffic projects and complicated municipal pipeline network, and Beijing is also an important traffic hub for national railway and highway network, all of them would be threatened by the land subsidence disaster. In this article the author used twenty ENVISAT Synthetic Aperture Radar (SAR) images acquired in 2008 June-2010 August and ten TerraSAR images acquired in 2011 June-2012 September were processed with Small Baseline Subset SAR Interferometry (SBAS-InSAR) techniques, to investigate spatial and temporal patterns of land subsidence in the urban area of Beijing.

  4. Releveling and behavior of strap-retrofitted damaged test foundations exposed to mine subsidence

    International Nuclear Information System (INIS)

    Marino, G.G.

    1997-01-01

    Test foundation walls were constructed in an area of planned subsidence. These crawl space-sized block bearing walls were located in the tension zone of a longwall panel. The test walls were 1.2 m (40 ft) long and were vertically loaded on top with soil binds to simulate the weight of a house. As the longwall proceeded past these test foundations, subsidence movements damaged the test structures. These damaged foundations were then structurally and aesthetically repaired by using a steel strap retrofit and applying a cementitious surface coating. The repaired test foundations underwent significant subsequent subsidence as an adjacent longwall was mined beneath. The response of the repaired foundation is summarized in this paper. The steel straps were also used to relevel another set of the test foundations after they were tilted and damaged by subsidence. First, the straps were applied to the block bearing walls, and then wall jacks were used to lift the upper portion of the walls to a level position. This releveling procedure is outlined with the results

  5. Differential substrate subsidence of the EnviHUT project pitched extensive green roof

    Directory of Open Access Journals (Sweden)

    Nečadová Klára

    2017-01-01

    Full Text Available In primary phase of testing building physical characteristics of the EnviHUT project extensive and semi-intensive roofs with 30° inclination occurred exceptional substrate subsidence. An extensive testing field with retaining geocell-system evinced differential subsidence of individual sectors after six months. Measured subsidence of installed substrate reached 40 % subsidence compared to originally designed height (intended layer thickness. Subsequent deformation of geocell-system additionally caused partial slide of substrate to drip edge area. These slides also influenced initial development of stonecrop plants on its surface. Except functional shortages the aesthetical function of the whole construction is influenced by the mentioned problem. The stated paper solves mentioned issues in view of installation method optimization, selection and modification of used roof substrate and in view of modification of geometric and building installed elements retaining system arrangement. Careful adjustment of roof system geometry and enrichment of original substrate fraction allow full functionality from pitched extensive green roof setting up. The modification scheme and its substantiation is a part of this technical study output.

  6. THE MONITORING AND SPATIAL-TEMPORAL EVOLUTION CHARACTERISTIC ANALYSIS FOR LAND SUBSIDENCE IN BEIJING

    Directory of Open Access Journals (Sweden)

    Q. Zhou

    2018-05-01

    Full Text Available At present the land subsidence has been the main geological disaster in the plain area of China, and became one of the most serious disaster that restrict the social and economic sustainable development, it also is an important content in the project of national geographic conditions monitoring. With the development of economy and society, Beijing as the capital of China has experienced significant population growth in the last few decades which led to over-exploitation of the ground water to meet the water demand of more than 20 million inhabitants, especially in the urban region with high population density. However, the rainfall and surface runoff can’t satisfy the need of aquifer recharge that product the land subsidence. As China’s political center and a metropolis, there are a lot of large constructions, underground traffic projects and complicated municipal pipeline network, and Beijing is also an important traffic hub for national railway and highway network, all of them would be threatened by the land subsidence disaster. In this article the author used twenty ENVISAT Synthetic Aperture Radar (SAR images acquired in 2008 June–2010 August and ten TerraSAR images acquired in 2011 June–2012 September were processed with Small Baseline Subset SAR Interferometry (SBAS-InSAR techniques, to investigate spatial and temporal patterns of land subsidence in the urban area of Beijing.

  7. Modeling of earth fissures caused by land subsidence due to groundwater withdrawal

    Directory of Open Access Journals (Sweden)

    B. B. Panda

    2015-11-01

    Full Text Available Land subsidence and earth fissures are phenomena related to groundwater withdrawal in a sedimentary basin. If the rock basement or basin lithology is irregular, both vertical and horizontal displacements can be induced due to differential settlement and tensile stresses appearing in the soil mass. If the differential settlement is of sufficient magnitude, earth fissuring can occur within tensile zones. The magnitudes of compaction and fissure geometry are closely related to the thickness and skeletal compressibility of fine-grained sediments within the aquifer system. Land subsidence and earth fissuring were modeled by employing a two-dimensional (2-D coupled seepage and stress-strain finite element analysis. The basin bedrock geometry, lithological variation, measurements of surface displacements, and changes in hydraulic head were the critical input parameter for the subsidence modeling. Simulation results indicate that strain had exceeded the approximate threshold for fissure formation of 0.02 to 0.06 % in the area of the identified fissures. The numerical model was used to predict future subsidence and potential earth fissures for flood control structures within the metro Phoenix area.

  8. Land subsidence susceptibility and hazard mapping: the case of Amyntaio Basin, Greece

    Science.gov (United States)

    Tzampoglou, P.; Loupasakis, C.

    2017-09-01

    Landslide susceptibility and hazard mapping has been applying for more than 20 years succeeding the assessment of the landslide risk and the mitigation the phenomena. On the contrary, equivalent maps aiming to study and mitigate land subsidence phenomena caused by the overexploitation of the aquifers are absent from the international literature. The current study focuses at the Amyntaio basin, located in West Macedonia at Florina prefecture. As proved by numerous studies the wider area has been severely affected by the overexploitation of the aquifers, caused by the mining and the agricultural activities. The intensive ground water level drop has triggered extensive land subsidence phenomena, especially at the perimeter of the open pit coal mine operating at the site, causing damages to settlements and infrastructure. The land subsidence susceptibility and risk maps were produced by applying the semi-quantitative WLC (Weighted Linear Combination) method, especially calibrated for this particular catastrophic event. The results were evaluated by using detailed field mapping data referring to the spatial distribution of the surface ruptures caused by the subsidence. The high correlation between the produced maps and the field mapping data, have proved the great value of the maps and of the applied technique on the management and the mitigation of the phenomena. Obviously, these maps can be safely used by decision-making authorities for the future urban safety development.

  9. Is There a Tectonic Component On The Subsidence Process In Morelia, Mexico?

    Science.gov (United States)

    Cabral-Cano, E.; Arciniega-Ceballos, A.; Diaz-Molina, O.; Garduno-Monroy, V.; Avila-Olivera, J.; Hernández-Madrigal, V.; Hernández-Quintero, E.

    2009-12-01

    Subsidence and faulting have affected cities in central Mexico for decades. This process causes substantial damages to the urban infrastructure, housing and large buildings, and is an important factor to be consider when planning urban development, land use zoning and hazard mitigation strategies. In Mexico, studies using InSAR and GPS based observations have shown that high subsidence areas are usually associated with the presence of thick lacustrine and fluvial deposits. In most cases the subsidence is closely associated with intense groundwater extraction that results in sediment consolidation. However, recent studies in the colonial city of Morelia in central Mexico show a different scenario, where groundwater extraction cannot solely explain the observed surface deformation. Our results indicate that a more complex interplay between sediment consolidation and tectonic forces is responsible for the subsidence and fault distribution within the city. The city of Morelia has experienced fault development recognized since the 80’s. This situation has led to the recognition of 9 NE-SW trending faults that cover most of its urbanized area. Displacement maps derived from differential InSAR analysis show that the La Colina fault is the highest subsiding area in Morelia with maximum annual rates over -35 mm/yr. However, lithological mapping and field reconnaissance clearly show basalts outcropping this area of high surface deformation. The subsurface characterization of the La Colina fault was carried out along 27 Ground Penetrating Radar (GPR) sections and 6 seismic tomography profiles. Assuming a constant, linear past behavior of the subsidence as observed by InSAR techniques, and based on the interpretation of the fault dislocation imaged by the shallow GPR and seismic tomography, it is suggested that the La Colina fault may have been active for the past 220-340 years and clearly pre-dates the intense water well extraction from the past century. These conditions

  10. A MATLAB®-based program for 3D visualization of stratigraphic setting and subsidence evolution of sedimentary basins: example application to the Vienna Basin

    Science.gov (United States)

    Lee, Eun Young; Novotny, Johannes; Wagreich, Michael

    2015-04-01

    In recent years, 3D visualization of sedimentary basins has become increasingly popular. Stratigraphic and structural mapping is highly important to understand the internal setting of sedimentary basins. And subsequent subsidence analysis provides significant insights for basin evolution. This study focused on developing a simple and user-friendly program which allows geologists to analyze and model sedimentary basin data. The developed program is aimed at stratigraphic and subsidence modelling of sedimentary basins from wells or stratigraphic profile data. This program is mainly based on two numerical methods; surface interpolation and subsidence analysis. For surface visualization four different interpolation techniques (Linear, Natural, Cubic Spline, and Thin-Plate Spline) are provided in this program. The subsidence analysis consists of decompaction and backstripping techniques. The numerical methods are computed in MATLAB® which is a multi-paradigm numerical computing environment used extensively in academic, research, and industrial fields. This program consists of five main processing steps; 1) setup (study area and stratigraphic units), 2) loading of well data, 3) stratigraphic modelling (depth distribution and isopach plots), 4) subsidence parameter input, and 5) subsidence modelling (subsided depth and subsidence rate plots). The graphical user interface intuitively guides users through all process stages and provides tools to analyse and export the results. Interpolation and subsidence results are cached to minimize redundant computations and improve the interactivity of the program. All 2D and 3D visualizations are created by using MATLAB plotting functions, which enables users to fine-tune the visualization results using the full range of available plot options in MATLAB. All functions of this program are illustrated with a case study of Miocene sediments in the Vienna Basin. The basin is an ideal place to test this program, because sufficient data is

  11. Ground Subsidence over Beijing-Tianjin-Hebei Region during Three Periods of 1992 to 2014 Monitored by Interferometric SAR

    Directory of Open Access Journals (Sweden)

    ZHANG Yonghong

    2016-09-01

    Full Text Available The Beijing-Tianjin-Hebei region suffers the most serious ground subsidence in China, which has caused huge economic losses every year. Therefore, ground subsidence was listed as an important mission in the project of geographic conditions monitoring over Beijing-Tianjin-Hebei launched by the National Administration of Surveying, Mapping and Geoinformation in 2013. In this paper, we propose a methodology of ground subsidence monitoring over wide area, which is entitled "multiple master-image coherent target small-baseline interferometric SAR (MCTSB-InSAR". MCTSB-InSAR is an improved time series InSAR technique with some unique features. SAR datasets used for ground subsidence monitoring over the Beijing-Tianjin-Hebei region include ERS-1/2 SAR images acquired between 1992 to 2000, ENVISAT ASAR images acquired between 2003 to 2010 and RADARSAT-2 images acquired between 2012 to 2014. This research represents a first ever effort on mapping ground subsidence over Beijing-Tianjin-Hebei region and over such as a long time span in China. In comparison with more than 120 leveling measurements collected in Beijing and Tianjin, the derived subsidence velocity has the accuracy of 8.7mm/year (1992—2000, 4.7mm/year (2003—2010, and 5.4mm/year (2012—2014 respectively. The spatial-temporal characteristics of the development of ground subsidence in Beijing and Tianjin are analyzed. In general, ground subsidence in Beijing kept continuously expanding in the period of 1992 to 2014. While, ground subsidence in Tianjin had already been serious in 1990s, had dramatically expanded during 2000s, and started to alleviate in recent years. The monitoring result is of high significance for prevention and mitigation of ground subsidence disaster, for making development plan, for efficient and effective utilization of water resource, and for adjustment of economic framework of this region. The result also indicates the effectiveness and reliability of the MCTSB

  12. The effective subsidence capacity concept: How to assure that subsidence in the Wadden Sea remains within defined limits?

    NARCIS (Netherlands)

    Waal, J.A. de; Roest,J.P.A.; Fokker, P.A.; Kroon, I.C.; Breunese, J.N.; Muntendam-Bos, A.G.; Oost, P.A.; Wirdum, G. van

    2012-01-01

    Subsidence caused by extraction of hydrocarbons and solution salt mining is a sensitive issue in the Netherlands. An extensive legal, technical and organisational framework is in place to ensure a high probability that such subsidence will stay within predefined limits. The key question is: how much

  13. Family Home Childcare Providers: A Comparison of Subsidized and Non-Subsidized Working Environments and Employee Issues

    Science.gov (United States)

    Shriner, Michael; Schlee, Bethanne M.; Mullis, Ronald L.; Cornille, Thomas A.; Mullis, Ann K.

    2008-01-01

    Federal and State Governments provide childcare subsidies for low-income working families. This study compares the encountered issues and working environments of family home providers of subsidized and non-subsidized childcare. Questionnaires were distributed throughout a southeastern state in the United States to 548 family home childcare…

  14. Deriving Spatio-Temporal Development of Ground Subsidence Due to Subway Construction and Operation in Delta Regions with PS-InSAR Data: A Case Study in Guangzhou, China

    Directory of Open Access Journals (Sweden)

    Huiqiang Wang

    2017-09-01

    Full Text Available Subways have been an important method for relieving traffic pressures in urban areas, but ground subsidence, during construction and operation, can be a serious problem as it may affect the safety of its operation and that of the surrounding buildings. Thus, conducting long-term ground deformation monitoring and modeling for subway networks are essential. Compared with traditional geodetic methods, the Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR technique offers wider coverage and denser measurements along subway lines. In this study, we mapped the surface deformation of the Guangzhou subway network with Advanced Synthetic Aperture Radar (ASAR and Phased Array Type L-band Synthetic Aperture Radar (PALSAR data using the Interferometric Point Target Analysis (IPTA technique. The results indicate that newly excavated tunnels have regional subsidence with an average rate of more than 8 mm/year, as found on Lines Two, Three, Six, and GuangFo (GF. Furthermore, we determined the spatio-temporal subsidence behavior of subways with PALSAR in delta areas using Peck’s formula and the logistic time model. We estimated the tunneling-related parameters in soft soil areas, which had not been previously explored. We examined a section of line GF, as an example, to estimate the ground settlement trough development. The results showed the maximum settlement increased from −5.2 mm to −23.6 mm and its ground loss ratio ranged from 1.5–8.7% between 13 July 2008 and 19 January 2011. In addition, we found that the tunnels in line GF will become stable after a period of about 2300 days in peak subsidence areas. The results show that the proposed approach can help explain the dynamic ground subsidence along a metro line. This study can provide references for urban subway projects in delta areas, and for the risk assessment of nearby buildings and underground pipelines along metro lines.

  15. Assessing ground compaction via time lapse surface wave analysis

    Czech Academy of Sciences Publication Activity Database

    Dal Moro, Giancarlo; Al-Arifi, N.; Moustafa, S.S.R.

    2016-01-01

    Roč. 13, č. 3 (2016), s. 249-256 ISSN 1214-9705 Institutional support: RVO:67985891 Keywords : Full velocity spectrum (FVS) analysis * ground compaction * ground compaction * phase velocities * Rayleigh waves * seismic data inversion * surface wave dispersion * surface waves Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.699, year: 2016

  16. Production induced subsidence and seismicity in the Groningen gas field - can it be managed?

    Science.gov (United States)

    de Waal, J. A.; Muntendam-Bos, A. G.; Roest, J. P. A.

    2015-11-01

    Reliable prediction of the induced subsidence resulting from gas production is important for a near sea level country like the Netherlands. Without the protection of dunes, dikes and pumping, large parts of the country would be flooded. The predicted sea-level rise from global warming increases the challenge to design proper mitigation measures. Water management problems from gas production induced subsidence can be prevented if measures to counter its adverse effects are taken timely. This requires reliable subsidence predictions, which is a major challenge. Since the 1960's a number of large, multi-decade gas production projects were started in the Netherlands. Extensive, well-documented subsidence prediction and monitoring technologies were applied. Nevertheless predicted subsidence at the end of the Groningen field production period (for the centre of the bowl) went from 100 cm in 1971 to 77 cm in 1973 and then to 30 cm in 1977. In 1984 the prediction went up again to 65 cm, down to 36 cm in 1990 and then via 38 cm (1995) and 42 cm (2005) to 47 cm in 2010 and 49 cm in 2013. Such changes can have large implications for the planning of water management measures. Until 1991, when the first event was registered, production induced seismicity was not observed nor expected for the Groningen field. Thereafter the number of observed events rose from 5 to 10 per year during the 1990's to well over a hundred in 2013. The anticipated maximum likely magnitude rose from an initial value of less than 3.0 to a value of 3.3 in 1993 and then to 3.9 in 2006. The strongest tremor to date occurred near the village of Huizinge in August 2012. It had a magnitude of 3.6, caused significant damage and triggered the regulator into an independent investigation. Late 2012 it became clear that significantly larger magnitudes cannot be excluded and that values up to magnitude 5.0 cannot be ruled out. As a consequence the regulator advised early 2013 to lower Groningen gas production by as

  17. Production induced subsidence and seismicity in the Groningen gas field – can it be managed?

    Directory of Open Access Journals (Sweden)

    J. A. de Waal

    2015-11-01

    Full Text Available Reliable prediction of the induced subsidence resulting from gas production is important for a near sea level country like the Netherlands. Without the protection of dunes, dikes and pumping, large parts of the country would be flooded. The predicted sea-level rise from global warming increases the challenge to design proper mitigation measures. Water management problems from gas production induced subsidence can be prevented if measures to counter its adverse effects are taken timely. This requires reliable subsidence predictions, which is a major challenge. Since the 1960's a number of large, multi-decade gas production projects were started in the Netherlands. Extensive, well-documented subsidence prediction and monitoring technologies were applied. Nevertheless predicted subsidence at the end of the Groningen field production period (for the centre of the bowl went from 100 cm in 1971 to 77 cm in 1973 and then to 30 cm in 1977. In 1984 the prediction went up again to 65 cm, down to 36 cm in 1990 and then via 38 cm (1995 and 42 cm (2005 to 47 cm in 2010 and 49 cm in 2013. Such changes can have large implications for the planning of water management measures. Until 1991, when the first event was registered, production induced seismicity was not observed nor expected for the Groningen field. Thereafter the number of observed events rose from 5 to 10 per year during the 1990's to well over a hundred in 2013. The anticipated maximum likely magnitude rose from an initial value of less than 3.0 to a value of 3.3 in 1993 and then to 3.9 in 2006. The strongest tremor to date occurred near the village of Huizinge in August 2012. It had a magnitude of 3.6, caused significant damage and triggered the regulator into an independent investigation. Late 2012 it became clear that significantly larger magnitudes cannot be excluded and that values up to magnitude 5.0 cannot be ruled out. As a consequence the regulator advised early 2013 to lower Groningen gas

  18. Subsidence (2004-2009) in and near lakebeds of the Mojave River and Morongo groundwater basins, southwest Mojave Desert, California

    Science.gov (United States)

    Solt, Mike; Sneed, Michelle

    2014-01-01

    Subsidence, in the vicinity of dry lakebeds, within the Mojave River and Morongo groundwater basins of the southwest Mojave Desert has been measured by Interferometric Synthetic Aperture Radar (InSAR). The investigation has focused on determining the location, extent, and magnitude of changes in land-surface elevation. In addition, the relation of changes in land-surface elevation to changes in groundwater levels and lithology was explored. This report is the third in a series of reports investigating land-surface elevation changes in the Mojave and Morongo Groundwater Basins, California. The first report, U.S. Geological Survey (USGS) Water-Resources Investigations Report 03-4015 by Sneed and others (2003), describes historical subsidence and groundwater-level changes in the southwest Mojave Desert from 1969 to 1999. The second report, U.S. Geological Survey Water-Resources Investigations Report 07-5097, an online interactive report and map, by Sneed and Brandt (2007), describes subsidence and groundwater-level changes in the southwest Mojave Desert from 1999 to 2004. The purpose of this report is to document an updated assessment of subsidence in these lakebeds and selected neighboring areas from 2004 to 2009 as measured by InSAR methods. In addition, continuous Global Positioning System (GPS)(2005-10), groundwater level (1951-2010), and lithologic data, if available, were used to characterize compaction mechanisms in these areas. The USGS California Water Science Center’s interactive website for the Mojave River and Morongo groundwater basins was created to centralize information pertaining to land subsidence and water levels and to allow readers to access available data and related reports online. An interactive map of land subsidence and water levels in the Mojave River and Morongo groundwater basins displays InSAR interferograms, subsidence areas, subsidence contours, hydrographs, well information, and water-level contours. Background information, including

  19. The interaction between land subsidence and urban development in China

    Directory of Open Access Journals (Sweden)

    Y. Yang

    2015-11-01

    Full Text Available The Yangtze River Delta and North China Plain are experiencing serious land subsidence development and are also the areas that have undergone the fastest urbanization. Rapid urban development inevitably requires more water resources. However, China is a country with small per capita water resources, nonuniform distribution of water resources, and over-exploitation of groundwater – all of which are critical factors contributing to the potential for a land subsidence disaster. In addition, land subsidence has brought about elevation loss, damaged buildings, decreased safety of rail transit projects, lowered land value, and other huge economic losses and potential safety hazards in China. In this paper, Beijing, a typical northern Chinese city deficient in water, is taken as an example to explore (a the problems of urban development, utilization of water resources, and land subsidence development; (b the harm and influence of land subsidence hazards on urban construction; and (c the relationship between urban development and land subsidence. Based on the results, the author has predicted the trend of urban development and land subsidence in Beijing and puts forward her viewpoints and suggestions.

  20. A study on the mechanism and prediction of mine subsidence

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung-Chan; Moon, Hyun-Koo [Hanyang University, Seoul(Korea)

    2001-06-30

    The ground subsidence problem due to the increasing number of abandoned coal mines becomes serious. Recently, the sinkhole type subsidence occurred in many abandoned mines has raised an urgent stability question on the nearby railroads, bridges and buildings. But the study on the mechanism of discontinuous subsidence has not attracted much attention in the past. This study is mainly concerned with the mechanism and prediction of mine subsidence. Analyzed and presented in this study are the maximum possible height of roof caving for various shapes of caved zone using bulking factor approach, the critical depth of protective coal seam using the limit equilibrium method, and the factor of safety of stops using the limit equilibrium method with the friction angle and cohesion of rock. As prediction tools the influence function method and the probabilistic method are presented. An empirical equation is obtained from the subsidence data in Chulam and Chungsung areas and applied to Manhang coal mine. The probability of subsidence in Manhang area turned out to be high according to the subsidence frequency of 9.66. (author). 12 refs., 7 tabs., 21 figs.

  1. An integrated assessment framework for land subsidence in delta cities

    Directory of Open Access Journals (Sweden)

    T. H. M. Bucx

    2015-11-01

    Full Text Available In many delta cities land subsidence exceeds absolute sea level rise up to a factor of ten by excessive groundwater extraction related to rapid urbanization and population growth. Without change, parts of Jakarta, Ho Chi Minh City, Bangkok and numerous other delta (and coastal cities will sink below sea level. Increased flooding and also other widespread impacts of land subsidence result already in damage of billions of dollars per year. In order to gain insight in the complex, multi-sectoral aspects of subsidence, to raise awareness and to support decision making on appropriate adaptation strategies and measures, an Integrated Assessment Framework (IAF for subsidence is introduced, illustrated by several (delta case studies. Based on that a list of 10 generic key issues and possible solutions is presented in order to further develop and support a (generic approach how to deal with subsidence in current and future subsidence-prone areas. For exchange of experiences and knowledge development.on subsidence in deltas the Delta Alliance, a knowledge network of deltas worldwide, can be supportive.

  2. Land subsidence and recovery in the Albuquerque Basin, New Mexico, 1993–2014

    Science.gov (United States)

    Driscoll, Jessica M.; Brandt, Justin T.

    2017-08-14

    The Albuquerque Bernalillo County Water Utility Authority (ABCWUA) drinking water supply was almost exclusively sourced from groundwater from within the Albuquerque Basin before 2008. In 2008, the San Juan-Chama Drinking Water Project (SJCDWP) provided surface-water resources to augment the groundwater supply, allowing for a reduction in groundwater pumping in the Albuquerque Basin. In 2013, the U.S. Geological Survey, in cooperation with the ABCWUA, began a study to measure and compare aquifer-system and land-surface elevation change before and after the SJCDWP in 2008. Three methods of data collection with different temporal and spatial resolutions were used for this study: (1) aquifer-system compaction data collected continuously at a single extensometer from 1994 to 2013; (2) land-surface elevation change from Global Positioning System (GPS) surveys of a network of monuments collected in 1994–95, 2005, and 2014; and (3) spatially distributed Interferometric Synthetic Aperture Radar (InSAR) satellite data from 1993 to 2010. Collection of extensometer data allows for direct and continuous measurement of aquifer-system compaction at the extensometer location. The GPS surveys of a network of monuments allow for periodic measurements of land-surface elevation change at monument locations. Interferograms are limited in time by lifespan of the satellite, orbital pattern, and data quality but allow for measurement of gridded land-surface elevation change over the study area. Each of these methods was employed to provide a better understanding of aquifer-system compaction and land-surface elevation change for the Albuquerque Basin.Results do not show large magnitudes of subsidence in the Albuquerque Basin. High temporal-resolution but low spatial-resolution data measurements of aquifer-system compaction at the Albuquerque extensometer show elastic aquifer-system response to recovering groundwater levels. Results from the GPS survey of the network of monuments show

  3. Proceedings of the 1985 conference on coal mine subsidence in the Rocky Mountain Region

    Energy Technology Data Exchange (ETDEWEB)

    Hynes, J.L. (ed.)

    1986-01-01

    A total of 20 papers were presented at the conference on the following subjects: reclamation projects; geological surveys; history and evolution of mining; essential components of mine subsidence; subsidence related damage; core recovery of poorly consolidated materials; evaluation of subsurface conditions; remote video inspection of abandoned coal mines; use of progressive failure model for subsidence prediction; chimney subsidence sinkhole development; analytical methods of subsidence prediction; monitoring networks; architectural mitigating measures; backfilling; awareness and planning; administrative aspects; mine subsidence insurance; risk management.

  4. Regional and local land subsidence at the Venice coastland by TerraSAR-X PSI

    Directory of Open Access Journals (Sweden)

    L. Tosi

    2015-11-01

    Full Text Available Land subsidence occurred at the Venice coastland over the 2008–2011 period has been investigated by Persistent Scatterer Interferometry (PSI using a stack of 90 TerraSAR-X stripmap images with a 3 m resolution and a 11-day revisiting time. The regular X-band SAR acquisitions over more than three years coupled with the very-high image resolution has significantly improved the monitoring of ground displacements at regional and local scales, e.g., the entire lagoon, especially the historical palaces, the MoSE large structures under construction at the lagoon inlets to disconnect the lagoon from the Adriatic Sea during high tides, and single small structures scattered within the lagoon environments. Our results show that subsidence is characterized by a certain variability at the regional scale with superimposed important local displacements. The movements range from a gentle uplift to subsidence rates of up to 35 mm yr−1. For instance, settlements of 30–35 mm yr−1 have been detected at the three lagoon inlets in correspondence of the MoSE works, and local sinking bowls up to 10 mm yr−1 connected with the construction of new large buildings or restoration works have been measured in the Venice and Chioggia historical centers. Focusing on the city of Venice, the mean subsidence of 1.1 ± 1.0 mm yr−1 confirms the general stability of the historical center.

  5. Cold cap subsidence for in situ vitrification and electrodes therefor

    Science.gov (United States)

    Buelt, James L.; Carter, John G.; Eschbach, Eugene A.; FitzPatrick, Vincent F.; Koehmstedt, Paul L.; Morgan, William C.; Oma, Kenton H.; Timmerman, Craig L.

    1992-01-01

    An electrode for use in in situ vitrification of soil comprises a molybdenum rod received within a conductive sleeve or collar formed of graphite. Electrodes of this type are placed on either side of a region containing buried waste material and an electric current is passed therebetween for vitrifying the soil between the electrodes. The graphite collar enhances the thermal conductivity of the electrode, bringing heat to the surface, and preventing the formation of a cold cap of material above the ground surface. The annulus between the molybdenum rod electrode and the graphite collar is filled with a conductive ceramic powder of a type that sinters upon the molybdenum rod, protecting the same from oxidation as the graphite material is consumed, or a metal powder which liquifies at operating temperatures. The molybdenum rod in the former case may be coated with an oxidation protectant, e.g. of molybdenum disilicide. As insulative blanket is suitably placed on the surface of the soil during processing to promote subsidence by allowing off-gassing and reducing surface heat loss. In other embodiments, connection to vitrification electrodes is provided below ground level to avoid loss of connection due to electrodes deterioration, or a sacrificial electrode may be employed when operation is started. Outboard electrodes can be utilized to square up the vitrified area. Further, the center of the molybdenum rod can be made hollow and filled with a powdered metal, such as copper, which liquifies at operating temperatures. In one embodiment, the molybdenum rod and the graphite collar are physically joined at the bottom.

  6. Microcanonical rates, gap times, and phase space dividing surfaces

    NARCIS (Netherlands)

    Ezra, Gregory S.; Waalkens, Holger; Wiggins, Stephen

    2009-01-01

    The general approach to classical unimolecular reaction rates due to Thiele is revisited in light of recent advances in the phase space formulation of transition state theory for multidimensional systems. Key concepts, such as the phase space dividing surface separating reactants from products, the

  7. Soil heat flux and day time surface energy balance closure

    Indian Academy of Sciences (India)

    Soil heat flux; surface energy balance; Bowen's ratio; sensible and latent ... The energy storage term for the soil layer 0–0.05 m is calculated and the ground heat ... When a new method that accounts for both soil thermal conduction and soil ...

  8. Tax subsidization of personal assistance services.

    Science.gov (United States)

    Mendelsohn, Steven; Myhill, William N; Morris, Michael

    2012-04-01

    Personal assistance services (PAS) is the term used to describe the range of assistance, services, and supports many people with disabilities and older Americans need to remain in their homes and communities. The Americans with Disabilities Act requires that people with disabilities receive essential services in the communities of their choice rather than in institutional settings. PAS availability often determines whether persons with disabilities become institutionalized or remain in their communities. PAS, however, are not inexpensive or broadly available. Strategies are needed to improve their availability to people with disabilities and the elderly. We sought to analyze 8 provisions of the Internal Revenue Code for their utility to make PAS more affordable and available. The authors conducted a legal analysis of 8 statutory provisions, as interpreted by regulations, court decisions, and other authoritative sources. Each of the tax provisions analyzed covers some PAS expenses incurred by an individual or family. Favorable tax treatment is impacted by the nature and amount of expenses and by the location and conditions of services. The current limitations and complexities of legal interpretations and the fact that many individuals with disabilities are uninformed about these tax provisions present challenges and opportunities. As the need for PAS grows, reform of tax policy is an important complement to health care and long-term services and supports for people with disabilities. To increase utilization of current beneficial tax provisions that subsidize the cost of PAS, individuals with disabilities and tax preparers must become better informed about using these provisions. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Detecting, mapping and monitoring of land subsidence in Jharia ...

    Indian Academy of Sciences (India)

    mitigation management of subsidence induced hazards. 1. Introduction ... rural areas with agricultural practices (Cao et al. 2008) ... wall mining, depillaring and caving), water log- ging of the .... accuracy trajectory determination system and the.

  10. Analysis of geodetic surveying on the margin of subsidence depression

    Czech Academy of Sciences Publication Activity Database

    Doležalová, Hana; Müller, Karel; Bláha, P.

    -, č. 273 (2006), s. 103-112 ISSN 0372-9508 Institutional research plan: CEZ:AV0Z30860518 Keywords : subsidence depression * levelling * height changes Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  11. Use of Cemented Super-Fine Unclassified Tailings Backfill for Control of Subsidence

    Directory of Open Access Journals (Sweden)

    Lei Yang

    2017-11-01

    Full Text Available Known for its advantages in preventing geological and environmental hazards, cemented paste backfill (CPB has become a topic of interest for scientists and mining engineers in recent decades. This paper presents the results of a study on the use of cemented super-fine tailings backfill (CSUTB in an underground mine for control of surface subsidence. An analytical solution is developed based on the available model to calculate the required strength of backfill when in contact with non-cemented tailings (NCT. The effect of solid contents on the rheological properties of CSUTB is investigated. A reasonable mix proportion (RMP of CSUTB is determined for Zhongguan Iron Mine (ZGIM based on laboratory experiments. The validity of RMP in surface subsidence control is verified by a 3D numerical model. The obtained results show that CSUTB requires higher strength when in contact with NCT than when in contact with orebody. Rheological characteristics, e.g., slump, fluidity, and bleeding rate of fresh CSUTB, decrease with higher solids content, of which values with a certain solids content can be determined by quadratic polynomial regression equations. RMP with a cement to tailings (c/t ratio of 1:10 and a solids content of 70% is recommended for ZGIM, as it shows favorable mechanical and rheological abilities. The deformation parameters (curvature, inclination, and horizontal deformation rate obtained from numerical modeling are acceptable and lower than critical values, meaning CSUTB can feasibly be used with RMP in subsidence control.

  12. Adaptation and mitigation of land subsidence in Semarang

    Science.gov (United States)

    Andreas, Heri; Abidin, Hasanuddin Z.; Gumilar, Irwan; Sidiq, Teguh Purnama; Yuwono, Bambang

    2017-07-01

    Land subsidence is not a new phenomenon for Semarang. Some report said the subsidence in Semarang probably is occurring for more than 100 years. Based on the leveling surveys conducted by the Centre of Environmental Geology from 1999 to 2003 it was found that relatively large subsidence was detected around Semarang Harbor, Pondok Hasanuddin, Bandar Harjo and around Semarang Tawang Railway station, with the rates ranging from 1 to 17 cm/year. Results derived from GPS show that land subsidence in Semarang has spatial and temporal variations. In general, subsidence rates in Semarang have an average rate of about 6 to 7 cm/year, with maximum rates that can go up to 14-19 cm/year at certain locations. The impact of land subsidence in Semarang can be seen in several forms, such as the wider expansion of (coastal) flooding areas "rob", cracking of buildings and infrastructure, and increased inland sea water intrusion. It also badly influences the quality and amenity of the living environment and life (e.g. health and sanitation condition) in the affected areas. In the case of Semarang, adaptation and mitigation are considered very important. We have been done some investigations to this area by field observations (mapping the flooded area, mapping the infrastructure problems, interviewing people and seeing the adaptations, conduct GPS measurement to see deformation, etc.), gather information from Government, from digital media, etc., and we noticed people increased their house, and the local goverment elevated the road and the bridge, etc. regulary over less decade periode as part of adaptation. We also noticed the Central Goverment built the dyke and pumping station. Our conclusions said that the adaptation only made temporaly since significant land subsidence keep coming and worsening by the sea level which is keep rising. Another conclusion, so far we have seen lack of mitigation program, monitoring or even inevective mitigation in Semarang related to this subsidence

  13. Working to Reduce Poverty: A National Subsidized Employment Proposal

    OpenAIRE

    Indivar Dutta-Gupta; Kali Grant; Julie Kerksick; Dan Bloom; Ajay Chaudry

    2018-01-01

    Subsidized employment programs that increase labor supply and demand are a proven, underutilized strategy for reducing poverty in the short and long term. These programs use public and private funds to provide workers wage-paying jobs, training, and wraparound services to foster greater labor force attachment while offsetting employers’ cost for wages, on-the-job training, and overhead. This article proposes two new separate but harmonized federal funding streams for subsidized employment tha...

  14. Areas of ground subsidence due to geofluid withdrawal

    Energy Technology Data Exchange (ETDEWEB)

    Grimsrud, G.P.; Turner, B.L.; Frame, P.A.

    1978-08-01

    Detailed information is provided on four geothermal areas with histories of subsidence. These were selected on the basis of: physical relevance of subsidence areas to high priority US geothermal sites in terms of withdrawn geofluid type, reservoir depth, reservoir geology and rock characteristics, and overburden characteristics; and data completeness, quality, and availability. The four areas are: Chocolate Bayou, Raft River Valley, Wairakei, and the Geysers. (MHR)

  15. Real-time defect detection on highly reflective curved surfaces

    Science.gov (United States)

    Rosati, G.; Boschetti, G.; Biondi, A.; Rossi, A.

    2009-03-01

    This paper presents an automated defect detection system for coated plastic components for the automotive industry. This research activity came up as an evolution of a previous study which employed a non-flat mirror to illuminate and inspect high reflective curved surfaces. According to this method, the rays emitted from a light source are conveyed on the surface under investigation by means of a suitably curved mirror. After the reflection on the surface, the light rays are collected by a CCD camera, in which the coating defects appear as shadows of various shapes and dimensions. In this paper we present an evolution of the above-mentioned method, introducing a simplified mirror set-up in order to reduce the costs and the complexity of the defect detection system. In fact, a set of plane mirrors is employed instead of the curved one. Moreover, the inspection of multiple bend radius parts is investigated. A prototype of the machine vision system has been developed in order to test this simplified method. This device is made up of a light projector, a set of plane mirrors for light rays reflection, a conveyor belt for handling components, a CCD camera and a desktop PC which performs image acquisition and processing. Like in the previous system, the defects are identified as shadows inside a high brightness image. At the end of the paper, first experimental results are presented.

  16. Modeling agricultural impacts of longwall mine subsidence: A GIS approach

    International Nuclear Information System (INIS)

    Darmody, R.G.; Vance, S.L.

    1994-01-01

    Illinois is both a major agricultural State and one of the leading coal-producing States. The future of coal mining in Illinois is longwall mining. One of the advantages of longwall mining, and the most noticeable consequence, is immediate subsidence. Mitigation of subsidence effects is the responsibility of the coal company. Research has shown that mitigation is usually effective, but may be difficult in many cases. Minimizing subsidence impact by avoiding sensitive soils in the mine plan is a possibility that should be considered. Predicting agricultural impacts of subsidence would give mine designers and regulating agencies an additional tool to use when evaluating mine plans. This paper reports on the development and an application of a predictive model of agricultural soil subsidence sensitivity (SSS). The SSS model involves integration of selected soil properties in a GIS (geographical information system) to assign a subsidence sensitivity class to a given area. Predicted crop yield losses at a proposed longwall mine in southern Illinois, using corn (Zea mays L.) as a reference, were 6.8% for the longwall panel area but ranged from 4.1% to 9.5% for the individual panels. The model also predicted that mitigation of the affected areas would reduce yield losses to 1.2% for the longwall area and to 0.5% to 1.7% for the individual panels

  17. Time Localisation of Surface Defects on Optical Discs

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Wickerhauser, M.V.

    Many have experienced problems with their Compact Disc player when a disc with a scratch or a finger print is tried played. One way to improve the playability of discs with such a defect, is to locate the defect in time and then handle it in a special way. As a consequence this time localisation...

  18. Time Localisation of Surface Defects on Optical Discs

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Wickerhauser, M.V.

    2004-01-01

    Many have experienced problems with their Compact Disc Player when a disc with a scratch or a fingerprint is tried played. One way to improve the playability of discs with such a defect, is to locate the defect in time and then handle it in a special way. As a consequence this time localization...

  19. Evaluation of curing compound application time on concrete surface durability.

    Science.gov (United States)

    2015-03-01

    The effect of curing compound application time after concrete finishing was examined in the study. Times of 30 minutes, 2 hours and 4 hours were considered and repeatability was evaluated with comparisons to a Phase I portion of the study. Scaling re...

  20. Laser surface processing with controlled nitrogen-argon concentration levels for regulated surface life time

    Science.gov (United States)

    Obeidi, M. Ahmed; McCarthy, E.; Brabazon, D.

    2018-03-01

    Laser surface modification can be used to enhance the mechanical properties of a material, such as hardness, toughness, fatigue strength, and corrosion resistance. Surface nitriding is a widely used thermochemical method of surface modification, in which nitrogen is introduced into a metal or other material at an elevated temperature within a furnace. It is used on parts where there is a need for increased wear resistance, corrosion resistance, fatigue life, and hardness. Laser nitriding is a novel method of nitriding where the surface is heated locally by a laser, either in an atmosphere of nitrogen or with a jet of nitrogen delivered to the laser heated site. It combines the benefits of laser modification with those of nitriding. Recent work on high toughness tool steel samples has shown promising results due to the increased nitrogen gas impingement onto the laser heated region. Increased surface activity and nitrogen adsorption was achieved which resulted in a deeper and harder surface compared to conventional hardening methods. In this work, the effects of the laser power, pulse repetition frequency, and overlap percentage on laser surface treatment of 316 L SST steel samples with an argon-nitrogen jet will be presented. Resulting microstructure, phase type, microhardness, and wear resistance are presented.

  1. Real-time 3D-surface-guided head refixation useful for fractionated stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Li Shidong; Liu Dezhi; Yin Gongjie; Zhuang Ping; Geng, Jason

    2006-01-01

    Accurate and precise head refixation in fractionated stereotactic radiotherapy has been achieved through alignment of real-time 3D-surface images with a reference surface image. The reference surface image is either a 3D optical surface image taken at simulation with the desired treatment position, or a CT/MRI-surface rendering in the treatment plan with corrections for patient motion during CT/MRI scans and partial volume effects. The real-time 3D surface images are rapidly captured by using a 3D video camera mounted on the ceiling of the treatment vault. Any facial expression such as mouth opening that affects surface shape and location can be avoided using a new facial monitoring technique. The image artifacts on the real-time surface can generally be removed by setting a threshold of jumps at the neighboring points while preserving detailed features of the surface of interest. Such a real-time surface image, registered in the treatment machine coordinate system, provides a reliable representation of the patient head position during the treatment. A fast automatic alignment between the real-time surface and the reference surface using a modified iterative-closest-point method leads to an efficient and robust surface-guided target refixation. Experimental and clinical results demonstrate the excellent efficacy of <2 min set-up time, the desired accuracy and precision of <1 mm in isocenter shifts, and <1 deg. in rotation

  2. Linear-time general decoding algorithm for the surface code

    Science.gov (United States)

    Darmawan, Andrew S.; Poulin, David

    2018-05-01

    A quantum error correcting protocol can be substantially improved by taking into account features of the physical noise process. We present an efficient decoder for the surface code which can account for general noise features, including coherences and correlations. We demonstrate that the decoder significantly outperforms the conventional matching algorithm on a variety of noise models, including non-Pauli noise and spatially correlated noise. The algorithm is based on an approximate calculation of the logical channel using a tensor-network description of the noisy state.

  3. Ground subsidence and associated ground fracturing in urban areas: InSAR monitoring of active tectonic structures (Ciudad Guzman, Colima Graben - Mexico)

    Science.gov (United States)

    Bignami, C.; Brunori, C.; Zucca, F.; Groppelli, G.; Norini, G.; Hernandez, N. D.; Stramondo, S.

    2013-12-01

    This study focuses on the observation of a creeping phenomenon that produces subsidence of the Zapotlan basin and ground fracturing in correspondence of the Ciudad Guzmàn (Jalisco - Mexico). The September 21, 2012, the Ciudad Guzmàn has been struck by a phenomenon of ground fracturing of about 1.5 km of length. This event caused the deformation of the roads and the damage of 30 houses, of which eight have been declared uninhabitable. The alignment of fractures is coincident with the escarpments produced in September 19, 1985, in the Ciudad Guzman urban area, when a strong earthquake, magnitude 8.1, struck the Mexican area, causing the deaths of at least 10,000 people and serious damage in Mexico City. In Ciudad Guzmán, about 60% of the buildings were destroyed, with about 50 loss of life. The city is located in the Zapotlan basin (northern Colima graben), a wide tectonic depression where the depth of the infilling sediments is about 1 km. This subsidence cannot be measured outside the urbanized area, but it can be considered as a deformation mechanism of the central part of the basin. In order to detect and mapping the spatio-temporal features of the processes that led to this event, we applied InSAR multi-temporal techniques to analyze a dataset of ENVISAT satellite SAR images, acquired in a time span between 2003-2010. InSAR techniques detect a subsidence of the north-western part of Ciudad Guzmàn of about 15 mm/yr in the time interval 2003-2010. The displacement occurred in September 21, 2012, was detected using two RadarSAT2 acquisitions (2012-03-22 and 2013-03-17). The explanation of surface movements based on interferometric results, ground data and geological field observations, allowed confirming surface effect due to the overexploitation of the aquifers and highlights a subsidence due to anthropogenic causes coupled to buried tectonic structures.

  4. On the initial condition problem of the time domain PMCHWT surface integral equation

    KAUST Repository

    Uysal, Ismail Enes; Bagci, Hakan; Ergin, A. Arif; Ulku, H. Arda

    2017-01-01

    Non-physical, linearly increasing and constant current components are induced in marching on-in-time solution of time domain surface integral equations when initial conditions on time derivatives of (unknown) equivalent currents are not enforced

  5. DInSAR-Based Detection of Land Subsidence and Correlation with Groundwater Depletion in Konya Plain, Turkey

    Directory of Open Access Journals (Sweden)

    Fabiana Caló

    2017-01-01

    Full Text Available In areas where groundwater overexploitation occurs, land subsidence triggered by aquifer compaction is observed, resulting in high socio-economic impacts for the affected communities. In this paper, we focus on the Konya region, one of the leading economic centers in the agricultural and industrial sectors in Turkey. We present a multi-source data approach aimed at investigating the complex and fragile environment of this area which is heavily affected by groundwater drawdown and ground subsidence. In particular, in order to analyze the spatial and temporal pattern of the subsidence process we use the Small BAseline Subset DInSAR technique to process two datasets of ENVISAT SAR images spanning the 2002–2010 period. The produced ground deformation maps and associated time-series allow us to detect a wide land subsidence extending for about 1200 km2 and measure vertical displacements reaching up to 10 cm in the observed time interval. DInSAR results, complemented with climatic, stratigraphic and piezometric data as well as with land-cover changes information, allow us to give more insights on the impact of climate changes and human activities on groundwater resources depletion and land subsidence.

  6. Feedback of land subsidence on the movement and conjunctive use of water resources

    Science.gov (United States)

    Schmid, Wolfgang; Hanson, Randall T.; Leake, Stanley A.; Hughes, Joseph D.; Niswonger, Richard G.

    2014-01-01

    The dependency of surface- or groundwater flows and aquifer hydraulic properties on dewatering-induced layer deformation is not available in the USGS's groundwater model MODFLOW. A new integrated hydrologic model, MODFLOW-OWHM, formulates this dependency by coupling mesh deformation with aquifer transmissivity and storage and by linking land subsidence/uplift with deformation-dependent flows that also depend on aquifer head and other flow terms. In a test example, flows most affected were stream seepage and evapotranspiration from groundwater (ETgw). Deformation feedback also had an indirect effect on conjunctive surface- and groundwater use components: Changed stream seepage and streamflows influenced surface-water deliveries and returnflows. Changed ETgw affected irrigation demand, which jointly with altered surface-water supplies resulted in changed supplemental groundwater requirements and pumping and changed return runoff. This modeling feature will improve the impact assessment of dewatering-induced land subsidence/uplift (following irrigation pumping or coal-seam gas extraction) on surface receptors, inter-basin transfers, and surface-infrastructure integrity.

  7. Potential of Holocene deltaic sequences for subsidence due to peat compaction

    NARCIS (Netherlands)

    Stouthamer, E.; van Asselen, S.

    2015-01-01

    Land subsidence is a major threat for the livability of deltas worldwide. Mitigation of the negative impacts of subsidence, like increasing flooding risk, requires an assessment of the potential of the deltas’ subsurfaces for subsidence. This enables the prediction of current and future subsidence

  8. A new soil mechanics approach to quantify and predict land subsidence by peat compression

    NARCIS (Netherlands)

    Koster, K.; Erkens, G.; Zwanenburg, C.

    2016-01-01

    Land subsidence threatens many coastal areas. Quantifying current and predicting future subsidence are essential to sustain the viability of these areas with respect to rising sea levels. Despite its scale and severity, methods to quantify subsidence are scarce. In peat-rich subsidence hot spots,

  9. On maximal surfaces in asymptotically flat space-times

    International Nuclear Information System (INIS)

    Bartnik, R.; Chrusciel, P.T.; O Murchadha, N.

    1990-01-01

    Existence of maximal and 'almost maximal' hypersurfaces in asymptotically flat space-times is established under boundary conditions weaker than those considered previously. We show in particular that every vacuum evolution of asymptotically flat data for Einstein equations can be foliated by slices maximal outside a spatially compact set and that every (strictly) stationary asymptotically flat space-time can be foliated by maximal hypersurfaces. Amongst other uniqueness results, we show that maximal hypersurface can be used to 'partially fix' an asymptotic Poincare group. (orig.)

  10. Surface Explorations : 3D Moving Images as Cartographies of Time

    NARCIS (Netherlands)

    Verhoeff, N.

    2016-01-01

    Moving images of travel and exploration have a long history. In this essay I will examine how the trope of navigation in 3D moving images can work towards an intimate and haptic encounter with other times and other places – elsewhen and elsewhere. The particular navigational construction of space in

  11. High-resolution InSAR constraints on flood-related subsidence and evaporite dissolution along the Dead Sea shores: Interplay between hydrology and rheology

    Science.gov (United States)

    Shviro, Maayan; Haviv, Itai; Baer, Gidon

    2017-09-01

    -exponential water level drop results in similar deceleration in dissolution and subsidence rates, with a similar characteristic decay time of about 150 days. The observed subsidence decay pattern may also be explained by viscoelastic relaxation of the overburden in response to instantaneously-formed dissolution cavities. Utilizing a Kelvin viscoelastic model, we show that the contribution of this process is most probably < 30% of the total observed subsidence and is sensitive to the sediment mechanical properties. On a broader scale, this study demonstrates how high-resolution InSAR measurements can improve our understanding of subsurface dissolution and subsidence processes and provide independent constraints on the mechanical properties of heterogeneous alluvial sediments.

  12. Long Wavelenth Subsidence of Western Europe during Late Eocene-Oligocene (38-23 Ma): Mantle Dynamic Effect?

    Science.gov (United States)

    Guillocheau, Francois; Robin, Cécile; Bessin, Paul

    2015-04-01

    Western Europe (France, southern Britain, southern Belgium, western Germany) is subsiding during Late Eocene to Oligocene (38-23 Ma) as suggested by the growth of numerous small sedimentary basins mainly filled by lacustrine deposits with some brackish to marine deposits. This large-scale subsidence is coeval with the early stage of the so-called Oligocene rifts (in fact Late Bartonian to Rupelian): Lower Rhinegraben, Bresse, Limagnes. The subsiding domain extends from Cornwall to the Rhine Graben including the Armorican Massif, the southern Paris Basin, the northern Aquitaine Basin, the French Central Massif, the Ardennes-Eifel… This subsidence occurred at a period of global sea level fall and then an eustatic component cannot explain (1) the accommodation space creation and (2) the marine floding with a paroxysm during Early Oligocene times (Armorican Massif, ?Ardennes, French Massif central). This marine flooding also indicate that the relief of the Hercynian basement was less elevated and smoother than today. Some of those small "basins" were interpreted as little rifts, but new mapping (e.g. Puy-en-Velay or Forez Plain in the French Massif central) or new geophysical data (e.g. Rennes Basin in the Armorican massif) suggest that no faults control those basins or that they result from post-depositional collapses. This long wavelength subsidence is at the scale of the mantle dynamic. Possible mantle mechanisms and the relationships with the "Oligocene" rifts and the North Sea inversion will be discussed.

  13. Time-series analysis of surface deformation at Brady Hot Springs geothermal field (Nevada) using interferometric synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S. T. [Univ. of Wisconsin, Madison, WI (United States); Akerley, J. [Ormat Technologies Inc., Reno, NV (United States); Baluyut, E. C. [Univ. of Wisconsin, Madison, WI (United States); Cardiff, M. [Univ. of Wisconsin, Madison, WI (United States); Davatzes, N. C. [Temple Univ., Philadelphia, PA (United States). Dept. of Earth and Environmental Science; Feigl, K. L. [Univ. of Wisconsin, Madison, WI (United States); Foxall, W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fratta, D. [Univ. of Wisconsin, Madison, WI (United States); Mellors, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spielman, P. [Ormat Technologies Inc., Reno, NV (United States); Wang, H. F. [Univ. of Wisconsin, Madison, WI (United States); Zemach, E. [Ormat Technologies Inc., Reno, NV (United States)

    2016-05-01

    We analyze interferometric synthetic aperture radar (InSAR) data acquired between 2004 and 2014, by the ERS-2, Envisat, ALOS and TerraSAR-X/TanDEM-X satellite missions to measure and characterize time-dependent deformation at the Brady Hot Springs geothermal field in western Nevada due to extraction of fluids. The long axis of the ~4 km by ~1.5 km elliptical subsiding area coincides with the strike of the dominant normal fault system at Brady. Within this bowl of subsidence, the interference pattern shows several smaller features with length scales of the order of ~1 km. This signature occurs consistently in all of the well-correlated interferometric pairs spanning several months. Results from inverse modeling suggest that the deformation is a result of volumetric contraction in shallow units, no deeper than 600 m, likely associated with damaged regions where fault segments mechanically interact. Such damaged zones are expected to extend downward along steeply dipping fault planes, providing a high permeability conduit to the production wells. Using time series analysis, we test the hypothesis that geothermal production drives the observed deformation. We find a good correlation between the observed deformation rate and the rate of production in the shallow wells. We also explore mechanisms that could potentially cause the observed deformation, including thermal contraction of rock, decline in pore pressure and dissolution of minerals over time.

  14. Subsidence and carbon loss in drained tropical peatlands

    Directory of Open Access Journals (Sweden)

    A. Hooijer

    2012-03-01

    Full Text Available Conversion of tropical peatlands to agriculture leads to a release of carbon from previously stable, long-term storage, resulting in land subsidence that can be a surrogate measure of CO2 emissions to the atmosphere. We present an analysis of recent large-scale subsidence monitoring studies in Acacia and oil palm plantations on peatland in SE Asia, and compare the findings with previous studies. Subsidence in the first 5 yr after drainage was found to be 142 cm, of which 75 cm occurred in the first year. After 5 yr, the subsidence rate in both plantation types, at average water table depths of 0.7 m, remained constant at around 5 cm yr−1. The results confirm that primary consolidation contributed substantially to total subsidence only in the first year after drainage, that secondary consolidation was negligible, and that the amount of compaction was also much reduced within 5 yr. Over 5 yr after drainage, 75 % of cumulative subsidence was caused by peat oxidation, and after 18 yr this was 92 %. The average rate of carbon loss over the first 5 yr was 178 t CO2eq ha−1 yr−1, which reduced to 73 t CO2eq ha−1 yr−1 over subsequent years, potentially resulting in an average loss of 100 t CO2eq ha−1 yr−1 over 25 yr. Part of the observed range in subsidence and carbon loss values is explained by differences in water table depth, but vegetation cover and other factors such as addition of fertilizers also influence peat oxidation. A relationship with groundwater table depth shows that subsidence and carbon loss are still considerable even at the highest water levels theoretically possible in plantations. This implies that improved plantation water management will reduce these impacts by 20 % at most, relative to current conditions, and that high rates of carbon loss and land subsidence are

  15. Mine subsidence control projects associated with solid waste disposal facilities

    International Nuclear Information System (INIS)

    Wood, R.M.

    1994-01-01

    Pennsylvania environmental regulations require applicant's for solid waste disposal permits to provide information regarding the extent of deep mining under the proposed site, evaluations of the maximum subsidence potential, and designs of measures to mitigate potential subsidence impact on the facility. This paper presents three case histories of deep mine subsidence control projects at solid waste disposal facilities. Each case history presents site specific mine grouting project data summaries which include evaluations of the subsurface conditions from drilling, mine void volume calculations, grout mix designs, grouting procedures and techniques, as well as grout coverage and extent of mine void filling evaluations. The case studies described utilized basic gravity grouting techniques to fill the mine voids and fractured strata over the collapsed portions of the deep mines. Grout mixtures were designed to achieve compressive strengths suitable for preventing future mine subsidence while maintaining high flow characteristics to penetrate fractured strata. Verification drilling and coring was performed in the grouted areas to determine the extent of grout coverage and obtain samples of the in-place grout for compression testing. The case histories presented in this report demonstrate an efficient and cost effective technique for mine subsidence control projects

  16. What’s the Score? Walkable Environments and Subsidized Households

    Directory of Open Access Journals (Sweden)

    Young-Jae Kim

    2016-04-01

    Full Text Available Neighborhood walkability can influence individual health, social interactions, and environmental quality, but the relationships between subsidized households and their walkable environment have not been sufficiently examined in previous empirical studies. Focusing on two types of subsidized housing developments (Low-Income Housing Tax Credit (LIHTC and Public Housing (PH in Austin, Texas, this study evaluates the neighborhood walkability of place-based subsidized households, utilizing objectively measured Walk Score and walking-related built environment data. We also used U.S. Census block group data to account for the socio-demographic covariates. Based on various data, we employed bivariate and multivariate analyses to specify the relationships between subsidized households and their neighborhood walkable environment. The results of our bivariate analyses show that LIHTC households tend to be located in car-dependent neighborhoods and have more undesirable walking-related built environment conditions compared with non-LIHTC neighborhoods. Our regression results also represent that LIHTC households are more likely to be exposed to neighborhoods with low Walk Score, less sidewalk coverage, and more highways and major roads, while there are no significant associations for PH households. These findings imply that more attention and effort toward reducing the inequitable distributions of walkable neighborhood features supporting rather than hindering healthy lifestyles must be provided to subsidized households.

  17. Ozone time scale decomposition and trend assessment from surface observations

    Science.gov (United States)

    Boleti, Eirini; Hueglin, Christoph; Takahama, Satoshi

    2017-04-01

    Emissions of ozone precursors have been regulated in Europe since around 1990 with control measures primarily targeting to industries and traffic. In order to understand how these measures have affected air quality, it is now important to investigate concentrations of tropospheric ozone in different types of environments, based on their NOx burden, and in different geographic regions. In this study, we analyze high quality data sets for Switzerland (NABEL network) and whole Europe (AirBase) for the last 25 years to calculate long-term trends of ozone concentrations. A sophisticated time scale decomposition method, called the Ensemble Empirical Mode Decomposition (EEMD) (Huang,1998;Wu,2009), is used for decomposition of the different time scales of the variation of ozone, namely the long-term trend, seasonal and short-term variability. This allows subtraction of the seasonal pattern of ozone from the observations and estimation of long-term changes of ozone concentrations with lower uncertainty ranges compared to typical methodologies used. We observe that, despite the implementation of regulations, for most of the measurement sites ozone daily mean values have been increasing until around mid-2000s. Afterwards, we observe a decline or a leveling off in the concentrations; certainly a late effect of limitations in ozone precursor emissions. On the other hand, the peak ozone concentrations have been decreasing for almost all regions. The evolution in the trend exhibits some differences between the different types of measurement. In addition, ozone is known to be strongly affected by meteorology. In the applied approach, some of the meteorological effects are already captured by the seasonal signal and already removed in the de-seasonalized ozone time series. For adjustment of the influence of meteorology on the higher frequency ozone variation, a statistical approach based on Generalized Additive Models (GAM) (Hastie,1990;Wood,2006), which corrects for meteorological

  18. Land subsidence along the Delta-Mendota Canal in the northern part of the San Joaquin Valley, California, 2003-10

    Science.gov (United States)

    Sneed, Michelle; Brandt, Justin; Solt, Mike

    2013-01-01

    Extensive groundwater withdrawal from the unconsolidated deposits in the San Joaquin Valley caused widespread aquifer-system compaction and resultant land subsidence from 1926 to 1970—locally exceeding 8.5 meters. The importation of surface water beginning in the early 1950s through the Delta-Mendota Canal and in the early 1970s through the California Aqueduct resulted in decreased pumping, initiation of water-level recovery, and a reduced rate of compaction in some areas of the San Joaquin Valley. However, drought conditions during 1976–77 and 1987–92, and drought conditions and regulatory reductions in surface-water deliveries during 2007–10, decreased surface-water availability, causing pumping to increase, water levels to decline, and renewed compaction. Land subsidence from this compaction has reduced freeboard and flow capacity of the Delta-Mendota Canal, the California Aqueduct, and other canals that deliver irrigation water and transport floodwater. The U.S. Geological Survey, in cooperation with the U.S. Bureau of Reclamation and the San Luis and Delta-Mendota Water Authority, assessed land subsidence in the vicinity of the Delta-Mendota Canal as part of an effort to minimize future subsidence-related damages to the canal. The location, magnitude, and stress regime of land-surface deformation during 2003–10 were determined by using extensometer, Global Positioning System (GPS), Interferometric Synthetic Aperture Radar (InSAR), spirit leveling, and groundwater-level data. Comparison of continuous GPS, shallow extensometer, and groundwater-level data, combined with results from a one-dimensional model, indicated the vast majority of the compaction took place beneath the Corcoran Clay, the primary regional confining unit. Land-surface deformation measurements indicated that much of the northern portion of the Delta-Mendota Canal (Clifton Court Forebay to Check 14) was fairly stable or minimally subsiding on an annual basis; some areas showed

  19. Subsidence detection by TerraSAR-X interferometry on a network of natural persistent scatterers and artificial corner reflectors

    Science.gov (United States)

    Yu, Bing; Liu, Guoxiang; Li, Zhilin; Zhang, Rui; Jia, Hongguo; Wang, Xiaowen; Cai, Guolin

    2013-08-01

    The German satellite TerraSAR-X (TSX) is able to provide high-resolution synthetic aperture radar (SAR) images for mapping surface deformation by the persistent scatterer interferometry (PSI) technique. To extend the application of PSI in detecting subsidence in areas with frequent surface changes, this paper presents a method of TSX PSI on a network of natural persistent scatterers (NPSs) and artificial corner reflectors (CRs) deployed on site. We select a suburban area of southwest Tianjin (China) as the testing site where 16 CRs and 10 leveling points (LPs) are deployed, and utilize 13 TSX images collected over this area between 2009 and 2010 to extract subsidence by the method proposed. Two types of CRs are set around the fishponds and crop parcels. 6 CRs are the conventional ones, i.e., fixed CRs (FCRs), while 10 CRs are the newly-designed ones, i.e., so-called portable CRs (PCRs) with capability of repeatable installation. The numerical analysis shows that the PCRs have the higher temporal stability of radar backscattering than the FCRs, and both of them are better than the NPSs in performance of radar reflectivity. The comparison with the leveling data at the CRs and LPs indicates that the subsidence measurements derived by the TSX PSI method can reach up to a millimeter level accuracy. This demonstrates that the TSX PSI method based on a network of NPSs and CRs is useful for detecting land subsidence in cultivated lands.

  20. Inundation, sedimentation, and subsidence creates goose habitat along the Arctic coast of Alaska

    Science.gov (United States)

    Tape, Ken D.; Flint, Paul L.; Meixell, Brandt W.; Gaglioti, Benjamin V.

    2013-01-01

    The Arctic Coastal Plain of Alaska is characterized by thermokarst lakes and drained lake basins, and the rate of coastal erosion has increased during the last half-century. Portions of the coast are sea level for kilometers inland, and are underlain by ice-rich permafrost. Increased storm surges or terrestrial subsidence would therefore expand the area subject to marine inundation. Since 1976, the distribution of molting Black Brant (Branta bernicla nigricans) on the Arctic Coastal Plain has shifted from inland freshwater lakes to coastal marshes, such as those occupying the Smith River and Garry Creek estuaries. We hypothesized that the movement of geese from inland lakes was caused by an expansion of high quality goose forage in coastal areas. We examined the recent history of vegetation and geomorphological changes in coastal goose habitat by combining analysis of time series imagery between 1948 and 2010 with soil stratigraphy dated using bomb-curve radiocarbon. Time series of vertical imagery and in situ verification showed permafrost thaw and subsidence of polygonal tundra. Soil stratigraphy and dating within coastal estuaries showed that non-saline vegetation communities were buried by multiple sedimentation episodes between 1948 and 1995, accompanying a shift toward salt-tolerant vegetation. This sedimentation allowed high quality goose forage plants to expand, thus facilitating the shift in goose distribution. Declining sea ice and the increasing rate of terrestrial inundation, sedimentation, and subsidence in coastal estuaries of Alaska may portend a 'tipping point' whereby inland areas would be transformed into salt marshes.

  1. Natural versus anthropogenic subsidence of Venice: investigation of the present occurrence by PSI

    Science.gov (United States)

    Tosi, Luigi; Strozzi, Tazio; Teatini, Pietro

    2014-05-01

    We detected land displacements of Venice by Persistent Scatterer Interferometry (PSI) using ERS and ENVISAT C-band and TerraSAR-X and COSMO-SkyMed X-band acquisitions over the periods 1992-2010 and 2008-2011, respectively. PSI provides the cumulative land displacements (natural plus anthropogenic) of the investigated area independently of the radar band. The natural subsidence rate depends on the reference period and, due to the present elevation of Venice with respect to the sea level, it is much more interesting for the city to evaluate the natural displacement over the last few decades, i.e. the present natural land subsidence, than that averaged over geological periods. Concerning anthropogenic land subsidence the contribution due to activities characterized by large scale and long term effects, e.g., that caused by groundwater withdrawals, ended a few decades ago. Today, the anthropogenic component of the land subsidence is only due to local, short-time interventions such as restoration works and inherent deformations of historical structures. By reason of the larger observation period, the C-band sensors were used to quantify the long-term movements, i.e. the subsidence component primarily ascribed to natural processes. The high resolution, short revisiting time X-band satellites reveal a high effectiveness to monitor short-time movements as those induced by human activities. The statistical analysis of the displacement distributions measured by PSI points out that the average rates, i.e. the natural component of the subsidence, are almost equal with the C-band and X-band satellites. Conversely, the standard deviation with X-band acquisitions (1.6 mm/yr) is characterized by a value significantly larger than that detected with C-band images (0.7 mm/yr). The larger X-band variability superposes to a background velocity similar to that given by ERS/ENVISAT. It is reasonable to assume that the difference between the movements provided by ERS/ENVISAT and Terra

  2. Subsidence and settlement and their effect on shallow land burial

    International Nuclear Information System (INIS)

    Abeele, W.V.

    1985-01-01

    Subsidence and settlement are phenomena that are much more destructive than generally thought. In shallow land burials they may lead to cracking of the overburden and eventual exposure and escape of waste material. The primary causes are consolidation and cave-ins. Laboratory studies performed at Los Alamos permit us to predict settlement caused by consolidation or natural compaction of the crushed tuff overburden. Examples of expected settlement and subsidence are calculated based on the known geotechnical characteristics of crushed tuff. The same thing is done for bentonite/tuff mixes because some field experiments were performed using this additive (bentonite) to reduce the hydraulic conductivity of the crushed tuff. Remedial actions, i.e., means to limit the amount of settlement, are discussed. Finally, we briefly comment on our current field experiment, which studies the influence of subsidence on layered systems in general and on biobarriers in particular

  3. Subsidence and settlement and their effect on shallow land burial

    International Nuclear Information System (INIS)

    Abeele, W.V.

    1985-01-01

    Subsidence and settlement are phenomena that are much more destructive than generally thought. In shallow land burials they may lead to cracking of the overburden and eventual exposure and escape of waste material. The primary causes are consolidation and cave-ins. Laboratory studies performed at Los Alamos permit us to predict settlement caused by consolidation or natural compaction of the crushed tuff overburden. Examples of expected settlement and subsidence are calculated based on the known geotechnical characteristics of crushed tuff. The same thing is done for bentonite/tuff mixes because some field experiments were performed using this additive (bentonite) to reduce the hydraulic conductivity of the crushed tuff. Remedial actions, i.e., means to limit the amount of settlement, are discussed. Finally, we briefly comment on our current field experiment, which studies the influence of subsidence on layered systems, in general, and on biobarriers, in particular. 16 references, 7 figures, 5 tables

  4. Land Subsidence Caused by Groundwater Exploitation in Quetta Valley, Pakistan

    Directory of Open Access Journals (Sweden)

    Najeebullah Kakar

    2016-12-01

    Full Text Available Land subsidence is affecting several metropolitan cities in developing as well as developed countries around the world such as Nagoya (Japan, Shanghai (China, Venice (Italy and San Joaquin valley (United States. This phenomenon is attributed to natural as well as anthropogenic activities that include extensive groundwater withdrawals. Quetta is the largest city of Balochistan province in Pakistan. This valley is mostly dry and ground water is the major source for domestic and agricultural consumption. The unplanned use of ground water resources has led to the deterioration of water quality and quantity in the Quetta valley. Water shortage in the region was further aggravated by the drought during (1998-2004 that hit the area forcing people to migrate from rural to urban areas. Refugees from the war torn neighboring Afghanistan also contributed to rapid increase in population of Quetta valley that has increased from 0.26 million in 1975 to 3.0 million in 2016. The objective of this study was to measure the land subsidence in Quetta valley and identify the effects of groundwater withdrawals on land subsidence. To achieve this goal, data from five Global Positioning System (GPS stations were acquired and processed. Furthermore the groundwater decline data from 41 observation wells during 2010 to 2015 were calculated and compared with the land deformation. The results of this study revealed that the land of Quetta valley is subsiding from 30mm/y on the flanks to 120 mm/y in the central part. 1.5-5.0 m/y of groundwater level drop was recorded in the area where the rate of subsidence is highest. So the extensive groundwater withdrawals in Quetta valley is considered to be the driving force behind land subsidence.

  5. The UNESCO-IHP Working Group on Land Subsidence: Four Decades of International Contributions to Hydrogeological Related Subsidence Research and Knowledge Exchange

    Science.gov (United States)

    Galloway, D. L.; Carreon-Freyre, D.; Teatini, P.; Ye, S.

    2015-12-01

    Subsidence is globally prevalent and because much of it is related to hydrological processes affected by human development of local land and water resources, "Land Subsidence" was included in the UNESCO programme of the International Hydrological Decade (IHD), 1965-1974 and an ad hoc working group on land subsidence was formed. In 1975 subsidence was retained under the framework of the UNESCO IHP (subproject 8.4: "Investigation of Land Subsidence due to Groundwater Exploitation"), and UNESCO IHP formerly codified the Working Group on Land Subsidence (WGLS). In 1984 the WGLS produced a comprehensive guidebook to serve scientists and engineers, confronting land subsidence problems, particularly in developing countries (http://unesdoc.unesco.org/$other/unesdoc/pdf/065167eo.pdf). During the IHD, UNESCO IHP convened the 1st International Symposium on Land Subsidence in 1969 in Tokyo, Japan. In collaboration with UNESCO IHP, IAHS, and other scientific organizations, the WGLS has convened eight more International Symposia on Land Subsidence in different countries in Asia, Europe and North America. The 9 published symposia proceedings constitute an important source of global subsidence research and case studies during the past 45 years, covering both anthropogenic and natural subsidence processes. Currently, the WGLS comprising 20 subsidence experts from 9 countries promotes and facilitates the international exchange of information regarding the design, implementation and evaluation of risk assessments and mitigation measures, the definition of water and land resource-management strategies that support sustainable development in areas vulnerable to subsidence (http://landsubsidence-unesco.org), and the assessment of related geological risks such as earth fissuring and fault activation (www.igcp641.org). The WGLS has become an important global leader in promoting subsidence awareness, scientific research and its application to subsidence monitoring, analysis and management.

  6. Subsidence monitoring system for offshore applications: technology scouting and feasibility studies

    Directory of Open Access Journals (Sweden)

    R. Miandro

    2015-11-01

    Full Text Available Because of concern about possible impacts of hydrocarbon production activities on coastal-area environments and infrastructures, new hydrocarbon offshore development projects in Italy must submit a monitoring plan to Italian authorities to measure and analyse real-time subsidence evolution. The general geological context, where the main offshore Adriatic fields are located, is represented by young unconsolidated terrigenous sediments. In such geological environments, sea floor subsidence, caused by hydrocarbon extraction, is quite probable. Though many tools are available for subsidence monitoring onshore, few are available for offshore monitoring. To fill the gap ENI (Ente Nazionale Idrocarburi started a research program, principally in collaboration with three companies, to generate a monitoring system tool to measure seafloor subsidence. The tool, according to ENI design technical-specification, would be a robust long pipeline or cable, with a variable or constant outside diameter (less than or equal to 100 mm and interval spaced measuring points. The design specifications for the first prototype were: to detect 1 mm altitude variation, to work up to 100 m water depth and investigation length of 3 km. Advanced feasibility studies have been carried out with: Fugro Geoservices B.V. (Netherlands, D'Appolonia (Italy, Agisco (Italy. Five design (using three fundamental measurements concepts and five measurement tools were explored: cable shape changes measured by cable strain using fiber optics (Fugro; cable inclination measured using tiltmeters (D'Appolonia and measured using fiber optics (Fugro; and internal cable altitude-dependent pressure changes measured using fiber optics (Fugro and measured using pressure transducers at discrete intervals along the hydraulic system (Agisco. Each design tool was analysed and a rank ordering of preferences was performed. The third method (measurement of pressure changes, with the solution proposed by Agisco

  7. Subsidence monitoring system for offshore applications: technology scouting and feasibility studies

    Science.gov (United States)

    Miandro, R.; Dacome, C.; Mosconi, A.; Roncari, G.

    2015-11-01

    Because of concern about possible impacts of hydrocarbon production activities on coastal-area environments and infrastructures, new hydrocarbon offshore development projects in Italy must submit a monitoring plan to Italian authorities to measure and analyse real-time subsidence evolution. The general geological context, where the main offshore Adriatic fields are located, is represented by young unconsolidated terrigenous sediments. In such geological environments, sea floor subsidence, caused by hydrocarbon extraction, is quite probable. Though many tools are available for subsidence monitoring onshore, few are available for offshore monitoring. To fill the gap ENI (Ente Nazionale Idrocarburi) started a research program, principally in collaboration with three companies, to generate a monitoring system tool to measure seafloor subsidence. The tool, according to ENI design technical-specification, would be a robust long pipeline or cable, with a variable or constant outside diameter (less than or equal to 100 mm) and interval spaced measuring points. The design specifications for the first prototype were: to detect 1 mm altitude variation, to work up to 100 m water depth and investigation length of 3 km. Advanced feasibility studies have been carried out with: Fugro Geoservices B.V. (Netherlands), D'Appolonia (Italy), Agisco (Italy). Five design (using three fundamental measurements concepts and five measurement tools) were explored: cable shape changes measured by cable strain using fiber optics (Fugro); cable inclination measured using tiltmeters (D'Appolonia) and measured using fiber optics (Fugro); and internal cable altitude-dependent pressure changes measured using fiber optics (Fugro) and measured using pressure transducers at discrete intervals along the hydraulic system (Agisco). Each design tool was analysed and a rank ordering of preferences was performed. The third method (measurement of pressure changes), with the solution proposed by Agisco, was

  8. Southern Perú coseismic subsidence: 23 June 2001 8.4-Mw earthquake

    Directory of Open Access Journals (Sweden)

    L. Ocola

    2008-01-01

    Full Text Available The 23-June-2001 8.4-Mw magnitude earthquake partially filled the 1868-seismic-gap in southern Perú. This earthquake produced a thrust faulting dislocation with a rupture that started at about ~200 km SE from the 1996's Nazca earthquake epicenter, and stopped near Ilo, at about 300 km from the epicenter, near a positive gravity anomaly offshore Ilo. The 23-June-2001-earthquake dislocation zone is under the Arequipa sedimentary Basin. Pre- and post-seismic GPS measurements at Camaná and Ilo at SIRGAS-GPS points (SIRGAS: Sistema de Referencia Geocéntrico para América del Sur and the average sea level pre- and post-seismic event at Mollendo tide gauge provide evidence of a regional subsidence of southern Perú, with 84 cm at Camaná, 16 cm at Ilo, and 15 cm at Mollendo. Field surveys post earthquake document significant subsidence in Camaná resort beaches. Results of a simple dislocation modelling of 23-June-2001 earthquake agree reasonably well with the observed data. However, the coseismic subsidence of southern Perú is at variance with the regional uplift of southern Perú based on Neotectonic studies. This fact, suggests that, in recent geological times, the magnitude of the secular uplift due to tectonic plate converge has been larger than the coseismic deformation recovery.

  9. Closure Plan for Corrective Action Unit 109: U-2bu Subsidence Crater Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Shannon Parsons

    1999-03-01

    The U-2bu subsidence crater, Corrective Action Unit 109, will be closed in accordance with the Resource Conservation and Recovery Act, the Nevada Division of Environmental Protection operational permit, and the Federal Facilities Agreement and Consent Order. The U-2bu subsidence crater is located in Area 2 of the Nevada Test Site. It was created in 1971 by an underground nuclear test with the name Miniata. The crater has a diameter of 288 meters (944 feet) and an approximate depth of 35 meters (115 feet). The subsidence crater was used as a land disposal unit for radioactive and hazardous waste from 1973 to 1988. Site disposal history is supported by memorandums, letters, and personnel who worked at the Nevada Test Site at the time of active disposal. Closure activities will include the excavation and disposal of impacted soil form the tip of the crater. Upon completion of excavation, verification samples will be collected to show that lead has been removed to concentrations be low regulatory action level. The area will then be backfilled and a soil flood diversion berm will be constructed, and certified by an independent professional engineer as to having followed the approved Closure Plan.

  10. Low-level waste disposal site geotechnical subsidence corrective measures: technical progress

    International Nuclear Information System (INIS)

    Phillips, S.J.; Winterhalder, J.A.; Gilbert, T.W.

    1983-01-01

    A geotechnical test facility has been constructed at the Hanford Site Richland Site Richland, Washington. The purpose of this facility is to quantitatively evaluate the performance of alternative technologies to ameliorate geomechanical subsidence in solid waste burial structures. Alternatives to be tested include; accelerating mass ground surface impact, and two optional subsurface rod injection/withdrawal techniques. The alternatives involve the principle of dynamic consolidation of buried waste and matrix materials. A description of the geotechnical test facility, the monitoring instrumentation used therein, laboratory soil mechanics data evaluation, and facility baseline monitoring data are presented. 6 references, 5 figures

  11. Land subsidence and caprock dolines caused by subsurface gypsum dissolution and the effect of subsidence on the fluvial system in the Upper Tigris Basin (between Bismil Batman, Turkey)

    Science.gov (United States)

    Doğan, Uğur

    2005-11-01

    Karstification-based land subsidence was found in the Upper Tigris Basin with dimensions not seen anywhere else in Turkey. The area of land subsidence, where there are secondary and tertiary subsidence developments, reaches 140 km 2. Subsidence depth ranges between 40 and 70 m. The subsidence was formed as a result of subsurface gypsum dissolution in Lower Miocene formation. Although there are limestones together with gypsum and Eocene limestone below them in the area, a subsidence with such a large area is indicative of karstification in the gypsum. The stratigraphical cross-sections taken from the wells and the water analyses also verify this fact. The Lower Miocene gypsum, which shows confined aquifer features, was completely dissolved by the aggressive waters injected from the top and discharged through by Zellek Fault. This resulted in the development of subsidence and formation of caprock dolines on loosely textured Upper Miocene-Pliocene cover formations. The Tigris River runs through the subsidence area between Batman and Bismil. There are four terrace levels as T1 (40 m), T2 (30 m), T3 (10 m) and T4 (4-5 m) in the Tigris River valley. It was also found that there were some movements of the levels of the terraces in the valley by subsidence. The subsidence developed gradually throughout the Quaternary; however no terrace was formed purely because of subsidence.

  12. Why do adults entitled to free or highly subsidized dental services select fully out-of-pocket-paid care?

    Science.gov (United States)

    Bayat, Fariborz; Vehkalahti, Miira M; Murtomaa, Heikki; Tala, Heikki

    2010-02-01

    To investigate patients' reasons for selecting a dental clinic given their choice of free or highly-subsidized dental services. The study was based on cross-sectional data obtained through phone interviews with adults in Tehran, Iran. The present study included those entitled to free or highly-subsidized dental services (n = 726). The data covered the patients' awareness of subsidized dental services and type of dental clinic for their most recent visit and their reasons for selecting that clinic. Awareness of subsidized dental services was dichotomized as being either aware or unaware of such subsidy. The type of clinic was dichotomized as providing either free or highly-subsidized (FHS) or fully out-of-pocket paid (FOP) services. Free format answers about the subjects' reasons for selecting a particular clinic were later sub-grouped as: convenient access, good technical aspects, good interpersonal aspects, low or reasonable fees, recommendation by a friend, and no reason. Socio-demographic status was based on background. Data analysis included the chi-square test and logistic regression model. Of the subjects (n = 726), 60% were women and 58% were under 35 years of age. The subjects' mean age was 33.5 years with no difference by gender (P = 0.24) and the majority had public insurance (91%). Of all the subjects, 60% selected FOP. Good interpersonal aspects were the strongest reason for selecting FOP (OR = 4.6), follow by good technical aspects (OR = 2.3). Those subjects who were unaware of their benefit had 4.6 times the odds of selecting FOP. Despite the opportunity to use highly-subsidized dental services, good interpersonal and good technical aspects lead patients to select private dentists and to pay fully out of pocket.

  13. Application of InSAR to detection of localized subsidence and its effects on flood protection infrastructure in the New Orleans area

    Science.gov (United States)

    Jones, Cathleen; Blom, Ronald; Latini, Daniele

    2014-05-01

    The vulnerability of the United States Gulf of Mexico coast to inundation has received increasing attention in the years since hurricanes Katrina and Rita. Flood protection is a challenge throughout the area, but the population density and cumulative effect of historic subsidence makes it particularly difficult in the New Orleans area. Analysis of historical and continuing geodetic measurements identifies a surprising degree of complexity in subsidence (Dokka 2011), including regions that are subsiding at rates faster than those considered during planning for hurricane protection and for coastal restoration projects. Improved measurements are possible through combining traditional single point, precise geodetic data with interferometric synthetic aperture radar (InSAR) observations for to obtain geographically dense constraints on surface deformation. The Gulf Coast environment is very challenging for InSAR techniques, especially with systems not designed for interferometry. We are applying pair-wise InSAR to longer wavelength (L-band, 24 cm) synthetic aperture radar data acquired with the airborne UAVSAR instrument (http://uavsar.jpl.nasa.gov/) to detect localized change impacting flood protection infrastructure in the New Orleans area during the period from 2009 - 2013. Because aircraft motion creates large-scale image artifacts across the scene, we focus on localized areas on and near flood protection infrastructure to identify anomalous change relative to the surrounding area indicative of subsidence, structural deformation, and/or seepage (Jones et al., 2011) to identify areas where problems exist. C-band and particularly X-band radar returns decorrelate over short time periods in rural or less urbanized areas and are more sensitive to atmospheric affects, necessitating more elaborate analysis techniques or, at least, a strict limit on the temporal baseline. The new generation of spaceborne X-band SAR acquisitions ensure relatively high frequency of

  14. How large-scale subsidence affects stratocumulus transitions

    Directory of Open Access Journals (Sweden)

    J. J. van der Dussen

    2016-01-01

    Full Text Available Some climate modeling results suggest that the Hadley circulation might weaken in a future climate, causing a subsequent reduction in the large-scale subsidence velocity in the subtropics. In this study we analyze the cloud liquid water path (LWP budget from large-eddy simulation (LES results of three idealized stratocumulus transition cases, each with a different subsidence rate. As shown in previous studies a reduced subsidence is found to lead to a deeper stratocumulus-topped boundary layer, an enhanced cloud-top entrainment rate and a delay in the transition of stratocumulus clouds into shallow cumulus clouds during its equatorwards advection by the prevailing trade winds. The effect of a reduction of the subsidence rate can be summarized as follows. The initial deepening of the stratocumulus layer is partly counteracted by an enhanced absorption of solar radiation. After some hours the deepening of the boundary layer is accelerated by an enhancement of the entrainment rate. Because this is accompanied by a change in the cloud-base turbulent fluxes of moisture and heat, the net change in the LWP due to changes in the turbulent flux profiles is negligibly small.

  15. IMPACT OF OIL ON THE MECHANICAL PROPERTIES OF SOIL SUBSIDENCE

    Directory of Open Access Journals (Sweden)

    Алексей Алексеевич Бурцев

    2016-08-01

    Full Text Available The paper studied the effect of oil content on the mechanical properties of soil subsidence - Ek modulus and compressibility factor m0, obtained in the laboratory with the help of artificial impregnation oil soil samples. A comparison of the above parameters with samples of the same soil in the natural and water-saturated conditions has been perfomed.

  16. Subsidence analysis Forsmark nuclear power plant - unit 1

    International Nuclear Information System (INIS)

    Bono, Nancy; Fredriksson, Anders; Maersk Hansen, Lars

    2010-12-01

    On behalf of SKB, Golder Associates Ltd carried out a risk analysis of subsidence during Forsmark nuclear power plant in the construction of the final repository for spent nuclear fuel near and below existing reactors. Specifically, the effect of horizontal cracks have been studied

  17. Estimating the distribution of salt cavern squeeze using subsidence measurements

    NARCIS (Netherlands)

    Fokker, P.A.; Visser, J.

    2014-01-01

    We report a field study on solution mining of magnesium chloride from bischofite layers in the Netherlands at depths between 1500 and 1850 m. Subsidence that was observed in the area is due to part of the brine production being realized by cavern squeeze; some of which were connccted. Wc used an

  18. The Opportunity Illusion: Subsidized Housing and Failing Schools in California

    Science.gov (United States)

    Pfeiffer, Deirdre

    2009-01-01

    Since the late 1980s, the Low-Income Housing Tax Credit (LIHTC) program has funded the bulk of subsidized development nationwide, enabling the construction of over 100,000 units targeted to lower income households in California alone (California Tax Credit Allocation Committee 2009c). Yet, by not encouraging the siting of projects in racially…

  19. Subsidized Housing, Public Housing, and Adolescent Violence and Substance Use

    Science.gov (United States)

    Leech, Tamara G. J.

    2012-01-01

    This study examines the separate relationships of public housing residence and subsidized housing residence to adolescent health risk behavior. Data include 2,530 adolescents aged 14 to 19 who were children of the National the Longitudinal Study of Youth. The author used stratified propensity methods to compare the behaviors of each…

  20. At whose service? Subsidizing services and the skill premium

    NARCIS (Netherlands)

    van Groezen, Bas; Meijdam, L.

    2009-01-01

    In this paper we investigate the effects of subsidizing low-skilled, labour-intensive services hired by high-skilled individuals in the presence of labour income taxation. Whether such a subsidy can be Pareto-improving depends crucially on the degree of substitutability of both types of labour in

  1. At Whose Service? Subsidizing Services and the Skill Premium

    NARCIS (Netherlands)

    van Groezen, B.J.A.M.; Meijdam, A.C.

    2010-01-01

    In this paper we investigate the effects of subsidizing low-skilled, labourintensive services hired by high-skilled individuals in the presence of labour income taxation. Whether such a subsidy can be Paretoimproving depends crucially on the degree of substitutability of both types of labour in the

  2. Study of surfaces and surface layers on high temperature materials after short-time thermal loads

    International Nuclear Information System (INIS)

    Bolt, H.; Hoven, H.; Koizlik, K.; Linke, J.; Nickel, H.; Wallura, E.

    1985-11-01

    Being part of the plasma-wall interaction during TOKAMAK operation, erosion- and redeposition processes of First Wall materials substantially influence plasma parameters as well as the properties of the First Wall. An important redeposition process of eroded material is the formation of thin films by atomic condensation. Examinations of First Wall components after TOKAMAK operation lead to the assumption that these thin metallic films tend to agglomerate to small particles under subsequent heat load. In laboratory experiments it is shown that thin metallic films on various substrates can agglomerate under short time high heat fluxes and also under longer lasting lower thermal loads, thus verifying the ''agglomeration hypothesis''. (orig.) [de

  3. On the initial condition problem of the time domain PMCHWT surface integral equation

    KAUST Repository

    Uysal, Ismail Enes

    2017-05-13

    Non-physical, linearly increasing and constant current components are induced in marching on-in-time solution of time domain surface integral equations when initial conditions on time derivatives of (unknown) equivalent currents are not enforced properly. This problem can be remedied by solving the time integral of the surface integral for auxiliary currents that are defined to be the time derivatives of the equivalent currents. Then the equivalent currents are obtained by numerically differentiating the auxiliary ones. In this work, this approach is applied to the marching on-in-time solution of the time domain Poggio-Miller-Chan-Harrington-Wu-Tsai surface integral equation enforced on dispersive/plasmonic scatterers. Accuracy of the proposed method is demonstrated by a numerical example.

  4. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system.

    Science.gov (United States)

    Liu, Wenyang; Cheung, Yam; Sawant, Amit; Ruan, Dan

    2016-05-01

    To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. The authors have

  5. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system

    International Nuclear Information System (INIS)

    Liu, Wenyang; Cheung, Yam; Sawant, Amit; Ruan, Dan

    2016-01-01

    Purpose: To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. Methods: The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. Results: On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced

  6. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenyang [Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095 (United States); Cheung, Yam [Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas 75390 (United States); Sawant, Amit [Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas, 75390 and Department of Radiation Oncology, University of Maryland, College Park, Maryland 20742 (United States); Ruan, Dan, E-mail: druan@mednet.ucla.edu [Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095 and Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, California 90095 (United States)

    2016-05-15

    Purpose: To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. Methods: The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. Results: On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced

  7. Estimation of real-time N load in surface water using dynamic data driven application system

    Science.gov (United States)

    Y. Ouyang; S.M. Luo; L.H. Cui; Q. Wang; J.E. Zhang

    2011-01-01

    Agricultural, industrial, and urban activities are the major sources for eutrophication of surface water ecosystems. Currently, determination of nutrients in surface water is primarily accomplished by manually collecting samples for laboratory analysis, which requires at least 24 h. In other words, little to no effort has been devoted to monitoring real-time variations...

  8. Differential subsidence and its effect on subsurface infrastructure: predicting probability of pipeline failure (STOOP project)

    Science.gov (United States)

    de Bruijn, Renée; Dabekaussen, Willem; Hijma, Marc; Wiersma, Ane; Abspoel-Bukman, Linda; Boeije, Remco; Courage, Wim; van der Geest, Johan; Hamburg, Marc; Harmsma, Edwin; Helmholt, Kristian; van den Heuvel, Frank; Kruse, Henk; Langius, Erik; Lazovik, Elena

    2017-04-01

    different types of land use. Furthermore, the model provides results with a measure of reliability, and determines what is the limiting input factor causing most uncertainty. The model results can be validated and further improved using inSAR data for these pilot areas, by iteratively revising model parameters. The design of the model is such, that it can be applied to the whole of the Netherlands. By assessing differential subsidence and its effect on pipelines over time, the model helps to establish when and where maintenance is due, by indicating what areas are particularly vulnerable, thereby increasing safety and lowering maintenance costs.

  9. Subsidence Reversal in a Re-established Wetland in the Sacramento-San Joaquin Delta, California, USA

    Directory of Open Access Journals (Sweden)

    Robin L. Miller

    2008-10-01

    Full Text Available The stability of levees in the Sacramento-San Joaquin Delta is threatened by continued subsidence of Delta peat islands. Up to 6 meters of land-surface elevation has been lost in the 150 years since Delta marshes were leveed and drained, primarily from oxidation of peat soils. Flooding subsided peat islands halts peat oxidation by creating anoxic soils, but net accumulation of new material in restored wetlands is required to recover land-surface elevations. We investigated the subsidence reversal potential of two 3 hectare, permanently flooded, impounded wetlands re-established on a deeply subsided field on Twitchell Island. The shallower wetland (design water depth 25 cm was almost completely colonized by dense emergent marsh vegetation within two years; whereas, the deeper wetland (design water depth 55 cm which developed spatially variable depths as a result of heterogeneous colonization by emergent vegetation, still had some areas remaining as open water after nine years. Changes in land-surface elevation were quantified using repeated sedimentation-erosion table measurements. New material accumulating in the wetlands was sampled by coring. Land-surface elevations increased by an average of 4 cm/yr in both wetlands from 1997 to 2006; however, the rates at different sites in the wetlands ranged from -0.5 to +9.2 cm/yr. Open water areas of the deeper wetland without emergent vegetation had the lowest rates of land-surface elevation gain. The greatest rates occurred in areas of the deeper wetland most isolated from the river water inlets, with dense stands of emergent marsh vegetation (tules and cattails. Vegetated areas of the deeper wetland in the transition zones between open water and mature emergent stands had intermediate rates of land-surface gain, as did the entire shallower wetland. These results suggest that the dominant component contributing to land-surface elevation gain in these wetlands was accumulation of organic matter, rather

  10. A simple method to assess unsaturated zone time lag in the travel time from ground surface to receptor.

    Science.gov (United States)

    Sousa, Marcelo R; Jones, Jon P; Frind, Emil O; Rudolph, David L

    2013-01-01

    In contaminant travel from ground surface to groundwater receptors, the time taken in travelling through the unsaturated zone is known as the unsaturated zone time lag. Depending on the situation, this time lag may or may not be significant within the context of the overall problem. A method is presented for assessing the importance of the unsaturated zone in the travel time from source to receptor in terms of estimates of both the absolute and the relative advective times. A choice of different techniques for both unsaturated and saturated travel time estimation is provided. This method may be useful for practitioners to decide whether to incorporate unsaturated processes in conceptual and numerical models and can also be used to roughly estimate the total travel time between points near ground surface and a groundwater receptor. This method was applied to a field site located in a glacial aquifer system in Ontario, Canada. Advective travel times were estimated using techniques with different levels of sophistication. The application of the proposed method indicates that the time lag in the unsaturated zone is significant at this field site and should be taken into account. For this case, sophisticated and simplified techniques lead to similar assessments when the same knowledge of the hydraulic conductivity field is assumed. When there is significant uncertainty regarding the hydraulic conductivity, simplified calculations did not lead to a conclusive decision. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. an investigation of time installation of x surface me estigation of time ...

    African Journals Online (AJOL)

    eobe

    The direct costs of the project are activity based co. They generally ... ies have been done on the Time-Cost-Risk trade-off problem off problem imization model for TCRTP imization model for TCRTP based on some realistic .... A solution is Pareto optimal, if there is no feasible .... difficult problems facing management in most.

  12. Surface-Borne Time-of-Reception Measurements (STORM), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Invocon proposes the Surface-borne Time-Of-Reception Measurements (STORM) system as a method to locate the position of lightning strikes on aerospace vehicles....

  13. Time-kill profiles and cell-surface morphological effects of crude ...

    African Journals Online (AJOL)

    MK1201 mycelial extract on the viability and cell surface morphology of methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA). Methods: Time-kill assays were conducted by incubating test ...

  14. A deformable surface model for real-time water drop animation.

    Science.gov (United States)

    Zhang, Yizhong; Wang, Huamin; Wang, Shuai; Tong, Yiying; Zhou, Kun

    2012-08-01

    A water drop behaves differently from a large water body because of its strong viscosity and surface tension under the small scale. Surface tension causes the motion of a water drop to be largely determined by its boundary surface. Meanwhile, viscosity makes the interior of a water drop less relevant to its motion, as the smooth velocity field can be well approximated by an interpolation of the velocity on the boundary. Consequently, we propose a fast deformable surface model to realistically animate water drops and their flowing behaviors on solid surfaces. Our system efficiently simulates water drop motions in a Lagrangian fashion, by reducing 3D fluid dynamics over the whole liquid volume to a deformable surface model. In each time step, the model uses an implicit mean curvature flow operator to produce surface tension effects, a contact angle operator to change droplet shapes on solid surfaces, and a set of mesh connectivity updates to handle topological changes and improve mesh quality over time. Our numerical experiments demonstrate a variety of physically plausible water drop phenomena at a real-time rate, including capillary waves when water drops collide, pinch-off of water jets, and droplets flowing over solid materials. The whole system performs orders-of-magnitude faster than existing simulation approaches that generate comparable water drop effects.

  15. Mapping Carrier Dynamics on Material Surfaces in Space and Time using Scanning Ultrafast Electron Microscopy

    KAUST Repository

    Sun, Jingya

    2016-02-25

    Selectively capturing the ultrafast dynamics of charge carriers on materials surfaces and at interfaces is crucial to the design of solar cells and optoelectronic devices. Despite extensive research efforts over the past few decades, information and understanding about surface-dynamical processes, including carrier trapping and recombination remains extremely limited. A key challenge is to selectively map such dynamic processes, a capability that is hitherto impractical by time-resolved laser techniques, which are limited by the laser’s relatively large penetration depth and consequently they record mainly bulk information. Such surface dynamics can only be mapped in real space and time by applying four-dimensional (4D) scanning ultrafast electron microscopy (S-UEM), which records snapshots of materials surfaces with nanometer spatial and sub-picosecond temporal resolutions. In this method, the secondary electron (SE) signal emitted from the sample’s surface is extremely sensitive to the surface dynamics and is detected in real time. In several unique applications, we spatially and temporally visualize the SE energy gain and loss, the charge carrier dynamics on the surface of InGaN nanowires and CdSe single crystals and its powder film. We also provide the mechanisms for the observed dynamics, which will be the foundation for future potential applications of S-UEM to a wide range of studies on material surfaces and device interfaces.

  16. Mapping Carrier Dynamics on Material Surfaces in Space and Time using Scanning Ultrafast Electron Microscopy

    KAUST Repository

    Sun, Jingya; Adhikari, Aniruddha; Shaheen, Basamat; Yang, Haoze; Mohammed, Omar F.

    2016-01-01

    Selectively capturing the ultrafast dynamics of charge carriers on materials surfaces and at interfaces is crucial to the design of solar cells and optoelectronic devices. Despite extensive research efforts over the past few decades, information and understanding about surface-dynamical processes, including carrier trapping and recombination remains extremely limited. A key challenge is to selectively map such dynamic processes, a capability that is hitherto impractical by time-resolved laser techniques, which are limited by the laser’s relatively large penetration depth and consequently they record mainly bulk information. Such surface dynamics can only be mapped in real space and time by applying four-dimensional (4D) scanning ultrafast electron microscopy (S-UEM), which records snapshots of materials surfaces with nanometer spatial and sub-picosecond temporal resolutions. In this method, the secondary electron (SE) signal emitted from the sample’s surface is extremely sensitive to the surface dynamics and is detected in real time. In several unique applications, we spatially and temporally visualize the SE energy gain and loss, the charge carrier dynamics on the surface of InGaN nanowires and CdSe single crystals and its powder film. We also provide the mechanisms for the observed dynamics, which will be the foundation for future potential applications of S-UEM to a wide range of studies on material surfaces and device interfaces.

  17. Hot-electron-assisted femtochemistry at surfaces: A time-dependent density functional theory approach

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Rubio, Angel; Olsen, Thomas

    2009-01-01

    Using time-evolution time-dependent density functional theory (TDDFT) within the adiabatic local-density approximation, we study the interactions between single electrons and molecular resonances at surfaces. Our system is a nitrogen molecule adsorbed on a ruthenium surface. The surface is modele...... resonance and the lowering of the resonance energy due to an image charge effect. Finally we apply the TDDFT procedure to only consider the decay of molecular excitations and find that it agrees quite well with the width of the projected density of Kohn-Sham states....

  18. Effects of air dielectric barrier discharge plasma treatment time on surface properties of PBO fiber

    International Nuclear Information System (INIS)

    Wang Qian; Chen Ping; Jia Caixia; Chen, Mingxin; Li Bin

    2011-01-01

    In this paper, the effects of air dielectric barrier discharge (DBD) plasma treatment time on surface properties of poly(p-phenylene benzobisoxazole) (PBO) fiber were investigated. The surface characteristics of PBO fiber before and after the plasma treatments were analyzed by dynamic contact angle (DCA) analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). DCA measurements indicated that the surface wettability of PBO fiber was improved significantly by increasing the fiber surface free energy via air DBD plasma treatments. The results were confirmed by the improvement of adhesion of a kind of thermoplastic resin to PBO fiber which was observed by SEM, showing that more resin was adhering evenly to the fiber surface. AFM measurement revealed that the surface topography of PBO fiber became more complicated and the surface roughness was greatly enhanced after the plasma treatments, and XPS analysis showed that some new polar groups (e.g. -O-C=O) were introduced on plasma treated PBO fiber surface. The results of this study also showed that the surface properties of PBO fiber changed with the elongation of plasma treatment time.

  19. Rapid subsidence and stacked Gilbert-type fan deltas, Pliocene Loreto basin, Baja California Sur, Mexico

    Science.gov (United States)

    Dorsey, Rebecca J.; Umhoefer, Paul J.; Renne, Paul R.

    1995-08-01

    represents a true vertical stratigraphic profile. Assuming vertical sediment accumulation and using ages of interbedded tuffs obtained from high-precision 40Ar/ 39Ar dating of plagioclase and biotite, quantitative decompaction and geohistory analysis was carried out for the Loreto basin sequence. Tuff ages range from 2.61 ± 0.01 Ma in the lower part of the basinal sequence to 1.97 ± 0.02 Ma near the top, with two intermediate tuffs dated at 2.46 ± 0.06 and 2.36 ± 0.02 Ma that are separated by 782 m of measured section. Basin subsidence initially took place at moderate rates of 0.43 ± 0.17 mm/yr and accelerated dramatically at 2.46 Ma to 8.1 ± 5.1 mm/yr. This phase of extremely rapid subsidence lasted for only about 100 ka, and it produced much of the total accomodation space and sedimentary thickness in the basin. Accumulation of Gilbert-type fan deltas took place only during the short pulse of very rapid subsidence, between 2.46 and 2.36 Ma. Prior to this time interval, alluvial-fan and shelf-type fan-delta depositional systems prevailed; afterwards no fan deltas of any kind were deposited, and the basin evolved to a slowly subsiding low-energy carbonate shelf setting. This suggests that very rapid subsidence, combined with rapid sediment input, may be required to maintain steep basin-margin slopes and continually create new accommodation space, conditions that seem necessary for the development of thick sequences of stacked Gilbert-type fan deltas.

  20. Mardels, natural subsidence basins or abandoned quarries?

    Science.gov (United States)

    van Mourik, Jan; Slotboom, Ruud

    2015-04-01

    Coversands (chemical poor Late-glacial aeolian sand deposits) dominate the surface geology of an extensive area in northwestern Europe. Plaggic Anthrosols occur in cultural landscapes, developed on coversands. They are the characteristic soils that developed on ancient fertilized arable fields. Plaggic Anthrosols have a complex genesis. They are records of aspects environmental and agricultural history. In previous studies information of the soil records was unlocked by application of pollen analysis, 14C and OSL dating. In this study we applied biomarker analysis to unlock additional information about the applied organic sources in the production of plaggic manure. Radiocarbon dating suggested the start of sedentary agriculture (after a period, characterized by shifting cultivation and Celtic fields) between 3000 and 2000 BP. In previous studies is assumed that farmers applied organic sods, dug on forest soils and heath to produce organic stable manure to fertilize the fields. The mineral fraction of the sods was supposed to be responsible for the development of the plaggic horizon and the raise of the land surface. Optically stimulated Luminescence dating however suggested that plaggic deposition on the fields started relatively late, in the 18th century. The use of ectorganic matter from the forest soils must have been ended in the 10th-12th century, due to commercial forest clear cuttings as recorded in archived documents. These deforestations resulted in the first extension of sand drifting and famers had to protect the valuable heath against this 'environmental catastrophe'. The use of heath for sheep grazing and other purposes as honey production could continue till the 18th century, as recorded in archived documents. In the course of the 18th century, the population growth resulted in increasing demand for food. The deep stable economy was introduced and the booming demand for manure resulted in intensive sod digging on the heath. This caused heath

  1. Longer Contact Times Increase Cross-Contamination of Enterobacter aerogenes from Surfaces to Food.

    Science.gov (United States)

    Miranda, Robyn C; Schaffner, Donald W

    2016-11-01

    Bacterial cross-contamination from surfaces to food can contribute to foodborne disease. The cross-contamination rate of Enterobacter aerogenes on household surfaces was evaluated by using scenarios that differed by surface type, food type, contact time (food types were watermelon, bread, bread with butter, and gummy candy. Surfaces (25 cm 2 ) were spot inoculated with 1 ml of inoculum and allowed to dry for 5 h, yielding an approximate concentration of 10 7 CFU/surface. Foods (with a 16-cm 2 contact area) were dropped onto the surfaces from a height of 12.5 cm and left to rest as appropriate. Posttransfer, surfaces and foods were placed in sterile filter bags and homogenized or massaged, diluted, and plated on tryptic soy agar. The transfer rate was quantified as the log percent transfer from the surface to the food. Contact time, food, and surface type all had highly significant effects (P food, while the least bacteria transferred to gummy candy (∼0.1 to 62%). Transfer of bacteria to bread (∼0.02 to 94%) was similar to transfer of bacteria to bread with butter (∼0.02 to 82%), and these transfer rates under a given set of conditions were more variable than with watermelon and gummy candy. The popular notion of the "five-second rule" is that food dropped on the floor and left there for foods (watermelon, bread, bread with butter, and gummy candy), four different contact times (food and the surface, are of equal or greater importance. Some transfer takes place "instantaneously," at times of <1 s, disproving the five-second rule. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. 24 CFR 982.521 - Rent to owner in subsidized project.

    Science.gov (United States)

    2010-04-01

    ... URBAN DEVELOPMENT SECTION 8 TENANT BASED ASSISTANCE: HOUSING CHOICE VOUCHER PROGRAM Rent and Housing Assistance Payment § 982.521 Rent to owner in subsidized project. (a) Applicability to subsidized project. This section applies to a program tenancy in any of the following types of federally subsidized project...

  3. 3D characterization of Holocene peat in the Netherlands : Implications for coastal-deltaic subsidence

    NARCIS (Netherlands)

    Koster, K.

    2017-01-01

    Human-induced subsidence threatens many coastal-deltaic plains, due to the amplifying effects it has on sea-level rise and flood risk. In the coastal-deltaic plain of the Netherlands, subsidence is primarily caused by the compression and oxidation of Holocene peat. The understanding of subsidence in

  4. Application of an adaptive neuro-fuzzy inference system to ground subsidence hazard mapping

    Science.gov (United States)

    Park, Inhye; Choi, Jaewon; Jin Lee, Moung; Lee, Saro

    2012-11-01

    We constructed hazard maps of ground subsidence around abandoned underground coal mines (AUCMs) in Samcheok City, Korea, using an adaptive neuro-fuzzy inference system (ANFIS) and a geographical information system (GIS). To evaluate the factors related to ground subsidence, a spatial database was constructed from topographic, geologic, mine tunnel, land use, and ground subsidence maps. An attribute database was also constructed from field investigations and reports on existing ground subsidence areas at the study site. Five major factors causing ground subsidence were extracted: (1) depth of drift; (2) distance from drift; (3) slope gradient; (4) geology; and (5) land use. The adaptive ANFIS model with different types of membership functions (MFs) was then applied for ground subsidence hazard mapping in the study area. Two ground subsidence hazard maps were prepared using the different MFs. Finally, the resulting ground subsidence hazard maps were validated using the ground subsidence test data which were not used for training the ANFIS. The validation results showed 95.12% accuracy using the generalized bell-shaped MF model and 94.94% accuracy using the Sigmoidal2 MF model. These accuracy results show that an ANFIS can be an effective tool in ground subsidence hazard mapping. Analysis of ground subsidence with the ANFIS model suggests that quantitative analysis of ground subsidence near AUCMs is possible.

  5. A model-based analysis of biomethane production in the Netherlands and the effectiveness of the subsidization policy under uncertainty

    International Nuclear Information System (INIS)

    Eker, Sibel; Daalen, Els van

    2015-01-01

    Biomethane is a renewable alternative to natural gas. It has the potential to increase the sustainability of the energy system and to help deal with supply problems. However, several factors make the future of biomethane production complex and uncertain, such as resource availability, demand, capacity installation, profitability and the competition between the biomethane and electricity sectors for sharing the available biogas and biomass resources. In this research, we study the dynamics of the Dutch biomethane production and analyze the effects of subsidization policy with a system dynamics model. The policy is tested under uncertainty with respect to three conflicting objectives, namely maximizing production and emission reduction, and minimizing costs. According to the results, the subsidization is crucial to develop biomethane production, and the performance of the policy is enhanced in terms of robustness and of meeting all three objectives satisfactorily when the policy is implemented for a long time, with relatively low subsidy prices. Besides, the subsidization policy is found to be most vulnerable to the producers’ uncertain investment response to profitability. In future research, different policy options such as subsidizing other biomass-based renewable energy options and policies affecting the biomethane demand can be tested

  6. A time-reversal invariant topological phase at the surface of a 3D topological insulator

    International Nuclear Information System (INIS)

    Bonderson, Parsa; Nayak, Chetan; Qi, Xiao-Liang

    2013-01-01

    A 3D fermionic topological insulator has a gapless Dirac surface state protected by time-reversal symmetry and charge conservation symmetry. The surface state can be gapped by introducing ferromagnetism to break time-reversal symmetry, introducing superconductivity to break charge conservation, or entering a topological phase. In this paper, we construct a minimal gapped topological phase that preserves both time-reversal and charge conservation symmetries and supports Ising-type non-Abelian anyons. This phase can be understood heuristically as emerging from a surface s-wave superconducting state via the condensation of eight-vortex composites. The topological phase inherits vortices supporting Majorana zero modes from the surface superconducting state. However, since it is time-reversal invariant, the surface topological phase is a distinct phase from the Ising topological phase, which can be viewed as a quantum-disordered spin-polarized p x + ip y superconductor. We discuss the anyon model of this topological phase and the manner in which time-reversal symmetry is realized in it. We also study the interfaces between the topological state and other surface gapped phases. (paper)

  7. Lifting and protecting residential structures from subsidence damage using airbags

    International Nuclear Information System (INIS)

    Triplett, T.L.; Bennett, R.M.

    1998-01-01

    Conventional practice in protecting residential structures from subsidence damage concentrates on saving the superstructure. The foundation is sacrificed, even though it represents the structural component with the greatest replacement cost. In this study, airbags were used to lift a 20 ft x 30 ft structure to test their ability to protect both the foundation and superstructure from ground settlement. Two contiguous sides of the test foundation were unreinforced, and the other two contiguous sides incorporated footing and wall reinforcement. The airbags successfully lifted the structure without causing damage, even on the unreinforced sides. This paper gives a procedure for determining airbag spacing, and describes installation and operation techniques of the airbags. The paper then focuses on the performance of the airbags in lifting the structure, and shows that airbags can preserve existing foundations during subsidence movements

  8. Working to Reduce Poverty: A National Subsidized Employment Proposal

    Directory of Open Access Journals (Sweden)

    Indivar Dutta-Gupta

    2018-02-01

    Full Text Available Subsidized employment programs that increase labor supply and demand are a proven, underutilized strategy for reducing poverty in the short and long term. These programs use public and private funds to provide workers wage-paying jobs, training, and wraparound services to foster greater labor force attachment while offsetting employers’ cost for wages, on-the-job training, and overhead. This article proposes two new separate but harmonized federal funding streams for subsidized employment that would expand automatically when and where economic conditions deteriorate. Participating states and local organizations would be offered generous matching funds to target adult workers most in need and to secure employer participation. The proposal would effectively reduce poverty among workers during work placements, and improve long-term unsubsidized employment and other outcomes for participants and their families.

  9. DORIS downstream service: a support to civil defence autorithies in landslides and subsidence risk management

    Science.gov (United States)

    Ciampalini, A.; Del Ventisette, C.; Moretti, S.; Manunta, M.; Calò, F.; Paglia, L.; Ardizzone, F.; Guzzetti, F.; Rossi, M.; Bellotti, F.; Colombo, D.; Strozzi, T.; Wegmuller, U.; Mora, O.; Sanches, F.

    2012-04-01

    DORIS is an advanced FP7-EU project for the design of a pre-operational advanced downstream service aimed at detecting, mapping, monitoring and forecasting surface deformations, including landslides and ground subsidence, by exploiting multiple Earth Observation (EO) and ground-based (non-EO) data technologies. Ground deformations are the result of a variety of natural and human-induced causes and triggers. These phenomena are frequent and widespread in Europe, causing extensive economic damage to private properties and public assets and their social impact is relevant. In Europe, the large number of areas affected by ground deformations, the frequency and extent of the triggering events, the extent of the impact and the magnitude of the damage, make it mandatory a multiscale, systemic approach. Further, the complexity and extent of the problem is such that it cannot be tackled (and solved) at an individual, site-specific scale, or using a single technique or methodology. The problem can be approached only through the integration of data and information taken at different scales, and with the collaborative efforts of multiple expertise. With this respect, the several satellite sensors now available, including about forty passive - optical - sensors and nine active - synthetic aperture radar (SAR) - sensors, provide valuable technological alternatives to traditional methods and tools to detect, map, monitor and forecast ground deformations over large areas and with the required accuracy. The temporal continuity and the geometric compatibility among time series of ERS-1, ERS-2 and ENVISAT data represents an unprecedented opportunity to generate very long time series of ground deformations. This provides exclusive information for an improved understanding of the long term behavior of slow and very-slow ground deformation phenomena. In this context, DORIS intends to exploit the extensive catalogues of multiple C-band SAR sensors to provide, via a joint analysis

  10. Monitoring Rates of Subsidence and Relative Sea-Level Rise in Low-Elevation Coastal Zones: A New Approach

    Science.gov (United States)

    Tornqvist, T. E.; Jankowski, K. L.; Fernandes, A. M.; Keogh, M.; Nienhuis, J.

    2017-12-01

    Low-elevation coastal zones (LECZs) that often host large population centers are particularly vulnerable to accelerating rates of relative sea-level rise (RSLR). Traditionally, tide-gauge records are used to obtain quantitative data on rates of RSLR, given that they are perceived to capture the rise of the sea surface, as well as land subsidence which is often substantial in such settings. We argue here that tide gauges in LECZs often provide ambiguous data because they ultimately measure RSLR with respect to a benchmark that is typically anchored tens of meters deep. This is problematic because the prime target of interest is usually the rate of RSLR with respect to the land surface. We illustrate this problem with newly obtained rod surface elevation table - marker horizon (RSET-MH) data from coastal Louisiana (n = 274) that show that shallow subsidence in the uppermost 5-10 m accounts for 60-85% of total subsidence. Since benchmarks in this region are anchored at 23 m depth on average, tide-gauge records by definition do not capture this important process and thus underestimate RSLR by a considerable amount. We show how RSET-MH data, combined with GPS and satellite altimetry data, enable us to bypass this problem. Rates of RSLR in coastal Louisiana over the past 6-10 years are 12 ± 8 mm/yr, considerably higher than numbers reported in recent studies based on tide-gauge analysis. Subsidence rates, averaged across this region, total about 9 mm/yr. It is likely that the problems with tide-gauge data are not unique to coastal Louisiana, so we suggest that our new approach to RSLR measurements may be useful in LECZs worldwide, with considerable implications for metropolitan areas like New Orleans that are located within such settings.

  11. Fluorinated cellular polypropylene films with time-invariant excellent surface electret properties by post-treatments

    International Nuclear Information System (INIS)

    An Zhenlian; Mao Mingjun; Yao Junlan; Zhang Yewen; Xia Zhongfu

    2010-01-01

    In this work, to improve the electret properties of cellular polypropylene films, they were fluorinated and post-treated with nitrous oxide and by isothermal crystallization. Surface electret properties of the samples were investigated by thermally stimulated discharge current measurements, and their compositions and structures were analysed by attenuated total reflection infrared spectroscopy and wide angle x-ray diffraction, respectively. Time-dependent deterioration of surface electret properties was observed for the fluorinated samples without the nitrous oxide post-treatment. However, deterioration did not occur for the fluorinated samples post-treated with nitrous oxide, and time-invariant excellent surface electret properties or deep surface charge traps were obtained by the combined post-treatments of the fluorinated samples with nitrous oxide and by isothermal crystallization. Based on the analyses of composition and structure of the treated samples, the deterioration was clarified to be due to a trace of oxygen in the reactive mixture, which led to the formation of peroxy RO 2 . radicals in the fluorinated surface layer. The time invariability of surface electret properties was owing to the rapid termination of the peroxy RO 2 . radicals by nitrous oxide. And the deep surface charge traps resulted from the isothermal crystallization treatment which led to an increase in the efficient charging interface between the crystallite and amorphous region and its property change.

  12. Methodology for estimation of time-dependent surface heat flux due to cryogen spray cooling.

    Science.gov (United States)

    Tunnell, James W; Torres, Jorge H; Anvari, Bahman

    2002-01-01

    Cryogen spray cooling (CSC) is an effective technique to protect the epidermis during cutaneous laser therapies. Spraying a cryogen onto the skin surface creates a time-varying heat flux, effectively cooling the skin during and following the cryogen spurt. In previous studies mathematical models were developed to predict the human skin temperature profiles during the cryogen spraying time. However, no studies have accounted for the additional cooling due to residual cryogen left on the skin surface following the spurt termination. We formulate and solve an inverse heat conduction (IHC) problem to predict the time-varying surface heat flux both during and following a cryogen spurt. The IHC formulation uses measured temperature profiles from within a medium to estimate the surface heat flux. We implement a one-dimensional sequential function specification method (SFSM) to estimate the surface heat flux from internal temperatures measured within an in vitro model in response to a cryogen spurt. Solution accuracy and experimental errors are examined using simulated temperature data. Heat flux following spurt termination appears substantial; however, it is less than that during the spraying time. The estimated time-varying heat flux can subsequently be used in forward heat conduction models to estimate temperature profiles in skin during and following a cryogen spurt and predict appropriate timing for onset of the laser pulse.

  13. Generalization of the influence function method in mining subsidence

    International Nuclear Information System (INIS)

    Bello Garcia, A.; Mendendez Diaz, A.; Ordieres Mere, J.B.; Gonzalez Nicieza, C.

    1996-01-01

    A generic approach to subsidence prediction based on the influence function method is presented. The changes proposed to the classical approach are the result of a previous analysis stage where a generalization to the 3D problem was made. In addition other hypothesis in order to relax the structural principles of the classical model are suggested. The quantitative results of this process and a brief discussion of its method of employment is presented. 13 refs., 8 figs., 5 tabs

  14. Observation of heights on the margin of subsidence depression

    Czech Academy of Sciences Publication Activity Database

    Bláha, P.; Doležalová, Hana; Müller, Karel; Skopal, R.

    2006-01-01

    Roč. 6, č. 2 (2006), s. 9-15 ISSN 1213-1962. [Nové poznatky a měření v seismologii, inženýrské geofyzice a geotechnice/15./. Ostrava, 11.04.2006-13.04.2006] Institutional research plan: CEZ:AV0Z30860518 Keywords : subsidence depression * levelling * fluctuation Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  15. Employer Subsidized Meals and FAFH Consumption in Urban China

    OpenAIRE

    Teng, Zhijing; Seale, James Jr.; Bai, Junfei; Wahl, Thomas I.

    2015-01-01

    This study investigates factors influencing household decisions on food away from home (FAFH) consumption with special interest given to the effects of employer subsidized meals on FAFH consumption. Using data from a new urban food consumption survey and collected by the Center for Chinese Agriculture Policy from 2009 to 2012 in 10 cities, a double-hurdle model is utilized to estimate the demand for FAFH as a whole and by type of facility (restaurant, fast-food outlet, and other facilities). ...

  16. Application of Spaceborne Differential Radar Interferometry to Rockbursts, Mining Subsidence and Shallow Moderate Earthquakes

    Science.gov (United States)

    Eneva, M.; Baker, E.

    2002-12-01

    We have processed ERS SAR scenes for several sites of rockbursts and mining subsidence, including South Africa (gold), Colorado (coal), the state of New York (salt), Germany (potash), and Poland (copper). We are also looking at JERS-1 scenes from a potash mine in the Ural mountains (Russia) for which no suitable ERS data exist. Sizeable mining-induced events have occurred at most of these sites: mb5.1 in April 1999, S. Africa; ML3.6 in March 1994, New York; ML4.8 in September 1996, Germany; mb4.9 in April 2000, Poland; and mb4.7 in January 1995, Urals. It is reasonable to expect detectable surface displacements from rockbursts, as they are rather shallow compared with tectonic earthquakes of similar size. Indeed, in the case of the 1999 S. African event differential InSAR detects up to 9-cm displacement away from the satellite, while the 1995 collapse in the Urals has resulted in up to 4.5-m surface subsidence. Some of the study rockbursts have occurred on the background of ongoing mining subsidence (e. g., Poland, Urals, New York), adding a detectable boost to the existing subsidence rate. In other cases, mining subsidence is planned and intermittent, without unexpected collapse (e.g., long-wall coal mining in Colorado). We have applied deformation modeling using a 3D finite-difference code, focusing on the April 1999 event that was associated with a normal slip along the Dagbreek fault. Seismic events in this area (Welkom, S. Africa) are commonly associated with collapse of mined out volumes around west-dipping normal faults, but it is not clear how these faults contribute to the seismic and static displacements. The 1999 event provides an opportunity to address this ambiguity, as our InSAR measurements of surface displacements are complemented by local, regional, and teleseismic waveform records, as well as by measurements of displacements in the mine tunnels intersecting the Dagbreek fault. We are using these data to constrain the source and are investigating

  17. Compaction creep of sands due to time-dependent grain failure : Effects of chemical environment, applied stress, and grain size

    NARCIS (Netherlands)

    Brzesowsky, R. H.; Hangx, S. J. T.|info:eu-repo/dai/nl/30483579X; Brantut, N.; Spiers, C. J.|info:eu-repo/dai/nl/304829323

    2014-01-01

    Time-dependent brittle creep plays a role in controlling compaction of sands and sandstones under upper crustal conditions, influencing phenomena such as production-induced reservoir compaction, surface subsidence, and induced seismicity. Brittle creep also plays a role in determining the mechanical

  18. Defining and measuring the mean residence time of lateral surface transient storage zones in small streams

    Science.gov (United States)

    T.R. Jackson; R. Haggerty; S.V. Apte; A. Coleman; K.J. Drost

    2012-01-01

    Surface transient storage (STS) has functional significance in stream ecosystems because it increases solute interaction with sediments. After volume, mean residence time is the most important metric of STS, but it is unclear how this can be measured accurately or related to other timescales and field-measureable parameters. We studied mean residence time of lateral...

  19. Subsidence of the pit slab at SLC experimental hall

    International Nuclear Information System (INIS)

    Inaba, J.; Himeno, Yoichi; Katsura, Yutaka

    1992-01-01

    Detectors installed at particle accelerator facilities are quite heavy, weighing thousands of tons. On the other hand, ground subsidence caused by the installation of a detector adversely affects the beam line alignment of the collider. It becomes, therefore, very important to figure out the expected amount of ground settlement by means of adequate evaluation methods in advance. At Stanford Linear Accelerator Center (SLAC), a 1700 mT (metric tons) Mark II detector was replaced with a 4000 mT SLD detector in Stanford Linear Collider (SLC). The exchange started in December 1990 and lasted until March 1991, and the amount of ground settlement was measured by SLAC during that period. We performed simulation studies to evaluate the subsidence of the pit slab using several analysis methods. Parameters used for the analyses were decided based on the information of the SLC structure and the ground conditions at the SLAC area. The objective of this study is to verify the applicability of several simulation methods by comparing the analytical results with the actual subsidence data obtained by SLAC

  20. Coal mine subsidence: effects of mitigation on crop yields

    International Nuclear Information System (INIS)

    Darmody, R.G.; Hetzler, R.T.; Simmons, F.W.

    1992-01-01

    Subsidence from longwall underground coal mining adversely impacts agricultural land by creating wet or ponded areas. While most subsided areas show little impact, some localized places, usually less than 1.5 ha in size, may experience total crop failure. Coal companies mitigate subsidence damaged cropland by installing drainage waterways or by adding fill material to raise the grade. The objective of this study was to test the effectiveness of mitigation in restoring corn and soybean yields to pre-mined levels. Fourteen sites in southern Illinois were selected for study. Corn (Zea mays L.) and soybean (Glycine max L.) yields from mitigated and nearby undisturbed areas were compared for four years. Results varied due to differing weather and site conditions. Mean corn yields overall, however were significantly (α0.05) lower on mitigated areas. There was no significant difference in overall mean soybean yields. Soil fertility levels were similar and did not account for yield differences. 14 refs., 1 fig., 7 tabs

  1. Modeling of flexible reciprocating compressor considering the crosshead subsidence

    Science.gov (United States)

    Xue, Xiaogang; Liu, Shulin; Sun, Xin

    2018-01-01

    Crank-slider mechanisms are important parts of heavy duty machines, including reciprocating compressors, combustion motors. This paper targets on the dynamic response of the crosshead in a reciprocating compressor, taking into consideration the crosshead deviation from the original level. The traditional model of the compressor is usually a slider-mechanism system without considering the deflection of the crosshead, thus neglecting the influence of the piston rod, which has some flexible features. In this paper, a rigid-flexible model of slider-crank is described theoretically, using the commercial software MATLAB, where the crank, connecting rod and crosshead are treated as rigid bodies, while the piston rod connected to the crosshead is considered as a flexible body. The dynamic response of the mechanism with the crosshead subsidence is discussed detailedly in this paper. After calculated theoretically, the MATLAB simulation showed that the dynamic response of the crosshead will be greatly influenced if the crosshead subsided from the original level. Also, the influence of the crosshead subsidence was also investigated, and some extra vibration of the crosshead arises.

  2. How to subsidize energy efficiency under duopoly efficiently?

    International Nuclear Information System (INIS)

    Nie, Pu-yan; Yang, Yong-cong; Chen, You-hua; Wang, Zhao-hui

    2016-01-01

    Highlights: • This article captures the effects of output subsidy. • Firms without subsidy are not willing to improve energy efficiency. • Subsidy stimulates the subsidized firms’ outputs and deters the others’ outputs. • The subsidy intensity depends on firms’ position. • Overdue subsidy cannot reach the environmental object. - Abstract: Establishing a game theory model, this paper captures the effects of output subsidy on energy efficiency under Cournot competition and Stackelberg competition. Three types of subsidies are considered in the model, namely without subsidy, unilateral subsidy and bilateral subsidy. The findings indicate that firms without subsidy are not willing to improve energy efficiency. Also, subsidy stimulates the subsidized firms’ outputs while deters the outputs of other firms. Meanwhile, the equilibrium subsidy intensity depends on firms’ position. Furthermore, the minimal subsidy budgets under different situations are presented. Especially, given the fixed subsidy budget, the output of the subsidized firm is the highest if this firm plays the leading position. In addition, certain subsidy can reduce the total emission, while overdue subsidy cannot reach the environmental object.

  3. The Subsidence Signature Due To Groundwater Extraction as Inferred from Remote Sensing Data in Mexico City

    Science.gov (United States)

    Patel, V.; Chen, J.

    2015-12-01

    Mexico City is facing a severe water shortage; current drought conditions in the city have led to an increase in the demand for groundwater, the pumping of which can cause significant land subsidence. In this study we explored what new information interferometric synthetic aperture radar (InSAR) data collected by the TerraSAR-X satellite could bring to water resource managers in the city so that they can efficiently and sustainably allocate water resources. Previous work done over Mexico City indicates that InSAR can be used to detect deformation due to groundwater pumping. Cabral-Cano et al. (2008) processed InSAR data acquired from ERS between 1996-2000 and from ENVISAT between 2003-2005. They compared the deformation map to geology maps of the region with information obtained by seismic methods. They found that a spatial correlation between the land deformation and the presence of young lacustrine clay beds, which indicate that the subsidence was caused by fluid pressure loss in the aquitard. They also concluded that the subsidence, for the most part, had no seasonal variation and continues to occur at near-constant, high rates. TerraSAR-­X satellite data is known to be more sensitive to small deformations than the data from satellites used in previous studies in the region because of its frequent revisit cycle, short wavelength, and accurate orbital information. For this project, we derived long sequences of crustal deformation time series from TerraSAR-­X data between May 2011 and December 2012 using the Small Baseline Subset (SBAS) method. The resulting time series was then compared to GPS data for calibration and validation. We observed a long-term deformation that was similar to those found in previous studies. The next step in our work is to determine whether the increased sensitivity of the TerraSAR-­X data allows us to detect a seasonal deformation pattern over the study area.

  4. Inundation, sedimentation, and subsidence creates goose habitat along the Arctic coast of Alaska

    International Nuclear Information System (INIS)

    Tape, Ken D; Flint, Paul L; Meixell, Brandt W; Gaglioti, Benjamin V

    2013-01-01

    The Arctic Coastal Plain of Alaska is characterized by thermokarst lakes and drained lake basins, and the rate of coastal erosion has increased during the last half-century. Portions of the coast are <1 m above sea level for kilometers inland, and are underlain by ice-rich permafrost. Increased storm surges or terrestrial subsidence would therefore expand the area subject to marine inundation. Since 1976, the distribution of molting Black Brant (Branta bernicla nigricans) on the Arctic Coastal Plain has shifted from inland freshwater lakes to coastal marshes, such as those occupying the Smith River and Garry Creek estuaries. We hypothesized that the movement of geese from inland lakes was caused by an expansion of high quality goose forage in coastal areas. We examined the recent history of vegetation and geomorphological changes in coastal goose habitat by combining analysis of time series imagery between 1948 and 2010 with soil stratigraphy dated using bomb-curve radiocarbon. Time series of vertical imagery and in situ verification showed permafrost thaw and subsidence of polygonal tundra. Soil stratigraphy and dating within coastal estuaries showed that non-saline vegetation communities were buried by multiple sedimentation episodes between 1948 and 1995, accompanying a shift toward salt-tolerant vegetation. This sedimentation allowed high quality goose forage plants to expand, thus facilitating the shift in goose distribution. Declining sea ice and the increasing rate of terrestrial inundation, sedimentation, and subsidence in coastal estuaries of Alaska may portend a ‘tipping point’ whereby inland areas would be transformed into salt marshes. (letter)

  5. Time-gated scintillator imaging for real-time optical surface dosimetry in total skin electron therapy

    Science.gov (United States)

    Bruza, Petr; Gollub, Sarah L.; Andreozzi, Jacqueline M.; Tendler, Irwin I.; Williams, Benjamin B.; Jarvis, Lesley A.; Gladstone, David J.; Pogue, Brian W.

    2018-05-01

    The purpose of this study was to measure surface dose by remote time-gated imaging of plastic scintillators. A novel technique for time-gated, intensified camera imaging of scintillator emission was demonstrated, and key parameters influencing the signal were analyzed, including distance, angle and thickness. A set of scintillator samples was calibrated by using thermo-luminescence detector response as reference. Examples of use in total skin electron therapy are described. The data showed excellent room light rejection (signal-to-noise ratio of scintillation SNR  ≈  470), ideal scintillation dose response linearity, and 2% dose rate error. Individual sample scintillation response varied by 7% due to sample preparation. Inverse square distance dependence correction and lens throughput error (8% per meter) correction were needed. At scintillator-to-source angle and observation angle  <50°, the radiant energy fluence error was smaller than 1%. The achieved standard error of the scintillator cumulative dose measurement compared to the TLD dose was 5%. The results from this proof-of-concept study documented the first use of small scintillator targets for remote surface dosimetry in ambient room lighting. The measured dose accuracy renders our method to be comparable to thermo-luminescent detector dosimetry, with the ultimate realization of accuracy likely to be better than shown here. Once optimized, this approach to remote dosimetry may substantially reduce the time and effort required for surface dosimetry.

  6. Problem definition study of subsidence caused by geopressured geothermal resource development

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The environmental and socio-economic settings of four environmentally representative Gulf Coast geopressured geothermal fairways were inventoried. Subsidence predictions were prepared using feasible development scenarios for the four representative subsidence sites. Based on the results of the subsidence estimates, an assessment of the associated potential environmental and socioeconomic impacts was prepared. An inventory of mitigation measures was also compiled. Results of the subsidence estimates and impact assessments are presented, as well as conclusions as to what are the major uncertainties, problems, and issues concerning the future study of geopressured geothermal subsidence.

  7. Comparison of estimated and background subsidence rates in Texas-Louisiana geopressured geothermal areas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, L.M.; Clayton, M.; Everingham, J.; Harding, R.C.; Massa, A.

    1982-06-01

    A comparison of background and potential geopressured geothermal development-related subsidence rates is given. Estimated potential geopressured-related rates at six prospects are presented. The effect of subsidence on the Texas-Louisiana Gulf Coast is examined including the various associated ground movements and the possible effects of these ground movements on surficial processes. The relationships between ecosystems and subsidence, including the capability of geologic and biologic systems to adapt to subsidence, are analyzed. The actual potential for environmental impact caused by potential geopressured-related subsidence at each of four prospects is addressed. (MHR)

  8. Analytical real-time measurement of a three-dimensional weld pool surface

    International Nuclear Information System (INIS)

    Zhang, WeiJie; Zhang, YuMing; Wang, XueWu

    2013-01-01

    The ability to observe and measure weld pool surfaces in real-time is the core of the foundation for next generation intelligent welding that can partially imitate skilled welders who observe the weld pool to acquire information on the welding process. This study aims at the real-time measurement of the specular three-dimensional (3D) weld pool surface under a strong arc in gas tungsten arc welding (GTAW). An innovative vision system is utilized in this study to project a dot-matrix laser pattern on the specular weld pool surface. Its reflection from the surface is intercepted at a distance from the arc by a diffuse plane. The intercepted laser dots illuminate this plane producing an image showing the reflection pattern. The deformation of this reflection pattern from the projected pattern (e.g. the dot matrix) is used to derive the 3D shape of the reflection surface, i.e., the weld pool surface. Based on careful analysis, the underlying reconstruction problem is formulated mathematically. An analytic solution is proposed to solve this formulated problem resulting in the weld pool surface being reconstructed on average in 3.04 ms during welding experiments. A vision-based monitoring system is thus established to measure the weld pool surface in GTAW in real-time. In order to verify the effectiveness of the proposed reconstruction algorithm, first numerical simulation is conducted. The proposed algorithm is then tested on a spherical convex mirror with a priori knowledge of its geometry. The detailed analysis of the measurement error validates the accuracy of the proposed algorithm. Results from the real-time experiments verify the robustness of the proposed reconstruction algorithm. (paper)

  9. Backward modelling of the subsidence evolution of the Colorado Basin, offshore Argentina and its relation to the evolution of the conjugate Orange Basin, offshore SW Africa

    Science.gov (United States)

    Dressel, Ingo; Scheck-Wenderoth, Magdalena; Cacace, Mauro

    2017-10-01

    In this study we focus on reconstructing the post-rift subsidence evolution of the Colorado Basin, offshore Argentina. We make use of detailed structural information about its present-day configuration of the sedimentary infill and the crystalline crust. This information is used as input in a backward modelling approach which relies on the assumption of local isostasy to reconstruct the amount of subsidence as induced by the sedimentary load through different time stages. We also attempt a quantification of the thermal effects on the subsidence as induced by the rifting, here included by following the uniform stretching model of lithosphere thinning and exponentially cooling through time. Based on the available information about the present-day geological state of the system, our modelling results indicate a rather continuous post-rift subsidence for the Colorado Basin, and give no significant evidence of any noticeable uplift phase. In a second stage, we compare the post-rift evolution of the Colorado Basin with the subsidence evolution as constrained for its conjugate SW African passive margin, the Orange Basin. Despite these two basins formed almost coevally and therefore in a similar large scale geodynamic context, their post-rift subsidence histories differ. Based on this result, we discuss causative tectonic processes likely to provide an explanation to the observed differences. We therefore conclude that it is most probable that additional tectonic components, other than the ridge-push from the spreading of the South Atlantic Ocean, are required to explain the observed differences in the subsidence of the two basins along the conjugate passive margins. Such additional tectonic components might be related to a dynamic mantle component in the form of either plume activity (Africa) or a subducting slab and the presence of an ongoing compressional stress system as revealed for different areas in South America.

  10. The mineralogic evolution of the Martian surface through time: Implications from chemical reaction path modeling studies

    Science.gov (United States)

    Plumlee, G. S.; Ridley, W. I.; Debraal, J. D.; Reed, M. H.

    1993-01-01

    Chemical reaction path calculations were used to model the minerals that might have formed at or near the Martian surface as a result of volcano or meteorite impact driven hydrothermal systems; weathering at the Martian surface during an early warm, wet climate; and near-zero or sub-zero C brine-regolith reactions in the current cold climate. Although the chemical reaction path calculations carried out do not define the exact mineralogical evolution of the Martian surface over time, they do place valuable geochemical constraints on the types of minerals that formed from an aqueous phase under various surficial and geochemically complex conditions.

  11. A time-of-flight neutron reflectometer for surface and interfacial studies

    International Nuclear Information System (INIS)

    Penfold, J.; Ward, R.C.; Williams, W.G.

    1987-03-01

    A time-of-flight neutron reflectometer constructed for surface and interfacial studies, and installed at the ISIS pulsed neutron source, is described. One of its important design features is its inclined incident beam, since this allows both liquid and solid surface phenomena to be investigated. Measurements are presented to show the performance of the instrument, and new representative results, which include studies of liquid surfaces, Langmuir-Blodgett films, and thin film multilayers, are included as illustrations of the scientific potential of the method. (author)

  12. RCRA Part A permit characterization plan for the U-2bu subsidence crater. Revision 1

    International Nuclear Information System (INIS)

    1998-04-01

    This plan presents the characterization strategy for Corrective Action Unit (CAU) 109, U-2bu Subsidence Crater (referred to as U-2bu) in Area 2 at the Nevada Test Site (NTS). The objective of the planned activities is to obtain sufficient characterization data for the crater soils and observed wastes under the conditions of the current Resource Conservation and Recovery Act (RCRA) Part A permit. The scope of the characterization plan includes collecting surface and subsurface soil samples with hand augers and for the purpose of site characterization. The sampling strategy is to characterize the study area soils and look for RCRA constituents. Observable waste soils and surrounding crater soils will be analyzed and evaluated according to RCRA closure criteria. Because of the status of the crater a RCRA Part A permit site, acquired radionuclide analyses will only be evaluated in regards to the health and safety of site workers and the disposition of wastes generated during site characterization. The U-2bu Subsidence Crater was created in 1971 by a Lawrence Livermore National Laboratory underground nuclear test, event name Miniata, and was used as a land-disposal unit for radioactive and hazardous waste from 1973 to 1988

  13. Surface deterioration of dental materials after simulated toothbrushing in relation to brushing time and load.

    Science.gov (United States)

    Heintze, S D; Forjanic, M; Ohmiti, K; Rousson, V

    2010-04-01

    (1) To evaluate the changes in surface roughness and gloss after simulated toothbrushing of 9 composite materials and 2 ceramic materials in relation to brushing time and load in vitro; (2) to assess the relationship between surface gloss and surface roughness. Eight flat specimens of composite materials (microfilled: Adoro, Filtek Supreme, Heliomolar; microhybrid: Four Seasons, Tetric EvoCeram; hybrid: Compoglass F, Targis, Tetric Ceram; macrohybrid: Grandio), two ceramic materials (IPS d.SIGN and IPS Empress polished) were fabricated according to the manufacturer's instructions and optimally polished with up to 4000 grit SiC. The specimens were subjected to a toothbrushing (TB) simulation device (Willytec) with rotating movements, toothpaste slurry and at three different loads (100g/250g/350g). At hourly intervals from 1h to 10h TB, mean surface roughness Ra was measured with an optical sensor and the surface gloss (Gl) with a glossmeter. Statistical analysis was performed for log-transformed Ra data applying two-way ANOVA to evaluate the interaction between load and material and load and brushing time. There was a significant interaction between material and load as well as between load and brushing time (pgloss was the parameter which discriminated best between the materials, followed by mean surface roughness Ra. There was a strong correlation between surface gloss and surface roughness for all the materials except the ceramics. The evaluation of the deterioration curves of individual specimens revealed a more or less synchronous course suspecting hinting specific external conditions and not showing the true variability in relation to the tested material. The surface roughness and gloss of dental materials changes with brushing time and load and thus results in different material rankings. Apart from Grandio, the hybrid composite resins were more prone to surface changes than microfilled composites. The deterioration potential of a composite material can be

  14. Land Subsidence Prediction by Back Calculation Method and its Effects on Sewage Network

    Directory of Open Access Journals (Sweden)

    Mohammad Mohsen Toufigh

    2009-03-01

    Full Text Available Groundwater overdraft is one of the main reasons of land subsidence. Differential subsidence leads to earth fissures and damages to structures, roads, railroads, pipelines, irrigation canals, and sewage networks. In order to simulate land subsidence due to groundwater overdraft, a fully coupled finite element consolidation model was developed. Formulation of finite element was based on Biot three-dimensional consolidation theory. Land subsidence studies inRafsanjanCitywere conducted by collecting and analyzing data on geology, geophysics, hydrology, soil properties, and observed land subsidence. Due to lack of sufficient experimental data about different soil profiles, land subsidence monitoring and back calculation were used in several spots to obtain the necessary data for use in other places. A computer model was finally developed to predict the subsidence of the city and its effects on the sewage network were studied.

  15. Kalman Filters in Geotechnical Monitoring of Ground Subsidence Using Data from MEMS Sensors

    Science.gov (United States)

    Li, Cheng; Azzam, Rafig; Fernández-Steeger, Tomás M.

    2016-01-01

    The fast development of wireless sensor networks and MEMS make it possible to set up today real-time wireless geotechnical monitoring. To handle interferences and noises from the output data, Kalman filter can be selected as a method to achieve a more realistic estimate of the observations. In this paper, a one-day wireless measurement using accelerometers and inclinometers was deployed on top of a tunnel section under construction in order to monitor ground subsidence. The normal vectors of the sensors were firstly obtained with the help of rotation matrices, and then be projected to the plane of longitudinal section, by which the dip angles over time would be obtained via a trigonometric function. Finally, a centralized Kalman filter was applied to estimate the tilt angles of the sensor nodes based on the data from the embedded accelerometer and the inclinometer. Comparing the results from two sensor nodes deployed away and on the track respectively, the passing of the tunnel boring machine can be identified from unusual performances. Using this method, the ground settlement due to excavation can be measured and a real-time monitoring of ground subsidence can be realized. PMID:27447630

  16. Kalman Filters in Geotechnical Monitoring of Ground Subsidence Using Data from MEMS Sensors

    Directory of Open Access Journals (Sweden)

    Cheng Li

    2016-07-01

    Full Text Available The fast development of wireless sensor networks and MEMS make it possible to set up today real-time wireless geotechnical monitoring. To handle interferences and noises from the output data, Kalman filter can be selected as a method to achieve a more realistic estimate of the observations. In this paper, a one-day wireless measurement using accelerometers and inclinometers was deployed on top of a tunnel section under construction in order to monitor ground subsidence. The normal vectors of the sensors were firstly obtained with the help of rotation matrices, and then be projected to the plane of longitudinal section, by which the dip angles over time would be obtained via a trigonometric function. Finally, a centralized Kalman filter was applied to estimate the tilt angles of the sensor nodes based on the data from the embedded accelerometer and the inclinometer. Comparing the results from two sensor nodes deployed away and on the track respectively, the passing of the tunnel boring machine can be identified from unusual performances. Using this method, the ground settlement due to excavation can be measured and a real-time monitoring of ground subsidence can be realized.

  17. Kalman Filters in Geotechnical Monitoring of Ground Subsidence Using Data from MEMS Sensors.

    Science.gov (United States)

    Li, Cheng; Azzam, Rafig; Fernández-Steeger, Tomás M

    2016-07-19

    The fast development of wireless sensor networks and MEMS make it possible to set up today real-time wireless geotechnical monitoring. To handle interferences and noises from the output data, Kalman filter can be selected as a method to achieve a more realistic estimate of the observations. In this paper, a one-day wireless measurement using accelerometers and inclinometers was deployed on top of a tunnel section under construction in order to monitor ground subsidence. The normal vectors of the sensors were firstly obtained with the help of rotation matrices, and then be projected to the plane of longitudinal section, by which the dip angles over time would be obtained via a trigonometric function. Finally, a centralized Kalman filter was applied to estimate the tilt angles of the sensor nodes based on the data from the embedded accelerometer and the inclinometer. Comparing the results from two sensor nodes deployed away and on the track respectively, the passing of the tunnel boring machine can be identified from unusual performances. Using this method, the ground settlement due to excavation can be measured and a real-time monitoring of ground subsidence can be realized.

  18. Development of an expert analysis tool based on an interactive subsidence hazard map for urban land use in the city of Celaya, Mexico

    Science.gov (United States)

    Alloy, A.; Gonzalez Dominguez, F.; Nila Fonseca, A. L.; Ruangsirikulchai, A.; Gentle, J. N., Jr.; Cabral, E.; Pierce, S. A.

    2016-12-01

    Land Subsidence as a result of groundwater extraction in central Mexico's larger urban centers initiated in the 80's as a result of population and economic growth. The city of Celaya has undergone subsidence for a few decades and a consequence is the development of an active normal fault system that affects its urban infrastructure and residential areas. To facilitate its analysis and a land use decision-making process we created an online interactive map enabling users to easily obtain information associated with land subsidence. Geological and socioeconomic data of the city was collected, including fault location, population data, and other important infrastructure and structural data has been obtained from fieldwork as part of a study abroad interchange undergraduate course. The subsidence and associated faulting hazard map was created using an InSAR derived subsidence velocity map and population data from INEGI to identify hazard zones using a subsidence gradient spatial analysis approach based on a subsidence gradient and population risk matrix. This interactive map provides a simple perspective of different vulnerable urban elements. As an accessible visualization tool, it will enhance communication between scientific and socio-economic disciplines. Our project also lays the groundwork for a future expert analysis system with an open source and easily accessible Python coded, SQLite database driven website which archives fault and subsidence data along with visual damage documentation to civil structures. This database takes field notes and provides an entry form for uniform datasets, which are used to generate a JSON. Such a database is useful because it allows geoscientists to have a centralized repository and access to their observations over time. Because of the widespread presence of the subsidence phenomena throughout cities in central Mexico, the spatial analysis has been automated using the open source software R. Raster, rgeos, shapefiles, and rgdal

  19. Phase-shifting Real-time Holographic Microscopy applied in micro-structures surface analysis

    International Nuclear Information System (INIS)

    Brito, I V; Gesualdi, M R R; Muramatsu, M; Ricardo, J

    2011-01-01

    The microscopic real-time analysis of micro structured materials is of great importance in various domains of science and technology. For other hand, the holographic interferometry comprises a group of powerful optical methods for non-destructive testing in surface analysis. The holographic microscopy uses the holographic interferometric techniques to obtain quantitative intensity and phase information of the optical waves by microscopic systems. With the development of CCD cameras, computers (hardware and software), and new materials for holographic recording, these techniques can be used to replace the classical form of registration and became promising tools in surface analysis. In this work, we developed a prototype of Photorefractive and Digital Holographic Microscope for real-time analysis of micro-structured systems based on the phase-shifting real-time holographic interferometry techniques. Using this apparatus, we are made analysis of shapes and surfaces to obtain the phase maps and the 3D profiles of some samples.

  20. The Transit-Time Distribution from the Northern Hemisphere Midlatitude Surface

    Science.gov (United States)

    Orbe, Clara; Waugh, Darryn W.; Newman, Paul A.; Strahan, Susan; Steenrod, Stephen

    2015-01-01

    The distribution of transit times from the Northern Hemisphere (NH) midlatitude surface is a fundamental property of tropospheric transport. Here we present an analysis of the transit time distribution (TTD) since air last contacted the northern midlatitude surface layer, as simulated by the NASA Global Modeling Initiative Chemistry Transport Model. We find that throughout the troposphere the TTD is characterized by long flat tails that reflect the recirculation of old air from the Southern Hemisphere and results in mean ages that are significantly larger than the modal age. Key aspects of the TTD -- its mode, mean and spectral width -- are interpreted in terms of tropospheric dynamics, including seasonal shifts in the location and strength of tropical convection and variations in quasi-isentropic transport out of the northern midlatitude surface layer. Our results indicate that current diagnostics of tropospheric transport are insufficient for comparing model transport and that the full distribution of transit times is a more appropriate constraint.

  1. Subsidence and Fault Displacement Along the Long Point Fault Derived from Continuous GPS Observations (2012-2017)

    Science.gov (United States)

    Tsibanos, V.; Wang, G.

    2017-12-01

    The Long Point Fault located in Houston Texas is a complex system of normal faults which causes significant damage to urban infrastructure on both private and public property. This case study focuses on the 20-km long fault using high accuracy continuously operating global positioning satellite (GPS) stations to delineate fault movement over five years (2012 - 2017). The Long Point Fault is the longest active fault in the greater Houston area that damages roads, buried pipes, concrete structures and buildings and creates a financial burden for the city of Houston and the residents who live in close vicinity to the fault trace. In order to monitor fault displacement along the surface 11 permanent and continuously operating GPS stations were installed 6 on the hanging wall and 5 on the footwall. This study is an overview of the GPS observations from 2013 to 2017. GPS positions were processed with both relative (double differencing) and absolute Precise Point Positioning (PPP) techniques. The PPP solutions that are referred to IGS08 reference frame were transformed to the Stable Houston Reference Frame (SHRF16). Our results show no considerable horizontal displacements across the fault, but do show uneven vertical displacement attributed to regional subsidence in the range of (5 - 10 mm/yr). This subsidence can be associated to compaction of silty clays in the Chicot and Evangeline aquifers whose water depths are approximately 50m and 80m below the land surface (bls). These levels are below the regional pre-consolidation head that is about 30 to 40m bls. Recent research indicates subsidence will continue to occur until the aquifer levels reach the pre-consolidation head. With further GPS observations both the Long Point Fault and regional land subsidence can be monitored providing important geological data to the Houston community.

  2. Subsidence monitoring network: an Italian example aimed at a sustainable hydrocarbon E&P activity

    Directory of Open Access Journals (Sweden)

    M. C. Dacome

    2015-11-01

    Full Text Available According to the Italian law in order to start-up any new hydrocarbon exploitation activity, an Environmental Impact Assessment study has to be presented, including a monitoring plan, addressed to foresee, measure and analyze in real time any possible impact of the project on the coastal areas and on those ones in the close inland located. The occurrence of subsidence, that could partly be related to hydrocarbon production, both on-shore and off-shore, can generate great concern in those areas where its occurrence may have impacts on the local environment. ENI, following the international scientific community recommendations on the matter, since the beginning of 90's years, implemented a cutting-edge monitoring network, with the aim to prevent, mitigate and control geodynamics phenomena generated in the activity areas, with a particular attention to conservation and protection of environmental and territorial equilibrium, taking care of what is known as "sustainable development". The current ENI implemented monitoring surveys can be divided as: – Shallow monitoring: spirit levelling surveys, continuous GPS surveys in permanent stations, SAR surveys, assestimeter subsurface compaction monitoring, ground water level monitoring, LiDAR surveys, bathymetrical surveys. – Deep monitoring: reservoir deep compaction trough radioactive markers, reservoir static (bottom hole pressure monitoring. All the information, gathered through the monitoring network, allow: 1. to verify if the produced subsidence is evolving accordingly with the simulated forecast. 2. to provide data to revise and adjust the prediction compaction models 3. to put in place the remedial actions if the impact exceeds the threshold magnitude originally agreed among the involved parties. ENI monitoring plan to measure and monitor the subsidence process, during field production and also after the field closure, is therefore intended to support a sustainable field development and an

  3. Subsidence monitoring network: an Italian example aimed at a sustainable hydrocarbon E&P activity

    Science.gov (United States)

    Dacome, M. C.; Miandro, R.; Vettorel, M.; Roncari, G.

    2015-11-01

    According to the Italian law in order to start-up any new hydrocarbon exploitation activity, an Environmental Impact Assessment study has to be presented, including a monitoring plan, addressed to foresee, measure and analyze in real time any possible impact of the project on the coastal areas and on those ones in the close inland located. The occurrence of subsidence, that could partly be related to hydrocarbon production, both on-shore and off-shore, can generate great concern in those areas where its occurrence may have impacts on the local environment. ENI, following the international scientific community recommendations on the matter, since the beginning of 90's years, implemented a cutting-edge monitoring network, with the aim to prevent, mitigate and control geodynamics phenomena generated in the activity areas, with a particular attention to conservation and protection of environmental and territorial equilibrium, taking care of what is known as "sustainable development". The current ENI implemented monitoring surveys can be divided as: - Shallow monitoring: spirit levelling surveys, continuous GPS surveys in permanent stations, SAR surveys, assestimeter subsurface compaction monitoring, ground water level monitoring, LiDAR surveys, bathymetrical surveys. - Deep monitoring: reservoir deep compaction trough radioactive markers, reservoir static (bottom hole) pressure monitoring. All the information, gathered through the monitoring network, allow: 1. to verify if the produced subsidence is evolving accordingly with the simulated forecast. 2. to provide data to revise and adjust the prediction compaction models 3. to put in place the remedial actions if the impact exceeds the threshold magnitude originally agreed among the involved parties. ENI monitoring plan to measure and monitor the subsidence process, during field production and also after the field closure, is therefore intended to support a sustainable field development and an acceptable exploitation

  4. HARDENING OF CRANE RAILS BY PLASMA DISCRETE-TIME SURFACE TREATMENT

    Directory of Open Access Journals (Sweden)

    S. S. Samotugin

    2017-01-01

    Full Text Available Crane wheels and rails are subjected to intensive wear in the process of operation. Therefore, improvement of these components’ performance can be considered a task of high importance. A promising direction in this regard is surface treatment by highly concentrated energy flows such as laser beams or plasma jets. This thesis suggests that the use of gradient plasma surface treatment can improve the performance of crane rails. A research was conducted, according to which hardened zones were deposited on crane rails under different treatment modes. Microhardness was measured both at the surface and in depth using custom-made microsections. The article includes the results of study of plasma surface hardening effects on wear resistance of crane rails. Change of plasma surface treatment parameters (current, plasma torch movement speed, argon gas flow rate allows for desired steel hardness and structure, while the choice of optimal location for hardened zones makes it possible to significantly improve wear resistance and crack resistance. As a result of plasma surface hardening, the fine-grained martensite structure is obtained with mainly lamellar morphology and higher hardness rate compared toinduction hardening or overlaying. Wear test of carbon steels revealed that plasma surfacing reduces abrasive wear rate compared to the irinitial state by 2 to 3 times. Enough sharp boundary between hardened and non-hardened portions has a positive effect on the performance of parts under dynamic loads, contributing to the inhibition of cracks during the transition from solid to a soft metal. For carbon and low alloy rail steels, the properties achieved by plasma surface hardening can effectively replace induction hardening or overlaying.The mode range for plasma surface treatment that allow sobtaining a surface layer with certain operating properties has been determined.

  5. New insights on the subsidence of the Ganges-Brahmaputra Delta Plain by using 2D multichannel seismic data, gravity and flexural modeling, BanglaPIRE Project

    Science.gov (United States)

    Grall, C.; Pickering, J.; Steckler, M. S.; Spiess, V.; Seeber, L.; Paola, C.; Goodbred, S. L., Jr.; Palamenghi, L.; Schwenk, T.

    2015-12-01

    Deltas can subside very fast, yet many deltas remain emergent over geologic time. A large sediment input is often enough to compensate for subsidence and rising sea level to keep many deltas at sea level. This implies a balance between subsidence and sedimentation, both of which may, however, be controlled by independent factors such as sediment supply, tectonic loads and sea-level change. We here examine the subsidence of the Ganges-Brahmaputra Delta (GBD). Located in the NE boundary of the Indian-Eurasian collision zone, the GBD is surrounded by active uplifts (Indo-Burma Fold Belt and the Shillong Massif). The pattern of subsidence from these tectonic loads can strongly vary depending on both loads and lithospheric flexural rigidity, both of which can vary in space and time. Sediment cover changes both the lithostatic pressure and the thermal properties and thus the rigidity of the lithosphere. While sediments are deposited cold, they also insulate the lithosphere, acting as a thermal blanket to increase lower crustal temperatures. These effects are a function of sedimentation rates and may be more important where the lithosphere is thin. At the massive GBD the impact of sedimentation should be considered for properly constraining flexural subsidence. The flexural rigidity of the lithosphere is here modeled by using a yield-stress envelope based on a thermomechanic model that includes geothermal changes associated with sedimentation. Models are constrained by using two different data sets, multichannel seismic data correlated to borehole stratigraphy, and gravity data. This approach allows us to determine the Holocene regional distribution of subsidence from the Hinge Zone to the Bengal Fan and the mass-anomalies associated with the flexural loading. Different end-member scenarios are explored for reproducing the observed land tilting and gravity anomalies. For all scenarios considered, data can be reproduced only if we consider an extremely weak lithosphere and

  6. Surface contact stimulates the just-in-time deployment of bacterial adhesins.

    Science.gov (United States)

    Li, Guanglai; Brown, Pamela J B; Tang, Jay X; Xu, Jing; Quardokus, Ellen M; Fuqua, Clay; Brun, Yves V

    2012-01-01

    The attachment of bacteria to surfaces provides advantages such as increasing nutrient access and resistance to environmental stress. Attachment begins with a reversible phase, often mediated by surface structures such as flagella and pili, followed by a transition to irreversible attachment, typically mediated by polysaccharides. Here we show that the interplay between pili and flagellum rotation stimulates the rapid transition between reversible and polysaccharide-mediated irreversible attachment. We found that reversible attachment of Caulobacter crescentus cells is mediated by motile cells bearing pili and that their contact with a surface results in the rapid pili-dependent arrest of flagellum rotation and concurrent stimulation of polar holdfast adhesive polysaccharide. Similar stimulation of polar adhesin production by surface contact occurs in Asticcacaulis biprosthecum and Agrobacterium tumefaciens. Therefore, single bacterial cells respond to their initial contact with surfaces by triggering just-in-time adhesin production. This mechanism restricts stable attachment to intimate surface interactions, thereby maximizing surface attachment, discouraging non-productive self-adherence, and preventing curing of the adhesive. © 2011 Blackwell Publishing Ltd.

  7. Comparison of time-dependent changes in the surface hardness of different composite resins

    Science.gov (United States)

    Ozcan, Suat; Yikilgan, Ihsan; Uctasli, Mine Betul; Bala, Oya; Kurklu, Zeliha Gonca Bek

    2013-01-01

    Objective: The aim of this study was to evaluate the change in surface hardness of silorane-based composite resin (Filtek Silorane) in time and compare the results with the surface hardness of two methacrylate-based resins (Filtek Supreme and Majesty Posterior). Materials and Methods: From each composite material, 18 wheel-shaped samples (5-mm diameter and 2-mm depth) were prepared. Top and bottom surface hardness of these samples was measured using a Vicker's hardness tester. The samples were then stored at 37°C and 100% humidity. After 24 h and 7, 30 and 90 days, the top and bottom surface hardness of the samples was measured. In each measurement, the rate between the hardness of the top and bottom surfaces were recorded as the hardness rate. Statistical analysis was performed by one-way analysis of variance, multiple comparisons by Tukey's test and binary comparisons by t-test with a significance level of P = 0.05. Results: The highest hardness values were obtained from each two surfaces of Majesty Posterior and the lowest from Filtek Silorane. Both the top and bottom surface hardness of the methacrylate based composite resins was high and there was a statistically significant difference between the top and bottom hardness values of only the silorane-based composite, Filtek Silorane (P composite resin Filtek Silorane showed adequate hardness ratio, the use of incremental technic during application is more important than methacrylate based composites. PMID:24966724

  8. Equatorial Cross-Cutting Ripples on Titan - Regularly Warped Subsiding Methane Plains, not Eolian Dunes.

    Science.gov (United States)

    Kochemasov, G. G.

    2008-09-01

    Widely circulating opinion that titanian methane lowlands in a broad equatorial region are covered with eolian formations needs to be carefully checked. Of coarse, all three solid bodies with atmospheres in the inner solar system have dunes. Why do not have them on Titan? Most probably they do exist but discovered by radar up to now cross-cutting rippling features cannot be taken for them. For this there are several reasons. How it can be that prevailing "dune" strike coincides with prevailing wind direction? Normally (with some African exceptions) one sees real terrestrial dunes stretching across winds. And this is understandable from a point of view eolian dunes formation. This formation gives particular cross profile to dunes. Asymmetric profile - one slope is long and gentle and another one short and abrupt. But titanian "dunes" are mostly uniform and symmetric. And this characteristic is preserved for many hundreds of kilometers of very straight features. Then, the finest solid particles precipitation from the thick atmosphere of Titan should be distributed on the satellite surface more uniformly and cover dark lowlands and light icy highlands of the wide equatorial belt more or less evenly. But "dunes" are strictly associated with dark lowlands and tend to turn round light icy obstacles. Cindering smoggy particles to produce sands for making dunes is a pure imagination. Then, radar preferably sees one direction but nevertheless one or more crossing directions of rippling are distinguished (Fig.3, 4) They mean two wind directions at the same time or another wind direction at another time? If so, the earlier "dunes" should be more or less obliterated by the later ones. Nothing of the kind! Both crossing ripples directions are fresh. Then, eolian action is not seen at the higher latitudes (Fig. 5). There are no winds there? Probably it is not so. Only a liquid state of methane can help (but liquid should be disturbed by winds). Solid methane there is also

  9. Effect of Nitridation Time on the Surface Hardness of Medium Carbon Steels (AISI 1045)

    International Nuclear Information System (INIS)

    Setyo Atmojo; Tjipto Sujitno; Sukidi

    2003-01-01

    It has been investigated the effect of nitridation time on the surface hardness of medium carbon steels (AISI 1045). Parameters determining to the results were flow rate of the nitrogen gas, temperature and time. In this experiments, sample having diameter of 15 mm, thick 2 mm placed in tube of glass with diameter 35 mm heated 550 o C, flow rate and temperature were kept constants, 100 cc/minutes and 550 o C respectively, while the time were varied from 5, 10, 20 and 30 hours. It was found, that for the nitridation time of 5, 10, 20, and 30 hours, the surface hardness increased from 145 VHN to, 23.7, 296.8, 382.4 and 426.1 VHN, respectively. (author)

  10. Fast time-of-flight camera based surface registration for radiotherapy patient positioning

    International Nuclear Information System (INIS)

    Placht, Simon; Stancanello, Joseph; Schaller, Christian; Balda, Michael; Angelopoulou, Elli

    2012-01-01

    Purpose: This work introduces a rigid registration framework for patient positioning in radiotherapy, based on real-time surface acquisition by a time-of-flight (ToF) camera. Dynamic properties of the system are also investigated for future gating/tracking strategies. Methods: A novel preregistration algorithm, based on translation and rotation-invariant features representing surface structures, was developed. Using these features, corresponding three-dimensional points were computed in order to determine initial registration parameters. These parameters became a robust input to an accelerated version of the iterative closest point (ICP) algorithm for the fine-tuning of the registration result. Distance calibration and Kalman filtering were used to compensate for ToF-camera dependent noise. Additionally, the advantage of using the feature based preregistration over an ''ICP only'' strategy was evaluated, as well as the robustness of the rigid-transformation-based method to deformation. Results: The proposed surface registration method was validated using phantom data. A mean target registration error (TRE) for translations and rotations of 1.62 ± 1.08 mm and 0.07 deg. ± 0.05 deg., respectively, was achieved. There was a temporal delay of about 65 ms in the registration output, which can be seen as negligible considering the dynamics of biological systems. Feature based preregistration allowed for accurate and robust registrations even at very large initial displacements. Deformations affected the accuracy of the results, necessitating particular care in cases of deformed surfaces. Conclusions: The proposed solution is able to solve surface registration problems with an accuracy suitable for radiotherapy cases where external surfaces offer primary or complementary information to patient positioning. The system shows promising dynamic properties for its use in gating/tracking applications. The overall system is competitive with commonly-used surface registration

  11. Time-resolved detection of surface plasmon polaritons with a scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Ha, T.; Jensen, Jacob Riis

    1998-01-01

    We present the time-resolved detection of surface plasmon polaritons with an STM. The results indicate that the time resolved signal is due to rectification of coherently superimposed plasmon voltages. The comparison with differential reflectivity measurements shows that the tip itself influences...... the decay of the plasmon-field coherence. Generation of the measured signal at the tunneling junction offers the possibility to observe ultrafast effects with a spatial resolution determined by the tunneling junction...

  12. Estimating space-time mean concentrations of nutrients in surface waters of variable depth

    NARCIS (Netherlands)

    Knotters, M.; Brus, D.J.

    2010-01-01

    A monitoring scheme has been designed to test whether the space-time mean concentration total Nitrogen (N-total) in the surface water in the Northern Frisian Woodlands (NFW, The Netherlands) complies with standards of the European Water Framework directive. Since in statistical testing for

  13. Lithosphere structure and subsidence evolution of the conjugate S-African and Argentine margins

    Science.gov (United States)

    Dressel, Ingo; Scheck-Wenderoth, Magdalena; Cacace, Mauro; Götze, Hans-Jürgen; Franke, Dieter

    2016-04-01

    The bathymetric evolution of the South Atlantic passive continental margins is a matter of debate. Though it is commonly accepted that passive margins experience thermal subsidence as a result of lithospheric cooling as well as load induced subsidence in response to sediment deposition it is disputed if the South Atlantic passive margins were affected by additional processes affecting the subsidence history after continental breakup. We present a subsidence analysis along the SW African margin and offshore Argentina and restore paleobathymetries to assess the subsidence evolution of the margin. These results are discussed with respect to mechanisms behind margin evolution. Therefore, we use available information about the lithosphere-scale present-day structural configuration of these margins as a starting point for the subsidence analysis. A multi 1D backward modelling method is applied to separate individual subsidence components such as the thermal- as well as the load induced subsidence and to restore paleobathymetries for the conjugate margins. The comparison of the restored paleobathymetries shows that the conjugate margins evolve differently: Continuous subsidence is obtained offshore Argentina whereas the subsidence history of the SW African margin is interrupted by phases of uplift. This differing results for both margins correlate also with different structural configurations of the subcrustal mantle. In the light of these results we discuss possible implications for uplift mechanisms.

  14. Land subsidence in Yunlin, Taiwan, due to Agricultural and Domestic Water Use

    Science.gov (United States)

    Hsu, K.; Lin, P.; Lin, Z.

    2013-12-01

    Subsidence in a layered aquifer is caused by groundwater excess extraction and results in complicated problems in Taiwan. Commonly, responsibility to subsidence for agricultural and domestic water users is difficulty to identify due to the lack of quantitative evidences. An integrated model was proposed to analyze subsidence problem. The flow field utilizes analytical solution for pumping in a layered system from Neuman and Witherspoon (1969) to calculate the head drawdown variation. The subsidence estimation applies Terzaghi (1943) one-dimensional consolidation theory to calculate the deformation in each layer. The proposed model was applied to estimate land subsidence and drawdown variation at the Yuanchang Township of Yunlin County in Taiwan. Groundwater data for dry-season periods were used for calibration and validation. Seasonal effect in groundwater variation was first filtered out. Dry-season pumping effect on land subsidence was analyzed. The results show that multi-layer pumping contributes more in subsidence than single-layer pumping on the response of drawdown and land subsidence in aquifer 2 with a contribution of 97% total change at Yuanchang station. Pumping in aquifer 2 contributes more significant than pumping in aquifer 3 to cause change in drawdown and land subsidence in aquifer 2 with a contribution of 70% total change at Yuanchang station. Larger area of subsidence in Yuanchang Township was attributed pumping at aquifer 2 while pumping at aquifer 3 results in significant subsidence near the well field. The single-layer user contributes most area of subsidence but the multi-layer user generates more serious subsidence.

  15. Ground subsidence information as a valuable layer in GIS analysis

    Science.gov (United States)

    Murdzek, Radosław; Malik, Hubert; Leśniak, Andrzej

    2018-04-01

    Among the technologies used to improve functioning of local governments the geographic information systems (GIS) are widely used. GIS tools allow to simultaneously integrate spatial data resources, analyse them, process and use them to make strategic decisions. Nowadays GIS analysis is widely used in spatial planning or environmental protection. In these applications a number of spatial information are utilized, but rarely it is an information about environmental hazards. This paper includes information about ground subsidence that occurred in USCB mining area into GIS analysis. Monitoring of this phenomenon can be carried out using the radar differential interferometry (DInSAR) method.

  16. Ground subsidence information as a valuable layer in GIS analysis

    Directory of Open Access Journals (Sweden)

    Murdzek Radosław

    2018-01-01

    Full Text Available Among the technologies used to improve functioning of local governments the geographic information systems (GIS are widely used. GIS tools allow to simultaneously integrate spatial data resources, analyse them, process and use them to make strategic decisions. Nowadays GIS analysis is widely used in spatial planning or environmental protection. In these applications a number of spatial information are utilized, but rarely it is an information about environmental hazards. This paper includes information about ground subsidence that occurred in USCB mining area into GIS analysis. Monitoring of this phenomenon can be carried out using the radar differential interferometry (DInSAR method.

  17. Cenozoic uplift and subsidence in the North Atlantic region

    DEFF Research Database (Denmark)

    Anell, Ingrid Anna Margareta; Thybo, Hans; Artemieva, Irina

    2009-01-01

    and the surrounding areas. (2) A regional increase in subsidence in the offshore marginal areas of Norway, the northern North Sea, the northern British Isles and west Greenland took place in the Eocene (ca 57-35 Ma). (3) The Oligocene and Miocene (35-5 Ma) were characterized by regional tectonic quiescence, with only...... localised uplift, probably related to changes in plate dynamics. (4) The second major phase of regional uplift that affected all marginal areas of the North Atlantic occurred in the Plio-Pleistocene (5-0 Ma). Its amplitude was enhanced by erosion-driven glacio-isostatic compensation. Despite inconclusive...

  18. Global sea-level rise is recognised, but flooding from anthropogenic land subsidence is ignored around northern Manila Bay, Philippines.

    Science.gov (United States)

    Rodolfo, Kelvin S; Siringan, Fernando P

    2006-03-01

    Land subsidence resulting from excessive extraction of groundwater is particularly acute in East Asian countries. Some Philippine government sectors have begun to recognise that the sea-level rise of one to three millimetres per year due to global warming is a cause of worsening floods around Manila Bay, but are oblivious to, or ignore, the principal reason: excessive groundwater extraction is lowering the land surface by several centimetres to more than a decimetre per year. Such ignorance allows the government to treat flooding as a lesser problem that can be mitigated through large infrastructural projects that are both ineffective and vulnerable to corruption. Money would be better spent on preventing the subsidence by reducing groundwater pumping and moderating population growth and land use, but these approaches are politically and psychologically unacceptable. Even if groundwater use is greatly reduced and enlightened land-use practices are initiated, natural deltaic subsidence and global sea-level rise will continue to aggravate flooding, although at substantially lower rates.

  19. Effects of storage methods on time-related changes of titanium surface properties and cellular response

    International Nuclear Information System (INIS)

    Lu Haibin; Zhou Lei; Wan Lei; Li Shaobing; Rong Mingdeng; Guo Zehong

    2012-01-01

    Titanium implants are sold in the market as storable medical devices. All the implants have a certain shelf life during which they maintain their sterility, but variations of the surface properties through this duration have not been subject to a comprehensive assessment. The aim of this study was to investigate the effects of storage methods on time-related changes of titanium surface properties. Acid-etched titanium discs (Sa = 0.82 µm) were placed in a sealed container (tradition method) or submerged in the ddH 2 O/NaCl solution (0.15 mol L −1 )/CaCl 2 solution (0.15 mol L −1 ), and new titanium discs were used as a control group. SEM and optical profiler showed that surface morphology and roughness did not change within different groups, but the XPS analysis confirmed that the surface chemistry altered by different storage protocols as the storage duration increased, and the contact angle also varied with storage methods. The storage method also affected the protein adsorption capacity and cellular response on the titanium surface. All titanium discs stored in the solution maintained their excellent bioactivity even after four weeks storage time, but titanium discs stored in a traditional manner decreased substantially in an age-dependent manner. Much effort is needed to improve the storage methods in order to maintain the bioactivity of a titanium dental implant. (paper)

  20. The Fast Simulation of Scattering Characteristics from a Simplified Time Varying Sea Surface

    Directory of Open Access Journals (Sweden)

    Yiwen Wei

    2015-01-01

    Full Text Available This paper aims at applying a simplified sea surface model into the physical optics (PO method to accelerate the scattering calculation from 1D time varying sea surface. To reduce the number of the segments and make further improvement on the efficiency of PO method, a simplified sea surface is proposed. In this simplified sea surface, the geometry of long waves is locally approximated by tilted facets that are much longer than the electromagnetic wavelength. The capillary waves are considered to be sinusoidal line superimposing on the long waves. The wavenumber of the sinusoidal waves is supposed to satisfy the resonant condition of Bragg waves which is dominant in all the scattered short wave components. Since the capillary wave is periodical within one facet, an analytical integration of the PO term can be performed. The backscattering coefficient obtained from a simplified sea surface model agrees well with that obtained from a realistic sea surface. The Doppler shifts and width also agree well with the realistic model since the capillary waves are taken into consideration. The good agreements indicate that the simplified model is reasonable and valid in predicting both the scattering coefficients and the Doppler spectra.

  1. Land subsidence caused by the East Mesa geothermal field, California, observed using SAR interferometry

    Science.gov (United States)

    Massonnet, D.; Holzer, T.; Vadon, H.

    1997-01-01

    Interferometric combination of pairs of synthetic aperture radar (SAR) images acquired by the ERS-1 satellite maps the deformation field associated with the activity of the East Mesa geothermal plant, located in southern California. SAR interferometry is applied to this flat area without the need of a digital terrain model. Several combinations are used to ascertain the nature of the phenomenon. Short term interferograms reveal surface phase changes on agricultural fields similar to what had been observed previously with SEASAT radar data. Long term (2 years) interferograms allow the study of land subsidence and improve prior knowledge of the displacement field, and agree with existing, sparse levelling data. This example illustrates the power of the interferometric technique for deriving accurate industrial intelligence as well as its potential for legal action, in cases involving environmental damages. Copyright 1997 by the American Geophysical Union.

  2. The deformation behavior of soil mass in the subsidence region of Beijing, China

    Directory of Open Access Journals (Sweden)

    F. Tian

    2015-11-01

    Full Text Available Land subsidence induced by excessive groundwater withdrawal has been a major environmental and geological problem in the Beijing plain area. The monitoring network of land subsidence in Beijing has been established since 2002 and has covered the entire plain area by the end of 2008. Based on data from extensometers and groundwater observation wells, this paper establishes curves of variations over time for both soil mass deformation and water levels and the relationship between soil mass deformation and water level. In addition, an analysis of deformation behavior is carried out for soil mass with various lithologies at different depths depending on the corresponding water level. Finally, the deformation behavior of soil mass is generalized into five categories. The conclusions include: (i the current rate of deformation of the shallow soil mass is slowing, and most of the mid-deep and deep soil mass continue to compress at a more rapid speed; (ii the sand strata behaves elastically, while the clay soil mass at different depths is usually characterized by elastic-plastic and creep deformation, which can be considered as visco-elastoplastic.

  3. Basic overview towards the assessment of landslide and subsidence risks along a geothermal pipeline network

    Science.gov (United States)

    Astisiasari; Van Westen, Cees; Jetten, Victor; van der Meer, Freek; Rahmawati Hizbaron, Dyah

    2017-12-01

    An operating geothermal power plant consists of installation units that work systematically in a network. The pipeline network connects various engineering structures, e.g. well pads, separator, scrubber, and power station, in the process of transferring geothermal fluids to generate electricity. Besides, a pipeline infrastructure also delivers the brine back to earth, through the injection well-pads. Despite of its important functions, a geothermal pipeline may bear a threat to its vicinity through a pipeline failure. The pipeline can be impacted by perilous events like landslides, earthquakes, and subsidence. The pipeline failure itself may relate to physical deterioration over time, e.g. due to corrosion and fatigue. The geothermal reservoirs are usually located in mountainous areas that are associated with steep slopes, complex geology, and weathered soil. Geothermal areas record a noteworthy number of disasters, especially due to landslide and subsidence. Therefore, a proper multi-risk assessment along the geothermal pipeline is required, particularly for these two types of hazard. This is also to mention that the impact on human fatality and injury is not presently discussed here. This paper aims to give a basic overview on the existing approaches for the assessment of multi-risk assessment along geothermal pipelines. It delivers basic principles on the analysis of risks and its contributing variables, in order to model the loss consequences. By considering the loss consequences, as well as the alternatives for mitigation measures, the environmental safety in geothermal working area could be enforced.

  4. Time-dependent liquid metal flows with free convection and free surfaces

    International Nuclear Information System (INIS)

    McClelland, M.A.

    1990-11-01

    A finite element analysis is given for time-dependent liquid metal flows with free convection and free surfaces. Consideration is given to a two-dimensional shallow trough with vertical walls maintained at different temperatures. The spatial formulation incorporates mixed Lagrangian approximations to the velocity, pressure, temperature, and interface position. The time integration method is performed using the Trapezoid Rule with step-size control. The Galerkin method is employed to reduce the problem to a set of nonlinear algebraic equations which are solved with the Newton-Raphson method. Calculations are performed for conditions relevant to the electron beam vaporization of refractory metals. The Prandtl number is 0.015, and Grashof numbers are in the transition region between laminar and turbulent flow. The results reveal the effects of flow intensity, surface-tension gradients, and mesh and time-step refinement

  5. Time-Domain Modeling of RF Antennas and Plasma-Surface Interactions

    Directory of Open Access Journals (Sweden)

    Jenkins Thomas G.

    2017-01-01

    Full Text Available Recent advances in finite-difference time-domain (FDTD modeling techniques allow plasma-surface interactions such as sheath formation and sputtering to be modeled concurrently with the physics of antenna near- and far-field behavior and ICRF power flow. Although typical sheath length scales (micrometers are much smaller than the wavelengths of fast (tens of cm and slow (millimeter waves excited by the antenna, sheath behavior near plasma-facing antenna components can be represented by a sub-grid kinetic sheath boundary condition, from which RF-rectified sheath potential variation over the surface is computed as a function of current flow and local plasma parameters near the wall. These local time-varying sheath potentials can then be used, in tandem with particle-in-cell (PIC models of the edge plasma, to study sputtering effects. Particle strike energies at the wall can be computed more accurately, consistent with their passage through the known potential of the sheath, such that correspondingly increased accuracy of sputtering yields and heat/particle fluxes to antenna surfaces is obtained. The new simulation capabilities enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We will present results/animations from high-performance (10k-100k core FDTD/PIC simulations of Alcator C-Mod antenna operation.

  6. Real-time three-dimensional surface measurement by color encoded light projection

    International Nuclear Information System (INIS)

    Chen, S. Y.; Li, Y. F.; Guan, Q.; Xiao, G.

    2006-01-01

    Existing noncontact methods for surface measurement suffer from the disadvantages of poor reliability, low scanning speed, or high cost. The authors present a method for real-time three-dimensional data acquisition by a color-coded vision sensor composed of common components. The authors use a digital projector controlled by computer to generate desired color light patterns. The unique indexing of the light codes is a key problem and is solved in this study so that surface perception can be performed with only local pattern analysis of the neighbor color codes in a single image. Experimental examples and performance analysis are provided

  7. From Massively Parallel Algorithms and Fluctuating Time Horizons to Nonequilibrium Surface Growth

    International Nuclear Information System (INIS)

    Korniss, G.; Toroczkai, Z.; Novotny, M. A.; Rikvold, P. A.

    2000-01-01

    We study the asymptotic scaling properties of a massively parallel algorithm for discrete-event simulations where the discrete events are Poisson arrivals. The evolution of the simulated time horizon is analogous to a nonequilibrium surface. Monte Carlo simulations and a coarse-grained approximation indicate that the macroscopic landscape in the steady state is governed by the Edwards-Wilkinson Hamiltonian. Since the efficiency of the algorithm corresponds to the density of local minima in the associated surface, our results imply that the algorithm is asymptotically scalable. (c) 2000 The American Physical Society

  8. Geometry and subsidence history of the Dead Sea basin: A case for fluid-induced mid-crustal shear zone?

    Science.gov (United States)

    ten Brink, Uri S.; Flores, C.H.

    2012-01-01

    Pull-apart basins are narrow zones of crustal extension bounded by strike-slip faults that can serve as analogs to the early stages of crustal rifting. We use seismic tomography, 2-D ray tracing, gravity modeling, and subsidence analysis to study crustal extension of the Dead Sea basin (DSB), a large and long-lived pull-apart basin along the Dead Sea transform (DST). The basin gradually shallows southward for 50 km from the only significant transverse normal fault. Stratigraphic relationships there indicate basin elongation with time. The basin is deepest (8-8.5 km) and widest (???15 km) under the Lisan about 40 km north of the transverse fault. Farther north, basin depth is ambiguous, but is 3 km deep immediately north of the lake. The underlying pre-basin sedimentary layer thickens gradually from 2 to 3 km under the southern edge of the DSB to 3-4 km under the northern end of the lake and 5-6 km farther north. Crystalline basement is ???11 km deep under the deepest part of the basin. The upper crust under the basin has lower P wave velocity than in the surrounding regions, which is interpreted to reflect elevated pore fluids there. Within data resolution, the lower crust below ???18 km and the Moho are not affected by basin development. The subsidence rate was several hundreds of m/m.y. since the development of the DST ???17 Ma, similar to other basins along the DST, but subsidence rate has accelerated by an order of magnitude during the Pleistocene, which allowed the accumulation of 4 km of sediment. We propose that the rapid subsidence and perhaps elongation of the DSB are due to the development of inter-connected mid-crustal ductile shear zones caused by alteration of feldspar to muscovite in the presence of pore fluids. This alteration resulted in a significant strength decrease and viscous creep. We propose a similar cause to the enigmatic rapid subsidence of the North Sea at the onset the North Atlantic mantle plume. Thus, we propose that aqueous fluid flux

  9. Residence time of contaminants released in surface coal mines -- a wind-tunnel study

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, R.S. [Environmental Protection Agency, Research Triangle Park, NC (United States)

    1994-12-31

    Surface coal mining operations (blasting, shoveling, loading, trucking, etc.) are sources of airborne particles. The 1990 Clean Air Act Amendments direct the EPA to analyze the accuracy of the Industrial Source Complex model and the AP-42 emission factors, and to make revisions as may be necessary to eliminate any significant over-prediction of air concentration of fugitive particles from surface coal mines. A wind-tunnel study was performed at the US EPA`s Fluid Modeling Facility to investigate dispersion from surface coal mines in support of the dispersion modeling activities. Described here is the portion of the study directed at determining the residence time that material released near the floor of a mine will stay within the mine.

  10. Effect of Heating Time on Hardness Properties of Laser Clad Gray Cast Iron Surface

    Science.gov (United States)

    Norhafzan, B.; Aqida, S. N.; Mifthal, F.; Zulhishamuddin, A. R.; Ismail, I.

    2018-03-01

    This paper presents effect of heating time on cladded gray cast iron. In this study, the effect of heating time on cladded gray cast iron and melted gray cast iron were analysed. The gray cast iron sample were added with mixed Mo-Cr powder using laser cladding technique. The mixed Mo and Cr powder was pre-placed on gray cast iron surface. Modified layer were sectioned using diamond blade cutter and polish using SiC abrasive paper before heated. Sample was heated in furnace for 15, 30 and 45 minutes at 650 °C and cool down in room temperature. Metallographic study was conduct using inverted microscope while surface hardness properties were tested using Wilson hardness test with Vickers scale. Results for metallographic study showed graphite flakes within matrix of pearlite. The surface hardness for modified layer decreased when increased heating time process. These findings are significant to structure stability of laser cladded gray cast iron with different heating times.

  11. New and Emerging Technologies for Real-Time Air and Surface Beryllium Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, B.E. Jr.; Churnetski, E.L.; Cooke, L.E.; Reed, J.J.; Howell, M.L.; Smith, V.D.

    2001-09-01

    In this study, five emerging technologies were identified for real-time monitoring of airborne beryllium: Microwave-Induced Plasma Spectroscopy (MIPS), Aerosol Beam-Focused Laser-Induced Plasma Spectroscopy (ABFLIPS), Laser-Induced Breakdown Spectroscopy (LIBS), Surfaced-Enhanced Raman Scattering (SERS) Spectroscopy, and Micro-Calorimetric Spectroscopy (CalSpec). Desired features of real-time air beryllium monitoring instrumentation were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies as well as their unique demonstrated capability to provide real-time monitoring of similar materials. However, best available technologies were considered, regardless of their ability to comply with the desired features. None of the five technologies have the capability to measure the particle size of airborne beryllium. Although reducing the total concentration of airborne beryllium is important, current literature suggests that reducing or eliminating the concentration of respirable beryllium is critical for worker health protection. Eight emerging technologies were identified for surface monitoring of beryllium. CalSpec, MIPS, SERS, LIBS, Laser Ablation, Absorptive Stripping Voltametry (ASV), Modified Inductively Coupled Plasma (ICP) Spectroscopy, and Gamma BeAST. Desired features of real-time surface beryllium monitoring were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies. However, the best available technologies were considered regardless of their ability to comply with the desired features.

  12. Temporal variation of optimal UV exposure time over Korea: risks and benefits of surface UV radiation

    Science.gov (United States)

    Lee, Y. G.; Koo, J. H.

    2015-12-01

    Solar UV radiation in a wavelength range between 280 to 400 nm has both positive and negative influences on human body. Surface UV radiation is the main natural source of vitamin D, providing the promotion of bone and musculoskeletal health and reducing the risk of a number of cancers and other medical conditions. However, overexposure to surface UV radiation is significantly related with the majority of skin cancer, in addition other negative health effects such as sunburn, skin aging, and some forms of eye cataracts. Therefore, it is important to estimate the optimal UV exposure time, representing a balance between reducing negative health effects and maximizing sufficient vitamin D production. Previous studies calculated erythemal UV and vitamin-D UV from the measured and modelled spectral irradiances, respectively, by weighting CIE Erythema and Vitamin D3 generation functions (Kazantzidis et al., 2009; Fioletov et al., 2010). In particular, McKenzie et al. (2009) suggested the algorithm to estimate vitamin-D production UV from erythemal UV (or UV index) and determined the optimum conditions of UV exposure based on skin type Ⅱ according to the Fitzpatrick (1988). Recently, there are various demands for risks and benefits of surface UV radiation on public health over Korea, thus it is necessary to estimate optimal UV exposure time suitable to skin type of East Asians. This study examined the relationship between erythemally weighted UV (UVEry) and vitamin D weighted UV (UVVitD) over Korea during 2004-2012. The temporal variations of the ratio (UVVitD/UVEry) were also analyzed and the ratio as a function of UV index was applied in estimating the optimal UV exposure time. In summer with high surface UV radiation, short exposure time leaded to sufficient vitamin D and erythema and vice versa in winter. Thus, the balancing time in winter was enough to maximize UV benefits and minimize UV risks.

  13. The analysis of subsidence associated with geothermal development. Volume 1. Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Atherton, R.W.; Finnemore, E.J.; Gillam, M.L.

    1976-09-01

    This study evaluates the state of knowledge of subsidence associated with geothermal development, and provides preliminary methods to assess the potential of land subsidence for any specific geothermal site. The results of this study are presented in three volumes. Volume 1 is designed to serve as a concise reference, a handbook, for the evaluation of the potential for land subsidence from the development of geothermal resources.

  14. Time-Dependent Wetting Behavior of PDMS Surfaces with Bio-Inspired, Hierarchical Structures

    KAUST Repository

    Mishra, Himanshu; Schrader, Alex M.; Lee, Dong Woog; Gallo, Adair; Chen, Szu-Ying; Kaufman, Yair; Das, Saurabh; Israelachvili, Jacob N.

    2015-01-01

    Wetting of rough surfaces involves time-dependent effects, such as surface deformations, non-uniform filling of surface pores within or outside the contact area, and surface chemistries, but the detailed impact of these phenomena on wetting is not entirely clear. Understanding these effects is crucial for designing coatings for a wide range of applications, such as membrane-based oil-water separation and desalination, waterproof linings/windows for automobiles, aircrafts, and naval vessels, and antibiofouling. Herein, we report on time-dependent contact angles of water droplets on a rough polydimethylsiloxane (PDMS) surface that cannot be completely described by the conventional Cassie-Baxter or Wenzel models or the recently proposed Cassie-impregnated model. Shells of sand dollars (Dendraster excentricus) were used as lithography-free, robust templates to produce rough PDMS surfaces with hierarchical, periodic features ranging from 10-7-10-4 m. Under saturated vapor conditions, we found that in the short-term (<1 min), the contact angle of a sessile water droplet on the templated PDMS, θSDT = 140° ± 3°, was accurately described by the Cassie-Baxter model (predicted θSDT = 137°); however, after 90 min, θSDT fell to 110°. Fluorescent confocal microscopy confirmed that the initial reduction in θSDT to 110° (the Wenzel limit) was primarily a Cassie-Baxter to Wenzel transition during which pores within the contact area filled gradually, and more rapidly for ethanol-water mixtures. After 90 min, the contact line of the water droplet became pinned, perhaps caused by viscoelastic deformation of the PDMS around the contact line, and a significant volume of water began to flow from the droplet to pores outside the contact region, causing θSDT to decrease to 65° over 48 h on the rough surface. The system we present here to explore the concept of contact angle time dependence (dynamics) and modeling of natural surfaces provides insights into the design and

  15. Time-Dependent Wetting Behavior of PDMS Surfaces with Bio-Inspired, Hierarchical Structures

    KAUST Repository

    Mishra, Himanshu

    2015-12-28

    Wetting of rough surfaces involves time-dependent effects, such as surface deformations, non-uniform filling of surface pores within or outside the contact area, and surface chemistries, but the detailed impact of these phenomena on wetting is not entirely clear. Understanding these effects is crucial for designing coatings for a wide range of applications, such as membrane-based oil-water separation and desalination, waterproof linings/windows for automobiles, aircrafts, and naval vessels, and antibiofouling. Herein, we report on time-dependent contact angles of water droplets on a rough polydimethylsiloxane (PDMS) surface that cannot be completely described by the conventional Cassie-Baxter or Wenzel models or the recently proposed Cassie-impregnated model. Shells of sand dollars (Dendraster excentricus) were used as lithography-free, robust templates to produce rough PDMS surfaces with hierarchical, periodic features ranging from 10-7-10-4 m. Under saturated vapor conditions, we found that in the short-term (<1 min), the contact angle of a sessile water droplet on the templated PDMS, θSDT = 140° ± 3°, was accurately described by the Cassie-Baxter model (predicted θSDT = 137°); however, after 90 min, θSDT fell to 110°. Fluorescent confocal microscopy confirmed that the initial reduction in θSDT to 110° (the Wenzel limit) was primarily a Cassie-Baxter to Wenzel transition during which pores within the contact area filled gradually, and more rapidly for ethanol-water mixtures. After 90 min, the contact line of the water droplet became pinned, perhaps caused by viscoelastic deformation of the PDMS around the contact line, and a significant volume of water began to flow from the droplet to pores outside the contact region, causing θSDT to decrease to 65° over 48 h on the rough surface. The system we present here to explore the concept of contact angle time dependence (dynamics) and modeling of natural surfaces provides insights into the design and

  16. Combined Use of C- and X-Band SAR Data for Subsidence Monitoring in an Urban Area

    Directory of Open Access Journals (Sweden)

    Lorenzo Solari

    2017-04-01

    Full Text Available In this study, we present the detection and characterization of ground displacements in the urban area of Pisa (Central Italy using Interferometric Synthetic Aperture Radar (InSAR products. Thirty RADARSAT-2 and twenty-nine COSMO-SkyMed images have been analyzed with the Small BAseline Subset (SBAS algorithm, in order to quantify the ground subsidence and its temporal evolution in the three-year time interval from 2011 to 2014. A borehole database was reclassified in stratigraphical and geotechnical homogeneous units, providing the geological background needed for the local scale analysis of the recorded displacements. Moreover, the interferometric outputs were compared with the last 30 years’ urban evolution of selected parts of the city. Two deformation patterns were recorded by the InSAR data: very slow vertical movements within the defined stability threshold (±2.5 mm/yr and areas with subsidence rates down to −5 to −7 mm/yr, associated with high peak velocities (−15 to −20 mm/yr registered by single buildings or small groups of buildings. Some of these structures are used to demonstrate that the high subsidence rates are related to the recent urbanization, which is the trigger for the accelerated consolidation process of highly compressible layers. Finally, this urban area was a valuable test site for demonstrating the different results of the C- and X-band data processing, in terms of the density of points and the quality of the time series of deformation.

  17. Survival Times of Meter-Sized Rock Boulders on the Surface of Airless Bodies

    Science.gov (United States)

    Basilevsky, A. T.; Head, J. W.; Horz, F.; Ramsley, K.

    2015-01-01

    This study considers the survival times of meter-sized rock boulders on the surfaces of several airless bodies. As the starting point, we employ estimates of the survival times of such boulders on the surface of the Moon by[1], then discuss the role of destruction due to day-night temperature cycling, consider the meteorite bombardment environment on the considered bodies in terms of projectile flux and velocities and finally estimate the survival times. Survival times of meter-sized rocks on lunar surface: The survival times of hand specimen-sized rocks exposed to the lunar surface environment were estimated based on experiments modeling the destruction of rocks by meteorite impacts, combined with measurements of the lunar surface meteorite flux, (e.g.,[2]). For estimations of the survival times of meter-sized lunar boulders, [1] suggested a different approach based on analysis of the spatial density of boulders on the rims of small lunar craters of known absolute age. It was found that for a few million years, only a small fraction of the boulders ejected by cratering process are destroyed, for several tens of million years approx.50% are destroyed, and for 200-300 Ma, 90 to 99% are destroyed. Following [2] and other works, [1] considered that the rocks are mostly destroyed by meteorite impacts. Destruction of rocks by thermal-stress. However, high diurnal temperature variations on the surface of the Moon and other airless bodies imply that thermal stresses may also be a cause of surface rock destruction. Delbo et al. [3] interpreted the observed presence of fine debris on the surface of small asteroids as due to thermal surface cycling. They stated that because of the very low gravity on the surface of these bodies, ejecta from meteorite impacts should leave the body, so formation there of fine debris has to be due to thermal cycling. Based on experiments on heating-cooling of cm-scale pieces of ordinary and carbonaceous chondrites and theoretical modeling of

  18. MODIS/Aqua Near Real Time (NRT) Surface Reflectance Daily L2G Global 250m SIN Grid

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS Near Real Time (NRT) Surface Reflectance products are an estimate of the surface spectral reflectance as it would be measured at ground level in the...

  19. Saipan 2005 Sea Surface Temperature and Meteorological Enhanced Mooring - CRED CREWS Near Real Time and Historical Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Site Saipan, CNMI (15.2375N, 145.72283W) ARGOS Buoy ID 26105 Time series data from this mooring provide high resolution sea surface temperature, and surface...

  20. Updating Landsat time series of surface-reflectance composites and forest change products with new observations

    Science.gov (United States)

    Hermosilla, Txomin; Wulder, Michael A.; White, Joanne C.; Coops, Nicholas C.; Hobart, Geordie W.

    2017-12-01

    The use of time series satellite data allows for the temporally dense, systematic, transparent, and synoptic capture of land dynamics over time. Subsequent to the opening of the Landsat archive, several time series approaches for characterizing landscape change have been developed, often representing a particular analytical time window. The information richness and widespread utility of these time series data have created a need to maintain the currency of time series information via the addition of new data, as it becomes available. When an existing time series is temporally extended, it is critical that previously generated change information remains consistent, thereby not altering reported change statistics or science outcomes based on that change information. In this research, we investigate the impacts and implications of adding additional years to an existing 29-year annual Landsat time series for forest change. To do so, we undertook a spatially explicit comparison of the 29 overlapping years of a time series representing 1984-2012, with a time series representing 1984-2016. Surface reflectance values, and presence, year, and type of change were compared. We found that the addition of years to extend the time series had minimal effect on the annual surface reflectance composites, with slight band-specific differences (r ≥ 0.1) in the final years of the original time series being updated. The area of stand replacing disturbances and determination of change year are virtually unchanged for the overlapping period between the two time-series products. Over the overlapping temporal period (1984-2012), the total area of change differs by 0.53%, equating to an annual difference in change area of 0.019%. Overall, the spatial and temporal agreement of the changes detected by both time series was 96%. Further, our findings suggest that the entire pre-existing historic time series does not need to be re-processed during the update process. Critically, given the time

  1. A surface flaw sizing study by time-of-flight ultrasonic technique

    International Nuclear Information System (INIS)

    Lamy, C.A.

    1990-07-01

    In this work, sizing of inclined slits and surface cracks in ferritic steel using the ultrasonic time-of-flight technique was studied. The surface cracks were vertical and inclined, nut the slits were only inclined. It was surface Rayleigh wave that was converted to shear wave mode in the material. The specimens with surface crack were submitted to a three four point loading fracture mechanics tests, so that the region of the crack tip became under an increasing tensile stress. Thus, the ultrasonic crack sizing could be compared to the material stress intensity factor (K) of the material for different loadings. Results show that the greater the slope and/or lenght of the slits the greater its subsizing. Vertical cracks int he parent metal are reliably and accuratly sized; in the weld the same remark held if one increases the gain of ultrasonic flaw detector to compensate for the weld attenuation phenomenon. Sizing of inclined cracks in the parent metal shows the same trends of the inclined slits, differing only in slopes over 30 sup(0) where the sizing in surface cracks is no longer reliable. A new appraisal procedure here proposed made reliable these results. The techniques employed in this work lead to reliable and accurate results for sizing of different slits and cracks. It should be noted however that good results are only obtained if a tensile stress state exists in the neighbourhood of the c rack tip. (author)

  2. An intelligent system for real time automatic defect inspection on specular coated surfaces

    Science.gov (United States)

    Li, Jinhua; Parker, Johné M.; Hou, Zhen

    2005-07-01

    Product visual inspection is still performed manually or semi automatically in most industries from simple ceramic tile grading to complex automotive body panel paint defect and surface quality inspection. Moreover, specular surfaces present additional challenge to conventional vision systems due to specular reflections, which may mask the true location of objects and lead to incorrect measurements. There are some sophisticated visual inspection methods developed in recent years. Unfortunately, most of them are highly computational. Systems built on those methods are either inapplicable or very costly to achieve real time inspection. In this paper, we describe an integrated low-cost intelligent system developed to automatically capture, extract, and segment defects on specular surfaces with uniform color coatings. The system inspects and locates regular surface defects with lateral dimensions as small as a millimeter. The proposed system is implemented on a group of smart cameras using its on-board processing ability to achieve real time inspection. The experimental results on real test panels demonstrate the effectiveness and robustness of proposed system.

  3. A novel near real-time laser scanning device for geometrical determination of pleural cavity surface.

    Science.gov (United States)

    Kim, Michele M; Zhu, Timothy C

    2013-02-02

    During HPPH-mediated pleural photodynamic therapy (PDT), it is critical to determine the anatomic geometry of the pleural surface quickly as there may be movement during treatment resulting in changes with the cavity. We have developed a laser scanning device for this purpose, which has the potential to obtain the surface geometry in real-time. A red diode laser with a holographic template to create a pattern and a camera with auto-focusing abilities are used to scan the cavity. In conjunction with a calibration with a known surface, we can use methods of triangulation to reconstruct the surface. Using a chest phantom, we are able to obtain a 360 degree scan of the interior in under 1 minute. The chest phantom scan was compared to an existing CT scan to determine its accuracy. The laser-camera separation can be determined through the calibration with 2mm accuracy. The device is best suited for environments that are on the scale of a chest cavity (between 10cm and 40cm). This technique has the potential to produce cavity geometry in real-time during treatment. This would enable PDT treatment dosage to be determined with greater accuracy. Works are ongoing to build a miniaturized device that moves the light source and camera via a fiber-optics bundle commonly used for endoscopy with increased accuracy.

  4. Quantitative analysis of the tectonic subsidence in the Potiguar Basin (NE Brazil)

    Science.gov (United States)

    Lopes, Juliana A. G.; de Castro, David L.; Bertotti, Giovanni

    2018-06-01

    The Potiguar Basin, located in the Brazilian Equatorial Margin, evolved from a complex rifting process implemented during the Atlantic Ocean opening in the Jurassic/Cretaceous. Different driving mechanisms were responsible for the onset of an aborted onshore rift and an offshore rift that initiated crustal rupture and the formation of a continental transform margin. Therefore, we applied the backstripping method to quantify the tectonic subsidence during the rift and post-rift phases of Potiguar Basin formation and to analyze the spatial variation of subsidence during the two successive and distinct tectonic events responsible for the basin evolution. The parameters required to apply this methodology were extracted from 2D seismic lines and exploratory well data. The tectonic subsidence curves present periods with moderate subsidence rates (up to 300 m/My), which correspond to the evolution of the onshore Potiguar Rift (∼141 to 128 Ma). From 128-118 Ma, the tectonic subsidence curves show no subsidence in the onshore Potiguar Basin, whereas subsidence occurred at high rates (over 300 m/My) in the offshore rift. The post-rift phase began ca. 118 Ma (Aptian), when the tectonic subsidence drastically slowed to less than 35 m/My, probably related to thermal relaxation. The tectonic subsidence rates in the various sectors of the Potiguar Rift, during the different rift phases, indicate that more intense faulting occurred in the southern portion of the onshore rift, along the main border faults, and in the southeastern portion of the offshore rift. During the post-rift phase, the tectonic subsidence rates increased from the onshore portion towards the offshore portion until the continental slope. The highest rates of post-rift subsidence (up to 35 m/My) are concentrated in the central region of the offshore portion and may be related to lithospheric processes related to the continental crust rupture and oceanic seafloor spreading. The variation in subsidence rates and

  5. Imaging Land Subsidence Induced by Groundwater Extraction in Beijing (China Using Satellite Radar Interferometry

    Directory of Open Access Journals (Sweden)

    Mi Chen

    2016-06-01

    Full Text Available Beijing is one of the most water-stressed cities in the world. Due to over-exploitation of groundwater, the Beijing region has been suffering from land subsidence since 1935. In this study, the Small Baseline InSAR technique has been employed to process Envisat ASAR images acquired between 2003 and 2010 and TerraSAR-X stripmap images collected from 2010 to 2011 to investigate land subsidence in the Beijing region. The maximum subsidence is seen in the eastern part of Beijing with a rate greater than 100 mm/year. Comparisons between InSAR and GPS derived subsidence rates show an RMS difference of 2.94 mm/year with a mean of 2.41 ± 1.84 mm/year. In addition, a high correlation was observed between InSAR subsidence rate maps derived from two different datasets (i.e., Envisat and TerraSAR-X. These demonstrate once again that InSAR is a powerful tool for monitoring land subsidence. InSAR derived subsidence rate maps have allowed for a comprehensive spatio-temporal analysis to identify the main triggering factors of land subsidence. Some interesting relationships in terms of land subsidence were found with groundwater level, active faults, accumulated soft soil thickness and different aquifer types. Furthermore, a relationship with the distances to pumping wells was also recognized in this work.

  6. Superior coexistence: systematicALLY regulatING land subsidence BASED on set pair theory

    Directory of Open Access Journals (Sweden)

    Y. Chen

    2015-11-01

    Full Text Available Anthropogenic land subsidence is an environmental side effect of exploring and using natural resources in the process of economic development. The key points of the system for controlling land subsidence include cooperation and superior coexistence while the economy develops, exploring and using natural resources, and geological environmental safety. Using the theory and method of set pair analysis (SPA, this article anatomises the factors, effects, and transformation of land subsidence. Based on the principle of superior coexistence, this paper promotes a technical approach to the system for controlling land subsidence, in order to improve the prevention and control of geological hazards.

  7. E-Area LLWF Vadose Zone Model: Probabilistic Model for Estimating Subsided-Area Infiltration Rates

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-12-12

    A probabilistic model employing a Monte Carlo sampling technique was developed in Python to generate statistical distributions of the upslope-intact-area to subsided-area ratio (AreaUAi/AreaSAi) for closure cap subsidence scenarios that differ in assumed percent subsidence and the total number of intact plus subsided compartments. The plan is to use this model as a component in the probabilistic system model for the E-Area Performance Assessment (PA), contributing uncertainty in infiltration estimates.

  8. Active and Passive Remote Sensing Data Time Series for Flood Detection and Surface Water Mapping

    Science.gov (United States)

    Bioresita, Filsa; Puissant, Anne; Stumpf, André; Malet, Jean-Philippe

    2017-04-01

    As a consequence of environmental changes surface waters are undergoing changes in time and space. A better knowledge of the spatial and temporal distribution of surface waters resources becomes essential to support sustainable policies and development activities. Especially because surface waters, are not only a vital sweet water resource, but can also pose hazards to human settlements and infrastructures through flooding. Floods are a highly frequent disaster in the world and can caused huge material losses. Detecting and mapping their spatial distribution is fundamental to ascertain damages and for relief efforts. Spaceborne Synthetic Aperture Radar (SAR) is an effective way to monitor surface waters bodies over large areas since it provides excellent temporal coverage and, all-weather day-and-night imaging capabilities. However, emergent vegetation, trees, wind or flow turbulence can increase radar back-scatter returns and pose problems for the delineation of inundated areas. In such areas, passive remote sensing data can be used to identify vegetated areas and support the interpretation of SAR data. The availability of new Earth Observation products, for example Sentinel-1 (active) and Sentinel-2 (passive) imageries, with both high spatial and temporal resolution, have the potential to facilitate flood detection and monitoring of surface waters changes which are very dynamic in space and time. In this context, the research consists of two parts. In the first part, the objective is to propose generic and reproducible methodologies for the analysis of Sentinel-1 time series data for floods detection and surface waters mapping. The processing chain comprises a series of pre-processing steps and the statistical modeling of the pixel value distribution to produce probabilistic maps for the presence of surface waters. Images pre-processing for all Sentinel-1 images comprise the reduction SAR effect like orbit errors, speckle noise, and geometric effects. A modified

  9. Planetary gyre, time-dependent eddies, torsional waves, and equatorial jets at the Earth's core surface

    DEFF Research Database (Denmark)

    Gillet, N.; Jault, D.; Finlay, Chris

    2015-01-01

    between the magnetic field and subdecadal nonzonal motions within the fluid outer core. Both the zonal and the more energetic nonzonal interannual motions were particularly intense close to the equator (below 10∘ latitude) between 1995 and 2010. We revise down the amplitude of the decade fluctuations......We report a calculation of time-dependent quasi-geostrophic core flows for 1940–2010. Inverting recursively for an ensemble of solutions, we evaluate the main source of uncertainties, namely, the model errors arising from interactions between unresolved core surface motions and magnetic fields....... Temporal correlations of these uncertainties are accounted for. The covariance matrix for the flow coefficients is also obtained recursively from the dispersion of an ensemble of solutions. Maps of the flow at the core surface show, upon a planetary-scale gyre, time-dependent large-scale eddies...

  10. A real-time surface inspection system for precision steel balls based on machine vision

    Science.gov (United States)

    Chen, Yi-Ji; Tsai, Jhy-Cherng; Hsu, Ya-Chen

    2016-07-01

    Precision steel balls are one of the most fundament components for motion and power transmission parts and they are widely used in industrial machinery and the automotive industry. As precision balls are crucial for the quality of these products, there is an urgent need to develop a fast and robust system for inspecting defects of precision steel balls. In this paper, a real-time system for inspecting surface defects of precision steel balls is developed based on machine vision. The developed system integrates a dual-lighting system, an unfolding mechanism and inspection algorithms for real-time signal processing and defect detection. The developed system is tested under feeding speeds of 4 pcs s-1 with a detection rate of 99.94% and an error rate of 0.10%. The minimum detectable surface flaw area is 0.01 mm2, which meets the requirement for inspecting ISO grade 100 precision steel balls.

  11. Timing of Late Holocene surface rupture of the Wairau Fault, Marlborough, New Zealand

    International Nuclear Information System (INIS)

    Zachariasen, J.; Berryman, K.R.; Langridge, R.M.; Prentice, C.; Rymer, M.; Stirling, M.W.; Villamor, P.

    2006-01-01

    Three trenches excavated across the central portion of the right-lateral strike-slip Wairau Fault in South Island, New Zealand, exposed a complex set of fault strands that have displaced a sequence of late Holocene alluvial and colluvial deposits. Abundant charcoal fragments provide age control for various stratigraphic horizons dating back to c. 5610 yr ago. Faulting relations from the Wadsworth trench show that the most recent surface rupture event occurred at least 1290 yr and at most 2740 yr ago. Drowned trees in landslide-dammed Lake Chalice, in combination with charcoal from the base of an unfaulted colluvial wedge at Wadsworth trench, suggest a narrower time bracket for this event of 1811-2301 cal. yr BP. The penultimate faulting event occurred between c. 2370 and 3380 yr, and possibly near 2680 ± 60 cal. yr BP, when data from both the Wadsworth and Dillon trenches are combined. Two older events have been recognised from Dillon trench but remain poorly dated. A probable elapsed time of at least 1811 yr since the last surface rupture, and an average slip rate estimate for the Wairau Fault of 3-5 mm/yr, suggests that at least 5.4 m and up to 11.5 m of elastic shear strain has accumulated since the last rupture. This is near to or greater than the single-event displacement estimates of 5-7 m. The average recurrence interval for surface rupture of the fault determined from the trench data is 1150-1400 yr. Although the uncertainties in the timing of faulting events and variability in inter-event times remain high, the time elapsed since the last event is in the order of 1-2 times the average recurrence interval, implying that the Wairau Fault is near the end of its interseismic period. (author). 44 refs., 10 figs., 1 tab

  12. Fast time-of-flight camera based surface registration for radiotherapy patient positioning.

    Science.gov (United States)

    Placht, Simon; Stancanello, Joseph; Schaller, Christian; Balda, Michael; Angelopoulou, Elli

    2012-01-01

    This work introduces a rigid registration framework for patient positioning in radiotherapy, based on real-time surface acquisition by a time-of-flight (ToF) camera. Dynamic properties of the system are also investigated for future gating/tracking strategies. A novel preregistration algorithm, based on translation and rotation-invariant features representing surface structures, was developed. Using these features, corresponding three-dimensional points were computed in order to determine initial registration parameters. These parameters became a robust input to an accelerated version of the iterative closest point (ICP) algorithm for the fine-tuning of the registration result. Distance calibration and Kalman filtering were used to compensate for ToF-camera dependent noise. Additionally, the advantage of using the feature based preregistration over an "ICP only" strategy was evaluated, as well as the robustness of the rigid-transformation-based method to deformation. The proposed surface registration method was validated using phantom data. A mean target registration error (TRE) for translations and rotations of 1.62 ± 1.08 mm and 0.07° ± 0.05°, respectively, was achieved. There was a temporal delay of about 65 ms in the registration output, which can be seen as negligible considering the dynamics of biological systems. Feature based preregistration allowed for accurate and robust registrations even at very large initial displacements. Deformations affected the accuracy of the results, necessitating particular care in cases of deformed surfaces. The proposed solution is able to solve surface registration problems with an accuracy suitable for radiotherapy cases where external surfaces offer primary or complementary information to patient positioning. The system shows promising dynamic properties for its use in gating/tracking applications. The overall system is competitive with commonly-used surface registration technologies. Its main benefit is the

  13. Comparison of the surface friction model with the time-dependent Hartree-Fock method

    International Nuclear Information System (INIS)

    Froebrich, P.

    1984-01-01

    A comparison is made between the classical phenomenological surface friction model and a time-dependent Hartree-Fock study by Dhar for the system 208 Pb+ 74 Ge at E/sub lab/(Pb) = 1600 MeV. The general trends for energy loss, mean values for charge and mass, interaction times and energy-angle correlations turn out to be fairly similar in both methods. However, contrary to Dhar, the events close to capture are interpreted as normal deep-inelastic, i.e., not as fast fission processes

  14. Switching Transient Generation in Surface Interrogation Scanning Electrochemical Microscopy and Time-of-Flight Techniques.

    Science.gov (United States)

    Ahn, Hyun S; Bard, Allen J

    2015-12-15

    In surface interrogation scanning electrochemical microscopy (SI-SECM), fine and accurate control of the delay time between substrate generation and tip interrogation (tdelay) is crucial because tdelay defines the decay time of the reactive intermediate. In previous applications of the SI-SECM, the resolution in the control of tdelay has been limited to several hundreds of milliseconds due to the slow switching of the bipotentiostat. In this work, we have improved the time resolution of tdelay control up to ca. 1 μs, enhancing the SI-SECM to be competitive in the time domain with the decay of many reactive intermediates. The rapid switching SI-SECM has been implemented in a substrate generation-tip collection time-of-flight (SG-TC TOF) experiment of a solution redox mediator, and the results obtained from the experiment exhibited good agreement with that obtained from digital simulation. The reaction rate constant of surface Co(IV) on oxygen-evolving catalyst film, which was inaccessible thus far due to the lack of tdelay control, has been measured by the rapid switching SI-SECM.

  15. Effect of wave-function localization on the time delay in photoemission from surfaces

    International Nuclear Information System (INIS)

    Zhang, C.-H.; Thumm, U.

    2011-01-01

    We investigate streaking time delays in the photoemission from a solid model surface as a function of the degree of localization of the initial-state wave functions. We consider a one-dimensional slab with lattice constant a latt of attractive Gaussian-shaped core potentials of width σ. The parameter σ/a latt thus controls the overlap between adjacent core potentials and localization of the electronic eigenfunctions on the lattice points. Small values of σ/a latt latt > or approx 0.4. By numerically solving the time-dependent Schroedinger equation, we calculate photoemission spectra from which we deduce a characteristic bimodal shape of the band-averaged photoemission time delay: as the slab eigenfunctions become increasingly delocalized, the time delay quickly decreases near σ/a latt =0.3 from relatively large values below σ/a latt ∼0.2 to much smaller delays above σ/a latt ∼0.4. This change in wave-function localization facilitates the interpretation of a recently measured apparent relative time delay between the photoemission from core and conduction-band levels of a tungsten surface.

  16. Monitoring the dynamics of surface water fraction from MODIS time series in a Mediterranean environment

    Science.gov (United States)

    Li, Linlin; Vrieling, Anton; Skidmore, Andrew; Wang, Tiejun; Turak, Eren

    2018-04-01

    also in accurately capturing temporal fluctuations of surface water. Based on this good performance, we produced surface water fraction maps at 16-day interval for the 2000-2015 MODIS archive. Our approach is promising for monitoring surface water fraction at high frequency time intervals over much larger regions provided that training data are collected across the spatial domain for which the model will be applied.

  17. Characterizations of pumping-induced land subsidence in coastal aquifers - model development and field-scale implementations

    Science.gov (United States)

    Ni, C.; Huang, Y.; Lu, C.

    2012-12-01

    The pumping-induced land subsidence events are typically founded in coastal aquifers in Taiwan especially in the areas of lower alluvial fans. Previous investigations have recognized the irreversible situation for an aquifer deformation even if the pumped water is significantly reduced or stopped. Long-term monitoring projects on land subsidence in Choshui alluvial fan in central Taiwan have improved the understanding of the deformations in the aquifer system. To characterization the detailed land subsidence mechanism, this study develops an inverse numerical model to estimate the deformation parameters such as the specific storage (Ss) and vertical hydraulic conductivity (Kv) for interbeds. Similar to the concept of Hydraulic tomography survey (HTS), the developed model employs the iterative cokriging estimator to improve the accuracy of estimating deformation parameters. A one-dimensional numerical example is employed to assess the accuracy of the developed inverse model. The developed model is then applied to field-scale data from compaction monitoring wells (CMW) installed in the lower Choshui River fan. Results of the synthetic example show that the developed inverse model can reproduce well the predefined geologic features of the synthetic aquifer. The model provides better estimations of Kv patterns and magnitudes. Slightly less detail of the Ss was obtained due to the insensitivity of transient stresses for specified sampling times. Without prior information from field measurements, the developed model associated with deformation measurements form CMW can estimate Kv and Ss fields with great spatial resolution.

  18. Time-Frequency-Wavenumber Analysis of Surface Waves Using the Continuous Wavelet Transform

    Science.gov (United States)

    Poggi, V.; Fäh, D.; Giardini, D.

    2013-03-01

    A modified approach to surface wave dispersion analysis using active sources is proposed. The method is based on continuous recordings, and uses the continuous wavelet transform to analyze the phase velocity dispersion of surface waves. This gives the possibility to accurately localize the phase information in time, and to isolate the most significant contribution of the surface waves. To extract the dispersion information, then, a hybrid technique is applied to the narrowband filtered seismic recordings. The technique combines the flexibility of the slant stack method in identifying waves that propagate in space and time, with the resolution of f- k approaches. This is particularly beneficial for higher mode identification in cases of high noise levels. To process the continuous wavelet transform, a new mother wavelet is presented and compared to the classical and widely used Morlet type. The proposed wavelet is obtained from a raised-cosine envelope function (Hanning type). The proposed approach is particularly suitable when using continuous recordings (e.g., from seismological-like equipment) since it does not require any hardware-based source triggering. This can be subsequently done with the proposed method. Estimation of the surface wave phase delay is performed in the frequency domain by means of a covariance matrix averaging procedure over successive wave field excitations. Thus, no record stacking is necessary in the time domain and a large number of consecutive shots can be used. This leads to a certain simplification of the field procedures. To demonstrate the effectiveness of the method, we tested it on synthetics as well on real field data. For the real case we also combine dispersion curves from ambient vibrations and active measurements.

  19. Comparison of allograft and polyetheretherketone (PEEK) cage subsidence rates in anterior cervical discectomy and fusion (ACDF).

    Science.gov (United States)

    Yson, Sharon C; Sembrano, Jonathan N; Santos, Edward Rainier G

    2017-04-01

    Structural allografts and PEEK cages are commonly used interbody fusion devices in ACDF. The subsidence rates of these two spacers have not yet been directly compared. The primary aim of this study was to compare the subsidence rate of allograft and PEEK cage in ACDF. The secondary aim was to determine if the presence of subsidence affects the clinical outcome. We reviewed 67 cases (117 levels) of ACDF with either structural allograft or PEEK cages. There were 85 levels (48 cases) with PEEK and 32 levels (19 cases) with allograft spacers. Anterior and posterior disc heights at each operative level were measured at immediate and 6months post-op. Subsidence was defined as a decrease in anterior or posterior disc heights >2mm. NDI of the subsidence (SG) and non-subsidence group (NSG) were recorded. Chi-square test was used to analyze subsidence rates. T-test was used to analyze clinical outcomes (α=0.05). There was no statistically significant difference between subsidence rates of the PEEK (29%; 25/85) and allograft group (28%; 9/32) (p=0.69). Overall mean subsidence was 2.3±1.7mm anteriorly and 2.6±1.2mm posteriorly. Mean NDI improvement was 11.7 (from 47.1 to 35.4; average follow-up: 12mos) for the SG and 14.0 (from 45.8 to 31.8; average follow-up: 13mos) for the NSG (p=0.74). Subsidence rate does not seem to be affected by the use of either PEEK or allograft as spacers in ACDF. Furthermore, subsidence alone does not seem to be predictive of clinical outcomes of ACDF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Asymmetric growth of collapsed caldera by oblique subsidence during the 2000 eruption of Miyakejima, Japan

    Science.gov (United States)

    Geshi, Nobuo

    2009-04-01

    Oblique development of the ring faults reflecting the structural heterogeneities inside the volcano formed many asymmetric structures of Miyakejima 2000 AD caldera. The asymmetry includes (a) offset location of the ring faults with respect to the associated shallow magma chamber, (b) unequal outward migration of the caldera wall 600 m at the southeastern rim but only 200 m at the northwestern rim, (c) development of tilted terrace only at the southeastern caldera margin, (d) eruption sites and fumaroles being confined to the southern part of the caldera. Geophysical data, including ground deformation and seismic activity, indicates the offset of the location of the magma chamber about 2 km south of the caldera center on the surface. The ring faults propagated from the deflating magma chamber obliquely about 30 degrees toward the summit. The oblique subsidence of the cylindrical block formed a wider instable zone, particularly in the southeastern side of the ring fault that enhanced the larger outward migration of the caldera rim and also caused the formation of the outer half-ring fault bordering the tilting slope at the southern part. Ascending pass of the buoyant magma along the tilted ring faults was concentrated in the southern half of the caldera and consequently the distributions of the eruption sites and fumaroles are localized in the southern-half part of the caldera. The structure of the Miyakejima 2000 caldera with complete development of the ring faults, its high roof aspect ratio and oblique subsidence is clearly distinguishable from trapdoor-type caldera. The oblique development of the ring faults can be controlled by the mechanical contrast between the solidified conduits and surrounding fragile volcanic edifice. Asymmetric development of the Miyakejima caldera shows that the collapsed calderas are potential indicators of the heterogeneous structures inside of the volcano, particularly in the case of small-size caldera.

  1. Modelling of the effect of a sea-level rise and land subsidence on the evolution of the groundwater density in the subsoil of the northern part of the Netherlands

    NARCIS (Netherlands)

    Meij, J.L. van der; Minnema, B.

    1999-01-01

    The Province of Friesland is conducting a study on possible future changes in the surface water and groundwater systems of Friesland. The aim of the study is to assess what changes might be caused by land subsidence and a rise in sea level - focusing in particular on the salinization of the surface

  2. UAVSAR and TerraSAR-X Based InSAR Detection of Localized Subsidence in the New Orleans Area

    Science.gov (United States)

    Blom, R. G.; An, K.; Jones, C. E.; Latini, D.

    2014-12-01

    Vulnerability of the US Gulf coast to inundation has received increased attention since hurricanes Katrina and Rita. Compounding effects of sea level rise, wetland loss, and regional and local subsidence makes flood protection a difficult challenge, and particularly for the New Orleans area. Key to flood protection is precise knowledge of elevations and elevation changes. Analysis of historical and continuing geodetic measurements show surprising complexity, including locations subsiding more rapidly than considered during planning of hurricane protection and coastal restoration projects. Combining traditional, precise geodetic data with interferometric synthetic aperture radar (InSAR) observations can provide geographically dense constraints on surface deformation. The Gulf Coast environment is challenging for InSAR techniques, especially with systems not designed for interferometry. We use two InSAR capable systems, the L- band (24 cm wavelength) airborne JPL/NASA UAVSAR, and the DLR/EADS Astrium spaceborne TerraSAR X-band (3 cm wavelength), and compare results. First, we are applying pair-wise InSAR to the longer wavelength UAVSAR data to detect localized elevation changes potentially impacting flood protection infrastructure from 2009 - 2014. We focus on areas on and near flood protection infrastructure to identify changes indicative of subsidence, structural deformation, and/or seepage. The Spaceborne TerraSAR X-band SAR system has relatively frequent observations, and dense persistent scatterers in urban areas, enabling measurement of very small displacements. We compare L-band UAVSAR results with permanent scatterer (PS-InSAR) and Short Baseline Subsets (SBAS) interferometric analyses of a stack composed by 28 TerraSAR X-band images acquired over the same period. Thus we can evaluate results from the different radar frequencies and analyses techniques. Preliminary results indicate subsidence features potentially of a variety of causes, including ground water

  3. Time-resolved PIV measurements of the atmospheric boundary layer over wind-driven surface waves

    Science.gov (United States)

    Markfort, Corey; Stegmeir, Matt

    2017-11-01

    Complex interactions at the air-water interface result in two-way coupling between wind-driven surface waves and the atmospheric boundary layer (ABL). Turbulence generated at the surface plays an important role in aquatic ecology and biogeochemistry, exchange of gases such as oxygen and carbon dioxide, and it is important for the transfer of energy and controlling evaporation. Energy transferred from the ABL promotes the generation and maintenance of waves. A fraction of the energy is transferred to the surface mixed layer through the generation of turbulence. Energy is also transferred back to the ABL by waves. There is a need to quantify the details of the coupled boundary layers of the air-water system to better understand how turbulence plays a role in the interactions. We employ time-resolved PIV to measure the detailed structure of the air and water boundary layers under varying wind and wave conditions in the newly developed IIHR Boundary-Layer Wind-Wave Tunnel. The facility combines a 30-m long recirculating water channel with an open-return boundary layer wind tunnel. A thick turbulent boundary layer is developed in the 1 m high air channel, over the water surface, allowing for the study of boundary layer turbulence interacting with a wind-driven wave field.

  4. Simulation of time-dependent free-surface Navier-Stokes flows

    International Nuclear Information System (INIS)

    Muldowney, G.P.

    1989-01-01

    Two numerical methods for simulation of time-dependent free-surface Navier-Stokes flows are developed. Both techniques are based on semi-implicit time advancement of the momentum equations, integral formulation of the spatial problem at each timestep, and spectral-element discretization to solve the resulting integral equation. Central to each algorithm is a boundary-specific solution step which permits the spatial treatment in two dimensions to be performed in O(N 3 ) operations per timestep despite the presence of deforming geometry. The first approach is a domain-integral formulation involving integrals over the entire flow domain of kernel functions which arise in time-differencing the Navier-Stokes equations. The second is a particular-solution formulation which replaces domain integration with an iterative scheme to generate particular velocity and pressure fields on individual elements, followed by a patching step to produce a particular solution continuous over the full domain. Two of the most difficult aspects of viscous free-surface flow simulations, namely time-dependent geometry and nontrivial boundary conditions, are well accommodated by these integral equation techniques. In addition the methods offer spectral accuracy in space and admit arbitrarily high-order discretization in time. For large-scale computations and/or long-term time advancement the domain-integral algorithm must be executed on a supercomputer to deliver results in reasonable processing time. A detailed simulation of gas liquid flow with full resolution of the free phase boundary requires approximately five CPU hours at 80 megaflops

  5. Robust space-time extraction of ventricular surface evolution using multiphase level sets

    Science.gov (United States)

    Drapaca, Corina S.; Cardenas, Valerie; Studholme, Colin

    2004-05-01

    This paper focuses on the problem of accurately extracting the CSF-tissue boundary, particularly around the ventricular surface, from serial structural MRI of the brain acquired in imaging studies of aging and dementia. This is a challenging problem because of the common occurrence of peri-ventricular lesions which locally alter the appearance of white matter. We examine a level set approach which evolves a four dimensional description of the ventricular surface over time. This has the advantage of allowing constraints on the contour in the temporal dimension, improving the consistency of the extracted object over time. We follow the approach proposed by Chan and Vese which is based on the Mumford and Shah model and implemented using the Osher and Sethian level set method. We have extended this to the 4 dimensional case to propagate a 4D contour toward the tissue boundaries through the evolution of a 5D implicit function. For convergence we use region-based information provided by the image rather than the gradient of the image. This is adapted to allow intensity contrast changes between time frames in the MRI sequence. Results on time sequences of 3D brain MR images are presented and discussed.

  6. Global Water Surface Dynamics: Toward a Near Real Time Monitoring Using Landsat and Sentinel Data

    Science.gov (United States)

    Pekel, J. F.; Belward, A.; Gorelick, N.

    2017-12-01

    Global surface water dynamics and its long-term changes have been documented at 30m spatial resolution using the entire multi-temporal orthorectified Landsat 5, 7 and 8 archive for the years 1984 to 2015. This validated dataset recorded the months and years when water was present, where occurrence changed and what form changes took (in terms of seasonality), documents inter-annual variability, and multi-annual trends. This information is freely available from the global surface water explorer https://global-surface-water.appspot.com. Here we extend this work (doi:10.1038/nature20584 ) by combining post 2015 Landsat 7 and 8 data with imagery from the Copernicus program's Sentinel 2a and b satellites. Using these data in combination improves the spatial resolution (from 30m to a nominal 10m) and temporal resolution (from 8 days to 4 days revisit time at the equator). The improved geographic and temporal completeness of the combined Landsat / Sentinel dataset also offers new opportunities for the identification and characterization of seasonally occurring waterbodies. These improvements are also being examined in the light of reporting progress against Agenda 2030's Sustainable Development Goal 6, especially the indicator used to measure 'change in the extent of water-related ecosystems over time'.

  7. Detecting aromatic compounds on planetary surfaces using ultraviolet time-resolved fluorescence spectroscopy

    Science.gov (United States)

    Eshelman, E.; Daly, M. G.; Slater, G.; Cloutis, E.

    2018-02-01

    Many aromatic organic molecules exhibit strong and characteristic fluorescence when excited with ultraviolet radiation. As laser excitation in the ultraviolet generates both fluorescence and resonantly enhanced Raman scattering of aromatic vibrational modes, combined Raman and fluorescence instruments have been proposed to search for organic compounds on Mars. In this work the time-resolved fluorescence of a suite of 24 compounds composed of 2-5 ringed alternant, non-alternant, and heterocyclic PAHs was measured. Fluorescence instrumentation with similar specifications to a putative flight instrument was capable of observing the fluorescence decay of these compounds with a sub-ns resolution. Incorporating time-resolved capabilities was also found to increase the ability to discriminate between individual PAHs. Incorporating time-resolved fluorescence capabilities into an ultraviolet gated Raman system intended for a rover or lander can increase the ability to detect and characterize PAHs on planetary surfaces.

  8. New K-Ar constraints on the onset of subsidence in the Canning Basin, Western Australia

    International Nuclear Information System (INIS)

    Shaw, R.D.; Tyler, I.M.; Griffin, T.J.; Webb, A.

    1992-01-01

    Structural mapping and reconnaissance K-Ar studies have helped to delineate and date the latest deformational stages (D4 and D5) in the King Leopold Orogen, to the north of the Canning Basin. The dates have been determined for schists selected from both contractional shear zones and from rocks metamorphosed to the lower greenschist facies during the final phase of basement deformation. These dates imply that the basement-deforming event started in the latest Precambrian to earliest Cambrian (ca 560 Ma), and that tectonism recurred in the latest Cambrian to earliest Ordovician (ca 500 Ma). The final contractional deformation is slightly older than the oldest-known sedimentary rocks in the basin (latest Tremadoc), and helps to define the time that basin subsidence started. 23 refs., 3 tabs., 2 figs

  9. Integrating Satellite, Radar and Surface Observation with Time and Space Matching

    Science.gov (United States)

    Ho, Y.; Weber, J.

    2015-12-01

    The Integrated Data Viewer (IDV) from Unidata is a Java™-based software framework for analyzing and visualizing geoscience data. It brings together the ability to display and work with satellite imagery, gridded data, surface observations, balloon soundings, NWS WSR-88D Level II and Level III RADAR data, and NOAA National Profiler Network data, all within a unified interface. Applying time and space matching on the satellite, radar and surface observation datasets will automatically synchronize the display from different data sources and spatially subset to match the display area in the view window. These features allow the IDV users to effectively integrate these observations and provide 3 dimensional views of the weather system to better understand the underlying dynamics and physics of weather phenomena.

  10. Developing first time-series of land surface temperature from AATSR with uncertainty estimates

    Science.gov (United States)

    Ghent, Darren; Remedios, John

    2013-04-01

    Land surface temperature (LST) is the radiative skin temperature of the land, and is one of the key parameters in the physics of land-surface processes on regional and global scales. Earth Observation satellites provide the opportunity to obtain global coverage of LST approximately every 3 days or less. One such source of satellite retrieved LST has been the Advanced Along-Track Scanning Radiometer (AATSR); with LST retrieval being implemented in the AATSR Instrument Processing Facility in March 2004. Here we present first regional and global time-series of LST data from AATSR with estimates of uncertainty. Mean changes in temperature over the last decade will be discussed along with regional patterns. Although time-series across all three ATSR missions have previously been constructed (Kogler et al., 2012), the use of low resolution auxiliary data in the retrieval algorithm and non-optimal cloud masking resulted in time-series artefacts. As such, considerable ESA supported development has been carried out on the AATSR data to address these concerns. This includes the integration of high resolution auxiliary data into the retrieval algorithm and subsequent generation of coefficients and tuning parameters, plus the development of an improved cloud mask based on the simulation of clear sky conditions from radiance transfer modelling (Ghent et al., in prep.). Any inference on this LST record is though of limited value without the accompaniment of an uncertainty estimate; wherein the Joint Committee for Guides in Metrology quote an uncertainty as "a parameter associated with the result of a measurement that characterizes the dispersion of the values that could reasonably be attributed to the measurand that is the value of the particular quantity to be measured". Furthermore, pixel level uncertainty fields are a mandatory requirement in the on-going preparation of the LST product for the upcoming Sea and Land Surface Temperature (SLSTR) instrument on-board Sentinel-3

  11. Real-time intelligent pattern recognition algorithm for surface EMG signals

    Directory of Open Access Journals (Sweden)

    Jahed Mehran

    2007-12-01

    Full Text Available Abstract Background Electromyography (EMG is the study of muscle function through the inquiry of electrical signals that the muscles emanate. EMG signals collected from the surface of the skin (Surface Electromyogram: sEMG can be used in different applications such as recognizing musculoskeletal neural based patterns intercepted for hand prosthesis movements. Current systems designed for controlling the prosthetic hands either have limited functions or can only be used to perform simple movements or use excessive amount of electrodes in order to achieve acceptable results. In an attempt to overcome these problems we have proposed an intelligent system to recognize hand movements and have provided a user assessment routine to evaluate the correctness of executed movements. Methods We propose to use an intelligent approach based on adaptive neuro-fuzzy inference system (ANFIS integrated with a real-time learning scheme to identify hand motion commands. For this purpose and to consider the effect of user evaluation on recognizing hand movements, vision feedback is applied to increase the capability of our system. By using this scheme the user may assess the correctness of the performed hand movement. In this work a hybrid method for training fuzzy system, consisting of back-propagation (BP and least mean square (LMS is utilized. Also in order to optimize the number of fuzzy rules, a subtractive clustering algorithm has been developed. To design an effective system, we consider a conventional scheme of EMG pattern recognition system. To design this system we propose to use two different sets of EMG features, namely time domain (TD and time-frequency representation (TFR. Also in order to decrease the undesirable effects of the dimension of these feature sets, principle component analysis (PCA is utilized. Results In this study, the myoelectric signals considered for classification consists of six unique hand movements. Features chosen for EMG signal

  12. The effect of irrigation time and type of irrigation fluid on cartilage surface friction.

    Science.gov (United States)

    Stärke, F; Awiszus, F; Lohmann, C H; Stärke, C

    2018-01-01

    It is known that fluid irrigation used during arthroscopic procedures causes a wash-out of lubricating substances from the articular cartilage surface and leads to increased friction. It was the goal of this study to investigate whether this effect depends on the time of irrigation and type of fluid used. Rabbit hind legs were used for the tests. The knees were dissected and the friction coefficient of the femoral cartilage measured against glass in a boundary lubrication state. To determine the influence of irrigation time and fluid, groups of 12 knees received either no irrigation (control), 15, 60 or 120min of irrigation with lactated Ringer's solution or 60min of irrigation with normal saline or a sorbitol/mannitol solution. The time of irrigation had a significant effect on the static and kinetic coefficient of friction (CoF), as had the type of fluid. Longer irrigation time with Ringer's solution was associated with increased friction coefficients (relative increase of the kinetic CoF compared to the control after 15, 60 and 120min: 16%, 76% and 88% respectively). The sorbitol/mannitol solution affected the static and kinetic CoF significantly less than either Ringer's or normal saline. The washout of lubricating glycoproteins from the cartilage surface and the associated increase of friction can be effectively influenced by controlling the time of irrigation and type of fluid used. The time of exposure to the irrigation fluid should be as short as possible and monosaccharide solutions might offer a benefit compared to salt solutions in terms of the resultant friction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Multiband PSInSAR and long-period monitoring of land subsidence in a strategic detrital aquifer (Vega de Granada, SE Spain): An approach to support management decisions

    Science.gov (United States)

    Mateos, Rosa María; Ezquerro, Pablo; Luque-Espinar, Juan Antonio; Béjar-Pizarro, Marta; Notti, Davide; Azañón, Jose Miguel; Montserrat, Oriol; Herrera, Gerardo; Fernández-Chacón, Francisca; Peinado, Tomás; Galve, Jorge Pedro; Pérez-Peña, Vicente; Fernández-Merodo, Jose A.; Jiménez, Jorge

    2017-10-01

    This work integrates detailed geological and hydrogeological information with PSI data to obtain a better understanding of subsidence processes detected in the detrital aquifer of the Vega de Granada (SE Spain) during the past 13 years. Ground motion was monitored by exploiting SAR images from the ENVISAT (2003-2009), Cosmo-SkyMed (2011-2014) and Sentinel-1A (2015-2016) satellites. PSInSAR results show an inelastic deformation in the aquifer and small land surface displacements (up to -55 mm). The most widespread land subsidence is detected during the ENVISAT period (2003-2009), which coincided with a long, dry period in the region. The highest displacement rates recorded during this period (up to 10 mm/yr) were detected in the central part of the aquifer, where many villages are located. For this period, there is a good correlation between groundwater level depletion and the augmentation of the average subsidence velocity and slight hydraulic head changes (account critical levels of groundwater depletion to avoid land subsidence in the areas identified as vulnerable. The European Space Agency satellite Sentinel-1A could be an effective decision-making tool in the near future.

  14. Reconstructing surface ocean circulation with 129I time series records from corals.

    Science.gov (United States)

    Chang, Ching-Chih; Burr, George S; Jull, A J Timothy; Russell, Joellen L; Biddulph, Dana; White, Lara; Prouty, Nancy G; Chen, Yue-Gau; Shen, Chuan-Chou; Zhou, Weijian; Lam, Doan Dinh

    2016-12-01

    The long-lived radionuclide 129 I (half-life: 15.7 × 10 6  yr) is well-known as a useful environmental tracer. At present, the global 129 I in surface water is about 1-2 orders of magnitude higher than pre-1960 levels. Since the 1990s, anthropogenic 129 I produced from industrial nuclear fuels reprocessing plants has been the primary source of 129 I in marine surface waters of the Atlantic and around the globe. Here we present four coral 129 I time series records from: 1) Con Dao and 2) Xisha Islands, the South China Sea, 3) Rabaul, Papua New Guinea and 4) Guam. The Con Dao coral 129 I record features a sudden increase in 129 I in 1959. The Xisha coral shows similar peak values for 129 I as the Con Dao coral, punctuated by distinct low values, likely due to the upwelling in the central South China Sea. The Rabaul coral features much more gradual 129 I increases in the 1970s, similar to a published record from the Solomon Islands. The Guam coral 129 I record contains the largest measured values for any site, with two large peaks, in 1955 and 1959. Nuclear weapons testing was the primary 129 I source in the Western Pacific in the latter part of the 20th Century, notably from testing in the Marshall Islands. The Guam 1955 peak and Con Dao 1959 increases are likely from the 1954 Castle Bravo test, and the Operation Hardtack I test is the most likely source of the 1959 peak observed at Guam. Radiogenic iodine found in coral was carried primarily through surface ocean currents. The coral 129 I time series data provide a broad picture of the surface distribution and depth penetration of 129 I in the Pacific Ocean over the past 60 years. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. 24 CFR 983.54 - Prohibition of assistance for units in subsidized housing.

    Science.gov (United States)

    2010-04-01

    ..., DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT PROJECT-BASED VOUCHER (PBV) PROGRAM Selection of PBV Owner... PBV assistance to units in any of the following types of subsidized housing: (a) A public housing... operating costs of the housing; (e) A unit subsidized with Section 236 rental assistance payments (12 U.S.C...

  16. Estimating Natural Environmental Characteristics of Subsidized Households: A Case Study of Austin, Texas

    Directory of Open Access Journals (Sweden)

    Young-Jae Kim

    2015-09-01

    Full Text Available Compared to the traditional public housing program, the Low-Income Housing Tax Credit (LIHTC program has been regarded as a better tool to ensure the quality of housing structure for subsidized households and the mixing of incomes in neighborhoods. Previous studies related to LIHTC developments have solely focused on the relationships between subsidized households and socioeconomic environments, such as income, race, poverty, etc. Beyond the socioeconomic environments where subsidized households are located, there is a limited understanding about whether subsidized households experience healthier natural environments in their neighborhoods. This study aims to investigate whether LIHTC-subsidized housing neighborhoods provide adequate natural environments to the subsidized households in Austin, Texas, compared to the public housing households. We employ comparison t-tests and binomial logistic regression models. The results show that LIHTC households are significantly exposed to unhealthy natural environmental settings such as a lack of green vegetation and steep slopes while no statistical evidence is reported for public housing neighborhoods. Findings from this study may help policymakers and planners improve their understanding of whether subsidized housing developments offer better natural environments for disadvantaged populations and help them develop effective environmental intervention strategies to improve the quality of life of subsidized households.

  17. Advancing Coastal Climate Adaptation in Denmark by Land Subsidence Mapping using Sentinel-1 Satellite Imagery

    DEFF Research Database (Denmark)

    Sørensen, Carlo Sass; Broge, Niels H.; Mølgaard, Mads R.

    2016-01-01

    There are still large uncertainties in projections of climate change and sea level rise. Here, land subsidence is an additional factor that may adversely affect the vulnerability towards floods in low-lying coastal communities. The presented study performs an initial assessment of subsidence...

  18. Influence the condition land subsidence and groundwater impact of Jakarta coastal area

    Science.gov (United States)

    Rahman, S.; Sumotarto, U.; Pramudito, H.

    2018-01-01

    Jakarta has been experiencing land subsidence for ten years due toerecting weight building and intensive extraction of groundwater for society drink water through ground water wells. Many groundwater extraction for drinkingwater has caused intensive scouring of land rock and further triggering land subsidence developed widely in coastal area of Jakarta. Measurement of the land subsidence has been performed by various experts and institutes. Between 1974 to 2010 subsidence has happened between 3 to 4.1 meters especially in Jakarta coastal area. Two major causes of the subsidence are identified. The first major cause is a result of erecting weight building such as hotels, appartments, and various human activities buildings. The second major cause is extracting ground water from aquifers bellow Jakarta land due to water deep wells down to the aquifer and traditional shallow water well of shallow or subsurface uncovered ground water. Weighter building and higher debit of water flow from deep water wells has fastened and deepened the land subsidence. Continuous measurement of land subsidence by means of geodetic as well as geophysical earth behaviour measurements need to be performed to monitor the rate, location as well as mapping of the land subsidence.

  19. Geotechnical and Geological Aspects of Differential Subsidence in the Skaw Spit, Denmark

    DEFF Research Database (Denmark)

    Andersen, Holger Lykke; Thorsen, Grete; Hauerbach, P.

    1996-01-01

    Local differential subsidence has been observed by means of repeated precise levellings in the township of Skagen at the northernmost tip of the Skaw Spit in Jutland. We have l studied the possible causes of the subsidence. Oedometer tests have been carried out on undisturbed clayey samples from...

  20. FPGA based image processing for optical surface inspection with real time constraints

    Science.gov (United States)

    Hasani, Ylber; Bodenstorfer, Ernst; Brodersen, Jörg; Mayer, Konrad J.

    2015-02-01

    Today, high-quality printing products like banknotes, stamps, or vouchers, are automatically checked by optical surface inspection systems. In a typical optical surface inspection system, several digital cameras acquire the printing products with fine resolution from different viewing angles and at multiple wavelengths of the visible and also near infrared spectrum of light. The cameras deliver data streams with a huge amount of image data that have to be processed by an image processing system in real time. Due to the printing industry's demand for higher throughput together with the necessity to check finer details of the print and its security features, the data rates to be processed tend to explode. In this contribution, a solution is proposed, where the image processing load is distributed between FPGAs and digital signal processors (DSPs) in such a way that the strengths of both technologies can be exploited. The focus lies upon the implementation of image processing algorithms in an FPGA and its advantages. In the presented application, FPGAbased image-preprocessing enables real-time implementation of an optical color surface inspection system with a spatial resolution of 100 μm and for object speeds over 10 m/s. For the implementation of image processing algorithms in the FPGA, pipeline parallelism with clock frequencies up to 150 MHz together with spatial parallelism based on multiple instantiations of modules for parallel processing of multiple data streams are exploited for the processing of image data of two cameras and three color channels. Due to their flexibility and their fast response times, it is shown that FPGAs are ideally suited for realizing a configurable all-digital PLL for the processing of camera line-trigger signals with frequencies about 100 kHz, using pure synchronous digital circuit design.

  1. Land subsidence threats and its management in the North Coast of Java

    Science.gov (United States)

    Sarah, D.; Soebowo, E.

    2018-02-01

    Cities on the north coast of Java such as Jakarta, Semarang, Pekalongan, and Surabaya are vulnerable to environmental pressures such as sea level change and land subsidence. Land subsidence can be caused by natural and anthropogenic processes. Geologically, the north coastal plain of Java consists of unconsolidated Holocene alluvial deposit. The recent alluvial deposit is prone to compaction, and further aggravated by anthropogenic forces such as groundwater extraction and land development. Understanding the complex interaction of natural and manmade factors is essential to establish mitigation strategy. Although the impacts of land subsidence are widely felt, many do not realize that land subsidence is taking place. This paper presents a brief review of the land subsidence threats in the North coast of Java and proposes a recommendation for suitable management response.

  2. A Mixed Prediction Model of Ground Subsidence for Civil Infrastructures on Soft Ground

    Directory of Open Access Journals (Sweden)

    Kiyoshi Kobayashi

    2012-01-01

    Full Text Available The estimation of ground subsidence processes is an important subject for the asset management of civil infrastructures on soft ground, such as airport facilities. In the planning and design stage, there exist many uncertainties in geotechnical conditions, and it is impossible to estimate the ground subsidence process by deterministic methods. In this paper, the sets of sample paths designating ground subsidence processes are generated by use of a one-dimensional consolidation model incorporating inhomogeneous ground subsidence. Given the sample paths, the mixed subsidence model is presented to describe the probabilistic structure behind the sample paths. The mixed model can be updated by the Bayesian methods based upon the newly obtained monitoring data. Concretely speaking, in order to estimate the updating models, Markov Chain Monte Calro method, which is the frontier technique in Bayesian statistics, is applied. Through a case study, this paper discussed the applicability of the proposed method and illustrated its possible application and future works.

  3. Dwell Time and Surface Parameter Effects on Removal of Silicone Oil From D6ac Steel Using TCA

    Science.gov (United States)

    Boothe, R. E.

    2003-01-01

    This study was conducted to evaluate the impact of dwell time, surface roughness, and the surface activation state on 1,1,1-trichloroethane's (TCA's) effectiveness for removing silicone oil from D6ac steel. Silicone-contaminated test articles were washed with TCA solvent, and then the surfaces were analyzed for residue, using Fourier transform infrared spectroscopy. The predominant factor affecting the ability to remove the silicone oil was surface roughness.

  4. Time-dependent dynamical behavior of surface tension on rotating fluids under microgravity environment

    Science.gov (United States)

    Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, F. W.

    1988-01-01

    Time dependent evolutions of the profile of free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations of the dynamics of bubble shapes have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low and microgravity environments, (2) step functions of spin-up and spin-down in a low gravity environment, and (3) sinusoidal function oscillation of gravity environment in high and low rotating cylinder speeds.

  5. Neural network approach to time-dependent dividing surfaces in classical reaction dynamics

    Science.gov (United States)

    Schraft, Philippe; Junginger, Andrej; Feldmaier, Matthias; Bardakcioglu, Robin; Main, Jörg; Wunner, Günter; Hernandez, Rigoberto

    2018-04-01

    In a dynamical system, the transition between reactants and products is typically mediated by an energy barrier whose properties determine the corresponding pathways and rates. The latter is the flux through a dividing surface (DS) between the two corresponding regions, and it is exact only if it is free of recrossings. For time-independent barriers, the DS can be attached to the top of the corresponding saddle point of the potential energy surface, and in time-dependent systems, the DS is a moving object. The precise determination of these direct reaction rates, e.g., using transition state theory, requires the actual construction of a DS for a given saddle geometry, which is in general a demanding methodical and computational task, especially in high-dimensional systems. In this paper, we demonstrate how such time-dependent, global, and recrossing-free DSs can be constructed using neural networks. In our approach, the neural network uses the bath coordinates and time as input, and it is trained in a way that its output provides the position of the DS along the reaction coordinate. An advantage of this procedure is that, once the neural network is trained, the complete information about the dynamical phase space separation is stored in the network's parameters, and a precise distinction between reactants and products can be made for all possible system configurations, all times, and with little computational effort. We demonstrate this general method for two- and three-dimensional systems and explain its straightforward extension to even more degrees of freedom.

  6. The effect of dentine surface preparation and reduced application time of adhesive on bonding strength.

    Science.gov (United States)

    Saikaew, Pipop; Chowdhury, A F M Almas; Fukuyama, Mai; Kakuda, Shinichi; Carvalho, Ricardo M; Sano, Hidehiko

    2016-04-01

    This study evaluated the effects of surface preparation and the application time of adhesives on the resin-dentine bond strengths with universal adhesives. Sixty molars were cut to exposed mid-coronal dentine and divided into 12 groups (n=5) based on three factors; (1) adhesive: G-Premio Bond (GP, GC Corp., Tokyo, Japan), Clearfil Universal Bond (CU, Kuraray Noritake Dental Inc., Okayama, Japan) and Scotchbond Universal Adhesive (SB, 3M ESPE, St. Paul, MN, USA); (2) smear layer preparation: SiC paper ground dentine or bur-cut dentine; (3) application time: shortened time or as manufacturer's instruction. Fifteen resin-dentine sticks per group were processed for microtensile bond strength test (μTBS) according to non-trimming technique (1mm(2)) after storage in distilled water (37 °C) for 24h. Data were analyzed by three-way ANOVA and Dunnett T3 tests (α=0.05). Fractured surfaces were observed under scanning electron microscope (SEM). Another 12 teeth were prepared and cut into slices for SEM examination of bonded interfaces. μTBS were higher when bonded to SiC-ground dentine according to manufacturer's instruction. Bonding to bur-cut dentine resulted in significantly lower μTBS (padhesive resin interface. This was more pronounced when adhesives were bonded with a reduced application time and on bur cut dentine. The performance of universal adhesives can be compromised on bur cut dentine and when applied with a reduced application time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Surface structural damage associated with longwall mining near Tuscaloosa, Alabama: a case history

    International Nuclear Information System (INIS)

    Isphording, W.C.

    1992-01-01

    Initially the paper examines the frequency of coal mine subsidence and the influence on surface subsidence of subsurface mining methods, i.e. room and pillar and longwall mining. A case study of the subsidence damage caused to a log house near Tuscaloosa, Alabama (USA), when a longwall panel passed beneath it is presented. The damage resulted in the homeowners suing the mining company for negligence. The article discusses information provided to the plaintiffs attorneys by the author. Aspects covered are: the subsidence and damage to the property; prediction of subsidence; the monitoring of subsidence; and the prevention of subsidence. An out-of-court settlement was agreed by the two parties. 15 refs., 5 figs

  8. Detecting geothermal anomalies and evaluating LST geothermal component by combining thermal remote sensing time series and land surface model data

    NARCIS (Netherlands)

    Romaguera, M.; Vaughan, R. G.; Ettema, J.; Izquierdo-Verdiguier, E.; Hecker, C. A.; van der Meer, F. D.

    This paper explores for the first time the possibilities to use two land surface temperature (LST) time series of different origins (geostationary Meteosat Second Generation satellite data and Noah land surface modelling, LSM), to detect geothermal anomalies and extract the geothermal component of

  9. Detecting geothermal anomalies and evaluating LST geothermal component by combining thermal remote sensing time series and land surface model data

    NARCIS (Netherlands)

    Romaguera, M.; Vaughan, R. G.; Ettema, J.; Izquierdo-Verdiguier, E.; Hecker, C. A.; van der Meer, F. D.

    2017-01-01

    This paper explores for the first time the possibilities to use two land surface temperature (LST) time series of different origins (geostationary Meteosat Second Generation satellite data and Noah land surface modelling, LSM), to detect geothermal anomalies and extract the geothermal component of

  10. Endoscopic add-on stiffness probe for real-time soft surface characterisation in MIS.

    Science.gov (United States)

    Faragasso, A; Stilli, A; Bimbo, J; Noh, Y; Liu, H; Nanayakkara, T; Dasgupta, P; Wurdemann, H A; Althoefer, K

    2014-01-01

    This paper explores a novel stiffness sensor which is mounted on the tip of a laparoscopic camera. The proposed device is able to compute stiffness when interacting with soft surfaces. The sensor can be used in Minimally Invasive Surgery, for instance, to localise tumor tissue which commonly has a higher stiffness when compared to healthy tissue. The purely mechanical sensor structure utilizes the functionality of an endoscopic camera to the maximum by visually analyzing the behavior of trackers within the field of view. Two pairs of spheres (used as easily identifiable features in the camera images) are connected to two springs with known but different spring constants. Four individual indenters attached to the spheres are used to palpate the surface. During palpation, the spheres move linearly towards the objective lens (i.e. the distance between lens and spheres is changing) resulting in variations of their diameters in the camera images. Relating the measured diameters to the different spring constants, a developed mathematical model is able to determine the surface stiffness in real-time. Tests were performed using a surgical endoscope to palpate silicon phantoms presenting different stiffness. Results show that the accuracy of the sensing system developed increases with the softness of the examined tissue.

  11. Heat Generation on Implant Surface During Abutment Preparation at Different Elapsed Time Intervals.

    Science.gov (United States)

    Al-Keraidis, Abdullah; Aleisa, Khalil; Al-Dwairi, Ziad Nawaf; Al-Tahawi, Hamdi; Hsu, Ming-Lun; Lynch, Edward; Özcan, Mutlu

    2017-10-01

    The purpose of this study was to evaluate heat generation at the implant surface caused by abutment preparation using a diamond bur in a high-speed dental turbine in vitro at 2 different water-coolant temperatures. Thirty-two titanium-alloy abutments were connected to a titanium-alloy implant embedded in an acrylic resin placed within a water bath at a controlled temperature of 37°C. The specimens were equally distributed into 2 groups (16 each). Group 1: the temperature was maintained at 20 ± 1°C; and group 2: the temperature was maintained at 32 ± 1°C. Each abutment was prepared in the axial plane for 1 minute and in the occlusal plane for 1 minute. The temperature of the heat generated from abutment preparation was recorded and measured at 3 distinct time intervals. Water-coolant temperature (20°C vs 32°C) had a statistically significant effect on the implant's temperature change during preparation of the abutment (P water-coolant temperature of 20 ± 1°C during preparation of the implant abutment decreased the temperature recorded at the implant surface to 34.46°C, whereas the coolant temperature of 32 ± 1°C increased the implant surface temperature to 40.94°C.

  12. Investigation of the delay time distribution of high power microwave surface flashover

    Science.gov (United States)

    Foster, J.; Krompholz, H.; Neuber, A.

    2011-01-01

    Characterizing and modeling the statistics associated with the initiation of gas breakdown has proven to be difficult due to a variety of rather unexplored phenomena involved. Experimental conditions for high power microwave window breakdown for pressures on the order of 100 to several 100 torr are complex: there are little to no naturally occurring free electrons in the breakdown region. The initial electron generation rate, from an external source, for example, is time dependent and so is the charge carrier amplification in the increasing radio frequency (RF) field amplitude with a rise time of 50 ns, which can be on the same order as the breakdown delay time. The probability of reaching a critical electron density within a given time period is composed of the statistical waiting time for the appearance of initiating electrons in the high-field region and the build-up of an avalanche with an inherent statistical distribution of the electron number. High power microwave breakdown and its delay time is of critical importance, since it limits the transmission through necessary windows, especially for high power, high altitude, low pressure applications. The delay time distribution of pulsed high power microwave surface flashover has been examined for nitrogen and argon as test gases for pressures ranging from 60 to 400 torr, with and without external UV illumination. A model has been developed for predicting the discharge delay time for these conditions. The results provide indications that field induced electron generation, other than standard field emission, plays a dominant role, which might be valid for other gas discharge types as well.

  13. Subsidence Detected by Multi-Pass Differential SAR Interferometry in the Cassino Plain (Central Italy: Joint Effect of Geological and Anthropogenic Factors?

    Directory of Open Access Journals (Sweden)

    Marco Polcari

    2014-10-01

    Full Text Available In the present work, the Differential SAR Interferometry (DInSAR technique has been applied to study the surface movements affecting the sedimentary basin of Cassino municipality. Two datasets of SAR images, provided by ERS 1-2 and Envisat missions, have been acquired from 1992 to 2010. Such datasets have been processed independently each other and with different techniques nevertheless providing compatible results. DInSAR data show a subsidence rate mostly located in the northeast side of the city, with a subsidence rate decreasing from about 5–6 mm/yr in the period 1992–2000 to about 1–2 mm/yr between 2004 and 2010, highlighting a progressive reduction of the phenomenon. Based on interferometric results and geological/geotechnical observations, the explanation of the detected movements allows to confirm the anthropogenic (surface effect due to building construction and geological causes (thickness and characteristics of the compressible stratum.

  14. PSInSAR Analysis in the Pisa Urban Area (Italy: A Case Study of Subsidence Related to Stratigraphical Factors and Urbanization

    Directory of Open Access Journals (Sweden)

    Lorenzo Solari

    2016-02-01

    Full Text Available Permanent Scatterer Interferometry (PSI has been used to detect and characterize the subsidence of the Pisa urban area, which extends for 33 km2 within the Arno coastal plain (Tuscany, Italy. Two SAR (Synthetic Aperture Radar datasets, covering the time period from 1992 to 2010, were used to quantify the ground subsidence and its temporal evolution. A geotechnical borehole database was also used to make a correspondence with the detected displacements. Finally, the results of the SAR data analysis were contrasted with the urban development of the eastern part of the city in the time period from 1978 to 2013. ERS 1/2 (European Remote-Sensing Satellite and Envisat SAR data, processed with the PSInSAR (Permanent Scatterer InSAR algorithm, show that the investigated area is divided in two main sectors: the southwestern part, with null or very small subsidence rates (<2 mm/year, and the eastern portion which shows a general lowering with maximum deformation rates of 5 mm/year. This second area includes deformation rates higher than 15 mm/year, corresponding to small groups of buildings. The case studies in the eastern sector of the urban area have demonstrated the direct correlation between the age of construction of buildings and the registered subsidence rates, showing the importance of urbanization as an accelerating factor for the ground consolidation process.

  15. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.

    Science.gov (United States)

    Collins, David J; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-07-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides.

  16. Surface assisted oxidation of flat lying organic molecules - a real-time STM study

    Energy Technology Data Exchange (ETDEWEB)

    Waldmann, Thomas; Roos, Michael; Breitruck, Achim; Hoster, Harry E.; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Kuenzel, Daniela; Gross, Axel [Institute of Theoretical Chemistry, Ulm University, D-89069 Ulm (Germany)

    2010-07-01

    Using time resolved scanning tunneling microscopy (STM), we tested the interaction of O{sub 2} from gas-phase with ordered adlayers of the Bis(terpyridine) derivative 2,4'-BTP on Au(111), Ag(111) and graphite (HOPG) surfaces at T = 300 K. At an O{sub 2} pressure of 10{sup -5} mbar, the adlayers on Ag(111) undergo chemical and structural changes. These include modifications of the 2-pyridyl rings of individual 2,4'-BTP adsorbates and rearrangements of the hydrogen bonded adlayer. Since we do not observe similar changes on HOPG and Au(111), we assume that Ag(111) acts as catalyst for the underlying processes. Based on our STM data in combination with DFT calculations, we conclude that the observed reaction is pyridyl-N-oxide formation. Furthermore, we derive reaction yields, enantiomeric excess, reaction rates and reaction orders from the time-resolved STM data.

  17. Technical Note: Reducing the spin-up time of integrated surface water–groundwater models

    KAUST Repository

    Ajami, H.

    2014-06-26

    One of the main challenges in catchment scale application of coupled/integrated hydrologic models is specifying a catchment\\'s initial conditions in terms of soil moisture and depth to water table (DTWT) distributions. One approach to reduce uncertainty in model initialization is to run the model recursively using a single or multiple years of forcing data until the system equilibrates with respect to state and diagnostic variables. However, such "spin-up" approaches often require many years of simulations, making them computationally intensive. In this study, a new hybrid approach was developed to reduce the computational burden of spin-up time for an integrated groundwater-surface water-land surface model (ParFlow.CLM) by using a combination of ParFlow.CLM simulations and an empirical DTWT function. The methodology is examined in two catchments located in the temperate and semi-arid regions of Denmark and Australia respectively. Our results illustrate that the hybrid approach reduced the spin-up time required by ParFlow.CLM by up to 50%, and we outline a methodology that is applicable to other coupled/integrated modelling frameworks when initialization from equilibrium state is required.

  18. Short-time regularity assessment of fibrillatory waves from the surface ECG in atrial fibrillation

    International Nuclear Information System (INIS)

    Alcaraz, Raúl; Martínez, Arturo; Hornero, Fernando; Rieta, José J

    2012-01-01

    This paper proposes the first non-invasive method for direct and short-time regularity quantification of atrial fibrillatory (f) waves from the surface ECG in atrial fibrillation (AF). Regularity is estimated by computing individual morphological variations among f waves, which are delineated and extracted from the atrial activity (AA) signal, making use of an adaptive signed correlation index. The algorithm was tested on real AF surface recordings in order to discriminate atrial signals with different organization degrees, providing a notably higher global accuracy (90.3%) than the two non-invasive AF organization estimates defined to date: the dominant atrial frequency (70.5%) and sample entropy (76.1%). Furthermore, due to its ability to assess AA regularity wave to wave, the proposed method is also able to pursue AF organization time course more precisely than the aforementioned indices. As a consequence, this work opens a new perspective in the non-invasive analysis of AF, such as the individualized study of each f wave, that could improve the understanding of AF mechanisms and become useful for its clinical treatment. (paper)

  19. Interaction dynamics of two diffusing particles: contact times and influence of nearby surfaces.

    Science.gov (United States)

    Tränkle, B; Ruh, D; Rohrbach, A

    2016-03-14

    Interactions of diffusing particles are governed by hydrodynamics on different length and timescales. The local hydrodynamics can be influenced substantially by simple interfaces. Here, we investigate the interaction dynamics of two micron-sized spheres close to plane interfaces to mimic more complex biological systems or microfluidic environments. Using scanned line optical tweezers and fast 3D interferometric particle tracking, we are able to track the motion of each bead with precisions of a few nanometers and at a rate of 10 kilohertz. From the recorded trajectories, all spatial and temporal information is accessible. This way, we measure diffusion coefficients for two coupling particles at varying distances h to one or two glass interfaces. We analyze their coupling strength and length by cross-correlation analysis relative to h and find a significant decrease in the coupling length when a second particle diffuses nearby. By analysing the times the particles are in close contact, we find that the influence of nearby surfaces and interaction potentials reduce the diffusivity strongly, although we found that the diffusivity hardly affects the contact times and the binding probability between the particles. All experimental results are compared to a theoretical model, which is based on the number of possible diffusion paths following the Catalan numbers and a diffusion probability, which is biased by the spheres' surface potential. The theoretical and experimental results agree very well and therefore enable a better understanding of hydrodynamically coupled interaction processes.

  20. An innovative application of time-domain spectroscopy on localized surface plasmon resonance sensing

    Science.gov (United States)

    Li, Meng-Chi; Chang, Ying-Feng; Wang, Huai-Yi; Lin, Yu-Xen; Kuo, Chien-Cheng; Annie Ho, Ja-An; Lee, Cheng-Chung; Su, Li-Chen

    2017-03-01

    White-light scanning interferometry (WLSI) is often used to study the surface profiles and properties of thin films because the strength of the technique lies in its ability to provide fast and high resolution measurements. An innovative attempt is made in this paper to apply WLSI as a time-domain spectroscopic system for localized surface plasmon resonance (LSPR) sensing. A WLSI-based spectrometer is constructed with a breadboard of WLSI in combination with a spectral centroid algorithm for noise reduction and performance improvement. Experimentally, the WLSI-based spectrometer exhibits a limit of detection (LOD) of 1.2 × 10-3 refractive index units (RIU), which is better than that obtained with a conventional UV-Vis spectrometer, by resolving the LSPR peak shift. Finally, the bio-applicability of the proposed spectrometer was investigated using the rs242557 tau gene, an Alzheimer’s and Parkinson’s disease biomarker. The LOD was calculated as 15 pM. These results demonstrate that the proposed WLSI-based spectrometer could become a sensitive time-domain spectroscopic biosensing platform.

  1. Monitoring groundwater-surface water interaction using time-series and time-frequency analysis of transient three-dimensional electrical resistivity changes

    Science.gov (United States)

    Johnson, Timothy C.; Slater, Lee D.; Ntarlagiannis, Dimitris; Day-Lewis, Frederick D.; Elwaseif, Mehrez

    2012-01-01

    Time-lapse resistivity imaging is increasingly used to monitor hydrologic processes. Compared to conventional hydrologic measurements, surface time-lapse resistivity provides superior spatial coverage in two or three dimensions, potentially high-resolution information in time, and information in the absence of wells. However, interpretation of time-lapse electrical tomograms is complicated by the ever-increasing size and complexity of long-term, three-dimensional (3-D) time series conductivity data sets. Here we use 3-D surface time-lapse electrical imaging to monitor subsurface electrical conductivity variations associated with stage-driven groundwater-surface water interactions along a stretch of the Columbia River adjacent to the Hanford 300 near Richland, Washington, USA. We reduce the resulting 3-D conductivity time series using both time-series and time-frequency analyses to isolate a paleochannel causing enhanced groundwater-surface water interactions. Correlation analysis on the time-lapse imaging results concisely represents enhanced groundwater-surface water interactions within the paleochannel, and provides information concerning groundwater flow velocities. Time-frequency analysis using the Stockwell (S) transform provides additional information by identifying the stage periodicities driving groundwater-surface water interactions due to upstream dam operations, and identifying segments in time-frequency space when these interactions are most active. These results provide new insight into the distribution and timing of river water intrusion into the Hanford 300 Area, which has a governing influence on the behavior of a uranium plume left over from historical nuclear fuel processing operations.

  2. LITERATURE REVIEW OF PUO2 CALCINATION TIME AND TEMPERATURE DATA FOR SPECIFIC SURFACE AREA

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, G.

    2012-03-06

    The literature has been reviewed in December 2011 for calcination data of plutonium oxide (PuO{sub 2}) from plutonium oxalate Pu(C{sub 2}O{sub 4}){sub 2} precipitation with respect to the PuO{sub 2} specific surface area (SSA). A summary of the literature is presented for what are believed to be the dominant factors influencing SSA, the calcination temperature and time. The PuO{sub 2} from Pu(C{sub 2}O{sub 4}){sub 2} calcination data from this review has been regressed to better understand the influence of calcination temperature and time on SSA. Based on this literature review data set, calcination temperature has a bigger impact on SSA versus time. However, there is still some variance in this data set that may be reflecting differences in the plutonium oxalate preparation or different calcination techniques. It is evident from this review that additional calcination temperature and time data for PuO{sub 2} from Pu(C{sub 2}O{sub 4}){sub 2} needs to be collected and evaluated to better define the relationship. The existing data set has a lot of calcination times that are about 2 hours and therefore may be underestimating the impact of heating time on SSA. SRNL recommends that more calcination temperature and time data for PuO{sub 2} from Pu(C{sub 2}O{sub 4}){sub 2} be collected and this literature review data set be augmented to better refine the relationship between PuO{sub 2} SSA and its calcination parameters.

  3. Forecasting surface water flooding hazard and impact in real-time

    Science.gov (United States)

    Cole, Steven J.; Moore, Robert J.; Wells, Steven C.

    2016-04-01

    Across the world, there is increasing demand for more robust and timely forecast and alert information on Surface Water Flooding (SWF). Within a UK context, the government Pitt Review into the Summer 2007 floods provided recommendations and impetus to improve the understanding of SWF risk for both off-line design and real-time forecasting and warning. Ongoing development and trial of an end-to-end real-time SWF system is being progressed through the recently formed Natural Hazards Partnership (NHP) with delivery to the Flood Forecasting Centre (FFC) providing coverage over England & Wales. The NHP is a unique forum that aims to deliver coordinated assessments, research and advice on natural hazards for governments and resilience communities across the UK. Within the NHP, a real-time Hazard Impact Model (HIM) framework has been developed that includes SWF as one of three hazards chosen for initial trialling. The trial SWF HIM system uses dynamic gridded surface-runoff estimates from the Grid-to-Grid (G2G) hydrological model to estimate the SWF hazard. National datasets on population, infrastructure, property and transport are available to assess impact severity for a given rarity of SWF hazard. Whilst the SWF hazard footprint is calculated in real-time using 1, 3 and 6 hour accumulations of G2G surface runoff on a 1 km grid, it has been possible to associate these with the effective rainfall design profiles (at 250m resolution) used as input to a detailed flood inundation model (JFlow+) run offline to produce hazard information resolved to 2m resolution. This information is contained in the updated Flood Map for Surface Water (uFMfSW) held by the Environment Agency. The national impact datasets can then be used with the uFMfSW SWF hazard dataset to assess impacts at this scale and severity levels of potential impact assigned at 1km and for aggregated county areas in real-time. The impact component is being led by the Health and Safety Laboratory (HSL) within the NHP

  4. Rapid groundwater-related land subsidence in Yemen observed by multi-temporal InSAR

    Science.gov (United States)

    Abdullin, Ayrat; Xu, Wenbin; Kosmicki, Maximillian; Jonsson, Sigurjon

    2015-04-01

    Several basins in Yemen are suffering from a rapid drawdown of groundwater, which is the most important water source for agricultural irrigation, industry and domestic use. However, detailed geodetic measurements in the region have been lacking and the extent and magnitude of groundwater-related land subsidence has been poorly known. We used 13 ascending ALOS and 15 descending Envisat images to study land subsidence of several basins in Yemen, with a special focus on the Sana'a and Mabar basins. From multitemporal synthetic aperture radar interferometric analysis (persistent scatterers (PS) and small baseline subsets (SBAS)) we examined the spatio-temporal behavior of the subsidence induced by depletion of groundwater aquifer systems from November 2003 to February 2011. In the interferometric data processing, we carefully chose interferogram pairs to minimize spatial and temporal decorrelation, because of high subsidence rates and the type of land cover. Our results show that the spatial pattern of subsidence remained quite stable during the observation period in both the Sana'a and Mabar basins. In the Sana'a basin, the maximum subsidence rate exceeded 14 cm/year in the radar line-of-sight (LOS) direction between 2003 and 2008 in an agricultural area just north of Sana'a city, where water wells have been drying up according to the well data. The subsidence rate was lower in the urban areas, or approximately 1 cm/year, exhibiting annual variations. The main subsidence was found in the center and southern parts of the city, while deformation in the northern part is less obvious. For the Mabar basin, the subsidence rate exceeded 30 cm/year in the agricultural area north of the town of Mabar during 2007 - 2011. The southern part of the Mabar basin also experienced high subsidence rates, although somewhat lower than to the north. Excessive water pumping is the main cause of the ground subsidence and it has already led to extensive ground fracturing at the edge of some

  5. Rapid groundwater-related land subsidence in Yemen observed by multi-temporal InSAR

    KAUST Repository

    Abdullin, Ayrat

    2015-04-01

    Several basins in Yemen are suffering from a rapid drawdown of groundwater, which is the most important water source for agricultural irrigation, industry and domestic use. However, detailed geodetic measurements in the region have been lacking and the extent and magnitude of groundwater-related land subsidence has been poorly known. We used 13 ascending ALOS and 15 descending Envisat images to study land subsidence of several basins in Yemen, with a special focus on the Sana\\'a and Mabar basins. From multitemporal synthetic aperture radar interferometric analysis (persistent scatterers (PS) and small baseline subsets (SBAS)) we examined the spatio-temporal behavior of the subsidence induced by depletion of groundwater aquifer systems from November 2003 to February 2011. In the interferometric data processing, we carefully chose interferogram pairs to minimize spatial and temporal decorrelation, because of high subsidence rates and the type of land cover. Our results show that the spatial pattern of subsidence remained quite stable during the observation period in both the Sana\\'a and Mabar basins. In the Sana\\'a basin, the maximum subsidence rate exceeded 14 cm/year in the radar line-of-sight (LOS) direction between 2003 and 2008 in an agricultural area just north of Sana\\'a city, where water wells have been drying up according to the well data. The subsidence rate was lower in the urban areas, or approximately 1 cm/year, exhibiting annual variations. The main subsidence was found in the center and southern parts of the city, while deformation in the northern part is less obvious. For the Mabar basin, the subsidence rate exceeded 30 cm/year in the agricultural area north of the town of Mabar during 2007 - 2011. The southern part of the Mabar basin also experienced high subsidence rates, although somewhat lower than to the north. Excessive water pumping is the main cause of the ground subsidence and it has already led to extensive ground fracturing at the edge

  6. Hydrogeology, water chemistry, and subsidence of underground coal mines at Huntsville, Missouri, July 1987 to December 1988. Water Resources Investigation

    International Nuclear Information System (INIS)

    Blevins, D.W.; Ziegler, A.C.

    1992-01-01

    Underground coal mining in and near Huntsville, in Randolph County in north-central Missouri, began soon after 1831. Mining in the Huntsville area was at its peak during 1903 and continued until 1966 when the last underground mine was closed and the economically recoverable coals under Huntsville had been mostly, if not completely, removed. The now abandoned mines are of concern to the public and to various State and Federal agencies for two reasons: (1) mine drainage acidifies streams and leaves large, soft, dangerous deposits of iron oxyhydroxides at mine springs and on streambeds (data on file at the Missouri Department of Natural Resources, Land Reclamation Commission), and (2) collapse of mine cavities sometimes causes surface subsidence resulting in property damage or personal injury. To address these concerns, the U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, in 1987 initiated a study to: determine the location of mine springs, the seasonal variation of stream-water chemistry, and the effects of underground-mine water on flow and water quality of nearby ground water and receiving streams; and identify areas susceptible to surface subsidence because of mine collapse. The purpose of the report is to present the findings and data collected for the study

  7. Mapping and monitoring coal mine subsidence using LiDAR and InSAR

    Energy Technology Data Exchange (ETDEWEB)

    Froese, C.R.; Mei, S. [Alberta Geological Survey, Edmonton, AB (Canada). Energy Resources Conservation Board

    2008-07-01

    In the early 1900s, the abandonment of coal mines in Alberta was not regulated and closure documentation was poor. Although the general locations of mines are known, the locations of the specific adits and shafts are not. As such, there are many cases in southwestern Alberta where infrastructure was built on top of old coal mine workings without any detailed records of the abandoned mine or displacement monitoring. The crowns of these workings have been subject to ongoing strain that is reflected at the surface. The rate at which the strain is progressing prior to collapse is not well understood. Mitigation of collapse events is site specific and reactive. This paper demonstrated that airborne LiDAR and spaceborne InSAR technologies can provide valuable information on the distribution of abandoned underground coal mine workings. Both remote sensing techniques were used on Turtle Mountain in the Crowsnest Pass to obtain quantitative information on landslide mechanics, including the patterns and rate of ground movement and subsidence. These techniques can be used to map the location of surface collapse and delineate the location of the coal mine workings that were not previously documented. It was concluded that these technologies will likely become more readily available in the future and incorporated into geo-engineering practices for use in ground hazard detection, monitoring and management. 8 refs., 6 figs.

  8. Time-domain full-waveform inversion of Rayleigh and Love waves in presence of free-surface topography

    Science.gov (United States)

    Pan, Yudi; Gao, Lingli; Bohlen, Thomas

    2018-05-01

    Correct estimation of near-surface seismic-wave velocity when encountering lateral heterogeneity and free surface topography is one of the challenges to current shallow seismic. We propose to use time-domain full-waveform inversion (FWI) of surface waves, including both Rayleigh and Love waves, to solve this problem. We adopt a 2D time-domain finite-difference method with an improved vacuum formulation (IVF) to simulate shallow-seismic Rayleigh wave in presence of free-surface topography. We modify the IVF for SH-wave equation for the simulation of Love wave in presence of topographic free surface and prove its accuracy by benchmark tests. Checkboard model tests are performed in both cases when free-surface topography is included or neglected in FWI. Synthetic model containing a dipping planar free surface and lateral heterogeneity was then tested, in both cases of considering and neglecting free-surface topography. Both checkerboard and synthetic models show that Rayleigh- and Love-wave FWI have similar ability of reconstructing near-surface structures when free-surface topography is considered, while Love-wave FWI could reconstruct near-surface structures better than Rayleigh-wave when free-surface topography is neglected.

  9. Floor Covering and Surface Identification for Assistive Mobile Robotic Real-Time Room Localization Application

    Directory of Open Access Journals (Sweden)

    Michael Gillham

    2013-12-01

    Full Text Available Assistive robotic applications require systems capable of interaction in the human world, a workspace which is highly dynamic and not always predictable. Mobile assistive devices face the additional and complex problem of when and if intervention should occur; therefore before any trajectory assistance is given, the robotic device must know where it is in real-time, without unnecessary disruption or delay to the user requirements. In this paper, we demonstrate a novel robust method for determining room identification from floor features in a real-time computational frame for autonomous and assistive robotics in the human environment. We utilize two inexpensive sensors: an optical mouse sensor for straightforward and rapid, texture or pattern sampling, and a four color photodiode light sensor for fast color determination. We show how data relating floor texture and color obtained from typical dynamic human environments, using these two sensors, compares favorably with data obtained from a standard webcam. We show that suitable data can be extracted from these two sensors at a rate 16 times faster than a standard webcam, and that these data are in a form which can be rapidly processed using readily available classification techniques, suitable for real-time system application. We achieved a 95% correct classification accuracy identifying 133 rooms’ flooring from 35 classes, suitable for fast coarse global room localization application, boundary crossing detection, and additionally some degree of surface type identification.

  10. Patient positioning in radiotherapy based on surface imaging using time of flight cameras

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, M., E-mail: marlene.gilles@univ-brest.fr; Fayad, H.; Clement, J. F.; Bert, J.; Visvikis, D. [INSERM, UMR 1101, LaTIM, Brest 29609 (France); Miglierini, P. [Academic Radiotherapy Department, CHRU Morvan, Brest 29200 (France); Scheib, S. [Varian Medical Systems Imaging Laboratory GmbH, Baden-Daettwil 5405 (Switzerland); Cozzi, L. [Radiotherapy and Radiosurgery Department, Instituto Clinico Humanitas, Rozzano 20089 (Italy); Boussion, N.; Schick, U.; Pradier, O. [INSERM, UMR 1101, LaTIM, Brest 29609, France and Academic Radiotherapy Department, CHRU Morvan, Brest 29200 (France)

    2016-08-15

    Purpose: To evaluate the patient positioning accuracy in radiotherapy using a stereo-time of flight (ToF)-camera system. Methods: A system using two ToF cameras was used to scan the surface of the patients in order to position them daily on the treatment couch. The obtained point clouds were registered to (a) detect translations applied to the table (intrafraction motion) and (b) predict the displacement to be applied in order to place the patient in its reference position (interfraction motion). The measures provided by this system were compared to the effectively applied translations. The authors analyzed 150 fractions including lung, pelvis/prostate, and head and neck cancer patients. Results: The authors obtained small absolute errors for displacement detection: 0.8 ± 0.7, 0.8 ± 0.7, and 0.7 ± 0.6 mm along the vertical, longitudinal, and lateral axes, respectively, and 0.8 ± 0.7 mm for the total norm displacement. Lung cancer patients presented the largest errors with a respective mean of 1.1 ± 0.9, 0.9 ± 0.9, and 0.8 ± 0.7 mm. Conclusions: The proposed stereo-ToF system allows for sufficient accuracy and faster patient repositioning in radiotherapy. Its capability to track the complete patient surface in real time could allow, in the future, not only for an accurate positioning but also a real time tracking of any patient intrafraction motion (translation, involuntary, and breathing).

  11. Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines.

    Science.gov (United States)

    Lee, Saro; Park, Inhye

    2013-09-30

    Subsidence of ground caused by underground mines poses hazards to human life and property. This study analyzed the hazard to ground subsidence using factors that can affect ground subsidence and a decision tree approach in a geographic information system (GIS). The study area was Taebaek, Gangwon-do, Korea, where many abandoned underground coal mines exist. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 50/50 for training and validation of the models. A data-mining classification technique was applied to the GSH mapping, and decision trees were constructed using the chi-squared automatic interaction detector (CHAID) and the quick, unbiased, and efficient statistical tree (QUEST) algorithms. The frequency ratio model was also applied to the GSH mapping for comparing with probabilistic model. The resulting GSH maps were validated using area-under-the-curve (AUC) analysis with the subsidence area data that had not been used for training the model. The highest accuracy was achieved by the decision tree model using CHAID algorithm (94.01%) comparing with QUEST algorithms (90.37%) and frequency ratio model (86.70%). These accuracies are higher than previously reported results for decision tree. Decision tree methods can therefore be used efficiently for GSH analysis and might be widely used for prediction of various spatial events. Copyright © 2013. Published by Elsevier Ltd.

  12. Time Domain Surface Integral Equation Solvers for Quantum Corrected Electromagnetic Analysis of Plasmonic Nanostructures

    KAUST Repository

    Uysal, Ismail Enes

    2016-10-01

    Plasmonic structures are utilized in many applications ranging from bio-medicine to solar energy generation and transfer. Numerical schemes capable of solving equations of classical electrodynamics have been the method of choice for characterizing scattering properties of such structures. However, as dimensions of these plasmonic structures reduce to nanometer scale, quantum mechanical effects start to appear. These effects cannot be accurately modeled by available classical numerical methods. One of these quantum effects is the tunneling, which is observed when two structures are located within a sub-nanometer distance of each other. At these small distances electrons “jump" from one structure to another and introduce a path for electric current to flow. Classical equations of electrodynamics and the schemes used for solving them do not account for this additional current path. This limitation can be lifted by introducing an auxiliary tunnel with material properties obtained using quantum models and applying a classical solver to the structures connected by this auxiliary tunnel. Early work on this topic focused on quantum models that are generated using a simple one-dimensional wave function to find the tunneling probability and assume a simple Drude model for the permittivity of the tunnel. These tunnel models are then used together with a classical frequency domain solver. In this thesis, a time domain surface integral equation solver for quantum corrected analysis of transient plasmonic interactions is proposed. This solver has several advantages: (i) As opposed to frequency domain solvers, it provides results at a broad band of frequencies with a single simulation. (ii) As opposed to differential equation solvers, it only discretizes surfaces (reducing number of unknowns), enforces the radiation condition implicitly (increasing the accuracy), and allows for time step selection independent of spatial discretization (increasing efficiency). The quantum model

  13. Studying unsaturated epikarst water storage properties by time lapse surface to depth gravity measurements

    Science.gov (United States)

    Deville, S.; Champollion, C.; chery, J.; Doerflinger, E.; Le Moigne, N.; Bayer, R.; Vernant, P.

    2011-12-01

    The assessment of water storage in the unsaturated zone in karstic areas is particularly challenging. Indeed, water flow path and water storage occur in quite heterogeneous ways through small scale porosity, fractures, joints and large voids. Due to this large heterogeneity, it is therefore difficult to estimate the amount of water circulating in the vadose zone by hydrological means. One indirect method consists to measure the gravity variation associated to water storage and withdrawal. Here, we apply a gravimetric method in which the gravity is measured at the surface and at depth on different sites. Then the time variations of the surface to depth (STD) gravity differences are compared for each site. In this study we attempt to evaluate the magnitude of epikarstic water storage variation in various karst settings using a CG5 portable gravimeter. Surface to depth gravity measurements are performed two times a year since 2009 at the surface an inside caves at different depths on three karst aquifers in southern France : 1. A limestone site on the Larzac plateau with a vadose zone thickness of 300m On this site measurements are done on five locations at different depths going from 0 to 50 m; 2. A dolomitic site on the Larzac plateau (Durzon karst aquifer) with a vadose zone thickness of 200m; Measurements are taken at the surface and at 60m depth 3. A limestone site on the Hortus karst aquifer and "Larzac Septentrional karst aquifer") with a vadose zone thickness of only 35m. Measurements are taken at the surface and at 30m depth Therefore, our measurements are used in two ways : First, the STD differences between dry and wet seasons are used to estimate the capacity of differential storage of each aquifer. Surprisingly, the differential storage capacity of all the sites is relatively invariant despite their variable geological of hydrological contexts. Moreover, the STD gravity variations on site 1 show that no water storage variation occurs beneath 10m depth

  14. Effect of the coefficient of friction of a running surface on sprint time in a sled-towing exercise.

    Science.gov (United States)

    Linthorne, Nicholas P; Cooper, James E

    2013-06-01

    This study investigated the effect of the coefficient of friction of a running surface on an athlete's sprint time in a sled-towing exercise. The coefficients of friction of four common sports surfaces (a synthetic athletics track, a natural grass rugby pitch, a 3G football pitch, and an artificial grass hockey pitch) were determined from the force required to tow a weighted sled across the surface. Timing gates were then used to measure the 30-m sprint time for six rugby players when towing a sled of varied weight across the surfaces. There were substantial differences between the coefficients of friction for the four surfaces (micro = 0.21-0.58), and in the sled-towing exercise the athlete's 30-m sprint time increased linearly with increasing sled weight. The hockey pitch (which had the lowest coefficient of friction) produced a substantially lower rate of increase in 30-m sprint time, but there were no significant differences between the other surfaces. The results indicate that although an athlete's sprint time in a sled-towing exercise is affected by the coefficient offriction of the surface, the relationship relationship between the athlete's rate of increase in 30-m sprint time and the coefficient of friction is more complex than expected.

  15. Land subsidence and earth fissures in south-central and southern Arizona, USA

    Science.gov (United States)

    Conway, Brian D.

    2016-05-01

    Land subsidence due to groundwater overdraft has been an ongoing problem in south-central and southern Arizona (USA) since the 1940s. The first earth fissure attributed to excessive groundwater withdrawal was discovered in the early 1950s near Picacho. In some areas of the state, groundwater-level declines of more than 150 m have resulted in extensive land subsidence and earth fissuring. Land subsidence in excess of 5.7 m has been documented in both western metropolitan Phoenix and Eloy. The Arizona Department of Water Resources (ADWR) has been monitoring land subsidence since 2002 using interferometric synthetic aperture radar (InSAR) and since 1998 using a global navigation satellite system (GNSS). The ADWR InSAR program has identified more than 25 individual land subsidence features that cover an area of more than 7,300 km2. Using InSAR data in conjunction with groundwater-level datasets, ADWR is able to monitor land subsidence areas as well as identify areas that may require additional monitoring. One area of particular concern is the Willcox groundwater basin in southeastern Arizona, which is the focus of this paper. The area is experiencing rapid groundwater declines, as much as 32.1 m during 2005-2014 (the largest land subsidence rate in Arizona State—up to 12 cm/year), and a large number of earth fissures. The declining groundwater levels in Arizona are a challenge for both future groundwater availability and mitigating land subsidence associated with these declines. ADWR's InSAR program will continue to be a critical tool for monitoring land subsidence due to excessive groundwater withdrawal.

  16. Groundwater-pumping optimization for land-subsidence control in Beijing plain, China

    Science.gov (United States)

    Qin, Huanhuan; Andrews, Charles B.; Tian, Fang; Cao, Guoliang; Luo, Yong; Liu, Jiurong; Zheng, Chunmiao

    2018-01-01

    Beijing, in the North China plain, is one of the few megacities that uses groundwater as its main source of water supply. Groundwater accounts for about two-thirds of the city's water supply, and during the past 50 years the storage depletion from the unconsolidated aquifers underlying the city has been >10.4 billion m3. By 2010, groundwater pumping in the city had resulted in a cumulative subsidence of greater than 100 mm in an area of about 3,900 km2, with a maximum cumulative subsidence of >1,200 mm. This subsidence has caused significant social and economic losses in Beijing, including significant damage to underground utilities. This study was undertaken to evaluate various future pumping scenarios to assist in selecting an optimal pumping scenario to minimize overall subsidence, meet the requirements of the Beijing Land Subsidence Prevention Plan (BLSPP 2013-2020), and be consistent with continued sustainable economic development. A numerical groundwater and land-subsidence model was developed for the aquifer system of the Beijing plain to evaluate land subsidence rates under the possible future pumping scenarios. The optimal pumping scenario consistent with the evaluation constraints is a reduction in groundwater pumping from three major pumping centers by 100, 50 and 20%, respectively, while maintaining an annual pumping rate of 1.9 billion m3. This scenario's land-subsidence rates satisfy the BLSPP 2013-2020 and the pumping scenario is consistent with continued economic development. It is recommended that this pumping scenario be adopted for future land-subsidence management in Beijing.

  17. Groundwater-pumping optimization for land-subsidence control in Beijing plain, China

    Science.gov (United States)

    Qin, Huanhuan; Andrews, Charles B.; Tian, Fang; Cao, Guoliang; Luo, Yong; Liu, Jiurong; Zheng, Chunmiao

    2018-06-01

    Beijing, in the North China plain, is one of the few megacities that uses groundwater as its main source of water supply. Groundwater accounts for about two-thirds of the city's water supply, and during the past 50 years the storage depletion from the unconsolidated aquifers underlying the city has been >10.4 billion m3. By 2010, groundwater pumping in the city had resulted in a cumulative subsidence of greater than 100 mm in an area of about 3,900 km2, with a maximum cumulative subsidence of >1,200 mm. This subsidence has caused significant social and economic losses in Beijing, including significant damage to underground utilities. This study was undertaken to evaluate various future pumping scenarios to assist in selecting an optimal pumping scenario to minimize overall subsidence, meet the requirements of the Beijing Land Subsidence Prevention Plan (BLSPP 2013-2020), and be consistent with continued sustainable economic development. A numerical groundwater and land-subsidence model was developed for the aquifer system of the Beijing plain to evaluate land subsidence rates under the possible future pumping scenarios. The optimal pumping scenario consistent with the evaluation constraints is a reduction in groundwater pumping from three major pumping centers by 100, 50 and 20%, respectively, while maintaining an annual pumping rate of 1.9 billion m3. This scenario's land-subsidence rates satisfy the BLSPP 2013-2020 and the pumping scenario is consistent with continued economic development. It is recommended that this pumping scenario be adopted for future land-subsidence management in Beijing.

  18. Short-Time Structural Stability of Compressible Vortex Sheets with Surface Tension

    Science.gov (United States)

    Stevens, Ben

    2016-11-01

    Assume we start with an initial vortex-sheet configuration which consists of two inviscid fluids with density bounded below flowing smoothly past each other, where a strictly positive fixed coefficient of surface tension produces a surface tension force across the common interface, balanced by the pressure jump. We model the fluids by the compressible Euler equations in three space dimensions with a very general equation of state relating the pressure, entropy and density such that the sound speed is positive. We prove that, for a short time, there exists a unique solution of the equations with the same structure. The mathematical approach consists of introducing a carefully chosen artificial viscosity-type regularisation which allows one to linearise the system so as to obtain a collection of transport equations for the entropy, pressure and curl together with a parabolic-type equation for the velocity which becomes fairly standard after rotating the velocity according to the interface normal. We prove a high order energy estimate for the non-linear equations that is independent of the artificial viscosity parameter which allows us to send it to zero. This approach loosely follows that introduced by Shkoller et al. in the setting of a compressible liquid-vacuum interface. Although already considered by Coutand et al. [10] and Lindblad [17], we also make some brief comments on the case of a compressible liquid-vacuum interface, which is obtained from the vortex sheets problem by replacing one of the fluids by vacuum, where it is possible to obtain a structural stability result even without surface tension.

  19. Local inertial oscillations in the surface ocean generated by time-varying winds

    Science.gov (United States)

    Chen, Shengli; Polton, Jeff A.; Hu, Jianyu; Xing, Jiuxing

    2015-12-01

    A new relationship is presented to give a review study on the evolution of inertial oscillations in the surface ocean locally generated by time-varying wind stress. The inertial oscillation is expressed as the superposition of a previous oscillation and a newly generated oscillation, which depends upon the time-varying wind stress. This relationship is employed to investigate some idealized wind change events. For a wind series varying temporally with different rates, the induced inertial oscillation is dominated by the wind with the greatest variation. The resonant wind, which rotates anti-cyclonically at the local inertial frequency with time, produces maximal amplitude of inertial oscillations, which grows monotonically. For the wind rotating at non-inertial frequencies, the responses vary periodically, with wind injecting inertial energy when it is in phase with the currents, but removing inertial energy when it is out of phase. The wind rotating anti-cyclonically with time is much more favorable to generate inertial oscillations than the cyclonic rotating wind. The wind with a frequency closer to the inertial frequency generates stronger inertial oscillations. For a diurnal wind, the induced inertial oscillation is dependent on latitude and is most significant at 30 °. This relationship is also applied to examine idealized moving cyclones. The inertial oscillation is much stronger on the right-hand side of the cyclone path than on the left-hand side (in the northern hemisphere). This is due to the wind being anti-cyclonic with time on the right-hand side, but cyclonic on the other side. The inertial oscillation varies with the cyclone translation speed. The optimal translation speed generating the greatest inertial oscillations is 2 m/s at the latitude of 10 ° and gradually increases to 6 m/s at the latitude of 30 °.

  20. A Gravity-Responsive Time-Keeping Protein of the Plant and Animal Cell Surface

    Science.gov (United States)

    Morre, D. James

    2003-01-01

    The hypothesis under investigation was that a ubiquinol (NADH) oxidase protein of the cell surface with protein disulfide-thiol interchange activity (= NOX protein) is a plant and animal time-keeping ultradian (period of less than 24 h) driver of both cell enlargement and the biological clock that responds to gravity. Despite considerable work in a large number of laboratories spanning several decades, this is, to my knowledge, our work is the first demonstration of a time-keeping biochemical reaction that is both gravity-responsive and growth-related and that has been shown to determine circadian periodicity. As such, the NOX protein may represent both the long-sought biological gravity receptor and the core oscillator of the cellular biological clock. Completed studies have resulted in 12 publications and two issued NASA-owned patents of the clock activity. The gravity response and autoentrainment were characterized in cultured mammalian cells and in two plant systems together with entrainment by light and small molecules (melatonin). The molecular basis of the oscillatory behavior was investigated using spectroscopic methods (Fourier transform infrared and circular dichroism) and high resolution electron microscopy. We have also applied these findings to an understanding of the response to hypergravity. Statistical methods for analysis of time series phenomena were developed (Foster et al., 2003).

  1. Reliability of surface electromyography timing parameters in gait in cervical spondylotic myelopathy.

    LENUS (Irish Health Repository)

    Malone, Ailish

    2012-02-01

    The aims of this study were to validate a computerised method to detect muscle activity from surface electromyography (SEMG) signals in gait in patients with cervical spondylotic myelopathy (CSM), and to evaluate the test-retest reliability of the activation times designated by this method. SEMG signals were recorded from rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), and medial gastrocnemius (MG), during gait in 12 participants with CSM on two separate test days. Four computerised activity detection methods, based on the Teager-Kaiser Energy Operator (TKEO), were applied to a subset of signals and compared to visual interpretation of muscle activation. The most accurate method was then applied to all signals for evaluation of test-retest reliability. A detection method based on a combined slope and amplitude threshold showed the highest agreement (87.5%) with visual interpretation. With respect to reliability, the standard error of measurement (SEM) of the timing of RF, TA and MG between test days was 5.5% stride duration or less, while the SEM of BF was 9.4%. The timing parameters of RF, TA and MG designated by this method were considered sufficiently reliable for use in clinical practice, however the reliability of BF was questionable.

  2. Wear rate quantifying in real-time using the charged particle surface activation

    Science.gov (United States)

    Alexandreanu, B.; Popa-Simil, L.; Voiculescu, D.; Racolta, P. M.

    1997-02-01

    Surface activation, commonly known as Thin Layer Activation (TLA), is currently employed in over 30 accelerator laboratories around the world for wear and/or corrosion monitoring in industrial plants [1-6]. TLA was primarily designed and developed to meet requirements of potential industrial partners, in order to transfer this technique from research to industry. The method consists of accelerated ion bombardment of a surface of interest, e.g., a machine part subjected to wear. Loss of material owing to wear, erosive corrosion or abrasion is characterized by monitoring the resultant changes in radioactivity. In principle, depending upon the case at hand, one may choose to measure either the remnant activity of the component of interest or to monitor the activity of the debris. For applications of the second type, especially when a lubricating agent is involved, dedicated installations have been constructed and adapted to an engine or a tribological testing stand in order to assure oil circulation around an externally placed detection gauge. This way, the wear particles suspended in the lubricant can be detected and the material loss rates quantified in real time. Moreover, in specific cases, such as the one presented in this paper, remnant activity measurements prove to be useful tools for complementary results. This paper provides a detailed presentation of such a case: in situ resistance-to-wear testing of two types of piston rings.

  3. Bayesian Maximum Entropy space/time estimation of surface water chloride in Maryland using river distances.

    Science.gov (United States)

    Jat, Prahlad; Serre, Marc L

    2016-12-01

    Widespread contamination of surface water chloride is an emerging environmental concern. Consequently accurate and cost-effective methods are needed to estimate chloride along all river miles of potentially contaminated watersheds. Here we introduce a Bayesian Maximum Entropy (BME) space/time geostatistical estimation framework that uses river distances, and we compare it with Euclidean BME to estimate surface water chloride from 2005 to 2014 in the Gunpowder-Patapsco, Severn, and Patuxent subbasins in Maryland. River BME improves the cross-validation R 2 by 23.67% over Euclidean BME, and river BME maps are significantly different than Euclidean BME maps, indicating that it is important to use river BME maps to assess water quality impairment. The river BME maps of chloride concentration show wide contamination throughout Baltimore and Columbia-Ellicott cities, the disappearance of a clean buffer separating these two large urban areas, and the emergence of multiple localized pockets of contamination in surrounding areas. The number of impaired river miles increased by 0.55% per year in 2005-2009 and by 1.23% per year in 2011-2014, corresponding to a marked acceleration of the rate of impairment. Our results support the need for control measures and increased monitoring of unassessed river miles. Copyright © 2016. Published by Elsevier Ltd.

  4. Surface State Dynamics of Topological Insulators Investigated by Femtosecond Time- and Angle-Resolved Photoemission Spectroscopy

    Directory of Open Access Journals (Sweden)

    Hamoon Hedayat

    2018-04-01

    Full Text Available Topological insulators (TI are known for striking quantum phenomena associated with their spin-polarized topological surface state (TSS. The latter in particular forms a Dirac cone that bridges the energy gap between valence and conduction bands, providing a unique opportunity for prospective device applications. In TI of the BixSb2−xTeySe3−y (BSTS family, stoichiometry determines the morphology and position of the Dirac cone with respect to the Fermi level. In order to engineer specific transport properties, a careful tuning of the TSS is highly desired. Therefore, we have systematically explored BSTS samples with different stoichiometries by time- and angle-resolved photoemission spectroscopy (TARPES. This technique provides snapshots of the electronic structure and discloses the carrier dynamics in surface and bulk states, providing crucial information for the design of electro-spin current devices. Our results reveal the central role of doping level on the Dirac cone structure and its femtosecond dynamics. In particular, an extraordinarily long TSS lifetime is observed when the the vertex of the Dirac cone lies at the Fermi level.

  5. Calculation of rectal dose surface histograms in the presence of time varying deformations

    International Nuclear Information System (INIS)

    Roeske, John C.; Spelbring, Danny R.; Vijayakumar, S.; Forman, Jeffrey D.; Chen, George T.Y.

    1996-01-01

    Purpose: Dose volume (DVH) and dose surface histograms (DSH) of the bladder and rectum are usually calculated from a single treatment planning scan. These DVHs and DSHs will eventually be correlated with complications to determine parameters for normal tissue complication probabilities (NTCP). However, from day to day, the size and shape of the rectum and bladder may vary. The purpose of this study is to compare a more accurate estimate of the time integrated DVHs and DSHs of the rectum (in the presence of daily variations in rectal shape) to initial DVHs/DSHs. Methods: 10 patients were scanned once per week during the course of fractionated radiotherapy, typically accumulating a total of six scans. The rectum and bladder were contoured on each of the studies. The model used to assess effects of rectal contour deformation is as follows: the contour on a given axial slice (see figure) is boxed within a rectangle. A line drawn parallel to the AP axis through the rectangle equally partitions the box. Starting at the intersection of the vertical line and the rectal contour, points on the contour are marked off representing the same rectal dose point, even in the presence of distortion. Corresponding numbered points are used to sample the dose matrix and create a composite DSH. The model assumes uniform stretching of the rectal contour for any given axial cut, and no twist of the structure or vertical displacement. A similar model is developed for the bladder with spherical symmetry. Results: Normalized DSHs (nDSH) for each CT scan were calculated as well as the time averaged nDSH over all scans. These were compared with the nDSH from the initial planning scan. Individual nDSHs differed by 8% surface area irradiated at the 80% dose level, to as much as 20% surface area in the 70-100% dose range. DSH variations are due to position and shape changes in the rectum during different CT scans. The spatial distribution of dose is highly variable, and depends on the field

  6. Ion optics of a new time-of-flight mass spectrometer for quantitative surface analysis

    International Nuclear Information System (INIS)

    Veryovkin, Igor V.; Calaway, Wallis F.; Pellin, Michael J.

    2004-01-01

    A new time-of-flight instrument for quantitative surface analysis was developed and constructed at Argonne National Laboratory. It implements ion sputtering and laser desorption for probing analyzed samples and can operate in regimes of secondary neutral mass spectrometry with laser post-ionization and secondary ion mass spectrometry. The instrument incorporates two new ion optics developments: (1) 'push-pull' front end ion optics and (2) focusing and deflecting lens. Implementing these novel elements significantly enhance analytical capabilities of the instrument. Extensive three-dimensional computer simulations of the instrument were conducted in SIMION 3D (c) to perfect its ion optics. The operating principles of the new ion optical systems are described, and a scheme of the new instrument is outlined together with its operating modes

  7. First Real-Time Detection of Surface Dust in a Tokamak

    International Nuclear Information System (INIS)

    Skinner, C.; Rais, B.; Roquemore, A.L.; Kugel, H.W.; Marsala, R.; Provost, T.

    2010-01-01

    The first real-time detection of surface dust inside a tokamak was made using an electrostatic dust detector. A fine grid of interlocking circuit traces was installed in the NSTX vessel and biased to 50 v. Impinging dust particles created a temporary short circuit and the resulting current pulse was recorded by counting electronics. The techniques used to increase the detector sensitivity by a factor of x10,000 to match NSTX dust levels while suppressing electrical pickup are presented. The results were validated by comparison to lab measurements, by the null signal from a covered detector that was only sensitive to pickup, and by the dramatic increase in signal when Li particles were introduced for wall conditioning purposes.

  8. Computer vision system in real-time for color determination on flat surface food

    Directory of Open Access Journals (Sweden)

    Erick Saldaña

    2013-03-01

    Full Text Available Artificial vision systems also known as computer vision are potent quality inspection tools, which can be applied in pattern recognition for fruits and vegetables analysis. The aim of this research was to design, implement and calibrate a new computer vision system (CVS in real-time for the color measurement on flat surface food. For this purpose was designed and implemented a device capable of performing this task (software and hardware, which consisted of two phases: a image acquisition and b image processing and analysis. Both the algorithm and the graphical interface (GUI were developed in Matlab. The CVS calibration was performed using a conventional colorimeter (Model CIEL* a* b*, where were estimated the errors of the color parameters: eL* = 5.001%, and ea* = 2.287%, and eb* = 4.314 % which ensure adequate and efficient automation application in industrial processes in the quality control in the food industry sector.

  9. Computer vision system in real-time for color determination on flat surface food

    Directory of Open Access Journals (Sweden)

    Erick Saldaña

    2013-01-01

    Full Text Available Artificial vision systems also known as computer vision are potent quality inspection tools, which can be applied in pattern recognition for fruits and vegetables analysis. The aim of this research was to design, implement and calibrate a new computer vision system (CVS in real - time f or the color measurement on flat surface food. For this purpose was designed and implemented a device capable of performing this task (software and hardware, which consisted of two phases: a image acquisition and b image processing and analysis. Both th e algorithm and the graphical interface (GUI were developed in Matlab. The CVS calibration was performed using a conventional colorimeter (Model CIEL* a* b*, where were estimated the errors of the color parameters: e L* = 5.001%, and e a* = 2.287%, and e b* = 4.314 % which ensure adequate and efficient automation application in industrial processes in the quality control in the food industry sector.

  10. Using crustal thickness and subsidence history on the Iberia-Newfoundland margins to constrain lithosphere deformation modes during continental breakup

    Science.gov (United States)

    Jeanniot, Ludovic; Kusznir, Nick; Manatschal, Gianreto; Mohn, Geoffroy

    2014-05-01

    Observations at magma-poor rifted margins such as Iberia-Newfoundland show a complex lithosphere deformation history during continental breakup and seafloor spreading initiation leading to complex OCT architecture with hyper-extended continental crust and lithosphere, exhumed mantle and scattered embryonic oceanic crust and continental slivers. Initiation of seafloor spreading requires both the rupture of the continental crust and lithospheric mantle, and the onset of decompressional melting. Their relative timing controls when mantle exhumation may occur; the presence or absence of exhumed mantle provides useful information on the timing of these events and constraints on lithosphere deformation modes. A single lithosphere deformation mode leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation events for two profiles across the present-day conjugate Iberia-Newfoundland margins, using forward modelling of continental breakup and seafloor spreading initiation calibrated against observations of crustal basement thickness and subsidence. Flow fields, representing a sequence of lithosphere deformation modes, are generated by a 2D finite element viscous flow model (FeMargin), and used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the upper 15-20 km of the lithosphere inducing passive upwelling beneath that layer; extensional faulting and magmatic intrusions deform the topmost upper lithosphere, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). Buoyancy enhanced upwelling, as predicted by Braun et al. (2000) is also kinematically included in the lithosphere deformation model. Melt generation by decompressional melting is predicted using the parameterization and methodology of Katz et al. (2003). The distribution of lithosphere deformation, the

  11. Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme

    International Nuclear Information System (INIS)

    Khanzadeh, Alireza; Pourgholi, Mahdi

    2016-01-01

    In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time. (paper)

  12. Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme

    Science.gov (United States)

    Khanzadeh, Alireza; Pourgholi, Mahdi

    2016-08-01

    In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time.

  13. A flexible hydrological warning system in Denmark for real-time surface water and groundwater simulations

    Science.gov (United States)

    He, Xin; Stisen, Simon; Wiese, Marianne B.; Jørgen Henriksen, Hans

    2015-04-01

    In Denmark, increasing focus on extreme weather events has created considerable demand for short term forecasts and early warnings in relation to groundwater and surface water flooding. The Geological Survey of Denmark and Greenland (GEUS) has setup, calibrated and applied a nationwide water resources model, the DK-Model, primarily for simulating groundwater and surface water flows and groundwater levels during the past 20 years. So far, the DK-model has only been used in offline historical and future scenario simulations. Therefore, challenges arise in operating such a model for online forecasts and early warnings, which requires access to continuously updated observed climate input data and forecast data of precipitation, temperature and global radiation for the next 48 hours or longer. GEUS has a close collaboration with the Danish Meteorological Institute in order to test and enable this data input for the DK model. Due to the comprehensive physical descriptions of the DK-Model, the simulation results can potentially be any component of the hydrological cycle within the models domain. Therefore, it is important to identify which results need to be updated and saved in the real-time mode, since it is not computationally economical to save every result considering the heavy load of data. GEUS have worked closely with the end-users and interest groups such as water planners and emergency managers from the municipalities, water supply and waste water companies, consulting companies and farmer organizations, in order to understand their possible needs for real time simulation and monitoring of the nationwide water cycle. This participatory process has been supported by a web based questionnaire survey, and a workshop that connected the model developers and the users. For qualifying the stakeholder engagement, GEUS has selected a representative catchment area (Skjern River) for testing and demonstrating a prototype of the web based hydrological warning system at the

  14. Measures to reduce glyphosate runoff from hard surfaces, 2: effect of time interval between application and first precipitation event

    NARCIS (Netherlands)

    Luijendijk, C.D.; Beltman, W.H.J.; Smidt, R.A.; Pas, van der L.J.T.; Kempenaar, C.

    2005-01-01

    In this research the effect of moisture conditions of hard surfaces on emission of herbicides from hard surfaces was quantified. In addition the dissipation of glyphosate applied on brick-pavement is determined in time. The outdoor experiment was carried out on 3 and 17 June 2003. In previous

  15. Impact of global change on ground subsidence related to aquifer exploitation. The case of the Vega de Granada aquifer (SE Spain)

    Science.gov (United States)

    Pulido-Velazquez, David; María Mateos, Rosa; Rueda, Ramon; Pegalajar-Cuellar, Manuel; Ezquerro, Pablo; Béjar, Marta; Herrera, Gerardo; Collados-Lara, Antonio-Juan

    2017-04-01

    better explains the relationship between subsidence, hydraulic changes and the remaining independent variables. This methodology has been applied to the Vega de Granada aquifer system (Granada, SE Spain). The Vega de Granada detrital aquifer (with an extension of 200 km2) is one of the largest groundwater reservoirs in Andalusia and it is considered as strategic for the economy of this semi-arid region. Ground motion was monitored by exploiting SAR images from ENVISAT (2003-2009), Cosmo-SkyMed (2011-2014) and Sentinel-1A (2015-2016). PSInSAR results show an inelastic deformation in the aquifer and land surface displacements values up to -55 mm. The most widespread land subsidence is detected for the ENVISAT period (2003-2009), which coincided with a dry, long period in the region. The highest recorded data accounts up to 10 mm/yr in surface displacement velocity, which were detected in the central part of the aquifer, where many villages are located. For this period, a good correlation between groundwater level depletion and the augmentation of the subsidence average velocity is obtained, and light hydraulic head changes (research will contribute to assess a sustainable management plan of this vital aquifer, taking into account critical levels of groundwater level depletion to avoid land subsidence on the identified vulnerable areas and during drought critical scenarios. This research has been supported by the CGL2013-48424-C2-2-R (MINECO) project.

  16. Mass Redistribution in the Core and Time-varying Gravity at the Earth's Surface

    Science.gov (United States)

    Kuang, Wei-Jia; Chao, Benjamin F.; Fang, Ming

    2003-01-01

    The Earth's liquid outer core is in convection, as suggested by the existence of the geomagnetic field in much of the Earth's history. One consequence of the convection is the redistribution of mass resulting from relative motion among fluid parcels with slightly different densities. This time dependent mass redistribution inside the core produces a small perturbation on the gravity field of the Earth. With our numerical dynamo solutions, we find that the mass redistribution (and the resultant gravity field) symmetric about the equator is much stronger than that anti-symmetric about the equator. In particular, J(sub 2) component is the strongest. In addition, the gravity field variation increases with the Rayleigh number that measures the driving force for the geodynamo in the core. With reasonable scaling from the current dynamo solutions, we could expect that at the surface of the Earth, the J(sub 2) variation from the core is on the order of l0(exp -16)/year relative to the mean (i.e. spherically symmetric) gravity field of the Earth. The possible shielding effect due to core-mantle boundary pressure variation loading is likely much smaller and is therefore negligible. Our results suggest that time-varying gravity field perturbation due to core mass redistribution may be measured with modem space geodetic observations, which will result a new means of detecting dynamical processes in the Earth's deep interior.

  17. A wavelet-based PWTD algorithm-accelerated time domain surface integral equation solver

    KAUST Repository

    Liu, Yang

    2015-10-26

    © 2015 IEEE. The multilevel plane-wave time-domain (PWTD) algorithm allows for fast and accurate analysis of transient scattering from, and radiation by, electrically large and complex structures. When used in tandem with marching-on-in-time (MOT)-based surface integral equation (SIE) solvers, it reduces the computational and memory costs of transient analysis from equation and equation to equation and equation, respectively, where Nt and Ns denote the number of temporal and spatial unknowns (Ergin et al., IEEE Trans. Antennas Mag., 41, 39-52, 1999). In the past, PWTD-accelerated MOT-SIE solvers have been applied to transient problems involving half million spatial unknowns (Shanker et al., IEEE Trans. Antennas Propag., 51, 628-641, 2003). Recently, a scalable parallel PWTD-accelerated MOT-SIE solver that leverages a hiearchical parallelization strategy has been developed and successfully applied to the transient problems involving ten million spatial unknowns (Liu et. al., in URSI Digest, 2013). We further enhanced the capabilities of this solver by implementing a compression scheme based on local cosine wavelet bases (LCBs) that exploits the sparsity in the temporal dimension (Liu et. al., in URSI Digest, 2014). Specifically, the LCB compression scheme was used to reduce the memory requirement of the PWTD ray data and computational cost of operations in the PWTD translation stage.

  18. Real-time biodetection using a smartphone-based dual-color surface plasmon resonance sensor

    Science.gov (United States)

    Liu, Qiang; Yuan, Huizhen; Liu, Yun; Wang, Jiabin; Jing, Zhenguo; Peng, Wei

    2018-04-01

    We proposed a compact and cost-effective red-green dual-color fiber optic surface plasmon resonance (SPR) sensor based on the smartphone. Inherent color selectivity of phone cameras was utilized for real-time monitoring of red and green color channels simultaneously, which can reduce the chance of false detection and improve the sensitivity. Because there are no external prisms, complex optical lenses, or diffraction grating, simple optical configuration is realized. It has a linear response in a refractive index range of 1.326 to 1.351 (R2 = 0.991) with a resolution of 2.3 × 10 - 4 RIU. We apply it for immunoglobulin G (IgG) concentration measurement. Experimental results demonstrate that a linear SPR response was achieved for IgG concentrations varying from 0.02 to 0.30 mg / ml with good repeatability. It may find promising applications in the fields of public health and environment monitoring owing to its simple optics design and applicability in real-time, label-free biodetection.

  19. Imaging of first-order surface-related multiples by reverse-time migration

    Science.gov (United States)

    Liu, Xuejian; Liu, Yike; Hu, Hao; Li, Peng; Khan, Majid

    2017-02-01

    Surface-related multiples have been utilized in the reverse-time migration (RTM) procedures, and additional illumination for subsurface can be provided. Meanwhile, many cross-talks are generated from undesired interactions between forward- and backward-propagated seismic waves. In this paper, subsequent to analysing and categorizing these cross-talks, we propose RTM of first-order multiples to avoid most undesired interactions in RTM of all-order multiples, where only primaries are forward-propagated and crosscorrelated with the backward-propagated first-order multiples. With primaries and multiples separated during regular seismic data processing as the input data, first-order multiples can be obtained by a two-step scheme: (1) the dual-prediction of higher-order multiples; and (2) the adaptive subtraction of predicted higher-order multiples from all-order multiples within local offset-time windows. In numerical experiments, two synthetic and a marine field data sets are used, where different cross-talks generated by RTM of all-order multiples can be identified and the proposed RTM of first-order multiples can provide a very interpretable image with a few cross-talks.

  20. On the long standing question of nuclear track etch induction time: Surface-cap model

    International Nuclear Information System (INIS)

    Rana, Mukhtar Ahmed

    2008-01-01

    Using a systematic set of experiments, nuclear track etch induction time measurements in a widely used CR-39 detector were completed for accessible track-forming particles (fission fragments, 5.2 MeV alpha particles and 5.9 MeV antiprotons). Results of the present work are compared with appropriately selected published results. The possibility of the use of etch induction time for charged particle identification is evaluated. Analysis of experimental results along with the use of well-established theoretical concepts yielded a model about delay in the start of chemical etching of nuclear tracks. The suggested model proposes the formation of a surface-cap (top segment) in each nuclear track consisting of chemically modified material with almost same or even higher resistance to chemical etching compared with bulk material of the track detector. Existing track formation models are reviewed very briefly, which provide one of the two bases of the proposed model. The other basis of the model is the general behavior of hot or energised material having a connection with an environment containing a number of species like ordinary air. Another reason for the delay in the start of etching is suggested as the absence of localization of etching atoms/molecules, which is present during etching at depth along the latent track

  1. Germanium nanoislands grown by radio frequency magnetron sputtering: Annealing time dependent surface morphology and photoluminescence

    International Nuclear Information System (INIS)

    Samavati, Alireza; Othaman, Z.; Ghoshal, S. K.; Amjad, R. J.

    2013-01-01

    Structural and optical properties of ∼ 20 nm Ge nanoislands grown on Si(100) by radio frequency (rf) magnetron sputtering under varying annealing conditions are reported. Rapid thermal annealing at a temperature of 600°C for 30 s, 90 s, and 120 s are performed to examine the influence of annealing time on the surface morphology and photoluminescence properties. X-ray diffraction spectra reveal prominent Ge and GeO 2 peaks highly sensitive to the annealing time. Atomic force microscope micrographs of the as-grown sample show pyramidal nanoislands with relatively high-density 10 11 cm −2) ). The nanoislands become dome-shaped upon annealing through a coarsening process