WorldWideScience

Sample records for time substantial plasticity

  1. Compensatory plasticity: time matters

    Directory of Open Access Journals (Sweden)

    Latifa eLazzouni

    2014-06-01

    Full Text Available Plasticity in the human and animal brain is the rule, the base for development, and the way to deal effectively with the environment for making the most efficient use of all the senses. When the brain is deprived of one sensory modality, plasticity becomes compensatory: the exception that invalidates the general loss hypothesis giving the opportunity of effective change. Sensory deprivation comes with massive alterations in brain structure and function, behavioural outcomes, and neural interactions. Blind individuals do as good as the sighted and even more, show superior abilities in auditory, tactile and olfactory processing. This behavioural enhancement is accompanied with changes in occipital cortex function, where visual areas at different levels become responsive to non-visual information. The intact senses are in general used more efficiently in the blind but are also used more exclusively. New findings are disentangling these two aspects of compensatory plasticity. What is due to visual deprivation and what is dependent on the extended use of spared modalities? The latter seems to contribute highly to compensatory changes in the congenitally blind. Short term deprivation through the use of blindfolds shows that cortical excitability of the visual cortex is likely to show rapid modulatory changes after few minutes of light deprivation and therefore changes are possible in adulthood. However, reorganization remains more pronounced in the congenitally blind. Cortico-cortical pathways between visual areas and the areas of preserved sensory modalities are inhibited in the presence of vision, but are unmasked after loss of vision or blindfolding as a mechanism likely to drive cross-modal information to the deafferented visual cortex. Plasticity in the blind is also accompanied with neurochemical and morphological changes; both intrinsic connectivity and functional coupling at rest are altered but are likewise dependent on different sensory

  2. ECOLOGICAL AND ECONOMIC SUBSTANTIATION OF SELECTION OF THE METHOD FOR PLASTIC WASTE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    T. P. Shanina

    2015-11-01

    Full Text Available Analysis of the classifications of plastic waste from production and consumption is made by various criteria. Distinctive features of the specifi ed waste behavior under various treatment methods (deposition at landfill, incineration and recycling are discussed. Clustering of the polymeric waste by hazard categories of the combustion products is performed. The polyvinyl-chlorides and polycarbonates which generate the most hazardous products under  the combustion are singled out in a particular cluster. The qualitative and quantitative descrip- The qualitative and quantitative description of the plastic waste generated in Ukraine from 2011 to 2013 is provided. Grossemissions of the polyvinylchloride and polystyrene waste incineration products are calculated. Evaluation of the environmental damage resulting from implementation of various methods for plastic waste management is based on an environmental tax rate having a compensatory nature. Potential profit from selling the secondary raw materials, produced from plastic waste, is analysed. Ranking of the potential methods for plastic waste management is presented in the context of ecological and economic substantiation: the most preferable method is production of secondary raw materials (recycled resources; the least preferable one is incineration of the specified wastes.

  3. A Time Study of Plastic Surgery Residents.

    Science.gov (United States)

    Lau, Frank H; Sinha, Indranil; Jiang, Wei; Lipsitz, Stuart R; Eriksson, Elof

    2016-05-01

    Resident work hours are under scrutiny and have been subject to multiple restrictions. The studies supporting these changes have not included data on surgical residents. We studied the workday of a team of plastic surgery residents to establish prospective time-study data of plastic surgery (PRS) residents at a single tertiary-care academic medical center. Five trained research assistants observed all residents (n = 8) on a PRS service for 10 weeks and produced minute-by-minute activity logs. Data collection began when the team first met in the morning and continued until the resident being followed completed all non-call activities. We analyzed our data from 3 perspectives: 1) time spent in direct patient care (DPC), indirect patient care, and didactic activities; 2) time spent in high education-value activities (HEAs) versus low education-value activities; and 3) resident efficiency. We defined HEAs as activities that surgeons must master; other activities were LEAs. We quantified resident efficiency in terms of time fragmentation and time spent waiting. A total of 642.4 hours of data across 50 workdays were collected. Excluding call, residents worked an average of 64.2 hours per week. Approximately 50.7% of surgical resident time was allotted to DPC, with surgery accounting for the largest segment of this time (34.8%). Time spent on HEAs demonstrated trended upward with higher resident level (P = 0.086). Time in spent in surgery was significantly associated with higher resident levels (P time study of PRS residents, we found that compared with medicine trainees, surgical residents spent 3.23 times more time on DPC. High education-value activities comprised most of our residents' workdays. Surgery was the leading component of both DPC and HEAs. Our residents were highly efficient and fragmented, with the majority of all activities requiring 4 minutes or less. Residents spent a large portion of their time waiting for other services. In light of these data, we

  4. Time between plastic displacements of elasto-plastic oscillators subject to Gaussian white noise

    DEFF Research Database (Denmark)

    Tarp-Johansen, Niels Jacob; Ditlevsen, Ove Dalager

    2001-01-01

    A one degree of freedom elasto-plastic oscillator subject to stationary Gaussian white noise has a plastic displacement response process of intermittent character. During shorter or longer time intervals the oscillator vibrates within the elastic domain without undergoing any plastic displacements...... between the clumps of plastic displacements. This is needed for a complete description of the plastic displacement process. A quite accurate fast simulation procedure is presented based on an amplitude model to determine the short waiting times in the transient regime of the elastic vibrations existing...

  5. Inhibitory Synaptic Plasticity - Spike timing dependence and putative network function.

    Directory of Open Access Journals (Sweden)

    Tim P Vogels

    2013-07-01

    Full Text Available While the plasticity of excitatory synaptic connections in the brain has been widely studied, the plasticity of inhibitory connections is much less understood. Here, we present recent experimental and theoretical □ndings concerning the rules of spike timing-dependent inhibitory plasticity and their putative network function. This is a summary of a workshop at the COSYNE conference 2012.

  6. Timing intervals using population synchrony and spike timing dependent plasticity

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2016-12-01

    Full Text Available We present a computational model by which ensembles of regularly spiking neurons can encode different time intervals through synchronous firing. We show that a neuron responding to a large population of convergent inputs has the potential to learn to produce an appropriately-timed output via spike-time dependent plasticity. We explain why temporal variability of this population synchrony increases with increasing time intervals. We also show that the scalar property of timing and its violation at short intervals can be explained by the spike-wise accumulation of jitter in the inter-spike intervals of timing neurons. We explore how the challenge of encoding longer time intervals can be overcome and conclude that this may involve a switch to a different population of neurons with lower firing rate, with the added effect of producing an earlier bias in response. Experimental data on human timing performance show features in agreement with the model’s output.

  7. Cosmetic surgery in times of recession: macroeconomics for plastic surgeons.

    Science.gov (United States)

    Krieger, Lloyd M

    2002-10-01

    Periods of economic downturn place special demands on the plastic surgeon whose practice involves a large amount of cosmetic surgery. When determining strategy during difficult economic times, it is useful to understand the macroeconomic background of these downturns and to draw lessons from businesses in other service industries. Business cycles and monetary policy determine the overall environment in which plastic surgery is practiced. Plastic surgeons can take both defensive and proactive steps to maintain their profits during recessions and to prepare for the inevitable upturn. Care should also be taken when selecting pricing strategy during economic slowdowns.

  8. Plasticity resembling spike-timing dependent synaptic plasticity: the evidence in human cortex

    Directory of Open Access Journals (Sweden)

    Florian Müller-Dahlhaus

    2010-07-01

    Full Text Available Spike-timing dependent plasticity (STDP has been studied extensively in a variety of animal models during the past decade but whether it can be studied at the systems level of the human cortex has been a matter of debate. Only recently newly developed non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS have made it possible to induce and assess timing dependent plasticity in conscious human subjects. This review will present a critical synopsis of these experiments, which suggest that several of the principal characteristics and molecular mechanisms of TMS-induced plasticity correspond to those of STDP as studied at a cellular level. TMS combined with a second phasic stimulation modality can induce bidirectional long-lasting changes in the excitability of the stimulated cortex, whose polarity depends on the order of the associated stimulus-evoked events within a critical time window of tens of milliseconds. Pharmacological evidence suggests an NMDA receptor mediated form of synaptic plasticity. Studies in human motor cortex demonstrated that motor learning significantly modulates TMS-induced timing dependent plasticity, and, conversely, may be modulated bidirectionally by prior TMS-induced plasticity, providing circumstantial evidence that long-term potentiation-like mechanisms may be involved in motor learning. In summary, convergent evidence is being accumulated for the contention that it is now possible to induce STDP-like changes in the intact human central nervous system by means of TMS to study and interfere with synaptic plasticity in neural circuits in the context of behaviour such as learning and memory.

  9. Status of timing with plastic scintillation detectors

    International Nuclear Information System (INIS)

    Moszynski, M.; Bengtson, B.

    1979-01-01

    Timing properties of scintillators and photomultipliers as well as theoretical and experimental studies of time resolution of scintillation counters are reviewed. Predictions of the theory of the scintillation pulse generation processes are compared with the data on the light pulse shape from small samples, in which the light pulse shape depends only on the composition of the scintillator. For larger samples the influence of the light collection process and the self-absorption process on the light pulse shape are discussed. The data on rise times, fwhm's, decay times and light yield of several commercial scintillators used in timing are collected. The next part of the paper deals with the properties of photomultipliers. The sources of time uncertainties in photomultipliers as a spread of the initial velocity of photoelectrons, emission of photoelectrons under different angles and from different points at the photocathode, the time spread and the gain dispersion introduced by electron photomultiplier are reviewed. The experimental data on the time jitter, single electron response and photoelectron yield of some fast photomultipliers are collected. As the time resolution of the timing systems with scintillation counters depends also on time pick-off units, a short presentation of the timing methods is given. The discussion of timing theories is followed by a review of experimental studies of the time resolution of scintillation counters. The paper is ended by an analysis of prospects on further progress of the subnanosecond timing with scintillation counters. (Auth.)

  10. Plastic

    International Nuclear Information System (INIS)

    Jeong Gi Hyeon

    1987-04-01

    This book deals with plastic, which includes introduction for plastic, chemistry of high polymers, polymerization, speciality and structure of a high molecule property of plastic, molding, thermosetting plastic, such as polyethylene, polyether, polyamide and polyvinyl acetyl, thermal plastic like phenolic resins, xylene resins, melamine resin, epoxy resin, alkyd resin and poly urethan resin, new plastic like ionomer and PPS resin, synthetic laminated tape and synthetic wood, mixed materials in plastic, reprocessing of waste plastic, polymer blend, test method for plastic materials and auxiliary materials of plastic.

  11. Real-time gigabit DMT transmission over plastic optical fibre

    NARCIS (Netherlands)

    Lee, S.C.J.; Breyer, F.; Cárdenas, D.; Randel, S.; Koonen, A.M.J.

    2009-01-01

    For the first time, a real-time 1.25 Gbit/s discrete multitone (DMT) transmitter implemented in a field-programmable gate array is demonstrated for use in low-cost, standard 1 mm step-index plastic optical fibre applications based on a commercial resonant-cavity LED and a large-diameter

  12. Time dispersion in large plastic scintillation neutron detectors

    International Nuclear Information System (INIS)

    De, A.; Dasgupta, S.S.; Sen, D.

    1993-01-01

    Time dispersion (TD) has been computed for large neutron detectors using plastic scintillators. It has been shown that TD seen by the PM tube does not necessarily increase with incident neutron energy, a result not fully in agreement with the usual finding

  13. Spike-timing dependent plasticity in the striatum

    Directory of Open Access Journals (Sweden)

    Elodie Fino

    2010-06-01

    Full Text Available The striatum is the major input nucleus of basal ganglia, an ensemble of interconnected sub-cortical nuclei associated with fundamental processes of action-selection and procedural learning and memory. The striatum receives afferents from the cerebral cortex and the thalamus. In turn, it relays the integrated information towards the basal ganglia output nuclei through which it operates a selected activation of behavioral effectors. The striatal output neurons, the GABAergic medium-sized spiny neurons (MSNs, are in charge of the detection and integration of behaviorally relevant information. This property confers to the striatum the ability to extract relevant information from the background noise and select cognitive-motor sequences adapted to environmental stimuli. As long-term synaptic efficacy changes are believed to underlie learning and memory, the corticostriatal long-term plasticity provides a fundamental mechanism for the function of the basal ganglia in procedural learning. Here, we reviewed the different forms of spike-timing dependent plasticity (STDP occurring at corticostriatal synapses. Most of the studies have focused on MSNs and their ability to develop long-term plasticity. Nevertheless, the striatal interneurons (the fast-spiking GABAergic, the NO synthase and cholinergic interneurons also receive monosynaptic afferents from the cortex and tightly regulated corticostriatal information processing. Therefore, it is important to take into account the variety of striatal neurons to fully understand the ability of striatum to develop long-term plasticity. Corticostriatal STDP with various spike-timing dependence have been observed depending on the neuronal sub-populations and experimental conditions. This complexity highlights the extraordinary potentiality in term of plasticity of the corticostriatal pathway.

  14. Overestimated lead times in cancer screening has led to substantial underestimation of overdiagnosis

    DEFF Research Database (Denmark)

    Zahl, P-H; Juhl Jørgensen, Karsten; Gøtzsche, P C

    2013-01-01

    Published lead time estimates in breast cancer screening vary from 1 to 7 years and the percentages of overdiagnosis vary from 0 to 75%. The differences are usually explained as random variations. We study how much can be explained by using different definitions and methods.......Published lead time estimates in breast cancer screening vary from 1 to 7 years and the percentages of overdiagnosis vary from 0 to 75%. The differences are usually explained as random variations. We study how much can be explained by using different definitions and methods....

  15. Spike timing analysis in neural networks with unsupervised synaptic plasticity

    Science.gov (United States)

    Mizusaki, B. E. P.; Agnes, E. J.; Brunnet, L. G.; Erichsen, R., Jr.

    2013-01-01

    The synaptic plasticity rules that sculpt a neural network architecture are key elements to understand cortical processing, as they may explain the emergence of stable, functional activity, while avoiding runaway excitation. For an associative memory framework, they should be built in a way as to enable the network to reproduce a robust spatio-temporal trajectory in response to an external stimulus. Still, how these rules may be implemented in recurrent networks and the way they relate to their capacity of pattern recognition remains unclear. We studied the effects of three phenomenological unsupervised rules in sparsely connected recurrent networks for associative memory: spike-timing-dependent-plasticity, short-term-plasticity and an homeostatic scaling. The system stability is monitored during the learning process of the network, as the mean firing rate converges to a value determined by the homeostatic scaling. Afterwards, it is possible to measure the recovery efficiency of the activity following each initial stimulus. This is evaluated by a measure of the correlation between spike fire timings, and we analysed the full memory separation capacity and limitations of this system.

  16. Physical implementation of pair-based spike timing dependent plasticity

    International Nuclear Information System (INIS)

    Azghadi, M.R.; Al-Sarawi, S.; Iannella, N.; Abbott, D.

    2011-01-01

    Full text: Objective Spike-timing-dependent plasticity (STOP) is one of several plasticity rules which leads to learning and memory in the brain. STOP induces synaptic weight changes based on the timing of the pre- and post-synaptic neurons. A neural network which can mimic the adaptive capability of biological brains in the temporal domain, requires the weight of single connections to be altered by spike timing. To physically realise this network into silicon, a large number of interconnected STOP circuits on the same substrate is required. This imposes two significant limitations in terms of power and area. To cover these limitations, very large scale integrated circuit (VLSI) technology provides attractive features in terms of low power and small area requirements. An example is demonstrated by (lndiveli et al. 2006). The objective of this paper is to present a new implementation of the STOP circuit which demonstrates better power and area in comparison to previous implementations. Methods The proposed circuit uses complementary metal oxide semiconductor (CMOS) technology as depicted in Fig. I. The synaptic weight can be stored on a capacitor and charging/discharging current can lead to potentiation and depression. HSpice simulation results demonstrate that the average power, peak power, and area of the proposed circuit have been reduced by 6, 8 and 15%, respectively, in comparison with Indiveri's implementation. These improvements naturally lead to packing more STOP circuits onto the same substrate, when compared to previous proposals. Hence, this new implementation is quite interesting for real-world large neural networks.

  17. Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity.

    Science.gov (United States)

    Pecevski, Dejan; Maass, Wolfgang

    2016-01-01

    Numerous experimental data show that the brain is able to extract information from complex, uncertain, and often ambiguous experiences. Furthermore, it can use such learnt information for decision making through probabilistic inference. Several models have been proposed that aim at explaining how probabilistic inference could be performed by networks of neurons in the brain. We propose here a model that can also explain how such neural network could acquire the necessary information for that from examples. We show that spike-timing-dependent plasticity in combination with intrinsic plasticity generates in ensembles of pyramidal cells with lateral inhibition a fundamental building block for that: probabilistic associations between neurons that represent through their firing current values of random variables. Furthermore, by combining such adaptive network motifs in a recursive manner the resulting network is enabled to extract statistical information from complex input streams, and to build an internal model for the distribution p (*) that generates the examples it receives. This holds even if p (*) contains higher-order moments. The analysis of this learning process is supported by a rigorous theoretical foundation. Furthermore, we show that the network can use the learnt internal model immediately for prediction, decision making, and other types of probabilistic inference.

  18. Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity123

    Science.gov (United States)

    Pecevski, Dejan

    2016-01-01

    Abstract Numerous experimental data show that the brain is able to extract information from complex, uncertain, and often ambiguous experiences. Furthermore, it can use such learnt information for decision making through probabilistic inference. Several models have been proposed that aim at explaining how probabilistic inference could be performed by networks of neurons in the brain. We propose here a model that can also explain how such neural network could acquire the necessary information for that from examples. We show that spike-timing-dependent plasticity in combination with intrinsic plasticity generates in ensembles of pyramidal cells with lateral inhibition a fundamental building block for that: probabilistic associations between neurons that represent through their firing current values of random variables. Furthermore, by combining such adaptive network motifs in a recursive manner the resulting network is enabled to extract statistical information from complex input streams, and to build an internal model for the distribution p* that generates the examples it receives. This holds even if p* contains higher-order moments. The analysis of this learning process is supported by a rigorous theoretical foundation. Furthermore, we show that the network can use the learnt internal model immediately for prediction, decision making, and other types of probabilistic inference. PMID:27419214

  19. Survival time of bacteria on different plastics by application of ultraviolet rays and desinfectants

    International Nuclear Information System (INIS)

    Glueck, S.

    1975-01-01

    The survival times of four sorts of germs were studied (Staph. albus, Staph. aureus, E.coli and Clebsiella) on 28 different plastic surfaces under different ambient conditions, (darkness, daylight, UV-radiation) and after preceding disinfection of the surfaces. For these studies, a formaldehydecontaining, phenolic, and a surface-active preparation were used. No essential differences in the survival times of the 4 types of germs tested were found. Besides the chemical basic structure additional substances were found to play a substantial role for the autobactericides. The dark values which could help to obtain findings about auto-bactericides did not show significant correspondence within the groups of the plastics. Only for a few materials a safe auto-bactericide could be found (alkyd lake, phenol resin). In the case of some other substances (some preparations made of PVC, polystyrene, polyacetal) an effect on the germs could be seen which was, at least totally seen, unfavourable, if all test conditions (darkness, daylight, UV-radiation) are viewed as a total. As comparative values on glass had shown a lower lethal rate of the germs, a certain auto-bactericide is likely to exist in all plastics tested. A considerable antibacterial effect of daylight was found, even with low daylight quotients and clased windows. UV-rays also diminished the number of germs on the plastic surfaces considerably, even with only indirect irradiation. Delayed effects of desinfecting agents partially depend on the surface material. Thus the phenolic agent showed strong delayed effects on the acryl glas, polyethylene, phenol resin, polycarbonate, but less on PVC. Phormaldehyde showed a good long-term effect only on phenol resin. (orig.) [de

  20. Spike-timing dependent plasticity and the cognitive map

    Directory of Open Access Journals (Sweden)

    Daniel eBush

    2010-10-01

    Full Text Available Since the discovery of place cells – single pyramidal neurons that encode spatial location – it has been hypothesised that the hippocampus may act as a cognitive map of known environments. This putative function has been extensively modelled using auto-associative networks, which utilise rate-coded synaptic plasticity rules in order to generate strong bi-directional connections between concurrently active place cells that encode for neighbouring place fields. However, empirical studies using hippocampal cultures have demonstrated that the magnitude and direction of changes in synaptic strength can also be dictated by the relative timing of pre- and post- synaptic firing according to a spike-timing dependent plasticity (STDP rule. Furthermore, electrophysiology studies have identified persistent ‘theta-coded’ temporal correlations in place cell activity in vivo, characterised by phase precession of firing as the corresponding place field is traversed. It is not yet clear if STDP and theta-coded neural dynamics are compatible with cognitive map theory and previous rate-coded models of spatial learning in the hippocampus. Here, we demonstrate that an STDP rule based on empirical data obtained from the hippocampus can mediate rate-coded Hebbian learning when pre- and post- synaptic activity is stochastic and has no persistent sequence bias. We subsequently demonstrate that a spiking recurrent neural network that utilises this STDP rule, alongside theta-coded neural activity, allows the rapid development of a cognitive map during directed or random exploration of an environment of overlapping place fields. Hence, we establish that STDP and phase precession are compatible with rate-coded models of cognitive map development.

  1. Spike-timing dependent plasticity and the cognitive map.

    Science.gov (United States)

    Bush, Daniel; Philippides, Andrew; Husbands, Phil; O'Shea, Michael

    2010-01-01

    Since the discovery of place cells - single pyramidal neurons that encode spatial location - it has been hypothesized that the hippocampus may act as a cognitive map of known environments. This putative function has been extensively modeled using auto-associative networks, which utilize rate-coded synaptic plasticity rules in order to generate strong bi-directional connections between concurrently active place cells that encode for neighboring place fields. However, empirical studies using hippocampal cultures have demonstrated that the magnitude and direction of changes in synaptic strength can also be dictated by the relative timing of pre- and post-synaptic firing according to a spike-timing dependent plasticity (STDP) rule. Furthermore, electrophysiology studies have identified persistent "theta-coded" temporal correlations in place cell activity in vivo, characterized by phase precession of firing as the corresponding place field is traversed. It is not yet clear if STDP and theta-coded neural dynamics are compatible with cognitive map theory and previous rate-coded models of spatial learning in the hippocampus. Here, we demonstrate that an STDP rule based on empirical data obtained from the hippocampus can mediate rate-coded Hebbian learning when pre- and post-synaptic activity is stochastic and has no persistent sequence bias. We subsequently demonstrate that a spiking recurrent neural network that utilizes this STDP rule, alongside theta-coded neural activity, allows the rapid development of a cognitive map during directed or random exploration of an environment of overlapping place fields. Hence, we establish that STDP and phase precession are compatible with rate-coded models of cognitive map development.

  2. Timely disclosure of progress in long-term cancer survival: the boomerang method substantially improved estimates in a comparative study.

    Science.gov (United States)

    Brenner, Hermann; Jansen, Lina

    2016-02-01

    Monitoring cancer survival is a key task of cancer registries, but timely disclosure of progress in long-term survival remains a challenge. We introduce and evaluate a novel method, denoted "boomerang method," for deriving more up-to-date estimates of long-term survival. We applied three established methods (cohort, complete, and period analysis) and the boomerang method to derive up-to-date 10-year relative survival of patients diagnosed with common solid cancers and hematological malignancies in the United States. Using the Surveillance, Epidemiology and End Results 9 database, we compared the most up-to-date age-specific estimates that might have been obtained with the database including patients diagnosed up to 2001 with 10-year survival later observed for patients diagnosed in 1997-2001. For cancers with little or no increase in survival over time, the various estimates of 10-year relative survival potentially available by the end of 2001 were generally rather similar. For malignancies with strongly increasing survival over time, including breast and prostate cancer and all hematological malignancies, the boomerang method provided estimates that were closest to later observed 10-year relative survival in 23 of the 34 groups assessed. The boomerang method can substantially improve up-to-dateness of long-term cancer survival estimates in times of ongoing improvement in prognosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Oscillations, Timing, Plasticity, and Learning in the Cerebellum.

    Science.gov (United States)

    Cheron, G; Márquez-Ruiz, J; Dan, B

    2016-04-01

    The highly stereotyped, crystal-like architecture of the cerebellum has long served as a basis for hypotheses with regard to the function(s) that it subserves. Historically, most clinical observations and experimental work have focused on the involvement of the cerebellum in motor control, with particular emphasis on coordination and learning. Two main models have been suggested to account for cerebellar functioning. According to Llinás's theory, the cerebellum acts as a control machine that uses the rhythmic activity of the inferior olive to synchronize Purkinje cell populations for fine-tuning of coordination. In contrast, the Ito-Marr-Albus theory views the cerebellum as a motor learning machine that heuristically refines synaptic weights of the Purkinje cell based on error signals coming from the inferior olive. Here, we review the role of timing of neuronal events, oscillatory behavior, and synaptic and non-synaptic influences in functional plasticity that can be recorded in awake animals in various physiological and pathological models in a perspective that also includes non-motor aspects of cerebellar function. We discuss organizational levels from genes through intracellular signaling, synaptic network to system and behavior, as well as processes from signal production and processing to memory, delegation, and actual learning. We suggest an integrative concept for control and learning based on articulated oscillation templates.

  4. A time - zero detector based on thin film plastic scintillator

    International Nuclear Information System (INIS)

    Petrovici, M.; Simion, V.; Pagano, A.; Urso, S.; Geraci, E.

    1998-01-01

    Thin film scintillator used as a fast time-zero detector exhibits some advantages: fast response, small energy loss of transmitted particles, insensitivity to radiation damage, high efficiency and high counting rate capability. In order to increase the efficiency of the light collection, the scintillating plastic foil is housed in a reflecting body having an ellipsoidal geometry. A concave ellipsoidal mirror has the property that the geometrical foci are optically conjugate points and consequently, all optical path lengths from one focus to the other via a single reflection are equal. With the thin scintillator foil situated at one focal point and the PM's photocathode at the other one, an excellent light collection can be obtained. The principle of detector and the main components are presented. For our purposes we constructed the detector in two variants: glass mirror and polished aluminium mirror. The semi-axes of the ellipsoidal profile are: a 49.8 mm, b = 34.2 mm for the glass mirror and a = 35 mm, b = 26.5 mm for the aluminium mirror, respectively. The diameter of the beam access hole on the both mirrors is 12 mm. The detectors are foreseen to be used at 4π detecting system CHIMERA for experiments with heavy ion beams at intermediate energies delivered by Superconducting Cyclotron from LNS - Catania. Presently, the performance of these detectors are tested using alpha radioactive sources and in-beam measurements. (authors)

  5. Calibration of the time response functions of a quenched plastic scintillator for neutron time of flight

    CERN Document Server

    Chen, J B; Peng, H S; Tang, C H; Zhang, B H; Ding, Y K; Chen, M; Chen, H S; Li, C G; Wen, T S; Yu, R Z

    2002-01-01

    The time response functions of an ultrafast quenched plastic scintillation detector used to measure neutron time of flight spectra were calibrated by utilizing cosmic rays and implosion neutrons from DT-filled capsules at the Shenguang II laser facility. These sources could be regarded as delta function pulses due to their much narrower time widths than those of the time response functions of the detection system. The results showed that the detector responses to DT neutrons and to cosmic rays were 1.18 and 0.96 ns FWHM, respectively.

  6. A theory of loop formation and elimination by spike timing-dependent plasticity

    Directory of Open Access Journals (Sweden)

    James Kozloski

    2010-03-01

    Full Text Available We show that the local Spike Timing-Dependent Plasticity (STDP rule has the effect of regulating the trans-synaptic weights of loops of any length within a simulated network of neurons. We show that depending on STDP's polarity, functional loops are formed or eliminated in networks driven to normal spiking conditions by random, partially correlated inputs, where functional loops comprise synaptic weights that exceed a non-zero threshold. We further prove that STDP is a form of loop-regulating plasticity for the case of a linear network driven by noise. Thus a notable local synaptic learning rule makes a specific prediction about synapses in the brain in which standard STDP is present: that under normal spiking conditions, they should participate in predominantly feed-forward connections at all scales. Our model implies that any deviations from this prediction would require a substantial modification to the hypothesized role for standard STDP. Given its widespread occurrence in the brain, we predict that STDP could also regulate long range functional loops among individual neurons across all brain scales, up to, and including, the scale of global brain network topology.

  7. Spike-Timing Dependent Plasticity and the Cognitive Map

    OpenAIRE

    Bush, Daniel; Philippides, Andrew; Husbands, Phil; O'Shea, Michael

    2010-01-01

    Since the discovery of place cells – single pyramidal neurons that encode spatial location – it has been hypothesized that the hippocampus may act as a cognitive map of known environments. This putative function has been extensively modeled using auto-associative networks, which utilize rate-coded synaptic plasticity rules in order to generate strong bi-directional connections between concurrently active place cells that encode for neighboring place fields. However, empirical studies using hi...

  8. Simplified non-linear time-history analysis based on the Theory of Plasticity

    DEFF Research Database (Denmark)

    Costa, Joao Domingues

    2005-01-01

    This paper aims at giving a contribution to the problem of developing simplified non-linear time-history (NLTH) analysis of structures which dynamical response is mainly governed by plastic deformations, able to provide designers with sufficiently accurate results. The method to be presented...... is based on the Theory of Plasticity. Firstly, the formulation and the computational procedure to perform time-history analysis of a rigid-plastic single degree of freedom (SDOF) system are presented. The necessary conditions for the method to incorporate pinching as well as strength degradation...

  9. Decay Time Measurement for Different Energy Depositions of Plastic Scintillator Fabricated by High Temperature Polymerization Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Tae Hoon; Kim, Yong-Kyun [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    Plastic scintillators are based on organic fluorite. They have many advantages such as fast rise and decay time, high optical transmission, ease of manufacturing, low cost, and large available size. For these reasons they are widely used for particle identification. Also, protection of people against a variety of threats (such as nuclear, radiological, and explosive) represents a true challenge along with the continuing development of science and technology. The plastic scintillator is widely used in various devise, which serves for nuclear, photonics, quantum, and high-energy physics. The plastic scintillator is probably the most widely used organic detector, and polystyrene is one of the most widely used materials in the making of the plastic scintillator detector. Thus, a styrene monomer as a solvent was used to fabricate the plastic scintillator by using high temperature polymerization reaction, and then the emission wavelength and the decay times for different energy depositions were measured by using the fabricated plastic scintillator. A plastic scintillator was fabricated to measure decay time for different energy depositions using the high temperature polymerization. Emission wavelength was measured of 426.05 nm to confirm a scintillator property using the spectrophotometer. Four gamma-ray sources (Cs-137, Co-60, Na-22, and Ba-133) were used to evaluate effect for decay time of different energy depositions. The average decay time of the fabricated plastic scintillator was measured to approximately 4.72 ns slightly higher more than commercial plastic scintillator. In future, light output and linearity will be measured to evaluate other property compared with the commercial scintillator.

  10. Decay Time Measurement for Different Energy Depositions of Plastic Scintillator Fabricated by High Temperature Polymerization Reaction

    International Nuclear Information System (INIS)

    Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Tae Hoon; Kim, Yong-Kyun

    2016-01-01

    Plastic scintillators are based on organic fluorite. They have many advantages such as fast rise and decay time, high optical transmission, ease of manufacturing, low cost, and large available size. For these reasons they are widely used for particle identification. Also, protection of people against a variety of threats (such as nuclear, radiological, and explosive) represents a true challenge along with the continuing development of science and technology. The plastic scintillator is widely used in various devise, which serves for nuclear, photonics, quantum, and high-energy physics. The plastic scintillator is probably the most widely used organic detector, and polystyrene is one of the most widely used materials in the making of the plastic scintillator detector. Thus, a styrene monomer as a solvent was used to fabricate the plastic scintillator by using high temperature polymerization reaction, and then the emission wavelength and the decay times for different energy depositions were measured by using the fabricated plastic scintillator. A plastic scintillator was fabricated to measure decay time for different energy depositions using the high temperature polymerization. Emission wavelength was measured of 426.05 nm to confirm a scintillator property using the spectrophotometer. Four gamma-ray sources (Cs-137, Co-60, Na-22, and Ba-133) were used to evaluate effect for decay time of different energy depositions. The average decay time of the fabricated plastic scintillator was measured to approximately 4.72 ns slightly higher more than commercial plastic scintillator. In future, light output and linearity will be measured to evaluate other property compared with the commercial scintillator

  11. Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity.

    Directory of Open Access Journals (Sweden)

    Christian Albers

    Full Text Available Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP. Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious and strong (teacher spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns.

  12. Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity.

    Science.gov (United States)

    Albers, Christian; Westkott, Maren; Pawelzik, Klaus

    2016-01-01

    Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP). Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious) and strong (teacher) spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns.

  13. Left truncation results in substantial bias of the relation between time-dependent exposures and adverse events

    NARCIS (Netherlands)

    Hazelbag, Christijan M; Klungel, Olaf H; van Staa, Tjeerd P; de Boer, Anthonius; Groenwold, Rolf H H

    PURPOSE: To assess the impact of random left truncation of data on the estimation of time-dependent exposure effects. METHODS: A simulation study was conducted in which the relation between exposure and outcome was based on an immediate exposure effect, a first-time exposure effect, or a cumulative

  14. Left truncation results in substantial bias of the relation between time-dependent exposures and adverse events

    NARCIS (Netherlands)

    Hazelbag, Christijan M.; Klungel, Olaf H.; van Staa, Tjeerd P.; de Boer, Anthonius; Groenwold, Rolf H H

    2015-01-01

    PURPOSE: To assess the impact of random left truncation of data on the estimation of time-dependent exposure effects. METHODS: A simulation study was conducted in which the relation between exposure and outcome was based on an immediate exposure effect, a first-time exposure effect, or a cumulative

  15. Effect of ageing time on mechanical properties of plasticized poly(hydroxybutyrate) (PHB)

    Science.gov (United States)

    Farris, Giuseppe; Cinelli, Patrizia; Anguillesi, Irene; Salvadori, Sara; Coltelli, Maria-Beatrice; Lazzeri, Andrea

    2014-05-01

    Polyhydroxybutyrate (PHB) based materials were prepared by melt extrusion by using different plasticizers, such as poly(ethylene glycol)s (PEG)s having different molecular weight (400, 1500 and 4000). The plasticizers content was varied in the range 10-20% by weight versus the PHB polymeric matrix. The variation of tensile properties of the different samples was monitored as a function of time of ageing to study the stability of the material. The elastic modulus and tensile strength increased as a function of time, whereas the strain at break decreased. The experimental results were explained by considering both the demixing of the plasticizers and the occurring of secondary crystallization. Moreover the variation in mechanical properties was correlated to the structure and concentration of the different plasticizers employed.

  16. Explaining the Substantial Inter-Domain and Over-Time Correlations in Student Achievement: The Importance of Stable Student Attributes

    Science.gov (United States)

    Marks, Gary N.

    2016-01-01

    Multi-domain and longitudinal studies of student achievement routinely find moderate to strong correlations across achievement domains and even stronger within-domain correlations over time. The purpose of this study is to examine the sources of these patterns analysing student achievement in 5 domains across Years 3, 5 and 7. The analysis is of…

  17. Time dispersion in large plastic scintillation neutron detector [Paper No.:B3

    International Nuclear Information System (INIS)

    De, A.; Dasgupta, S.S.; Sen, D.

    1993-01-01

    Time dispersion seen by photomultiplier (PM) tube in large plastic scintillation neutron detector and the light collection mechanism by the same have been computed showing that this time dispersion (TD) seen by the PM tube does not necessarily increase with increasing incident neutron energy in contrast to the usual finding that TD increases with increasing energy. (author). 8 refs., 4 figs

  18. Emergence of Slow Collective Oscillations in Neural Networks with Spike-Timing Dependent Plasticity

    Science.gov (United States)

    Mikkelsen, Kaare; Imparato, Alberto; Torcini, Alessandro

    2013-05-01

    The collective dynamics of excitatory pulse coupled neurons with spike-timing dependent plasticity is studied. The introduction of spike-timing dependent plasticity induces persistent irregular oscillations between strongly and weakly synchronized states, reminiscent of brain activity during slow-wave sleep. We explain the oscillations by a mechanism, the Sisyphus Effect, caused by a continuous feedback between the synaptic adjustments and the coherence in the neural firing. Due to this effect, the synaptic weights have oscillating equilibrium values, and this prevents the system from relaxing into a stationary macroscopic state.

  19. A comparison of time-history elastic plastic piping analysis with measurement

    International Nuclear Information System (INIS)

    Scavuzzo, R.J.; Sansalone, K.H.

    1992-01-01

    The GE/ETEC Green piping system was subjected to high seismic inputs from hydraulic sleds at each pipe foundation. These inputs were high enough to force bending stresses into the plastic regime. Strain gages recorded the pipe response at various positions within the system. The ABAQUS finite element code was used to model this piping system and the dynamic input. Problems associated with the dynamic input are discussed. Various types of finite elements were evaluated for accurancy. Both an elastic time-history analysis and an elastic-plastic time-history analysis of the system were conducted. Results of these analyses are compared to each other and the experimental data. These comparisons indicated that elastic analysis of dynamic strains are conservative at all points of comparison and that there is good agreement between the nonlinear elastic-plastic analysis and experimental data. (orig.)

  20. A model for rate-dependent but time-independent material behavior in cyclic plasticity

    International Nuclear Information System (INIS)

    Dafalias, Y.F.; Ramey, M.R.; Sheikh, I.

    1977-01-01

    It is the purpose of this paper to present a model for rate-dependent but time independent material behavior under cyclic loading in the plastic range. What is referred to as time independent behavior here, is the absence of creep and relaxation phenomena from the behavior of the model. The notion of plastic internal variables (piv) is introduced, as properly invariant scalars or second order tensors, whose constitutive relations are rate-type equations not necessarily homogeneous of oder one in the rates, as it would be required for independent plasticity. The concept of a yield surface in the strain space and a loading function in terms of the total strain rate is introduced, where the sign of the loading function defines zero or non-zero value of the rate of piv. Thus rate dependence is achieved without time dependent behavior (no creep or relaxation). In addition, discrete memory parameters associated with the most recent event of unloading-reloading in different directions enter the constitutive relations for the piv. A particular form of the constitutive relations is assumed, where the rate of piv is a linear combination of the strain rate components, with coefficients depending on the second invariant of the strain rate tensor, which can be viewed as a scalar measure of the rate of deformation in the multiaxial case and a direct generalization of the uniaxial strain rate. This leads to a particularly simple form of the constitutive relations resembling the ones for rate independent plasticity. The uniaxial counterpart would be a relation between the plastic strain rate (as one of the piv) and the total strain rate through a plastic modulus which depends on the strain rate, the piv, and the discrete memory parameters

  1. Emergence of slow collective oscillations in neural networks with spike-timing dependent plasticity

    DEFF Research Database (Denmark)

    Mikkelsen, Kaare; Imparato, Alberto; Torcini, Alessandro

    2013-01-01

    The collective dynamics of excitatory pulse coupled neurons with spike timing dependent plasticity (STDP) is studied. The introduction of STDP induces persistent irregular oscillations between strongly and weakly synchronized states, reminiscent of brain activity during slow-wave sleep. We explain...

  2. Calculation of the factor of the time's relativity in quantum area for different atoms based on the `Substantial motion' theory of Mulla Sadra

    Science.gov (United States)

    Gholibeigian, Hassan

    2015-03-01

    Iranian Philosopher, Mulla Sadra (1571-1640) in his theory of ``Substantial motion'' emphasized that ``the universe moves in its entity'', and ``the time is the fourth dimension of the universe'' This definition of space-time is proposed by him at three hundred years before Einstein. He argued that the time is magnitude of the motion (momentum) of the matter in its entity. In the other words, the time for each atom (body) is sum of the momentums of its involved fundamental particles. The momentum for each atom is different from the other atoms. In this methodology, by proposing some formulas, we can calculate the time for involved particles' momentum (time) for each atom in a second of the Eastern Time Zone (ETZ). Due to differences between these momentums during a second in ETZ, the time for each atom, will be different from the other atoms. This is the relativity in quantum physics. On the other hand, the God communicates with elementary particles via sub-particles (see my next paper) and transfers the packages (bit) of information and laws to them for processing and selection of their next step. Differences between packages like complexity and velocity of processing during the time, is the second variable in relativity of time for each atom which may be effective on the factor.

  3. Proximate and ultimate aspects of phenotypic plasticity in timing of great tit breeding in a heterogeneous environment

    NARCIS (Netherlands)

    Nager, R.G.; Van Noordwijk, A.J.

    1995-01-01

    Using the theoretical framework of phenotypic plasticity, we studied the timing of breeding in great tits (Parus major), combining proximate questions about its physiological causation and ultimate questions about its fitness consequences. The plasticity observed in the timing of breeding can be

  4. Multi-layer network utilizing rewarded spike time dependent plasticity to learn a foraging task.

    Directory of Open Access Journals (Sweden)

    Pavel Sanda

    2017-09-01

    Full Text Available Neural networks with a single plastic layer employing reward modulated spike time dependent plasticity (STDP are capable of learning simple foraging tasks. Here we demonstrate advanced pattern discrimination and continuous learning in a network of spiking neurons with multiple plastic layers. The network utilized both reward modulated and non-reward modulated STDP and implemented multiple mechanisms for homeostatic regulation of synaptic efficacy, including heterosynaptic plasticity, gain control, output balancing, activity normalization of rewarded STDP and hard limits on synaptic strength. We found that addition of a hidden layer of neurons employing non-rewarded STDP created neurons that responded to the specific combinations of inputs and thus performed basic classification of the input patterns. When combined with a following layer of neurons implementing rewarded STDP, the network was able to learn, despite the absence of labeled training data, discrimination between rewarding patterns and the patterns designated as punishing. Synaptic noise allowed for trial-and-error learning that helped to identify the goal-oriented strategies which were effective in task solving. The study predicts a critical set of properties of the spiking neuronal network with STDP that was sufficient to solve a complex foraging task involving pattern classification and decision making.

  5. Spike-Timing Dependent Plasticity in Unipolar Silicon Oxide RRAM Devices.

    Science.gov (United States)

    Zarudnyi, Konstantin; Mehonic, Adnan; Montesi, Luca; Buckwell, Mark; Hudziak, Stephen; Kenyon, Anthony J

    2018-01-01

    Resistance switching, or Resistive RAM (RRAM) devices show considerable potential for application in hardware spiking neural networks (neuro-inspired computing) by mimicking some of the behavior of biological synapses, and hence enabling non-von Neumann computer architectures. Spike-timing dependent plasticity (STDP) is one such behavior, and one example of several classes of plasticity that are being examined with the aim of finding suitable algorithms for application in many computing tasks such as coincidence detection, classification and image recognition. In previous work we have demonstrated that the neuromorphic capabilities of silicon-rich silicon oxide (SiO x ) resistance switching devices extend beyond plasticity to include thresholding, spiking, and integration. We previously demonstrated such behaviors in devices operated in the unipolar mode, opening up the question of whether we could add plasticity to the list of features exhibited by our devices. Here we demonstrate clear STDP in unipolar devices. Significantly, we show that the response of our devices is broadly similar to that of biological synapses. This work further reinforces the potential of simple two-terminal RRAM devices to mimic neuronal functionality in hardware spiking neural networks.

  6. The effect of glicerol and sorbitol plasticizers toward disintegration time of phyto-capsules

    Science.gov (United States)

    Pudjiastuti, Pratiwi; Hendradi, Esti; Wafiroh, Siti; Harsini, Muji; Darmokoesoemo, Handoko

    2016-03-01

    The aim of research is determining the effect of glycerol and sorbitol toward the disintegration time of phyto-capsules, originated capsules from plant polysaccharides. Phyto-capsules were made from polysaccharides and 0.5% (v/v) of glycerol and sorbitol of each. The seven capsules of each were determined the disintegration time using Erweka disintegrator. The mean of disintegration time of phyto-capsules without plasticizers, with glycerol and sorbitol were 25'30"; 45'15" and 35'30" respectively. The color and colorless gelatin capsules showed the mean of disintegration time 7'30" and 2'35" respectively.

  7. Neuromodulated Spike-Timing-Dependent Plasticity and Theory of Three-Factor Learning Rules

    Directory of Open Access Journals (Sweden)

    Wulfram eGerstner

    2016-01-01

    Full Text Available Classical Hebbian learning puts the emphasis on joint pre- and postsynaptic activity, but neglects the potential role of neuromodulators. Since neuromodulators convey information about novelty or reward, the influence of neuromodulatorson synaptic plasticity is useful not just for action learning in classical conditioning, but also to decide 'when' to create new memories in response to a flow of sensory stimuli.In this review, we focus on timing requirements for pre- and postsynaptic activity in conjunction with one or several phasic neuromodulatory signals. While the emphasis of the text is on conceptual models and mathematical theories, we also discusssome experimental evidence for neuromodulation of Spike-Timing-Dependent Plasticity.We highlight the importance of synaptic mechanisms in bridging the temporal gap between sensory stimulation and neuromodulatory signals, and develop a framework for a class of neo-Hebbian three-factor learning rules that depend on presynaptic activity, postsynaptic variables as well as the influence of neuromodulators.

  8. Pulse shape analyzer/timing-SCA application to beta measurement by plastic scintillator

    International Nuclear Information System (INIS)

    Celiktas, C.; Selvi, S.

    2000-01-01

    Noise contribution to pulses from BC-400 plastic scintillators, preamplifier and spectroscopy amplifier is rejected by using electronics processing of the modified beta spectrometer containing pulse shape analyzer/timing SCA and related complementary equipment. The noise rejection capability of the spectrometer which have been developed to measure pure and scattered beta spectra, which are reliable in view of evaluations of the detector and target electron scattering characteristics correctly. (author)

  9. A model for rate-dependent but time-independent material behavior in cyclic plasticity

    International Nuclear Information System (INIS)

    Dafalias, Y.F.; Ramey, M.R.; Sheikh, I.

    1977-01-01

    This paper presents a model for rate-dependent but time independent material behavior under cyclic loading in the plastic range. What is referred to as time independent behavior here, is the absence of creep and relaxation phenomena from the behavior of the model. The notion of plastic internal variables (piv) is introduced, as properly invariant scalars or second order tensors, whose constitutive relations are rate-type equations not necessarily homogeneous of order one in the rates, as it would be required for independent plasticity. The concept of a yield surface in the strain space and a loading function in terms of the total strain rate is introduced, where the sign of the loading function defines zero or non-zero value of the rate of piv. Thus rate dependence is achieved without time dependent behaviour (no creep or relaxation). In addition, discrete memory parameters associated with the most recent event of unloading-reloading in different directions enter the constitutive relations for the piv. (Auth.)

  10. A neuromorphic implementation of multiple spike-timing synaptic plasticity rules for large-scale neural networks

    Directory of Open Access Journals (Sweden)

    Runchun Mark Wang

    2015-05-01

    Full Text Available We present a neuromorphic implementation of multiple synaptic plasticity learning rules, which include both Spike Timing Dependent Plasticity (STDP and Spike Timing Dependent Delay Plasticity (STDDP. We present a fully digital implementation as well as a mixed-signal implementation, both of which use a novel dynamic-assignment time-multiplexing approach and support up to 2^26 (64M synaptic plasticity elements. Rather than implementing dedicated synapses for particular types of synaptic plasticity, we implemented a more generic synaptic plasticity adaptor array that is separate from the neurons in the neural network. Each adaptor performs synaptic plasticity according to the arrival times of the pre- and post-synaptic spikes assigned to it, and sends out a weighted and/or delayed pre-synaptic spike to the target synapse in the neural network. This strategy provides great flexibility for building complex large-scale neural networks, as a neural network can be configured for multiple synaptic plasticity rules without changing its structure. We validate the proposed neuromorphic implementations with measurement results and illustrate that the circuits are capable of performing both STDP and STDDP. We argue that it is practical to scale the work presented here up to 2^36 (64G synaptic adaptors on a current high-end FPGA platform.

  11. Functional requirements for reward-modulated spike-timing-dependent plasticity.

    Science.gov (United States)

    Frémaux, Nicolas; Sprekeler, Henning; Gerstner, Wulfram

    2010-10-06

    Recent experiments have shown that spike-timing-dependent plasticity is influenced by neuromodulation. We derive theoretical conditions for successful learning of reward-related behavior for a large class of learning rules where Hebbian synaptic plasticity is conditioned on a global modulatory factor signaling reward. We show that all learning rules in this class can be separated into a term that captures the covariance of neuronal firing and reward and a second term that presents the influence of unsupervised learning. The unsupervised term, which is, in general, detrimental for reward-based learning, can be suppressed if the neuromodulatory signal encodes the difference between the reward and the expected reward-but only if the expected reward is calculated for each task and stimulus separately. If several tasks are to be learned simultaneously, the nervous system needs an internal critic that is able to predict the expected reward for arbitrary stimuli. We show that, with a critic, reward-modulated spike-timing-dependent plasticity is capable of learning motor trajectories with a temporal resolution of tens of milliseconds. The relation to temporal difference learning, the relevance of block-based learning paradigms, and the limitations of learning with a critic are discussed.

  12. A review of the surgical management of breast cancer: plastic reconstructive techniques and timing implications.

    Science.gov (United States)

    Rosson, Gedge D; Magarakis, Michael; Shridharani, Sachin M; Stapleton, Sahael M; Jacobs, Lisa K; Manahan, Michele A; Flores, Jaime I

    2010-07-01

    The oncologic management of breast cancer has evolved over the past several decades from radical mastectomy to modern-day preservation of chest and breast structures. The increased rate of mastectomies over recent years made breast reconstruction an integral part of the breast cancer management. Plastic surgery now offers patients a wide variety of reconstruction options from primary closure of the skin flaps to performance of microvascular and autologous tissue transplantation. Well-coordinated partnerships between surgical oncologists, plastic surgeons, and patients address concerns of tumor control, cosmesis, and patients' wishes. The gamut of breast reconstruction options is reviewed, particularly noting state-of-the-art techniques, as well as the advantages and disadvantages of various timing modalities.

  13. Network evolution induced by asynchronous stimuli through spike-timing-dependent plasticity.

    Directory of Open Access Journals (Sweden)

    Wu-Jie Yuan

    Full Text Available In sensory neural system, external asynchronous stimuli play an important role in perceptual learning, associative memory and map development. However, the organization of structure and dynamics of neural networks induced by external asynchronous stimuli are not well understood. Spike-timing-dependent plasticity (STDP is a typical synaptic plasticity that has been extensively found in the sensory systems and that has received much theoretical attention. This synaptic plasticity is highly sensitive to correlations between pre- and postsynaptic firings. Thus, STDP is expected to play an important role in response to external asynchronous stimuli, which can induce segregative pre- and postsynaptic firings. In this paper, we study the impact of external asynchronous stimuli on the organization of structure and dynamics of neural networks through STDP. We construct a two-dimensional spatial neural network model with local connectivity and sparseness, and use external currents to stimulate alternately on different spatial layers. The adopted external currents imposed alternately on spatial layers can be here regarded as external asynchronous stimuli. Through extensive numerical simulations, we focus on the effects of stimulus number and inter-stimulus timing on synaptic connecting weights and the property of propagation dynamics in the resulting network structure. Interestingly, the resulting feedforward structure induced by stimulus-dependent asynchronous firings and its propagation dynamics reflect both the underlying property of STDP. The results imply a possible important role of STDP in generating feedforward structure and collective propagation activity required for experience-dependent map plasticity in developing in vivo sensory pathways and cortices. The relevance of the results to cue-triggered recall of learned temporal sequences, an important cognitive function, is briefly discussed as well. Furthermore, this finding suggests a potential

  14. Anti-Hebbian Spike Timing Dependent Plasticity and Adaptive Sensory Processing

    Directory of Open Access Journals (Sweden)

    Patrick D Roberts

    2010-12-01

    Full Text Available Adaptive processing influences the central nervous system's interpretation of incoming sensory information. One of the functions of this adaptative sensory processing is to allow the nervous system to ignore predictable sensory information so that it may focus on important new information needed to improve performance of specific tasks. The mechanism of spike timing-dependent plasticity (STDP has proven to be intriguing in this context because of its dual role in long-term memory and ongoing adaptation to maintain optimal tuning of neural responses. Some of the clearest links between STDP and adaptive sensory processing have come from in vitro, in vivo, and modeling studies of the electrosensory systems of fish. Plasticity in such systems is anti-Hebbian, i.e. presynaptic inputs that repeatedly precede and hence could contribute to a postsynaptic neuron’s firing are weakened. The learning dynamics of anti-Hebbian STDP learning rules are stable if the timing relations obey strict constraints. The stability of these learning rules leads to clear predictions of how functional consequences can arise from the detailed structure of the plasticity. Here we review the connection between theoretical predictions and functional consequences of anti-Hebbian STDP, focusing on adaptive processing in the electrosensory system of weakly electric fish. After introducing electrosensory adaptive processing and the dynamics of anti-Hebbian STDP learning rules, we address issues of predictive sensory cancellation and novelty detection, descending control of plasticity, synaptic scaling, and optimal sensory tuning. We conclude with examples in other systems where these principles may apply.

  15. Anti-hebbian spike-timing-dependent plasticity and adaptive sensory processing.

    Science.gov (United States)

    Roberts, Patrick D; Leen, Todd K

    2010-01-01

    Adaptive sensory processing influences the central nervous system's interpretation of incoming sensory information. One of the functions of this adaptive sensory processing is to allow the nervous system to ignore predictable sensory information so that it may focus on important novel information needed to improve performance of specific tasks. The mechanism of spike-timing-dependent plasticity (STDP) has proven to be intriguing in this context because of its dual role in long-term memory and ongoing adaptation to maintain optimal tuning of neural responses. Some of the clearest links between STDP and adaptive sensory processing have come from in vitro, in vivo, and modeling studies of the electrosensory systems of weakly electric fish. Plasticity in these systems is anti-Hebbian, so that presynaptic inputs that repeatedly precede, and possibly could contribute to, a postsynaptic neuron's firing are weakened. The learning dynamics of anti-Hebbian STDP learning rules are stable if the timing relations obey strict constraints. The stability of these learning rules leads to clear predictions of how functional consequences can arise from the detailed structure of the plasticity. Here we review the connection between theoretical predictions and functional consequences of anti-Hebbian STDP, focusing on adaptive processing in the electrosensory system of weakly electric fish. After introducing electrosensory adaptive processing and the dynamics of anti-Hebbian STDP learning rules, we address issues of predictive sensory cancelation and novelty detection, descending control of plasticity, synaptic scaling, and optimal sensory tuning. We conclude with examples in other systems where these principles may apply.

  16. Burst-time-dependent plasticity robustly guides ON/OFF segregation in the lateral geniculate nucleus.

    Directory of Open Access Journals (Sweden)

    Julijana Gjorgjieva

    2009-12-01

    Full Text Available Spontaneous retinal activity (known as "waves" remodels synaptic connectivity to the lateral geniculate nucleus (LGN during development. Analysis of retinal waves recorded with multielectrode arrays in mouse suggested that a cue for the segregation of functionally distinct (ON and OFF retinal ganglion cells (RGCs in the LGN may be a desynchronization in their firing, where ON cells precede OFF cells by one second. Using the recorded retinal waves as input, with two different modeling approaches we explore timing-based plasticity rules for the evolution of synaptic weights to identify key features underlying ON/OFF segregation. First, we analytically derive a linear model for the evolution of ON and OFF weights, to understand how synaptic plasticity rules extract input firing properties to guide segregation. Second, we simulate postsynaptic activity with a nonlinear integrate-and-fire model to compare findings with the linear model. We find that spike-time-dependent plasticity, which modifies synaptic weights based on millisecond-long timing and order of pre- and postsynaptic spikes, fails to segregate ON and OFF retinal inputs in the absence of normalization. Implementing homeostatic mechanisms results in segregation, but only with carefully-tuned parameters. Furthermore, extending spike integration timescales to match the second-long input correlation timescales always leads to ON segregation because ON cells fire before OFF cells. We show that burst-time-dependent plasticity can robustly guide ON/OFF segregation in the LGN without normalization, by integrating pre- and postsynaptic bursts irrespective of their firing order and over second-long timescales. We predict that an LGN neuron will become ON- or OFF-responsive based on a local competition of the firing patterns of neighboring RGCs connecting to it. Finally, we demonstrate consistency with ON/OFF segregation in ferret, despite differences in the firing properties of retinal waves. Our

  17. A study of time over threshold (TOT) technique for plastic scintillator counter

    International Nuclear Information System (INIS)

    Wu Jinjie; Chinese Academy of Sciences, Beijing; Heng Yuekun; Sun Zhijia; Wu Chong; Yang Guian; Jiang Chun Hua; Zhao Yuda

    2008-01-01

    A new charge measurement method, time over threshold (TOT), has been used in some gas detectors lately. Here TOT is studied for TOF system, made of plastic scintillator counter, which can simplify the electronics of the system. The signal characteristics are measured and analyzed with a high quality oscilloscope, including noise, pedestal, signal amplitude, total charge, rise time and the correlation between them. The TOT and charge are related and can be fitted by some empirical formula. The charge measurement resolution by TOT is given and this will help the design of TOF electronics. (authors)

  18. Supervised spike-timing-dependent plasticity: a spatiotemporal neuronal learning rule for function approximation and decisions.

    Science.gov (United States)

    Franosch, Jan-Moritz P; Urban, Sebastian; van Hemmen, J Leo

    2013-12-01

    How can an animal learn from experience? How can it train sensors, such as the auditory or tactile system, based on other sensory input such as the visual system? Supervised spike-timing-dependent plasticity (supervised STDP) is a possible answer. Supervised STDP trains one modality using input from another one as "supervisor." Quite complex time-dependent relationships between the senses can be learned. Here we prove that under very general conditions, supervised STDP converges to a stable configuration of synaptic weights leading to a reconstruction of primary sensory input.

  19. Spike timing-dependent plasticity as the origin of the formation of clustered synaptic efficacy engrams

    Directory of Open Access Journals (Sweden)

    Nicolangelo L Iannella

    2010-07-01

    Full Text Available Synapse location, dendritic active properties and synaptic plasticity are all known to play some role in shaping the different input streams impinging onto a neuron. It remains unclear however, how the magnitude and spatial distribution of synaptic efficacies emerge from this interplay. Here, we investigate this interplay using a biophysically detailed neuron model of a reconstructed layer 2/3 pyramidal cell and spike timing-dependent plasticity (STDP. Specifically, we focus on the issue of how the efficacy of synapses contributed by different input streams are spatially represented in dendrites after STDP learning. We construct a simple feed forward network where a detailed model neuron receives synaptic inputs independently from multiple yet equally sized groups of afferent fibres with correlated activity, mimicking the spike activity from different neuronal populations encoding, for example, different sensory modalities. Interestingly, ensuing STDP learning, we observe that for all afferent groups, STDP leads to synaptic efficacies arranged into spatially segregated clusters effectively partitioning the dendritic tree. These segregated clusters possess a characteristic global organisation in space, where they form a tessellation in which each group dominates mutually exclusive regions of the dendrite.Put simply, the dendritic imprint from different input streams left after STDP learning effectively forms what we term a dendritic efficacy mosaic. Furthermore, we show how variations of the inputs and STDP rule affect such an organization. Our model suggests that STDP may be an important mechanism for creating a clustered plasticity engram, which shapes how different input streams are spatially represented in dendrite.

  20. Energy Payback Time of a Solar Photovoltaic Powered Waste Plastic Recyclebot System

    Directory of Open Access Journals (Sweden)

    Shan Zhong

    2017-06-01

    Full Text Available The growth of both plastic consumption and prosumer 3-D printing are driving an interest in producing 3-D printer filaments from waste plastic. This study quantifies the embodied energy of a vertical DC solar photovoltaic (PV powered recyclebot based on life cycle energy analysis and compares it to horizontal AC recyclebots, conventional recycling, and the production of a virgin 3-D printer filament. The energy payback time (EPBT is calculated using the embodied energy of the materials making up the recyclebot itself and is found to be about five days for the extrusion of a poly lactic acid (PLA filament or 2.5 days for the extrusion of an acrylonitrile butadiene styrene (ABS filament. A mono-crystalline silicon solar PV system is about 2.6 years alone. However, this can be reduced by over 96% if the solar PV system powers the recyclebot to produce a PLA filament from waste plastic (EPBT is only 0.10 year or about a month. Likewise, if an ABS filament is produced from a recyclebot powered by the solar PV system, the energy saved is 90.6–99.9 MJ/kg and 26.33–29.43 kg of the ABS filament needs to be produced in about half a month for the system to pay for itself. The results clearly show that the solar PV system powered recyclebot is already an excellent way to save energy for sustainable development.

  1. Elastic-plastic-creep response of structures under composite time history of loadings

    International Nuclear Information System (INIS)

    Zudans, Z.

    1975-01-01

    The purpose of this work is to derive the theory, to develop efficient numerical techniques accounting for plasticity, creep and overall equilibrium, to describe the overall structure of the resulting computer program, and to demonstrate the capability of this analysis on a real structure. Classical plasticity theory is used to develop a novel method based on the concept of 'plastic stress' for consideration of inelastic behavior. It is shown that materials stres-strain curves can be followed to any desired degree of accuracy both for isotropic and kinematic hardening. It is further shown that for kinematic hardening it is necessary to base the incremental change on the state corresponding to the mean of the initial and the final states in order to satisfy the yield condition at the final state. The equation of state and strain hardening is used to describe the creep behavior. A novel numerical technique to describe a complex load history is developed by using time as a parameter, history breakpoint determination by scanning of various load vectors and by linear interpolation between any two breakpoints in the load history. The 'plastic stress' load vector concept is utilized with iteration and extrapolation to converge to the equilibrium states with simultaneous satisfaction of the stress-strain relations for each of the iterated states. The essential features of the computer program DYPLAS-FSH, based on the theory and techniques described above, and a postprocessor program POR-FSH, based on RDT F9-5T for ratcheting and fatigue evaluation, are identified and discussed. These computer programs are used to analyse the ellipsoidal pressure vessel head of the intermediate heat exchanger of EBR-II, penetrated by two closely spaced non-radial nozzles, subjected to four consecutive composite cycles of complex mechanical and thermal loads

  2. Cycle time improvement for plastic injection moulding process by sub groove modification in conformal cooling channel

    Science.gov (United States)

    Kamarudin, K.; Wahab, M. S.; Batcha, M. F. M.; Shayfull, Z.; Raus, A. A.; Ahmed, Aqeel

    2017-09-01

    Mould designers have been struggling for the improvement of the cooling system performance, despite the fact that the cooling system complexity is physically limited by the fabrication capability of the conventional tooling methods. However, the growth of Solid Free Form Technology (SFF) allow the mould designer to develop more than just a regular conformal cooling channel. Numerous researchers demonstrate that conformal cooling channel was tremendously given significant result in the improvement of productivity and quality in the plastic injection moulding process. This paper presents the research work that applies the passive enhancement method in square shape cooling channel to enhance the efficiency of cooling performance by adding the sub groove to the cooling channel itself. Previous design that uses square shape cooling channel was improved by adding various numbers of sub groove to meet the best sub groove design that able reduced the cooling time. The effect of sub groove design on cooling time was investigated by Autodesk Modlflow Insight software. The simulation results showed that the various sub groove designs give different values to ejection time. The Design 7 showed the lowest value of ejection time with 24.3% increment. The addition of sub groove significantly increased a coolant velocity and a rate of heat transfer from molten plastic to coolant.

  3. Experience of plastic surgery registrars in a European Working Time Directive compliant rota.

    Science.gov (United States)

    de Blacam, Catherine; Tierney, Sean; Shelley, Odhran

    2017-08-01

    Surgical training requires exposure to clinical decision-making and operative experience in a supervised environment. It is recognised that learning ability is compromised when fatigued. The European Working Time Directive requires a decrease in working hours, but compliance reduces trainees' clinical exposure, which has profound implications for plastic surgery training. The aim of this study was to evaluate plastic surgery registrars' experience of an EWTD-compliant rota, and to examine its impact on patient care, education, and logbook activity. An electronic survey was distributed to plastic surgery registrars in a university teaching hospital. Registrars were asked to rate 31 items on a five-point Likert scale, including statements on patient care, clinical and operative duties, training, and quality-of-life. Interquartile deviations explored consensus among responses. Operative caseload was objectively evaluated using eLogbook data to compare activity at equal time points before and after implementation of the EWTD rota. Highest levels of consensus among respondents were found in positive statements addressing alertness and preparation for theatre, as well as time to read and study for exams. Registrars agreed that EWTD compliance improved their quality-of-life. However, it was felt that continuity of patient care was compromised by work hours restriction. Registrars were concerned about their operative experience. eLogbook data confirmed a fall-off in mean caseload of 31.8% compared to activity prior to EWTD rota implementation. While EWTD compliant rotas promote trainee quality-of-life and satisfaction with training, attention needs to be paid to optimising operative opportunities.

  4. Stopping times in cessation flows of Bingham plastics with slip at the wall

    Science.gov (United States)

    Philippou, Maria; Damianou, Yiolanda; Kaoullas, George; Georgiou, Georgios C.

    2012-09-01

    We solve numerically the cessation of axisymmetric Poiseuille flow of a Bingham plastic assuming that slip occurs along the wall. A power-law expression is used to relate the wall shear stress to the slip velocity. The numerical results show that the velocity becomes and remains uniform before complete cessation and that the stopping time is finite only when the exponent sBingham number and the volumetric flow rate decays exponentially. When s>1, the decay is much slower, i.e. polynomial. The asymptotic expressions for the volumetric flow rate in the case of full-slip are also derived.

  5. Presynaptic Ionotropic Receptors Controlling and Modulating the Rules for Spike Timing-Dependent Plasticity

    Directory of Open Access Journals (Sweden)

    Matthijs B. Verhoog

    2011-01-01

    Full Text Available Throughout life, activity-dependent changes in neuronal connection strength enable the brain to refine neural circuits and learn based on experience. In line with predictions made by Hebb, synapse strength can be modified depending on the millisecond timing of action potential firing (STDP. The sign of synaptic plasticity depends on the spike order of presynaptic and postsynaptic neurons. Ionotropic neurotransmitter receptors, such as NMDA receptors and nicotinic acetylcholine receptors, are intimately involved in setting the rules for synaptic strengthening and weakening. In addition, timing rules for STDP within synapses are not fixed. They can be altered by activation of ionotropic receptors located at, or close to, synapses. Here, we will highlight studies that uncovered how network actions control and modulate timing rules for STDP by activating presynaptic ionotropic receptors. Furthermore, we will discuss how interaction between different types of ionotropic receptors may create “timing” windows during which particular timing rules lead to synaptic changes.

  6. Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph

    Science.gov (United States)

    Moskal, P.; Rundel, O.; Alfs, D.; Bednarski, T.; Białas, P.; Czerwiński, E.; Gajos, A.; Giergiel, K.; Gorgol, M.; Jasińska, B.; Kamińska, D.; Kapłon, Ł.; Korcyl, G.; Kowalski, P.; Kozik, T.; Krzemień, W.; Kubicz, E.; Niedźwiecki, Sz; Pałka, M.; Raczyński, L.; Rudy, Z.; Sharma, N. G.; Słomski, A.; Silarski, M.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Witkowski, P.; Zieliński, M.; Zoń, N.

    2016-03-01

    Recent tests of a single module of the Jagiellonian Positron Emission Tomography system (J-PET) consisting of 30 cm long plastic scintillator strips have proven its applicability for the detection of annihilation quanta (0.511 MeV) with a coincidence resolving time (CRT) of 0.266 ns. The achieved resolution is almost by a factor of two better with respect to the current TOF-PET detectors and it can still be improved since, as it is shown in this article, the intrinsic limit of time resolution for the determination of time of the interaction of 0.511 MeV gamma quanta in plastic scintillators is much lower. As the major point of the article, a method allowing to record timestamps of several photons, at two ends of the scintillator strip, by means of matrix of silicon photomultipliers (SiPM) is introduced. As a result of simulations, conducted with the number of SiPM varying from 4 to 42, it is shown that the improvement of timing resolution saturates with the growing number of photomultipliers, and that the 2× 5 configuration at two ends allowing to read twenty timestamps, constitutes an optimal solution. The conducted simulations accounted for the emission time distribution, photon transport and absorption inside the scintillator, as well as quantum efficiency and transit time spread of photosensors, and were checked based on the experimental results. Application of the 2× 5 matrix of SiPM allows for achieving the coincidence resolving time in positron emission tomography of ≈ 0.170 ns for 15 cm axial field-of-view (AFOV) and ≈ 0.365 ns for 100 cm AFOV. The results open perspectives for construction of a cost-effective TOF-PET scanner with significantly better TOF resolution and larger AFOV with respect to the current TOF-PET modalities.

  7. Establishing Substantial Equivalence: Transcriptomics

    Science.gov (United States)

    Baudo, María Marcela; Powers, Stephen J.; Mitchell, Rowan A. C.; Shewry, Peter R.

    Regulatory authorities in Western Europe require transgenic crops to be substantially equivalent to conventionally bred forms if they are to be approved for commercial production. One way to establish substantial equivalence is to compare the transcript profiles of developing grain and other tissues of transgenic and conventionally bred lines, in order to identify any unintended effects of the transformation process. We present detailed protocols for transcriptomic comparisons of developing wheat grain and leaf material, and illustrate their use by reference to our own studies of lines transformed to express additional gluten protein genes controlled by their own endosperm-specific promoters. The results show that the transgenes present in these lines (which included those encoding marker genes) did not have any significant unpredicted effects on the expression of endogenous genes and that the transgenic plants were therefore substantially equivalent to the corresponding parental lines.

  8. Timing performance of plastic scintillators of various sizes in a beam test

    International Nuclear Information System (INIS)

    Zhao Li; Jiang Linli; Chinese Acacdemy of Sciences, Beijing; Heng Yuekun; Wu Chong; Zhao Xiaojian; Sun Zhijia; Wu Jinjie; Wang Yifang; Zhao Yuda; Nanjing Univ., Nanjing; Wang Fengmei

    2006-01-01

    The time-of-flight detector of the Beijing Spectrometer III(BES III) is built with long and narrow plastic scintillator bars, with each being 2.3 m long and 6 cm wide. The time resolution of prototypes wrapped with aluminum film has been studied for various thickness of the scintillator using a test beam at the Institute of High Energy Physics in Beijing, China. In this paper, the position-dependent time resolution of the scintillator with a thickness of 4 cm, 5 cm and 6 cm is presented and compared with a Monte Carlo simulation, the results show that the bar with a thickness of 5 cm has the best performance. (authors)

  9. Seasonal timing in a warming world : Plasticity of seasonal timing of growth and reproduction

    NARCIS (Netherlands)

    Salis, Lucia

    2015-01-01

    In seasonal environments the timing of various biological processes is crucial for growth, survival and reproductive success of an individual. Nowadays, rapid large-scale climate change is altering species’ seasonal timing (phenology) in many eco¬systems. In this thesis Lucia Salis focuses on the

  10. A Computational Model of the Temporal Dynamics of Plasticity in Procedural Learning: Sensitivity to Feedback Timing

    Directory of Open Access Journals (Sweden)

    Vivian V. Valentin

    2014-07-01

    Full Text Available The evidence is now good that different memory systems mediate the learning of different types of category structures. In particular, declarative memory dominates rule-based (RB category learning and procedural memory dominates information-integration (II category learning. For example, several studies have reported that feedback timing is critical for II category learning, but not for RB category learning – results that have broad support within the memory systems literature. Specifically, II category learning has been shown to be best with feedback delays of 500ms compared to delays of 0 and 1000ms, and highly impaired with delays of 2.5 seconds or longer. In contrast, RB learning is unaffected by any feedback delay up to 10 seconds. We propose a neurobiologically detailed theory of procedural learning that is sensitive to different feedback delays. The theory assumes that procedural learning is mediated by plasticity at cortical-striatal synapses that are modified by dopamine-mediated reinforcement learning. The model captures the time-course of the biochemical events in the striatum that cause synaptic plasticity, and thereby accounts for the empirical effects of various feedback delays on II category learning.

  11. Spike-timing-dependent plasticity in the human dorso-lateral prefrontal cortex.

    Science.gov (United States)

    Casula, Elias Paolo; Pellicciari, Maria Concetta; Picazio, Silvia; Caltagirone, Carlo; Koch, Giacomo

    2016-12-01

    Changes in the synaptic strength of neural connections are induced by repeated coupling of activity of interconnected neurons with precise timing, a phenomenon known as spike-timing-dependent plasticity (STDP). It is debated if this mechanism exists in large-scale cortical networks in humans. We combined transcranial magnetic stimulation (TMS) with concurrent electroencephalography (EEG) to directly investigate the effects of two paired associative stimulation (PAS) protocols (fronto-parietal and parieto-frontal) of pre and post-synaptic inputs within the human fronto-parietal network. We found evidence that the dorsolateral prefrontal cortex (DLPFC) has the potential to form robust STDP. Long-term potentiation/depression of TMS-evoked cortical activity is prompted after that DLPFC stimulation is followed/preceded by posterior parietal stimulation. Such bidirectional changes are paralleled by sustained increase/decrease of high-frequency oscillatory activity, likely reflecting STDP responsivity. The current findings could be important to drive plasticity of damaged cortical circuits in patients with cognitive or psychiatric disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Spike Train Auto-Structure Impacts Post-Synaptic Firing and Timing-Based Plasticity

    Science.gov (United States)

    Scheller, Bertram; Castellano, Marta; Vicente, Raul; Pipa, Gordon

    2011-01-01

    Cortical neurons are typically driven by several thousand synapses. The precise spatiotemporal pattern formed by these inputs can modulate the response of a post-synaptic cell. In this work, we explore how the temporal structure of pre-synaptic inhibitory and excitatory inputs impact the post-synaptic firing of a conductance-based integrate and fire neuron. Both the excitatory and inhibitory input was modeled by renewal gamma processes with varying shape factors for modeling regular and temporally random Poisson activity. We demonstrate that the temporal structure of mutually independent inputs affects the post-synaptic firing, while the strength of the effect depends on the firing rates of both the excitatory and inhibitory inputs. In a second step, we explore the effect of temporal structure of mutually independent inputs on a simple version of Hebbian learning, i.e., hard bound spike-timing-dependent plasticity. We explore both the equilibrium weight distribution and the speed of the transient weight dynamics for different mutually independent gamma processes. We find that both the equilibrium distribution of the synaptic weights and the speed of synaptic changes are modulated by the temporal structure of the input. Finally, we highlight that the sensitivity of both the post-synaptic firing as well as the spike-timing-dependent plasticity on the auto-structure of the input of a neuron could be used to modulate the learning rate of synaptic modification. PMID:22203800

  13. Seasonal timing in a warming world : plasticity of seasonal timing of growth and reproduction

    OpenAIRE

    Salis, L.

    2015-01-01

    In seasonal environments the timing of various biological processes is crucial for growth, survival and reproductive success of an individual. Nowadays, rapid large-scale climate change is altering species’ seasonal timing (phenology) in many eco¬systems. In this thesis Lucia Salis focuses on the study of seasonal timing in the food chain of the oak-winter moth-great tit. As temperature increased over the last decades, both phenologies of the host plant, the oak, and the herbivorous insect, t...

  14. Implementation of a new 'community' laboratory CD4 service in a rural health district in South Africa extends laboratory services and substantially improves local reporting turnaround time.

    Science.gov (United States)

    Coetzee, L M; Cassim, N; Glencross, D K

    2015-12-16

    The CD4 integrated service delivery model (ITSDM) provides for reasonable access to pathology services across South Africa (SA) by offering three new service tiers that extend services into remote, under-serviced areas. ITSDM identified Pixley ka Seme as such an under-serviced district. To address the poor service delivery in this area, a new ITSDM community (tier 3) laboratory was established in De Aar, SA. Laboratory performance and turnaround time (TAT) were monitored post implementation to assess the impact on local service delivery. Using the National Health Laboratory Service Corporate Data Warehouse, CD4 data were extracted for the period April 2012-July 2013 (n=11,964). Total mean TAT (in hours) was calculated and pre-analytical and analytical components assessed. Ongoing testing volumes, as well as external quality assessment performance across ten trials, were used to indicate post-implementation success. Data were analysed using Stata 12. Prior to the implementation of CD4 testing at De Aar, the total mean TAT was 20.5 hours. This fell to 8.2 hours post implementation, predominantly as a result of a lower pre-analytical mean TAT reducing from a mean of 18.9 to 1.8 hours. The analytical testing TAT remained unchanged after implementation and monthly test volumes increased by up to 20%. External quality assessment indicated adequate performance. Although subjective, questionnaires sent to facilities reported improved service delivery. Establishing CD4 testing in a remote community laboratory substantially reduces overall TAT. Additional community CD4 laboratories should be established in under-serviced areas, especially where laboratory infrastructure is already in place.

  15. Modification of Time-dependent Schrodinger Equation in Quantum Mechanics by Adding Derivations of Time's Flow (Relative Time) with Respect of the Both Space and Time Based on the ``Substantial Motion'' Theory of Iranian Philosopher; Mulla Sadra

    Science.gov (United States)

    Gholibeigian, Hassan; Gholibeigian, Kazem

    2016-03-01

    In Sadra's theory, the relative time for an atom (body) which is varying continuously becomes momentums of its involved fundamental particles (strings), (time's relativity) [Gholibeigian, APS March Meeting 2015, abstract #V1.023]. Einstein's theory of special relativity might be special form of Sadra's theory. ``The nature has two magnitudes and two elongations, the one is gradual being (wavy-like motion) which belongs to the time and dividable to the former and the next times in mind, and the other is jerky-like motion which belongs to the space and dividable to the former and the next places'' [Asfar, Mulla Sadra, (1571/2-1640)]. Sadra separated the nature of time from nature of space. Therefore we can match these two natures on wave-particle duality. It means that the nature of time might be wavy-like and the nature of space might be jerky-like. So, there are two independent variable sources for particle(s)' flow with respect of its two natures such as potential of flow and relative time which vary with respect of both space and time. Consequently we propose two additional parts to Schrodinger's equation: H⌢ Ψ +tp ∇t' = ih/2 π ∂/∂t Ψ +tp∂/∂t t' , where tp is Planck's time and t' is relative time: t' = f (m , v , t) = t +/- Δt , in which t is time, m is mass and vis speed of particle . AmirKabir University of Technology, Tehran, Iran.

  16. Spike-timing dependent plasticity in a transistor-selected resistive switching memory

    International Nuclear Information System (INIS)

    Ambrogio, S; Balatti, S; Nardi, F; Facchinetti, S; Ielmini, D

    2013-01-01

    In a neural network, neuron computation is achieved through the summation of input signals fed by synaptic connections. The synaptic activity (weight) is dictated by the synchronous firing of neurons, inducing potentiation/depression of the synaptic connection. This learning function can be supported by the resistive switching memory (RRAM), which changes its resistance depending on the amplitude, the pulse width and the bias polarity of the applied signal. This work shows a new synapse circuit comprising a MOS transistor as a selector and a RRAM as a variable resistance, displaying spike-timing dependent plasticity (STDP) similar to the one originally experienced in biological neural networks. We demonstrate long-term potentiation and long-term depression by simulations with an analytical model of resistive switching. Finally, the experimental demonstration of the new STDP scheme is presented. (paper)

  17. A new visco-elasto-plastic model via time-space fractional derivative

    Science.gov (United States)

    Hei, X.; Chen, W.; Pang, G.; Xiao, R.; Zhang, C.

    2018-02-01

    To characterize the visco-elasto-plastic behavior of metals and alloys we propose a new constitutive equation based on a time-space fractional derivative. The rheological representative of the model can be analogous to that of the Bingham-Maxwell model, while the dashpot element and sliding friction element are replaced by the corresponding fractional elements. The model is applied to describe the constant strain rate, stress relaxation and creep tests of different metals and alloys. The results suggest that the proposed simple model can describe the main characteristics of the experimental observations. More importantly, the model can also provide more accurate predictions than the classic Bingham-Maxwell model and the Bingham-Norton model.

  18. Unsupervised learning by spike timing dependent plasticity in phase change memory (PCM synapses

    Directory of Open Access Journals (Sweden)

    Stefano eAmbrogio

    2016-03-01

    Full Text Available We present a novel one-transistor/one-resistor (1T1R synapse for neuromorphic networks, based on phase change memory (PCM technology. The synapse is capable of spike-timing dependent plasticity (STDP, where gradual potentiation relies on set transition, namely crystallization, in the PCM, while depression is achieved via reset or amorphization of a chalcogenide active volume. STDP characteristics are demonstrated by experiments under variable initial conditions and number of pulses. Finally, we support the applicability of the 1T1R synapse for learning and recognition of visual patterns by simulations of fully connected neuromorphic networks with 2 or 3 layers with high recognition efficiency. The proposed scheme provides a feasible low-power solution for on-line unsupervised machine learning in smart reconfigurable sensors.

  19. Simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model

    Science.gov (United States)

    Chen, SongGui; Sun, QiCheng; Jin, Feng; Liu, JianGuo

    2014-03-01

    Fresh cement mortar is a type of workable paste, which can be well approximated as a Bingham plastic and whose flow behavior is of major concern in engineering. In this paper, Papanastasiou's model for Bingham fluids is solved by using the multiplerelaxation-time lattice Boltzmann model (MRT-LB). Analysis of the stress growth exponent m in Bingham fluid flow simulations shows that Papanastasiou's model provides a good approximation of realistic Bingham plastics for values of m > 108. For lower values of m, Papanastasiou's model is valid for fluids between Bingham and Newtonian fluids. The MRT-LB model is validated by two benchmark problems: 2D steady Poiseuille flows and lid-driven cavity flows. Comparing the numerical results of the velocity distributions with corresponding analytical solutions shows that the MRT-LB model is appropriate for studying Bingham fluids while also providing better numerical stability. We further apply the MRT-LB model to simulate flow through a sudden expansion channel and the flow surrounding a round particle. Besides the rich flow structures obtained in this work, the dynamics fluid force on the round particle is calculated. Results show that both the Reynolds number Re and the Bingham number Bn affect the drag coefficients C D , and a drag coefficient with Re and Bn being taken into account is proposed. The relationship of Bn and the ratio of unyielded zone thickness to particle diameter is also analyzed. Finally, the Bingham fluid flowing around a set of randomly dispersed particles is simulated to obtain the apparent viscosity and velocity fields. These results help simulation of fresh concrete flowing in porous media.

  20. Establishing Substantial Equivalence: Proteomics

    Science.gov (United States)

    Lovegrove, Alison; Salt, Louise; Shewry, Peter R.

    Wheat is a major crop in world agriculture and is consumed after processing into a range of food products. It is therefore of great importance to determine the consequences (intended and unintended) of transgenesis in wheat and whether genetically modified lines are substantially equivalent to those produced by conventional plant breeding. Proteomic analysis is one of several approaches which can be used to address these questions. Two-dimensional PAGE (2D PAGE) remains the most widely available method for proteomic analysis, but is notoriously difficult to reproduce between laboratories. We therefore describe methods which have been developed as standard operating procedures in our laboratory to ensure the reproducibility of proteomic analyses of wheat using 2D PAGE analysis of grain proteins.

  1. Gradient plasticity for thermo-mechanical processes in metals with length and time scales

    Science.gov (United States)

    Voyiadjis, George Z.; Faghihi, Danial

    2013-03-01

    A thermodynamically consistent framework is developed in order to characterize the mechanical and thermal behavior of metals in small volume and on the fast transient time. In this regard, an enhanced gradient plasticity theory is coupled with the application of a micromorphic approach to the temperature variable. A physically based yield function based on the concept of thermal activation energy and the dislocation interaction mechanisms including nonlinear hardening is taken into consideration in the derivation. The effect of the material microstructural interface between two materials is also incorporated in the formulation with both temperature and rate effects. In order to accurately address the strengthening and hardening mechanisms, the theory is developed based on the decomposition of the mechanical state variables into energetic and dissipative counterparts which endowed the constitutive equations to have both energetic and dissipative gradient length scales for the bulk material and the interface. Moreover, the microstructural interaction effect in the fast transient process is addressed by incorporating two time scales into the microscopic heat equation. The numerical example of thin film on elastic substrate or a single phase bicrystal under uniform tension is addressed here. The effects of individual counterparts of the framework on the thermal and mechanical responses are investigated. The model is also compared with experimental results.

  2. Does spike-timing-dependent synaptic plasticity couple or decouple neurons firing in synchrony?

    Directory of Open Access Journals (Sweden)

    Andreas eKnoblauch

    2012-08-01

    Full Text Available Spike synchronization is thought to have a constructive role for feature integration, attention, associativelearning, and the formation of bidirectionally connected Hebbian cell assemblies. By contrast, theoreticalstudies on spike-timing-dependent plasticity (STDP report an inherently decoupling influence of spikesynchronization on synaptic connections of coactivated neurons. For example, bidirectional synapticconnections as found in cortical areas could be reproduced only by assuming realistic models of STDP andrate coding. We resolve this conflict by theoretical analysis and simulation of various simple and realisticSTDP models that provide a more complete characterization of conditions when STDP leads to eithercoupling or decoupling of neurons firing in synchrony. In particular, we show that STDP consistentlycouples synchronized neurons if key model parameters are matched to physiological data: First, synapticpotentiation must be significantly stronger than synaptic depression for small (positive or negative timelags between presynaptic and postsynaptic spikes. Second, spike synchronization must be sufficientlyimprecise, for example, within a time window of 5-10msec instead of 1msec. Third, axonal propagationdelays should not be much larger than dendritic delays. Under these assumptions synchronized neuronswill be strongly coupled leading to a dominance of bidirectional synaptic connections even for simpleSTDP models and low mean firing rates at the level of spontaneous activity.

  3. Plasticity of the intrinsic period of the human circadian timing system.

    Directory of Open Access Journals (Sweden)

    Frank A J L Scheer

    2007-08-01

    Full Text Available Human expeditions to Mars will require adaptation to the 24.65-h Martian solar day-night cycle (sol, which is outside the range of entrainment of the human circadian pacemaker under lighting intensities to which astronauts are typically exposed. Failure to entrain the circadian time-keeping system to the desired rest-activity cycle disturbs sleep and impairs cognitive function. Furthermore, differences between the intrinsic circadian period and Earth's 24-h light-dark cycle underlie human circadian rhythm sleep disorders, such as advanced sleep phase disorder and non-24-hour sleep-wake disorders. Therefore, first, we tested whether exposure to a model-based lighting regimen would entrain the human circadian pacemaker at a normal phase angle to the 24.65-h Martian sol and to the 23.5-h day length often required of astronauts during short duration space exploration. Second, we tested here whether such prior entrainment to non-24-h light-dark cycles would lead to subsequent modification of the intrinsic period of the human circadian timing system. Here we show that exposure to moderately bright light ( approximately 450 lux; approximately 1.2 W/m(2 for the second or first half of the scheduled wake episode is effective for entraining individuals to the 24.65-h Martian sol and a 23.5-h day length, respectively. Estimations of the circadian periods of plasma melatonin, plasma cortisol, and core body temperature rhythms collected under forced desynchrony protocols revealed that the intrinsic circadian period of the human circadian pacemaker was significantly longer following entrainment to the Martian sol as compared to following entrainment to the 23.5-h day. The latter finding of after-effects of entrainment reveals for the first time plasticity of the period of the human circadian timing system. Both findings have important implications for the treatment of circadian rhythm sleep disorders and human space exploration.

  4. Associative stimulation of the supraorbital nerve fails to induce timing-specific plasticity in the human blink reflex

    DEFF Research Database (Denmark)

    Zeuner, Kirsten E; Knutzen, Arne; Al-Ali, Asmaa

    2010-01-01

    Associative high-frequency electrical stimulation (HFS) of the supraorbital nerve in five healthy individuals induced long-term potentiation (LTP)-like or depression (LTD)-like changes in the human blink reflex circuit according to the rules of spike timing-dependent plasticity (Mao and Evinger...

  5. Elastic-plastic creep response of structures under composite time history

    Energy Technology Data Exchange (ETDEWEB)

    Zudans, Z [Franklin Inst. Research Labs., Philadelphia, Pa. (USA)

    1975-12-01

    High temperature nuclear reactor components are subject to a complex history of thermal and mechanical loading cycles. To evaluate the adequacy of such components, detailed information on the accumulated inelastic strains and strain cycling is required. This paper presents the theory, describes efficient numerical techniques accounting for plasticity, creep and overall equilibrium, describes the overall structure of the resulting computer program, and demonstrates the capability of the analysis method on a real three-dimensional structure. The new results of this work are the efficient handling of an arbitrary load history, introduction of the 'plastic stress' concept for inelastic computation, novel implementation of classical plasticity with recognition of incrementation conditions for the kinematic hardening, use of the load incrementation algorithm based on the 'plastic stress' concept, and development of a computer code capable of solving practical three-dimensional problems.

  6. Elastic-plastic creep response of structures under composite time history

    International Nuclear Information System (INIS)

    Zudans, Z.

    1975-01-01

    High temperature nuclear reactor components are subject to a complex history of thermal and mechanical loading cycles. To evaluate the adequacy of such components, detailed information on the accumulated inelastic strains and strain cycling is required. This paper presents the theory, describes efficient numerical techniques accounting for plasticity, creep and overall equilibrium, describes the overall structure of the resulting computer program, and demonstrates the capability of the analysis method on a real three-dimensional structure. The new results of this work are the efficient handling of an arbitrary load history, introduction of the 'plastic stress' concept for inelastic computation, novel implementation of classical plasticity with recognition of incrementation conditions for the kinematic hardening, use of the load incrementation algorithm based on the 'plastic stress' concept, and development of a computer code capable of solving practical three-dimensional problems. (Auth.)

  7. Distributed Cerebellar Motor Learning; a Spike-Timing-Dependent Plasticity Model

    Directory of Open Access Journals (Sweden)

    Niceto Rafael Luque

    2016-03-01

    Full Text Available Deep cerebellar nuclei neurons receive both inhibitory (GABAergic synaptic currents from Purkinje cells (within the cerebellar cortex and excitatory (glutamatergic synaptic currents from mossy fibres. Those two deep cerebellar nucleus inputs are thought to be also adaptive, embedding interesting properties in the framework of accurate movements. We show that distributed spike-timing-dependent plasticity mechanisms (STDP located at different cerebellar sites (parallel fibres to Purkinje cells, mossy fibres to deep cerebellar nucleus cells, and Purkinje cells to deep cerebellar nucleus cells in close-loop simulations provide an explanation for the complex learning properties of the cerebellum in motor learning. Concretely, we propose a new mechanistic cerebellar spiking model. In this new model, deep cerebellar nuclei embed a dual functionality: deep cerebellar nuclei acting as a gain adaptation mechanism and as a facilitator for the slow memory consolidation at mossy fibres to deep cerebellar nucleus synapses. Equipping the cerebellum with excitatory (e-STDP and inhibitory (i-STDP mechanisms at deep cerebellar nuclei afferents allows the accommodation of synaptic memories that were formed at parallel fibres to Purkinje cells synapses and then transferred to mossy fibres to deep cerebellar nucleus synapses. These adaptive mechanisms also contribute to modulate the deep-cerebellar-nucleus-output firing rate (output gain modulation towards optimising its working range.

  8. Perceptron learning rule derived from spike-frequency adaptation and spike-time-dependent plasticity.

    Science.gov (United States)

    D'Souza, Prashanth; Liu, Shih-Chii; Hahnloser, Richard H R

    2010-03-09

    It is widely believed that sensory and motor processing in the brain is based on simple computational primitives rooted in cellular and synaptic physiology. However, many gaps remain in our understanding of the connections between neural computations and biophysical properties of neurons. Here, we show that synaptic spike-time-dependent plasticity (STDP) combined with spike-frequency adaptation (SFA) in a single neuron together approximate the well-known perceptron learning rule. Our calculations and integrate-and-fire simulations reveal that delayed inputs to a neuron endowed with STDP and SFA precisely instruct neural responses to earlier arriving inputs. We demonstrate this mechanism on a developmental example of auditory map formation guided by visual inputs, as observed in the external nucleus of the inferior colliculus (ICX) of barn owls. The interplay of SFA and STDP in model ICX neurons precisely transfers the tuning curve from the visual modality onto the auditory modality, demonstrating a useful computation for multimodal and sensory-guided processing.

  9. 2D co-ordinate transformation based on a spike timing-dependent plasticity learning mechanism.

    Science.gov (United States)

    Wu, QingXiang; McGinnity, Thomas Martin; Maguire, Liam; Belatreche, Ammar; Glackin, Brendan

    2008-11-01

    In order to plan accurate motor actions, the brain needs to build an integrated spatial representation associated with visual stimuli and haptic stimuli. Since visual stimuli are represented in retina-centered co-ordinates and haptic stimuli are represented in body-centered co-ordinates, co-ordinate transformations must occur between the retina-centered co-ordinates and body-centered co-ordinates. A spiking neural network (SNN) model, which is trained with spike-timing-dependent-plasticity (STDP), is proposed to perform a 2D co-ordinate transformation of the polar representation of an arm position to a Cartesian representation, to create a virtual image map of a haptic input. Through the visual pathway, a position signal corresponding to the haptic input is used to train the SNN with STDP synapses such that after learning the SNN can perform the co-ordinate transformation to generate a representation of the haptic input with the same co-ordinates as a visual image. The model can be applied to explain co-ordinate transformation in spiking neuron based systems. The principle can be used in artificial intelligent systems to process complex co-ordinate transformations represented by biological stimuli.

  10. Nature of Time as the Wavy-like Motion of the Matter Based on the ``Substantial Motion'' Theory of Iranian Philosopher; Mulla Sadra

    Science.gov (United States)

    Gholibeigian, Hassan; Amirshahkarami, Abdolazim; Gholibeigian, Kazem

    2016-03-01

    In Sadra's theory, the time for an atom (body) becomes momentums of its involved fundamental particles (strings), (time's relativity) [Gholibeigian, APS March Meeting 2015, abstract #V1.023]. Einstein's theory of special relativity can be special form of Sadra's theory. ``The nature has two magnitudes and two elongations, the one is gradual being (wavy-like motion) which belongs to the time and dividable to the former and the next times in mind, and the other is jerky-like motion which belongs to the space and dividable to the former and the next places' [Asfar, Mulla Sadra, (1571/2-1640)]. Sadra separated the nature of time from nature of space. Therefore we can match these two natures on wave-particle duality. It means that the nature of time can be wavy-like and the nature of space can be jerky-like. So, there are two independent variable sources for particle(s)' flow with respect of its two natures such as potential of flow and relative time which vary with respect of both space and time. Consequently we propose two additional parts to Schrodinger's equation: HΨ + ∇t' = EΨ + ∂t' / ∂t , where t is time and t' is relative time: t' = t +/- Δt . AmirKabir University of Technology, Tehran, Iran.

  11. Dynamic Hebbian Cross-Correlation Learning Resolves the Spike Timing Dependent Plasticity Conundrum

    Directory of Open Access Journals (Sweden)

    Tjeerd V. olde Scheper

    2018-01-01

    Full Text Available Spike Timing-Dependent Plasticity has been found to assume many different forms. The classic STDP curve, with one potentiating and one depressing window, is only one of many possible curves that describe synaptic learning using the STDP mechanism. It has been shown experimentally that STDP curves may contain multiple LTP and LTD windows of variable width, and even inverted windows. The underlying STDP mechanism that is capable of producing such an extensive, and apparently incompatible, range of learning curves is still under investigation. In this paper, it is shown that STDP originates from a combination of two dynamic Hebbian cross-correlations of local activity at the synapse. The correlation of the presynaptic activity with the local postsynaptic activity is a robust and reliable indicator of the discrepancy between the presynaptic neuron and the postsynaptic neuron's activity. The second correlation is between the local postsynaptic activity with dendritic activity which is a good indicator of matching local synaptic and dendritic activity. We show that this simple time-independent learning rule can give rise to many forms of the STDP learning curve. The rule regulates synaptic strength without the need for spike matching or other supervisory learning mechanisms. Local differences in dendritic activity at the synapse greatly affect the cross-correlation difference which determines the relative contributions of different neural activity sources. Dendritic activity due to nearby synapses, action potentials, both forward and back-propagating, as well as inhibitory synapses will dynamically modify the local activity at the synapse, and the resulting STDP learning rule. The dynamic Hebbian learning rule ensures furthermore, that the resulting synaptic strength is dynamically stable, and that interactions between synapses do not result in local instabilities. The rule clearly demonstrates that synapses function as independent localized

  12. Unsupervised Learning of Digit Recognition Using Spike-Timing-Dependent Plasticity

    Directory of Open Access Journals (Sweden)

    Peter U. Diehl

    2015-08-01

    Full Text Available In order to understand how the mammalian neocortex is performing computations, two things are necessary; we need to have a good understanding of the available neuronal processing units and mechanisms, and we need to gain a better understanding of how those mechanisms are combined to build functioning systems. Therefore, in recent years there is an increasing interest in how spiking neural networks (SNN can be used to perform complex computations or solve pattern recognition tasks. However, it remains a challenging task to design SNNs which use biologically plausible mechanisms (especially for learning new patterns, since most of such SNN architectures rely on training in a rate-based network and subsequent conversion to a SNN. We present a SNN for digit recognition which is based on mechanisms with increased biological plausibility, i.e. conductance-based instead of current-based synapses, spike-timing-dependent plasticity with time-dependent weight change, lateral inhibition, and an adaptive spiking threshold. Unlike most other systems, we do not use a teaching signal and do not present any class labels to the network. Using this unsupervised learning scheme, our architecture achieves 95% accuracy on the MNIST benchmark, which is better than previous SNN implementations without supervision. The fact that we used no domain-specific knowledge points toward the general applicability of our network design. Also, the performance of our network scales well with the number of neurons used and shows similar performance for four different learning rules, indicating robustness of the full combination of mechanisms, which suggests applicability in heterogeneous biological neural networks.

  13. Effect of tensile properties on time-dependent C(t) and J(t) integrals in elastic-plastic-creep FE analysis

    International Nuclear Information System (INIS)

    Lee, So-Dam; Lee, Han-Sang; Kim, Yun-Jae; Ainsworth, Robert A.; Dean, David W.

    2016-01-01

    This technical note presents the effect of elastic-plastic properties on calculated time-dependent C(t) and J(t) values. This is investigated via systematic elastic-plastic-creep finite element (FE) analysis. Three different stress-strain curves are used, having essentially the same plastic properties at large strains but different tensile data near the 0.2% proof (yield) strength. It is found that the plastic property in stress-strain curve affects the FE C(t) values only at short times (within approximately 20% of the redistribution time). The plastic property affects the initial J values at time t = 0 but not the rate of change of J(t) with time. - Highlights: • The effect of elastic-plastic properties on calculated time-dependent C(t) and J(t) values is presented via FE analysis. • The plastic property affects the FE C(t) values only at short times up to ∼20% of the redistribution time. • The plastic property affects the initial J values at time t = 0 but not the rate of change of J(t) with time.

  14. A model of human motor sequence learning explains facilitation and interference effects based on spike-timing dependent plasticity.

    Directory of Open Access Journals (Sweden)

    Quan Wang

    2017-08-01

    Full Text Available The ability to learn sequential behaviors is a fundamental property of our brains. Yet a long stream of studies including recent experiments investigating motor sequence learning in adult human subjects have produced a number of puzzling and seemingly contradictory results. In particular, when subjects have to learn multiple action sequences, learning is sometimes impaired by proactive and retroactive interference effects. In other situations, however, learning is accelerated as reflected in facilitation and transfer effects. At present it is unclear what the underlying neural mechanism are that give rise to these diverse findings. Here we show that a recently developed recurrent neural network model readily reproduces this diverse set of findings. The self-organizing recurrent neural network (SORN model is a network of recurrently connected threshold units that combines a simplified form of spike-timing dependent plasticity (STDP with homeostatic plasticity mechanisms ensuring network stability, namely intrinsic plasticity (IP and synaptic normalization (SN. When trained on sequence learning tasks modeled after recent experiments we find that it reproduces the full range of interference, facilitation, and transfer effects. We show how these effects are rooted in the network's changing internal representation of the different sequences across learning and how they depend on an interaction of training schedule and task similarity. Furthermore, since learning in the model is based on fundamental neuronal plasticity mechanisms, the model reveals how these plasticity mechanisms are ultimately responsible for the network's sequence learning abilities. In particular, we find that all three plasticity mechanisms are essential for the network to learn effective internal models of the different training sequences. This ability to form effective internal models is also the basis for the observed interference and facilitation effects. This suggests that

  15. Time Dilation And Changes Of Material Properties Of An Atom (Body) In Speed Of Near Light Speed Based On The ``Substantial Motion'' Theory of Iranian Philosopher, Mulla Sadra

    Science.gov (United States)

    Gholibeigian, Hassan; Gholibeigian, Kazem

    Iranian Philosopher, Sadr-ol-Moteallehin (1571-1640) said in his famous book, Asfar: ''the Universe moves in its entity... and time is its fourth dimension, and time is magnitude of the motion (momentum) of the matter in its entity''. In other words, time for each atom is momentum of its involved fundamental particles, [APS March Meeting 2015, abstract #V1.023]. When an atom (body) moves in speed of near light speed, speed of its involved fundamental particles become slow, and consequently the magnitude of its momentum (time) will decrease. On the other hands, when the spin and orbital angular momentum of an atom changed, it means that its properties, mass, strength of its electromagnetic field and its interaction with momentum changed. As a result, each atom (body) which moves in light speed, lower or faster than that, will get a new identity and vice versa. The special relativity can be the special form of this theory. In this way, black holes will be lighter than their involved masses at rest (a paradox with general relativity). Dark matter/energy may be created at first in B.B (Convection Bang) [AGU Fall Meeting 2015, abstract ID: 58425], in more than light speed, so, if we speed protons to more than light speed (in LHC), we may see dark mater/energy in new space-time. AmirKabir University of Technology.

  16. Spike timing regulation on the millisecond scale by distributed synaptic plasticity at the cerebellum input stage: a simulation study

    Directory of Open Access Journals (Sweden)

    Jesus A Garrido

    2013-05-01

    Full Text Available The way long-term synaptic plasticity regulates neuronal spike patterns is not completely understood. This issue is especially relevant for the cerebellum, which is endowed with several forms of long-term synaptic plasticity and has been predicted to operate as a timing and a learning machine. Here we have used a computational model to simulate the impact of multiple distributed synaptic weights in the cerebellar granular layer network. In response to mossy fiber bursts, synaptic weights at multiple connections played a crucial role to regulate spike number and positioning in granule cells. The weight at mossy fiber to granule cell synapses regulated the delay of the first spike and the weight at mossy fiber and parallel fiber to Golgi cell synapses regulated the duration of the time-window during which the first-spike could be emitted. Moreover, the weights of synapses controlling Golgi cell activation regulated the intensity of granule cell inhibition and therefore the number of spikes that could be emitted. First spike timing was regulated with millisecond precision and the number of spikes ranged from 0 to 3. Interestingly, different combinations of synaptic weights optimized either first-spike timing precision or spike number, efficiently controlling transmission and filtering properties. These results predict that distributed synaptic plasticity regulates the emission of quasi-digital spike patterns on the millisecond time scale and allows the cerebellar granular layer to flexibly control burst transmission along the mossy fiber pathway.

  17. Modification of Schrodinger Equation in Quantum Mechanics by Adding Derivations of Time's Flow (Relative Time) with Respect of the Both Space and Time Based on the ``Substantial Motion'' Theory of Iranian Philosopher; Mulla Sadra

    Science.gov (United States)

    Gholibeigian, Hassan; Amirshahkarami, Abdolazim; Gholibeigian, Kazem

    2016-05-01

    ``The nature has two magnitudes and two elongations, one is gradual being (wavy-like motion) which belongs to the time and dividable to the former and the next times in mind, and the other one is jerky-like motion which belongs to the space and dividable to the former and the next places'' [Asfar, Mulla Sadra, (1571/2-1640)]. These two separated natures of space-time are matched on wave-particle duality. Therefore, the nature of time can be wavy-like and the nature of space can be jerky-like. So, there are two independent variable sources of particle(s)' flow while they are match exactly with each other. These two sources are potential of flow and potential of time (relative time) which vary with respect to both space and time. Here, we propose two additional parts to Schrodinger's equation with respect to relative time: HΨ + ∇t' = EΨ + ∂t' / ∂t , where t is time and t' is relative time: t' = t +/- Δt [Gholibeigian et al., APS March Meeting 2016], which for each atom becomes: tatom = ∑mnucleons + ∑melectrons where m is momentum [Gholibeigian, APS March Meeting 2015, abstract #V1.023]. Using time's relativity in Schrodinger equation will give us more precious results. AmirKabir University of Technology,Tehran, Iran.

  18. Regulation of spike timing-dependent plasticity of olfactory inputs in mitral cells in the rat olfactory bulb.

    Directory of Open Access Journals (Sweden)

    Teng-Fei Ma

    Full Text Available The recent history of activity input onto granule cells (GCs in the main olfactory bulb can affect the strength of lateral inhibition, which functions to generate contrast enhancement. However, at the plasticity level, it is unknown whether and how the prior modification of lateral inhibition modulates the subsequent induction of long-lasting changes of the excitatory olfactory nerve (ON inputs to mitral cells (MCs. Here we found that the repetitive stimulation of two distinct excitatory inputs to the GCs induced a persistent modification of lateral inhibition in MCs in opposing directions. This bidirectional modification of inhibitory inputs differentially regulated the subsequent synaptic plasticity of the excitatory ON inputs to the MCs, which was induced by the repetitive pairing of excitatory postsynaptic potentials (EPSPs with postsynaptic bursts. The regulation of spike timing-dependent plasticity (STDP was achieved by the regulation of the inter-spike-interval (ISI of the postsynaptic bursts. This novel form of inhibition-dependent regulation of plasticity may contribute to the encoding or processing of olfactory information in the olfactory bulb.

  19. Inhibition of DNA Methylation Impairs Synaptic Plasticity during an Early Time Window in Rats

    Directory of Open Access Journals (Sweden)

    Pablo Muñoz

    2016-01-01

    Full Text Available Although the importance of DNA methylation-dependent gene expression to neuronal plasticity is well established, the dynamics of methylation and demethylation during the induction and expression of synaptic plasticity have not been explored. Here, we combined electrophysiological, pharmacological, molecular, and immunohistochemical approaches to examine the contribution of DNA methylation and the phosphorylation of Methyl-CpG-binding protein 2 (MeCP2 to synaptic plasticity. We found that, at twenty minutes after theta burst stimulation (TBS, the DNA methylation inhibitor 5-aza-2-deoxycytidine (5AZA impaired hippocampal long-term potentiation (LTP. Surprisingly, after two hours of TBS, when LTP had become a transcription-dependent process, 5AZA treatment had no effect. By comparing these results to those in naive slices, we found that, at two hours after TBS, an intergenic region of the RLN gene was hypomethylated and that the phosphorylation of residue S80 of MeCP2 was decreased, while the phosphorylation of residue S421 was increased. As expected, 5AZA affected only the methylation of the RLN gene and exerted no effect on MeCP2 phosphorylation patterns. In summary, our data suggest that tetanic stimulation induces critical changes in synaptic plasticity that affects both DNA methylation and the phosphorylation of MeCP2. These data also suggest that early alterations in DNA methylation are sufficient to impair the full expression of LTP.

  20. Inhibition of DNA Methylation Impairs Synaptic Plasticity during an Early Time Window in Rats.

    Science.gov (United States)

    Muñoz, Pablo; Estay, Carolina; Díaz, Paula; Elgueta, Claudio; Ardiles, Álvaro O; Lizana, Pablo A

    2016-01-01

    Although the importance of DNA methylation-dependent gene expression to neuronal plasticity is well established, the dynamics of methylation and demethylation during the induction and expression of synaptic plasticity have not been explored. Here, we combined electrophysiological, pharmacological, molecular, and immunohistochemical approaches to examine the contribution of DNA methylation and the phosphorylation of Methyl-CpG-binding protein 2 (MeCP2) to synaptic plasticity. We found that, at twenty minutes after theta burst stimulation (TBS), the DNA methylation inhibitor 5-aza-2-deoxycytidine (5AZA) impaired hippocampal long-term potentiation (LTP). Surprisingly, after two hours of TBS, when LTP had become a transcription-dependent process, 5AZA treatment had no effect. By comparing these results to those in naive slices, we found that, at two hours after TBS, an intergenic region of the RLN gene was hypomethylated and that the phosphorylation of residue S80 of MeCP2 was decreased, while the phosphorylation of residue S421 was increased. As expected, 5AZA affected only the methylation of the RLN gene and exerted no effect on MeCP2 phosphorylation patterns. In summary, our data suggest that tetanic stimulation induces critical changes in synaptic plasticity that affects both DNA methylation and the phosphorylation of MeCP2. These data also suggest that early alterations in DNA methylation are sufficient to impair the full expression of LTP.

  1. Time-resolved plastic scintillator dosimetry in a dynamic thorax phantom

    DEFF Research Database (Denmark)

    Sibolt, Patrik; Andersen, Claus E.; Ottosson, Wiviann

    2017-01-01

    in a lung. The phantom motion was controlled by a script in-house developed using LabVIEW (National Instruments) and synchronized with the in-house developed ME40 scintillator dosimetry system (DTU Nutech). The dose in the center of the tumor was measured, using a BCF-60 plastic scintillator detector (Saint...

  2. Influence of culture time on the dynamics of N applied to flooding plastic dark soil

    International Nuclear Information System (INIS)

    Lachataignerais Bonet, E.; Aguilera, R.M.; Romero, R.M.; Sosa, J.L.

    1993-01-01

    The influence of 0,15 and 30 years of intensive culture on the changes undergone by the nitrogen applied with the fertilizer (enriched urea at 10 at percent of 15N ) to a plastic dark rice-growing soil, by means of laboratory experiments using isotopic techniques, was studied

  3. Effects of detector-source distance and detector bias voltage variations on time resolution of general purpose plastic scintillation detectors.

    Science.gov (United States)

    Ermis, E E; Celiktas, C

    2012-12-01

    Effects of source-detector distance and the detector bias voltage variations on time resolution of a general purpose plastic scintillation detector such as BC400 were investigated. (133)Ba and (207)Bi calibration sources with and without collimator were used in the present work. Optimum source-detector distance and bias voltage values were determined for the best time resolution by using leading edge timing method. Effect of the collimator usage on time resolution was also investigated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. [Isolation and purification of BMScs of GFP transgenic mouse using the method of adhering to cuture plastic in different time].

    Science.gov (United States)

    Li, Fu-Qiang; Zhou, Hong-Ying; Yang, Hui-Lun; Xiang, Tao; Mei, Yan; Hu, Huo-Zhen; Wang, Ting-Hua

    2006-03-01

    To adopt the method of adhering to culture plastic in different time for cultivating and purifying BMSCs of green fluorescent protein (GFP) transgenic mice. Bone marrow cells isolated from GFP transgenic mice are directly planted in culture flask and an exchange of the total volume medium is made at different time. Then the cells adhering to culture plastic are differently counted according to the cell types and are examined by immunohistochemistry using the antibodies of CD44, CD45 and CD54 in three days. Moreover, the cells after the exchange of the total volume medium in 4 hours, 8 hours and 24 hours are selected and successively subcultured down to the fifth passage. Then the result of amplification is calculated and the cells are examined by immunohistochemistry using the antibodies of CD44, CD45 and CD54. With the extending of the time for the first exchange of medium, the density of cells adhering to culture plastic increased accordingly, but the BMSCs proportion decreased. The cells after first exchange of medium in 4 hours had high BMSCs proportion but low BMSCs density, and the cells in 24 hours had high BMSCs density and low BMSCs proportion. However, the cells in 8-10 hours had high BMSCs density and also high BMSCs proportion. The subcultured BMSCs could stably express GFP. The method of adhering to culture plastic in different time for cultivating and purifying BMSCs of GFP transgenic mice is effective. It is suitable to make the first exchange of total volume medium in 8-10 hours. The subcultured cell has the capacity for amplification and will probably be a seed cell for the research of tissue engineering and gene therapy.

  5. Three-dimensional simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model

    OpenAIRE

    Song-Gui Chen; Chuan-Hu Zhang; Yun-Tian Feng; Qi-Cheng Sun; Feng Jin

    2016-01-01

    This paper presents a three-dimensional (3D) parallel multiple-relaxation-time lattice Boltzmann model (MRT-LBM) for Bingham plastics which overcomes numerical instabilities in the simulation of non-Newtonian fluids for the Bhatnagar–Gross–Krook (BGK) model. The MRT-LBM and several related mathematical models are briefly described. Papanastasiou’s modified model is incorporated for better numerical stability. The impact of the relaxation parameters of the model is studied in detail. The MRT-L...

  6. Elastic-plastic-creep response of structures under composite time history of loadings

    International Nuclear Information System (INIS)

    Zudans, Z.

    1975-01-01

    High temperature nuclear reactor components are subject to a complex history of thermal and mechanical loading cycles. To evaluate the adequacy of such components, detailed information on the accumulated inelastic strains and strain cycling is required. This work derives the theory, develops efficient numerical techniques accounting for plasticity, creep and overall equilibrium, describes the overall structure of the resulting computer program, and demonstrates the capability of this analysis on a real structure. (Auth.)

  7. From time-based to competency-based standards: core transitional competencies in plastic surgery.

    Science.gov (United States)

    Lutz, Kristina; Yazdani, Arjang; Ross, Douglas

    2015-01-01

    Competency-based medical education is becoming increasingly prevalent and is likely to be mandated by the Royal College in the near future. The objective of this study was to define the core technical competencies that should be possessed by plastic surgery residents as they transition into their senior (presently postgraduate year 3) years of training. A list of potential core competencies was generated using a modified Delphi method that included the investigators and 6 experienced, academic plastic surgeons from across Canada and the United States. Generated items were divided into 7 domains: basic surgical skills, anesthesia, hand surgery, cutaneous surgery, esthetic surgery, breast surgery, and craniofacial surgery. Members of the Delphi group were asked to rank particular skills on a 4-point scale with anchored descriptors. Item reduction resulted in a survey consisting of 48 skills grouped into the aforementioned domains. This self-administered survey was distributed to all Canadian program directors (n = 11) via e-mail for validation and further item reduction. The response rate was 100% (11/11). Using the average rankings of program directors, 26 "core" skills were identified. There was agreement of core skills across all domains except for breast surgery and esthetic surgery. Of them, 7 skills were determined to be above the level of a trainee at this stage; a further 15 skills were agreed to be important, but not core, competencies. Overall, 26 competencies have been identified as "core" for plastic surgery residents to possess as they begin their senior, on-service years. The nature of these skills makes them suitable for teaching in a formal, simulated environment, which would ensure that all plastic surgery trainees are competent in these tasks as they transition to their senior years of residency. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  8. Effects of detector–source distance and detector bias voltage variations on time resolution of general purpose plastic scintillation detectors

    International Nuclear Information System (INIS)

    Ermis, E.E.; Celiktas, C.

    2012-01-01

    Effects of source-detector distance and the detector bias voltage variations on time resolution of a general purpose plastic scintillation detector such as BC400 were investigated. 133 Ba and 207 Bi calibration sources with and without collimator were used in the present work. Optimum source-detector distance and bias voltage values were determined for the best time resolution by using leading edge timing method. Effect of the collimator usage on time resolution was also investigated. - Highlights: ► Effect of the source-detector distance on time spectra was investigated. ► Effect of the detector bias voltage variations on time spectra was examined. ► Optimum detector–source distance was determined for the best time resolution. ► Optimum detector bias voltage was determined for the best time resolution. ► 133 Ba and 207 Bi radioisotopes were used.

  9. Quality and Timing of Stressors Differentially Impact on Brain Plasticity and Neuroendocrine-Immune Function in Mice

    Directory of Open Access Journals (Sweden)

    Sara Capoccia

    2013-01-01

    Full Text Available A growing body of evidence suggests that psychological stress is a major risk factor for psychiatric disorders. The basic mechanisms are still under investigation but involve changes in neuroendocrine-immune interactions, ultimately affecting brain plasticity. In this study we characterized central and peripheral effects of different stressors, applied for different time lengths, in adult male C57BL/6J mice. We compared the effects of repeated (7 versus 21 days restraint stress (RS and chronic disruption of social hierarchy (SS on neuroendocrine (corticosterone and immune function (cytokines and splenic apoptosis and on a marker of brain plasticity (brain-derived neurotrophic factor, BDNF . Neuroendocrine activation did not differ between SS and control subjects; by contrast, the RS group showed a strong neuroendocrine response characterized by a specific time-dependent profile. Immune function and hippocampal BDNF levels were inversely related to hypothalamic-pituitary-adrenal axis activation. These data show a fine modulation of the crosstalk between central and peripheral pathways of adaptation and plasticity and suggest that the length of stress exposure is crucial to determine its final outcome on health or disease.

  10. Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device

    International Nuclear Information System (INIS)

    Seo, Kyungah; Park, Sangsu; Lee, Kwanghee; Lee, Byounghun; Hwang, Hyunsang; Kim, Insung; Jung, Seungjae; Jo, Minseok; Park, Jubong; Shin, Jungho; Biju, Kuyyadi P; Kong, Jaemin

    2011-01-01

    We demonstrated analog memory, synaptic plasticity, and a spike-timing-dependent plasticity (STDP) function with a nanoscale titanium oxide bilayer resistive switching device with a simple fabrication process and good yield uniformity. We confirmed the multilevel conductance and analog memory characteristics as well as the uniformity and separated states for the accuracy of conductance change. Finally, STDP and a biological triple model were analyzed to demonstrate the potential of titanium oxide bilayer resistive switching device as synapses in neuromorphic devices. By developing a simple resistive switching device that can emulate a synaptic function, the unique characteristics of synapses in the brain, e.g. combined memory and computing in one synapse and adaptation to the outside environment, were successfully demonstrated in a solid state device.

  11. Artificial neuron operations and spike-timing-dependent plasticity using memristive devices for brain-inspired computing

    Science.gov (United States)

    Marukame, Takao; Nishi, Yoshifumi; Yasuda, Shin-ichi; Tanamoto, Tetsufumi

    2018-04-01

    The use of memristive devices for creating artificial neurons is promising for brain-inspired computing from the viewpoints of computation architecture and learning protocol. We present an energy-efficient multiplier accumulator based on a memristive array architecture incorporating both analog and digital circuitries. The analog circuitry is used to full advantage for neural networks, as demonstrated by the spike-timing-dependent plasticity (STDP) in fabricated AlO x /TiO x -based metal-oxide memristive devices. STDP protocols for controlling periodic analog resistance with long-range stability were experimentally verified using a variety of voltage amplitudes and spike timings.

  12. Bimodal stimulus timing-dependent plasticity in primary auditory cortex is altered after noise exposure with and without tinnitus.

    Science.gov (United States)

    Basura, Gregory J; Koehler, Seth D; Shore, Susan E

    2015-12-01

    Central auditory circuits are influenced by the somatosensory system, a relationship that may underlie tinnitus generation. In the guinea pig dorsal cochlear nucleus (DCN), pairing spinal trigeminal nucleus (Sp5) stimulation with tones at specific intervals and orders facilitated or suppressed subsequent tone-evoked neural responses, reflecting spike timing-dependent plasticity (STDP). Furthermore, after noise-induced tinnitus, bimodal responses in DCN were shifted from Hebbian to anti-Hebbian timing rules with less discrete temporal windows, suggesting a role for bimodal plasticity in tinnitus. Here, we aimed to determine if multisensory STDP principles like those in DCN also exist in primary auditory cortex (A1), and whether they change following noise-induced tinnitus. Tone-evoked and spontaneous neural responses were recorded before and 15 min after bimodal stimulation in which the intervals and orders of auditory-somatosensory stimuli were randomized. Tone-evoked and spontaneous firing rates were influenced by the interval and order of the bimodal stimuli, and in sham-controls Hebbian-like timing rules predominated as was seen in DCN. In noise-exposed animals with and without tinnitus, timing rules shifted away from those found in sham-controls to more anti-Hebbian rules. Only those animals with evidence of tinnitus showed increased spontaneous firing rates, a purported neurophysiological correlate of tinnitus in A1. Together, these findings suggest that bimodal plasticity is also evident in A1 following noise damage and may have implications for tinnitus generation and therapeutic intervention across the central auditory circuit. Copyright © 2015 the American Physiological Society.

  13. Influence of time-dependent elastic-plastic material behaviour on the load-carrying capacity of shells of revolution

    International Nuclear Information System (INIS)

    Schnabel, F.

    1987-01-01

    The present report deals with the influence of time-dependent material behavior on the load-carrying capacity of thin-walled shells of revolution. In the first part various creep-hardening hypotheses as well as the spatial and temporal discretization procedures employed are described. The adaptation of a well-tested finite element method based on ring elements to the treatment of creep problems and several time-integration procedures, in particular the iterative treatment of the coupling between creep and elastic-plastic strains as well as the important aspect of time-step-control are discussed in detail. In the second part several typical shell configurations are analyzed and a comparison with available theoretical and experimental results is made. Finally, the time-dependent load-carrying behavior of torispherical pressure vessel ends subjected to internal and external pressure is investigated and design aids for the determination of creep collapse times are proposed. (orig.) [de

  14. Real-time implementation of a 1.25-Gbit/s DMT transmitter for robust and low-cost LED-based plastic optical fiber applications

    NARCIS (Netherlands)

    Lee, S.C.J.; Breyer, F.; Cárdenas, D.; Randel, S.; Koonen, A.M.J.

    2009-01-01

    Real-time implementation of a DMT transmitter in FPGA is demonstrated for low-cost, standard 1-mm step-index plastic optical fiber applications based on commercial resonant-cavity LED and large-diameter (540 µm) photodiode.

  15. Application of large area SiPMs for the readout of a plastic scintillator based timing detector

    Science.gov (United States)

    Betancourt, C.; Blondel, A.; Brundler, R.; Dätwyler, A.; Favre, Y.; Gascon, D.; Gomez, S.; Korzenev, A.; Mermod, P.; Noah, E.; Serra, N.; Sgalaberna, D.; Storaci, B.

    2017-11-01

    In this study an array of eight 6 mm × 6 mm area SiPMs was coupled to the end of a long plastic scintillator counter which was exposed to a 2.5 GeV/c muon beam at the CERN PS. Timing characteristics of bars with dimensions 150 cm × 6 cm × 1 cm and 120 cm × 11 cm × 2.5 cm have been studied. An 8-channel SiPM anode readout ASIC (MUSIC R1) based on a novel low input impedance current conveyor has been used to read out and amplify SiPMs independently and sum the signals at the end. Prospects for applications in large-scale particle physics detectors with timing resolution below 100 ps are provided in light of the results.

  16. arXiv Application of large area SiPMs for the readout of a plastic scintillator based timing detector

    CERN Document Server

    Betancourt, C.; Brundler, R.; Dätwyler, A.; Favre, Y.; Gascon, D.; Gomez, S.; Korzenev, Alexander; Mermod, P.; Noah, E.; Serra, N.; Sgalaberna, D.; Storaci, B.

    2017-11-27

    In this study an array of eight 6 mm × 6 mm area SiPMs was coupled to the end of a long plastic scintillator counter which was exposed to a 2.5 GeV/c muon beam at the CERN PS. Timing characteristics of bars with dimensions 150 cm × 6 cm × 1 cm and 120 cm × 11 cm × 2.5 cm have been studied. An 8-channel SiPM anode readout ASIC (MUSIC R1) based on a novel low input impedance current conveyor has been used to read out and amplify SiPMs independently and sum the signals at the end. Prospects for applications in large-scale particle physics detectors with timing resolution below 100 ps are provided in light of the results.

  17. Spine formation pattern of adult-born neurons is differentially modulated by the induction timing and location of hippocampal plasticity.

    Directory of Open Access Journals (Sweden)

    Noriaki Ohkawa

    Full Text Available In the adult hippocampus dentate gyrus (DG, newly born neurons are functionally integrated into existing circuits and play important roles in hippocampus-dependent memory. However, it remains unclear how neural plasticity regulates the integration pattern of new neurons into preexisting circuits. Because dendritic spines are major postsynaptic sites for excitatory inputs, spines of new neurons were visualized by retrovirus-mediated labeling to evaluate integration. Long-term potentiation (LTP was induced at 12, 16, or 21 days postinfection (dpi, at which time new neurons have no, few, or many spines, respectively. The spine expression patterns were investigated at one or two weeks after LTP induction. Induction at 12 dpi increased later spinogenesis, although the new neurons at 12 dpi didn't respond to the stimulus for LTP induction. Induction at 21 dpi transiently mediated spine enlargement. Surprisingly, LTP induction at 16 dpi reduced the spine density of new neurons. All LTP-mediated changes specifically appeared within the LTP-induced layer. Therefore, neural plasticity differentially regulates the integration of new neurons into the activated circuit, dependent on their developmental stage. Consequently, new neurons at different developmental stages may play distinct roles in processing the acquired information by modulating the connectivity of activated circuits via their integration.

  18. Three-dimensional simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model

    Directory of Open Access Journals (Sweden)

    Song-Gui Chen

    2016-01-01

    Full Text Available This paper presents a three-dimensional (3D parallel multiple-relaxation-time lattice Boltzmann model (MRT-LBM for Bingham plastics which overcomes numerical instabilities in the simulation of non-Newtonian fluids for the Bhatnagar–Gross–Krook (BGK model. The MRT-LBM and several related mathematical models are briefly described. Papanastasiou’s modified model is incorporated for better numerical stability. The impact of the relaxation parameters of the model is studied in detail. The MRT-LBM is then validated through a benchmark problem: a 3D steady Poiseuille flow. The results from the numerical simulations are consistent with those derived analytically which indicates that the MRT-LBM effectively simulates Bingham fluids but with better stability. A parallel MRT-LBM framework is introduced, and the parallel efficiency is tested through a simple case. The MRT-LBM is shown to be appropriate for parallel implementation and to have high efficiency. Finally, a Bingham fluid flowing past a square-based prism with a fixed sphere is simulated. It is found the drag coefficient is a function of both Reynolds number (Re and Bingham number (Bn. These results reveal the flow behavior of Bingham plastics.

  19. SU-E-I-88: The Effect of System Dead Time On Real-Time Plastic and GOS Based Fiber-Optic Dosimetry Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hoerner, M; Hintenlang, D [Univ Florida, Gainesville, FL (United States)

    2015-06-15

    Purpose: A methodology is presented to correct for measurement inaccuracies at high detector count rates using a plastic and GOS scintillation fibers coupled to a photomultiplier tube with digital readout. This system allows temporal acquisition and manipulation of measured data. Methods: The detection system used was a plastic scintillator and a separate gadolinium scintillator, both (0.5 diameter) coupled to an optical fiber with a Hamamatsu photon counter with a built-in microcontroller and digital interface. Count rate performance of the system was evaluated using the nonparalzable detector model. Detector response was investigated across multiple radiation sources including: orthovoltage x-ray system, colbat-60 gamma rays, proton therapy beam, and a diagnostic radiography x-ray tube. The dead time parameter was calculated by measuring the count rate of the system at different exposure rates using a reference detector. Results: The system dead time was evaluated for the following sources of radiation used clinically: diagnostic energy x-rays, cobalt-60 gamma rays, orthovoltage xrays, particle proton accelerator, and megavoltage x-rays. It was found that dead time increased significantly when exposing the detector to sources capable of generating Cerenkov radiation, all of the sources sans the diagnostic x-rays, with increasing prominence at higher photon energies. Percent depth dose curves generated by a dedicated ionization chamber and compared to the detection system demonstrated that correcting for dead time improves accuracy. On most sources, nonparalzable model fit provided an improved system response. Conclusion: Overall, the system dead time was variable across the investigated radiation particles and energies. It was demonstrated that the system response accuracy was greatly improved by correcting for dead time effects. Cerenkov radiation plays a significant role in the increase in the system dead time through transient absorption effects attributed to

  20. Plastic Surgery

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Plastic Surgery KidsHealth / For Teens / Plastic Surgery What's in ... her forehead lightened with a laser? What Is Plastic Surgery? Just because the name includes the word " ...

  1. Diverse spike-timing-dependent plasticity based on multilevel HfO x memristor for neuromorphic computing

    Science.gov (United States)

    Lu, Ke; Li, Yi; He, Wei-Fan; Chen, Jia; Zhou, Ya-Xiong; Duan, Nian; Jin, Miao-Miao; Gu, Wei; Xue, Kan-Hao; Sun, Hua-Jun; Miao, Xiang-Shui

    2018-06-01

    Memristors have emerged as promising candidates for artificial synaptic devices, serving as the building block of brain-inspired neuromorphic computing. In this letter, we developed a Pt/HfO x /Ti memristor with nonvolatile multilevel resistive switching behaviors due to the evolution of the conductive filaments and the variation in the Schottky barrier. Diverse state-dependent spike-timing-dependent-plasticity (STDP) functions were implemented with different initial resistance states. The measured STDP forms were adopted as the learning rule for a three-layer spiking neural network which achieves a 75.74% recognition accuracy for MNIST handwritten digit dataset. This work has shown the capability of memristive synapse in spiking neural networks for pattern recognition application.

  2. Mirror Neurons Modeled Through Spike-Timing-Dependent Plasticity are Affected by Channelopathies Associated with Autism Spectrum Disorder.

    Science.gov (United States)

    Antunes, Gabriela; Faria da Silva, Samuel F; Simoes de Souza, Fabio M

    2018-06-01

    Mirror neurons fire action potentials both when the agent performs a certain behavior and watches someone performing a similar action. Here, we present an original mirror neuron model based on the spike-timing-dependent plasticity (STDP) between two morpho-electrical models of neocortical pyramidal neurons. Both neurons fired spontaneously with basal firing rate that follows a Poisson distribution, and the STDP between them was modeled by the triplet algorithm. Our simulation results demonstrated that STDP is sufficient for the rise of mirror neuron function between the pairs of neocortical neurons. This is a proof of concept that pairs of neocortical neurons associating sensory inputs to motor outputs could operate like mirror neurons. In addition, we used the mirror neuron model to investigate whether channelopathies associated with autism spectrum disorder could impair the modeled mirror function. Our simulation results showed that impaired hyperpolarization-activated cationic currents (Ih) affected the mirror function between the pairs of neocortical neurons coupled by STDP.

  3. The effects of resonances on time delay estimation for water leak detection in plastic pipes

    Science.gov (United States)

    Almeida, Fabrício C. L.; Brennan, Michael J.; Joseph, Phillip F.; Gao, Yan; Paschoalini, Amarildo T.

    2018-04-01

    In the use of acoustic correlation methods for water leak detection, sensors are placed at pipe access points either side of a suspected leak, and the peak in the cross-correlation function of the measured signals gives the time difference (delay) between the arrival times of the leak noise at the sensors. Combining this information with the speed at which the leak noise propagates along the pipe, gives an estimate for the location of the leak with respect to one of the measurement positions. It is possible for the structural dynamics of the pipe system to corrupt the time delay estimate, which results in the leak being incorrectly located. In this paper, data from test-rigs in the United Kingdom and Canada are used to demonstrate this phenomenon, and analytical models of resonators are coupled with a pipe model to replicate the experimental results. The model is then used to investigate which of the two commonly used correlation algorithms, the Basic Cross-Correlation (BCC) function or the Phase Transform (PHAT), is more robust to the undesirable structural dynamics of the pipe system. It is found that time delay estimation is highly sensitive to the frequency bandwidth over which the analysis is conducted. Moreover, it is found that the PHAT is particularly sensitive to the presence of resonances and can give an incorrect time delay estimate, whereas the BCC function is found to be much more robust, giving a consistently accurate time delay estimate for a range of dynamic conditions.

  4. Human synapses show a wide temporal window for spike-timing-dependent plasticity

    NARCIS (Netherlands)

    Testa-Silva, G.; Verhoog, M.B.; Goriounova, N.A.; Loebel, A.; Hjorth, J.; Baayen, J.C.; de Kock, C.P.J.; Mansvelder, H.D.

    2010-01-01

    Throughout our lifetime, activity-dependent changes in neuronal connection strength enable the brain to refine neural circuits and learn based on experience. Synapses can bi-directionally alter strength and the magnitude and sign depend on the millisecond timing of presynaptic and postsynaptic

  5. Climate change and timing of avian breeding and migration: evolutionary versus plastic changes

    NARCIS (Netherlands)

    Charmantier, A.; Gienapp, P.

    2014-01-01

    There are multiple observations around the globe showing that in many avian species, both the timing of migration and breeding have advanced, due to warmer springs. Here, we review the literature to disentangle the actions of evolutionary changes in response to selection induced by climate change

  6. Crumpled Molecules and Edible Plastic: Science Learning Activation in Out-of-School Time

    Science.gov (United States)

    Dorph, Rena; Schunn, Christian D.; Crowley, Kevin

    2017-01-01

    The Coalition for Science After School highlights the dual nature of outcomes for science learning during out-of- school time (OST): Learning experiences should not only be positive in the moment, but also position youth for future success. Several frameworks speak to the first set of immediate outcomes--what youth learn, think, and feel as the…

  7. Crystal plasticity based modeling of time and scale dependent behavior of thin films

    NARCIS (Netherlands)

    Erturk, I.; Gao, K.; Bielen, J.A.; Dommelen, van J.A.W.; Geers, M.G.D.

    2013-01-01

    The micro and sub-micro scale dimensions of the components of modern high-tech products pose challenging engineering problems that require advanced tools to tackle them. An example hereof is time dependent strain recovery, here referred to as anelasticity, which is observed in metallic thin film

  8. Supervised Learning Using Spike-Timing-Dependent Plasticity of Memristive Synapses.

    Science.gov (United States)

    Nishitani, Yu; Kaneko, Yukihiro; Ueda, Michihito

    2015-12-01

    We propose a supervised learning model that enables error backpropagation for spiking neural network hardware. The method is modeled by modifying an existing model to suit the hardware implementation. An example of a network circuit for the model is also presented. In this circuit, a three-terminal ferroelectric memristor (3T-FeMEM), which is a field-effect transistor with a gate insulator composed of ferroelectric materials, is used as an electric synapse device to store the analog synaptic weight. Our model can be implemented by reflecting the network error to the write voltage of the 3T-FeMEMs and introducing a spike-timing-dependent learning function to the device. An XOR problem was successfully demonstrated as a benchmark learning by numerical simulations using the circuit properties to estimate the learning performance. In principle, the learning time per step of this supervised learning model and the circuit is independent of the number of neurons in each layer, promising a high-speed and low-power calculation in large-scale neural networks.

  9. Plasticity theory

    CERN Document Server

    Lubliner, Jacob

    2008-01-01

    The aim of Plasticity Theory is to provide a comprehensive introduction to the contemporary state of knowledge in basic plasticity theory and to its applications. It treats several areas not commonly found between the covers of a single book: the physics of plasticity, constitutive theory, dynamic plasticity, large-deformation plasticity, and numerical methods, in addition to a representative survey of problems treated by classical methods, such as elastic-plastic problems, plane plastic flow, and limit analysis; the problem discussed come from areas of interest to mechanical, structural, and

  10. Characterisation of historic plastics using terahertz time-domain spectroscopy and pulsed imaging.

    Science.gov (United States)

    Pastorelli, Gianluca; Trafela, Tanja; Taday, Phillip F; Portieri, Alessia; Lowe, David; Fukunaga, Kaori; Strlič, Matija

    2012-05-01

    Terahertz (THz) time-domain spectroscopy and 3D THz pulsed imaging have been explored with regard to polymer materials, both commodity and historic polymers. A systematic spectroscopic study of a wide range of different polymer materials showed significant differences in their spectra. Polyolefins and polystyrenes generally exhibit lower absorption than other examined polymers, various cellulose derivates, poly(vinyl chloride), poly(methyl methacrylate), polyamide, hard rubber and phenol formaldehyde resin, the last of these exhibiting the most intense absorption over the entire range, 0.15-4.2 THz. It was also examined how the presence of plasticisers in poly(vinyl chloride), the presence of fillers in polypropylene, and the degree of branching in polyethylene and polystyrene affect the spectra; inorganic fillers in polypropylene affected the absorption most. With 3D THz pulsed imaging, features in polymer objects were explored, appearing either as integral parts of the material (coatings and pores in foams) or as a consequence of physical deterioration (cracks, delamination). All of these features of various complexities can be successfully imaged in 3D. Terahertz technology is thus shown to have significant potential for both chemical and structural characterisation of polymers, which will be of interest to heritage science, but also to the polymer industry and development of analytical technologies in general.

  11. Real-time in vivo rectal wall dosimetry using plastic scintillation detectors for patients with prostate cancer

    Science.gov (United States)

    Wootton, Landon; Kudchadker, Rajat; Lee, Andrew; Beddar, Sam

    2014-02-01

    We designed and constructed an in vivo dosimetry system using plastic scintillation detectors (PSDs) to monitor dose to the rectal wall in patients undergoing intensity-modulated radiation therapy for prostate cancer. Five patients were enrolled in an Institutional Review Board-approved protocol for twice weekly in vivo dose monitoring with our system, resulting in a total of 142 in vivo dose measurements. PSDs were attached to the surface of endorectal balloons used for prostate immobilization to place the PSDs in contact with the rectal wall. Absorbed dose was measured in real time and the total measured dose was compared with the dose calculated by the treatment planning system on the daily computed tomographic image dataset. The mean difference between measured and calculated doses for the entire patient population was -0.4% (standard deviation 2.8%). The mean difference between daily measured and calculated doses for each patient ranged from -3.3% to 3.3% (standard deviation ranged from 5.6% to 7.1% for four patients and was 14.0% for the last, for whom optimal positioning of the detector was difficult owing to the patient's large size). Patients tolerated the detectors well and the treatment workflow was not compromised. Overall, PSDs performed well as in vivo dosimeters, providing excellent accuracy, real-time measurement and reusability.

  12. Multiple coherence resonances and synchronization transitions by time delay in adaptive scale-free neuronal networks with spike-timing-dependent plasticity

    International Nuclear Information System (INIS)

    Xie, Huijuan; Gong, Yubing

    2017-01-01

    In this paper, we numerically study the effect of spike-timing-dependent plasticity (STDP) on multiple coherence resonances (MCR) and synchronization transitions (ST) induced by time delay in adaptive scale-free Hodgkin–Huxley neuronal networks. It is found that STDP has a big influence on MCR and ST induced by time delay and on the effect of network average degree on the MCR and ST. MCR is enhanced or suppressed as the adjusting rate A p of STDP decreases or increases, and there is optimal A p by which ST becomes strongest. As network average degree 〈k〉 increases, ST is enhanced and there is optimal 〈k〉 at which MCR becomes strongest. Moreover, for a larger A p value, ST is enhanced more rapidly with increasing 〈k〉 and the optimal 〈k〉 for MCR increases. These results show that STDP can either enhance or suppress MCR, and there is optimal STDP that can most strongly enhance ST induced by time delay in the adaptive neuronal networks. These findings could find potential implication for the information processing and transmission in neural systems.

  13. Our plastic age

    OpenAIRE

    Thompson, Richard C.; Swan, Shanna H.; Moore, Charles J.; vom Saal, Frederick S.

    2009-01-01

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste pl...

  14. Oscillation-Driven Spike-Timing Dependent Plasticity Allows Multiple Overlapping Pattern Recognition in Inhibitory Interneuron Networks

    DEFF Research Database (Denmark)

    Garrido, Jesús A.; Luque, Niceto R.; Tolu, Silvia

    2016-01-01

    The majority of operations carried out by the brain require learning complex signal patterns for future recognition, retrieval and reuse. Although learning is thought to depend on multiple forms of long-term synaptic plasticity, the way this latter contributes to pattern recognition is still poorly...... and at the inhibitory interneuron-interneuron synapses, the interneurons rapidly learned complex input patterns. Interestingly, induction of plasticity required that the network be entrained into theta-frequency band oscillations, setting the internal phase-reference required to drive STDP. Inhibitory plasticity...... effectively distributed multiple patterns among available interneurons, thus allowing the simultaneous detection of multiple overlapping patterns. The addition of plasticity in intrinsic excitability made the system more robust allowing self-adjustment and rescaling in response to a broad range of input...

  15. The expression of plasticity-related genes in an acute model of stress is modulated by chronic desipramine in a time-dependent manner within medial prefrontal cortex.

    Science.gov (United States)

    Nava, Nicoletta; Treccani, Giulia; Müller, Heidi Kaastrup; Popoli, Maurizio; Wegener, Gregers; Elfving, Betina

    2017-01-01

    It is well established that stress plays a major role in the pathogenesis of neuropsychiatric diseases. Stress-induced alteration of synaptic plasticity has been hypothesized to underlie the morphological changes observed by neuroimaging in psychiatric patients in key regions such as hippocampus and prefrontal cortex (PFC). We have recently shown that a single acute stress exposure produces significant short-term alterations of structural plasticity within medial PFC. These alterations were partially prevented by previous treatment with chronic desipramine (DMI). In the present study we evaluated the effects of acute Foot-shock (FS)-stress and pre-treatment with the traditional antidepressant DMI on the gene expression of key regulators of synaptic plasticity and structure. Expression of Homer, Shank, Spinophilin, Densin-180, and the small RhoGTPase related gene Rac1 and downstream target genes, Limk1, Cofilin1 and Rock1 were investigated 1 day (1d), 7 d and 14d after FS-stress exposure. We found that DMI specifically increases the short-term expression of Spinophilin, as well as Homer and Shank family genes, and that both acute stress and DMI exert significant long-term effects on mRNA levels of genes involved in spine plasticity. These findings support the knowledge that acute FS stress and antidepressant treatment induce both rapid and sustained time-dependent alterations in structural components of synaptic plasticity in rodent medial PFC. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  16. Effects of spike-time-dependent plasticity on the stochastic resonance of small-world neuronal networks

    International Nuclear Information System (INIS)

    Yu, Haitao; Guo, Xinmeng; Wang, Jiang; Deng, Bin; Wei, Xile

    2014-01-01

    The phenomenon of stochastic resonance in Newman-Watts small-world neuronal networks is investigated when the strength of synaptic connections between neurons is adaptively adjusted by spike-time-dependent plasticity (STDP). It is shown that irrespective of the synaptic connectivity is fixed or adaptive, the phenomenon of stochastic resonance occurs. The efficiency of network stochastic resonance can be largely enhanced by STDP in the coupling process. Particularly, the resonance for adaptive coupling can reach a much larger value than that for fixed one when the noise intensity is small or intermediate. STDP with dominant depression and small temporal window ratio is more efficient for the transmission of weak external signal in small-world neuronal networks. In addition, we demonstrate that the effect of stochastic resonance can be further improved via fine-tuning of the average coupling strength of the adaptive network. Furthermore, the small-world topology can significantly affect stochastic resonance of excitable neuronal networks. It is found that there exists an optimal probability of adding links by which the noise-induced transmission of weak periodic signal peaks

  17. Effects of spike-time-dependent plasticity on the stochastic resonance of small-world neuronal networks

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haitao; Guo, Xinmeng; Wang, Jiang, E-mail: jiangwang@tju.edu.cn; Deng, Bin; Wei, Xile [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2014-09-01

    The phenomenon of stochastic resonance in Newman-Watts small-world neuronal networks is investigated when the strength of synaptic connections between neurons is adaptively adjusted by spike-time-dependent plasticity (STDP). It is shown that irrespective of the synaptic connectivity is fixed or adaptive, the phenomenon of stochastic resonance occurs. The efficiency of network stochastic resonance can be largely enhanced by STDP in the coupling process. Particularly, the resonance for adaptive coupling can reach a much larger value than that for fixed one when the noise intensity is small or intermediate. STDP with dominant depression and small temporal window ratio is more efficient for the transmission of weak external signal in small-world neuronal networks. In addition, we demonstrate that the effect of stochastic resonance can be further improved via fine-tuning of the average coupling strength of the adaptive network. Furthermore, the small-world topology can significantly affect stochastic resonance of excitable neuronal networks. It is found that there exists an optimal probability of adding links by which the noise-induced transmission of weak periodic signal peaks.

  18. Stimulating neural plasticity with real-time fMRI neurofeedback in Huntington's disease: A proof of concept study.

    Science.gov (United States)

    Papoutsi, Marina; Weiskopf, Nikolaus; Langbehn, Douglas; Reilmann, Ralf; Rees, Geraint; Tabrizi, Sarah J

    2018-03-01

    Novel methods that stimulate neuroplasticity are increasingly being studied to treat neurological and psychiatric conditions. We sought to determine whether real-time fMRI neurofeedback training is feasible in Huntington's disease (HD), and assess any factors that contribute to its effectiveness. In this proof-of-concept study, we used this technique to train 10 patients with HD to volitionally regulate the activity of their supplementary motor area (SMA). We collected detailed behavioral and neuroimaging data before and after training to examine changes of brain function and structure, and cognitive and motor performance. We found that patients overall learned to increase activity of the target region during training with variable effects on cognitive and motor behavior. Improved cognitive and motor performance after training predicted increases in pre-SMA grey matter volume, fMRI activity in the left putamen, and increased SMA-left putamen functional connectivity. Although we did not directly target the putamen and corticostriatal connectivity during neurofeedback training, our results suggest that training the SMA can lead to regulation of associated networks with beneficial effects in behavior. We conclude that neurofeedback training can induce plasticity in patients with Huntington's disease despite the presence of neurodegeneration, and the effects of training a single region may engage other regions and circuits implicated in disease pathology. © 2017 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.

  19. Is a 4-bit synaptic weight resolution enough? - constraints on enabling spike-timing dependent plasticity in neuromorphic hardware.

    Science.gov (United States)

    Pfeil, Thomas; Potjans, Tobias C; Schrader, Sven; Potjans, Wiebke; Schemmel, Johannes; Diesmann, Markus; Meier, Karlheinz

    2012-01-01

    Large-scale neuromorphic hardware systems typically bear the trade-off between detail level and required chip resources. Especially when implementing spike-timing dependent plasticity, reduction in resources leads to limitations as compared to floating point precision. By design, a natural modification that saves resources would be reducing synaptic weight resolution. In this study, we give an estimate for the impact of synaptic weight discretization on different levels, ranging from random walks of individual weights to computer simulations of spiking neural networks. The FACETS wafer-scale hardware system offers a 4-bit resolution of synaptic weights, which is shown to be sufficient within the scope of our network benchmark. Our findings indicate that increasing the resolution may not even be useful in light of further restrictions of customized mixed-signal synapses. In addition, variations due to production imperfections are investigated and shown to be uncritical in the context of the presented study. Our results represent a general framework for setting up and configuring hardware-constrained synapses. We suggest how weight discretization could be considered for other backends dedicated to large-scale simulations. Thus, our proposition of a good hardware verification practice may rise synergy effects between hardware developers and neuroscientists.

  20. Is a 4-bit synaptic weight resolution enough? - Constraints on enabling spike-timing dependent plasticity in neuromorphic hardware

    Directory of Open Access Journals (Sweden)

    Thomas ePfeil

    2012-07-01

    Full Text Available Large-scale neuromorphic hardware systems typically bear the trade-off be-tween detail level and required chip resources. Especially when implementingspike-timing-dependent plasticity, reduction in resources leads to limitations ascompared to floating point precision. By design, a natural modification that savesresources would be reducing synaptic weight resolution. In this study, we give anestimate for the impact of synaptic weight discretization on different levels, rangingfrom random walks of individual weights to computer simulations of spiking neuralnetworks. The FACETS wafer-scale hardware system offers a 4-bit resolution ofsynaptic weights, which is shown to be sufficient within the scope of our networkbenchmark. Our findings indicate that increasing the resolution may not even beuseful in light of further restrictions of customized mixed-signal synapses. In ad-dition, variations due to production imperfections are investigated and shown tobe uncritical in the context of the presented study. Our results represent a generalframework for setting up and configuring hardware-constrained synapses. We sug-gest how weight discretization could be considered for other backends dedicatedto large-scale simulations. Thus, our proposition of a good hardware verificationpractice may rise synergy effects between hardware developers and neuroscientists.

  1. Input-Timing-Dependent Plasticity in the Hippocampal CA2 Region and Its Potential Role in Social Memory.

    Science.gov (United States)

    Leroy, Felix; Brann, David H; Meira, Torcato; Siegelbaum, Steven A

    2017-08-30

    Input-timing-dependent plasticity (ITDP) is a circuit-based synaptic learning rule by which paired activation of entorhinal cortical (EC) and Schaffer collateral (SC) inputs to hippocampal CA1 pyramidal neurons (PNs) produces a long-term enhancement of SC excitation. We now find that paired stimulation of EC and SC inputs also induces ITDP of SC excitation of CA2 PNs. However, whereas CA1 ITDP results from long-term depression of feedforward inhibition (iLTD) as a result of activation of CB1 endocannabinoid receptors on cholecystokinin-expressing interneurons, CA2 ITDP results from iLTD through activation of δ-opioid receptors on parvalbumin-expressing interneurons. Furthermore, whereas CA1 ITDP has been previously linked to enhanced specificity of contextual memory, we find that CA2 ITDP is associated with enhanced social memory. Thus, ITDP may provide a general synaptic learning rule for distinct forms of hippocampal-dependent memory mediated by distinct hippocampal regions. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Delay selection by spike-timing-dependent plasticity in recurrent networks of spiking neurons receiving oscillatory inputs.

    Directory of Open Access Journals (Sweden)

    Robert R Kerr

    Full Text Available Learning rules, such as spike-timing-dependent plasticity (STDP, change the structure of networks of neurons based on the firing activity. A network level understanding of these mechanisms can help infer how the brain learns patterns and processes information. Previous studies have shown that STDP selectively potentiates feed-forward connections that have specific axonal delays, and that this underlies behavioral functions such as sound localization in the auditory brainstem of the barn owl. In this study, we investigate how STDP leads to the selective potentiation of recurrent connections with different axonal and dendritic delays during oscillatory activity. We develop analytical models of learning with additive STDP in recurrent networks driven by oscillatory inputs, and support the results using simulations with leaky integrate-and-fire neurons. Our results show selective potentiation of connections with specific axonal delays, which depended on the input frequency. In addition, we demonstrate how this can lead to a network becoming selective in the amplitude of its oscillatory response to this frequency. We extend this model of axonal delay selection within a single recurrent network in two ways. First, we show the selective potentiation of connections with a range of both axonal and dendritic delays. Second, we show axonal delay selection between multiple groups receiving out-of-phase, oscillatory inputs. We discuss the application of these models to the formation and activation of neuronal ensembles or cell assemblies in the cortex, and also to missing fundamental pitch perception in the auditory brainstem.

  3. Characterization of plastic scintillators for detection of radioactivity: Light yield, Time decay measurements and Neutron/γ Pulse Shape Discrimination

    International Nuclear Information System (INIS)

    Montbarbon, E.; Pansu, R.B.; Hamel, M.; Coulon, R.

    2015-07-01

    Since Helium-3 shortage, organic scintillators play a major role in neutron detection. CEA LIST decided to focus on plastic scintillators. By definition, a plastic scintillator is a radio-luminescent polymer; this means that it emits light after interaction with an ionizing radiation. A platform was developed to characterize lab-made prepared scintillators and to compare them with commercial scintillators. Three physicochemical criteria are determined with this unique platform. (authors)

  4. [Experimental determination of the time-dependent extent of after-burning with reference to possibilities of the plastic surgery reconstruction of 3d degree burns].

    Science.gov (United States)

    Bäumer, F; Henrich, H A; Ussmüller, J

    1986-02-01

    The present experiments try to answer the question as to the time-dependent extent of the after-burning process after full-thickness burn (third degree). For an early plastic surgical treatment it was of interest to determine the most early time of escharotomy. The time-dependent spreading of the after-burning area reached its maximum five days after the burn injury. The after-burning area was marked by intravenous injections of Patentblau which caused distinct intravital colouring. Subsequently no further progress could be observed. In the present experiments we suggest this time as the earliest time for plastic covering in case it would be dependent upon the end of the after-burning process.

  5. Our plastic age.

    Science.gov (United States)

    Thompson, Richard C; Swan, Shanna H; Moore, Charles J; vom Saal, Frederick S

    2009-07-27

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation.

  6. Our plastic age

    Science.gov (United States)

    Thompson, Richard C.; Swan, Shanna H.; Moore, Charles J.; vom Saal, Frederick S.

    2009-01-01

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation. PMID:19528049

  7. Characterization of the time course of changes of the evoked electrical activity in a model of a chemically-induced neuronal plasticity

    Directory of Open Access Journals (Sweden)

    Ruaro Maria

    2009-01-01

    Full Text Available Abstract Background Neuronal plasticity is initiated by transient elevations of neuronal networks activity leading to changes of synaptic properties and providing the basis for memory and learning 1. An increase of electrical activity can be caused by electrical stimulation 2 or by pharmacological manipulations: elevation of extracellular K+ 3, blockage of inhibitory pathways 4 or by an increase of second messengers intracellular concentrations 5. Neuronal plasticity is mediated by several biochemical pathways leading to the modulation of synaptic strength, density of ionic channels and morphological changes of neuronal arborisation 6. On a time scale of a few minutes, neuronal plasticity is mediated by local protein trafficking 7 while, in order to sustain modifications beyond 2–3 h, changes of gene expression are required 8. Findings In the present manuscript we analysed the time course of changes of the evoked electrical activity during neuronal plasticity and we correlated it with a transcriptional analysis of the underlying changes of gene expression. Our investigation shows that treatment for 30 min. with the GABAA receptor antagonist gabazine (GabT causes a potentiation of the evoked electrical activity occurring 2–4 hours after GabT and the concomitant up-regulation of 342 genes. Inhibition of the ERK1/2 pathway reduced but did not abolish the potentiation of the evoked response caused by GabT. In fact not all the genes analysed were blocked by ERK1/2 inhibitors. Conclusion These results are in agreement with the notion that neuronal plasticity is mediated by several distinct pathways working in unison.

  8. Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to sugar beet fibre and decreasing intestinal transit time pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    Following an application from Nordic Sugar A/S, submitted pursuant to Article 13(5) of Regulation (EC) No 1924/2006 via the Competent Authority of Denmark, the Panel on Dietetic Products, Nutrition and Allergies was asked to deliver an opinion on the scientific substantiation of a health claim...

  9. Sleep deprivation during a specific 3-hour time window post-training impairs hippocampal synaptic plasticity and memory

    NARCIS (Netherlands)

    Prince, Toni-Moi; Wimmer, Mathieu; Choi, Jennifer; Havekes, Robbert; Aton, Sara; Abel, Ted

    2014-01-01

    Sleep deprivation disrupts hippocampal function and plasticity. In particular, long-term memory consolidation is impaired by sleep deprivation, suggesting that a specific critical period exists following learning during which sleep is necessary. To elucidate the impact of sleep deprivation on

  10. Genetic Analysis of Micro-environmental Plasticity in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Morgante, Fabio; Sorensen, Daniel A; Sørensen, Peter

    Quantitative genetic models recognize the potential for genotype by environment interaction, whereby different genotypes have different plastic responses to changes in macro-environmental conditions. Recently, it has been recognized that micro-environmental plasticity (‘residual’ variance) may also...... be genetically variable. This study utilized the Drosophila Genetic Reference Panel (DGRP) to accurately estimate the genetic variance of micro-environmental plasticity for chill coma recovery time and startle response. Estimates of broad sense heritabilities for both traits are substantial (from 0.51 to 0.......77), of the same order as the heritability at the level of the trait mean for startle response and even larger for chill coma recovery. Genome wide association analyses identified molecular variants (from 15 to 31 depending on the sex and the trait) associated with micro-environmental plasticity. These findings...

  11. Plastic scintillator

    International Nuclear Information System (INIS)

    Andreeshchev, E.A.; Kilin, S.F.; Kavyrzina, K.A.

    1978-01-01

    A plastic scintillator for ionizing radiation detectors with high time resolution is suggested. To decrease the scintillation pulse width and to maintain a high light yield, the 4 1 , 4 5 -dibromo-2 1 , 2 5 , 5 1 , 5 5 -tetramethyl-n-quinquiphenyl (Br 2 Me 4 Ph) in combination with n-terphenyl (Ph 3 ) or 2, 5-diphenyloxadiazol-1, 3, 4 (PPD) is used as a luminescent addition. Taking into consideration the results of a special study, it is shown, that the following ratio of ingradients is the optimum one: 3-4 mass% Ph 3 or 4-7 mas% PPD + 2-5 mass% Br 2 Me 4 Ph + + polymeric base. The suggested scintillator on the basis of polystyrene has the light yield of 0.23-0.26 arbitrary units and the scintillation pulse duration at half-height is 0.74-0.84 ns

  12. Abiotic degradation of plastic films

    Science.gov (United States)

    Ángeles-López, Y. G.; Gutiérrez-Mayen, A. M.; Velasco-Pérez, M.; Beltrán-Villavicencio, M.; Vázquez-Morillas, A.; Cano-Blanco, M.

    2017-01-01

    Degradable plastics have been promoted as an option to mitigate the environmental impacts of plastic waste. However, there is no certainty about its degradability under different environmental conditions. The effect of accelerated weathering (AW), natural weathering (NW) and thermal oxidation (TO) on different plastics (high density polyethylene, HDPE; oxodegradable high density polyethylene, HDPE-oxo; compostable plastic, Ecovio ® metalized polypropylene, PP; and oxodegradable metalized polypropylene, PP-oxo) was studied. Plastics films were exposed to AW per 110 hours; to NW per 90 days; and to TO per 30 days. Plastic films exposed to AW and NW showed a general loss on mechanical properties. The highest reduction in elongation at break on AW occurred to HDPE-oxo (from 400.4% to 20.9%) and was higher than 90% for HDPE, HDPE-oxo, Ecovio ® and PP-oxo in NW. No substantial evidence of degradation was found on plastics exposed to TO. Oxo-plastics showed higher degradation rates than their conventional counterparts, and the compostable plastic was resistant to degradation in the studied abiotic conditions. This study shows that degradation of plastics in real life conditions will vary depending in both, their composition and the environment.

  13. Individual differences in behavioural plasticities.

    Science.gov (United States)

    Stamps, Judy A

    2016-05-01

    Interest in individual differences in animal behavioural plasticities has surged in recent years, but research in this area has been hampered by semantic confusion as different investigators use the same terms (e.g. plasticity, flexibility, responsiveness) to refer to different phenomena. The first goal of this review is to suggest a framework for categorizing the many different types of behavioural plasticities, describe examples of each, and indicate why using reversibility as a criterion for categorizing behavioural plasticities is problematic. This framework is then used to address a number of timely questions about individual differences in behavioural plasticities. One set of questions concerns the experimental designs that can be used to study individual differences in various types of behavioural plasticities. Although within-individual designs are the default option for empirical studies of many types of behavioural plasticities, in some situations (e.g. when experience at an early age affects the behaviour expressed at subsequent ages), 'replicate individual' designs can provide useful insights into individual differences in behavioural plasticities. To date, researchers using within-individual and replicate individual designs have documented individual differences in all of the major categories of behavioural plasticities described herein. Another important question is whether and how different types of behavioural plasticities are related to one another. Currently there is empirical evidence that many behavioural plasticities [e.g. contextual plasticity, learning rates, IIV (intra-individual variability), endogenous plasticities, ontogenetic plasticities) can themselves vary as a function of experiences earlier in life, that is, many types of behavioural plasticity are themselves developmentally plastic. These findings support the assumption that differences among individuals in prior experiences may contribute to individual differences in behavioural

  14. 24 CFR 902.79 - Substantial default.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Substantial default. 902.79 Section... PUBLIC HOUSING ASSESSMENT SYSTEM PHAS Incentives and Remedies § 902.79 Substantial default. (a) Events or conditions that constitute substantial default. The following events or conditions shall constitute...

  15. Plastic dosimeter

    International Nuclear Information System (INIS)

    Nagai, Shiro; Matsuda, Kohji.

    1988-01-01

    The report outlines major features and applications of plastic dosimeters. Some plastic dosimeters, including the CTA and PVC types, detect the response of the plastic material itself to radiations while others, such as pigment-added plastic dosimeters, contain additives as radiation detecting material. Most of these dosimeters make use of color centers produced in the dosimeter by radiations. The PMMA dosimeter is widely used in the field of radiation sterilization of food, feed and medical apparatus. The blue cellophane dosimeter is easy to handle if calibrated appropriately. The rad-color dosimeter serves to determine whether products have been irradiated appropriately. The CTA dosimeter has better damp proofing properties than the blue cellophane type. The pigment-added plastic dosimeter consists of a resin such as nylon, CTA or PVC that contains a dye. Some other plastic dosimeters are also described briefly. Though having many advantages, these plastic dosimeter have disadvantages as well. Some of their major disadvantages, including fading as well as large dependence on dose, temperature, humidity and anviroment, are discussed. (Nogami, K.)

  16. The application of endochronic plasticity theory in modeling the dynamic inelastic response of structural systems

    International Nuclear Information System (INIS)

    Lin, H.C.; Hsieh, B.J.; Valentin, R.A.

    1981-01-01

    The endochronic theory of plasticity proposed by Valanis has been applied in predicting the inelastic responses of structural systems. A recently developed convected coordinates finite-element program has been modified to use an endochronic constitutive law. A series of sample problems for a variety of dynamic loadings are presented. The calculations that have been performed comparing classical and endochronic plasticity theories have revealed that the endochronic approach can result in a substantial reduction in computer time for equivalent solution accuracy. This result, combined with the apparent accuracy of material representation indicate that the use of endochronic plasticity has great potential in evaluating the dynamic response of structural systems. (orig.)

  17. PLASTIC SURGERY

    African Journals Online (AJOL)

    Department of Plastic and Reconstructive Surgery Sefako Makgatho Health Science University, ... We report on a pilot study on the use of a circumareolar excision and the use of .... and 1 gynecomastia patient) requested reduction in NAC size.

  18. Plastic Fishes

    CERN Multimedia

    Trettnak, Wolfgang

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness. The slideshow below gives you a taste of the artworks by Wolfgang Trettnak and Margarita Cimadevila.

  19. Performance of molded plastic scintillators

    International Nuclear Information System (INIS)

    Gen, N.S.; Leman, V.E.; Solomonov, V.M.

    1989-01-01

    The performance of molded plastic scintillators is studied. The plastic scintillators studied were formed by transfer molding and intrusion from a scintillation composition consisting of polystyrene and a standard system of luminescent additives: 2 mass % of paraterphenyl + 0.06 mass % 1,4-di-/2-[5-phenyloxazoyly]/benzene and a plasticizer. The combined effect of mechanical load and temperature was studied. The effect of radiation on molded plastic scintillators was studied using gamma radiation from a 60 Co source. The studies show that the main operating characteristics of molded plastic scintillators are on a par with those of polymerized plastic scintillators. At the same time, molded plastic scintillators are superior in thermal stability at temperatures below the glass transition temperature and with respect to their working temperature range

  20. GREEN PLASTIC: A NEW PLASTIC FOR PACKAGING

    OpenAIRE

    Mr. Pankaj Kumar*, Sonia

    2016-01-01

    This paper gives a brief idea about a new type of plastic called as bio-plastic or green plastic. Plastic is used as a packaging material for various products, but this plastic is made up of non renewable raw materials. There are various disadvantages of using conventional plastic like littering, CO2 production, non-degradable in nature etc. To overcome these problems a new type of plastic is discovered called bio-plastic or green plastic. Bio-plastic is made from renewable resources and also...

  1. Plastics recycling: challenges and opportunities.

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-07-27

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  2. Plastics recycling: challenges and opportunities

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  3. SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence - Application to luminescence degradation of a fast plastic scintillator

    Science.gov (United States)

    Gardés, E.; Balanzat, E.; Ban-d'Etat, B.; Cassimi, A.; Durantel, F.; Grygiel, C.; Madi, T.; Monnet, I.; Ramillon, J.-M.; Ropars, F.; Lebius, H.

    2013-02-01

    We developed a new sub-nanosecond time-resolved instrument to study the dynamics of UV-visible luminescence under high stopping power heavy ion irradiation. We applied our instrument, called SPORT, on a fast plastic scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean electronic stopping power of 2.6 MeV/μm. As a consequence of increasing permanent radiation damages with increasing ion fluence, our investigations reveal a degradation of scintillation intensity together with, thanks to the time-resolved measurement, a decrease in the decay constant of the scintillator. This combination indicates that luminescence degradation processes by both dynamic and static quenching, the latter mechanism being predominant. Under such high density excitation, the scintillation deterioration of BC-400 is significantly enhanced compared to that observed in previous investigations, mainly performed using light ions. The observed non-linear behaviour implies that the dose at which luminescence starts deteriorating is not independent on particles' stopping power, thus illustrating that the radiation hardness of plastic scintillators can be strongly weakened under high excitation density in heavy ion environments.

  4. Characteristics of liquid product from the pyrolysis of waste plastic mixture at low and high temperatures: influence of lapse time of reaction.

    Science.gov (United States)

    Lee, Kyong-Hwan; Shin, Dae-Hyun

    2007-01-01

    Pyrolysis of a waste plastic mixture (high-density polyethylene: low-density polyethylene: polypropylene: polystyrene = 3:2:3:1) into a liquid product was carried out in a stirred semi-batch reactor at low (350 degrees C) and high (400 degrees C) temperatures. The effect of lapse time of reaction in the reactor and also degradation temperature on the characteristics of the liquid product from pyrolysis of the mixture was investigated. Liquid products were described by cumulative amount distribution, paraffin, olefin, naphthene and aromatic (PONA) distribution and molecular weight distribution. Their characteristic was quite differed with a lapse time of reaction and also at a low and high degradation temperatures, because of the different physicochemical properties of the plastic types in the mixture. With increase of lapse time of reaction, the order for the main products in PONA components obtained at 350 degrees C was firstly aromatic products and then olefin products, while at 400 degrees C the order was firstly aromatic products, then olefin products and finally paraffin products. The experiments also showed from the molecular weight distribution of liquid PONA components that the paraffin and olefin products had a wide distribution by mainly random scission of polymer, but in the case of olefin products were produced by an end-chain scission mechanism as well as random scission mechanism, as evidenced by much more light olefin products. This phenomenon was evident at a higher degradation temperature. Also, both the light olefin and naphthene products with a molecular weight of around 120, as a main product, showed a similar trend as a function of lapse time, which had a maximum fraction at 343 min (at 350 degrees C) and 83 min (at 400 degrees C). Among PONA components, the highest concentrations of aromatic products were obtained with a molecular weight of around 100 at the fastest lapse time of reaction, regardless of degradation temperature. It was

  5. Characteristics of liquid product from the pyrolysis of waste plastic mixture at low and high temperatures: Influence of lapse time of reaction

    International Nuclear Information System (INIS)

    Lee, Kyong-Hwan; Shin, Dae-Hyun

    2007-01-01

    Pyrolysis of a waste plastic mixture (high-density polyethylene: low-density polyethylene: polypropylene: polystyrene = 3:2:3:1) into a liquid product was carried out in a stirred semi-batch reactor at low (350 deg. C) and high (400 deg. C) temperatures. The effect of lapse time of reaction in the reactor and also degradation temperature on the characteristics of the liquid product from pyrolysis of the mixture was investigated. Liquid products were described by cumulative amount distribution, paraffin, olefin, naphthene and aromatic (PONA) distribution and molecular weight distribution. Their characteristic was quite differed with a lapse time of reaction and also at a low and high degradation temperatures, because of the different physicochemical properties of the plastic types in the mixture. With increase of lapse time of reaction, the order for the main products in PONA components obtained at 350 deg. C was firstly aromatic products and then olefin products, while at 400 deg. C the order was firstly aromatic products, then olefin products and finally paraffin products. The experiments also showed from the molecular weight distribution of liquid PONA components that the paraffin and olefin products had a wide distribution by mainly random scission of polymer, but in the case of olefin products were produced by an end-chain scission mechanism as well as random scission mechanism, as evidenced by much more light olefin products. This phenomenon was evident at a higher degradation temperature. Also, both the light olefin and naphthene products with a molecular weight of around 120, as a main product, showed a similar trend as a function of lapse time, which had a maximum fraction at 343 min (at 350 deg. C) and 83 min (at 400 deg. C). Among PONA components, the highest concentrations of aromatic products were obtained with a molecular weight of around 100 at the fastest lapse time of reaction, regardless of degradation temperature. It was concluded that the

  6. DEVELOPMENT OF PLASTIC SURGERY.

    Science.gov (United States)

    Pećanac, Marija Đ

    2015-01-01

    Plastic surgery is a medical specialty dealing with corrections of defects, improvements in appearance and restoration of lost function. Ancient times. The first recorded account of reconstructive plastic surgery was found in ancient Indian Sanskrit texts, which described reconstructive surgeries of the nose and ears. In ancient Greece and Rome, many medicine men performed simple plastic cosmetic surgeries to repair damaged parts of the body caused by war mutilation, punishment or humiliation. In the Middle Ages, the development of all medical braches, including plastic surgery was hindered. New age. The interest in surgical reconstruction of mutilated body parts was renewed in the XVIII century by a great number of enthusiastic and charismatic surgeons, who mastered surgical disciplines and became true artists that created new forms. Modern era. In the XX century, plastic surgery developed as a modern branch in medicine including many types of reconstructive surgery, hand, head and neck surgery, microsurgery and replantation, treatment of burns and their sequelae, and esthetic surgery. Contemporary and future plastic surgery will continue to evolve and improve with regenerative medicine and tissue engineering resulting in a lot of benefits to be gained by patients in reconstruction after body trauma, oncology amputation, and for congenital disfigurement and dysfunction.

  7. Plastic condoms.

    Science.gov (United States)

    1968-01-01

    Only simple equipment, simple technology and low initial capital investment are needed in their manufacture. The condoms can be made by people who were previously unskilled or only semi-skilled workers. Plastic condoms differ from those made of latex rubber in that the nature of the plastic film allows unlimited shelf-life. Also, the plastic has a higher degree of lubricity than latex rubber; if there is a demand for extra lubrication in a particular market, this can be provided. Because the plastic is inert, these condoms need not be packaged in hermetically sealed containers. All these attributes make it possible to put these condoms on the distributors' shelves in developing countries competitively with rubber condoms. The shape of the plastic condom is based on that of the lamb caecum, which has long been used as luxury-type condom. The plastic condom is made from plastic film (ethylene ethyl acrilate) of 0.001 inch (0.0254 mm.) thickness. In addition, a rubber ring is provided and sealed into the base of the condom for retention during coitus. The advantage of the plastic condom design and the equipment on which it is made is that production can be carried out either in labour-intensive economy or with varying degrees of mechanization and automation. The uniform, finished condom if made using previously untrained workers. Training of workers can be done in a matter of hours on the two machines which are needed to produce and test the condoms. The plastic film is provided on a double wound roll, and condom blanks are prepared by means of a heat-sealing die on the stamping machine. The rubber rings are united to the condom blanks on an assembly machine, which consists of a mandrel and heat-sealing equipment to seal the rubber ring to the base of the condom. Built into the assembly machine is a simple air-testing apparatus that can detect the smallest pinhole flaw in a condom. The manufacturing process is completed by unravelling the condom from the assembly

  8. Plastic flashtube chambers

    International Nuclear Information System (INIS)

    Frisken, W.R.

    1977-01-01

    A brief discussion is given of the use and operation of plastic flashtube chambers. Gas leaks, electric pulsing, the glow discharge, and readout methods are considered. Three distinct problems with high rate applications deal with resolving time, dead time, and polarization/neutralization of the chamber

  9. Magical Engineering Plastic

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gwang Ung

    1988-01-15

    This book introduces engineering plastic about advantage of engineering plastic, plastic material from processing method, plastic shock, plastic until now, background of making of engineering plastic, wonderful engineering plastic science such as a high molecule and molecule, classification of high molecule, difference between metal and high molecule, heat and high molecule materials, and property of surface, engineering plastic of dream like from linseed oil to aramid, small dictionary of engineering plastic.

  10. Magical Engineering Plastic

    International Nuclear Information System (INIS)

    Kim, Gwang Ung

    1988-01-01

    This book introduces engineering plastic about advantage of engineering plastic, plastic material from processing method, plastic shock, plastic until now, background of making of engineering plastic, wonderful engineering plastic science such as a high molecule and molecule, classification of high molecule, difference between metal and high molecule, heat and high molecule materials, and property of surface, engineering plastic of dream like from linseed oil to aramid, small dictionary of engineering plastic.

  11. Mixed plastics recycling technology

    CERN Document Server

    Hegberg, Bruce

    1995-01-01

    Presents an overview of mixed plastics recycling technology. In addition, it characterizes mixed plastics wastes and describes collection methods, costs, and markets for reprocessed plastics products.

  12. Pervasive plastic

    Science.gov (United States)

    2018-05-01

    Human manipulation of hydrocarbons — as fuel and raw materials for modern society — has changed our world and the indelible imprint we will leave in the rock record. Plastics alone have permeated our lives and every corner of our planet.

  13. Plastic fish

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness.   Artwork by Wolfgang Trettnak. Packaging materials, consumer goods (shoes, kids’ toys, etc.), leftovers from fishing and aquaculture activities… our oceans and beaches are full of plastic litter. Most of the debris from beaches is plastic bottles. “PET bottles have high durability and stability,” explains Wolfgang Trettnak, a chemist by education and artist from Austria, who gave a lecture on this topic organised by the Staff Association at CERN on 26 May. “PET degrades very slowly and the estimated lifetime of a bottle is 450 years.” In addition to the beach litter accumulated from human use, rivers bring several ki...

  14. Plastic deformation

    NARCIS (Netherlands)

    Sitter, de L.U.

    1937-01-01

    § 1. Plastic deformation of solid matter under high confining pressures has been insufficiently studied. Jeffreys 1) devotes a few paragraphs to deformation of solid matter as a preface to his chapter on the isostasy problem. He distinguishes two properties of solid matter with regard to its

  15. Americium behaviour in plastic vessels

    International Nuclear Information System (INIS)

    Legarda, F.; Herranz, M.; Idoeta, R.; Abelairas, A.

    2010-01-01

    The adsorption of 241 Am dissolved in water in different plastic storage vessels was determined. Three different plastics were investigated with natural and distilled waters and the retention of 241 Am by these plastics was studied. The same was done by varying vessel agitation time, vessel agitation speed, surface/volume ratio of water in the vessels and water pH. Adsorptions were measured to be between 0% and 70%. The adsorption of 241 Am is minimized with no water agitation, with PET or PVC plastics, and by water acidification.

  16. Americium behaviour in plastic vessels

    Energy Technology Data Exchange (ETDEWEB)

    Legarda, F.; Herranz, M. [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain); Idoeta, R., E-mail: raquel.idoeta@ehu.e [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain); Abelairas, A. [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain)

    2010-07-15

    The adsorption of {sup 241}Am dissolved in water in different plastic storage vessels was determined. Three different plastics were investigated with natural and distilled waters and the retention of {sup 241}Am by these plastics was studied. The same was done by varying vessel agitation time, vessel agitation speed, surface/volume ratio of water in the vessels and water pH. Adsorptions were measured to be between 0% and 70%. The adsorption of {sup 241}Am is minimized with no water agitation, with PET or PVC plastics, and by water acidification.

  17. Americium behaviour in plastic vessels.

    Science.gov (United States)

    Legarda, F; Herranz, M; Idoeta, R; Abelairas, A

    2010-01-01

    The adsorption of (241)Am dissolved in water in different plastic storage vessels was determined. Three different plastics were investigated with natural and distilled waters and the retention of (241)Am by these plastics was studied. The same was done by varying vessel agitation time, vessel agitation speed, surface/volume ratio of water in the vessels and water pH. Adsorptions were measured to be between 0% and 70%. The adsorption of (241)Am is minimized with no water agitation, with PET or PVC plastics, and by water acidification. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Investigations of mode I crack propagation in fibre-reinforced plastics with real time X-ray tests and simultaneous sound emission analysis

    International Nuclear Information System (INIS)

    Brunner, A.; Nordstrom, R.; Flueeler, P.

    1992-01-01

    The described investigation of crack formation and crack propagation in mode I (tensile stress) in fibre-reinforced plastic samples, especially uni-directional carbon fibre reinforced polyether-ether ketone (PEEK) has several aims. On the one hand, the phenomena of crack formation and crack propagation in these materials are to be studied, and on the other hand, the draft standards for these tests are to be checked. It was found that the combination of real time X-ray tests and simultaneous sound emission analysis is excellently suited for the basic examination of crack formation and crack propagation in DCB samples. With the aid of picture processing and analysis of the video representation, consistent crack lengths and resulting G IC values can be determined. (orig./RHM) [de

  19. Assessment of plastic packaging waste : material origin, methods, properties

    NARCIS (Netherlands)

    Luijsterburg, B.J.; Goossens, J.G.P.

    2014-01-01

    The global plastics production has increased annually and a substantial part is used for packaging (in Europe 39%). Most plastic packages are discarded after a relatively short service life and the resulting plastic packaging waste is subsequently landfilled, incinerated or recycled. Laws of several

  20. OPTIMATION OF TIME AND CATALYST/FEED RATIO IN CATALYTIC CRACKING OF WASTE PLASTICS FRACTION TO GASOLINE FRACTION USING Cr/NATURAL ZEOLITE CATALYST

    Directory of Open Access Journals (Sweden)

    Wega Trisunaryanti

    2010-06-01

    Full Text Available Optimation of time and catalyst/feed ratio in catalytic cracking of waste plastics fraction to gasoline fraction using Cr/Natural Zeolite catalyst has been studied.The natural zeolite was calcined by using nitrogen gas at 500 oC for 5 hours. The chromium supported on to the zeolite was prepared by ion exchange methode with Cr(NO33.9H2O solution with chromium/zeolite concentration of 1% (w/w. The zeolite samples were then calcined  with nitrogen gas at 500 oC for 2 hours, oxidyzed with oxygen gas and reduced with hydrogen at 400 oC for 2 hours. The characterization of the zeolite catalyst by means of Si/Al ratio by UV-Vis spectroscopy, acidity with pyridine vapour adsorption and Na, Ca and Cr contents by atomic adsorption spectroscopy (AAS. The catalyst activity test was carried out in the cracking process of waste plastics fraction with boiling point range of 150 - 250 °C (consisted of C12 - C16 hydrocarbons at 450 oC for 30 min, 60 min and 90 min, and catalyst/feed ratio 1/1, 1/2, 1/3, ¼ (w/w. The result of catalyst activity test  showed  that  the maximum number  conversion of gasoline fraction (C5-C11 is 53,27% with relatively low coke formation using 1/3 catalyst/feed ratio and the cracking time of 60 min.. This  catalyst has  Si/Al ratio = 1,21 (w/w , acidity = 0,16 mmol/g and Na content = 0,81%, Ca content = 0,15% and Cr content 0,24%.   Keywords: zeolite, catalytic cracking, gasoline, chromium.

  1. plastic waste recycling

    African Journals Online (AJOL)

    Dr Ahmed

    incinerators is increasing around the world. Discarded plastic products ... Agency (EPA) estimated that the amount of plastics throw away is. 50 % greater in the ... The waste plastics were identified using the Society of the Plastic. Industry (SPI) ...

  2. Plastic Surgery: Tackling Misconceptions

    African Journals Online (AJOL)

    will succeed. First impressions tend to last, and if young people's first impression of plastic surgeons is that they spend much of their time doing cosmetic surgery then this is a first impression that might be long ... Res 2014;4 Suppl S3:169‑70. Access this article online. Quick Response Code: Website: www.amhsr.org. DOI:.

  3. Methodology for substantiation of the fast reactor fuel element serviceability

    International Nuclear Information System (INIS)

    Tsykanov, V.A.; Maershin, A.A.

    1988-01-01

    Methodological aspects of fast reactor fuel element serviceability substantiation are presented. The choice of the experimental program and strategies of its realization to solve the problem set in short time, taking into account available experimental means, are substantiated. Factors determining fuel element serviceability depending on parameters and operational conditions are considered. The methodological approach recommending separate studing of the factors, which points to the possibility of data acquisition, required for the development of calculational models and substantiation of fuel element serviceability in pilot and experimental reactors, is described. It is shown that the special-purpose data are more useful for the substantiation of fuel element serviceability and analytical method development than unsubstantial and expensive complex tests of fuel elements and fuel assemblies, which should be conducted only at final stages for the improvement of the structure on the whole

  4. Silicon photomultiplier readout of a monolithic 270 x 5 x 5 cm{sup 3} plastic scintillator bar for time of flight applications

    Energy Technology Data Exchange (ETDEWEB)

    Roeder, Marko; Bemmerer, Daniel; Heidel, Klaus; Stach, Daniel; Wagner, Andreas; Weinberger, David [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Cowan, Thomas E.; Gohl, Stefan; Reinicke, Stefan [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); TU Dresden (Germany); Reinhardt, Tobias P.; Zuber, Kai [TU Dresden (Germany); Collaboration: R3B-Collaboration

    2016-07-01

    The detection of 200-1000 MeV neutrons requires large amounts of detector material because of the long nuclear interaction length of these particles. In the example of the NeuLAND neutron time-of-flight detector at FAIR, this is accomplished by using 3000 scintillator bars of 270 x 5 x 5 cm{sup 3} size made of the fast plastic polyvinyltoluene. In the present work, we investigated whether silicon photomultiplier (SiPM) photosensors can replace fast timing photomultiplier tubes. The response of the system consisting of scintillator, SiPM, and preamplifier was studied using 30 MeV single electrons provided by the ELBE superconducting electron linac. The results were interpreted by a simple Monte Carlo simulation, and the time resolution was found to obey an inverse-square-root scaling law with the number of fired pixels. In the electron beam tests, a time resolution of σ{sub t}=136 ps was reached with a pure SiPM readout, well within the design parameters for NeuLAND.

  5. Developmental plasticity in Tenebrio molitor (Coleoptera: Tenebrionidae): Analysis of Instar Variation in Number and Development Time under Different Diets

    Science.gov (United States)

    The variation in instar number and the pattern of sequential instar development time of Tenebrio molitor L. (Coleoptera: Tenebrionidae) was studied under 4 different diet regimes. Addition of dietary supplements consisting of dry potato or a mix of dry potato and dry egg whites significantly reduced...

  6. Increased greenhouse effect substantiated through measurements

    International Nuclear Information System (INIS)

    Skartveit, Arvid

    2001-01-01

    The article presents studies on the greenhouse effect which substantiates the results from satellite measurements during the period 1970 - 1997. These show an increased effect due to increase in the concentration of the climatic gases CO 2 , methane, CFC-11 and CFC-12 in the atmosphere

  7. 21 CFR 514.4 - Substantial evidence.

    Science.gov (United States)

    2010-04-01

    ... adequate and well-controlled studies, such as a study in a target species, study in laboratory animals... and conditions of use. Substantial evidence of effectiveness of a new animal drug shall demonstrate that the new animal drug is effective for each intended use and associated conditions of use for and...

  8. Toward More Substantial Theories of Language Acquisition

    Science.gov (United States)

    Jenson, Cinnamon Ann

    2015-01-01

    Cognitive linguists argue that certain sets of knowledge of language are innate. However, critics have argued that the theoretical concept of "innateness" should be eliminated since it is ambiguous and insubstantial. In response, I aim to strengthen theories of language acquisition and identify ways to make them more substantial. I…

  9. A re-examination of Hebbian-covariance rules and spike timing-dependent plasticity in cat visual cortex in vivo

    Directory of Open Access Journals (Sweden)

    Yves Frégnac

    2010-12-01

    Full Text Available Spike-Timing-Dependent Plasticity (STDP is considered as an ubiquitous rule for associative plasticity in cortical networks in vitro. However, limited supporting evidence for its functional role has been provided in vivo. In particular, there are very few studies demonstrating the co-occurence of synaptic efficiency changes and alteration of sensory responses in adult cortex during Hebbian or STDP protocols. We addressed this issue by reviewing and comparing the functional effects of two types of cellular conditioning in cat visual cortex. The first one, referred to as the covariance protocol, obeys a generalized Hebbian framework, by imposing, for different stimuli, supervised positive and negative changes in covariance between postsynaptic and presynaptic activity rates. The second protocol, based on intracellular recordings, replicated in vivo variants of the theta-burst paradigm (TBS, proven successful in inducing long-term potentiation (LTP in vitro. Since it was shown to impose a precise correlation delay between the electrically activated thalamic input and the TBS-induced postsynaptic spike, this protocol can be seen as a probe of causal (pre-before-post STDP. By choosing a thalamic region where the visual field representation was in retinotopic overlap with the intracellularly recorded cortical receptive field as the afferent site for supervised electrical stimulation, this protocol allowed to look for possible correlates between STDP and functional reorganization of the conditioned cortical receptive field. The rate-based covariance protocol induced significant and large amplitude changes in receptive field properties, in both kitten and adult V1 cortex. The TBS STDP-like protocol produced in the adult significant changes in the synaptic gain of the electrically activated thalamic pathway, but the statistical significance of the functional correlates was detectable mostly at the population level. Comparison of our observations with the

  10. The effect of type of afferent feedback timed with motor imagery on the induction of cortical plasticity

    DEFF Research Database (Denmark)

    Mrachacz-Kersting, Natalie; Voigt, Michael; Stevenson, Andrew James Thomas

    2017-01-01

    : 8-35 mAmp) or a passive ankle movement (amplitude and velocity matched to a normal gait cycle) was applied such that the first afferent inflow would coincide with the PN of the MRCP. The change in the output of the primary motor cortex (M1) was quantified by applying single transcranial magnetic...... compared these two interventions (BCIFES and BCIpassive) where the afferent input was timed to arrive at the motor cortex during the PN of the MRCP. Twelve healthy participants attended two experimental sessions. They were asked to perform 30 dorsiflexion movements timed to a cue while continuous...... stimuli to the area of M1 controlling the tibialis anterior (TA) muscle and measuring the motor evoked potential (MEP). Spinal changes were assessed pre and post by eliciting the TA stretch reflex. Both BCIFES and BCIpassive led to significant increases in the excitability of the cortical projections...

  11. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to chitosan and reduction in body weight (ID 679, 1499), maintenance of normal blood LDL-cholesterol concentrations (ID 4663), reduction of intestinal transit time (ID

    DEFF Research Database (Denmark)

    Tetens, Inge

    claims in relation to chitosan and reduction in body weight, maintenance of normal blood LDL-cholesterol concentrations, reduction of intestinal transit time and reduction of inflammation. The scientific substantiation is based on the information provided by the Member States in the consolidated list...... of Article 13 health claims and references that EFSA has received from Member States or directly from stakeholders. The food constituent that is the subject of the health claim is chitosan. The Panel considers that chitosan is sufficiently characterised....

  12. Combinations of glycerol percent, glycerol equilibration time, and thawing rate upon freezability of bull spermatozoa in plastic straws.

    Science.gov (United States)

    Wiggin, H B; Almquist, J O

    1975-03-01

    Twelve ejaculates were used in a central composite experiment to test 15 combinations of glycerol (7, 9, 11, 13, or 15%), glycerol equilibration times (1, 2, 4, 8, or 16 h) and thawing rates (water at 35 C for 15 s, 50 C for 13 s, 65 C for 11 s, 80 C for 9 s, or 95 C for 7 s). Semen was diluted in heated skim milk-glycerol, packaged in .3-ml. Continental U.S. straws and frozen in liquid nitrogen vapor. Based on post-thaw progressive sperm motility after storage at -196 C for 9 to 11 days, estimated optima from multiple regression were 10.7% for glycerol, 2.0 h for glycerol equilibration time, and 76 C for thawing bath temperature. Only the linear effect for each variable was significant. Much faster thawing rates and shorter glycerol equilibration times than those for freezing bull spermatozoa in glass ampules should be used for maximum post-thaw sperm motility in straws.

  13. Influence of Advanced Injection Timing and Fuel Additive on Combustion, Performance, and Emission Characteristics of a DI Diesel Engine Running on Plastic Pyrolysis Oil

    Directory of Open Access Journals (Sweden)

    Ioannis Kalargaris

    2017-01-01

    Full Text Available This paper presents the investigation of engine optimisation when plastic pyrolysis oil (PPO is used as the primary fuel of a direct injection diesel engine. Our previous investigation revealed that PPO is a promising fuel; however the results suggested that control parameters should be optimised in order to obtain a better engine performance. In the present work, the injection timing was advanced, and fuel additives were utilised to overcome the issues experienced in the previous work. In addition, spray characteristics of PPO were investigated in comparison with diesel to provide in-depth understanding of the engine behaviour. The experimental results on advanced injection timing (AIT showed reduced brake thermal efficiency and increased carbon monoxide, unburned hydrocarbons, and nitrogen oxides emissions in comparison to standard injection timing. On the other hand, the addition of fuel additive resulted in higher engine efficiency and lower exhaust emissions. Finally, the spray tests revealed that the spray tip penetration for PPO is faster than diesel. The results suggested that AIT is not a preferable option while fuel additive is a promising solution for long-term use of PPO in diesel engines.

  14. Two-zone elastic-plastic single shock waves in solids.

    Science.gov (United States)

    Zhakhovsky, Vasily V; Budzevich, Mikalai M; Inogamov, Nail A; Oleynik, Ivan I; White, Carter T

    2011-09-23

    By decoupling time and length scales in moving window molecular dynamics shock-wave simulations, a new regime of shock-wave propagation is uncovered characterized by a two-zone elastic-plastic shock-wave structure consisting of a leading elastic front followed by a plastic front, both moving with the same average speed and having a fixed net thickness that can extend to microns. The material in the elastic zone is in a metastable state that supports a pressure that can substantially exceed the critical pressure characteristic of the onset of the well-known split-elastic-plastic, two-wave propagation. The two-zone elastic-plastic wave is a general phenomenon observed in simulations of a broad class of crystalline materials and is within the reach of current experimental techniques.

  15. The evolution of age-dependent plasticity

    NARCIS (Netherlands)

    Fischer, Barbara; van Doorn, G. Sander; Dieckmann, Ulf; Taborsky, Barbara

    2014-01-01

    When organisms encounter environments that are heterogeneous in time, phenotypic plasticity is often favored by selection. The degree of such plasticity can vary during an organism''s lifetime, but the factors promoting differential plastic responses at different ages or life stages remain poorly

  16. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin, E-mail: xmli@cqu.edu.cn [Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of Education, Chongqing University, Chongqing 400044 (China); College of Automation, Chongqing University, Chongqing 400044 (China)

    2015-11-15

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.

  17. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule

    International Nuclear Information System (INIS)

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin

    2015-01-01

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing

  18. Water Vapor Permeation in Plastics

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Paul E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-01-01

    Polyvinyl toluene (PVT) and polystyrene (PS) (referred to as “plastic scintillator”) are used for gamma ray detectors. A significant decrease in radiation detection performance has been observed in some PVT-based gamma-ray detectors in systems in outdoor environments as they age. Recent studies have revealed that plastic scintillator can undergo an environmentally related material degradation that adversely affects gamma ray detection performance under certain conditions and histories. A significant decrease in sensitivity has been seen in some gamma-ray detectors in some systems as they age. The degradation of sensitivity of plastic scintillator over time is due to a variety of factors, and the term “aging” is used to encompass all factors. Some plastic scintillator samples show no aging effects (no significant change in sensitivity over more than 10 years), while others show severe aging (significant change in sensitivity in less than 5 years). Aging effects arise from weather (variations in heat and humidity), chemical exposure, mechanical stress, light exposure, and loss of volatile components. The damage produced by these various causes can be cumulative, causing observable damage to increase over time. Damage may be reversible up to some point, but becomes permanent under some conditions. The objective of this report is to document the phenomenon of permeability of plastic scintillator to water vapor and to derive the relationship between time, temperature, humidity and degree of water penetration in plastic. Several conclusions are documented about the properties of water permeability of plastic scintillator.

  19. Degradation of plastic carrier bags in the marine environment

    International Nuclear Information System (INIS)

    O'Brine, Tim; Thompson, Richard C.

    2010-01-01

    Research highlights: → There is considerable concern about the hazards that plastic debris presents to wildlife. → Here we investigate breakdown of oxodegradable, compostable and conventional plastic bags. → Compostable plastic disappeared from our test rig between 16 and 24 weeks. → Approximately 98% of the other plastics remained after 40 weeks. → Fouling by marine organisms substantially reduced the amount of UV-light reaching the plastic. - Abstract: There is considerable concern about the hazards that plastic debris presents to wildlife. Use of polymers that degrade more quickly than conventional plastics presents a possible solution to this problem. Here we investigate breakdown of two oxo-biodegradable plastics, compostable plastic and standard polyethylene in the marine environment. Tensile strength of all materials decreased during exposure, but at different rates. Compostable plastic disappeared from our test rig between 16 and 24 weeks whereas approximately 98% of the other plastics remained after 40 weeks. Some plastics require UV light to degrade. Transmittance of UV through oxo-biodegradable and standard polyethylene decreased as a consequence of fouling such that these materials received ∼90% less UV light after 40 weeks. Our data indicate that compostable plastics may degrade relatively quickly compared to oxo-biodegradable and conventional plastics. While degradable polymers offer waste management solutions, there are limitations to their effectiveness in reducing hazards associated with plastic debris.

  20. Elastic Plastic Fracture Analysis of an Aluminum COPV Liner

    Science.gov (United States)

    Forth, Scott; Gregg, Bradley; Bailey, Nathaniel

    2012-01-01

    Onboard any space-launch vehicle, composite over-wrapped pressure vessels (COPVs) may be utilized by propulsion or environmental control systems. The failure of a COPV has the potential to be catastrophic, resulting in the loss of vehicle, crew or mission. The latest COPV designs have reduced the wall-thickness of the metallic liner to the point where the material strains plastically during operation. At this time, the only method to determine the damage tolerance lifetime (safe-life) of a plastically responding metallic liner is through full-scale COPV testing. Conducting tests costs substantially more and can be far more time consuming than performing an analysis. As a result of this cost, there is a need to establish a qualifying process through the use of a crack growth analysis tool. This paper will discuss fracture analyses of plastically responding metallic liners in COPVs. Uni-axial strain tests have been completed on laboratory specimens to collect elastic-plastic crack growth data. This data has been modeled with the crack growth analysis tool, NASGRO 6.20 to predict the response of laboratory specimens and subsequently the complexity of a COPV.

  1. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  2. Mesocycles in conserving plastics

    DEFF Research Database (Denmark)

    Shashoua, Yvonne

    2016-01-01

    driven by the need to balance the requirements for reversibility in conservation practices with the artist’s intent and significance. Developments within each of the three mesocycles from the 1990s to date are discussed in this article. Environmental science and toxicology of waste plastics offer a novel...... source of information about real time degradation in terrestrial and marine microenvironments that seems likely to contribute to the conservation of similar materials in contemporary artworks....

  3. Toxicological Threats of Plastic

    Science.gov (United States)

    Plastics pose both physical (e.g., entanglement, gastrointestinal blockage, reef destruction) and chemical threats (e.g., bioaccumulation of the chemical ingredients of plastic or toxic chemicals sorbed to plastics) to wildlife and the marine ecosystem.

  4. Substantiating the Incurred but not Reported Reserve

    Directory of Open Access Journals (Sweden)

    Georgeta Vintilã

    2009-12-01

    Full Text Available In order to handle past and future liability taken by insurance contracts concluded, any insurance company must constitute and maintain technical reserves. Substantiating technical reserves is done through actuarial methods and its over-evaluation or under-evaluation influence solvency and financial performance of the insurance companies, in the sense of reducing solvency through over-evaluating reserves and, respectively, influencing profit (hence of outstanding tax through under-evaluating reserves. An important reserve for insurance companies is represented by the incurred but not reported reserve, as it allows the estimation of the liability the company may confront in the future, generated by events occurred in the past, which are not currently known in the present but will be reported in the future.

  5. Performance study of the simplified theory of plastic zones and the Twice-Yield method for the fatigue check

    International Nuclear Information System (INIS)

    Hübel, Hartwig; Willuweit, Adrian; Rudolph, Jürgen; Ziegler, Rainer; Lang, Hermann; Rother, Klemens; Deller, Simon

    2014-01-01

    As elastic–plastic fatigue analyses are still time consuming the simplified elastic–plastic analysis (e.g. ASME Section III, NB 3228.5, the French RCC-M code, paragraphs B 3234.3, B 3234.5 and B3234.6 and the German KTA rule 3201.2, paragraph 7.8.4) is often applied. Besides linearly elastic analyses and factorial plasticity correction (K e factors) direct methods are an option. In fact, calculation effort and accuracy of results are growing in the following graded scheme: a) linearly elastic analysis along with K e correction, b) direct methods for the determination of stabilized elastic–plastic strain ranges and c) incremental elastic–plastic methods for the determination of stabilized elastic–plastic strain ranges. The paper concentrates on option b) by substantiating the practical applicability of the simplified theory of plastic zones STPZ (based on Zarka's method) and – for comparison – the established Twice-Yield method. The Twice-Yield method is explicitly addressed in ASME Code, Section VIII, Div. 2. Application relevant aspects are particularly addressed. Furthermore, the applicability of the STPZ for arbitrary load time histories in connection with an appropriate cycle counting method is discussed. Note, that the STPZ is applicable both for the determination of (fatigue relevant) elastic–plastic strain ranges and (ratcheting relevant) locally accumulated strains. This paper concentrates on the performance of the method in terms of the determination of elastic–plastic strain ranges and fatigue usage factors. The additional performance in terms of locally accumulated strains and ratcheting will be discussed in a future publication. - Highlights: • Simplified elastic–plastic fatigue analyses. • Simplified theory of plastic zones. • Thermal cyclic loading. • Twice-Yield method. • Practical application examples

  6. Treatment of contaminated waste plastics material

    International Nuclear Information System (INIS)

    Sims, J.; Hitchcock, J.W.

    1984-01-01

    Radioactive contaminated plastics material is treated by reducing it to uniform-sized debris and extruding it from a heated extruder into a sealed container in monolithic block form or as an in-fill matrix for other contaminated waste articles to create a substantially void-free sealed mass for disposal. Density adjusting fillers may be included. Extrusion may alternatively take place into a clean sealable plastics tube. (author)

  7. Influence of storage temperature and time on the physicochemical and bioactive properties of roselle-fruit juice blends in plastic bottle

    Science.gov (United States)

    Mgaya-Kilima, Beatrice; Remberg, Siv Fagertun; Chove, Bernard Elias; Wicklund, Trude

    2014-01-01

    Roselle-fruit juice blends were made from roselle extract and mango, papaya, and guava juices at the ratio of 80:20, 60:40, 40:60, and 20:80, % roselle: fruit juice, respectively. The blends were pasteurized at 82.5°C for 20 min and stored in 100 mL plastic bottles at 28 and 4°C for 6 months. The effects of storage time and temperature on physicochemical and bioactive properties were evaluated. Total soluble solids, pH, and reducing sugars increased significantly (P roselle-fruit blends (40% roselle) decreased significantly (P roselle-fruit blends (40% roselle) decreased from 58–55% to 43–42% when stored at 28 and 4°C, respectively. TMA losses were 86–65% at 28°C and 75–53% at 4°C while TPC losses were 66–58% at 28°C and 51–22% at 4°C. Loss of antioxidant capacity (FRAP) was 18–46% at 28°C and 17–35% at 4°C. A principal component analysis (PCA) differentiated roselle-juice fruit blends into two clusters with two principle components PC1 and PC2, which explained 97 and 3% (blends stored at ambient temperature) and 96 and 4% (blends stored at refrigerated temperature) of the variation, respectively. PC1 differentiated roselle-guava juice blends which were characterized by vitamin C, TPC, FRAP, and pH, while PC2 from another cluster of roselle-mango and roselle-papaya juice blends and was characterized by TSS, RS, and color parameters (L* a* b*). However, TMA was the main variable with the highest effect on all roselle-fruit juice blends regardless of the storage time and temperature. PMID:24804077

  8. Structural and Functional Plasticity within the Nucleus Accumbens and Prefrontal Cortex Associated with Time-Dependent Increases in Food Cue-Seeking Behavior.

    Science.gov (United States)

    Dingess, Paige M; Darling, Rebecca A; Derman, Rifka C; Wulff, Shaun S; Hunter, Melissa L; Ferrario, Carrie R; Brown, Travis E

    2017-11-01

    Urges to consume food can be driven by stimuli in the environment that are associated with previous food experience. Identifying adaptations within brain reward circuits that facilitate cue-induced food seeking is critical for understanding and preventing the overconsumption of food and subsequent weight gain. Utilizing electrophysiological, biochemical, and DiI labeling, we examined functional and structural changes in the nucleus accumbens (NAc) and prefrontal cortex (PFC) associated with time-dependent increases in food craving ('incubation of craving'). Rats self-administered 60% high fat or chow 45 mg pellets and were then tested for incubation of craving either 1 or 30 days after training. High fat was chosen for comparison to determine whether palatability differentially affected incubation and/or plasticity. Rats showed robust incubation of craving for both food rewards, although responding for cues previously associated with high fat was greater than chow at both 1 and 30 days. In addition, previous experience with high-fat consumption reduced dendritic spine density in the PFC at both time points. In contrast, incubation was associated with an increase in NAc spine density and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated transmission at 30 days in both groups. Finally, incubation of craving for chow and high fat was accompanied by an increase in calcium-permeable and calcium-impermeable AMPARs, respectively. Our results suggest that incubation of food craving alters brain reward circuitry and macronutrient composition specifically induces cortical changes in a way that may facilitate maladaptive food-seeking behaviors.

  9. Substantial nitrogen pollution embedded in international trade

    Science.gov (United States)

    Oita, Azusa; Malik, Arunima; Kanemoto, Keiichiro; Geschke, Arne; Nishijima, Shota; Lenzen, Manfred

    2016-02-01

    Anthropogenic emissions of reactive nitrogen to the atmosphere and water bodies can damage human health and ecosystems. As a measure of a nation’s contribution to this potential damage, a country’s nitrogen footprint has been defined as the quantity of reactive nitrogen emitted during the production, consumption and transportation of commodities consumed within that country, whether those commodities are produced domestically or internationally. Here we use global emissions databases, a global nitrogen cycle model, and a global input-output database of domestic and international trade to calculate the nitrogen footprints for 188 countries as the sum of emissions of ammonia, nitrogen oxides and nitrous oxide to the atmosphere, and of nitrogen potentially exportable to water bodies. Per-capita footprints range from under 7 kg N yr-1 in some developing countries to over 100 kg N yr-1 in some wealthy nations. Consumption in China, India, the United States and Brazil is responsible for 46% of global emissions. Roughly a quarter of the global nitrogen footprint is from commodities that were traded across country borders. The main net exporters have significant agricultural, food and textile exports, and are often developing countries, whereas important net importers are almost exclusively developed economies. We conclude that substantial local nitrogen pollution is driven by demand from consumers in other countries.

  10. 40 CFR 725.94 - Substantiation requirements.

    Science.gov (United States)

    2010-07-01

    ... market for the resulting product? Consider such constraints as capital and marketing cost, specialized... competitors? What is the cost to a competitor, in time and money, to develop appropriate use conditions? What...

  11. Neuromodulation, development and synaptic plasticity.

    Science.gov (United States)

    Foehring, R C; Lorenzon, N M

    1999-03-01

    We discuss parallels in the mechanisms underlying use-dependent synaptic plasticity during development and long-term potentiation (LTP) and long-term depression (LTD) in neocortical synapses. Neuromodulators, such as norepinephrine, serotonin, and acetylcholine have also been implicated in regulating both developmental plasticity and LTP/LTD. There are many potential levels of interaction between neuromodulators and plasticity. Ion channels are substrates for modulation in many cell types. We discuss examples of modulation of voltage-gated Ca2+ channels and Ca(2+)-dependent K+ channels and the consequences for neocortical pyramidal cell firing behaviour. At the time when developmental plasticity is most evident in rat cortex, the substrate for modulation is changing as the densities and relative proportions of various ion channels types are altered during ontogeny. We discuss examples of changes in K+ and Ca2+ channels and the consequence for modulation of neuronal activity.

  12. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like...

  13. Substantial Union or Substantial Distinction of Mind and Body in Descartes' Metaphysics

    Directory of Open Access Journals (Sweden)

    Fahime Jamei

    2009-01-01

    Full Text Available According to Descartes’ metaphysics there are two different kinds of substances in the world of creatures: “thinking substance” and “extended substance” or soul and matter. In Descartes’ philosophy the soul is equal to the mind and considered as a “thinking substance”. This immaterial substance is the essence of the human being. Body, being considered as a “matter“, is an “extended substance” and entirely distinct from the soul. The soul, therefore, exists and may be known prior to body and, not being corporeal, can exist after human death. Hence, Descartes can prove the immortality of human soul in the framework of the principle of substantial distinction. On the other hand, as a physiologist and psychologist, Descartes indeed believes in mind-body union, so that some causal interactions between mind and body show their substantial union. In this essay, the authors show that Descartes faces a serious problem in combining substantial union of mind and body with their substantial distinction; despite of his efforts in introducing the idea of pineal gland, the problem remains unsolved. Therefore it seems that as he cannot dispense with his only reason for proving the immortality of human soul, he has to hold the mind-body distinction theory in his metaphysics. Indeed, Descartes prefers to support the distinction theory rather than union theory in confronting a thesis and an antithesis stating one of two theories

  14. Substantial :union: or Substantial Distinction of Mind and Body in Descartes\\' Metaphysics

    Directory of Open Access Journals (Sweden)

    f Jamei

    2009-06-01

    Full Text Available According to Descartes’ metaphysics there are two different kinds of substances in the world of creatures: “thinking substance” and “extended substance” or soul and matter. In Descartes’ philosophy the soul is equal to the mind and considered as a “thinking substance”. This immaterial substance is the essence of the human being. Body, being considered as a “matter“, is an “extended substance” and entirely distinct from the soul. The soul, therefore, exists and may be known prior to body and, not being corporeal, can exist after human death. Hence, Descartes can prove the immortality of human soul in the framework of the principle of substantial distinction. On the other hand, as a physiologist and psychologist, Descartes indeed believes in mind-body :union:, so that some causal interactions between mind and body show their substantial :union:. In this essay, the authors show that Descartes faces a serious problem in combining substantial :union: of mind and body with their substantial distinction despite of his efforts in introducing the idea of pineal gland, the problem remains unsolved. Therefore it seems that as he cannot dispense with his only reason for proving the immortality of human soul, he has to hold the mind-body distinction theory in his metaphysics. Indeed, Descartes prefers to support the distinction theory rather than :union: theory in confronting a thesis and an antithesis stating one of two theories.

  15. Quantification of net carbon flux from plastic greenhouse vegetable cultivation: A full carbon cycle analysis

    International Nuclear Information System (INIS)

    Wang Yan; Xu Hao; Wu Xu; Zhu Yimei; Gu Baojing; Niu Xiaoyin; Liu Anqin; Peng Changhui; Ge Ying; Chang Jie

    2011-01-01

    Plastic greenhouse vegetable cultivation (PGVC) has played a vital role in increasing incomes of farmers and expanded dramatically in last several decades. However, carbon budget after conversion from conventional vegetable cultivation (CVC) to PGVC has been poorly quantified. A full carbon cycle analysis was used to estimate the net carbon flux from PGVC systems based on the combination of data from both field observations and literatures. Carbon fixation was evaluated at two pre-selected locations in China. Results suggest that: (1) the carbon sink of PGVC is 1.21 and 1.23 Mg C ha -1 yr -1 for temperate and subtropical area, respectively; (2) the conversion from CVC to PGVC could substantially enhance carbon sink potential by 8.6 times in the temperate area and by 1.3 times in the subtropical area; (3) the expansion of PGVC usage could enhance the potential carbon sink of arable land in China overall. - Highlights: → We used full carbon (C) cycle analysis to estimate the net C flux from cultivation. → The plastic greenhouse vegetable cultivation system in China can act as a C sink. → Intensified agricultural practices can generate C sinks. → Expansion of plastic greenhouse vegetable cultivation can enhance regional C sink. - The conversion from conventional vegetable cultivation to plastic greenhouse vegetable cultivation could substantially enhance carbon sink potential by 8.6 and 1.3 times for temperate and subtropical area, respectively.

  16. Nano-plastics in the aquatic environment.

    Science.gov (United States)

    Mattsson, K; Hansson, L-A; Cedervall, T

    2015-10-01

    The amount of plastics released to the environment in modern days has increased substantially since the development of modern plastics in the early 1900s. As a result, concerns have been raised by the public about the impact of plastics on nature and on, specifically, aquatic wildlife. Lately, much attention has been paid to macro- and micro-sized plastics and their impact on aquatic organisms. However, micro-sized plastics degrade subsequently into nano-sizes whereas nano-sized particles may be released directly into nature. Such particles have a different impact on aquatic organisms than larger pieces of plastic due to their small size, high surface curvature, and large surface area. This review describes the possible sources of nano-sized plastic, its distribution and behavior in nature, the impact of nano-sized plastic on the well-being of aquatic organisms, and the difference of impact between nano- and micro-sized particles. We also identify research areas which urgently need more attention and suggest experimental methods to obtain useful data.

  17. EXPERIMENTAL SUBSTANTIATION OF ATTRIBUTIONAL STYLE IN TRAFFIC POLICE OFFICERS’ BEHAVIOR

    Directory of Open Access Journals (Sweden)

    Olga Vladimirovna Merkusheva

    2016-02-01

    Full Text Available The article prepared for the ‘Psychological and Methodological Aspects of Professional Personnel Training at Internal Affairs Bodies of the Russian Federation’ scholar tradition looks at the applied aspect of handling security issues by traffic police officers. It presents the results of empirical study of the employees’ psychological characteristics conducted to substantiate their attributional style, which determines the specific character as well as the qua-lity and reliability of traffic police officers’ performance. Traffic police officers’ attributional style of behavior is researched with the help of attributional cognitive techniques for hazard phenomena detection as well as social perception and attribution technique and is viewed as the most stable entity, which reflects the employee’s personal and professional focus.Goal: to provide empirical substantiation of attributional style in traffic police officers’ behavior as an integral personality characteristic that ensures timely detection of hazard phenomena.

  18. Introduction to Computational Plasticity

    International Nuclear Information System (INIS)

    Hartley, P

    2006-01-01

    matrices with a clear explanation of their development, is a recurring, and commendable, feature of the book, which provides an invaluable introduction for those new to the subject. The chapter moves on from time-independent behaviour to introduce viscoplasticity and creep. Chapter three takes the theories of deformation another stage further to consider the problems associated with large deformation in which an important concept is the separation of the phenomenon into material stretch and rotation. The latter is crucial to allow correct measures of strain and stress to be developed in which the effects of rigid body rotation do not contribute to these variables. Hence, the introduction of 'objective' measures for stress and strain. These are described with reference to deformation gradients, which are clearly explained; however, the introduction of displacement gradients passes with little comment, although velocity gradients appear later in the chapter. The interpretation of different strain measures, e.g. Green--Lagrange and Almansi, is covered briefly, followed by a description of the spin tensor and its use in developing the objective Jaumann rate of stress. It is tempting here to suggest that a more complete description should be given together with other measures of strain and stress, of which there are several, but there would be a danger of changing the book from an 'introduction' to a more comprehensive text, and examples of such exist already. Chapter four begins the process of developing the plasticity theories into a form suitable for inclusion in the finite-element method. The starting point is Hamilton's principle for equilibrium of a dynamic system. A very brief introduction to the finite-element method is then given, followed by the finite-element equilibrium equations and a description of how they are incorporated into Hamilton's principle. A useful clarification is provided by comparing tensor notation and the form normally used in finite

  19. Adapting to a Changing Environment: Modeling the Interaction of Directional Selection and Plasticity.

    Science.gov (United States)

    Nunney, Leonard

    2016-01-01

    Human-induced habitat loss and fragmentation constrains the range of many species, making them unable to respond to climate change by moving. For such species to avoid extinction, they must respond with some combination of phenotypic plasticity and genetic adaptation. Haldane's "cost of natural selection" limits the rate of adaptation, but, although modeling has shown that in very large populations long-term adaptation can be maintained at rates substantially faster than Haldane's suggested limit, maintaining large populations is often an impossibility, so phenotypic plasticity may be crucial in enhancing the long-term survival of small populations. The potential importance of plasticity is in "buying time" for populations subject to directional environmental change: if genotypes can encompass a greater environmental range, then populations can maintain high fitness for a longer period of time. Alternatively, plasticity could be detrimental by lessening the effectiveness of natural selection in promoting genetic adaptation. Here, I modeled a directionally changing environment in which a genotype's adaptive phenotypic plasticity is centered around the environment where its fitness is highest. Plasticity broadens environmental tolerance and, provided it is not too costly, is favored by natural selection. However, a paradoxical result of the individually advantageous spread of plasticity is that, unless the adaptive trait is determined by very few loci, the long-term extinction risk of a population increases. This effect reflects a conflict between the short-term individual benefit of plasticity and a long-term detriment to population persistence, adding to the multiple threats facing small populations under conditions of climate change. © The American Genetic Association. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Potential use of Plastic Waste as Construction Materials: Recent Progress and Future Prospect

    Science.gov (United States)

    Kamaruddin, M. A.; Abdullah, M. M. A.; Zawawi, M. H.; Zainol, M. R. R. A.

    2017-11-01

    Plastic associates products based have been considered as the world most consumer packaging solution. However, substantial quantities of plastic consumption have led to exponential increase of plastic derived waste. Recycling of plastic waste as valued added product such as concrete appears as one of promising solution for alternative use of plastic waste. This paper summarized recent progress on the development of concrete mixture which incorporates plastic wastes as partial aggregate replacement during concrete manufacturing. A collection of data from previous studies that have been researched which employed plastic waste in concrete mixtures were evaluated and conclusions are drawn based on the laboratory results of all the mentioned research papers studied.

  1. Reaction behaviour of DSD waste plastics in hydrogenating liquefaction with varied times of residue and reaction temperatures; Das Reaktionsverhalten von DSD-Kunststoffabfaellen in der hydrierenden Verfluessigung bei Variation von Verweilzeit und Reaktionstemperatur

    Energy Technology Data Exchange (ETDEWEB)

    Burgtorf, J.; Meier zu Koecker, H. [Technische Univ. Berlin (Germany). Inst. fuer Energietechnik

    1996-12-31

    Hydrogenation is an established process of waste plastics recycling. At the 1st DGMK Technical Meeting at Velen, the Energy Engineering Institute of Berlin Technical University presented studies on the reaction behaviour of waste plastics collected by the DSD (Duales System Deutschland) during hydrogenating liquefaction. The studies have been finished by now, and some results are presented, with particular regard to times of residue and reaction temperaperatures. (orig) [Deutsch] Die Hydrierung ist ein etabliertes Verfahren der rohstofflichen Verwertung von Kunststoffabfaellen. Die auf der 1. DGMK-Fachtagung in Velen vorgestellten Arbeiten des Instituts fuer Energietechnik der Technischen Universitaet Berlin zum Reaktionsverhalten von Kuststoffabfaellen aus der Sammlung des Dualen Systems Deutschland (DSD) in der hydrierenden Verfluessigung sind inzwischen abgeschlossen. Einige Ergebnisse werden hier unter besonderer Beruecksichtigung der Parameter Verweilzeit und Reaktionstemperatur dargestellt. (orig)

  2. Reaction behaviour of DSD waste plastics in hydrogenating liquefaction with varied times of residue and reaction temperatures; Das Reaktionsverhalten von DSD-Kunststoffabfaellen in der hydrierenden Verfluessigung bei Variation von Verweilzeit und Reaktionstemperatur

    Energy Technology Data Exchange (ETDEWEB)

    Burgtorf, J; Meier zu Koecker, H [Technische Univ. Berlin (Germany). Inst. fuer Energietechnik

    1997-12-31

    Hydrogenation is an established process of waste plastics recycling. At the 1st DGMK Technical Meeting at Velen, the Energy Engineering Institute of Berlin Technical University presented studies on the reaction behaviour of waste plastics collected by the DSD (Duales System Deutschland) during hydrogenating liquefaction. The studies have been finished by now, and some results are presented, with particular regard to times of residue and reaction temperaperatures. (orig) [Deutsch] Die Hydrierung ist ein etabliertes Verfahren der rohstofflichen Verwertung von Kunststoffabfaellen. Die auf der 1. DGMK-Fachtagung in Velen vorgestellten Arbeiten des Instituts fuer Energietechnik der Technischen Universitaet Berlin zum Reaktionsverhalten von Kuststoffabfaellen aus der Sammlung des Dualen Systems Deutschland (DSD) in der hydrierenden Verfluessigung sind inzwischen abgeschlossen. Einige Ergebnisse werden hier unter besonderer Beruecksichtigung der Parameter Verweilzeit und Reaktionstemperatur dargestellt. (orig)

  3. Environmental evaluation of plastic waste management scenarios

    DEFF Research Database (Denmark)

    Rigamonti, L.; Grosso, M.; Møller, Jacob

    2014-01-01

    The management of the plastic fraction is one of the most debated issues in the discussion on integrated municipal solid waste systems. Both material and energy recovery can be performed on such a waste stream, and different separate collection schemes can be implemented. The aim of the paper....... The study confirmed the difficulty to clearly identify an optimal strategy for plastic waste management. In fact none of the examined scenarios emerged univocally as the best option for all impact categories. When moving from the P0 treatment strategy to the other scenarios, substantial improvements can...... is to contribute to the debate, based on the analysis of different plastic waste recovery routes. Five scenarios were defined and modelled with a life cycle assessment approach using the EASEWASTE model. In the baseline scenario (P0) the plastic is treated as residual waste and routed partly to incineration...

  4. 20 CFR 416.1075 - Finding of substantial failure.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Finding of substantial failure. 416.1075... AGED, BLIND, AND DISABLED Determinations of Disability Substantial Failure § 416.1075 Finding of substantial failure. A finding of substantial failure with respect to a State may not be made unless and until...

  5. 20 CFR 404.1675 - Finding of substantial failure.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Finding of substantial failure. 404.1675... DISABILITY INSURANCE (1950- ) Determinations of Disability Substantial Failure § 404.1675 Finding of substantial failure. A finding of substantial failure with respect to a State may not be made unless and until...

  6. Smartphones and the plastic surgeon.

    Science.gov (United States)

    Al-Hadithy, Nada; Ghosh, Sudip

    2013-06-01

    Surgical trainees are facing limited training opportunities since the introduction of the European Working Time Directive. Smartphone sales are increasing and have usurped computer sales for the first time. In this context, smartphones are an important portable reference and educational tool, already in the possession of the majority of surgeons in training. Technology in the palm of our hands has led to a revolution of accessible information for the plastic surgery trainee and surgeon. This article reviews the uses of smartphones and applications for plastic surgeons in education, telemedicine and global health. A comprehensive guide to existing and upcoming learning materials and clinical tools for the plastic surgeon is included. E-books, podcasts, educational videos, guidelines, work-based assessment tools and online logbooks are presented. In the limited resource setting of modern clinical practice, savvy plastic surgeons can select technological tools to democratise access to education and best clinical care. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  7. Wood-plastic combination

    International Nuclear Information System (INIS)

    Schaudy, R.

    1978-02-01

    A review on wood-plastic combinations is given including the production (wood and plastic component, radiation hardening, curing), the obtained properties, present applications and prospects for the future of these materials. (author)

  8. DESIGNERS’ KNOWLEDGE IN PLASTICS

    DEFF Research Database (Denmark)

    Eriksen, Kaare

    2013-01-01

    The Industrial designers’ knowledge in plastics materials and manufacturing principles of polymer products is very important for the innovative strength of the industry, according to a group of Danish plastics manufacturers, design students and practicing industrial designers. These three groups ...

  9. Biodegradability of Plastics: Challenges and Misconceptions.

    Science.gov (United States)

    Kubowicz, Stephan; Booth, Andy M

    2017-11-07

    Plastics are one of the most widely used materials and, in most cases, they are designed to have long life times. Thus, plastics contain a complex blend of stabilizers that prevent them from degrading too quickly. Unfortunately, many of the most advantageous properties of plastics such as their chemical, physical and biological inertness and durability present challenges when plastic is released into the environment. Common plastics such as polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) are extremely persistent in the environment, where they undergo very slow fragmentation (projected to take centuries) into small particles through photo-, physical, and biological degradation processes 1 . The fragmentation of the material into increasingly smaller pieces is an unavoidable stage of the degradation process. Ultimately, plastic materials degrade to micron-sized particles (microplastics), which are persistent in the environment and present a potential source of harm for organisms.

  10. Brain-derived neurotrophic factor (Val66Met and serotonin transporter (5-HTTLPR polymorphisms modulate plasticity in inhibitory control performance over time but independent of inhibitory control training

    Directory of Open Access Journals (Sweden)

    Sören Enge

    2016-07-01

    Full Text Available Several studies reported training-induced improvements in executive function tasks and also observed transfer to untrained tasks. However, the results are mixed and there is large interindividual variability within and across studies. Given that training-related performance changes would require modification, growth or differentiation at the cellular and synaptic level in the brain, research on critical moderators of brain plasticity potentially explaining such changes is needed. In the present study, a pre-post-follow-up design (N=122 and a three-weeks training of two response inhibition tasks (Go/NoGo and Stop-Signal was employed and genetic variation (Val66Met in the brain-derived neurotrophic factor (BDNF promoting differentiation and activity-dependent synaptic plasticity was examined. Because Serotonin (5-HT signaling and the interplay of BDNF and 5-HT are known to critically mediate brain plasticity, genetic variation in the 5-HT transporter (5-HTTLPR was also addressed. The overall results show that the kind of training (i.e., adaptive vs. non-adaptive did not evoke genotype-dependent differences. However, in the Go/NoGo task, better inhibition performance (lower commission errors were observed for BDNF Val/Val genotype carriers compared to Met-allele ones supporting similar findings from other cognitive tasks. Additionally, a gene-gene interaction suggests a more impulsive response pattern (faster responses accompanied by higher commission error rates in homozygous l-allele carriers relative to those with the s-allele of 5-HTTLPR. This, however, is true only in the presence of the Met-allele of BDNF, while the Val/Val genotype seems to compensate for such non-adaptive responding. Intriguingly, similar results were obtained for the Stop-Signal task. Here, differences emerged at post-testing, while no differences were observed at T1. In sum, although no genotype-dependent differences between the relevant training groups emerged suggesting

  11. Neurogenomic mechanisms of social plasticity.

    Science.gov (United States)

    Cardoso, Sara D; Teles, Magda C; Oliveira, Rui F

    2015-01-01

    Group-living animals must adjust the expression of their social behaviour to changes in their social environment and to transitions between life-history stages, and this social plasticity can be seen as an adaptive trait that can be under positive selection when changes in the environment outpace the rate of genetic evolutionary change. Here, we propose a conceptual framework for understanding the neuromolecular mechanisms of social plasticity. According to this framework, social plasticity is achieved by rewiring or by biochemically switching nodes of a neural network underlying social behaviour in response to perceived social information. Therefore, at the molecular level, it depends on the social regulation of gene expression, so that different genomic and epigenetic states of this brain network correspond to different behavioural states, and the switches between states are orchestrated by signalling pathways that interface the social environment and the genotype. Different types of social plasticity can be recognized based on the observed patterns of inter- versus intra-individual occurrence, time scale and reversibility. It is proposed that these different types of social plasticity rely on different proximate mechanisms at the physiological, neural and genomic level. © 2015. Published by The Company of Biologists Ltd.

  12. Plastic value chains

    DEFF Research Database (Denmark)

    Baxter, John; Wahlstrom, Margareta; Zu Castell-Rüdenhausen, Malin

    2014-01-01

    Optimizing plastic value chains is regarded as an important measure in order to increase recycling of plastics in an efficient way. This can also lead to improved awareness of the hazardous substances contained in plastic waste, and how to avoid that these substances are recycled. As an example......, plastics from WEEE is chosen as a Nordic case study. The project aims to propose a number of improvements for this value chain together with representatives from Nordic stakeholders. Based on the experiences made, a guide for other plastic value chains shall be developed....

  13. Biodegradability of Plastics

    Directory of Open Access Journals (Sweden)

    Yutaka Tokiwa

    2009-08-01

    Full Text Available Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.. In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  14. Biodegradability of plastics.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi

    2009-08-26

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  15. The repetition timing of high frequency afferent stimulation drives the bidirectional plasticity at central synapses in the rat medial vestibular nuclei.

    Science.gov (United States)

    Scarduzio, M; Panichi, R; Pettorossi, V E; Grassi, S

    2012-10-25

    In this study we show that high frequency stimulation (HFS, 100Hz) of afferent fibers to the medial vestibular nucleus (MVN) can induce opposite long-term modifications of synaptic responses in the type B neurons depending upon the stimulation pattern. Long burst stimulation (LBS: 2s) and short burst stimulation (SBS: 0.55s) were applied with different burst number (BN) and inter-burst intervals (IBI). It results that both LBS and SBS can induce either N-methyl-d aspartate receptors (NMDARs)-mediated long-term potentiation (LTP) or long-term depression (LTD), depending on temporal organization of repetitive bursts. In particular, the IBI plays a relevant role in guiding the shift from LTP to LTD since by using both LBS and SBS LTP is induced by shorter IBI than LTD. By contrast, the sign of long-term effect does not depend on the mean impulse frequency evaluated within the entire stimulation period. Therefore, the patterns of repetitive vestibular activation with different ratios between periods of increased activity and periods of basal activity may lead to LTP or LTD probably causing different levels of postsynaptic Ca(2+). On the whole, this study demonstrates that glutamatergic vestibular synapse in the MVN can undergo NMDAR-dependent bidirectional plasticity and puts forward a new aspect for understanding the adaptive and compensatory plasticity of the oculomotor responses. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. The Prism Plastic Calorimeter (PPC)

    CERN Multimedia

    2002-01-01

    This proposal supports two goals: \\\\ \\\\ First goal:~~Demonstrate that current, widely used plastic technologies allow to design Prism Plastic Calorimeter~(PPC) towers with a new ``liquid crystal'' type plastic called Vectra. It will be shown that this technique meets the requirements for a LHC calorimeter with warm liquids: safety, hermeticity, hadronic compensation, resolution and time response. \\\\ \\\\ Second goal:~~Describe how one can design a warm liquid calorimeter integrated into a LHC detector and to list the advantages of the PPC: low price, minimum of mechanical structures, minimum of dead space, easiness of mechanical assembly, accessibility to the electronics, possibility to recirculate the liquid. The absorber and the electronic being outside of the liquid and easily accessible, one has maximum flexibility to define them. \\\\ \\\\ The R&D program, we define here aims at showing the feasibility of these new ideas by building nine towers of twenty gaps and exposing them to electron and hadron beams.

  17. Challenges in plastics recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Jakobsen, L. G.; Eriksen, Marie Kampmann

    2015-01-01

    Recycling of waste plastics still remains a challenging area in the waste management sector. The current and potential goals proposed on EU or regional levels are difficult to achieve, and even to partially fullfil them the improvements in collection and sorting should be considerable. A study...... was undertaken to investigate the factors affecting quality in plastics recycling. The preliminary results showed factors primarily influencing quality of plastics recycling to be polymer cross contamination, presence of additives, non-polymer impurities, and polymer degradation. Deprivation of plastics quality......, with respect to recycling, has been shown to happen throughout the plastics value chain, but steps where improvements may happen have been preliminary identified. Example of Cr in plastic samples analysed showed potential spreading and accumulation of chemicals ending up in the waste plastics. In order...

  18. COMPOSITIONAL AND SUBSTANTIAL STRUCTURE OF THE MEDICAL DOCUMENT: FORMATION STAGES

    Directory of Open Access Journals (Sweden)

    Romashova Olga Vladimirovna

    2015-03-01

    Full Text Available The article deals with the compositional and substantial structure of the ambulatory medical record, or "case history", which has being formed for a long time. The author allocates the three main periods in the formation of this medical document: the first period (the beginning of the 19th century – 1920s is connected with the origin and formation; the second period (1920-1980s is marked by emergence of the normative legal acts regulating registration and maintaining; the third period (1980s – up to the present is associated with the cancellation of regulations and the introduction of the new order of the Ministry of Health of the USSR that changed the document's form and name. It is determined that the composition of the case history consists of the title page and the main part. The following processes take place in the course of ambulatory medical record's formation: strengthening formalization, increase in the number of pattern text fragments, increase in the text's volume, and the implementation of bigger number of functions. The author reveals the main (informative and cumulative, accounting and additional (scientific, controlling, legal, financial functions of the document. The implementation of these functions is reflected in the compositional and substantial structure of the document text and is conditioned by a number of extralinguistic factors.

  19. 19 CFR 10.7 - Substantial containers or holders.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Substantial containers or holders. 10.7 Section 10... Exported and Returned § 10.7 Substantial containers or holders. (a) Substantial containers or holders... domestic products exported and returned. When such containers or holders are imported not containing or...

  20. 20 CFR 604.6 - Conformity and substantial compliance.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Conformity and substantial compliance. 604.6... FOR ELIGIBILITY FOR UNEMPLOYMENT COMPENSATION § 604.6 Conformity and substantial compliance. (a) In... for the administration of its UC program. (b) Resolving Issues of Conformity and Substantial...

  1. Elastic-plastic-creep analysis of shells

    International Nuclear Information System (INIS)

    Pai, D.H.

    1979-01-01

    This paper presents the recent experience of a designer/fabricator of nuclear heat transport components in the area of elastic-plastic-creep analysis of shell-like structures. A brief historical perspective is first given to highlight the evolution leading to the present industry practice. The ASME elevated temperature design criteria will be discussed followed by examples of actual computations performed to support the design/analysis and fabrication of a breeder reactor component in which a substantial amount of elastic-plastic-creep analysis was performed. Mathematical challenges encountered by the design analyst in these problems will be highlighted. Developmental needs and future trends will then be given

  2. Use of recycled plastics in concrete: A critical review.

    Science.gov (United States)

    Gu, Lei; Ozbakkaloglu, Togay

    2016-05-01

    Plastics have become an essential part of our modern lifestyle, and the global plastic production has increased immensely during the past 50years. This has contributed greatly to the production of plastic-related waste. Reuse of waste and recycled plastic materials in concrete mix as an environmental friendly construction material has drawn attention of researchers in recent times, and a large number of studies reporting the behavior of concrete containing waste and recycled plastic materials have been published. This paper summarizes the current published literature until 2015, discussing the material properties and recycling methods of plastic and the influence of plastic materials on the properties of concrete. To provide a comprehensive review, a total of 84 studies were considered, and they were classified into sub categories based on whether they dealt with concrete containing plastic aggregates or plastic fibers. Furthermore, the morphology of concrete containing plastic materials is described in this paper to explain the influence of plastic aggregates and plastic fibers on the properties of concrete. The properties of concretes containing virgin plastic materials were also reviewed to establish their similarities and differences with concrete containing recycled plastics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Technology update on fast plastic scintillators for medical applications

    International Nuclear Information System (INIS)

    Lyons, P.B.

    1977-01-01

    Plastic scintillators appear to have potential utility in three research areas related to nuclear medicine: (1) high count rate applications in general, (2) positron camera applications, and (3) positron source localization through measurement of relative arrival times of annihilation quanta at two co-linear detectors. These three areas of applicability depend on improvement in three specific areas of plastic scintillator technology: (a) development of plastics with very fast decay times, (b) development of plastics with greatly improved high energy photon detection efficiencies (high-Z loaded plastics), and (c) improvement of fast timing system capabilities. The three preceding areas of improvement are discussed

  4. Chemical and biological characterization of products of incomplete combustion from the simulated field burning of agricultural plastic.

    Science.gov (United States)

    Linak, W P; Ryan, J V; Perry, E; Williams, R W; DeMarini, D M

    1989-06-01

    Chemical and biological analyses were performed to characterize products of incomplete combustion emitted during the simulated open field burning of agricultural plastic. A small utility shed equipped with an air delivery system was used to simulate pile burning and forced-air-curtain incineration of a nonhalogenated agricultural plastic that reportedly consisted of polyethylene and carbon black. Emissions were analyzed for combustion gases; volatile, semi-volatile, and particulate organics; and toxic and mutagenic properties. Emission samples, as well as samples of the used (possibly pesticide-contaminated) plastic, were analyzed for the presence of several pesticides to which the plastic may have been exposed. Although a variety of alkanes, alkenes, and aromatic and polycyclic aromatic hydrocarbon (PAH) compounds were identified in the volatile, semi-volatile, and particulate fractions of these emissions, a substantial fraction of higher molecular weight organic material was not identified. No pesticides were identified in either combustion emission samples or dichloromethane washes of the used plastic. When mutagenicity was evaluated by exposing Salmonella bacteria (Ames assay) to whole vapor and vapor/particulate emissions, no toxic or mutagenic effects were observed. However, organic extracts of the particulate samples were moderately mutagenic. This mutagenicity compares approximately to that measured from residential wood heating on a revertant per unit heat release basis. Compared to pile burning, forced air slightly decreased the time necessary to burn a charge of plastic. There was not a substantial difference, however, in the variety or concentrations of organic compounds identified in samples from these two burn conditions. This study highlights the benefits of a combined chemical/biological approach to the characterization of complex, multi-component combustion emissions. These results may not reflect those of other types of plastic that may be used

  5. Handbook of Plastic Welding

    DEFF Research Database (Denmark)

    Islam, Aminul

    The purpose of this document is to summarize the information about the laser welding of plastic. Laser welding is a matured process nevertheless laser welding of micro dimensional plastic parts is still a big challenge. This report collects the latest information about the laser welding of plastic...... materials and provides an extensive knowhow on the industrial plastic welding process. The objectives of the report include: - Provide the general knowhow of laser welding for the beginners - Summarize the state-of-the-art information on the laser welding of plastics - Find the technological limits in terms...... of design, materials and process - Find the best technology, process and machines adaptive to Sonion’s components - Provide the skills to Sonion’s Design Engineers for successful design of the of the plastic components suitable for the laser welding The ultimate goal of this report is to serve...

  6. Plastic Gamma Sensors: An Application in Detection of Radioisotopes

    International Nuclear Information System (INIS)

    Mukhopadhyay, S.

    2003-01-01

    A brief survey of plastic scintillators for various radiation measurement applications is presented here. The utility of plastic scintillators for practical applications such as gamma radiation monitoring, real-time radioisotope detection and screening is evaluated in laboratory and field measurements. This study also reports results of Monte Carlo-type predictive responses of common plastic scintillators in gamma and neutron radiation fields. Small-size plastic detectors are evaluated for static and dynamic gamma-ray detection sensitivity of selected radiation sources

  7. Plastic Pollution from Ships

    OpenAIRE

    Čulin, Jelena; Bielić, Toni

    2016-01-01

    The environmental impact of shipping on marine environment includes discharge of garbage. Plastic litter is of particular concern due to abundance, resistance to degradation and detrimental effect on marine biota. According to recently published studies, a further research is required to assess human health risk. Monitoring data indicate that despite banning plastic disposal at sea, shipping is still a source of plastic pollution. Some of the measures to combat the problem are discussed.

  8. ENVIRONMENTAL ISSUE-PLASTIC

    OpenAIRE

    Sunita Shakle

    2017-01-01

    Polythene is the most common plastic, the annual global production is approximately 60 million tones, and its primary use is in packing. Plastic bags pollute soil and waters and kill thousands of marine generalize plastic bags are not biodegradable they clog water ways, spoil the land scape and end up in landfills. Where they may take 1000 year or more to break down into ever smaller particals that continue to pollution the soil and water.

  9. Motor cortical plasticity in Parkinson's disease.

    Science.gov (United States)

    Udupa, Kaviraja; Chen, Robert

    2013-09-04

    In Parkinson's disease (PD), there are alterations of the basal ganglia (BG) thalamocortical networks, primarily due to degeneration of nigrostriatal dopaminergic neurons. These changes in subcortical networks lead to plastic changes in primary motor cortex (M1), which mediates cortical motor output and is a potential target for treatment of PD. Studies investigating the motor cortical plasticity using non-invasive transcranial magnetic stimulation (TMS) have found altered plasticity in PD, but there are inconsistencies among these studies. This is likely because plasticity depends on many factors such as the extent of dopaminergic loss and disease severity, response to dopaminergic replacement therapies, development of l-DOPA-induced dyskinesias (LID), the plasticity protocol used, medication, and stimulation status in patients treated with deep brain stimulation (DBS). The influences of LID and DBS on BG and M1 plasticity have been explored in animal models and in PD patients. In addition, many other factors such age, genetic factors (e.g., brain derived neurotropic factor and other neurotransmitters or receptors polymorphism), emotional state, time of the day, physical fitness have been documented to play role in the extent of plasticity induced by TMS in human studies. In this review, we summarize the studies that investigated M1 plasticity in PD and demonstrate how these afore-mentioned factors affect motor cortical plasticity in PD. We conclude that it is important to consider the clinical, demographic, and technical factors that influence various plasticity protocols while developing these protocols as diagnostic or prognostic tools in PD. We also discuss how the modulation of cortical excitability and the plasticity with these non-invasive brain stimulation techniques facilitate the understanding of the pathophysiology of PD and help design potential therapeutic possibilities in this disorder.

  10. Plasticity: modeling & computation

    National Research Council Canada - National Science Library

    Borja, Ronaldo Israel

    2013-01-01

    .... "Plasticity Modeling & Computation" is a textbook written specifically for students who want to learn the theoretical, mathematical, and computational aspects of inelastic deformation in solids...

  11. Synaptic Plasticity and Nociception

    Institute of Scientific and Technical Information of China (English)

    ChenJianguo

    2004-01-01

    Synaptic plasticity is one of the fields that progresses rapidly and has a lot of success in neuroscience. The two major types of synaptie plasticity: long-term potentiation ( LTP and long-term depression (LTD are thought to be the cellular mochanisms of learning and memory. Recently, accumulating evidence suggests that, besides serving as a cellular model for learning and memory, the synaptic plasticity involves in other physiological or pathophysiological processes, such as the perception of pain and the regulation of cardiovascular system. This minireview will focus on the relationship between synaptic plasticity and nociception.

  12. Plastics and health risks.

    Science.gov (United States)

    Halden, Rolf U

    2010-01-01

    By 2010, the worldwide annual production of plastics will surpass 300 million tons. Plastics are indispensable materials in modern society, and many products manufactured from plastics are a boon to public health (e.g., disposable syringes, intravenous bags). However, plastics also pose health risks. Of principal concern are endocrine-disrupting properties, as triggered for example by bisphenol A and di-(2-ethylhexyl) phthalate (DEHP). Opinions on the safety of plastics vary widely, and despite more than five decades of research, scientific consensus on product safety is still elusive. This literature review summarizes information from more than 120 peer-reviewed publications on health effects of plastics and plasticizers in lab animals and humans. It examines problematic exposures of susceptible populations and also briefly summarizes adverse environmental impacts from plastic pollution. Ongoing efforts to steer human society toward resource conservation and sustainable consumption are discussed, including the concept of the 5 Rs--i.e., reduce, reuse, recycle, rethink, restrain--for minimizing pre- and postnatal exposures to potentially harmful components of plastics.

  13. Ways of Viewing Pictorial Plasticity

    Directory of Open Access Journals (Sweden)

    Maarten W. A. Wijntjes

    2017-03-01

    Full Text Available The plastic effect is historically used to denote various forms of stereopsis. The vivid impression of depth often associated with binocular stereopsis can also be achieved in other ways, for example, using a synopter. Accounts of this go back over a hundred years. These ways of viewing all aim to diminish sensorial evidence that the picture is physically flat. Although various viewing modes have been proposed in the literature, their effects have never been compared. In the current study, we compared three viewing modes: monocular blur, synoptic viewing, and free viewing (using a placebo synopter. By designing a physical embodiment that was indistinguishable for the three experimental conditions, we kept observers naïve with respect to the differences between them; 197 observers participated in an experiment where the three viewing modes were compared by performing a rating task. Results indicate that synoptic viewing causes the largest plastic effect. Monocular blur scores lower than synoptic viewing but is still rated significantly higher than the baseline conditions. The results strengthen the idea that synoptic viewing is not due to a placebo effect. Furthermore, monocular blur has been verified for the first time as a way of experiencing the plastic effect, although the effect is smaller than synoptic viewing. We discuss the results with respect to the theoretical basis for the plastic effect. We show that current theories are not described with sufficient details to explain the differences we found.

  14. Ways of Viewing Pictorial Plasticity.

    Science.gov (United States)

    Wijntjes, Maarten W A

    2017-01-01

    The plastic effect is historically used to denote various forms of stereopsis. The vivid impression of depth often associated with binocular stereopsis can also be achieved in other ways, for example, using a synopter. Accounts of this go back over a hundred years. These ways of viewing all aim to diminish sensorial evidence that the picture is physically flat. Although various viewing modes have been proposed in the literature, their effects have never been compared. In the current study, we compared three viewing modes: monocular blur, synoptic viewing, and free viewing (using a placebo synopter). By designing a physical embodiment that was indistinguishable for the three experimental conditions, we kept observers naïve with respect to the differences between them; 197 observers participated in an experiment where the three viewing modes were compared by performing a rating task. Results indicate that synoptic viewing causes the largest plastic effect. Monocular blur scores lower than synoptic viewing but is still rated significantly higher than the baseline conditions. The results strengthen the idea that synoptic viewing is not due to a placebo effect. Furthermore, monocular blur has been verified for the first time as a way of experiencing the plastic effect, although the effect is smaller than synoptic viewing. We discuss the results with respect to the theoretical basis for the plastic effect. We show that current theories are not described with sufficient details to explain the differences we found.

  15. Migration of DEHP from plastic to food simulants under microwave heating

    Science.gov (United States)

    Zhu, X.; Li, F.; Qiu, Z. Z.; Huang, J. W.

    2017-05-01

    The migration of plasticizer DEHP from the plastic products (4 kinds of commonly used plastic food containers under microwave heating: plastic wrap, food bags, ordinary plastic boxes, microwave special plastic boxes) through food contact materials to food simulants (isooctane, 10% ethanol-water solution (v/v), 3% acetic acid-water solution (w/w) and distilled water) was studied under microwave heating (power levels of 400 W). The results shows that the DEHP mobility increases with the increase of microwave heating time, DEHP mobility in isooctane and 3% acetic acid-water solution (w/w) is significantly greater than in 10% ethanol-water solution (v/v) and distilled water; the order of DEHP mobility in isooctane is plastic wrap>food bag>common plastic box>microwave-safe plastic box, while in 3% acetic acid (w/w), the order is food bag>common plastic box>microwave-safe plastic box>plastic wrap.

  16. Cleaner emissions from a DI diesel engine fueled with waste plastic oil derived from municipal solid waste under the influence of n-pentanol addition, cold EGR, and injection timing.

    Science.gov (United States)

    Damodharan, Dillikannan; Sathiyagnanam, Amudhavalli Paramasivam; Rajesh Kumar, Babu; Ganesh, Kuttalam Chidambaradhanu

    2018-05-01

    Urban planning and development is a decisive factor that increases the automobile numbers which leads to increased energy demand across the globe. In order to meet the escalating requirements of energy, it is necessary to find viable alternatives. Waste plastic oil (WPO) is one such alternative which has dual benefits as it reduces the environmental pollution caused by plastic waste and it could possibly meet the energy requirement along with fossil fuels. The study attempted to reduce emissions from a DI diesel engine fueled with WPO using 30% by volume of n-pentanol with fossil diesel (WPO70P30). EGR (10, 20, and 30%) and injection timing modifications were made with the intention to find optimum engine operating conditions. The experimental results indicated that addition of renewable component like n-pentanol had improved the combustion characteristics by igniting WPO more homogeneously producing a higher premixed combustion phase. Smoke density for WPO70P30 was found to be twice lower than that of neat WPO at standard injection timing of 23°CA bTDC at any given EGR rate, NOx emissions were slightly on the higher side about 12% for WPO70P30 blend against WPO at same operating conditions. WPO70P30 showed lowest smoke and carbon monoxide emissions than diesel and WPO while delivering BTE's higher than WPO and closer to diesel at all EGR and injection timings. However NOx and HC emissions increased with n-pentanol addition. The use of EGR reduced NOx emissions but was found to aggravate other emissions. It was concluded WPO70P30 can be favorably used in a DI diesel engine at the engines advanced injection timing for better performance than diesel with a slight penalty in NOx emissions.

  17. Net-Zero Building Technologies Create Substantial Energy Savings -

    Science.gov (United States)

    only an estimated 1% of commercial buildings are built to net-zero energy criteria. One reason for this Continuum Magazine | NREL Net-Zero Building Technologies Create Substantial Energy Savings Net -Zero Building Technologies Create Substantial Energy Savings Researchers work to package and share step

  18. 19 CFR 134.35 - Articles substantially changed by manufacture.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Articles substantially changed by manufacture. 134... substantially changed by manufacture. (a) Articles other than goods of a NAFTA country. An article used in the United States in manufacture which results in an article having a name, character, or use differing from...

  19. Learning and plasticity in adolescence

    OpenAIRE

    Fuhrmann, Delia Ute Dorothea

    2017-01-01

    Adolescence is the period of life between puberty and relative independence. It is a time during which the human brain undergoes protracted changes - particularly in the frontal, parietal and temporal cortices. These changes have been linked to improvements in cognitive performance; and are thought to render adolescence a period of relatively high levels of plasticity, during which the environment has a heightened impact on brain development and behaviour. This thesis investigates learning an...

  20. Processing of plastic track detectors

    International Nuclear Information System (INIS)

    Somogyi, G.

    1977-01-01

    A survey of some actual problems of the track processing methods available at this time for plastics is presented. In the case of the conventional chemical track-etching technique, mainly the etching situations related to detector geometry, and the relationship between registration sensitivity and the etching parameters are considered. Special attention is paid to the behaviour of track-revealing by means of electrochemical etching. Finally, some properties of a promising new track processing method based on graft polymerization are discussed. (author)

  1. Processing of plastic track detectors

    International Nuclear Information System (INIS)

    Somogyi, G.

    1976-01-01

    A survey of some actual problems of the track processing methods available at this time for plastics is presented. In the case of the conventional chemical track etching technique mainly the etching situations related to detector geometry and the relationship of registration sensitivity and the etching parameters are considered. A special attention is paid to the behaviour of track revealing by means of electrochemical etching. Finally, some properties of a promising new track processing method based on graft polymerization is discussed. (orig.) [de

  2. Substantial proportion of global streamflow less than three months old

    Science.gov (United States)

    Jasechko, Scott; Kirchner, James W.; Welker, Jeffrey M.; McDonnell, Jeffrey J.

    2016-02-01

    Biogeochemical cycles, contaminant transport and chemical weathering are regulated by the speed at which precipitation travels through landscapes and reaches streams. Streamflow is a mixture of young and old precipitation, but the global proportions of these young and old components are not known. Here we analyse seasonal cycles of oxygen isotope ratios in rain, snow and streamflow compiled from 254 watersheds around the world, and calculate the fraction of streamflow that is derived from precipitation that fell within the past two or three months. This young streamflow accounts for about a third of global river discharge, and comprises at least 5% of discharge in about 90% of the catchments we investigated. We conclude that, although typical catchments have mean transit times of years or even decades, they nonetheless can rapidly transmit substantial fractions of soluble contaminant inputs to streams. Young streamflow is less prevalent in steeper landscapes, which suggests they are characterized by deeper vertical infiltration. Because young streamflow is derived from less than 0.1% of global groundwater storage, we conclude that this thin veneer of aquifer storage will have a disproportionate influence on stream water quality.

  3. Excised Abdominoplasty Material as a Systematic Plastic Surgical Training Model

    Directory of Open Access Journals (Sweden)

    M. Erol Demirseren

    2012-01-01

    Full Text Available Achieving a level of technical skill and confidence in surgical operations is the main goal of plastic surgical training. Operating rooms were accepted as the practical teaching venues of the traditional apprenticeship model. However, increased patient population, time, and ethical and legal considerations made preoperation room practical work a must for plastic surgical training. There are several plastic surgical teaching models and simulators which are very useful in preoperation room practical training and the evaluation of plastic surgery residents. The full thickness skin with its vascular network excised in abdominoplasty procedures is an easily obtainable real human tissue which could be used as a training model in plastic surgery.

  4. Mechanisms of Biliary Plastic Stent Occlusion and Efforts at Prevention

    Directory of Open Access Journals (Sweden)

    Chang-Il Kwon

    2016-03-01

    Full Text Available Biliary stenting via endoscopic retrograde cholangiopancreatography has greatly improved the quality of patient care over the last 30 years. Plastic stent occlusion limits the life span of such stents. Attempts to improve plastic stent patency duration have mostly failed. Metal stents (self-expandable metal stents [SEMSs] have therefore replaced plastic stents, especially for malignant biliary strictures. SEMS are at least 10 times more expensive than plastic stents. In this focused review, we will discuss basic mechanisms of plastic stent occlusion, along with a systematic summary of previous efforts and related studies to improve stent patency and potential new techniques to overcome existing limitations.

  5. Banana peels based bio-plastic

    OpenAIRE

    Taodharos, Shady

    2018-01-01

    Every developed country depends on the industry as the main factor of its economy. Lack of exports, depression in both the general economy and the value of the currency are consequences of neglecting the industry. All countries work on increasing the efficiency of their industries by whether working on the input, the output, the cost or the time of the process. Plastic industry is considered one of the most important industries because plastic is an important factor in the making of many usef...

  6. Modeling plasticity by non-continuous deformation

    Science.gov (United States)

    Ben-Shmuel, Yaron; Altus, Eli

    2017-10-01

    Plasticity and failure theories are still subjects of intense research. Engineering constitutive models on the macroscale which are based on micro characteristics are very much in need. This study is motivated by the observation that continuum assumptions in plasticity in which neighbour material elements are inseparable at all-time are physically impossible, since local detachments, slips and neighbour switching must operate, i.e. non-continuous deformation. Material microstructure is modelled herein by a set of point elements (particles) interacting with their neighbours. Each particle can detach from and/or attach with its neighbours during deformation. Simulations on two- dimensional configurations subjected to uniaxial compression cycle are conducted. Stochastic heterogeneity is controlled by a single "disorder" parameter. It was found that (a) macro response resembles typical elasto-plastic behaviour; (b) plastic energy is proportional to the number of detachments; (c) residual plastic strain is proportional to the number of attachments, and (d) volume is preserved, which is consistent with macro plastic deformation. Rigid body displacements of local groups of elements are also observed. Higher disorder decreases the macro elastic moduli and increases plastic energy. Evolution of anisotropic effects is obtained with no additional parameters.

  7. Influence of deformation rate on plasticity of metals under pressure

    International Nuclear Information System (INIS)

    Churbaev, R.V.; Dobromyslov, A.V.; Kolmogorov, V.L.; Taluts, G.G.

    1990-01-01

    Change of polycrystalline molybdenum (BCC) and titanium (HCP) plasticity under pressure depeding on the deformation rate at the room temperature is studied. It is shown that the reduction of molybdenum and titanium deformation rate leads to a substantial growth of their plastic properties with the effect being increased with pressure growth. Production of several necks testifying to the transition to a superplastic state is observed at high pressures and low deformation rates. A functional dependence of plasticity change on the deformation rate under pressure is ascertained

  8. Comparison of Plastic Surgery Residency Training in United States and China.

    Science.gov (United States)

    Zheng, Jianmin; Zhang, Boheng; Yin, Yiqing; Fang, Taolin; Wei, Ning; Lineaweaver, William C; Zhang, Feng

    2015-12-01

    Residency training is internationally recognized as the only way for the physicians to be qualified to practice independently. China has instituted a new residency training program for the specialty of plastic surgery. Meanwhile, plastic surgery residency training programs in the United States are presently in a transition because of restricted work hours. The purpose of this study is to compare the current characteristics of plastic surgery residency training in 2 countries. Flow path, structure, curriculum, operative experience, research, and evaluation of training in 2 countries were measured. The number of required cases was compared quantitatively whereas other aspects were compared qualitatively. Plastic surgery residency training programs in 2 countries differ regarding specific characteristics. Requirements to become a plastic surgery resident in the United States are more rigorous. Ownership structure of the regulatory agency for residency training in 2 countries is diverse. Training duration in the United States is more flexible. Clinical and research training is more practical and the method of evaluation of residency training is more reasonable in the United States. The job opportunities after residency differ substantially between 2 countries. Not every resident has a chance to be an independent surgeon and would require much more training time in China than it does in the United States. Plastic surgery residency training programs in the United States and China have their unique characteristics. The training programs in the United States are more standardized. Both the United States and China may complement each other to create training programs that will ultimately provide high-quality care for all people.

  9. Uranium exploration in Pakistan using alpha sensitive plastic films (ASPF)

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, A.A.; Khan, H.A. (Pakistan Inst. of Nuclear Science and Technology, Islamabad (Pakistan). Health Physics Div.); Samad Beg, M.A.; Ahmed, Fazal (Atomic Energy Minerals Centre, Lahore (Pakistan))

    1988-01-01

    The Alpha Sensitive Plastic Film (ASPF) technique has been successfully developed in Pakistan. Studies concerning optimisation of tube size, exposure time, position of detector in tube, etching conditions, type of detector, etc. have been done in the laboratory. Some studies like effects of depth, size and grade of ore body and water table were carried out in the field. The application of this technique was fairly successful in sandstone areas. Based on this technique, subsurface uranium occurrences were established in D.G. Khan and Isa Khel. The ASPF-results were confirmed by subsequent drilling and other methods. The technique has been found to be workable and inexpensive. It has been found to supplement the conventional exploration methods, and if applied as a part of normal exploration programme may reduce overall project cost substantially. This paper briefly describes the methodology, parameters, applications and results of the ASPF technique in the field of uranium prospecting and exploration in Pakistan. (author).

  10. Nuclear industry in a country with a substantial oil reserve

    International Nuclear Information System (INIS)

    Alvarez, R.; Castillo, H.; Costa, D.; Galan, I.; Martinez, M.

    1981-01-01

    The importance of the development of a nuclear industry in a country like Mexico, with a substantial oil reserve is analyzed, taking into account the technical, economical, political, ecological and social aspects of the problem. (author)

  11. Ingestion and fragmentation of plastic carrier bags by the amphipod Orchestia gammarellus: Effects of plastic type and fouling load.

    Science.gov (United States)

    Hodgson, D J; Bréchon, A L; Thompson, R C

    2018-02-01

    Inappropriate disposal of plastic debris has led to the contamination of marine habitats worldwide. This debris can be ingested by organisms; however, the extent to which chewing and gut transit modifies plastic debris is unclear. Detritivores, such as amphipods, ingest and shred natural organic matter and are fundamental to its breakdown. Here we examine ingestion and shredding of plastic carrier bags by Orchestia gammarellus. A laboratory experiment showed these amphipods shredded plastic carrier bags, generating numerous microplastic fragments (average diameter 488.59μm). The presence of a biofilm significantly increased the amount of shredding, but plastic type (conventional, degradable and biodegradable) had no effect. Subsequent field observations confirmed similar shredding occurred on the strandline. Rates of shredding will vary according to amphipod density; however, our data indicates that shredding by organisms could substantially accelerate the formation microplastics in the environment. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  12. Plasticity following early-life brain injury: Insights from quantitative MRI.

    Science.gov (United States)

    Fiori, Simona; Guzzetta, Andrea

    2015-03-01

    Over the last decade, the application of novel advanced neuroimaging techniques to study congenital brain damage has provided invaluable insights into the mechanisms underlying early neuroplasticity. The concept that is clearly emerging, both from human and nun-human studies, is that functional reorganization in the immature brain is substantially different from that of the more mature, developed brain. This applies to the reorganization of language, the sensorimotor system, and the visual system. The rapid implementation and development of higher order imaging methods will offer increased, currently unavailable knowledge about the specific mechanisms of cerebral plasticity in infancy, which is essential to support the development of early therapeutic interventions aimed at supporting and enhancing functional reorganization during a time of greatest potential brain plasticity. Copyright © 2015. Published by Elsevier Inc.

  13. Stem cell plasticity.

    Science.gov (United States)

    Lakshmipathy, Uma; Verfaillie, Catherine

    2005-01-01

    The central dogma in stem cell biology has been that cells isolated from a particular tissue can renew and differentiate into lineages of the tissue it resides in. Several studies have challenged this idea by demonstrating that tissue specific cell have considerable plasticity and can cross-lineage restriction boundary and give rise to cell types of other lineages. However, the lack of a clear definition for plasticity has led to confusion with several reports failing to demonstrate that a single cell can indeed differentiate into multiple lineages at significant levels. Further, differences between results obtained in different labs has cast doubt on some results and several studies still await independent confirmation. In this review, we critically evaluate studies that report stem cell plasticity using three rigid criteria to define stem cell plasticity; differentiation of a single cell into multiple cell lineages, functionality of differentiated cells in vitro and in vivo, robust and persistent engraft of transplanted cells.

  14. Plastics and environment

    International Nuclear Information System (INIS)

    Avenas, P.

    1996-01-01

    Synthetic organic polymers, such as plastics, PVC, polyamides etc are considered less ecological than natural materials such as wood. Other artificial materials such as metals, glass or biodegradable plastics have also a better image than petroleum products. This short paper demonstrates that the manufacturing or the transport of every material uses energy and that the complete energy balance sheet of a plastic bottle, for instance, is more favourable than the one of a glass bottle. Plastic materials are also easily valorized and recycled and part of the energy spent during manufacturing can be recovered during incineration for district heating. During the life-cycle of such a synthetic material, the same petroleum quantity can be used twice which leads to less negative effects on the environment. Finally, the paper focusses on the problem of biodegradable materials which are not degradable when buried under several meters of wastes and which are a nuisance to recycling. (J.S.)

  15. Plastics: Friend or foe?

    Directory of Open Access Journals (Sweden)

    O P Gupta

    2018-01-01

    Full Text Available Plastics has been playing a very significant role in our life. Being light weight, inexpensive and heving good insulating properties it is being used in all aspects of life, from clothes to contact lenses and from mobile phones to automobiles as well as in medical equipments, However it is not biodegradable, and while degrading to fragments it gets converted in to microplastics and nanoplastics The plastic waste is being recognized as an environmental hazard, since these micr- and nanoplastics find way from landfills to water and foods, It is said that we are not only using, but we are eating, drinking and even braething the plastics. These microplastics in body release certain hazardous chemicals and found to be disrupting functions of certain endocrine organs. Whether the rising prevalence of Diabetes, thyroid disorders or infirtility etc., are realated to the plastics?

  16. Recycling of plastics

    Energy Technology Data Exchange (ETDEWEB)

    Kaminsky, W; Menzel, J; Sinn, H

    1976-01-01

    Considering the shortage of raw materials and environmental pollution, the recycling of plastic waste is a very important topic. Pilot plants for research in Funabashi Japan, Franklin (Ohio) U.S.A., and the R 80-process of Krauss Maffei, W. Germany, have demonstrated the possibility of reclaiming plastics from refuse. Old tires and waste from the plastic producing and manufacturing industries are readily available. The pyrolysis of plastic yields gaseous and liquid products, and the exploitation of this cracking reaction has been demonstrated by pilot plants in Japan and Great Britain. Further laboratory scale experiments are taking place in W. Germany. In continuous fluidized beds and in molten salts, polyethylene, polypropylene, polyvinylchloride, polystyrene and rubber are pyrolysed and better than 98 percent conversion is obtained. Up to 40 percent of the feed can be obtained as aromatic compounds, and a pilot plant is under construction. As a first step PVC-containing material can be almost quantitatively dehydrochlorinated.

  17. A Plastic Menagerie

    Science.gov (United States)

    Hadley, Mary Jane

    2010-01-01

    Bobble heads had become quite popular, depicting all sorts of sports figures, animals, and even presidents. In this article, the author describes how her fourth graders made bobble head sculptures out of empty plastic drink bottles. (Contains 1 online resource.)

  18. Art and Plastic Surgery.

    Science.gov (United States)

    Fernandes, Julio Wilson; Metka, Susanne

    2016-04-01

    The roots of science and art of plastic surgery are very antique. Anatomy, drawing, painting, and sculpting have been very important to the surgery and medicine development over the centuries. Artistic skills besides shape, volume, and lines perception can be a practical aid to the plastic surgeons' daily work. An overview about the interactions between art and plastic surgery is presented, with a few applications to rhinoplasty, cleft lip, and other reconstructive plastic surgeries. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

  19. Helene: A Plastic Model

    Science.gov (United States)

    Umurhan, O. M.; Moore, J. M.; Howard, A. D.; Schenk, P.; White, O. L.

    2014-12-01

    Helene, the Saturnian L4 Trojan satellite co-orbiting Dionne and sitting within the E-ring, possesses an unusual morphology characteristic of broad km-scale basins and depressions and a generally smooth surface patterned with streaks and grooves which are indicative of non-typical mass transport. Elevation angles do not appear to exceed 10o at most. The nature and origin of the surface materials forming these grooved patterns is unknown. Given the low surface gravity (plastic-like flow like a Bingham fluid, we setup and test a number of likely scenarios to explain the observations. The numerical results qualitatively indicate that treating the mass-wasting materials as a Bingham material reproduces many of the qualitative features observed. We also find that in those simulations in which accretion is concomitant with Bingham mass-wasting, the long time-evolution of the surface flow shows intermittency in the total surface activity (defined as total surface integral of the absolute magnitude of the mass-flux). Detailed analyses identify the locations where this activity is most pronounced and we will discuss these and its implications in further detail.

  20. Pregnancy and the Plastic Surgery Resident.

    Science.gov (United States)

    Garza, Rebecca M; Weston, Jane S; Furnas, Heather J

    2017-01-01

    Combining pregnancy with plastic surgery residency has historically been difficult. Two decades ago, 36 percent of plastic surgery program directors surveyed actively discouraged pregnancy among residents, and 33 percent of women plastic surgeons suffered from infertility. Most alarmingly, 26 percent of plastic surgery trainees had had an elective abortion during residency. With increasing numbers of women training in plastic surgery, this historical lack of support for pregnancy deserves further attention. To explore the current accommodations made for the pregnant plastic surgery resident, an electronic survey was sent to 88 plastic surgery program directors in the United States. Fifty-four responded, for a response rate of 61.36 percent. On average, a director trained a total of 7.91 women among 17.28 residents trained over 8.19 years. Of the women residents, 1.43 were pregnant during a director's tenure, with 1.35 of those residents taking maternity leave. An average 1.75 male residents took paternity leave. Approximately one-third of programs had a formal maternity/paternity leave policy (36.54 percent) which, in most cases, was limited to defining allowed weeks of leave, time required to fulfill program requirements, and remuneration during leave. This survey of plastic surgery directors is a first step in defining the challenges training programs face in supporting the pregnant resident. Directors provided comments describing their challenges accommodating an absent resident in a small program and complying with the American Board of Plastic Surgery's required weeks of training per year. A discussion of these challenges is followed by suggested solutions.

  1. Recycling of packing plastics

    International Nuclear Information System (INIS)

    Gintenreiter-Koegl, S.

    2001-05-01

    The ordinance on the avoidance of packaging waste was a serious intervention in the public and private waste management in Austria. Above all the high expenses for an overall packaging waste collection and the recycling of packaging plastics were criticized. The landfill ordinance comes into force in 2004 and this means another major change in the Austrian waste management system. In the course of this change the overall collection and the recycling and recovery of waste streams, especially of the high caloric plastics waste, have to be discussed again. The goal of this work was on the one hand to develop and adapt the hydrocracking process for the recovery of mixed plastics waste and to show a possible application in Austria. On the other hand the work shows the technical, ecological and economical conditions for packaging plastics recycling and recovery in order to find optimum applications for the processes and to examine their contribution to a sustainable development. A hydrocracking test plant for the processing of mixed plastic wastes was built and had been running for about three years. The tests were carried out successfully and the suitability of the technology for the recovery of packaging plastics could be shown. Results show at least a 35 % yield of fuel. The hydrocracking technology is quite common in the oil industries and therefore an integration on a refinery site is suggested. (author)

  2. Measures for recycling plastic wastes in France

    Energy Technology Data Exchange (ETDEWEB)

    Cossais, J C [Ministere de l' Industrie et de la Recherche, 75 - Paris (France). Delegation aux Economies de Matieres Premieres

    1978-05-01

    Raw materials crisis and environmental awareness have lead to the question of intensively dealing with the recycling of plastics. Although plastic wastes (residues) industrially occuring have been recycled for a long time, this is certainly not always the case in the subsequent stages. One must particularly give thought to the considerable quantities of agricultural and municipal wastes. Besides the problem of collecting the waste which can only be satisfactorily solved by separate collection or setting up sorting places, it is necessary for the recycling plastic wastes on a large scale to find or develop sellable products. The product for sale is limited by economical aspects and prejudices against recycled materials. The public have taken to a series of measures in France to simplify recycling plastic wastes. Private industry is also beginning to take interest in this new sources of raw materials.

  3. Changing trends in plastic surgery training

    Directory of Open Access Journals (Sweden)

    Ramesh Kumar Sharma

    2014-01-01

    Full Text Available Background: The currently available training models are being put to scrutiny in India today, both by the residents and the teachers. Plastic surgery specialty was created primarily for reconstructive purposes but the society always perceived it from a cosmetic angle, particularly in the post second world war era. As a result, there is a need to redefine the goals of plastic surgery training in the present times so that the plastic surgeon is "future ready" to meet the needs of society and the market forces. Materials and Methods: The author has reviewed the currently available literature on plastic surgery training from India and the western countries. An attempt has been made to study opinions from the teachers and the trainees. The modules currently available in India and abroad have been analyzed and a suggestion has been made for drafting training programs that would meet the demands of the society as well as prepare the resident both for the aesthetic and reconstructive practice. Conclusions: The plastic surgery training needs to be more vibrant and in tune with the changing times. While maintaining its core nature, the current predominantly reconstructive modules need to incorporate the aesthetic content. The evaluation should be both knowledge and competence based. The teachers need to be educated in the various teaching methods that are more applicable to grown up residents. There is a need to find ways to attract talented people in the academic plastic surgery.

  4. Changing trends in plastic surgery training.

    Science.gov (United States)

    Sharma, Ramesh Kumar

    2014-05-01

    The currently available training models are being put to scrutiny in India today, both by the residents and the teachers. Plastic surgery specialty was created primarily for reconstructive purposes but the society always perceived it from a cosmetic angle, particularly in the post second world war era. As a result, there is a need to redefine the goals of plastic surgery training in the present times so that the plastic surgeon is "future ready" to meet the needs of society and the market forces. The author has reviewed the currently available literature on plastic surgery training from India and the western countries. An attempt has been made to study opinions from the teachers and the trainees. The modules currently available in India and abroad have been analyzed and a suggestion has been made for drafting training programs that would meet the demands of the society as well as prepare the resident both for the aesthetic and reconstructive practice. The plastic surgery training needs to be more vibrant and in tune with the changing times. While maintaining its core nature, the current predominantly reconstructive modules need to incorporate the aesthetic content. The evaluation should be both knowledge and competence based. The teachers need to be educated in the various teaching methods that are more applicable to grown up residents. There is a need to find ways to attract talented people in the academic plastic surgery.

  5. A Conservative Formulation for Plasticity

    Science.gov (United States)

    1992-01-01

    concepts that apply to a broad class of macroscopic models: plastic deformation and plastic flow rule. CONSERVATIVE PLASTICITY 469 3a. Plastic Defrrnation...temperature. We illustrate these concepts with a model that has been used to describe high strain-rate plastic flow in metals [11, 31, 32]. In the case...JOURDREN, AND P. VEYSSEYRE. Un Modele ttyperelastique- Plastique Euldrien Applicable aux Grandes Dtformations: Que/ques R~sultats 1-D. preprint, 1991. 2. P

  6. Screening of additives in plastics with high resolution time-of-flight mass spectrometry and different ionization sources: direct probe injection (DIP)-APCI, LC-APCI and LC-ion booster ESI

    NARCIS (Netherlands)

    Ballesteros-Gomez, A.M.; Jonkers, T.; Covaci, A.; de Boer, J.

    2016-01-01

    Plastics are complex mixtures consisting of a polymer and additives with different physico-chemical properties. We developed a broad screening method to elucidate the nature of compounds present in plastics used in electrical/electronic equipment commonly found at homes (e.g., electrical adaptors,

  7. The plasticity of clays

    Science.gov (United States)

    Group, F.F.

    1905-01-01

    (1) Sand injures plasticity little at first because the grains are suspended in a plastic mass. It is only when grains are abundant enough to come in contact with their neighbors, that the effect becomes serious, and then both strength and amount of possible flow are injured. (2) Certain rare organic colloids increase the plasticity by rendering the water viscous. (3) Fineness also tends to increase plasticity. (4) Plane surfaces (plates) increase the amount of possible flow. They also give a chance for lubrication by thinner films, thus increasing the friction of film, and the strength of the whole mass. The action of plates is thus twofold ; but fineness may be carried to such an extent as to break up plate-like grains into angular fragments. The beneficial effects of plates are also decreased by the fact that each is so closely surrounded by others in the mass. (5) Molecular attraction is twofold in increasing plasticity. As the attraction increases, the coherence and strength of the mass increase, and the amount of possible deformation before crumbling also increases. Fineness increases this action by requiring more water. Colloids and crystalloids in solution may also increase the attraction. It is thus seen to be more active than any other single factor.

  8. Plastics control paraffin buildup

    Energy Technology Data Exchange (ETDEWEB)

    1965-06-01

    Paraffin buildup in producing oil wells has been virtually eliminated by the use of plastic-coated sucker rods. The payout of the plasticing process is generally reached in less than a year, and the paraffin buildup may be inhibited for 10 yr or longer. Most of the plants applying plastic coatings to sucker rods are now fully automated, though a few still offer the hand-sprayed coating that some operators prefer. The several steps involved are described. The ideal plastic for the job is resistant to chemicals at high and low temperatures, flexible, has good adhesion, abrasion resistance, impact resistance, and a smooth glossy finish. The phenol aldehyde and epoxy resins presently offered by the industry fulfill these specifications very well; the multicoating and multibaking techniques improve their performance. Due to wide variations in the severity of the paraffin problem from one oil field to another, there is no general rule to estimate the possible savings from using plastic-coated sucker rods. The process, however, does appear to do a remarkable job in controlling paraffin buildup wherever it is a problem in producing oil by pump.

  9. How quickly do albatrosses and petrels digest plastic particles?

    Science.gov (United States)

    Ryan, Peter G

    2015-12-01

    Understanding how rapidly seabirds excrete or regurgitate ingested plastic items is important for their use as monitors of marine debris. van Franeker and Law (2015) inferred that fulmarine petrels excrete ∼75% of plastic particles within a month of ingestion based on decreases in the amounts of plastic in the stomachs of adult petrels moving to relatively clean environments to breed. However, similar decreases occur among resident species due to adults passing plastic loads to their chicks. The few direct measures of wear rates and retention times of persistent stomach contents suggest longer plastic residence times in most albatrosses and petrels. Residence time presumably varies with item size, type of plastic, the amount and composition of other persistent stomach contents, and the size at which items are excreted, which may vary among taxa. Accurate measures of ingested plastic retention times are needed to better understand temporal and spatial patterns in ingested plastic loads within marine organisms, especially if they are to be used as indicators of plastic pollution trends. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. SUBSTANTIATION OF SOLUTIONS PERTAINING TO COMPLEX PRODUCTION RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    V. Y. Gurinovich

    2011-01-01

    Full Text Available While taking an example of reconstruction and modernization of OJSC «Construction and Mounting Trust No.16, Novopolotsk» the paper substantiates solutions for complex production reconstruction. The production reconstruction is divided in three start-up facilities ensuring continuous finished-product output.

  11. 26 CFR 1.528-4 - Substantiality test.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 7 2010-04-01 2010-04-01 true Substantiality test. 1.528-4 Section 1.528-4 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED... residence. Units which are used for purposes auxiliary to residential use (such as laundry areas, swimming...

  12. Engineering Substantially Prolonged Human Lifespans: Biotechnological Enhancement and Ethics

    NARCIS (Netherlands)

    Derkx, P.H.J.M.

    2006-01-01

    Substantial extension of the human lifespan has recently become a subject of lively debate. One reason for this is the completion in 2001 of the Human Genome Project and the experimental avenues for biogerontological research it has opened. Another is recent theoretical progress in biogerontology.

  13. 40 CFR Appendix C to Part 112 - Substantial Harm Criteria

    Science.gov (United States)

    2010-07-01

    ... to Part 112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS OIL POLLUTION PREVENTION Pt. 112, App. C Appendix C to Part 112—Substantial Harm Criteria 1.0Introduction The..., except in the Gulf of Mexico. In the Gulf of Mexico, it means the area shoreward of the lines of...

  14. 76 FR 63846 - Substantially Underserved Trust Areas (SUTA)

    Science.gov (United States)

    2011-10-14

    ... Cost Rural Communities; 10.861, Public Television Station Digital Transition Grant Program; 10.862... rule do not impose substantial unreimbursed direct compliance costs on Indian tribal, Alaska native, or native Hawaiian governments and sovereign institutions or have tribal implications that preempt tribal...

  15. Ageing and recycling of plastic crates

    NARCIS (Netherlands)

    Vink, P.; Rotteveel, R.T.; Wisse, J.D.M.

    1985-01-01

    Plastic crates will deteriorate and ultimately fail due to brittle fracture if, either during use or storage, they are exposed to sunlight. The time to failure depends on the UV stability of the polymer used, but in particular also on the conditions of use, such as time of exposure, height of the

  16. 77 FR 74006 - Polychlorinated Biphenyls (PCBs); Recycling Plastics From Shredder Residue

    Science.gov (United States)

    2012-12-12

    ... instance, because substantial automotive recycling systems are already in place for the primary purpose of... (PCBs); Recycling Plastics From Shredder Residue AGENCY: Environmental Protection Agency (EPA). ACTION... currently under consideration that would generally allow for the recycling of plastic separated from...

  17. Phenotypic Plasticity, Epigenetic or Genetic Modifications in Relation to the Duration of Cd-Exposure within a Microevolution Time Range in the Beet Armyworm.

    Directory of Open Access Journals (Sweden)

    Maria Augustyniak

    Full Text Available In the case of the pests inhabiting metal polluted or fields where the use of pesticides is common, a natural selection of resistant individuals can occur. This may pose serious problems for humans, agriculture, as well as the economies of many countries. In this study, the hypothesis that multigenerational (120 generations exposure to cadmium of a beet armyworm population could be a selecting factor toward a more efficient DNA protection was verified. The hemocytes of individuals from two culture strains (control and Cd-exposed were treated with H2O2 (a DNA-damaging agent or PBS (reference. The level of DNA damage was assessed using the Comet assay immediately and 5, 15 and 30 min. after the treatment. The immediate result of the contact with H2O2 was that the level of DNA damage in the hemocytes of the insects from both strains increased significantly. However, in the cells of the Cd-exposed individuals, the level of DNA damage decreased over time, while in the cells from the control insects it remained at the same level with no evidence of repair. These results suggest that efficient defense mechanisms may exist in the cells of insects that have prolonged contact with cadmium. Some evolutionary and trade-off aspects of the phenomenon are discussed. In a wider context, comparing the results obtained in the laboratory with field studies may be beneficial for understanding basic mechanisms of the resistance of an organism. To summarize, the high potential for the repair of DNA damage that was observed in the insects from the cadmium strain may confirm the hypothesis that multigenerational exposure to that metal may possibly contribute to the selection of insects that have a wider tolerance to oxidative stress. However, our investigations of polymorphism using AFLP did not reveal differences between the two main insect strains.

  18. Shock wave compression of hexagonal-close-packed metal single crystals: Time-dependent, anisotropic elastic-plastic response of beryllium

    International Nuclear Information System (INIS)

    Winey, J. M.; Gupta, Y. M.

    2014-01-01

    Understanding and modeling the response of hcp metals to high stress impulsive loading is challenging because the lower crystal symmetry, compared to cubic metals, results in a significantly more complex material response. To gain insight into the inelastic deformation of hcp metals subjected to high dynamic stresses, shock wave compression of single crystals provides a useful approach because different inelastic deformation mechanisms can be examined selectively by shock compression along different crystal orientations. As a representative example, we report, here, on wave propagation simulations for beryllium (Be) single crystals shocked along the c-axis, a-axis, and several low-symmetry directions to peak stresses reaching 7 GPa. The simulations utilized a time-dependent, anisotropic material model that incorporated dislocation dynamics, deformation twinning, and shear cracking based descriptions of inelastic deformation. The simulation results showed good overall agreement with measured wave profiles for all the different crystal orientations examined [Pope and Johnson, J. Appl. Phys. 46, 720 (1975)], including features arising from wave mode coupling due to the highly anisotropic inelastic response of Be. This good agreement demonstrates that the measured profiles can be understood in terms of dislocation slip along basal, prismatic, and pyramidal planes, together with deformation twinning along (101 ¯ 2) planes. Our results show that the response of shocked Be single crystals involves the simultaneous operation of multiple, distinct inelastic deformation mechanisms for all orientations except the c-axis. For shocked c-axis Be, the measured wave profiles do not provide good discrimination between pyramidal slip and other inelastic deformation mechanisms, such as shear cracking. The findings presented here provide insight into the complex inelastic deformation response of shocked Be single crystals and are expected to be useful for other hcp crystals. More

  19. Investigation into Plastic Cards

    Directory of Open Access Journals (Sweden)

    Neringa Stašelytė

    2015-03-01

    Full Text Available The article examines the strength of laminating plastic cards at different lamination temperatures. For investigation purposes, two types of plastic substrate and films have been used. Laminate strength has been tested (CMYK to establish the impact of colours on the strength of laminate. The paper compares inks supplied by two different producers. The colour characteristics of CIE L*a*b* space before and after the lamination process have been found. According to lamination strength and characteristics of the colours, the most suitable inks, temperature and films have been chosen.

  20. Joining by plastic deformation

    DEFF Research Database (Denmark)

    Mori, Ken-ichiro; Bay, Niels; Fratini, Livan

    2013-01-01

    As the scale and complexity of products such as aircraft and cars increase, demand for new functional processes to join mechanical parts grows. The use of plastic deformation for joining parts potentially offers improved accuracy, reliability and environmental safety as well as creating opportuni......As the scale and complexity of products such as aircraft and cars increase, demand for new functional processes to join mechanical parts grows. The use of plastic deformation for joining parts potentially offers improved accuracy, reliability and environmental safety as well as creating...

  1. Elastic plastic fracture mechanics

    International Nuclear Information System (INIS)

    Simpson, L.A.

    1978-07-01

    The application of linear elastic fracture mechanics (LEFM) to crack stability in brittle structures is now well understood and widely applied. However, in many structural materials, crack propagation is accompanied by considerable crack-tip plasticity which invalidates the use of LEFM. Thus, present day research in fracture mechanics is aimed at developing parameters for predicting crack propagation under elastic-plastic conditions. These include critical crack-opening-displacement methods, the J integral and R-curve techniques. This report provides an introduction to these concepts and gives some examples of their applications. (author)

  2. Optical absorption in recycled waste plastic polyethylene

    Science.gov (United States)

    Aji, M. P.; Rahmawati, I.; Priyanto, A.; Karunawan, J.; Wati, A. L.; Aryani, N. P.; Susanto; Wibowo, E.; Sulhadi

    2018-03-01

    We investigated the optical properties of UV spectrum absorption in recycled waste plastic from polyethylene polymer type. Waste plastic polyethylene showed an optical spectrum absorption after it’s recycling process. Spectrum absorption is determined using spectrophotometer UV-Nir Ocean Optics type USB 4000. Recycling method has been processed using heating treatment around the melting point temperature of the polyethylene polymer that are 200°C, 220°C, 240°C, 260°C, and 280°C. In addition, the recycling process was carried out with time variations as well, which are 1h, 1.5h, 2h, and 2.5h. The result of this experiment shows that recycled waste plastic polyethylene has a spectrum absorption in the ∼ 340-550 nm wavelength range. The absorbance spectrum obtained from UV light which is absorbed in the orbital n → π* and the orbital π → π*. This process indicates the existence of electron transition phenomena. This mechanism is affected by the temperature and the heating time where the intensity of absorption increases and widens with the increase of temperature and heating time. Furthermore this study resulted that the higher temperature affected the enhancement of the band gap energy of waste plastic polyethylene. These results show that recycled waste plastic polyethylene has a huge potential to be absorber materials for solar cell.

  3. [The role of balneology in plastic surgery].

    Science.gov (United States)

    Correia, N; Binet, A; Caliot, J; Poli Merol, M-L; Bodin, F; François-Fiquet, C

    2016-02-01

    Balneology can be part of the plastic surgery care sector. The objectives of this study were firstly to the state of knowledge about the hydrotherapy and specify the place reserved for hydrotherapy by surgeons as an adjunct in plastic and reconstructive surgery (adult and child). Multicentric national study by poll (Google Drive®) focused at plastic and/or pediatric surgeons. The following information was analyzed: frequency, timing of prescription, indications, the surgeon's feelings towards hydrotherapy and the differences between adult's and children's prescriptions. Fifty-four teams were contacted: 22 responses were received (15 "adult" plastic surgeons, 9 "pediatric" plastic surgeons, 6 pediatric surgeons, with 12 out of 22 working with burnt patients). Eighteen out of 22 prescribed hydrotherapy. Twenty out of 22 thought that hydrotherapy had a role as adjuvant therapy in plastic surgery. The indications were: burns (11/20), skin-graft hypertrophy (10/20), inflammatory and pruritic scar and cutaneous trophic disorders (9/20), psychological (3/20), retractions (2/20), weight loss and smoking (1/20). The timing of the prescription was: 6 months and 1 year (8/20) after surgery/trauma. Twenty out of 22 found a beneficial effect: physical (19/20): reduction of inflammatory signs, pruritus and pain, scar maturation, skin thinning improvement; psychological (14/20): positive for patient/family. Five out of 17 made the difference between child/adult, 10/17 made no difference but only treated adults or children. The respondents in the study are probably more sensitive to the effects of hydrotherapy that non-respondents. It is difficult to assess the real impact of hydrotherapy in plastic surgery because distinguishing spontaneous favorable evolution of a scar from one only due to the hydrotherapy or multidisciplinary management is difficult. However, hydrotherapy seems to have its role among multidisciplinary management. Copyright © 2015 Elsevier Masson SAS. All

  4. Colored plastic mulch microclimates affect strawberry fruit yield and quality.

    Science.gov (United States)

    Shiukhy, Saeid; Raeini-Sarjaz, Mahmoud; Chalavi, Vida

    2015-08-01

    Significant reduction of strawberry (Fragaria × ananassa, Duch.) fruit yield and quality, as a consequence of conventional cultivation method, is common in the Caspian Sea region, Iran. Recently, growers started using plastic mulches to overcome these shortcomings. Plastic mulches have different thermal and radiation properties and could affect strawberry fruit yield and quality. In the present study, the effect of different colored plastic mulches (black, red, and white) along with conventional practice was tested on yield and quality of strawberry Camarosa cultivar, in a completely randomized block design. Colored plastic mulches had highly significant effect on fruit weight, size, and phytochemical contents. In the most harvest times, mean fruit weight was significantly higher in red plastic relative to white and control treatments. Total fruit weight of plastic mulches was not significantly different, while all were statistically higher than that of control. Fruit size significantly increased over red plastic mulch. Total fruit numbers over plastic mulches were significantly higher than that of control treatment. The content of phenolic compounds was similar between treatments, while anthocyanin content, IC(50) value, and flavonoid content significantly were affected by colored plastics. In conclusion, colored plastic mulches could affect strawberry fruit weight and quality through altering strawberry thermal and radiation environment.

  5. Biobased Plastics 2012

    NARCIS (Netherlands)

    Bolck, C.H.; Ravenstijn, J.; Molenveld, K.; Harmsen, P.F.H.

    2011-01-01

    Dit boek geeft inzicht in de huidige op de markt verkrijgbare biobased plastics en de te verwachten ontwikkelingen. Er wordt gekeken naar zowel thermoplastische als thermohardende materialen. Het boek biedt inzicht in de productie, verwerking en eigenschappen van de verschillende types. Daarnaast

  6. New plastic recycling technology

    Science.gov (United States)

    Greater than 60% of the total plastic content of municipal solid waste is comprised of polyolefins (high-density, low-density, and linear polyethylene and polypropylene. Polyethylene (PE) is the largest-volume component but presents a challenge due to the absence of low-energy de...

  7. Reliability of Plastic Slabs

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    1989-01-01

    In the paper it is shown how upper and lower bounds for the reliability of plastic slabs can be determined. For the fundamental case it is shown that optimal bounds of a deterministic and a stochastic analysis are obtained on the basis of the same failure mechanisms and the same stress fields....

  8. Structural and mechanical behaviour of severe plastically deformed high purity aluminium sheets processed by constrained groove pressing technique

    International Nuclear Information System (INIS)

    Satheesh Kumar, S.S.; Raghu, T.

    2014-01-01

    Highlights: • High purity aluminium sheets constrained groove pressed up to plastic strain of 5.8. • Microstructural evolution studied by TEM and X-ray diffraction profile analysis. • Ultrafine grained structure with grain size ∼900 nm achieved in sheets. • Yield strength increased by 5.3 times and tensile strength doubled after first pass. • Enhanced deformation homogeneity seen with increased accumulated plastic strain. - Abstract: High purity aluminium sheets (∼99.9%) are subjected to intense plastic straining by constrained groove pressing method successfully up to 5 passes thereby imparting an effective plastic strain of 5.8. Transmission electron microscopy studies of constrained groove pressed sheets divulged significant grain refinement and the average grain sizes obtained after five pass is estimated to be ∼0.9 μm. In addition to that, microstructural evolution of constrained groove pressed sheets is characterized by X-ray diffraction peak profile analysis employing Williamson–Hall method and the results obtained fairly concur with electron microscopy findings. The tensile behaviour evolution with increased straining indicates substantial improvement of yield strength by ∼5.3 times from 17 MPa to 90 MPa during first pass corroborated to grain refinement observed. Marginal increase in strengths is noticed during second pass followed by minor drop in strengths attributed to predominance of dislocation recovery is noticed in subsequent passes. Quantitative assessment of degree of deformation homogeneity using microhardness profiles reveal relatively better strain homogeneity at higher number of passes

  9. Phenotypic plasticity and effects of selection on cell division symmetry in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Uttara N Lele

    Full Text Available Aging has been demonstrated in unicellular organisms and is presumably due to asymmetric distribution of damaged proteins and other components during cell division. Whether the asymmetry-induced aging is inevitable or an adaptive and adaptable response is debated. Although asymmetric division leads to aging and death of some cells, it increases the effective growth rate of the population as shown by theoretical and empirical studies. Mathematical models predict on the other hand, that if the cells divide symmetrically, cellular aging may be delayed or absent, growth rate will be reduced but growth yield will increase at optimum repair rates. Therefore in nutritionally dilute (oligotrophic environments, where growth yield may be more critical for survival, symmetric division may get selected. These predictions have not been empirically tested so far. We report here that Escherichia coli grown in oligotrophic environments had greater morphological and functional symmetry in cell division. Both phenotypic plasticity and genetic selection appeared to shape cell division time asymmetry but plasticity was lost on prolonged selection. Lineages selected on high nutrient concentration showed greater frequency of presumably old or dead cells. Further, there was a negative correlation between cell division time asymmetry and growth yield but there was no significant correlation between asymmetry and growth rate. The results suggest that cellular aging driven by asymmetric division may not be hardwired but shows substantial plasticity as well as evolvability in response to the nutritional environment.

  10. Modelling of elasto-plastic material behaviour

    International Nuclear Information System (INIS)

    Halleux, J.P.

    1981-01-01

    The present report describes time-independent elasto-plastic material behaviour modelling techniques useful for implementation in fast structural dynamics computer programs. Elasto-plastic behaviour is characteristic for metallic materials such as steel and is thus of particular importance in the study of reactor safety-related problems. The classical time-independent elasto-plastic flow theory is recalled and the fundamental incremental stress-strain relationships are established for strain rate independent material behaviour. Some particular expressions useful in practice and including reversed loading are derived and suitable computational schemes are shwon. Modelling of strain rate effects is then taken into account, according to experimental data obtained from uniaxial tension tests. Finally qualitative strain rate history effects are considered. Applications are presented and illustrate both static and dynamic material behaviour

  11. Substantiation of the road toll for heavy transport vehicles

    OpenAIRE

    Burmaka, N.; Chernykh, A.

    2010-01-01

    The existing and possible additional sources of developing state and local road funds of Ukraine have been considered. The formula for calculating monthly road toll for heavy transport vehicles has been proposed. This formula includes the payment rate per every kilometer of distance, the vehicle capacity utilization factor and the run with the load. The payment rate per every kilometer of distance for transport vehicles depending on the allowed total weight has been substantiated. The given r...

  12. Patients' substantialization of disease, the hybrid symptom and metaphysical care.

    Science.gov (United States)

    Pârvan, Alexandra

    2015-06-01

    In the context of current scholarship concerned with facilitating integration between the biomedical and the patient-centred models of care, the article suggests that disease brings about an ontological disruption in patients, which is not directly addressed in either model, and may interfere with treatment and therapy outcomes if not met with a type of care termed here as 'metaphysical'. The receipt of diagnosis and medical care can give patients the sense that they are ontologically diminished, or less of a human, and along with physicians' approaches to and discourses about disease, may prompt them to seek ontological restoration or security in the same way as psychologically traumatized patients sometimes do: by treating the disease and/or the experience of harm associated with it as a thing that exists per se. I call this 'substantialization' of disease (or harm) and draw on Augustine's theory of non-substantial deficiencies (physiological and moral) and on Plato's and Plotinus's different takes on such defects in order to discuss what substantialization can do for patients. Based on literature that examines patients' ways of talking about and living with their disease, I speculate that substantialization can generate a 'hybrid symptom', consisting in patterns of exercising agency which may predispose to non-adherence. Ways in which physicians could provide metaphysical care are proposed, along with an understanding of chronic patients as hybrid ontological and agentic units, which draws on theories of enactive cognition. I opine that metaphysical care may facilitate integration between the depersonalized and personalized models of care. © 2014 John Wiley & Sons, Ltd.

  13. Plastics disassembly versus bulk recycling: engineering design for end-of-life electronics resource recovery.

    Science.gov (United States)

    Rios, Pedro; Stuart, Julie Ann; Grant, Ed

    2003-12-01

    Annual plastic flows through the business and consumer electronics manufacturing supply chain include nearly 3 billion lb of high-value engineering plastics derived from petroleum. The recovery of resource value from this stream presents critical challenges in areas of materials identification and recycling process design that demand new green engineering technologies applied together with life cycle assessment and ecological supply chain analysis to create viable plastics-to-plastics supply cycles. The sustainable recovery of potentially high-value engineering plastics streams requires that recyclers either avoid mixing plastic parts or purify later by separating smaller plastic pieces created in volume reduction (shredding) steps. Identification and separation constitute significant barriers in the plastics-to-plastics recycling value proposition. In the present work, we develop a model that accepts randomly arriving electronic products to study scenarios by which a recycler might identify and separate high-value engineering plastics as well as metals. Using discrete eventsimulation,we compare current mixed plastics recovery with spectrochemical plastic resin identification and subsequent sorting. Our results show that limited disassembly with whole-part identification can produce substantial yields in separated streams of recovered engineering thermoplastics. We find that disassembly with identification does not constitute a bottleneck, but rather, with relatively few workers, can be configured to pull the process and thus decrease maximum staging space requirements.

  14. Is the holy grail plastic? Radiation identification from plastic scintillators

    International Nuclear Information System (INIS)

    Butchins, L. J. C.; Gosling, J. M.; Hogbin, M. R. W.; Jones, D. C.; Lacey, R. J.; Stearn, J. G.

    2009-01-01

    Thousands of shipping containers containing Naturally Occurring Radioactive Materials (NORM) made from ceramics, stoneware and other natural products are transported worldwide on a daily basis. Some of these NORM loads are sufficiently radioactive to trigger alarms from plastic scintillator detectors which have limited ability to also identify the radionuclides present thus necessitating secondary inspection which increases the operational overhead. Previous studies have been carried out to ascertain if radionuclide discrimination using plastic scintillators is possible with a variety of approaches including deconvolution and computer learning. In this paper, a two stage algorithm is described. An example implementation of the algorithm is presented, applied to operational data, and has been installed in real time operation on a polyvinyl-toluene (PVT) detector. The approach requires the collection of a large library of spectra using examples of the detectors to be deployed. In this study, data from both actual freight loads passing through a port and predefined freight containing various radionuclides were collected. The library represents freight loads that may contain industrial, medical, nuclear, and NORM radionuclides. The radionuclides in the predefined freight were placed in various orientations and in various amounts of shielding to mimic many different scenarios. Preliminary results on an initial subset of data containing industrial and NORM sources show the number of mis-classifications to be less than 1% of the total test data. Good initial results were obtained even for low energy radionuclides such as 241 Am. Where discrimination is not possible, and principle components overlap, this region or 'cloud' of the n-dimensional plot can be put aside. Those spectra that fall in the 'cloud' can be regarded as suspect and in these cases, some secondary screening will still be necessary. It is predicted that the algorithm will enable recognition of NORM loads

  15. Plasticity characteristic obtained by indentation

    International Nuclear Information System (INIS)

    Mil'man, Yu.V.; Chugunova, S.I.; Goncharova, I.V.

    2011-01-01

    Methods for determination plasticity characteristic δH in the measurement of hardness and nanohardness are considered. Parameter δH characterizes the plasticity of a material by the part of plastic deformation in the total elastic-plastic deformation. The value of δH is defined for metals with different types of crystal lattice, covalent and partially covalent crystals, intermetallics, metallic glasses and quasicrystals. It is discussed the dependence of the plasticity characteristic δH on structural factors and temperature. Parameter δH allows to analyze and compare the plasticity of materials which are brittle at standard mechanical tests. The combination of hardness H, as the strength characteristic, and the plasticity characteristic δH makes possible the better characterization of mechanical behavior of materials than only the hardness H. The examples of plasticity characteristic δH application are represented.

  16. The Size Spectrum as Tool for Analyzing Marine Plastic Pollution

    KAUST Repository

    Martí, E.

    2016-12-02

    Marine plastic debris spans over six orders of magnitude in lineal size, from microns to meters. The broad range of plastic sizes mainly arises from the continuous photodegradation and fragmentation affecting the plastic objects. Interestingly, this time-dependent process links, to some degree, the size to the age of the debris. The variety of plastic sizes gives the possibility to marine biota to interact and possible take up microplastics through numerous pathways. Physical processes such as sinking and wind-induced transport or the chemical adsorption of contaminants are also closely related to the size and shape of the plastic items. Likewise, available sampling techniques should be considered as partial views of the marine plastic size range. This being so and given that the size is one of the most easily measurable plastic traits, the size spectrum appears as an ideal frame to arrange, integrate, and analyze plastic data of diverse nature. In this work, we examined tens of thousands of plastic items sampled from across the world with the aim of (1) developing and standardizing the size-spectrum tool to study marine plastics, and (2) assembling a global plastic size spectrum (GPSS) database, relating individual size measurements to abundance, color (129 tons), polymer type, and category (rigid fragments, films, threads, foam, pellets, and microbeads). Using GPSS database, we show for instance the dependence of plastic composition on the item size, with high diversity of categories for items larger than 1 cm and a clear dominance (~90%) of hard fragments below, except for the size interval corresponding to microbeads (around 0.5 mm). GPSS database depicts a comprehensive size-based framework for analyzing the marine plastic pollution, enabling the comparison of size-related studies or the testing of hypothesis.

  17. Nondestructive evaluation of reinforced plastics by a radiometric measurement technique

    International Nuclear Information System (INIS)

    Entine, Gerald; Afshari, Sia; Verlinden, Matt

    1990-01-01

    The demand for new high-performance plastics has greatly increased with advances in the performance characteristics of sophisticated reinforced engineering resins. However, conventional methods for the evaluation of the glass and filler contents of reinforced plastics are destructive, labor intensive, and time consuming. We have developed a new instrument, to address this problem, which provides for the rapid, accurate, and nondestructive measurement of glass or filler content in reinforced plastics. This instrument utilizes radiation transmission and scattering techniques for analytical measurement of glass, graphite and other fillers used in reinforced plastics. (author)

  18. Radiation resistance of plastic solid

    International Nuclear Information System (INIS)

    Moriyama, Noboru; Dojiri, Shigeru; Wadachi, Yoshiki

    1985-01-01

    The radiation from nucleides contained in solidified wates have some effects on the degradation of the solidification materials. This report deals with effects of such radiation on the mechanical strength of waste-plastics composites and on the generation of gasses. It is shown that the mechanical strength of polyethylene and polyester solids will not decrease at a total absorbed dose of 10 6 rad, a dose which a low-level waste composite is expected to receive during an infinite period of time. Rather, it increases in the case of polyethylene. The amount of gas generated from degraded polyethylene is about three times as large as that from polyester, namely, about 6 l per 200 l drum can at 10 6 rad. Hydrogen accounts for about 80 % of the total gas generated from polyethylene. On the other hand, the gas from polyester solid mainly contains hydrogen, carbon dioxide, carbon monoxide and methane, with a composition greatly dependent on the type of the waste contained. It is concluded from these results that plastic materials can serve satisfactorily as for as the effects of radiation on their mechanical strength and gas generation are concerned. A more important problem still remaining to be solved is the effects of radiation on the leaching of radioactive nuclides. (Nogami, K.)

  19. Plastic pollutants in water environment

    OpenAIRE

    Mrowiec Bożena

    2017-01-01

    Nowadays, wide applications of plastics result in plastic waste being present in the water environment in a wide variety of sizes. Plastic wastes are in water mainly as microplastics (the size range of 1 nm to < 5 mm). Microplastics have been recognized as an emerging threat, as well as ecotoxicological and ecological risk for water ecosystems. In this review are presented some of the physicochemical properties of plastic materials that determine their toxic effect on the aquatic environment....

  20. Plastic pollution of the world's seas and oceans as a contemporary challenge in ocean governance.

    Science.gov (United States)

    Haward, Marcus

    2018-02-14

    The pervasive nature of marine plastic pollution was highlighted at the recent United Nations Environment Assembly. This meeting saw strong commitments for action, but at the same time reinforced the challenges for contemporary ocean governance in addressing marine plastic pollution.

  1. Cladding failure by local plastic instability

    International Nuclear Information System (INIS)

    Kramer, J.M.; Deitrich, L.W.

    1977-01-01

    Cladding failure is one of the major considerations in analysis of fast-reactor fuel pin behavior during hypothetical accident transients since time, location and nature of failure govern the early post-failure material motion and reactivity feedback. Out-of-Pile transient burst tests of both irradiated and unirradiated fast-reactor cladding show that local plastic instability, or bulging, often precedes rupture. To investigate the details of cladding bulging, a perturbation analysis of the equations governing the large deformation of a cylindrical shell has been developed. The overall deformation history is assumed to consist of a small perturbation epsilon of the radial displacement superimposed on large axisymmetric displacements. Computations have been carried out using high temperature properties of stainless steel in conjunction with various constitutive theories, including a generalization of the Endochronic Theory of Plasticity in which both time-independent and time-dependent plastic strains are modeled. Although the results of the calculations are all qualitatively similar, it appears that modeling of both time-independent and time-dependent plastic strains is necessary to interpret the transient burst test results. Sources for bulge formation that have been considered include initial geometric imperfections and thermal perturbations due to either eccentric fuel pellets or non-symmetric cooling. (Auth.)

  2. 76 FR 32215 - Agency Information Collection Activities; Proposed Collection; Comment Request; Substantiation...

    Science.gov (United States)

    2011-06-03

    ... of such disease in the United States [(U.S.)], describes the role of a nutrient or dietary ingredient... substantiation for their claims in the scientific literature. The time it takes to assemble the necessary... based on emerging science, where conducting literature searches and understanding the literature takes...

  3. Structural Plasticity Denoises Responses and Improves Learning Speed

    Directory of Open Access Journals (Sweden)

    Robin Spiess

    2016-09-01

    Full Text Available Despite an abundance of computational models for learning of synaptic weights, there has been relatively little research on structural plasticity, i.e. the creation and elimination of synapses. Especially, it is not clear how structural plasticity works in concert with spike-timing-dependent plasticity (STDP and what advantages their combination offers.Here we present a fairly large-scale functional model that uses leaky integrate-and-fire neurons, STDP, homeostasis, recurrent connections, and structural plasticity to learn the input encoding, the relation between inputs, and to infer missing inputs. Using this model, we compare the error and the amount of noise in the network's responses with and without structural plasticity and the influence of structural plasticity on the learning speed of the network.Using structural plasticity during learning shows good results for learning the representation of input values, i.e. structural plasticity strongly reduces the noise of the response by preventing spikes with a high error.For inferring missing inputs we see similar results, with responses having less noise if the network was trained using structural plasticity.Additionally, using structural plasticity with pruning significantly decreased the time to learn weights suitable for inference.Presumably, this is due to the clearer signal containing less spikes that misrepresent the desired value. Therefore, this work shows that structural plasticity is not only able to improve upon the performance using STDP without structural plasticity but also speeds up learning.Additionally, it addresses the practical problem of limited resources for connectivity that is not only apparent in the mammalian neocortex but also in computer hardware or neuromorphic (brain-inspired hardware by efficiently pruning synapses without losing performance.

  4. Substantial increase in acceleration potential of pyroelectric crystals

    International Nuclear Information System (INIS)

    Tornow, W.; Lynam, S. M.; Shafroth, S. M.

    2010-01-01

    We report on a substantial increase in the acceleration potential achieved with a LiTaO 3 pyroelectric crystal. With a single 2.5 cm diameter and 2.5 cm long z-cut crystal without electric field-enhancing nanotip we produced positive ion beams with maximal energies between 300 and 310 keV during the cooling phase when the crystal was exposed to 5 mTorr of deuterium gas. These values are about a factor of 2 larger than previously obtained with single pyroelectric crystals.

  5. ASSESSMENT OF PLASTIC FLOWS AND STOCKS IN SERBIA USING MATERIAL FLOW ANALYSIS

    Directory of Open Access Journals (Sweden)

    Goran Vujić

    2010-01-01

    Full Text Available Material flow analysis (MFA was used to assess the amounts of plastic materials flows and stocks that are annually produced, consumed, imported, exported, collected, recycled, and disposed in the landfills in Serbia. The analysis revealed that approximatelly 269,000 tons of plastic materials are directly disposed in uncontrolled landfills in Serbia without any preatretment, and that siginificant amounts of these materials have already accumulated in the landfills. The substantial amounts of landfilled plastics represent not only a loss of valuable recourses, but also pose a seriuos treath to the environment and human health, and if the trend of direct plastic landfilling is continued, Serbia will face with grave consecequnces.

  6. Substantial Research Secures the Blue Future for our Blue Plant

    Directory of Open Access Journals (Sweden)

    Moustafa Abdel Maksoud

    2016-06-01

    Full Text Available Earth, the blue planet, is our home, and seas and oceans cover more than 70% of its surface. As the earth’s population rapidly increases and available resources decrease, seas and oceans can play a key role in assuring the long-term survival of humankind. Renewable maritime energy has huge potential to provide a considerable part of the earth’s population with decarbonised electricity generation systems. Renewable maritime energy is very flexible and can be harvested above the water’s free surface by using offshore wind turbines, on the water’s surface by using wave energy converters or below the water’s surface by using current or tidal turbines. The supposed conflict between environmental protection measures and economic interests is neither viable nor reasonable. Renewable maritime energy can be the motor for considerable substantial economic growth for many maritime regions and therefore for society at large. The fastest growing sector of renewable maritime energy is offshore wind. The annual report of the European Wind Energy Association from the year 2015 confirms the growing relevance of the offshore wind industry. In 2015, the total installed and grid-connected capacity of wind power was 12,800 MW in the EU and 6,013.4 MW in Germany. 38% of the 2015 annual installation in Germany was offshore, accounting for a capacity of 2,282.4 MW. However, there are a limited number of available installation sites in shallow water, meaning that there is an urgent need to develop new offshore structures for water depths greater than 50m. The persistent trend towards deeper waters has encouraged the offshore wind industry to look for floating wind turbine structures and larger turbines. Floating wind turbine technologies are at an early stage of development and many technical and economic challenges will still need to be faced. Nonetheless, intensive research activities and the employment of advanced technologies are the key factors in

  7. Extremely short duration high intensity interval training substantially improves insulin action in young healthy males

    DEFF Research Database (Denmark)

    Babraj, John A; Vollaard, Niels B J; Keast, Cameron

    2009-01-01

    BACKGROUND: Traditional high volume aerobic exercise training reduces cardiovascular and metabolic disease risk but involves a substantial time commitment. Extremely low volume high-intensity interval training (HIT) has recently been demonstrated to produce improvements to aerobic function...... cycle sprints per session). Aerobic performance (250-kJ self-paced cycling time trial), and glucose, insulin and NEFA responses to a 75-g oral glucose load (oral glucose tolerance test; OGTT) were determined before and after training. RESULTS: Following 2 weeks of HIT, the area under the plasma glucose......, to substantially improve insulin action in young sedentary subjects is remarkable. This novel time-efficient training paradigm can be used as a strategy to reduce metabolic risk factors in young and middle aged sedentary populations who otherwise would not adhere to time consuming traditional aerobic exercise...

  8. Plasticity modeling & computation

    CERN Document Server

    Borja, Ronaldo I

    2013-01-01

    There have been many excellent books written on the subject of plastic deformation in solids, but rarely can one find a textbook on this subject. “Plasticity Modeling & Computation” is a textbook written specifically for students who want to learn the theoretical, mathematical, and computational aspects of inelastic deformation in solids. It adopts a simple narrative style that is not mathematically overbearing, and has been written to emulate a professor giving a lecture on this subject inside a classroom. Each section is written to provide a balance between the relevant equations and the explanations behind them. Where relevant, sections end with one or more exercises designed to reinforce the understanding of the “lecture.” Color figures enhance the presentation and make the book very pleasant to read. For professors planning to use this textbook for their classes, the contents are sufficient for Parts A and B that can be taught in sequence over a period of two semesters or quarters.

  9. Cosmic ray spectroscopy using plastic scintillator detector

    International Nuclear Information System (INIS)

    Rudra, Sharmili; Nandan, Akhilesh P.; Neog, Himangshu; Biswas, S.; Mohanty, B.; Mahapatra, S.; Samal, P.K.

    2014-01-01

    A simple and new technique has been developed using plastic scintillator detectors for cosmic ray spectroscopy without single channel analyzer (SCA) or multichannel analyzer (MCA). In this technique only a leading edge discriminator (LED) and a NIM scaler have been used. Plastic scintillator detectors has been used to measure the velocity of cosmic ray muons. Here the time difference has been measured from the Tektronix DPO 5054 digital phosphor oscilloscope with 500 MHz and 5 GS/s. The details of experimental technique, analysis procedure and experimental results are presented

  10. Transgenerational plasticity is adaptive in the wild.

    Science.gov (United States)

    Galloway, Laura F; Etterson, Julie R

    2007-11-16

    Plants exhibit adaptive responses to light, but it is not known whether parental plants transmit environmental cues that elicit adaptive responses in offspring. We show that offspring life history (annual versus biennial) is influenced by the maternal light environment (understory versus light gap). This transgenerational plasticity is adaptive when offspring are grown in their maternal light environment, where seeds typically disperse. Projections of population growth show that plants that are appropriately cued for their light environment through maternal effects have 3.4 times greater fitness than otherwise. Transgenerational plasticity has evolved in response to natural variation in light and provides a flexible mechanism by which sedentary organisms cope with heterogeneous environments.

  11. External insulation with cellular plastic materials

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt; Nielsen, Anker

    2014-01-01

    External thermal insulation composite systems (ETICS) can be used as extra insulation of existing buildings. The system can be made of cellular plastic materials or mineral wool. There is a European Technical guideline, ETAG 004, that describe the tests that shall be conducted on such systems....... This paper gives a comparison of systems with mineral wool and cellular plastic, based on experience from practice and literature. It is important to look at the details in the system and at long time stability of the properties such as thermal insulation, moisture and fire. Investigation of fire properties...

  12. [Application of thermosetting plastics to eliminate undercuts].

    Science.gov (United States)

    Bielawski, T

    1989-01-01

    The author proposes to utilize the properties of thermosetting plastics used in other fields to use them in prosthetics in order to eliminate undercuts. Application of extra equipment in claspograph in the form of studs of three dimension makes formation of undercuts' blockade easier improving the result of work at the same time.

  13. Fluorescent compounds for plastic scintillation applications

    International Nuclear Information System (INIS)

    Pla-Dalmau, A.; Bross, A.D.

    1994-04-01

    Several 2-(2'-hydroxyphenyl)benzothiazole, -benzoxazole, and -benzimidazole derivatives have been prepared. Transmittance, fluorescence, light yield, and decay time characteristics of these compounds have been studied in a polystyrene matrix and evaluated for use in plastic scintillation detectors. Radiation damage studies utilizing a 60 C source have also been performed

  14. Plastic solar cells : understanding the special additive

    NARCIS (Netherlands)

    van Franeker, H.; Janssen, R.A.J.

    2015-01-01

    Solar cells use freely available sunlight to make electricity. At the present time, solar electricity does not come cheap, because solar panels are rather expensive. Now imagine that we could reduce costs by printing solar panels like we print newspapers! We can do just that with plastic solar

  15. Plasticity - a limiting case of creep

    International Nuclear Information System (INIS)

    Cords, H.; Kleist, G.; Zimmermann, R.

    1986-11-01

    The present work is an attempt to develop further the so-called unified theory for viscoplastic constitutive equations as used for metals or metal alloys. Typically, in similar approaches creep strains and plastic strains are derived from one common stress-strain relationship for inelastic strain rates employing an internal stress function as a back stress. Some novel concepts concerning the definition of the internal stress, plastic yielding and material hardening have been introduced, formulated mathematically and tested for correspondence with a standard type of materials behaviour. As a result of the investigations a system of simultaneous differential equations is defined which has been used to elaborate a common view on a number of different material effects observed in creep and plasticity i.e. normal and inverted primary creep, recoverable creep, incubation time and anelasticity in stress reduction, negative stress relaxation, plastic yielding, perfect plasticity, negative strain rate sensitivity, serrated flow, strain hardening in monotonic and cyclic loading. The theoretical approach is mainly based on a lateral contraction movement not following rigidly the longitudinal extension of the material specimen by a prescribed constant value of Poisson's ratio as usual, but following the axial extension in a process of drag which allows for retardation and which simultaneously impedes the longitudinal straining. (orig.) [de

  16. Neuron-glia metabolic coupling and plasticity.

    Science.gov (United States)

    Magistretti, Pierre J

    2006-06-01

    The coupling between synaptic activity and glucose utilization (neurometabolic coupling) is a central physiological principle of brain function that has provided the basis for 2-deoxyglucose-based functional imaging with positron emission tomography (PET). Astrocytes play a central role in neurometabolic coupling, and the basic mechanism involves glutamate-stimulated aerobic glycolysis; the sodium-coupled reuptake of glutamate by astrocytes and the ensuing activation of the Na-K-ATPase triggers glucose uptake and processing via glycolysis, resulting in the release of lactate from astrocytes. Lactate can then contribute to the activity-dependent fuelling of the neuronal energy demands associated with synaptic transmission. An operational model, the 'astrocyte-neuron lactate shuttle', is supported experimentally by a large body of evidence, which provides a molecular and cellular basis for interpreting data obtained from functional brain imaging studies. In addition, this neuron-glia metabolic coupling undergoes plastic adaptations in parallel with adaptive mechanisms that characterize synaptic plasticity. Thus, distinct subregions of the hippocampus are metabolically active at different time points during spatial learning tasks, suggesting that a type of metabolic plasticity, involving by definition neuron-glia coupling, occurs during learning. In addition, marked variations in the expression of genes involved in glial glycogen metabolism are observed during the sleep-wake cycle, with in particular a marked induction of expression of the gene encoding for protein targeting to glycogen (PTG) following sleep deprivation. These data suggest that glial metabolic plasticity is likely to be concomitant with synaptic plasticity.

  17. Sub-nanosecond plastic scintillators

    International Nuclear Information System (INIS)

    Lyons, P.B.; Caldwell, S.E.; Hocker, L.P.; Crandall, D.G.; Zagarino, P.A.; Cheng, J.; Tirsell, G.; Hurlbut, C.R.

    1977-01-01

    Quenched plastic scintillators have been developed that yield much faster short decay components and greatly reduced long decay components compared to conventional plastic scintillators. The plastics are produced through the addition of selected quench agents to NE111 plastic scintillator that result in reduced total light output. Eight different agents have been studied. Benzophenone and piperidine are two of the most effective quench agents. Data are presented both for short and long decay components. The plastics are expected to make significant contributions in areas of plasma diagnostics

  18. Sub-nanosecond plastic scintillators

    International Nuclear Information System (INIS)

    Lyons, P.B.; Caldwell, S.E.; Hocker, L.P.; Crandall, D.G.; Zagarino, P.A.; Cheng, J.; Tirsell, G.; Hurlbut, C.R.

    1976-01-01

    Quenched plastic scintillators have been developed that yield much faster short decay components and greatly reduced long decay components compared to conventional plastic scintillators. The plastics are produced through the addition of selected quench agents to NE111 plastic scintillator that result in reduced total light output. Eight different agents have been studied. Benzophenone and piperidine are two of the most effective quench agents. Data are presented both for short and long decay components. The plastics are expected to make significant contributions in areas of plasma diagnostics

  19. Homeostatic role of heterosynaptic plasticity: Models and experiments

    Directory of Open Access Journals (Sweden)

    Marina eChistiakova

    2015-07-01

    Full Text Available Homosynaptic Hebbian-type plasticity provides a cellular mechanism of learning and refinement of connectivity during development in a variety of biological systems. In this review we argue that a complimentary form of plasticity - heterosynaptic plasticity - represents a necessary cellular component for homeostatic regulation of synaptic weights and neuronal activity. The required properties of a homeostatic mechanism which acutely constrains the runaway dynamics imposed by Hebbian associative plasticity have been well-articulated by theoretical and modeling studies. Such mechanism(s should robustly support the stability of operation of neuronal networks and synaptic competition, include changes at non-active synapses, and operate on a similar time scale to Hebbian-type plasticity. The experimentally observed properties of heterosynaptic plasticity have introduced it as a strong candidate to fulfill this homeostatic role. Subsequent modeling studies which incorporate heterosynaptic plasticity into model neurons with Hebbian synapses (utilizing an STDP learning rule have confirmed its ability to robustly provide stability and competition. In contrast, properties of homeostatic synaptic scaling, which is triggered by extreme and long lasting (hours and days changes of neuronal activity, do not fit two crucial requirements for a hypothetical homeostatic mechanism needed to provide stability of operation in the face of on-going synaptic changes driven by Hebbian-type learning rules. Both the trigger and the time scale of homeostatic synaptic scaling are fundamentally different from those of the Hebbian-type plasticity. We conclude that heterosynaptic plasticity, which is triggered by the same episodes of strong postsynaptic activity and operates on the same time scale as Hebbian-type associative plasticity, is ideally suited to serve homeostatic role during on-going synaptic plasticity.

  20. Plasticity size effects in voided crystals

    DEFF Research Database (Denmark)

    Hussein, M. I.; Borg, Ulrik; Niordson, Christian Frithiof

    singularities in an elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and annihilation are incorporated through a set of constitutive rules. Over the range of length scales investigated, both the discrete dislocation and strain......The shear and equi-biaxial straining responses of periodic voided single crystals are analysed using discrete dislocation plasticity and a continuum strain gradient crystal plasticity theory. In the discrete dislocation formulation the dislocations are all of edge character and are modelled as line...... predictions of the two formulations for all crystal types and void volume fractions considered when the material length scale in the non-local plasticity model chosen to be $0.325\\mu m$ (around ten times the slip plane spacing in the discrete dislocation models)....

  1. Plasticity size effects in voided crystals

    DEFF Research Database (Denmark)

    Hussein, M.I.; Borg, Ulrik; Niordson, Christian Frithiof

    2008-01-01

    as line singularities in an elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and annihilation are incorporated through a set of constitutive rules. Over the range of length scales investigated, both the discrete dislocation......The shear and equi-biaxial straining responses of periodic voided single crystals are analysed using discrete dislocation plasticity and a continuum strain gradient crystal plasticity theory. In the discrete dislocation formulation, the dislocations are all of edge character and are modelled...... between predictions of the two formulations for all crystal types and void volume fractions considered when the material length scale in the non-local plasticity model is chosen to be 0.325 mu m (about 10 times the slip plane spacing in the discrete dislocation models)....

  2. Plastic footwear for leprosy.

    Science.gov (United States)

    Antia, N H

    1990-03-01

    The anaesthetic foot in leprosy poses the most major problem in the rehabilitation of its patients. Various attempts have been made to produce protective footwear such as the microcellular rubber-car-tyre sandals. Unfortunately these attempts have had little success on a large scale because of the inability to produce them in large numbers and the stigma attached to such unusual footwear. While such footwear may be superior to the 'tennis' shoe in protecting the foot from injury by the penetration of sharp objects, it fails to distribute the weight-bearing forces which is the major cause of plantar damage and ulceration in the anaesthetic foot. This can be achieved by providing rigidity to the sole, as demonstrated by the healing of ulcers in plaster of paris casts or the rigid wooden clog. A new type of moulded plastic footwear has been evolved in conjunction with the plastic footwear industry which provides footwear that can be mass produced at a low price and which overcomes the stigma of leprosy. Controlled rigidity is provided by the incorporation of a spring steel shank between the sponge insole and the hard wearing plastic sole. Trials have demonstrated both the acceptability of the footwear and its protective effects as well as its hard wearing properties.

  3. Plastic waste disposal apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Kito, S

    1972-05-01

    A test plant plastic incinerator was constructed by the Takuma Boiler Manufacturing Co. for Sekisui Chemical Industries, and the use of a continuous feed spreader was found to be most effective for prevention of black smoke, and the use of a venturi scrubber proved to be effective for elimination of hydrogen chloride gas. The incinerator was designed for combustion of polyvinyl chloride exclusively, but it is also applicable for combustion of other plastics. When burning polyethylene, polypropylene, or polystyrene, (those plastics which do not produce toxic gases), the incinerator requires no scrubber for the combustion gas. The system may or may not have a pretreatment apparatus. For an incinerator with a pretreatment system, the flow chart comprises a pit, a supply crane, a vibration feeder, a metal eliminator, a rotation shredder, a continuous screw feeder with a quantitative supply hopper, a pretreatment chamber (300 C dry distillation), a quantitative supply hopper, and the incinerator. The incinerator is a flat non-grid type combustion chamber with an oil burner and many air nozzles. From the incinerator, ashes are sent by an ash conveyor to an ash bunker. The combustion gas goes to the boiler, and the water supplied the boiler water pump creates steam. The heat from the gas is sent back to the pretreatment system through a heat exchanger. The gas then goes to a venturi scrubber and goes out from a stack.

  4. Learning to Generate Sequences with Combination of Hebbian and Non-hebbian Plasticity in Recurrent Spiking Neural Networks.

    Science.gov (United States)

    Panda, Priyadarshini; Roy, Kaushik

    2017-01-01

    Synaptic Plasticity, the foundation for learning and memory formation in the human brain, manifests in various forms. Here, we combine the standard spike timing correlation based Hebbian plasticity with a non-Hebbian synaptic decay mechanism for training a recurrent spiking neural model to generate sequences. We show that inclusion of the adaptive decay of synaptic weights with standard STDP helps learn stable contextual dependencies between temporal sequences, while reducing the strong attractor states that emerge in recurrent models due to feedback loops. Furthermore, we show that the combined learning scheme suppresses the chaotic activity in the recurrent model substantially, thereby enhancing its' ability to generate sequences consistently even in the presence of perturbations.

  5. New perspectives in plastic biodegradation.

    Science.gov (United States)

    Sivan, Alex

    2011-06-01

    During the past 50 years new plastic materials, in various applications, have gradually replaced the traditional metal, wood, leather materials. Ironically, the most preferred property of plastics--durability--exerts also the major environmental threat. Recycling has practically failed to provide a safe solution for disposal of plastic waste (only 5% out of 1 trillion plastic bags, annually produced in the US alone, are being recycled). Since the most utilized plastic is polyethylene (PE; ca. 140 million tons/year), any reduction in the accumulation of PE waste alone would have a major impact on the overall reduction of the plastic waste in the environment. Since PE is considered to be practically inert, efforts were made to isolate unique microorganisms capable of utilizing synthetic polymers. Recent data showed that biodegradation of plastic waste with selected microbial strains became a viable solution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. The Role of Neuromodulators in Cortical Plasticity. A Computational Perspective

    Science.gov (United States)

    Pedrosa, Victor; Clopath, Claudia

    2017-01-01

    Neuromodulators play a ubiquitous role across the brain in regulating plasticity. With recent advances in experimental techniques, it is possible to study the effects of diverse neuromodulatory states in specific brain regions. Neuromodulators are thought to impact plasticity predominantly through two mechanisms: the gating of plasticity and the upregulation of neuronal activity. However, the consequences of these mechanisms are poorly understood and there is a need for both experimental and theoretical exploration. Here we illustrate how neuromodulatory state affects cortical plasticity through these two mechanisms. First, we explore the ability of neuromodulators to gate plasticity by reshaping the learning window for spike-timing-dependent plasticity. Using a simple computational model, we implement four different learning rules and demonstrate their effects on receptive field plasticity. We then compare the neuromodulatory effects of upregulating learning rate versus the effects of upregulating neuronal activity. We find that these seemingly similar mechanisms do not yield the same outcome: upregulating neuronal activity can lead to either a broadening or a sharpening of receptive field tuning, whereas upregulating learning rate only intensifies the sharpening of receptive field tuning. This simple model demonstrates the need for further exploration of the rich landscape of neuromodulator-mediated plasticity. Future experiments, coupled with biologically detailed computational models, will elucidate the diversity of mechanisms by which neuromodulatory state regulates cortical plasticity. PMID:28119596

  7. Bayesian Integration and Classification of Composition C-4 Plastic Explosives Based on Time-of-Flight-Secondary Ion Mass Spectrometry and Laser Ablation-Inductively Coupled Plasma Mass Spectrometry.

    Science.gov (United States)

    Mahoney, Christine M; Kelly, Ryan T; Alexander, Liz; Newburn, Matt; Bader, Sydney; Ewing, Robert G; Fahey, Albert J; Atkinson, David A; Beagley, Nathaniel

    2016-04-05

    Time-of-flight-secondary ion mass spectrometry (TOF-SIMS) and laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) were used for characterization and identification of unique signatures from a series of 18 Composition C-4 plastic explosives. The samples were obtained from various commercial and military sources around the country. Positive and negative ion TOF-SIMS data were acquired directly from the C-4 residue on Si surfaces, where the positive ion mass spectra obtained were consistent with the major composition of organic additives, and the negative ion mass spectra were more consistent with explosive content in the C-4 samples. Each series of mass spectra was subjected to partial least squares-discriminant analysis (PLS-DA), a multivariate statistical analysis approach which serves to first find the areas of maximum variance within different classes of C-4 and subsequently to classify unknown samples based on correlations between the unknown data set and the original data set (often referred to as a training data set). This method was able to successfully classify test samples of C-4, though with a limited degree of certainty. The classification accuracy of the method was further improved by integrating the positive and negative ion data using a Bayesian approach. The TOF-SIMS data was combined with a second analytical method, LA-ICPMS, which was used to analyze elemental signatures in the C-4. The integrated data were able to classify test samples with a high degree of certainty. Results indicate that this Bayesian integrated approach constitutes a robust classification method that should be employable even in dirty samples collected in the field.

  8. Desorption modeling of hydrophobic organic chemicals from plastic sheets using experimentally determined diffusion coefficients in plastics.

    Science.gov (United States)

    Lee, Hwang; Byun, Da-Eun; Kim, Ju Min; Kwon, Jung-Hwan

    2018-01-01

    To evaluate rate of migration from plastic debris, desorption of model hydrophobic organic chemicals (HOCs) from polyethylene (PE)/polypropylene (PP) films to water was measured using PE/PP films homogeneously loaded with the HOCs. The HOCs fractions remaining in the PE/PP films were compared with those predicted using a model characterized by the mass transfer Biot number. The experimental data agreed with the model simulation, indicating that HOCs desorption from plastic particles can generally be described by the model. For hexachlorocyclohexanes with lower plastic-water partition coefficients, desorption was dominated by diffusion in the plastic film, whereas desorption of chlorinated benzenes with higher partition coefficients was determined by diffusion in the aqueous boundary layer. Evaluation of the fraction of HOCs remaining in plastic films with respect to film thickness and desorption time showed that the partition coefficient between plastic and water is the most important parameter influencing the desorption half-life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Clozapine-induced dysphagia with secondary substantial weight loss.

    Science.gov (United States)

    Osman, Mugtaba; Devadas, Vekneswaran

    2016-08-19

    Dysphagia is listed as a 'rare' side effect following clozapine treatment. In this case report, we describe how significant clozapine-induced dysphagia has led to significant reduction of nutritional intake with subsequent substantial weight loss. An 18-year-old single man with an established diagnosis of treatment-resistant paranoid schizophrenia recovered well on a therapeutic dose of clozapine. However, he was noted to lose weight significantly (up to 20% of his original weight) as the dose was uptitrated. This was brought about by development of dysphagia, likely to be due to clozapine. Addition of nutritional supplementary liquids and initiation of a modified behavioural dietary/swallowing programme, while repeatedly mastering the Mendelsohn manoeuvre technique, alleviated the swallowing difficulties and restored his weight. 2016 BMJ Publishing Group Ltd.

  10. Monte Carlo reactor calculation with substantially reduced number of cycles

    International Nuclear Information System (INIS)

    Lee, M. J.; Joo, H. G.; Lee, D.; Smith, K.

    2012-01-01

    A new Monte Carlo (MC) eigenvalue calculation scheme that substantially reduces the number of cycles is introduced with the aid of coarse mesh finite difference (CMFD) formulation. First, it is confirmed in terms of pin power errors that using extremely many particles resulting in short active cycles is beneficial even in the conventional MC scheme although wasted operations in inactive cycles cannot be reduced with more particles. A CMFD-assisted MC scheme is introduced as an effort to reduce the number of inactive cycles and the fast convergence behavior and reduced inter-cycle effect of the CMFD assisted MC calculation is investigated in detail. As a practical means of providing a good initial fission source distribution, an assembly based few-group condensation and homogenization scheme is introduced and it is shown that efficient MC eigenvalue calculations with fewer than 20 total cycles (including inactive cycles) are possible for large power reactor problems. (authors)

  11. [From the French Society of Plastic and Reconstructive Surgery to the French Society of Plastic Reconstructive and Aesthetic Surgery].

    Science.gov (United States)

    Glicenstein, J

    2004-04-01

    (The) 3rd December 1952, 11 surgeons and other specialists found the French Society of Plastic and Reconstructive Surgery (SFCPR) which was officially published on (the) 28 September 1953. The first congress was during October 1953 and the first president as Maurice Aubry. The first secretary was Daniel Morel Fatio. The symposiums were after about three of four times each year and the thematic subjects were initially according the reconstructive surgery. The review "Annales de chirurgie plastique" was free in 1956. The members of the Society were about 30 initially, but their plastic surgery in the big hospitals at Paris and other big towns in France. The "specialty" of plastic surgery was created in 1971. On "syndicate", one French board of plastic reconstructive and aesthetic surgery, the increasing of departments of plastic surgery were the front of increasing of the plastic surgery in French and of the number of the French Society of Plastic Reconstructive surgery (580 in 2003). The French Society organized the International Congress of Plastic Surgery in 1975. The society SFCPR became the French Society of plastic reconstruction and Aesthetic Surgery (SFCPRE) in 1983 and the "logo" (front view) was in the 1994 SOF.CPRE.

  12. Plastics in the Marine Environment.

    Science.gov (United States)

    Law, Kara Lavender

    2017-01-03

    Plastics contamination in the marine environment was first reported nearly 50 years ago, less than two decades after the rise of commercial plastics production, when less than 50 million metric tons were produced per year. In 2014, global plastics production surpassed 300 million metric tons per year. Plastic debris has been detected worldwide in all major marine habitats, in sizes from microns to meters. In response, concerns about risks to marine wildlife upon exposure to the varied forms of plastic debris have increased, stimulating new research into the extent and consequences of plastics contamination in the marine environment. Here, I present a framework to evaluate the current understanding of the sources, distribution, fate, and impacts of marine plastics. Despite remaining knowledge gaps in mass budgeting and challenges in investigating ecological impacts, the increasing evidence of the ubiquity of plastics contamination in the marine environment, the continued rapid growth in plastics production, and the evidence-albeit limited-of demonstrated impacts to marine wildlife support immediate implementation of source-reducing measures to decrease the potential risks of plastics in the marine ecosystem.

  13. Plastics in the Marine Environment

    Science.gov (United States)

    Law, Kara Lavender

    2017-01-01

    Plastics contamination in the marine environment was first reported nearly 50 years ago, less than two decades after the rise of commercial plastics production, when less than 50 million metric tons were produced per year. In 2014, global plastics production surpassed 300 million metric tons per year. Plastic debris has been detected worldwide in all major marine habitats, in sizes from microns to meters. In response, concerns about risks to marine wildlife upon exposure to the varied forms of plastic debris have increased, stimulating new research into the extent and consequences of plastics contamination in the marine environment. Here, I present a framework to evaluate the current understanding of the sources, distribution, fate, and impacts of marine plastics. Despite remaining knowledge gaps in mass budgeting and challenges in investigating ecological impacts, the increasing evidence of the ubiquity of plastics contamination in the marine environment, the continued rapid growth in plastics production, and the evidence—albeit limited—of demonstrated impacts to marine wildlife support immediate implementation of source-reducing measures to decrease the potential risks of plastics in the marine ecosystem.

  14. KVP meter errors induced by plastic wrap

    International Nuclear Information System (INIS)

    Jefferies, D.; Morris, J.W.; White, V.P.

    1991-01-01

    The purpose of this study was to determine whether erroneous kVp meter readings, induced by plastic wrap, affected the actual kVp (output) of a dental X-ray machine. To evaluate the effect of plastic wrap on dental X-ray machine kVp meters, a radiation output device was used to measure output in mR/ma.s. An intraoral dental X-ray unit (S.S. White Model number-sign 90W) was used to make the exposures. First, the kVp meter was not covered with plastic wrap and output readings were recorded at various kVp settings with the milliamperage and time held constant. Secondly, the same kVp settings were selected before the plastic wrap was placed. Milliamperage and time were again held to the same constant. The X-ray console was then covered with plastic wrap prior to measuring the output for each kVp. The wrap possessed a static charge. This charge induced erroneous kVp meter readings. Out-put readings at the various induced kVp settings were then recorded. A kVp of 50 with no wrap present resulted in the same output as a kVp of 50 induced to read 40 or 60 kVp by the presence of wrap. Similar results were obtained at other kVp settings. This indicates that the plastic wrap influences only the kVp meter needle and not the actual kilovoltage of the X-ray machine. Dental X-ray machine operators should select kVp meter readings prior to placing plastic wrap and should not adjust initial settings if the meter is deflected later by the presence of wrap. The use of such a procedure will result in proper exposures, fewer retakes, and less patient radiation. If plastic wrap leads to consistent exposure errors, clinicians may wish to use a 0.5% sodium hypochlorite disinfectant as an alternative to the barrier technique

  15. Tracking plastics in the Mediterranean: 2D Lagrangian model.

    Science.gov (United States)

    Liubartseva, S; Coppini, G; Lecci, R; Clementi, E

    2018-04-01

    Drift of floating debris is studied with a 2D Lagrangian model with stochastic beaching and sedimentation of plastics. An ensemble of >10 10 virtual particles is tracked from anthropogenic sources (coastal human populations, rivers, shipping lanes) to environmental destinations (sea surface, coastlines, seabed). Daily analyses of ocean currents and waves provided by CMEMS at a horizontal resolution of 1/16° are used to force the plastics. High spatio-temporal variability in sea-surface plastic concentrations without any stable long-term accumulations is found. Substantial accumulation of plastics is detected on coastlines and the sea bottom. The most contaminated areas are in the Cilician subbasin, Catalan Sea, and near the Po River Delta. Also, highly polluted local patches in the vicinity of sources with limited circulation are identified. An inverse problem solution, used to quantify the origins of plastics, shows that plastic pollution of every Mediterranean country is caused primarily by its own terrestrial sources. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Direct liquefaction of plastics and coprocessing of coal with plastics

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P.; Feng, Z.; Mahajan, V. [Univ. of Kentucky, Lexington, KY (United States)

    1995-12-31

    The objectives of this work were to optimize reaction conditions for the direct liquefaction of waste plastics and the coprocessing of coal with waste plastics. In previous work, the direct liquefaction of medium and high density polyethylene (PE), polypropylene (PPE), poly(ethylene terephthalate) (PET), and a mixed plastic waste, and the coliquefaction of these plastics with coals of three different ranks was studied. The results established that a solid acid catalyst (HZSM-5 zeolite) was highly active for the liquefaction of the plastics alone, typically giving oil yields of 80-95% and total conversions of 90-100% at temperatures of 430-450 {degrees}C. In the coliquefaction experiments, 50:50 mixtures of plastic and coal were used with a tetralin solvent (tetralin:solid = 3:2). Using approximately 1% of the HZSM-5 catalyst and a nanoscale iron catalyst, oil yields of 50-70% and total conversion of 80-90% were typical. In the current year, further investigations were conducted of the liquefaction of PE, PPE, and a commingled waste plastic obtained from the American Plastics Council (APC), and the coprocessing of PE, PPE and the APC plastic with Black Thunder subbituminous coal. Several different catalysts were used in these studies.

  17. Plastics pipe couplings

    International Nuclear Information System (INIS)

    Glover, J.B.

    1980-07-01

    A method is described of making a pipe coupling of the type comprising a plastics socket and a resilient annular sealing member secured in the mouth thereof, in which the material of at least one component of the coupling is subjected to irradiation with high energy radiation whereby the material is caused to undergo cross-linking. As examples, the coupling may comprise a polyethylene or plasticised PVC socket the material of which is subjected to irradiation, and the sealing member may be moulded from a thermoplastic elastomer which is subjected to irradiation. (U.K.)

  18. Amphibious fishes: evolution and phenotypic plasticity.

    Science.gov (United States)

    Wright, Patricia A; Turko, Andy J

    2016-08-01

    Amphibious fishes spend part of their life in terrestrial habitats. The ability to tolerate life on land has evolved independently many times, with more than 200 extant species of amphibious fishes spanning 17 orders now reported. Many adaptations for life out of water have been described in the literature, and adaptive phenotypic plasticity may play an equally important role in promoting favourable matches between the terrestrial habitat and behavioural, physiological, biochemical and morphological characteristics. Amphibious fishes living at the interface of two very different environments must respond to issues relating to buoyancy/gravity, hydration/desiccation, low/high O2 availability, low/high CO2 accumulation and high/low NH3 solubility each time they traverse the air-water interface. Here, we review the literature for examples of plastic traits associated with the response to each of these challenges. Because there is evidence that phenotypic plasticity can facilitate the evolution of fixed traits in general, we summarize the types of investigations needed to more fully determine whether plasticity in extant amphibious fishes can provide indications of the strategies used during the evolution of terrestriality in tetrapods. © 2016. Published by The Company of Biologists Ltd.

  19. Telemedicine and Plastic Surgery: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Denis Souto Valente

    2015-01-01

    Full Text Available Background. Telemedicine can be defined as the use of electronic media for transmission of information and medical data from one site to another. The objective of this study is to demonstrate an experience of telemedicine in plastic surgery. Methods. 32 plastic surgeons received a link with password for real-time streaming of a surgery. At the end of the procedure, the surgeons attending the procedure by the Internet answered five questions. The results were analyzed with descriptive statistics. Results. 27 plastic surgeons attended the online procedure in real-time. 96.3% considered the access to the website as good or excellent and 3.7% considered it bad. 14.8% reported that the transmission was bad and 85.2% considered the quality of transmission as good or excellent. 96.3% classified the live broadcasting as a good or excellent learning experience and 3.7% considered it a bad experience. 92.6% reported feeling able to perform this surgery after watching the demo and 7.4% did not feel able. 100% of participants said they would like to participate in other surgical demonstrations over the Internet. Conclusion. We conclude that the use of telemedicine can provide more access to education and medical research, for plastic surgeons looking for medical education from distant regions.

  20. Plastic pollutants in water environment

    Directory of Open Access Journals (Sweden)

    Mrowiec Bożena

    2017-12-01

    Full Text Available Nowadays, wide applications of plastics result in plastic waste being present in the water environment in a wide variety of sizes. Plastic wastes are in water mainly as microplastics (the size range of 1 nm to < 5 mm. Microplastics have been recognized as an emerging threat, as well as ecotoxicological and ecological risk for water ecosystems. In this review are presented some of the physicochemical properties of plastic materials that determine their toxic effect on the aquatic environment. Wastewater treatment plants (WWTPs are mentioned as one of main sources of microplastics introduced into fresh water, and rivers are the pathways for the transportation of the pollutants to seas and oceans. But, effluents from tertiary wastewater treatment facilities can contain only minimally microplastic loads. The issue of discharge reduction of plastic pollutants into water environment needs activities in the scope of efficient wastewater treatment, waste disposal, recycling of plastic materials, education and public involvement.

  1. Long-term sorption of metals is similar among plastic types: implications for plastic debris in aquatic environments.

    Directory of Open Access Journals (Sweden)

    Chelsea M Rochman

    Full Text Available Concerns regarding plastic debris and its ability to accumulate large concentrations of priority pollutants in the aquatic environment led us to quantify relationships between different types of mass-produced plastic and metals in seawater. At three locations in San Diego Bay, we measured the accumulation of nine targeted metals (aluminum, chromium, manganese, iron, cobalt, nickel, zinc, cadmium and lead sampling at 1, 3, 6, 9 and 12 months, to five plastic types: polyethylene terephthalate (PET, high-density polyethylene (HDPE, polyvinyl chloride (PVC, low-density polyethylene (LDPE, and polypropylene (PP. Accumulation patterns were not consistent over space and time, and in general all types of plastic tended to accumulate similar concentrations of metals. When we did observe significant differences among concentrations of metals at a single sampling period or location in San Diego Bay, we found that HDPE typically accumulated lesser concentrations of metals than the other four polymers. Furthermore, over the 12-month study period, concentrations of all metals increased over time, and chromium, manganese, cobalt, nickel, zinc and lead did not reach saturation on at least one plastic type during the entire 12-month exposure. This suggests that plastic debris may accumulate greater concentrations of metals the longer it remains at sea. Overall, our work shows that a complex mixture of metals, including those listed as priority pollutants by the US EPA (Cd, Ni, Zn and Pb, can be found on plastic debris composed of various plastic types.

  2. Long-term sorption of metals is similar among plastic types: implications for plastic debris in aquatic environments.

    Science.gov (United States)

    Rochman, Chelsea M; Hentschel, Brian T; Teh, Swee J

    2014-01-01

    Concerns regarding plastic debris and its ability to accumulate large concentrations of priority pollutants in the aquatic environment led us to quantify relationships between different types of mass-produced plastic and metals in seawater. At three locations in San Diego Bay, we measured the accumulation of nine targeted metals (aluminum, chromium, manganese, iron, cobalt, nickel, zinc, cadmium and lead) sampling at 1, 3, 6, 9 and 12 months, to five plastic types: polyethylene terephthalate (PET), high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), and polypropylene (PP). Accumulation patterns were not consistent over space and time, and in general all types of plastic tended to accumulate similar concentrations of metals. When we did observe significant differences among concentrations of metals at a single sampling period or location in San Diego Bay, we found that HDPE typically accumulated lesser concentrations of metals than the other four polymers. Furthermore, over the 12-month study period, concentrations of all metals increased over time, and chromium, manganese, cobalt, nickel, zinc and lead did not reach saturation on at least one plastic type during the entire 12-month exposure. This suggests that plastic debris may accumulate greater concentrations of metals the longer it remains at sea. Overall, our work shows that a complex mixture of metals, including those listed as priority pollutants by the US EPA (Cd, Ni, Zn and Pb), can be found on plastic debris composed of various plastic types.

  3. Complementary sex determination substantially increases extinction proneness of haplodiploid populations.

    Science.gov (United States)

    Zayed, Amro; Packer, Laurence

    2005-07-26

    The role of genetic factors in extinction is firmly established for diploid organisms, but haplodiploids have been considered immune to genetic load impacts because deleterious alleles are readily purged in haploid males. However, we show that single-locus complementary sex determination ancestral to the haplodiploid Hymenoptera (ants, bees, and wasps) imposes a substantial genetic load through homozygosity at the sex locus that results in the production of inviable or sterile diploid males. Using stochastic modeling, we have discovered that diploid male production (DMP) can initiate a rapid and previously uncharacterized extinction vortex. The extinction rate in haplodiploid populations with DMP is an order of magnitude greater than in its absence under realistic but conservative demographic parameter values. Furthermore, DMP alone can elevate the base extinction risk in haplodiploids by over an order of magnitude higher than that caused by inbreeding depression in threatened diploids. Thus, contrary to previous expectations, haplodiploids are more, rather than less, prone to extinction for genetic reasons. Our findings necessitate a fundamental shift in approaches to the conservation and population biology of these ecologically and economically crucial insects.

  4. Substantial soil organic carbon retention along floodplains of mountain streams

    Science.gov (United States)

    Sutfin, Nicholas A.; Wohl, Ellen

    2017-07-01

    Small, snowmelt-dominated mountain streams have the potential to store substantial organic carbon in floodplain sediment because of high inputs of particulate organic matter, relatively lower temperatures compared with lowland regions, and potential for increased moisture conditions. This work (i) quantifies mean soil organic carbon (OC) content along 24 study reaches in the Colorado Rocky Mountains using 660 soil samples, (ii) identifies potential controls of OC content based on soil properties and spatial position with respect to the channel, and (iii) and examines soil properties and OC across various floodplain geomorphic features in the study area. Stepwise multiple linear regression (adjusted r2 = 0.48, p sample depth, percent sand, distance from the channel, and relative elevation from the channel are significant predictors of OC content in the study area. Principle component analysis indicates limited separation between geomorphic floodplain features based on predictors of OC content. A lack of significant differences among floodplain features suggests that the systematic random sampling employed in this study can capture the variability of OC across floodplains in the study area. Mean floodplain OC (6.3 ± 0.3%) is more variable but on average greater than values in uplands (1.5 ± 0.08% to 2.2 ± 0.14%) of the Colorado Front Range and higher than published values from floodplains in other regions, particularly those of larger rivers.

  5. Substantially Evolutionary Theorizing in Designing Software-Intensive Systems

    Directory of Open Access Journals (Sweden)

    Petr Sosnin

    2018-04-01

    Full Text Available Useful inheritances from scientific experience open perspective ways for increasing the degree of success in designing of systems with software. One such way is a search and build applied theory that takes into account the nature of design and the specificity of software engineering. This paper presents a substantially evolutionary approach to creating the project theories, the application of which leads to positive effects that are traditionally expected from theorizing. Any implementation of the approach is based on a reflection by designers of an operational space of designing onto a semantic memory of a question-answer type. One of the results of such reflection is a system of question-answer nets, the nodes of which register facts of interactions of designers with accessible experience. A set of such facts is used by designers for creating and using the theory that belongs to the new subclass of Grounded Theories. This sub-class is oriented on organizationally behavioral features of a project’s work based on design thinking, automated mental imagination, and thought experimenting that facilitate increasing the degree of controlled intellectualization in the design process and, correspondingly, increasing the degree of success in the development of software-intensive systems.

  6. Plastic food packaging and health

    Directory of Open Access Journals (Sweden)

    Raika Durusoy

    2011-02-01

    Full Text Available Plastics have a wide usage in our daily lives. One of their uses is for food packaging and food containers. The aim of this review is to introduce different types of chemicals that can leach from food packaging plastics into foods and cause human exposure and to mention their effects on health. The types of plastics were reviewed under the 13 headings in Turkish Codex Alimentarius and plastics recycling symbols were provided to enable the recognition of the type of plastic when applicable. Chemicals used during the production and that can cause health risks are investigated under the heading of the relevant type of plastic. The most important chemicals from plastic food packaging that can cause toxicity are styrene, 1,3-butadiene, melamine, formaldehyde, acrylamide, di-2-ethylhexyl phthalate, di-2-ethylhexyl adipate, vinyl chloride and bisphenol A. These chemicals have endocrine disrupting, carcinogenic and/or development disrupting effects. These chemicals may leach into foods depending on the chemical properties of the plastic or food, temperature during packaging, processing and storage, exposure to UV and duration of storage. Contact with fatty/oily or acidic foods, heating of the food inside the container, or drinking hot drinks from plastic cups, use of old and scratched plastics and some detergents increase the risk of leaching. The use of plastic containers and packaging for food and beveradges should be avoided whenever possible and when necessary, less harmful types of plastic should be preferred. [TAF Prev Med Bull 2011; 10(1.000: 87-96

  7. Motor cortical plasticity in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Kaviraja eUdupa

    2013-09-01

    Full Text Available In Parkinson’s disease (PD, there are alterations of the basal ganglia (BG thalamo-cortical networks, primarily due to degeneration of nigrostrial dopaminergic neurons. These changes in subcortical networks lead to plastic changes in primary motor cortex (M1, which mediates cortical motor output and is a potential target for treatment of PD. Studies investigating the motor cortical plasticity using non-invasive transcranial magnetic stimulation (TMS have found altered plasticity in PD, but there are inconsistencies among these studies. This is likely because plasticity depends on many factors such as the extent of dopaminergic loss and disease severity, response to dopaminergic replacement therapies, development of L-dopa-induced dyskinesias (LID, the plasticity protocol used, medication and stimulation status in patients treated with deep brain stimulation (DBS. The influences of LID and DBS on BG and M1 plasticity have been explored in animal models and in PD patients. In addition, many other factors such age, genetic factors (e.g. brain derived neurotropic factor and other neurotransmitters or receptors polymorphism, emotional state, time of the day, physical fitness have been documented to play role in the extent of plasticity induced by TMS in human studies. In this review, we summarize the studies that investigated M1 plasticity in PD and demonstrate how these afore-mentioned factors affect motor cortical plasticity in PD. We conclude that it is important to consider the clinical, demographic and technical factors that influence various plasticity protocols while developing these protocols as diagnostic or prognostic tools in PD. We also discuss how the modulation of cortical excitability and the plasticity with these non-invasive brain stimulation techniques facilitate the understanding of the pathophysiology of PD and help design potential therapeutic possibilities in this disorder.

  8. New polyvinylchloride plasticizers

    Directory of Open Access Journals (Sweden)

    MAZITOVA Aliya Karamovna

    2017-11-01

    Full Text Available One of the main large-capacity polymers of modern chemical industry is polyvinylchloride (PVC. Polyvinylchloride is characterized by many useful engineering properties – chemical firmness in different environments, good electric properties, etc. It explains immensely various use of materials on the basis of PVC in different engineering industries. It is cable, building, light industries, mechanical engineering and automotive industry where PVC is widely applied. One of the reasons why PVC production is dramatically growing is that there is no yet other polymer which could be subjected to such various modifying as it is done with PVC. However under normal temperature this polymer is fragile and isn't elastic that limits the field of its application. Rapid growth of production of polyvinylchloride is explained by its ability to modify properties, due to introduction of special additives when processing. Introduction of plasticizers – mostlly esters of organic and inorganic acids – into PVC allows significant changing properties of polymer. Plasticizers facilitate process of receiving polymeric composition, increase flexibility and elasticity of the final polymeric product due to internal modification of polymeric molecule.

  9. 26 CFR 1.274-5 - Substantiation requirements.

    Science.gov (United States)

    2010-04-01

    ... expenditures for business travel if it contains the following: name, location, date, and separate amounts for... travel expenses as well as the time, place, and business purpose of the travel. See paragraphs (b)(2) and... other travel expenses as well as the time, place, and business purpose of the travel. (k)-(l) [Reserved...

  10. Slepian Simulations of Plastic Displacements of Randomly Excited Hysteretic Structures

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov

    2003-01-01

    The object of the study is a fast simulation method for generation and analysis of the plastic response of a randomly excited MDOF oscillatro with several potential elements with elasto-plastic constitutive behavior. The oscillator is statically determinate with linear damping. The external...... approximately as a stationary Gaussian process. This requires that the standard deviation of the stationary response is not too large as compared to the plastic yield limits. The Slepian model process for the behavior of the linear response is then simply the conditional mean (linear regression) of the process...... noise excited linear oscillator obtained from the elasto-plastic oscillator by totally removing the plastic domain. Thus the key to the applicability of the method is that the oscillator has a linear domain within which the response stays for a sufficiently long time to make the random response behave...

  11. Rigid-plastic seismic design of reinforced concrete structures

    DEFF Research Database (Denmark)

    Costa, Joao Domingues; Bento, R.; Levtchitch, V.

    2007-01-01

    structural strength with respect to a pre-defined performance parameter using a rigid-plastic response spectrum, which is characteristic of the ground motion alone. The maximum strength demand at any point is solely dependent on the intensity of the ground motion, which facilitates the task of distributing......In this paper a new seismic design procedure for Reinforced Concrete (R/C) structures is proposed-the Rigid-Plastic Seismic Design (RPSD) method. This is a design procedure based on Non-Linear Time-History Analysis (NLTHA) for systems expected to perform in the non-linear range during a lifetime...... earthquake event. The theoretical background is the Theory of Plasticity (Rigid-Plastic Structures). Firstly, a collapse mechanism is chosen and the corresponding stress field is made safe outside the regions where plastic behaviour takes place. It is shown that this allows the determination of the required...

  12. Performance of Hot Asphalt Mixtures Containing Plastic Bottles as Additive

    Directory of Open Access Journals (Sweden)

    Jan Hakeem

    2017-01-01

    Full Text Available This study focuses on evaluating the resistance of polymer modified asphalt mixes and the role played by asphalt in the realm of construction is undeniably important. Addition of polymers(PB as additives to asphalt helps to improve the strength and water repellent property of the mix and as well as helps environment in various ways and at the same time, analyzing its lower maintenance activities and service life is most important. The use of inexpensive polymers, in this case, waste polymers has without any doubt proven to be the most convenient way of reducing the cost of construction and at the same time maintaining quality. The main resolve for this research was to establish the effects of the use of plastic bottles on hot asphalt and its mixtures. In order to put this into perspective, varying percentages of asphalt mixtures were calculated and subjected to laboratory tests. The two-factor variance analysis (ANOVA was conducted to determine the significance at various confidence limits. The results indicate that the inclusion of Polyethylene Terephthalate (PET had a particularly substantial effect on the properties of asphalt. Consequently, it can encourage the re-utilization of waste in the manufacturing industry in an ecologically friendly and cost-effective way.

  13. Substantiation for Approaches to Treatment of Latent Autoimmune Diabetes in Adults

    Directory of Open Access Journals (Sweden)

    T.M. Tykhonova

    2014-10-01

    Conclusions. Analysis of carbohydrate metabolism on the manifestation stage and over time development of latent autoimmune diabetes in adults as well as reduction of β-cells insulin-producing function associated with autoimmune insulitis and progressing while the development of this form of disease, substantiate the rational for insulin administration as this form of diabetes has been diagnosed. If patients with latent autoimmune diabetes in adults have metabolic syndrome clusters it is quite reasonable to add metformin to insulin.

  14. Computational plasticity algorithm for particle dynamics simulations

    Science.gov (United States)

    Krabbenhoft, K.; Lyamin, A. V.; Vignes, C.

    2018-01-01

    The problem of particle dynamics simulation is interpreted in the framework of computational plasticity leading to an algorithm which is mathematically indistinguishable from the common implicit scheme widely used in the finite element analysis of elastoplastic boundary value problems. This algorithm provides somewhat of a unification of two particle methods, the discrete element method and the contact dynamics method, which usually are thought of as being quite disparate. In particular, it is shown that the former appears as the special case where the time stepping is explicit while the use of implicit time stepping leads to the kind of schemes usually labelled contact dynamics methods. The framing of particle dynamics simulation within computational plasticity paves the way for new approaches similar (or identical) to those frequently employed in nonlinear finite element analysis. These include mixed implicit-explicit time stepping, dynamic relaxation and domain decomposition schemes.

  15. New theory of arrhythmia. Conceptual substantiation of arrhythmia mechanisms

    Directory of Open Access Journals (Sweden)

    Vladimir I. Ermoshkin

    2015-11-01

    Full Text Available Aims A new attempt is made to substantiate the concept of the mechanism of arrhythmia and sudden cardiac death. Methods The paper is based on a theoretical analysis of special literature, personal experience of participation in conferences and discussions with leading Russian cardiologists. Results We have succeeded in demonstrating the fact that researchers ignore the fact that cardiomyocytes can be excited by mechanical pulses, when considering the arrhythmia mechanisms. We have conducted trials using the Cardiocode device. Under stress in a human, opened may be large and small arteriovenous anastomoses, via which blood under high pressure is ejected into veins. It leads to pressure surges in arteries and veins. The vena cava dilates, its tonus increases. In some cases, the pulse waves travel via anastomoses along the vena cava walls to the atria and the ventricles. An above-threshold concentration of tensions from mechanical pulses may excite cardiomyocytes from different points of the myocardium, disturbing the sinus rhythm. As a result, extrasystoles, tachycardia attacks, blocking of blood circulation in the peripheral segments of the venous arterial networks, edemata, thrombosis and metabolism disorders appear. Arrhythmia, tachycardia attacks and concomitant myocardial ischemia lead to progression of heart fibrosis. Such changes increase the probability of fibrillations and sudden cardiac death. Conclusion Unhealthy lifestyle, the presence of opening and not properly closing anastomoses may provoke a number of diseases. To avoid the cardiac arrhythmia attacks and prevent SCD, it is necessary to suppress travel of the mechanical waves within the following circuitry: aorta – artery – anastomosis – vein – vena cava – atria – ventricles. The travel of the mechanical waves within the same vessel circuitry explains the fact that the fixed couplings under extrasystoles are observed, and the beat-to-beat RR intervals under tachycardia

  16. How common is substantial weight gain after pregnancy?

    Science.gov (United States)

    Sumithran, Priya; Houlihan, Christine; Shub, Alexis; Churilov, Leonid; Pritchard, Natasha; Price, Sarah; Ekinci, Elif; Proietto, Joseph; Permezel, Michael

    2017-11-20

    Although population-based studies indicate that on average, women gain 1-2kg between pregnancies, women with obesity often attribute its development to childbearing. There is little contemporary data available regarding how commonly this occurs, particularly in women of different body mass index (BMI) categories. The aim of this study was to examine inter-pregnancy weight changes among women at a tertiary obstetric hospital in Melbourne, Australia. This was a retrospective review of data from the Birthing Outcomes System electronic record of 19,617 women aged 20 years or older, who delivered at least two consecutive singleton infants at ≥37 weeks' gestation at Mercy Hospital for Women between December 1994 and December 2015. A logistic regression model was used to assess the relationship between gain of ≥4kg/m 2 between pregnancies and maternal BMI category in the first pregnancy, adjusting for covariates of maternal age, inter-pregnancy interval, and socioeconomic status. Gain of ≥4kg/m 2 between the first two pregnancies occurred in 7.5% of normal weight women, 10.5% of overweight women, and 13.4% of women with obesity. One in five women who were normal weight in their first pregnancy increased to overweight or obese BMI categories in their second pregnancy. Substantial weight gain in relation to pregnancy affects a considerable proportion of women. Since inter-pregnancy weight gain is associated with several complications in the next pregnancy and longer term, avoiding excessive weight gain during and between pregnancies may prevent adverse health consequences in mothers and offspring. Copyright © 2017 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  17. Plastic waste associated with disease on coral reefs.

    Science.gov (United States)

    Lamb, Joleah B; Willis, Bette L; Fiorenza, Evan A; Couch, Courtney S; Howard, Robert; Rader, Douglas N; True, James D; Kelly, Lisa A; Ahmad, Awaludinnoer; Jompa, Jamaluddin; Harvell, C Drew

    2018-01-26

    Plastic waste can promote microbial colonization by pathogens implicated in outbreaks of disease in the ocean. We assessed the influence of plastic waste on disease risk in 124,000 reef-building corals from 159 reefs in the Asia-Pacific region. The likelihood of disease increases from 4% to 89% when corals are in contact with plastic. Structurally complex corals are eight times more likely to be affected by plastic, suggesting that microhabitats for reef-associated organisms and valuable fisheries will be disproportionately affected. Plastic levels on coral reefs correspond to estimates of terrestrial mismanaged plastic waste entering the ocean. We estimate that 11.1 billion plastic items are entangled on coral reefs across the Asia-Pacific and project this number to increase 40% by 2025. Plastic waste management is critical for reducing diseases that threaten ecosystem health and human livelihoods. Copyright © 2018, The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. Work of plastic deformation in local zone of crack apex

    International Nuclear Information System (INIS)

    Gol'tsev, V.Yu.; Matvienko, Yu.G.; Rivkin, E.Yu.

    1981-01-01

    For substantiating application of criteria of viscous fracture and deeoer understanding of this. process one should know strain distribution and energy consumption for plastic deformation in crack top zone. For this purpose plane samples of 300x70x1.5 mm dimension with central notch of 23, 36 and 46 mm length have been subjected to tensile testing. The samples have been cut out from sheet steel 1Kh18N9T perpendicularly to the rolling direction. It is shown that the suggested viscous fracture conception ensures general approach to the viscous and elastoplastic fracture based on the concept on specific work of plastic deformation in the localized zone νsub(l). The νsub(l) value characterizes maximum plastic material energy consumption and may serve as criterion of viscous material fracture parallel to the critical opening of the deltasub(c) crack top

  19. Structural defects in natural plastically deformed diamonds: Evidence from EPR spectroscopy

    Science.gov (United States)

    Mineeva, R. M.; Titkov, S. V.; Speransky, A. V.

    2009-06-01

    Structural defects formed as a result of plastic deformation in natural diamond crystals have been studied by EPR spectroscopy. The spectra of brown, pink-brown, black-brown, pink-purple, and gray plastically deformed diamonds of type Ia from deposits in Yakutia and the Urals were recorded. The results of EPR spectroscopy allowed us to identify various deformation centers in the structure of natural diamonds and to show that nitrogen centers were transformed under epigenetic mechanical loading. Abundant A centers, consisting of two isomorphic nitrogen atoms located in neighboring structural sites, were destroyed as a result of this process to form a series of N1, N4, W7, M2, and M3 nitrogen centers. Such centers are characterized by an anisotropic spatial distribution and a positive charge, related to the mechanism of their formation. In addition, N2 centers (probably, deformation-produced dislocations decorated by nitrogen) were formed in all plastically deformed diamonds and W10 and W35 centers (the models have not been finally ascertained) were formed in some of them. It has been established that diamonds with various types of deformation-induced color contain characteristic associations of these deformation centers. The diversity of associations of deformation centers indicates appreciable variations in conditions of disintegration of deep-seated rocks, transfer of diamonds to the Earth’s surface, and formation of kimberlitic deposits. Depending on the conditions of mechanical loading, the diamond crystals were plastically deformed by either dislocation gliding or mechanical twinning. Characteristic features of plastic deformation by dislocation gliding are the substantial prevalence of the N2 centers over other deformation centers and the occurrence of the high-spin W10 and W35 centers. The attributes of less frequent plastic deformation by mechanical twinning are unusual localization of the M2 centers and, in some cases, the N1 centers in microtwinned

  20. Recombination rate plasticity: revealing mechanisms by design

    Science.gov (United States)

    Sefick, Stephen; Rushton, Chase

    2017-01-01

    For over a century, scientists have known that meiotic recombination rates can vary considerably among individuals, and that environmental conditions can modify recombination rates relative to the background. A variety of external and intrinsic factors such as temperature, age, sex and starvation can elicit ‘plastic’ responses in recombination rate. The influence of recombination rate plasticity on genetic diversity of the next generation has interesting and important implications for how populations evolve. Further, many questions remain regarding the mechanisms and molecular processes that contribute to recombination rate plasticity. Here, we review 100 years of experimental work on recombination rate plasticity conducted in Drosophila melanogaster. We categorize this work into four major classes of experimental designs, which we describe via classic studies in D. melanogaster. Based on these studies, we highlight molecular mechanisms that are supported by experimental results and relate these findings to studies in other systems. We synthesize lessons learned from this model system into experimental guidelines for using recent advances in genotyping technologies, to study recombination rate plasticity in non-model organisms. Specifically, we recommend (1) using fine-scale genome-wide markers, (2) collecting time-course data, (3) including crossover distribution measurements, and (4) using mixed effects models to analyse results. To illustrate this approach, we present an application adhering to these guidelines from empirical work we conducted in Drosophila pseudoobscura. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’. PMID:29109222

  1. Design principles of electrical synaptic plasticity.

    Science.gov (United States)

    O'Brien, John

    2017-09-08

    Essentially all animals with nervous systems utilize electrical synapses as a core element of communication. Electrical synapses, formed by gap junctions between neurons, provide rapid, bidirectional communication that accomplishes tasks distinct from and complementary to chemical synapses. These include coordination of neuron activity, suppression of voltage noise, establishment of electrical pathways that define circuits, and modulation of high order network behavior. In keeping with the omnipresent demand to alter neural network function in order to respond to environmental cues and perform tasks, electrical synapses exhibit extensive plasticity. In some networks, this plasticity can have dramatic effects that completely remodel circuits or remove the influence of certain cell types from networks. Electrical synaptic plasticity occurs on three distinct time scales, ranging from milliseconds to days, with different mechanisms accounting for each. This essay highlights principles that dictate the properties of electrical coupling within networks and the plasticity of the electrical synapses, drawing examples extensively from retinal networks. Copyright © 2017 The Author. Published by Elsevier B.V. All rights reserved.

  2. Sustainable reverse logistics for household plastic waste

    NARCIS (Netherlands)

    Bing, X.

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste”

    PhD Candidate: Xiaoyun Bing

    Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower

  3. Plastics for corrosion inhibition

    CERN Document Server

    Goldade, Victor A; Makarevich, Anna V; Kestelman, Vladimir N

    2005-01-01

    The development of polymer composites containing inhibitors of metal corrosion is an important endeavour in modern materials science and technology. Corrosion inhibitors can be located in a polymer matrix in the solid, liquid or gaseous phase. This book details the thermodynamic principles for selecting these components, their compatibility and their effectiveness. The various mechanisms of metal protection – barrier, inhibiting and electromechanical – are considered, as are the conflicting requirements placed on the structure of the combined material. Two main classes of inhibited materials (structural and films/coatings) are described in detail. Examples are given of structural plastics used in friction units subjected to mechano-chemical wear and of polymer films/coatings for protecting metal objects against corrosion.

  4. Nigerian Journal of Plastic Surgery

    African Journals Online (AJOL)

    The Nigerian Journal of Plastic Surgery has its objectives in publishing original articles about developments in all areas related to plastic and reconstructive surgery as well as to trauma surgery. It also serves as a means of providing a forum for correspondence, information and discussion. It also accepts review articles that ...

  5. Architecture of European Plastic Surgery

    NARCIS (Netherlands)

    Nicolai, J. -P. A.; Banic, A.; Molea, G.; Mazzola, R.; Poell, J. G.

    2006-01-01

    The architecture of European Plastic Surgery was published in 1996 [Nicolai JPA, Scuderi N. Plastic surgical Europe in an organogram. Eur J Plast Surg 1996; 19: 253-6.] It is the objective of this paper to update information of that article. Continuing medical education (CME), science, training,

  6. Unified creep-plasticity model for halite

    International Nuclear Information System (INIS)

    Krieg, R.D.

    1980-11-01

    There are two national energy programs which are considering caverns in geological salt (NaCl) as a storage repository. One is the disposal of nuclear wastes and the other is the storage of oil. Both short-time and long-time structural deformations and stresses must be predictable for these applications. At 300K, the nominal initial temperature for both applications, the salt is at 0.28 of the melting temperature and exhibits a significant time dependent behavior. A constitutive model has been developed which describes the behavior observed in an extensive set of triaxial creep tests. Analysis of these tests showed that a single deformation mechanism seems to be operative over the stress and temperature range of interest so that the secondary creep data can be represented by a power of the stress over the entire test range. This simple behavior allowed a new unified creep-plasticity model to be applied with some confidence. The resulting model recognizes no inherent difference between plastic and creep strains yet models the total inelastic strain reasonably well including primary and secondary creep and reverse loadings. A multiaxial formulation is applied with a back stress. A Bauschinger effect is exhibited as a consequence and is present regardless of the time scale over which the loading is applied. The model would be interpreted as kinematic hardening in the sense of classical plasticity. Comparisons are made between test data and model behavior

  7. Applications of plastic optical fiber in communication

    Science.gov (United States)

    Tayahi, Moncef Ben

    In this thesis, we report the results of our theoretical and experimental studies of large core polymer fibers. This relatively low loss and high bandwidth plastic optical fiber (POF) potentially have important applications in LAN. We measured the power penalty due to modal noise. We also developed a model to calculate the signal to noise ratio (SNR) and the bit error rate (BER) floor just by knowing the coupling coefficient in the mode selective loss being considered. The calculated bandwidth using the WKB approximation was found to be 0.44 GHz per 100 m, which is much lower than the measured bandwidth of 3 GHz per 100 m. This discrepancy was explained by the presence of strong mode coupling in POFs. We studied distortions products in CATV systems. Composite second order (CSO) and composite triple beat (CTB) for different channels were measured using a spectrum analyzer and adjustable band pass filter. Since the CSO and the CTB did not meet the CATV standard, a predistortion circuit was used to minimize CSO and CTB products produced by the laser. The predistortion circuit provides a signal comprising multiple subcarrier signals substantially equal in magnitude and opposite in phase to those associated with the nonlinear transfer function of the laser being deployed. The RF signal is split into a primary branch that has a time delayed portion (80% of the RF signal), the secondary branch (10% of the RF signal) is where the second order products are generated with a 180 °phase shift from the fundamental, and the last remaining 10% of the RF signal is where the third order distortion products are generated with a 180 °phase shift from the fundamental. The output signal is taken as the summation of three signals processed by the branch circuits and coupled to the directly to the laser to be linearized. Finally, using cyclic transparent optical polymer (CYTOP), a perfluorinated graded index fiber, different transmission characteristics were investigated. CYTOP fiber

  8. 26 CFR 7.105-2 - Substantial gainful activity.

    Science.gov (United States)

    2010-04-01

    ... performed for remuneration or profit). (c) General rules. (1) Full-time work under competitive circumstances...'s rate of pay in the former position. It is immaterial that the new work activity is less demanding... § 7.105-1, prescribes rules for determining whether a taxpayer has the ability to engage in...

  9. 76 FR 737 - Tobacco Products, Exemptions From Substantial Equivalence Requirements

    Science.gov (United States)

    2011-01-06

    ... exemptions would be requested for an unknown number of the remaining products. Although in theory the maximum... place, only 50 exemption requests will be submitted per year. This may increase over time as learning..., and social science occupations ($30.91), architecture and engineering occupations ($40.93), and legal...

  10. Imaging brain plasticity after trauma

    Institute of Scientific and Technical Information of China (English)

    Zhifeng Kou; Armin Iraji

    2014-01-01

    The brain is highly plastic after stroke or epilepsy;however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrat-ed both structural reorganization as well as functional compensation by the recruitment of other brain regions. However, the large scale brain network alterations after TBI are still unknown, and the ifeld is still short of proper means on how to guide the choice of TBI rehabilitation or treat-ment plan to promote brain plasticity. The authors also point out the new direction of brain plas-ticity investigation.

  11. Size effects in crystal plasticity

    DEFF Research Database (Denmark)

    Borg, Ulrik

    2007-01-01

    Numerical analyses of plasticity size effects have been carried out for different problems using a developed strain gradient crystal plasticiy theory. The theory employs higher order stresses as work conjugates to slip gradients and uses higher order boundary conditions. Problems on localization...... of plastic flow in a single crystal, grain boundary effects in a bicrystal, and grain size effects in a polycrystal are studied. Single crystals containing micro-scale voids have also been analyzed at different loading conditions with focus on the stress and deformation fields around the voids, on void...... growth and interaction between neighboring voids, and on a comparison between the developed strain gradient crystal plasticity theory and a discrete dislocation plasticity theory. Furthermore, voids and rigid inclusions in isotropic materials have been studied using a strain gradient plasticity theory...

  12. Computational strain gradient crystal plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2014-01-01

    A numerical method for viscous strain gradient crystal plasticity theory is presented, which incorporates both energetic and dissipative gradient effects. The underlying minimum principles are discussed as well as convergence properties of the proposed finite element procedure. Three problems...... of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically...... oriented face centered cubic crystals are developed in terms of the crystallographic slip parameters. The effect on geometrically necessary dislocation structures introduced by plastic deformation is investigated as a function of the ratio of void radius to plasticity length scale....

  13. Grain Interactions in Crystal Plasticity

    International Nuclear Information System (INIS)

    Boyle, K.P.; Curtin, W.A.

    2005-01-01

    The plastic response of a sheet metal is governed by the collective response of the underlying grains. Intragranular plasticity depends on intrinsic variables such as crystallographic orientation and on extrinsic variables such as grain interactions; however, the role of the latter is not well understood. A finite element crystal plasticity formulation is used to investigate the importance of grain interactions on intragranular plastic deformation in initially untextured polycrystalline aggregates. A statistical analysis reveals that grain interactions are of equal (or more) importance for determining the average intragranular deviations from the applied strain as compared to the orientation of the grain itself. Furthermore, the influence of the surrounding grains is found to extend past nearest neighbor interactions. It is concluded that the stochastic nature of the mesoscale environment must be considered for a proper understanding of the plastic response of sheet metals at the grain-scale

  14. Dynamic plastic buckling of rings and cylindrical shells

    International Nuclear Information System (INIS)

    Jones, N.; Okawa, D.M.

    1975-01-01

    A theoretical analysis is developed to predict the dynamic plastic buckling of a long, impulsively loaded cylindrical shell. This theoretical work is used to examine various features of plastic buckling and to assess the importance of several approximations which previous authors have introduced in dynamic plastic buckling studies. In particular, the influence of a time-dependent circumferential membrane force, the sharpness of the peaks in the displacement and velocity amplification functions, the restrictions which are implicit when employing the Prandtl-Reuss equations in this class of problems, and the limitations due to elastic unloading are examined in some detail. (Auth.)

  15. Plasticity and beyond microstructures, crystal-plasticity and phase transitions

    CERN Document Server

    Hackl, Klaus

    2014-01-01

    The book presents the latest findings in experimental plasticity, crystal plasticity, phase transitions, advanced mathematical modeling of finite plasticity and multi-scale modeling. The associated algorithmic treatment is mainly based on finite element formulations for standard (local approach) as well as for non-standard (non-local approach) continua and for pure macroscopic as well as for directly coupled two-scale boundary value problems. Applications in the area of material design/processing are covered, ranging from grain boundary effects in polycrystals and phase transitions to deep-drawing of multiphase steels by directly taking into account random microstructures.

  16. Capturing Plastic Surgery on Film—Making Reconstruction Visible

    Science.gov (United States)

    Ismail, Tarek; Sarraf, Namita; Epple, Christian; Schaefer, Kristin Marit; Schaefer, Dirk J.

    2017-01-01

    Summary: The Swiss Plastic Surgery Association (https://plasticsurgery.ch/en/) decided to produce a corporate video to illustrate the concept of "plastic surgery of confidence" to the public. We show the diversity of specializations and the vast range of tasks that surgeons passionately handle day in and day out. We wanted to convey 2 main messages: first, that plastic surgery is more than just cosmetic surgery, and second, that plastic surgery in Switzerland is synonymous with quality and confidence. We selected 17 topics that we felt had good filmic potential and would best explain to the public what plastic surgery is about. This included the selection of appropriate patients, experts, and locations from all over the country. We thought it crucial to show the initial preoperative situation, as only in this case would the achievement of reconstruction be evident and comprehensive to the layman audience. The actual production was filmed in 5 different locations and took 5 days of shooting. We recorded 17 surgeons, 9 patients, and about 30 voluntary background actors. From 23 hours of footage, we created a 7 minute, 22 second corporate video, recorded in 3 of the Swiss national languages. The video was presented to the public online in June 2016, on the same day as the National Open Day of Plastic Surgery in Switzerland. The video is available online. We evaluated the impact of the video using a questionnaire for lay people and observed that it could substantially improve the perception of our specialty, especially regarding the reconstructive aspect. We feel that a freely available corporate video is a very useful means to promote plastic surgery and help patients better understand what it is all about. PMID:29062635

  17. Capturing Plastic Surgery on Film—Making Reconstruction Visible

    Directory of Open Access Journals (Sweden)

    Alexander Lunger, MD

    2017-09-01

    Full Text Available Summary:. The Swiss Plastic Surgery Association (https://plasticsurgery.ch/en/ decided to produce a corporate video to illustrate the concept of "plastic surgery of confidence" to the public. We show the diversity of specializations and the vast range of tasks that surgeons passionately handle day in and day out. We wanted to convey 2 main messages: first, that plastic surgery is more than just cosmetic surgery, and second, that plastic surgery in Switzerland is synonymous with quality and confidence. We selected 17 topics that we felt had good filmic potential and would best explain to the public what plastic surgery is about. This included the selection of appropriate patients, experts, and locations from all over the country. We thought it crucial to show the initial preoperative situation, as only in this case would the achievement of reconstruction be evident and comprehensive to the layman audience. The actual production was filmed in 5 different locations and took 5 days of shooting. We recorded 17 surgeons, 9 patients, and about 30 voluntary background actors. From 23 hours of footage, we created a 7 minute, 22 second corporate video, recorded in 3 of the Swiss national languages. The video was presented to the public online in June 2016, on the same day as the National Open Day of Plastic Surgery in Switzerland. The video is available online. We evaluated the impact of the video using a questionnaire for lay people and observed that it could substantially improve the perception of our specialty, especially regarding the reconstructive aspect. We feel that a freely available corporate video is a very useful means to promote plastic surgery and help patients better understand what it is all about.

  18. Capturing Plastic Surgery on Film-Making Reconstruction Visible.

    Science.gov (United States)

    Lunger, Alexander; Ismail, Tarek; Sarraf, Namita; Epple, Christian; Schaefer, Kristin Marit; Schaefer, Dirk J

    2017-09-01

    The Swiss Plastic Surgery Association (https://plasticsurgery.ch/en/) decided to produce a corporate video to illustrate the concept of "plastic surgery of confidence" to the public. We show the diversity of specializations and the vast range of tasks that surgeons passionately handle day in and day out. We wanted to convey 2 main messages: first, that plastic surgery is more than just cosmetic surgery, and second, that plastic surgery in Switzerland is synonymous with quality and confidence. We selected 17 topics that we felt had good filmic potential and would best explain to the public what plastic surgery is about. This included the selection of appropriate patients, experts, and locations from all over the country. We thought it crucial to show the initial preoperative situation, as only in this case would the achievement of reconstruction be evident and comprehensive to the layman audience. The actual production was filmed in 5 different locations and took 5 days of shooting. We recorded 17 surgeons, 9 patients, and about 30 voluntary background actors. From 23 hours of footage, we created a 7 minute, 22 second corporate video, recorded in 3 of the Swiss national languages. The video was presented to the public online in June 2016, on the same day as the National Open Day of Plastic Surgery in Switzerland. The video is available online. We evaluated the impact of the video using a questionnaire for lay people and observed that it could substantially improve the perception of our specialty, especially regarding the reconstructive aspect. We feel that a freely available corporate video is a very useful means to promote plastic surgery and help patients better understand what it is all about.

  19. Frequency dependent changes in NMDAR-dependent synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Arvind eKumar

    2011-09-01

    Full Text Available The NMDAR-dependent synaptic plasticity is thought to mediate several forms of learning, and can be induced by spike trains containing a small number of spikes occurring with varying rates and timing, as well as with oscillations. We computed the influence of these variables on the plasticity induced at a single NMDAR containing synapse using a reduced model that was analytically tractable, and these findings were confirmed using detailed, multi-compartment model. In addition to explaining diverse experimental results about the rate and timing dependence of synaptic plasticity, the model made several novel and testable predictions. We found that there was a preferred frequency for inducing long-term potentiation (LTP such that higher frequency stimuli induced lesser LTP, decreasing as 1/f when the number of spikes in the stimulus was kept fixed. Among other things, the preferred frequency for inducing LTP varied as a function of the distance of the synapse from the soma. In fact, same stimulation frequencies could induce LTP or LTD depending on the dendritic location of the synapse. Next, we found that rhythmic stimuli induced greater plasticity then irregular stimuli. Furthermore, brief bursts of spikes significantly expanded the timing dependence of plasticity. Finally, we found that in the ~5-15Hz frequency range both rate- and timing-dependent plasticity mechanisms work synergistically to render the synaptic plasticity most sensitive to spike-timing. These findings provide computational evidence that oscillations can have a profound influence on the plasticity of an NMDAR-dependent synapse, and show a novel role for the dendritic morphology in this process.

  20. The Plastic Surgeon at Work and Play: Surgeon Health, Practice Stress, and Work-Home Balance.

    Science.gov (United States)

    Bentz, Michael L

    2016-10-01

    Plastic surgeon wellness encompasses physical and mental health, considered in the context of practice stress. In addition, the challenges of work-home balance can lead to substantial negative impact on the surgeon, family, staff, and patients. The data-driven impact of each of these three components with personal vignettes, both individually and collectively, is presented by Michael Bentz, MD as the 2016 presidential address of American Association of Plastic Surgeons.

  1. Plastic pollution of the world’s seas and oceans as a contemporary challenge in ocean governance

    OpenAIRE

    Haward, Marcus

    2018-01-01

    The pervasive nature of marine plastic pollution was highlighted at the recent United Nations Environment Assembly. This meeting saw strong commitments for action, but at the same time reinforced the challenges for contemporary ocean governance in addressing marine plastic pollution.

  2. Dynamic plastic buckling of cylindrical and spherical shells

    International Nuclear Information System (INIS)

    Jones, N.; Okawa, D.M.

    1975-01-01

    A theoretical analysis is developed to predict the dynamic plastic buckling of a long, impulsively loaded cylindrical shell in order to examine various features of plastic buckling and to assess the importance of several approximations with previous authors have introduced in dynamic plastic buckling studies. The influence of a time-dependent circumferential membrane force, the sharpness of the peaks in the displacement and velocity amplification functions, the restrictions which are implicit when employing the Prandtl-Reuss equations in this class of problems, and the limitations due to elastic unloading are examined in some detail. A summary of all previously published theoretical investigations known to the authors is undertaken for the dynamic plastic behavior of cylindrical shells and rings which are made from rigid-plastic, rigid-visco-plastic, elastic-plastic and elastic-visco-plastic materials and subjected to initial axisymmetric impulsive velocity fields. The theoretical predictions of the dominant motions, critical mode numbers, and threshold impulses are compared and critically reviewed. An experimental investigation was also undertaken into the dynamic plastic buckling of circular rings subjected to uniformly distributed external impulsive velocities. It appears that no experiments have been reported previously on mild steel cylindrical shells with an axial length (L) less than four times the shell radius (R). The experimental values of the average final radial deflections, critical mode numbers and dimensions of the permanent wrinkles in the mild steel and some aliminium 6,061 T6 specimens are compared with all the previously published theoretical predictions and experimental results on cylindrical shells with various axial lengths. (orig./HP) [de

  3. International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): A review.

    Science.gov (United States)

    Xanthos, Dirk; Walker, Tony R

    2017-05-15

    Marine plastic pollution has been a growing concern for decades. Single-use plastics (plastic bags and microbeads) are a significant source of this pollution. Although research outlining environmental, social, and economic impacts of marine plastic pollution is growing, few studies have examined policy and legislative tools to reduce plastic pollution, particularly single-use plastics (plastic bags and microbeads). This paper reviews current international market-based strategies and policies to reduce plastic bags and microbeads. While policies to reduce microbeads began in 2014, interventions for plastic bags began much earlier in 1991. However, few studies have documented or measured the effectiveness of these reduction strategies. Recommendations to further reduce single-use plastic marine pollution include: (i) research to evaluate effectiveness of bans and levies to ensure policies are having positive impacts on marine environments; and (ii) education and outreach to reduce consumption of plastic bags and microbeads at source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Extruding plastic scintillator at Fermilab

    International Nuclear Information System (INIS)

    Pla-Dalmau, Anna; Bross, Alain D.; Rykalin, Viktor V.

    2003-01-01

    An understanding of the costs involved in the production of plastic scintillators and the development of a less expensive material have become necessary with the prospects of building very large plastic scintillation detectors. Several factors contribute to the high cost of plastic scintillating sheets, but the principal reason is the labor-intensive nature of the manufacturing process. In order to significantly lower the costs, the current casting procedures had to be abandoned. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. This concept was tested and high quality extruded plastic scintillator was produced. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. This paper will discuss the characteristics of extruded plastic scintillator and its raw materials, the different manufacturing techniques and the current R andD program at Fermilab

  5. Space Plastic Recycling System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Techshot's proposed Space Plastic Recycler (SPR) is an automated closed loop plastic recycling system that allows the automated conversion of disposable ISS...

  6. River Export of Plastic from Land to Sea: A Global Modeling Approach

    Science.gov (United States)

    Siegfried, Max; Gabbert, Silke; Koelmans, Albert A.; Kroeze, Carolien; Löhr, Ansje; Verburg, Charlotte

    2016-04-01

    Plastic is increasingly considered a serious cause of water pollution. It is a threat to aquatic ecosystems, including rivers, coastal waters and oceans. Rivers transport considerable amounts of plastic from land to sea. The quantity and its main sources, however, are not well known. Assessing the amount of macro- and microplastic transport from river to sea is, therefore, important for understanding the dimension and the patterns of plastic pollution of aquatic ecosystems. In addition, it is crucial for assessing short- and long-term impacts caused by plastic pollution. Here we present a global modelling approach to quantify river export of plastic from land to sea. Our approach accounts for different types of plastic, including both macro- and micro-plastics. Moreover, we distinguish point sources and diffuse sources of plastic in rivers. Our modelling approach is inspired by global nutrient models, which include more than 6000 river basins. In this paper, we will present our modelling approach, as well as first model results for micro-plastic pollution in European rivers. Important sources of micro-plastics include personal care products, laundry, household dust and car tyre wear. We combine information on these sources with information on sewage management, and plastic retention during river transport for the largest European rivers. Our modelling approach may help to better understand and prevent water pollution by plastic , and at the same time serves as 'proof of concept' for future application on global scale.

  7. Durability of wood plastic composites manufactured from recycled plastic

    Directory of Open Access Journals (Sweden)

    Irina Turku

    2018-03-01

    Full Text Available The influence of accelerated weathering, xenon-arc light and freeze-thaw cycling on wood plastic composites extruded from a recycled plastic was studied. The results showed that, in general, weathering had a stronger impact on samples made from plastic waste compared to a sample made from virgin material. After weathering, the mechanical properties, tensile and flexural, were reduced by 2–30%, depending on the plastic source. Wettability of the samples was shown to play a significant role in their stability. Chemical analysis with infrared spectroscopy and surface observation with a scan electron microscope confirmed the mechanical test results. Incorporation of carbon black retained the properties during weathering, reducing the wettability of the sample, diminishing the change of mechanical properties, and improving color stability. Keywords: Environmental science, Mechanical engineering, Materials science

  8. Phenotypic plasticity, costs of phenotypes, and costs of plasticity

    DEFF Research Database (Denmark)

    Callahan, Hilary S; Maughan, Heather; Steiner, Uli

    2008-01-01

    Why are some traits constitutive and others inducible? The term costs often appears in work addressing this issue but may be ambiguously defined. This review distinguishes two conceptually distinct types of costs: phenotypic costs and plasticity costs. Phenotypic costs are assessed from patterns...... of covariation, typically between a focal trait and a separate trait relevant to fitness. Plasticity costs, separable from phenotypic costs, are gauged by comparing the fitness of genotypes with equivalent phenotypes within two environments but differing in plasticity and fitness. Subtleties associated with both...... types of costs are illustrated by a body of work addressing predator-induced plasticity. Such subtleties, and potential interplay between the two types of costs, have also been addressed, often in studies involving genetic model organisms. In some instances, investigators have pinpointed the mechanistic...

  9. Developmental plasticity: Friend or foe?

    Science.gov (United States)

    Michels, Karin B

    2017-01-01

    Developmental plasticity - the concept that adaptation to changing and unfavorable environmental conditions are possible but may come at the price of compromised health potentials - has evolutionary grounding as it facilitates survival but dissents with fundamental evolutionary principles in that it may advance the lesser fit. It is an important cornerstone of the Developmental Origins of Health and Disease (DOHaD). Unlike evolutionary adaptation developmental plasticity may be short-lived and restricted to one or few generations and inheritance is uncertain. Potential mechanisms include epigenetic modifications adopted in utero which may not transmit to the next generation; future insights may allow adjustments of the outcomes of developmental plasticity.

  10. Radiation damage in plastic scintillators

    International Nuclear Information System (INIS)

    Majewski, S.

    1990-01-01

    Results of radiation damage studies in plastic scintillators are reviewed and critically analyzed from the point of view of applications of plastic scintillators in calorimetric detectors for the SSC. Damage to transmission and to fluorescent yield in different conditions is discussed. New directions in R ampersand D are outlined. Several examples are given of the most recent data on the new scintillating materials made with old and new plastics and fluors, which are exhibiting significantly improved radiation resistance. With a present rate of a vigorous R D programme, the survival limits in the vicinity of 100 MRad seem to be feasible within a couple of years

  11. Plastics recycling: challenges and opportunities

    OpenAIRE

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to pro...

  12. TECHNICAL AND ECONOMIC SUBSTANTIATION OF PROJECTS OF THE AFFORDABLE HOUSING CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    KRAVCHUNOVSKA T. S.

    2015-12-01

    Full Text Available Summary. Problem statement. The development of inhabitant locality of Ukraine is characterized by significant differences in levels of socio and economic development. An excessive concentration of population and industry in large cities, inefficient, slow development of most medium and small cities, towns and villages, considerable territorial disproportions of economic development of the country, considerable shortcomings in the territorial organization of society are observed. At the same time the tendency of the total area of increasing of inhabitant locality. The lands are used inefficiently. Among the most common problems of inhabitant locality is the housing problem. When making a decision on the design of affordable housing construction is one of the most important stages in the development of the technique and economic substantiation of the project is determination of the advisability and effectiveness of construction. The substantiation of advisability and effectiveness of affordable housing based on the definition of technical and economic indicators of projects, one of the most important among them is the cost, in its calculation is necessary to take into account the influence of organizational and technological factors, reflecting the features of construction in condition of compacted construction. Purpose. Development of methodical recommendations on substantiation of cost construction of affordable housing in the conditions of compacted construction. Conclusion. To provide a processing and the analysis of data is necessary development of the applied software on the basis of the developed block scheme of justification of cost construction of affordable housing.

  13. Recycling of Reinforced Plastics

    Science.gov (United States)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  14. Wood plastic combination

    International Nuclear Information System (INIS)

    Cunanan, S.A.; Bonoan, L.S.; Verceluz, F.P.; Azucena, E.A.

    1976-03-01

    The purpose of this study is to improve the physical and mechaniproperties of local inferior quality wood species by radiation-induced graft polymerization with plastic monomers. The process involves the following: 1) Preparation of sample; 2) Impregnation of sample with the monomers; 3) Irradiation of the impregnated sample with the use of 20,000 curie Co-60 as gamma-source; 4) Drying of irradiated sample to remove the unpolymerized monomer. Experimentation on different wood species were undertaken and the results given. From the results obtained, it can be concluded that the monomers systems MMA, MMA-USP, and styrene-USP are suitable for graft polymerization with the wood species almon, apitong, bagtikan, mayapis, red lauan, and tanguile. This is shown by their maximum conversion value which range from 86% to 96% with the optimum dose range of 1 to 2 Mrads. However, in the application of WPC process, properties that are required in a given wood product must be considered, thus aid in the selection of the monomer system to be used with a particular wood species. Some promising applications of WPC is in the manufacture of picker sticks, shuttles, and bobbins for the textile industry. However, there is a need for a pilot plant scale study so that an economic assessment of the commercial feasibility of this process can be made

  15. Marine microbe with potential to adhere and degrade plastic structures

    Directory of Open Access Journals (Sweden)

    Alka Kumari

    2017-10-01

    Full Text Available Extensive usages of plastics have led to their accumulation as a contaminant in natural environment worldwide. Plastic is an inert and non-biodegradable material, due to its complex structure and hydrophobic backbone [1]. Conventional methods for reduction of plastic waste such as burning, land-filling release unwanted toxic chemicals to the environment and harming living organism of land as well as the ocean. There is growing interest in development of strategies for the degradation of plastic wastes to clean the environment [2]. Marine bacteria have evolved with the capability to adapt and grow in the diverse environmental conditions [3]. We studied the ability of marine bacteria for destabilization and utilization of different plastic films (LDPE, HDPE, PVC and PET as a sole source of carbon. An active bacterial strain AIIW2 was selected based on the triphenyl tetrazolium chloride reduction assay, and it was identified as Bacillus species based on 16S rRNA gene sequence. The viability of the strain over the plastic surface was studied and confirmed by bacLight assay with fluorescent probes. Scanning Electron Microscope and Atomic Force Microscope images suggested that bacterial interaction over the plastic surface is causing deterioration and roughness with increasing bacterial incubation time. In Fourier transform infrared spectra of treated plastic film evidenced stretching of the (-CH alkane rock chain and (-CO carbonyl region, suggested the oxidative activities of the bacteria. The results revealed that ability of bacterial strain for instigating their colonization over plastic films and deteriorating the polymeric structure in the absence of other carbon sources [4]. Moreover, production of extracellular enzymes such as esterase, laccase, and dehalogenase which are reported to support utilization of plastics was confirmed by plate assays. In concise, our results suggested that the marine bacterial strain AIIW2 have the ability to utilize

  16. ''Nuclear Energy - Potential to Substantially Impact California's Energy Use''

    International Nuclear Information System (INIS)

    Lawrence Livermore National Laboratory

    2006-01-01

    The use of nuclear power to generate electricity is very widespread today, with about 20% of all U.S. electricity coming from the nation's 103 operating reactors. Worldwide there are over 400 commercial nuclear plants that make a similar contribution percentage-wise. However, all of the current U.S. reactors and most of those elsewhere are relatively old, with no new ones having been started domestically in over two decades and only a few now being built overseas, mostly in Asia. The principal reason for this hiatus in the U.S. is that the cost of electricity from new nuclear plants has been non-competitive with other electricity sources for a long time. The U.S. nuclear-power industry has not been stagnant during this time, however. First, the existing plants themselves are running significantly better than they were twenty years ago, to the extent that the US. reactor fleet is producing about one-third more electricity annually than it was, due largely to improvements in the capacity factors: the plants run more reliably, shut down less often, and the refueling outages take less than half as long as they once did. The safety performance has also improved dramatically, with major improvements in every one of the main indicators of safety. The security of the plants against sabotage or other malevolent acts has always been very strong, and is stronger still after recent upgrades in response to the September 2001 attacks in New York and Washington. Thus the U.S. nuclear-electricity industry has remained dynamic despite the absence of new construction. The U.S. and foreign companies that design reactors and hope someday to sell more of them have also been actively at work--they have developed advanced reactor designs that promise to cost much less to build and to operate, and to have even better safety performance. Several of these advanced designs have received design-certification approvals from the U.S. Nuclear Regulatory Commission, meaning that a utility could

  17. Phenotypic Plasticity in Reproductive Traits of the Perennial Shrub Ulex europaeus in Response to Shading: A Multi-Year Monitoring of Cultivated Clones.

    Directory of Open Access Journals (Sweden)

    Anne Atlan

    Full Text Available Phenotypic plasticity may be advantageous for plants to be able to rapidly cope with new and changing environments associated with climate change or during biological invasions. This is especially true for perennial plants, as they may need a longer period to respond genetically to selective pressures than annuals, and also because they are more likely to experience environmental changes during their lifespan. However, few studies have explored the plasticity of the reproductive life history traits of woody perennial species. This study focuses on a woody shrub, Ulex europaeus (common gorse, and on the response of its reproductive traits to one important environmental factor, shading. The study was performed on clones originating from western France (within the native range of this invasive species and grown for seven years. We compared traits of plants grown in a shade treatment (with two successive shade levels vs. full natural light. The traits monitored included flowering onset, pod production and seed predation. All traits studied responded to shading, exhibiting various levels of plasticity. In particular, dense shade induced a radical but reversible decrease in flower and pod production, while moderate shade had little effect on reproductive traits. The magnitude of the response to dense shade depended on the genotype, showing a genetically based polymorphism of plasticity. The level of plasticity also showed substantial variations between years, and the effect of environmental variations was cumulative over time. This suggests that plasticity can influence the lifetime fitness of U. Europaeus and is involved in the capacity of the species to grow under contrasting environmental conditions.

  18. Phenotypic Plasticity in Reproductive Traits of the Perennial Shrub Ulex europaeus in Response to Shading: A Multi-Year Monitoring of Cultivated Clones.

    Science.gov (United States)

    Atlan, Anne; Hornoy, Benjamin; Delerue, Florian; Gonzalez, Maya; Pierre, Jean-Sébastien; Tarayre, Michèle

    2015-01-01

    Phenotypic plasticity may be advantageous for plants to be able to rapidly cope with new and changing environments associated with climate change or during biological invasions. This is especially true for perennial plants, as they may need a longer period to respond genetically to selective pressures than annuals, and also because they are more likely to experience environmental changes during their lifespan. However, few studies have explored the plasticity of the reproductive life history traits of woody perennial species. This study focuses on a woody shrub, Ulex europaeus (common gorse), and on the response of its reproductive traits to one important environmental factor, shading. The study was performed on clones originating from western France (within the native range of this invasive species) and grown for seven years. We compared traits of plants grown in a shade treatment (with two successive shade levels) vs. full natural light. The traits monitored included flowering onset, pod production and seed predation. All traits studied responded to shading, exhibiting various levels of plasticity. In particular, dense shade induced a radical but reversible decrease in flower and pod production, while moderate shade had little effect on reproductive traits. The magnitude of the response to dense shade depended on the genotype, showing a genetically based polymorphism of plasticity. The level of plasticity also showed substantial variations between years, and the effect of environmental variations was cumulative over time. This suggests that plasticity can influence the lifetime fitness of U. Europaeus and is involved in the capacity of the species to grow under contrasting environmental conditions.

  19. Leaching of TCIPP from furniture foam is rapid and substantial.

    Science.gov (United States)

    Stubbings, William A; Harrad, Stuart

    2018-02-01

    A series of laboratory experiments were conducted, in which waste furniture polyurethane foam samples containing tris (1-chloro-2-propyl) phosphate (TCIPP) were contacted with a range of leaching fluids, formulated to simulate the composition of landfill leachate. Leaching was examined under a number of different scenarios, such as: dissolved humic matter concentration, pH, and temperature, as well as the effect of agitation, and waste:leaching fluid contact duration. In addition to single batch (no replenishment of leaching fluid), serial batch (draining of leachate and replenishment with fresh leaching fluid at various time intervals) experiments were conducted. Leaching of TCIPP from PUF appears to be a first order process. Concentrations of TCIPP in leachate generated by the experiments in this study ranged from 13 mg L -1 to 130 mg L -1 . In serial batch leaching experiments, >95% of TCIPP was depleted from PUF after 168 h total contact with leaching fluid. Our experiments indicate leaching is potentially a very significant pathway of TCIPP emissions to the environment. Copyright © 2017. Published by Elsevier Ltd.

  20. SUBSTANTIATING THE DEVELOPMENT STRATEGIES FOR TOURISM IN PROTECTED AREAS

    Directory of Open Access Journals (Sweden)

    Mirela Costencu

    2013-12-01

    Full Text Available The protected natural areas, irrespective of their classification modality or the motivations they propose, have become more and more attractive for tourists. However, in time, the increasing touristic flows they attract, often developed in an uncontrolled manner, lead to the erosion of the space and the degradation of ecosystems. Developing tourism on sustainable principles, with the appropriate balance of the two functions of a protected area – the scientific and the touristic function – should start from the analysis of this form of tourism and of the development opportunities and limits regarded from the perspective of the external environment, and from the particularisation of the concept “site’s tourist reception capacity”. Destination areas should meet the economic, social and ecological requirements in competition, so that they observe the integrity of natural resources and of local communities. The upper limit of the number of visits allowed in a protected area is purposefully set at a level below the identified level of accepted use, so that, in the long run, the environment could be able to cover the possible increases occurred in the number of tourists, without subjecting the environment to further harm.

  1. Cavitation contributes substantially to tensile creep in silicon nitride

    International Nuclear Information System (INIS)

    Luecke, W.E.; Wiederhorn, S.M.; Hockey, B.J.; Krause, R.F. Jr.; Long, G.G.

    1995-01-01

    During tensile creep of a hot isostatically pressed (HIPed) silicon nitride, the volume fraction of cavities increases linearly with strain; these cavities produce nearly all of the measured strain. In contrast, compressive creep in the same stress and temperature range produces very little cavitation. A stress exponent that increases with stress (var-epsilon ∝ σ n , 2 < n < 7) characterizes the tensile creep response, while the compressive creep response exhibits a stress dependence of unity. Furthermore, under the same stress and temperature, the material creeps nearly 100 times faster in tension than in compression. Transmission electron microscopy (TEM) indicates that the cavities formed during tensile creep occur in pockets of residual crystalline silicate phase located at silicon nitride multigrain junctions. Small-angle X-ray scattering (SAXS) from crept material quantifies the size distribution of cavities observed in TEM and demonstrates that cavity addition, rather than cavity growth, dominates the cavitation process. These observations are in accord with a model for creep based on the deformation of granular materials in which the microstructure must dilate for individual grains t slide past one another. During tensile creep the silicon nitride grains remain rigid; cavitation in the multigrain junctions allows the silicate to flow from cavities to surrounding silicate pockets, allowing the dilation of the microstructure and deformation of the material. Silicon nitride grain boundary sliding accommodates this expansion and leads to extension of the specimen. In compression, where cavitation is suppressed, deformation occurs by solution-reprecipitation of silicon nitride

  2. Academic plastic surgery: a study of current issues and future challenges.

    Science.gov (United States)

    Zetrenne, Eleonore; Kosins, Aaron M; Wirth, Garrett A; Bui, Albert; Evans, Gregory R D; Wells, James H

    2008-06-01

    The objectives of this study were (1) to evaluate the role of a full-time academic plastic surgeon, (2) to define the indicators predictive of a successful career in academic plastic surgery, and (3) to understand the current issues that will affect future trends in the practice of academic plastic surgery. A questionnaire was developed to evaluate the role of current full-time academic plastic surgeons and to understand the current issues and future challenges facing academic plastic surgery. Each plastic surgery program director in the United States was sent the survey for distribution among all full-time academic plastic surgeons. Over a 6-week period, responses from 143 full-time academic plastic surgeons (approximately 31%) were returned. Fifty-three percent of respondents had been academic plastic surgeons for longer than 10 years. Seventy-three percent of respondents defined academic plastic surgeons as clinicians who are teachers and researchers. However, 53% of respondents believed that academic plastic surgeons were not required to teach or practice within university hospitals/academic centers. The 3 factors reported most frequently as indicative of a successful career in academic plastic surgery were peer recognition, personal satisfaction, and program reputation. Dedication and motivation were the personal characteristics rated most likely to contribute to academic success. Forty-four percent of respondents were unable to identify future academic plastic surgeons from plastic surgery residency applicants, and 27% were not sure. Most (93%) of the respondents believed that academic surgery as practiced today will change. The overall job description of a full-time academic plastic surgeon remains unchanged (teacher and researcher). Whereas peer recognition, personal satisfaction, and program reputation were most frequently cited as indicative of a successful plastic surgery career, financial success was rated the least indicative. Similarly, whereas the

  3. Evidence for cortical structural plasticity in humans after a day of waking and sleep deprivation.

    Science.gov (United States)

    Elvsåshagen, Torbjørn; Zak, Nathalia; Norbom, Linn B; Pedersen, Per Ø; Quraishi, Sophia H; Bjørnerud, Atle; Alnæs, Dag; Doan, Nhat Trung; Malt, Ulrik F; Groote, Inge R; Westlye, Lars T

    2017-08-01

    Sleep is an evolutionarily conserved process required for human health and functioning. Insufficient sleep causes impairments across cognitive domains, and sleep deprivation can have rapid antidepressive effects in mood disorders. However, the neurobiological effects of waking and sleep are not well understood. Recently, animal studies indicated that waking and sleep are associated with substantial cortical structural plasticity. Here, we hypothesized that structural plasticity can be observed after a day of waking and sleep deprivation in the human cerebral cortex. To test this hypothesis, 61 healthy adult males underwent structural magnetic resonance imaging (MRI) at three time points: in the morning after a regular night's sleep, the evening of the same day, and the next morning, either after total sleep deprivation (N=41) or a night of sleep (N=20). We found significantly increased right prefrontal cortical thickness from morning to evening across all participants. In addition, pairwise comparisons in the deprived group between the two morning scans showed significant thinning of mainly bilateral medial parietal cortices after 23h of sleep deprivation, including the precuneus and posterior cingulate cortex. However, there were no significant group (sleep vs. sleep deprived group) by time interactions and we can therefore not rule out that other mechanisms than sleep deprivation per se underlie the bilateral medial parietal cortical thinning observed in the deprived group. Nonetheless, these cortices are thought to subserve wakefulness, are among the brain regions with highest metabolic rate during wake, and are considered some of the most sensitive cortical regions to a variety of insults. Furthermore, greater thinning within the left medial parietal cluster was associated with increased sleepiness after sleep deprivation. Together, these findings add to a growing body of data showing rapid structural plasticity within the human cerebral cortex detectable with

  4. Stochastic synaptic plasticity with memristor crossbar arrays

    KAUST Repository

    Naous, Rawan

    2016-11-01

    Memristive devices have been shown to exhibit slow and stochastic resistive switching behavior under low-voltage, low-current operating conditions. Here we explore such mechanisms to emulate stochastic plasticity in memristor crossbar synapse arrays. Interfaced with integrate-and-fire spiking neurons, the memristive synapse arrays are capable of implementing stochastic forms of spike-timing dependent plasticity which parallel mean-rate models of stochastic learning with binary synapses. We present theory and experiments with spike-based stochastic learning in memristor crossbar arrays, including simplified modeling as well as detailed physical simulation of memristor stochastic resistive switching characteristics due to voltage and current induced filament formation and collapse. © 2016 IEEE.

  5. Stochastic synaptic plasticity with memristor crossbar arrays

    KAUST Repository

    Naous, Rawan; Al-Shedivat, Maruan; Neftci, Emre; Cauwenberghs, Gert; Salama, Khaled N.

    2016-01-01

    Memristive devices have been shown to exhibit slow and stochastic resistive switching behavior under low-voltage, low-current operating conditions. Here we explore such mechanisms to emulate stochastic plasticity in memristor crossbar synapse arrays. Interfaced with integrate-and-fire spiking neurons, the memristive synapse arrays are capable of implementing stochastic forms of spike-timing dependent plasticity which parallel mean-rate models of stochastic learning with binary synapses. We present theory and experiments with spike-based stochastic learning in memristor crossbar arrays, including simplified modeling as well as detailed physical simulation of memristor stochastic resistive switching characteristics due to voltage and current induced filament formation and collapse. © 2016 IEEE.

  6. Human Ebola virus infection results in substantial immune activation.

    Science.gov (United States)

    McElroy, Anita K; Akondy, Rama S; Davis, Carl W; Ellebedy, Ali H; Mehta, Aneesh K; Kraft, Colleen S; Lyon, G Marshall; Ribner, Bruce S; Varkey, Jay; Sidney, John; Sette, Alessandro; Campbell, Shelley; Ströher, Ute; Damon, Inger; Nichol, Stuart T; Spiropoulou, Christina F; Ahmed, Rafi

    2015-04-14

    Four Ebola patients received care at Emory University Hospital, presenting a unique opportunity to examine the cellular immune responses during acute Ebola virus infection. We found striking activation of both B and T cells in all four patients. Plasmablast frequencies were 10-50% of B cells, compared with less than 1% in healthy individuals. Many of these proliferating plasmablasts were IgG-positive, and this finding coincided with the presence of Ebola virus-specific IgG in the serum. Activated CD4 T cells ranged from 5 to 30%, compared with 1-2% in healthy controls. The most pronounced responses were seen in CD8 T cells, with over 50% of the CD8 T cells expressing markers of activation and proliferation. Taken together, these results suggest that all four patients developed robust immune responses during the acute phase of Ebola virus infection, a finding that would not have been predicted based on our current assumptions about the highly immunosuppressive nature of Ebola virus. Also, quite surprisingly, we found sustained immune activation after the virus was cleared from the plasma, observed most strikingly in the persistence of activated CD8 T cells, even 1 mo after the patients' discharge from the hospital. These results suggest continued antigen stimulation after resolution of the disease. From these convalescent time points, we identified CD4 and CD8 T-cell responses to several Ebola virus proteins, most notably the viral nucleoprotein. Knowledge of the viral proteins targeted by T cells during natural infection should be useful in designing vaccines against Ebola virus.

  7. Method for the substantial reduction of quenching effects in luminescence spectrometry

    Science.gov (United States)

    Demas, J.N.; Jones, W.M.; Keller, R.A.

    1987-06-26

    Method for reducing quenching effects in analytical luminescence measurements. Two embodiments of the present invention are described which relate to a form of time resolution based on the amplitudes and phase shifts of modulated emission signals. In the first embodiment, the measured modulated emission signal is substantially independent of sample quenching at sufficiently high frequencies. In the second embodiment, the modulated amplitude and the phase shift between the emission signal and the excitation source are simultaneously measured. Using either method, the observed modulated amplitude may be reduced to its unquenched value. 3 figs.

  8. Energy recovery from plastic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Baur, A; Atzger, J

    1983-07-01

    The conversion of plastic wastes to energy is suggested as a practicable and advantageous alternative to recycling. A two-stage pilot gasification plant for the pyrolysis of wastes is described and the utilization of the resulting fuel gas discussed.

  9. Plasticity and creep of metals

    CERN Document Server

    Rusinko, Andrew

    2011-01-01

    Here is a systematic presentation of the postulates, theorems and principles of mathematical theories of plasticity and creep in metals, and their applications. Special attention is paid to analysis of the advantages and shortcomings of the classical theories.

  10. WEATHERABILITY OF ENHANCED DEGRADABLE PLASTICS

    Science.gov (United States)

    The main objective of this study was to assess the performance and the asociated variability of several selected enhanced degradable plastic materials under a variety of different exposure conditions. Other objectives were to identify the major products formed during degradation ...

  11. Competitive forces and academic plastic surgery.

    Science.gov (United States)

    Miller, S H

    1998-04-01

    Economic constraints developing as a result of rising health care costs in the United States pose significant challenges for and threats to the survival of academic plastic surgery. Declining clinical revenues, competition for patients and resources from other health care providers, and reductions in support of its education and research efforts necessitate a paradigm shift if it is to survive. Questionnaires were used to collect data from 92 of the 100 postgraduate training program directors of plastic surgery in the United States. The most common source of clinical income on a national basis was indemnity insurance. Sources of clinical income varied by region. The majority of programs, 80 percent, report that at least 75 percent of the income support for faculty came from practice income. Financial support for ancillary and research personnel, in large part, came from this same source. Resident salaries and benefits came largely from other resources. Generally as population density within the metropolitan area in which a program was located increased, so too did the number of competing plastic surgeons, including graduates of the program and nonacademic cosmetic and hand surgeons. However, levels of competition for cosmetic surgery in smaller metropolitan areas of some regions seem to be similar to those reported by programs in larger communities. Plastic surgery programs in very competitive communities received significantly greater amounts of their income from indemnity insurance and self-paying patients than did programs in less competitive metropolitan areas. Internal competition from other surgical and nonsurgical specialists within the same institution is likewise keen. Virtually all respondents, 93 percent, report that their institutions provided patient care in a least one designated center of excellence in the following disciplines: hand, microsurgery, craniofacial, cleft lip and palate, burn, and cosmetic surgery. This study suggests that centers of

  12. Plastic deformation of indium nanostructures

    International Nuclear Information System (INIS)

    Lee, Gyuhyon; Kim, Ju-Young; Burek, Michael J.; Greer, Julia R.; Tsui, Ting Y.

    2011-01-01

    Highlights: → Indium nanopillars display two different deformation mechanisms. → ∼80% exhibited low flow stresses near that of bulk indium. → Low strength nanopillars have strain rate sensitivity similar to bulk indium. → ∼20% of compressed indium nanopillars deformed at nearly theoretical strengths. → Low-strength samples do not exhibit strength size effects. - Abstract: Mechanical properties and morphology of cylindrical indium nanopillars, fabricated by electron beam lithography and electroplating, are characterized in uniaxial compression. Time-dependent deformation and influence of size on nanoscale indium mechanical properties were investigated. The results show two fundamentally different deformation mechanisms which govern plasticity in these indium nanostructures. We observed that the majority of indium nanopillars deform at engineering stresses near the bulk values (Type I), with a small fraction sustaining flow stresses approaching the theoretical limit for indium (Type II). The results also show the strain rate sensitivity and flow stresses in Type I indium nanopillars are similar to bulk indium with no apparent size effects.

  13. Promise and Limitations of Big Data Research in Plastic Surgery.

    Science.gov (United States)

    Zhu, Victor Zhang; Tuggle, Charles Thompson; Au, Alexander Francis

    2016-04-01

    The use of "Big Data" in plastic surgery outcomes research has increased dramatically in the last 5 years. This article addresses some of the benefits and limitations of such research. This is a narrative review of large database studies in plastic surgery. There are several benefits to database research as compared with traditional forms of research, such as randomized controlled studies and cohort studies. These include the ease in patient recruitment, reduction in selection bias, and increased generalizability. As such, the types of outcomes research that are particularly suited for database studies include determination of geographic variations in practice, volume outcome analysis, evaluation of how sociodemographic factors affect access to health care, and trend analyses over time. The limitations of database research include data which are limited only to what was captured in the database, high power which can cause clinically insignificant differences to achieve statistical significance, and fishing which can lead to increased type I errors. The National Surgical Quality Improvement Project is an important general surgery database that may be useful for plastic surgeons because it is validated and has a large number of patients after over a decade of collecting data. The Tracking Operations and Outcomes for Plastic Surgeons Program is a newer database specific to plastic surgery. Databases are a powerful tool for plastic surgery outcomes research. It is critically important to understand their benefits and limitations when designing research projects or interpreting studies whose data have been drawn from them. For plastic surgeons, National Surgical Quality Improvement Project has a greater number of publications, but Tracking Operations and Outcomes for Plastic Surgeons Program is the most applicable database for plastic surgery research.

  14. Computational materials science: Nanoscale plasticity

    DEFF Research Database (Denmark)

    Jacobsen, Karsten Wedel; Schiøtz, Jakob

    2002-01-01

    How does plastic deformation of polycrystalline materials with grain sizes less than 100 nm look at the atomic scale? A large-scale molecular dynamics simulation of nanocrystalline alluminium reveals some surprising behaviour.......How does plastic deformation of polycrystalline materials with grain sizes less than 100 nm look at the atomic scale? A large-scale molecular dynamics simulation of nanocrystalline alluminium reveals some surprising behaviour....

  15. Biocide Usage in Plastic Products

    OpenAIRE

    Kavak, Nergizhan; Çakır, Ayşegül; Koltuk, Fatmagül; Uzun, Utku

    2015-01-01

    People’s demand of improving their life quality caused to the term of hygiene become popular and increased the tendency to use more reliable and healthy products. This tendency makes the continuous developments in the properties of the materials used in manufactured goods compulsory. It is possible to create anti-bacterial plastic products by adding biocidal additives to plastic materials which have a wide-range of application in the areas such as health (medicine), food and many other indust...

  16. Interhemispheric plasticity in humans.

    Science.gov (United States)

    Hortobágyi, Tibor; Richardson, Sarah Pirio; Lomarev, Mikhael; Shamim, Ejaz; Meunier, Sabine; Russman, Heike; Dang, Nguyet; Hallett, Mark

    2011-07-01

    Chronic unimanual motor practice increases the motor output not only in the trained but also in the nonexercised homologous muscle in the opposite limb. We examined the hypothesis that adaptations in motor cortical excitability of the nontrained primary motor cortex (iM1) and in interhemispheric inhibition from the trained to the nontrained M1 mediate this interlimb cross education. Healthy, young volunteers (n=12) performed 1000 submaximal voluntary contractions (MVC) of the right first dorsal interosseus (FDI) at 80% MVC during 20 sessions. Trained FDI's MVC increased 49.9%, and the untrained FDI's MVC increased 28.1%. Although corticospinal excitability in iM1, measured with transcranial magnetic stimulation (TMS) before and after every fifth session, increased 6% at rest, these changes, as those in intracortical inhibition and facilitation, did not correlate with cross education. When weak and strong TMS of iM1 were delivered on a background of a weak and strong muscle contraction, respectively, of the right FDI, excitability of iM1 increased dramatically after 20 sessions. Interhemispheric inhibition decreased 8.9% acutely within sessions and 30.9% chronically during 20 sessions and these chronic reductions progressively became more strongly associated with cross education. There were no changes in force or TMS measures in the trained group's left abductor minimi digiti and there were no changes in the nonexercising control group (n=8). The findings provide the first evidence for plasticity of interhemispheric connections to mediate cross education produced by a simple motor task.

  17. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain.

    Science.gov (United States)

    Mattsson, Karin; Johnson, Elyse V; Malmendal, Anders; Linse, Sara; Hansson, Lars-Anders; Cedervall, Tommy

    2017-09-13

    The tremendous increases in production of plastic materials has led to an accumulation of plastic pollution worldwide. Many studies have addressed the physical effects of large-sized plastics on organisms, whereas few have focused on plastic nanoparticles, despite their distinct chemical, physical and mechanical properties. Hence our understanding of their effects on ecosystem function, behaviour and metabolism of organisms remains elusive. Here we demonstrate that plastic nanoparticles reduce survival of aquatic zooplankton and penetrate the blood-to-brain barrier in fish and cause behavioural disorders. Hence, for the first time, we uncover direct interactions between plastic nanoparticles and brain tissue, which is the likely mechanism behind the observed behavioural disorders in the top consumer. In a broader perspective, our findings demonstrate that plastic nanoparticles are transferred up through a food chain, enter the brain of the top consumer and affect its behaviour, thereby severely disrupting the function of natural ecosystems.

  18. Phenotypic plasticity as an adaptive response to predictable and unpredictable environmental changes

    DEFF Research Database (Denmark)

    Manenti, Tommaso

    Phenotypic plasticity is the ability of a genotype to modify its phenotype in response to environmental changes as a consequence of an interaction between genes and environment (Bradshaw, 1965). Plasticity contributes to the vast phenotypic variation observed in natural populations. Many examples...... of a plastic response are expected to depend on the environmental conditions experienced by organisms. Thus, in populations exposed to a non-changing environment, the plastic machinery might be a waste of resources. Contrary, in populations experiencing varying environmental conditions, plasticity is expected...... such as anti-predator behaviours or the activation of mechanisms to prevent thermal stress injuries suggest that plasticity is an adaptive response, favoured by natural selection. At the same time, organisms do show limited plastic responses, indicating that this ability is not for free. Costs and benefits...

  19. Plastic ingestion in aquatic-associated bird species in southern Portugal.

    Science.gov (United States)

    Nicastro, Katy R; Lo Savio, Roberto; McQuaid, Christopher D; Madeira, Pedro; Valbusa, Ugo; Azevedo, Fábia; Casero, Maria; Lourenço, Carla; Zardi, Gerardo I

    2018-01-01

    Excessive use of plastics in daily life and the inappropriate disposal of plastic products are severely affecting wildlife species in both coastal and aquatic environments. Birds are top-predators, exposed to all threats affecting their environments, making them ideal sentinel organisms for monitoring ecosystems change. We set a baseline assessment of the prevalence of marine plastic litter affecting multi-species populations of aquatic birds in southern Portugal. By examining 160 stomach contents from 8 species of aquatic birds, we show that 22.5% were affected by plastic debris. Plastic was found in Ciconia ciconia, Larus fuscus and L. michahellis. Ciconia ciconia ingested the highest amount (number of items and total mass) of plastic debris. Polydimethylsiloxane (PDMS, silicones) was the most abundant polymer and was recorded only in C. ciconia. Plastic ingestion baseline data are of crucial importance to evaluate changes through time and among regions and to define management and conservation strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Determination of inorganic component in plastics by neutron activation analysis

    International Nuclear Information System (INIS)

    Mateus, Sandra Fonseca; Saiki, Mitiko

    1995-01-01

    In order to identify possible sources of heavy metals in municipal solid waste incinerator ashes, plastic materials originated mainly from household waste were analyzed by using instrumental neutron activation analysis method. Plastic samples and synthetic standards of elements were irradiated at the IEA-R1 nuclear reactor for 8 h under thermal neutron flux of about 10 13 n cm -2 s -1 . After adequate decay time, counting were carried out using a hyperpure Ge detector and the concentrations of the elements As, Ba, Br, Cd, Co, Cr, Fe, Sb, Sc, Se, Sn, Ti and Zn were determined. For some samples, not all these elements were detected. Besides, the range of concentrations determined in similar type and colored samples varied from a few ppb to percentage. In general, colored and opaque plastic samples presented higher concentrations of the elements than those obtained from transparent and milky plastics. Precision of the results was also evaluated. (author). 3 refs., 2 tabs

  1. ARE PLASTIC GROCERY BAGS SACKING THE ENVIRONMENT?

    OpenAIRE

    Mangal Gogte

    2009-01-01

    This paper is oriented on analysis impacts of plastic bags on environment. In this paper is analyzed did plastic bags are so harmful, and what are the main ingredients of it. One part of this paper is oriented on effects of plastic bags and management of their usage. There is also made comparative analysis between impacts of plastic and paper bags on environment.

  2. Experiments with elasto-plastic oscillator

    DEFF Research Database (Denmark)

    Randrup-thomsen, Søren; Ditlevsen, Ove Dalager

    1996-01-01

    Plastic displacements of a Gaussian white noise excited three degrees of freedom non-ideal elasto-plastic oscillator are measured in laboratory experiments and the plastic displacements are compared to computer simulated results for the corresponding ideal elasto-plastic oscillator. The comparative...

  3. Experiments with elasto-plastic oscillator

    DEFF Research Database (Denmark)

    Randrup-Thomsen, S.; Ditlevsen, Ove Dalager

    1999-01-01

    Plastic displacements of a Gaussian white noise excited three degrees of freedom non-ideal elasto-plastic oscillator are measured in laboratory experiments and the plastic displacements are compared to computer simulated results for the corresponding ideal elasto-plastic oscillator. The comparative...

  4. Modulation of synaptic plasticity by stress hormone associates with plastic alteration of synaptic NMDA receptor in the adult hippocampus.

    Directory of Open Access Journals (Sweden)

    Yiu Chung Tse

    Full Text Available Stress exerts a profound impact on learning and memory, in part, through the actions of adrenal corticosterone (CORT on synaptic plasticity, a cellular model of learning and memory. Increasing findings suggest that CORT exerts its impact on synaptic plasticity by altering the functional properties of glutamate receptors, which include changes in the motility and function of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype of glutamate receptor (AMPAR that are responsible for the expression of synaptic plasticity. Here we provide evidence that CORT could also regulate synaptic plasticity by modulating the function of synaptic N-methyl-D-aspartate receptors (NMDARs, which mediate the induction of synaptic plasticity. We found that stress level CORT applied to adult rat hippocampal slices potentiated evoked NMDAR-mediated synaptic responses within 30 min. Surprisingly, following this fast-onset change, we observed a slow-onset (>1 hour after termination of CORT exposure increase in synaptic expression of GluN2A-containing NMDARs. To investigate the consequences of the distinct fast- and slow-onset modulation of NMDARs for synaptic plasticity, we examined the formation of long-term potentiation (LTP and long-term depression (LTD within relevant time windows. Paralleling the increased NMDAR function, both LTP and LTD were facilitated during CORT treatment. However, 1-2 hours after CORT treatment when synaptic expression of GluN2A-containing NMDARs is increased, bidirectional plasticity was no longer facilitated. Our findings reveal the remarkable plasticity of NMDARs in the adult hippocampus in response to CORT. CORT-mediated slow-onset increase in GluN2A in hippocampal synapses could be a homeostatic mechanism to normalize synaptic plasticity following fast-onset stress-induced facilitation.

  5. The radiation resistance of thermoset plastics. Pt. 3

    International Nuclear Information System (INIS)

    Pauly, S.

    1992-01-01

    For the interpretation of the results of long term irradiation experiments in the presence of air it is necessary to know about the penetration of oxygen into the plastic material in the course of time. Therefore the oxygen permeability of two thermoset plastics (made from two unsaturated polyester resin thermosetting moulding compounds) was measured in the temperature range 20-60 o C. For the Typ 802, the following data were generated at 23 o C: permeability coefficient P = 3.08 x 10 -15 cm 3 . cm/cm 2 .s.Pa, diffusion coefficient D = 1.03 x 10 -8 cm 2 /s, solubility coefficient S = 3.00 x 10 -7 cm 3 /cm 3 .Pa. The permeability of two thermoset phenol-formaldehyde plastics and one melamine-formaldehyde plastic was found to be immeasurably small, i.e. P -17 cm 3 .cm/cm 2 .s.Pa at 60 o C. For discs of 4 mm thickness made from the polyester plastics, oxygen concentration profiles were calculated which are built up in the course of time during storage in air at 23 o C. For both other materials the profiles were estimated by assuming P = 3 x 10 -17 at 60 o C and the activation energy and the solubility being the same as in the case of polyester plastics. (author)

  6. Fontan-associated protein-losing enteropathy and plastic bronchitis.

    Science.gov (United States)

    Schumacher, Kurt R; Stringer, Kathleen A; Donohue, Janet E; Yu, Sunkyung; Shaver, Ashley; Caruthers, Regine L; Zikmund-Fisher, Brian J; Fifer, Carlen; Goldberg, Caren; Russell, Mark W

    2015-04-01

    To characterize the medical history, disease progression, and treatment of current-era patients with the rare diseases Fontan-associated protein-losing enteropathy (PLE) and plastic bronchitis. A novel survey that queried demographics, medical details, and treatment information was piloted and placed online via a Facebook portal, allowing social media to power the study. Participation regardless of PLE or plastic bronchitis diagnosis was allowed. Case control analyses compared patients with PLE and plastic bronchitis with uncomplicated control patients receiving the Fontan procedure. The survey was completed by 671 subjects, including 76 with PLE, 46 with plastic bronchitis, and 7 with both. Median PLE diagnosis was 2.5 years post-Fontan. Hospitalization for PLE occurred in 71% with 41% hospitalized ≥ 3 times. Therapy varied significantly. Patients with PLE more commonly had hypoplastic left ventricle (62% vs 44% control; OR 2.81, 95% CI 1.43-5.53), chylothorax (66% vs 41%; OR 2.96, CI 1.65-5.31), and cardiothoracic surgery in addition to staged palliation (17% vs 5%; OR 4.27, CI 1.63-11.20). Median plastic bronchitis diagnosis was 2 years post-Fontan. Hospitalization for plastic bronchitis occurred in 91% with 61% hospitalized ≥ 3 times. Therapy was very diverse. Patients with plastic bronchitis more commonly had chylothorax at any surgery (72% vs 51%; OR 2.47, CI 1.20-5.08) and seasonal allergies (52% vs 36%; OR 1.98, CI 1.01-3.89). Patient-specific factors are associated with diagnoses of PLE or plastic bronchitis. Treatment strategies are diverse without clear patterns. These results provide a foundation upon which to design future therapeutic studies and identify a clear need for forming consensus approaches to treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Neural plasticity lessons from disorders of consciousness

    Directory of Open Access Journals (Sweden)

    Athena eDemertzi

    2011-02-01

    Full Text Available Communication and intentional behavior are supported by the brain’s integrity at a structural and a functional level. When widespread loss of cerebral connectivity is brought about as a result of a severe brain injury, in many cases patients are not capable of conscious interactive behavior and are said to suffer from disorders of consciousness (e.g., coma, vegetative state /unresponsive wakefulness syndrome, minimally conscious states. This lesion paradigm has offered not only clinical insights, as how to improve diagnosis, prognosis and treatment, but also put forward scientific opportunities to study the brain’s plastic abilities. We here review interventional and observational studies performed in severely brain-injured patients with regards to recovery of consciousness. The study of the recovered conscious brain (spontaneous and/or after surgical or pharmacologic interventions, suggests a link between some specific brain areas and the capacity of the brain to sustain conscious experience, challenging at the same time the notion of fixed temporal boundaries in rehabilitative processes. Altered functional connectivity, cerebral structural reorganization as well as behavioral amelioration after invasive treatments will be discussed as the main indices for plasticity in these challenging patients. The study of patients with chronic disorders of consciousness may, thus, provide further insights not only at a clinical level (i.e., medical management and rehabilitation but also from a scientific-theoretical perspective (i.e., the brain’s plastic abilities and the pursuit of the neural correlate of consciousness.

  8. [Tobacco and plastic surgery: An absolute contraindication?

    Science.gov (United States)

    Matusiak, C; De Runz, A; Maschino, H; Brix, M; Simon, E; Claudot, F

    2017-08-01

    Smoking increases perioperative risk regarding wound healing, infection rate and failure of microsurgical procedures. There is no present consensus about plastic and aesthetic surgical indications concerning smoking patients. The aim of our study is to analyze French plastic surgeons practices concerning smokers. A questionnaire was send by e-mail to French plastic surgeons in order to evaluate their own operative indications: patient information about smoking dangers, pre- and postoperative delay of smoking cessation, type of intervention carried out, smoking cessation supports, use of screening test and smoking limit associated to surgery refusing were studied. Statistical tests were used to compare results according to practitioner activity (liberal or public), own smoking habits and time of installation. In 148 questionnaires, only one surgeon did not explain smoking risk. Of the surgeons, 49.3% proposed smoking-cessation supports, more frequently with public practice (P=0.019). In total, 85.4% of surgeons did not use screening tests. Years of installation affected operative indication with smoking patients (P=0.02). Pre- and postoperative smoking cessation delay were on average respectively 4 and 3 weeks in accordance with literature. Potential improvements could be proposed to smoking patients' care: smoking cessation assistance, screening tests, absolute contraindication of some procedures or level of consumption to determine. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. From waste plastics to industrial raw materials: A life cycle assessment of mechanical plastic recycling practice based on a real-world case study.

    Science.gov (United States)

    Gu, Fu; Guo, Jianfeng; Zhang, Wujie; Summers, Peter A; Hall, Philip

    2017-12-01

    Mechanical recycling of waste plastics is an environmental solution to the problem of waste plastic disposal, and has already become a common practice in industry. However, limited information can be found on either the industralised plastic recycling or the recycled materials, despite the use of recycled plastics has already extended to automobile production. This study investigates the life cycle environmental impacts of mechanical plastic recycling practice of a plastic recycling company in China. Waste plastics from various sources, such as agricultural wastes, plastic product manufacturers, collected solid plastic wastes and parts dismantled from waste electric and electronic equipments, are processed in three routes with products end up in different markets. The results of life cycle assessments show that the extrusion process has the largest environmental impacts, followed by the use of fillers and additives. Compared to production of virgin plastics and composites, the mechanical recycling is proved to be a superior alternative in most environmental aspects. Substituting virgin plastic composites with recycled plastic composites has achieved the highest environmental benefits, as virgin composite production has an impact almost 4 times higher that of the recycled composite production in each ReCiPe endpoint damage factor. Sensitivity analysis shows that the coverage of collecting network contribute affect little to overall environmental impact, and centralisation plays an important role in reducing overall environmental impacts. Among the fillers and additives, impact modifiers account for the most significant contributions to the environmental impacts of recycled composites. This study provides necessary information about the existing industrialised plastic recycling practice, and recommendations are given. Research implications are presented with the purpose to achieve higher substitution rate and lower environmental impact. Copyright © 2017 Elsevier B

  10. Methodology for plastic fracture. A progress report

    International Nuclear Information System (INIS)

    Wilkinson, J.P.D.; Hahn, G.T.; Smith, R.E.E.

    1977-01-01

    The initiation and growth of flaws in pressure vessels under overload conditions is distinguished by a number of unique features, such as large scale yielding, three-dimensional structural and flaw configurations, and failure instabilities that may be controlled by either toughness or plastic flow. In order to develop a broadly applicable methodology of plastic fracture, these features require the following analytical and experimental studies: development of criteria for crack initiation and growth under large scale yielding; the use of the finite element method to describe elastic-plastic behavior of both the structure and the crack tip region; and extensive experimental studies on laboratory scale and large scale specimens, which attempt to reproduce the pertinent plastic flow and crack growth phenomena. A variety of candidate criteria for crack initiation and growth are examined. For the case of crack initiation, these criteria include the J-integral, crack opening displacement, and strain amplitude. In the case of crack growth, the criteria examined include in addition the strain amplitude at the crack tip, work done in a crack tip process zone, and a generalized energy release-rate approach. Each test specimen configuration is analyzed through the finite element method in order to predict its experimental behavior. Specimens include the compact tension specimen and center cracked panels. The basic materials used in the program are a single heat of reactor grade A533 Grade B Class 1 steel, purchased in the form of a plate of size 4.5 m (178 in.) square and 0.2 m (8 in.) thick, and two alloys with yield strength-to-roughness ratios about five times

  11. Plastic zonder olie : lesmodule voor nieuwe scheikunde

    OpenAIRE

    Langejan, B.; Klein Douwel, C.; Horst, ter, J.J.; Tijdink, K.; Marle, van, N.; Klaasen, P.; Coolen, R.; Assenbergh, van, P.; Sijbers, J.P.J.; Mast, A.

    2013-01-01

    Lesmodule voor nieuwe scheikunde voor leerlingen uit 5 en 6 vwo. Bioplastics worden gemaakt uit natuurlijke grondstoffen. Als ze de synthetische plastics vervangen kan de voorraad aardolie ontzien worden. Omdat veel bioplastics afbreekbaar zijn, kan ook de berg plastic afval krimpen. Maar zijn bioplastics in staat om ons de reguliere plastics te doen vergeten? Hoe maken we bioplastics met dezelfde veelzijdige eigenschappen als plastic? Waar komen de uiteenlopende eigenschappen van plastics ei...

  12. Elimination of Plastic Polymers in Natural Environments

    OpenAIRE

    Ramirez-Ekner, Sofia; Bidstrup, Marie Juliane Svea; Brusen, Nicklas Hald; Rugaard-Morgan, Zsa-Zsa Sophie Oona Ophelia

    2017-01-01

    Plastic production and consumption continues to rise and subsequently plastic waste continues to accumulates in natural environments, causing harm to ecosystems.The aim of this paper was to come up with a way to utilize organisms, that have been identified to produce plastic degrading enzymes, as a waste disposal technology. This review includes accounts of plastic production rates, the occurrence of plastic in natural environments and the current waste management systems to create an underst...

  13. Relating plastic in the ocean to ecological harm, a review of recent progress in risk analysis

    Science.gov (United States)

    Schuyler, Q. A.; Hardesty, B. D.; Wilcox, C.; van Sebille, E.; Mallos, N. J.; Leonard, G. H.

    2016-02-01

    Plastic pollution in the ocean is emerging as a global environmental concern. Estimates suggest that we dump on the order of 8.4 million tons of plastic in the ocean each year. This plastic reaches substantial concentrations, with at sea sampling measuring densities over 580,000 items per square kilometer. However, it is difficult to relate this exposure to resulting ecological impacts. Animals dying due to plastic ingestion or entanglement may not was ahsore, and sampling at sea is expensive and infrequent. Thus demonstrating a direct relationship between plastic in the envioronment and harm to marine wildlife is challenging. Here we review current progress on risk assessment for impacts to marine wildlife from plastic pollution. The analyses we review range from expert elicitation to integrated statistical and physical models. They range widely in scope, from estimates at the individual level to who taxa analysis. Some of the analyses reach only to exposure to the pressure, whie others carry through to estimate demographic impacts and even mortality due to ingestion of or entanglement in plastic debris in the ocean. We summarize the results of these studies, and provide a roadmap for future contributions toward estimating the actual ecological impact of plastic pollution.

  14. Northern fulmars as biological monitors of trends of plastic pollution in the eastern North Pacific.

    Science.gov (United States)

    Avery-Gomm, Stephanie; O'Hara, Patrick D; Kleine, Lydia; Bowes, Victoria; Wilson, Laurie K; Barry, Karen L

    2012-09-01

    Marine plastic debris is a global issue, which highlights the need for internationally standardized methods of monitoring plastic pollution. The stomach contents of beached northern fulmar (Fulmarus glacialis) have proven a cost-effective biomonitor in Europe. However, recent information on northern fulmar plastic ingestion is lacking in the North Pacific. We quantified the stomach contents of 67 fulmars from beaches in the eastern North Pacific in 2009-2010 and found that 92.5% of fulmars had ingested an average of 36.8 pieces, or 0.385 g of plastic. Plastic ingestion in these fulmars is among the highest recorded globally. Compared to earlier studies in the North Pacific, our findings indicate an increase in plastic ingestion over the past 40 years. This study substantiates the use of northern fulmar as biomonitors of plastic pollution in the North Pacific and suggests that the high levels of plastic pollution in this region warrant further monitoring. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Production low cost plastic scintillator by using commercial polystyrene

    International Nuclear Information System (INIS)

    2011-01-01

    Plastic Scintillators can be described as solid materials which contain organic fluorescent compounds dissolved within a polymer matrix. Transparent plastics commonly used for light scintillation are Polystyrene (or PS, poly-vinyl-benzene) and polyvinyl-toluene (or PVT, poly-methyl-styron). By changing the composition of plastic Scintillators some features such as light yield, radiation hardening, decay time etc. can be controlled. Plastic scintillation detectors have been used in nuclear and high energy physics for many decades. Among their benefits are fast response, ease of manufacture and versatility. Their main drawbacks are radiation resistance and cost. Many research projects have concentrated on improving the fundamental properties of plastic scintillators, but little attention has focussed on their cost and easier manufacturing techniques. First plastic Scintillators were produced in 1950's. Activities for production of low cost Scintillators accelerated in second half of 1970's. In 1975 acrylic based Plexipop Scintillator was developed. Despite its low cost, since its structure was not aromatic the light yield of Plexipop was about one quarter of classical Scintillators. Problems arising from slow response time and weak mechanical properties in scintillators developed, has not been solved until 1980. Within the last decade extrusion method became very popular in preparation of low cost and high quality plastic scintillators. In this activity, preliminary studies for low cost plastic scintillator production by using commercial polystyrene pellets and extrusion plus compression method were aimed. For this purpose, PS blocks consist of commercial fluorescent dopant were prepared in June 2008 by use of the extruder and pres in SANAEM. Molds suitable for accoupling to extruder were designed and manufactured and optimum production parameters such as extrusion temperature profile, extrusion rate and moulding pressure were obtained hence, PS Scintillator Blocks

  16. Avalanches and plastic flow in crystal plasticity: an overview

    Science.gov (United States)

    Papanikolaou, Stefanos; Cui, Yinan; Ghoniem, Nasr

    2018-01-01

    Crystal plasticity is mediated through dislocations, which form knotted configurations in a complex energy landscape. Once they disentangle and move, they may also be impeded by permanent obstacles with finite energy barriers or frustrating long-range interactions. The outcome of such complexity is the emergence of dislocation avalanches as the basic mechanism of plastic flow in solids at the nanoscale. While the deformation behavior of bulk materials appears smooth, a predictive model should clearly be based upon the character of these dislocation avalanches and their associated strain bursts. We provide here a comprehensive overview of experimental observations, theoretical models and computational approaches that have been developed to unravel the multiple aspects of dislocation avalanche physics and the phenomena leading to strain bursts in crystal plasticity.

  17. Advanced Large Area Plastic Scintillator Project (ALPS): Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V.; Reeder, Paul L.; Todd, Lindsay C.; Warren, Glen A.; McCormick, Kathleen R.; Stephens, Daniel L.; Geelhood, Bruce D.; Alzheimer, James M.; Crowell, Shannon L.; Sliger, William A.

    2008-02-05

    The advanced Large-Area Plastic Scintillator (ALPS) Project at Pacific Northwest National Laboratory investigated possible technological avenues for substantially advancing the state-of-the-art in gamma-ray detection via large-area plastic scintillators. The three predominant themes of these investigations comprised the following: * Maximizing light collection efficiency from a single large-area sheet of plastic scintillator, and optimizing hardware event trigger definition to retain detection efficiency while exploiting the power of coincidence to suppress single-PMT "dark current" background; * Utilizing anti-Compton vetoing and supplementary spectral information from a co-located secondary, or "Back" detector, to both (1) minimize Compton background in the low-energy portion of the "Front" scintillator's pulse-height spectrum, and (2) sharpen the statistical accuracy of the front detector's low-energy response prediction as impelmented in suitable energy-windowing algorithms; and * Investigating alternative materials to enhance the intrinsic gamma-ray detection efficiency of plastic-based sensors.

  18. Hydrogen-Induced Plastic Deformation in ZnO

    Science.gov (United States)

    Lukáč, F.; Čížek, J.; Vlček, M.; Procházka, I.; Anwand, W.; Brauer, G.; Traeger, F.; Rogalla, D.; Becker, H.-W.

    In the present work hydrothermally grown ZnO single crystals covered with Pd over-layer were electrochemically loaded with hydrogen and the influence of hydrogen on ZnO micro structure was investigated by positron annihilation spectroscopy (PAS). Nuclear reaction analysis (NRA) was employed for determination of depth profile of hydrogen concentration in the sample. NRA measurements confirmed that a substantial amount of hydrogen was introduced into ZnO by electrochemical charging. The bulk hydrogen concentration in ZnO determined by NRA agrees well with the concentration estimated from the transported charge using the Faraday's law. Moreover, a subsurface region with enhanced hydrogen concentration was found in the loaded crystals. Slow positron implantation spectroscopy (SPIS) investigations of hydrogen-loaded crystal revealed enhanced concentration of defects in the subsurface region. This testifies hydrogen-induced plastic deformation of the loaded crystal. Absorbed hydrogen causes a significant lattice expansion. At low hydrogen concentrations this expansion is accommodated by elastic straining, but at higher concentrations hydrogen-induced stress exceeds the yield stress in ZnO and plastic deformation of the loaded crystal takes place. Enhanced hydrogen concentration detected in the subsurface region by NRA is, therefore, due to excess hydrogen trapped at open volume defects introduced by plastic deformation. Moreover, it was found that hydrogen-induced plastic deformation in the subsurface layer leads to typical surface modification: formation of hexagonal shape pyramids on the surface due to hydrogen-induced slip in the [0001] direction.

  19. Advanced Large Area Plastic Scintillator Project (ALPS): Final Report

    International Nuclear Information System (INIS)

    Jordan, David V.; Reeder, Paul L.; Todd, Lindsay C.; Warren, Glen A.; McCormick, Kathleen R.; Stephens, Daniel L.; Geelhood, Bruce D.; Alzheimer, James M.; Crowell, Shannon L.; Sliger, William A.

    2008-01-01

    The advanced Large-Area Plastic Scintillator (ALPS) Project at Pacific Northwest National Laboratory investigated possible technological avenues for substantially advancing the state-of-the-art in gamma-ray detection via large-area plastic scintillators. The three predominant themes of these investigations comprised the following: * Maximizing light collection efficiency from a single large-area sheet of plastic scintillator, and optimizing hardware event trigger definition to retain detection efficiency while exploiting the power of coincidence to suppress single-PMT 'dark current' background; * Utilizing anti-Compton vetoing and supplementary spectral information from a co-located secondary, or 'Back' detector, to both (1) minimize Compton background in the low-energy portion of the 'Front' scintillator's pulse-height spectrum, and (2) sharpen the statistical accuracy of the front detector's low-energy response prediction as implemented in suitable energy-windowing algorithms; and * Investigating alternative materials to enhance the intrinsic gamma-ray detection efficiency of plastic-based sensors

  20. Elasto/visco-plastic dynamic response of shells of revolution

    International Nuclear Information System (INIS)

    Takezono, S.; Tao, K.

    1977-01-01

    The authors study the large deflection elasto/visco-plastic dynamic response of shells of revolution to strong blast loads, where the viscosity of the material is considered in the plastic range. The equations of motion and the relations between the strain and the displacement are derived from the Sanders nonlinear theory for thin shells. The constitutive relation for shell response is linear elastic, visco-plastic. In the linear elastic range Hooke's law is used. In the plastic range the elasto/visco-plastic equations by Fyfe based on the model developed by Perzyna are employed. The criterion for yielding used in this analysis is the von Mises yield theory. The numerical method selected for integration of the equations of motion is a method using finite difference in both space and time. The differential equations are written in finite difference form on the basis of the parabola method. For the time integration of the equations of motion the second-order finite difference in time is used. The equations of motion are thus expressed in finite difference form if we divide the shell into segments along meridional length and around the circumference. Resultant forces and resultant moments are given from numerical integration by Simpson's 1/3 rule. The loadings which are considered in this paper may be either impulsive or of finite time duration. (Auth.)

  1. Plasticity characteristic obtained by indentation

    International Nuclear Information System (INIS)

    Milman, Yu V

    2008-01-01

    A dimensionless parameter δ H = ε p /ε t (where ε p and ε t are the average values of plastic and total deformation of material on the contact area indenter-specimen) may be used as the plasticity characteristic of materials, which made it possible to characterize the plasticity of materials that are brittle in standard mechanical tests. δ H may be calculated from the values of microhardness HM, Young's modulus E and Poisson's ratio ν. In instrumented indentation the plasticity characteristic δ A = A p /A t (A p and A t are the work of plastic and total deformation during indentation) may be calculated. δ A ∼ δ H for materials with δ H > 0.5, i.e. for all metals and the majority of ceramic materials. In this case, the theoretical equation δ A ∼ δ H = 1-10.2 · (1 - ν - 2ν 2 )(HM/E) is satisfied in experiments with the Berkovich indenter. The influence of the temperature and structural parameters (dislocation density and grain size including nanostructured materials) on δ H is discussed

  2. Mechanisms of GABAergic Homeostatic Plasticity

    Directory of Open Access Journals (Sweden)

    Peter Wenner

    2011-01-01

    Full Text Available Homeostatic plasticity ensures that appropriate levels of activity are maintained through compensatory adjustments in synaptic strength and cellular excitability. For instance, excitatory glutamatergic synapses are strengthened following activity blockade and weakened following increases in spiking activity. This form of plasticity has been described in a wide array of networks at several different stages of development, but most work and reviews have focussed on the excitatory inputs of excitatory neurons. Here we review homeostatic plasticity of GABAergic neurons and their synaptic connections. We propose a simplistic model for homeostatic plasticity of GABAergic components of the circuitry (GABAergic synapses onto excitatory neurons, excitatory connections onto GABAergic neurons, cellular excitability of GABAergic neurons: following chronic activity blockade there is a weakening of GABAergic inhibition, and following chronic increases in network activity there is a strengthening of GABAergic inhibition. Previous work on GABAergic homeostatic plasticity supports certain aspects of the model, but it is clear that the model cannot fully account for some results which do not appear to fit any simplistic rule. We consider potential reasons for these discrepancies.

  3. Plastic evolution behavior of H340LAD-Z steel by an optical method

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Nan; Liang, Jin; Yu, Qiang; Qian, Boxing

    2017-02-01

    An optical method based on digital image correlation (DIC) technology was proposed to measure the plastic evolution of the high-strength low alloy steel H340LAD-Z. The basic principle of DIC technology is introduced, and then, the use of a 3D deformation measurement system and electronic universal testing machine to dynamically measure plastic evolution during the tensile yield stage is described. Through the full-field full-process measurement of plastic deformation during the yield stage in the 0°, 45° and 90° loading directions, the plastic evolution law was revealed. The results demonstrate that the proposed 3D DIC method can accurately reveal the starting and ending times for plastic evolution. The specimens in the three directions exhibit different plastic evolution behaviors, although they have similar yield strengths and yield times. The specimens in the 45° and 90° loading directions began to enter plastic deformation from bottom to top and the plastic area was maintained in a constant deformed state, while the evolution behavior in the 0° direction transited from both sides to the middle and plastic deformation was uneven. It is important to study plastic evolution of a metal sheet to determine the material properties and to provide an accurate basis for finite element modeling.

  4. Plastic evolution behavior of H340LAD-Z steel by an optical method

    International Nuclear Information System (INIS)

    Guo, Nan; Liang, Jin; Yu, Qiang; Qian, Boxing

    2017-01-01

    An optical method based on digital image correlation (DIC) technology was proposed to measure the plastic evolution of the high-strength low alloy steel H340LAD-Z. The basic principle of DIC technology is introduced, and then, the use of a 3D deformation measurement system and electronic universal testing machine to dynamically measure plastic evolution during the tensile yield stage is described. Through the full-field full-process measurement of plastic deformation during the yield stage in the 0°, 45° and 90° loading directions, the plastic evolution law was revealed. The results demonstrate that the proposed 3D DIC method can accurately reveal the starting and ending times for plastic evolution. The specimens in the three directions exhibit different plastic evolution behaviors, although they have similar yield strengths and yield times. The specimens in the 45° and 90° loading directions began to enter plastic deformation from bottom to top and the plastic area was maintained in a constant deformed state, while the evolution behavior in the 0° direction transited from both sides to the middle and plastic deformation was uneven. It is important to study plastic evolution of a metal sheet to determine the material properties and to provide an accurate basis for finite element modeling.

  5. Distribution and Modeled Transport of Plastic Pollution in the Great Lakes, the World's Largest Freshwater Resource

    Directory of Open Access Journals (Sweden)

    Rachel N. Cable

    2017-07-01

    Full Text Available Most plastic pollution originates on land. As such, freshwater bodies serve as conduits for the transport of plastic litter to the ocean. Understanding the concentrations and fluxes of plastic litter in freshwater ecosystems is critical to our understanding of the global plastic litter budget and underpins the success of future management strategies. We conducted a replicated field survey of surface plastic concentrations in four lakes in the North American Great Lakes system, the largest contiguous freshwater system on the planet. We then modeled plastic transport to resolve spatial and temporal variability of plastic distribution in one of the Great Lakes, Lake Erie. Triplicate surface samples were collected at 38 stations in mid-summer of 2014. Plastic particles >106 μm in size were quantified. Concentrations were highest near populated urban areas and their water infrastructure. In the highest concentration trawl, nearly 2 million fragments km−2 were found in the Detroit River—dwarfing previous reports of Great Lakes plastic abundances by over 4-fold. Yet, the accuracy of single trawl counts was challenged: within-station plastic abundances varied 0- to 3-fold between replicate trawls. In the smallest size class (106–1,000 μm, false positive rates of 12–24% were determined analytically for plastic vs. non-plastic, while false negative rates averaged ~18%. Though predicted to form in summer by the existing Lake Erie circulation model, our transport model did not predict a permanent surface “Lake Erie Garbage Patch” in its central basin—a trend supported by field survey data. Rather, general eastward transport with recirculation in the major basins was predicted. Further, modeled plastic residence times were drastically influenced by plastic buoyancy. Neutrally buoyant plastics—those with the same density as the ambient water—were flushed several times slower than plastics floating at the water's surface and exceeded the

  6. Plastic Muscles TM as lightweight, low voltage actuators and sensors

    Science.gov (United States)

    Bennett, Matthew; Leo, Donald; Duncan, Andrew

    2008-03-01

    Using proprietary technology, Discover Technologies has developed ionomeric polymer transducers that are capable of long-term operation in air. These "Plastic Muscle TM" transducers are useful as soft distributed actuators and sensors and have a wide range of applications in the aerospace, robotics, automotive, electronics, and biomedical industries. Discover Technologies is developing novel fabrication methods that allow the Plastic Muscles TM to be manufactured on a commercial scale. The Plastic Muscle TM transducers are capable of generating more than 0.5% bending strain at a peak strain rate of over 0.1 %/s with a 3 V input. Because the Plastic Muscles TM use an ionic liquid as a replacement solvent for water, they are able to operate in air for long periods of time. Also, the Plastic Muscles TM do not exhibit the characteristic "back relaxation" phenomenon that is common in water-swollen devices. The elastic modulus of the Plastic Muscle TM transducers is estimated to be 200 MPa and the maximum generated stress is estimated to be 1 MPa. Based on these values, the maximum blocked force at the tip of a 6 mm wide, 35 mm long actuator is estimated to be 19 mN. Modeling of the step response with an exponential series reveals nonlinearity in the transducers' behavior.

  7. Variable Operative Experience in Hand Surgery for Plastic Surgery Residents.

    Science.gov (United States)

    Silvestre, Jason; Lin, Ines C; Levin, Lawrence Scott; Chang, Benjamin

    Efforts to standardize hand surgery training during plastic surgery residency remain challenging. We analyze the variability of operative hand experience at U.S. plastic surgery residency programs. Operative case logs of chief residents in accredited U.S. plastic surgery residency programs were analyzed (2011-2015). Trends in fold differences of hand surgery case volume between the 10th and 90th percentiles of residents were assessed graphically. Percentile data were used to calculate the number of residents achieving case minimums in hand surgery for 2015. Case logs from 818 plastic surgery residents were analyzed of which a minority were from integrated (35.7%) versus independent/combined (64.3%) residents. Trend analysis of fold differences in case volume demonstrated decreasing variability among procedure categories over time. By 2015, fold differences for hand reconstruction, tendon cases, nerve cases, arthroplasty/arthrodesis, amputation, arterial repair, Dupuytren release, and neoplasm cases were below 10-fold. Congenital deformity cases among independent/combined residents was the sole category that exceeded 10-fold by 2015. Percentile data suggested that approximately 10% of independent/combined residents did not meet case minimums for arterial repair and congenital deformity in 2015. Variable operative experience during plastic surgery residency may limit adequate exposure to hand surgery for certain residents. Future studies should establish empiric case minimums for plastic surgery residents to ensure hand surgery competency upon graduation. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  8. Neural plasticity and its initiating conditions in tinnitus.

    Science.gov (United States)

    Roberts, L E

    2018-03-01

    Deafferentation caused by cochlear pathology (which can be hidden from the audiogram) activates forms of neural plasticity in auditory pathways, generating tinnitus and its associated conditions including hyperacusis. This article discusses tinnitus mechanisms and suggests how these mechanisms may relate to those involved in normal auditory information processing. Research findings from animal models of tinnitus and from electromagnetic imaging of tinnitus patients are reviewed which pertain to the role of deafferentation and neural plasticity in tinnitus and hyperacusis. Auditory neurons compensate for deafferentation by increasing their input/output functions (gain) at multiple levels of the auditory system. Forms of homeostatic plasticity are believed to be responsible for this neural change, which increases the spontaneous and driven activity of neurons in central auditory structures in animals expressing behavioral evidence of tinnitus. Another tinnitus correlate, increased neural synchrony among the affected neurons, is forged by spike-timing-dependent neural plasticity in auditory pathways. Slow oscillations generated by bursting thalamic neurons verified in tinnitus animals appear to modulate neural plasticity in the cortex, integrating tinnitus neural activity with information in brain regions supporting memory, emotion, and consciousness which exhibit increased metabolic activity in tinnitus patients. The latter process may be induced by transient auditory events in normal processing but it persists in tinnitus, driven by phantom signals from the auditory pathway. Several tinnitus therapies attempt to suppress tinnitus through plasticity, but repeated sessions will likely be needed to prevent tinnitus activity from returning owing to deafferentation as its initiating condition.

  9. Preparation and characterization of a novel UV-curable plastic scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jun [Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042 (China); Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621010 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Ding, Yunyu [Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042 (China); Zhu, Jiayi [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Qi, Di [Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042 (China); Su, Ming [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Xu, Yewei; Bi, Yutie [Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621010 (China); Lin, Runxiong, E-mail: qdlrx@qust.edu.cn [Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042 (China); Zhang, Lin, E-mail: zhlmy@sina.com [Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621010 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-05-01

    A novel UV-curable plastic scintillator was first prepared by using the technology of photosensitivity rapid prototyping. It used the copolymer of 621A-80, TPGDA and styrene as the matrix doped with PPO and POPOP. Its fluorescence spectra displayed a maximum emission wavelength at 428 nm. The light yield of the plastic scintillator was approximately 7.1% of anthracene on the basis of a comparison with the commercially available scintillator (ST-401). The as-prepared plastic scintillator also displayed a fast scintillation decay. Its decay time is 2.6 ns approximately. Importantly, through the technology of photosensitivity rapid prototyping, the plastic scintillator could be prepared in a short period of time at low temperature. What's more, this preparation method provides the possibility of combining the plastic scintillator with 3D printing technology, and then the applications of the plastic scintillator may be expanded greatly.

  10. Exercise and plasticize the brain

    DEFF Research Database (Denmark)

    Mala, Hana; Wilms, Inge

    Neuroscientific studies continue to shed light on brain’s plasticity and its innate mechanisms to recover. The recovery process includes re-wiring of the existing circuitry, establishment of new connections, and recruitment of peri-lesional and homologous areas in the opposite hemisphere....... The plasticity of the brain can be stimulated and enhanced through training, which serves as a fundamental element of neurorehabilitative strategies. For instance, intensive cognitive and physical training promote the activation of processes that may help the brain to adapt to new conditions and needs. However...... neurorehabilitation is to understand and define how to stimulate the injured brain to elicit the desired adaptation. Research focuses on uncovering specific elements relevant for training planning and execution in order to create an environment that stimulates and maximizes the exploitation of the brain’s plastic...

  11. Surface properties of beached plastics.

    Science.gov (United States)

    Fotopoulou, Kalliopi N; Karapanagioti, Hrissi K

    2015-07-01

    Studying plastic characteristics in the marine environment is important to better understand interaction between plastics and the environment. In the present study, high-density polyethylene (HDPE), polyethylene terephalate (PET), and polyvinyl chloride (PVC) samples were collected from the coastal environment in order to study their surface properties. Surface properties such as surface functional groups, surface topography, point of zero charge, and color change are important factors that change during degradation. Eroded HDPE demonstrated an altered surface topography and color and new functional groups. Eroded PET surface was uneven, yellow, and occasionally, colonized by microbes. A decrease in Fourier transform infrared (FTIR) peaks was observed for eroded PET suggesting that degradation had occurred. For eroded PVC, its surface became more lamellar and a new FTIR peak was observed. These surface properties were obtained due to degradation and could be used to explain the interaction between plastics, microbes, and pollutants.

  12. Plastic solidification of radioactive wastes

    International Nuclear Information System (INIS)

    Moriyama, Noboru

    1981-01-01

    Over 20 years have elapsed after the start of nuclear power development, and the nuclear power generation in Japan now exceeds the level of 10,000 MW. In order to meet the energy demands, the problem of the treatment and disposal of radioactive wastes produced in nuclear power stations must be solved. The purpose of the plastic solidification of such wastes is to immobilize the contained radionuclides, same as other solidification methods, to provide the first barrier against their move into the environment. The following matters are described: the nuclear power generation in Japan, the radioactive wastes from LWR plants, the position of plastic solidification, the status of plastic solidification in overseas countries and in Japan, the solidification process for radioactive wastes with polyethylene, and the properties of solidified products, and the leachability of radionuclides in asphalt solids. (J.P.N.)

  13. Adaptive plasticity in wild field cricket's acoustic signaling.

    Directory of Open Access Journals (Sweden)

    Susan M Bertram

    Full Text Available Phenotypic plasticity can be adaptive when phenotypes are closely matched to changes in the environment. In crickets, rhythmic fluctuations in the biotic and abiotic environment regularly result in diel rhythms in density of sexually active individuals. Given that density strongly influences the intensity of sexual selection, we asked whether crickets exhibit plasticity in signaling behavior that aligns with these rhythmic fluctuations in the socio-sexual environment. We quantified the acoustic mate signaling behavior of wild-caught males of two cricket species, Gryllus veletis and G. pennsylvanicus. Crickets exhibited phenotypically plastic mate signaling behavior, with most males signaling more often and more attractively during the times of day when mating activity is highest in the wild. Most male G. pennsylvanicus chirped more often and louder, with shorter interpulse durations, pulse periods, chirp durations, and interchirp durations, and at slightly higher carrier frequencies during the time of the day that mating activity is highest in the wild. Similarly, most male G. veletis chirped more often, with more pulses per chirp, longer interpulse durations, pulse periods, and chirp durations, shorter interchirp durations, and at lower carrier frequencies during the time of peak mating activity in the wild. Among-male variation in signaling plasticity was high, with some males signaling in an apparently maladaptive manner. Body size explained some of the among-male variation in G. pennsylvanicus plasticity but not G. veletis plasticity. Overall, our findings suggest that crickets exhibit phenotypically plastic mate attraction signals that closely match the fluctuating socio-sexual context they experience.

  14. Constraints on the evolution of phenotypic plasticity

    DEFF Research Database (Denmark)

    Murren, Courtney J; Auld, Josh R.; Callahan, Hilary S

    2015-01-01

    Phenotypic plasticity is ubiquitous and generally regarded as a key mechanism for enabling organisms to survive in the face of environmental change. Because no organism is infinitely or ideally plastic, theory suggests that there must be limits (for example, the lack of ability to produce...... an optimal trait) to the evolution of phenotypic plasticity, or that plasticity may have inherent significant costs. Yet numerous experimental studies have not detected widespread costs. Explicitly differentiating plasticity costs from phenotype costs, we re-evaluate fundamental questions of the limits...... to the evolution of plasticity and of generalists vs specialists. We advocate for the view that relaxed selection and variable selection intensities are likely more important constraints to the evolution of plasticity than the costs of plasticity. Some forms of plasticity, such as learning, may be inherently...

  15. Predicting risk of substantial weight gain in German adults-a multi-center cohort approach.

    Science.gov (United States)

    Bachlechner, Ursula; Boeing, Heiner; Haftenberger, Marjolein; Schienkiewitz, Anja; Scheidt-Nave, Christa; Vogt, Susanne; Thorand, Barbara; Peters, Annette; Schipf, Sabine; Ittermann, Till; Völzke, Henry; Nöthlings, Ute; Neamat-Allah, Jasmine; Greiser, Karin-Halina; Kaaks, Rudolf; Steffen, Annika

    2017-08-01

    A risk-targeted prevention strategy may efficiently utilize limited resources available for prevention of overweight and obesity. Likewise, more efficient intervention trials could be designed if selection of subjects was based on risk. The aim of the study was to develop a risk score predicting substantial weight gain among German adults. We developed the risk score using information on 15 socio-demographic, dietary and lifestyle factors from 32 204 participants of five population-based German cohort studies. Substantial weight gain was defined as gaining ≥10% of weight between baseline and follow-up (>6 years apart). The cases were censored according to the theoretical point in time when the threshold of 10% baseline-based weight gain was crossed assuming linearity of weight gain. Beta coefficients derived from proportional hazards regression were used as weights to compute the risk score as a linear combination of the predictors. Cross-validation was used to evaluate the score's discriminatory accuracy. The cross-validated c index (95% CI) was 0.71 (0.67-0.75). A cutoff value of ≥475 score points yielded a sensitivity of 71% and a specificity of 63%. The corresponding positive and negative predictive values were 10.4% and 97.6%, respectively. The proposed risk score may support healthcare providers in decision making and referral and facilitate an efficient selection of subjects into intervention trials. © The Author 2016. Published by Oxford University Press on behalf of the European Public Health Association.

  16. Predicting risk of substantial weight gain in German adults—a multi-center cohort approach

    Science.gov (United States)

    Bachlechner, Ursula; Boeing, Heiner; Haftenberger, Marjolein; Schienkiewitz, Anja; Scheidt-Nave, Christa; Vogt, Susanne; Thorand, Barbara; Peters, Annette; Schipf, Sabine; Ittermann, Till; Völzke, Henry; Nöthlings, Ute; Neamat-Allah, Jasmine; Greiser, Karin-Halina; Kaaks, Rudolf

    2017-01-01

    Abstract Background A risk-targeted prevention strategy may efficiently utilize limited resources available for prevention of overweight and obesity. Likewise, more efficient intervention trials could be designed if selection of subjects was based on risk. The aim of the study was to develop a risk score predicting substantial weight gain among German adults. Methods We developed the risk score using information on 15 socio-demographic, dietary and lifestyle factors from 32 204 participants of five population-based German cohort studies. Substantial weight gain was defined as gaining ≥10% of weight between baseline and follow-up (>6 years apart). The cases were censored according to the theoretical point in time when the threshold of 10% baseline-based weight gain was crossed assuming linearity of weight gain. Beta coefficients derived from proportional hazards regression were used as weights to compute the risk score as a linear combination of the predictors. Cross-validation was used to evaluate the score’s discriminatory accuracy. Results The cross-validated c index (95% CI) was 0.71 (0.67–0.75). A cutoff value of ≥475 score points yielded a sensitivity of 71% and a specificity of 63%. The corresponding positive and negative predictive values were 10.4% and 97.6%, respectively. Conclusions The proposed risk score may support healthcare providers in decision making and referral and facilitate an efficient selection of subjects into intervention trials. PMID:28013243

  17. Use of Plastic Capillaries for Macromolecular Crystallization

    Science.gov (United States)

    Potter, Rachel R.; Hong, Young-Soo; Ciszak, Ewa M.

    2003-01-01

    Methods of crystallization of biomolecules in plastic capillaries (Nalgene 870 PFA tubing) are presented. These crystallization methods used batch, free-interface liquid- liquid diffusion alone, or a combination with vapor diffusion. Results demonstrated growth of crystals of test proteins such as thaumatin and glucose isomerase, as well as protein studied in our laboratory such dihydrolipoamide dehydrogenase. Once the solutions were loaded in capillaries, they were stored in the tubes in frozen state at cryogenic temperatures until the desired time of activation of crystallization experiments.

  18. Plasticity Theory of Fillet Welds

    DEFF Research Database (Denmark)

    Hansen, Thomas

    2005-01-01

    a safe and statically admissible stress distribution is established. The plasticity solutions are compared with tests carried out at the Engineering Academy of Denmark, Lyngby, in the early nineties, and old fillet weld tests. The new failure conditions are in very good agreement with the yield load......This paper deals with simple methods for calculation of fillet welds based on the theory of plasticity. In developing the solutions the lower-bound theorem is used. The welding material and parts of the base material are subdivided into triangular regions with homogeneous stress fields; thereby...... tests, but not so good agreement with the old failure load tests....

  19. The Plastic Tension Field Method

    DEFF Research Database (Denmark)

    Hansen, Thomas

    2005-01-01

    This paper describes a calculation method for steel plate girders with transverse web stiffeners subjected to shear. It may be used for predicting the failure load or, as a design method, to determine the optimal amount of internal web stiffeners. The new method is called the plastic tension field...... method. The method is based on the theory of plasticity and is analogous to the so-called diagonal compression field method developed for reinforced concrete beams with transverse stirrups, which is adopted in the common European concrete code (Eurocode 2). Many other theories have been developed...

  20. Preparation of coloured wood plastics

    International Nuclear Information System (INIS)

    Lebedev, V.T.; Filippova, T.G.; Rajchuk, F.Z.

    1977-01-01

    A study has been made into the possibility of using fat, as well as alcohol- and water-soluble dyes for radiation-chemical dying of polymers and plastics filled with wood. The use of fat-soluble azo and anthraquinone dyes permits obtaining intensely colored wood-plastic materials based on methyl methacrylate by way of gamma radiation with doses of up to 3 Mrad. At a dose above 5 Mrad, a marked tarnishing of the dye or a change in color and stains are observed. Dyes in styrene withstand higher radiation doses without any significant destruction

  1. 20 CFR 654.13 - Determination of areas of substantial unemployment.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Determination of areas of substantial unemployment. 654.13 Section 654.13 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF... 10582 § 654.13 Determination of areas of substantial unemployment. An area of substantial unemployment...

  2. The Influence of Thermic Plastic Films on Vegetative and Reproductive Growth of Iceberg Lettuce 'Dublin'

    OpenAIRE

    Wael M. Semida; P. Hadley; W. Sobeih; N. A. El-Sawah; M. A. S. Barakat

    2013-01-01

    Photoselective plastic films with thermic properties are now available so that greenhouses clad with such plastics exhibit a higher degree of “Greenhouse Effect” with a consequent increase in night time temperature. In this study, we investigate the potential benefits of a range of thermic plastic films used as greenhouse cover materials on the vegetative and reproductive growth and development of Iceberg lettuce (Lactuca sativa L). Transplants were grown under thermic fi...

  3. Study of primary energy transfer process in ultrafast plastic scintillators

    International Nuclear Information System (INIS)

    Bengtson, B.; Moszynski, M.

    1978-01-01

    The study of the light-pulse shape, the initial delay of light pulses and the light yield of plastics prepared by a modification of the NE111 scintillator were performed. The NE111 scintillator doped with several quench agents, the plastics prepared as a solution of butyl PBD in PVT of different concentration and PVT alone were studied. The study confirmed that the light pulse shape from fast binary plastics is well described analytically by the convolution of the clipped Gaussian and exponential functions. The investigation of the PVT-butyl PBD plastics shows that even more than three times larger concentration of butyl PBD compared to that of PBD in the NE111 solution does not improve the rise of the light pulse. Thus the rise time seems to be not controlled by the intermolecular energy transfer process. Finally, the observed rise time of the light pulse from the PVT sample was also approximated well by the Gaussian function. Altogether it brought a strong support for the earlier hypothesis that the initial slow rise of light pulses from plastic scintillators may come from the deexcitation of several higher levels of the solvent molecules excited by nuclear particles. (Auth.)

  4. Charge carrier dynamics in PMMA-LiClO4 based polymer electrolytes plasticized with different plasticizers

    Science.gov (United States)

    Pal, P.; Ghosh, A.

    2017-07-01

    We have studied the charge carrier dynamics in poly(methylmethacrylate)-LiClO4 polymer electrolytes plasticized with different plasticizers such as ethylene carbonate (EC), propylene carbonate (PC), polyethylene glycol (PEG), and dimethyl carbonate (DMC). We have measured the broadband complex conductivity spectra of these electrolytes in the frequency range of 0.01 Hz-3 GHz and in the temperature range of 203 K-363 K and analyzed the conductivity spectra in the framework of the random barrier model by taking into account the contribution of the electrode polarization observed at low frequencies and/or at high temperatures. It is observed that the temperature dependences of the ionic conductivity and relaxation time follow the Vogel-Tammann-Fulcher relation for all plasticized electrolytes. We have also performed the scaling of the conductivity spectra, which indicates that the charge carrier dynamics is almost independent of temperature and plasticizers in a limited frequency range. The existence of nearly constant loss in these electrolytes has been observed at low temperatures and/or high frequencies. We have studied the dielectric relaxation in these electrolytes using electric modulus formalism and obtained the stretched exponent and the decay function. We have observed less cooperative ion dynamics in electrolytes plasticized with DMC compared to electrolytes plasticized with EC, PC, and PEG.

  5. A work criterion for plastic collapse

    International Nuclear Information System (INIS)

    Muscat, Martin; Mackenzie, Donald; Hamilton, Robert

    2003-01-01

    A new criterion for evaluating limit and plastic loads in pressure vessel design by analysis is presented. The proposed criterion is based on the plastic work dissipated in the structure as loading progresses and may be used for structures subject to a single load or a combination of multiple loads. Example analyses show that limit and plastic loads given by the plastic work criterion are robust and consistent. The limit and plastic loads are determined purely by the inelastic response of the structure and are not influenced by the initial elastic response: a problem with some established plastic criteria

  6. Plastic packaged microcircuits: Quality, reliability, and cost issues

    Science.gov (United States)

    Pecht, Michael G.; Agarwal, Rakesh; Quearry, Dan

    1993-12-01

    Plastic encapsulated microcircuits (PEMs) find their main application in commercial and telecommunication electronics. The advantages of PEMs in cost, size, weight, performance, and market lead-time, have attracted 97% of the market share of worldwide microcircuit sales. However, PEMs have always been resisted in US Government and military applications due to the perception that PEM reliability is low. This paper surveys plastic packaging with respect to the issues of reliability, market lead-time, performance, cost, and weight as a means to guide part-selection and system-design.

  7. Experimental substantiation of methodic of 11-13 years old boxers’ coordination development

    Directory of Open Access Journals (Sweden)

    Yong Qiang Liu

    2015-06-01

    Full Text Available Purpose: experimental substantiation of methodic of junior boxers’ coordination training. Material: in the research 18 boxers of 11-13 year old age participated. In total, during 4 months 42 trainings were conducted. Total time of coordination load’s fulfillment at each training was 15-45 minutes. Results: dynamic of results in control tests was statistically confident in the tested parameters of movements. It proves effectiveness of usage the tasks with complex-coordination orientation, accented on impact on sensor-informational and motor systems of movements in junior boxers’ trainings. Conclusions: coordination training in boxing at initial stage shall include specialized varied means and methods, which would facilitate formation of motor condition and skills’ basis. Motor condition and skills are a reserve for further rising of coordination abilities’ level of junior sportsmen.

  8. Assessment and quantification of plastics waste generation in major 60 cities of India.

    Science.gov (United States)

    Nalini, R; Srinivasulu, B; Shit, Subhas C; Nigam, Suneel Kumar; Akolkar, A B; Dwivedfi, R K

    2013-04-01

    Polymers or plastics materials registered rapid growth in 1970s, 1980s and 1990s at the rate of 2-2.5 times the GDP growth in India. The demand for plastic raw material got more than doubled from 3.3 Million Metric Ton to 6.8 Million Metric Tons in 2010 attributed mainly to rapid urbanization, spread of retail chains, plastics based packaging from grocery to food and vegetable products to cosmetics and consumer items. Plastics packages have its merits over many of conventional materials in the related sector but unless they are collected back effectively after their use to go into recycling process, they become an eyesore in the stream of Municipal Solid Waste (MSW) due to high visibility. As the synthetic and conventional plastics are non-biodegradable in nature, these remain in the dump yards/ landfills for several years, if not collected properly. Due to non- biodegradability, plastics waste remains in the environment for several years, if not collected and disposing plastics wastes at landfills are unsafe since toxic chemicals leach out into the soil and as they contaminate soil and underground water quality. The municipal solid waste also increasing day-by-day due to the inefficient source collection, segregation and transmission of plastics waste for recycling and reusing. In order to find out the realistic plastics waste generation, a study on assessment and quantification of plastics waste has been carried out by CPCB in collaboration with CIPET on selected 60 major cities of India.

  9. Contribution of plastic waste recovery to greenhouse gas (GHG) savings in Spain.

    Science.gov (United States)

    Sevigné-Itoiz, Eva; Gasol, Carles M; Rieradevall, Joan; Gabarrell, Xavier

    2015-12-01

    This paper concentrates on the quantification of greenhouse gas (GHG) emissions of post-consumer plastic waste recovery (material or energy) by considering the influence of the plastic waste quality (high or low), the recycled plastic applications (virgin plastic substitution or non-plastic substitution) and the markets of recovered plastic (regional or global). The aim is to quantify the environmental consequences of different alternatives in order to evaluate opportunities and limitations to select the best and most feasible plastic waste recovery option to decrease the GHG emissions. The methodologies of material flow analysis (MFA) for a time period of thirteen years and consequential life cycle assessment (CLCA) have been integrated. The study focuses on Spain as a representative country for Europe. The results show that to improve resource efficiency and avoid more GHG emissions, the options for plastic waste management are dependent on the quality of the recovered plastic. The results also show that there is an increasing trend of exporting plastic waste for recycling, mainly to China, that reduces the GHG benefits from recycling, suggesting that a new focus should be introduced to take into account the split between local recycling and exporting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Modeling the drift of plastics in the Adriatic Basin

    Science.gov (United States)

    Liubartseva, Svitlana; Coppini, Giovanni; Lecci, Rita; Creti, Sergio

    2016-04-01

    Recently, plastic pollution at sea has become widely recognized as an acute environmental problem. Distribution of plastics in the marine environment is controlled by (1) locations and time-varying intensity of inputs; (2) the dynamics of the upper mixed layer of the ocean, where the majority of plastics float; and (3) the sinks of plastics. In the present work, we calculate the plastic concentrations at the sea surface and fluxes onto the coastline (2009-2015) that originated from terrestrial and maritime inputs. We construct a Markov chain model based on coupling the MEDSLIK-II model (De Dominicis et al., 2013) with the daily Adriatic Forecasting System (AFS) ocean currents simulations (1/45° horizontal resolution) (Guarneri et al., 2010) and ECMWF surface wind analyses (0.25° horizontal and 6-h temporal resolutions). We assume that the coastline is the main sink of plastics in the Adriatic Sea (Liubartseva et al., 2015). Our calculations have shown that the mean particle half-life in the basin approximately equals 43.7 days, which allows us to define the Adriatic Sea as a highly dissipative system with respect to floating plastics. On long-term time-mean scales, the most polluted sea surface area (more than 10 g/km2 floating plastics) is represented by an elongated band shifted to the Italian coastline and narrowed from northwest to southeast. That corresponds to the spatial distributions of plastic inputs, and indicates a tight connection with patterns of the general Adriatic circulation, including the Western Adriatic Coastal Current and the South Adriatic gyre. On seasonal time-mean scales, we indicate the winter plastics' expansion into the basin's interior, spring trapping in the northern Adriatic, summer cleansing the middle and southern Adriatic and autumn spreading into the southeastern Adriatic. Distinctive coastal "hot spot" is found on the Po Delta coastline that receives a plastic flux of 70 kg/(kmṡday). Complex source-receptor relationships

  11. Body dysmorphia and plastic surgery.

    Science.gov (United States)

    Kyle, Allison

    2012-01-01

    Body dysmorphic disorder is a mental disorder characterized by a preoccupation with some aspect of one's appearance. In cosmetic surgery, this preoccupation can be overlooked by practitioners resulting in a discrepancy between expected and realistic outcome. Identifying the characteristics of this disorder may be crucial to the practitioner-patient relationship in the plastic surgery setting.

  12. Ways of Viewing Pictorial Plasticity

    NARCIS (Netherlands)

    Wijntjes, M.W.A.

    2017-01-01

    The plastic effect is historically used to denote various forms of stereopsis. The vivid impression of depth often associated with binocular stereopsis can also be achieved in other ways, for example, using a synopter. Accounts of this go back over a hundred years. These ways of viewing all aim

  13. Electron beam micromachining of plastics

    Czech Academy of Sciences Publication Activity Database

    Dupák, Libor

    2014-01-01

    Roč. 49, 5-6 (2014), s. 310-314 ISSN 0861-4717 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01; GA MŠk EE.2.3.20.0103 Institutional support: RVO:68081731 Keywords : micromachining of plastics * Electron beam Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  14. Field based plastic contamination sensing

    Science.gov (United States)

    The United States has a long-held reputation of being a dependable source of high quality, contaminant-free cotton. Recently, increased incidence of plastic contamination from sources such as shopping bags, vegetable mulch, surface irrigation tubing, and module covers has threatened the reputation o...

  15. Recycling of plastics in Germany

    International Nuclear Information System (INIS)

    Thienen, N. von; Patel, M.

    1999-01-01

    This article deals with the waste management of post-consumer plastics in Germany and its potential to save fossil fuels and reduce CO 2 emissions. Since most experience is available for packaging, the paper first gives an overview of the legislative background and the material flows for this sector. Then recycling and recovery processes for plastics waste from all sectors are assessed in terms of their contribution to energy saving and CO 2 abatement. Practically all the options studied show a better performance than waste treatment in an average incinerator which has been chosen as the reference case. High ecological benefits can be achieved by mechanical recycling if virgin polymers are substituted. The paper then presents different scenarios for managing plastic waste in Germany in 1995: considerable savings can be made by strongly enhancing the efficiency of waste incinerators. Under these conditions the distribution of plastics waste among mechanical recycling, feedstock recycling and energy recovery has a comparatively mall impact on the overall results. The maximum savings amount to 74 PJ of energy, i.e, 9% of the chemical sector energy demand in 1995 and 7.0 Mt CO 2 , representing 13% of the sector's emissions. The assessment does not support a general recommendation of energy recovery due to the large difference between the German average and the best available municipal waste-to-energy facilities and also due to new technological developments in the field of mechanical recycling

  16. Transformation plasticity and hot pressing

    International Nuclear Information System (INIS)

    Chaklader, A.C.D.

    1975-01-01

    The transformation plasticity during the phase transition of quartz to cristobalite, monoclinic reversible tetragonal of zirconia, metakaolin to a spinel phase, and brucite to periclase was investigated by studying their compaction characteristics. Viscous flow was found to be the predominant mechanism of mass transport (after an initial particle rearrangement stage) in the case of quartz to cristobalite phase change where the transformation was associated with the formation of an intermediate amorphous silica phase. The results on the monoclinic reversible tetragonal transformation of zirconia indicated that it is most likely controlled by internal strain induced by the stress associated with the volume change (ΔV/V) and the flow stress of the weaker phase. Particle movement and deformation of the weaker phase (possibly tetragonal) may be the manifestation of this plasticity. The plasticity in the case of metakaolin to a spinel phase appeared to start before the exothermic reaction (generally encountered in a dta plot) and may be diffusion controlled. The plasticity encountered during brucite to periclase transformation may be the combined effect of disintegration of precursor particles, vapor-phase lubrication and some deformability of freshly formed very fine MgO particles

  17. Critical neural networks with short- and long-term plasticity

    Science.gov (United States)

    Michiels van Kessenich, L.; Luković, M.; de Arcangelis, L.; Herrmann, H. J.

    2018-03-01

    In recent years self organized critical neuronal models have provided insights regarding the origin of the experimentally observed avalanching behavior of neuronal systems. It has been shown that dynamical synapses, as a form of short-term plasticity, can cause critical neuronal dynamics. Whereas long-term plasticity, such as Hebbian or activity dependent plasticity, have a crucial role in shaping the network structure and endowing neural systems with learning abilities. In this work we provide a model which combines both plasticity mechanisms, acting on two different time scales. The measured avalanche statistics are compatible with experimental results for both the avalanche size and duration distribution with biologically observed percentages of inhibitory neurons. The time series of neuronal activity exhibits temporal bursts leading to 1 /f decay in the power spectrum. The presence of long-term plasticity gives the system the ability to learn binary rules such as xor, providing the foundation of future research on more complicated tasks such as pattern recognition.

  18. Extracellular proteolysis in structural and functional plasticity of mossy fiber synapses in hippocampus

    Directory of Open Access Journals (Sweden)

    Grzegorz eWiera

    2015-11-01

    Full Text Available Brain is continuously altered in response to experience and environmental changes. One of the underlying mechanisms is synaptic plasticity, which is manifested by modification of synapse structure and function. It is becoming clear that regulated extracellular proteolysis plays a pivotal role in the structural and functional remodeling of synapses during brain development, learning and memory formation. Clearly, plasticity mechanisms may substantially differ between projections. Mossy fiber synapses onto CA3 pyramidal cells display several unique functional features, including pronounced short-term facilitation, a presynaptically expressed LTP that is independent of NMDAR activation, and NMDA-dependent metaplasticity. Moreover, structural plasticity at mossy fiber synapses ranges from the reorganization of projection topology after hippocampus-dependent learning, through intrinsically different dynamic properties of synaptic boutons to pre- and postsynaptic structural changes accompanying LTP induction. Although concomitant functional and structural plasticity in this pathway strongly suggests a role of extracellular proteolysis, its impact only starts to be investigated in this projection. In the present report, we review the role of extracellular proteolysis in various aspects of synaptic plasticity in hippocampal mossy fiber synapses. A growing body of evidence demonstrates that among perisynaptic proteases, tPA/plasmin system, β-site amyloid precursor protein-cleaving enzyme 1 (BACE1 and metalloproteinases play a crucial role in shaping plastic changes in this projection. We discuss recent advances and emerging hypotheses on the roles of proteases in mechanisms underlying mossy fiber target specific synaptic plasticity and memory formation.

  19. Cancer Stem Cell Plasticity as Tumor Growth Promoter and Catalyst of Population Collapse

    Directory of Open Access Journals (Sweden)

    Jan Poleszczuk

    2016-01-01

    Full Text Available It is increasingly argued that cancer stem cells are not a cellular phenotype but rather a transient state that cells can acquire, either through intrinsic signaling cascades or in response to environmental cues. While cancer stem cell plasticity is generally associated with increased aggressiveness and treatment resistance, we set out to thoroughly investigate the impact of different rates of plasticity on early and late tumor growth dynamics and the response to therapy. We develop an agent-based model of cancer stem cell driven tumor growth, in which plasticity is defined as a spontaneous transition between stem and nonstem cancer cell states. Simulations of the model show that plasticity can substantially increase tumor growth rate and invasion. At high rates of plasticity, however, the cells get exhausted and the tumor will undergo spontaneous remission in the long term. In a series of in silico trials, we show that such remission can be facilitated through radiotherapy. The presented study suggests that stem cell plasticity has rather complex, nonintuitive implications on tumor growth and treatment response. Further theoretical, experimental, and integrated studies are needed to fully decipher cancer stem cell plasticity and how it can be harnessed for novel therapeutic approaches.

  20. Plastics and beaches: A degrading relationship

    International Nuclear Information System (INIS)

    Corcoran, Patricia L.; Biesinger, Mark C.; Grifi, Meriem

    2009-01-01

    Plastic debris in Earth's oceans presents a serious environmental issue because breakdown by chemical weathering and mechanical erosion is minimal at sea. Following deposition on beaches, plastic materials are exposed to UV radiation and physical processes controlled by wind, current, wave and tide action. Plastic particles from Kauai's beaches were sampled to determine relationships between composition, surface textures, and plastics degradation. SEM images indicated that beach plastics feature both mechanically eroded and chemically weathered surface textures. Granular oxidation textures were concentrated along mechanically weakened fractures and along the margins of the more rounded plastic particles. Particles with oxidation textures also produced the most intense peaks in the lower wavenumber region of FTIR spectra. The textural results suggest that plastic debris is particularly conducive to both chemical and mechanical breakdown in beach environments, which cannot be said for plastics in other natural settings on Earth